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Abstract

Several tasks in control, robotics, and planning can be specified through desired goal
configurations for entities in the environment. Learning goal-conditioned policies
is a natural paradigm to solve such tasks. However, learning and generalizing on
complex tasks can be challenging due to variations in number of entities or composi-
tions of goals. To address this challenge, we introduce the Entity-Factored Markov
Decision Process (EFMDP), a formal framework for modeling the entity-based com-
positional structure in control tasks. Geometrical properties of the EFMDP frame-
work provide theoretical motivation for policy architecture design, particularly Deep
Sets and popular relational mechanisms such as graphs and self attention. These
structured policy architectures are flexible and can be trained end-to-end with stan-
dard reinforcement and imitation learning algorithms. We study and compare the
learning and generalization properties of these architectures on a suite of simulated
robot manipulation tasks, finding that they achieve significantly higher success rates
with less data compared to standard multilayer perceptrons. Structured policies
also enable broader and more compositional generalization, producing policies that
extrapolate to different numbers of entities than seen in training, and stitch to-
gether (i.e. compose) learned skills in novel ways. Video results can be found at
https://sites.google.com/view/comp-gen-rl.

1 Introduction
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Figure 1. Agent is trained to re-arrange three
cubes (top-left), but tested zero-shot to re-
arrange more cubes (bottom-left). RL with
standard MLPs fails to even learn the 3-cube
task, while our policies learn and extrapolate.

Goal specification is a powerful abstraction for train-
ing and deploying AI agents (Kaelbling, 1993; Schaul
et al., 2015; Andrychowicz et al., 2017). For in-
stance, object reconfiguration (Batra et al., 2020)
tasks like loading plates in a dishwasher or arrang-
ing pieces on a chess board can be described through
spatial and semantic goals for various objects. In ad-
dition, the goal for a scene can be described through
compositions of goals for individual entities in it.
Through this work, we introduce a new framework
for modeling tasks with such entity-centric compo-
sitional structure. This is applicable to robot manip-
ulation, multi-agent systems, strategic game-playing,
among other domains. Subsequently, we study pol-
icy architectures that can utilize structural proper-
ties unique to our framework for goal-conditioned
reinforcement and imitation learning. Through ex-
periments in simulated robot manipulation tasks, we
find that our policy architectures exhibit significantly

https://sites.google.com/view/comp-gen-rl
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improved learning efficiency and generalization per-
formance compared to standard multi-layer perceptrons (MLPs), as previewed in Figure 1. More
importantly, our architectures are capable of learning near-optimal policies in complex table top
manipulation tasks where MLP baselines completely fail.

Consider the motivating task of arranging pieces on a chess board using a robot arm. A naive speci-
fication would provide goal locations for all 32 pieces simultaneously. However, we can immediately
recognize that the task is a composition of 32 sub-goals involving the rearrangement of individual
pieces. This understanding of compositional structure can allow us to focus on one object at a
time, dramatically reducing the size of effective state space and help combat the curse of dimen-
sionality that plagues RL (Sutton & Barto, 1998; Bertsekas & Tsitsiklis, 1996). Moreover, such
a compositional understanding would make an agent invariant to the number of objects, enabling
generalization to fewer or more objects. Most importantly, it can enable reusing shared skills like
pick-and-place, enhancing the learning efficiency. We finally note that a successful policy cannot
completely decouple the sub-tasks. For example, if a piece must be moved to a square currently
occupied by another piece, the piece in the destination square must be moved first.

The generic Markov Decision Process (MDP) framework as well as policy architectures based on
MLPs lack the aforementioned compositional properties. To overcome this limitation, we turn to the
general field of “geometric deep learning” (Bronstein et al., 2021) which is concerned with the study of
structures, symmetries, and invariances exhibited by function classes. We first introduce the Entity-
Factored MDP (EFMDP), a subclass of the generic MDP, as a formal model for decision making in
environments with multiple entities (e.g. objects). We then characterize the geometric properties of
EFDMP relative to the generic MDP. We subsequently show how set-based invariant architectures
like Deep Sets (Zaheer et al., 2017) and relational architectures like Self-Attention (Vaswani et al.,
2017) and Graph Convolution (Kipf & Welling, 2016) are well suited to leverage the geometric prop-
erties of the EFMDP. Through experiments, we demonstrate that policies and critics parameterized
by these architectures can be trained to solve complex tasks using standard RL and IL algorithms,
without assuming access to any options or action primitives.

Our Contributions. We present three main contributions in this work.

1. We develop the Entity-Factored MDP (EFMDP) framework, a formal model for decision
making in tasks comprising of multiple entities, and characterize its geometric properties.

2. We show how policies and critics parameterized by set-based invariance models (e.g. Deep
Sets) or relational models (e.g. Self-Attention and Graph Convolution) can leverage the
geometric properties of the EFMDP.

3. We empirically evaluate these structured architectures on a suite of simulated robot manip-
ulation tasks (see Figure 4), and find that they generalize more broadly while also learning
more efficiently. Compared to MLPs, the success rates of our policies are 50× on extrapo-
lation tests which vary the numbers of entities in the environment, and 10× on stitching
tests that require recombining learned skills in novel ways to solve new unseen tasks.

2 Problem Formulation and Architectures

We first formalize our problem setup by introducing the entity-factored MDP (EFMDP). This setting
is capable of modeling many applications including table-top manipulation, scene reconfiguration,
and muti-agent learning. Subsequently, we also introduce policy architectures that can enable effi-
cient learning and generalization by utilizing the EFMDP’s unique structural properties.

2.1 Problem Setup

We study a learning paradigm where the agent can interact with many entities in an environment.
The task for the agent is specified in the form of goals for some subset of entities (including the agent).
We formalize this learning setup with the Entity-Factored Markov Decision Process (EFMDP).
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Definition 1 (Entity-Factored MDP) An EFMDP with N entities is described through the tu-
ple: ME := ⟨U , E , g,A,P,R, γ⟩. Here U and E are the agent and entity state spaces, g is the
subgoal space and A is the agent’s action space. The overall state space S := U × EN has elements
s = (u, e1, · · · , eN ) and the overall goal space G := gN has elements g = (g1, . . . , gN ). The reward
and dynamics are described by:

R (s, g) := R
(
{r̃(ei, gi, u)}N

i=1
)

(1)
P(s′|s, a) := P

((
u′, {e′

i}N
i=1
)
|
(
u, {ei}N

i=1
)

, a
)

(2)

for s, s′ ∈ S, a ∈ A, and g ∈ G.

Subgoals

Agent

Entities

Figure 2. In an EFMDP, an
agent interacts with entities that
have corresponding subgoals. This
framework can model rearrange-
ment, strategic game playing, and
multi-agent systems. In this “push
and stack” example, the agent
must move the green cube to its
subgoal, indicated by the green
sphere, and then stack the yellow
cube on top of the green cube.

The EFMDP is a goal-conditioned MDP (Kaelbling, 1993;
Schaul et al., 2015) with additional structure. Each entity is
associated with a specific reward r̃i = r̃(ei, gi, u), which are
aggregated together to reward the agent. The aggregation can
follow various rules like requiring “all” entity subgoals to be
satisfied or “any” entity subgoal be satisfied. We also note
that the EFMDP does not force the entities to be exchange-
able or indistinguishable, since the entity state space may con-
tain identifying properties distinguishing each entity. The ul-
timate objective for the learning agent in is to learn a policy
π⋆ : S × G → A that maximizes the long term rewards, given
by:

π⋆ := arg max
π

{
J(π) := Eπ

[ ∞∑
t=0

γtR(st, g)
]}

. (3)

The EFMDP can model several applications including table-
top manipulation, scene reconfiguration, multi-agent learning,
and strategic game playing. At the same time, the EFMDP
contains more structure and symmetry compared to the stan-
dard MDP model, which can enable more efficient learning and
better generalization. The crucial symmetry exists in the re-
ward and dynamics, which treat entity-subgoal pairs as un-
ordered sets and are therefore invariant under permutations.

Property 1 (EFMDP Permutation Symmetry) For any
permutation σ ∈ SN (the group of all permutations of N
items), the reward satisfies R(σs, σg) = R(s, g) and the transition dynamics satisfy P(σs′|σs, a) =
P(s′|s, a) for any s, s′ ∈ S and a ∈ A, where:

σs := (u, eσ(1), · · · , eσ(N)) and σg := (gσ(1), · · · , gσ(N)) (4)

This property captures the general intuition that the ordering of entity-subgoal pairs is arbitrary
and not relevant to the actual environment. We also prove that any optimal policy and the optimal
value function are permutation invariant.

Proposition 1 (Policy and Value Invariance) In any EFMDP with N entities, any optimal
policy π⋆ : S × G → A and optimal action-value function Q⋆ : S ×A× G → R are both invariant to
permutations of the entity-subgoal pairs. That is, for any σ ∈ SN :

π⋆(σs, σg) = π⋆(s, g) and Q⋆(σs, a, σg) = Q⋆(s, a, g)

This is a direct consequence of the permutation symmetry in reward and dynamics; we provide a
proof in Appendix A. Note that Proposition 1 only talks about the optimal policy and value function,
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the permutation symmetry does not hold for every policy. In fact, the permutation symmetry
does not hold for most commonly used architectures like MLPs. In the next subsections, we use
Proposition 1 to guide architecture design in reinforcement and imitation learning on EFMDPs. We
show that certain “entity-centric” model classes achieve invariance for every policy and value in the
class, readily utilizing the structure and symettries afforded by the EFMDP.

2.2 Multilayer Perceptrons (MLPs)

Standard RL and IL approaches assume they are solving a generic MDP, and do not use any
additional structure. The generic approach is thus to parameterize the learned policy by an MLP,
which takes a fixed size input vector and applies alternating layers of affine transforms and point-
wise nonlinearities to produce a fixed size output vector. To implement π(s, g) with an MLP we
arrange the contents of (s, g) into a single long vector using concatenation:

vec(s, g) := Concatenate(u, e1, · · · , eN︸ ︷︷ ︸
=s

, g1, · · · , gN︸ ︷︷ ︸
=g

) (5)

Denoting the action of the MLP as a vector-to-vector function MLP(·), our policy is defined π(s, g) :=
MLP(vec(s, g)). Since MLPs expect input vectors of a fixed dimension, testing on tasks with more
entities requires zero padding the inputs during training to ensure consistent input dimensionality
across all tasks.

2.3 Deep Sets

The MLP policy represents a “black-box” approach to generic MDPs that fails to guarantee permu-
tation invariance (Prop. 1). As a result, MLPs might require significant amount of data to learn the
necessary permutation invariance. In contrast, the Deep Sets (Zaheer et al., 2017) (DS) architecture
can guarantee permutation invariance of subgoal-entity pairs by construction. Given a set of vectors
x = {x1, · · · , xN}, it constructs a model of the form:

DS(x) := ρ

(∑
i

ϕ(xi)
)

, (6)

where ρ and ϕ are themselves typically MLPs. DS(·) is invariant to ordering of {xi}, since
∑

i(·) is
agnostic to the ordering of elements. More surprisingly, Zaheer et al. (2017) showed that deep sets
can represent any permutation invariant function of x, given that ρ, ϕ are sufficiently expressive.
Karch et al. (2020) introduced Deep Sets for instruction following policies in a 2D environment,
though to our knowledge, Deep Sets remain underexplored in more complex environments.

We now present a simple but general approach for implementing invariant policies using Deep Sets
for any EFMDP. For this, we arrange the entity-subgoal pairs as a set {(e1, g1), · · · , (e, gN )}. We
also include the “global” or “shared” agent state u to every entity-subgoal pair. The Deep Set then
produces produces an action from this set:

π(s, g) := DS
(
{yi}N

i=1
)

, (7)
yi := Concatenate(u, ei︸︷︷︸

∈s

, gi︸︷︷︸
∈g

). (8)

Figure 3 (left) visualizes how the input is arranged and processed by by the Deep Sets policy.

2.4 Relational mechanisms: Graphs and Self Attention

Although Deep Sets can represent any invariant policy in theory, its design aggregates representations
for all the entities through a single summation and then requires the MLP ρ to handle any interactions
between them. For tasks involving complex entity-entity interactions, we might desire a stronger
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Figure 3. Visualizations of implementing an entity-based goal conditioned policy using either Deep Sets (left) or
Self Attention (right). The policy π : (s, g) 7→ a receives state s = (u, e1, · · · , eN ) containing agent state u and entity
states ei. The goal (g1, · · · , gN ) contains subgoals for each entity. Both policies arrange the input into N vectors
yi = (u, ei, gi), one per entity. The Deep Set policy processes each yi independently with MLP ϕ(·), aggregates
the outputs, and maps the result to an action using MLP ρ(·). The self attention encoder SA(·) produces output
z1, · · · , zN and uses self-attention to model interactions between the entities/subgoals. The zi are mapped to an
action by summation and an MLP ρ(·).

relational inductive bias. Recent relational RL (Džeroski et al., 2001) approaches often model
the state as a graph and use graph neural networks (GNNs) (Gori et al., 2005; Scarselli et al.,
2008) to implement policies or dynamics models. As GNNs are invariant to permutations of their
nodes (Bronstein et al., 2021), they can also satisfy our EFMDP invariance condition Prop. 1 if we
construct the policy input as a graph of entity-subgoal pairs.

We implement and evaluate two simple relational policy architectures based on (1) graph convolu-
tional networks (GCN) (Kipf & Welling, 2016) and (2) self attention (SA) (Vaswani et al., 2017).
Although originally developed for sequence processing applications, previous relational RL architec-
tures have already used self attention as a graph message-passing mechanism (Zambaldi et al., 2018;
Li et al., 2020). To use either GNN-style architecture as a policy in a general EFMDP, we consider
the input s as a complete graph where each node corresponds to an entity and the corresponding
node features are {y1, · · · , yN}, where vector yi is defined in Eq. 8. The GNN component consists
of either multiple GCN layers or multiple self attention layers and transforms the input graph into
an output graph with node features {z1, · · · , zN} that now capture relationships between the nodes.

Finally, the policy pools the zi’s together by summation and project the result to an action a ∈ A
using a small MLP ρ(·). Figure 3 (right) illustrates the self attention policy design. In addition
to satisfying permutation invariance, the relational policies use either graph convolution (GCN) or
self attention (SA) to produce intermediate representations zi that include interactions between the
inputs, which can be a stronger inductive bias on complex tasks.

3 Experiments and Evaluation

In this section, we aim to study the following questions through our experimental evaluation.

1. How efficiently do structured policies learn a given entity-centric task?
2. Can the structured policies extrapolate to more or fewer entities?

PushSwitch StackSwitch+Push
Figure 4. Illustrations of the robot manipulation environments we study. They consist of subtasks
such as pushing a cube to its (spherical) target, flipping a switch to a specified position, and stacking
one cube on top of another. The overall task can involve multiple entities and subtasks as well as
their combinations (pushing cubes and flipping switches).
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3. Can the structured policies solve tasks containing novel combinations of subtasks, by stitch-
ing together (i.e. composing) learned skills?

Extrapolation and stitching are particularly interesting as they require generalization to novel tasks
with no additional training. This is particularly useful when deploying agents in real world settings
with enormous task diversity. Press et al. (2021) showed that self attention can achieve interesting
sequence-length extrapolation behaviors in natural language processing tasks, which suggests that
these architecture classes may also display interesting generalization capabilities in control tasks.

Environment Description. We seek to answer our experimental questions in a suite of simulated
robotic manipulation environments, where the policy provides low level continuous actions to control
a Fetch robot and interact with any number of cubes and switches. There are three subtasks: to
push a cube to a desired location on the table, to flip a switch to a specified setting, or to stack one
cube on top of another. The higher level tasks can involve multiple cubes or switches and compose
many subtasks together, as shown in Figure 4. These environments fit naturally into the EFMDP
framework: the robot is the agent, the cubes and switches are entities, and the goal specifies desired
cube locations or switch settings.

We organize the environments into families to test learning and generalization. Environments in the
N-Push family require re-arranging N cubes by pushing each one to its corresponding subgoal. The
N-Switch family requires flipping each of N switches to its specified setting, and the N-Switch + N-
Push family involves re-arranging N cubes and flipping N switches. We test extrapolation by varying
N within a family at test time, which changes the number of entities: for example we train a policy
in 3-Switch and evaluate it in 6-Switch. As another example, we test stitching by training a single
policy on 2-Switch and 2-Push, then evaluate it on 2-Switch + 2-Push which requires combining the
switch and pushing skills together in a single trajectory. Note that entity-entity collisions are disabled
in non-stacking tasks for the main results, but Appendix D.2 repeats the N-Push experiments with
collisions enabled. Appendix B gives a full description of our environments.

Baselines and Comparisons. Our main comparisons are with: (a) a baseline MLP that models
the task as a regular MDP (Sec. 2.2), and (b) an “oracle” that manually coordinates solving one
subtask at a time. We construct subpolicies for the oracle by training one policy on each distinct
subtask (pushing, flipping switches, and stacking). The oracle chooses an initial entity and subgoal
arbitrarily, and uses the corresponding subpolicy until that subtask is solved. The oracle then
selects the appropriate subpolicy for the next entity-subgoal pair and continues until the entire
task is complete. The oracle is not guaranteed to achieve a 100% success rate since it does not
consider entity-entity interactions. An example failure mode is pushing one cube into position but
knocking another one off the table while doing so. Still, as the oracle represents a hand-crafted
hierarchical approach using an entity-based task decomposition, we will compare the RL and IL
agents’ performance against the oracle in the following experiments.

3.1 Efficiency of Learning

To evaluate the learning efficiency of different architectures, we consider the N-Switch, N-Push,
and N-Switch + N-Push environment families. We try N = 1, 2, 3 for the first two families and
N = 1, 2 for the latter, with larger N corresponding to more entities and more complex tasks within
a family. Evaluation criteria: An episode in the environment is considered successful only if all
the sub-goals in the environment are achieved.

We separately train policies on each environment in each family, using either RL or IL approaches.
For RL training we use DDPG (Lillicrap et al., 2015) with Hindsight Experience Replay (HER)
(Andrychowicz et al., 2017), where we use the same architecture (either MLP, Deep Set, or Self
Attention) to implement both the policy and critic. For IL we use behavior cloning to train policies
to fit a dataset of expert trajectories using mean-squared error loss. For each environment, we use a
trained RL agent to generate the corresponding expert trajectory datasets. See Appendix C for full
RL and IL training details. Additionally, Appendix D.3 contains further experimental comparisons
of RL learning efficiency when training with Proximal Policy Optimization (Schulman et al., 2017)
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Reinforcement learning Imitation learning

Figure 5. Training on environments of varying complexity using either reinforcement or imitation learning.
Each row corresponds to a single environment family (N-Push, N-Switch, and N-Switch + N-Push), where
environments with larger N contain more entities and are more complex. For RL (left), each plot is a training
curve of success rate vs the number of steps taken in the environment. RL with standard MLPs can solve
the simpler tasks such as 1-Push, but structured policies (Self Attention, Deep Set, and Graph Convolution)
are superior on the more complex environments. For IL (right), we show success rates of behavior cloning
against number of expert demonstrations in the dataset. The structured policies far outperform the MLP
even when given less data. Shaded regions indicate 95% CIs over 5 seeds.

instead of DDPG, which show that the following RL results are not broadly sensitive to the particular
choice of algorithm.

RL results. Figure 5 (left) shows RL training curves as a function of environment samples. In
the simpler 1-Switch and 1-Push environments, all methods learn to solve the task fairly quickly.
Once there is more than one entity, however, the structured policies learn faster than the MLP.
In harder environments like 3-Push or N-Switch + N-Push, the MLP fails to achieve a non-trivial
success rate. Both Deep Set and Self Attention match Oracle performance in all environments
except 2-Switch + 2-Push. Graph Convolution additionally struggles in 1-Switch + 1-Push, but
still outperforms MLP. Although they achieve similar asymptotic performance on most tasks, the
Deep Set policy tends to learns faster than the others, possibly because it is simpler and has fewer
parameters.

IL Results. The imitation learning results appear in Figure 5 (right), where the x-axis now indicates
the size of the training dataset used for behavior cloning. Similar to the RL setting, we see that
the structured policies learn far more efficiently than the MLP in all environments. For example, in
3-Push with 5000 demonstrations, the MLP’s success rate is still nearly zero while the Self Attention
policy has a nearly 100% success rate.

Conclusions. MLP policies struggle to learn complex tasks with many entities with both RL
and IL, likely due to the lack of entity-centric processing that the structured policies employ. The
Deep Set policy typically learns faster than the others in RL, and matches or outperforms Self
Attention in IL with 1000 trajectories. Although the asymptotic performance of the entity-centric
methods is typically similar, the relational methods are superior to Deep Set on 3-Push for both RL
and IL. 3-Push is one of the more difficult tasks, and relational policies may benefit from greater
relational expressivity through its self attention mechanisms. Overall, this experiment suggests that
architectures that utilize the structure and invariances in EFMDPs learn substantially faster than
black box architectures.



RLJ | RLC 2024

Train Test

Figure 6. Extrapolation capabilities of RL-trained policies with different architectures. Each row depicts
an environment family with a varying number of entities. Policies are trained on a single environment from
each family before being tested on all the others, with no additional training. Bar charts show success rates
in each environment, with the hatched bars corresponding to training environments. The structured policies
(Self Attention, Deep Set, and Graph Convolution) extrapolate beyond the training environment to solve
tasks with more or fewer entities than seen in training, while MLP policies struggle on more complex testing
environments. Error bars are 95% CIs on 5 seeds.

3.2 Zero-Shot Extrapolation Capabilities

To test whether trained policies can extrapolate and solve test tasks containing more or fewer entities
than seen in training, we use the N-Switch, N-Push, and N-Switch + N-Push environment families.
For N-Push and N-Switch we train a policy with RL on N = 3 and test with N ∈ {1, . . . , 6}. For
N-Switch + N-Push we train a policy with RL on N = 2 and test on N ∈ {1, . . . , 3}. For testing,
we use the RL agent checkpoint with the highest success rate in its training environment.

Results and Observations Figure 6 shows the test performance of these policies on each envi-
ronment family as the number of entities N varies. The MLP only successfully learns the training
task in the N-Switch environments, and it generalizes decently to fewer than 3 switches, but fails
completely in environments with more than 3 switches.

In contrast, the structured policies generalize well and achieve zero-shot success rates comparable to
or exceeding the Oracle in most test environments. Notably, these policies well exceed oracle perfor-
mance on 6-Switch despite training in 3-Switch. Interestingly, Self Attention policies fare poorly on
single-entity test environments, perhaps because the self attention mechanism relies critically on in-
teractions between more than one entity during training. Despite its relative simplicity, the Deep Set
architecture extrapolates as well as or better than the relational architectures in most environments.
A crucial exception is in 3-Push with cube-cube collisions enabled (Appendix D.2). There, modeling
entity-entity interactions is especially crucial and a relational method like Self Attention is largely
superior. Overall, we find that geometric architectures can perform very effective extrapolation.

3.3 Zero-Shot Stitching to solve novel tasks

When evaluating policies for stitching behavior, we use test tasks that combine subtasks from training
in novel ways. In our first setting, we train a policy on 2-Push and 2-Switch, and then test this
policy on 2-Switch + 2-Push, which requires both pushing cubes and flipping switches. In our second
setting, we train a single policy on 2-Push and Stack, which requires stacking one cube on top of
another. The test environment is Push + Stack, which requires pushing one cube into position and



RLJ | RLC 2024

Train Test

2–Push

2–Push Stack Push + Stack

2–Switch 2–Push + 2–Switch

Figure 7. Left: train/test setups that require solving test tasks by stitching together training skills, with no
additional data. Top: train on 2-Switch and 2-Push, test on 2-Switch+2-Push. Bottom: trained on 2-Push
and Stack, test on Push + Stack. Right: average success rates by architecture. Deep Set and Self Attention
policies are moderately successful at solving the test tasks, and are comparable to the Oracle in Push +
Stack. The MLP fails to achieve nontrivial success rates on both test environments. Error bars indicate 95%
CIs over 5 seeds.

then stacking the other block on top. This setting is especially difficult because it requires zero-shot
stitching of skills in a particular order (push, then stack). Figure 7 (left) shows the train-test task
relationships we use to test stitching.

Results and Observations Since this experiment requires training a single policy on multiple
training tasks, during each episode we choose one of the training tasks uniformly at random. Figure 7
(right) shows that the MLP policy fails to jointly learn the training tasks in the first setting, leading
to poor performance in 2-Switch + 2-Push. However, the MLP averages above a 35% success rate
on both training tasks in the second setting, but still only manages a 5% success rate on Push +
Stack. This suggests that even when MLP policies are capable of learning the training tasks, they
are unable to combine them to solve new ones.

The geometric architectures show substantially better (but not oracle-level) stitching capabilities
compared to the MLP. Graph Convolution struggles with the switch component of 2-Switch + 2-
Push, but still outperforms the MLP. It is particularly surprising that the two relational architectures
(Self Attention and Graph Convolution) achieve > 60% zero-shot success rate on Push + Stack, which
requires understanding that the push and stack subtasks must be executed in a specific order. Poor
performance in 2-Switch + 2-Push is again due to difficulties in training one policy on two different
tasks, suggesting that better joint training could further improve stitching performance.

4 Related Work

Compositionality and Hierarchy. Hierarchical approaches to solving long-horizon tasks explic-
itly maintain or learn subpolicies corresponding to useful skills, which can then be coordinated by a
high-level policy (Dayan & Hinton, 1993; Parr & Russell, 1998; Dietterich, 2000). Variations of this
approach include learning termination policies for each sub-policy or “option” (Bacon et al., 2017),
training the high level policy to propose subgoals for goal-conditioned low level skills (Nachum et al.,
2018), or even using natural language as the interface between high and low level policies (Jiang
et al., 2019). Our approach also enables learning of long-horizon and compositional tasks, but sim-
ply through architectural modifications to the policy in end-to-end learning, as opposed to explicitly
learning action representations or modifying the training process.

Entity-centric modeling. Recent works in relational RL (Džeroski et al., 2001) have investigated
graph neural networks (GNNs) (Gori et al., 2005; Scarselli et al., 2008) for handling complex multi-
entity tasks, where the relational or message passing mechanism may be implemented using self
attention (Zambaldi et al., 2018; Li et al., 2020) or a variety of other means (Bapst et al., 2019; Lin
et al., 2022). Though we directly focus on policy (and critic) architecture for model free learning,
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related approaches have studied entity structured networks for dynamics models (Carvalho et al.,
2021; Veerapaneni et al., 2020; Sanchez-Gonzalez et al., 2018). Further work has explored rela-
tional architectures for extracting entity-centric representations from high dimensional observations
before doing control (Wilson & Hermans, 2020; Driess et al., 2022). In particular, Zadaianchuk
et al. (2020) combine entity-centric representation learning with a goal conditioned RL approach
that also demonstrated extrapolation, though not stitching. In settings that can be modeled as
EFMDPs, our framework formally motivates using GNNs through the perspective of permutation
invariance (Bronstein et al., 2021). Tang & Ha (2021) study the permutation invariance of self
attention policies in particular, mainly in the context of robustness to input corruptions. But the
invariance properties of our EFMDP framework also suggest considering invariant architectures with-
out self attention or other relational mechanisms, in which case GNNs reduce to simpler architectures
like Deep Sets (Zaheer et al., 2017). These architectures remain relatively underexplored outside of
basic 2D environments (Karch et al., 2020). Our experiments evaluate both relational and Deep Set
approaches on a suite of complex entity-centric robot tasks.

Policy Architectures in RL. MLPs, LSTMs, and small CNNs remain the dominant architectures
in continuous control (Lillicrap et al., 2015; Schulman et al., 2017; Haarnoja et al., 2018). Sinha
et al. (2020) study deeper networks for continuous control with DenseNet-style (Huang et al., 2017)
connections. Recent work has also explored the use of self attention over the trajectory history
rather than between entities (Chen et al., 2021; Janner et al., 2021). Other approaches leverage
inductive biases about the real world, e.g. by embedding learnable dynamical systems into the
policy architecture (Bahl et al., 2020).

5 Conclusion

This work introduces the EFMDP framework for the learning paradigm where an agent can interact
with many entities in an environment. We explore how structural properties of EFMDPs induce a
permutation symmetry in the optimal policy and value functions, motivating policy architectures
that leverage symmetry: set-based invariant models (Deep Sets) and relational models (Self Atten-
tion and Graph Convolution). These policy architectures decompose goal-conditioned tasks into
their constituent entities and subgoals. These architectures are flexible, do not require any man-
ual task annotations or action primitives, and can be trained end-to-end with standard RL or IL
algorithms.

We compare these architecture types with each other and standard MLPs in a suite of complex
entity-centric tasks. We find that geometric architectures can: (a) learn substantially faster
than black-box architectures like the MLP; (b) perform zero-shot extrapolation to new environ-
ments with more of fewer entities than observed in training; and (c) perform zero-shot stitching
of learned behaviors to solve novel task combinations never seen in training. We find that the geo-
metric architectures perform relatively similarly across most tasks, which can be surprising given the
Deep Set’s relative simplicity. Since many existing entity-centric approaches focus on graph neural
networks or transformers, our results invite further investigation into simple invariant architectures
like Deep Sets.

Limitations and Future Work: EFMDPs require entity-specific subgoals, but some tasks may
instead be specified in terms of entity relations (“place this block on top of that block”). In such cases,
the relational subgoals must be first converted into an equivalent entity specific form. Additionally,
EFMDP’s invariance properties explain why structured policies perform well, but do not distinguish
between them (e.g., DS vs SA). We make this comparison empirically here, but future work could
provide a more principled framework for choosing the right architecture for a given entity-centric
task. We also hope to analyze the how the geometric properties of EFMDPs interact with object-
centric representation learning, a vibrant area of research (Burgess et al., 2019; Kipf et al., 2019;
Locatello et al., 2020; Nanbo et al., 2020) which is important to enabling compositional generalization
for policies that operate on high dimensional observations like images.
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A Permutation invariance

We recall Proposition 1:

Proposition 1 (Policy and Value Invariance) In any EFMDP with N entities, any optimal
policy π⋆ : S × G → A and optimal action-value function Q⋆ : S ×A× G → R are both invariant to
permutations of the entity-subgoal pairs. That is, for any σ ∈ SN :

π⋆(σs, σg) = π⋆(s, g) and Q⋆(σs, a, σg) = Q⋆(s, a, g)

We want to show that any optimal policy π⋆ : S × G → A and the optimal action-value function
Q⋆ : S ×A× G → R are both permutation invariant, that is for any σ ∈ SN :

π⋆(σs, σg) = π⋆(s, g) (9)
Q⋆(σs, a, σg) = Q⋆(s, a, g) (10)

Recall that in an EFMDP the reward and dynamics have permutation symmetry (Property 1):

R(s, a, g) = R(σs, a, σg)
P(s′|s, a) = P(σs′|σs, a)

where σs and σg are defined in Eq. 4. We assume for simplicity that the agent space U and entity
space E are discrete, so that the state space S = U × EN is also discrete.

We begin with Q⋆, which can be obtained by value iteration, where Q⋆
k denotes the k’th iterate.

We initialize Q⋆
0 ≡ 0, which is (trivially) permutation invariant. Permutation invariance is then

preserved during each step of value iteration Q⋆
k 7→ Q⋆

k+1:

Q⋆
k+1(σs, a, σg) = R(σs, a, σg) + γ max

a′

∑
s′∈S

P(s′|σs, a)Q⋆
k(s′, a′) (11)

= R(s, a, g) + γ max
a′

∑
s′∈S

P(σ−1s′|s, a)Q⋆
k(σ−1s′, a′) (12)

= R(s, a, g) + γ max
a′

∑
s′∈S

P(s′|s, a)Q⋆
k(s′, a′) (13)

= Q⋆
k+1(s, a, g) (14)

Hence Q⋆
k is permutation invariant for all k = 0, 1, · · · , with Q⋆

k −−−−→
k→∞

Q⋆. Line 12 follows from the
permutation invariance of the reward, transition probability, and the previous iterate Q⋆

k. Line 13
uses the fact that summing over σ−1s′ for all s′ ∈ S is the same as simply summing over all states
s′ ∈ S. This can be seen more explicitly by expanding a sum over arbitrary function f(·):∑

s∈S
f(σ−1s) =

∑
u∈U

∑
e1∈E
· · ·

∑
eN ∈E

f(u, eσ−1(1), · · · , eσ−1(N)) =
∑
s∈S

f(s)

The permutation invariance of Q⋆ leads to the permutation invariance of π⋆:

π⋆(σs, σg) = arg max
a

Q⋆(σs, a, σg) = arg max
a

Q⋆(s, a, g) = π⋆(s, g)
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B Environments

Our environments are modified from OpenAI Gym’s Fetch environments (Brockman et al., 2016)
(MIT license), with our stacking environment in particular being modified from the Fetch stacking
environments of Lanier (2019). They have a 4D continuous action space with 3 values for end effector
displacement and 1 value for controlling the distance between the gripper fingers. The final action is
disabled when the neither the training or test tasks involve stacking, since gripping is not required
for block pushing or switch flipping. Input actions are scaled and bounded to be between [−1, 1].
We set the environment episode length based on the number of entities and subtasks involved. Each
switch added 20 timesteps, and each cube pushing or stacking task added 50 timesteps. For example,
2-Switch + 2-Push had a max episode length of 2× 50 + 2× 20 = 140 timesteps.

For non-stacking settings such as N-Push and N-Switch + N-Push, we disable cube-cube collision
physics to make training easier for all methods. Note that subgoals may still interfere with each
other since the gripper can interact with all cubes, so the agent may accidentally knock one cube
away when manipulating another one. We repeat the extrapolation experiments for N-Push with
collisions in Appendix D.2.

State and goals. The agent state describe the robot’s end effector position and velocity the gripper
finger’s positions and velocities. The entity state for cubes include the cube’s pose and velocity, and
for switches include the switch setting θ ∈ [−0.7, 0.7] and the position of the switch base on the
table. The switch entity state is padded with zeros to match the shape of the cube entity state, and
all entity states include an extra bit to distinguish cubes from switches. Subgoals specify a target
position for cubes and a target setting θ⋆ ∈ {−0.7, 0.7} for switches.

Reward. The dense reward is defined as the average distance between each entity and its desired
state as specified by the subgoal. For cubes, this is the L2 distance between current and desired
position. For switches, this is |θ−θ⋆|, where θ is the current angle of the switch and θ⋆ is the desired
setting. The sparse reward is 0 if all entities are within a threshold distance of their subgoals, and
−1 otherwise.
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C Training details

C.1 Reinforcement learning

We train RL agents using a publicly available (MIT license) implementation1 of DDPG (Lillicrap
et al., 2015) and Hindsight Experience Replay (HER) (Andrychowicz et al., 2017). Table 1 contains
the default hyperparameters shared across all experiments. Our modified implementation collects
experience from 16 environments in parallel into a single replay buffer, and trains the policy and
critic networks on a single GPU. We used an internal cluster to parallelize experimentation across
multiple random seeds and algorithms/hyperparameters. We collect 2 episodes for every 5 gradient
updates, and for HER we relabel the goals in 80% of sampled minibatches (the “relabel prob”).
The reward scale is simply a multipler of the collected reward used during DDPG training. For
exploration we use action noise η and random action probability ϵ; the output action is:

ã ∼

{
a +N (0, η), with prob 1− ϵ

Uniform(−1, 1), with prob ϵ

Table 2 shows environment specific RL hyperparameters. “Epochs” describes the total amount of
RL training done, with 1 epoch corresponding to 50 × parallel envs episodes. Sparse reward is
used for the simpler environments, and dense reward for the harder ones. For some environments
we decay the exploration parameters η, ϵ by a ratio computed per-epoch. Lin(.01, 100, 150) means
that η, ϵ are both decayed linearly from η0 and ϵ0 to .01× η0 and .01× ϵ0 between epochs 100 and
150. The constant exploration decay schedule maintains the initial η0, ϵ0 values throughout training.
The target network parameters are updated as θtarget ← (1 − τ)θ + τθtarget, where τ is the target
update speed.

We use the same RL hyperparameters regardless of architecture type except that the learning rate
is lower for Self Attention and the exploration decay schedule may vary. Where Table 1 lists “Fast”
and “Slow” decay schedules, we sweep over both options for each architecture and use the schedule
that works best. In each case, the Self Attention policy prefers the slower exploration schedule
and Deep Sets prefers the faster one, while the MLP typically fails to learn with either exploration
schedule on the more complex environments.

Architectures. The exact actor and critic architectures uses for each architecture family is shown in
Table 3. Linear(256) represents an affine layer with 256 output units. ReLU activations follow every
layer except the last. The final actor layer is followed by a Tanh nonlinearity, and the critic has no
activation function after the final layer. A represents the action space dimension, and Block(N, M, H)
represents a Transformer encoder block (Vaswani et al., 2017) with embedding size N , feedforward
dimension M , and H heads. We disable dropout within the Transformer blocks for RL training.

C.2 Imitation Learning

The IL dataset is generated using the best performing RL agent in that environment–we record
M ∈ {1000, 2000, 3000, 4000, 5000} demonstration trajectories. This creates a dataset of M × T
transitions D = {(si, ai)}M×T

i=1 for behavior cloning. However, in practice we filter the dataset
slightly by discarding the transitions corresponding to trajectories that are not successful.

We use the same policy architectures shown in Table 3 and optimize mean squared error loss over
the dataset:

arg min
π

J(π) := 1
|D|

∑
(s,a)∼D

||π(s)− a||2

We use the Adam (Kingma & Ba, 2014) optimizer with learning rate 0.001 (MLP, Deep Sets) or
0.0001 (Self Attention). Each policy is trained for 60, 000 gradient steps with a batch size of 128.

1https://github.com/TianhongDai/hindsight-experience-replay

https://github.com/TianhongDai/hindsight-experience-replay
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Table 1. General shared RL hyperparameters

Hyperparameter Value
Discount γ 0.98

Parallel envs 16
Replay buffer size 106

Relabel prob 0.8
Ratio of episodes : updates 2 : 5

Optimizer Adam
Learning rate MLP, Deep Set: 0.001

Self Attention: 0.0001
Reward Scale Sparse: 1; Dense: 5

Action noise η0 (initial) 0.2
Random action prob ϵ0 (initial) 0.3

Table 2. Environment specific RL hyperparameters

Environment Reward Epochs Exploration decay Target update speed τ

1-Push Sparse 50 Constant(1) 0.95
2-Push Dense 150 Lin(.01, 75, 125) 0.99
3-Push Dense 250 Fast: Lin(.01, 30, 80) 0.99

Slow: Lin(.01, 100, 175)
{1,2,3}-Switch Sparse {10, 50, 100} Constant(1) 0.95

1-Switch + 1-Push Dense 150 Lin(.01, 60, 100) 0.99
2-Switch + 2-Push Dense 250 Fast: Lin(.01, 75, 150) 0.99

Slow: Lin(.01, 100, 150)

Table 3. RL architectures

Family Actor Critic
MLP Linear(256)×3, Linear(A) Linear(256) ×3, Linear(1)

Deep Set ϕ: Linear(256) ×3 ϕ: Linear(256) ×2
ρ: Linear(A) ρ: Linear(256), Linear(1)

Self Attention SA: Linear(256), Block(256, 256, 4)×2 SA: Linear(256), Block(256, 256, 4)×2
ρ: Linear(A) ρ: Linear(1)

Graph Convolution Linear(256) ×3, GraphConv(256) ×2 Linear(256) ×3, GraphConv(256) ×2
ρ: Linear(A) ρ: Linear(1)

Table 4. Parameter count (3-Push)

# parameters Actor Critic
MLP 150,020 150,273

Deep Set 140,292 140,545
Self Attention 800,260 800,513

Graph Convolution 271,876 272,129
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C.3 Training and inference speed

Here we consider the computational complexity of using different architecture classes (MLPs, Deep
Sets, and Self Attention), as we scale the number of entities N . We consider the number of param-
eters, activation memory, and computation time (for a forward pass). For MLPs with fixed hidden
layer sizes, the number of parameters and computation time increase linearly with N while the
memory required for activations stays fixed (due to fixed hidden layer sizes). In Deep Sets and Self
Attention, the number of parameters does not depend on the number of entities N . The activation
memory and computation time grow linearly in Deep Sets, and quadratically for the pairwise inter-
actions of Self Attention. In practice, the number of entities N is modest in all our environments
(e.g., fewer than 10), but computational complexity may be relevant in more complex scenes with
lots of entities.

For a more holistic real-world comparison of execution and training speed, Figure 8 shows both
inference time and training time in the N-Push environments for N ∈ {1, 2, 3}. The inference
time is the number of milliseconds it takes an actor do a single forward pass (using a GPU) on
a single input observation. The Self Attention policy involves more complex computations and is
significantly slower than Deep Set and MLP policies. The RL training time is the actual number of
hours required to run the reinforcement learning algorithms of Figure 5, for each architecture. Not
surprisingly, we see that 3-Push takes significantly longer to train than 1-Push, since it is a harder
environment. For a fixed environment, however, all three architecture types are comparable in speed,
with the Self Attention version being slightly slower than the others. The surprising similarity in RL
training time (despite much slower inference time for the Self Attention policy) suggests that most
of the RL time is spent on environment simulation rather than policy or critic execution. Hence,
the difference between architectures presented in this paper has only a minor effect on reinforcement
learning speeds in practice.

Inference and training speed on N-Push

Figure 8. Left: the time (in milliseconds) it takes for each policy architecture to execute a single
forward pass on a single input observation from the N-Push environments, where N ∈ {1, 2, 3}. The
self attention policy is significantly slower, while the Deep Set and MLP policies are comparable.
Right: Real world reinforcement learning times (in hours) training each policy/critic architecture on
the N-Push environments. Although the Self Attention policy is slightly slower, all policies train at
comparable speeds in the same environment. This suggests that environment simulation, not policy
execution, is the dominant time consuming element.
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D Further comparisons

D.1 Deep set architecture size

Effect of Deep Set size on Extrapolation and Stitching

Figure 9. Comparison of N-Push extrapolation and Push + Stack stitching performance when using
small and large variants of the Deep Set policy architecture. The small version implements ρ with
a 1-layer linear map, while the large version implements ρ with a 2-layer MLP. For N-Push, the
larger network achieves greater success rates in the training environment (3 cubes) but is actually
worse when extrapolating to 5 or 6 cubes. On the other hand, the larger Deep Set displays superior
stitching capability and achieves a higher average success rate when generalizing to Push + Stack
from 2-Push and Stack.

Recall that our Deep Set policy architecture involves two MLPs ϕ and ρ, where ϕ produces inter-
mediate representations for each entity, those intermediate representations are summed, and then ρ
produces the final output (Eq. 6). In full generality, both ϕ and ρ may have two or more layers with
nonlinearities in between. While our ϕ is a 3-layer MLP, we use a linear ρ throughout the main
paper because we found that it often works comparably or better than using a larger 2-layer MLP
ρ. Here we repeat the N-Push extrapolation and Push + Stack stitching experiments from the main
paper using a 2-layer ρ, which we call “Deep Set (large).” The results from the main paper uses a
1-layer ρ which we refer to here as “Deep Set (small).”

Figure 9 shows the results. In N-Push, the larger Deep Set model achieves higher training success
rates in the 3-cube environment, but has worse extrapolation success rates for large numbers of cubes.
For example, the smaller Deep Set model is significantly better at solving 6-Push. Meanwhile,
the large and small Deep Sets achieve very similar results in the pushing and stacking training
environments. However, the larger Deep Set model achieves a higher success rate in the Push +
Stack environment, indicating superior stitching capability. This suggests that simpler Deep Set
architectures may be better for extrapolating to a large number of entities, but more complex
architectures may be superior for solving complex tasks with a fixed number of entities.

D.2 N-Push with cube-cube collisions

Figure 10. N-Push extrapolation with cube-cube collisions enabled. All methods observe some drop
in performance relative to Figure 6, where N-Push has cube-cube collisions disabled. Self Attention
tends to outperform Deep Sets when collisions enabled, likely because its relational inductive biases
are better suited to handling interactions between entities that arise from collisions.

As noted in Appendix B, we disable cube-cube collisions in the N-Push and N-Switch+N-Push
experiments of the main paper (of course, the stacking settings require cube-cube collisions to be
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enabled). Here we repeat the N-Push extrapolation experiments with cube-cube collisions enabled.
Figure 10 shows the results, which are qualitatively similar to when collisions are disabled. All
methods observe a decrease in success rates of about 15%, with the Self Attention method often
outperforming the Deep Set policy. This is likely because N-Push involves more interaction between
entities once cube-cube collisions are enabled, and Self Attention’s relational inductive biases are
better suited for modeling these interactions.

D.3 N-Push with PPO instead of DDPG

0 1 2 3
Step 1e6

20

10
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n

3-Switch PPO

Deep Set MLP

Figure 11. Return throughout RL train-
ing on 3-Push using Proximal Policy
Optimization (PPO) instead of DDPG.

Our RL learning efficiency experiments all use DDPG
with Hindsight Experience Replay, which raises the ques-
tion of whether the results (in particular, the inefficiency
of the MLP) are specific to a particular training algo-
rithm. To answer this, we repeated the 3-Push RL ex-
periment for the Deep Set and MLP architectures, but
trained with Proximal Policy Optimization (PPO (Schul-
man et al., 2017)) instead of DDPG. We use the Stable
Baselines 3 (Raffin et al., 2021) (MIT License) implemen-
tation of PPO with default hyperparameters, trained for
up to 1×106 environment steps. Figure 11 shows that the
general trend we observed while using DDPG still holds:
the invariant Deep Set policy learns the task far more ef-
ficiently than the MLP. In fact, as with DDPG the MLP
policy fails to learn 3-Push at all.


