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Abstract

Offline pretraining with a static dataset followed by online fine-tuning (offline-to-
online, or OtO) is a paradigm well matched to a real-world RL deployment process.
In this scenario, we aim to find the best-performing policy within a limited budget of
online interactions. Previous work in the OtO setting has focused on correcting for
bias introduced by the policy-constraint mechanisms of offline RL algorithms. Such
constraints keep the learned policy close to the behavior policy that collected the
dataset, but we show this can unnecessarily limit policy performance if the behavior
policy is far from optimal. Instead, we forgo constraints and frame OtO RL as an
exploration problem that aims to maximize the benefit of online data-collection.
We first study the major online RL exploration methods based on intrinsic rewards
and UCB in the OtO setting, showing that intrinsic rewards add training instabil-
ity through reward-function modification, and UCB methods are myopic and it is
unclear which learned-component’s ensemble to use for action selection. We then
introduce an algorithm for planning to go out-of-distribution (PTGOOD) that
avoids these issues. PTGOOD uses a non-myopic planning procedure that targets
exploration in relatively high-reward regions of the state-action space unlikely to be
visited by the behavior policy. By leveraging concepts from the Conditional Entropy
Bottleneck, PTGOOD encourages data collected online to provide new information
relevant to improving the final deployment policy without altering rewards. We
show empirically in several continuous control tasks that PTGOOD significantly
improves agent returns during online fine-tuning and avoids the suboptimal policy
convergence that many of our baselines exhibit in several environments.

1 Introduction

In real-world reinforcement learning (RL), there is great value in being able to train an agent
offline with a static dataset (Levine et al., 2020). While offline RL (also called batch RL (Ernst
et al., 2005; Reidmiller, 2005)) removes traditional RL’s potentially costly data-collection step, the
resulting policy may be suboptimal. This could occur if the offline dataset does not cover all areas
of the state-action space relevant to our task or if the policy that collected the dataset was itself
suboptimal. Given this risk, fine-tuning an RL agent over a small budget of online interactions
would be useful in real-world deployments.

In this study, we view this offline-to-online (OtO) scenario as an exploration problem. Because
the agent has a limit on its environment interactions, it must choose carefully which state-action
pairs to collect during online fine-tuning. This contrasts starkly with prior work in OtO RL, which
has focused on correcting for bias introduced by the constraint mechanisms used in existing offline



RLJ | RLC 2024

RL algorithms (Beeson & Montana, 2022; Nakamoto et al., 2023; Luo et al., 2023). Such policy-
constraint mechanisms are used during offline training to keep the learned policy close to the behavior
policy that collected the offline dataset (e.g., the inclusion of a behavior-cloning term (Fujimoto
& Gu, 2021)). While these methods can work well offline, they can cause detrimental learning
instabilities during online fine-tuning, due to overly-conservative value functions (Nakamoto et al.,
2023). Instead, we do not use these constraint mechanisms at any point. In doing so,
we shift the problem set away from bias correction to data-collection strategy during the online
fine-tuning phase.

While exploration is widely studied in the online RL literature, the OtO problem differs from the
standard online learning setup in two unique ways. First, the OtO setting greatly constrains the
number of online data-collection steps. Second, the online phase in OtO RL can benefit from infor-
mation available from offline pretraining. Because exploration methods have generally not featured
in the OtO RL literature, we evaluate the compatibility of major online RL exploration paradigms
with the OtO setting. In particular, we analyze intrinsic motivation (Chentanez et al., 2004) and
upper confidence bound (UCB) exploration (Auer, 2002). We find that intrinsic-motivation methods
can forget initializations from offline pretraining due to reward-function alteration and that the im-
plementation details of UCB-style methods can affect exploration behavior. Further, UCB methods
only consider exploration consequences in the immediate next-state (i.e., are myopic). Ultimately,
we propose modifications to intrinsic-motivation methods to address their issues and highlight UCB
methods’ shortcomings, leading to several effective OtO baselines.

The aforementioned issues with online exploration methods in OtO RL lead us to develop an algo-
rithm for planning to go out of distribution (PTGOOD) that can be exploited by existing model-
based RL algorithms. PTGOOD first learns a density of state-action pairs in the offline dataset
via the Conditional Entropy Bottleneck (Fischer, 2020). This density is used to identify transi-
tions during online fine-tuning that are out-of-distribution relative to the data in the offline dataset
without altering rewards. By targeting such state-action pairs, PTGOOD continually increases the
diversity of the information available in the total (offline plus online) data. PTGOOD also targets
high-reward state-action pairs by ensuring that exploration occurs near the current-best policy to
ensure relevance of the collected data. PTGOOD uses the learned density in a non-myopic planning
procedure, thereby considering exploration fruitfulness in future steps.

Our experiments in continuous control tasks demonstrate that PTGOOD consistently and signifi-
cantly outperforms our OtO baselines in terms of evaluation returns and avoids suboptimal policy
convergence, a problem we find with many OtO methods in several environments. In addition, we
find that PTGOOD often finds the optimal policy in simpler environments such as Walker in as few
as 10k online steps and in as few as 50k in more complex control tasks like Humanoid, even when
the behavior policy was highly suboptimal (e.g., random).

2 Background

The RL problem usually studies an agent acting within a Markov decision process (MDP) parameter-
ized by the tuple (S,A, T , R, γ). S,A are the state- and action-spaces, respectively, T (s′|s, a) is the
transition function that describes the distribution over next-states conditioned on the current state
and action, R(s, a) is the reward function, and γ ∈ (0, 1) is the discount factor. The agent acts within
the MDP according to its policy π(a|s), which maps states to a distribution over actions. An agent’s
policy π induces a (discounted) occupancy measure ρπ(s, a), which is the stationary distribution over
the S ×A space unique to policy π (Syed et al., 2008; Kang et al., 2018). After executing an action
at in state st at timestep t, the next state is sampled st+1 ∼ T (·|st, at), the agent receives a reward
rt = R(st, at), and the interaction loop continues. The agent’s learning objective is to find the op-
timal policy that maximizes cumulative discounted returns π∗ = arg maxπ Eπ[

∑∞
t=1 γt−1R(st, at)].

Model-based RL approaches learn a model of the MDP’s transition function T̂ and reward function
R̂, which can then be used to generate rollouts of “imagined” trajectories from a given state st:
τ = (st, at, r̂t, ŝt+1, . . . ).
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OtO RL assumes access to a dataset of transition tuples Dπb
= {(s, a, r, s′)i}

|Dπb
|

i=1 collected by some
(potentially) unknown behavior policy πb. This behavior policy’s performance can range from that
of a random agent to an expert agent, which means that Dπb

may contain trajectories of highly-
suboptimal behavior. The goal in OtO RL is to leverage offline data Dπb

to determine a policy
πo to collect another dataset Dπo

over a fixed-budget of agent-environment interactions, which are
used together Dπb

∪Dπo
to train a final policy πf that is as close as possible in performance to the

optimal policy π∗. The problem is to optimize over both the choice of final policy πf and the data
collection process that leads to that final policy.

3 Related Work

Exploration in RL. Exploration is a key problem in RL and has been studied extensively in
the online setting. Exploration algorithms cover many strategies such as dithering methods like
ϵ-greedy or randomized value functions (Osband et al., 2016). Intrinsic reward methods leverage
prediction error (Pathak et al., 2017; Burda et al., 2019) and count-based rewards (Ostrovski et al.,
2017) to guide agents towards unseen regions of the state-action space. Upper confidence bound
(UCB) methods use uncertainty to guide agent exploration. For example, some algorithms measure
uncertainty as disagreement within ensembles of Q-functions (Chen et al., 2017; Lee et al., 2021a;
Schäfer et al., 2023) or transition functions (Shyam et al., 2019; Henaff, 2019; Sekar et al., 2020).
In contrast to these methods, PTGOOD uses prior information explicitly by estimating a density of
already-collected data and uses this density to plan exploration.

Offline RL. Many offline RL methods are designed to constrain the learned policy to be similar
to the behavior policy. For example, conservative methods incorporate a policy constraint either
via behavior cloning terms (Wu et al., 2019; Peng et al., 2019; Fujimoto & Gu, 2021), restricting
the policy-search space (Kumar et al., 2021), restricting the policy’s action space (Fujimoto et al.,
2019), or policy-divergence regularization in the critic (Nachum et al., 2019; Kostrikov et al., 2021).
Pessimistic methods suppress the value of out-of-distribution state-action pairs, disincentivizing the
agent from traversing those regions. For example, Kidambi et al. (2020) and Yu et al. (2020) penalize
value based on ensemble disagreement, Rigter et al. (2022) use an adversarial world model to generate
pessimistic transitions, and Kumar et al. (2020) penalize the value of actions too different from ones
the behavior policy would choose. Tangentially related to offline RL is off-policy evaluation, which
studies how to evaluate (but not improve) policies using an offline dataset (e.g., (Zhong et al., 2022)).

OtO RL. Some research in the OtO RL setting involves empirical studies of algorithm implemen-
tation choices. For example, Lee et al. (2021b) and Mao et al. (2022) develop a replay sampling
mechanism to mitigate distribution-shift issues, and Ball et al. (2023) study choices like using Lay-
erNorm and sampling proportions between offline and online data. Most previous work in the OtO
setting targets over-conservatism induced by a given offline RL algorithm (Beeson & Montana, 2022;
Nakamoto et al., 2023; Luo et al., 2023). In contrast, PTGOOD approaches the OtO RL setting
as an exploration problem. Li et al. (2023a) show theoretically that the exploration perspective is
useful for OtO in tabular MDPs when combined with pessimism. In contrast, we focus on MDPs
with continuous state- and action-spaces, and PTGOOD does not use conservatism or pessimism.

Control with Expert Demonstrations. Closely related to OtO RL is learning from demonstra-
tion (LFD) (Schaal, 1996). Many LFD methods use a form of behavior cloning on expert or hand-
crafted trajectories for policy initialization followed by online fine-tuning with RL operators (Hester
et al., 2018; Vecerik et al., 2017; Rajeswaran et al., 2018). In contrast, we study a setting where the
learned policy has no prior access to demonstrations from expert or hand-crafted policies.

4 Online Exploration Methods in the OtO Setting

Motivated by the lack of current OtO exploration algorithms, we now study two common online
exploration methods based on intrinsic rewards (§4.1) and UCB exploration (§4.2) in the OtO
setting. In summary, we find that offline initializations can be unlearned when the intrinsic rewards
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Figure 1: Undiscounted evaluation returns in Halfcheetah (Random) (left) and DMC Walker (Ran-
dom) (right) for λ ∈ {0, 0.1, 1, 10, 50} intrinsic-reward weights throughout online fine-tuning.

introduced during online fine-tuning are too large relative to the true rewards used during offline
pretraining. With UCB methods, we find that the choice of ensemble over which uncertainty is
computed changes exploration behavior, which is critical in OtO RL. Despite the popularity of Q-
function ensembles, it is not clear whether collecting data to reduce value uncertainty is better than
reducing uncertainty in other learned components, such as learned transition functions.

4.1 Intrinsic Rewards

Intrinsic-reward methods modify the reward rt = re
t +λri

t at timestep t as the sum of the MDP’s true
(extrinsic) reward re

t and an intrinsic reward ri
t weighted by λ. Intrinsic rewards guide exploration

by giving the agent a bonus reward in relatively unexplored areas of the MDP. For example, Random
Network Distillation (RND) (Burda et al., 2019) trains a network to predict the output of a fixed
randomly-initialized network that transforms a given state. Here, the prediction error is used as the
bonus reward ri

t, thereby leading the agent to explore unseen areas of the state space.

Because exploration is impossible during offline pretraining, intrinsic-reward methods must use a
two-stage reward function in the OtO setting: one for offline exploitation (only re) and one for online
exploration (re and ri together). We hypothesize that this two-stage reward function is problematic
in the OtO setting. If ri is too large relative to re, we risk destroying the initialization of the
pretrained critic, which destroys the initialization of the pretrained actor.

To test our hypothesis, we evaluate RND agents with λ ∈ {0, 0.1, 1, 10, 50} in two environment-
dataset combinations. We use the Halfcheetah (Random) dataset from D4RL (Fu et al., 2020) and
collect our own dataset in the DeepMind Control Suite (Tassa et al., 2018; 2020) in the Walker envi-
ronment, which we call DMC Walker (Random). Both datasets were collected with behavior policies
that select actions uniformly at random.1 All agents are pretrained offline with the true rewards
(re), fine-tuned online over 50k agent-environment interactions with the RND-altered rewards (re

and ri together), and use Model-Based Policy Optimization (MBPO) (Janner et al., 2019) combined
with Soft Actor-Critc (SAC) (Haarnoja et al., 2017) as the base agent.2 Every 1k environment steps,
we collect the agents’ average undiscounted returns over ten evaluation episodes.

Figure 1 reports the average (bold) ± one standard deviation (shaded area) across five seeds. We
note that when λ is relatively small in Halfcheetah (Random), the agents perform roughly the same
as when no exploration guidance is used (i.e., λ = 0). In contrast, a relatively large λ causes the
agents to lose their pretrained initialization, as shown by the dramatic drop in evaluation returns at
the beginning of online fine-tuning. Our hypothesis is also confirmed in DMC Walker (Random).

1For more details on environments and datasets, see Appendix D.
2For more details on agents, see Appendix E.
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Reward Value Transition Policy
Reward -0.26 0.20 0.15
Value 0.55 -0.41

Transition 0.08
Policy

Reward Value Transition Policy
Reward -0.13 0.54 0.33
Value -0.57 -0.67

Transition 0.53
Policy

Table 1: Pair-wise rank correlation (Spearman’s rho) between different ensembles’ uncertainty in
Halfcheetah (left) and Hopper (right). We color cells in green when ρ ≥ 0.4 and in red when ρ ≤ −0.4
for ease of reading.

In order to overcome the issue of unlearned offline initializations, we propose using two agents: one
for exploitation and one for exploration. Such a framework has been shown to improve learning
stability in Decoupled RL (DeRL) (Schäfer et al., 2022). Both agents can be initialized with offline
pretraining, but the exploitation agent only receives re, while the exploration agent receives re +λri

during online fine-tuning. We only care about the exploitation agent for evaluation purposes and rely
on the exploration agent for data collection. This strategy allows the exploitation agent to avoid the
performance collapse shown in Figure 1 while also potentially benefiting from guided exploration.
We refer to this agent as RND/DeRL in our main experiments.

4.2 Upper Confidence Bound Exploration

Many recent implementations of UCB-style algorithms use ensembles of Q-functions to select actions
at at timestep t according to a mixture of value and uncertainty: at = arg maxa Qmean(st, a) +
λQstd(st, a) (e.g., Liang et al. (2022) and Schäfer et al. (2023)). Here, uncertainty Qstd is measured
as the standard deviation of Q-values over ensemble members for each action in the discrete-action
case, or for a set of sampled actions in the continuous-action case (e.g., Lee et al. (2021a)).

However, in the OtO setting, it is not clear whether it is better to guide exploration with value un-
certainty or the uncertainty in another learned component. For example, when using MBPO+SAC,
we could use an ensemble of transition functions, reward functions, value functions, or policies for
the uncertainty computation. Given that these components are trained with different targets and
update types (e.g., Bellman backups versus value and entropy maximization), can we reasonably ex-
pect the uncertainty of each component to drive exploration into the same regions of the state-action
space during online fine-tuning?

To answer this question, we first train an MBPO+SAC agent with ensembles of all four previously-
mentioned components on the Halfcheetah (Random) dataset and evaluate their uncertainties on
2,500 transition tuples from the Halfcheetah (Expert) dataset. We evaluate the ensembles’ uncer-
tainty on a dataset collected by an expert behavior policy, as it is likely to contain out-of-distribution
tuples relative to the (Random) dataset, which is where we ultimately care about evaluating uncer-
tainty in the OtO setting. We repeat this exercise with datasets from the Hopper environment from
D4RL.3 If uncertainty is the same across all learned components, then the order in which they rank
the expert tuples in terms of uncertainty should be similar. Table 1 shows Spearman’s rho between
the learned components uncertainty rankings of the tuples from the (Expert) dataset. We color cells
in green when ρ ≥ 0.4 and in red when ρ ≤ −0.4 for ease of reading.

We highlight that the rank correlation varies greatly. In some cases, two ensembles agree strongly
(e.g., Value and Transition in Halfcheetah); in others, they disagree strongly (e.g., Value and Policy
in Hopper) or show no relation (e.g., Transition and Policy in Halfcheetah). There is not necessarily
a pattern that holds between the two environments. Hence, swapping learned components into
the UCB action-selection equation would likely not result in similar data-collection behavior. This
inconsistency is a potential issue because the limited budget of interactions in OtO RL makes data-
collection strategy paramount. While methods such as intrinsic motivation have the clear strategy
of guiding the policy towards previously-unseen areas of the MDP, there is no clear reason why we

3See Appendix E for more details.
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should prefer to reduce the uncertainty in one learned component versus any other using a UCB
method in OtO RL. Instead of devising a complex and adaptive UCB method that balances the
uncertainty of all learned components in this work, we evaluate one baseline that uses value-driven
UCB (UCB(Q)) and one that uses dynamics-driven UCB (UCB(T)) in our main experiments.

5 Planning to Go Out-of-Distribution

The exploration methods we examined in §4 are lacking in two respects when considering the OtO
setting. First, intrinsic reward methods use a moving-target reward function which can cause value
functions to unlearn their offline pretraining, leading to instabilities in policy training. Second, UCB
methods are myopic and there is no clear data-collection strategy in terms of which ensemble to use
for exploration. This leads us to propose PTGOOD, a planning paradigm that overcomes and avoids
these issues.

We posit that data collected during online fine-tuning in the OtO setting should meet two criteria:
(1) be non-redundant to data in the offline dataset and (2) be of relatively high reward. Violating
criterion (1) would result in wasted interactions, as no new information would be gained. The
importance of criterion (2) is highlighted by OtO RL’s agent-environment interaction budget. As
an exhaustive exploration of the MDP is likely impossible under this budget, we should prioritize
data-collection in portions of the state-action space that a well-performing policy would traverse.
These regions are likely to satisfy criterion (2).

PTGOOD satisfies criterion (1) via a multi-step (i.e., non-myopic) planning procedure that maxi-
mizes the likelihood of collecting transition tuples that are out-of-distribution relative to the offline
dataset. PTGOOD first estimates ρπb

, the occupancy measure (defined in §2) for policy πb via the
Conditional Entropy Bottleneck (CEB) (Fischer, 2020). This estimate allows PTGOOD to infer
the likelihood of πb executing a given action in a given state. PTGOOD satisfies criterion (2) by
ensuring that the exploration guidance does not stray too far from the policy being fine-tuned. This
is accomplished by sampling the policy and adding a small amount of noise during planning. As
RL policy updates target high-reward regions in the vicinity of the current policy, exploring “close”
to the improving policy should naturally target increasingly higher-reward regions. The notion and
importance of closeness is explored in §6.4. In the following subsections, we describe how PTGOOD
uses the CEB to learn representations, the metric that PTGOOD targets during planning, and the
planning algorithm itself.

5.1 Conditional Entropy Bottleneck

PTGOOD uses the CEB to estimate ρπb
using samples from the offline dataset. The CEB is an

information-theoretic method for learning a representation Z of input data X useful for predicting
target data Y . CEB’s simplest formulation is to learn a Z that minimizes βI(X; Z|Y ) − I(Z; Y ),
where β is a weighting hyperparameter and I(·) denotes mutual information. Intuitively, CEB learns
a representation that minimizes the extra information Z captures about X when Y is known and
maximizes the information Z captures about Y . While the CEB has many different forms, we use the
contrastive “CatGen” formulation as described by Fischer (2020) with the following upper bound:

CEBCatGen ≤ mine(·),b(·) E

[
EzX ∼e(zX |x)[β log e(zX |x)

b(zX |x′) − log b(zX |x′)
1
K

∑K
i=1 b(zX |x′

i)
]

+EzX′ ∼b(zX′ |x′)[β log b(zX′ |x′)
e(zX′ |x) − log e(zX′ |x)

1
K

∑K
i=1 e(zX′ |xi)

]
]

,

(1)

where the outer expectation is over the joint distribution x, x′ ∼ p(x, x′, u, zX , zX′), x is a state-
action pair, x′ is a state-action pair with a small amount of multiplicative noise drawn from a uniform
distribution u ∼ U(0.99, 1.01): x′ = u ⊙ x, e(·) is the encoder, and b(·) is the backwards encoder.
For more details, we refer the reader to Appendix E.1 and the original paper.
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5.2 The Rate R and Modeling ρπb

PTGOOD uses the rate (Alemi et al., 2018a;b) to measure how out-of-distribution a sample is
relative to ρπb

. Rate has been used successfully in computer vision as a thresholding tool for out-of-
distribution detection and has been shown to work well with the CEB representations that we use
here (Fischer, 2020).

We first fit an encoder e(zX |x) and backward encoder b(zX′ |x′) to a latent space Z with Equation 1
and state-action pairs sampled uniformly at random from the offline dataset. Next, we learn a
marginal m(zX) of our training data in the representation space of the encoder e(·) as a mixture of
Gaussians. See Appendix E for more details. Given this encoder conditional density e, and marginal
m, the rate of a given state-action pair x is computed as:

R(x) ≜ log e(zX |x)− log m(zX). (2)

In short, the representation produced by the encoder zX ∼ e(·|x) for an out-of-distribution x should
be highly unlikely according to m(·), thereby producing a rate value much larger than for an in-
distribution x. Ultimately, this allows PTGOOD to estimate the likelihood of a given state-action
pair being collected by πb.

5.3 PTGOOD

PTGOOD is a planning paradigm designed to leverage offline pretraining to maximize the benefit
of online data-collection. PTGOOD can be applied in combination with any OtO RL method that
uses a dynamics model. Given a learnt offline policy and dynamics model, PTGOOD plans the
data collection process one step at a time to collect the next transition tuple, which then augments
the offline data and all data collected so far. The policy can now be updated with the new data.
The data-collection planning process can then be repeated as many times as our budget of online
interactions allows.

The planning part of this process is given in Algorithm 1 in Appendix B. PTGOOD’s planning
procedure has a width w and a depth d. Starting from a given state s, we sample the policy w times
and add a small amount of randomly-sampled Gaussian noise N (0, ϵ) with variance hyperparameter
ϵ to the actions. Then, the learned dynamics model T̂ predicts one step forward from state s for
each w actions, and action sampling is repeated with each new state. The sampling and forward-
step process is repeated d times, forming a tree of state-nodes connected by action-branches of
possible paths from the original state s. For each state-node and action-branch associated with that
state-node in the tree beyond the original state s, PTGOOD computes the rate per Equation 2.

After the tree is fully formed, PTGOOD traverses the tree in reverse, summing the rates associated
to each state-node back to the original w actions in the original state s. Finally, PTGOOD returns
the action from the set of original w actions associated with the highest rate sum. This action is
then executed and the MDP steps forward to a new state. See Figure 2 for a depiction of the two
phases of OtO RL and PTGOOD’s planning procedure.

6 Experiments

In our experiments, we aim to answer the following questions: (1) Can PTGOOD improve agent
evaluation returns within the given agent-environment interaction budget in the online fine-tuning
phase? (2) How important is guided exploration to agent evaluation returns during online fine-
tuning? (3) Are the policy-constraint mechanisms that are important in the purely-offline setting
important in the OtO setting?

6.1 Baselines

We carefully design baselines that reflect prominent categories of exploration strategies in RL (§4).
We tune each of our baselines on a per-environment per-dataset basis and report results for the
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Figure 2: Offline (orange) and online (blue) components in OtO RL, with PTGOOD planning shown
on the far right. During offline pre-training, dynamics T̂ , reward R̂, encoder e, backward encoder b,
marginal m, and policy π (and other agent-related networks, depending on algorithm) are trained
with data from Dπb

. During the online data-collection phase, PTGOOD’s planner interacts with
the environment using T̂ , e, m, π, and stores data in Dπo

. Interleaved with data collection is fine-
tuning, which occurs with data sampled from both Dπb

and Dπo
. As shown on the right, PTGOOD’s

planning procedure follows the improving policy π from a given s towards increasingly higher reward
regions of the S ×A space, and targets data in those spaces that are unlikely under ρπb

.

best-performing hyperparameters for each method. Below we briefly list and describe the baselines
we benchmark against PTGOOD. Unless otherwise noted, all algorithms use MBPO+SAC as the
core model-based RL algorithm. See Appendix A for more details and results.

The No Pretrain baseline does not perform offline pretraining, but does use both the offline dataset
and data collected online for online training. The Naive baseline performs offline pretraining and
online fine-tuning, but only samples the policy to choose actions during online fine-tuning instead of
using exploration methods. The Naive agent contextualizes the added benefit of guided exploration.
We use the RND/DeRL baseline as described in §4.1. We train the RND predictor using the offline
dataset before online fine-tuning begins and periodically update the predictor’s weights throughout
the fine-tuning process. We also use the UCB(Q) and UCB(T) baselines described in §4.2. Cal-
QL (Nakamoto et al., 2023) is a model-free OtO algorithm built on top of CQL (Kumar et al., 2020),
a pessimistic offline RL algorithm. Cal-QL corrects for instabilities during online fine-tuning induced
by CQL’s value constraint. Finally, we benchmark PROTO (Li et al., 2023b) and PEX (Zhang
et al., 2023), model-free methods designed for the OtO setting. PROTO uses a trust-region update
on top of EQL (Xu et al., 2023) and TD3, and PEX learns a set of policies for action selection on
top of IQL (Kostrikov et al., 2022). None of the agents except for Cal-QL, PROTO, and PEX use
conservatism or pessimism of any form during any stage of training. See Appendix E for architecture
and hyperparameter details along with full implementation details for PTGOOD.

6.2 Environments and Datasets

We evaluate PTGOOD and our baselines on a set of environment-dataset combinations that satisfy
two criteria: (a) it must not be possible for current algorithms to learn an optimal policy during
the offline pretraining phase, and (b) we must be able to surpass a random agent during offline
pretraining. If criterion (a) is violated, there is no need for online fine-tuning. If criterion (b)
is violated, then the offline pretraining phase is not useful, and training from scratch online (i.e.,
No Pretrain) would be unlikely to be beaten.4 We use datasets in the Halfcheetah and Hopper
environments from the D4RL study. Additionally, we collect our own datasets from environments
not represented in D4RL, including Ant, Humanoid, and the Walker task from the DeepMind Control
Suite (DMC). The datasets that we collect follow the same dataset design principles of D4RL. See
Appendix D for more details on our environments and datasets.

4We show empirically in Appendix G that this is indeed the case.



RLJ | RLC 2024

Algorithm Halfcheetah (R) DMC Walker (R) Hopper (R) Ant (R) DMC Walker (MR) Ant (MR) Humanoid (MR)
PTGOOD 8867 ± 88 959 ± 8 3246 ± 123 5624 ± 235 953 ± 6 5866 ± 114 15050 ± 878
No Pretrain 7249 ± 814 668 ± 88 1231 ± 648 3703 ± 901 778 ± 93 4777 ± 1085 10723 ± 3903
Naive 7434 ± 782 736 ± 40 1576 ± 880 4663 ± 626 732 ± 21 4973 ± 337 11706 ± 3403
RND/DeRL 6782 ± 2013 677 ± 63 1818 ± 786 5258 ± 191 700 ± 164 4836 ± 695 1954 ± 1199
UCB(Q) 7300 ± 861 740 ± 50 2037 ± 382 5290 ± 272 783 ± 75 5328 ± 224 13183 ± 885
UCB(T) 8170 ± 513 811 ± 68 2251 ± 830 5022 ± 299 772 ± 93 4509 ± 1364 12079 ± 2461
Cal-QL -315 ± 122 45 ± 4 57 ± 39 -309 ± 575 106 ± 57 990 ± 864 381 ± 174
PROTO 7877 ± 703 583 ± 282 511 ± 298 1174 ± 291 874 ± 66 1696 ± 595 696 ± 120
PEX 4953 ± 454 83 ± 21 1889 ± 951 1436 ± 482 541 ± 65 2960 ± 119 8320 ± 4187

Table 2: Average ± one standard deviation of undiscounted evaluation returns after 50k environment
steps of online fine-tuning. Highest returns per algorithm-dataset combination bolded. Statistical
significance is shown with blue highlight. (R)=Random and (MR)=Medium Replay.

6.3 OtO Results

For each environment-dataset combination, we first pretrain agents offline to convergence and then
fine-tune online for 50k environment steps across five seeds. Every 1k environment steps, we collect
undiscounted returns across 10 evaluation episodes. Reporting comparative results between RL
algorithms is a complex problem (Patterson et al., 2023); therefore, we present results across various
views and mediums. Table 2 shows the average ± one standard deviation of evaluation returns at
the 50k online-steps mark with the highest returns bolded. We highlight in blue when the highest
returns are statistically significantly different via a two-sided Welch’s t-test. Figure 15 displays
undiscounted evaluation return curves for all algorithms in all environment-dataset combinations
across the 50k online fine-tuning steps. Figure 16 displays undiscounted evaluation return curves in
all five training runs for the best and second-best performing algorithms in each environment-dataset
combination.

First, we answer question (1) in the affirmative by highlighting that PTGOOD consistently pro-
vides the strongest performance across all environment-dataset combinations. Table 2 shows that
PTGOOD provides the highest returns in 7/7 environment-dataset combinations, which are statisti-
cally significant in 5/7. Figure 15 shows that PTGOOD is generally stable relative to other baselines
(e.g., RND/DeRL in Halfcheetah (Random)). We also note that PTGOOD tends to avoid the pre-
mature policy convergence that other methods sometimes exhibit (e.g., DMC Walker (Random),
DMC Walker (Medium Replay), and Hopper (Random) in Figure 16). See Appendix F for more
analysis. Aside from higher returns after training has finished, PTGOOD often outperforms other
baselines during the middle portions of fine-tuning (e.g., Halfcheetah (Random) and Ant (Medium
Replay) in Figure 16).

Second, we address question (2). We note that the Naive method is a strong baseline across all
environment-dataset combinations that we tested. Additionally, we highlight that the Naive base-
line outperforms some guided-exploration baselines on occasion (e.g., RND/DeRL in Halfcheetah
(Random) and UCB(T) in Ant (Medium Replay)). These results suggest that certain types of
exploration are not universally helpful in OtO RL.

Third, we answer question (3) by observing Cal-QL results in Table 2 and training curves in Fig-
ure 15. We note that Cal-QL performs poorly consistently. This is unsurprising because Cal-QL’s
base algorithm encourages the learned policy to remain close to the behavior policy. Due to our
environment-dataset selection criteria, the behavior policies are highly suboptimal, which makes
conservatism and pessimism an unideal choice. We investigate Cal-QL’s poor performance further
in Appendix G by training it for two million online steps in all environment-dataset combinations. In
short, we find that Cal-QL does not learn anything useful in any Random dataset nor in Humanoid
(Medium Replay), but it does learn a good policy in the remaining Medium Replay datasets at the
end of the two million online steps. In contrast, PTGOOD is able to find the optimal policy in less
than 50k online steps in all environment-dataset combinations.

Finally, we note that neither UCB type is consistently better than the other. Additionally, in
some environment-dataset combinations, either method is outperformed by the Naive baseline (e.g.,
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Figure 3: Average (bold line) ± one standard deviation (shaded area) of evaluation returns for
different ϵ values in PTGOOD’s planner in Halfcheetah (Random) (left) and DMC Walker (Medium
Replay) (right).

in Halfcheetah (Random) for UCB(Q) and Ant (Medium Replay) for UCB(T)). This evidence,
when combined with our experiment in §4.2, suggests that further research in multi-ensemble UCB
exploration could prove fruitful.

6.4 Planning Noise

Key to PTGOOD is exploring both unknown and high-reward regions of the state-action space.
Instead of targeting high-reward state-action pairs with a Q-function value estimate, PTGOOD
remains “close” to the improving policy by adding a small amount of noise to actions during the
planning process. Using noise instead of explicit value estimation has computational benefits (see
Appendix C) and does not rely on values that may be overestimated due to distributional shift (Fu-
jimoto et al., 2018; 2019).

The meanings of “far” and “close” in the context of action selection are likely to be environment-
dependent. We perform a sweep over ϵ values in all environment-dataset combinations. Figure 3
shows the average ± one standard deviation of undiscounted evaluation returns for Halfcheetah
(Random) and DMC Walker (Medium Replay) for various noise levels. We note that there is an
optimal noise hyperparameter in either environment. If ϵ is too small, evaluation returns degrade
slightly due to the reduced exploration. If ϵ grows too large, PTGOOD’s exploration strays too far
from the improving policy and may become close to random exploration, which produces significantly
reduced evaluation returns. We perform this exercise for all other environment-dataset combinations
in Appendix I, and find the same pattern.

7 Conclusion

In this work, we studied the OtO setting from the exploration perspective. First, we examined
intrinsic motivation and UCB exploration from the lens of OtO RL, identifying compatibility issues
and other shortcomings. Then, we introduced PTGOOD, a planning paradigm for model-based
RL algorithms for exploration in the OtO setting. PTGOOD uses an estimate of the behavior
policy’s occupancy measure within a non-myopic planner to target high-reward state-action pairs
unrepresented in the offline dataset. We demonstrated in diverse continuous-control tasks that
PTGOOD consistently provides the highest returns and avoids suboptimal policy convergence. PT-
GOOD could be improved further with adaptive noise in the planning process, which could account
for state-dependent exploration noise or action-space characteristics (e.g., different joint types in
musculoskeletal control).
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A Baselines

We use λ as a generic weighting hyperparameter. For RND/DeRL (Figure 4), it weights intrinsic
rewards at timestep t: rt = re

t + λri
t, and we scan λ ∈ {0.1, 5, 10, 25}. For UCB(Q) (Figure 5),

it weights the impact of uncertainty on action selection: Qmean(·) + λQstd(·), and we scan λ ∈
{1, 10, 50}. For UCB(T) (Figure 6), it weights the impact of uncertainty on action selection: Q(·) +
λTstd(·), and we scan λ ∈ {1, 10, 50}. For Cal-QL (Figure 7), it weights the Min Q-weight, which
we found to be particularly impactful based on the hyperparameter sweeps found here: https:
//wandb.ai/ygx/JaxCQL--jax_cql_gym_sweep_3. In addition, we performed a sweep over the
number of RL updates per environment step (Figure 8), called “UTD" in the Cal-QL paper. For
Min Q-Weight, we scan λ ∈ {0.1, 1, 5, 25}, and for UTD we scan λ ∈ {1, 10, 20}. We also fine-
tuned PEX (Figure 9). Figure 7 in the PEX paper shows that PEX is sensitive to the “inverse
temperature" hyperparameter. For this hyperparameter, we follow the original authors and scan
α−1 ∈ {0.5, 1, 2, 3}. Interestingly, the PROTO paper shows that PROTO is not sensitive to the
value of hyperparameters that impact important PROTO-specific mechanisms. Specifically, Figure
14 in the PROTO paper shows that adjusting the conservative annealing speed η does not affect
PROTO agent performance in the slightest. As such, we choose not to waste GPU compute and
instead use the hyperparameters suggested by the original authors.

For each hyperparameter setting, we run three seeds. Each plot shows the average (bold line) ±
one standard deviation (shaded area). For the final results we present in the paper, we select the
best performing hyperparameter setting for each algorithm on a per-environment basis and run two
additional seeds.

https://wandb.ai/ygx/JaxCQL--jax_cql_gym_sweep_3
https://wandb.ai/ygx/JaxCQL--jax_cql_gym_sweep_3
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Figure 4: Undiscounted evaluation returns for RND/DeRL hyperparameter tuning.
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Figure 5: Undiscounted evaluation returns for UCB(Q) hyperparameter tuning.
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Figure 6: Undiscounted evaluation returns for UCB(T) hyperparameter tuning.
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Figure 7: Undiscounted evaluation returns for Cal-QL (Min Q-Weight) hyperparameter tuning.
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Figure 8: Undiscounted evaluation returns for Cal-QL (UTD) hyperparameter tuning.
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Figure 9: Undiscounted evaluation returns for PEX hyperparameter tuning.
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B PTGOOD Pseudocode

Algorithm 1 PTGOOD Planning Procedure

Input: Dynamics model T̂ , encoder e, marginal m, depth d, width w, state s, policy π, noise
hyperparameter ϵ

1: Initialize empty ordered list action_list
2: Initialize empty ordered list rate_sums
3: Initialize empty list inner_action_list
4: Initialize empty list state_list
5: Initialize empty list inner_state_list
6: Initialize tree rate_tree with single node for s
7: for i in range(w) do
8: Sample action, add sampled noise a ∼ π(·|s), u ∼ N(0, ϵ), a← a + u
9: Append a to action_list

10: Create branch associated to a and linked to s in rate_tree
11: end for
12: for a in action_list do
13: Predict next-state s′ ∼ T̂ (s, a)
14: Append s′ to state_list
15: Create node for s′ linked to branch a in rate_tree
16: end for
17: for i in range(d) do
18: for s in state_list do
19: for j in range(w) do
20: Sample action, add sampled noise a′ ∼ π(·|s), u ∼ N(0, ϵ), a′ ← a′ + u
21: Append a′ to inner_action_list
22: Measure rate p← R(s, a)
23: Store rate p in rate_tree node s
24: Create branch associated to a′ and linked to s in rate_tree
25: end for
26: for a in inner_action_list do
27: Predict next-state s′ ∼ T̂ (s, a)
28: Append s′ to inner_state_list
29: Create node for s′ linked to branch a in rate_tree
30: end for
31: end for
32: state_list ← inner_state_list
33: Clear inner_action_list and inner_state_list
34: end for
35: for a in action_list do
36: rate_sum ← 0
37: Traverse tree until terminal node all the while summing all rates p within each node:

rate_sum ← rate_sum +p
38: Append rate_sum to rate_sums
39: end for
40: Find index of maximum summed rate max_idx ← arg max rate_sums
41: max_rate_action ← action_list[max_idx]
Output: max_rate_action
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Figure 10: Wall-clock time (y-axis) comparison between noise-only planning (blue) and planning
with Q-values (red) for three different width / depth combinations (x-axis).

Environment-dataset Number of Transitions
DMC Walker (R) 50,000

Ant (R) 1,000,000
DMC Walker (MR) 22,000

Ant (MR) 102,000
Humanoid (MR) 206,000

Table 3: The number of transitions included in the custom datasets used for this study.

C Compute Cost Comparison

We compare the wall-clock time of a PTGOOD planning process that uses only additive random
noise (Noise) and one that uses additive random noise and computes Q-values (Q-values). We
evaluate these two variations over three depths and widths (reported as width / depth): 100000 / 1,
50 / 3, 10 / 5. Specifically, we run each planning procedure for 10k environment steps five times and
reports the average wall-clock time in seconds in Figure 10. We highlight that as soon as planning
becomes non-myopic, using only noise provides significant gains in compute time.

D Environments and Datasets

From the D4RL (Fu et al., 2020) dataset we use Halfcheetah (Random) and Hopper (Medium
Replay). We collect our own datasets in the Walk task in Walker from DMC, the Walk task in
Humanoid from the original MBPO (Janner et al., 2019) study, and the Walk task in the Ant
environment from the original MBPO study. All (Random) datasets were collected with a policy
that selects actions uniformly at random. All (Medium Replay) datasets were collected by saving
the replay buffer of an MBPO+SAC agent trained purely online until “medium" performance. The
medium performance is defined as generating evaluation returns of 400, 3000, and 6000 for DMC
Walker, Ant, and Humanoid, respectively. Table 3 lists the number of transitions included in each
custom dataset used in this study.

E Architecture, Hyperparameters, and More Details

The MBPO+SAC agents use an ensemble of seven MLP dynamics models that parameterize Gaus-
sians. In Humanoid environments, the MLPs are four layers with 800 hidden units each. In the
Ant environments, the MLPs are four layers with 400 hidden units each. In all other environments,
the MLPs are four layers with 300 hidden units each. All MLPs use elu activations. We train and
perform inference in the same way as the original MBPO paper (see Table 1 in (Janner et al., 2019)).
For any differences in hyperparameters, see Table 4. For environments with early-termination con-
ditions, we zero out the rate value in states within the planning process that would terminate the
episode to avoid incentivizing the agent to explore these paths.
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Also, the MBPO+SAC agents use MLP actor and critic networks. In Humanoid and Ant environ-
ments, the MLPs are three layers with 512 hidden units each. In all other environments, the MLPs
are three layers with 256 hidden units each. All MLPs use elu activations and the critic networks
use layer norm operations. At each training step, data are sampled from the offline dataset, dataset
of online interactions, and the model-generated synthetic transitions in equal parts.

The CEB encoder and decoder networks are both three-layer MLPs with 256, 128, and 64 hidden
units and elu activations. The learned marginal is a Gaussian mixture model with 32 components.

All networks were trained with the Adam optimizer. The dynamics models used a learning rate of
1e-3 and a weight decay of 1e-5. The critic networks and learnable alpha were trained with a learning
rate of 3e-4, while the actor networks used a learning rate of 1e-4. The target critic networks used
a tau of 5e-3 with an update frequency of every other step.

For Cal-QL, we used the code and default architecture settings provided by the authors here: https:
//github.com/nakamotoo/Cal-QL.

UCB(Q) and UCB(T) both used seven ensemble members for their respective uncertainty compu-
tations.

RND/DeRL fine-tunes its RND predictor at the same frequency as its base agent updates its en-
semble of world models (shown in Table 4).

Environment-dataset ϵ w d imagination horizon world model train freq imagination freq
Halfcheetah (R) 0.15 5 10 5 1000 1000

DMC Walker (R) 0.3 5 10 5 1000 1000
Hopper (R) 0.1 50 3 3 1000 1000

Ant (R) 0.025 50 3 3 250 250
DMC Walker (MR) 0.3 5 10 5 1000 1000

Ant (MR) 0.025 10 5 5 250 250
Humanoid (MR) 0.005 50 3 3 250 250

Table 4: Hyperparameters used for PTGOOD and base MBPO+SAC agent.

For the uncertainty-comparison experiments in §4.2, we measure the “uncertainty” of a given input
as the average standard deviation across outputs from all members in the ensemble. For example,
members of a “Transition” ensemble may each output a prediction for the next-state where ŝ ∈ R6

for a given (s, a). Here, if the ensemble has 7 members, uncertainty for (s, a) is computed with

1
6

∑6
i=1

√∑7
j=1

(Ŝj,i−µi)
7 where Ŝ ∈ R7×6 is a matrix whose entry ŝj,i is ith value in the jth ensemble

member’s output, and µi is the mean value of the ith column of Ŝ.

E.1 The Conditional Entropy Bottleneck

The Conditional Entropy Bottleneck (CEB) (Fischer, 2020) is an information-theoretic method for
learning a representation Z of input data X useful for predicting target data Y . CEB’s simplest for-
mulation is to learn a Z that minimizes βI(X; Z|Y )−I(Z; Y ), where β is a weighting hyperparameter
and I(·) denotes mutual information. Intuitively, CEB learns a representation that minimizes the
extra information Z captures about X when Y is known and maximizes the information Z captures
about Y . This form treats X and Y asymmetrically. Instead, the bidirectional CEB objective uses
two separate representations ZX and ZY for X and Y , respectively:

CEBbidir ≜ min−H(ZX |X) + H(ZX |Y ) + H(Y |ZX)
−H(ZY |Y ) + H(ZY |X) + H(X|ZY ),

(3)

where H(·) and H(·|·) are entropy and conditional entropy, respectively. We can form Equation 3
as a self-supervised objective via a noise function X ′ = f(X, U) with noise variable U , and treating

https://github.com/nakamotoo/Cal-QL
https://github.com/nakamotoo/Cal-QL
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the noised data X ′ as the target Y . Additionally, Fischer (2020) show that we can place variational
bounds on Equation 3 using a sampling distribution encoder e(zX |x), and variational approxima-
tions of the backwards encoder b(zX′ |x′), classifier c(x′|zX), and decoder d(x|zX′) distributions. At
convergence, we learn a unified representation that is consistent with both zX and zX′ by applying
the CEB objective in both directions with the original and noised data:

min ⟨log e(zX |x)⟩ − ⟨log b(zX |x′)⟩ − ⟨log c(x′|zX)⟩
+ ⟨log b(zX′ |x′)⟩ − ⟨log e(zX′ |x)⟩ − ⟨log d(x|zX′)⟩,

(4)

where each ⟨·⟩ denotes the expectation over the joint distribution p(x, x′, u, zX , zX′) =
p(x)p(u)p(x′|f(x, u))e(zX |x)b(zX′ |x′). We refer the reader to the original CEB paper for more
details. Fischer (2020) show that we do not need to learn parameters for c(·) in Equation 4 because
c(x′|zX) ∝ b(zX |x′)p(zX′), which can be simplified further by marginalizing p(zX′) over a minibatch
of size K. The same can be done for d(·) using e(·). Altogether, this forms the contrastive “CatGen"
formulation with the following upper bound:

CEBdenoise ≤ mine(·),b(·) E

[
EzX ∼e(zX |x)[β log e(zX |x)

b(zX |x′) − log b(zX |x′)
1
K

∑K
i=1 b(zX |x′

i)
]

+EzX′ ∼b(zX′ |x′)[β log b(zX′ |x′)
e(zX′ |x) − log e(zX′ |x)

1
K

∑K
i=1 e(zX′ |xi)

]
] (5)

where the outer expectation is over the joint distribution x, x′ ∼ p(x, x′, u, zX , zX′).

F Suboptimal Convergence

We highlight that many of our baselines’ policies converge prematurely to suboptimal returns in both
DMC Walker datasets. To help explain the phenomenon and describe how PTGOOD avoids this
issue, we examine several metrics throughout online fine-tuning. Specifically, for UCB-style baselines,
we examine ensemble disagreement and policy entropy. UCB-style methods sample the policy to
create the set of actions over which disagreement is evaluated. Therefore, both of these metrics
drive exploration. For the other methods, such as No Pretrain and Naive, we examine only policy
entropy. For these methods, the policies are sampled for action selection during online fine-tuning,
and, therefore, its entropy is important for exploration. Both policy entropy and disagreement are
captured during the evaluation episodes rolled out every 1k steps during online fine-tuning. We
also capture average Q-values of each mini-batch used during agent training and evaluation returns.
Finally, we collect all metrics except for disagreement for a PTGOOD agent. Figure 11 and Figure 12
show these metrics for DMC Walker (Random) and DMC Walker (Medium Replay), respectively.

We highlight that the disagreement metric for both UCB methods in both environment-dataset
combinations starts relatively high but quickly collapses to a low number roughly around the time
evaluation returns converge. Also, we note that the policy entropy of both UCB agents and the
naive agent shows a consistent downward trend in both environment-dataset combinations. Such
a reducing entropy will reduce the diversity in the action sets used for exploration in all three of
these methods. In contrast, the PTGOOD agents’ policy entropy remains relatively high throughout
online fine-tuning.

Next, we show that the reduced exploration mentioned above causes the three baselines to miss
exploring the same regions of the state-action space that PTGOOD explores. We demonstrate this
by showing that the baselines’ critics undervalue the state-action pairs collected by a higher-return
PTGOOD agent and overvalue the state-action pairs that they themselves collect. If the baselines
were to explore as well as PTGOOD, such erroneous Q-values would not exist. At the end of online
fine-tuning, we collect 10 episodic trajectories of state-action pairs from each of the four agents. For
their returns, see Figure 11 and Figure 12. Table 5 displays the average Q-values over the trajectories
for each baseline in each environment-dataset combination.
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Figure 11: Metrics collected over 50k steps on online fine-tuning for the premature convergence
experiment in DMC Walker (Random).

Dataset Baseline Q-value on PTGOOD trajectory Q-value on own trajectory
MR Naive 51.1 ± 4.3 62.6 ± 2.8
MR UCB(T) 48.6 ± 3.1 63.4 ± 3.7
MR UCB(Q) 53.3 ± 2.9 64.1 ± 3.8
R Naive 46.8 ± 2.8 54.1 ± 4.3
R UCB(T) 71.6 ± 3.9 79.7 ± 3.6
R UCB(Q) 68.7 ± 2.4 79.2 ± 4.1

Table 5: Q-value over trajectory comparison for the premature convergence experiment.
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Figure 12: Metrics collected over 50k steps on online fine-tuning for the premature convergence
experiment in DMC Walker (Medium Replay).
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Figure 13: Undiscounted evaluation returns over 100 thousand environment steps in the sparse-like
Adroit environments from the Cal-QL paper.

G Investigating Cal-QL and other Cal-QL Environments

Here we benchmark PTGOOD, Cal-QL, PEX, PROTO, and Scratch (same as No Pretrain) on
two of the datasets provided by the Cal-QL authors in the Adroit environments. The Cal-QL
authors altered the base Adroit environments to be “sparse-like”. That is, their reward function is
R : S ×A → {−5, 5}. We specifically chose these environments because the dataset are “narrow” in
the sense that the information about the MDP contained within the datasets is a very small subset
of all possible information contained in the MDP. Due to this characteristic, the offline pre-training
phase is unlikely to be useful. In such a case, our dataset selection criterion (b) is violated, which
we hypothesize would cause our Scratch (same as No Pretrain) baseline to be tough to beat.

We highlight that our hypothesis is confirmed when comparing PTGOOD and Scratch (same as No
Pretrain) results in Figure 13.

Next, we examine Cal-QL’s performance in the datasets used in the main study but with many more
(2 million) online finetuning steps allowed. Figure 14 shows that Cal-QL struggles to learn much
in any of the (Random) datasets and in Humanoid (Medium Replay). However, in the remaining
(Medium Replay) datasets, Cal-QL does eventually find the optimal policy.
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Figure 14: Undiscounted evaluation returns for Cal-QL over two million online steps versus 50
thousand online steps for PTGOOD.
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Figure 15: Undiscounted evaluation returns for all algorithms over the 50k online fine-tuning stage.
Average (bold)± one standard deviation (shaded area) displayed. Scratch is the same as No Pretrain.

H Additional Results

Here, we present the full evaluation curves for all algorithms in all environment-dataset combinations
in Figure 15. Also, we provide the full evaluation curves for all seeds for the best and second-best
performing algorithms in all environment-dataset combinations in Figure 16.
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Figure 16: Undiscounted evaluation returns in all five training runs for the best and second-best
performing algorithms over the 50k online fine-tuning stage.
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Figure 17: Undiscounted evaluation returns for the planning noise experiment.

I More Planning Noise Ablations

In Figure 17, we repeat the experiment in §6.4 for all environment-dataset combinations. We high-
light that we find the same pattern as shown in the main body of the paper.


