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Abstract

The performance of image-based Reinforcement Learning (RL) agents can vary
depending on the position of the camera used to capture the images. Training
on multiple cameras simultaneously, including a first-person egocentric camera, can
leverage information from different camera perspectives to improve the performance
of RL. However, hardware constraints may limit the availability of multiple cameras
in real-world deployment. Additionally, cameras may become damaged in the real-
world preventing access to all cameras that were used during training. To overcome
these hardware constraints, we propose Multi-View Disentanglement (MVD), which
uses multiple cameras to learn a policy that is robust to a reduction in the number of
cameras to generalise to any single camera from the training set. Our approach is a
self-supervised auxiliary task for RL that learns a disentangled representation from
multiple cameras, with a shared representation that is aligned across all cameras to
allow generalisation to a single camera, and a private representation that is camera-
specific. We show experimentally that an RL agent trained on a single third-person
camera is unable to learn an optimal policy in many control tasks; but, our approach,
benefiting from multiple cameras during training, is able to solve the task using only
the same single third-person camera.

1 Introduction

(a) first-person (b) third-person

Figure 1: First-person and third-person
camera views for MetaWorld Soccer task.

The ability of a Reinforcement Learning (RL) agent to
learn an optimal policy on robotic control tasks from
images depends on the position of the camera available
during training. Often, a static third-person camera
pointing towards the scene (e.g. Figure 1b) is not suffi-
cient to learn an optimal policy. A first-person egocen-
tric camera on the robot’s end-effector (e.g. Figure 1a)
has been shown to be necessary to learn an optimal
policy in many tasks (Hsu et al., 2022). Approaches
that leverage both first-person and third-person cam-
eras simultaneously have been shown to improve the
performance of RL algorithms (Hsu et al., 2022; Jangir
et al., 2022; Barati & Chen, 2019). Whilst it is pos-
sible to create multiple camera views in simulation to
improve training, access to multiple cameras in the real-world may be restricted due to hardware
limitations. Therefore, it is desirable for an RL agent to be able to generalise from multiple cameras
to a single camera for successful deployment. Even when multiple cameras are available in the real-
world, cameras may fail or become faulty during deployment, so a robust RL agent should continue
to perform optimally with only a subset of the cameras that were available during training. We
propose to address these hardware limitations with an approach that leverages multiple cameras
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during training to learn a policy that successfully performs control tasks with multiple cameras as
well as achieving robustness to a reduction in the available cameras.

We use multiple cameras to learn a disentangled representation that allows robustness to a reduction
in cameras to generalise to any single camera from the training set. Our approach, called Multi-View
Disentanglement (MVD), is a self-supervised auxiliary task to learn such a disentangled representa-
tion and can be used with existing RL algorithms. The learned representation is disentangled into a
shared representation that is similar across all cameras, and a private representation that contains
information only available to an individual camera. The shared representation gives the RL policy
a consistent representation that can be relied upon regardless of the camera. The private represen-
tation allows information only available to a single camera to be used during training to improve
policy learning as some camera views make it easier to discern important features than others.

We evaluate our approach on robotic control tasks using a Panda robot (Gallouédec et al., 2021;
Hsu et al., 2022), and several MetaWorld tasks (Yu et al., 2020) using a Sawyer robot. We show
experimentally that an RL agent often cannot learn an optimal policy when training on a third-
person camera alone, and that an approach combining multiple cameras during training (Hsu et al.,
2022) does not generalise to a single camera. Our results also show that our approach, MVD, is able
to learn an optimal policy from multiple cameras and achieve zero-shot generalisation to successfully
solve the task using any of the cameras individually in many tasks.

2 Related work

Robotic control with multiple cameras. Prior work uses multiple cameras to improve perfor-
mance on robotic control tasks. Hsu et al. (2022) use both first-person and third-person cameras
together with a variational information bottleneck to regularise the third-person representation, Jan-
gir et al. (2022) use transformers with cross-view attention, Barati & Chen (2019) train multiple
workers with different views and combine features for each worker weighted by Q-values, and Driess
et al. (2022) use Neural Radiance Fields to learn a representation from multiple images to improve
the performance of RL. These approaches combine camera representations to learn a policy that
is dependent on all available cameras, and so cannot generalise if one of the training cameras is
no longer available. Acar et al. (2023) trains a teacher RL policy on multiple cameras augmented
with human demonstrations. They use imitation learning to learn a student single-camera policy to
output an action similar to the teacher multi-camera policy. Shang & Ryoo (2021) also use imitation
learning where demonstrations are a third-person view from a human or robot, which are used along-
side first-person views of the egocentric robot to learn a disentangled representation for imitation
learning. Our approach does not require training a separate teacher policy or collecting suitable
demonstrations, and instead learns a disentangled representation online that allows generalisation
to a single camera.

Multi-view representation learning. Multi-view representation learning approaches use mul-
tiple sources/views of a shared context. This can consist of multiple camera views of the same scene
(as is the case in our work) as well as combining multi-modal inputs. Li et al. (2019) categorise
approaches into representation alignment and representation fusion. Representation alignment in-
cludes minimising the distance between representations of different views (Feng et al., 2014; Li et al.,
2003), maximising similarity between views (Bachman et al., 2019; Frome et al., 2013) and maximis-
ing correlation of variables across views (Andrew et al., 2013). Representation fusion combines the
representations from different views into a single representation for downstream tasks (Geng et al.,
2022; Xie et al., 2021; Karpathy & Fei-Fei, 2014). Multi-view disentanglement separates the learned
representation into shared and private parts. The shared representation is aligned across views,
while the private representation is view-specific. Several approaches have been proposed to achieve
multi-view disentanglement in the supervised and unsupervised learning literature (Jain et al., 2023;
Ke et al., 2023; Xu et al., 2021; Ke et al., 2021; Xin et al., 2021; Hosoya, 2019; Gonzalez-Garcia
et al., 2018; Ye et al., 2016). Our work is aligned with the multi-view disentanglement literature,
but we consider multi-view disentanglement for RL and use the temporal data available in RL.
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Self-supervised auxiliary tasks in RL. Disentangled representations have been used to improve
RL generalisation for a single camera (Dunion et al., 2023a;b; Higgins et al., 2017). Other approaches
learn representations using mutual information (Lee et al., 2020; Garcin et al., 2024), regression
targets (McInroe et al., 2024) and similarity constraints (Agarwal et al., 2021; Mazoure et al., 2020;
van den Oord et al., 2018). CURL (Laskin et al., 2020) uses contrastive learning to maximise the
similarity between representations of the same image with different augmentations to improve sample
efficiency. However, Li et al. (2022) find that self-supervised learning frameworks with augmented
images have limited impact on RL performance compared to image augmentation alone. While we
also use contrastive learning with images, we consider camera views rather than augmentations.

3 Preliminaries

Reinforcement learning. We assume the agent is acting in a Markov Decision Process (MDP),
defined by the tuple M = (S, A, P, R, γ), where S is the state space, A is the action space,
P (xt+1|xt, at) is the probability of next state xt+1 ∈ S given action at ∈ A is taken in state
xt ∈ S at time t, R(xt, at) is the reward function giving reward rt after taking action at in state xt,
and γ ∈ [0, 1) is the discount factor. The goal of an RL agent is to learn a policy π to maximise
the discounted return, maxπ EP,π[

∑∞
t=0[γtR(xt, at)]]. In this work, we focus on RL from image pix-

els, where the agent observation ot ∈ Rc×h×w at timestep t is an RGB image, a high-dimensional
observation of the underlying state, where c is the channels, and h and w are the image height and
width respectively. An observation can consist of multiple consecutive image frames where required
for the task. The agent learns a lower-dimensional latent representation zt and the policy π is now a
function of the learned representation, π(at|zt). We consider N different camera views of the same
scene; we use C to denote the set of cameras and ci ∈ C is a single camera. We use superscript to
identify the observation oci

t or representation zci
t for camera ci ∈ C.

Contrastive learning. We use contrastive learning to learn disentangled representations in a
self-supervised way. Given a query q (sometimes also referred to as an anchor), contrastive learning
aims to maximise the similarity between q and a positive key k+ while minimising the similarity
with each negative key k−. Many approaches use the dot product qT k to measure the similarity
between vectors q and k (Chen et al., 2020; He et al., 2020; Wu et al., 2018) or the bilinear product
qT Wk where W is a learnable weight matrix (Laskin et al., 2020; van den Oord et al., 2018).

We use the InfoNCE loss (van den Oord et al., 2018) with normalised dot product similarity measure,
also known as cosine similarity, to measure the distance between vectors. This loss function was also
used for the SimCLR (Chen et al., 2020) and MoCo (He et al., 2020) methods. Let sim(q, k) denote
the cosine similarity between two vectors q and k, given by:

sim(q, k) = qT k
∥q∥ ∥k∥

. (1)

Then the InfoNCE loss with query q, positive key k+ and M negative keys {k−
i }M

i=1 is given by:

LInfoNCE(q, k+, {k−
i }M

i=1) = log
[

exp (sim(qT , k+)/τ)
exp (sim(qT , k+)/τ) +

∑M
i=1 exp (sim(qT , k−

i )/τ)

]
(2)

where τ is a temperature parameter.

4 Multi-view disentanglement for RL

We propose Multi-View Disentanglement (MVD) to learn a disentangled representation from multi-
ple cameras that is robust to a reduction in available cameras. Our approach learns separate shared
sci

t and private pci
t representations for each camera ci ∈ C, where C denotes the set of cameras and

t is the timestep. The shared representation sci
t is trained to be similar across all cameras ∀ci ∈ C,
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Figure 2: Multi-view Disentanglement (MVD) architecture. Each camera image is used to generate
a shared and private representation. The shared auxiliary loss LS uses these representations to max-
imise similarity between shared representations and minimise similarity between shared and private
representations. The private auxiliary loss LP minimises similarity between private representations.

while the private representation pci
t encodes information available only to a specific camera ci ∈ C.

Both representations together are used to condition the RL policy π(at|zt) with zt = (sci
t , pcj

t ), where
the shared part allows for camera generalisation and the private part allows the policy to leverage
extra information available to a single camera to improve training. We define two contrastive learn-
ing objectives that together give an auxiliary task for multiple camera views that can be applied to
existing RL algorithms. We first provide an overview of the approach in Section 4.1, then discuss
the MVD auxiliary task in Section 4.2. Finally, we explain how the disentangled representation is
used as input to the RL policy in Section 4.3.

4.1 Overview of approach

An outline of our approach is depicted in Figure 2. MVD consists of two separate encoders, which
both learn a lower-dimensional latent representation of the same size for each camera ci ∈ C. There
is one encoder for the shared representation, sci

t = fθ(oci
t ), where fθ is an encoder parameterised by

θ. There is a separate encoder for the private representation, pci
t = gϕ(oci

t ), where gϕ is an encoder
parameterised by ϕ. Both encoders take the same observation image pixels of a single camera,
oci

t , as input and encoder parameters are shared across all cameras. We use a contrastive learning
approach to maximise similarity between the shared representations, sci

t , of all cameras ci ∈ C while
minimising similarity between the shared sci

t and private pci
t representations for each camera ci ∈ C

to achieve disentanglement. An additional contrastive loss is used to minimise similarity between
private representations pci

t for all ci ∈ C to ensure the policy cannot rely solely on the private
representation. The contrastive learning details are provided in Section 4.2. Both the shared and
private representations are used as input to the RL algorithm, which will be described in Section 4.3.

4.2 Multi-view disentanglement

Shared contrastive loss. The goal of the shared contrastive loss is to disentangle the shared
sci

t and private pci
t representations for each camera ci ∈ C by minimising the similarity between

these representations, while also maximising the similarity between the shared representation sci
t for

all cameras ∀ci ∈ C to achieve alignment. These two objectives are combined into one contrastive
loss by defining suitable positive and negative keys. We use the InfoNCE loss in Equation 2 with
the cosine similarity measure in Equation 1. For each calculation of the InfoNCE loss, one camera
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cq ∈ C is selected as the query camera and another as the positive camera c+ ∈ C where cq ̸= c+.
The shared representation for the query camera cq is the query for the contrastive loss, q = scq

t . The
shared representation of the positive camera c+ is the positive key, k+ = sc+

t . The negative keys
consist of two sets: (1) the positive keys of all other queries in the batch {sc+

t′ }t′ ̸=t, and (2) the private
representations for all N cameras {pcn

t }N
n=1. The positive key encourages the shared representations

to be similar across cameras, while the negative keys encourage (1) shared representations to be
different for different timesteps to capture task-relevant information, and (2) shared and private
representations to be dissimilar to disentangle them. The query, positive and negative keys are used
as the input to the InfoNCE loss:

LS =
∑

cq ̸=c+

LInfoNCE(scq

t , sc+
t , {sc+

t′ }t′ ̸=t ∪ {pcn
t }N

n=1) (3)

where we sum the loss over each camera in a single update step.

Private contrastive loss. To prevent the shared representation from collapsing and the agent
relying solely on the private representation, we minimise the similarity between the private repre-
sentations. We use the InfoNCE loss with cosine similarity again to achieve this. The query is the
private representation for a given camera at timestep t, q = pcq

t for cq ∈ C. The positive key is the
private representation for the same camera at the next timestep t + 1, such that k+ = pcq

t+1. The
negative keys are the private representations for all other cameras at timestep t, given by {pcn

t }∀n ̸=q.
The positive keys are needed to keep the representation bounded and are chosen to encourage tem-
poral consistency in the private representations at consecutive timesteps, while the negative keys
encourage the private representation for each camera to be dissimilar. This prevents the agent from
encoding information available to all cameras in the private representation. The query, positive and
negative keys are used as the input to the InfoNCE loss:

LP =
∑
cq

LInfoNCE(pcq

t , pcq

t+1, {pcn
t }∀n ̸=q) (4)

MVD loss. Since the similarity measure is normalised, we combine the shared and private con-
trastive losses by summing them, giving the MVD loss:

LMVD = LS + LP (5)

4.3 Reinforcement learning

We use both the shared and private representations to create the representation zt as input to the
RL algorithm (for both value and policy where applicable) because the shared representation alone
does not benefit from the features that are easier to discern or only available to one camera during
training. One shared representation sci

t and private representation pcj

t are randomly sampled for
each update step, such that zt =

(
sci

t , pcj

t

)
with ci, cj ∈ C. The shared and private representation

do not have to come from the same camera due to the consistency across shared representations.
We randomly sample the representations at each update step because combining all representations
would result in a policy that can learn to rely on all cameras and would therefore fail to generalise
if one camera is unavailable. Both the RL and MVD losses are used to update both shared and
private encoders. Combining the RL loss with the MVD loss gives the loss used in training at every
update step:

L = LRL + LMVD (6)

where LRL is the RL loss for the chosen RL algorithm.
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Figure 4: Results for Panda tasks showing success rate for evaluation on all cameras (left of dashed
line) compared with success rate on each of the individual cameras (right). Success rate is averaged
over 20 evaluation episodes for 5 seeds. The shaded region is standard deviation.

5 Experimental results

Our experiments evaluate performance on multiple cameras as well as zero-shot generalisation to
any single camera from the training set. We evaluate our approach on robotic control tasks with a
Panda robot using the Reach task from Panda Gym (Gallouédec et al., 2021) and a cube grasping
task from Hsu et al. (2022). We also evaluate on four MetaWorld (Yu et al., 2020) tasks using a
Sawyer robot. Our results show that MVD learns a policy that can solve the task with multiple
cameras and generalise to a single camera. In many experiments, our approach is able to learn an
optimal policy for a single camera where an agent trained directly on that camera alone is unable
to learn at all.

5.1 Experimental setup

(a) first-person (b) third-person
(front)

(c) third-person
(side)

Figure 3: Camera views used for Panda tasks.

To demonstrate the broad applicability of our ap-
proach, we apply MVD to two RL algorithms and
different numbers of cameras. For the Panda tasks
we use SAC (Haarnoja et al., 2018) with a de-
coder to aid learning from images and three cam-
eras (depicted in Figure 3). For the MetaWorld
tasks we use DrQ (Yarats et al., 2021a), which uses
image augmentations to improve sample efficiency
on these more difficult tasks, and two cameras (de-
picted in Figure 1). In all tasks, one of the cameras
is a first-person camera on the end-effector, while
the remaining views are static third-person cam-
eras. Implementation details and hyperparameters are provided in Appendix B.1. Our code is
available at github.com/uoe-agents/MVD.

In the MetaWorld tasks only, we also concatenate the representation with proprioceptive state
information to improve training, similar to prior work using MetaWorld from images (Hsu et al.,
2022). The proprioceptive state consists of the 3D end-effector position and 1D gripper width, and

https://github.com/uoe-agents/MVD
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Figure 5: Results for MetaWorld tasks showing success rate for evaluation on all cameras (left of
dashed line) compared with success rate on each of the individual cameras (right). Success rate is
averaged over 20 evaluation episodes for 5 seeds. The shaded region is standard deviation.

is used for baselines as well as our method. However, we also demonstrate that our approach does
not depend on proprioceptive state information by excluding it on the Panda tasks.

To demonstrate the importance of using multiple cameras in training, we compare to the same
base RL algorithm trained only on a single camera for each available camera separately. We also
demonstrate the importance of our disentanglement approach for generalisation over representation
fusion approaches by comparing to VIB (Hsu et al., 2022), an approach that combines camera
views with a variational information bottleneck on the third-person camera, for which we use the
same base RL algorithm as MVD in each task. Finally, we include an ablation of our method that
has only the shared representation with the corresponding loss to maximise similarity between the
shared representation for all cameras (‘MVD-SharedOnly’). This ablation is used to demonstrate
the importance of the private representation during training.

5.2 Generalisation results

The results for Panda tasks in Figure 4 and MetaWorld in Figure 5, show the task success rate
of evaluation episodes completed at intervals throughout training. For MVD and VIB, which both
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Figure 6: Results of ablation experiments for Panda Reach showing success rate for evaluation on all
cameras (left of dashed line) compared with success rate on each of the individual cameras (right).
Success rate is averaged over 20 evaluation episodes for 5 seeds. The shaded region is standard
deviation. See text for details of each ablation.

train on all cameras, the success rate for evaluation episodes on all cameras is provided on the left of
the vertical dashed line for each task. The success rate for each individual camera in the training set
is provided on the right of the dashed line, representing the zero-shot generalisation performance of
MVD and VIB while also showing the performance of the base RL algorithm that learns only with
that individual camera.

As expected, the VIB baseline achieves optimal performance when evaluated on all three cameras
but is unable to generalise to any individual camera. The base RL algorithm trained directly on
each single camera is able to learn an optimal policy only for the first-person camera but fails to
learn on the third-person cameras. In contrast, MVD achieves similar performance to VIB when
evaluated on all cameras, albeit with lower sample efficiency in some tasks, but also achieves zero-
shot generalisation to each camera, even when the base RL algorithm is unable to learn directly
from that camera alone. MVD is the only method to attain consistent performance when evaluated
on each camera individually.

The ablation of MVD with the shared representation only (MVD-SharedOnly) demonstrates the
importance of the private representation in MVD. In all the tasks except Panda Reach, the shared
representation alone achieves lower performance than MVD. This may be because the first-person
camera is easier to learn from than the third-person cameras (as evidenced by the single camera
baseline). Encouraging the shared representations to be similar for all cameras, without the flexibility
of a separate private representation, may prevent important features from a single camera being used
during training if the agent is not yet able to extract similar features from the other cameras.

5.3 Ablation study

In this section, we conduct more detailed analysis of MVD for the Panda Reach and MetaWorld
Soccer tasks with ablation experiments to better understand the components of MVD. We also
provide some analysis of the learned representations in Appendix C.

We consider the MVD shared loss (Equation 3), which uses two types of negative samples: shared
representations from the same camera at different timesteps, and private representations for all
cameras at the same timestep. We assess the impact of each type of negative sample by measuring
performance when one type is removed, resulting in two MVD ablations: MVD shared loss without
shared negatives and MVD shared loss without private negatives. The results in Figures 6 and
7 show that removing either of the negative samples reduces the performance of MVD, but the
shared negatives have a much greater impact on performance than the private negatives. This
may be due to the other constraints in the MVD shared and private losses indirectly encouraging
disentanglement by encouraging shared representations to be similar and private representations to
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Figure 7: Results of ablation experiments for MetaWorld Soccer showing success rate for evaluation
on all cameras (left of dashed line) compared with success rate on each of the individual cameras
(right). Success rate is averaged over 20 evaluation episodes for 5 seeds. The shaded region is
standard deviation. See text for details of each ablation.

be dissimilar, limiting the additional improvement gained by explicitly doing so through the use of
private negatives in the shared loss.

To understand the impact of the similarity measure for InfoNCE, we compare the normalised dot
product similarity measure used for MVD to an alternative bilinear similarity measure. The results,
also in Figures 6 and 7, show that while the method is reasonably robust to the choice of similarity
measure, the dot product outperforms the bilinear similarity measure, particularly in Panda Reach.
This may be due to the learnable weight matrix in the bilinear similarity measure making it a more
lenient constraint as the agent can learn to give less weight to some dimensions than others.

Finally, we consider the same training setup as MVD but without the MVD loss. We train the base
algorithm with randomised cameras to replicate the MVD training setup by randomly sampling a
camera representation as input to the RL loss at each timestep (as described in Section 4.3) but
without the MVD loss to structure the learned representation. As in the previous section, the
base algorithm is SAC for Panda Reach and DrQ for MetaWorld Soccer. The results in Figures 6
and 7 show that randomising the cameras alone is not enough to learn to solve the more difficult
MetaWorld Soccer task. While camera randomisation does improve on the single camera baseline
(see Figure 4) for the easier Panda Reach task, it achieves a much lower success rate than MVD.

6 Conclusion and future work

We demonstrated that camera perspective impacts the ability of an RL agent to learn an optimal
policy. The impact can be mitigated by training with multiple cameras in simulation, but hardware
constraints may prevent an RL agent from always relying on access to all of these cameras in the
real-world. We propose Multi-View Disentanglement (MVD), an auxiliary task for RL algorithms to
learn disentangled representations with a shared representation, which is aligned across all cameras,
and a private representation, which is camera-specific. Our experiments showed that an RL agent
trained only on a single third-person camera cannot learn an optimal policy in many control tasks,
whereas MVD, benefiting from multiple cameras in training, achieves robustness to a reduction in
cameras to solve the task with the same single third-person camera.

Future work could leverage progress on feature-level disentanglement, either within RL (Dunion
et al., 2023a;b; Higgins et al., 2017) or in the multi-view disentanglement literature (Qiu et al.,
2023; Hsieh et al., 2018), to further extend this work to disentangle individual features within the
shared and private representations. Future work could also consider extending to a larger number
of cameras to learn a representation that generalises out-of-distribution for sim2real transfer when
real-world camera views do not perfectly match simulation.
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A Extended background

We use SAC (Haarnoja et al., 2018) and DrQ (Yarats et al., 2021a) as the base RL algorithms for
the MVD auxiliary task.

SAC is an actor-critic RL algorithm for continuous control. SAC maximises the expected return
and entropy of the policy π. The critic Q minimises the loss:

LQ = E(ot,at,ot+1,rt)∼D

[(
Q(ot, at) − rt − γV̄ (ot+1))

)2]
(7)

where ot is the image observation and at is the action at time t. The actor π is trained by minimising
the loss:

Lπ = Eot∼D

[
Eat∼π

[
αSAC log(π(at | ot)) − min

i=1,2
Q̄i(ot, at)

]]
(8)

where Q̄ is exponential moving average of the Q network parameters. We augment SAC with a
decoder, trained with an image reconstruction loss, to improve learning from images. The encoder
and decoder details are provided in Appendix B.1.

DrQ is a data augmentation approach for robust learning from image pixels without the need for
a decoder. DrQ adds padding and random crop augmentations to the image observations and
averages over the target Q-value for each augmentation in the critic update as well as averaging over
the augmentations for the Q function itself. The actor π uses unaugmented images and applies the
SAC policy loss in Equation 8.

B Implementation details

B.1 MVD implementation

Our codebase is built on top of the public and open-source generalisation benchmark code provided
by Hansen & Wang (2021), and uses the official DrQ implementation by Yarats et al. (2021a). A
public and open-source implementation of MVD is available at github.com/uoe-agents/MVD.

Encoders. Both the shared encoder fθ and private encoder gϕ consist of 4 convolutional layers,
each with a 3 × 3 kernel size and 32 channels. The first layer has a stride of 2, all other layers have a
stride of 1. There is a ReLU activation between each of the convolutional layers. The convolutional
layers are followed by a linear layer, normalisation, then a tanh activation function. The output size
(i.e. size of each representation) is 50. The encoder weights are shared between the actor π and
critic Q.

Decoder. Where we use SAC as the base RL algorithm, we also include a decoder trained with an
image reconstruction loss as this improves the sample efficiency of SAC with images (e.g. Yarats et al.
(2021b)). The decoder is not used for DrQ. The first layer of the decoder is a fully-connected layer,
which is followed by 4 deconvolutional layers, each with a 3 × 3 kernel size and 32 channels. Each
deconvolutional layer has a stride of 1, except the last, which has a stride of 2. The reconstruction
loss, which is used to update both the encoder and the decoder, is the mean squared error between
the input image and the reconstructed image.

Actor and critic. Both the actor π and critic Q networks are multilayer perceptrons that each
consist of two layers and have a hidden dimension of 1024. There is a ReLU activation after each
layer except the last layer.

Hyperparameters. Table 1 shows the hyperparameters for all tasks for both MVD and baselines
as they use the same base RL algorithm.

https://github.com/uoe-agents/MVD
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Hyperparameter Value
Replay buffer capacity 100000

Initial steps before training begins 1000
Stacked frames 3 for MetaWorld, 1 for Panda
Action repeat 2 for MetaWorld, 1 for Panda

Batch size 128
Discount factor 0.99

Optimizer Adam
Learning rate (actor, critic and encoder) 1e-3

αSAC learning rate 1e-4
Q function soft-update rate 0.01

Actor update frequency 2
Actor log stddev bounds [−10, 2]

Initial temperature 0.1
Image size 3 × 84 × 84

InfoNCE temperature 0.1

Table 1: Hyperparameter values.

C Representation analysis

We use saliency maps to show that our learned representations reflect shared and private features
in the camera images. The attribution method we use is Integrated Gradients (Sundararajan et al.,
2017) with SmoothGrad-Squared (Hooker et al., 2018) to reduce visual noise. However, while features
attribution methods such as Integrated Gradients are commonly used in the literature, very recently
Bilodeau et al. (2024) has shown that such feature attributions methods can fail to improve on
random guessing for inferring model behaviour. We provide our representation analysis results for
completeness.

C.1 Saliency map results

Using the learned encoders fθ and gϕ, we calculate the attributions for each image pixel on each
representation feature. We also calculate the attributions for each dimension in the representations
on the output of the learned policy π. The pixel attributions are weighted by the corresponding
policy attributions, and normalised for each camera to be in [0, 1], to visualise the attention of the
RL policy based on the features in the shared and private representations separately.

The resulting saliency maps in Figure 8 show that the shared and private representations focus
on different features. The shared representation consistently focuses on features that are visible
in all cameras, such as goal position for both Panda Reach and MetaWorld Soccer. The private
representation focuses on camera-specific features that are not clearly visible in all cameras. In Panda
Reach, the private representation for the first-person camera highlights the end-effector, which may
be harder to extract from the third-person cameras; while the third-person front camera highlights
the table edge, which is not visible in the first-person camera. In MetaWorld Soccer, the private
representation for the first-person camera highlights the right edge of the goal post, which may help
the agent guide the ball into the goal but is obscured by the robot in the third-person camera.
The shared and private saliency maps are shown on different scales for readability. Comparing the
maximum attribution on each of the scales shows that the attributions for the shared representations
are higher than the corresponding private representations. This means that the policy focuses more
on the shared representation by the end of training since the most important features for the task
are visible in all cameras, such as the goal positions. However, the private representation is still
required during training as evidenced by the ablation experiment in Section 5.2.
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Figure 8: Policy saliency maps for MVD on the Panda Reach and MetaWorld Soccer tasks. The first
row shows the original images used to calculate the attributions for each camera, the second and
third rows show the saliency maps for the shared and private representations, respectively. Brighter
pixels correspond to higher attributions.

C.2 Implementation details

We use the Integrated Gradients implementation from the open-source Captum library (Kokhlikyan
et al., 2020) to calculate the attributions for the saliency maps in Figure 8. We use an input image
for each camera (depicted in the first row of Figure 8) and an all black image as the baseline. We
used SmoothGrad-Squared to reduce visual noise, which adds Gaussian noise to n copies of the
input image, calculates the Integrated Gradient attributions for each of these noisy images, and
returns the mean squared of the attributions across the noisy images. We use the implementation
of SmoothGrad-Squared provided by Captum with the default n = 5.

For the input image oci
t for each camera ci ∈ C, we calculated the image pixel attributions for

each dimension of the output for both the shared encoder fθ and the private encoder gϕ. For
the corresponding representation zci

t = (sci
t , pci

t ), we calculated the attribution of each dimension
of both the shared and private representation on the output of the policy network π(at|zt). The
pixel attributions for each dimension of the shared and private representation are weighted by the
corresponding attributions from the policy network. The absolute value of the attributions are
summed over all dimensions for each of the shared and private representations. The resulting pixel
attributions allow us to visualise the attention of the policy network to the pixels based on whether
those pixels were used by the shared or private representation. The attributions are re-scaled be
in [0, 1] for each camera for easier comparison across cameras and different representations. These
normalised attributions are overlayed onto the input image to create the saliency maps. The shared
and private saliency maps are shown on a different scale to improve readability of the private
attributions since they are much smaller than the shared attributions.
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D Environment details

In this section, we provide a description and images of each task used in our experiments.

D.1 Panda tasks

We evaluate performance using tasks with the simulated Franka Emika Panda robotic arm instan-
tiated in the PyBullet physics engine (Coumans & Bai, 2016–2019). For both tasks, we use three
camera views as the observations generated with PyBullet, depicted in Figure 9.

(a) Panda Reach

(b) Panda Cube Grasping

Figure 9: Images showing each camera view used for the Panda tasks.

Panda Reach. We use the Reach task from Panda Gym (Gallouédec et al., 2021), where the goal
is for the robot to place it’s end-effector at a target position. We use the dense reward setting in
which the agent receives a reward at each timestep based on the distance to the goal. The action
space consists of the 3D end-effector position and 1D gripper control. The position of the end-effector
and goal are randomly initialised at the start of each episode.

Panda Cube Grasping. The Cube Grasping task was proposed by Hsu et al. (2022). The goal
is for the robot to grasp and pick up a cube. The reward at each timestep is based on the distance
to the cube plus additional rewards if the agent is gripping or lifting the cube. The action space
consists of the 3D end-effector position and 1D gripper control. The cube and end-effector position
are randomly initialised at the start of each episode.

D.2 MetaWorld tasks

We evaluate performance on four tasks from the MetaWorld benchmark suite (Yu et al., 2020). All
tasks use the simulated Sawyer robotic arm and are implemented in the MuJoCo physics engine
(Todorov et al., 2012). We use the ‘Multi-Task 1’ setup which randomises the goal position for every
episode within a single task. The action space consists of the 3D change in end-effector position and
1D gripper control. The goal of each task is described in Table 2. For all tasks, we render camera
images from first-person and third-person perspectives for the observations, depicted in Figure 10.
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Task Goal
Soccer Guide the ball in to the goal

Basketball Pick up the basketball and place into the hoop
Pick and Place Move the object to the goal position

Peg Insert Pick up and insert a peg sideways into the hole

Table 2: Description of MetaWorld tasks.

(a) Soccer (b) Basketball

(c) Pick and Place (d) Peg Insert

Figure 10: Images showing each camera view used for the MetaWorld tasks.


