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Abstract

In reinforcement learning, Reverse Experience Replay (RER) is a recently proposed
algorithm that attains better sample complexity than the classic experience replay
method. RER requires the learning algorithm to update the parameters through
consecutive state-action-reward tuples in reverse order. However, the most recent
theoretical analysis only holds for a minimal learning rate and short consecutive
steps, which converge slower than those large learning rate algorithms without RER.
In view of this theoretical and empirical gap, we provide a tighter analysis that
mitigate the limitation on the learning rate and the length of consecutive steps.
Furthermore, we show theoretically that RER converges with a larger learning rate
and a longer sequence.

1 Introduction

Reinforcement Learning (RL) is highly successful for a variety of practical problems in the realm of
long-term decision-making. Experience Replay (ER) of historical trajectories plays a vital role in
Reinforcement Learning (RL) algorithms (Lin, 1992; Mnih et al., 2015). The trajectory is a sequence
of transitions (states, actions, and reward tuples). The memory space used to store these experience
trajectories is noted as the replay buffer. The methods to sample transitions from the experienced
trajectories determine the rate and stability of the convergence of RL algorithms.

Recently, Reversed Experience Replay (RER) (Florensa et al., 2017; Rotinov, 2019; Lee et al.,
2019; Agarwal et al., 2022) is an approach inspired by the hippocampal reverse replay mechanism
in human neuron (Foster & Wilson, 2006; Ambrose et al., 2016; Igata et al., 2021). Theoretical
analysis shows that RER improves the convergence rate towards optimal policies in comparison
with ER-based algorithms. Unlike ER, which samples transitions uniformly (van Hasselt et al.,
2016) (known as classic experience replay) or weightily (Schaul et al., 2016) (known as prioritized
experience replay) from the replay buffer, RER samples consecutive sequences of transitions from
the buffer and reversely fed into the learning algorithm.

However, the most recent theoretical analysis only holds for a minimal learning rate and short con-
secutive steps Agarwal et al. (2022), which converge slower than those large learning rate algorithms
without RER. We attempt to bridge the gap between theory and practice for the newly proposed
reverse experience replay algorithm.

In this paper, we provide a tighter analysis that relaxes the limitation on the learning rate and the
length of the consecutive tuples. Our key idea is to transform the original problem involving a giant
summation (shown in Equation 3) into a combinatorial counting problem (shown in Lemma 2),
which greatly simplifies the whole problem. We hope the new idea of transforming the original
problem into a combinatorial counting problem can enlighten other relevant domains. Furthermore,
we show theoretically that RER converges faster with a larger learning rate η and a longer consecutive
sequence L of state-action-reward tuples.
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2 Preliminaries

Markov Decision Process We consider a Markov decision process (MDP) with discounted re-
wards, noted as M = (S,A, P, r, γ). Here S ⊂ Rd is the set of states, A is the set of actions, and
γ ∈ (0, 1) indicates the discounting factor. We use P : S×A×S → [0, 1] as the transition probability
kernel of MDP. For each pair (s, a) ∈ S × A, P (s′|s, a) is the probability of transiting to state s′

from state s when action a is executed. The reward function is r : S ×A → [−1, 1], such that r(s, a)
is the immediate reward from state s when action a is executed (Puterman, 1994). The policy π
is a mapping from states to a distribution over the set of actions: π(s) : A → [0, 1], for s ∈ S. A
trajectory is noted as {(st, at, rt)}∞

t=0, where st (resp. at) is the state (resp. the action taken) at
time t, and rt = r(st, at) is the reward received at time t.

Value Function & Q-Function The value function of a policy π is noted as V π : S → R. For
s ∈ S, V π(s) := E [

∑∞
t=0 γtr(st, at|s0 = s)] , which is the expected discounted cumulative reward

received when 1) the initial state is s0 = s, 2) the actions are taken based on the policy π, i.e.,
at ∼ π(st), for t ≥ 0. 3) the trajectory is generated by the transition kernel, i.e., st+1 ∼ P (·|st, at),
for all t ≥ 0. Similarly, let Qπ : S × A → R be the action-value function (also known as the
Q-function) of a policy π. For (s, a) ∈ S ×A: Qπ(s, a) := E [

∑∞
t=0 γtr(st, at|s0 = s, a0 = a)] .

There exists an optimal policy, denoted as π∗ that maximizes Qπ(s, a) uniformly over all state-action
pairs (s, a) ∈ S × A (Watkins, 1989). We denote Q∗ as the Q-function corresponding to π∗, i.e.,
Q∗ = Qπ∗ . The Bellman operator T on a Q-function is defined as: for (s, a) ∈ S ×A,

T (Q)(s, a) := r(s, a) + γEs′∼P (·|s,a)

[
max
a′∈A

Q(s′, a′)
]

.

The optimal Q-function Q∗ is the unique fixed point of the Bellman operator (Bertsekas & Yu,
2012).

Q-learning The Q-learning algorithm is a model-free algorithm to learn Q∗ (Watkins & Dayan,
1992). The high-level idea is to find the fixed point of the Bellman operator. Given the trajectory
{(st, at, rt)}∞

t=0 generated by some underlying behavior policy π′, the asynchronous Q-learning algo-
rithm estimates a new Q-function Qt+1 : S ×A → R at each time. At time t ≥ 0, given a transition
(st, at, rt, st+1), the algorithm update as follow:

Qt+1(st, at) = (1− η)Qt(st, at) + ηTt+1(Qt)(st+1, at),
Qt+1(s, a) = Qt(s, a), for all (s, a) ̸= (st, at). (1)

Here η ∈ (0, 1) is the learning rate and Tt+1 is the empirical Bellman operator: Tt+1(Qt)(st, at) :=
r(st, at) + γ maxa′∈A Qt(st+1, a′). Under mild conditions, Qt will converge to the fixed point of the
Bellman operator and hence to Q∗. In practice, a tabular structure is used to store the values of
Qt(s, a) for (s, a) ∈ S ×A.

Q-learning with Function Approximation When the state space S is large, the asynchronous
Q-learning in Equation (1) cannot be applied since it needs to loop over a table of all states and
actions. In this case, function approximation is brought into Q-learning. Let Qw : S × A → R
be an approximated Q-function, which is typically represented with a deep neural network (Mnih
et al., 2015) and w denotes the parameters of the neural network. Qw is often called the Q-network.
Given a batch of transitions {(sti , ati , rti , sti+1)}m

i=1, define yti as the image of Qw′(sti , ati) under
the empirical Bellman operator:

yti := rti + γ max
a′∈A

Qw′
(sti+1, a′), for 1 ≤ i ≤ m

where w′ represents the parameters in target neural network. Parameters w′ are synchronized to w
every Ttarget steps of Stochastic Gradient Descent (SGD). Since Q∗ is the fixed point of the Bellman
operator, yti should match Qw(sti , ati) when Qw converges to Q∗. Hence, Learning is done via
minimizing the following objective using SGD: ℓ(w) = 1

m

∑m
i=1 ∥yti −Qw(sti , ati)∥2

2.
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Experience Replay For the Q-learning with function approximation, the new trajectories are
generated by executing a behavioral policy, which are then saved into the replay buffer, noted as
B. When learning to minimize ℓ(w), SGD is performed on batches of randomly sampled transitions
from the replay buffer. This process is often called Experience Replay (ER) (Lin, 1992; Li et al.,
2022).

To improve the stability and convergence rate of Q-learning, follow-up works sample transitions from
the replay buffer with non-uniform probability distributions. Prioritized experience replay favors
those transitions with a large temporal difference (TD) errors (Schaul et al., 2016). Discor (Kumar
et al., 2020) favors those transitions with small Bellman errors. LaBER proposes a generalized TD
error to reduce the variance of gradient and improve learning stability (Lahire et al., 2022).

Reverse Experience Replay is a recently proposed variant of ER (Goyal et al., 2019; Bai et al.,
2021; Agarwal et al., 2022). RER samples consecutive sequences of transitions (of length L) from the
replay buffer. The Q-learning updates are performed in the reverse order of the sampled sequences.
Compared with ER, RER converges faster towards the optimal policy empirically (Lee et al., 2019)
and theoretically (Agarwal et al., 2022), under tabular and linear MDP settings. One intuitive
explanation of why RER works is to consider a sequence of consecutive transitions s1

a1,r1−−−→ s2
a2,r2−−−→

s3. Incorrect Q-function estimation of Q(s2, a2) will affect the estimation of Q(s1, a1). Hence, reverse
order updates allow the Q-value updates of Q(s1, a1) to use the most up-to-date value of Q(s2, a2),
hence accelerating the convergence.

2.1 Problem Setups for Reverse Experience Replay

Linear MDP Assumption In this paper, we follow the definition of linear MDP from Zanette
et al. (2020), which states that the reward function can be written as the inner product of the
parameter w and the feature function ϕ. Therefore, the Q function depends only on w and the
feature vector ϕ(s, a) ∈ Rd for State s ∈ S and action a ∈ A.

Assumption 1 (Linear MDP setting (Zanette et al., 2020)). There exists a vector w ∈ Rd such
that R(s, a; w) = ⟨w, ϕ(s, a)⟩, and the transition probability is proportional to its corresponding
feature P(·|s, a) ∝ ϕ(s, a). Therefore, the optimal Q-function is Q∗(s, a; w∗) = ⟨w∗, ϕ(s, a)⟩ for
every s ∈ S, a ∈ A.

Definition 1 is the current popular Linear MDP assumption that allows us to quantify the convergence
rate (or sample complexity) for the learning algorithm (Zanette et al., 2020; Agarwal et al., 2022).
To get the final convergence rate result, we need the following additional assumptions. Assume
the sequence of consecutive state-action tuples is of length L and the constant learning rate in the
gradient descent is noted as η.

Definition 1. Given the feature function ϕ : S ×A → Rd. Denote the largest inner product between
parameter w and the feature function ϕ as ∥w∥ϕ = sup(s,a) |⟨ϕ(s, a), w⟩|. For clarity, we would use
the simplified notation ϕl = ϕ(sl, al).

Assumption 2 (from Zanette et al. (2020)). The MDP has zero inherent Bellman error
and ϕ(s, a)⊤ϕ(s, a) ≤ 1 for all (s, a) ∈ S × A. There exists constant κ > 0, such that
E(s,a)∼µϕ(s, a)ϕ(s, a)⊤ ⪰ I/κ. Here µ is the stationary distribution over all the state-action pairs of
the Markov chain determined by the transition kernel and the policy.

Remark 1. Suppose we pick a set of state-action tuples L = {(s, a)|(s, a) ∈ S × A}, which may
contains duplicated tuples. By linearity of expectation, we have: Eµ

(∑
(s,a)∈L ϕ(s, a)ϕ(s, a)⊤

)
=∑

L E(s,a)∼µ

(
ϕ(s, a)ϕ(s, a)⊤) ⪰ |L|

κ I. Here |L| indicates the number of state-action tuples in this
set.
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Definition 2. Let I be an identity matrix of dimension d×d and η ∈ R as the learning rate. Define
matrix Γl recursively as follow:

Γl :=
{

I for l = 0,(
I− ηϕL+1−lϕ

⊤
L+1−l

)
Γl−1 for 1 ≤ l ≤ L,

where ϕL+1−l = ϕ(sL+1−l, aL+1−l). The explicit form for ΓL is:

ΓL =
(
I− ηϕ1ϕ⊤

1
) (

I− ηϕ2ϕ⊤
2
)

. . .
(
I− ηϕLϕ⊤

L

)
=

L∏
l=1

(
I− ηϕlϕ

⊤
l

)
The semantic interpretation of ΓL is the coefficient of the bias term (in Lemma 3) used in the error
analysis of the parameter of the learning algorithm. The reason of having this joint product is because
of RER algorithm updates the parameter over a sub-sequence of consecutive state-action tuples in
reverse order.

Its norm value is impacted by the sequence length L and the learning rate η. When the norm of ΓL

is small, parameter of the learning model will quickly converge to its optimal.

3 Methodology

3.1 Motivation

Let µ be the stationary distribution of the state-action pair in the MDP, η be the learning rate of
the gradient descent algorithm and L be the length of the consecutive state-action tuples processed
by the RER algorithm. Previous work (Agarwal et al., 2022, Lemmas 8 and 14) states that: when
ηL ≤ 1

3 , the following result holds:

E(s,a)∼µ

[
Γ⊤

L ΓL

]
⪯ I− η

L∑
l=1

E(s,a)∼µ

[
ϕlϕ

⊤
l

]
⪯
(

1− ηL

κ

)
I, (2)

where the matrix ΓL is defined in Definition 2 and will be used as the “coefficient” in convergence
analysis in Lemma 3; the positive semi-definite property “⪯” is defined between two matrices on
both sides (in Definition 4); I is an identity matrix of dimension d×d; coefficient κ > 0 is introduced
in Assumption 2. Note that the matrix ΓL was mentioned in (Agarwal et al., 2022, Appendix E,
Equation 5). We formalize its definition and clean up unnecessary variables in the original definition.

The requirement in Equation (2) was further brought into the requirement of convergence in (Agarwal
et al., 2022, Theorem 1). It states that the RER algorithm cannot be applied to process too long
sequences of consecutive state-action tuples (which correspond to a large value of L) or too large of
learning rate in the gradient descent step (i.e., η). This is the major limitation between theoretical
justification and real-world practice of the RER algorithm. In this research, we mitigate the above
gap by offering a tighter theoretical justification to ease the requirement ηL ≤ 1/3.

We first explain the main difficulty of upper-bound the term E(s,a)∼µ

[
Γ⊤

L ΓL

]
. According to Defini-

tion 2, we can expand the term Γ⊤
L as Γ⊤

L =
(
I− ηϕLϕ⊤

L

)
· · ·
(
I− ηϕ1ϕ⊤

1
)
. Based on the linearity of

expectation, we expand the whole joint product Γ⊤
L ΓL subject to expectation as follows:

E(s,a)∼µ

[
Γ⊤

L ΓL

]
= E(s,a)∼µ

[(
I− ηϕLϕ⊤

L

)
· · ·
(
I− ηϕ1ϕ⊤

1
) (

I− ηϕ1ϕ⊤
1
)
· · ·
(
I− ηϕLϕ⊤

L

)]
= I− 2ηE(s,a)∼µ

[
L∑

l=1
ϕlϕ

⊤
l

]
+ E(s,a)∼µ

 2L∑
k=2

(−η)k
∑

l1,...,lk

ϕl1ϕ⊤
l1

. . . ϕlk
ϕ⊤

lk

 . (3)

In the third term of the right-hand side (RHS) of the second line, the summation is over all valid
combinations of the indices (l1, l2, . . . , lk), for l1, l2, . . . , lk ∈ {1, 2, . . . , L}. It is achieved by first
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determining the index l1 with a value in the sequence [L, L− 1, . . . , 2, 1, 1, 2 . . . , L− 1, L], from the
first row of the above equation. Thereafter determining the second index l2, where l2 should be on
the right of l1. The valid combination constraint requires the whole picked sequence l1, . . . , lk to
satisfy: li−1 should be on the left of li.

As there are combinatorially many high-order terms, the main difficulty is to upper bound the
whole product Γ⊤

L ΓL subject to its expectation. The high-level idea of our approach is to show
that the RHS of Equation (3) can be upper bounded in the form of E(s,a)∼µ

[∑L
l=1 ϕlϕ

⊤
l

]
with

appropriate coefficients. More specifically, we prove that the third term on the RHS, which contains
combinatorially many terms in the form of ϕl1ϕ⊤

l1
. . . ϕlk

ϕ⊤
lk

, can be bounded by terms containing
only ϕlϕ

⊤
l (with 1 ≤ l ≤ L) through combinatorial counting.

Theorem 1. Let µ be the stationary distribution of the state-action pair in the MDP. The following
matrix’s positive semi-definite inequalities hold: when η ∈ (0, 1),

E(s,a)∼µ

[
Γ⊤

L ΓL

]
⪯
(

1− η(4− 2L)L + L− (1− η)L−1L− η2L

κ

)
I,

where the matrix ΓL is defined in Definition 2. Here “⪯” is defined between two matrices on both
sides (See Definition 4) for the positive semi-definite property1.

Proof of Sketch. By linearity of expectation, the second term of Equation (3) can be bouned as

−2ηE(s,a)∼µ

[
L∑

l=1
ϕlϕ

⊤
l

]
= −2η

L∑
l=1

E(s,a)∼µ

[
ϕlϕ

⊤
l

]
= −2ηLE(s,a)∼µ

[
ϕϕ⊤] ⪯ −2ηL

κ
I.

Based on the result in the proposed Lemma (2), we have:

E(s,a)∼µ

 2L∑
k=2

(−η)k
∑

l1,...,lk

ϕl1ϕ⊤
l1

. . . ϕlk
ϕ⊤

lk

 ⪯ E(s,a)∼µ

 2L∑
k=2

(−η)k
∑

l1,...,lk

1
2(ϕl1ϕ⊤

l1
+ ϕlk

ϕ⊤
lk

)


⪯
(
(1− η)L−1 + η2 + η(2L− 2)− 1

)
E(s,a)∼µ

[
L∑

l=1
ϕlϕ

⊤
l

]

⪯ (1− η)L−1L + η2L + η(2L− 2)L− L

κ
I.

Combining the results in the above two inequalities, we finally have the upper bound in the theorem.
Please see Appendix B for a detailed proof.

Theorem 1 holds based on the proposed new analysis in Section 3.2. Theorem 1 will be applied
as the key component in the final convergence proof of the RER algorithm, which is presented in
Section 4.

3.2 Relaxing the Requirement ηL ≤ 1/3 through Combinatorial Counting

Lemma 1. Let x ∈ Rd be any d-dimensional non-zero vector. For l1, . . . , lk ∈ {1, 2 . . . , L} and
2 ≤ k ≤ 2L, we consider one high-order term ϕl1ϕ⊤

l1
. . . ϕlk

ϕ⊤
lk

in Equation (3). By Assumption 1,
we can relax the high-order term as:

|x⊤ϕl1ϕ⊤
l1

. . . ϕlk
ϕ⊤

lk
x| ≤ 1

2x⊤ (ϕl1ϕ⊤
l1

+ ϕlk
ϕ⊤

lk

)
x

1The code implementation for the numerical evaluation of the equalities and inequalities in the proof is available
at: https://github.com/jiangnanhugo/RER-proof.

https://github.com/jiangnanhugo/RER-proof
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1
Indices of 
the slots L …l

fix l1 = l
 can be placed to  many positions.l2, …, lk L + l − 2

///// ///// ///// /////
1 L… l

“////” indicates this slot cannot be chosen.

ϕlϕ⊤
l

22l + 1… …l + 1

Figure 1: Case 1 in the propose combinatorial counting procedure. The task is to count how many
terms ϕl1ϕ⊤

l1
. . . ϕlk

ϕ⊤
lk

can be “reduced to” ϕlϕ
⊤
l for a fixed l using Lemma 1, for 1 ≤ l ≤ L. When

we let l1 pick the left l-th slot, lk cannot choose the left terms with indices L, . . . , l + 1. Because of
the sequential ordering constraint li should be on the right of li−1. To avoid double counting, we
also disallow assigning the right l-th slot to lk. There are 2L− (L− (l + 1))− 1 = L + l − 2 many
slots to assign the rest sequences l2, . . . , lk of length k−1. Therefore, we obtain

(
L+l−2

k−1
)

many terms
for the first case. See all the rest cases in Figure 2 in the appendix.

The proof of the above inequality is in Appendix A.1. The above result implies that: after relaxation,
only the first term (i.e., ϕl1ϕ⊤

l1
) indexed by l1 and the last term (i.e., ϕlk

ϕ⊤
lk

) indexed by lk determine
the upper bound of the high order term ϕl1ϕ⊤

l1
. . . ϕlk

ϕ⊤
lk

. This relaxation allows us to transform the
original combinatorial summation problem

∑
1≤l1,...,lk≤L to count how many cases of picking valid

l1 and lk at each possible position in the consecutive sequence of state-action tuples.
Lemma 2. Based on the relaxation in Lemma 1, the weighted summation

∑2L
k=2(−η)k

∑
l1,...,lk

in
Equation (3) can be expanded combinatorially as follow:

2L∑
k=2

(−η)k
∑

l1,...,lk

1
2(ϕl1ϕ⊤

l1
+ ϕlk

ϕ⊤
lk

) =
2L∑

k=2
(−η)k

L∑
l=1

((
L + l − 2

k − 1

)
+
(

L− l

k − 1

)
+
(

2l − 2
k − 2

))
︸ ︷︷ ︸

sum over combinatorially many terms

ϕlϕ
⊤
l

Sketch of proof. As shown in Figure 1, we have two arrays of length L. The indices of the array are
symmetry to each other, where the left one decreases from L to 1 and the right one increases from
1 to L. The two arrays are set up in this way to represent the indices of the matrix product in the
first line of Equation (3). The left array simulates ΓL and the right array simulates Γ⊤

L .

The key idea is: for a fixed l (1 ≤ l ≤ L), we count the number of combination of l1, lk that can
produce ϕlϕ

⊤
l . The first case shown in Figure 1 is when we let l1 pick the left l-th slot, lk cannot

choose the slots in the left array with indices L . . . , l + 1. Because the sequential ordering constraint
enforces that li−1 should be on the left of li needs to be preserved. To avoid double counting, we
also disallow assigning the right l-th slot to lk. Therefore, there are L + l − 2 many slots to assign
the sequences l2, . . . , lk. This contributes to the first slot

(
L+l−2

k−1
)

on the right-hand side. We leave
all the rest cases in Figure 2 and their analysis in Appendix A.2, which contributes to the second
and last term in Equation 2.

Lemma 2 shows the process of transforming the complex summation
∑

l1,...,lk
into a simpler sum-

mation form
∑L

l=1, which becomes much easier to get the tighter upper bound. The upper bound
in Lemma 2 is obtained by combinatorially counting the number of possible subcases and avoiding
double counting.

4 Sample Complexity of Reverse Experience Replay-based Q-learning
on Linear MDP

The following analysis is based on the assumption that every sub-trajectory of length L is almost (or
asymptotically) independent of each other with high probability. This is commonly known as the
mixing requirement for Markovian data: the statistical dependence between the two sub-trajectories
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Algorithm 1 Episodic Q-learning with Reverse Experience Replay
Require: Sequence length L of consecutive state-action tuples; Replay buffer B; Total learning

episodes T ; Target network update frequency N .
Ensure: The best-learned policy.

1: for t = 1 to T do
2: Act by ϵ-greedy strategy w.r.t. policy π.
3: Save the new trajectory into the replay buffer B.
4: Retrieve a sub-trajectory τL from buffer B, where τl := (sl, al, rl), for all 1 ≤ l ≤ L.
5: for l = 1 to L do
6: ε← rL−l + γ maxa′∈A Q(sL+1−l, a′; θk)−QL+1−l ▷ reverse experience replay
7: wt,l+1 ← wt,l + ηε∇Qt,L+1−l

8: if t mod N = 0 then
9: θk ← wt,L+1 ▷ online target update

10: k ← k + 1
11: π(s)← arg maxa∈A, Q(s, a; wt,L+1), for all s ∈ S. ▷ policy extraction
12: Return The converged policy π.

τL, τ ′
L goes to zero when they are far apart along the trajectory (Tagorti & Scherrer, 2015; Nagaraj

et al., 2020).

Prior work Lee et al. (2019) only gives a convergence proof for the RER approach without the
rate of convergence, due to the difficulty of quantifying the deep neural network. Linear MDP (in
Definition 1), which assumes the reward function and transition kernel are linearly approximately
by the feature and the optimal parameter w∗ are then used to give an asymptotic behavior for
the performance of the RER. Most recently, Agarwal et al. (2022) gives the first theoretical proof
for RER. However, their analysis only works under strict conditions. The most notable one is the
requirement on the minimal learning rate η ≤ 1

3L . Such limitations show that RER would not be
able to compete against the plain ER method with a large learning rate.

To resolve the above challenge, we present a rigorous analysis of the RER method. In our Theorem 1,
we directly remove the constraints on the learning rate for the algorithm to converge. Instead, we
found the convergence rate can be improved with a large learning rate as well as a long sequence of
State-action-reward tuples. Therefore, we bridge the gap between theoretical convergence analysis
and the empirical learning result.
Lemma 3 (Bias and variance decomposition). Let the error terms for every parameter w as the
difference between empirical estimation and true MDP: εi(w) := Q(si, ai) − Q∗(si, ai). For the
current iteration t, the difference between current estimated parameter w and the optimal parameter
w∗ accumulated along the L length state-action-reward tuples with reverse update is:

wL − w∗ = ΓL (w1 − w∗)︸ ︷︷ ︸
Bias term

+ η

L∑
l=1

εlΓl−1ϕl︸ ︷︷ ︸
variance term

.

For clarity, ΓL in Definition 2 is a joint product of L terms involving the feature vector of the
consecutive state-action tuples. When the norm of ΓL is small, parameter will quickly converge to
its optimal.

The first part on RHS is noted as the bias, which decays geometrically with N and the second part
on RHS is variance along the sub-trajectory of length L, which we will later show with zero mean.

The proof is presented in Appendix C.1. The result is obtained by unrolling the terms for consecutive
L steps in reverse update order. This allows us to separately quantify the upper bound the bias
term and the variance terms.
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Lemma 4 (Bound on the bias term). Let x ∈ Rd be a non-zero vector and N is the frequency for
the target network to be updated. For η ∈ (0, 1), L ∈ N and L > 1, the following matrix’s positive
semi-definite inequality holds with probability at least 1− δ:

E

∥∥∥∥∥∥
1∏

j=N

ΓLx

∥∥∥∥∥∥
2

ϕ

≤ exp
(
−N(η(4− 2L)L + L− η2L)

κ

)√
κ
δ ∥x∥ϕ .

The ϕ-based norm is defined in Definition 1.

Sketch of proof. The result is obtained first expand the joint product over
∏i

j=N over ΓL and inte-
grate the result in Theorem 1. The detail proof is presented in Appendix C.2.

In terms of the bound for the variance term in Lemma 3, even though the term Γl is involved in the
expression, it turns out we do not need to modify the original proof and thus we follow the result in
the original work. The exact statement is presented in the Appendix C.3.
Theorem 2. For Linear MDP, assume the reward function, as well as the feature, is bounded
R(s, a) ∈ [0, 1], ∥ϕ(s, a)∥2 ≤ 1, for all (s, a) ∈ S × A. Let T be the maximum episodes, N be the
frequency of the target network update, η be the learning rate and L be the length of sequence for
RER described in Algorithm 1. When η ∈ (0, 1), L ≥ 1, with sample complexity

O

γT/N

1− γ
+

√
Tκ

Nδ(1− γ)4 exp
(
−N(η(4− 2L)L + L− η2L)

κ

)
+

√
η log( T

Nδ )
(1− γ)4

 ,

∥QT (s, a)−Q∗(s, a)∥∞ ≤ ε holds with probability at least 1− δ.

Proof of Sketch. we first show the independence sub-trajectories with length L. Then we decompose
the error term of Q-value via bias-variance decomposition (in Lemma 3), where the RER method
and target network can help to control the variance term using martingale sequences. We show the
upper bound of the bias term in Lemma 4 and the upper bound of the variance term in Lemma C.3.
Then we summarize the result and offer the final proof in Lemma 6, which leads to the probabilistic
bound in this theorem.

Compared to the original theorem in (Agarwal et al., 2022, Theorem 1), our work offers a tighter
upper bound to relax the assumption for the final result to hold. This bridges the gap between
the theoretical justification and the empirical MDP evaluation. Further, we hope the new idea of
transforming the original problem into a combinatorial counting problem can enlighten other relevant
domains.

We acknowledge that the main structure of convergence proof (i.e., Theorem 2) follows the original
work. Here, we made contribution to present a cleaner proof pipeline of the proof and also integrate
our tighter bound in Theorem 1.

5 Conclusion

In this work, we gave a tighter finite-sample analysis for heuristics which are heavily used in practical
Q-learning and showed that seemingly simple modifications can have far-reaching consequences in
linear MDP settings. We provide a rigorous analysis that relaxes the limitation on the learning
rate and the length of the consecutive tuples. Our key idea is to transform the original problem
involving a giant summation into a combinatorial counting problem, which greatly simplifies the
whole problem. Finally, we show theoretically that RER converges faster with a larger learning rate
η and a longer consecutive sequence L of state-action-reward tuples.
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