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Abstract

The standard framework in reinforcement learning (RL) dictates that an agent
should use every observation collected from interactions with the environment when
updating its value estimates. As this sequence of observations becomes longer,
the agent is afflicted with the curse of horizon since the computational cost of its
updates scales linearly with the length of the sequence. In this paper, we propose
methods to mitigate this curse and improve sample efficiency for continuous-time
value estimation with Monte-Carlo methods. This is accomplished by selecting
a subsequence of observations on which the value estimates are computed. We
empirically demonstrate on standard RL benchmarks that adopting an adaptive
sampling scheme outperforms the default uniform sampling procedure.

1 Introduction

The reinforcement learning (RL) framework is typically modeled as a Markov Decision Process in
discrete-time intervals (Sutton & Barto, 2018), in which the interaction between agent and environ-
ment evolves at a predetermined time interval, fixed a priori. There are two evident shortcomings in
carelessly adopting the latter model: first, the discrete-time nature of the process might not capture
the nature of many real-world dynamics, in which treating time as a continuous variable can be
more appropriate and advantageous; second, the fixed-time assumption is taking away a degree of
freedom from the framework.

The second issue is particularly interesting in RL as the greater freedom can be exploited to design
algorithms with better performance. Note that usually the system is assumed to have a fixed
discretization step, and current algorithms make use of all the samples they are given. It has been
recently established by Zhang et al. (2024) that using only a subset of the trajectory tuples can
yield more sample-efficient learning when performing Monte-Carlo value estimation. This paper
goes beyond uniform temporal discretization schemes and considers a procedure that makes use of
an adaptive integration scheme taken from the numerical integration literature. Such an adaptive
scheme does not fix a uniform sampling time, but instead adapts the sampling time to balance
the error in approximating the integral of a single trajectory with collecting several trajectories to
reduce variance from the system’s inherent stochasticity. Therefore the question this work aims to
investigate is:

Can non-uniform discretization be leveraged to improve sample efficiency in
continuous-time value estimation?

With uniform sampling, employing a finer discretization leads to a better approximation of the
continuous-time system from discrete measurements; however, considering a fixed sample budget,
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more samples within each trajectory results in fewer collected trajectories, leading to an increase
in estimation error due to system stochasticity. Conversely, a coarser discretization leads to more
collected trajectories at the expense of a worse approximation of the continuous-time system.

With an adaptive scheme, we can employ a finer discretization in the volatile regions of the
continuous-time system and employ a coarser discretization in the smoother regions of the sys-
tem. Thus fewer measurements of the system can be made to achieve a comparable approximation
error to a uniform sampling scheme, which allocates the same discretization to all regions of the sys-
tem. This, in turn, enables the adaptive scheme to allocate more of its sample budget to collecting
trajectories to reduce its estimation error.

Our main contribution is demonstrating that an adaptive algorithm achieves better policy evaluation
than previous uniform discretization methods. This is done through empirically evaluating both the
adaptive and uniform methods in standard RL benchmarks such as the Gymnasium Classic Control
suite (Towers et al., 2023) and MuJoCo (Todorov et al., 2012) environments. The impact of this
work is evident as using significantly less samples enhances training efficiency thereby accelerating
the learning process.

2 Problem Setting

The continuous-time reinforcement learning (RL) problem is modeled as a Markov Decision Process
(MDP), which is characterised by the tuple (S, A, f, r, γ, η), where S denotes the state space, A the
action space, f specifies the state evolution dynamics, r the reward function, γ is the discount factor,
and η represents the initial state distribution. Through this model, an agent and the environment
interact over time, denoted as t. This interaction is initialized by sampling a state from the initial
state distribution η ∈ M1(S), where M1(X) denotes the set of distribution supported on X, for any
measurable set X. Given the current state s (t) ∈ S and current action a (t) ∈ A, the environment
transitions to a new state. This transition can be described through a differential equation as

d s (t)
dt

= f (s (t) , a (t)) (1)

where f (s (t) , a (t)) represents the dynamics of the environment. In what follows, we will consider
deterministic dynamics as is common in the continuous-time RL literature (Doya, 2000; Yildiz et al.,
2021). The behavior of the agent also affects the reward, which is a scalar-valued function given by

r (t) = r (s (t) , a (t)) . (2)

The reward is an immediate measure the agent’s performance. Given a fixed horizon T , the return,
or cumulative reward, is defined as

GT =
∫ T

0
γtr (s (t) , a (t)) dt, (3)

subject to d s (t)
dt

= f (s (t) , a (t)) ,

where without loss of generality we considered the initial time to be t0 = 0. The return is a random
variable since it is subject to the variability of the initial state, which is sampled i.i.d. from η in
each trajectory. In RL, the agent’s objective is to find a policy a (t) = π (s (t)) that maximizes the
expected return, also known as the value function, given by:

vπ
T (η) = Eπ [GT |s (0) ∼ η] . (4)

Maximizing vπ
T (η) is accomplished by learning an optimal policy, defined as π⋆ ∈ arg maxπ vπ

T (η).
An important step towards this goal is to estimate the value function for a fixed policy, which
correspond to the task of policy evaluation.
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2.1 Monte-Carlo Policy Evaluation

The main focus of this work is policy evaluation, which aims to estimate the expected return from
discrete-time observations. Given N samples {(s(tn), a(tn), r(tn))}N−1

n=0 , observed at discrete-time
points 0 = t0 < t1 < · · · < tN−1 = T , we consider the First-Order-Hold (FOH) scheme (Franklin
et al., 1997) to approximate the reward function, which yields a piecewise linear function:

r̂ (t) = r (tn−1) + r (tn) − r (tn−1)
tn − tn−1

(t − tn−1) , (5)

∀t ∈ [tn−1, tn]. By defining

rn = γtnr(tn) + γtn−1r(tn−1)
2 (tn − tn−1) (6)

we can approximate the integral in Equation (3) by the discrete-time return

Ĝ =
N−1∑
n=1

rn , (7)

which amounts to using the trapezoidal rule for numerical integration. To estimate vπ
T (η), we

average M independent trajectories with return estimates Ĝ1, Ĝ2, . . . , ĜM to obtain the Monte-
Carlo estimator

V̂M = 1
M

M∑
m=1

Ĝm, (8)

where the initial states are sampled independently from the initial state distribution η.

The main goal of this work is to empirically study the relationship between the number of samples
used, i.e., the budget B = M · N , in constructing the Monte-Carlo estimator V̂M and the absolute
error of our estimator under various discretization schemes. When considering the uniform discretiza-
tion scheme, only one degree of freedom remains in choosing the discretization points t0, t1, . . . , tN−1
for a given trajectory m ∈ {1, . . . , M}, for a fixed budget B. If a coarse discretization is used (N
small), then more of the sample budget can be allocated to collecting trajectories. Conversely, if a
fine discretization is used (N large), then less of the budget is allocated to collecting trajectories.
Thus the choice of N controls the approximation error due to discretization and the statistical error
due to stochasticity through M = B/N . Note that in a deterministic setting, statistical errors are
inherently nonexistent, therefore the optimal strategy entails allocating the entire budget to a single
trajectory.

3 Algorithms

In the following, we detail both an adaptive and uniform method for approximating the integral in
Equation (3) from which our Monte-Carlo estimator V̂M is constructed. The adaptive method is
detailed in Algorithm 1 while the uniform method is detailed in Algorithm 2. To the best of our
knowledge, our work is the first to propose and study such an adaptive method for Monte-Carlo
policy evaluation in RL.

3.1 Adaptive Integration

In Algorithm 1, we detail an adaptive integration scheme, often referred to as adaptive quadrature
in the numerical integration literature, that uses a finer discretization in the parts of the domain of
integration where it is harder to get good accuracy and a coarser discretization in the parts of the
domain of integration where it is easy to get good accuracy.

The basis for adaptive integration schemes is the additive property of definite integrals, namely that
for any c ∈ [a, b] it holds that

∫ b

a
f(x)dx =

∫ c

a
f(x)dx +

∫ b

c
f(x)dx. Thus if the two integrals on
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Algorithm 1 Adaptive
To approximate

∫ τ2
τ1

r(t)dt within tolerance ε.
Input: The rewards r, the limits of integration τ1 and τ2, and the tolerance ε
τ3 = τ1+τ2

2
Qτi,τj = γτi r(τi)+γτj r(τj)

2 (τj − τi) for (i, j) = {(1, 2), (1, 3), (3, 2)}.
if |Qτ1,τ2 − Qτ1,τ3 − Qτ3,τ2 | > ε then

Q = Adaptive(r, τ1, τ3, ε/2) + Adaptive(r, τ3, τ2, ε/2)
else

Q = Qτ1,τ2

end if
return Q

the right can be approximated within an arbitrary tolerance ε, then their sum gives an approxima-
tion of the desired integral which is within 2ε. Otherwise, we can recursively apply the additive
property on the sub-intervals [a, c] and [c, b]. Note the each subdivision of the intervals results in
the tolerance getting halved. Thus, we can expect this adaptive integration scheme to adapt to the
integrand “automatically”, partitioning the interval into sub-intervals with fine discretization where
the integrand changes rapidly and coarse discretization where the integrand changes slowly.

Algorithm 1 is implemented with the trapezoidal integration rule and a Newton-Cotes quadrature
rule, i.e., equally spaced points. The algorithm begins by applying a Newton-Cotes quadrature
rule to compute the sub-interval, i.e. τ3 = (τ1 + τ2)/2. Then the trapezoidal rule is exploited
to approximate the integral on the intervals [τ1, τ2], [τ1, τ3] and [τ3, τ2]. If the absolute difference
between the approximation on the original interval, [τ1, τ2], and the approximations on the sub-
intervals, [τ1, τ3] and [τ3, τ2], is larger than the prescribed tolerance, then the procedure is run
recursively on the sub-intervals. Otherwise, the method accepts the approximation and it is added
to the running sum.

Note that this method can also be applied with different integration rules, such as Simpson’s 3/8
rule, and different quadrature rules, such as Gaussian quadrature. Our method is presented with the
trapezoidal rule and Newton-Cotes rule for simplicity of exposition. It is often the case in adaptive
integration that other combinations of integration and quadrature rules significantly outperform the
combination used in Algorithm 1. For a more detailed discussion of the different adaptive integration
schemes, we refer the reader to (Davis & Rabinowitz, 2007; Gonnet, 2012).

3.2 Uniform Integration

Algorithm 2 details the trapezoidal rule for approximation a definite integral. Using N uniformly
spaced points, Algorithm 2 computes the trapezoidal rule on each of the uniformly spaced sub-
intervals a = t0 < t0 + h < t0 + 2h < · · · < tN−1 = b where h = (b − a)/(N − 1). The method then
sums all the approximations on the sub-intervals and returns the approximation of the integral. As
the resolution of the partition increases, the approximation becomes more accurate.

As with adaptive integration schemes, both the spacing of the points, i.e., the quadrature rule, and
the integration rule can be varied to achieve better approximations with fewer points. However,
unlike adaptive integration schemes, uniform schemes must use all the points pre-specified by the
user when performing numerical integration and does not attempt to adapt to the integrand.

4 Properties of Trapezoidal Integration Schemes

In this section, we provide standard error analysis of the numerical integration schemes detailed in
Algorithms 1 and 2. Put simply, the following results detail the amount of points needed to produce
a good approximation of the integral and allow for a better insight into the behavior of the two
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Algorithm 2 Uniform

To approximate
∫ b

a
r(t)dt with uniformly spaced points.

Input: The rewards r, the number of points N .
h = b−a

N−1

Q = h · γt1 r(t1)+γt2 r(t2)
2

for i = 0, . . . , N − 1 do
ti = a + ih
Q = Q + h · γti r(ti)

end for
return Q

different sampling schemes. The next proposition gives a uniform bound on the approximation of
the uniform sampling scheme, for sufficiently smooth functions.
Proposition 4.1. Let F be the class of twice differentiable functions such that for all x ∈ [a, b]
and f ∈ F it holds that |f ′′(x)| ≤ C. For any ε > 0 there exists f ∈ F such that Algorithm 2
returns an approximation Q of the integral

∫ b

a
f(x)dx whose absolute error is no greater than ε, i.e.,

|Q −
∫ b

a
f(x)dx| ≤ ε, only if N ≥ 1 + (b − a)

√
C/(12ε).

Proof. From Equation 5.21 of Sauer (2006) we have that∫ b

a

f(x)dx = b − a

2 (f(a) + f(b)) − (b − a)3

12 f ′′(c), (9)

where c ∈ [a, b]. For a natural number N , define h = (b − a)/(N − 1), and let a = x0, xi = x0 + ih
for i ∈ {1, . . . , N − 1}. Then the additive property of integrals gives us∫ b

a

f(x) =
∫ x1

x0

f(x)dx +
∫ x2

x1

f(x)dx +· · · +
∫ xN−1

xN−2

f(x)dx . (10)

Plugging in Equation (9) for each integral on the right hand side, we get∫ b

a

f(x) = h

(
f(xN−1) + f(x0)

2 +
N−2∑
i=1

f(xi)
)

+ h3

12

N−1∑
i=1

f ′′(ci), (11)

where ci ∈ [xi−1, xi]. Rearranging and taking the absolute value yields∣∣∣∣∣∣∣∣∣∣
∫ b

a

f(x) − h

(
f(xN−1) + f(x0)

2 +
N−2∑
i=1

f(xi)
)

︸ ︷︷ ︸
=Q

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣h3

12

N−1∑
i=1

f ′′(ci)

∣∣∣∣∣ (12)

≤
∣∣∣∣ (N − 1)Ch3

12

∣∣∣∣ (13)

where the inequality uses f ′′(c) ≤ C for all c ∈ [a, b]. Equality in (13) is attained by f0 ∈ F with
f ′′(ci) = C ∀i. Substituting in the definition of h we have that

(N − 1)Ch3

12 = (b − a)2C

12(N − 1)2 . (14)

Therefore if N ≥ 1 + (b − a)
√

C/(12ε), we have that∣∣∣∣∣
∫ b

a

f(x) − Q

∣∣∣∣∣ ≤ ε , (15)

and that f0 requires this many points to be approximated sufficiently precisely.
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Figure 1: The absolute error in value estimates returned by the uniform and adaptive methods in
Cartpole (left) and MountainCar (right). Each colored curve corresponds to a fixed budget, and
displays the relationship between the hyperparameter of the method and the experienced error. The
adaptive method experiences near zero error in these environments for all tolerances and even the
smallest budget of 1000 samples.

The following corollary immediately follows from Proposition 4.1 and gives a worst-case guarantee
on the amount of times Algorithm 1 calls itself to produce a good approximation of the integral of
interest.
Corollary 4.2. Under the conditions of Proposition 4.1, there exists a function f ∈ F such that
Algorithm 1 needs to call itself at least 1 + (b − a)

√
C/(12ε) times to return an approximation Q

such that |Q −
∫ b

a
f(x)dx| ≤ ε.

In order to show this, it suffices to observe that in the worst-case Algorithm 1 needs to consider at
least N uniformly spaced points in the interval [a, b].

5 Numerical Experiments

In order to understand the performance of the different integration schemes presented in Section 3,
the adaptive and uniform methods are evaluated on several standard RL benchmarks. These include
a selection of the environments from the Gymnasium Classic Control suite (Towers et al., 2023),
which provides low-dimensional control tasks, and from the MuJoCo physics-based simulation en-
vironments (Todorov et al., 2012), offering more complex dynamics. We adopt the Monte-Carlo
estimator described in Equation (8). Since all of our experiments are finite horizon, we set γ = 1.
Our findings demonstrate that the adaptive method generally performs better than the uniform
method without an extensive hyperparameter search.

5.1 Classic Control Environments

We evaluate well-performing policies in the MountainCar (Moore, 1990) and Cartpole (Barto et al.,
1983) environments in Gymnasium. In MountainCar, the agent receives the same negative reward
in every time step until it either reaches the top of the mountain and the episode terminates or it
runs out of time. The policy we evaluate reaches the goal from the vast majority of start states,
though the number of steps this takes and therefore the total reward depends on the start state. In
Cartpole, the agent receives a reward of +1 for each time step the pole is balanced, and once the
pole falls the episode ends. Since a good policy can balance the pole forever, the policy we evaluate
artificially drops the pole after some time. The random start state determines the exact time to fall
and therefore the total reward. For both environments, we sample the start states uniformly from a
set of 100 unique states. To approximate continuous-time interaction, we collect data at 100 times
the base frequency, which leads to long sequences of observations.

We estimate the value of these policies using both the adaptive and uniform methods. We con-
sider tolerances ε ∈ {0, 2−3, 2−1, 21, . . . , 29} for the adaptive method and discretizations h ∈
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Figure 2: The absolute value error, in log scale, based on discretization h. Each colored curve
represents a fixed budget B = B0 × K, where K = {1, 2, 5, 10, 20, 40}, used for estimating the value
function vπ. Solid curves correspond to the uniform method and dashed curves correspond to the
adaptive method. Note that in some cases the lowest tolerance considered ε = 0.125 is not mapped
through (16) to the finest discretization of h = 2, i.e., ĥ(ε) > 2. The adaptive method is generally
better than the uniform method on larger h.

{1, 4, 16, . . . , 1024} for the uniform method. We run 100 trials for each hyperparameter. Figure 1
plots the absolute error in the value estimates for each of these settings.

The adaptive method, irrespective of the tolerance parameter, successfully exploits the unique struc-
ture of the reward in these environments and therefore is able to achieve a low error with a limited
sample budget. The reward is constant in these environments, hence an approximation based on
just the first and last points recovers the correct integral. The adaptive method discovers this in
the first iteration and hence focuses its budget on reducing the statistical error by sampling many
trajectories. The uniform method also gets zero approximation error but must use all the points
pre-specified by the user. This leaves less of the budget for reducing statistical error. As the average
number of points per trajectory grows with finer discretization parameters, fewer trajectories can be
observed which given a fixed budget leads to larger statistical error.

5.2 MuJoCo Environments

In our evaluation of MuJoCo environments, a policy is trained for each task using the Deep Ad-
vantage Updating (DAU) (Tallec et al., 2019) algorithm. DAU can be seen as the deep version
of Advantage Updating (Baird, 1994) and it is specifically designed to perform well on problems
with high-frequency observations. The policy exhibits stable trajectories, ensuring for instance that
the inverted double pendulum remains predominantly upright or the ant moving forward, without
inducing premature termination of the episodes. The data is collected at a fine rate of δt = 0.001
as a proxy for continuous-time behavior.

The reward function has a high-frequency component since it is directly influenced by rapidly chang-
ing actions. This violates the operating conditions for both methods to be effective, Proposition 4.1
and Corollary 4.2, thus a smoothing function has been applied to the rewards. Consequently, both
methods take as input the smoothed version of the rewards for the different trajectories. In par-
ticular, for each trajectory, we fit a 7 degree polynomial function to the rewards and obtain the
smoothed rewards using the fitted polynomial.
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We sweep over tolerances ε ∈ [0.125, 4096] for the adaptive method and discretizations h ∈ [2, 3444]
for the uniform method. We run 10 trials for each hyperparameter—we note that the only source
the randomness comes from the uniform sampling of a set of 10000 unique initial states.

To effectively compare both methods, we map the tolerance ε in the adaptive method onto the
average discretization:

ĥ(ε) = 1
M

M∑
m=1

(
Nfg

Nm(ε) − 1

)
≈ EZ

[
Nfg

NZ(ε) − 1

]
, (16)

where Nfg = T/δt = 50000 (40000 for Swimmer environment) is the fixed horizon of the fine-grained
trajectories, Z is a random trajectory, and Nm(ε) is the number of discrete points used for trajectory
zm, generated by the adaptive method with tolerance ε. Figure 2 indicates that the adaptive method
generally outperforms the uniform method in estimating the value function, especially when a larger
discretization h, which corresponds to a larger tolerance ε, is used. Notably, the adaptive method
is more robust to a larger range of discretization. Note that while we expect low h to have larger
variance, we emphasize that the MuJoCo environments are deterministic with small variations in
the initial states. Consequently, the return variance of a good policy will be small as the returns
will mostly differ in the initial timesteps.

6 Related Work

The continuous-time problem setting has received considerable attention in previous works (Doya,
2000; Lee & Sutton, 2021; Yildiz et al., 2021; Lutter et al., 2021a;b), which has attempted to
address problems in the regime of deterministic dynamics (Kim et al., 2021) and stochastic dynamics
(Munos & Bourgine, 1997; Munos, 2006), aiming to solve the continuous-time problem rather than
discretizing it. Tallec et al. (2019) showed that action-value function do not hold the same meaning
in near-continuous time control and developed methods based on advantage estimation (Baird, 1994)
for the deep RL setting. The study of time discretization in RL tackles the challenges stemming from
the necessity to adapt continuous-time models to the discrete computational frameworks utilized in
practice. Previous studies have focused on this issue, ranging from uniform temporal resolution
(Metelli et al., 2020; Zhang et al., 2024) to adopting non-uniform strategies for determining the
optimal timing for actions (Biedenkapp et al., 2021; Sharma et al., 2017; Lakshminarayanan et al.,
2017; Park et al., 2021).

Improved temporal resolution can also be viewed as a means for conducting more effective and fo-
cused exploration (Dabney et al., 2021). Jacq et al. (2022) considers temporal resolution as a method
for the agent to determine when to execute actions that maximize impact while minimizing the num-
ber of decisions made. Patel et al. (2023) extends this concept, balancing the quantity of decisions to
facilitate learning policies that react either quickly or slowly. Additionally, temporal resolution can
be examined through the lens of temporal abstraction within the options framework (Sutton et al.,
1999), where each option comprises primitive actions and the agent aims to identify a termination
condition. Temporal resolution can also be interpreted as introducing skip connections in the tran-
sition function (Biedenkapp et al., 2021) to enhance sample efficiency while preserving optimality.
Ultimately, these concepts converge on the goal of implementing real-time RL systems (Ramstedt &
Pal, 2019), where continuous-time problems are discretized for control and the environment’s state
does not halt for the agent to decide on its next action.

7 Conclusion and Future Directions

We have investigated an adaptive temporal discretization algorithm for Monte-Carlo policy evalua-
tion in RL. Our results demonstrate that for sufficiently smooth reward functions the data efficiency
of policy evaluation can be significantly improved. It remains future work to extend the adaptive dis-
cretization scheme to non-smooth reward functions or reward functions exhibiting highly stochastic
behaviour.
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