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Abstract

We study the problem of imitation learning via inverse reinforcement learning where
the agent attempts to learn an expert’s policy from a dataset of collected state,
action tuples. We derive a new Robust model-based Offline Imitation Learning
method (ROIL) that mitigates covariate shift by avoiding estimating the expert’s
occupancy frequency. Frequently in offline settings, there is insufficient data to
reliably estimate the expert’s occupancy frequency and this leads to models that do
not generalize well. Our proposed approach, ROIL, is a method that is guaranteed
to recover the expert’s occupancy frequency and is efficiently solvable as an LP. We
demonstrate ROIL’s ability to achieve minimal regret in large environments under
covariate shift, such as when the state visitation frequency of the demonstrations
does not come from the expert.

1 Introduction

Imitation learning seeks to compute an optimal policy in a Markov decision process (MDP) without
knowing the reward function. Instead, one only has access to a set of demonstrations performed by a
domain expert (Chang et al., 2021; Panaganti et al., 2023; Spencer et al., 2021; Rashidinejad et al.,
2022). Imitation learning promises techniques that can learn to act well in environments where
describing an appropriate reward function may be challenging or impractical. Robotics, medicine,
and autonomous driving are examples of problem domains that can benefit greatly from more reliable
imitation learning algorithms.

Inverse Reinforcement Learning (IRL), or apprenticeship learning, is a common approach to imi-
tation learning (Abbeel and Ng, 2004; Ziebart et al., 2008; Fu et al., 2018). IRL often leverages
the environment’s dynamics, modeled as an MDP, to efficiently mimic the observed policy of the
expert (Arora and Doshi, 2021). The environment’s dynamics may be known a priori (Syed et al.,
2008; Lacotte et al., 2019) or estimated from data (Finn et al., 2016; Ho and Ermon, 2016; Chang
et al., 2021). An important strength of IRL algorithms is that they can learn to mimic experts
quite well even with remarkably little data. However, most IRL algorithms can be very sensitive
to the state distribution in the training data. If the distribution of states present in the dataset
does not follow the expert’s occupancy frequency—a phenomenon known as covariate shift—the
IRL algorithm may compute a policy that is much worse than the expert’s policy.

In this paper, we propose ROIL, a new approach to IRL that is particularly resistant to any covariate
shift. In particular, ROIL allows for data with a state distribution that does not follow the expert’s
occupancy frequency. Most existing algorithms are sensitive to covariate shifts because, in some form,
they reduce to matching the expert’s state occupancy frequency. In comparison, ROIL attempts
to recover the set of plausible expert policies from the training data and compute a policy that
minimizes the regret with respect to this set of experts. With an appropriate choice of modeling
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assumption, we show that ROIL can be formulated as a convex optimization problem and solved
using mature solvers.

There are several reasons why the expert demonstration data may not be sampled according to the
true occupancy frequency. First, the expert’s initial state distribution may differ from the initial
state distribution when the learned policy is deployed. Second, the expert may focus on providing
pedagogic demonstrations that focus on the most challenging parts of the state space (Cakmak and
Lopes, 2012; Hadfield-Menell et al., 2016; Brown and Niekum, 2018). Third, the demonstrations
may not even form a trajectory but instead consist of disconnected state-action pairs. Finally, the
state distribution of the demonstrations may differ simply due to sampling and model errors and
inconsistencies. Thus, the demonstrations may not be representative of the expert’s true policy. As
a result, one must be careful in formalizing the IRL problem to make it tractable.

To better illustrate the importance of covariate shift, consider the following extreme example. In
an MDP with a small state space and the ability to jump between states, the expert provides
a single demonstration for each state showing the optimal actions. Behavior cloning algorithms,
which reduce imitation learning to a classification problem, will recover the optimal policy given
that the classification bias is general enough. Yet, surprisingly, common IRL algorithms based on
the same scheme as LPAL (Linear Programming Apprenticeship Learning) (Syed et al., 2008) or
GAIL (Generative Adversarial Imitation Learning) (Ho and Ermon, 2016) can fail to recover a good
policy, as we show below. ROIL, on the other hand, recovers the optimal policy even in this extreme
setting while preserving most of the benefits of the low sample complexity of IRL.

As with most IRL algorithms, ROIL seeks to minimize the regret given the expert’s demonstrations
for the worst-case plausible reward function. However, ROIL departs significantly from existing IRL
algorithms in that it does not directly use the estimate of the expert’s occupancy frequency. As a
result, ROIL cannot be seen as matching the expert’s feature frequencies, which is a popular view of
existing IRL techniques (Abbeel and Ng, 2004; Syed et al., 2008; Ho and Ermon, 2016). In contrast,
ROIL uses the training data to construct a robust set of plausible expert policies and minimizes the
regret of the computed policy in the context of this set.

The remainder of the paper is organized as follows. Section 2 describes the background in MDPs and
IRL necessary to introduce ROIL. Then, in Section 3, we describe our general framework, analyze
its basic properties, propose an optimization algorithm, and discuss several practical extensions.
Section 4 analyzes ROIL’s guarantees and limitations theoretically and compares them with prior
work. Finally, in Section 5, we analyze ROIL numerically and compare it with relevant algorithms.

2 Preliminaries

Before describing the underlying MDP framework and formally defining the IRL objective, we define
the basic notation we use in the paper. We use calligraphic letters to denote sets and a tilde to
denote random variables. We also adopt the standard convention that AB represents the set of all
functions from a set B to a set A and treat vectors as a function from indexes to real numbers.
Finally, the sets R and R+ represent real and non-negative numbers respectively.

We assume that the domain can be modeled as a Markov Decision Process (Puterman, 1994) with a
finite number of states S = {1, . . . , S} and a finite number of actions A = {1, . . . , A}. The transition
probability function p : S×A → ∆S , where ∆S =

{
x ∈ RS

+ |
∑

s∈S xs = 1
}

is the probability simplex
over the elements of the set S. The reward function r⋆ : S × A → R represents the reward obtained
in each transition. We assume that the initial distribution over p0 ∈ ∆S satisfies that p0 > 0.

A solution to an MDP is a policy. In this work, we restrict our attention to stationary randomized
and deterministic policies. The set of deterministic policies is ΠD = AS and the set of randomized
policies is ΠR =

(
∆A)S . Note that deterministic policies are a special case of randomized policies.
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The objective in this work is the γ-discounted infinite horizon objective with γ ∈ [0, 1). We denote
the infinite-horizon discounted return of a policy π ∈ Π and a reward r ∈ R is denoted by

ρ(π, r) = lim
T →∞

Eπ,p0

[
T∑

t=0
γtr(s̃t, ãt)

]
,

where the superscript on the expectation indicates that s̃0 ∼ p0 and s̃t+1 ∼ p(·|s̃t, ãt), and ãt ∼
π(·|s̃t). The return ρ is parameterized by the reward because, in the IRL setting, the reward is
uncertain.

It will be convenient to treat functions that map states and actions to real numbers as vectors, such
as the reward function r⋆ ∈ RSA. We also use Pπ ∈ RS×S

+ where Pπ(s, ·) =
∑

a∈A p(·|s, a)π(a|s)
and rπ ∈ RS =

∑
a∈A r(s, a)π(a|s) to represent the transition probability matrix and reward vector

respectively for each policy π ∈ Π. Similarly, Pa and ra represent the transition probability matrix
and a reward vector respectively for each action a ∈ A.

An important and well-known fact that we use is the relation between the occupancy frequencies
and policies. In particular, for each policy π ∈ ΠR there exists an occupancy frequency uπ ∈ RS×A

such that ρ(π, r) = rT
πu

π. The space of occupancy frequencies for all π ∈ ΠR is denoted as U and
satisfies (Puterman, 1994, Section 6.9):

U = {uπ | π ∈ Π} =
{
u ∈ RSA

+ |
∑
a∈A

(I − γ · PT
a ) · u(·, a) = p0

}
. (1)

Finally, for each u ∈ U , one can construct a policy πu such that uπ = u (Puterman, 1994, Theo-
rem 6.9.1) as

πu(a|s) = u(s, a)∑
a′∈A u(s, a′) , ∀s ∈ S, a ∈ A. (2)

The policy πu is well-defined because p0 > 0 guarantees that
∑

a∈A u(s, a) > 0 for each s ∈ S.

With the definitions above, we are now ready to describe the general IRL framework (Abbeel and
Ng, 2004; Syed et al., 2008; Ho and Ermon, 2016). Recall that the main goal is to learn to act in an
environment without knowing the true reward function r⋆. Instead, we have access to transition data
generated from an expert’s policy πe ∈ ΠD. To simplify the exposition, we assume that the expert
follows a deterministic policy and we discuss generalizations to randomized policies in Section 3.
The IRL algorithm has access to a dataset D = (ti, si, πe(si))D

i=1, where the states may or may not
be selected sequentially from state trajectories.

To generalize from a small set of demonstrations, IRL algorithms typically rely on a feature function
ϕ : S × A → Rk that assigns k features to each state and action (Abbeel and Ng, 2004; Syed et al.,
2008; Lacotte et al., 2019; Chang et al., 2021; Jonnavittula and Losey, 2021; Arora and Doshi, 2021;
Javed et al., 2021; Ghosal et al., 2023). The features ϕ represent important characteristics of the
state-action pairs that may be part of the demonstrator’s reward function. We can represent our
features with a feature matrix Φ ∈ RSA×k where each row represents the features of a specific state
and action. Linear IRL algorithms assume that rewards can be expressed as a linear combination of
state and action features. Formally, the set R ⊆ RSA of feasible rewards is defined as

R = {Φw | w ∈ W} , where W =
{
w ∈ Rk | ∥w∥1 ≤ 1

}
. (3)

The L1 norm in the definition of W serves to normalize w because optimal policies are invariant to
the scale of the rewards (Abbeel and Ng, 2004; Syed et al., 2008).

Most IRL algorithms adopt the following scheme. The true reward r⋆ is unknown but is assumed to
satisfy that r⋆ ∈ R. Algorithms as varied as LPAL (Syed et al., 2008), GAIL (Ho and Ermon, 2016),
and MILO (Chang et al., 2021) seek to compute a policy that minimizes the worst-case regret with
respect the expert’s policy. In its essence the regret minimization problem is usually formalized as

min
π∈Π

max
r∈R

(
ρ(π̂e, r) − ρ(π, r)

)
. (4)
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Here, π̂e is the empirical estimate of the expert policy πe constructed from the dataset D.

The conceptual optimization in (4) is impractical because the optimization over π is non-convex and
computationally challenging. Instead, using the correspondence between policies and occupancy
frequencies in (2), LPAL and related algorithms solve the following surrogate optimization problem:

min
u∈U

max
r∈R

(
ûT

e r − uTr
)

= min
u∈U

∥∥(ûe − u)TΦ
∥∥

∞ , (5)

where the equality follows because L∞ is the dual norm to the L1 norm used in the definition of W.

The value ûe in (4) represents the empirical estimate of u⋆
e constructed as

ûe(s, a) = χ ·
∑

(t,s′,a′)∈D

γt · 1 {s = s′ ∧ a = a′} , (6)

where χ is a normalization factor chosen to guarantee that 1Tûe = (1 − γ)−1. In practice, it is
common to estimate the feature counts ûT

e Φ directly rather than estimating ûe.

Some IRL algorithms, like GAIL, add other regularization terms to the scheme in (5) and substitute
different definitions for the reward set W (Ho and Ermon, 2016). In this work, we focus on the
fundamental properties and trade-offs of this formulation and leave more complex extensions for
future work.

An important limitation of the formulation in (5) is that it relies on estimating the expert’s occupancy
frequency ûe well. Because the occupancy frequency represents the frequency of both states and
actions it is very sensitive to the initial distribution and covariate shifts in state distributions which
may often arise in imitation learning settings. As discussed in the introduction, the expert may
focus on difficult states when performing the demonstrations or have a behavioral state visitation
policy that dictates what states to visit. In the remainder of the paper, we build on (5) to address its
sensitivity to the initial distribution and state distribution of the provided dataset, thereby achieving
better off-policy performance.

3 ROIL Formulation

In this section, we describe and justify ROIL and study its computational properties; we defer
the analysis of its approximation errors to Section 4. First, we describe the foundations of the
approach in Section 3.1 and then outline several modifications that reduce ROIL’s conservativeness
and improve its performance in Section 3.2. We conclude the section with a visualization of ROIL
as a Chebyshev center problem, which offers additional insights into its performance in Section 3.3.

3.1 Basic Formulation

Similar to the standard IRL schema outlined in (5), ROIL also adopts a principled robust optimiza-
tion perspective and minimizes the worst-case regret. The main idea is to compute a policy π ∈ Π
that minimizes regret with respect to the worst-case plausible expert’s policy πe ∈ ΠR(D) and a
reward function r ∈ R. Formally, the basic ROIL optimization problem is as follows:

min
π∈ΠR(D)

max
πe∈ΠR(D)

max
r∈R

(ρ(πe, r) − ρ(π, r)) . (7)

Here, ΠR(D) ⊆ ΠR represents the set of all policies consistent with D and are defined as

ΠR(D) = {π ∈ ΠR | π(a|s) = 1, ∀(s, a) ∈ D} . (8)

If the expert demonstrations in D are constructed from a deterministic policy, then that policy must
be contained in (8). However, when the expert’s policy is randomized, the construction in (8) may
exclude the expert policy from ΠR(D). We discuss how the definition can be extended to account
for randomized policies in Section 3.2.
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Before describing an efficient formulation for solving ROIL, we discuss its benefits compared with
the generic IRL scheme in (4). Recall that ûe, constructed in (6), depends on the initial state
distribution which may lead to large errors when the demonstration and execution state distributions
differ. Instead, ROIL uses the training data to construct the set ΠR(D)—which is independent of
the state distribution—and minimizes regret to all consistent expert policies.

Next, we show that the ROIL optimization problem in (7) can be reduced to a linear program with
a polynomial size. It may be surprising that such a reduction is possible since ROIL’s objective
involves maximizing a non-concave bilinear function. We derive this reduction using the occupancy-
based formulation, similar to existing IRL algorithms. A key part of the formulation is a set of
occupancy frequencies Υ that are consistent with expert demonstrations defined for c ∈ RSA as

Υ =
{
u ∈ U | cTu = 0

}
, where c(s, a) =

{
1 if (s, a) /∈ D ∧ ∃a′ ∈ A, (s, a′) ∈ D,
0 otherwise.

(9)

The following lemma shows that the set of occupancy frequencies constructed in (9) is exactly the
set of frequencies of policies that are consistent with the dataset.
Lemma 1. If D is generated by a deterministic policy π ∈ ΠD. Then

u ∈ Υ ⇔ (u = uπ, ∃π ∈ ΠR(D)) .

Please see the proof in Appendix A.

We now outline the main step in constructing a linear program formulation for solving ROIL. As
Lemma 1 shows, maximizing over the policy space is equivalent to maximizing over the occupancy
frequency space. Then, using the fact that ρ(π, r) = rTuπ and the representation of R in (3), we
can reformulate (7) to

min
u∈Υ

max
r∈R

max
v∈Υ

(v − u)Tr = min
u∈Υ

max
w∈W

max
v∈Υ

(v − u)TΦw. (10)

Solving the formulation in (10) directly is challenging because it involves maximizing a non-concave
bilinear function in both w and v. To turn this optimization into a tractable convex optimization
problem, we take the following steps. The maximization over w maximizes a convex function w 7→
maxv∈Υ (v−u)T Φw. Therefore, there exists an optimal w in one of the extreme points of W, leading
to the following equivalent formulation:

min
u∈Υ

max
w∈ext(W)

(
−uTΦw + max

v∈Υ
vTΦw

)
. (11)

The set W is an L1-norm ball. The number of its extreme points is linear in the number of features,
and we can enumerate them to obtain the following linear program:

minimize
t∈R,u∈RSA

t

subject to t ≥ −uTΦw + b(w), ∀w ∈ ext(W),
u ∈ Υ,

(12)

where b(w) = maxv∈Υ v
TΦw. Note that the constraints u ∈ U defined in (1) are linear and b(w) can

be computed by solving a linear program or an MDP.

From the discussion above and the epigraph formulation (Boyd and Vandenberghe, 2004), we get
the following theorem that states the correctness of the linear program formulation.
Proposition 1. Let u⋆ be optimal in (12). Then, πu⋆ constructed in (2) is an optimal π in (7).
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3.2 Extensions

An important strength of ROIL is its flexibility. The basic ROIL formulation makes no assumptions
except that actions in D are distributed according to the expert’s policy. It also does not make any
assumptions about the state distribution or the optimality of the expert’s policy. In this section, we
discuss several simple techniques that can be used to incorporate additional assumptions about the
data in D that help to compute less conservative solutions.

First, we can make ROIL less conservative by restricting the generic reward set R when computing
the regret. If the expert’s policy πe is close to optimal, it is sufficient to consider only a subset of R
restricted to rewards that are consistent with the near-optimality of πe. That is, we can solve (10)
with Wτ

e ⊆ W defined as

Wτ
e :=

{
w ∈ W | ûT

e Φw + τ ≥ max
u∈U

uTΦw
}
, (13)

where τ ≥ 0 represents the allowed sub-optimality of the expert’s policy πe. It is important to
emphasize that the optimality of a policy is insensitive to the choice of the initial distribution. In
practice, we adapt (12) to solve

minimize
t∈R,u∈RSA

t

subject to t ≥ −uTΦw + b(w), ∀w ∈ Wτ
e ,

u ∈ Υ.

(14)

We solve this optimization problem by first collecting m samples w ∈ Wτ
e from a uniform distribution

and then choose τ in (13) appropriately to retain 10% of the samples.

A second option for reducing the conservativeness of ROIL is to suppose that the expert’s demon-
strations are close to being on-policy. Then, one can use D to estimate ûe ≈ u⋆

e and consider the set
Υ̂ϵ defined as

Υ̂ϵ =
{
u ∈ Υ | ∥(ûe − u)TΦ∥∞ ≤ ε

}
. (15)

This set represents all policies that are consistent with the expert’s demonstrations and also have
occupancy frequencies that are close to the observed expert data. One can estimate ϵ by solving

ϵ = η · min
u∈U

∥(ûe − u)TΦ∥∞, (16)

where η ≥ 1 is some constant. The linear program in (12) can be easily adapted to handle the
restricted set Υ̂e by redefining b(w) = maxv∈Υ̂e

vTΦw.

Finally, we discuss how to extend ROIL to account for an expert policy which randomizes be-
tween actions. In such a scenario, the constraint cTu = 0 must be replaced by a constraint
us,a/

∑
a′∈A |u(s, a′) − π̂e(s, a)| ≤ ϵ,∀s ∈ S, a ∈ A for some appropriately chosen ϵ and an esti-

mate π̂e of expert’s policy. Using perspective functions, one can readily see that this constraint is
convex and does not increase the computational complexity of this formulation.

3.3 Discussion and Visualization

We now discuss a connection between ROIL and the geometric problem of computing the Chebyshev
center of a convex set. This connection helps to elucidate what conditions make ROIL tractable and
offers an intuitive way of visualizing ROIL and its relationship with other IRL algorithms.

In (3), we define the set W in terms of an L1 ball. However, this set could be defined in terms of
any norm ∥ · ∥ as W =

{
w ∈ Rk | ∥w∥ ≤ 1

}
. For any norm, there exists a dual norm ∥ · ∥⋆ defined

as ∥x∥⋆ = supy ̸=0 yTx/∥y∥. (Horn and Johnson, 2013). The dual to an Lp norm (p ≥ 1) is an Lq

norm such that 1/p + 1/q = 1. Using the definition of a dual norm, the ROIL optimization problem
in (10) can be represented as

min
u∈U

max
v∈Υ

∥(v − u)TΦ∥⋆. (17)
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Figure 1: Depiction of ROIL solution (u∗
R) as a Chebyshev center of the set Υ. The dashed line

shows the minimum circumscribed L∞ ball.

The following proposition states the correctness of (17) and follows from the discussion above.
Proposition 2. Suppose that u⋆ is optimal in (17) with ∥z∥⋆ = ∥z∥∞ for z ∈ Rk. Then πu⋆ , as
constructed in (2), is an optimal π in (7).

The optimization problem in (17) is equivalent to computing the Chebyshev center of the set Υ with
respect to the norm defined by ∥ · ∥∞. The Chebyshev center is a point that minimizes the distance
to the most distant point in the set Υ. Figure 1 visualizes the Chebyshev center for an MDP with
two features. The red polygon represents the set U and the green polygon represents the set Υ; the
points correspond to deterministic policies.

The relationship to the Chebyshev center problem also offers additional computational insights
regarding the choice of W. It is known that popular choices of the distance metric ∥·∥⋆ in computing
the Chebyshev center of a polyhedron are NP-hard. One notable exception is when the distance
metric ∥ · ∥⋆ corresponds to the L∞ norm. Since L1 is the dual norm to the L∞ norm, the choice of
L1 in the definition of W is crucial to obtaining a tractable optimization problem (Wu et al., 2013;
Eldar et al., 2008).

4 Theoretical Analysis

In this section, we turn to a theoretical analysis of ROIL. We study the theoretical guarantees of
the quality of the solutions computed by ROIL. In particular, we show that, unlike other popular
IRL algorithms, ROIL guarantees to recover the expert’s policy when demonstrations for all states
are available. We also discuss the limitations that arise from the assumption inherent in ROIL
formulations and give an approximation error bound in terms of the approximation error bounds.

First, we show that LPAL and GAIL, popular IRL algorithms, suffer from a surprising weakness.
The algorithms may not recover the expert’s policy even when given demonstrations of deterministic
actions for every state in a tabular MDP. While it is not a prevalent scenario in practice, it points
out that simply adding more demonstrations is insufficient for these methods. We consider LPAL
and GAIL, which can be stated for tabular features Φ = I as the following optimization problems:

min
u∈U

∥u− ûe∥∞, and min
u∈U

DJS(u, ûe) − λH(πu). (18)

Here, the first optimization problem represents LPAL (Syed et al., 2008) and the second optimiza-
tion represents GAIL (Ho and Ermon, 2016, eq. (15)). The distance metric DJS represents the
Jensen-Shannon entropy, and λ ≥ 0 is a regularization parameter. The LPAL optimization prob-
lem in (18) follows immediately from (5) by optimizing over the set of occupancy frequencies. For
the sake of consistency with ROIL, we assume that W is chosen as in (3). This is a superficial
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s1 s2a1, 1 − ϵ
a2

a1, ϵ
a1

Figure 2: MDP used in Example 1. The edge labels denote the actions and the corresponding
transition probabilities (if less than 1).
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Figure 3: The loss functions of LPAL and GAIL. Here JSD refers to the Jensen-Shannon Divergence
which is the loss function minimized by GAIL when the coefficient of the causal entropy term H is
zero (Ho and Ermon, 2016).

difference from the original LPAL derivations that assume that feature weights are non-negative:
W =

{
w ∈ Rk

+ | ∥w∥1 ≤ 1
}

.
Proposition 3. LPAL and GAIL as defined in (18) may not recover πe even when the demonstra-
tions cover the entire state space: {s ∈ S | ∃ a ∈ A, (s, a) ∈ D} = S.

We show the proposition by constructing the following example.
Example 1. Consider an MDP with two states and transition probabilities depicted in Figure 2. Sup-
pose that πe(s) = a1 for each s ∈ S. The occupancy frequency for this policy is u⋆

e =
[

ϵ+γ−1
ϵ(1−γ) , 0,

1
ϵ

]
.

Assume that the dataset D = ((s1, a1), (s2, a1)) represents the demonstrations; note that the
state distribution needs to respect the state distribution of u⋆

e . The estimated occupancy fre-
quency from this dataset will be ûe =

[
1

2(1−γ) , 0,
1

2(1−γ)

]
where the elements correspond to

(s1, a1), (s1, a2), (s2, a1). The set of occupancy frequencies in this MDP is

Uξ =
{
ξ ·

[
ϵ+ γ − 1
ϵ(1 − γ) , 0,

1
ϵ

]
+ (1 − ξ) ·

[
0, 1 − ϵ,

γ

1 − γ
+ ϵ

]
| ξ ∈ [0, 1]

}
, (19)

because the set of occupancy frequencies of randomized policies can be represented as a convex hull
of the frequencies of deterministic policies. One can then readily verify that u⋆

e does not minimize
either one of the objectives in (18) when λ = 0. Specifically, choosing ξ = 0.5 in (19) achieves
minimal loss however one can easily verify u⋆

e = uξ when ξ = 1. Figure 3 depicts the objective
functions in (18) as a function of ξ in (19).

In contrast with LPAL and GAIL, ROIL is guaranteed to recover the expert’s policy when provided
with demonstrations for all states as the following proposition states.
Proposition 4. Suppose that {s ∈ S | (·, s, ·) ∈ D} = S. Then u⋆

e is the unique minimizer to (12).

Proof. When D completely covers the states, ΠR(D) = {πe} and Υ = {u⋆
e} by Lemma 1. One can

readily see that u⋆
e attains 0 objective in (12), which is optimal because the regret is lower-bounded

by 0. The uniqueness is immediate because Υ is a singleton.

Recall that ROIL dispenses with the assumption that the states in the demonstrations D are dis-
tributed according to the occupancy frequency. This assumption makes ROIL appropriate in a
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s1s2 s3
a1 a2

a1 a1

Figure 4: An MDP used in Example 2.

broader range of off-policy scenarios than competing IRL algorithms. However, the following result
shows the limitations arising from ignoring the state distribution assumption in D. The following
example demonstrates that even when all but one state is covered by D, ROIL cannot give any
guarantees on the regret of the computed policy.
Example 2. Consider the deterministic MDP depicted in Figure 4 where S = {s1, s2, s3}, A =
{a1, a2}, p0 = [1, 0, 0], and Φ = r⋆ = [0, 0, 1, 1,−1,−1]. Here, r⋆ is the true reward and vectors
are ordered as (s1, a1), (s1, a2), (s2, a1), . . . . Assume that the expert follows the optimal policy
πe(s) = a1,∀s ∈ S with an occupancy frequency u⋆

e = [1, 0, γ/1−γ, 0, 0, 0]. However, ROIL fails to
find this solution even when demonstrations cover all but one state. Consider the dataset D =
((s2, a1), . . . , (s2, a1)). The optimal solution to ROIL is u = [1/2, 1/2, γ/2(1−γ), 0, γ/2(1−γ), 0] which is
sub-optimal regardless of how well the estimated ûe approximated u⋆

e . Using the observed data,
ROIL has no evidence supporting taking actions a1 or a2 in the initial state s1.

Example 2 exposes a limitation of ROIL but also hints at how to overcome it. Note that occupancy
frequency matching methods, like LPAL (Syed et al., 2008), may do well in Example 2. This is
because LPAL will use the prevalence of the state s2 in D to deduce that taking action a1 in s1
is preferable to a2. As we discuss in Section 3.2, it is easy to extend ROIL to benefit from similar
distributional assumptions. The following theorem establishes approximation bounds for ROIL with
this assumption.
Theorem 1. Suppose that u⋆

r is an optimal solution to (12) with Υ̂ϵ some ϵ > 0 such that Υ̂ϵ ̸= ∅
and an occupancy frequency estimate ûe. Then the regret of π⋆

r = πu⋆
r is bounded as

ρ(πe, r) − ρ(π⋆
r , r) ≤ ∥(u⋆

e − ûe)TΦ∥∞ + ε, ∀r ∈ R.

Moreover, one can choose ϵ such that ϵ = ∥(u⋆
e − ûe)TΦ∥∞.

Proof. The result follows by replacing the worst-case over the L1 ball by its dual norm (L∞), and
from the construction of W, and the triangle inequality:

ρ(πe, r) − ρ(π⋆
r , r) ≤ max

r∈R
(u⋆

e − u⋆
r )Tr = ∥(u⋆

e − u⋆
r )TΦ∥∞ ≤ ∥(u⋆

e − ûe + ûe − u⋆
r )TΦ∥∞

≤ ∥(u⋆
e − ûe)TΦ∥∞ + ∥(ûe − u⋆

r )TΦ∥∞ ≤ ∥(u⋆
e − ûe)TΦ∥∞ + ε.

The last inequality follows from the fact that the u⋆
r ∈ Υ̂ϵ.

Theorem 1 shows that when ∥(u⋆
e − ûe)TΦ∥∞ is small, then ROIL with the extensions is guaranteed

to find a policy that has a small regret to the expert’s policy. We also note that Theorem 1 essentially
matches the error bounds derived for LPAL (Syed et al., 2008).

5 Experimental Results

In this section, we study ROIL’s behavior numerically on common benchmark problems. We study
its performance both on-policy (states distributed according to the true expert policy) and off-policy
(states distributed arbitrarily) and compare it with closely related IRL algorithms.

The first domain we use is an instance of the standard grid world problem (Abbeel and Ng, 2004) in
which each square is designated a color that represents the feature that is active for the state. The
reward is some linear combination of the features for each state. That is, the matrix Φ represents the
state colors and r⋆ = ΦTw for some w ∈ W. The features for each action in the state are identical.
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Figure 5: On-policy (left) and off-policy (right) expected return of imitation learning methods on
40x40 grid world for a fixed reward. Higher is better.

The agent has a choice of up, down, left, and right as their actions with small noise that takes it to
a different neighboring state. The rewards in this domain are generated randomly for each run by
sampling w uniformly from W. The expert policy is computed and chosen as the optimal policy for
the true (unobserved) reward.

The second domain we use is a driving simulator inspired by prior work (Abbeel and Ng, 2004; Syed
et al., 2008; Brown et al., 2018; Trinh et al., 2024) where the agent begins in the bottom row and
can go straight up, up and to the left, or up and to the right. At the first row, the actor loops back
to the bottom row to simulate a continuous environment. Similarly to the grid world, the driving
simulator has some small noise in the transitions. The driving simulator has some motorists on
the road, which the actor must avoid, and the left-most and right-most columns are designated as
“offroad” where the actor receives negative rewards.

To generate on-policy data, we use the standard protocol in which expert demonstrations are tra-
jectories of a policy. To generate off-policy data, we collect states according to a uniform behavior
policy. That is, the expert follows a uniform behavior policy πb(a|s) = 1/|A|, which controls the
transition dynamics. The uniform policy πb is only used to generate the states in D and the actions
are chosen by the true expert πe.

We evaluate two versions of ROIL: The basic ROIL makes no assumptions on ûe and solves (12).
ROIL-P solves (14), pruning away reward functions that make ûe perform sub-optimally see Equa-
tion (14). We compare these algorithms with two IRL algorithms: LPAL and GAIL. For consistency
with our results, we do not impose the constraint w ≥ 0 used in the original LPAL formulation (Syed
et al., 2008). For the GAIL implementation, we use the original formulation with λ = 0; we did
not find that λ had a significant effect on our results. We also compare it with Naive Behavioral
Cloning (NBC). NBC follows the expert’s policy in states that are visited but takes a random action
in states that have not been visited.

Figures 5 and 6 depict the performance of multiple IRL methods as a function of the number of
samples in the demonstrations. The samples are constructed from trajectories sampled from the
domain. Each data point is computed as an average of 10 seeds, and standard error bars are
displayed; see the appendix for more details. We do not provide timing data because most of the
algorithms are implemented in Python, and the main focus of our methods is for a setting where
sample complexity and not computation time are the limiting factors.

LPAL performs very well on policy in our experiments. This is unsurprising because it matches ûe,
and its estimate improves with increasing samples. However, in the off-policy regime, LPAL and
other occupancy frequency matching methods fail to work well because the estimate ûe does not
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Figure 6: Robust regret for on-policy (left) and off-policy (right) of imitation learning methods on
40x40 Grid World (lower is better).

necessarily improve with increasing numbers of samples. ROIL, on the other hand, works well in
both settings.

Our experiments demonstrate that ROIL and ROIL-P perform well both on-policy and off-policy.
Because ROIL minimizes the worst-case regret, it can be quite conservative when the dataset is
small. In comparison, our results confirm that pruning the reward vectors in ROIL-P makes it
less conservative and improves its performance significantly. Additional empirical evaluation and
discussion of methods described in Section 3.2 can be found in Appendix B.

6 Conclusion

We presented a new algorithm for IRL that can handle expert demonstrations gathered from off-
policy (or offline) state distributions which may not form a trajectory. This is an important topic
that, to the best of our knowledge, has not received sufficient attention in prior work. We proposed
ROIL, a principled and flexible framework for this problem. ROIL minimizes the regret concerning
the expert’s policy and makes minimal assumptions about the data and the expert. However, the
framework can be easily extended to a setting in which one makes more assumptions about the expert
and the demonstrations generated. We address a surprising weakness with other IRL methods like
LPAL and GAIL and provide guarantees on our convergence to the expert policy when all states
are observed while the existing algorithms may not.

There are many avenues for future work. ROIL builds on the same ideas as most modern IRL
algorithms and can be readily integrated with the improvements developed in recent years (Arora
and Doshi, 2021). It is important to study whether there are possible refinements of ROIL along
the lines described in Section 3.2 that would significantly impact its performance. We also studied
ROIL in a simple tabular setting. Future work should study the best ways to generalize these ideas
to large problems with continuous states and actions and non-linear function approximators.
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