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Abstract

Modern reinforcement learning has been conditioned by at least three dogmas. The

first is the environment spotlight, which refers to our tendency to focus on modeling

environments rather than agents. The second is our treatment of learning as finding
the solution to a task, rather than adaptation. The third is the reward hypothesis, which

states that all goals and purposes can be well thought of as maximization of a

reward signal. These three dogmas shape much of what we think of as the science

of reinforcement learning. While each of the dogmas have played an important

role in developing the field, it is time we bring them to the surface and reflect on

whether they belong as basic ingredients of our scientific paradigm. In order to

realize the potential of reinforcement learning as a canonical frame for researching

intelligent agents, we suggest that it is time we shed dogmas one and two entirely,

and embrace a nuanced approach to the third.

1 On a Paradigm for Intelligent Agents

In The Structure of Scientific Revolution, Thomas Kuhn distinguishes between two phases of scientific

activity (Kuhn, 1962). The first Kuhn calls "normal science" which he likens to puzzle-solving, and

the second he calls the "revolutionary" phase, which consists of a re-imagining of the basic values,

methods, and commitments of the science that Kuhn collectively calls a "paradigm".

The history of artificial intelligence (AI) arguably includes several swings between these two phases,

and several paradigms. The first phase began with the 1956 Dartmouth workshop (McCarthy et al.,

2006) and arguably continued up until sometime around the publication of the report by Lighthill

et al. (1973) that is thought to have heavily contributed to the onset of the first AI winter (Haenlein &

Kaplan, 2019). In the decades since, we have witnessed the rise of a variety of methods and research

frames such as symbolic AI (Newell & Simon, 1961; 2007), knowledge-based systems (Buchanan

et al., 1969) and statistical learning theory (Vapnik & Chervonenkis, 1971; Valiant, 1984; Cortes &

Vapnik, 1995), culminating in the most recent emergence of deep learning (Krizhevsky et al., 2012;

LeCun et al., 2015; Vaswani et al., 2017) and large language models (Brown et al., 2020; Bommasani

et al., 2021; Achiam et al., 2023).

In the last few years, the proliferation of AI systems and applications has hopelessly outpaced our

best scientific theories of learning and intelligence. Yet, it is our duty as scientists to provide the

means to understand the current and future artifacts borne from the field, especially as these artifacts

are set to transform society. It is our view that reflecting on the current paradigm and looking

beyond it is a key requirement for unlocking this understanding.

In this position paper, we make two claims. First, reinforcement learning (RL) is a good candidate

for a complete paradigm for the science of intelligent agents, precisely because "it explicitly considers

the whole problem of a goal-directed agent interacting with an uncertain environment" (p. 3, Sutton

& Barto, 2018). Second, in order for RL to play this role, we must reflect on the ingredients of

our science and shift a few points of emphasis. These shifts are each subtle departures from three

"dogmas", or implicit assumptions, summarized as follows:
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1. The Environment-Spotlight (Section 2): Our emphasis on modeling environments rather

than agents.

2. Learning as Finding a Solution (Section 3): Our search for agents that learn to solve tasks.

3. The Reward Hypothesis (Section 4): Assuming all goals are well thought of in terms of

reward maximization.

When we relax these dogmas, we arrive at a view of RL as the scientific study of agents, a vision closely

aligned with the stated goals of both RL and AI from their classic textbooks (Sutton & Barto, 2018;

Russell & Norvig, 1995), as well as cybernetics (Wiener, 2019). As important special cases, these

agents might interact with a Markov decision process (MDP; Bellman, 1957; Puterman, 2014), seek to

identify solutions to specific problems, or learn in the presence of a reward signal with the goal of

maximizing it, but these are not the only cases of interest.

2 Dogma One: The Environment Spotlight

The first dogma we call the environment spotlight (Figure 1), which refers to our collective focus on

modeling environments and environment-centric concepts rather than agents. For example, the

agent is essentially the means to deliver a solution to an MDP, rather than a grounded model in itself.

We do not fully reject this behaviourist view, but suggest balancing it; after all the classical RL

diagram features two boxes, not just one. We believe that the science of AI is ultimately about

intelligent agents, as argued by Russell & Norvig (1995); yet, much of our thinking, as well as our

mathematical models, analysis, and central results tend to orbit around solving specific problems,

and not around agents themselves. In other words, we lack a canonical formal model of an agent.

This is the essence of the first dogma.

Dogma 1: The Environment Spotlight

Our collective focus on environments and environment-centric concepts, rather than agents.

What do we mean when we say that we focus on environments? We suggest that it is easy to answer

only one of the following two questions:

1. What is at least one canonical mathematical model of an environment in reinforcement learning?

2. What is at least one canonical mathematical model of an agent in reinforcement learning?

The first question has a straightforward answer: the MDP, or any of its nearby variants such as a

𝑘-armed bandit (Lattimore & Szepesvári, 2020), a contextual bandit (Langford & Zhang, 2007), or a

partially observable MDP (POMDP; Cassandra et al., 1994). These each codify different versions

Environment

Agent

Figure 1: The first dogma, the Environment Spotlight.
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of decision making problems, subject to different structural assumptions—in the case of an MDP,

for instance, we make the Markov assumption by supposing there is a maintainable bundle of

information we call the state that is a sufficient statistic of the next reward and next distribution over

this same bundle of information. We assume these states are defined by the environment and are

directly observable by the agent at each time step for use in learning and decision making. The

POMDP relaxes this assumption and instead only reveals an observation to the agent, rather than

the state. By embracing the MDP, we are allowed to import a variety of fundamental results and

algorithms that define much of our primary research objectives and pathways. For example, we know

every MDP has at least one deterministic, optimal, stationary policy, and that dynamic programming

can be used to identify this policy (Bellman, 1957; Blackwell, 1962; Puterman, 2014). Moreover, our

community has spent a great deal of effort in exploring variations of the MDP such as the Block

MDP (Du et al., 2019) or Rich Observation MDP (Azizzadenesheli et al., 2016), the Object-Oriented

MDP (Diuk et al., 2008), the Dec-POMDP (Oliehoek et al., 2016), Linear MDPs (Todorov, 2006), and

Factored MDPs (Guestrin et al., 2003), to name a few. These models each forefront different kinds of

problems or structural assumptions, and have inspired a great deal of illuminating research.

In contrast, this second question ("what is a canonical agent model?") has no clear answer (Haru-

tyunyan, 2020). We might be tempted to respond in the form of a specific kind of a popular learning

algorithm, such as 𝑄-learning (Watkins & Dayan, 1992), but we suggest that this is a mistake.

𝑄-learning is just one instance of the logic that could underlie an agent, but it is not a generic

abstraction of what an agent actually is, not in the same way that a MDP is a model for a broad

family of sequential decision making problems. As discussed by Harutyunyan (2020), we lack a

canonical model of an agent, or even a basic conceptual picture. We believe that at this stage of the

field, this is becoming a limitation, and is due in part to our focus on environments.

Indeed, the exclusive focus on environment-centric concepts (such as the dynamics model, envi-

ronment state, optimal policy, and so on) can often obscure the vital role of the agent itself. As a

result, we are less capable of exploring questions that feature agents directly. But, here we wish

to reignite interest in an agent-centric paradigm that can give us the conceptual clarity we need

to explore the principles of agency. Without such ground currently, we struggle to even precisely

define and differentiate between key agent families such as "model-based" and "model-free" agents

(though some precise definitions have been given by Strehl et al. 2006 and Sun et al., 2019), or study

more complex questions about the agent-environment boundary (Jiang, 2019; Harutyunyan, 2020),

the extended-mind (Clark & Chalmers, 1998), embedded agency (Orseau & Ring, 2012), the effect of

embodiment (Ziemke, 2013; Martin, 2022), or the impact of resource-constraints (Simon, 1955; Ortega

et al., 2015; Griffiths et al., 2015; Kumar et al., 2023; Aronowitz, 2023) on our agents in a general way.

Most agent-centric concepts are typically beyond the scope of the basic mathematical language of

our field, and are consequently not featured in our experimental work.

The Alternative: Shine the Spotlight on Agents, Too. Our suggestion is simple: it is important

to define, model, and analyse agents in addition to problems and environments. We should build

toward a canonical mathematical model of an agent that can open us to the possibility of discovering

general laws governing agents (if they exist), building on the work of Russell & Subramanian (1994),

Wooldridge & Jennings (1995), Kenton et al. (2023), and echoing the call of Sutton (2022). We should

engage in foundational work to establish axioms that characterize important agent properties and

families, as in work by Sunehag & Hutter (2011; 2015) and Richens & Everitt (2024). We should do

this in a way that is confluent with our latest empirical data about agents, drawing from the variety

of disciplines that study agents, from psychology,1 cognitive science, and philosophy, to biology,

AI, and game theory. Doing so can expand the purview of our scientific efforts to understand and

design intelligent agents.

1Tomasello makes a similar case that the field of psychology should center around the concept of agency: "Every scientific

discipline begins with a proper domain, a first principle. In biology, that proper domain or first principle is life: physical

substances organized in particular ways to perform particular organismic functions. In psychology, depending on one’s

theoretical predilections, that proper domain or first principle might be either behavior or mentality. But my preferred

candidate would be agency, precisely because agency is the organizational framework within which both behavioral and

mental processes operate." (p. 134, Tomasello, 2022).
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3 Dogma Two: Learning as Finding a Solution

The second dogma is embedded in the way we treat the concept of learning. We tend to view

learning as a finite process involving the search for—and eventual discovery of—a solution to a

given task. For example, consider the classical problem of an RL agent learning to play a board

game, such as Backgammon (Tesauro et al., 1995) or Go (Silver et al., 2016). In each of these cases, we

tend to assume a good agent is one that will play a vast number of games to learn how to play the

game effectively. Then, eventually, after enough games, the agent will reach optimal play and can

stop learning as the desired knowledge has been acquired.

In other words, we tend to implicitly assume that the learning agents we design will eventually

find a solution to the task at hand, at which point learning can cease. This is present in many of

our classical benchmarks, too, such as mountain car (Taylor et al., 2008) or Atari (Bellemare et al.,

2013), in which agents learn until they reach a goal. On one view, such agents can be understood

as searching through a space of representable functions that captures the possible action-selection

strategies available to an agent (Abel et al., 2023b), similar to the Problem Space Hypothesis (Newell,

1994). And, critically, this space contains at least one function—such as the optimal policy of an

MDP—that is of sufficient quality to consider the task of interested solved. Often, we are then

interested in designing learning agents that are guaranteed to converge to such an endpoint, at which

point the agent can stop its search (and thus, stop its learning). This process is pictured in Figure 2,

and is summarized in the second dogma.

Dogma 2: Learning as Finding a Solution

Our implicit focus on designing agents that find a solution, then stop learning.

This view is embedded into many of our objectives, and follows quite naturally from the use of the

MDP as a model of the decision making problem. It is well established that every MDP has at least

one optimal deterministic policy, and that such a policy can be learned or computed through dynamic

programming or approximations thereof. The same tends to be true of many of the alternative

settings we consider.

The Alternative: Learning as Adaptation. Our suggestion is to embrace the view that learning

can also be treated as adaptation (Barron et al., 2015). As a consequence, our focus will drift away

from optimality and toward a version of the RL problem in which agents continually improve, rather

than focus on agents that are trying to solve a specific problem. Of course, versions of this problem

have already been explored through the lens of lifelong (Brunskill & Li, 2014; Schaul et al., 2018),

multi-task (Brunskill & Li, 2013), and continual RL (Ring, 1994; 1997; 2005; Khetarpal et al., 2022;

Anand & Precup, 2023; Abel et al., 2023b; Kumar et al., 2023). Indeed, this perspective is highlighted

in the introduction of the textbook by Sutton & Barto (2018):
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Figure 2: Dogma 2: Learning as Finding a Solution.
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When we say that a reinforcement learning agent’s goal is to maximize a numerical

reward signal, we of course are not insisting that the agent has to actually achieve

the goal of maximum reward. Trying to maximize a quantity does not mean that

that quantity is ever maximized. The point is that a reinforcement learning agent is

always trying to increase the amount of reward it receives. (p. 10, Sutton & Barto,

2018).

This is a matter of a shift of emphasis: when we move away from optimality, how do we think about

evaluation? How, precisely, can we define this form of learning, and differentiate it from others?

What are the basic algorithmic building blocks that carry out this form of learning, and how are

they different from the algorithms we use today? Do our standard analysis tools such as regret and

sample complexity still apply? These questions are important, and require reorienting around this

alternate view of learning. We suggest that we as a community shed the second dogma and study

these questions directly.

4 Dogma Three: The Reward Hypothesis

The third dogma is the reward hypothesis (Sutton, 2004; Littman, 2015; Christian, 2021; Abel et al., 2021;

Bowling et al., 2023), which states "All of what we mean by goals and purposes can be well thought

of as maximization of the expected value of the cumulative sum of a received scalar signal (reward)."

First, it is important to acknowledge that this hypothesis is not deserving of the title "dogma" at all.

As originally stated, the reward hypothesis was intended to organize our thinking around goals

and purposes, much like the expected utility hypothesis before it (Machina, 1990). And, the reward

hypothesis seeded the research program of RL in a way that has led to the development of many of

our most celebrated results, applications, and algorithms.

Dogma 3: The Reward Hypothesis

All goals can be well thought of in terms of reward maximization.

However, as we continue our quest for the design of intelligent agents (Sutton, 2022), it is important

to recognize the nuance in the hypothesis.

In particular, recent analysis by Bowling et al. (2023), building on the work of Pitis (2019); Abel et al.

(2021) and Shakerinava & Ravanbakhsh (2022), fully characterizes the implicit conditions required

for the hypothesis to be true. These conditions come in two forms. First, Bowling et al. provide

a pair of interpretative assumptions that clarify what it would mean for the reward hypothesis

 observation
action

goal space

reward 
function

goal

Environment

Figure 3: The third dogma, the Reward Hypothesis. Any goal that a designer might conceive of can

be well thought of in terms of the maximization of a reward signal by a learning agent.
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to be true or false—roughly, these amount to saying two things. First, that "goals and purposes"

can be understood in terms of a preference relation on possible outcomes. Second, that a reward

function captures these preferences if the ordering over agents induced by value functions matches

that of the ordering induced by preference on agent outcomes. Then, under this interpretation, a

Markov reward function exists to capture a preference relation if and only if the preference relation

satisfies the four von Neumann-Morgenstern axioms (von Neumann & Morgenstern, 1953), and a

fifth Bowling et al. call 𝛾-Temporal Indifference.

This is significant, as it suggests that when we write down a Markov reward function to capture a

desired goal or purpose, we are forcing our goal or purpose to adhere to the five axioms, and we

must ask ourselves if it is always appropriate. As an example, consider the classical challenge on the

incomparability (or incommeasurability) of values in ethics, as discussed by Chang (2015). That

is, certain abstract virtues such as happiness and justice might be thought to be incomparable to

one another. Or, similarly, two concrete experiences might be incommeasurable, such as a walk on

the beach and eating breakfast—how might we assign measure to each of these experiences in the

same currency? Chang notes that two items might not be comparable without further reference to a

particular use, or context: "A stick can’t be greater than a billiard ball...it must be greater in some

respect, such as mass or length." However, the first axiom, completeness, strictly requires that the

implicit preference relation assigns a genuine preference between all pairs of experiences. As such, if

we take the reward hypothesis to be true, we can only encode goals or purposes in a reward function

that reject both incomparability and incommeasurability. It is worth noting that completeness in

particular has been criticized by Aumann (1962) due to the demands it places on the individual

holding the preference relation. Finally, the completeness axiom is not the only one restricting the

space of viable goals and purposes; axiom three, independence of irrelevant alternatives, famously

rejects risk-sensitive objectives as well due to the Allais paradox (Allais, 1953; Machina, 1982). Indeed,

Skalse & Abate (2023) establish that Markovian rewards cannot capture risk-sensitive or multi-criteria

objectives, and Miura (2022) similarly prove that multidimensional Markov rewards are strictly more

expressive than scalars.

The Alternative: Recognize and Embrace Nuance. Our suggestion is to be aware of the limitations

of scalar rewards, and to be open to other languages for describing an agent’s goals. It is important

that we recognize the implicit restrictions we are placing on the viable goals and purposes under

consideration when we represent a goal or purpose through a reward signal. We should become

familiar with the requirements imposed by the five axioms, and be aware of what specifically we

might be giving up when we choose to write down a reward function. On this latter point there is a

profound opportunity for future work. It is also worth highlighting the fact that preferences are

themselves just another language for characterizing goals—there are likely to be others, and it is

important to cast a wide net in our approach to thinking about goal-seeking.

5 Discussion

We have here argued that one long-term vision of RL is to provide a holistic paradigm for the science

of intelligent agents. To realise this vision, we suggest that it is time to reconcile our relationship

with three implicit dogmas that have shaped aspects of RL so far. These three dogmas amount

to over-emphasis on (1) environments, (2) finding solutions, and (3) rewards as a language for

describing goals. Further, we have initial suggestions on how to pursue research that makes subtle

departures from these dogmas. First, we should treat agents as one of our central objects of study.

Second, we must move beyond studying agents that find solutions for specific tasks, and also study

agents that learn to endlessly improve from experience. Third, we should recognize the limits of

embracing reward as our language for goals, and consider alternatives.

Open Questions. Each of these suggestions can be translated into important research questions we

encourage the community to explore further. First, what is our canonical model of an agent? Several

recent proposals have emerged, and agree on many aspects. What are the consequences of adopting
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one view, rather than another? Which ingredients of an agent are necessary, rather than extraneous?

We suggest that it is important to think carefully about these questions, and adopt conventions for

the standard model of an agent. Such a model can be used to clarify old questions, and as discussed,

open new lines of study around agent-centric concepts such as the agent-environment boundary

(Todd & Gigerenzer, 2007; Orseau & Ring, 2012; Harutyunyan, 2020), embodiment (Ziemke, 2013;

Martin, 2022), resource-constraints (Simon, 1955; Ortega, 2011; Braun & Ortega, 2014; Ortega et al.,

2015; Griffiths et al., 2015; Kumar et al., 2023; Aronowitz, 2023), and embedded agency (Orseau &

Ring, 2012). Second, what is the goal of learning when we give up the concept of a task’s solution? In

other words: how do we think about learning when no optimal solution can be found? How do we

begin to evaluate such agents, and measure their learning progress? Third, we suggest embracing a

wide variety of views about plausible accounts of the objectives of an agent. This includes continuing

to embrace classical accounts of reward maximization, but also considering varied objectives like

average reward (Mahadevan, 1996; Wan et al., 2021a;b), risk (Howard & Matheson, 1972; Mihatsch &

Neuneier, 2002), constraints (Altman, 2021), logical goals (Tasse et al., 2020; 2021), or even open-ended

goals (Stanley & Lehman, 2015; Colas et al., 2019; Samvelyan et al., 2023).

On the term "Dogma". The title of this paper and use of the term "dogma" are an homage to "Two

Dogmas of Empiricism" by Quine (1951). The term "dogma" casts a more negative light on each

of the principles than we intend (though, as Kuhn (1963) notes, there is a role for dogma in the

sciences). Indeed, as discussed, the reward hypothesis was originally conceived of as a hypothesis
as its name suggests. Still, it is a principle that is often taken as a presupposition that frames the

rest of the field of RL similar to the way that the Church-Turing Thesis frames computation—they

are both standard pre-scientific commitments that are part of most research programmes (Lakatos,

2014). The other two dogmas are both implicit rather than conventions we regularly state openly and

embrace; it is rare to see work in RL actively argue against the importance of thinking about agents

or agency, for instance. Instead, it is a convention to begin most RL research by framing our research

questions around dynamic programming and MDPs. In this sense, the community has been drawn

to specific well-tread research paths that involve modeling environments first, rather than agents
directly. The same implicit character is true of the second dogma: due to our focus on MDPs and

related models, it also tends to be the case that instances of the RL problem we study have a well

structured solution that is known to be discoverable through means such as dynamic programming

or temporal difference learning. We then often use language involving an algorithm solving a task by

converging to an optimal policy, reflecting the influence of the second dogma. It is in this sense that

we take the term “dogma" to be fitting of the first two: we tend not to question these aspects of our

research programme, yet they influence much of our methods and goals.

It is worth noting that it is understandable why the sentiments underlying the three dogmas were

adopted: by building our study from Markov models, we can make use of the suite of well-understood,

efficient algorithms based on dynamic programming, thanks to the seminal work by Bellman (1957),

Sutton (1988), Watkins (1989), and others. This is further supported by the way that fundamental

results from stochastic approximation (Robbins & Monro, 1951) have influenced many classical

results, such as the convergence of 𝑄-learning by Watkins & Dayan (1992) or TD-learning with

function approximation by Tsitsiklis & Van Roy (1996).

Inspiration. We are not the first to suggest moving beyond some of these conventions. The work on

general reinforcement learning by Hutter (2000; 2002; 2004) and colleagues (Lattimore & Hutter, 2011;

Leike, 2016; Cohen et al., 2019) has long studied RL in the most general possible setting. Indeed,

the stated goal of the original work on AIXI by Hutter (2000) was "...to introduce the universal AI

model" (p. 3). Similarly, a variety of work has explicitly focused on agents. For instance, the classical

AI textbook by Russell & Norvig (1995) defines AI "as the study of agents that receive percepts from

the environment and perform actions" (p. viii), and frames the book around "the concept of the

intelligent agent" (p. vii). Russell & Subramanian (1994) also feature a general take on goal-directed

agents that has shaped much of the agent-centric literature that follows—the agent functions there

introduced have been more recently adopted as one model of an agent (Abel et al., 2023a;b). Sutton
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(2022) proposes the "quest for a common model of the intelligent decision maker", and provides

initial suggestions for how to frame this quest. Work by Dong et al. (2022) and Lu et al. (2021)

have built on the traditions of agent-centric modeling, providing detailed accounts of the possible

constituents of an agent’s internal mechanism, similar to Sutton. Further work by Kenton et al. (2023)

and Richens & Everitt (2024) explore a causal perspective on agents, giving both concrete definitions

and insightful results. Outside of AI, the subject of agency is an important subject of discourse in

its own right—we refer the reader to the work by Barandiaran et al. (2009) and Dretske (1999) or

the books by Tomasello (2022), Nguyen (2020), and Dennett (1989) for further insights from nearby

communities.

Similarly, a variety of work has explored alternative ways to think about goals. For instance, Little &

Sommer (2013) study an agent that learns a predictive model of its environment, and ground this

study using the tools of information theory. This is similar in spirit to the Free-Energy Principle

proposed by Friston (2010), with recent work by Hafner et al. (2020) exploring connections to RL.

Preferences have also been used as an alternative to rewards, as in preference-based RL (Wirth et al.,

2017), with a more recent line of work on RL from human feedback (Knox & Stone, 2008; 2009;

Christiano et al., 2017; MacGlashan et al., 2016; 2017) now playing a significant role in the current

wave of language model research (Achiam et al., 2023). Others have proposed the use of various

logical languages for grounding goals, such as linear temporal logic (Kress-Gazit et al., 2009; Littman

et al., 2017; Li et al., 2017; Camacho & McIlraith, 2019; Hasanbeig et al., 2020; Hammond et al., 2021)

and nearby structures such as reward machines (Icarte et al., 2022). Another perspective presented

by Shah et al. (2021) explicitly contrasts the framing of assistance games (Hadfield-Menell et al.,

2016) with reward maximization, and suggests that the former provides a more compelling path to

designing assistive agents. Lastly, a variety of work has considered forms of goal-seeking beyond

expected cumulative reward, as in ordinal dynamic programming (Koopmans, 1960; Sobel, 1975),

convex RL (Zahavy et al., 2021; Mutti et al., 2022; 2023), empowerment (Salge et al., 2014), active

inference (Friston et al., 2012; Da Costa et al., 2022), other departures from the expectation (Bellemare

et al., 2017; 2023), or by incorporating other objectives such as constraints (Le et al., 2019; Altman,

2021) or risk (Mihatsch & Neuneier, 2002; Shen et al., 2014; Wang et al., 2023).

Other Dogmas. There are many other assumptions inherent to the basic philosophy of reinforcement

learning that we did not discuss. For instance, it has been common to focus on agents that learn

from a tabula rasa state, rather than consider other stages of learning. We also tend to adopt the

cumulative discounted reward with a geometric discounting schedule as the objective, rather than

using a hyperbolic schedule (Fedus et al., 2019), or consider the existence of environment-state rather

than a partially observable setting (Cassandra et al., 1994; Dong et al., 2022). We take it that reflecting

on these and other perspectives is also important, but that they have already received significant

attention by the community.

Conclusion. We hope this paper can reinvigorate the RL community to explore beyond our current

frames. We believe this begins by embracing the vision that RL is a good candidate for a holistic

paradigm of intelligent agents, and continues with a careful reflection of the values, methods, and

ingredients of our scientific practice that will enable this paradigm to flourish.
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