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Abstract

We study a sequential decision problem where the learner faces a sequence of K-
armed bandit tasks. The task boundaries might be known (the bandit meta-learning
setting), or unknown (the non-stationary bandit setting). For a given integer M ≤
K, the learner aims to compete with the best subset of arms of size M . We design an
algorithm based on a reduction to bandit submodular maximization and show that
for T time steps comprised of N tasks, in the regime of large N and small number
of optimal arms M , its regret in both settings is smaller than the simple baseline
of Õ(

√
KNT ) that can be obtained by using standard algorithms designed for non-

stationary bandit problems. For the bandit meta-learning problem with fixed task
length τ , we show that the regret of the algorithm is bounded as Õ(NM

√
Mτ +

(M4KN2)1/3τ). Under some additional assumptions on the identifiability of the
optimal arms in each task, we show a bandit meta-learning algorithm with an
improved Õ(N

√
Mτ + (NMK1/2)1/2τ3/4) regret, where the order of the leading

term (the first term) is optimal up to logarithmic factors, and the algorithm does
not need the knowledge of M, N , and T in advance.

1 Introduction

Recommendation platforms interact with customers and must discover which items in their large
catalog give maximum satisfaction to each user. These interactions are often sequential and each
can be modeled as a multi-armed bandit problem. When a recommendation platform targets a new
sub-population (e.g., demographic) of customers, its administrators may naturally assume that only
a small subset of their large catalog of items would be attractive to this new group of users. Under
this assumption, it would be beneficial for the platform to identify this subset as soon as possible,
and then narrow down its exploration within the subset instead of over the entire catalog. This
problem can be naturally modeled as meta-learning, where each task is an instance of a multi-armed
bandit problem and the similarity between the tasks is in the existence of a subset of arms (items)
such that at least one of them has a high expected reward, or is even optimal, in every single task
(for the customers in the sub-population). In this paper, we study this meta-learning problem and
its extensions to the non-stationary setting (e.g., when the users’ affinity changes within a session).

Formally, we consider the problem where a learner faces N instances of a K-armed bandit task
sequentially. For simplicity, we assume that the tasks are of equal length and each task lasts for τ
rounds (for some positive integer τ), and therefore the total duration of the game is T = Nτ . At the
beginning of task n ∈ [N ],1 an adversary chooses the mean reward vector of the arms, rn ∈ [0, 1]K .

1For any integer K, we let [K] = {1, . . . , K}, and for any (multi-)set S, denote by |S| the number of distinct
elements in S.
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Then, the learner interacts with the bandit task specified by this mean reward vector for τ time
steps: at time t ∈ [T ] belonging to task n ∈ [N ],2 if the learner takes an action3 a ∈ [K], it
receives a reward signal rn(a)+ηn,t(a), where for all n and t, the ηn,t(a) are independent zero-mean,
[−1/2, 1/2]-valued noise variables, so that the expected reward is rn(a). We denote by a∗

n the optimal
arm in task n, and by Hn,t the history of the actions taken and rewards observed by the learner
up to, but not including, time step t in task n. At time step t, the learner computes a distribution
πn,t over the actions as a function of Hn,t and some other parameters of the problem, samples an
action An,t from πn,t, and plays it. Later, we will relax these assumptions and discuss extensions
to the cases where reward functions can change within a task, tasks have different lengths, and task
boundaries might be unknown.

We are interested in minimizing the worst-case T -step dynamic regret of the learner relative to the
set of optimal arms, defined as

Rml
T = sup

(rn)N
n=1

E

[
N∑

n=1

τ∑
t=1

rn(a∗
n)− rn(An,t)

]
, (1)

where the expectation is taken over the learner’s random actions that may depend on the realization
of the noise in the observed rewards, as well as any potential internal randomization of the learner.

We mainly consider problems where the set of optimal arms is small, which, in our recommendation
example, corresponds to the case where only a small subset of the large catalog of items is attractive
to users. More formally, we assume (for now) that

|{a∗
n}N

n=1| ≤M (2)

for some M < K. We call such problems sparse bandit meta-learning problems. We are interested
in designing algorithms that can exploit such sparsity structure.

A near-optimal solution under an identifiability assumption. In Section 2, we consider
the sparse bandit meta-learning problem under some identifiability assumption for the optimal arms
of each task, namely, that in each task the gap between the rewards of the optimal and second best
arms is large enough. We propose two algorithms (both defined in Algorithm 1) with near-optimal
performance guarantees. Our algorithms do not need N, T, M as input.

The algorithms are hierarchical: First, a top level algorithm is used to learn the best subset of
arms of cardinality at most M ,4 which determines the set of arms to be used in the next bandit
task. This algorithm is either in an exploration or exploitation mode. In exploration mode, a best-
arm-identification (BAI) algorithm is run in the next bandit task, which, given the identifiability
assumption, finds the best arm in the task (out of all K arms), while in exploitation mode, using the
information about which arms were found to be the best in previous tasks, it selects an M -subset of
arms and runs a base bandit algorithm in the next task (the difference between our two algorithms is
how they perform this step). In the example of a recommendation platform serving many customers,
this means that the recommender system selects a small collection of items for each user and tries
to find the best item, or sequence of items, in the catalog for that user.

Denoting the minimax regret of the base algorithm in a k-armed bandit task of length τ by Bτ,k

(without additional assumptions, typical “good” bandit algorithms achieve Bτ,k = Õ(
√

τk)), an
ideal algorithm for the sparse bandit meta-learning problem, which knows the set of optimal arms
and runs the base algorithm with this arm set on every task, can achieve an O(NBτ,M ) dynamic
regret, improving the potentially much larger O(NBτ,K) regret achievable without Equation (2).
A naive reduction to bandit submodular maximization would yield only an Õ(NBτ,M + N2/3)
regret bound. In comparison, our first, computationally efficient algorithm G-BASS achieves an
O(NBτ,M(1+log N))+ Õ(N1/2) regret, paying a small log N factor for computational efficiency in the

2Note that n = ⌊(t − 1)/τ⌋ + 1.
3We use the terms “arm" and “action" interchangeably.
4Throughout we will call a subset of size at most M an M-subset.
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leading term. Importantly, G-BASS does not need a priori knowledge of M . To remove the extra
log N factor, we propose another method, E-BASS, which achieves the desired O(NBτ,M ) + Õ(N1/2)
regret, at the cost of an increased computational complexity, potentially exponential in M . Although
G-BASS is similar to the greedy solution in offline submodular maximization, the proof technique
we use for it is quite different, exploiting the special structure of the problem and resulting in an
improved regret guarantee.

A general solution by a reduction to bandit subset selection. We also present a solution
that is applicable even without an identifiability assumption. However, this solution requires N, T, M
as input. Nevertheless, the results improve existing solutions in this setting as shown in Table 1.

Our general solution is in fact applicable even in an agnostic setting, as we explain next. In our
solution, the learner competes with a sequence of arms (an)N

n=1 that has at most M ≤ K distinct
elements |{an}N

n=1| ≤M . In this formulation, M is the learner’s choice and indicates its prior belief
about the number of good arms (in terms of having high expected reward) in the sequence of N
bandit tasks (with the reward sequence (rn)N

n=1) that it is supposed to solve. We call a reward
sequence (rn)N

n=1 realizable if there exists a set of arms of size at most M that contains an optimal
arm (an arm with reward maxa∈[K] rn(a)) for every task n ∈ [N ]. If this cannot be guaranteed, we
refer to the setting as agnostic. In our motivating example of recommender systems, the realizable
case is when there exists a set of at most M items that contains the most desirable item for every
single customer (which may not be unique). This is obviously a strong assumption and may not
hold in many cases. Instead, a more realistic setting is when there exists a subset of items of size at
most M that contains a good (but not necessarily the best) item for most of the customers. This is
an example of the agnostic case.

In fact, we obtain stronger results and derive regret bounds for the more general adversarial setting
where the reward vector can change within each task. In this setting, we define the regret as

RT = sup
(rn,t)N,τ

n=1,t=1,

(an)N
n=1 : |{an}N

n=1|≤M

E

[
N∑

n=1

τ∑
t=1

rn,t(an)− rn,t(An,t)
]

, (3)

where the learner competes with the best M -subset of arms across a sequence of N “adversarial"
bandit tasks. Note that in the stochastic meta-learning setting, under assumption (2), this definition
simplifies to that of Rml

T given in (1) (with the expectation also corresponding to the noise in the
reward function). Therefore, throughout we will use RT to denote the regret.

To solve this more general problem, we take the same approach as before, and use a bi-level algorithm
with a subset-selection method on top. However, since now we do not assume that the best arms
can be identified in any task (and we do not even assume that the set of best arms is of cardinality
at most M), we cannot apply the explicit exploration step with a BAI algorithm as before. Instead,
for every task, the subset-selection algorithm selects an M -subset of arms and runs a base bandit
algorithm with this set as its action space for τ steps, which returns the total reward obtained to
the top algorithm as feedback. In Section 3.2, we present our resulting algorithm, called OS-BASS
(Algorithm 2) and show that its regret scales as Õ((M4KN2)1/3τ + MN

√
Mτ). The OS-BASS

algorithm is based on the aforementioned reduction to the bandit subset-selection problem, uses
a bandit submodular optimization method, and needs to know the number of change points N in
advance. Without any restriction on the set of optimal arms, the optimal rate for the non-stationary
bandit problem is Õ(

√
KNT ) (Auer et al., 2019b; Chen et al., 2019; Wei and Luo, 2021).5 This bound

can also be written as Õ(N
√

Kτ). For small N (large τ), this baseline rate cannot be improved.
Therefore, we are mainly interested in the regime of large number of tasks and small number of
optimal arms for which our regret bound is better than that for the baseline in the realizable case.

Sparse non-stationary setting. We also study the more general non-stationary setting where
the task boundaries are unknown (Russac et al., 2019; Auer et al., 2019a; Hong et al., 2020b; Wei

5This rate can be achieved by algorithms such as AdSwitch (Auer et al., 2019b) without any prior knowledge of T
or N .
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Table 1: A comparison of our results with existing results in literature. The order of regret bounds
is given up to logarithmic factors (meta/non-st. refer to the meta-learning/non-stationary bandit
settings, adv./stoch. refer to the adversarial/stochastic rewards, respectively).

Algorithm Setting Tasks Comparator
Prior
knowl-
edge

Regret bounds

Independent EXP3
for each task meta adv. n/a none

√
KNT = N

√
Kτ

EXP3.S (Auer et al.,
1995) non-st. adv. n/a N

√
KNT = N

√
Kτ

Zheng et al. (2019) non-st. adv. agnostic M, N
(sN)1/3(MT )2/3 +
M
√

sT log K + MK3

Balcan et al. (2022) meta adv. agnostic none NBτ,M + N1− 1
6 log K

G-BASS (under
identifiability as-
sumptions)

meta stoch. realizable none NBτ,M +
√

MKBτ,KNτ +
o(
√

N)

OS-BASS meta adv. agnostic M, N, T
(M4KN2 log K)1/3τ +
MN
√

Mτ

OS-BASS non-st. stoch. agnostic M, N, T
(MKN2 log K)1/3T/N +
M
√

MTN

and Luo, 2021; Suk and Kpotufe, 2022; Abbasi-Yadkori et al., 2023). A single user interacting
with a recommender system is an example of the non-stationary setting (as the system does not
necessarily know when the user’s mood/affinity changes), while a recommendation platform serving
many customers is an example of the meta-learning setting (we observe when the current session
ends and a new customer arrives). More formally, in the non-stationary setting, the learner knows
the number of tasks N and the horizon T before the game begins, but the start and duration of the
tasks, {τn}N

n=1, are unknown.

Related work. Our solution is based on online subset selection, with many connections to the
online learning and bandit literature. We discuss the most relevant works here; other related papers
are discussed in Appendix G. Table 1 shows a comparison between our results and existing results
in literature.

The sparse non-stationary bandit problem is the bandit variant of experts problem with small set
of optimal arms whose study goes back to Bousquet and Warmuth (2002). The only result in the
bandit setting that we are aware of is the work of Zheng et al. (2019), who show an algorithm
for competing against a small set of optimal arms in an adversarial setting with sparse reward
vectors. The solution of Zheng et al. (2019) has similarities with our approach, as both solutions
are reduction-based and employ a meta-learner that plays with base algorithms. Similarly to our
approach, the meta-learner of Zheng et al. (2019) needs to satisfy a static regret guarantee, while the
base algorithm needs to satisfy a dynamic regret guarantee. The algorithm of Zheng et al. (2019)
also requires the number of change points N and subset size M as input and its dynamic regret is
Õ((sN)1/3(MT )2/3 + M

√
sT log K + MK3 log T ) , where s = maxn ∥rn∥0 is the number of non-zero

elements in reward vectors. Notice that without this sparsity condition, the above dynamic regret
is worse than the Õ(

√
KNT ) regret of EXP3.S of Auer et al. (1995), a variant of the well-known

EXP3 algorithm (given also by Auer et al., 1995) which is designed for the non-stationary adversarial
multi-armed bandit setting, to compete with a sequence of arms with a given maximum number of
switches (i.e., minimizing the regret in (3) for M = K). When s is a small constant, the above
bound improves upon the regret of EXP3.S when M4/3(T/N)1/3 < K < (TN/M2)1/5.

Balcan et al. (2022) studies bandit meta-learning problems with adversarial bandit tasks. They intro-
duce a meta-learning algorithm that tunes the initialization and step-size of the online mirror decent
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base algorithm. Balcan et al. (2022) show that their algorithm achieves minβ∈(0,1] Õ(N
√

HβKβτ/β+
N1−β/6) total regret, where Hβ is a notion of entropy. When a subset of size M contains the op-
timal arms of most tasks, then by the choice of β = 1/ log(K) the regret bound simplifies to
Õ(N

√
Mτ + N1−1/(6 log K)). Compared to our results in the most general setting (cf. Section 3),

their convergence rate of Õ(1/N1/(6 log K)) is much slower than our convergence rate of Õ(1/N1/3).
However, their task-averaged regret is O(

√
Mτ), whereas it is O(M

√
Mτ) in our case. Finally, the

regret bound of Balcan et al. (2022) adaptively holds for the best value of M , while M is an input to
our algorithm. However, under the identifiability condition, our algorithm G-BASS has a better re-
gret guarantee (matching the task-averaged regret while significantly improving on the other term),
and it also automatically adapts to the problem parameters.

Meta-, multi-task, and transfer learning (Baxter, 2000; Caruana, 1997; Thrun, 1996) are related
machine learning problems concerned with learning some shared information across tasks. In that
sense, our work is connected to other theoretical studies (Franceschi et al., 2018; Denevi et al.,
2018b;a; 2019; Kong et al., 2020; Khodak et al., 2019; Tripuraneni et al., 2021) though indeed we
focus on the bandit learning setting. Various other ways of modelling structure have been proposed
and studied in bandit meta-learning. A special case of our problem was studied by Azar et al.
(2013) where K-armed bandit problems are sampled from a prior over a finite set of tasks. Park
et al. (2021) consider a continual learning setting where the bandit environment changes under a
Lipschitz condition. Kveton et al. (2020) observe that the hyperparameters of bandit algorithms can
be learned by gradient descent across tasks. Learning regularization for bandit algorithms (Kveton
et al., 2021; Cella et al., 2020) are also proposed, building on the biased regularization ideas from
Baxter (2000). Interestingly, these contextual problems are also connected to latent and clustering
of bandit models (Maillard and Mannor, 2014; Gentile et al., 2014; Hong et al., 2020a;b).

2 Sparse meta-learning under an identifiability condition

In this section, we study our sparse meta-learning setting in the realizable case under an identifiability
assumption (Assumption 2.1) that the learner has access to an exploration method that reveals
optimal actions. We further assume that the tasks are of equal length τ .
Assumption 2.1 (Efficient Identification). There exists a set of M arms that has a non-empty
intersection with the set of optimal arms in each task. Also, the learner has access to a best-arm-
identification (BAI) procedure that for some δ ∈ [0, 1], with probability at least 1 − δ/N , identifies
the set of optimal arms if executed in a task (for at most τ steps).

The assumption requires the BAI procedure to return only optimal arms. This choice is for simplicity
and could easily be relaxed to allow it to return all arms with sub-optimality gap smaller than
Θ(
√

M log(N/δ)/τ).

Assumption 2.1 is a special case of the priced feedback model in Streeter and Golovin (2007). If
for any task n with optimal arms S∗

n ⊂ [K], we have rn(a∗
n) − maxa̸∈S∗

n
rn(a) ≥ ∆, ∀a∗

n ∈ S∗
n

(note that rn(a∗
n) is the same for all a∗

n ∈ S∗
n) for some ∆ = Θ(

√
K log(N/δ)/τ), a properly tuned

phased elimination (PE) procedure (Auer and Ortner, 2010) returns the set of optimal arms with
probability at least 1 − δ/N . The cumulative worst-case regret of PE in a task with K arms is
B′

τ,K = Θ(Bτ,K) (Auer and Ortner, 2010), see (Lattimore and Szepesvári, 2020, Exercise 6.8) for
details. With a slight abuse of notation, in this section, we use Bτ,K to denote max{Bτ,K , B′

τ,K}.

We disentangle exploration (Exr) and exploitation (Ext) at a meta-level. In Exr mode, the learner
executes a BAI on all arms and (by Assumption 2.1) with high probability observes the set of optimal
actions S∗

n. The price of this information is a large regret denoted by Cinfo, which for a properly
tuned PE, we know Cinfo = Bτ,K > B′

τ,M . So, since we aim for RT ≤ Õ(NBτ,M )+o(N), we should
keep the number of Exr calls small. In Ext mode, the learner executes a base bandit algorithm on a
chosen subset Sn constructed using the previously identified optimal actions In =

⋃
j<n:Ej=Exr{S∗

j }.

If Sn ∩ S∗
n ̸= ∅, the regret of Base is bounded by Chit = Bτ,sn , where sn = |Sn|. Otherwise, since

the performance gap between the optimal arms and the arms in Sn can be arbitrary, the regret in
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Algorithm 1 BASS: BAndit Subset Selection (for the meta-learning setting)

1: Options: Greedy G-BASS (G), Elimination-based E-BASS (E)
2: Input: Base (an efficient K-armed bandit algorithm), BAI (a best arm identification algorithm),

Exr probabilities pn, (E) subset size M
3: Initialize: Let (G) I0 = ∅; (E) X0 be the set of all M -subsets of [K].
4: for n = 1, . . . , N do
5: Set En = Exr w.p. pn, otherwise set En = Ext
6: if En = Exr or n = 1 then
7: Run BAI on all arms of task n and observe the best arms S∗

n

8: (G) Set In = In−1 ∪ {S∗
n}

9: (E) Set Xn = {S ∈ Xn−1 : S ∩ S∗
n ̸= ∅}, i.e., elements of Xn−1 with non-empty overlap with

S∗
n

10: else
11: (G) Find Sn by Greedy s.t. ∀S ∈ In, Sn ∩ S ̸= ∅
12: (E) Sample Sn uniformly at random from Xn

13: Run the Base algorithm on Sn

14: end if
15: end for

task n can be as large as Cmiss = τ . Note that to keep Chit small, the subset Sn should be as small
as possible. Ideally, Sn should be a subset of size M that has non-empty overlap with all members
of In. However, the problem of finding such Sn is the so-called hitting set problem, which is known
to be NP-Complete (Feige et al., 2004).

A simple greedy algorithm can be used to obtain an approximate solution efficiently (see, e.g, Streeter
and Golovin, 2007): The greedy algorithm builds a subset incrementally and in each stage, adds the
action that is optimal for the largest number of remaining tasks. It has polynomial computation
complexity and finds a subset of size at most M(1 + log N) that contains an optimal action for each
task. We say an action a ∈ [K] covers task j if a ∈ S∗

j . The greedy method, denoted by Greedy,
starts with an empty set and at each stage, it adds the action that covers the largest number of
uncovered tasks in In, until all tasks are covered.

We also propose E-BASS, that is based on an elimination procedure: the learner maintains an active
set of possible M -subsets compatible with the Exr history, and eliminates all subsets that are
inconsistent with In. In the Ext mode, a subset is selected uniformly at random from the set of
active subsets. As we will show, this algorithm improves the regret by a factor of log N , but is
not computationally efficient as it needs to sample from an exponentially large collection of active
subsets.

The analysis of the greedy solution, G-BASS, depends on the cost-to-go function of the following game
between the learner and the environment. At segment n, the learner may choose En ∈ {Exr, Ext}
with probability pn = P (En = Exr) and cost Cinfo. The environment may choose a best arm a∗

n

that the learner already knows about which costs Chit (i.e., a∗
n ∈ Sn ) or choose an optimal arm

set S∗
n so that S∗

n ∩ Sn = ∅, with cost Cmiss. Let qn = P (S∗
n ∩ Sn = ∅). The regret of G-BASS is

bounded by the cost of the learner in this simple game, if we assume δ = 0 in Assumption 2.1. The
learner is a (randomized) function of I, hence we can write the minimax cost-to-go function as

VN (I) = 0, (4)
Vn(I) = min

p
max

q

{
pCinfo + q(1− p)Cmiss

+ (1− q)(1− p)Chit + (1− pq)Vn+1(I) + pqVn+1(I ∪ {S∗
n})
}

, for n < N.

For the last equality note that when the environment reveals a new action (happens with probability
q) and the learner explores (with probability p), its current knowledge set I is incremented. The
optimal cost-to-go function Vn in (4) corresponds to the case of δ = 0 in Assumption 2.1, and V0(∅)
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gives the minimax regret for the family of algorithms with the limited choice described. Therefore,
when the BAI algorithm is successful, we have RT ≤ V0(∅), almost surely. For δ > 0, using a union
bound, we can show RT ≤ V0(∅)+ δNτ . Setting δ = 1/(Nτ) ensures that δNτ is negligible. Finally,
if the BAI algorithm only returns a set of approximately optimal arms satisfying rn(a) ≥ rn(a∗

n)−∆
for all arms a selected, the meta-regret can be bounded trivially as RT ≤ V0(∅) + (δ + ∆)Nτ .

Case 1 (a unique optimal arm): Before going to the general case, we first consider the case
where there is a unique and identifiable optimal arm in each task.
Assumption 2.2 (Unique Identification). Assumption 2.1 holds, and each task has a unique best
arm.
Theorem 2.3. Under the Unique Identification assumption,

V0(∅) ≤ NBτ,M + M
√

2(Cinfo −Chit)(Cmiss −Chit)N.

Therefore, under Assumption 2.2, the regret of G-BASS with pn = Θ(1/
√

N − n) satisfies RT ≤
NBτ,M + M

√
Bτ,KNτ + δNτ .

We prove Theorem 2.3 in Appendix B.1 by solving the min-max problem in (4) for Vn. Interestingly,
the exploration probability pn increases as Θ(1/

√
N − n). This might seem counter-intuitive at first

as typically the exploration rate decreases in most online learning algorithms. The intuition is that
as n gets closer to N , if sn < M , the adversary has less remaining budget left to make the learner
suffer a big cost. Therefore, the adversary increases its probability of choosing a new optimal arm,
and thus, the learner needs to explore more.

Case 2 (general case): We now consider the general case with potentially multiple optimal arms
in each task.
Theorem 2.4. Let M ′ = M(1 + log N) and Assumption 2.1 holds. Then, the regret of G-BASS with
exploration probability pn =

√
|Sn|Kτ
nBτ,K

is bounded as

RT ≤ NBτ,M ′ + MBτ,K +
√

M ′KBτ,KNτ + δNτ .

The proof is similar in spirit to that of Theorem 2.3 and is deferred to Appendix B.3. This regret
guarantee holds in the realizable setting, but G-BASS does not need M as input. The next theorem
(proof in Appendix E.1) shows that the regret of E-BASS is bounded as NBτ,M + o(N), which is
smaller than that for G-BASS by a factor of log N . However, E-BASS is not computationally efficient
and also requires M as input.
Theorem 2.5. Let Assumption 2.1 holds. Then, the regret of the E-BASS algorithm with exploration
probability pn =

(
τ
K

)1/4
√

log K
N is bounded as RT ≤ NBτ,M + O(τ3/4K1/4√NM log K).

Remark 2.6 (connections to partial monitoring games). The setting of this section can be viewed
more generally as a partial monitoring game. Partial monitoring is a general framework in online
learning that disentangles rewards and observations (information). In our bandit meta-learning
problem, different actions of the meta-learner (Exr and Ext) provide different levels of information
and have different costs. Thus, the problem can be reduced to a partial monitoring game on X , the
set of M -subsets of [K]. More details are in Appendix E.

3 Sparse meta-learning without identifiability assumptions

As explained in introduction, our general approach to solve the problems studied in this paper is to
reduce them to the bandit subset-selection problem. This approach is applicable even if each task is
an adversarial bandit problem and we are in an agnostic setting. However, to keep the presentation
simple, we will consider stochastic bandit tasks in a realizable setting.
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3.1 Reduction to subset selection and bandit submodular maximization

In task n, the learner selects a subset of arms Sn ∈ S = {S : S ∈ 2[K], |S| ≤M}, runs a base bandit
algorithm on that subset for τ steps, and receives the pseudo-reward6

τ∑
t=1

rn(An,t) = τ max
a∈Sn

rn(a)−
τ∑

t=1

(
max
a∈Sn

rn(a)− rn(An,t)
)

:= fn(Sn)− τεn,

where An,t is the learner’s action in time step t of task n, fn(S) := τ max
a∈S

rn(a) being the max-reward
function for the set of arms S and reward function rn, and finally εn is the average “noise” per time
step observed by the learner. It is easy to see that fn is a submodular function. See Appendix A
for definitions.

We require the base algorithm to have a guarantee for the regret, measured relative to the optimal
action for every time step,

τE[εn] = sup
rn

E

[
τ∑

t=1
max
a∈Sn

rn(a)−rn(An,t)
]
≤ Bτ,M . (5)

We can bound the regret of any method that solves the sparse bandit meta-learning problem using
the above reduction to subset selection as follows (proof in Appendix C):
Lemma 3.1. The regret of any policy running a base algorithm that satisfies (5) in each task n ∈ [N ]
on a selected subset of arms Sn ∈ S can be bounded as

RT ≤ sup
f1,...,fN ∈F

max
S∈S

E
[ N∑

n=1
fn(S)− fn(Sn) + Bτ,M

]
.

This way we reduce our sparse bandit meta-learning problem to minimizing a notion of regret
where in each task n ∈ [N ], the learner selects a subset Sn ∈ S and observes (pseudo)-reward
fn(Sn) − τεn. Since fn is submodular, this reduction allows us to leverage the literature on online
submodular maximization to obtain a bound on RT .

Bandit submodular maximization. Streeter and Golovin (2007) studied the online submodular
maximization problem in four different settings: (i) the full-information setting where the function
fn is fully observed at the end of each segment n; (ii) a partially transparent model where the value
of fn is revealed for some subsets; (iii) the priced feedback model where the learner can observe fn

by paying a price; and (iv) the bandit setting where only fn(Sn) is observed. They proved O(
√

N)
and O(N2/3) regret bounds for the first two and the last two settings, respectively. Radlinski et al.
(2008) proposed an algorithm similar to the one in Streeter and Golovin (2007) for a particular
ranking problem in the partially transparent feedback setting, and also obtained an O(

√
N) regret

bound. The priced feedback setting (iii) is similar to problems where the best arms can be identified
in every task, which we study in Section 2.

3.2 A general solution based on submodular maximization

In this section, we present an algorithm, called OS-BASS (Online Submodular BAndit Subset Selec-
tion), for our sparse meta-learning problem. The approach is in fact more general, and as we will
show in the next section, it can be applied in the sparse non-stationary setting as well. OS-BASS,
whose pseudo-code is shown in Algorithm 2, is based on the reduction to subset selection described
in Section 3.1 and the OGo algorithm (for bandit submodular maximization) by Streeter and Golovin
(2007). It requires the knowledge of the number of tasks N and time horizon T . Note that while N
and T are environment parameters, M and the expert algorithms are selected by the learner.

OS-BASS also takes a Base algorithm as input. We choose Base to be an algorithm designed to solve
multi-armed bandit problems such as the well-known UCB (Auer et al., 2002) when the tasks are
stochastic bandits, or EXP3 (Auer et al., 1995) when the tasks are adversarial bandits.

6We refer to it as pseudo-reward since it uses the mean rewards and not the actual random rewards.
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Algorithm 2 OS-BASS: Online Submodular BAndit Subset Selection (applicable to the sparse non-
stationary/meta-learning settings and agnostic/realizable cases)

1: Input: number of tasks N , time horizon T , subset size M , expert algorithms E1, · · · , EM̃

2: Set segment length to τ = T/N
3: for n ∈ [N ] do
4: for i ∈ [M̃ ] do
5: Select an arm ai using Ei

6: end for
7: Define subset Sn = {a1, . . . , aM̃}
8: Set En = Exr w.p. γn, otherwise set En = Ext
9: if En = Ext then

10: Run Base on subset Sn for τ steps
11: else
12: Select an index i ∈ [M̃ ] uniformly at random
13: Select a new arm a′

i ∈ [K] uniformly at random
14: Define subset Sn:i ← {a1, . . . , ai−1, a′

i}
15: Run Base on subset Sn:i for τ steps
16: Give average reward over the segment as a reward to Ei for arm a′

i, and give zero reward
for all other arms and experts

17: end if
18: end for

OS-BASS applies M̃ = ⌈M log N⌉ expert algorithms (i.e., regret minimization algorithms in the full
information setting), denoted by E1, . . . , EM̃ , to the K arms, where the role of Ei is to learn the
i’th “best” arm. In each task n ∈ [N ], each expert Ei, ∀i ∈ [M̃ ], selects an arm ai ∈ [K]. The
requirement for an expert algorithm is that it should achieve an O(

√
v log(K)) regret over v time

steps relative to the best action selected in hindsight. This can be achieved by all standard expert
algorithms, such as exponential weights (Cesa-Bianchi and Lugosi, 2006). Then, with probability
1− γn, OS-BASS exploits (Ext) the set of M̃ arms selected by the experts, i.e., a Base algorithm is
executed on this set for τ steps. With probability γn, OS-BASS explores (Exr), i.e., first a random
index i ∈ [M̃ ] and an arm a′

i ∈ [K] are chosen uniformly at random, and then the Base algorithm
is executed on the set Sn:i consisting of i arms, the i − 1 arms selected by {E1, . . . , Ei−1} plus a′

i,
for τ steps. In Exr, the exploring expert, Ei, is updated with a reward equal to the average reward
of Base in the τ -step task for arm a′

i (approximately fn(Sn:i)/τ up to error εn/τ), and zero for
all other arms. All other experts are updated with reward zero for all the arms (this is simply to
construct an unbiased estimate and to use importance sampling). This way, E1, . . . , Ei jointly learn
the identity of the best set of size i w.r.t. (approximate) reward

∑N
n=1 fn,7 and thus, approximate a

greedy solution for finding the top M arms. Note that OS-BASS provides no reward for the experts
during Ext. It is reasonable to expect that such reward can improve the empirical performance of
the algorithm, but it is not going to improve its theoretical guarantees. OS-BASS could be viewed as
a simulation of the offline greedy procedure that incrementally constructs its solution (Streeter and
Golovin, 2007). When an index i is chosen, the algorithm is learning the i’th choice of the offline
greedy procedure, and thus, it only plays a subset of the arms of size i.
Theorem 3.2. In the sparse meta-learning setting with N bandit tasks of equal length τ = T/N , the

regret of OS-BASS with EXP3 as Base and γn =
(

M̃K log K
n

)1/3
is RT = Õ

(
(M̃4KN2 log K)1/3τ +

M̃N
√

M̃τ
)
.

The proof is in Appendix D.3. In the regime of large number of tasks N and small number of
optimal arms M , our bound improves upon the Õ(N

√
Kτ) bound of the trivial solution of running

an independent UCB (or EXP3) algorithm in each task.

7Note that the “real" reward of expert Ei for an action a is fn(Sn:i−1 ∪ {a}) − fn(Sn:i−1).
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Note that the value of γn in Theorem 3.2 uses count n instead of the total number of tasks N .
However, the value of N still appears in M̃ , and thus, the algorithm still requires knowledge of N ,
although a knowledge of an upper bound on log N would be sufficient.
Remark 3.3. The above result is also applicable in the adversarial setting where the rewards can
change in every time step, and regret is measured with respect to the best arm in each task.
Remark 3.4 (tasks with variable lengths). Consider problems with non-equal task lengths where the
learner only gets to know the length of each task when it begins. To handle this situation, we construct
an exponential grid for the task lengths with b := log(maxn τn) ≤ log T buckets, where each bucket
i ∈ [b] is defined as [τ i := 2i−1, τ i := 2i]. We then run a copy of OS-BASS on the tasks falling in each
bucket as they arrive. Let N (i) denote the number of tasks that fall in bucket i. Then by Theorem 3.2,
the total regret satisfies RT ≤

∑b
i=1 Õ

(
M̃4/3(N (i))2/3K1/3τ i + N (i)M̃3/2√τ i

)
. Similarly, this regret

is better than the simple baseline
∑N

n=1
√

Kτn =
∑b

i=1 Ni

√
Kτ i when M = o(K1/3/T 1/5).

4 The sparse non-stationary setting

In this section, we show that a similar reduction to subset selection can also be used in the more
general non-stationary setting. However, instead of learning the subset containing the best arms
task by task (whose boundaries are unknown in the non-stationary setting), we conveniently divide
the time horizon T into N segments of equal length τ = T/N and learn the optimal arms segment
by segment. This approach clearly requires the knowledge of the number of tasks N in advance.
Note that the segments and tasks would coincide in the meta-learning setting when all tasks have
equal length.

Consider the n’th segment, i.e., [(n − 1)τ + 1, nτ). Without loss of generality, we assume that a
new task starts at the beginning of each segment. To satisfy this assumption we break the tasks
that run over the end of their segment, which will result in at most N − 1 extra new tasks (we will
have at most 2N − 1 tasks). If we denote by Nn, the number of tasks in segment n, we may write∑N

n=1 Nn ≤ 2N − 1. Finally, we denote by τn,u and rn,u, the length and mean reward of the u’th
task in segment n.

We require the base algorithm to have a guarantee for the dynamic regret, measured relative to the
sequence of optimal actions selected for every time step, defined as

sup
(rn)j

n=i

E

[
j∑

n=i

τn∑
t=1

max
a∈[K]

rn(a)−rn(An,t)
]
≤ BL,j−i,K , (6)

for any i and j such that 1 ≤ i ≤ j ≤ N , and with L =
∑j

n=i τn. In (6), we naturally extend
the upper-bound notation to indicate the number of task changes in the segment of length L, and
typically have BL,j−i,K = Õ(

√
L(j − i + 1)K). AdSwitch (Auer et al., 2019b) is an example of such

a base algorithm that does not need to know the task boundaries and lengths (see Section 4.1).

In segment n, the learner selects a subset of arms Sn ∈ S = {S : S ∈ 2[K], |S| ≤ M}, runs a base
bandit algorithm on that subset for τ steps, and receives the pseudo-reward8

Nn∑
u=1

τn,u∑
t=1

rn,u(An,u,t) =
Nn∑
u=1

(
τn,u max

a∈Sn

rn,u(a)−
τn,u∑
t=1

(
max
a∈Sn

rn,u(a)− rn,u(An,u,t)
))

:= fn(Sn)− τεn,

where An,u,t is the learner’s action in time step t of task u of segment n, fn(S) :=
∑Nn

u=1 τn,ufn,u(S)
with fn,u(S) := max

a∈S
rn,u(a) being the max-reward function for the set of arms S and reward

function rn,u, and finally εn is the average “noise” per time step observed by the learner. We prove
in Appendix A that fn ∈ F , the family of submodular functions, since it is an affine combination of

8We refer to it as pseudo-reward since it uses the mean rewards and not the actual random rewards.
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finitely many submodular functions. Moreover, since we assume that the base algorithm satisfies (6),
we have τE[εn] ≤ Bτ,Nn,M .

We can bound the regret of any method that solves the sparse non-stationary bandit problem using
the above reduction to subset selection as follows (proof in Appendix C):
Lemma 4.1. The regret of any policy running a base algorithm that satisfies (6) in each segment
n ∈ [N ] on a selected subset of arms Sn ∈ S can be bounded as

RT ≤ sup
f1,...,fN ∈F

max
S∈S

E
[ N∑

n=1
fn(S)− fn(Sn) + Bτ,Nn,M

]
.

This way we reduce our sparse non-stationary bandit problem to a bandit subset-selection problem,
where the decision space is the set of M -subsets of [K] and the reward in each segment n (of the
top algorithm) is the maximum cumulative reward in this segment over the chosen subset. For
example, when τ ≪ N , i.e., there are relatively many tasks, an o(N)-regret for the bandit subset-
selection problem translates to an O(N

√
Mτ) + o(N) regret bound for our sparse non-stationary

bandit problem. Note that the leading term in the regret is O(N
√

Mτ), which is an upper-bound
on the regret of a bandit strategy that runs the base algorithm on the best subset in each segment,
and is in fact the best possible (minimax) regret rate achievable given an optimal M -subset. The
subset-selection problem is a bandit submodular maximization problem, for which OGo, an online
greedy approximation algorithm by Streeter and Golovin (2007), achieves regret O(N2/3).9

4.1 OS-BASS in the non-stationary setting

In this section, we consider the implementation of OS-BASS in the non-stationary setting (task change
points are unknown and tasks can be of different lengths). As discussed earlier, our approach is to
divide the time horizon into segments of equal length, and to test a different M -subset in each
segment by running a Base bandit algorithm on that subset. To choose Base, we should note
that in the non-stationary bandit problem, every segment may contain multiple tasks. Thus, we
need an algorithm that is able to solve non-stationary bandit problems without knowing the change
points. We use AdSwitch (Auer et al., 2019b) as the Base algorithm in OS-BASS. This choice sets
Bτ,Nn,M̃ =

√
M̃Nnτ , ∀n ∈ [N ], in Lemma 3.1. In the following theorem, we prove a regret bound

(proof in Appendix D.3) for OS-BASS in the non-stationary setting and with the choice of AdSwitch
as the Base.
Theorem 4.2. The regret of OS-BASS in the sparse non-stationary setting with AdSwitch as Base

and exploration probability γn =
(

M̃K log K
N

)1/3
is

RT = Õ
(

(M̃4KN2 log K)1/3τ + M̃N
√

M̃τ
)

. (7)

Looking at the regret bound in (7), we notice that for small N (large τ), the baseline rate Õ(N
√

Kτ)
(the rate for standard non-stationary bandit algorithms, e.g., AdSwitch) cannot be improved. Thus,
we are mainly interested in the regime of large number of switches N and small number of opti-
mal arms M . If N ≥

(
T 3(K log K)2/M̃

)1/5 and M ≤ (K log K)1/3, then the regret in (7) is of
Õ(M̃N

√
M̃τ), which improves upon the baseline rate Õ(N

√
Kτ). However, in the case of small N ,

the baseline rate can be better than our bound, and thus, the learner does not need to identify the
best M arms and should simply play a standard non-stationary bandit algorithm. At the extreme
case N = O(1), i.e., only a few changes in the environment, the regret bound Õ(N

√
Kτ) cannot be

improved. On the other hand, when N is large compared to T , it is easy to establish a O(N
√

Mτ)
lower bound, and thus, our Õ(MN

√
Mτ) bound is optimal up to a factor of M . Closing this gap

remains an open question. We can improve the bound in certain regimes by further tuning the
parameters, which we discuss in more details in Appendix D.3.

9The superscript o in OGo stands for the “opaque" feedback model in Streeter and Golovin (2007).
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5 Experiments

In this section, we study the performance of our algorithms on synthetic environments. The exper-
iments include: 1) G-BASS 10 from Section 2, 2) Algorithm 2, OS-BASS, 3) MOSS which is agnostic
MOSS (Audibert and Bubeck, 2009) running independently on the tasks without any knowledge
of the optimal M -subset, 4) Opt-MOSS, an oracle MOSS that plays only the arms in the optimal
M -subset, and its performance constitutes an empirical lower bound on the achievable regret, and
5) OGo, which is OS-BASS with optimized γ. Error bars are ±1 standard deviation computed over 5
independent runs.

We study the impact of four variables on the regret: number of tasks N , length of each task τ ,
number of arms in each task K, and the optimal subset size M . To do so, we fix a default setting
of (N, τ, K, M) and for each experiment we let one of these parameters vary. The problems are
generated by an oblivious adversary (see Appendix F for further details).

Figure 1 demonstrates the impact of M and N . Further experiments in Appendix F illustrate the
effect of all four variables including τ and K. Under Assumption 2.1 (left two plots), G-BASS outper-
forms all methods with a regret close to that of the oracle Opt-MOSS. It also outperforms OS-BASS by
using its effective BAI module. Without this assumption, OS-BASS outperforms the other algorithms,
while G-BASS naturally has high variance.

Figure 1: Default setting: (N, τ, K, M) = (500, 4500, 30, 10). In the right two plots τ = 450. Left to
right: Regret as a function of N and M under Assumption 2.1. Regret as a function of N and M
without Assumption 2.1.

6 Discussion and future work

We study a problem of N tasks of K-armed bandits arriving sequentially in the sparse meta-
learning and non-stationary bandits settings. We design an algorithm based on a reduction to
bandit submodular optimization, and prove that its regret with respect to the best M -subset is
Õ(NM

√
Mτ +(M4KN2 log K)1/3τ), where τ = T/N . Under additional identifiability assumptions,

we develop a meta-learning algorithm with an improved, essentially optimal regret.

In our most general solution, we assume the number of tasks N is known, and M is given as input
to the algorithm. Designing an algorithm with a regret bound that holds for unknown N and
simultaneuously for all M is left for further work.

References
Yasin Abbasi-Yadkori, András György, and Nevena Lazić. A new look at dynamic regret for non-

stationary stochastic bandits. Journal of Machine Learning Research, 24(288):1–37, 2023.

Jean-Yves Audibert and Sébastien Bubeck. Minimax policies for adversarial and stochastic bandits.
In Proceedings of the 22nd Annual Conference on Learning Theory (COLT), 2009.

P. Auer and R. Ortner. Ucb revisited: Improved regret bounds for the stochastic multi-armed bandit
problem. Periodica Mathematica Hungarica, pages 55—-65, 2010.

10E-BASS is computationally too expensive so we only run it on smaller settings in Appendix F.



RLJ | RLC 2024

P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. Gambling in a rigged casino: The
adversarial multi-armed bandit problem. In 36th Annual Symposium on Foundations of Computer
Science, 1995.

P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. The nonstochastic multiarmed bandit
problem. SIAM Journal on Computing, 2002.

Peter Auer, Yifang Chen, Pratik Gajane, Chung-Wei Lee, Haipeng Luo, Ronald Ortner, and Chen-
Yu Wei. Achieving optimal dynamic regret for non-stationary bandits without prior information.
In COLT, 2019a.

Peter Auer, Pratik Gajane, and Ronald Ortner. Adaptively tracking the best bandit arm with
an unknown number of distribution changes. In Proceedings of the Thirty-Second Conference
on Learning Theory, pages 138–158. PMLR, 25–28 Jun 2019b. URL http://proceedings.mlr.
press/v99/auer19a.html.

Mohammad Gheshlaghi Azar, Alessandro Lazaric, and Emma Brunskill. Sequential transfer in
multi-armed bandit with finite set of models. In NIPS, 2013.

Maria-Florina Balcan, Keegan Harris, Mikhail Khodak, and Zhiwei Steven Wu. Meta-learning
adversarial bandits. arXiv preprint arXiv:2205.14128, 2022.

Jonathan Baxter. A model of inductive bias learning. Journal of artificial intelligence research, 12:
149–198, 2000.

Donald A. Berry, Robert W. Chen, Alan Zame, David C. Heath, and Larry A. Shepp. Bandit
problems with infinitely many arms. The Annals of Statistics, 1997.

T. Bonald and A. Proutiere. Two-target algorithms for infinite-armed bandits with Bernoulli rewards.
In In Advances in Neural Information Processing Systems, 2013.

Olivier Bousquet and Manfred K. Warmuth. Tracking a small set of experts by mixing past poste-
riors. Journal of Machine Learning Research, 2002.

Alexandra Carpentier and Michal Valko. Simple regret for infinitely many armed bandits. In ICML,
2015.

Rich Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.

Leonardo Cella, Alessandro Lazaric, and Massimiliano Pontil. Meta-learning with stochastic linear
bandits. Arxiv, 2020.

Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge University
Press, 2006.

Hock Peng Chan and Shouri Hu. Infinite arms bandit: Optimality via confidence bounds, 2020.

Yifang Chen, Chung-Wei Lee, Haipeng Luo, and Chen-Yu Wei. A new algorithm for non-stationary
contextual bandits: Efficient, optimal and parameter-free. In COLT, 2019.

Giulia Denevi, Carlo Ciliberto, Dimitris Stamos, and Massimiliano Pontil. Learning to learn around
a common mean. In Advances in Neural Information Processing Systems, volume 31, 2018a.

Giulia Denevi, Carlo Ciliberto, Dimitris Stamos, and Massimiliano Pontil. Incremental learning-to-
learn with statistical guarantees, 2018b.

Giulia Denevi, Carlo Ciliberto, Riccardo Grazzi, and Massimiliano Pontil. Learning-to-learn stochas-
tic gradient descent with biased regularization. In Proceedings of the 36th International Conference
on Machine Learning, 2019.

http://proceedings.mlr.press/v99/auer19a.html
http://proceedings.mlr.press/v99/auer19a.html


RLJ | RLC 2024

M. Dimakopoulou, N. Vlassis, and T. Jebara. Marginal posterior sampling for slate bandits. In
IJCAI, 2019.

Uriel Feige, László Lovász, and Prasad Tetali. Approximating min sum set cover. Algorithmica, 40
(4):219–234, 2004.

Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimilano Pontil. Bilevel
programming for hyperparameter optimization and meta-learning, 2018.

Claudio Gentile, Shuai Li, and Giovanni Zappella. Online clustering of bandits. In Proceedings of
the 31st International Conference on Machine Learning, 2014.

Joey Hong, Branislav Kveton, Manzil Zaheer, Yinlam Chow, Amr Ahmed, and Craig Boutilier.
Latent bandits revisited. In NeurIPS, 2020a.

Joey Hong, Branislav Kveton, Manzil Zaheer, Yinlam Chow, Amr Ahmed, Mohammad
Ghavamzadeh, and Craig Boutilier. Non-stationary latent bandits. arXiv, 2020b.

S. Kale, L. Reyzin, and R. E. Schapire. Non-stochastic bandit slate problems. In NIPS, 2010.

Anand Kalvit and Assaf Zeevi. From finite to countable-armed bandits. In Conference on Neural
Information Processing Systems, 2020.

Mikhail Khodak, Maria-Florina Balcan, and Ameet Talwalkar. Provable guarantees for gradient-
based meta-learning. In Proceedings of the 36th International Conference on Machine Learning,
pages 424–433, 2019.

Weihao Kong, Raghav Somani, Zhao Song, Sham Kakade, and Sewoong Oh. Meta-learning for mixed
linear regression. In Proceedings of the 37th International Conference on Machine Learning, 2020.

Branislav Kveton, Martin Mladenov, Chih-Wei Hsu, Manzil Zaheer, Csaba Szepesvári, and Craig
Boutilier. Differentiable meta-learning in contextual bandits. arXiv:2006.05094v1, 2020.

Branislav Kveton, Mikhail Konobeev, Manzil Zaheer, Chih wei Hsu, Martin Mladenov, Craig
Boutilier, and Csaba Szepesvari. Meta-thompson sampling. Arxiv, 2021.

T. Lattimore and C. Szepesvári. Bandit Algorithms. Cambridge University Press, 2020. ISBN
9781108687492. URL https://books.google.com/books?id=xe3vDwAAQBAJ.

N. Littlestone and M.K. Warmuth. The weighted majority algorithm. Information and Computation,
108(2):212–261, 1994. ISSN 0890-5401. doi: https://doi.org/10.1006/inco.1994.1009. URL https:
//www.sciencedirect.com/science/article/pii/S0890540184710091.

Odalric-Ambrym Maillard and Shie Mannor. Latent bandits. In ICML, 2014.

Nadav Merlis and Shie Mannor. Batch-size independent regret bounds for the combinatorial multi-
armed bandit problem. In COLT, 2019.

Hyejin Park, Seiyun Shin, Kwang-Sung Jun, and Jungseul Ok. Transfer learning in bandits with
latent continuity. arXiv, 2021.

Filip Radlinski, Robert Kleinberg, and Thorsten Joachims. Learning diverse rankings with multi-
armed bandits. In ICML, 2008.

Jason Rhuggenaath, Alp Akcay, Yingqian Zhang, and Uzay Kayma. Algorithms for slate bandits
with non-separable reward functions. arXiv, 2020.

Yoan Russac, Claire Vernade, and Olivier Cappé. Weighted linear bandits for non-stationary envi-
ronments. In NeurIPS, 2019.

https://books.google.com/books?id=xe3vDwAAQBAJ
https://www.sciencedirect.com/science/article/pii/S0890540184710091
https://www.sciencedirect.com/science/article/pii/S0890540184710091


RLJ | RLC 2024

Matthew Streeter and Daniel Golovin. An online algorithm for maximizing submodular func-
tions. Technical report, Carnegie Mellon University, Pittsburgh, PA, School of computer sci-
ence, 2007. URL https://apps.dtic.mil/sti/pdfs/ADA476871.pdf. Available at https:
//apps.dtic.mil/sti/pdfs/ADA476871.pdf.

Joe Suk and Samory Kpotufe. Tracking most significant arm switches in bandits. In 35th Annual
Conference on Learning Theory, 2022.

Sebastian Thrun. Is learning the n-th thing any easier than learning the first? In Advances in neural
information processing systems, pages 640–646. MORGAN KAUFMANN PUBLISHERS, 1996.

Nilesh Tripuraneni, Chi Jin, and Michael I. Jordan. Provable meta-learning of linear representations.
Arxiv, 2021.

Yizao Wang, Jean-Yves Audibert, and Rémi Munos. Algorithms for infinitely many-armed bandits.
In NIPS, 2008.

Chen-Yu Wei and Haipeng Luo. Non-stationary reinforcement learning without prior knowledge:
An optimal black-box approach. COLT, 2021.

Kai Zheng, Haipeng Luo, Ilias Diakonikolas, and Liwei Wang. Equipping experts/bandits with
long-term memory. In NeurIPS, 2019.

https://apps.dtic.mil/sti/pdfs/ADA476871.pdf
https://apps.dtic.mil/sti/pdfs/ADA476871.pdf
https://apps.dtic.mil/sti/pdfs/ADA476871.pdf


RLJ | RLC 2024

A Submodular functions

In this section, we verify that f(S) .= f(r, S) = maxa∈S r(a) is a submodular function. It is obviously
monotone. We have

f(S1 ∪ S2 ∪ {a})− f(S1 ∪ S2) ≤ f(S1 ∪ {a})− f(S1)

This is because (1) if r(a) ≤ f(S1) then the inequality holds as f(S1 ∪ {a}) = f(S1) and f(S1 ∪
S2 ∪ {a}) = f(S1 ∪ S2). (2) if r(a) > f(S1) then (2.i) if r(a) > f(S1 ∪ S2) the inequality holds as
r(a)−f(S1∪S2) ≤ r(a)−f(S1) ⇐⇒ f(S1∪S2) ≥ f(S1), which holds by monotonicity of f , (2.ii) if
r(a) ≤ f(S1∪S2) then f(S1∪S2∪{a}) = f(S1∪S2) and the inequality simplifies to 0 ≤ r(a)−f(S1)
which holds as we assumed r(a) > f(S1) in (2).

B Proofs for Section 2

B.1 Proof of Theorem 2.3

The proof relies on solving the min-max problem in (4). First, we consider the case that the best-
arm-identification can be performed with probability 1 (i.e., δ = 0 in the efficient identification
assumption). From symmetry, it is easy to see that Vn(In) only depends on the size of In, and not
the actual arms in In. Therefore, to simplify notation and emphasize the dependence on the number
of discovered optimal arms, we use below Vn(|In|) := Vn(In). Let nM = argminn{|In| = M} be the
first round when all optimal arms have been discovered. Then from any n > nM , the adversary no
longer can reveal new arms (q = 0), and the learner should no longer explore (p = 0), and so

∀n ≥ nM , Vn(M) = (N − n)Chit.

Denoting s = |In|, the min-max optimization objective in (4) can be written as

L(q, p) = Chit + p(Cinfo −Chit) + Vn+1(s)+
q(1− p)(Cmiss −Chit)− p

[
q1(Vn+1(s)

−Vn+1(s + 1)) + . . .

+qM−s(Vn+1(s)− Vn+1(M))
]

,

where qi denotes the probability that the environment reveals i optimal arms in the round, and
q =

∑M−s
i=1 qi. Given that Vn+1(s) − Vn+1(s + 1) < · · · < Vn+1(s) − Vn+1(M), the maximizing q

is such that qi = 0 for i > 1 and q = q1. Using this, the saddle point can be obtained by solving
∂L(q, p)/∂q = 0 and ∂L(q, p)/∂p = 0:

p = pn = Cmiss −Chit

Cmiss −Chit + Vn+1(s)− Vn+1(s + 1)

qn = Cinfo −Chit

Cmiss −Chit + Vn+1(s)− Vn+1(s + 1) . (8)

Plugging these values in (4), we get

Vn(s) = Vn+1(s) + Chit + (Cinfo −Chit)(Cmiss −Chit)
Cmiss −Chit + Vn+1(s)− Vn+1(s + 1) .

Given N and M , the policy of the learner and the adversary can be computed by solving the above
recursive equation. Given that for any s < M , Vn(s + 1) ≥ Vn+1(s + 1) + Chit,

Vn(s)− Vn(s + 1) ≤ Vn+1(s)− Vn+1(s + 1) + (Cinfo −Chit)(Cmiss −Chit)
Cmiss −Chit + Vn+1(s)− Vn+1(s + 1) .
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Let Gn(s) = Vn(s)− Vn(s + 1) ≥ 0 be the cost difference in state s relative to state s + 1. We have

Gn(s) ≤ Gn+1(s) + (Cinfo −Chit)(Cmiss −Chit)
Cmiss −Chit + Gn+1(s) , (9)

and indeed by a telescopic argument,

RT −NBτ,M = V0(0)− V0(M) =
M−1∑
s=0

(V0(s)− V0(s + 1)) =
M−1∑
s=0

G0(s) .

The proof is completed by bounding G0(s) by backward induction on n ≤ N :

GN−n(s) ≤
√

2(Cinfo −Chit)(Cmiss −Chit)n .

The proof of this inequality relies on standard algebraic manipulations that can be found in Ap-
pendix B.2. When the BAI routine returns the best arm with probability at least 1 − δ/N , with a
simple union bound argument, the probability that In ever contains wrong elements is bounded by
δ and the above derivations again hold.

B.2 Complement to the proof of Theorem 2.3

We are left to prove that

Gn(s) ≤ Gn+1(s) + (Cinfo −Chit)(Cmiss −Chit)
Cmiss −Chit + Gn+1(s) , (10)

given in (9) implies that for any n ≤ N ,

Gn(s) ≤
√

2(Cinfo −Chit)(Cmiss −Chit)(N − n) . (11)

We proceed by (backward) induction. First, by definition, GN (s) = VN (s) − VN (s + 1) = 0 for all
s, thus (11) holds for n = N . Next, assume that (11) holds for {N, N − 1, . . . , n + 1}, and we show
that it also holds for n.

Consider positive constants b ≥ a and consider the function h(z) = z + ab
b+z defined on [0, c] for some

c > 0. Then h′(z) = 1− ab/(b + z)2 ≥ 0. Therefore, h is maximized at z = c. Since the right-hand
side of (10) is of the form h(Gn+1(s)) with a = Cinfo −Chit and b = Cmiss −Chit, which indeed
satisfy b ≥ a. By this argument, the induction assumption, and 0 ≤ Gn+1(s) ≤

√
ab(N − n− 1) by

the induction hypothesis, we obtain that
Gn(s) ≤

√
2(Cinfo −Chit)(Cmiss −Chit)(N − n− 1)

+ (Cinfo −Chit)(Cmiss −Chit)
Cmiss −Chit +

√
2(Cinfo −Chit)(Cmiss −Chit)(N − n− 1)

=
√

2ab(N − n− 1) + ab

b +
√

2ab(N − n− 1)
(12)

It remains to show that the right-hand side above is bounded from above by
√

2ab(N − n). This
follows since √

2ab(N − n)−
√

2ab(N − n− 1) =
√

2ab√
N − n +

√
N − n− 1

= ab√
ab(N − n)/2 +

√
ab(N − n− 1)/2

≥ ab

b +
√

2ab(N − n− 1)
where the last inequality holds because

b +
√

2ab(N − n− 1) ≥
[√

ab +
√

ab(N − n− 1)/2
]

+
√

ab(N − n− 1)/2

≥
√

ab(N − n)/2 +
√

ab(N − n− 1)/2

(where we used that 1 +
√

z ≥
√

z + 1 for z ≥ 0). Thus, Gn(s) ≤
√

2ab(N − n), proving the
induction hypothesis (11) for n.
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B.3 Proof of Theorem 2.4

The proof relies on the analysis of the optimization problem defined as in Eq. (4) with pn = p̂n,|Sn| =√
|Sn|Kτ/(nBτ,K) (no minimization over the exploration probability of the learner in task n). As in

the proof of Theorem 2.3, we assume that the best arm identification is successful, and the extension
to δ ̸= 0 can be done the same way. After some algebraic manipulation, similarly to the proof of
Theorem 2.3, the optimization objective can be written as

L(q) = Vn+1(Sn) + Bτ,|Sn| + p̂n,|Sn|(Bτ,K −Bτ,|Sn|)
+ q

{
(1− p̂n,|Sn|)(τ −Bτ,|Sn|)− p̂n,|Sn|(Vn+1(Sn)− Vn+1(S′

n))
}

where S′
n is the new greedy subset selected by the learner in time step n + 1 if S∗

n ∩ Sn = ∅ and
the learner chooses to explore at time n (we use the notation S′

n instead of Sn+1 to emphasize that
this corresponds to the aforementioned choices of the learner and the adversary). Given that L is
linear in q, the optimal adversary choice is either q = 0 or q = 1 (similarly as in Theorem 2.3, it is
suboptimal for the adversary to reveal multiple optimal arms). We have

q =
{

0 if (1− p̂n,|Sn|)(τ −Bτ,|Sn|)− p̂n,|Sn|(Vn+1(Sn)− Vn+1(S′
n)) ≤ 0 ,

1 otherwise

When q = 0, Vn(Sn) = Vn+1(Sn) + Bτ,|Sn| + p̂n,|Sn|(Bτ,K −Bτ,|Sn|), and given that |Sn| ≤M ′, the
total contribution of these rounds to the regret is bounded by

NBτ,M ′ +

√
τM ′KN

Bτ,K
Bτ,K .

Next, consider the rounds where q = 1. Among these rounds, consider rounds where the adversary
chooses a particular arm a ∈ S∗ and the learner chooses to explore (Exr). This arm is not added to
the future Ext subset of the learner if instead another arm is used to cover this round. This means
that after at most K such rounds, the learner adds a to the Ext subset. Since the learner’s regret
in the exploration rounds is Bτ,K , in these rounds the cumulative regret is bounded by MKBτ,K .
Since the random choices made by the learner and the adversary are independent in the same round,
we discover the first arm in at most K/p̂N,1 tasks in expectation, the second in at most K/p̂N,2 tasks
in expectation, and so on. Thus, since the size of our cover is at most M ′, we get

K

M ′∑
s=1

1
p̂N,s

=
√

KNBτ,K

τ

M ′∑
s=1

1√
s
≤ 2
√

M ′KNBτ,K

τ
.

The adversary reveals all positions after 2
√

M ′KNBτ,K

τ such tasks in expectation where the adver-
sary’s choice is q = 1. If in these tasks the learner chooses to exploit, it can suffer a regret τ , leading
to a total expected regret of at most 2

√
M ′KNBτ,Kτ . Thus, the total regret of rounds with q = 1

is bounded by

2
√

M ′KNBτ,Kτ + MKBτ,K .

Therefore,

RT = V0(∅) ≤ NBτ,M ′ + MKBτ,K + 3
√

M ′KτBτ,KN .
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C Proof of Lemmas 3.1 and 4.1

We have that

RT = sup
(rn)N

n=1, (an)N
n=1 : |{an}N

n=1|≤M

E

[
N∑

n=1

τn∑
t=1

(rn(an)− rn(An,t))
]

= sup
r1,...,rN

∈[0,1]K

max
S∈S

E

[
N∑

n=1

Nn∑
u=1

τn,u∑
t=1

(max
a∈S

(rn,u(a)− rn,u(An,u,t))
]

(S is defined in Section 3.1)

= sup
r1,...,rN

∈[0,1]K

max
S∈S

E

[
N∑

n=1

Nn∑
u=1

(
τn,u∑
t=1

(max
a∈S

rn,u(a)− max
a∈Sn

rn,u(a)) +
τn,u∑
t=1

(max
a∈Sn

rn,u(a)− rn,u(An,u,t))
)]

≤ sup
(fn,u∈F)n∈[N],u∈[Nn]

max
S∈S

E

[
N∑

n=1

(
Nn∑
u=1

τn,u(fn,u(S)− fn,u(Sn)) + τεn

)]

= sup
f1,··· ,fN ∈F

max
S∈S

E

[
N∑

n=1
(fn(S)− fn(Sn) + Bτ,Nn,M )

]
.

D Proofs for Section 3.2

First, we present the relevant results from Streeter and Golovin (2007) with appropriate modifica-
tions. We start with the regret analysis of the OG algorithm, which is designed to solve the online
submodular maximization in the full feedback model.

D.1 The OG algorithm

For a submodular function g, consider an ordered set of actions S̄ = ⟨ā1, ā2, · · · ⟩ that satisfies the
following greedy condition for any j:

g(S̄i ∪ āi)− g(S̄i) ≥ max
a∈[K]

{g(S̄i ∪ a)− g(S̄i)} − αi, (13)

where αi are some positive error terms. Let S̄0 = ∅, S̄i = ⟨ā1, ā2, · · · , āi−1⟩, and for a sequence of
actions S ⊂ [K], let S⟨M⟩ be the set of actions in S truncated at the M ’th action. The following
result shows near-optimality of S̄ as constructed above. Recall that M̃ = ⌈M log N⌉.
Theorem D.1 (Based on Streeter and Golovin (2007), Theorem 6). Consider the greedy solution
in Equation (13). Then

g(S̄⟨M̃⟩) >

(
1− 1

N

)
max
S∈S

g(S⟨M⟩)−
M̃∑

j=1
αi .

Proof. Let C∗ = maxS∈S g(S⟨M⟩) and for any j let ∆j = C∗ − g(S̄j). Then, by Fact D.2 below, we
have C∗ ≤ g(S̄j) + M(sj + αj). Therefore, ∆j ≤ M(sj + αj) = M(∆j −∆j+1 + αj) which means
∆j+1 ≤ ∆j(1− 1

M ) + αj . Unrolling this M̃ times (and noting 1− 1
N < 1) gives

∆M̃+1 ≤ ∆1

(
1− 1

M

)M̃

+
M̃∑

j=1
αj

< ∆1
1
N +

M̃∑
j=1

αj ≤ C∗ 1
N +

M̃∑
j=1

αj .

This concludes the proof since C∗ − g(S̄M̃+1) = ∆M̃+1 and g(S̄M̃+1) = g(S̄⟨M̃⟩).
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Algorithm 3 OG algorithm
1: Input: Subset size M , Expert algorithms E1, · · · , EM̃ ;
2: for n ∈ [N ] do
3: Let Sn,0 = ∅
4: for j ∈ {1, · · · , M̃} do
5: Let action an

j ∈ [K] be the choice of expert Ej

6: Let Sn,j ← Sn,j−1 ∪ {an
j }

7: end for
8: Play subset Sn and observe function gn.
9: for j ∈ {1, · · · , M̃} and any a ∈ [K] do

10: Let xn
j,a ← gn(Sn,j−1 ∪ {a})− gn(Sn,j−1)

11: Expert Ej receives payoff vector (xn
j,a)a∈[K]

12: end for
13: end for

Fact D.2 (Streeter and Golovin (2007), Fact 1). For any subset of arms S, and any positive integer
j, and any t > 0, we have g(S⟨t⟩) ≤ g(S̄j) + t(sj + αj) where sj = g(S̄j+1)− g(S̄j).

Proof. The proof is akin to Fact 1 of Streeter and Golovin (2007) and it goes g(S⟨t⟩) ≤ g(S̄j∪S⟨t⟩) ≤
g(S̄j)+t(sj +αj). The first inequality holds because g is a monotone function. The second inequality
is by definition of sj and Condition 1, (Streeter and Golovin, 2007, Lemma 1) – for any submodular
function g, and any S1, S ∈ S, g(S1∪S)−g(S1)

|S| ≤ maxa∈A g(S1∪{a})−g(S1) and we replace S1 ← S̄j ,
S ← S⟨t⟩, so |S| = t.

Consider a sequence of submodular functions g1, · · · , gN for a fixed N ∈ N. Define the coverage
regret of a submodular maximization policy by

Rcoverage(N) :=
(

1− 1
N

)
max
S∈S

N∑
n=1

gn(S⟨M⟩)−
N∑

n=1
gn(Sn) .

Algorithm 3 is the OG algorithm of Streeter and Golovin (2007) for the full feedback model modified
for our setting with M̃ experts. In this algorithm, N is the number of rounds (analogous to seg-
ments/tasks). The algorithm uses a set of experts and each expert is a randomized weighted majority
(RWM) algorithm (Littlestone and Warmuth, 1994). See Chapter 4.2 of Cesa-Bianchi and Lugosi
(2006) for more information. The following lemma connects the coverage regret of the OG algorithm
and the regret of the experts.
Lemma D.3 (Lemma 3 of Streeter and Golovin (2007)). Let Gj(N) be the cumulative regret of
expert Ej in OG algorithm, and let G(N) =

∑M̃
j=1 Gj(N). Then, Rcoverage(N) ≤ G(N).

Proof. As we will show, the OG algorithm is an approximate version of the offline greedy subset
selection, defined by Equation (13), for function g = 1

N

∑N
n=1 gn. First, let’s view the sequence of

actions selected by Ej as a single “batch-action” ãj , and extend the domain of each gn to include
the batch-actions by defining gn(S ∪{ãj}) = gn(S ∪{an

j }) for all S ∈ S. Thus, the online algorithm
produces a single set S̃ = {ã1, ã2, · · · , ãM̃}. By definition we have

Gj(N)
N

= max
a∈[K]

(
g(S̃⟨j−1⟩ ∪ {a})− g(S̃⟨j−1⟩)

)
−
(
g(S̃⟨j−1⟩ ∪ {ãj})− g(S̃⟨j−1⟩)

)
,

where S̃⟨j⟩ is S̃ truncated at j’th action. Thus the OG algorithm simulates the greedy schedule (13)
for function g, where the j’th decision is made with additive error αj = Gj(N)

N . By Theorem D.1
and the fact that function g is submodular, we get that Rcoverage(N) ≤

∑M̃
j=1 Gj(N) = G(N).
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Algorithm 4 OGo algorithm
1: Input: Subset size M , Expert algorithms E1, · · · , EM̃ , Probabilities of exploration {γn}N

n=1;
2: for n ∈ [N ] do
3: Observe gn

4: For i ∈ [M̃ ], let ai be the choice of Ei

5: Set Sn = {a1, · · · , aM̃}
6: With prob. γn, En = Exr, otherwise En = Ext
7: if En = Ext then
8: All experts receive the zero vector as the payoff vector
9: else

10: Choose i ∈ [M̃ ] uniformly at random
11: Choose a new action a′

i uniformly at random
12: Replace i’th element of Sn with a′

i: Sn:i ← {a1, · · · , ai−1, a′
i}

13: Expert Ei receives a payoff vector that is zero everywhere except at position a′
i that has the

value of gn(Sn:i)
14: All other experts receive the zero vector as the payoff vector
15: end if
16: end for

By Lemma 4 of Streeter and Golovin (2007), E[G(N)] = O(
√

M̃N log(K)).

D.2 The OGo algorithm

Algorithm 4 is based on the OGo algorithm of Streeter and Golovin (2007) for the bandit (opaque)
feedback model. This algorithm is very similar to OS-BASS algorithm so we omit the description. The
difference is that in the OS-BASS algorithm, the meta-learner observes the value of the submodular
function up to a noise term εn = (1/τ)Bτ,Nn,M̃ . So we extend the analysis of Streeter and Golovin
(2007) to the case that the observation of the submodular function is corrupted by a noise term.

Lemma D.4. Consider an expert prediction problem with K actions, and let xn
a be the payoff for

action a ∈ [K] in round n. Let E be a an expert algorithm that gets payoff vector (xn
a)a∈[K] in

round n, let en be its action in round n, and let R(N) be its worst-case expected regret over N

rounds: R(N) = maxa

∑N
n=1(xn

a − xn
en

). Let E ′ and Ẽ be the same algorithm but with payoff vectors
(x̂n

a)a∈[K] and (x̃n
a)a∈[K] instead of (xn

a)a∈[K]. These feedbacks are such that E[x̂n
a ] = γnxn

a + δn for
some constant γn ∈ [0, 1] and δn, and

E[x̃n
a ] ∈ [E[x̂n

a − γnε′
n],E[x̂n

a ]]

for some ε′
n ≥ 0. Let un be the action of algorithm Ẽ in round n. Then the worst-case expected

regret of Ẽ is bounded as

max
a

N∑
n=1

(xn
a − xn

un
) ≤ 1

minn γn
R(N) +

N∑
n=1

E[ε′
n] .

Proof. By the regret guarantee of the expert algorithm,

R(N) ≥ max
a∈[K]

N∑
n=1

(x̃n
a − x̃n

un
) .
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Thus, for any a,

R(N) ≥ E

[
N∑

n=1
x̃n

a − x̃n
un
|x̃

]

≥
N∑

n=1
E[x̂n

a − γnε′
n − x̂n

un
]

=
N∑

n=1
E[γnxn

a + δn − γnε′
n − γnxn

un
− δn]

=
N∑

n=1
γnE[xn

a − ε′
n − xn

un
]

≥ min
n

γn

N∑
n=1

E[xn
a − ε′

n − xn
un

] .

Therefore,
1

minn γn
R(N) +

N∑
n=1

E[ε′
n] ≥

N∑
n=1

E[xn
a − xn

un
] ,

and the result follows as the above inequality holds for all a.

The next lemma bounds the coverage regret of the OGo algorithm.

Lemma D.5 (Coverage Regret). Let γn =
(

M̃K log K
N

)1/3
for all n. Assume the jth expert Ẽj in

the OGo algorithm gets a payoff vector (x̃n
a)a∈[K] in round n such that the following holds:

γ′ (gn(Sn:j−1 ∪ {a})− ε′
n) ≤ E[x̃n

a ] ≤ γgn(Sn:j−1 ∪ {a}) .

where γ =
(

M̃K log K
N

)1/3
and γ′ = γ

M̃K
. Then for the sequence of subsets (Sn)N

n=1 chosen by the
OGo algorithm,

Rcoverage(N) ≤ (M̃4N2K log k)1/3 + M̃

N∑
n=1

E[ε′
n] .

Proof. We start with another expert E ′ that gets payoff vector x̂n such that E[x̂n
a ] = γ′gn(Sn−1:j ∪

{a}) for any action a. Then we can write

E[x̂n
a ] = γ′xn

a + δn

for xn
a = (gn(Sn−1:j ∪ {a})− gn(Sn−1:j)) and δn = γ′gn(Sn−1:j), where γ′ = γ

M̃K
. Let NExr be the

number of exploration rounds. Let G′
j(N) be the total regret of expert E ′

j . By Lemma D.4 and the
regret guarantee of the expert algorithm, the total regret of expert E ′

j is bounded as

E[G′
j(N)] ≤ 1

γ′E

√√√√(max
a

N∑
n=1

x̂n
a

)
log K

≤ 1
γ′E

√
NExr log K

≤

√
N

γ′ log K ,

where we used Jensen’s inequality and E[NExr] = γ′N in the last step. Let G̃j(N) be regret of expert
Ẽj . We observe that E[x̃n

a ] ∈ [E[x̂n
a−γ′ε′

n],E[x̂n
a ]]. Given that the OGo algorithm takes random actions
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in the exploration rounds, it incurs an extra γ′N regret, and therefore together with Lemma D.4,
we have E[G̃j(N)] ≤ E[G′

j(N)] +
∑N

n=1 E[ε′
n] + γN . By summing over j ∈ [M̃ ],

E

 M̃∑
j=1

G̃j(N)

 ≤ M̃

√
N

γ′ log K + M̃

N∑
n=1

E[ε′
n] + γM̃N .

By Lemma D.3 we get

E[Rcoverage(N)] ≤ M̃

√
N

γ′ log K + M̃

N∑
n=1

E[ε′
n] + γM̃N

= M̃

√
N

γ
M̃K log K + M̃

N∑
n=1

E[ε′
n] + γM̃N .

Finally, choosing γ =
(

M̃K log K
N

)1/3
11 yields

M̃

√
N

γ
M̃K log K+γM̃N = (M̃4N2K log k)1/3 .

Therefore

E[Rcoverage(N)] ≤ (M̃4N2K log k)1/3+M̃

N∑
n=1

E[ε′
n] .

D.3 The OS-BASS algorithm for non-stationary bandits

Now we are ready to bound the regret of the OS-BASS algorithm (shown in Algorithm 2).

Theorem 4.2. The regret of OS-BASS in the sparse non-stationary setting with AdSwitch as Base

and exploration probability γn =
(

M̃K log K
N

)1/3
is

RT = Õ
(

(M̃4KN2 log K)1/3τ + M̃N
√

M̃τ
)

. (7)

Proof. Fix a sequence of N tasks with unknown and potentially variable task lengths {τn}n∈[N ].
Let πOS be the policy used by Algorithm 2. By the decomposition in Lemma 3.1 the regret of

11To be more precise, γ = (3/2)
(

M̃K log K
N

)1/3
.
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Algorithm 2 when updated every τ steps (with N = T/τ updates) satisfies the following,

R(πOS, T, N, M̃) = sup
fn∈F

max
S∈S

E
N∑

n=1

(
fn(S)− fn(Sn)) + Bτ,Nn,M̃

≤ sup
fn∈F

max
S∈S

E
[ N∑

n=1

1
N fn(S)

+
N∑

n=1
(1− 1

N )fn(S)−
N∑

n=1
fn(Sn) + Bτ,Nn,M̃

]

≤ Nτ

N
+ τE[Rcoverage] +

N∑
n=1

√
M̃τNn

≤ τ + τE[Rcoverage] +

√√√√NM̃τ

N∑
n=1

Nn (14)

≤ τ + τE[Rcoverage] +
√

NM̃τ2T/τ , (15)

where in Equation (14) we use the Cauchy-Schwarz inequality. For Equation (15) we used∑N
n=1 Nn ≤ 2N = 2T/τ and the inequality in the discussion at the beginning of Section 3.1.

Let εn = Bτ,Nn,M̃ /τ . By Lemma D.5 we can set γ =
(

M̃K log K
N

)1/3
and bound E[Rcoverage] to get

R(πOS, T, N, M̃) ≤ τ + τ

(
(M̃4N2K log k)1/3 + M̃

N∑
n=1

εn

)
+
√

2NM̃T

≤ τ + τ(M̃4N2K log k)1/3 + M̃
√

2NM̃T

= T/N + TN−1/3(M̃4K log K)1/3 + M̃
√

2M̃NT .

Here, the second inequality follows from Cauchy-Schwarz inequality and the same argument as above
for bounding

∑N
n=1 Nn, and the last step is just because τ = T/N .

If N ≥ N1
.=
(

T 3(K log K)2

M̃

)1/5
and M ≤ (K log K)1/3 (large number of changes and small number

of optimal arms), then our regret upper bound is Õ(M̃3/2
√

NT ), and the regret of OS-BASS improves
upon the Õ(

√
KTN) bound of standard non-stationary bandit algorithms (such as AdSwitch).

If N ≤ N1 and M ≤ (K log K)1/3, and we can obtain an improved bound by using a larger number
of segments. Note that we could replace N with an arbitrary number of segments, N ′, in the

analysis above. By choosing N ′ =
(

T 3(K log K)2

M̃

)1/5
and M ≤ (K log K)1/3 segments, each of size

τ ′ = T/N ′, the bound improves to Õ(M̃7/5(K log K)1/5T 4/5).

If N ≤ N2
.= M̃14/5(T/K)3/5(log K)2/5 (even small number of changes), then

√
KNT ≤

M̃7/5(K log K)1/5T 4/5. In this case, the simple baseline of Õ(
√

KTN) is smaller than our bound,
and the learner should simply play a standard non-stationary bandit algorithm. Notice that N2 ≤ N1
as long as M ≤ K1/3.

E Partial monitoring and bandit meta-learning

Partial monitoring is a general framework in online learning that disentangles rewards and observa-
tions (information). It is a game where the learner has Z actions and the adversary has D actions,
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Algorithm 5 The partial monitoring algorithm
1: Exploration probability p ∈ (0, 1), learning rate η > 0, base costs Cinfo, Chit, Cmiss
2: for n = 1, 2, . . . , N do
3: With probability p, let En = Exr and otherwise En = Ext
4: if En = Exr then
5: Observe the best arms S∗

n of this round and for all i ∈ Ext experts, observe cost Ci,S∗
n

and
let Ĉn(i) = (Ci,S∗

n
−Chit)/p

6: Update exponential weights Qn,i ∝ exp(−η
∑n

τ=1 Ĉn(i)) Suffer cost Cinfo
7: else
8: Sample Sn ∼ Qn−1
9: Suffer (but do not observe) cost Chit if S∗

n ∩ Sn ̸= ∅ and suffer cost Cmiss otherwise
10: end if
11: end for

and it is characterized by two Z ×D matrices (not observed): matrix C maps the learner’s action
to its cost given the adversary’s choice, and matrix X maps the learner’s action to its observation
given the adversary’s choice. In all generality, we consider bandit meta-learning problems with Z +1
learner actions: an Exr action that provides information for a cost Cinfo, and Z other actions that
do not provide information but have a hidden cost Chit or Cmiss depending on whether the chosen
action had low or high cost respectively.

As defined in the introduction, a bandit subset-selection problem is realizable when there is a subset
of size M that contains an optimal arm in all rounds. Otherwise, the problem is called agnostic.

In our bandit subset-selection problem, Z =
(

K
M

)
≤ KM and the adversary can have up to 2K choices

depending on the realizable or agnostic nature of the problem. We have D = M if the problem is
realizable and if the adversary is constrained to picking a unique optimal arm in each round. For
example, let M = 2 and K = 4. There are Z + 1 =

(4
2
)

+ 1 = 7 learner actions and only D = 2
possible choices for the adversary

Exr
{1, 2} = x∗

{1, 3}
{1, 4}
{2, 3}
{2, 4}
{3, 4}


→ C =



Cinfo Cinfo
Chit Chit
Chit Cmiss
Chit Cmiss
Cmiss Chit
Cmiss Chit
Cmiss Cmiss


, X =


1 2
⊥ ⊥
...

...
⊥ ⊥

 .

The symbol ⊥ is used to denote no observations. We use Ci,y to denote the cost of action i ∈
{Exr, x1, . . . , xZ} when adversary chooses a ∈ [D]. Thanks to this reduction, we can leverage the
partial monitoring literature to obtain an algorithm and the corresponding bounds for our problem
as well. We detail this process below. Note that using the vocabulary of online learning, the learner’s
actions are referred to as "experts".

Next, we describe an algorithm based on the Exponentially Weighted Average (EWA) forecaster. The
learner estimates the cost matrix by importance sampling when action Exr is chosen. When Ext
is chosen, the learner samples an expert according to EWA weights that depend on the estimated
cost matrix. The pseudo-code of the method is shown in Algorithm 5.

To analyze the algorithm, we consider the realizable and agnostic cases. In the realizable case, there
a subset of size M that contains an optimal arm in all rounds. In this case, the exponential weights
distribution reduces to a uniform distribution over the subsets that satisfy this condition.
Theorem E.1. Consider the partial monitoring algorithm shown in Algorithm 5. In the agnostic

case, with the choice of p = O

((
C2

miss log Z

C2
infoN

)1/3
)

and η = O

((
log2 Z

CinfoC2
missN2

)1/3
)

, the regret of
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the algorithm is bounded as O((CinfoC2
missN2 log Z)1/3). In the realizable case, with the choice of

p =
√

Cmiss log Z
CinfoN and η = 1, the regret of the algorithm is bounded as O(

√
CinfoCmissN log Z).

Proof. Let function fn : [Z + 1]× [D]→ RZ+1 be defined by

fn(k, Xk,y)i = 1{k = Exr}(Ci,y −Chit) .

Therefore,
∑Z+1

k=1 fn(k, Xk,y)i = Ci,y − Chit. With probability p, let En = Exr and otherwise
En = Ext. Let Cn(i) = Ci,Yn

. Define cost estimator

Ĉn,i = fn(En, XEn,Yn
)i

p
= 1{En = Exr}(Cn(i)−Chit)

p
.

Let Qn be the weights of the EWA forecaster defined using the above costs. For any i, we have
E(Ĉn(i)) = Cn(i)−Chit. Let En be the learner’s decision in round n, that is either Exr or a subset
chosen by EWA, in which case it is denoted by xn. We have

E(Cn(En)) = pCinfo + (1− p)E(Cn(Sn)) .

Let S∗ be the optimal subset. By the regret bound of EWA (Cesa-Bianchi and Lugosi, 2006),

N∑
n=1

Ĉn(Sn)−
N∑

n=1
Ĉn(S∗) ≤ log Z

η
+ η

2

N∑
n=1
∥Ĉn∥2

∞ .

Thus,

N∑
n=1

E(Cn(En))−
N∑

n=1
E(Cn(S∗)) ≤ Cinfo

N∑
n=1

p + log Z

η
+ η

2

N∑
n=1

E(∥Ĉn∥2
∞)

≤ Cinfo

N∑
n=1

p + log Z

η
+ ηC2

miss

2

N∑
n=1

1
p

.

With the choice of p = O((Cmiss/Cinfo)2/3(log1/3 Z)/N1/3) and η =
O((log2/3 Z)/(C2/3

missC1/3
infoN2/3)), the regret of the partial monitoring game is bounded as

O(C2/3
missC1/3

infoN2/3 log1/3 Z). The regret scales logarithmically with the number of experts, and is
independent of the number of adversary choices.

Next, we show a fast O(
√

N) rate when the optimal expert always has small cost. More specifically,
we assume that Cn(S∗) = Chit for the optimal expert S∗. The fast rate holds independently of the
relative values of Chit, Cinfo, and Cmiss. The algorithm can also be implemented efficiently.

Let ℓ̂n = pĈn/Cmiss, which is guaranteed to be in [0, 1]. Notice that
∑N

n=1 ℓ̂n(S∗) = 0 as Cn(S∗) =
Chit by assumption. In this case, the regret of EWA is known to be logarithmic:

N∑
n=1

ℓ̂n(Sn)−
N∑

n=1
ℓ̂n(S∗) = O(log Z) .

Thus,
N∑

n=1
E(Cn(En))−

N∑
n=1

E(Cn(S∗)) ≤ Cinfo

N∑
n=1

p + Cmiss log Z

p
.

Therefore, with the choice of p =
√

Cmiss log Z
CinfoN ,

N∑
n=1

E(Cn(En))−
N∑

n=1
E(Cn(S∗)) ≤ O(

√
CinfoCmissN log Z) .



RLJ | RLC 2024

The meta-regret scales logarithmically with the number of experts, and is independent of the number
of adversary choices. Given that the optimal expert is known to have small loss in all rounds,
the learner can eliminate all other experts. Therefore, the EWA strategy reduces to a uniform
distribution over the surviving experts.

E.1 Proof of Theorem 2.5

E-BASS is constructed as a special case of the EWA algorithm above, where the sampling distribution
at each Ext round is simply the uniform distribution over the surviving experts. The proof of
Theorem 2.5 is therefore a direct consequence of the more general analysis done for the EWA
forecaster in Theorem E.1 above.

Proof. The BAI algorithm might return a number of extra arms in addition to the optimal arm.
However, since with high probability the optimal arm is always in the surviving set, the cost estimate
for the optimal subset is always zero, and costs of all other subsets are under-estimated. Therefore,
if Sn is the expert (subset) selected in task n and S∗ is the optimal subset, by fast rates of the
previous section,

N∑
n=1

E(Cn(Sn))−
N∑

n=1
E(Cn(S∗)) ≤ O(

√
CinfoCmissN log Z) .

Given that with high probability the optimal arm is always in the surviving set and therefore
Cn(S∗) = Chit,

RT =
N∑

n=1
E

(
τrn(a∗

n)−
τ∑

t=1
rn(An,t)

)
≤

N∑
n=1

E(Cn(Sn)) ≤ NChit + O(
√

CinfoCmissN log Z)

= N
√

Mτ + O(
√

CinfoCmissN log Z)

= N
√

Mτ + O(τ3/4K1/4
√

NM log(K) ,

where the first inequality holds by the fact that E(Cn(Sn)) is an upper bound on the regret for task
n.

F Further experimental details and results

This section consists of further experimental details and results. We use the code in the follow-
ing repository: https://anonymous.4open.science/r/meta-bandit-760E/README.md. We used
a server machine with the following configuration: OS: Ubuntu 18.04 bionic, Kernel: x86_64 Linux
4.15.0-176-generic, CPU: Intel Core i9-10900K @ 20x 5.3GHz, GPU: GeForce RTX 2080 Ti, RAM:
128825 MiB, DISK: 500 GB SSD.

F.1 Setup

In each experiment, the adversary first samples the size M set of optimal arms, S∗ := ∪nS∗
n,

uniformly at random (without replacement) from [K]. The mean reward of task n, rn ∈ R = [0, 1]K ,
is then generated according to the experiment setup as described in the following.

The optimal arm: We categorize the experiments into three settings based on how the optimal
arm is generated: i) non-oblivious adversarial, ii) oblivious adversarial, and iii) stochastic.

i) In the adversarial setting with a non-oblivious adversary, the adversary peeks into the learner’s set
of discovered arms, Sn, at the end of each task. With probability qn (see Equation (8)), the adversary

https://anonymous.4open.science/r/meta-bandit-760E/README.md
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chooses a new optimal arm uniformly at random from [K]\Sn. Otherwise, the next optimal arm is
chosen uniformly at random from Sn.

ii) The oblivious adversary is applicable against any learner even if the learner does not maintain a
set of discovered arms. Here the adversary simulates an imaginary G-BASS algorithm with a minimax
optimal pn (see Equation (8)). Then it samples new optimal arms and generates the reward sequence
with respect to this imaginary learner. This is the same as the non-oblivious adversary except here
the adversary plays against an imaginary learner.

iii) In the stochastic setting, for each task n, the environment samples the optimal arm uniformly
at random from the optimal set, i.e., a∗

n ∼ Uniform(S∗).

Note that in the non-oblivious setting, the rewards are generated at the start of each task, according
to the learner’s discovered arms. In the other settings, however, rewards of all the tasks could be
generated at the very beginning, independently of the learner.

The sub-optimal arms (min gap): Based on the discussion after Assumption 2.1, the minimum
gap for the assumption to hold is

rn(a∗)−max
a ̸=a∗

rn(a) ≥ ∆ ,

where ∆ = Θ(
√

K log(N/δ)/τ). After generating the optimal arm, depending on the setting, the
rewards of other arms are generated in two ways: 1) with a minimum gap condition uniformly
at random in [0, rn(a∗

n) − ∆) and 2) without a minimum gap condition uniformly at random in
[0, rn(a∗

n)]. In the second case, the mean reward is generated such that the gap condition is violated
by at least 1 sub-optimal arm.

Task length and PE: As we know, task length plays an important role in regard to PE perfor-
mance. In the case where Assumption 2.1 holds, we set the phase length based on ∆ and make sure
τ is longer than the length of the first phase of PE. For more details, see the analysis of PE (Auer
and Ortner, 2010) in exercise 6.8 (elimination algorithm) of Lattimore and Szepesvári (2020).

Assumption 2.1: We have two types of experiments considering Assumption 2.1: i) In the exper-
iments where Assumption 2.1 is supposed to hold, we make sure the task length is longer than the
first phase of PE and the minimum gap condition holds (case 1 in the discussion on the min gap).
ii) In the tasks where Assumption 2.1 is supposed to be violated, we use case 2 in the discussion on
the min gap above with a small τ so that PE fails.

F.2 Further experiments

Next, we report the experimental results under different conditions. Error bars are ±1 standard
deviation, computed over 5 independent runs.

Figure 2 shows the result when Assumption 2.1 holds, where G-BASS almost matches the Opt-MOSS,
outperforming the other algorithms. Figure 4 shows the results when Assumption 2.1 does not hold.
In this case, we observe that OS-BASS outperforms the other algorithms and is close to Opt-MOSS.
Here G-BASS is less effective and sometimes has large variance due to the failure of PE.

Figure 5 demonstrates the performance of E-BASS when Assumption 2.1 holds. We can see that
E-BASS outperforms all other baselines. For large M , G-BASS seems to be more effective than the
others. Figure 6 compares E-BASS to the other algorithms when Assumption 2.1 does not hold.
OS-BASS is competitive with E-BASS and outperforms it for larger M . Comparing Figure 5 and
Figure 6, we can see that G-BASS and E-BASS perform better if Assumption 2.1 holds.

Figures 7 and 8 show the experimental results with a non-oblivious adversary. We observe similar
trends as in the previous experiments.
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Figure 2: Oblivious adversarial setting with Assumption 2.1. Default setting: (N, τ, K, M) =
(500, 4500, 30, 10). G-BASS is near-optimal on all tasks. Left to Right: Regret as a function of
N , τ , K, and M .

Figure 3: Oblivious adversarial setting where assumption 2.1 is almost satisfied (only the minimum
gap condition violated, large task length). Default setting: (N , τ , K, M) = (1000, 1600, 40, 10).
Left to Right: Regret as a function of N , τ , K, M .

Figure 4: Oblivious adversarial setting without assumption 2.1 (no minimum gap and small task
length). Default setting: (N, τ, K, M) = (500, 450, 30, 10). OS-BASS is near-optimal on all tasks and
outperforms OGo. Left to Right: Regret as a function of N , τ , K, M .

Figure 5: E-BASS’s performance in the oblivious adversarial setting with Assumption 2.1. Default
setting: (N , τ , K, M) = (400, 2000, 11, 2). E-BASS outperforms other algorithms. Left to Right:
Regret as a function of N , τ , K, M .

The results for the stochastic setting are shown in Figures 9 and 10. In Figure 9 it seems that
G-BASS performs the best while MOSS is closer to the oracle Opt-MOSS. However, in Figure 10 OS-BASS
outperforms G-BASS and the other algorithms and gets closer to the oracle baseline. We can see in
the stochastic setting the variance is higher than the adversarial setting.

In all the experiments, OS-BASS outperforms OGo which confirms the choice of γ and τ in our analysis
for OS-BASS.
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Figure 6: E-BASS’s performance in the oblivious adversarial setting without assumption 2.1 (no
minimum gap and small task length). Default setting: (N , τ , K, M) = (400, 100, 11, 2). E-BASS
and OS-BASS win all the settings, while MOSS is competitive. Left to Right: Regret as a function of
N , τ , K, M .

Figure 7: The non-oblivious adversarial setting, where Assumption 2.1 holds. Default setting:
(N, τ, K, M) = (500, 4500, 30, 10). G-BASS is near-optimal on all tasks. Left to Right: Regret as a
function of N , τ , K, M .

Figure 8: Non-oblivious adversarial setting without assumption 2.1 (no minimum gap and small
task length). Default setting: (N, τ, K, M) = (500, 450, 30, 10). OS-BASS mostly outperforms the
other method. G-BASS has a high variance as PE fails in this experiment. Left to Right: Regret as
a function of N , τ , K, M .

Figure 9: Stochastic setting, where Assumption 2.1 holds. Default setting: (N, τ, K, M) =
(500, 4500, 30, 10). G-BASS and MOSS have the best performance in all the experiments. Left to
Right: Regret as a function of N , τ , K, M .

G Other Related Work

Slate bandits. The reduction in Section 3.1 is an instance of slate bandit problems with a
non-separable cost function (Dimakopoulou et al., 2019; Rhuggenaath et al., 2020; Kale et al.,
2010). Rhuggenaath et al. (2020) study the problem in the stochastic setting, where the reward
parameter is fixed throughout the game. Merlis and Mannor (2019) study a problem that includes
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Figure 10: Stochastic setting without assumption 2.1 (no minimum gap and small task length).
Default setting: (N, τ, K, M) = (500, 450, 30, 10). OS-BASS has the best performance in all experi-
ments. Left to Right: Regret as a function of N , τ , K, M .

the probabilistic maximum coverage as a special case. They obtain problem-dependent logarithmic
and problem-independent O(

√
N) regret bounds. However, the feedback structure in this work is

richer than our setting. Applied to our problem, they assume that in each segment, for each item
and task pair, a random variable is observed whose expected value is the probability that the item
is the optimal arm in that task.

Bandits with very large action spaces. As K grows very large, our bandit meta-learning
problem is akin to infinitely many armed bandits (Berry et al., 1997; Wang et al., 2008; Bonald
and Proutiere, 2013; Carpentier and Valko, 2015; Chan and Hu, 2020) and countable-armed ban-
dits (Kalvit and Zeevi, 2020) though these settings do not have a meta-learning aspect.

H Code

The code is available at https://github.com/duongnhatthang/meta-bandit

https://github.com/duongnhatthang/meta-bandit

