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Abstract

Multi-agent proximal policy optimization (MAPPO) has recently demonstrated
state-of-the-art performance on challenging multi-agent reinforcement learning
tasks. However, MAPPO still struggles with the credit assignment problem, wherein
the sheer difficulty in ascribing credit to individual agents’ actions scales poorly with
team size. In this paper, we propose a multi-agent reinforcement learning algorithm
that adapts recent developments in credit assignment to improve upon MAPPO.
Our approach leverages partial reward decoupling (PRD), which uses a learned
attention mechanism to estimate which of a particular agent’s teammates are rele-
vant to its learning updates. We use this estimate to dynamically decompose large
groups of agents into smaller, more manageable subgroups. We empirically demon-
strate that our approach, PRD-MAPPO, decouples agents from teammates that do
not influence their expected future reward, thereby streamlining credit assignment.
We additionally show that PRD-MAPPO yields significantly higher data efficiency
and asymptotic performance compared to both MAPPO and other state-of-the-art
methods across several multi-agent tasks, including StarCraft II. Finally, we pro-
pose a version of PRD-MAPPO that is applicable to shared reward settings, where
PRD was previously not applicable, and empirically show that this also leads to
performance improvements over MAPPO.

1 Introduction

Multi-agent reinforcement learning (MARL) has achieved super-human performance on many com-
plex sequential decision-making problems, such as DOTA 2 (Berner et al., 2019), StarCraft II
(Vinyals et al., 2019), and capture the flag (Jaderberg et al., 2019). These impressive results,
however, come at an immense cost: often, they require millions, if not billions, of time-consuming
environmental interactions, and therefore can only be run on high-cost compute clusters.

The credit assignment problem contributes to the computational difficulties that plague large-scale
MARL algorithms; as the number of agents involved in learning increases, so too does the difficulty of
assessing any individual agent’s contribution to overall group success (Minsky, 1961; Sutton et al.,
1998). While credit assignment already challenges reinforcement learning (RL), it is particularly
prominent in large-scale cooperative MARL, because, unlike problems in which each agent can act
greedily to optimize its own reward, all agents must maximize the total reward earned by the entire
group. Therefore, agents must not only consider how their actions influence their own rewards, but
also the rewards of every other agent in the group.
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A popular class of approaches to MARL are policy-gradient methods, which also suffer from the
credit assignment problem. Recent work in improving policy-gradient methods took the approach
of developing concepts which were then used to extend the original actor-critic algorithm. These
extensions include counterfactual multi-agent policy gradients (COMA) (Foerster et al., 2018), multi-
agent game abstraction via graph attention neural networks (G2ANet) (Liu et al., 2020), and partial
reward decoupling (PRD) (Freed et al., 2022). The primary contributions of this paper are
1) the machinery necessary for applying PRD to a state-of-the-art multi-agent policy-
gradient method (multi-agent PPO (MAPPO)), and 2) a version of PRD that does
not require the environment to provide individual rewards streams for each agent, and
instead utilizes a shared reward signal.

PRD simplifies credit assignment by decomposing large cooperative multi-agent problems into
smaller decoupled subproblems involving subsets of agents. PRD was applied to the actor-critic
algorithm (Freed et al., 2022; Konda & Tsitsiklis, 2000). Meanwhile, significant progress has been
made towards improving the data efficiency of policy-gradient algorithms. Most notably, trust-region
policy optimization (TRPO) and proximal policy optimization (PPO) improve the data efficiency
of actor-critic algorithms by enabling a given batch of on-policy data to be re-used for multiple
gradient updates. PPO, in particular, has demonstrated strong performance in multi-agent settings
(Yu et al., 2021). However, we argue that because PPO relies on stochastic advantage estimates,
it still suffers from the credit assignment problem, and can therefore be improved by incorporating
advanced credit assignment strategies.

In this paper, we demonstrate that PRD can be leveraged within the learning updates of PPO for
each individual agent, to eliminate the contributions from other irrelevant agents. We find that the
resulting algorithm, PRD multi-agent PPO (PRD-MAPPO), exceeds the performance of prior state-
of-the-art MARL algorithms such as QMix (Rashid et al., 2018), MAPPO (Yu et al., 2021), LICA
(Zhou et al., 2020a), G2ANet (Liu et al., 2020), HAPPO (Kuba et al., 2021) and COMA (Foerster
et al., 2018) on a range of multi-agent benchmarks, including StarCraft II. Beyond integrating PRD
with MAPPO, we make three key modifications to the original PRD approach proposed by Freed
et al. (2022). First, we introduce a “soft” variant that softly re-weights advantage terms in agents’
learning updates based on attention weights, rather than the strict decoupling used by Freed et al.
(2022). Second, we modify the advantage estimation strategy that allows learning updates to be
computed in time that is linear, rather than quadratic, in the number of agents. Finally, we propose
a version of PRD-MAPPO that is capable of using shared rewards, as opposed to individual agent
rewards, thus broadening the range of problems to which our algorithm can be applied.

To gain deeper insight to the source of PRD-MAPPO’s improved performance, we visualize the
relevant sets identified by PRD, and verify that PRD decomposes multi-agent teams into subsets of
agents that should cooperate with one another. Finally, we compare the gradient estimator variance
of PRD-MAPPO and MAPPO, and find that PRD-MAPPO indeed tends to avoid the spikes in
gradient variance present in MAPPO, helping explain its superior data efficiency and stability.

2 Background

Here we describe our problem formulation as a Markov game. Subsequently, we investigate mathe-
matically how imperfect credit assignment manifests itself in high policy-gradient variance in policy-
gradient RL algorithms. Finally, we review PPO and PRD.

2.1 Markov Games

We consider multi-agent sequential decision-making problems that can be modeled as a Markov
game. A Markov game is specified by (S,A,P,R, ρ0, γ), where S is the state space, A is the joint
action space, consisting of every possible combination of individual agents’ actions, P(st+1|st, at)
specifies the state transition probability distribution, R(rt|st, at) specifies the reward distribution,
ρ0(s0) denotes the initial state distribution, and γ ∈ (0, 1] denotes a discount factor (Littman,
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1994). At each timestep t ∈ {0, ..., T}, each agent i ∈ {1, ..., M} selects an action independently
according to its state-conditioned policy πi(a(i)

t |s
(i)
t ; θi). Here, T specifies the episode length, M

denotes the number of agents, s
(i)
t denotes the state information available to agent i, and θi de-

notes the parameters for agent i. Subsequently, individual agent rewards are sampled according to
r

(1)
t , ..., r

(M)
t ∼ R(·|st, at), and the state transitions according to st+1 ∼ P(·|st, at).

Although agents receive individual rewards, we are primarily interested in learning cooperative be-
haviors that maximize total group return, that is, the sum of all agents’ individual rewards across all
timesteps. More precisely, we wish to find the optimal agent policy parameters θ∗ = {θ∗

1 , ..., θ∗
M} =

argmax
θ

J(θ), where

J(θ) = E
[ T∑
t=0

M∑
j=1

γtr
(j)
t

∣∣∣πθ].
This problem formulation is distinct from the “greedy” case, where each agent maximizes its own
individual return. In this problem formulation, agents should learn to be altruistic in certain sit-
uations, by selecting actions that help maximizes group reward, possibly at the expense of some
individual reward.

2.2 Credit Assignment and Policy Gradient Variance

To understand the effects of scaling PPO to large numbers of agents, and how we expect PRD will
improve this scaling, we explore how imperfect credit assignment causes difficulties in learning. In
this paper, we argue that in policy-gradient algorithms (which includes many popular algorithms
such as PPO (Schulman et al., 2017), TRPO (Schulman et al., 2015a), D4PG (Barth-Maron et al.,
2018), MADDPG (Lowe et al., 2017), and A3C (Mnih et al., 2016)), the credit assignment problem
manifests itself in the form of high variance of advantage estimates. High variance in advantage
estimates in turn causes policy gradient estimates to be more noisy, resulting in slower learning.

We consider an actor-critic-style gradient estimate for a single-agent system in its most stripped-
down possible form, computed using a single state-action sample:

∇̂θJ(θ, s, a) = ∇θ log π(a|s)Â(s, a),

where state s is sampled from the state-visitation distribution induced by policy π, action a is
sampled from π conditioned on s, and Â(s, a) is a stochastic advantage estimate, which estimates
the true advantage of taking action at in state st, and following policy π. The advantage function
is typically defined as Aπ(s, a) = Qπ(s, a) − V π(s), where Qπ(s, a) and V π(s) are the state-action
value function and state-value function, respectively (Sutton et al., 1998). Intuitively, the advantage
function measures how much better it is to select a particular action a than a random action from the
policy, while in state s. There are many ways to compute Â, generally all involving some error, as the
true value functions are unknown (Sutton et al., 1998; Schulman et al., 2015b). If perfect advantage
estimation were possible, then so too would be perfect credit assignment, as the advantage function
directly measures how a particular action a impacted the total reward obtained by the group.

To gain an understanding of how the gradient variance is impacted by advantage estimator variance,
we note that the conditional variance of ∇̂θJ , given s and a, is proportional to the variance of Â:

Var(∇̂θJ |s, a) = (∇θ log π(a|s)) (∇θ log π(a|s))T Var(Â|s, a).

Moving to a cooperative multi-agent setting, Â(s, a) is replaced by a summation over individual
agents’ advantages in the gradient estimate for a particular agent i:
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∇̂θiJ(θ, s, a) = ∇θi log πi(ai|s)
M∑
j=1

Âij(s, a),

where Âij(s, a) now corresponds to our estimate of how agent i’s action influenced the expected
future reward of agent j. The summation results from the fact that in the cooperative setting,
agent i is no longer interested only in maximizing its own total reward, but is instead interested in
maximizing total group reward, as discussed in Sec. 2.1. The variance of ∇̂θiJ given s and a now
depends on the variance of each individual agent’s advantage estimates, as well as the covariance
between every pair of agents’ advantages. Using Bienaymé’s identity, and omitting the arguments
to πi for brevity, we can express this variance as

Var(∇̂θi
J |s, a) = (∇θi

log πi) (∇θi
log πi)T

(
M∑
j=1

Var(Âij |s, a) + 2
∑
k<j

Cov(Âij , Âik|s, a)
)

.

To simplify analysis, we consider an upper bound on gradient estimator variance, obtained using
the Cauchy–Schwarz inequality,

Var(∇̂θi
J |s, a) ≤ (∇θi

log πi) (∇θi
log πi)T

(
M∑
j=1

Var(Âij |s, a) + 2
∑
k<j

√
Var(Âij |s, a)Var(Âik|s, a)

)
,

(1)

which can be seen to scale roughly linearly with number of agents, assuming Var(Âij |s, a) is roughly
similar for all j. Therefore, to achieve a particular signal-to-noise ratio, more such gradient estimates
will need to be averaged together as team size increases, thus increasing the data requirements of
the algorithm. This analysis helps explain the mechanism by which improved credit assignment can
yield data-efficiency improvements for policy-gradient algorithms, such as A3C (Mnih et al., 2016),
TRPO (Schulman et al., 2015a) and PPO (Schulman et al., 2017) algorithms. In particular, our
approach aims to eliminate extraneous advantage terms that do not on average contribute to the
policy gradient, thereby reducing the number of terms in the summations in (1) and decreasing the
total variance. We discuss this further in Sec. 2.4 and 3.

2.3 Proximal Policy Optimization

Earlier policy gradient algorithms, such as actor-critic (AC), suffered from poor data efficiency in
part because they were purely on-policy, and therefore required a fresh batch of environmental data
to be collected each time a single gradient update was applied to the policy (Konda & Tsitsiklis, 2000;
Schulman et al., 2015a; 2017). PPO provides higher data efficiency than AC by enabling multiple
policy updates to be performed given a single batch of on-policy data, resulting in larger policy im-
provements for a fixed amount of data. Given a batch of data, PPO optimizes the policy with respect
to a “surrogate” objective that penalizes excessively large changes from the old policy, permitting
the agent to perform multiple gradient updates without becoming overly off-policy. Specifically,
during each policy optimization step, PPO optimizes the following objective with respect to policy
parameters θ,

LPPO(θ) = Ê
[
min

((
rt(θ)Ât

)
,
(
clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

))]
,

where r(θ) = πθ(at|st)
πθold

(at|st) is the probability ratio, πold is the data collection policy, π is the updated
policy, Ât is the stochastic advantage estimate for time t, and Ê[·] denotes an empirical average over
a finite batch of samples (Schulman et al., 2017).
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PPO has been recently shown to offer strong performance on multi-agent problems (Yu et al., 2021).
However, PPO does not explicitly control the variance of its policy gradient updates, which as we
discuss in Sec. 2.2, tends to grow with multi-agent team size. This increased gradient estimate
variance means that larger batches of data become necessary to reach a satisfactory signal-to-noise
ratio in the learning updates; indeed, (Yu et al., 2021) found that much larger batch sizes were
necessary for PPO to perform well on multi-agent tasks. In this work, we seek to combine the
data efficiency benefits of PPO with the variance reduction benefits of PRD, to enable further
improvements in data efficiency and stability.

2.4 Partial Reward Decoupling

PRD is an approach that enables large multi-agent problems to be dynamically decomposed into
smaller subgroups such that cooperation among subgroups yields a fully cooperative group-level so-
lution. In practice, PRD was shown to improve the performance of an AC-style approach, compared
to a vanilla AC algorithm. The proposed PRD-AC algorithm was also shown to outperform COMA,
a popular method for improved multi-agent credit assignment.

PRD makes use of the fact that, considering two agents i and j at a particular timestep t, if the
action of agent i does not influence the expected future reward of agent j, then agent i need not take
agent j’s rewards into account when computing its advantage estimate for time t, thus streamlining
credit assignment. The set of agents whose expected future rewards are impacted by the action
of agent i at time t is referred to as the relevant set of agent i at time t, denoted Rπ

i (st, at). In
Freed et al. (2022), a learned value function with an attention mechanism was used to estimate the
relevant set for each agent.

There were significant drawbacks to the approach presented by Freed et al. (2022), which we address
in this paper. First, PRD was used in the context of the AC algorithm, which has been surpassed by
algorithms such as TRPO and PPO. Second, for a problem involving M agents, PRD required M
evaluations of the critic function to compute a single agent’s gradient update; thus the computational
burden for a learning update scaled quadratically with the number of agents. Finally, PRD assumed
that the environment provided per-agent reward streams (i.e., provided a scalar reward value to each
agent at each timestep). However, many multi-agent problems provide only a single scalar reward
for the entire group at each timestep.

3 Improving Proximal Policy Optimization with Partial Reward
Decoupling

In this paper, we tackle the credit assignment problem by developing PRD-MAPPO, which leverages
a PRD-style decomposition within a PPO learning update to improve credit assignment. More
specifically, PRD modifies the original PPO objective by eliminating advantage terms belonging to
“irrelevant” agents. As shown by Freed et al. (2022), these irrelevant advantage terms contribute
only noise to learning updates, making learning less efficient. PRD uses an attention-based value
function to identify when a particular agent’s action did not influence another agent’s future return,
allowing those agents to be decoupled.

To leverage the improved credit assignment capabilities of PRD in PPO, we make two modifications
to the standard PPO algorithm: first, we incorporate a learned critic with an attention mechanism.
Similar to Freed et al. (2022), the attention weights computed by the critic will be used to estimate
the relevant set of agents, as described in Sec. 3.1. Unlike Freed et al. (2022), we modify the critic
architecture to allow the relevant sets for each agent to be computed in linear, rather than quadratic
time. Second, we modify the surrogate objective of PPO to use the streamlined advantage estimation
strategy of PRD, which we describe in Sec. 3.2, using the relevant set estimated using the critic.
In this work, we test a novel “soft” relevant set estimation strategy that softly decouples agents,
which we find significantly improves performance over a manual thresholding approach as was used
by Freed et al. (2022).



RLJ | RLC 2024

3.1 Learned Critics for Relevant Set and Advantage Estimation

Key/Query
Networks

Value Network

Attention

Embedding
Network

Output
Network

Figure 1: Q and Value Function Network Architecture.
Each agent uses states from all agents to compute at-
tention weights for every agent other than itself. These
attention weights are then used to aggregate attention
values from all agents other than itself. Finally, ag-
gregated attention values for agent i are concatenated
either with the embedded state-action vector for agent
i (if the network is functioning as a Q function) or the
embedded state vector for agent i, (if the network is
functioning as a value function). Finally, this is passed
through the output network to generate either Qϕ

i (s, a)
or V ψ

i (s, a̸=i).

Similar to Freed et al. (2022), we use a
learned critic function to perform relevant
set estimation, albeit with significant mod-
ifications. In our approach, each agent i
maintains a graph neural network Q func-
tion Qϕ

i (st, at), which is trained to estimate
its expected future individual returns given
the current state and actions of all agents.
A diagram of our Q function is depicted in
Fig. 1. In practice, all agents share the
same Q function parameters. Qϕ

i takes as
input the state information and actions of
all agents to estimate a scalar Q value for
each agent i.

The Q function contains an attention
mechanism that allows it to “shut off”
dependence on particular agents’ actions.
More concretely, the Q network for each
agent i uses the states of all agents (includ-
ing itself) to compute attention weights for
all other agents (agents assign an attention
weight of 1 to themselves, i.e., wii(st) = 1). These attention weights are then used as coefficients
to compute a linear combination of attention values computed from agents’ states and actions. If a
particular attention weight wij is 0, then any information about agent j’s action will not be prop-
agated further through the network, meaning that agent j’s action will not influence the final Q
estimate for agent i. Once the aggregated value is computed, it is concatenated with an embedding
computed from agent i’s state and action and passed through a recurrent output network (Fig. 1).

If the learned Q function of agent i at a particular timestep t computes an attention weight of
exactly zero for another agent j (i.e., wij(st) = 0), then Qϕ

i does not depend on a
(j)
t given the state

of all agents, and we can infer that agent i is outside the relevant set of agent j. As shown by Freed
et al. (2022), agents outside the relevant set of agent j do not, on average, contribute to its policy
gradient, and may therefore be removed from the policy gradient estimates without introducing bias.
In practice, when inferring the relevant sets for each agent, we infer that i /∈ Rj(st) if wij(st) < ϵ,
where ϵ > 0 is a small manually chosen constant. Using this soft attention mechanism, agents cannot
assign precisely zero attention weight to any other agent, and therefore cannot guarantee complete
independence of the Q function to any particular agent’s action. However, we found that in practice,
very small attention weights were assigned to irrelevant agents, making this a practical method for
relevant set estimation. We explore variants of this decoupling procedure, including a “soft” variant
that softly re-weights agents’ contributions to learning updates.

Our approach to computing advantage terms for learning updates reduces the computational com-
plexity over (Freed et al., 2022) from quadratic to linear in the number of agents M . To compute
the advantage terms required to update the policy of a particular agent i, the original algorithm
described by Freed et al. (2022) requires each agent i to estimate the expected future return of each
agent j, conditioned on the actions of all agents other than i, for each j ∈ Ri(st). This computation
requires (at worst) M calls to the critic for each of the M agents, resulting M2 total calls during
each learning update. Our approach, on the other hand, circumvents with quadratic scaling by
maintaining two separate critics; the first is the Q function used for relevant set estimation, de-
scribed above. The second critic is used solely to provide baseline estimates for advantage function
estimation (Schulman et al., 2015b; Konda & Tsitsiklis, 2000). It estimates the sum of expected
future returns for all agents within agent i’s relevant set, conditioned on the state of all agents,
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and the actions of all agents other than i. We refer to this critic as the value function, rather than
the Q function, because it does not depend on the actions of agent i. The value function uses an
architecture almost identical to the Q function (Fig. 1), with the one difference that the attention
values are concatenated with the embedded state of agent i, rather than state-action. Using this
value function, computing advantages for all agents requires only M calls (one per agent).

3.2 PRD-MAPPO Parameter Update Rule

We modify the original MAPPO (Yu et al., 2021) objective for each agent i by eliminating the
rewards from agents that are outside its relevant set from its advantage estimates. The original
MAPPO algorithm optimizes the following objective during each policy parameter update for agent
i:

L
(i)
MAPPO = Ê

[
min

((
r

(i)
t (θi)Ât

)
,
(

clip(r(i)
t (θi), 1− ϵ, 1 + ϵ)Ât

))]
, (2)

where r(i) is the ratio between the updated and old policy of agent i, and Ât is the advantage
estimate for timestep t. In (Yu et al., 2021), generalized advantage estiamtion was used to compute
Ât, which combines group agent rewards and value function estimates according to

Ât = δt + (γλ)δt+1 + ... + (γλ)T−t+1δT−1,

where δt =

 M∑
j=1

r
(j)
t

+ γV (st+1)− V (st).

We modify the objective in (2) by replacing advantage terms with individual agent advantage terms,
which ignore the rewards of irrelevant agents. The objective for agent i becomes

L
(i)
PRD = Ê

[
min

((
r

(i)
t (θi)Âi,t

)
,
(

clip(r(i)
t (θi), 1− ϵ, 1 + ϵ)Âi,t

))]
,

where

Âi,t = δi,t + (γλ)δi,t+1 + ... + (γλ)T−t+1δi,T−1,

δi,t =

 ∑
j∈Ri(st)

r
(j)
t

+ γV ψ
i (st+1, a̸=i

t+1)− V ψ
i (st, a̸=i

t ).

Note in the above equation that the reward terms for agents not in Ri(st) have been removed, and
V has been replaced by the value function V ψ

i described in Sec. 3.1., which is regressed against
the sum of returns of agents in Ri(st). Pseudocode for PRD-MAPPO is included in Sec. B of the
appendix.

We additionally propose a “soft” variant of PRD-MAPPO, which we refer to as PRD-MAPPO-
soft, that softly reweights agent rewards according to attention weights of the Q network, i.e.,
δi,t =

(∑M
j=1 wji(st)r(j)

t

)
+ γV ψ

i (st+1, a̸=i
t+1) − V ψ

i (st, a̸=i
t ). In this soft variant, V ψ

i is regressed

against the weighted sum of agent returns,
∑M
j=1 wji(st)R(j)

t .
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3.3 Partial Reward Decoupling for environments with shared rewards

One drawback to our PRD approach is that it assumes individual reward streams for each agent are
available, i.e., at each timestep, the environment provides a separate scalar reward for each agent.
However, some multi-agent systems only provide a single scalar shared reward for the entire group
at each timestep. To deal with the shared reward setting, we propose strategy for decomposing
shared returns into individual agent returns, to which we can then apply PRD. We start by training
a shared Q function to predict the shared returns (i.e., the sum of future shared rewards). Here we
use a similar architecture as described in Sec. 3.1, with the one difference that our network has 1
output rather than M outputs. We denote the vector of attention weights assigned by all agents to
the action of agent j as W:j . There is one such vector for each timestep and each agent; we omit
the timestep subscripting for brevity. As a heuristic to measure the overall influence that each agent
j has on the future shared reward, we aggregate the attention weights for each agent j by taking
the mean of W:j , which we refer to as W̃j . The individual returns for each agent j at each timestep
are then set proportionally to W̃j , such that they sum to the original shared return. Subsequently,
we apply PRD-MAPPO to these individual returns as we would in the individual reward setting
described in Sec. 3.2. We refer to this approach as PRD-MAPPO-shared.

4 Experiments

We experimentally compare the performance of the following algorithms on several cooperative
MARL environments:

PRD-MAPPO (ours): MAPPO with PRD, as described in Sec. 3.1.

PRD-MAPPO-soft (ours) : the soft variant of PRD-MAPPO as described in Sec. 3.1.

PRD-MAPPO-shared (ours) : the soft variant of PRD-MAPPO in the shared reward setting,
as described in Sec. 3.3.

MAPPO: a multi-agent variant of PPO, proposed by Yu et al. (2021).

HAPPO: a recent state-of-the-art algorithm proposed by Kuba et al. (2021) that extends trust re-
gion learning to cooperative multi-agent reinforcement learning (MARL), enabling monotonic policy
improvement without the need for shared policy parameters.

G2ANet-MAPPO: MAPPO with a G2ANet-style critic. This baseline attempts to import the
credit assignment benefits of G2ANet (which was originally used in the Actor-Critic algorithm) to
the more state-of-the-art MAPPO.

Counterfactual Multi-Agent Policy Gradient (COMA): Proposed by Foerster et al. (2018),
COMA is a multi-agent actor-critic method. COMA addresses credit assignment by using a counter-
factual baseline that marginalizes out a single agent’s action, while keeping the other agents’ actions
fixed, allowing COMA to better isolate each agent’s contribution to group reward.

PRD-V-MAPPO: PRD-MAPPO, using the value-function-based method of relevant set estima-
tion, as described by Freed et al. (2022). This version uses a learned value function for both relevant
set and advantage estimation, and scales quadratically in time complexity with number of agents.
We include this as a baseline to assess the effect of critic choice.

Learning Implicit Credit Assignment (LICA): proposed by Zhou et al. (2020b), LICA is a
method for implicit credit assignment that is closely related to value gradient methods, which seek
to optimize policies in the direction of approximate value gradients. LICA extends the concept of
value mixing present for credit assignment found in QMix and Value-decomposition Networks by
introducing an additional latent state representation into the policy gradients. The authors claim
that this additional state information provides sufficient information for learning optimal cooperative
behaviors without explicit credit assignment.
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QMix: proposed by Rashid et al. (2018), QMix learns a joint state-action value function, repre-
sented as a complex non-linear combination of per-agent value functions. The joint value function
is structurally guaranteed to be monotonic in per-agent values, allowing agents to maximize the
joint value function by greedily selecting the best actions according to their own per-agent value
functions.

The policy network and critic used for advantage calculations for PRD-MAPPO, PRD-MAPPO-
soft, PRD-MAPPO-shared, MAPPO, HAPPO, G2ANet-MAPPO, COMA and PRD-V-MAPPO
have the same architecture and number of parameters. Because LICA and QMix depend on a
particular critic architecture, we used the original architectures as described by Zhou et al. (2020a)
and Rashid et al. (2018) respectively. For all environments and all algorithms, we performed a grid
search over hyperparameters as described in the appendix.

We consider the following environments, with detailed descriptions of each in the appendix: Collision
Avoidance, Pursuit, Pressure Plate, Level-Based Foraging, and StarCraft Multi-Agent Challenge Lite
(SMAClite), specifically the 5m_vs_6m, 10m_vs_11m, and 3s5z battle scenarios.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Episodes ×104

1200

1000

800

600

400

200

0

M
e
a
n
 E

p
is

o
d

e
 R

e
tu

rn

A) Team Collision Avoidance

0.0 0.7 1.4 2.1 2.8 3.5 4.2 4.9

Episodes

400

200

0

200

400

B) Pursuit

×103
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Episodes

600

500

400

300

200

100

0

100

C) Pressure Plate

×104

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Episodes

0.0

0.2

0.4

0.6

0.8

1.0

M
e
a
n
 E

p
is

o
d

e
 R

e
tu

rn

D) LB-Foraging

×104
0.0 0.5 1.0 1.5 2.0

Episodes

0

5

10

15

20

E) 5m_vs_6m

×104
0.0 0.5 1.0 1.5 2.0

Episodes

0

5

10

15

20

F) 10m_vs_11m

×104

COMA

LICA

PRD-V-MAPPO

MAPPO-G2ANet
HAPPO

QMix
MAPPO

PRD-MAPPO-soft

PRD-MAPPO-shared

0.0 0.5 1.0 1.5 2.0

Episodes

0

5

10

15

20

M
e
a
n
 E

p
is

o
d

e
 R

e
tu

rn

G) 3s5z

×104

Figure 2: Average reward vs. episode for PRD-MAPPO-soft, PRD-MAPPO, PRD-
V-MAPPO, COMA, LICA, QMix, MAPPO, MAPPO-G2ANet on A) team collision
avoidance, B) pursuit, C) pressure plate, D) Level-Based Foraging, E) StarCraft
5m_vs_6m, F) StarCraft 10m_vs_11m tasks, and G) StarCraft 3s5v. Solid lines indicate
the average over 5 random seeds, and shaded regions denote a 95% confidence interval. Approaches
that incorporate PRD (PRD-MAPPO and PRD-MAPPO-soft) tend to outperform all other ap-
proaches, indicating that PRD can be leveraged to improve PPO by improving credit assignment.
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5 Results and Discussion

The reward curves for all tasks are shown in Fig. 2. We found that of the algorithms we tested, only
PRD-MAPPO-soft, PRD-MAPPO-shared, and PRD-MAPPO performed consistently well across
all environments, with PRD-MAPPO-soft tending to perform the best. PRD-MAPPO-soft was
outperformed only in one environment (pressure plate) by one algorithm (QMix), and in general
outperformed all other algorithms on all tasks.

5.1 Relevant Set Visualization

To gain more insight into the relevant set selection process, in Fig. 3 we visualized the attention
weights inferred by a trained group of agents in the Collision Avoidance task. In this task, agents
are rewarded for reaching an assigned goal location while avoiding collisions. Agents are divided into
three teams, consisting of agents 1-8, 9-16, and 17-24, and are only penalized for colliding with other
agents on their team. We therefore expect agents to assign large attention weights only to other
agents on their same team, because each agents’ reward is independent of the actions of agents on
other teams. Fig. 3 displays the average attention weights as an M x M grid, with the ith row and
jth column corresponding to the average attention weight that agent i assigns to agent j. Because
agents always assign an attention weight of 1 to themselves, we remove these elements from the
visualization as they are uninformative. We find that, as expected, agents assign considerably non-
zero attention weights only to other agents on their same team, while assigning near-zero attention
weights to all other agents. Attention weights were averaged over 5000 independent episodes.

5.2 Policy Gradient Estimator Variance Analysis
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Figure 3: Relevant set visualization in
Collision Avoidance environment. We
visualize the average attention weight that
each agent assigns to every other agent,
averaged across 5000 independent episodes.
Because agents always assign an attention
weight of 1 to themselves, we remove those
elements from the plot as they are uninforma-
tive. We notice that generally agents assign a
far higher attention weight to agents in their
team, compared to agents on other teams,
which is to be expected given that only an
agent’s teammates are capable of influencing
its rewards.

To empirically verify the claim that partial reward
decoupling decreases the variance of MAPPO pol-
icy gradient estimates, we estimate the variance of
MAPPO and PRD-MAPPO at various points during
training. For maximum comparability, we compute
the variance for both MAPPO and PRD-MAPPO
using data gathered from the same policy, taken at
1000-episode intervals during the training of PRD-
MAPPO. Using these policies, we collect 100 in-
dependent batches of data, and differentiate the
MAPPO or PRD-MAPPO surrogate objective eval-
uated on each batch, to obtain 100 independent gra-
dient estimates for both approaches for each policy.
Finally, we arrive at a scalar empirical variance es-
timate, by taking the trace of the covariance ma-
trix estimated using each batch of 100 gradient es-
timates, along with a 95% confidence interval. The
results are plotted in Fig. 4. In general, we find that
PRD-MAPPO tends to avoid the spikes in gradient
variance present in MAPPO, which may explain its
improved stability and asymptotic performance.

6 Related Work

Many recent approaches have been proposed to deal
with the credit assignment problem. G2ANet (Liu
et al., 2020), for instance, proposed a novel attention-
based game abstraction mechanism that enables the
critic to better isolate important interactions among
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agents, and ignore unimportant ones (although explicit decoupling is not done, as in PRD). Coun-
terfactual Multi-Agent Policy Gradient (COMA) (Foerster et al., 2018) proposed a novel counter-
factual baseline that allows each agent to more precisely determine the effect that its action had
on group reward by conditioning on the actions of all other agents. COMA builds on the idea
of difference rewards (Wolpert & Tumer, 2002), in which each agent uses a modified reward that
compares the shared reward to a counterfactual situation in which the agent took some default ac-
tion. Value-decomposition actor-critics (VDAC) (Su et al., 2021) uses value decomposition networks
(Sunehag et al., 2017; Rashid et al., 2018) as critics for credit assignment in the actor-critic frame-
work. Off-policy multi-agent decomposed policy gradients (Wang et al., 2020) is another multi-agent
policy-gradient algorithm that uses the idea of value decomposition, but applies it to a DDPG-style
off-policy policy gradient (Silver et al., 2014). Finally, Learning Implicit Credit Assignment for
Cooperative Multi-Agent Reinforcement Learning (LICA) (Zhou et al., 2020a) implicitly addressed
the credit assignment problem by representing a centralized critic as a hypernetwork, and finding an
end-to-end differentiable optimization setting where the policies simultaneously improve along the
joint action value gradients, thus serving as a proxy for finding optimal credit assignment strategies.

Figure 4: Gradient estimator variance vs. episode for team collision avoidance, pressure
plate, and LBF environments. Solid lines indicate the average over 5 random seeds, and shaded
regions denote a 95% confidence interval. PRD-MAPPO tends to avoid the dramatic spikes in
gradient variance demonstrated by MAPPO.

7 Limitations

The primary limitation of PRD-MAPPO is that PRD is not guaranteed to accelerate learning
in every environment, because some tasks cannot be decomposed (i.e., each agent’s relevant set
contains most or all other agents). For example, in the traffic junction experiment, it is possible
that learning is only somewhat improved by PRD because interactions among agents are too dense,
making decoupling less effective.

8 Conclusions

We addressed the shortcomings of MAPPO, a state-of-the-art multi-agent reinforcement learning
algorithm. Specifically, we hypothesized that the credit assignment problem manifests itself in
policy gradient estimator variance. Based on this hypothesis, we proposed integrating PRD into
MAPPO as a strategy to improve credit assignment, yielding a new multi-agent model-free RL
algorithm, PRD-MAPPO. We demonstrated that PRD-MAPPO provides significant improvements
both in learning efficiency and stability, across a diverse set of tasks, compared to both MAPPO and
several state-of-the-art MARL algorithms such as QMix, LICA, and COMA. We empirically verified
the hypothesis that PRD decreases the variance of the gradient estimates of MAPPO. Finally, we
visualized the relevant sets inferred by PRD, and found that it correctly grouped together agents
that should cooperate. The improvements in learning speed and stability, combined with decreased
gradient variance and sensible relevant set estimation, indicate that PRD, used in the context of
MAPPO, provides a useful credit assignment strategy for multi-agent problems.
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A Detail Task Descriptions

Collision Avoidance: 3 teams of 8 agents each exist in a square bounded 2D region. Agents receive
a reward for reaching their assigned goal location, and receive a penalty for colliding with other agents
belonging to the same team. Agents therefore need only cooperate with other agents on their team
to avoid collisions. Both the agents and goals are initialized in random locations. The observation
space consists of the agent’s position, velocity, team ID, and goal position. The agents can take 5
possible actions that allow them to move either north, south, east, west or remain stationary. The
reward function is the l2 distance between the agent position and the goal position multiplied by a
scalar value of 0.1. On collision, the participating agents receive a -1 reward each. The environment
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terminates if all agents reach their assigned goal location or 100 timesteps run out. While training
decentralized policies, relative positions of all other agents and their team ID are also included in
the observation space. Episodes last a maximum of 100 timesteps. This environment was modified
from the cooperative navigation environment first developed by Lowe et al. (2017). The code for
this environment can be found at https://github.com/openai/multiagent-particle-envs (MIT
License).

Pursuit: 8 agents exist in a 16 x 16 grid with an obstacle in the center. To receive a re-
ward, two agents must coordinate their actions to surround randomly moving “evader” agents on
two sides. There are 30 evaders in the environment. Each pursuer observes a 7 x 7 grid cen-
tered around itself with 3 channels, indicating the positions of walls, other agents, and evaders,
respectively. Once an evader is caught, it is removed from the environment. The environ-
ment terminates when every evader has been caught, or when 500 timesteps are completed.
The environment is available in the PettingZoo MARL benchmark suite (Terry et al., 2021)
at https://pettingzoo.farama.org/environments/sisl/pursuit/ (MIT License) and was first
proposed by Gupta et al. (2017).

Pressure plate: 6 agents exist in a grid, divided into 6 separate chambers by gates. In any given
chamber, a particular agent can open the gate by standing on a special grid cell known as the
pressure plate. To successfully solve the task, this agent must remain on the pressure plate until
the other agents have successfully moved into the next chamber. The goal is for one particular
agent to traverse all six chambers and arrive at a goal location in the final chamber. Each agent
observes a 5x5 square around its location, with a separate channel for each type of entity in the
environment (e.g., walls, pressure plates, doors, agents, and goals). The agent’s (x,y) coordinates
are concatenated to the end of the observation vector. The action space is discrete and has five
possibilities: up, down, left, right, and remain stationary. Each agent receives rewards independent
of other agents. If an agent is in the room that contains their assigned plate, their reward is the
negative normalized Manhattan distance between their current position and the plate. Otherwise,
their reward is the number of rooms between their current room and the room that contains their
assigned plate. Episodes last a maximum of 70 timesteps. The code for this environment is available
at https://github.com/uoe-agents/pressureplate (MIT License).

Level-Based Foraging (LBF): Agents navigate a grid world and collect food items by cooperating
with other agents. Each agent and food item is assigned a level and are randomly distributed
throughout the environment. Successfully collecting a food item of a particular level requires the sum
of the levels of the agents involved to be greater than or equal to the level of the food item. Agents
are rewarded based on the level of the food items they help collect, divided by their contribution
(their level). Reward discounting incentivizes agents to collect all food items as quickly as possible to
maximize returns. The observation space consists of the agent’s position in the grid, its level, relative
positions of all other agents and food items, and their levels. The agents can either move in one of the
four directions, collect a food item, or do nothing. Episodes last a maximum of 70 timesteps. The
code for this environment can be found at https://github.com/semitable/lb-foraging (MIT
License).

Lightweight StarCraft (SMAClite): SMAClite is a lightweight version of the StarCraft II game
engine. It is computationally less expensive relative to SC II and provides a simple “pythonic”
framework to add custom environments and make alterations to the environment logic. The obser-
vation space consists of the relative positions, unit type, health and shield strength of the agent’s
allies and enemies within the field of view of the agent and the health and shield strength of it-
self. The agents can move in any of the 4 cardinal directions, remain stationary, or attack any of
the enemy agent within its field of view. Each combat scenario is run for 100 timesteps, though
agents may die before this time. We consider three different battle scenarios, 1) 5m_vs_6m, where
5 agent-controlled marines battle 6 enemy marines, 2) 10m_vs_11m, where 10 agent-controlled
marines battle 11 enemy marines, and 3) 3s5z, where 3 agent-controlled stalkers and 5 agent-
controlled zealots battle 3 enemy stalkers and 5 enemy zealots. The code for SMAClite is available
at https://github.com/uoe-agents/smaclite (MIT License).
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B Pseudocode

Algorithm 1 PRD-MAPPO
1: Initialize θ, the parameters for policy π, ω, the parameters for state-action value critic Q and ϕ,

the parameters for state value critic V , using orthogonal initialization (Hu et al., 2020)
2: Set learning rate α
3: while step ≤ stepmax do
4: set data buffer D = {}
5: for i = 1 to batch_size do
6: τ = [] – empty list
7: initialize h

(1)
0,π, . . . , h

(M)
0,π actor RNN states

8: initialize h
(1)
0,V , . . . , h

(M)
0,V state value RNN states

9: initialize h
(1)
0,Q, . . . , h

(M)
0,Q state-action value RNN states

10: for t = 1 to T do
11: for all agents a do
12: u

(a)
t , h

(a)
t,π = π(o(a)

t , h
(a)
t−1,π; θ)

13: end for
14: (q(1)

t , . . . q
(M)
t ), (h(1)

t,Q . . . h
(M)
t,Q ), Wprd,t = Q(s(1)

t . . . s
(M)
t , u

(1)
t . . . u

(M)
t , h

(1)
t−1,Q . . . h

(M)
t−1,Q; ω)

15: (v(1)
t , . . . v

(M)
t ), (h(1)

t,V . . . h
(M)
t,V ) = V (s(1)

t . . . s
(M)
t , u

(1)
t . . . u

(M)
t , h

(1)
t−1,V . . . h

(M)
t−1,V ; ϕ) – we

mask out the actions of agent a while calculating its state value v(a)

16: Execute actions ut, observe rt, st+1, ot+1
17: τ += [st, ot, ht,π, ht,V , ut, rt, st+1, ot+1]
18: end for
19: Compute relevant set R1, ..., RM using Wprd
20: Compute return Gi for each agent i = 1, ..., M , to learn the Q function and total relevant-set

return Ḡi =
∑
j∈Ri

Gj for each agent i to learn V function on τ and normalize with PopArt

21: Compute advantage estimate Â1, ..., ÂM via GAE on state value estimates on τ , using
PopArt

22: Split trajectory τ into chunks of length L
23: for l = 0, 1, . . . , T//L do
24: D = D ∪ (τ [l : l + T ], Â[l : l + L], G[l : l + L], Ḡ[l : l + L])
25: end for
26: end for
27: for mini-batch k = 1, . . . , K do
28: b← random mini-batch from D with all agent data
29: for each data chunk c in the mini-batch b do
30: update RNN hidden states for π, Q and V from first hidden state in data chunk
31: end for
32: end for
33: Adam update θ on L(θ) with data b
34: Adam update ω on L(ω) with data b
35: Adam update ϕ on L(ϕ) with data b
36: end while

C Additional Results

We experimented with various methods for selecting agent relevant sets, as described below. Reward
curves for each method in each of our four environments is shown in Fig. 5. PRD-MAPPO: As
described in Sec. 3.1 of the manuscript. The attention-weight threshold ϵ used to agent relevant
sets is held constant through training.



RLJ | RLC 2024

PRD-MAPPO-soft: As described in Sec. 4 of the manuscript. A variant of PRD-MAPPO in
which advantage terms are not excluded from the PPO update according to hard thresholding, but
rather advantage terms for each agent i are softly re-weighted according to the attention weights
applied by other agents to the actions of agent i.

PRD-MAPPO-ascend: Attention-weight threshold ϵ is linearly increased from 0 to θ over the
first N policy updates and then held constant, where θ and N are hyperparameters. This method
transitions from including all agents in the relevant set to having only a subset of agents in the
relevant set.

PRD-MAPPO-decay: Attention-weight threshold ϵ is linearly decreased from theta to 0 over the
first N policy updates, and then held constant. In this case, agents aggressively prune relevant sets
early on, transitioning to standard MAPPO by the end of training.

PRD-MAPPO-G2ANet: A semi-hard attention mechanism based on G2ANet Liu et al. (2020)
is used to select relevant sets. Agents are excluded from the relevant set if their associated attention
weight is exactly 0. This approach has the advantage that it allows a manual threshold on attention
weights to be avoided.

PRD-MAPPO-top-k: The agents with the top k highest attention weights are included in the
relevant set (where k is a hyperparameter).

D Implementation Details

The code was run on Lambda Labs deep learning workstation with 2-4 Nvidia RTX 2080 Ti graphics
cards. Each training run was run on one single GPU, and required approximately 2 days. The
hyperparamers used for our experiments are reported in the tables below:

E Hyperparameters

Hyperparameters used for MAPPO variants, PRD variants, PRD_V_MAPPO, QMix, LICA and
COMA that are common to all tasks are shown in Tables 23, 4 5, and 6 respectively. The
task-specific hyperparameters considered in our grid search for MAPPO variants, PRD variants,
PRD_V_MAPPO QMix, LICA, and COMA are shown in Tables 7, 8, 9 10, 11, and 12, respec-
tively. Bold values indicate the optimal hyperparameters.

Table 1: Episodic Length of all environments

common
environment max timesteps

collision avoidance 100
pursuit 500

pressure plate 70
level-based foraging 70

5m_vs_6m 100
10m_vs_11m 100

3s5z 100
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Table 2: Common Hyperparameters for all algorithms in all domains

common
hyperparameters value

optimizer AdamW
gamma 0.99

gae lambda 0.95
weight decay 0.0
optim epsilon 1e-5

max grad norm 10.0
network initialization orthogonal

Table 3: Common Hyperparameters for MAPPO, HAPPO, MAPPO-G2ANet, PRD-V-MAPPO,
PRD-MAPPO-shared and PRD-MAPPO-soft algorithms in all domains

common
hyperparameters value

critic loss huber loss
huber delta 10.0

num mini-batch 1
gae lambda 0.95

actor network rnn
recurrent data chunk length 10

recurrent num layers 1
rnn hidden dim 64

value normalization PopArt

Table 4: Common Hyperparameters for QMix in all domains.

common
hyperparameters value

buffer size 5000
batch size 32

hypernet layers 2
hypernet hidden dim 32

target network update interval 200
td lambda 0.8

epsilon decay steps 2000 episodes
epsilon start 1.0
epsilon end 0.1
value loss huber loss

huber delta 10.0
q network rnn

rnn hidden dim 64
recurrent data chunk length 10

recurrent num layers 1
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Table 5: Common Hyperparameters for LICA.

common
hyperparameters value

hypernet layers 2
hypernet hidden dim 64

target network update interval 200
td lambda 0.8
critic loss huber loss

huber delta 10.0
actor network rnn

actor rnn hidden dim 64
actor recurrent data chunk length 10

actor recurrent num layers 1

Table 6: Common Hyperparameters for COMA.

common
hyperparameters value

target network update interval 200
td lambda 0.8
critic loss huber loss

huber delta 10.0
actor network rnn

rnn hidden dim 64
recurrent data chunk length 10

recurrent num layers 1

Table 7: MAPPO and MAPPO-G2ANet hyperparameter sweep. Bold values indicate the optimal
hyperparameters.

Environment
Name epochs num_episodes value_lr policy_lr clip entropy_pen

Collision
Avoidance [5, 10, 15] [5, 10] [1e-4, 5e-4, 1e-3] [1e-4, 5e-4, 1e-3] [0.05, 0.2] [1e-3, 8e-3, 1e-2]

Pursuit [5, 10, 15] [2, 5, 10] [1e-4, 5e-4, 1e-3] [1e-4, 5e-4, 1e-3] [0.05, 0.2] [1e-3, 8e-3, 1e-2]
Pressure

Plate [5, 10, 15] [5, 7, 10] [1e-4, 5e-4, 1e-3] [1e-4, 5e-4, 1e-3] [0.05, 0.1, 0.2] [1e-3, 1e-2, 5e-2, 1e-1]

Level-Based
Foraging [1, 5, 10] [1, 5, 10] [5e-4, 1e-3, 5e-3] [5e-4, 1e-3, 5e-3] [0.1, 0.2] [1e-3, 5e-3, 1e-2]

5m_vs_6m [1, 5, 10] [5, 10] [1e-4, 3e-4, 5e-4] [1e-4, 3e-4, 5e-4] [0.1, 0.2] [0.0, 5e-3, 1e-2]
10m_vs_11m [1, 5, 10] [5, 10] [1e-4, 3e-4, 5e-4] [1e-4, 3e-4, 5e-4] [0.1, 0.2] [0.0, 5e-3, 1e-2]

3s5z [1, 5, 10] [5, 10] [1e-4, 3e-4, 5e-4] [1e-4, 3e-4, 5e-4] [0.1, 0.2] [0.0, 5e-3, 1e-2]

Table 8: PRD-MAPPO-global and PRD-MAPPO-soft hyperparameter sweep. Bold values indicate
the optimal hyperparameters.

Environment
Name epochs num_episodes value_lr policy_lr clip entropy_pen

Collision
Avoidance [5, 10, 15] [5, 10] [1e-4, 5e-4, 1e-3] [1e-4, 5e-4, 1e-3] [0.05, 0.2] [0.0, 1e-3, 8e-3]

Pursuit [5, 10, 15] [2, 5] [1e-4, 5e-4, 1e-3] [1e-4, 5e-4, 1e-3] [0.05, 0.2] [1e-3, 8e-3, 1e-2]
Pressure

Plate [5, 10, 15] [5, 7, 10] [1e-4, 5e-4, 1e-3] [1e-4, 5e-4, 1e-3] [0.1, 0.2] [1e-3, 1e-2, 5e-2, 1e-1]

Level-Based
Foraging [1, 5, 10] [1, 5, 10] [5e-4, 1e-3, 5e-3] [5e-4, 1e-3, 5e-3] [0.1, 0.2] [0.0, 1e-3, 8e-3]

5m_vs_6m [1, 5, 10] [5, 10] [1e-4, 3e-4, 5e-4] [1e-4, 3e-4, 5e-4] [0.1, 0.2] [0.0, 1e-3, 1e-2]
10m_vs_11m [1, 5, 10] [5, 10] [1e-4, 3e-4, 5e-4] [1e-4, 3e-4, 5e-4] [0.1, 0.2] [0.0, 1e-3, 1e-2]

3s5z [1, 5, 10] [5, 10] [1e-4, 3e-4, 5e-4] [1e-4, 3e-4, 5e-4] [0.1, 0.2] [0.0, 1e-3, 1e-2]
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Table 9: PRD-V-MAPPO hyperparameter sweep. Bold values indicate the optimal hyperparameters.

Environment
Name epochs num_episodes value_lr policy_lr clip entropy_pen threshold

Collision
Avoidance [5, 10, 15] [5, 10] [1e-4, 5e-4, 1e-3] [1e-4, 5e-4, 1e-3] [0.05, 0.2] [0.0, 1e-3, 1e-2] [0.05, 0.12, 0.2]

Pursuit [5, 10, 15] [2, 5] [1e-4, 5e-4, 1e-3] [1e-4, 5e-4, 1e-3] [0.05, 0.2] [1e-3, 8e-3, 1e-2] [0.2, 0.3, 0.5]
Pressure

Plate [5, 10, 15] [5, 7, 10] [1e-4, 5e-4, 1e-3] [1e-4, 5e-4, 1e-3] [0.1, 0.2] [1e-3, 1e-2, 5e-2, 1e-1] [0.2, 0.4]

Level-Based
Foraging [1, 5, 10] [1, 5, 10] [5e-4, 1e-3, 5e-3] [5e-4, 1e-3, 5e-3] [0.1, 0.2] [0.0, 1e-3, 8e-3] [0.15, 0.2, 0.33]

5m_vs_6m [1, 5, 10] [5, 10] [1e-4, 3e-4, 5e-4] [1e-4, 3e-4, 5e-4] [0.1, 0.2] [0.0, 5e-3, 1e-2] [0.15, 0.2, 0.33]
10m_vs_11m [1, 5, 10] [5, 10] [1e-4, 3e-4, 5e-4] [1e-4, 3e-4, 5e-4] [0.1, 0.2] [0.0, 5e-3, 1e-2] [0.1, 0.2, 0.33]

3s5z [1, 5, 10] [5, 10] [1e-4, 3e-4, 5e-4] [1e-4, 3e-4, 5e-4] [0.1, 0.2] [0.0, 5e-3, 1e-2] [0.12, 0.2, 0.33]

Table 10: Hyperparameter sweep for QMix. Bold values were selected for training the agent.

Environment
Name learning rate update interval (episodes) hard interval

Collision
Avoidance [1e-4, 5e-4, 1e-3] [5, 10, 20] [100, 200, 500]

Pursuit [1e-4, 5e-4, 1e-3] [5, 10, 20] [100, 200, 500]
Pressure

Plate [1e-4, 5e-4, 1e-3] [5, 10, 20] [100, 200, 500]

LB-Foraging [1e-4, 5e-4, 1e-3] [5, 10, 20] [100, 200, 500]
5m_vs_6m [1e-4, 5e-4, 1e-3] [5, 10, 20] [100, 200, 500]

10m_vs_11m [1e-4, 5e-4, 1e-3] [5, 10, 20] [100, 200, 500]
3s5z [1e-4, 5e-4, 1e-3] [5, 10, 20] [100, 200, 500]

Table 11: Hyperparameter sweep for LICA. Bold values were selected for training the agent.

Environment
Name critic_lr actor_lr entropy_coeff

Collision
Avoidance [1e-4, 5e-4, 1e-3] [1e-4, 5e-4, 1e-3] [1e-2, 1e-1]

Pursuit [1e-4, 5e-4, 1e-3] [1e-4, 5e-4, 1e-3] [1e-2, 1e-1]
Pressure

Plate [1e-4, 5e-4, 1e-3] [1e-4, 5e-4, 1e-3] [1e-2, 1e-1]

LB-Foraging [1e-3, 5e-3, 1e-2] [1e-3, 5e-3, 1e-2] [1e-2, 1e-1]
5m_vs_6m [1e-4, 5e-4, 1e-2] [1e-4, 5e-4, 1e-3] [1e-2, 1e-1]

10m_vs_11m [1e-4, 5e-4, 1e-2] [1e-4, 5e-4, 1e-3] [1e-2, 1e-1]
3s5z [1e-4, 5e-4, 1e-2] [1e-4, 5e-4, 1e-3] [1e-2, 1e-1]

Table 12: Hyperparameter sweep for COMA. Bold values indicate the optimal hyperparameters.

Environment
Name value_lr policy_lr entropy_coeff

Collision
Avoidance [1e-4, 5e-4, 1e-3] [5e-4, 7e-4, 1e-3] [1e-3, 8e-3, 1e-2]

Pursuit [1e-4, 5e-4, 1e-3] [1e-4, 5e-4, 1e-3] [1e-3, 8e-3, 1e-2]
Pressure

Plate [1e-4, 5e-4, 1e-3] [1e-4, 5e-4, 1e-3] [1e-3, 8e-3, 1e-2]

LB-Foraging [1e-3, 5e-3, 1e-2] [1e-3, 5e-3, 1e-2] [1e-3, 8e-3, 1e-2]
5m_vs_6m [1e-4, 5e-4, 1e-3] [1e-4, 5e-4, 1e-3] [1e-3, 8e-3, 1e-2]

10m_vs_11m [1e-4, 5e-4, 1e-3] [1e-4, 5e-4, 1e-3] [1e-3, 8e-3, 1e-2]
3s5z [1e-4, 5e-4, 1e-3] [1e-4, 5e-4, 1e-3] [1e-3, 8e-3, 1e-2]
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D) LB-Foraging
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C) Pressure Plate
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B) Pursuit
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E) 5 marines vs 6 marines
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F) 10 marines vs 11 marines
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A) Team Collision Avoidance
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G) 3 Stalkers and 5 Zealots

Figure 5: Average reward vs. episode for PRD-MAPPO-soft, PRD-MAPPO-shared,
PRD-MAPPO-ascend, PRD-MAPPO-decay, PRD-MAPPO, PRD-MAPPO-top-K,
and PRD-MAPPO-G2ANet on A) team collision avoidance, B) pursuit, C) pressure
plate, D) Level-Based Foraging tasks, E) StarCraft 5 marines vs. 6 marines, F) Star-
Craft 10 marines vs. 11 marines, and G) StarCraft 3 Stalkers and 5 Zealots. Solid lines
indicate the average over 5 random seeds, and shaded regions denote a +/- 1 standard deviation
confidence interval. PRD-MAPPO-soft tended to perform the best across all tasks.


