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Abstract

Learning navigation capabilities in different environments has long been one of the
major challenges in decision-making. In this work, we focus on zero-shot navigation
ability using given abstract 2-D top-down maps. Like human navigation by reading
a paper map, the agent reads the map as an image when navigating in a novel
layout, after learning to navigate on a set of training maps. We propose a model-
based reinforcement learning approach for this multi-task learning problem, where
it jointly learns a hypermodel that takes top-down maps as input and predicts the
weights of the transition network. We use the DeepMind Lab environment and
customize layouts using generated maps. Our method can adapt better to novel
environments in zero-shot and is more robust to noise.

1 Introduction

If we provide a rough solution of a problem to a robot, can the robot learn to follow the solution
effectively? In this paper, we study this question within the context of maze navigation, where an
agent is situated within a maze whose layout has never been seen before, and the agent is expected to
navigate to a goal without first training on or even exploring this novel maze. This task may appear
impossible without further guidance, but we will provide the agent with additional information:
an abstract 2-D top-down map, treated as an image, that illustrates the rough layout of the 3-D
environment, as well as indicators of its start and goal locations (“abstract map” in Figure 1). This
is akin to a tourist attempting to find a landmark in a new city: without any further help, this
would be very challenging; but when equipped with a 2-D map of environment layout, the tourist
can easily plan a path to reach the goal without needing to explore or train excessively.

In our case, we are most concerned with zero-shot navigation in novel environments, where the agent
cannot perform further training or even exploration of the new environment; all that is needed to
accomplish the task is technically provided by the abstract 2-D map. This differs from the vast
set of approaches based on simultaneous localization and mapping (SLAM) typically used in robot
navigation (Thrun et al., 2005), where the agent can explore and build an accurate but specific
occupancy map of each environment prior to navigation. Recently, navigation approaches based
on deep reinforcement learning (RL) approaches have also emerged, although they often require
extensive training in the same environment (Mirowski et al., 2017; 2018). Some deep RL approaches
are even capable of navigating novel environments with new goals or layouts without further training;
however, these approaches typically learn the strategy of efficiently exploring the new environment
to understand the layout and find the goal, then exploiting that knowledge for the remainder of the
episode to repeatedly reach that goal quickly (Jaderberg et al., 2017). In contrast, since the solution
is essentially provided to the agent via the abstract 2-D map, we require a more stringent version
of zero-shot navigation, where it should not explore the new environment; instead, we expect the
agent to produce a near-optimal path in its first (and only) approach to the goal.
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Figure 1: We develop an agent that can perform zero-shot navigation on unseen maps T (in DeepMind
Lab, blue box), without needing to first explore the new 3-D environment. Instead, the agent is given
the top-down view as additional guidance: an abstract 2-D occupancy map, and a goal and start position
(bottom-left black dot and top-right gray dot). The map provides a rough solution solution, the path cannot
be directly followed due to the continuous nature of the agent’s environment, as well as unknown map scale,
inaccuracies in the map, and noisy localization.

The solution to navigation using the provided abstract map seems obvious: we should localize
ourselves on the abstract map (image), plan a path, and simply follow it. However, this approach
suffers from a key difficulty: determining the correspondence between 2-D image maps and 3-D
environments. It is not obvious how to execute the abstract plan in practice because the state and
action spaces are completely different, and may even be discrete in the abstract map but continuous
in the real environment.

Instead, in this paper we explore an alternative approach that avoids explicitly localizing and plan-
ning on the abstract map. The key idea is to plan in a learned model that only considers the abstract
map (and start/goal information) as contextual input, but does not directly plan on the map image
itself. Specifically, we propose learning a task-conditioned hypermodel that uses the abstract map
context to produce the environment-specific parameters (weights) of a latent-state transition dynam-
ics model. We then perform planning by using sampling-based forward search on this task-specific
dynamics model. Importantly, although the learned transition model operates in latent state space,
it uses the agent’s original action space, so that planned trajectories can be directly executed in
the environment, without needing to solve the aforementioned correspondence problem. The hyper-
model and the state encoder are learned in an end-to-end fashion, using loss functions that assess
whether the learned components were able to support effective planning.

We refer to our method as the Map-conditioned Multi-task Navigator (MMN). We start with
a model-based RL algorithm, MuZero (Schrittwieser et al., 2020), and introduce the above task-
conditioned hypermodel based on HyperNetworks (Ha et al., 2017). To tackle challenges in train-
ing, we additionally introduce an n-step generalization of Hindsight Experience Replay (HER)
(Andrychowicz et al., 2017) and an auxiliary hypermodel loss. Additionally, we introduce a model-
free RL baseline, named Map-conditioned Ape-X HER DQN (MAH). This method builds upon
DQN (Mnih et al., 2015; Horgan et al., 2018) and augments the input with the provided abstract
map, and uses standard single-step HER.

In experiments performed in DeepMind Lab (Beattie et al., 2016), a 3-D maze simulation environ-
ment shown in Figure 1, we show that both approaches achieve effective zero-shot navigation in
novel environment layouts, though the model-based MMN is significantly better at long-distance
navigation. Additionally, whereas a baseline approach using deterministic path planning and reac-
tive navigation quickly fails when the map is inaccurate or localization is noisy, our experiments
suggest that MMN is significantly more robust to such noise.

2 Related work

Navigation is widely studied in robotics, vision, RL, and beyond; to limit the scope, we focus on
zero-shot navigation in novel environments, which is most relevant to this work. This excludes
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traditional approaches based on SLAM (Thrun et al., 2005), since those methods need to explicitly
build a map before navigation, and the map can only be used for the corresponding environment and
cannot be transferred to other layouts. Learning-based methods (e.g., Mirowski et al. (2017; 2018))
also require extensive training data from the same environment; they demonstrate generalization
to new goals in the environment, but not transfer to new layouts. Jaderberg et al. (2017); Chen
et al. (2019); Gupta et al. (2020); Chaplot et al. (2020) demonstrate agents that learn strategies
to explore the new environment and potentially build maps of the environment during exploration;
in contrast, we are interested in agents that do not need to explore the new environment. Gupta
et al. (2020) learns to exploit semantic cues from its rich visual input, which is orthogonal to our
work since we use the state directly. Other domains such as first-person-shooting games also involve
agents navigating in novel environments (Lample & Chaplot, 2017; Dosovitskiy & Koltun, 2017;
Zhong et al., 2020), but since navigation is not the primary task in those domains, the agents may
not need to actually reach the specified goal (if any). Most closely related to our work is Brunner
et al. (2018), who also use 2-D occupancy maps as additional input and perform experiments in
DeepMind Lab. Their approach is specific to map-based navigation, whereas our methodology aims
to be less domain specific. Huang et al. (2021) also use HyperNetworks on robot manipulation tasks.

Our work is an instance of end-to-end model-based planning (Tamar et al., 2016; Oh et al., 2017;
Schrittwieser et al., 2020). It has also been referred to as implicit model-based planning since the
model is learned implicitly. It rolls out trajectories using a learnable transition model and jointly
trains the value and policy networks along with the transition network. This is different from decou-
pled model learning and planning, such as Dyna-style (Pong et al., 2018). One important distinction
in end-to-end planning is whether the gradients are passed through the planning computation. For
example, MuZero (Schrittwieser et al., 2020) uses sampling-based search method, Monte Carlo tree
search (MCTS), that is hard to differentiate though. Other sampling-based approaches include
(Hafner et al., 2019; Chua et al., 2018). Another thread of work includes Value Iteration Networks
and its variants (Tamar et al., 2016; Lee et al., 2018; Zhao et al., 2023b;a), which iteratively applies
Bellman operators and is easily differentiable. They have also been used in end-to-end navigation,
including CMP (Gupta et al., 2020) and DAN (Karkus et al., 2019). However, they are limited to
grid-like structure as the VIN backbone is 2-D convolution. Additionally, a body of work (Parisotto
& Salakhutdinov, 2018; Banino et al., 2018; Fortunato et al., 2019; Wayne et al., 2018; Ma et al.,
2020) studies learning structured latent models or representations useful for planning.

Our method is based on MuZero (Schrittwieser et al., 2020), which has only been used on single-
map/goal navigation because it learns purely from rewards. We augment the approach with task
conditioning (map and goal) to generalize to new layouts. Moro et al. (2022) also introduced goal-
relabeling for AlphaZero and applied it in 2-D navigation; however, AlphaZero requires a given
model, whereas MuZero jointly learns and plans with a model.

3 Problem statement

We consider a distribution of navigation tasks ρ(T ). Each task is different in two aspects: map layout
and goal location. (1) Abstract map. The layout of each navigation task is specified by an abstract
map. Specifically, an abstract map m ∈ RN×N is a 2-D occupancy grid, where cell with 1s (black)
indicate walls and 0s (white) indicate nagivable spaces. A cell does not correspond to the agent’s
world, so the agent needs to learn to localize itself on an abstract 2-D map (i.e., to know which part
of map it is currently at). We generate a set of maps and guarantee that any valid positions are
reachable, i.e., there is only one connected component in a map. (2) Goal position. Given a map, we
can then specify a pair of start and goal position. Both start and goal are represented as a “one-hot”
occupancy grid g ∈ R2×N×N provided to the agent. For simplicity, we use g to refer to both start
and goal, and we denote the provided map and start-goal positions c = (m, g) as the task context.

We formulate each navigation task as a goal-reaching Markov decision process (MDP), consisting
of a tuple ⟨S,A, P,RG , ρ0, γ⟩, where S is the state space, A is the action space, P is the transition
probability function P : S × A → ∆(S), ρ0 = ρ(s0) is the initial state distribution, and γ ∈ (0, 1]
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is the discount factor. In the learning, we assume transitions are deterministic. For each task, the
objective is to reach a subset of state space SG ⊂ S indicated by a reward function RG : S × A → R.
We denote a task as T = ⟨P,RG , ρ0⟩, since a map and goal specify the dynamics and reward function
of a MDP, respectively. In the episodic goal-reaching setting, the objective is typically not discounted
(γ = 1) and the reward is −1 for all non-goal states, i.e., RG(s, a) = −I[s ̸= g] for g ∈ SG .

We emphasize that although the abstract map’s occupancy grid corresponds to the environmental
layout, the correspondence between abstract “states” (grid cells) and agent states (pose and velocity)
is not known in advance, and likewise for actions (grid-cell transitions vs. forward/backward/rotate).
Furthermore, the learned correspondence may not be reliable due to inaccuracies in the abstract map
and localization error.

Figure 2: Applying the hypermodel hψ on map m1 and m2 outputs two sets of transition network weights
ϕ1 = hψ(m1, g1) and ϕ2 = hψ(m2, g2). Each transition network uses their weight ϕi to predict the next
state f(s, a;ϕi) = s′, illustrated at the bottom. Since the maps may share local patterns at some scales
(illustrated by the cropped 3 × 3 patches in light blue), they can be captured by the hypermodel hψ.

4 Learning to navigate using abstract maps

This section presents an approach that can effectively use abstract maps (in image form) by end-to-
end model-based planning based on MuZero (Schrittwieser et al., 2020). We expect the agent to be
able to efficiently train on multiple maps as well as generalize to new maps.

This poses several technical challenges. (i) A local change in map may introduce entirely different
environment structure, so we need the model and planner to adapt to the task context in a different
way than conditioning on state, and not directly condition on the entire task context. (ii) During
training, we can only rely on a very small proportion of training tasks (e.g., 20 of 13×13 maps). This
requires compositional generalization from existing map patches to novel combinations of patches.
(iii) The reward signal is sparse, but model learning is done jointly and purely relies on reward
signal. To this end, we first introduce the idea of using a hypermodel that learns to predict weights
of transition model, instead of state output directly, to tackle (i) and (ii). For challenge (iii), we
use the idea from Hindsight Experience Replay (HER) (Andrychowicz et al., 2017) to reuse failure
experience and also add an auxiliary loss of predicting transitions (described in Appendix A).

4.1 Task-conditioned hypermodel

Our goal is to create a transition model that accurately handles various map inputs, enabling plan-
ning in 3D environments with arbitrary layouts. In a single-task training schema, a straightforward
approach would be to learn a parameterized transition function fi(s, a) for each individual map.
However, we aim to leverage shared knowledge between navigation tasks, where maps often exhibit
common local patterns and require the ability to generalize to recombination of known patterns.
For instance, in Figure 2, moving right on the center of the box in the left map shares computation
with the right map. By enabling the agent to recognize these local computational patterns, it can
transfer to new tasks by compositional generalization.
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We propose to build a meta network hψ, or hypermodel, to learn the “computation” of the transition
model fψ simultaneously for all maps with abstract 2-D maps as input. The transition model for
task T (map-goal pair) is a function fi that maps current (latent) state and action to a next (latent)
state. We parameterize a transition function fi as a neural network with its parameter vector ϕi.
The set {fi} represents transition functions of all tasks belonging to a navigation schema (e.g., a
certain size of map), and these tasks have similar structure. This set of transition functions/networks
are characterized by the context variables c = (m, g), i.e., the abstract 2-D map and goal.1 This
implies that parameter vectors ϕi live in a low-dimensional manifold. Thus, we define a mapping
h : C → Φ that maps the context of a task to the parameter vector ϕi of its transition function fi,
predicting state s′ and reward r. We parameterize h also as a network with parameter ψ:2

hψ : c 7→ ϕ, fϕ : s, a 7→ s′, r.

This can be viewed as soft weight sharing between multiple tasks. It efficiently maps low-dimensional
structure in the MDP, specified by the map, to computation of the transition model. It may also
be viewed as a structured learned “dot-product” between task context cT and state and action
st, at to predict the next state. The idea of predicting the weights of a main network using another
meta-network is also known as HyperNetworks (Ha et al., 2017; von Oswald et al., 2020).

Figure 3: The planning/learning process. Yellow boxes indicate predictions; grey boxes come from actual
interactions. (Left) Inference: search with learned model. Applying MCTS with hypermodel to search for
policy and value, and act with a sampled action. (Right) Training: building learning targets. Computing
targets and backpropagating from loss. The dark blue line indicates n-step relabelling. We only illustrate
backpropagation for one reward node for simplicity. The solid red line shows the gradient flow from auxiliary
model loss to the meta-network’s weight ψ. The dashed red line is the gradient from task loss.

4.2 Planning using a learned hypermodel

Equipped with a map-conditioned model, we use it to search for actions according to the map layout
and goal location: (a1, ..., ak) = Plan({si}, c, fϕ). We follow MuZero Schrittwieser et al. (2020)
to use Monte-Carlo tree search (MCTS) to search with the learned hypermodel fϕ. The planner
needs to act based on different task inputs, which necessitates a task-dependent value function that
differs from the single-task setup in MuZero. Consequently, the planner Plan(si, c, fϕ) must strongly
correlate its computation with the map and goal input c = (m, g), which presents a challenge for
model-free reactive agents. As shown in Figure 3 (left), we begin by encoding the observed joint state
ot into a latent space st using the learned encoder eθ(ot). This serves as the root node of the search

1Concretely, a task context c ∈ R4×N×N has four components: downsampled global occupancy map, cropped local
occupancy map, and one-hot goal and start occupancy maps; N is downsampled size.

2We only predict weights of the transition model fϕ : S × A → S which operates on a latent state space. The
mapping from environment observations to latent states e : O → S is not predicted by a meta network. Since the
latent space is low-dimensional, it is feasible to predict weight matrices of a transition network for it.
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tree. To predict the next state given a latent state and a candidate action, we use the hypermodel fϕ.
For each state (blue circle nodes), we use another network gθ(st, c) to predict the policy πt and value
function vt (not shown). These networks guide the search, where the value network estimates the
future value and the policy network provides candidate actions for rollout in MCTS (blue circles), as
described in Schrittwieser et al. (2020). During training, they are trained to minimize the loss with
searched values and actions. Once a number of MCTS simulations are completed (yellow rounded
boxes), we backup the statistics to the root node and sample an action (green boxes) from the
searched action distribution (purple boxes). The trajectory and corresponding abstract map and
goal (cT , {st, at, rt, st+1}t) are saved to a centralized replay buffer for training.

At zero-shot evaluation time, given a new abstract map, we plan with the trained hypermodel:
(1) given a map and goal cT = (mT , gT ), at the beginning of the episode, compute the hypermodel
weights ϕ = h(c;ψ) by applying the meta-network on the task context cT , (2) start MCTS simu-
lations using the hypermodel f(s, a;ϕ) for latent state predictions, (3) get an action and transit to
next state, and go to step (2) and repeat. Moreover, if we assume access to a landmark oracle on
given maps, we can perform hierarchical navigation by generating a sequence of local subgoals
{(m, gi)}ni=1, and plan to sequentially achieve each landmark; see Section 5.3 for more details.

Figure 3 (right) shows our goal-relabeling scheme and loss functions; see Appendix A for details.

5 Experiments

In the experiments, we assess our method and analyze its performance on DeepMind Lab (Beattie
et al., 2016) maze navigation environment. We focus on zero-shot evaluation results.

5.1 Experimental setup

We perform experiments on DeepMind Lab (Beattie et al., 2016), an RL environment suite support-
ing customizing 2-D map layout. As shown in Figure 1, we generate a set of abstract 2-D maps,
and use them to generate 3-D environments in DeepMind Lab. Each cell on the abstract map cor-
responds to 100 units in the agent world. In each generated map, all valid positions are reachable,
i.e., there is only one connected component in the map. Given a sampled map, we then generate
a start-goal position within a given distance range. Throughout each task, the agent receives the
abstract map and start/goal location indicators, the joint state vector o ∈ R12 (consisting of position
R3, orientation R3, translational and rotational velocity R6), and reward signal r. The action space
is {forward, backward, strafe left, strafe right, look left, look right}, with an action repeat of 10.
This means that, at maximum forward velocity, the agent can traverse a 100 × 100 block in two
steps, but typically takes longer because the agent may slow down for rotations.

Training settings We train a set of agents on a variety of training settings, which have several
key options: (1) Map size. We mainly train on sets of 13 × 13, 15 × 15, 17 × 17, 19 × 19, 21 × 21
maps. One cell in the abstract map is equivalent to a 100 × 100 block in the agent’s world. (2) Goal
distance. During training, we generate local start-goal pairs with distance between 1 and 5 in the
abstract map. (3) Map availability. For each map size, we train all agents on the same set of 20
generated maps, with different randomly sampled start-goal pairs in each episode.

Evaluation settings We have several settings for evaluation: (1) Zero-shot transfer. We mainly
study this type of generalization, where the agent is presented with 20 unseen evaluation maps, and
has to navigate between randomly generated start-goal pairs of varying distances. (2) Goal distance
on abstract map. We consider both local navigation and hierarchical navigation. In the local case,
we evaluate on a range of distances ([1, 15]) on a set of maps, while in the hierarchical case, we
generate a set of landmarks with a fixed distance of 5 between them and provide these to agents
sequentially. (3) Perturbation. To understand how errors in the abstract map and in localization
affects performance, we evaluate agents with maps and poses perturbed by different strategies.
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Figure 4: (Left) Zero-shot evaluation performance on 13 × 13 maps. Local navigation with different
distances between start and goal, from 1 to 15. (Right) Performance of our method on larger maps.

Evaluation metrics We mainly report success rate and (approximate) SPL metric (Anderson
et al., 2018) with 95% confidence intervals (higher SPL is better). We report results from fully
trained agents to compare asymptotic performance; no training is performed on evaluation maps.

Methods We compare our model-based approach against two model-free baselines.

1. Map-conditioned Multi-task Navigator (MMN), model-based. Our map-conditioned planner
based on MuZero and improved with n-step HER and multi-task training.

2. Map-conditioned Ape-X HER DQN (MAH), model-free. Based on Ape-X DQN (Horgan et al.,
2018) and single-step HER (Andrychowicz et al., 2017), conditioned on map and goal.

3. Single-task Ape-X HER DQN (DQN†). Similar to above, but no task context c provided.
4. Random, a reference of the navigation performance.

5.2 Zero-shot local navigation in novel layouts

For zero-shot generalization of locally trained agents, we train all four agents on 20 of 13 × 13 maps
with randomly generated local start-goal pairs with distance [1, 5] in each episode. We train the
agents until convergence; MAH typically takes 3× more training episodes and steps. We evaluate
all agents on 20 unseen 13 × 13 maps and generate 5 start-goal pairs for each distance from 1 to 15
on each map. The results are shown in Figure 4 left. MMN and MAH generally outperforms the
other two baselines. MMN has better performance especially over longer distances, both in success
rate and successful-trajectory length (not shown), even though it was only trained on distances ≤ 5.
Since we compare fully trained agents, we found MMN performs asymptotically better than MAH.
Additionally, as shown in Figure 4 right, we also train and evaluate MMN on larger maps from
15 × 15 to 21 × 21. Observed with similar trend to 13 × 13 maps, when trained with start-goal
distance ≤ 5, the agent will find distant goals and larger maps more difficult.

5.3 Hierarchical navigation in novel layouts

We also performed a hierarchical navigation experiment, which requires an additional landmark
oracle to generate sequences of subgoals between long-distance start-goal pairs, and evaluate the
performance of hierarchical navigation. The agent is trained on 13 × 13 maps, and evaluate on 20
unseen 13 × 13 maps. On each map, we use the top-right corner as the global start position and
the bottom-left corner as the global goal position, then plan a shortest path in the abstract 2-D
map, and generate a sequence of subgoals with distance 5 between them; this typically results in 3
to 6 intermediate subgoals. The choice of distance 5 is motivated by our previous experiment, and
because the agent is trained on distances ≤ 5. Consecutive subgoal pairs are provided sequentially
to the agent as local start-goal pairs to navigate. The navigation is considered successful only if the
agent reaches the global goal by the end.



RLJ | RLC 2024

Figure 5: Trajectories from hierarchical navigation in zero-shot on 13 × 13 maps. The top row is for MMN
and bottom row is for MAH. Since there is a fixed scaling factor from maps to environments, we can compute
the corresponding location on the abstract map and visualize trajectories, although this information is not
known to the agent. The top-right corner is the start, and the bottom-left is the goal. Darker cells indicate
provided subgoals from the landmark oracle. For the first 4 tasks (columns), MMN successfully reached the
goals, while MAH failed. Both methods failed in the last task (right-most column).

We evaluated MMN and MAH on the 20 evaluation maps. We provide the next subgoal when the
current one is reached or until timeout. As shown in Table 1, our model-based MMN outperforms the
model-free counterpart by a large margin. MMN can reach 16 out of 20 global goals, which include
all 9 successful cases of MAH. We visualize five trajectories of zero-shot hierarchical navigation in
Figure 5. The model-based MMN is more robust to the intermediate failed subgoals by navigating
to the new subgoal directly, where the model-free MAH gets stuck frequently.

Table 1: Hierarchical navigation performance for various distances between the landmarks, measured by
SPL and success rate (SR only shown for distance 5). Landmarks are provided subgoals between fixed
start-goal pairs on 20 maps. SPL performance is not monotonic because it reflects (lack of) optimality.

Landmark Distance 1 2 3 4 5 5 (SR)
MMN 0.61 0.59 0.68 0.45 0.63 0.80
MAH 0.24 0.42 0.45 0.41 0.28 0.45
DQN† 0.00 0.00 0.00 0.00 0.00 0.00

Random 0.00 0.00 0.00 0.00 0.00 0.00

In Appendix B, we provide further experiments studying the robustness of our method to various
perturbations, including situations where the abstract map contains inaccuracies and where the
agent is only provided a noisy version of its location. In general, our learning-based agent is robust
to these changes, though performance gradually degrades as the magnitude of perturbation increases.

6 Conclusion

In this work, we have presented an end-to-end model-based approach, MMN, for enabling agents to
navigate in environments with novel layouts. By using provided abstract 2-D maps and start/goal
information, MMN does not require further training or exploration (zero-shot). Compared to the
map-conditioned model-free counterpart MAH, both approaches performed well in zero-shot navi-
gation for short distances; for longer distances (with access to a landmark oracle), our model-based
approach MMN performed significantly better. In future work, we will explore learned subgoal
generators, handle visual observation input, and perform navigation in rich visual environments.
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A Further details on our approach

A.1 n-step goal relabelling: Denser reward

Jointly training a planner with learned model can suffer from lack of reward signal, especially
when the model training entirely relies on reward from multiple tasks, which is common in model-
based agents based on value gradients (Schrittwieser et al., 2020; Oh et al., 2017). Motivated by
this, we introduce a straightforward strategy to enhance the reward signal by implicitly defining a
learning curriculum, named n-step hindsight goal relabelling. This generalizes the single-step version
of Hindsight Experience Replay (HER) (Andrychowicz et al., 2017) to n-step return relabeling.

Motivation. As shown in Figure 3 (right), we sample a trajectory of experience
(cT , {st, at, rt, st+1}t) on a specific map and goal cT = (mT , gT ) from the replay buffer. Observe
that, if the agent does not reach the goal area SG (a 100 × 100 cell in the agent’s 3-D environment,
denoted by a 2-D position gT on the abstract 2-D map), it will only receive reward rt = −1 during
the entire episode until timeout. In large maps, this hinders the agent to learn effectively from the
current map mT . Even if the agent partially understands a map, it would rarely experiences a spe-
cific goal area on the map again.3 This is more frequent on larger maps in which possible navigable
space is larger.

Relabelling n-step returns. Motivated by single-step HER, we relabel failed goals to randomly
sampled future states (visited area) from the trajectory, and associating states with the relabelled
n-step return. Concretely, the task-conditioned bootstrapped n-step return is

GT
t
.= rt+1 + γrt+2 + · · · + γnvT

n ,
[
vT
n , π

T
n

]
= gθ(st, cT )

where vT
n is the state-value function bootstrapping n steps into the future from the search value and

conditional on task context cT . This task-conditioned value function is asymmetric since R12 = S ≠
Sg = R2.

Steps. To relabel the task-conditioned bootstrapped n-step return, there are three steps, demon-
strated by the blue lines from “N -step Relabel” box. (1) Goal (red boxes). Randomly select a
reached state st ∈ R12 from the trajectories, then take the 2-D position (x, y) ∈ R2 in agent world
and convert it to a 2-D goal support grid gTS . Then, relabel the goal in task context cTS = (mT , gTS ),
keeping the abstracted map and start position unchanged. (2) Reward (orange boxes). Recompute
the rewards along the n-step segment. In episodic case, we need to terminate the episode if the agent
can reach the relabelled goal area gTS , by marking "done" at the certain timestep or assigning zero
discount after that step γt = 0 to mask the remaining segment. (3) Value (purple circles). Finally,
we need to recompute the bootstrapping task-conditioned value vTS

n , πTS
n = gθ(st, cTS ).

Empirically, this strategy significantly increases the efficiency of our multi-task training by providing
smoothing gradients when sampling a mini-batch of n-step targets from successful or failed tasks. It
can also be applied to other multi-task agents based on n-step return.

A.2 Joint optimization: Multi-task value learning

Our training target has two components. The first component is based on the value gradient objective
in MuZero (Schrittwieser et al., 2020; Oh et al., 2017), using relabelled experiences from proposed
n-step HER. It is denoted by Lktask for step k = 1, . . . ,K. However, this loss is only suitable for
single-task RL.

Thus, we propose an auxiliary model prediction loss, denoted by Lkmodel in Figure 3 (right). The
motivation is to regularize that the hypermodel fϕ(s, a, hψ(cT )) should predict trajectory based on
the information of given abstract map and goal cT . The objective corresponds to maximizing the
mutual information between task context cT and predicted trajectories τ̂T from the hypermodel on

3In our extremely low data regime, the agent only has one start-goal pair on a small set of map. While on low
data regime, the agent can train on randomly sampled pairs on the maps. See the Setup for more details.
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sampled tasks T ∼ ρ(T ):
max
hψ

ET ∼ρ(T ) [I(cT ; τ̂T )] ,

where hψ(cT ) = ϕ is the meta network predicting the weight of transition network fϕ. Observe
that: I(τ ; c) = H(τ) − H(τ |c) ≥ H(τ) + Eτ,c [log q(τ |c)], we can equivalently optimize the RHS
maxh ET [log q(τ |c)] ⇐⇒ maxh E(s,a,s′) [log q(s′|s, a;h(c))] (subscripts omitted). This objective is
equivalent to minimizing the loss between predicted states and true states from environment, for all
transition tuples across all tasks. The final loss is given by the sum over multiple steps:

L(ψ, ϕ, θ) =
n∑
k=1

Lktask + Lkmodel,

where k = 1, ...,K, and K is the length of training segment.

B Further experiments and results

B.1 Robustness to map and localization errors

To further study the robustness of our method and the importance of each component, we consid-
ered breaking three components in closed-loop map-based navigation: Map – (1) → Path – (2) →
Environment – (3) → Map (repeat). In general, our learning-based agent is robust to these changes.
To illustrate the difficulty of the problem, we considered a hard-coded strategy (hand-crafted de-
terministic planner) based on perfect information of the environment (e.g., can plan on map) for
comparison correspondingly: (1) known perfect maps and intermediate landmarks, (2) scaling factor
(unavailable to MMN), and (3) world position on map. Since we assume that it has perfect local-
ization and landmarks, the key step is to reach a landmark given current location, which consists of
several procedures: (a) change the orientation to the target landmark, (b) move forward along the
direction, and (c) stop at the target cell as soon as possible.

Perturbing planning We try to break the implicit assumption of requiring perfect abstract map
information. We adopt the hierarchical setting, but generating subgoals on perturbed maps, where
some proportion of the map’s occupancy information is flipped. In Figure 6 (left), as the perturbation
level increases, MMN’s performance gradually decreases, but it still navigates successfully with
significant noise levels.

Figure 6: Violin plots show the SPL of MMN with different map flip ratio (left) and localization
noise level (right). The two figures clearly show the negative impact of imperfect information,
which also justify the importance of the guidance.

Perturbing action mapping We break the implicit requirement of known scaling between map
and environment. We provide the agent with randomly transformed maps with random perspective
transformation, where the ratio (in both x and y directions) is different. As shown in Table 2,
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perturbed MMN’s performance decreases gracefully compared to unperturbed one, which shows
that our agent rely little on this knowledge or any perfect relation.

Table 2: Success rate for perturbing action mapping, comparing with unperturbed MMN for refer-
ence.

Goal Distance 2 4 6 8 10
MMN (Perturbed) 0.80 0.85 0.71 0.40 0.36
MMN (Default) 0.91 0.90 0.71 0.58 0.43

Perturbing location We break the identifiability of agent position (a part of its joint state) by
applying random noise to given position. We aim to show that our agent does not rely on the position
to understand the map, since providing position in the agent world has no relation with localizing
on abstract maps and our learning-based method can adapt to the noise. In Figure 6 (right), even
though MMN is trained without noise, it tolerates some amount of noise and maintains relatively
high SPL even at 50 units of noise (corresponding to 0.5 cell width). In Figure 7, we visualize the
trajectories of MMN and the deterministic planner to qualitatively demonstrate MMN’s robustness
to noise.

Figure 7: (left pair) MMN visualized with perturbed locations; even though the provided state is
noisy, MMN successfully reaches the goal. (right pair) Deterministic planner is unable to reach
the goal when the provided state is noisy. (We only show the unperturbed locations in this case
for clarity in visualization.) MMN still reaches the goal with 50 units of noise (0.5 cell), while the
deterministic planner gets stuck at some subgoals or runs out of budget.


