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Abstract

In this paper, we investigate the problem of pure exploration in the context of multi-
armed bandits, with a specific focus on scenarios where arms are pulled in fixed-size
batches. Batching has been shown to enhance computational efficiency, but it can
potentially lead to a degradation compared to the original sequential algorithm’s
performance due to delayed feedback and reduced adaptability. We introduce a
simple batch version of the Sequential Halving (SH) algorithm (Karnin et al., 2013)
and provide theoretical evidence that batching does not degrade the performance
of the original algorithm under practical conditions. Furthermore, we empirically
validate our claim through experiments, demonstrating the robust nature of the SH
algorithm in fixed-size batch settings.

1 Introduction

In this study, we consider the pure exploration problem in the field of stochastic multi-armed ban-
dits, which aims to identify the best arm within a given budget (Audibert et al., 2010). Specifically,
we concentrate on the fixed-size batch pulls setting, where we pull a fixed number of arms simulta-
neously. Batch computation plays a crucial role in improving computational efficiency, especially in
large-scale bandit applications where reward computation can be expensive. For instance, consider
applying this to tree search algorithms like Monte Carlo tree search (Tolpin & Shimony, 2012).
The reward computation here typically involves the value network evaluation (Silver et al., 2016;
2017), which can be computationally expensive. By leveraging batch computation and hardware
accelerators (e.g., GPUs), we can significantly reduce the computational cost of the reward compu-
tation. However, while batch computation enhances computational efficiency, its performance (e.g.,
simple regret) may not match that of sequential computation with the same total budget, due to
delayed feedback reducing adaptability. Therefore, the objective of this study is to develop a pure
exploration algorithm that maintains its performance regardless of the batch size.

We focus on the Sequential Halving (SH) algorithm (Karnin et al., 2013), a popular and well-analyzed
pure exploration algorithm. Due to its simplicity, efficiency, and lack of task-dependent hyperpa-
rameters, SH finds practical applications in, but not limited to, hyperparameter tuning (Jamieson &
Talwalkar, 2016), recommendation systems (Aziz et al., 2022), and state-of-the-art AlphaZero (Silver
et al., 2018) and MuZero (Schrittwieser et al., 2020) family (Danihelka et al., 2022). In this study,
we aim to extend SH to a batched version that matches the original SH algorithm’s performance,
even with large batch sizes. To date, Jun et al. (2016) introduced a simple batched extension of
SH and reported that it performed well in their experiments. However, the theoretical properties of
batched SH have not yet been well-studied in the setting of fixed-size batch pulls.

We consider two simple and natural batched variants of SH (Sec. 3): Breadth-first Sequential Halv-
ing (BSH) and Advance-first Sequential Halving (ASH). We introduce BSH as an intermediate step
to understanding ASH, which is our main focus. Our main contribution is providing a theoretical
guarantee for ASH (Sec. 4), showing that it is algorithmically equivalent to SH as long as the batch
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Algorithm 1 SH: Sequential Halving (Karnin et al., 2013)
1: input number of arms: n, budget: T
2: initialize best arm candidates S0 := [n]
3: for round r = 0, . . . , dlog2 ne − 1 do
4: pull each arm a ∈ Sr for Jr =

⌊
T

|Sr|dlog2 ne

⌋
times

5: Sr+1 ← top-d|Sr|/2e arms in Sr w.r.t. the empirical rewards
6: return the only arm in Sdlog2 ne

budget is not extremely small — For example, in a 32-armed stochastic bandit problem, ASH can
match SH’s choice with 100K sequential pulls using just 20 batch pulls, each of size 5K. This means
that ASH can achieve the same performance as SH with significantly fewer pulls when the batch
size is reasonably large. Moreover, one can understand the theoretical properties of ASH using the
theoretical properties of SH, which have been well-studied (Karnin et al., 2013; Zhao et al., 2023).
In our experiments, we validate our claim by comparing the behavior of ASH and SH (Sec. 5.1) and
analyze the behavior of ASH with the extremely small batch budget as well (Sec. 5.2).

2 Preliminary

Pure Exploration Problem. Consider a pure exploration problem involving n arms and a budget
T . We define a reward matrix R ∈ [0, 1]n×T , where each element Ri,j ∈ [0, 1] represents the reward
of the j-th pull of arm i ∈ [n] := {1, . . . , n}, with j being counted independently for each arm. Each
element in the i-th row is an i.i.d. sample from an unknown reward distribution of i-th arm with
mean µi. Without loss of generality, we assume that 1 ≥ µ1 ≥ µ2 ≥ . . . ≥ µn ≥ 0. In the standard
sequential setting, a pure exploration algorithm sequentially observes T elements from R by pulling
arms one by one for T times. The algorithm then selects one arm as the best arm candidate. Note
that we only consider deterministic pure exploration algorithms in this study. Such an algorithm
can be characterized by a mapping π : [0, 1]n×T → [n] that takes R as input and outputs the
selected arm aT . The natural performance measure in pure exploration is the simple regret, defined
as ER[µ1−µaT

] (Bubeck et al., 2009), which compares the performance of the selected arm aT with
the best arm 1.

Sequential Halving (SH; Karnin et al. (2013)) is a sequential elimination algorithm designed for
the pure exploration problem. It begins by initializing the set of best arm candidates as S0 := [n]. In
each of the dlog2 ne rounds, the algorithm halves the set of candidates (i.e., |Sr+1| = d|Sr|/2e) until it
narrows down the candidates to a single arm in Sdlog2 ne. During each round r ∈ {0, . . . , dlog2 ne−1},
the arms in the active arm set Sr are pulled equally Jr :=

⌊
T

|Sr|dlog2 ne
⌋
times, and the total budget

consumed for round r is Tr := Jr × |Sr|. The SH algorithm is described in Algorithm 1. We denote
the mapping induced by the SH algorithm as πSH. It has been shown that the simple regret of SH
satisfies ER[µ1 − µaT

] ≤ Õ(
√
n/T ), where Õ(·) ignores the logarithmic factors of n (Zhao et al.,

2023). Note that the consumed budget
∑
r<dlog2 ne

Tr might be less than T . In this study, we assume
that the remaining budget is consumed equally by the last two arms in the final round.

3 Batch Sequential Halving Algorithms

In this study, we consider the fixed-size batch pulls setting, where we simultaneously pull b arms
for B times, with b being the fixed batch size and B being the batch budget (Jun et al., 2016).
The standard sequential case corresponds to b = 1 and B = T . Our interest is to compare the
performance of the batch SH algorithms with a large batch size b and a small batch budget B to
that of the standard SH algorithm when pulling sequentially T times. Therefore, we compare the
performance of the batch SH algorithms under the assumption that T = b×B holds, so that the total
budget is the same in both the sequential and batch settings. In this section, we first reconstruct
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Algorithm 2 SH (Karnin et al., 2013) implementation with target pulls LB/LA

1: input number of arms: n, budget: T
2: initialize empirical mean µ̄a := 0 and arm pulls Na := 0 for all a ∈ [n]
3: for t = 0, . . . , T − 1 do
4: let At be {a ∈ [n] | Na = Lt} . Lt is either LB

t (1) or LA
t (2)

5: pull arm at := argmaxa∈At
µ̄a

6: update µ̄at and Nat ← Nat + 1
7: return argmaxa∈[n](Na, µ̄a)

Algorithm 3 Breadth-first target pulls LB

1: input number of arms: n, budget: T
2: initialize empty LB, K := n, J := 0
3: for r = 0, . . . dlog2 ne − 1 do
4: for B j = 0, . . . , Jr − 1 do
5: for I k = 0, . . . ,K − 1 do
6: append J + j to LB

7: K ← dK/2e and J ← J + Jr

8: return LB . (0,0,0,...)

Algorithm 4 Advance-first target pulls LA

1: input number of arms: n, budget: T
2: initialize empty LA, K := n, J := 0
3: for r = 0, . . . dlog2 ne − 1 do
4: for I k = 0, . . . ,K − 1 do
5: for B j = 0, . . . , Jr − 1 do
6: append J + j to LA

7: K ← dK/2e and J ← J + Jr

8: return LA . (0,1,2,...)

the SH algorithm so that it can be easily extended to the batched setting (Sec. 3.1). Then, we
consider Breadth-first Sequential Halving (BSH), one of the simplest batched extensions of SH, as
an intermediate step (Sec. 3.2). Finally, we introduce Advance-first Sequential Halving (ASH) as a
further extension (Sec. 3.3).

3.1 SH implementation with target pulls

Since BSH/ASH is a natural batched extension of SH, we first reconstruct the implementation of
the SH algorithm as Algorithm 2 so that it can be easily extended to BSH/ASH. Note that, in
this study, the operation argmaxx∈X (`x,mx) selects the element x ∈ X that maximizes `x first. If
multiple elements achieve this maximum, it then selects among these the one that maximizes mx.
At the t-th arm pull, SH selects the arm at that has the highest empirical reward µ̄a among the
candidates At:

at := argmaxa∈At
µ̄a,

where At := {a ∈ [n] | Na = Lt} are the candidates at the t-th arm pull, Na is the total number of
pulls of arm a, and Lt is the number of target pulls at t, defined as either breadth-first manner

LB
t :=

∑
r′<r(t)

Jr′

︸ ︷︷ ︸
pulls before r(t)

+
⌊
t−
∑
r′<r(t) Tr′

|Sr(t)|

⌋
︸ ︷︷ ︸

pulls in r(t)

, (1)

or advance-first manner

LA
t :=

∑
r′<r(t)

Jr′

︸ ︷︷ ︸
pulls before r(t)

+

t− ∑
r′<r(i)

Tr′

 mod Jr(t)


︸ ︷︷ ︸

pulls in r(t)

, (2)

where r(t) is the round of the t-th arm pull. This LB
t /LA

t represents the cumulative number of pulls
of the arm selected at the t-th pull before the t-th arm pull. We omitted the dependency on n and
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Algorithm 5 ASH: Advance-first Sequential Halving
1: input number of arms: n, batch size: b, batch budget: B
2: initialize counter t := 0, empirical mean µ̄a := 0, and arm pulls Na := 0 for all a ∈ [n]
3: for B times do
4: initialize empty batch B and virtual arm pulls Ma = 0 for all a ∈ [n]
5: for b times do
6: let At be {a ∈ [n] | Na +Ma = LA

t } . BSH uses LB
t instead

7: push at := argmaxa∈At
(Na, µ̄a) to B . BSH uses argmaxa∈At

µ̄a instead
8: update t← t+ 1 and Mat

←Mat
+ 1

9: batch pull arms in B
10: update µ̄a and Na ← Na +Ma for all a ∈ B
11: return argmaxa∈[n](Na, µ̄a)

A
rm

A
rm

BSH

ASH

The 3rd batch pull spans two rounds and
the arm promotion is determined based solely 
on the completion of 6 out of 8 pulls.

The 3rd batch pull selects the arm to be 
promoted from among those that have completed
the pulling (thanks to Algorithm 5, line 7).

1st round 2nd round 3rd round Example

Figure 1: Pictorial representation of breadth-first SH (BSH; Sec. 3.2) and advance-first SH (ASH;
Sec. 3.3) for an 8-armed bandit problem. Batch size b is 24 and batch budget B is 8. The same
color indicates the same batch pull — For example, in the first batch pull (blue), BSH pulls each of
the 8 arms 3 times, while ASH pulls 3 arms 8 times each. BSH selects arms so that the number of
pulls of each active arm becomes as equal as possible, while ASH selects arms so that once an arm
is selected, it is pulled until the budget for the arm in the round is exhausted. These pull sequences
are characterized by the target pulls LB and LA:
LB = (0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,...)
LA = (0,1,2,3,4,5,6,7,0,1,2,3,4,5,6,7,0,1,2,3,4,5,6,7,0,1,2,3,4,5,6,7,0,1,2,3,4,5,6,7,0,1,2,3,4,5,...)

T for simplicity. The definition of LB
t /LA

t is somewhat complicated, and it may be straightforward
to write down the algorithm that constructs LB := (LB

0 , . . . , L
B
T ) and LA := (LA

0 , . . . , L
A
T ) as shown

in Algorithm 3 and Algorithm 4, respectively. Note that the choice between LB and LA is arbitrary
and does not affect the behavior of SH — as long as the arm pull is sequential (not batched). Python
code for this SH implementation is available in App. A. Note that using target pulls to implement SH
is natural and not new. For example, Mctx1 (Babuschkin et al., 2020) has a similar implementation.

3.2 BSH: Breadth-first Sequential Halving

Now, we extend SH to BSH, in which we select arms so that the number of pulls of each arm becomes
as equal as possible using LB. Note that LB uses T = b× B as the scheduled total budget. When
pulling arms in a batch, we need to consider not only the number of pulls of the arms but also the
number of scheduled pulls in the current batch. Therefore, we introduce virtual arm pulls Ma, the
number of scheduled pulls of arm a in the current batch. For each batch pull, we sequentially select
b arms with the highest empirical rewards from the candidates {a ∈ [n] | Na +Ma = LB

t } and pull
them as a batch. The BSH algorithm is described in App. B. BSH is similar to a batched extension
of SH introduced in Jun et al. (2016) in the sense that it selects arms so that the number of pulls of
each arm becomes as equal as possible.

1https://github.com/google-deepmind/mctx

https://github.com/google-deepmind/mctx
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3.3 ASH: Advance-first Sequential Halving

We further extend SH to ASH in a manner similar to BSH. The ASH algorithm is described in
Algorithm 5. Fig. 1 shows the pictorial representation of BSH and ASH. Python code for this ASH
implementation is available in App. A. The differences between BSH and ASH are that:

1. ASH selects arms in advance-first manner using LA instead of LB (line 6), and

2. ASH considers not only the empirical rewards µ̄a but also the number of actual pulls Na
when selecting arms in a batch (line 7).

The second difference ensures that, when the batch spans two rounds, the arm to be promoted is
selected from the arms that have completed pulling (e.g., see the 3rd batch pull in Fig. 1). Note that
this second modification is not useful for BSH. Let πASH : [0, 1]n×T → [n] be the mapping induced
by the ASH algorithm. In Sec. 4, we will show that ASH is algorithmically equivalent to SH with
the same total budget T = b×B — πASH is identical to πSH.

4 Algorithmic Equivalence of SH and ASH

This section presents a theoretical guarantee for the ASH algorithm.

Theorem 1 Given a stochastic bandit problem with n ≥ 2 arms, let b ≥ 2 be the batch size and B
be the batch budget satisfying B ≥ max{4, nb }dlog2 ne. Then, the ASH algorithm (Algorithm 5) is
algorithmically equivalent to the SH algorithm (Algorithm 2) with the same total budget T = b×B —
the mapping πASH is identical to πSH.

RHS

LHS

Figure 2: Inequality (3).

Proof sketch A key observation is that ASH and SH differ only
when a batch pull spans two rounds, like the 3rd batch pull in
Fig. 1. In this case, ASH may promote an incorrect arm to the next
round that would not have been promoted in SH. We can prove
that such incorrect promotion does not occur under the condition
B ≥ max{4, nb }dlog2 ne. This is done by demonstrating that the in-
equality (3) holds for any z < b, the number of pulls for the current
round r in the batch. Fig. 2 illustrates (3).

Proof. The condition B ≥ max{4, nb }dlog2 ne is divided into two separate conditions:

B ≥ n

b
dlog2 ne, (C1)

and

B ≥ 4dlog2 ne. (C2)

We focus on the scenario where a batch pull spans two rounds. In this case, let z < b be the number
of pulls that consume the budget for round r, and b − z be the number of pulls that consume the
budget for round r+1. The following proposition is demonstrated: ∀n ≥ 2,∀b ≥ 2, ∀r < dlog2 ne−1,
∀z < b, if (C1) and (C2) hold, then

|Sr+1| −
⌈
b− z
Jr+1

⌉
≥
⌈
z

Jr

⌉
. (3)

The left-hand side (LHS) of (3) represents the number of arms promoting to the subsequent round
post-batch pull, whereas the right-hand side (RHS) quantifies the arms pending completion of their
pulls at the batch pull juncture. This inequality, if satisfied, ensures that, even when a batch spans
two rounds, arms supposed to advance to the next round in SH are not left behind in ASH, i.e., no
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incorrect promotion occurs. Considering the scenario where z = b − 1 suffices, as it represents the
worst-case condition. Let x := |Sr| ≥ 3 for the given r < dlog2 ne − 1. Two cases are considered.
Case 1: when n ≤ 4b. Given that Jr =

⌊
b×B

xdlog2 ne
⌋
≥ b4b/xc as derived from (C2), it is sufficient to

show ⌈x
2

⌉
− 1 ≥

⌈
b− 1
b4b/xc

⌉
(4)

in x ∈ [3, 4b]. This assertion is directly supported by Lemma 1. Case 2: when 4b < n. Given
that Jr =

⌊
b×B

xdlog2 ne
⌋
≥ bn/xc as derived from (C1), it is sufficient to show

⌈
x
2
⌉
− 1 ≥

⌈n/4−1
bn/xc

⌉
in

x ∈ [3, n]. This conclusion follows by the same reasoning applied in Case 1. �

Lemma 1 For any integer b ≥ 2, the inequality
⌈
x
2
⌉
−1 ≥

⌈
b−1
b4b/xc

⌉
holds for all integers x ∈ [3, 4b].

3 128
0

60

Figure 3: Lemma 1.

The proof of Lemma 1 is in App. C. Here, we provide the visualization
of (4) in Fig. 3 to intuitively show that Lemma 1 holds. Each colored
line represents the RHS for different b ≤ 32. One can see that the LHS
is always greater than the RHS for any x ∈ [3, 4b].

Remark 1 The condition (C1) is common to both SH and ASH —
SH implicitly assumes T ≥ ndlog2 ne as the minimum condition to exe-
cute. This is because we need to pull each arm at least once in the first
round (i.e., J1 ≥ 1). With the same argument, the batch budget B must
satisfy (C1). On the other hand, (C2) is specific to ASH and is required to ensure the equivalence.
As we discuss in the Sec. 4.1, we argue that this additional (C2) is not practically problematic.

Remark 2 Note that the condition (C2) is tight; Theorem 1 does not hold even if B ≥ αdlog2 ne
for any positive value α < 4.

Proof. We aim to demonstrate the existence of a value x such that
⌈
x
2
⌉
− 1 −

⌈
b−1
bαb/xc

⌉
< 0 when

n ≤ αb. Consider the case when x = 4. In this scenario, the LHS of the inequality can be rewritten
as 1−

⌈
b−1
bαb/4c

⌉
≤ 1− b−1

bαb/4c ≤ 1− 4
α
b−1
b → 1− 4

α as b→∞. As α < 4, it follows that LHS < 0 for
sufficiently large values of b. �

Remark 3 When b is sufficiently large, the minimum B that satisfies both (C1) and (C2) is
4dlog2 ne. Theorem 1 implies that for arbitrarily large target budget T , ASH can achieve the same
performance as SH by increasing the batch size b without increasing the batch budget B from
4dlog2 ne — ASH guarantees its scalability in batch computation.

Remark 4 Theorem 1 allows us to understand the properties of ASH based on existing theoretical
research on SH, such as the simple regret bound (Zhao et al., 2023).

4.1 Discussion on the conditions

To show that SH and ASH are algorithmically equivalent, we used an additional condition (C2) of
O(logn). However, we argue that this condition is not practically problematic because the condi-
tion (C1), the minimum condition required to execute (unbatched) SH, is dominant (O(n logn)).
This condition (C1) is dominant over (C2) as shown in Fig. 4. We can see that the condition (C2)
only affects the algorithm when the batch size is sufficiently larger than the number of arms (b� n).
This is a reasonable result, meaning that we cannot guarantee the equivalent behavior to SH with an
extremely small batch budget, such as B = 1. On the other hand, if the user secures the minimum
budget B = 4dlog2 ne that depends only on the number of arms n and increases only logarithmically,
regardless of the batch size b, they can increase the batch size arbitrarily and achieve the same result
as when SH is executed sequentially with the same total budget, with high computational efficiency.
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n

0
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B

b = 4

.

Both (C1) and (C2) hold (i.e., ASH is equivalent to SH). Only (C2) holds (i.e., SH is not executable).
Neither (C1) nor (C2) holds.Only (C1) holds (i.e., SH is executable but ASH may not be equivalent to SH).

Figure 4: Visualization of conditions (C1) and (C2) for n ≤ 1024, B ≤ 1024, and b ∈ {4, 64, 1024}.

5 Empirical Validation

1 100Arm

0

1

min

max

= 0.5
= 1.0
= 2.0

Figure 5: Polynomial(α)

We conducted experiments to empirically demonstrate that ASH
maintains its performance for large batch size b, in comparison to
its sequential counterpart SH. To evaluate this, we utilized a polyno-
mial family parameterized by α as a representative batch problem
instance, where the reward gap ∆a := µ1 − µa follows a polyno-
mial distribution with parameter α: ∆a ∝ (a/n)α (Jamieson et al.,
2013; Zhao et al., 2023). This choice is motivated by the observation
that real-world applications exhibit polynomially distributed reward
gaps, as mentioned in Zhao et al. (2023). In our study, we considered three different values of α (0.5,
1.0, and 2.0) to capture various reward distributions (see Fig. 5). Additionally, we characterized
each bandit problem instance by specifying the minimum and maximum rewards, denoted as µmin
and µmax respectively. Hence, we denote a bandit problem instance as T (n, α, µmin, µmax).

We also implemented a simple batched extension of SH introduced by Jun et al. (2016) as a baseline
for comparison. We refer to this algorithm as Jun+16. The implementation of Jun+16 is described
in App. D. Jun et al. (2016) did not provide a theoretical guarantee for Jun+16, but it has shown
performance comparable to or better than their proposed algorithm in their experiments.

5.1 Large batch budget scenario: B ≥ 4dlog2 ne

First, we empirically confirm that, as we claimed in Sec. 4, ASH is indeed equivalent to SH under the
condition (C2). We generated 10K instances of bandit problems and applied ASH and SH to each
instance with 100 different seeds. We randomly sampled n from {2, . . . , 1024}, α from {0.5, 1.0, 2.0},
and µmin and µmax from {0.1, 0.2, . . . , 0.9}. For each instance T (n, α, µmin, µmax), we randomly
sampled the batch budget B ≤ 10dlog2 ne and the batch size b ≤ 5n so that the condition (C1)
and (C2) are satisfied. As a result, we confirmed that the selected arms of ASH and SH are identical
in all 10K instances and 100 seeds for each instance. We also conducted the same experiment for
BSH and Jun+16. We plotted the simple regret of BSH, ASH, and Jun+16 against SH in Fig. 6.
There are 10K instances, and each point represents the average simple regret of 100 seeds for each
instance. To compare the performance, we fitted a linear regression model to the simple regret
of BSH, ASH, and Jun+16 against SH as y = βx, where y is the simple regret of BSH, ASH, or
Jun+16, x is the simple regret of SH. The slope β is estimated by the least squares method. The
estimated slope β is 1.008 for BSH, 1.000 for ASH, and 0.971 for Jun+16, which indicates that the
simple regret of ASH, BSH, and Jun+16 is comparable to SH on average.

5.2 Small batch budget scenario: B < 4dlog2 ne

Next, we examined the performances of BSH, ASH, and Jun+16 against SH when the additional
condition (C2) is not satisfied, i.e., when the batch budget is extremely small B < 4dlog2 ne and
thus Theorem 1 does not hold. We conducted the same experiment as in Sec. 5.1 except the batch
budget B < 4dlog2 ne. We sampled B so that B is larger than the number of rounds. The results are
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Figure 6: Single regret comparison of BSH, ASH, and Jun+16 against SH when B ≥ 4dlog2 ne.
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Figure 7: Single regret comparison of BSH, ASH, and Jun+16 against SH when B < 4dlog2 ne.

shown in Fig. 7. The slope β is estimated as 1.059 for BSH, 1.011 for ASH, and 1.017 for Jun+16.
All the estimated slopes are worse than when B ≥ 4dlog2 ne. However, the estimated slopes are still
close to 1, which indicates that while we do not have a theoretical guarantee, the performance of
BSH, ASH, and Jun+16 is comparable to SH on average.

6 Related Work

Sequential Halving. Among the algorithms for the pure exploration problem in multi-armed
bandits (Audibert et al., 2010), Sequential Halving (SH; Karnin et al. (2013)) is one of the most
popular algorithms. The theoretical properties of SH have been well studied (Karnin et al., 2013;
Zhao et al., 2023). Due to its simplicity, SH has been widely used for these (but is not limited to)
applications: In the context of tree-search algorithms, as the root node selection of Monte Carlo
tree search can be regarded as a pure exploration problem (Tolpin & Shimony, 2012), Danihelka
et al. (2022) incorporated SH into the root node selection and significantly reduced the number
of simulations to improve the performance during AlphaZero/MuZero training. From the min-
max search perspective, some studies recursively applied SH to the internal nodes of the search
tree (Cazenave, 2014; Pepels et al., 2014). SH is also used for hyperparameter optimization; Jamieson
& Talwalkar (2016) formalized the hyperparameter optimization problem in machine learning as a
non-stochastic multi-armed bandit problem, where the reward signal is not from stochastic stationary
distributions but from deterministic function changing over training steps. Li et al. (2018; 2020)
applied SH to hyperparameter optimization in asynchronous parallel settings, which is similar to our
batch setting. Their asynchronous approach may have incorrect promotions to the next rounds but
is more efficient than the synchronous approach. Aziz et al. (2022) applied SH to recommendation
systems, which identify appealing podcasts for users.

Batched bandit algorithms. Batched bandit algorithms have been studied in various con-
texts (Perchet et al., 2016; Gao et al., 2019; Esfandiari et al., 2021; Jin et al., 2021a;b; Kalkanli
& Ozgur, 2021; Karbasi et al., 2021; Provodin et al., 2022). Among the batched bandit studies for
the pure exploration problem (Agarwal et al., 2017; Grover et al., 2018; Jun et al., 2016), Jun et al.
(2016) is the most relevant to our work as they also consider the fixed-size batch pulls setting. To
the best of our knowledge, the first batched SH variant with a fixed batch size b was introduced
by Jun et al. (2016) as a baseline algorithm in their study (Jun+16). It is similar to BSH and it
pulls arms so that the number of pulls of the arms is as equal as possible (breadth-first manner).
They reported that Jun+16 experimentally performs comparably to or better than their proposed
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method but did not provide a theoretical guarantee for Jun+16. Our ASH is different from their
batch variant in that ASH pulls arms in an advance-first manner instead of a breadth-first manner.

7 Limitation and Future Work

Our batched variants of SH assume that the reward distributions of the arms are from i.i.d. distri-
butions. This property is essential to allow batch pulls. One limitation is that it may be difficult
to apply our algorithms to bandit problems where the reward distribution is non-stationary. For
example, Jamieson & Talwalkar (2016) applied SH to hyperparameter tuning, where rewards are
time-series losses during model training. We cannot apply our batched variants to this problem
because we cannot observe “future losses” in a batch.

Our batched variants of SH are suitable for tasks where arms can be evaluated efficiently in batches
rather than sequentially. For instance, when the evaluation of arms depends on the output of neural
networks, the process can be efficiently conducted in batches using accelerators like GPUs. An
example of this scenario is provided by Danihelka et al. (2022), where value networks are used in
Monte Carlo tree search. Applying our batched variants to such algorithms is a possible future
direction. Additionally, combining them with reinforcement learning environments that run on
GPU/TPU accelerators (Freeman et al., 2021; Lange, 2022; Koyamada et al., 2023; Gulino et al.,
2023; Nikulin et al., 2023; Bonnet et al., 2024; Rutherford et al., 2024; Matthews et al., 2024) for
efficient batch evaluation is also promising.

8 Conclusion

In this paper, we proposed ASH as a simple and natural extension of the SH algorithm. We the-
oretically showed that ASH is algorithmically equivalent to SH as long as the batch budget is not
excessively small. This allows ASH to inherit the well-studied theoretical properties of SH, including
the simple regret bound. Our experimental results confirmed this claim and demonstrated that ASH
and other batched variants of SH, like Jun+16, perform comparably to SH in terms of simple regret.
These findings suggest that we can utilize simple batched variants of SH for efficient evaluation
of arms with large batch sizes while avoiding performance degradation compared to the sequential
execution of SH. By providing a practical solution for efficient arm evaluation, our study opens up
new possibilities for applications that require large budgets. Overall, our work highlights the batch
robust nature of SH and its potential for large-scale bandit problems.

Broader Impact Statement

The findings in this work on the bandit problem are focused on theoretical results and do not involve
direct human or ethical implications. Therefore, concerns related to broader ethical, humanitarian,
and societal issues are not applicable to this research. However, if our approach is applied to large-
scale bandit problems, especially when batch evaluation involves large neural networks, there could
be an indirect impact on energy consumption due to the computational resources required.
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A Python code

For the sake of reproducibility and a better understanding, we provide Python code for the Se-
quential Halving (SH) algorithm using advance-first target pulls and the Advance-first Sequential
Halving (ASH) algorithm in Fig. 8.

from math import log2, ceil, floor
import numpy as np

def sh(bandit: BanditProblem, n: int, T: int) -> int:
    L = _get_target_pulls(n, T)                  # L: target pulls
    N = np.append(np.zeros(n, dtype=int), -1e9)  # N: pull counts

R = np.append(np.zeros(n, dtype=float), 0.) # R: avg rewards
    for t in range(T):
        a = np.argmax(np.where(N == L[t], R, -np.inf))
        r = bandit.pull(a)

R[a] = (R[a] * N[a] + r) / (N[a] + 1)
        N[a] += 1
    return int(np.argmax(np.where(N >= max(N), R, -np.inf)))

def ash(bandit: BanditProblem, n: int, B: int, b: int = 1) -> int:
    L = _get_target_pulls(n, b * B)              # L: target pulls
    N = np.append(np.zeros(n, dtype=int), -1e9)  # N: pull counts
    R = np.append(np.zeros(n, dtype=float), 0.)  # R: avg rewards

for i in range(B):
        batch = []
        M = np.zeros_like(N)                     # M: virtual pull counts
        for j in range(b):

t = i * b + j
            N_max = np.max(np.where(N + M == L[t], N, -np.inf))
            a = np.argmax(np.where((N + M == L[t]) & (N == N_max), R, -np.inf))
            batch.append(a)

M[a] += 1
        rewards = bandit.batch_pull(batch)
        for a, r in zip(batch, rewards):
            R[a] = (R[a] * N[a] + r) / (N[a] + 1)

N[a] += 1
    return int(np.argmax(np.where(N >= max(N), R, -np.inf)))

def _get_target_pulls(n: int, T: int) -> list[int]:  # advance-first
target_pulls = []

    num_rounds = ceil(log2(n))
    num_active_arms = n
    cum_pulls = 0

for r in range(num_rounds):
        J = floor(T / (num_active_arms * num_rounds))
        if r == num_rounds - 1:
            remaining_pulls = T - len(target_pulls)

J = remaining_pulls // 2
        for _ in range(num_active_arms):
            for i in range(J):
                target_pulls.append(cum_pulls + i)

cum_pulls += J
        num_active_arms = ceil(num_active_arms / 2)  # halving
    return target_pulls + [int(-1e9)] * (T - len(target_pulls))

Figure 8: Python implementation of the SH algorithm using advance-first target pulls (Algorithm 2)
and the ASH algorithm (Algorithm 5).
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B BSH algorithm

Algorithm 6 shows the detailed BSH algorithm (see Sec. 3.2).

Algorithm 6 BSH: Breadth-first Sequential Halving
1: input number of arms: n, batch size: b, batch budget: B
2: initialize counter t := 0, empirical mean µ̄a := 0, and arm pulls Na := 0 for all a ∈ [n]
3: for B times do
4: initialize empty batch B and virtual arm pulls Ma = 0 for all a ∈ [n]
5: for b times do
6: let At be {a ∈ [n] | Na +Ma = LB

t }
7: push at := argmaxa∈At

µ̄a to B
8: update t← t+ 1 and Mat

←Mat
+ 1

9: batch pull arms in B
10: update µ̄a and Na ← Na +Ma for all a ∈ B
11: return argmaxa∈[n](Na, µ̄a)

C Proof of Lemma 1

Lemma 1 For any integer b ≥ 2, the inequality⌈x
2

⌉
− 1 ≥

⌈
b− 1
b4b/xc

⌉
(5)

holds for all integers x ∈ [3, 4b].

Proof. This proof demonstrates that for any integer b ≥ 2 and x ∈ [3, 4b], the inequality (5) is
satisfied. Given z ≥ c =⇒ z ≥ dce for any integer z and real number c, it suffices to demonstrate
that ⌈x

2

⌉
− 1 ≥ b− 1

b4b/xc ⇐⇒
⌈x

2

⌉
− 1− b− 1

b4b/xc ≥ 0.

Given that
⌊ 4b
x

⌋
> 0, it follows that(⌈x

2

⌉
− 1
)⌊4b

x

⌋
− (b− 1) ≥ 0, (6)

for any integer b ≥ 2 and x ∈ [3, 4b]. Two cases are considered:

Case 1: x is even. Suppose x = 2y, with y ∈ [2, 2b]. We aim to show that

(y − 1)
⌊

2b
y

⌋
− (b− 1) ≥ 0. (7)

Two sub-cases are considered:

1. For y ∈ [b+ 1, 2b], as
⌊

2b
y

⌋
= 1, LHS = (y − 1)− (b− 1) ≥ 0.

2. For y ∈ [2, b], as bcc > c−1 for any real number c, we have LHS > (y − 1)
(

2b
y − 1

)
−(b−1) =

− (y−2)(y−b)
y . As y > 0 and −(y − 2)(y − b) ≥ 0 in y ∈ [2, b], we have LHS ≥ 0.

Consequently, it has been established that for even values of x, the inequality (7) is upheld.
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Case 2: x is odd. Suppose x = 2y + 1, with y ∈ [1, 2b− 1]. We aim to show that

y

⌊
4b

2y + 1

⌋
− (b− 1) ≥ 0. (8)

Two sub-cases are considered:

1. For y ∈ [b, 2b− 1], as
⌊

4b
2y+1

⌋
= 1, LHS = y − (b− 1) ≥ 0.

2. For y ∈ [1, b−1], as bcc > c−1 for any real number c, we have LHS > y
(

4b
2y+1 − 1

)
−(b−1) =

2by−b−2y2+y+1
2y+1 = −2y(y−(b+ 1

2 ))−(b−1)
2y+1 ≥ 0. As 2y+ 1 > 0 and −2y(y− (b+ 1

2 ))− (b− 1) ≥ 0
in y ∈ [1, b− 1], we have LHS ≥ 0.

Similarly, it has been demonstrated that for odd values of x, the inequality (8) is upheld.

Therefore, through the analysis of these two cases, it is proven that for any integer b ≥ 2 and
x ∈ [3, 4b], the inequality (6) is satisfied, thereby confirming the validity of (5). �

D Batch Sequential Halving introduced in Jun et al. (2016)

Algorithm 7 shows the detailed batched version of the Sequential Halving algorithm introduced in
Jun et al. (2016).

Algorithm 7 Batched Sequential Halving introduced in Jun et al. (2016)
1: input number of arms: n, batch budget: B, batch size: b
2: initialize best arm candidates S0 := [n]
3: for round r = 0, . . . , dlog2 ne − 1 do
4: for

⌊
B/dlog2 ne

⌋
times do

5: select batch actions B so that the number of pulls of each arm in Sr is as equal as possible
6: pull arms B in the batch
7: Sr+1 ← top-d|Sr|/2e arms in Sr w.r.t. the empirical rewards
8: return the only arm in Sdlog2 ne


