RLJ | RLC 2024

A Simple Mixture Policy Parameterization for Im-
proving Sample Efficiency of CVaR Optimization

Yudong Luo'*, Yangchen Pan?, Han Wang?, Philip Torr?, Pascal Poupart'*
!University of Waterloo, 2University of Oxford, 3University of Alberta, *Vector Institute

Abstract

Reinforcement learning algorithms utilizing policy gradients (PG) to optimize Con-
ditional Value at Risk (CVaR) face significant challenges with sample inefficiency,
hindering their practical applications. This inefficiency stems from two main facts:
a focus on tail-end performance that overlooks many sampled trajectories, and the
potential of gradient vanishing when the lower tail of the return distribution is overly
flat. To address these challenges, we propose a simple mixture policy parameteriza-
tion. This method integrates a risk-neutral policy with an adjustable policy to form
a risk-averse policy. By employing this strategy, all collected trajectories can be
utilized for policy updating, and the issue of vanishing gradients is counteracted by
stimulating higher returns through the risk-neutral component, thus lifting the tail
and preventing flatness. Our empirical study reveals that this mixture parameter-
ization is uniquely effective across a variety of benchmark domains. Specifically, it
excels in identifying risk-averse CVaR policies in some Mujoco environments where
the traditional CVaR-PG fails to learn a reasonable policy.

1 Introduction

Avoiding risks is a practical consideration in real world applications, inspiring risk-averse reinforce-
ment learning (RL). Risk-averse RL involves optimizing some risk measures of the return random
variable. Many risk measures have been studied, for instance, variance (Tamar et al., 2012; La &
Ghavamzadeh, 2013), exponential utility functions (Borkar, 2002; Fei et al., 2021), Value at Risk
(VaR) (Chow et al., 2018; Jung et al., 2022), and Conditional VaR (CVaR) (Tamar et al., 2015;
Lim & Malik, 2022). We focus on CVaR in this work, which emphasizes the worst case outcome
of a policy’s return. Intuitively, CVaR measures the expected return below a specific quantile level
a, termed the risk level. This kind of risk is also known as the tail risk measure (Liu & Wang,
2021), since only the tail of a distribution is considered, and CVaR is more often preferred than VaR
because it is coherent (Delbaen & Biagini, 2000).

Among the existing CVaR algorithms in RL (Tamar et al., 2015; Chow et al., 2018; Tang et al.,
2019; Yang et al., 2021; Ying et al., 2022), policy gradient (PG) is a common choice. CVaR-PG
samples a batch of N trajectories and maximizes the mean return of the alN trajectories with worst
returns (Tamar et al., 2015). This approach suffers from sample inefficiency due to two major
facts (Greenberg et al., 2022): 1) 1 — « portion of sampled trajectories are discarded; 2) gradients
vanish when the tail of the return quantile function is overly flat, which is discussed later in Sec. 3.1.
Another line of research on optimizing CVaR is based on distributional RL (Bellemare et al., 2017),
e.g., Dabney et al. (2018a); Tang et al. (2019); Keramati et al. (2020). However, due to the time-
inconsistency of the risk, the objectives of some approaches differ from maximizing the a-CVaR of
the total return, while the behavior of some others are not well-understood yet (Lim & Malik, 2022).

In this paper, we focus on the policy gradient approach and propose a simple mixture policy param-
eterization to improve sample efficiency. Our key insight is that in many real-world risk-sensitive
domains, the agent may only need to perform risk-averse actions in a subset of states, e.g., related
to risky regions, and behave akin to a risk-neutral agent in other states. We give an example in

RLJ | RLC 2024

Sec. 3.3. This motivates representing a risk-averse policy via integrating a risk-neutral policy and
an adjustable component. With this parameterization, all collected trajectories can be used to up-
date the policy under the mixture framework, and gradient vanishing is counteracted by stimulating
higher returns with the help of its risk-neutral component, thus lifting the tail and preventing flat-
ness of the quantile function. To demonstrate the effectiveness of our method in learning risk-averse
policies, we modify several domains (Maze (Greenberg et al., 2022), Lunar Lander(Brockman et al.,
2016), Mujoco (Todorov et al., 2012)) where risk-aversion can be clearly verified. We empirically
show that our method can learn a risk-averse policy when others fail to learn a reasonable policy.

Contributions. To the best of our knowledge, a generally applicable approach to improve the
sample efficiency of CVaR-PG algorithms remains unclear. In summary, our work provides 1)
insights into a novel perspective on scenarios where risk-averse behavior is required only in a subset
of states; 2) a simple mixture policy parameterization to address sample inefficiency. Notably, our
algorithm, in certain Mujoco domains, marks a pioneering advancement in CVaR optimization.

2 Background: CVaR Optimization in RL

In standard RL settings, agent-environment interactions are modeled as a Markov Decision Process
(MDP), represented as a tuple (S, A, P, R, 119,7) (Puterman, 2014). S and .4 denote state and action
spaces. P(:|s,a) defines the transition. R is the state and action dependent reward. p is the initial
state distribution, and v € (0, 1] is a discount factor. An agent takes actions according to its policy
m:8x A — [0,+00). The return at time step ¢ is defined as G7 = > .2 ¥* R(S¢+i, arti). Thus,

¢ is the random variable indicating the total return starting from the initial state following .
CVaR-based risk-averse RL avoids catastrophic outcomes by optimizing the tail risk measure of G,
e.g., CVaR, instead of max, E[G]] as done in risk-neutral RL.

2.1 Problem Formulation

Let Z be a bounded random variable with cumulative distribution function Fz(z) = P(Z < z).
Denote the a-quantile as ¢, (Z) = min{z|Fz(z) > a},a € (0,1]. The CVaR at confidence level « is
given by (Rockafellar et al., 2000)

CVaR,(Z) = ;/Oa qp(Z)dp (1)

When o — 1, CVaR,(Z) becomes E[Z]. If Z has a continuous distribution, CVaR,(Z) is more
intuitively expressed as CVaRo(Z) = E[Z]|Z < ¢o(Z)]. Thus, CVaR,(Z) can be interpreted as
the expected value of the a-portion of the left tail of the distribution of Z. Another way to define
CVaRy(Z) is (Rockafellar et al., 2000)

CVaRo(Z) = maxk - é]E[(k: — 2)*] 2)

where (z)* = max{z, 0}, and the maximum is always attained at k = ¢,(Z) as a by product.
In this paper, we consider the problem of maximizing the CVaR of total return Gf given a confidence
level o (we consider small « in practice) (Tamar et al., 2015), i.e.,

max CVaR,(GY) (3)

Remark. Some works optimize the CVaR term plus the mean term or treat CVaR as a con-
straint (Chow et al., 2018; Yang et al., 2021; Ying et al., 2022), which differ from the problem in
Eq. 3. In addition, the risk defined on the total return (Eq. 3) is known as the static risk. Another
line of research on CVaR works on dynamic risk (Ruszczynski, 2010; Huang et al., 2021; Du et al.,
2023), where risk is recursively computed at each time step. The comparison between static and
dynamic CVaR is discussed, e.g., in Lim & Malik (2022).

2.2 CVaR Policy Gradient (CVaR-PG)

Consider 7 is parameterized by 6. Under some mild assumptions, the gradient of Eq. 3 w.r.t. 6 can
be estimated by sampling trajectories {7;}}¥; from the environment using 7y (Tamar et al., 2015).

RLJ | RLC 2024

N T
us 1 A
VoCVaRa(GG') = —= Zl Lt r(r) <. (B(Ti) = da) ; Vo logmo(ailsi) (4)
where R(7) represents the total return of trajectory 7, g, is the empirical a-quantile estimated from
{R(m;)}Y,, and T is the maximum trajectory length. This gradient is derived from Eq. 1. For
further details, readers can refer to Tamar et al. (2015). Note that computing policy gradient from
Eq. 2 is also feasible and results in a similar update as Eq. 4, e.g., see Algo. 1 in Chow et al. (2018).

2.3 Distributional RL with CVaR

Distributional RL (Bellemare et al., 2017) is recently used for CVaR optimization. Since it directly
learns a value distribution, the risk metric is easy to compute. Denote the return random variable at
the state-action pair (s,a) as Z7(s,a) = Y ;o V' R(st, ar), where so = s, ag = a, s¢41 ~ P(-|se, ar),
and a; ~ 7(-|st). Then the distributional Bellman equation is given by Z7 (s, a) ZR+ ~Z™ (S, A,
with S" ~ P(:|s,a), A" ~ w(:|S"), and X 2 Y indicates that random variables X and Y follow the
same distribution. The well known @-value can be extracted by Q™ (s,a) = E[Z7 (s, a)].

Dabney et al. (2018a); Keramati et al. (2020) propose to select actions according to
Z%(s,a) 2 R+~2Z7(S',A), A = arg max CVaRo (27 (5", d’)) (5)

This strategy always selects actions leading to the largest a-CVaR at the current step and is termed
as "Markov action selection strategy" by Lim & Malik (2022). Within the framework of actor critic,
a similar way is applied by updating the actor towards the a-CVaR of the critic, e.g., see Tang et al.
(2019). However, Lim & Malik (2022) showed this strategy converges to neither static nor dynamic
optimal CVaR policies by counterexamples. Thus, it is not consistent with the problem in Eq. 3.

Béauerle & Ott (2011) simplified Eq. 2 by avoiding optimizing k and fixing it to some constant kg,
resulting in the problem max, —E[(ky — GJ)"]. This problem can be modeled by an augmented
MDP with new state § = (s,k) € S x R, where k is a moving variable keeping track of the accumu-
lated rewards so far. Lim & Malik (2022) incorporated this perspective with distributional RL by
introducing the tracking variable, and proposed a new action selection strategy as

Z7(5,0) 2 R+ ~27(S, A), A = argmaxE[—(* =L _ z7(s,a'))] (6)
a’ ol

where k is the tracking variable at (s,a), and is set to a-CVaR for the initial state. Lim & Malik
(2022) showed that the optimal CVaR policy is a fixed point of Eq. 6 if it exists and it is unique.
However, when 7 is not CVaR optimal, its behavior is generally unknown.

2.4 Other CVaR RL Algorithms

There are several other CVaR algorithms in the context of MDPs, where full knowledge of the MDP
is required. Thus, they are not applicable to RL problems where transition dynamics are unknown.
These works are less relevant to ours and hence we only provide a brief review here. Based on
the theory of CVaR decomposition (Pflug & Pichler, 2016), a dynamic programming approach is
developed by decomposing the CVaR via its risk envelope (Chow et al., 2015). This approach returns
the optimal a-CVaR value for any o € (0,1]. Recently, Hau et al. (2023) pointed out this method
has some flaws in the control setting, and provided counter examples.

3 Mixture Parameterization Policies

In this section, we examine the difficulties inherent in classical CVaR-PG methods. This examination
sets the stage for our proposed solution: a mixture parameterization approach.

3.1 Challenges of CVar-PG: low-efficiency gradient estimation

The classical CVaR-PG (Eq. 4) faces two significant challenges that undermine its sample efficiency
and practical applicability. Firstly, to emphasize the tail outcomes, a small value of « is chosen.

RLJ | RLC 2024

Consequently, only an a-fraction of the trajectories contribute to the gradient estimation in Eq. 4,
leading to the discarding of the majority of trajectories and resulting in low sample efficiency.

Secondly, as identified by Greenberg et al. (2022), a small « also introduces a gradient vanishing
issue. This occurs because the term Iyg(-,)<g.3(R(7:) — Ga) can equal zero for any 7; satisfying
R(7;) < §a, i-e., R(7;) = o for those trajectories 7; selected by the indicator function. This issue
arises when the left tail of the quantile function is notably flat, meaning that all quantile values
below the a-quantile are identical. Such a scenario is particularly likely in environments with a
discrete rewards distribution, a fact that is often overlooked when assuming continuous rewards.
For illustration, we present the empirical quantile function of Gj obtained through Monte Carlo
sampling in Fig. 1(c), during the initial training phase with a random policy in a maze environment
(detailed in Sec. 3.3 and shown in Fig. 1(a)). In this scenario, if the agent neither reaches the
goal nor enters the red state, the resulting trajectories will yield identical low returns, leading to a
markedly flat left tail of the quantile function for Gj.

To tackle gradient vanishing, Greenberg et al. (2022) proposed curriculum learning by starting from
an « close to 1 (risk-neutral) and gradually decreasing « to its target value. To further improve
sample efficiency, Greenberg et al. (2022) proposed a sampling method based on cross-entropy to
sample high-risk scenarios from the environment. The algorithm is then focused on learning high-
risk parts of the environment and thus improving sample efficiency. However, this sampling strategy
requires knowledge of the environment dynamics and the ability to control the parameters of the
dynamics in ways that are domain specific, which is not realistic for many RL domains.

3.2 Mixture with Risk-neutral Policy

To address the aforementioned challenges, our key observation is that many real-world risk-sensitive
applications exhibit a pattern wherein only a subset of states requires risk-averse behavior. In the
remaining portion of the state space, the agent can behave akin to a risk-neutral agent. For example,
in scenarios with minimal or no other cars on a highway, a driver may simply need to follow the
road without slowing down or braking, as long as the vehicle remains under the speed limit. This
observation leads us to propose representing the policy as a mixture of a risk-neutral policy and an
adjustable component, i.e.,

m(als) = w(s)' (als) + (1 — w(s))w" (als) (7)

where w(s) € [0,1] is the mixture component weight. 7" is the risk neutral policy, and 7’ is the
adjustable policy. At different phases of a task, the agent self-selects the most suitable policies to
execute to ensure the overall policy 7 is risk averse.

It is evident that the proposed parameterization effectively addresses the challenges outlined earlier.
Firstly, it allows for the use of all trajectories collected so far to update the risk-neutral policy within
the mixture framework. Secondly, the risk-neutral component encourages the agent to venture into
areas of high reward, potentially avoiding the flat tail of the return distribution, and hence mitigates
the issue of vanishing gradients. We illustrate the advantages in the following example.

3.3 A Motivating Maze Example

Consider a maze domain in Fig. 1(a), which is originally from Greenberg et al. (2022) and slightly
modified by Luo et al. (2023). Starting from the bottom left corner, the goal of the agent is to reach
the green goal state. The gray color marks the walls. The per-step reward is deterministic (i.e., -1)
except for the red state, whose reward distribution is —1 + A(0,1) x 30. The reward for visiting
the goal is a positive constant value (i.e., 10). Thus, the shortest path going through the red state
towards the goal is the optimal risk-neutral path, while the longer path (shown in white color) is
a-CVaR optimal if « is small, though its expected return is slightly lower.

In this domain, suppose we are given the optimal risk neutral policy for each state (which is actually
easy to get, e.g., via Q-learning or value iteration (Sutton & Barto, 1998), or even by observing the
shortest path), it is easy to see most actions along the white (i.e., risk-averse) path are the same as

RLJ | RLC 2024

Value of w Quantile function of GO
40(c)

random
20 —— mixture

009 010 010 010 010 011

0

Quantile value

0.0 02 04 06 08 1.0
Quantile level

Figure 1: (a) A maze domain with green goal state. The red state returns an uncertain reward
(details in Sec. 3.3). Triangle pointers indicate the risk-neutral actions (not unique for the second
state). (b) Value of w of Eq. 7 for each state after the mixture policy is updated by CVaR-PG. (c)
The empirical quantile function of the total return in maze at an early training stage, if the initial
policy is a random and mixture policy.

the risk-neutral policy except the initial state. This means the risk-averse agent only needs to adjust
the actions at that state and then follow the optimal risk-neutral policy afterwards. We validate
this idea by visualizing the value of w(s) of Eq. 7 in Fig. 1(b), after the mixture policy is trained
by CVaR-PG. The value of w(s) represents the probability of choosing 7’ at each state. Here the
risk neutral policy #™ is pre-computed and provided as the softmax of the optimal Q-values (we use
temperatures to make the entropy of 7" small). Thus, 7’ and w are the components that need to
be learned by CVaR-PG. As shown in the figure, the probability of choosing 7’ is only high in the
surroundings of the starting state, and the probability of choosing 7™ significantly increases after the
agent moves far away from the beginning. Also, the empirical quantile function of Gfj obtained by
this mixture policy at the initial training phase is shown in Fig. 1(c). Compared with the randomly
initialized policy, the flat tail is eliminated, thereby preventing gradient vanishing.

Rer'nal.‘k. Tbis concep.t, where risk-averse be- Algorithm 1: Mixture policy for CVaR-PG
havior is required only in a subset of states, ex-

tends to various fields. For example, in port-
folio management, such behavior is crucial only
in particular market trends (Ji et al., 2019; Yu
et al., 2023), and in healthcare, it is essen-
tial only with specific health indicator warn-
ings (Mulligan et al., 2023).

Input: risk level a, trajectories sampled per
batch N, training steps M, IQL
update frequency C'
Initialize: policy mp = we, Ty + (1 — we,)Ty
where 6 = (61, 02), buffer B, Q-function Q,
(target @ ¢3>’ value function Vy;

for m in1l: M do

3.4 Offline RL Risk Neutral Learning // Sample trajectories
{r:}X, + run_ episodes(my, N) ;
This section explores the process of acquiring a Store {r;})V, to B;
risk-neutral policy under the function approxi- // CVaR PG, i.e., Eq. 4
mation setting. We discovered that incorporat- Update 6 via CVaR-PG (mg, {:}1Y,, a);
ing a pre-trained deep risk-neutral policy into // Risk-neutral, e.g., IQL zu_pdates
the mixture policy frequently leads to a subop- if m % C == 0 then
timal risk-averse policy, a finding that is further Sample D = {(s,a, 7, ')} ~ B;
elaborated in Appendix A.3.3. Update Q via Eq. 8;
Observing that the update of CVaR-PG typi- Update Vi, via Eq. 9;
cally involves collecting substantial trajectories, Update 7 via Eq. 10;

these trajectories naturally constitute an empir-
ical MDP to which an offline RL algorithm can be applied to extract a risk-neutral policy. The field
of offline RL has seen rapid advancements in recent years, offering promising solutions for solving
the empirical MDP formed from the collected trajectories.

Offline RL attempts to learn an optimal policy from a pre-gathered offline dataset D =
{(s,a,s",r)}_,, where the learning algorithm is restricted to learning from the samples contained

RLJ | RLC 2024

within D without any additional interaction with the real environment. One key challenge in offline
RL is to not overestimate the action values outside of the dataset (Fujimoto et al., 2019). To address
this challenge, there are generally two strategies. The first approach aims to keep the learned policy
closely aligned with the dataset’s policy by applying some KL constraint, ensuring the learned policy
remains within the dataset’s support (Peng et al., 2020; Brandfonbrener et al., 2021; Fujimoto &
Gu, 2021). The second strategy involves directly optimizing the policy using the samples available
in the dataset (Fujimoto et al., 2019; Kostrikov et al., 2022; Xiao et al., 2023).

In our research, we utilize Implicit Q-Learning (IQL) (Kostrikov et al., 2022) for learning risk-neutral
policies, chosen for its proven reliability and empirical validation. IQL possesses a () estimator
Q4(s,a), a value estimator Vy,(s), and a policy 7 (als). Q-function is updated via minimizing

LQ(9) = Es,a,s)~pl(r(s,0) +7Vy(s) = Qu(s,a))’] (8)

Value function is updated via expectile regression to avoid overestimation (@ is the target function)

Ly (¢) = E(sa)~[L3(Q4(s,a) = Vis(s))], L3(u) = |n — Liucoylu® (9)
Policy is updated by advantage-weighted regression (Peters & Schaal, 2007) with temperature (3
Lan () = E(s 0)~p[exp(B(Qs(s, a) — Vis(s))) log 7 (als)] (10)

All the trajectories are stored in a replay buffer for IQL update to learn n™. In practice, we can
perform this update after enough transition data are collected. The overall process of training the
mixture policy is described in Algo. 1.

4 Experiments

We modify several domains such that the risk-averse behavior is clear to identify to evaluate the
algorithms. We include REINFORCE with baseline method, as a risk-neutral baseline. In more
complex domains, we use SAC (Haarnoja et al., 2018) instead.

. . Maze, Return Maze, Risk-aversion rate
Baselines. We compare our method with 10

b
CVaR-PG in Eq. 4 (Tamar et al., 2015), distri- o) v
butional RL with Markov action selection strat- -20
egy in Eq. 5 (denoted as DRL-mkv), and Lim’s —— REINFORCE 08

0.8

—— REINFORCE

action selection strategy in Eq. 6 (Lim & Malik, 0 i i ind SN ok
2022) (denoted as DRL-lim). In continuous ac- -6

tion domains, we adapt DRL-mkv and DRL-lim - 02

by DPG (Silver et al., 2014) as done in Tang 00 v |
et al. (2019), see Sec. A.1 for an overview. L et T

We use MIX to represent our method. Pre-

computed 7" in maze is provided to MIX as de- Figure 2: (a) Policy return (y-axsis) and (b) Risk-
scribed in Sec 3.3 since it is easy to get. In other —aversion (long path) rate (y-axsis) v.s. training
domains, 7" is learned by IQL during training. €pisodes in Maze. Curves are averaged over 10
Please refer to Appendix A for any missing im- seeds with shaded regions indicating standard er-

plementation details. rors.

Remark. The method in Greenberg et al. (2022) is CVaR-PG with curriculum learning and a
special trajectory sampling strategy, which is orthogonal to our approach. It requires to control
the environment dynamics, and may not be straightforwardly applicable to most domains discussed
here. We compare with it in one domain from Greenberg et al. (2022) in Sec. A.7.

4.1 Tabular case: Maze Problem

This domain is modified from Greenberg et al. (2022) that was previously described in Sec. 3.3.
The maximum episode length is 100. CVaR o« = 0.1. REINFORCE, CVaR-PG, and MIX collect
N = 50 episodes before updating the policy. Here we report the rate of choosing the long path during

RLJ | RLC 2024

training in Fig. 2(b). Since the policy is non-deterministic, the length of the sampled risk-averse
path may not be exactly 11 (the length of the white path in Fig. 1(a)). Here we treat a path as
risk-averse if it goes towards the top, reaches the goal, and the path length does not exceed 14.

CVaR-PG fails to learn a reasonable policy even in this simple domain due to gradient vanishing
as discussed in Sec. 3.1. We show the gradient norm of CVaR-PG in Fig. 5 in appendix to further
illustrate this phenomenon in Maze. By initializing MIX with a risk neutral policy, it achieves a
relatively high return at the early learning phase, thus potentially avoids gradient vanishing.

4.2 Discrete control: LunarLander

LunarLander, Return LunarLander, Land left rate LunarLander, Return LunarLander, Land left rate
(a) 0g — RENFORCE (b) 0 plo) (d) —— DRL-mkv
’ CVaR-PG 0.10 —— DRL-lim

200 MIX -200

06 0.08

100 -400
0.06

0.4 -600
0.04

—— REINFORCE 02 800

CVaR-PG
— MIX

1000 —— DRL-mkv 0.02 f\
—— DRL-lim 0.00
0 20 40 60 80 100 120 O 20 40 60 80 100 120 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Episodes(1k) Episodes(1k) Steps(1e4) Steps(1e4)

Figure 3: (a,c) Policy return (y-axis), and (b,d) Left-landing rate (i.e., risk-averse landing rate)
(y-axis) v.s. training episodes or steps in LunarLander. Curves are averaged over 10 seeds with
shaded regions indicating standard errors. For the landing left rate, higher is better.

This domain is taken from OpenAl Gym (Brockman et al., 2016). We refer readers to its official
documents for a full description. The goal of the agent is to land on the ground without crashing.
We split the ground into left and right parts by the middle line of the landing pad, as shown in
Fig. 6 in appendix. If landing on the right, an additional noisy reward sampled from A/(0,1) times
100 is given. A risk-averse agent should learn to land on the left as much as possible. We set CVaR
a = 0.1. REINFORCE, CVaR-PG, and MIX collect N = 30 episodes before updating the policy.
DRL-mkv and DRL-lim are off-policy methods and update policies at each environment step. We
train them for 2e6 steps instead of as many episodes as other methods.

We report the left-landing rate of different methods in Fig. 3(b) and (d). Comparing DRL-mkv
and DRL-lim against episode-based algorithms is not straightforward within the same figure due
to the difference in parameter update frequency. Thus we show them separately. MIX achieves a
comparable return with REINFORCE at the end, but shows a clear risk-aversion by landing more
on the left. DRL-mkv and DRL-lim can not learn a reasonable policy given the small CVaR «. As
mentioned in Section 2.3, they optimize a different objective than CVaR that is not well understood.

4.3 Continuous control: Mujoco

Mujoco (Todorov et al., 2012) is a collection of robotics environments with continuous states and
actions in OpenAl Gym (Brockman et al., 2016). Here, we select three domains, namely Inverted-
Pendulum, HalfCheetah, and Ant (disparities in the inherent difficulty of moving backward versus
forward are observed in other domains, which likely stems from the intrinsic design of the physics
engine’s dynamics). Inspired by Malik et al. (2021); Liu et al. (2022), we define the risky region
based on the X-position. Specifically, if X-position > 0.04 in InvertedPendulum, X-position < —3
in HalfCheetah and Ant, a zero-mean Gaussian noise is added to the reward (N(0,1) x 10 in In-
vertedPendulum, A/(0,1) x 50 in HalfCheetah and Ant). To further ensure that agents move both
forward and backward with equal preference in terms of expected reward in the two environments,
we define the distance-based reward as the difference in distance between the current and previous
states from the origin, regardless of the sign of the X-position. Consequently, in InvertedPendulum,
a risk-averse agent aims to keep the pendulum balanced while staying out of the noisy region. In
HalfCheetah and Ant, a risk-averse agent should learn to move toward the opposite direction of the

RLJ | RLC 2024

Pendulum, Return

Pendulum, X<0.04 rate

Pendulum, Return

Pendulum, X<0.04 rate

300(a) 1.0 250 (¢) —— DRL-mkv (d) —— DRL-mkv
(b) —— DRLdim = 08 —— DRL-lim
250 0.9
200
200 08 07
150
150 07 0.6
100 0.6 100 0.5
—— REINFORCE —X REINFORCE
50 CVaR-PG 05 CVaR-PG 50 04
— MIX — MIX
0 04
0 25 50 75 100 125 150 175 0 25 50 75 100 125 150 175 0 20 40 60 8 100 0 20 40 60 8 100
HalfCheetah, Final Xpos Ant, Final Xpos HalfCheetah, Final Xpos Ant, Final Xpos
60(6) cvarpg o () cvarpPG 40(8) — sAC 20) — SsAC
— MIX — MIX . ~—— DRL-mkv —— DRL-mkv
50 25 — DRLIM 45 —— DRLAim
20
40 20
10 10
30 15 .
5
20 10 10
10 5 20 0
0 0 30 -5
0 10 20 30 40 0 10 20 30 40 0 20 40 60 8 100 O 20 40 60 80 100
Episodes(1k) Episodes(1k) Steps(1e4) Steps(1e4)

Figure 4: (a, ¢) Policy return (y-axsis) in InvertedPendulum, (b, d) visiting non-noisy region rate (y-
axis) in InvertedPendulum, (e, g) Final X-position (y-axsis) in HalfCheetah, (f, h) Final X-position
in Ant (y-axsis) v.s. training episodes or steps in Mujoco. Curves are averaged over 10 seeds with
shaded regions indicating standard errors. For the location visiting rate, higher is better.

noisy region. We optimize CVaR a = 0.2. REINFORCE still serves as the risk neutral baseline
in InvertedPendulum. In HalfCheetah and Ant, we use SAC (Haarnoja et al., 2018) instead, since
the vanilla policy gradient is not good at more complex domains. REINFORCE, CVaR-PG, and
MIX collect N = 30 episodes before updating the policy in InvertedPendulum, and N = 15 in
HalfCheetah and Ant. DRL-mkv, DRL-lim, and SAC are trained for 1e6 steps.

We report the total return and X<0.04 rate in InvertedPendulum, which are sufficient to reflect the
risk-averse behavior of the agent, since the reward is 1 as long as the pendulum is balanced. In
HalfCheetah and Ant, we report the final X-position in Fig. 4, as the return can not reflect which
direction the agent is moving in the two domains. The policy returns in these two domains are
shown in Fig. 9 and 10 in appendix. CVaR-PG achieves a risk-averse policy in InvertedPendulum,
i.e., high return and high rate of staying in the non-noisy region. But it fails to learn a reasonable
policy in HalfCheetah and Ant, i.e., the final X-position is always close to the origin. MIX learns
risk-averse policy by moving away from the noisy region. DRL-mkv and DRL-lim generally do not
work well in all three domains since they optimize a different objective than CVaR that is not well
understood (see Sec 2.3).

5 Conclusions and Future Work

This paper proposes a mixture policy framework for CVaR-PG. It is motivated to overcome the
sample inefficiency of the original CVaR-PG, caused by the waste of most sampled trajectories and
gradient vanishing in some domains. We empirically show that our method can succeed when others
fail to learn a risk-averse or a reasonable policy by mitigating the sample efficiency issue.

Limitations and future work. We have pinpointed a class of risk-averse RL problems charac-
terized by requiring risk-averse behavior in a subset of states, suitable for our mixture approach.
Though this category intuitively covers a broad range of scenarios, situations that do not fit this
framework remain unexplored in this paper. Additionally, our method can be potentially integrated
with other techniques aimed at enhancing sample efficiency, e.g., Greenberg et al. (2022), given its
versatile nature. However, exploring such hybrid methodologies falls outside the scope of our current
research. Observing the two limitations, researching algorithms to enhance the sample efficiency for

RLJ | RLC 2024

the broader class of risk-averse problems, as well as possible integration with existing methods to
improve sample efficiency, remains valuable for future work.

Broader Impact Statement

This paper presents work whose goal is to advance the risk-averse reinforcement learning. There may
be potential societal consequences of our work, none of which we feel must be specifically highlighted
here.

Acknowledgments

Resources used in this work were provided, in part, by the Province of Ontario,
the Government of Canada through CIFAR, companies sponsoring the Vector Institute
(https://vectorinstitute.ai/partners/), the Natural Sciences and Engineering Council of Canada,
and the Digital Research Alliance of Canada (alliancecan.ca). Yudong Luo is also supported by
a David R. Cheriton Graduate Scholarship, a President’s Graduate Scholarship, and an Ontario
Graduate Scholarship. Yangchen Pan would like to acknowledge support from Turing World leading
fellow. Philip Torr is supported by the UKRI grant: Turing AI Fellowship. Philip Torr would also
like to thank the Royal Academy of Engineering and FiveAl.

References

Riad Akrour, Davide Tateo, and Jan Peters. Continuous action reinforcement learning from a mix-
ture of interpretable experts. IEEE Transactions on Pattern Analysis and Machine Intelligence,
44(10):6795-6806, 2021.

Nicole Béuerle and Jonathan Ott. Markov decision processes with average-value-at-risk criteria.
Mathematical Methods of Operations Research, 74:361-379, 2011.

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In Proceedings of the International Conference on Machine Learning (ICML), pp. 449-
458. PMLR, 2017.

Vivek S Borkar. Q-learning for risk-sensitive control. Mathematics of operations research, 27(2):
294-311, 2002.

David Brandfonbrener, William F Whitney, Rajesh Ranganath, and Joan Bruna. Offline RL without
off-policy evaluation. In Advances in Neural Information Processing Systems, 2021.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Yunho Choi, Kyungjae Lee, and Songhwai Oh. Distributional deep reinforcement learning with a
mixture of gaussians. In 2019 International Conference on Robotics and Automation (ICRA), pp.
9791-9797. IEEE, 2019.

Yinlam Chow, Aviv Tamar, Shie Mannor, and Marco Pavone. Risk-sensitive and robust decision-
making: a cvar optimization approach. Advances in neural information processing systems, 28,
2015.

Yinlam Chow, Mohammad Ghavamzadeh, Lucas Janson, and Marco Pavone. Risk-constrained
reinforcement learning with percentile risk criteria. Journal of Machine Learning Research, 18
(167):1-51, 2018.

Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit quantile networks for
distributional reinforcement learning. In Proceedings of the International conference on machine
learning (ICML), pp. 1096-1105. PMLR, 2018a.

RLJ | RLC 2024

Will Dabney, Mark Rowland, Marc Bellemare, and Rémi Munos. Distributional reinforcement
learning with quantile regression. In Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI), volume 32, 2018b.

Christian Daniel, Gerhard Neumann, and Jan Peters. Hierarchical relative entropy policy search.
In Artificial Intelligence and Statistics, pp. 273-281. PMLR, 2012.

Freddy Delbaen and Sara Biagini. Coherent risk measures. Springer, 2000.

Yihan Du, Siwei Wang, and Longbo Huang. Provably efficient risk-sensitive reinforcement learning:
Iterated cvar and worst path. In Proceedings of the Eleventh International Conference on Learning

Representations, ICLR-23, 2023.

Yingjie Fei, Zhuoran Yang, and Zhaoran Wang. Risk-sensitive reinforcement learning with function
approximation: A debiasing approach. In International Conference on Machine Learning, pp.
3198-3207. PMLR, 2021.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132-20145, 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. International Conference on Machine Learning, pp. 2052-2062, 2019.

Ido Greenberg, Yinlam Chow, Mohammad Ghavamzadeh, and Shie Mannor. Efficient risk-averse
reinforcement learning. Advances in Neural Information Processing Systems, 35:32639-32652,
2022.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861-1870. PMLR, 2018.

Jia Lin Hau, Erick Delage, Mohammad Ghavamzadeh, and Marek Petrik. On dynamic programming
decompositions of static risk measures in markov decision processes. In Thirty-seventh Conference
on Neural Information Processing Systems, 2023.

Audrey Huang, Liu Leqi, Zachary C Lipton, and Kamyar Azizzadenesheli. On the convergence and
optimality of policy gradient for markov coherent risk. arXiv preprint arXiv:2103.02827, 2021.

Ran Ji, KC Chang, and Zhenlong Jiang. Risk-aversion adjusted portfolio optimization with predic-
tive modeling. In 2019 22th International Conference on Information Fusion (FUSION), pp. 1-8.
IEEE, 2019.

Whiyoung Jung, Myungsik Cho, Jongeui Park, and Youngchul Sung. Quantile constrained reinforce-
ment learning: A reinforcement learning framework constraining outage probability. Advances in
Neural Information Processing Systems, 35:6437-6449, 2022.

Ramtin Keramati, Christoph Dann, Alex Tamkin, and Emma Brunskill. Being optimistic to be
conservative: Quickly learning a cvar policy. In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pp. 4436-4443, 2020.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit g-
learning. In International Conference on Learning Representations, 2022.

Arsenii Kuznetsov, Pavel Shvechikov, Alexander Grishin, and Dmitry Vetrov. Controlling overesti-
mation bias with truncated mixture of continuous distributional quantile critics. In International
Conference on Machine Learning, pp. 5556-5566. PMLR, 2020.

Prashanth La and Mohammad Ghavamzadeh. Actor-critic algorithms for risk-sensitive mdps. Ad-
vances in neural information processing systems, 26, 2013.

RLJ | RLC 2024

Shiau Hong Lim and Ilyas Malik. Distributional reinforcement learning for risk-sensitive policies.
Advances in Neural Information Processing Systems, 35:30977-30989, 2022.

Fangda Liu and Ruodu Wang. A theory for measures of tail risk. Mathematics of Operations
Research, 46(3):1109-1128, 2021.

Guiliang Liu, Yudong Luo, Ashish Gaurav, Kasra Rezaee, and Pascal Poupart. Benchmarking
constraint inference in inverse reinforcement learning. arXiv preprint arXiv:2206.09670, 2022.

Yudong Luo, Guiliang Liu, Haonan Duan, Oliver Schulte, and Pascal Poupart. Distributional rein-
forcement learning with monotonic splines. In International Conference on Learning Representa-
tions, 2022.

Yudong Luo, Guiliang Liu, Pascal Poupart, and Yangchen Pan. An alternative to variance: Gini
deviation for risk-averse policy gradient. Advances in Neural Information Processing Systems, 36,
2023.

Shehryar Malik, Usman Anwar, Alireza Aghasi, and Ali Ahmed. Inverse constrained reinforcement
learning. In International conference on machine learning, pp. 7390-7399. PMLR, 2021.

Karen Mulligan, Drishti Baid, Jason N Doctor, Charles E Phelps, and Darius N Lakdawalla. Risk
preferences over health: Empirical estimates and implications for healthcare decision-making.
Technical report, National Bureau of Economic Research, 2023.

Takayuki Osa, Akinobu Hayashi, Pranav Deo, Naoki Morihira, and Takahide Yoshiike. Offline
reinforcement learning with mixture of deterministic policies. Transactions on Machine Learning
Research, 2023.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2020.

Jan Peters and Stefan Schaal. Reinforcement learning by reward-weighted regression for operational
space control. In Proceedings of the 24th international conference on Machine learning, pp. 745—
750, 2007.

Georg Ch Pflug and Alois Pichler. Time-consistent decisions and temporal decomposition of coherent
risk functionals. Mathematics of Operations Research, 41(2):682-699, 2016.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

R Tyrrell Rockafellar, Stanislav Uryasev, et al. Optimization of conditional value-at-risk. Journal
of risk, 2:21-42, 2000.

Andrzej Ruszczynski. Risk-averse dynamic programming for markov decision processes. Mathemat-
ical programming, 125:235-261, 2010.

Tim Seyde, Wilko Schwarting, Igor Gilitschenski, Markus Wulfmeier, and Daniela Rus. Strength
through diversity: Robust behavior learning via mixture policies. In Conference on Robot Learning,
pp. 1144-1155. PMLR, 2022.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In International conference on machine learning, pp.

387-395. Pmlr, 2014.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
Cambridge, MA, 1998.

Aviv Tamar, Dotan Di Castro, and Shie Mannor. Policy gradients with variance related risk criteria.
In Proceedings of the twenty-ninth international conference on machine learning, pp. 387-396,
2012.

RLJ | RLC 2024

Aviv Tamar, Yonatan Glassner, and Shie Mannor. Optimizing the cvar via sampling. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 29, 2015.

Yichuan Charlie Tang, Jian Zhang, and Ruslan Salakhutdinov. Worst cases policy gradients. Con-
ference on Robot Learning, 2019.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026-5033.
IEEE, 2012.

Markus Wulfmeier, Abbas Abdolmaleki, Roland Hafner, Jost Tobias Springenberg, Michael Neunert,
Tim Hertweck, Thomas Lampe, Noah Siegel, Nicolas Heess, and Martin Riedmiller. Compositional
transfer in hierarchical reinforcement learning. Robotics: Science and Systems, 2020.

Markus Wulfmeier, Dushyant Rao, Roland Hafner, Thomas Lampe, Abbas Abdolmaleki, Tim Her-
tweck, Michael Neunert, Dhruva Tirumala, Noah Siegel, Nicolas Heess, et al. Data-efficient hind-
sight off-policy option learning. In International Conference on Machine Learning, pp. 11340—
11350. PMLR, 2021.

Chenjun Xiao, Han Wang, Yangchen Pan, Adam White, and Martha White. The in-sample softmax
for offline reinforcement learning. International Conference on Learning Representations, 2023.

Qisong Yang, Thiago D Simao, Simon H Tindemans, and Matthijs T'J Spaan. Wcsac: Worst-case soft
actor critic for safety-constrained reinforcement learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, pp. 10639-10646, 2021.

ChengYang Ying, Xinning Zhou, Hang Su, Dong Yan, Ning Chen, and Jun Zhu. Towards safe
reinforcement learning via constraining conditional value-at-risk. In Proceedings of the Thirty-
First International Joint Conference on Artificial Intelligence, IJCAI-22, pp. 3673-3680, 7 2022.

Shi Yu, Haoran Wang, and Chaosheng Dong. Learning risk preferences from investment portfolios
using inverse optimization. Research in International Business and Finance, 64:101879, 2023.

Yuguang Yue, Zhendong Wang, and Mingyuan Zhou. Implicit distributional reinforcement learning.
Advances in Neural Information Processing Systems, 33:7135-7147, 2020.

Shangtong Zhang and Shimon Whiteson. Dac: The double actor-critic architecture for learning
options. Advances in Neural Information Processing Systems, 32, 2019.

Fan Zhou, Jianing Wang, and Xingdong Feng. Non-crossing quantile regression for distributional
reinforcement learning. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin
(eds.), Advances in Neural Information Processing Systems (NeurIPS), volume 33, pp. 15909-
15919. Curran Associates, Inc., 2020.

Fan Zhou, Zhoufan Zhu, Qi Kuang, and Liwen Zhang. Non-decreasing quantile function network with
efficient exploration for distributional reinforcement learning. In Proceedings of International Joint
Conference on Artificial Intelligence (IJCAI), pp. 3455-3461. International Joint Conferences on
Artificial Intelligence Organization, 2021.

RLJ | RLC 2024

A Experiments Details

A.1 General Descriptions of Different Methods

Policy gradient methods. Among the methods included in this paper, REINFOCE (Sutton &
Barto, 1998), CVaR-PG (Tamar et al., 2015), and the CVaR part of our mixture policy are on-
policy policy gradient methods. In our implementation, we update the policy after gathering N
trajectories.

Time difference methods. DRL-mkv (Dabney et al., 2018a; Keramati et al., 2020), DRL-lim (Lim
& Malik, 2022), SAC (Haarnoja et al., 2018) are off-policy time difference methods, i.e., updating
policy at each environment step. Continuous action domains are not considered in the original paper
of Lim & Malik (2022). We follow Tang et al. (2019) to apply DRL-mkv and DRL-lim to continuous
action domains, e.g., for DRL-mkv, the actor is updated via

Vodo = Es gmmy [Volog mg(als)CVaRo (Z7 (s, a))] (11)
for DRL-lim, the actor is updated via
Voda = Es kamny | Vo — logm(als)E[(k — Z™(s,a))7] (12)

where k is the tracking variable at state s.

Both DRL-mkv and DRL-lim are built on top of distributional RL (Bellemare et al., 2017). The
most commonly used approach to update distributional value function (critic) is quantile regres-
sion (Dabney et al., 2018b;a; Zhou et al., 2020; 2021; Luo et al., 2022). We also adopt quantile
regression in our implementation.

Solving the quantile crossing issue. In particular, Zhou et al. (2020) pointed out some previous
quantile regression based work, e.g., QR-DQN (Dabney et al., 2018b), IQN (Dabney et al., 2018a)
suffered from the quantile crossing issue, i.e., the predicted quantile values do not satisfy the mono-
tonicity of the quantile function. This is shown to hinder policy learning and exploration (Zhou
et al., 2020). The monotonicity of the quantile is also important in DRL-mkv and DRL-lim to make
sure the estimated quantities, e.g. a-CVaR, are correct. We follow the approach in Yue et al. (2020)
by sorting the predicted quantile values to make them non decreasing.

A.2 The Maze Problem

The maze consists of a 6 x 6 grid. The initial state of the agent is fixed at the bottom left corner.
The action space is four (up, down, left, right). The maximum episode length is 100.

Policy function. For CVaR-PG, the policy is represented as

C(s,0)0

T (als) = W (13)

where ((s,a) is the state-action feature vector, basically a one-hot encoding in our implementation.
Thus, the dimension of {(s,a) is 6 x 6 x 4. The derivative of the logarithm is

Vo logmg(als) = ((s,a) = Epury(.5)C(5,) (14)

For our mixture policy, the policy parameter 6 consists of two parts 0 = (6, 0s), where 01 is for the
adjustive policy wél, and 0, is for the weight w.

rolals) = o(C(s.a) - 62}, (als) + (1= o(C(5,0) - 02) 7" (als) (15)
e((s,a)-el

. /
with ﬂ'gl = W

RLJ | RLC 2024

where o(+) is the sigmoid function. The derivative of the logarithm is

V91 IOg 7'('9(&‘8) = WQ(G‘S)U(C(S, a) . 92)7Tél (a’|s)v91 logﬂ-él (G‘S) (17)
Vi, log mofals) = —rs (), (als) = =" (als)) o (C(s.0) - 02) (1= (C(s.0) - 00))C(sva) (1)

Value function. The value function of REINFORCE baseline is represented as V,,(s) = {(s) - v.
Similarly, ¢(s) is a one-hot encoding.

A.2.1 Learning Parameters

Discount factor v = 0.999. Optimizer is stochastic gradient descent (SGD).

REINFORCE: Policy learning rate is le-2€ {le-2, le-3, le-4}. Value leaning rate is 10 times
policy learning rate. (the suffix ’e-2’ means 0.01)

CVaR-PG: Learning rate is le-2€ {le-1, le-2, le-3, le-4}.
MIX: Learning rate is le-2€ {le-2, le-3, le-4}.

A.2.2 Policy Gradient Norm of CVaR-PG

We show the policy gradient norm of CVaR-PG to further demonstrate the gradient vanishing issue
in Maze. The norm is computed by numpy.linalg.norm. As shown in Fig. 5, in most of the time,
the policy gradients are zero.

Maze, CVaR-PG Grad Norm
200

175
150
125
100
75
50
25

0 10 20 30 40 50
Episodes(1k)

Figure 5: Policy gradient norm (y-axsis) of CVaR-PG in Maze. Curves are averaged over 10 seeds
with shaded regions indicating standard errors

A.3 LunarLander Discrete

The goal is to land the agent on the ground without crashing. The state dimension is 8. The action
dimension is 4. The detailed reward information is available at this webpage !. Here, we split the
ground into left and right parts by the middle line of the landing pad as shown in Figure 6. If the
agent lands on the right part of the ground, an additional noisy reward signal A/(0,1) x 100 is given.
The maximum episode length is 500.

Policy function. The policy is a categorical distribution in REINFORCE and CVaR-PG, modeled
as a neutral network. Hidden layer: 2. Hidden size: 128. Activation: ReLU. Softmax function is
applied to the output to generate categorical probabilities.

Lhttps://www.gymlibrary.dev/environments/box2d/lunar_lander/

RLJ | RLC 2024

Figure 6: Split the ground of LunarLander into left and right parts by the middle (red) line. If
landing on the right, an additional reward smapled from N(0, 1) times 100 is given.

The policy of MIX is a weighted summation of ' and 7™ with weight w. 7’ and w are modeled as
a neutral network with two output heads. 7" is a separate neutral network. Both of them have:
Hidden layer: 2. Hidden size: 128. Activation: ReLU.

Value function. For value function in REINFORCE baseline, Q and V' function in IQL of MIX.
Hidden layer: 2. Hidden size: 128. Activation: ReL.U.

For distributional value function in DRL-mkv and DRL-lim. Hidden layer: 2. Hidden size: 128.
Activation: ReLU. Quantile size (i.e., final layer output size): 80.

A.3.1 Learning Parameters

Discount factor v = 0.999. Optimizer is Adam.

REINFORCE: Policy learning rate is 7e-4€ {le-3, 7e-4, 3e-4, le-4}. Value leaning rate is 10 times
policy learning rate.

CVaR-PG: Learning rate is 7Te-4€ {1e-3, Te-4, 3e-4, le-4}.

MIX: Learning rate for 7’ and w is 7e-4€ {le-3, 7e-4, 3e-4, le-4}. Learning rate for IQL part
(including policy and value functions) is le-4€ {3e-4, le-4}. IQL update frequency C' = 50, by
sampling 2e5 transitions from buffer. n = 0.8 in Eq. 9. 5 =1 in Eq. 10.

DRL-mkv: Learning rate is 7Te-4€ {le-3, Te-4, 3e-4, le-4, Te-5}.
DRL-lim: Learning rate is le-4€ {1e-3, 7Te-4, 3e-4, le-4, Te-5}.

A.3.2 Performance of the risk neutral component of the mixture policy

In this domain, the risk neutral component 7™ of the mixture policy is updated vi IQL (Kostrikov
et al., 2022). We report the total successful landing rate and left landing rate of 7™ during training in
Fig. 7. ™ does not demonstrates a preference of landing location, which indicates the risk-aversion
is achieved by the mixture policy.

A.3.3 Incorporate pre-trained risk-neutral policy

A natural question raises that whether we can use a pre-trained risk-neural policy to form the
mixture policy, as done in maze (Sec. 3.3), when using deep RL. We conduct the experiments in this
LunarLander domain.

Similar as the risk-neutral policy in maze, we represent the risk-neutral policy by the softmax of
Q-values with temperature. The @-values are learned by deep @-network (DQN). To validate the
pre-trained risk-neutral policy performs well, we show its total successful landing rate in Fig. 8(a).
The whole training process for MIX is as follows. The first 3k episodes are used to update the
risk-neutral policy only (i.e., update DQN), with the remaining part of the MIX policy unchanged.
After the first 3k episodes, the risk-neutral policy is fixed, and the remaning part of the MIX policy
begins to update. However, as indicated by the left landing rate in Fig. 8(b), MIX leads to a

RLJ | RLC 2024

Risk neutral component of MIX

Total landing rate

08 _ Left landing rate
0.6
0.4
0.2
0.0
0 20 40 60 8 100 120

Episodes(1k)

Figure 7: Total landing rate and left landing rate of IQL (y-axsis) in MIX during training. Curves
are averaged over 10 seeds with shaded regions indicating standard errors.

Pre-trained risk-neutral policy MIX with pre-trained risk-neutral policy

(a) (b) —— Left landing rate
0.8 0.4
0.6 0.3
0.4 0.2
0.2 0.1
0.0 Total landing rate 0.0

0 500 1000 1500 2000 2500 3000 0 10 20 30 40 50 60

Episodes Episodes(1k)

Figure 8: (a) The total successful landing rate (y-axsis) of pre-trained risk-neutral policy. (b) The
left landing (i.e., risk-averse) (y-axsis) rate of Mix by incorporating this pre-trained risk-neutral
policy. Curves are averaged over 10 seeds with shaded regions indicating standard errors.

suboptimal risk-averse policy. One possible reason may be when training the deep risk-neutral RL
algorithm, the data distribution tends to concentrate on those states in the optimal (or near optimal)
trajectories. Thus, the learned value or policy function approximator may not generalize well around
the risk-averse path.

A.4 InvertedPendulum

The description of the Mujoco environments can be found at this webpage 2.

The goal is to balance a inverted pendulum on a cart. The state dimension is 4 (X-position is already
contained in the observation). The action dimension is 1. Per step reward is 1. If the agent reaches
the region X-position > 0.04, and additional noisy reward sampled from A(0,1) times 10 is given.
The game ends if angle between the pendulum and the cart is greater than 0.2 radian or a maximum
episode length 300 is reached.

Policy function. The policy is a normal distribution in REINFORCE and CVaR-PG, modeled as
a neutral network. Hidden layer: 2. Hidden size: 128. Activation: ReLU. Tanh is applied to the
last layer. The logarithm of standard deviation is an independent trainable parameter.

For MIX, n’ and w is a neutral network with two output heads. One for the mean of the normal
distribution 7, one for w. The logarithm of standard deviation is an independent trainable param-

2https://www.gymlibrary.dev/environments,/mujoco/

RLJ | RLC 2024

eter. 7" is a seperate neutral network as above. Both of them have: Hidden layer: 2. Hidden size:
128. Activation: ReLLU. Tanh is applied to the output of the distribution layer.

Value function. For value function in REINFORCE baseline, () and V' function in IQL of MIX.
Hidden layer: 2. Hidden size: 128. Activation: ReLU.

For distributional value function in DRL-mkv and DRL-lim. Hidden layer: 2. Hidden size: 128.
Activation: ReLU. Quantile size (i.e., final layer output size): 80.

A.4.1 Learning Parameters

Discount factor v = 0.999. Optimizer is Adam.

REINFORCE: Policy learning rate is 3e-4€ {7e-4, 3e-4, le-4}. Value leaning rate is 10 times
policy learning rate.

CVaR-PG: Learning rate is 3e-4€ {7e-4, 3e-4, le-4}.

MIX: Learning rate for 7’ and w is 3e-4€ {7e-4, 3e-4, le-4}. Learning rate for IQL part (including
policy and value functions) is le-4€ {3e-4, le-4}. IQL update frequency C = 50, by sampling leb
transitions from buffer. n = 0.9 in Eq. 9. § = 2 in Eq. 10.

DRL-mkv: Learning rate is Te-4€ {le-3, Te-4, 3e-4, le-4, Te-5}.
DRL-lim: Learning rate is le-3€ {1e-3, 7e-4, 3e-4, le-4, Te-5}.

A.5 HalfCheetah

The agent controls a robot with two legs. The state dimension is 18 (add X-position). The action
dimension is 6. One part of the reward is determined by the distance covered between the current
and the previous time step. Originally, it is positive only when the agent moves toward the forward
(right) direction. To encourage the agent to freely move forward (left) and backward (right), we
modify this part of the reward to make it positive as long as the agent is moving far from the origin.
If the agent reaches the region X-position <-3, an additional noisy reward sampled from A/(0,1)
times 50 is given. The game ends when a maximum episode length 500 is reached.

Policy function. Hidden size: 256. Others are the same as the case in InvertedPendulum.

Value function. Hidden size: 256. Others are the same as the case in InvertedPendulum.

A.5.1 Learning Parameters

Discount factor v = 0.99. Optimizer is Adam.
SAC: Learning rate is 3e-4€ {7e-4, 3e-4, le-4}.
CVaR-PG: Learning rate is 3e-4€ {7e-4, 3e-4, le-4}.

MIX: Learning rate for 7’ and w is 3e-4€ {7e-4, 3e-4, le-4}. Learning rate for IQL part (including
policy and value functions) is the same. IQL update frequency C = 30, by sampling 2e5 transitions
from buffer. n =0.8 in Eq. 9. =2 in Eq. 10.

DRL-mkv: Learning rate is 3e-4€ {7e-4, 3e-4, le-4, 7e-5}.
DRL-lim: Learning rate is le-4€ {7e-4, 3e-4, le-4, Te-5}.

A.5.2 Policy Return in HalfCheetah

The policy return of different methods in HalfCheetah is shown in Fig. 9. Note that the policy
return does not indicate the risk-aversion of a policy.

RLJ | RLC 2024

HalfCheetah, Return HalfCheetah, Return
1500
CVaR-PG 2000L— SAC
1250 —— MIX —— DRL-mkv
—— DRL-lim
1000 1500
750
500 1000
250 500
0
-250 0
0 10 20 30 40 0 20 40 60 80 100
Episodes(1k) Steps(1e4)

Figure 9: Policy return (y-axsis) v.s. training episodes or steps in HalfCheetah. Curves are averaged
over 10 seeds with shaded regions indicating standard errors.

A.6 Ant

The agent controls a robot with four legs attached to it with each leg having two links. The state
dimension is 113 (add X-position). The action dimension is 8. Similar to HalfCheetah, we modify
the reward to make the distance based reward positive as long as the agent is moving far from the
origin. If the agent reaches the region X-position <-3, an additional noisy reward sampled from
N(0,1) times 50 is given. The game ends when a maximum episode length 500 is reached.

Policy function. Hidden size: 256. Others are the same as the case in InvertedPendulum.

Value function. Hidden size: 256. Others are the same as the case in InvertedPendulum.

A.6.1 Learning Parameters

Discount factor v = 0.99. Optimizer is Adam.
SAC: Learning rate is 3e-4€ {7e-4, 3e-4, le-4}.
CVaR-PG: Learning rate is 3e-4€ {7e-4, 3e-4, le-4}.

MIX: Learning rate for 7’ and w is 3e-4€ {7e-4, 3e-4, le-4}. Learning rate for IQL part (including
policy and value functions) is the same. IQL update frequency C = 30, by sampling 2e5 transitions
from buffer. n = 0.8 in Eq. 9. =2 in Eq. 10.

DRL-mkv: Learning rate is 7e-5€ {7e-4, 3e-4, le-4, 7e-5}.

DRL-lim: Learning rate is 7e-5€ {7e-4, 3e-4, le-4, Te-5}.

A.6.2 Policy Return in Ant

The policy return of different methods in Ant is shown in Fig. 10. Note that the policy return does
not indicate the risk-aversion of a policy.

A.7 Driving Game

The goal of this game is to control the agent’s car to follow the leader car without colliding. The
state dimension is 5. The action dimension is 5. We refer reader to Sec. 5.2 of (Greenberg et al.,
2022) for more details.

The method proposed in Greenberg et al. (2022) is named CeSoR, which includes a curriculum
learning scheduler to adjust CVaR « during learning, i.e., starting from a large value for o and
gradually decreasing to its target value; and a trajectory generator which controls the environment
dynamic. In this domain, it controls the behavior of the leader car.

RLJ | RLC 2024

Ant, Return Ant, Return
1000 600
500 400
200
0
0
CVaR-PG
-500 — MIX -200
-1000 -400
600 — SAC
1500 -_-— DRL-mkv
-800 —— DRL-lim
0 10 20 30 40 0 20 40 60 80 100
Episodes(1k) Steps(1e4)

Figure 10: Policy return (y-axsis) v.s. training episodes or steps in Ant. Curves are averaged over
10 seeds with shaded regions indicating standard errors.

We directly use the code provided by Greenberg et al. (2022) to produce the results for CeSoR.
CeSoR is orthogonal to MIX, and these two can be combined. We combine MIX with curriculum

learning (denoted as MIX+SoR, SoR means soft risk to represent curriculum learning in Greenberg
et al. (2022)), and combine MIX with CeSoR (denoted as MIX+4CeSoR) in this domain.

Policy function. Policy of CeSoR and CVaR-PG: Hidden size: 32. Hidden layer: 2. Activation:
Tanh.

Policy of MIX: Hidden size: 32. Activation: Tanh. Others are the same as the case in InvertedPen-
dulum.

Value function. @ and V of IQL: Hidden size: 32. Others are the same as the case in Inverted-
Pendulum.

A.7.1 Learning Parameters

CVaR «a = 0.05. Update policy after gathering N = 80 trajectories. The starting value for CVaR «
is 0.8.

CVaR-PG: Learning rate le-2€ {2e-2, le-2, 5e-3}.
CeSoR: Learning rate le-2€ {2e-2, le-2, 5e-3}.

MIX: Learning rate for 7’ and w is le-2€ {2e-2, 1le-2, 5e-3}. Learning rate for IQL part (including
policy and value function) is 5e-3. IQL update frequency C' = 50, by sample 2e4 transitions from
buffer. n =0.8 in Eq. 9. 8 = 2 in Eq. 10.

MIX+SoR: Learning parameters are the same as MIX.
MIX+CeSoR: Learning parameters are the same as MIX.

We report the mean return and the 0.05-CVaR of the return in Fig. 11. For both the mean and
tail of the return, CeSoR, MIX, and MIX variants are better than CVaR-PG. CeSoR is slightly
better than MIX| since CeSoR possesses the environment dynamic information while MIX does not.
MIX with curriculum learning, i.e., MIX+SoR, learns faster than MIX at the early training stage
than MIX, though the final mean return is the same as MIX. MIX+CeSoR is better than MIX and
MIX+SoR with respect to the mean and tail of the return, and is comparable to CeSoR. CeSoR
learns faster and achieves the highest risk averse rewards among all techniques, however it requires
access to the environment dynamics and the ability to change the parameters of the dynamics in
a way that is domain specific. In contrast, MIX and MIX+SoR do not need dynamics information
and therefore can be applied directly to any domain.

RLJ | RLC 2024

Driving Game, Mean Return

Driving Game, 0.05-CVaR of Return

0 0
@ (b)
/ -2000
-2000
-4000
-4000 6000
CVaR-PG 8000 CVaR-PG
0000 CeSoR CeSbR
-10000
-8000 —T— MIX — MX
—— MIX+SoR ~12000 —— MIX+SoR
-10000 —— MIX+CeSoR -14000 —— MIX+CeSoR
0 1 2 3 4 5 6 7 8 0o 1 2 5 6 7 8

3 4
Episodes (1k) Episodes (1k)
Figure 11: (a) The expected return (y-axsis), and (b) the 0.05-CVaR of the return (y-axsis) achieved
by CVaR-PG, CeSoR, MIX, MIX+SoR, and MIX+CeSoR in driving game. Curves are averaged
over 10 seeds with shaded regions indicating standard errors.

Remark. Our mixture policy method differs from the curriculum learning idea in Greenberg et al.
(2022). Tough the CVaR « starts from a large value in curriculum learning, where the objective is
close to a risk-neutral problem, it is an on-policy policy gradient method, i.e., the trajectories used
to update the policy is generated by the current policy (if no importance sampling is assumed).
In contrast, the risk-neutral component of our mixture policy is trained by an off-policy (offline)
algorithm, in this case, all the encountered trajectories can be stored in the replay buffer for policy
update.

B Additional Related Work

Due to its two-layered structure, a mixture policy is also called a hierarchical policy (Daniel et al.,
2012). Though the idea of mixture policy is not new, it is mainly applied in risk-neutral settings.
Osa et al. (2023) constructed a mixture of deterministic policies for offline RL tasks and shown
it can mitigate the issue of critic error accumulation in offline RL. Wulfmeier et al. (2020) and
Seyde et al. (2022) utilized mixture policy to capture the diverse motivations of the robots such
that the skill learned by each sub-policy can be transferred. Akrour et al. (2021) adopted mixture
policy to enhance the interpretability of decision making. The mixture policy is also used for option
discovery (Zhang & Whiteson, 2019; Wulfmeier et al., 2021). The similar mixture structure also
appears in value (critic) function learning, for instance, mixture critic is utilized for distributional
RL (Choi et al., 2019; Kuznetsov et al., 2020).

