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Abstract

The problem of pure exploration in Markov decision processes has been cast as
maximizing the entropy over the state distribution induced by the agent’s policy,
an objective that has been extensively studied. However, little attention has been
dedicated to state entropy maximization under partial observability, despite the lat-
ter being ubiquitous in applications, e.g., finance and robotics, in which the agent
only receives noisy observations of the true state governing the system’s dynamics.
How can we address state entropy maximization in those domains? In this paper, we
study the simple approach of maximizing the entropy over observations in place of
true latent states. First, we provide lower and upper bounds to the approximation
of the true state entropy that only depend on some properties of the observation
function. Then, we show how knowledge of the latter can be exploited to com-
pute a principled regularization of the observation entropy to improve performance.
With this work, we provide both a flexible approach to bring advances in state
entropy maximization to the POMDP setting and a theoretical characterization of
its intrinsic limits.

1 Introduction

A plethora of recent works (Hazan et al., 2019; Lee et al., 2019; Mutti & Restelli, 2020; Tarbouriech
et al., 2020; Zhang et al., 2021; Guo et al., 2021; Liu & Abbeel, 2021b;a; Seo et al., 2021; Yarats
et al., 2021; Mutti et al., 2021; 2022b;c; Nedergaard & Cook, 2022; Yang & Spaan, 2023; Tiapkin
et al., 2023; Jain et al., 2023; Kim et al., 2023; Zisselman et al., 2023; Mutti, 2023) have studied state
entropy maximization for pure exploration of Markov Decision Processes (MDPs, Puterman, 2014)
in the absence of a reward function. In this Maximum State Entropy (MSE) framework, formally
introduced by Hazan et al. (2019), the agent aims to maximize the entropy of the state visitation
induced by its policy instead of the cumulative sum of rewards, which is a generalization of the
Reinforcement Learning (RL, Bertsekas, 2019) problem that often goes as convex RL (Zahavy et al.,
2021; Geist et al., 2021; Mutti et al., 2022a; 2023) due to the convexity of the entropy function.

Despite the problem being harder than RL, MSE has brought remarkable empirical success as a
tool for data collection (Yarats et al., 2022), transition model estimation (Tarbouriech et al., 2020),
and policy pre-training (Mutti et al., 2021), as well as an essential building block for improved skills
discovery (Liu & Abbeel, 2021a) and generalization across various tasks (Zisselman et al., 2023).

Especially, Mutti et al. (2021); Liu & Abbeel (2021b); Seo et al. (2021); Yarats et al. (2021) have
popularized a practical policy optimization procedure that allows to address MSE at scale. Their
method is based on pairing flexible nearest-neighbors estimators of the entropy (Singh et al., 2003)
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with policies implemented through neural networks trained via backpropagation, a recipe for success
in complex and high-dimensional domains, e.g., continuous control or learning from images.

Although many facets of the MSE problem have been studied, all of the previous works assume the
states, on which the entropy is maximized, to be fully observable to the agent. However, this is not
the case for several interesting applications. Let us think of a trading scenario: A trader typically
accesses a small portion of the true state, e.g., current stock prices, volumes, and so on, while other
parts, e.g., the general sentiment of the market or companies’ revenues published quarterly, mostly
remain latent, albeit crucial to define the system’s dynamics. The same goes for a robotic navigation
task, where the state is often accessed through noisy sensory inputs, such as cameras and proximity,
rather than true spatial coordinates. An important question arises naturally:

Can we maximize the entropy over states getting partial observations only?

While the problem of addressing a learning objective that is hidden from the agent is fascinating per
se, we argue that any improvement in this direction is paramount to bringing MSE closer to practical
applications. Unfortunately, the problem we just described is a clear generalization of learning in
Partially Observable MDPs (POMDPs, Åström, 1965), which is well-known to be intractable.

In this paper, we study the simple approach of maximizing the entropy over the partial observations
in place of the true states. This framework, which we call Maximum Observation Entropy (MOE),
gives two crucial benefits. On the one hand, we can sidestep the inherent computational hardness of
dealing with POMDPs (Papadimitriou & Tsitsiklis, 1987), as the class of policies that are Markovian
over observations suffices (Hazan et al., 2019) and we do not need to build complex belief distributions
over the true state as the objective is fully observable. Secondly, all of the previous implementations
can be directly transferred from MSE to MOE without changes, which gives a head start to the
MOE problem instead of implementing new techniques from the ground up.

Surprisingly, we can show that this straightforward approach is not hopeless. We derive formal
approximation results on the difference between the entropy induced over observations and the
corresponding entropy over the true (latent) states, which can be upper bounded as a function of
properties of the observation matrix, namely its maximum singular value or the average entropy of
its rows. This is in stark contrast with RL in POMDPs, in which the optimal policy over observations
is almost arbitrarily sub-optimal under similar assumptions.

Whereas the approximation bounds characterize settings where optimizing for MOE is enough, they
tell little about how to address domains in which the observation matrix is not so well-behaved. In
those settings, we show that knowledge of the observation matrix, a reasonable requirement in some
applications (e.g., the specifics of sensors and cameras equipped on a robot may be available), can be
exploited to improve performance over MOE. First, we derive a principled regularization term that
discounts the entropy induced by the observations with the entropy of their emission, intuitively
putting more weight on the observations for which the emission process is reliable and less on those
that are known to be noisy. Then, we incorporate the latter regularization in an appropriate policy
gradient algorithm inspired by previous MSE approaches (Mutti et al., 2021; Liu & Abbeel, 2021b).
Finally, we test the algorithm on a set of simple yet illustrative domains to validate our theoretical
findings, bringing an algorithmic blueprint for scalable state entropy maximization in POMDPs.

Contributions. Throughout the paper, we make the following contributions:

• In Section 3, we provide the first generalization of the MSE problem to the POMDP setting,
introducing MOE as a simple yet flexible and tractable approach;

• In Section 4, we theoretically analyze the gap between MOE and MSE, providing a family of
upper and lower bounds that link the approximation error to spectral and information properties
of the observation matrix;

• In Section 5, we design a policy gradient algorithm for (general) MOE optimization, and we pro-
vide a variation including a principle regularization term to exploit knowledge of the observation
matrix (but not the POMDP specification);
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• In Section 6, we report an empirical validation that tests the introduced algorithms against an
ideal baseline accessing the true states of the POMDP, which both upholds the algorithms’ design
and our theoretical findings.

Finally, in a concurrent work (Zamboni et al., 2024) we explore state entropy maximization in
POMDPs beyond MOE, studying methodologies that exploit observations to build beliefs over the
true states and then maximize the entropy of the believed states. With the combined contributions
of this paper and Zamboni et al. (2024), we hope to pave the way for future studies of state entropy
maximization in partially observable environments.

2 Preliminaries

In this section, we introduce the most relevant background and the basic notation.

Notation. In the following, we denote [N ] := {1, 2, . . . , N} for a constant N < ∞. We denote a
set with a calligraphic letter A and its size as |A|. We denote AT := ×T

t=1A the T -fold Cartesian
product of A. The simplex on A is denoted as ∆A := {p ∈ [0, 1]|A||

∑
a∈A p(a) = 1} and ∆B

A denotes
the set of conditional distributions p : A → ∆B. Let X a random variable on the set of outcomes
X and corresponding probability measure pX , we denote as Hα(X) = 1

1−α log(
∑

x∈X pX(x)α) the
Rènyi entropy of order α, from which we recover the Shannon entropy H(X) = limα→1 Hα(X) =
−

∑
x∈X pX(x) log(pX(x)) and the min-entropy H∞(X) = limα→∞ Hα(X) = − log(maxx∈X pX(x)).

We denote x = (X1, . . . , XT ) a random vector of size T and x[t] its entry at position t ∈ [T ]. For
a vector v ∈ RN we denote ∥v∥∞ := maxi∈[N ] vi. For a matrix V ∈ RN×M we denote ∥V∥∞ :=
maxij∈[N ]×[M ] Vij its infinity norm, V∗ its conjugate transpose and V◦−1 its Hadamard inverse, such
that V ◦−1

ij = 1/Vij ∀i, j. We further denote λ(V), σ(V), the vectors of eigenvalues and singular
values of V, respectively. We denote the spectral norm of V as ∥V∥2 :=

√
λmax(V∗V) = σmax(V)

where λmax(V) := ∥λ(V)∥∞ and σmax(V) := ∥σ(V)∥∞.

As a base model for interaction, we consider a finite-horizon Partially Observable Markov Decision
Process (POMDP, Åström, 1965) without rewards. A POMDP M := (S,X ,A,O,P, µ, T ) is com-
posed of a set S of latent states, a set X of observations, and a set of actions A, which we let discrete
and finite with size |S|, |X |, |A| respectively. At the start of an episode, the initial state s1 of M is
drawn from an initial state distribution µ ∈ ∆S . An agent interacting with M never accesses the
true state of the system but an observation x1 ∼ O(·|s1) where O ∈ ∆S

X is the observation func-
tion.1 Upon observing x1, the agent takes action a1 ∈ A, the system transitions to s2 ∼ P(·|s1, a1)
according to the transition model P ∈ ∆S×A

S , and a new observation x2 ∼ O(·|s2) is generated. The
process is repeated until sT is reached and xT is generated, being T <∞ the horizon of an episode.

The agent selects actions according to a decision policy π ∈ ∆A
X such that π(a|x) denotes the

conditional probability of taking action a upon observing x. Deploying a policy π over a POMDP M
induces a specific distribution over states and observations. Let denote as S, X the random variables
corresponding to the state and observation respectively, we have that S is distributed as pπ

S ∈ ∆S ,
where pπ

S(s) = 1
T

∑
t∈[T ] Pr(st = s), and X as pπ

X ∈ ∆X , where pπ
X(x) = 1

T

∑
t∈[T ] Pr(xt = x).

Further, it is easy to see that pπ
X(x) =

∑
s∈S pπ

S(s)O(x|s). Furthermore, let us denote with s, x, a
the random vectors corresponding to sequences of states, observations, and actions of length T , which
are supported in ST ,X T ,AT respectively. We have that s is distributed as qπ

S ∈ ∆ST , where qπ
S(s) =∏

t∈[T ] Pr(st = s[t]), and x, a as qπ
XA ∈ ∆X T ×AT , where qπ

XA(x, a) =
∏

t∈[T ] Pr(xt = x[t], at = a[t]).
Finally, we denote the empirical distributions induced by s, x as p̂S(s| s) = 1

T

∑
t∈[T ] 1(s[t] = s) and

p̂X(x|x) = 1
T

∑
t∈[T ] 1(x[t] = x), which does not depend on π due to the conditioning on s, x.

1With slight overload of notation, we will equivalently represent the observation function through a stochastic
matrix O ∈ R|S|×|X |.
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3 Problem Formulation

In the MDP setting, i.e., observations coincide with the true states of the state of the system, Hazan
et al. (2019) have formulated the Maximum State Entropy (MSE) objective as follows

max
π∈Π̃

{
H(S|π) := −

∑
s∈S

pπ
S(s) log pπ

S(s)
}

(1)

where Π̃ ⊆ ∆A
S is the set of Markovian policies from states to distribution over actions, and H(S|π)

is the entropy of the state variable S “conditioned” on running the policy π in the MDP. When the
MDP is fully known, Hazan et al. (2019) shows that (1) is non-convex, but it admits a convex dual
formulation, which is optimized by a stochastic Markovian policy in general.

In principle, we aim to address the same objective (1) in POMDPs as well. However, in the POMDP
setting, we cannot access the true states, which are latent, but we have to rely on partial observations
generated from those states. Thus, a straightforward adaptation of (1) to POMDPs is to define an
analogous objective on observations as a proxy for H(S|π), which we cannot access. We define the
Maximum Observation Entropy (MOE) objective as follows

max
π∈Π

{
H(X|π) := −

∑
x∈X

pπ
X(x) log pπ

X(x)
}

(2)

where Π ⊆ ∆A
S is the set of Markovian policies from observations to distribution over actions, and

H(X|π) is the entropy of the observation X “conditioned” on running the policy π in the POMDP.

Similarly, as in MDPs, we aim to find a policy π that maximizes (2), but we are actually interested
in achieving a good performance on (1). It is easy to see how the value of (2) can depart significantly
from the true objective (1). Take, for instance, an observation matrix that maps every state to the
same observation O(x̄|s) = 1 ∀s ∈ S. It is clear that every policy is optimal for MOE in this setting,
but the entropy on the true states can be arbitrarily bad. While those extreme cases are rather
unrealistic, the observation matrix can be truly messed up in practice. We want to understand what
are the settings that are worth addressing with MOE and what kind of guarantees we can get. In
the following section, we provide answers to these questions by deriving theoretical bounds on the
approximation of MSE with MOE that depends on crucial properties of the observation matrix.

4 A Formal Characterization of Maximum Observation Entropy

In this section, we aim to characterize the gap H(S|π) − H(X|π) induced by a chosen policy π,
e.g., the policy that maximizes the MOE objective (2). Due to the POMDP nature, in which only
partial information (if any) on the true states is leaked to the agent, we cannot provide any general
guarantee on the latter gap, which can be as large as

|H(S|π)−H(X|π)| ≤ max{log |S|, log |X |}. (3)

Nonetheless, we can provide instance-dependent results that formally characterize the gap according
to notable properties of the observation function in the given instance. First, we prove the following.
Theorem 4.1 (Spectral Approximation Bounds). Let M a POMDP and let π ∈ Π ⊆ ∆A

X a policy.
Then, it holds

log
(

1
σmax(O◦−1)

)
≤ H(S|π)−H(X|π) ≤ log(σmax(O)).

Proof. First, we derive the upper bound. Starting from H(X|π), we have

H(X|π) ≥ H2(X|π) = log
(

1
∥pπ

X∥2

)
= log

(
1

∥O · pπ
S∥2

)
(4)

≥ log
(

1
∥O∥2 ∥pπ

S∥2

)
= log

(
1

∥pπ
S∥2

)
+ log

(
1
∥O∥2

)
= H2(S|π)− log (σmax(O))
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where the first inequality comes from H(V ) ≥ H2(V ) for every variable V and the second inequality
from ∥V · v∥2 ≤ ∥V∥2 ∥v∥2 for every matrix V and vector v. Then, starting from H(S|π), we get

H(S|π) = ∥pπ
S∥∞ log

(
1

∥pπ
S∥∞

)
+

∑
s:pπ

S
(s)<∥pπ

S
∥∞

pπ
S(s) log

(
1

pπ
S(s)

)
(5)

≤ ∥pπ
S∥∞H∞(S|π) + (1− ∥pπ

S∥∞) log
(
|S| − 1

1− ∥pπ
S∥∞

)
where the inequality is obtained by letting pπ

S be uniformly distributed outside of the entry ∥pπ
S∥∞.

By noting H∞(V ) ≤ H2(V ) and plugging (5) back to (4) we get

H(X|π) ≥ H(S|π)
∥pπ

S∥∞
+ ∥p

π
S∥∞ − 1
∥pπ

S∥∞
log

(
|S| − 1

1− ∥pπ
S∥∞

)
+ log

(
1

σmax(O)

)
(6)

which gives the result for ∥pπ
S∥∞ → 1.2

To derive the lower bound, we proceed as follows. We start from the H(X|π) definition to write

H(X|π) =
∑
x∈X

pπ
X(x) log

(
1

pπ
X(x)

)
=

∑
x∈X

pπ
X(x) log

( ∑
s∈S pπ

S(s)∑
s pπ

S(s)O(x|s)

) ∑
s∈S

pπ
S(s) (7)

≤
∑
x∈X

pπ
X(x)

∑
s∈S

pπ
S(s) log

(
pπ

S(s)
pπ

S(s)O(x|s)

)
= H(S|π) +

∑
x∈X

pπ
X(x)

∑
s∈S

pπ
S(s) log

(
pπ

S(s)
O(x|s)

)
(8)

≤ H(S|π) + E
x∼pπ

X

E
s∼pπ

S

[
log(O◦−1(x|s))

]
≤ H(S|π) + log

(
max
x∈X

max
s∈S

O◦−1(x|s)
)

(9)

≤ H(S|π) + log
(
σmax(O◦−1)

)
(10)

where we exploit pπ
X(x) =

∑
s∈S pπ

S(s)O(x|s) and
∑

s∈S pπ
S(s) = 1 to write (7), we first apply the

log-sum inequality and we split the logarithm to get (8). Then, in (9), we write the first inequality
through the definition of the Hadamard inverse of O and noting that pπ

S(s) ≤ 1 ∀s ∈ S, we get
the second inequality from E[V ] ≤ max(V ) for any random variable V and the monotonicity of the
logarithm. Finally, we obtain the result (10) by ∥V∥∞ ≤ ∥V∥2 = σmax(V) for any matrix V.

Figure 1: Spectral Bound behavior for two differ-
ent observation matrices O. MOE values compat-
ible with MSE values are in orange.

Theorem 4.1 gives bounds on the approximation
gap that can be much tighter than the worst-
case gap in (3). The bounds relate the gap to
the scale of the transformation induced by the
observation matrix on the distribution of the la-
tent states, which is captured by the maximum
singular value of O and O◦−1, respectively. For
instance, an observation matrix that maps every
state to the same observation O(x̄|s) = 1 ∀s ∈ S
can lead to a larger gap between MOE and MSE,
as visualized in the left-hand side of Figure 1.
On the other hand, when the observation ma-
trix maps with high probability each state to
a different observation, the gap is necessarily
smaller (see the right-hand side of Figure 1).
Notably, both sides of the bound collapse to zero
when the observation matrix is an identity ma-
trix, i.e., when the states are fully observed.

The bounds in Theorem 4.1 only focus on spectral properties of the observation matrix O. In a
similar vein, we can provide an analogous characterization based on information properties of O.

2Note that (6) is a tighter version of the upper bound than the one provided in the theorem statement, although
it directly depends on the state distribution pπ

S beyond spectral properties of O.
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Theorem 4.2 (Information Approximation Bound). Let M a POMDP, let π ∈ Π ⊆ ∆A
X a policy,

and let H(X|S, π) = Es∼pπ
S
[H(O(·|s))]. Then, it holds

H(S|π) ≥ H(X|π)−H(X|S, π).

Proof. Starting from H(X|π) definition, we can write

H(X|π) =
∑
x∈X

pπ
X(x) log 1

pπ
X(x) =

∑
x∈X

∑
s∈S

O(x|s)pπ
S(s) log 1∑

s′∈S O(x|s′)pπ
S(s′)

≤
∑
x∈X

∑
s∈S

O(x|s)pπ
S(s) log 1

O(x|s)pπ
S(s) (11)

=
∑
x∈X

∑
s∈S

O(x|s)pπ
S(s) log 1

pπ
S(s) +

∑
x∈X

∑
s∈S

O(x|s)pπ
S(s) log 1

O(x|s) (12)

= H(S|π) +
∑
s∈S

pπ
S(s)H(O(·|s)) = H(S|π) + H(X|S, π) (13)

where we get (11) by noting
∑

s′∈S O(x|s′)pπ
S(s′) ≥ O(x|s)pπ

S(s), we split the logarithm to write (12),
we let

∑
x∈X O(x|s) = 1 and

∑
s∈S pπ

S(s)H(O(·|s)) = H(X|S, π) to obtain the result in (13).

Figure 2: Information Approximation Bound be-
havior for two different pπ

S . MSE values compati-
ble with MOE values are in green.

Theorem 4.2 essentially states that the gap be-
tween the entropy on observations and true
states is small as long as the policy π induces
visits to states where the observation function
has low entropy, which is captured by the term
H(X|S, π) = Es∼pπ

S
[H(O(·|s))]. When a policy

visits states emitting observations with high en-
tropy, the bound on the gap will be loose, as
visualized in the left-hand side of Figure 2. In-
stead, when the most visited states emit almost
deterministic observations, then the bound on
the gap is tighter (see the right-hand side in
Figure 2). Just as Theorem 4.1, also the lat-
ter bound is tight when the true states are fully
observed, collapsing the gap to zero.

The combination of Theorems 4.1, 4.2 yield a
nice description of the instances that is reason-
able to address with a MOE approach, i.e., those for which the gap between the resulting policy
and the optimal MSE policy is small thanks to the properties of the observation matrix. Unfor-
tunately, policies in POMDPs have control over neither the spectral properties of the observation
function nor whether the visited states have low-entropy observation distributions. In other words,
while being descriptive, these results do not provide any further tool to actively address MSE in
POMDPs. In the next section, we reformulate the bound in Theorem 4.2 around quantities that
can be actively controlled by a policy conditioned on observations and we provide a family of policy
gradient algorithms to learn a MOE policy in those relevant instances.

Before diving into algorithmic solutions, it is interesting to confront the properties making a state
entropy maximization problem on POMDPs easy and analogous requirements for RL in POMDPs.
In the latter setting, we generally ask for an observation function that leaks significant information
on the latent state. For instance, this is captured by a lower bound on the minimum singular
value of O in the revealing POMDP assumption (e.g., Liu et al., 2022). Instead, in state entropy
maximization, we care less about identifying the latent state, and we can just focus on observations
as long as O does not dramatically jeopardize the underlying state distribution.
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Algorithm 1 PG for MOE (Reg-MOE)
1: Input: learning rate α, number of iterations K, batch size N
2: Initialize the policy parameters θ1
3: for k = 1, . . . , K do
4: Sample N trajectories {(xi, ai)}i∈[N ] with the policy πθk

5: Compute {H(X|xi)}i∈[N ] and {∇θ log πθ(xi, ai) =
∑

t∈[T ]∇θ log πθ(ai[t]|xi[t])}i∈[N ]
6: Update the policy parameters in the gradient direction

θk+1 ← θk + α 1
N

∑N
i ∇θ log πθ(xi, ai)

(
H(X|xi)−β

∑
x∈X pX(x|xi)H(O(x|·)

)
7: end for
8: Output: the final policy πθK

5 Towards Principled Policy Gradients for MOE

In the previous section, we analyzed the theoretical guarantees we get on the state entropy maxi-
mization problem by optimizing the MOE objective (2), but we did not yet describe how the latter
optimization can be performed. Here we propose a family of Policy Gradient algorithms (Peters &
Schaal, 2008) to learn a MOE policy from sampled interactions with the POMDP.

First, we define a space of parametric policies πθ ∈ ΠΘ ⊆ Π where θ ∈ Θ ⊆ R|X ||A| are differentiable
policy parameters.3 The expression of the MOE objective does not allow for an easy computation of
policy gradients. However, if we let H(X|x) = −

∑
x∈X p̂X(x|x) log p̂X(x|x) the observation entropy

induced by a sequence of observations x, we can write a convenient trajectory-based counterpart
of (2), namely

max
πθ∈ΠΘ

{
H(X|πθ) :=

∑
(x,a)∈X T ×AT

qπθ

XA(x, a)H(X|x)
}

. (14)

Notably, the trajectory-based objective (14) is a lower bound to the MOE objective (2), due to
the concavity of the entropy function and the Jensen’s inequality (see Mutti et al., 2022a). Thus,
optimizing for (14) guarantees a non-degradation of our initial objective function (2), while it allows
for an easy derivation of the gradient ∇θ w.r.t. the policy parameters.4

Proposition 5.1 (Policy Gradient for MOE). Let πθ ∈ ΠΘ a parametric policy and let the policy
scores ∇θ log πθ(x, a) =

∑
t∈[T ]∇θ log πθ(a[t]|x[t]). We can compute the policy gradient of πθ as

∇θH(X|πθ) = E
(x,a)∼qπ

XA

[
∇θ log πθ(x, a)H(X|x)

]
.

With the latter result, we can design a policy gradient algorithm based on REINFORCE (Williams,
1992). The procedure, described in Algorithm 1, initializes the policy parameters and then performs
several iterations of gradient ascent updates. As we shall see in the next section, Algorithm 1 can be
a simple yet effective solution to MOE optimization in various settings. However, the resulting policy
can be underwhelming in domains where the observation matrix is particularly challenging. While
we cannot overcome the barriers established in Theorems 4.1, 4.2, we can still exploit additional
information on the observation function to further improve the performance.

Known Observation Matrix. With the knowledge of O, we are tempted to directly optimize
the lower bound to H(S|π) provided in Theorem 4.2 by trading-off high entropy on observations
(H(X|π)) with the entropy of their emission (H(X|S, π)). Unfortunately, we do not have access to
the state distribution dπ

S to compute the expectation H(X|S, π) = Es∼pπ
S
[H(O(·|s))]. Nonetheless,

we can rework the lower bound into an alternative form where all of the terms are known and can be
controlled by a policy conditioned on observations only, as it demonstrates the following corollary
to Theorem 4.2.

3See Deisenroth et al. (2013, Section 1.3) for common choices of parametric policy spaces.
4The proof can be found in Appendix A.
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Corollary 5.2 (Actionable Lower Bound). Let M a POMDP, let π ∈ Π ⊆ ∆A
X a policy, and let

H(S|X, π) = Ex∼pπ
X

[H(O(x|·))]. Then, it holds

H(S|π) ≥ H(X|π)−H(S|X, π) + log(σmax(O)).

Proof. The result follows straightforwardly through further manipulation of Theorem 4.2. We have,

H(S|π) ≥ H(X|π)−H(X|S, π) = H(X|π)−H(S|X, π) + H(S|π)−H(X|π) (15)

≥ H(X|π)−
∑
x∈X

pπ
X(x)H(O(x|·)) + log(σmax(O)) (16)

where (15) is the result of the application of the Bayes rule to the conditional entropy H(X|S, π)
and (16) follows from the fact that H(X|π)−H(S|π) ≥ − log(σmax(O)) due to Theorem 4.1.

Figure 3: Actionable Lower Bound behavior for
two different pπ

X . MSE values compatible with
MOE values are in green.

From the latter result, we get a lower bound
to H(S|π) that can be controlled, as we flipped
the conditioning from H(X|S, π) to H(S|X, π),
which we can compute by taking an expecta-
tion with the observation distribution. Visually,
when a policy visits observations that can be
emitted by many states, the bound on the gap
will be looser (Figure 3, left-hand side). When
the visited observations are emitted by specific
states with high probability, then the bound on
the gap is tighter (Figure 3, right-hand side).

Inspired by the rational provided by this bound,
it is then possible to explicitly account for the
effect of dealing with observation only: for every
β ∈ (0, 1), we can write a regularized version
of (14) as

Hβ(X|π) :=
∑

(x,a)∈X T ×AT
qπ

XA(x, a)
(

H(X|x)− β
∑

x∈X
p̂X(x|x)H(O(x|·)

)
,

which we call Regularized MOE (Reg-MOE), and a slight variation of the Algorithm 1 (highlighted in
the pseudocode) to optimize the regularized objective. In the next section, we provide an empirical
validation of the proposed PG algorithms to describe their respective strengths and weaknesses. Note
that the presented algorithms can be further enhanced with the same technical solutions of advanced
policy optimization algorithms for the MSE objective (e.g., Mutti et al., 2021; Liu & Abbeel, 2021b;
Seo et al., 2021; Yarats et al., 2021) to address continuous and high-dimensional domains.

6 Numerical Validation

Here we provide a brief numerical validation of the theoretical results provided in Section 4 and the
algorithmic solutions proposed in Section 5. Especially, we aim to show that

(a) Optimizing MOE is particularly effective when the observation matrix is “well-behaved”;
(b) Optimizing MOE is bound to fail when the observation matrix is not “well-behaved”;
(c) Additional knowledge of the observation structure can be sometimes exploited to improve the

performance in the latter challenging cases by optimizing the regularized MOE.

Intuitively, an observation matrix is “well-behaved” when it does not induce a significant transfor-
mation of the state distribution, keeping the approximation gap between MOE and MSE small.
Thanks to Theorems 4.1, 4.2 we can provide a formal characterization of this property. In the
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(a) Well-behaved observations
E[H(O)] ≈ 1

(b) Challenging observations
E[H(O)] ≈ 2.2

(c) Challenging observations
with structure E[H(O)] ≈ 1.85

Figure 4: Entropy on latent states (MSE) achieved by PG for MSE, PG for MOE, and PG for
Reg-MOE in gridworlds with various O. We report the average and 95% c.i. over 16 runs.

experiments below, we measure the latter through the average entropy of the observation function
E[H(O)] =

∑
s∈S H(O(·|s))/|S| on the lines of the information bound in Theorem 4.2.

In Figure 4a we test (a) by showing that the performance of the algorithms accessing observations
only, i.e., PG for MOE and PG for Reg-MOE, is remarkably close to the ideal baseline having
access to the true states, i.e., PG for MSE. This is due to the low average entropy of the observation
function: Although the agent cannot know its exact position, maximizing the entropy of observations
still leads to a large entropy over the latent states.

This is not the case in the experiment in Figure 4b, where the gridworld configuration is the same,
but the observation function is now more challenging, i.e., more entropic on average. The significant
gap between the algorithms optimizing MOE and the ideal baseline is a testament of (b) and a
corroboration of the theoretical limits of the MOE approach, which are formally provided in Theo-
rems 4.1, 4.2. PG for MOE and PG for Reg-MOE can still successfully maximize the entropy over
observations, but cannot avoid a significant mismatch with the resulting entropy over latent states.

However, not all the domains with challenging (i.e., entropic) observations are hopeless for the
MOE approach, especially when we can exploit knowledge on how the observations are themselves
generated. In Figure 4c, we report a further experiment in which the observation matrix has a
block with very high entropy (in which observations are almost random) and a block with nearly
deterministic observations. PG for MOE does not exploit the structure of O and cannot distinguish
between observations that are reliable from those that are not. Instead, the regularization term
in PG for Reg-MOE leads to more visitations of reliable observations (i.e., generated with lower
entropy) effectively reducing the gap with the ideal baseline (PG for MSE), which corroborates
both (c) and the result in Corollary 5.2.

As a bottom line, this numerical validation shows that the MOE approach, while not being a
solution to every POMDP instance, can still provide a remarkable performance on domains where
the observation matrix is not too challenging or when its knowledge can be exploited.

7 Related Work

This work rests in the intersection between POMDPs, state entropy maximization, and policy opti-
mization. Here we report a list of the most relevant contributions in those areas.

POMDPs. Learning and planning problems in POMDPs have been extensively studied. In
the most general formulation, POMDPs are known to be computationally and statistically in-
tractable (Papadimitriou & Tsitsiklis, 1987; Krishnamurthy et al., 2016; Jin et al., 2020). Nonethe-
less, several recent works have analyzed tractable sub-classes of POMDPs under convenient structural
assumptions, such as (Jin et al., 2020; Golowich et al., 2022; Chen et al., 2022; Liu et al., 2022; Zhan
et al., 2023; Zhong et al., 2023).
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State Entropy Maximization. State entropy maximization in MDPs has been introduced
in Hazan et al. (2019), from which followed a variety of subsequent works focusing on the problem
from various perspectives (Lee et al., 2019; Mutti & Restelli, 2020; Mutti et al., 2021; 2022b;c; Mutti,
2023; Zhang et al., 2021; Guo et al., 2021; Liu & Abbeel, 2021b;a; Seo et al., 2021; Yarats et al.,
2021; Nedergaard & Cook, 2022; Yang & Spaan, 2023; Tiapkin et al., 2023; Jain et al., 2023; Kim
et al., 2023; Zisselman et al., 2023). Among them, Savas et al. (2022) indeed study the problem of
maximizing the entropy over trajectories induced in a POMDP, yet we are the first to formulate
state entropy maximization in POMDPs in this paper and, concurrently, Zamboni et al. (2024).

Policy Optimization. First-order methods have been extensively employed to address non-
concave policy optimization (Sutton et al., 1999; Peters & Schaal, 2008). In this work, we proposed
a vanilla policy gradient estimator (Williams, 1992) as a first step, yet several further refinements
could be made, such as natural gradient (Kakade, 2001), trust-region schemes (Schulman et al.,
2015), and importance sampling (Metelli et al., 2018).

8 Conclusions

In this paper, we made a step forward into generalizing state entropy maximization in POMDPs.
Specifically, we addressed the problem of learning a policy conditioned only by observations that
target the entropy over the latent states. We proposed the simple approach of optimizing the entropy
over observations in place of latent states and we formally characterized the instances where it is
effective by deriving approximation bounds of the latent objective that depend on the structure of
the observation matrix. Finally, we design a family of policy gradient algorithms to optimize the
observation entropy in practice and to exploit knowledge of the observation structure when available.

Before concluding, it is worth mentioning that state entropy maximization can find further motiva-
tion in POMDPs beyond its common use in MDP settings. While how those methods can benefit
offline data collection and transition model estimation is less obvious under partial observability,
it is worth noting that the reward in a POMDP is usually defined over the true states, such that
pre-training a policy to explore over them is still relevant (Eysenbach et al., 2021). Moreover, the
policy we aim to learn is commonly a mapping from beliefs to actions, for which ensuring good
exploration over beliefs is important. Interestingly, in POMDPs one may choose to pre-train belief
representations alone, to be transferred to various downstream tasks. For this problem, accessing
data with coverage over the space of beliefs and, consequently, true states is essential. Exploring
other potential uses of state entropy maximization in POMDPs is a nice future direction.

Future works may extend our results in many other directions, such as enhancing our algorithms by
incorporating recent advancements in policy optimization for MSE (e.g., Liu & Abbeel, 2021b) and
designing alternative objectives and algorithms to target domains where the entropy of observations
is not enough (Zamboni et al., 2024). To conclude, we believe that this work sets a crucial first step
in the direction of extending state entropy maximization to yet more practical settings.
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A Missing Proofs

Here we report the derivations of the policy gradient reported in Proposition 5.1. Especially, we
write

∇θH(X|πθ) = ∇θ

∑
(x,a)∈X T ×AT

qπθ

XA(x, a)H(X|x)

=
∑

(x,a)∈X T ×AT

(
∇θqπθ

XA(x, a)
)

H(X|x)

=
∑

(x,a)∈X T ×AT
qπθ

XA(x, a)∇θ log qπθ

XA(x, a)H(X|x)

= E
(x,a)∼q

πθ
XA

[
∇θ log qπθ

XA(x, a)H(X|x)
]

by exploiting the linearity of the expectation to go from the first to the second equality, then applying
the common log-trick (Peters & Schaal, 2008) and finally recognising the sum as an expectation again.

To derive the gradient we then have to provide the calculation of the policy scores ∇θ log qπθ

XA(x, a).
For every π ∈ ΠΘ, we notice that qπθ

XA(x, a) =
∏

t∈[T ] Pr(xt = x[t])πθ(at = a[t]|xt = x[t]) and that
the only term depending on θ is the policy itself. By exploiting the properties of the logarithm we
have

∇θ log qπθ

XA(x, a) =
∑

t∈[T ]

∇θ log πθ(at = a[t]|xt = x[t])

which leads to the standard REINFORCE formulation (Williams, 1992).
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B Additional Details on the Experiments

In the following, we report additional details on the experiments of Section 6. Specifically, we
describe the employed domains and their properties in Appendix B.1, we comment on the choice of
hyper-parameters in Appendix B.2, and on the effect of the regularization on the results of PG for
Reg-MOE in Appendix B.3.

B.1 Domains

Most of the reported experiments refer to the grid-
world reported on the left, which is composed of
a set of rooms connected by narrow corridors.
The grid is composed of 44 cells, which define
both the set of states (|S| = 44) and observations
(|X | = 44). The set of actions A include an ac-
tion to move to the adjacent cell in every direction
(|A| = 4). To every action is associated a proba-
bility of failure p̄ = 0.1 that leads the agent to an
adjacent cell (at random) different from the one
intended by the taken action. The episode hori-
zon is T = 55 and the initial state distribution µ
was set to be a deterministic over the top-left cell.

The glasses icon in the bottom left cell of the grid represents a state that “flips” the behavior of the
observations. This is only relevant in the experiment in Figure 4c and is better explained below.
All the experiments of Section 6 were performed with a regularization factor β = 0.8 (for PG for
Reg-MOE) and a learning rate of α = 0.9. Finally, the batch size was N = 6 and the number of
independent runs was set to 16.

Observations. The observations were set to be Gaussian distributions G(0, σ2) over the Manhat-
tan distance centered in the true state and without caring about any obstacles, with 0 mean and
different values of variance σ2. The resulting observation matrices are reported in Figure 5. Finally,
the effect of “wearing” the glasses (i.e., reaching the bottom-left cell of the grid) is to make the
observation function fully deterministic. Note that the information on whether the agent wears the
glasses is encoded in the state themselves, doubling the size of the set of states to |S| = 88.

(a) Observation matrix of the
experiment in Figure 4a

(b) Observation matrix of the
experiment in Figure 4b

(c) Observation matrix of the ex-
periment in Figure 4c

Figure 5: Heatmaps representing the observation matrix O employed in the experiments of Section 6.
Note that in Figure 5c the colormap has logarithmic scale.
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B.2 Hyper-Parameters Selection

In this section, we briefly discuss the choice behind the selection of specific hyper-parameters em-
ployed in the experiments.

Learning Rate. As for the learning rate α, a value of α = 0.9 was selected across the experiments.
As one can see from Figure 6, the best performance were reached with a learning rate between α = 1
and α = 0.7, so α = 0.9 can be seen as a robust choice across the boards.

(a) PG for MOE (observation ma-
trix as in Figure 5a)

(b) PG for MOE (observation ma-
trix as in Figure 5b)

(c) PG for Reg-MOE (observation
matrix as in Figure 5c)

Figure 6: Comparison of the performance with different values of the learning rate for various
algorithms and domains.

Regularization. As for the regularization term β, the best performance for the various instances
was generally reached with β ∈ (0.3, 1), as shown in Figure 7 (the learning rate is fixed to α = 0.9).
For lower values of β, the effect of the regularization is almost negligible, while for higher values of β
the agent tended to over-optimize the regularization term in place of the entropy over observations,
reducing performance. As one would expect, the best value for the regularization depend on the
specific POMDP instance.

(a) With glasses (variance of ob-
servations σ2 = 10)

(b) With glasses (variance of ob-
servations σ2 = 1)

(c) Without glasses (variance of
observations σ2 = 0.25)

Figure 7: A comparison of different values of regularization for varying emission matrices’ quality
and settings with and without glasses. For the low value of regularization, the performances of
Reg-MOE are equivalent to the MOE performances.
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B.3 Further Insights on the Effect of the Regularization

In this section, we further investigate the effect of
the regularization term. For this specific test, we
consider a different gridworld configuration than
previous experiments, which is reported on the
right. The observation matrix is designed as a
Gaussian G(0, σ2) over the Manhattan distance in
the blue rooms, while it is deterministic (and thus
fully revealing) in the red room. For this experi-
ment, we set the variance to σ2 = 1, the regular-
ization term to β = 0.3, and the horizon T = 40.
As for the remaining parameters, they are kept as
in the previous experiments.
Figure 8 shows that, in this experiment, the two learned policies have similar performances. Yet, as
can be seen, while the policy trained with PH for MOE tries to explore the environment uniformly,
the one trained with PG for Reg-MOE successfully explored the portion of the grid with lower
entropy in the observations, to later address a deeper exploration of the remaining rooms. This
behaviour exactly aligns with the role of the regularization term, which should indeed make the
agent prefer observations that are emitted with lower entropy by the observation function.

(a) MSE performance of PG for
MSE (green), PG for MOE (or-
ange), PG for Reg-MOE (red) (b) PG for MOE (c) PG for Reg-MOE

Figure 8: Comparison of the policies learned by PG for MOE and PG for Reg-MOE over 2000
episodes. The magnitude of each arrow is proportional to the probability of the policy to choose
that action, after marginalizing over all the possible observations emitted in that state.


