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Abstract

We study a variant of causal contextual bandits where the context is chosen based
on an initial intervention chosen by the learner. At the beginning of each round, the
learner selects an initial action, depending on which a stochastic context is revealed
by the environment. Following this, the learner then selects a final action and re-
ceives a reward. Given T rounds of interactions with the environment, the objective
of the learner is to learn a policy (of selecting the initial and the final action) with
maximum expected reward. In this paper we study the specific situation where
every action corresponds to intervening on a node in some known causal graph. We
extend prior work from the deterministic context setting to obtain simple regret
minimization guarantees. This is achieved through an instance-dependent causal
parameter, λ, which characterizes our upper bound. Furthermore, we prove that
our simple regret is essentially tight for a large class of instances. A key feature of
our work is that we use convex optimization to address the bandit exploration prob-
lem. We also conduct experiments to validate our theoretical results, and release
our code at the project GitHub Repository.

1 Introduction

Recent years have seen an active interest in causal bandits from the research community (Lattimore
et al., 2016; Sen et al., 2017a;b; Lee & Bareinboim, 2018; Yabe et al., 2018; Lee & Bareinboim,
2019; Lu et al., 2020; Nair et al., 2021; Lu et al., 2021; 2022; Maiti et al., 2022; Varici et al., 2022;
Subramanian & Ravindran, 2022; Xiong & Chen, 2023). In this setting, one assumes an environment
comprising of causal variables that are random variables that influence each other as per a given
causal (directed, and acyclic) graph. Specifically, the edges in the causal DAG represent causal
relationships between variables in the environment. If one of these variables is designated as a
reward variable, then the goal of a learner then is to maximize their reward by intervening on
certain variables (i.e., by fixing the values of certain variables). The rest of the variables, that are
not intervened upon, take values as per their conditional distributions, given their parents in the
causal graph. In this work, as is common in literature, we assume that the variables take values in
{0, 1}. Of particular interest are causal settings wherein the learner is allowed to perform atomic
interventions. Here, at most one causal variable can be set to a particular value, while other variables
take values in accordance with their underlying distributions.

It is relevant to note that when a learner performs an intervention in a causal graph, they get to
observe the values of multiple other variables in the causal graph. Hence, the collective dependence of
the reward on the variables is observed through each intervention. That is, from such an observation,
the learner may be able to make inferences about the (expected) reward under other values for the
causal variables (Peters et al., 2017). In essence, with a single intervention, the learner is allowed
to intervene on a variable (in the causal graph), allowed to observe all other variables, and further,
is privy to the effects of such an intervention. Indeed, such an observation in a causal graph is
richer than a usual sample from a stochastic process. Hence, a standard goal in causal bandits
is to understand the power and limitations of interventions. This goal manifests in the form of
developing algorithms that identify intervention(s) that lead to high rewards, while using as few

https://github.com/adaptiveContextualCausalBandits/aCCB
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Figure 1: Flowchart illustrating the decision-making process of an advertiser posting ads on a
platform like Amazon, and the subsequent interaction with the platform.

observations/interventions as possible. We use the term intervention complexity (rather than sample
complexity) for our algorithm, to emphasize that interventions are richer than samples.

In the learning literature, there are several objectives that an algorithm designer might consider.
Cumulative regret, simple regret, and average regret have prominently been studied in literature
(Lattimore & Szepesvári, 2020; Slivkins et al., 2019). In this work we focus on minimizing simple
regret, wherein the algorithm is given a time budget, up to which it may explore, at which time it
has to output a near-optimal policy.

Addressing causal bandits, the notable work of Lattimore et al. (2016) obtains an intervention-
complexity bound for minimizing simple regret with a focus on atomic interventions and parallel
causal graphs. Maiti et al. (2022) extend this work to obtain intervention-complexity bounds for
simple regret in causal graphs with unobserved variables. The work by Lu et al. (2022) extends
this setting to causal Markov decision processes (MDPs), while addressing the cumulative regret
objective. Combinatorial causal bandits have been studied by Feng & Chen (2023) and Xiong &
Chen (2023).

Causal contextual bandits have been studied by Subramanian & Ravindran (2022) where the contexts
may be chosen by the learner (rather than be provided by the environment). Here we generalize
Subramanian & Ravindran (2022) to a setting where the context is provided by the environment,
adaptively, in response to an initial choice of the learner.

Motivating Example: Consider an advertiser looking to post ads on a web-page, say Amazon.
They may make requests for a certain type of user demographic to Amazon. Based on this initial
request, the platform may actually choose one particular user to show the ad to. At this time, certain
details about the user are revealed to the advertiser. For example, the platform may reveal some
of the user demographics, as well as certain details about their device. Based on these details, the
advertiser may choose one particular ad to show the user. In case the user clicks the ad, the advertiser
receives a reward. The goal of the learner is to find optimal choices for initial user preference, as
well as ad-content such that user clicks are maximized. We illustrate this example through Figure
1 where we indicate the choices available for template and content interventions.

1.1 Our Contributions

We develop an algorithm to identify near-optimal interventions in causal bandits with adaptive
context, and show that the simple regret of such an algorithm is indeed tight for several instances.
We highlight the main contributions of our work below.

1. We develop and analyze an algorithm for minimizing simple regret for causal bandits with
adaptive context in an intervention efficient manner. We provide an upper-bound on intervention
complexity in Theorem 1.
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2. Interestingly, the intervention complexity of our algorithm depends on an instance dependent
structural parameter—referred to as λ (see equation (3))— which may be much lower than nk, where
n is the number of interventions and k is the number of contexts.

3. Notably, our algorithm uses a convex program to identify optimal interventions. Unlike prior
work that uses optimization to design exploration (for example see Yabe et al. (2018)), we show (in
Appendix Section E) that the optimization problem we design is convex, and is thus computationally
efficient. Using convex optimization to design efficient exploration is in fact a distinguishing feature
of our work.

4. We provide lower bound guarantees showing that our regret guarantee is tight (up to a log factor)
for a large family of instances (see Section 4 and Appendix Section F).

5. We demonstrate using experiments (see Section 5) that our algorithm performs exceeding well
as compared to other baselines. We note that this is because λ ≪ nk for n causal variables and k
contexts.

In conclusion, we provide a novel convex-optimization based algorithm for Causal MDP exploration.
We analyze the algorithm to come up with an instance dependent parameter λ. Further, we prove
that our algorithm is sample efficient (see Theorems 1 and 2).

1.2 Additional Related Work

Description Reference
Simple regret for bandits with parallel causal graphs Lattimore et al. (2016)

Simple regret for atomic soft interventions Sen et al. (2017a)
Simple regret for non-atomic interventions in causal bandits Yabe et al. (2018)

Cumulative regret for general causal graphs Lu et al. (2020)
Simple regret in the presence of unobserved confounders Maiti et al. (2022)
Cumulative regret for unknown causal graph structure Lu et al. (2021)

Cumulative regret for causal contextual bandits with latent confounders Sen et al. (2017b)
Simple and cumulative regret for budgeted causal bandits Nair et al. (2021)

Cumulative regret for Linear SEMs Varici et al. (2022)
Cumulative regret for combinatorial causal bandits Feng & Chen (2023)

Cumulative regret for Causal MDPs Lu et al. (2022)
Best-intervention for combinatorial causal bandits Xiong & Chen (2023)

Additive Causal Bandits with Unknown Graph Malek et al. (2023)
Structural Causal Bandits with Unobserved Confounders Wei et al. (2024)

Confounded Budgeted Causal Bandits Jamshidi et al. (2024)
Cumulative Regret for Causal Bandits with Lipschitz SEMs Yan et al. (2024)

Simple regret for causal contextual bandits Subramanian & Ravindran (2022)
Simple regret for causal contextual bandits with adaptive context Our work

Table 1: Summary of prior work in causal bandits

Ever since the introduction of the causal bandit framework by Lattimore et al. (2016), we have seen
multiple works address causal bandits in various degrees of generality and using different modelling
assumptions. Sen et al. (2017a) addressed the issue of soft atomic interventions using an importance
sampling based approach. Soft interventions in the linear structural equation model (SEM) setting
was addressed recently by Varici et al. (2022). Yabe et al. (2018) proposed an optimization based
approach for non-atomic interventions. This work was extended by Xiong & Chen (2023) to provide
instance dependent regret bounds. They also provide guarantees for binary generalized linear models
(BGLMs). The question of unknown causal graph structure was addressed by Lu et al. (2021),
whereas Nair et al. (2021) study the case where interventions are more expensive than observations.

Maiti et al. (2022) addressed simple regret for graphs containing hidden confounding causal variables,
while cumulative regret in general causal graphs was addressed by Lu et al. (2020). A notable work
by Lu et al. (2022) formulates the framework for causal MDPs, and they provide cumulative regret
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Figure 2: The transition to a particular context (chosen context in the figure on the left) is decided
by the environment, whereas the interventions at the start state and an intermediate context (chosen
interventions in the figure on the right) are chosen by the learner.

guarantees in this setting. Causal contextual bandits were addressed by Subramanian & Ravindran
(2022); Sen et al. (2017b), and we extend these works to adaptive contexts.

We summarize the main works in this thread in Table 1 and provide a more detailed set of related
works in Appendix A.

2 Notations and Preliminaries
We model the causal contextual bandit with adaptive context as a contextual bandit problem with a
causal graph corresponding to each context. The actions at each context are given by interventions
on the causal graph. Additionally, we have a causal graph at the start state, and the context is
stochastically dependent on the intervention on the causal graph at the start state. For ease of
notation, we will call the start state of the learner as context 0. The agent starts at context 0,
chooses an intervention, then transitions to one of k contexts [k] = {1, . . . , k}, chooses another
intervention, and then receives a reward; see Figure 2(a).

Assumptions on the Causal Graph: Formally, let C be the set of contexts {0, 1, . . . , k}. Then, at
each context, there is a Causal Bayesian Network (CBN) represented by a causal graph; see Figure
2(b). In particular, at each context i ∈ C, the causal graph is composed of n variables {Xi

1, . . . , Xi
n}.

Each Xi
j takes values from {0, 1}, with an associated conditional probability (of being equal to 0 or

1), given the other variables in the causal graph. We make the following mild assumptions on the
causal graph at each context.

1. The distribution of any node Xi conditioned on it’s parents in the causal graph is a Bernoulli
random variable with a fixed parameter.

2. The causal graph at each context is semi-Markovian. This is equivalent to making the
following assumptions on the graph. No hidden variable in the graph has a parent. Further,
every hidden variable has at most two children, both observable.

3. We transform the causal graph for each context as follows: For every hidden variable with
two children, we introduce bidirected edges between them. If no path of bidirected edges
exists between an intervenable node and its child, the graph is identifiable – a necessary and
sufficient condition for estimating the graph’s associated distribution.(Tian & Pearl, 2002).
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Table 2: Summary of notations for our paper

Notation Explanation
Context 0 Start state

Context [k] Intermediate contexts {1, . . . , k}
Xi

j Causal Variables: Xi
j ∈ {0, 1} for all i ∈ [k], j ∈ [n]

do(·) An atomic intervention of the form do(), do(Xi
j = 0) or do(Xi

j = 1)
Ai Set of atomic interventions at context i

N N := |Ai| = 2n + 1 for all i ∈ [k]
Ri Reward on transition from context i

mi Causal observational threshold at context i ∈ {0, . . . , k}
M diagonal matrix of mi values

P ∈ RN×k Transition probabilities matrix:
[
P(a,i) = P{i | a}

]
a∈A0,i∈[k]

p+ Transition threshold p+ = min{P(a,i) | P(a,i) > 0}

π : C → A Policy, a map from contexts to interventions.
i.e. π(i) ∈ Ai for i ∈ {0} ∪ [k]

E [Ri | π(i)] Expectation of the reward at context i given intervention π(i)

Interventions: Furthermore, we are allowed atomic interventions, i.e., we can select at most one
variable and set it to either 0 or 1. We will use Ai to denote the set of atomic interventions available
at context i ∈ {0, . . . , k}; in particular, Ai = {do()}∪

{
do(Xi

j = 0), do(Xi
j = 1)

}
for j ∈ [n]. We note

that do() is an empty intervention that allows all the variables to take values from their underlying
conditional distributions. Also, do(Xi

j = 0) and do(Xi
j = 1) set the value of variable Xi

j to 0 and 1,
respectively, while leaving all the other variables to independently draw values from their respective
distributions. Note that for all i ∈ [k], we have |Ai| = 2n + 1. Write N := 2n + 1.

Reward: The environment provides the learner with a {0, 1} reward upon choosing an intervention
at context i ∈ [k], which we denote as Ri. Note that Ri is a stochastic function of variables
Xi

1, . . . , Xi
n. In particular, for all j ∈ [n] and each realization Xi

j = xj ∈ {0, 1}, the reward Ri is
distributed as P{Ri = 1 | Xi

1 = x1, . . . , Xi
n = xn}.

Given such conditional probabilities, we will write E[Ri | a] to denote the expected value of reward
Ri when intervention a ∈ Ai is performed at context i ∈ [k]. Here the expectation is over the parents
of the variable Ri in the causal graph, with the intervened variable set at the required value. Note
that these parents (of Ri) may in turn have conditional distributions given their parents. The leaf
nodes of the causal graph are considered to have unconditional Bernoulli distributions. For instance,
E[Ri | do(Xi

j = 1)] is the expected reward when variable Xi
j is set to 1, and all the other variables

independently draw values from their respective (conditional) distributions. Indeed, the goal of this
work is to develop an algorithm that maximizes the expected reward at context 0.

Causal Observational Threshold: We denote by mi, the causal observational threshold1 from
Maiti et al. (2022) at context i. This is computed as follows. Let q̂i

j = minParents(Xi
j
),x∈{0,1} P{Xi

j =
x | Parents(Xi

j)}. Further, let Si
τ = {q̂i

j : (q̂i
j)c < 1/τ} be sets parameterized by τ for every

τ ∈ [2, 2n], where c indicates the c-component size. Then mi = min{τ such that |Si
τ | ≤ τ}. The

existence of such a threshold at each context is guaranteed by the assumptions we made on the
CBNs. In addition, let M ∈ Nk×k denote the diagonal matrix of m1, . . . , mk.

Transitions at Context 0: At context 0, the transition to the intermediate contexts [k] stochas-
tically depends on the random variables {X0

1 , . . . , X0
n}. Here, P{i | a} denotes the probability

1Maiti et al. (2022) extend the causal observational threshold from Lattimore et al. (2016) to the general setting
of causal graphs with unobserved confounders
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of transitioning into context i ∈ [k] with atomic intervention a ∈ A0; recall that A0 includes
the do-nothing intervention. We will collectively denote these transition probabilities as matrix
P :=

[
P(a,i) = P{i | a}

]
a∈A0,i∈[k]. Furthermore, write the transition threshold p+ to denote the

minimum non-zero value in P . Note that matrix P ∈ R|A0|×k is fixed, but unknown.

Policy: A map π : {0, . . . , k} → A, between contexts and interventions (performed by the al-
gorithm), will be referred to as a policy. Specifically, π(i) ∈ Ai is the intervention at context
i ∈ {0, 1, . . . , k}. Note that, for any policy π, the expected reward, which we denote as µ(π), is equal
to
∑k

i=1 E [Ri | π(i)] · P{i | π(0)}. Maximizing expected reward, at each intermediate context
i ∈ [k], we obtain the overall optimal policy π∗ as follows. For i ∈ [k]:

π∗(i) = arg max
a∈Ai

E [Ri | a]

π∗(0) = arg max
b∈A0

(
k∑

i=1
E [Ri | π∗(i)] · P{i | b})

Our goal then is to find a policy π with (expected) reward as close to that of π∗ as possible.

Simple Regret: Conforming to the standard simple-regret framework, the algorithm is given a
time budget T , i.e., the learner can go through the following process T times — (a) start at context
0. (b) Choose an intervention a ∈ A0. (c) Transition to context i ∈ [k]. (d) Choose an intervention
a ∈ Ai. (e) Receive reward Ri. At the end of these T steps, the goal of the learner is to compute a
policy. Let the policy returned by the learner be π̂. Then the simple regret is defined as the expected
value: E[µ(π∗) − µ(π̂]. Our algorithm seeks to minimize such a simple regret.

3 Main Algorithm and its Analysis

We now provide the details relating to our main Algorithm, viz. ConvExplore.

Algorithm 1 ConvExplore: Convex Exploration Algorithm
1: Input: Total rounds T
2: Estimate the transition probabilities P̂ from the start state to the intermediate contexts for time T/3,

by performing interventions at context 0 in a round robin manner.
3: Estimate the causal observational threshold matrix M̂ for time T/3, by performing interventions at

context 0 as per frequency vector f̃ where f̃ ← arg max
fq. vector f

min
contexts [k]

P̂ ⊤f .

4: Estimate the reward matrix R̂ for time T/3, by performing interventions a at context 0 as per frequency

vector f̂∗ where f̂∗ ← arg min
fq. vector f

max
interventions I0

P̂ M̂1/2
(

P̂ ⊤f
)◦− 1

2
.

5: Estimate the optimal action at each intermediate context π̂(i) ∀i ∈ [k] based on R̂. Let the
estimate of optimal reward be R̂(π̂(i)).

6: Estimate the optimal action at the start context π̂(0), based on the transition probabilities P̂

and the optimal reward estimates R̂(π̂(i)).
7: return π̂ = {π̂(0), π̂(1), . . . , π̂(k)} .

aComputation of f̂∗ is efficient as we show that the problem is Convex.
bWe show detailed Algorithms for estimation of transition probabilities P (line 2), estimation of causal observational

threshold M (line 3), and estimation of rewards R (line 4) in Appendix B

The algorithm can be described by five main steps. In the first step, we estimate the transitions to
intermediate contexts. In the second step, we estimate the causal observational thresholds at these
contexts. In the third step, we estimate the rewards upon doing interventions at these contexts. With
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good reward estimates and transition probability estimates, the computation of a good policy at the
intermediate contexts (step 4) and at the start state (step 5) is straightforward. This Algorithm
relies on three subroutines which are detailed in Section B of the Appendix. The key aspect of this
algorithm is in designing the exploration of interventions (at the start state and at the intermediate
contexts) to be regret-optimal – i.e. trading off exploration time between different interventions such
that the policy eventually obtained has near-optimal reward.

Our algorithm (ConvExplore) uses subroutines to estimate the transition probabilities, the causal
parameters, and the rewards. From these, it outputs the best available interventions as its policy π̂.
Given time budget T , the algorithm uses the first T/3 rounds to estimate the transition probabilities
(i.e., the matrix P ) in Algorithm 2. The subsequent T/3 rounds are utilized in Algorithm 3 to
estimate causal parameters mis. Finally, the remaining budget is used in Algorithm 4 to estimate
the intervention-dependent reward Ris, for all intermediate contexts i ∈ [k].

To judiciously explore the interventions at context 0, ConvExplore computes frequency vectors
f ∈ R|A0|. In such vectors, the ath component fa ≥ 0 denotes the fraction of time that each
intervention a ∈ A0 is performed by the algorithm, i.e., given time budget T ′, the intervention
a will be performed faT ′ times. Note that, by definition,

∑
a fa = 1 and the frequency vectors

are computed by solving convex programs over the estimates. The algorithm and its subroutines
throughout consider empirical estimates, i.e., find the estimates by direct counting. Here, let P̂
denote the computed estimate of the matrix P and M̂ be the estimate of the diagonal matrix M .
We obtain a regret upper bound via an optimal frequency vector f̂∗ (see Step 4 in ConvExplore).

Recall that for any vector x (with non-negative components), the Hadamard exponentiation ◦ − 0.5
leads to the vector y = x◦−0.5 wherein yi = 1/

√
xi for each component i. We next define a key

parameter λ that specifies the regret bound in Theorem 1 (below). At a high-level, parameter λ
captures the “exploration efficacy” in the MDP, that takes into account the transition probabilities
P and the exploration requirements M at the intermediate layer. Identification of this parameter is
a relevant technical contribution of our work; see Section C.1 for a detailed derivation of λ.

λ := min
fq. vectorf

∥∥∥PM0.5 (P ⊤f
)◦−0.5

∥∥∥2

∞

Furthermore, we will write f∗ to denote the optimal frequency vector in equation (3). Hence, with
vector ν := PM0.5(P ⊤f∗)◦−0.5, we have λ = maxa ν2

a. Note that Step 4 in ConvExplore addresses
an analogous optimization problem, albeit with the estimates P̂ and M̂ . Also, we show in Lemma 11
(see Section E in the supplementary material) that this optimization problem is convex and, hence,
Step 4 admits an efficient implementation.

To understand the behaviour of λ, we first note that whenever the mi values at the contexts i ∈ [k]
are low, the λ value is low. Specifically, the mi values can go as low as 2 (when the qi

js are all 1
2 ),

removing the dependence of λ on n. The upper-bound on λ is nk. We see this by first upper-bounding
each mi by n. Then, note that whenever maxa∈A P{i|a} ≥ 1/k, then ∃f such that P ⊤f = u where
u = { 1

k , . . . , 1
k }. Now we can compute that ||P · u◦−0.5||2∞ = k, and thereby λ < nk; See footnote2.

The following theorem that upper bounds the regret of ConvExplore is the main result of the cur-
rent work. The result requires the algorithm’s time budget to be at least T0 := Õ

(
N max(mi)/p3

+
)

Theorem 1. Given number of rounds T ≥ T0 and λ as in equation (3), ConvExplore achieves
regret

RegretT ∈ O

(√
max

{
λ

T
,

m0

Tp+

}
log (NT )

)

Observe that m0/Tp+ is independent of the number of contexts and interventions. Therefore λ
dominates when number of interventions at an intermediate context is large.

2λ is upperbounded by kn, but is typically significantly smaller (as m may be much smaller than n).
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4 Analysis of the Lower Bound

Since ConvExplore solves an optimization problem, it is a priori unclear that a better algorithm
may not provide a regret guarantee better than Theorem 1. In this section, we show that for a
large class of instances, it is indeed the case that the regret guarantee we provide is optimal. We
provide a lower bound on regret for a family of instances. For any number of contexts k, we show
that there exist transition matrices P and reward distributions (E[Ri | a]) such that regret achieved
by ConvExplore (Theorem 1) is tight, up to log factors.
Theorem 2. For any qi

j corresponding to causal variables at contexts i ∈ [k], there exists a transition
matrix P , and probabilities q0

j corresponding to causal variables {X0
j }j∈[n], and reward distributions,

such that the simple regret achieved by any algorithm is

RegretT ∈ Ω
(√

λ

T

)

We provide the details of the proof of Theorem 2 in Section F in the supplementary material.

5 Experiments
We first list a few baseline algorithms that we compare ConvExplore with. This is followed by a
complete description of our experimental setup. Finally, we present and discuss our main results.

Uniform Exploration: This algorithm uniformly explores the interventions in the instance. It
first performs all the atomic interventions a ∈ A0 at the start state 0 in a round robin manner.
On transitioning to any context i ∈ [k], it performs atomic interventions b ∈ Ai in a round robin
manner. UnifExplore achieves a regret upperbounded by Õ(

√
nk/T ), which is also the optimal

lower bound for non-causal algorithms. Hence it serves as a good comparison as it achieves an
optimal non-causal simple regret. We plot the comparison with this non-causal regret optimal
exploration in Figure 3. We plot the regret with respect to (A) the number of rounds of exploration
and (B) with the λ values of our instance. Notice that at extremely high λ values ConvExplore
does not perform well, as such an instance does not particularly benefit from the causal structure.
Even so, with further tuning of constants in our Algorithm, we should achieve a performance similar
to UnifExplore.
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Figure 3: We plot the Simple Regret under ConvExplore and UnifExplore. The figure on the
left (3a) plots expected simple regret vs time, for the setup n = 25, k = 25, λ = 50, ε = 0.3 and
m = 2 for all contexts. The figure on the right (3b) plots expected simple regret with λ. It was
performed with the parameters: T = 25000, k = 25, m0 = 2 and ε = 0.3.
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Figure 4: We plot various baselines for two metrics of interest (1) Probability of the algorithm
finding the best interventions and (2) Simple regret. These plots illustrate how these metrics vary
with the exploration budget.

Other Baselines: We now consider several other baselines for comparison, that have been used
in literature. Primary amongst these are: (1) UCB at the start state, as well as the intermediate
contexts (2) Thompson sampling at the start state, as well as the intermediate contexts (3) Round-
robin at the start state, and UCB at the intermediate contexts (4) Round-robin at the start state,
and Thomson sampling at the intermediate contexts and (5) UnifExplore which is round-robin
at both the start state and at the intermediate contexts.

Setup: We consider k = 25 intermediate contexts and a causal graphs with n = 25 variables (2n +
1 = 51 interventions) at each context. The rewards are distributed Bernoulli(0.5+ε) for intervention
X1

1 = 1 and Bernoulli(0.5) otherwise where ε = 0.3 in the experiments. We set mi = m ∀i ∈ [k]. As
in experiments in prior work, we set qi

j = 0 for j ≤ mi and 0.5 otherwise. Let k = n here. At state
0, on taking action a = do(), we transition uniformly to one of the intermediate contexts. On taking
action do(X0

i = 1), we transition with probability 2/k to context i and probability 1/k−1/(k(k−1))
to any of the other k − 1 contexts.

We perform two experiments in this setting. In the first one, we run ConvExplore and UnifEx-
plore for time horizon T ∈ {1000, . . . , 25000}. In the second experiment, we run ConvExplore
and UnifExplore for a fixed time horizon T = 25000 with λ varying in the set {50, 75, . . . , 625}.
To vary λ, we vary mi for the intermediate contexts in the set {2, 3, . . . , 25}. We average the regret
over 10000 runs for each setting. We use CVXPY (Diamond & Boyd (2016)) to solve the convex
program at Step 4 in ConvExplore. We release our code in entirety in our anonymized GitHub
project repository, for the community to use and improve.

Results of comparison with UnifExplore: In Figure 3a, we compare the expected simple
regret of ConvExplore vs. UnifExplore. Our plots indicate that ConvExplore outperforms
UnifExplore and its regret falls rapidly as T increases. In Figure 3b, we plot the expected simple
regret against λ for ConvExplore and UnifExplore that was obtained in Experiment 2, and
empirically validate their relationship that was proved in Theorem 1.
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Figure 5: We plot the variation of probability of finding the best intervention and simple regret with
the number of contexts. Notice the outperformance of ConvExplore vs. the other baselines.
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Figure 6: We plot the variation of probability of finding the best intervention and simple regret with
λ value. Notice that ConvExplore is the only algorithm that is causal-aware and hence varying
with λ.

Results of comparison withother baselines: We find that ConvExplore significantly out-
performs baselines other than UnifExplore. Specifically Thompson samplling and UCB are not
well tuned to the exploration problem, and hence perform poorly in both the metrics of (1) simple
regret as well as (2) probability of finding the best intervention. A mixture of round-robin at the
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start state with these alternatives at the intermediate context also perform poorly with respect to
ConvExplore for this particular exploration problem. In Figure 4 we plot the metrics with ex-
ploration budget. In Figure 5 we plot the metrics of interest with the number of contexts at the
intermediate stage. Finally, in Figure 6, we plot the simple regret as well as probability of finding
the best intervention with our parameter λ, while keeping the number of intermediate contexts the
same. The results of these experiments and full details can be found here.

6 Conclusions
We studied extensions of the causal contextual bandits framework to include adaptive context choice.
This is an important problem in practice and the solutions therein have immediate practical appli-
cations. The setting of stochastic transition to a context accounted for non-trivial extensions from
Subramanian & Ravindran (2022) who studied targeted interventions. We developed a Convex Ex-
ploration algorithm for minimizing simple regret under this setting. Furthermore, while Maiti et al.
(2022) studied the simple causal bandit setting with unobserved confounders, our work addresses
causal contextual bandits with adaptive contexts, under the same constraint of allowing unobserved
confounders (assuming identifiability). We identified an instance dependent parameter λ, and proved
that the regret of this algorithm is Õ(

√
1
T max{λ, m0

p+
}). The current work also established that,

for certain families of instances, this upper bound is essentially tight. Finally, we showed through
experiments that our algorithm performs better than uniform exploration in a range of settings. We
believe our method of converting the exploration in the causal contextual bandit setting is novel,
and may have implications outside the causal setting as well.

Possible generalizations of this work include extensions to non-binary reward settings. Another
natural extension would be to derive bounds for L-layered MDPs, extending from the adaptive
contextual bandit setting we consider. It would be interesting to see whether that problem reduces
to convex exploration as well. Finally, extending convex exploration methods from this paper to
other more general simple regret problems may also be a promising avenue for future research.
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A Related Work

In our work, we draw from prior literature from causality as well as from multi-armed bandits. We
will briefly cover these two in the following section.

A.1 Multi-armed bandits:

The stochastic Multi-Armed Bandit (MAB) setup is a standard model for studying the exploration-
exploitation trade-off in sequential decision making problems (Kuleshov & Precup, 2014; Bubeck
et al., 2012). Such trade-offs arise in several modern applications, such as ad placement, website
optimization, recommendation systems, and packet routing (Bouneffouf et al., 2020) and are thus a
central part of the theory relating to online learning (Slivkins et al., 2019; Lattimore & Szepesvári,
2020).

Traditional performance measures for MAB algorithms have focused on cumulative regret (Auer
et al., 2002; Agrawal & Goyal, 2012; Auer & Ortner, 2010), as well as best-arm identification under
the fixed confidence (Even-Dar et al., 2006) and fixed budget (Audibert et al., 2010) settings. In
some settings however, one may be interested in optimizing the exploration phase. Another variant
of regret that has been considered is the mini-max regret (Azar et al., 2017) which focuses on the
worst case over all possible environments. However, as a metric for pure exploration in MABs,
simple regret has been proposed as a natural performance criterion (Bubeck et al., 2009). In this
setting, we allow for some period of exploration, after which the learner has to choose an arm. The
simple regret is then evaluated as the difference between the average reward of the best arm and the
average reward of the learner’s recommendation. We focus on simple regret in this work.

Each of these performance metrics come with their own lower bounds (Orabona et al., 2012; Osband
& Van Roy, 2016; Bubeck et al., 2012), which are naturally the benchmarks for any algorithms
proposed. The lower bound on simple regret is known to be O(

√
n/T ) for a stochastic multi-armed

bandit problem with n arms. This bound is obtained from the lower bound for pure exploration
provided by Mannor & Tsitsiklis (2004).

Note that, a naive approach to the causal bandit problem which simply treats an intervention on
each of exponentially many combinations of the nodes as an arm, may thus incur an exponential
regret. We now review some of the literature from Causality, which helps in addressing the causal
aspects of the problem.

A.2 Causality:

There are three broad threads in causality related to our work. These are causal graph learning,
causal testing and causal bandits. We address relevant works in these areas below.

Learning Causal Graphs: Tian & Pearl (2002) laid the grounds for analysing functional functional
constraints among the distributions of observed variables in a causal Bayesian networks. Similarly,
Kang & Tian (2006) derive such functional constraints over interventional distributions. These two
seminal works lead to a great interest in the problem of learning causal graphs.

There have been several studies that provide algorithms to recover the causal graphs from the
conditional independence relations in observational data (Pearl & Verma, 1995; Spirtes et al., 2000;
Ali et al., 2005; Zhang, 2008). Subsequent work considered the setting when both observational
and interventional data are available (Eberhardt et al., 2005; Hauser & Bühlmann, 2014). Kocaoglu
et al. (2017a) extend the causal graph learning problem to a budgeted setting. Shanmugam et al.
(2015) uses interventions on sets of small size to learn the causal structure. Kocaoglu et al. (2017b)
provide an efficient randomized algorithm to learn a causal graph with confounding variables.

Testing over Bayesian networks: Given sample access to an unknown Bayesian Network
(Canonne et al., 2017), or Ising model (Daskalakis et al., 2019), one may wish to decide whether
an unknown model is equal to a known fixed model, and analyse the sample complexity of this
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hypothesis test. Acharya et al. (2018) address this question by introducing the concept of covering
interventions. These covering interventions allow us to understand the behaviour of multiple inter-
ventions (that are covered) simultaneously. We utilize the concept of covering interventions from
Acharya et al. (2018) towards our question of finding the optimal intervention in a causal bandit.
The area of reinforcement learning over causal bandits has also been studied in Zhang (2020).

Apart from these areas in causality, our primary problem of causal bandits have been addressed by
Lattimore et al. (2016); Maiti et al. (2022); Sen et al. (2017a); Lu et al. (2020); Nair et al. (2021);
Sen et al. (2017b); Lu et al. (2021; 2022); Varici et al. (2022); Xiong & Chen (2023). We detail these
in the main Related Works Section 1.2.

B Algorithms in Detail

In this section, we outline the three algorithms that are used as helpers in ConvExplore. The
first that we outline now, Algorithm 2, would be used to estimate the transition probabilities out of
context 0 on taking various actions.

Algorithm 2 Estimate Transition Probabilities
1: Input: Time budget T ′

2: For time t← {1, . . . , T ′

2 } do
3: Perform do() at context 0. Transition to i ∈ [k]
4: Count number of times context i ∈ [k] is observed
5: Update q̂0

j = P
{

X0
j = 1

}
end

6: Using q̂0
j s, estimate m0 and the set Amo . Estimate P̂(a,i) = P[i | a] ∀a ∈ Ac

m0 and i ∈ [k]
7: For intervention a ∈ Amo at context 0
8: For time t← {1, . . . T ′

2|Am0 |}
9: Perform a ∈ Amo and transition to some i ∈ [k]

10: Count number of times context i is observed
end

end
11: Estimate P̂(a,i) = P[i | a] for each a ∈ Am0 and contexts i ∈ [k]
12: return Estimated matrix P̂ =

[
P̂(a,i)

]
i∈[k],a∈A0

aIn the first half of time T ′/2, we perform do() at State 0.
bIf A0 := do() ∪ {X0

j = 0, X0
j = 1}j∈[n], we can find m0 ≤ |A0|/2 such that A0 = Am0 ∪ Ac

m0 where the
interventions in Ac

m0 are observed with probability more than 1/m0 and |Am0 | = m0.
cFor the interventions a ∈ Ac

m0 , we can estimate P̂(a,i) = P[i | a] ∀i ∈ [k] in the first half.
dIn the second half, we may intervene on the atomic interventions in Am0 for time T/(2m0) each.
eUsing observations of a ∈ Am0 , we estimate P̂(a,i) = P[i | a] ∀a ∈ Am0 and i ∈ [k].

Next we estimate the causal parameters at all contexts i ∈ [k] through Algorithm 3. Then we will
use Algorithm 4 to estimate the rewards on various interventions at the intermediate contexts.

For estimating the causal parameters, we use a variant of SRM-ALG from Maiti et al. (2022), which
estimates the causal observational threshold mi, under the setting of unobserved confounders and
identifiability. We note that even in the presence of general causal graphs with hidden variables,
SRM-ALG is able to efficiently estimate the rewards of all the arms simultaneously using the
observational arm pulls. As mentioned in Section 3 of Maiti et al. (2022), the challenge is to identify
the optimal number of arms with bad estimates during the initial phase of the algorithm, such
that these arms can be intervened upon at the later phase. The qi(x) parameter is the minimum
conditional probability of X = x, given different configurations of the parents of X. Once we have
these estimates, the remaining algorithm can proceed as per usual.
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Algorithm 3 Estimate Causal Parameters
1: Input: Frequency vector f̃ and time budget T ′

2: Update f(a)← 1
2

(
f̃(a) + 1

|A0|

)
∀a ∈ A0

3: For intervention a ∈ A0
4: For time t← {1, . . . T ′ · f(a)}
5: Perform a ∈ A0 and transition to some i ∈ [k].
6: At context i, perform do() and observe Xi

js
7: Update q̂i

j = minParents(Xi
j

),x∈{0,1} P
{

Xi
j = x | Parents(Xi

j)
}

end
end

8: Using q̂i
js, estimate m̂i values for each context i ∈ [k]

9: return M̂ , the diagonal matrix of the m̂i values

aWe choose actions a ∈ A0 such that we visit the contexts i ∈ [k] approximately equally, in expectation.
bOn each visit to a context i ∈ [k], we perform do(). From these we can estimate qj

i values, which may be used to
estimate mi values.

cBased on these do() interventions at each context i ∈ [k], we get estimates of mi and the intervention sets Ami

such that (I) |Ami | = mi and (II) interventions in Ami are observed with probability less than 1/mi.

Note that in Algorithm 4 there are two phases. In the first phase, we carry out estimates for
interventions that have high probability of being observed on the do() intervention. In the second
phase, we specifically perform interventions which have not been observed often enough. This is
similar to Algorithm 2 where we carry out the two phases of interventions at context 0.

Algorithm 4 Estimate Rewards
1: Input: Optimal frequency f∗, min-max frequency f̃ , and time budget T ′

2: Set f(a)← 1
3

(
f∗(a) + f̃(a) + 1

|A0|

)
∀a ∈ A0

3: For intervention a ∈ A0 at context 0
4: For time t← {1, . . . f(a) · T ′/2}
5: Perform a ∈ A0. Transition to some i ∈ [k]. Perform do() at context i ∈ [k].
6: Observe variables Xi

j ’s and rewards Ri.
end

end
7: Find the set Ami ∀i ∈ [k] using qi

j estimates.
8: Estimate mean reward R̂(b,i) = E [Ri | b] for each b ∈ Ac

mi

9: For intervention a ∈ A0 at context 0
10: For time t← {1, . . . f(a) · T ′/2}
11: Perform a ∈ A0 and transition to some i ∈ [k].
12: Iteratively perform b ∈ Ami . Observe Ri

end
end

13: Estimate mean reward R̂(b,i) = E [Ri | b] for each b ∈ Ami

14: return R̂ =
[
R̂(b,i)

]
i∈[k],b∈Ai

aWe perform the interventions in the ratio of f∗ which is the optimum given the mi values at the various contexts.
bIn the first half we estimate rewards for the interventions Ac

mi
in the first half, and the interventions in Ami in

the second half.
cNote that we round robin over the interventions b ∈ Ami across visits in the second half of the algorithm.
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C Proof of Theorem 1

In this section, we restate Theorem 1 and provide its proof, along with all the lemmas that are used
in the proof.
Theorem. Given number of rounds T ≥ T0 and λ as in equation (3), ConvExplore achieves
regret

RegretT ∈ O

(√
max

{
λ

T
,

m0

Tp+

}
log (NT )

)

C.1 Proof of Theorem 1
To prove the theorem, we analyze the algorithm’s execution as falling under either good event or bad
event, and tackle the regret under each.
Definition 1. We define five events, E1 to E5 (see Table 3), the intersection of which we call as
good event, E, i.e., good event E :=

⋂
i∈[5] Ei. Furthermore, we define the bad event F := Ec.

Table 3: Table enumerating Good Events

Event Condition Explanation

E1
k∑

i=1
|P̂(a,i) − P(a,i)| ≤

p+
3 ∀a ∈ A0

for every intervention a ∈ A0, the empirical
estimate of transition probability in each of

Algorithms 2, 3 and 4 is good, up to an
absolute factor of p+/3

E2 m̂0 ∈ [ 2
3 m0, 2m0] our estimate for causal parameter m0 for state

0 is relatively good in Algorithm 2.

E3 m̂i ∈ [ 2
3 mi, 2mi] ∀i ∈ [k]

our estimate for causal parameter mi for each
context i ∈ [k] is relatively good in Algorithm

3.

E4

∑
i∈[k]|P̂(a,i) − P(a,i)| ≤ ζ,

∀a ∈ A0

The error in estimated transition probability in
Algorithm 2 sums to less than ζ where

ζ :=
√

150m0
T p+

log
(

3T
k

)
E5

∣∣∣E [Ri | a]− R̂(a,i)

∣∣∣ ≤ η̂i ∀i ∈
[k], a ∈ Ai

The error in reward estimates in Algorithm 4 is
bounded3 by η̂i where

η̂i =
√

27m̂i

T (P̂ ⊤f̂∗)i

log (2T N)

Considering the estimates P̂ and M̂ , along with frequency vector2 f̂∗ (computed in Step 4), we
define random variable

λ̂ :=
∥∥∥∥P̂ M̂1/2

(
P̂ ⊤f̂∗

)◦− 1
2
∥∥∥∥2

∞
.

Note that λ̂ is a surrogate for λ. We will show that under the good event, λ̂ is close to λ (Lemma
3).

Recall that RegretT := E[ε(π)] and here the expectation is with respect to the policy π computed
by the algorithm. We can further consider the expected sub-optimality of the algorithm and the
quality of the estimates (in particular, P̂ , M̂ and λ̂) under good event (E).

Based on the estimates returned at Step 4 of ConvExplore, either the good event holds, or we
have the bad event. We obtain the regret guarantee by first bounding sub-optimality of policies
computed under the good event, and then bound the probability of the bad event.

3Recall that f̂∗ denotes the optimal frequency vector computed in Step 4 of ConvExplore. Also, (P̂ ⊤f̂∗)i denotes
the ith component of the vector P ⊤f∗.
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Lemma 1. For the optimal policy π∗, under the good event (E), we have∑
i∈[k] P(π∗(0),i)E [Ri | π∗(i)] −

∑
P̂(π∗(0),i)R̂(π∗(i),i) ≤ O

(√
max{λ̂, m0/p+}/T log (NT )

)
Proof. We add and subtract

∑
i∈[k] P(π∗(0),i)R̂(π∗(i),i) and reduce the expression on the left to:∑

i∈[k] P(π∗(0),i)(E [Ri | π∗(i)] − R̂(π∗(i),i)) +
∑

i∈[k] R̂(π∗(i),i)(P(π∗(0),i) − P̂(π∗(0),i)).

We have: (a) R̂(π∗(i),i) ≤ 1 (as rewards are bounded) (b)
∑

i∈[k]|P̂(π∗(0),i) − P(π∗(0),i)| ≤ ζ (by

E4) and (c)
∣∣∣E [Ri | π∗(i)] − R̂(π∗(i),i)

∣∣∣ ≤ η̂i (by E5). The above expression is thus bounded
above by

∑
i∈[k] P(π∗(0),i)η̂i + ζ Furthermore, it follows from E1 (See Corollary 2 in Section D.1

in the supplementary material) that (component-wise) P ≤ 3
2 P̂ . Hence, the above-mentioned

expression is bounded above by 3
2
∑

i∈[k] P̂(π∗(0),i)η̂i + ζ. Note that the definition of λ̂ en-
sures

∑
i∈[k] P̂(π∗(0),i)η̂i = O(

√
λ̂/T log(NT )). Further, ζ = O(

√
m0/(Tp+) log(T/k)). Hence,∑

i∈[k] P(π∗(0),i)ηi + ζ = O(
√

max{λ̂, m0/p+}/T log (NT )), which establishes the lemma.

We now state another similar lemma for any policy π̂ computed under good event.
Lemma 2. Let π̂ be a policy computed by ConvExplore under the good event (E). Then,∑

i∈[k] P̂(π̂(0),i)R̂(π̂(i),i) −
∑

i∈[k] P(π̂(0),i)E [Ri | π̂(i)] ≤ O
(√

max{λ̂, m0/p+}/T log (NT )
)

Proof. We can add and subtract
∑

i∈[k] P(π̂(0),i)R̂(π̂(i),i) to the expression on the left to
get:

∑
i∈[k] R̂(π̂(i),i)(P̂(π̂(0),i) − P(π̂(0),i)) +

∑
i∈[k] P(π̂(0),i)(R̂(π̂(i),i) − E [Ri | π̂(i)]). Analogous to

Lemma 1, one can show that this expression is bounded above by ζ +
∑

i∈[k]
3
2 P̂(π̂(0),i)η̂i =

O(
√

max{λ̂, m0/p+}/T log (NT )).

We can also bound λ̂ to within a constant factor of λ.
Lemma 3. Under the good event E, we have λ̂ ≤ 8λ.

Proof. Event E1 ensures that 2
3 P ≤ P̂ ≤ 4

3 P (see Corollary 2 in Appendix section D.1). In addition,
note that event E3 gives us M̂ ≤ 2M . From these observations we obtain the desired bound:
λ̂ = P̂ M̂0.5(P̂ ⊤f̂∗)◦−0.5 ≤ P̂ M̂0.5(P̂ ⊤f∗)◦−0.5 ≤ 8PM0.5(P ⊤f∗)◦−0.5 = 8λ; here, the first inequality
follows from the fact that f̂∗ is the minimizer of the λ̂ expression, and for the second inequality, we
substitute the appropriate bounds of P̂ and M̂ .

Recall that:

π∗(i) = arg max
a∈Ai

E [Ri | a]

π∗(0) = arg max
b∈A0

(
k∑

i=1
E [Ri | π∗(i)] · P{i | b})

We will now define ε(π), denoting the sub-optimality of a policy π, as the difference between the
expected rewards of π∗ and π. i.e. ε(π) =

∑k
i=1 E [Ri | π∗(i)]·P{i | π∗(0)}−

∑k
i=1 E [Ri | π(i)]·P{i |

π(0)}.
Corollary 1. For any π̂ computed by ConvExplore under good event E, ε(π̂) =
O
(√

max{λ, m0/p+}/T log (NT )
)

Proof. Since ConvExplore selects the optimal policy (maximizing rewards with respect to the
estimates),

∑
P̂(π∗(0),i)R̂(π∗(i),i) ≤

∑
P̂(π̂(0),i)R̂(π̂(i),i). Combining this with Lemmas 1 and 2, we
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get
∑

i∈[k] P(π∗(0),i)E [Ri | π∗(i)] −
∑

i∈[k] P(π̂(0),i)E [Ri | π̂(i)] = O(
√

max{λ̂, m0/p+}/T log (NT ))
under good event. The left-hand-side of this expression is equal to ε(π̂). Using Lemma 3, we get
that ε(π̂) = O

(√
max{λ, m0/p+}/T log (NT )

)
.

Corollary 1 shows that under the good event, the (true) expected reward of π∗ and π̂ are within
O
(√

max{λ, m0/p+}/T log (NT )
)

of each other. In Lemma 10 (see Section D.5 in the supplemen-
tary material) we will show 4 that P{

⋃
i∈[5] ¬Ei} = P {F} ≤ 5k/T whenever T ≥ T0

5.

The above-mentioned bounds together establish Theorem 1 (i.e., bound the regret of ConvEx-
plore): RegretT = E[ε(π)] = E[ε(π̂) | E]P {E} + E[ε(π′) | F ]P {F}. Since the rewards are
bounded between 0 and 1, we have ε(π′) ≤ 1, for all policies π′. But P{E} ≤ 1 giving us
RegretT ≤ E[ε(π) | E] + P{F}. Therefore, Corollary 1 along with Lemma 10, leads to guaran-
tee RegretT = O

(√
max{λ, m0/p+}/T log (NT )

)
+ 5k/T = O

(√
max{λ, m0/p+}/T log (NT )

)
D Bounding the Probability of the Bad Event

Recall that the good event corresponds to
⋂

i∈5 Ei (see Definition 1). Write F := ¬
(⋂

i∈5 Ei

)
and note that, for the regret analysis, we require an upper bound on P{F} = P

{
¬(
⋂

i∈5 Ei)
}

=
P
{⋃

i∈5 ¬Ei

}
. Towards this, in this section we address P{¬Ei}, for each of the events E1-E5, and

then apply the union bound.

D.1 Bound on ¬E1

The next lemma upper bounds the probability of ¬E1.
Lemma 4. In each of Algorithms 2, 3 and 4 and for all interventions a ∈ A0, we have P{¬E1} =

P
{

k∑
i=1

|P̂(a,i) − P(a,i)| > p+
3

}
< k

T whenever T ≥ max
{

1620N
p3

+
, 2025N

p2
+

log
( 9NT

k

)}
.

Proof. On performing any intervention a ∈ A0 at context 0, the intermediate context that we
visit follows a multinomial distribution. Hence, we can apply Devroye’s inequality (for multinomial
distributions) to obtain a concentration guarantee; we state the inequality next in our notation.
Lemma 5 (Restatement of Lemma 3 in Devroye (1983)). Let Ta be the number of times in-
tervention a ∈ A0 is performed in context 0. Then, for any η > 0 and any Ta ≥ 20s

η2 , we have

P
{

k∑
i=1

|P̂(a,i) − P(a,i)| > η

}
≤ 3 exp

(
− Taη2

25

)
. Here, s is the support of the distribution (i.e., the

number of contexts that can be reached from a with a nonzero probability).

Note that each intervention a ∈ A0 is performed at least Ta = T
9N times across Algorithms 2, 3 and

4. Setting η = p+
3 and Ta = T

9N above, we get that for each intervention a ∈ A0, in each subroutine,
P
{∑k

i=1|P(a,i) − P̂(a,i)| > p+
3

}
≤ 3 exp

(
− T p2

+
9N ·9·25

)
= 3 exp

(
− T p2

+
2025N

)
.

Note that to apply the inequality, we require T
9N ≥ 180s

p2
+

, i.e., T ≥ 1620sN
p2

+
. In the current context,

the support size s is at most 1
p+

; this follows from the fact that on performing any intervention
a ∈ A0, at most 1

p+
contexts can have P(a,i) ≥ p+. Hence, the requirement reduces to T ≥ 1620N

p3
+

.

4Recall that, by definition, F = Ec.
5T0 as defined in Lemma 10 in Section D.5 in the supplementary material.
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Next, we union bound the probability over the N interventions (at state 0) and the three subroutines,
to obtain that, for any intervention a ∈ A0 and in any subroutine, P

{∑k
i=1|P(a,i) − P̂(a,i)| > p+

3

}
≤

3N · 3 exp
(

− T p2
+

2025N

)
= 9N exp

(
− T p2

+
2025N

)
.

Note that 9N exp
(

− T p2
+

2025N

)
≤ k

T , for any T ≥ 2025N
p2

+
log
( 9NT

k

)
. Hence, for any T ≥

max
{

1620N
p3

+
, 2025N

p2
+

log
( 9NT

k

)}
, we have P[¬E1] ≤ 9N exp

(
− T p2

+
2025N

)
≤ k

T . This completes the
proof of the lemma.

We state below a corollary which provides a multiplicative bound on P̂ with respect to P , comple-
menting the additive form of E1.
Corollary 2. Under event E1, we have 2

3 P(a,i) ≤ P̂(a,i) ≤ 4
3 P(a,i), for all interventions a ∈ A0 and

contexts i ∈ [k].

Proof. Event E1 ensures that
k∑

i=1
|P̂(a,i) − P(a,i)| ≤ p+

3 , for each interventions a ∈ A0 and contexts

i ∈ [k]. This, in particular, implies that for each intervention a ∈ A0 and context i ∈ [k] the
following inequality holds: |P̂(a,i) − P(a,i)| ≤ p+

3 . Note that if P(a,i) = 0, then the algorithm will
never observe context i with intervention a, i.e., in such a case P̂(a,i) = P(a,i) = 0. For the nonzero
P(a,i)s, recall that (by definition), p+ = min{P(a,i) | P(a,i) > 0}. Therefore, for any nonzero P(a,i),
the above-mentioned inequality gives us |P̂(a,i) − P(a,i)| ≤ 1

3 P(a,i). Equivalently, P̂(a,i) ≤ 4
3 P(a,i) and

P̂(a,i) ≥ 2
3 P(a,i). Therefore, for all P(a,i)s the corollary holds.

D.2 Bound on Events ¬E2 and ¬E3

In this section, we bound the probabilities that our estimated m̂is are far away from the true causal
parameters mis.
Lemma 6. For any T ≥ 144m0 log

(
T N

k

)
, in Algorithm 2, P[¬E2] = P

{
m̂0 /∈ [ 2

3 m0, 2m0]
}

≤ k
T .

Proof. We allocate time T
3 to Algorithm 2. Lemma 8 of Lattimore et al. (2016) ensures that, for

any δ ∈ (0, 1) and T
3 ≥ 48m0 log( N

δ ), we have m̂0 ∈ [ 2
3 m0, 2m0], with probability at least (1 − δ).

Setting δ = k
T , we get the required probability bound.

Next, we address P{¬E3 | E1}.

Lemma 7. For any T ≥ 648 max(mi)N
p+

log (2NT ), in each of Algorithms 3 and 4, we have
P
{

∃i ∈ [k], m̂i /∈ [ 2
3 mi, 2mi]

∣∣ E1
}

≤ k
T .

Proof. Fix any reachable context i ∈ [k]. Corresponding to such a context, there exists an interven-
tion α ∈ A0 such that P(α,i) ≥ p+. Event E1 (Corollary 2) implies that P̂(α,i) ≥ 2

3 P(α,i) ≥ 2
3 p+.

Now, write Ti to denote the number of times context i ∈ [k] is visited by the Algorithms 3 and 4.
Recall that in the subroutines we estimate P̂(α,i) by counting the number of times context i was
reached and simultaneously intervention α observed. Furthermore, note that we allocate to every
intervention at least T

9N time (See Steps 2 in both the subroutines). In particular, intervention α

was necessarily observed T
9N times. Therefore, P̂(a,i) ≤ Ti

( T
9N ) . This inequality leads to a useful lower

bound: Ti ≥ T
9N P(a,i) ≥ T 2p+

27N .

We now restate Lemma 8 from Lattimore et al. (2016): Let Ti be the number of times context i ∈ [k]
is observed. Then, P

{
m̂i /∈ [ 2

3 mi, 2mi]
}

≤ 2N exp
(

− Ti

48mi

)
.
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Since Ti ≥ 2T p+
27N , this guarantee of Lattimore et al. (2016) corresponds to P

{
m̂i /∈ [ 2

3 mi, 2mi]
}

≤
2N exp

(
− T p+

648Nmi

)
≤ 2N exp

(
− T p+

648N max(mi)

)
.

Union bounding over all contexts i ∈ [k] and the two Algorithms 3
and 4, we obtain P

{
∃i ∈ [k] in Algorithms 3, 4 with m̂i /∈ [ 2

3 mi, 2mi]
}

≤
2Nk exp

(
− T p+

648N max(mi)

)
.Finally, substituting the value of T ≥

648 max(mi)N
p+

log (2NT ), gives us P
{

∃i ∈ [k] in Algorithms 3, 4 with m̂i /∈ [ 2
3 mi, 2mi]

}
≤

2Nk exp
(

− p+
648N max(mi) ·

[
648 max(mi)N

p+
log (2NT )

])
= k

T . This completes the proof.

D.3 Bound on E4:

The following lemma provides an upper bound for P{¬E4 | E2}.

Lemma 8. Let ζ :=
√

150m0
T p+

log
( 3T

k

)
. Then, P{¬E4 | E2} = P

{ ∑
i∈[k]

∣∣∣P(a,i) − P̂(a,i)

∣∣∣ > ζ
∣∣E2

}
≤ k

T .

Proof. As in the proof of Lemma 4, we will use Devroye’s inequality. Write Ta to denote the number
of times intervention a ∈ A0 is observed (in state 0) in Algorithm 2. For any η ∈ (0, 1) and with

Ta ≥ 20s
η2 , Devroye’s inequality gives us P

{
k∑

i=1
|P̂(a,i) − P(a,i)| > η

}
≤ 3 exp

(
− Taη2

25

)
. Here, s is the

size of the support of the multinomial distribution.

We first show that Ta is sufficiently large, for each intervention a ∈ A0. Recall that we allocate time
T
3 to Algorithm 2. Furthermore, we observe each intervention in state 0, at least T

3m̂0
times, either

as part of the do-nothing intervention or explicitly in Step 9 of Algorithm 2. Now, event E2 ensures
that m̂0 ∈ [ 2

3 m0, 2m0]. Hence, each intervention a ∈ A0 is observed Ta ≥ T

3m̂0
≥ T

3·2m0
= T

6m0
times.

Substituting this inequality for Ta in the above-mentioned probability bound, we obtain

P
{

k∑
i=1

|P̂(a,i) − P(a,i)| > η

}
≤ 3 exp

(
− T η2

150m0

)
when T ≥ 120sm0

η2 . As observed in Lemma 4, the

support size s is at most 1
p+

. Therefore, the requirement on T reduces to T ≥ 120m0
η2p+

.

Setting η =
√

150m0
T p+

log
( 3T

k

)
gives us

P

{
k∑

i=1
|P̂(a,i) − P(a,i)| >

√
150m0

Tp+
log
(

3T

k

)}
≤ 3 exp

 −T

150m0

[√
150m0

Tp+
log
(

3T

k

)]2
≤ k

T
.

Therefore P
{

k∑
i=1

|P̂(a,i) − P(a,i)| > η

}
≤ k

T , and this probability bound requires T ≥ 120m0
η2p+

. That is,

η ≥
√

120m0
T p+

. This inequality is satisfied by our choice of η. Hence, the lemma stands proved.

D.4 Bound on ¬E5

The next lemma bounds P{¬E5 | E1, E3}.

Lemma 9. Let η̂i =
√

27m̂i

T (P̂ ⊤f̂∗)i

log (2TN). Then, P{¬E5 | E3, E1} ≤ k
T . In other words:

P
{

∃i ∈ [k] and a ∈ Ai such that
∣∣∣E [Ri | a] − R̂(a,i)

∣∣∣ > η̂i | E3, E1

}
≤ k

T
.
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Proof. For intermediate contexts i ∈ [k], we denote the realization of the causal parameters mi

and the transition probabilities P in Algorithm 4, as m̃i and P̃ , respectively. The estimates in the
previous subroutines are denoted by m̂i and P̂ .

Event E1 gives us P(a,i) ∈ [ 3
4 P̂(a,i),

3
2 P̂(a,i)]and P̃(a,i) ∈ [ 2

3 P(a,i),
4
3 P(a,i)]. Hence, the estimates across

the subroutines are close enough: P̃(a,i) ∈ [ 1
2 P̂(a,i), 2P̂(a,i)]. Similarly, event E3 gives us m̃i ∈

[ 1
3 m̂i, 3m̂i].

Write T̃i to denote the number of times context i ∈ [k] was visited in Algorithm 4. For all contexts
i ∈ [k], we first establish a useful lower bound on T̃i, under events E1 and E3. The relevant
observation here is that the estimate P̃(α,i) was computed in Algorithm 4 by counting the number
of times context i was visited with intervention α ∈ A0 (at state 0). By construction, in Algorithm
4 each intervention α ∈ A0 was performed at least f̂∗

α

3
T
3 times. Furthermore, given that P̃(α,i) was

computed via the visitation count, we get that context i is visited with intervention α ∈ A0 at
least P̃(α,i)

T f̂∗
α

9 times. Therefore, T̃i ≥
∑

α∈A0
P̃(α,i)

T f̂∗
α

9 = T
9 (P̃ ⊤f̂∗)i ≥ T

18 (P̂ ⊤f̂∗)i. Here, the last
inequality follows from the above-mentioned proximity between P̂ and P̃ .

Now, note that, at each context i ∈ [k], Algorithm 4 (by construction) observes every intervention
a ∈ Ai at least T̃i

m̃i

times. Write T̃(a,i) to denote the number of times intervention a ∈ Ai is observed
in this subroutine. Hence,

T̃(a,i) ≥ T̃i

m̃i
≥ 1

m̃i

T

18(P̂ ⊤f̂∗)i ≥ 1
3m̂i

T

18(P̂ ⊤f̂∗)i

For each context i ∈ [k] and intervention a ∈ Ai, define the event ¬E5(a, i) as |E [Ri | a]−R̂(a,i)| > η̂i.

Hoeffding’s inequality gives us P {¬E5(a, i) | E1, E3} ≤ 2 exp
(

−2T̃(a,i)η̂
2
i

)
≤ 2 exp

(
−T

(P̂ ⊤f̂∗)iη̂2
i

27m̂i

)
.

The last inequality is obtained by substituting Equation D.4.

Recall that η̂i =
√

27m̂i

T (P̂ ⊤f̂∗)i

log (2TN). Hence, the previous inequality corresponds to

P {¬E5(a, i) | E1, E3} ≤ 2 exp
(

−T (P̂ ⊤f̂∗)i

27m̂i

·
[√

27m̂i

T (P̂ ⊤f̂∗)i

log (2TN)
]2
)

= 1
T N .

Note that ¬E5 =
⋃

i∈[k]
⋃

a∈Ai
E5(a, i). Taking a union bound over all contexts i ∈ [k] and inter-

ventions a ∈ Ai, we obtain P{¬E5 | E1, E3} ≤ kN
T N = k

T . This completes the proof.

D.5 Bound on bad event (F):

Write T0 := O
(

N max(mi)
p3

+
log (2NT )

)
= Õ

(
N max(mi)

p3
+

)
.

Lemma 10. P{F} ≤ 5k
T for any T > T0.

Proof. We summarize the statements of Lemmas 4, 6, 7, 8 and 9 as follows. When
T ≥ T0 where T0 = max

{
1620N

p3
+

, 2025N
p2

+
log
( 9NT

k

)
, 144m0 log

(
T n
k

)
, 864 max(mi)N

p+
log (2nT )

}
=

O
(

N max(mi)
p3

+
log (2NT )

)
, we obtain P{F} = P

{[⋃
i∈[5] ¬Ei

]}
≤ P{¬E1} + P{¬E2} + P{¬E3 |

E1} + P{¬E4 | E2} + P{¬E5 | E3, E1} ≤ 5k
T .

E Nature of the Optimization Problem

Proposition E.1. Let f̃ = arg max
fq. vectorf

min
contexts [k]

P̂ ⊤f . Then, finding f̃ is an LP
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Proof. We rewrite the above max
fq. vectorf

min
i∈[k]

(·) as a simpler program:

max
f

z

subject to P̂ ⊤
1 f ≥ z

. . .

P̂ ⊤
N f ≥ z

f · 1 = 1
f ⪰ 0

Where N = |A0|. This is equivalent to the standard form of a linear program, and hence is an
LP.

Lemma 11. min
fq. vectorf

max
interventions A0

P̂ M̂
1
2

[
P̂ ⊤f

]◦− 1
2 is a convex optimization problem

Proof. First we write the min-max in terms of a single minimization. First let us use the shorthand
A := P̂ M̂

1
2 and {A1, . . . , AN } (where N := |A0|) denote the rows of the matrix

OPT : min
f

z

subject to A1 ·
[
P̂ ⊤f

]◦− 1
2 ≤ z

. . .

AN ·
[
P̂ ⊤f

]◦− 1
2 ≤ z

f · 1 = 1
f ⪰ 0

Proposition E.2. For any a ∈ R+, the function g(x) := ax− 1
2 is convex in x.

Proof. We observe that the second derivative is positive.

Proposition E.3. The constraint equations of OPT are convex in f

Proof. Consider the first constraint of the problem. We can simplify this to get
∑

i∈[k]
A1i√

P̂ (∗,i)⊤f
.

Note that the ith term in the summand (i.e, A1i√
P̂ (∗,i)⊤f

) is of the form f(x) = c(v⊤x)− 1
2 for some

c ∈ R+ and v ∈ RN
+ . Let x1, x2 ∈ RN be any two vectors, and scalar λ ∈ [0, 1]. We wish to show

that f(λx1 + (1 − λ)x2) ≤ λf(x1) + (1 − λ)f(x2).

We have f(λx1 + (1 − λ)x2) = c(v⊤(λx1 + (1 − λ)x2))− 1
2 = c(λv⊤x1 + (1 − λ)v⊤x2)− 1

2

But ax− 1
2 is convex as per Proposition E.2. Therefore c(λv⊤x1 + (1 − λ)v⊤x2)− 1

2 ≤ λc(v⊤x1)− 1
2 +

(1 − λ)c(v⊤x2)− 1
2 = λf(x1) + (1 − λ)f(x2), as required.

Since A1i√
P̂ (∗,i)⊤f

is convex, the sum
∑

i∈[k]
A1i√

P̂ (∗,i)⊤f
is convex as well. Similarly, all the other

constraints are also convex.

Since the constraints are convex in f and the objective is linear, OPT is convex.
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F Lower Bounds

This section establishes Theorem 2. We will identify a collection of instances for causal bandits with
intermediate feedback and show that, for any given algorithm A, there exists an instance in this

collection for which A’s regret is Ω
(√

λ
T

)
.

First we describe the collection of instances and then provide the proof.

For any integer k > 1, consider n = (k − 1) causal variables at each context i ∈ {0, 1, . . . , k}. The
transition matrix P is set to be deterministic. Specifically, for each i ∈ [n], we have P{i | do(X0

i =
1)} = 1. For all other interventions at context 0, we transition to context k with probability 1. Such
a transition matrix can be achieved by setting q0

i = 0 for all i ∈ [k − 1]. As before, the total number
of interventions N := 2n + 1 = 2k − 1.

Now consider a family of Nk + 1 instances6 {F0} ∪
{

F(a,i)
}

i∈[k],a∈Ai
. Here, F0 and each F(a,i)

is an instance of a causal bandit with intermediate feedback with the above-mentioned transition
probabilities. The instances differ in the rewards at the intermediate contexts. In particular, in
instance F0, we set the reward distributions such that E[Ri | a] = 1

2 for all contexts i ∈ [k] and
interventions a ∈ Ai. For each i ∈ [k] and a ∈ Ai, instance F(a,i) differs from F0 only at context i

and for intervention a. Specifically, by construction, we will have E[Ri | a] = 1
2 + β, for a parameter

β > 0. The expected rewards under all other interventions will be 1/2, the same as in F0.

Given any algorithm A, we will consider the execution of A over all the instances in the family. The
execution of algorithm A over each instance induces a trace, which may include the realized transition
probabilities P̂ , the realized variable probabilities q̂i

j for i ∈ [k] and j ∈ [n] and the corresponding
m̂is, and the realized rewards R̂. Each of such realizations (random variables) has a corresponding
distribution (over many possible runs of the algorithm). We call the measures corresponding to
these random variables under the instances F0 and F(a,i) as P0 and P(a,i), respectively.

F.1 Proof of Theorem 2

For any algorithm A and given time budget T , we first consider the A’s execution over in-
stance F0. As mentioned previously, P0 denotes the trace distribution induced by the algo-
rithm for F0. In particular, write ri to denote the expected number of times context i is visited,
ri := EP0 [state i is visited] /T .

Recall that mi := max{j | qi
(j) < 1

j } and Ami
:= {do(Xi

(j) = 1) | qi
(j) < 1

j }, where the Bernoulli
probabilities of the variables at context i are sorted to satisfy qi

(1) ≤ qi
(2) ≤ · · · ≤ qi

(n). Note that
these definitions do not depend on the algorithm at hand. The algorithm, however, may choose
to perform different interventions different number of times. Write N(a,i) to denote the expected
(under P0) number of times intervention a is performed by the algorithm at context i. Furthermore,
let random variable T(a,i) denote the number of times intervention a is observed at context i. Hence,
EP0 [T(a,i)] is the expected number of times intervention a is observed7.

Using the expected values for algorithm A and instance F0, we define a subset of Ami
as follows:

Ji :=
{

a ∈ Ami
: N(a,i) ≤ 2 T ri

mi

}
. The following proposition shows that the size of Ji is sufficiently

large.
Proposition F.1. The set Ji is non-empty. In particular,

mi/2 ≤ |Ji| ≤ mi.

6Note the change in notation. We used the term Fi,j instead of F(a,i) in the main paper. This has been amended
in a later version of the main paper.

7Note that a can be observed while performing the do-nothing intervention. Also, the expected value N(a,i)
accounts for the number of times a is explicitly performed and not just observed.
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Proof. The upper bound on the size of subset Ji follows directly from its definition: since Ji ⊆ Imi

we have |Ji| ≤ |Ami | = mi.

For the lower bound on the size of Ji, note that Tri is the expected number of times context i is
visited by the algorithm. Therefore, ∑

a∈Ami

N(a,i) ≤ Tri

Furthermore, by definition, for each intervention b ∈ Ami
\Ji we have N(b,i) ≥ 2T ri

mi
. Hence, assuming

|Ami
\ Ji| > mi

2 would contradict inequality (F.1). This observation implies that |Ami
\ Ji| ≤ mi

2
and, hence, |Ji| ≥ mi

2 . This completes the proof.

Recall that T(a,i) denotes the number of times intervention a is observed at context i. The following
proposition bounds E[T(a,i)] for each intervention a ∈ Ji.
Proposition F.2. For every intervention a ∈ Ji

EP0 [T(a,i)] ≤ 3Tri

mi
.

Proof. Any intervention a ∈ Ji ⊆ Ami
may be observed either when it is explicitly performed by

the algorithm or as a random realization (under some other intervention, including do-nothing).
Since a ∈ Ami , the probability that a is observed as part of some other intervention is at most 1

mi
.

Therefore, the expected number of times that a is observed by the algorithm—without explicitly
performing it—is at most T ri

mi
; 7 recall that the expected number of times context i is visited is equal

to Tri.

For any intervention a ∈ Ji, by definition, the expected number of times a is performed N(a,i) ≤ 2T ri

mi
.

Therefore, the proposition follows:

E[T(a,i)] ≤ Tri

mi
+ N(a,i) ≤ 3Tri

mi
.

We now state two known results for KL divergence.

Bretagnolle-Huber Inequality (Theorem 14.2 in Lattimore & Szepesvári (2020)) : Let
P and P ′ be any two measures on the same measurable space. Let E be any event in the sample
space with complement Ec. Then,

PP{E} + PP′{Ec} ≥ 1
2 exp (−KL(P, P ′)) .

Bound on KL-Divergence with number of observations (Adaptation of Equation 17 in
Lemma B1 from Auer et al. (1995)): Let P0 and P(a,i) be any two measures with differing
expected rewards (for exactly the intervention a at context i) by an amount β. Then,

KL(P0, P(a,i)) ≤ 6β2 EP0 [T(a,i)]

Using this bound on KL divergence and Proposition F.2, we have, for all contexts i ∈ [k] and
interventions a ∈ Ji:

KL(P0, P(a,i)) ≤ 6β2 · 3Tri

mi
= 18Triβ

2

mi

7Here, we use the fact that the realization of a is independent of the visitation of context i.
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Substituting this in the Bretagnolle-Huber Inequality, we obtain, for any event E in the sample
space along with all contexts i ∈ [k] and all interventions a ∈ Ji:

PP(a,i){E} + PP0{Ec} ≥ 1
2 exp

(
−18Triβ

2

mi

)
We now define events to lower bound the probability that Algorithm A returns a sub-optimal policy.
In particular, write π̂ to denote the policy returned by algorithm A. Note that π̂ is a random
variable.

For any ℓ ∈ [k] and any intervention b, write G1(b, ℓ) to denote the event that—under the returned
policy π̂—intervention b is not chosen at context ℓ, i.e., G1(b, ℓ) := {π̂(ℓ) ̸= b}. Also, let G2(ℓ) denote
the event that policy π̂ does not induce a transition to ℓ from context 0, i.e., G2(ℓ) := {π̂(0) ̸= ℓ}.
Furthermore, write G(b, ℓ) := G1(b, ℓ) ∪ G2(ℓ). Note that the complement Gc(b, ℓ) = Gc

1(b, ℓ) ∩
Gc

2(ℓ) = {π̂(ℓ) = b} ∩ {π̂(0) = ℓ}.

Considering measure P0, we note that for each context ℓ ∈ [k] there exists an intervention αℓ ∈ Jℓ

with the property that PP0 {Gc
1(αℓ, ℓ)} = PP0 {π̂(ℓ) = αℓ} ≤ 1

|Jℓ| . This follows from the fact that∑
a∈Jℓ

PP0 {π̂(ℓ) = a} ≤ 1. Therefore, for each context ℓ ∈ [k] there exists an intervention αℓ such
that PP0{Gc(αℓ, ℓ)} ≤ 1

|Jℓ| .

This bound and inequality F.1 imply that for all contexts ℓ ∈ [k] there exists an intervention αℓ that
satisfies

PP(αℓ,ℓ){G(αℓ, ℓ)} ≥ 1
2 exp

(
−18Trℓβ

2

mℓ

)
− 1

|Jℓ|

We will set

β = min

1
3 ,

√∑
ℓ∈[k] mℓ

18T


Therefore β takes value either

√∑
ℓ∈[k]

mℓ

18T or 1
3 . We will address these over two separate cases.

Case 1: β =

√∑
ℓ∈[k]

mℓ

18T .

We wish to substitute this β value in Equation F.1. Towards this, we will state a proposition.
Proposition F.3. There exists a context s ∈ [k] such that

√
ms

18Trs
≥

√∑
ℓ∈[k] mℓ

18T

Proof. First, we note the following claim considering all vectors ρ = {ρ1, . . . , ρk} in the probability
simplex ∆.
Claim F.1. For any given set of integers m1, m2, . . . , mk, we have

min
(ρ1,ρ2,...,ρk)∈∆

(
max
ℓ∈[k]

mℓ

ρℓ

)
≥
∑
ℓ∈[k]

mℓ

Proof. Assume, towards a contradiction, that for all ℓ ∈ [k], we have mℓ

ρℓ
<
∑

ℓ∈[k] mℓ. Then,
ρℓ > mℓ∑

ℓ∈[k]
mℓ

, for all ℓ ∈ [k]. Therefore,
∑

ℓ∈[k] ρℓ >
∑

ℓ∈[k]
mℓ∑

ℓ∈[k]
mℓ

= 1. However, this is a

contradiction as
∑

ℓ∈[k] ρℓ = 1.
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An immediate consequence of Claim F.1 is that

min
(r1,r2,...,rk)∈∆

(
max
ℓ∈[k]

√
mℓ

18Trℓ

)
≥

√∑
ℓ∈[k] mℓ

18T

.

Therefore, irrespective of how ris are chosen, there always exists a context s ∈ [k] such that
√

ms

18T rs
≥√∑

ℓ∈[k]
mℓ

18T .

For such a context s ∈ [k] that satisfies Proposition F.3, we note that, ms

18T rs
≥ β2 or 18T rsβ2

ms
≤ 1.

Let us now restate Equation F.1 for such a context s. There exists a context s ∈ [k] and an
intervention αs that satisfies

PP(αs,s){G(αs, s)} ≥ 1
2 exp

(
−18Trsβ2

ms

)
− 1

|Js|
≥ 1

2e
− 1

|Js|

Note that the last inequality lower bounds the to probability of selecting a non-optimal policy when
the algorithm A is executed on instance Fαs,s. Furthermore, in instance Fαs,s, for any non-optimal
policy π̂ we have ε(π̂) =

( 1
2 + β

)
− 1

2 = β. Therefore, we can lower bound A’s regret over instance
Fαs,s as follows:

RegretT = E[ε(π̂)] = PP(αs,s){G(αs, s)} · E[Regret | G(αs, s)] +
PP(αs,s){Gc(αs, s)} · E[Regret | Gc(αs, s)]

≥
[

1
2e

− 1
|Js|

]
β + PP(αs,s){Gc(αs, s)} · 0

=
[

1
2e

− 1
|Js|

]
β

Note that we can construct the instances to ensure that mℓ ≥ 8, for all contexts ℓ, and, hence,(
1
2e − 1

|Ji|

)
= Ω(1) (see Proposition F.1). Therefore Equation F.1 gives us:

RegretT = Ω(β) = Ω

√∑ℓ∈[k] mℓ

T



Case 2 We now consider the case when β = 1
3 . In such a case,

√∑
ℓ∈[k]

mℓ

18T > 1
3 .

We showed in Proposition F.3 that there exists a context s ∈ [k] such that
√

ms

18T rs
≥

√∑
ℓ∈[k]

mℓ

18T .

Combining the two statements, there exists a context s such that
√

ms

18T rs
≥ 1

3 . We now restate
Inequality F.1 for such a context s ∈ [k]:

PP(αs,s){G(αs, s)} ≥ 1
2 exp

(
−9β2)− 1

|Js|
= 1

2e
− 1

|Js|

Following the exact same procedure as in Case 1, we can derive that RegretT ≥
[

1
2e − 1

|Js|

]
β. We

saw in Case 1 that it is possible to construct instances such that
[

1
2e − 1

|Js|

]
= Ω(1). Therefore the
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following holds for Case 2 also:

RegretT = Ω(β) = Ω

√∑ℓ∈[k] mℓ

T


Inequalities F.1 and F.1 imply that there exists a context s and an intervention αs such that, under
instance F(αs,s), algorithm A’s regret satisfies

RegretT = Ω

√∑ℓ∈[k] mℓ

T


We complete the proof of Theorem 2 by showing that in the current context λ =

∑
ℓ∈[k] mℓ.

Proposition F.4. For the chosen transition matrix

λ := min
fq. vectorf

∥∥∥PM1/2 (P ⊤f
)◦− 1

2
∥∥∥2

∞
=
∑
ℓ∈[k]

mℓ

Proof. Recall that all the instances, F0 and F(a,i)s, have the same (deterministic) transition matrix
P . Also, parameter λ is computed via Equation 3.

Consider any frequency vector f over the interventions {1, . . . , N}. From the chosen transition
matrix, we have the following:

P =


1 0 . . . 0
0 1 . . . 0

. . .
0 0 . . . 1

. . .
0 0 . . . 1

 PM
1
2 =



√
m1 0 . . . 0
0 √

m2 . . . 0
. . .

0 0 . . .
√

mk

. . .
0 0 . . .

√
mk

 P ⊤f =


f1
f2
. . .

fk−1
fk + . . . + fN



From here, we can compute the following:

PM1/2 (P ⊤f
)◦− 1

2 =
[√

m1

f1
, . . . ,

√
mk−1

fk−1
,

√
mk

fk + . . . + fN
, . . . ,

√
mk

fk + . . . + fN

]⊤

That is, for all ℓ ∈ [k − 1], the ℓth component of the vector PM1/2 (P ⊤f
)◦− 1

2 is equal to
√

mi

fi
. All

the remaining components are
√

mk

fk+...+fN
.

Write ρℓ := fℓ for all ℓ ∈ [k − 1] and ρk =
∑N

j=k fj . Since f is a frequency vector, (ρ1, . . . ρk) ∈ ∆.
In addition,

PM1/2 (P ⊤f
)◦− 1

2 =
[√

m1

ρ1
, . . . ,

√
mk−1

ρk−1
,

√
mk

ρk
, . . . ,

√
mk

ρk

]⊤

Therefore, by definition, λ = min(ρ1,...,ρk)∈∆

(
maxℓ∈[k]

mℓ

ρℓ

)
. Now, using a complementary form of

Claim F.1 we obtain λ =
∑

ℓ∈[k] mℓ. The proposition stands proved.
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Finally, substituting Proposition F.4 into Equation F.1, we obtain that there exists an instance
F(αs,s) for which algorithm A’s regret is lower bounded as follows

RegretT = Ω
(√

λ

T

)
.

This completes the proof of Theorem 2.

F.2 Proof of Inequality (F.1)

For completeness, we provide a proof of inequality (F.1).
Lemma 12. KL(P0, P(a,i)) ≤ 6β2

i EP0 [T(a,i)]

Proof of Inequality (F.1). This proof is based on lemma B1 in Auer et al. (1995). We define a couple
of notations for this proof. Let Rt−1 indicate the filtration (of rewards and other observations) up
to time t − 1. and Rt indicate the reward at time t for this proof.

KL(P0, P(a,i)) = KL
[
PP0(RT, RT−1, . . . , R1) ∥ PP(a,i)(RT, RT−1, . . . , R1)

]
We now state (without proof) a useful lemma for bounding the KL divergence between random
variables over a number of observations.

Chain Rule for entropy (Theorem 2.5.1 in Cover & Thomas (2006)): Let X1, . . . , XT be
random variables drawn according to P1, . . . , PT . Then

H(X1, X2, . . . , XT ) =
T∑

i=1
H(Xi | Xi−1, Xi−2, . . . , X1)

where H(·) is the entropy associated with the random variables.

Using the chain rule for entropy

KL(P0, P(a,i)) =
T∑

t=1
KL
[
PP0(Rt | Rt−1) ∥ PP(a,i)(Rt | Rt−1)

]
Let at be the intervention chosen by the Algorithm A at time t. Then:

=
T∑

t=1
PP0{at ̸= a | Rt−1}

(
1
2 ∥ 1

2

)
+ PP0{at = a | Rt−1}KL

(
1
2 ∥ 1

2 + βi

)

Since KL
( 1

2 ∥ 1
2
)

= 0, we get:

=
T∑

t=1
PP0{at = a | Rt−1}KL

(
1
2 ∥ 1

2 + βi

)

= KL
(

1
2 ∥ 1

2 + βi

) T∑
t=1

PP0{at = a | Rt−1}

= KL
(

1
2 ∥ 1

2 + βi

)
EP0 [T(a,i)]

Claim F.2. KL
( 1

2 ∥ 1
2 + βi

)
= − 1

2 log2(1 − 4β2
i ) ≤ 6β2

i
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Proof.

KL
(

1
2 ∥ 1

2 + βi

)
= 1

2 log2

[ 1
2

1
2 + βi

]
+ (1 − 1

2) log2

[ (1 − 1
2 )

(1 − 1
2 − βi)

]
= 1

2 log2

[
1

1 + 2βi

]
+ 1

2 log2

[
1

1 − 2βi

]
= 1

2 log2

[
1

1 − 4β2
i

]
= −1

2 log2
[
1 − 4β2

i

]
= − 1

2 ln(2) ln
[
1 − 4β2

i

]
≤ 4β2

i

2 ln(2) < 6β2
i

where the last inequality is obtained from the Taylor series expansion of the log.

It follows that: KL(P0,P1) ≤ 6β2
i EP0 [T(a,i)].


