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Abstract

Many failures in deep continual and reinforcement learning are associated with
increasing magnitudes of the weights, making them hard to change and potentially
causing overfitting. While many methods address these learning failures, they often
change the optimizer or the architecture, a complexity that hinders widespread
adoption in various systems. In this paper, we focus on learning failures that are
associated with increasing weight norm and we propose a simple technique that can
be easily added on top of existing learning systems: clipping neural network weights
to limit them to a specific range. We study the effectiveness of weight clipping
in a series of supervised and reinforcement learning experiments. Our empirical
results highlight the benefits of weight clipping for generalization, addressing loss of
plasticity and policy collapse, and facilitating learning with a large replay ratio. 1

1 Introduction

Figure 1: Weight clipping confines
the weights in restricted space
while L2 Init pulls the current
weight wt to the weight at initial-
ization w0 and L2 pulls the cur-
rent weight wt to the zero vector.

Deep learning and reinforcement learning methods face many
challenges when learning online or continually. These challenges
include loss of plasticity (Lyle et al. 2023, Dohare et al. 2023a),
failure to achieve further improvement (e.g., Sokar et al. 2023,
Lyle et al. 2023, 2021), gradual performance decreases (e.g., Do-
hare et al. 2023a, Abbas et al. 2023, Elsayed & Mahmood 2024),
and even loss of generalization (Ash & Adams 2019). One com-
mon feature among many instances of learning failures is their
association with increasing weight magnitudes. An unbounded
weight growth can make it increasingly harder for the learners
to adjust the weight further (Lyle et al. 2024), causing loss of
plasticity (Dohare et al. 2023a) or policy collapse (Dohare et al.
2023b). Moreover, large weight magnitudes can be harmful to
the optimization dynamics (see Lyle et al. 2023 and Wortsman
et al. 2023) and are often associated with overfitting (Zhang
et al. 2021), leading to performance decrease and potentially
explaining the learning difficulties.

While many methods exist to address these learning difficulties,
these methods are predominantly complex or require significant
changes to the learning systems. For example, several methods require a change of the optimization
method (Dohare et al. 2023a, Elsayed & Mahmood 2024, Sokar et al. 2023), use an auxiliary objec-
tive (Lan et al. 2023), change the architecture (e.g., Lyle et al. 2023, Nikishin et al. 2023, Lan &
Mahmood 2023), or even require a new reinforcement learning estimator that maintains exploration
(Garg et al. 2022). There are simpler techniques of weight regularization that directly promote small

1Code is available at https://github.com/mohmdelsayed/weight-clipping

https://github.com/mohmdelsayed/weight-clipping
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weight magnitudes, such as weight decay (L2 ) (Krogh & Hertz 1991, Ash & Adams 2019, Lyle et
al. 2024) and more recently, regularization toward initial weights (L2 Init) (Kumar et al. 2023a).
In Fig. 1, we illustrate the difference between L2 and L2 Init, showing that L2 results in biasing
the weights towards the zero weights while L2 Init results in biasing the weights towards the initial
weights. The issue of biasing toward a particular point is that it applies to all weights regardless
of their usefulness, resulting in overwriting and re-learning of previously useful weights, a primary
cause of catastrophic forgetting (McCloskey & Cohen 1989, French 1999, Elsayed & Mahmood 2024).
Lewandowski et al. (2024) proposed to use the empirical Wasserstein distance instead of L2 to alle-
viate the issue of L2 Init. However, the Wasserstein distance requires sorting the parameters, which
is computationally expensive. It is desirable to address the issue of increasing weight magnitude in
a computationally cheap manner without biasing the weight vector towards any point, allowing the
learner to continually build on previously useful weights and overcome continual learning difficulties.

We use a simple remedy that can reduce the norm of the weights by clipping any large weight
magnitude. This technique is distinct from gradient or update clipping (e.g., Brock et al. 2021,
Badia et al. 2020), which aims to clip large updates or gradients, not weights. Constraining the
weights prevents large weight magnitudes without biasing them toward a certain point, as depicted
in Fig. 1. In this paper, we study the role of weight clipping in 1) improving generalization, 2)
addressing loss of plasticity and policy collapse, and 3) facilitating learning with a large replay ratio.

2 Problem Formulation

In this section, we describe the two problem formulations we use in this paper and what metrics we
use to evaluate learners in each of them.

2.1 Streaming Supervised Learning

In streaming supervised learning, the data samples are presented to the learner as they come,
one sample at each time step. Each sample is processed once by the agent, then the learner is
evaluated based on some evaluation metric, and after that, the sample is discarded immediately
(Hayes et al. 2019). This setup mirrors animal learning (Hayes & Kanan 2022) and is important
for various applications such as on-device learning. The target function ft generating these data
samples is typically non-stationary, producing non-independently and identically distributed (non-
i.i.d.) samples such that yt = ft(xt). For simplicity, we assume that the target function is locally
stationary in time, not arbitrarily non-stationary, but instead changes frequently (e.g., due to task
change). The learner is expected to process the input xt ∈ Rd and produce a prediction ŷt ∈ Rn,
after which it is evaluated based on the metric E(yt, ŷt). The goal of the learner is to maximize the
average online metric (see Kumar et al. 2023b, Elsayed & Mahmood 2024) given by 1

T

∑T
t=1 E(yt, ŷt),

where T is the total number of time steps.

2.2 Reinforcement Learning

The sequential decision process of the agent and the interaction with the environment is modeled
as a Markov decision process (MDP). In this paper, we consider episodic interactions between the
agent and the environment in which its episodic MDP is denoted by the tuple (S,A,P,R, γ, d0,H),
where S is the set of states, A is the set of actions, R ⊂ R denotes the set of reward signals,
P : S ×A → ∆(S ×R) denotes the transition dynamics model in which ∆(X) is a distribution over
the set X, d0 is the starting state distribution, γ ∈ [0, 1] is the discount factor, and H is the set
of terminal states. The agent interacts with the environments using a policy π : S → ∆(A) that
outputs a distribution over actions conditioned on the state (Sutton & Barto 2018). Each episode of
interaction begins after the environment samples a state from the starting state distribution S0 ∼ d0.
At each time step t, the policy receives the state St and produces the action At ∼ π(.|St), and then
the environment samples a new state and reward signal using the transition dynamics as follows:
St+1, Rt+1 ∼ p(., .|St, At). The interaction continues until the agent ends up in one of the terminal
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states ST ∼ H, where T is the termination time step. The amount of the discounted sum of rewards
collected by the agent during the episode at time step t is known as the episodic return and is
given by Gt

.=
∑T

k=t+1 γk−t−1Rk. The goal of the agent is to maximize the expected return Eπ[Gt]
produced by following the policy π.

3 Method

In this section, we introduce weight clipping and show how it can be used with existing optimization
methods. We propose a clipping scheme that uses the boundaries given by a uniform distribution at
initialization (e.g., He et al. 2015). Consider a neural network f parameterized by the set of weights
W = {W1, W2, . . . , WL} and the set of biases {b1, b2, . . . , bL}. Specifically, given that the entries
of the weight matrix Wl,∀l and the bias vector bl,∀l are initialized from the uniform distribution
U [−sl, sl], sl ∈ R+,∀l, we propose clipping any value outside the range [−κsl, κsl], where κ ∈ R+ is
a hyper-parameter defining the size of the constraint weight space. Algorithm 1 shows how weight
clipping can be integrated into optimization methods.

Algorithm 1 Weight-constrained Stochastic Optimization
Given a stream of data D, a neural network f with weights {W1, ..., WL} and biases {b1, . . . , bL}
Set step size α and initialization bounds {sl}L

l=1 (e.g., sl = 1/
√

nl), where nl is fan_in
Set clipping parameter κ (e.g., κ = 2)
Initialize weights Wl,i,j ∼ U [−sl, sl],∀i, j, l

for S in D do
for l in {L, L− 1, ..., 1} do

Wl ←Wl − α∆Wl ▷ Weight Update (e.g., ∆Wl = ∇Wl
L(S) in SGD)

bl ← bl − α∆bl ▷ Bias Update (e.g., ∆bl = ∇bl
L(S) in SGD)

Wl ← Clip(Wl, min = −κsl, max = κsl)
bl ← Clip(bl, min = −κsl, max = κsl)

One natural question is whether we reduce the expressivity of the network by weight clipping.
Typically, the larger the neural network, the smaller the weight change is to reduce the loss (Ghorbani
et al. 2019, Geiger et al. 2020). For example, in over-parameterized networks, the weight change is
usually tiny to represent any function, which is referred to as lazy training (see Chizat et al. 2019).
Thus, we suspect weight clipping would not reduce much of the expressivity of over-parameterized
networks due to tiny weight changes and a relatively large clipping range. We leave studying the
effect of weight clipping on neural network expressivity to future work.

Next, we investigate the effect of weight clipping on smoothing the neural network. Liu et al.
(2022) showed that reducing the Lipschitz constant (e.g., via Lipschitz regularization) increases the
smoothness of the functions represented by neural networks and, hence, improves generalization
(Yoshida et al. 2017), stabilizes Wasserstein generative adversarial networks (Arjovsky et al. 2017),
and protects against adversarial attacks (Li et al. 2019). We start our analysis by showing that
weight clipping leads to bounding the Lipschitz constant. In Theorem 1, we show that weight
clipping bounds the Lipschitz constant (see proof in Appendix A). For simplicity, we consider fully
connected networks and 1-Lipschitz activation functions (e.g., ReLU, Leaky ReLU, Tanh), but the
results can be extended to other networks (see Gouk et al. 2021) and other activation functions.
Theorem 1. Smoothness of Clipped Networks. Consider a fully-connected neural network
fW : X → Y parametrized by the set of augmented weight matrices (include biases) WAug =
{W1, . . . , WL}. If the activation function σ used is 1-Lipschitz (e.g., ReLU), then the clipped net-
work fClipped

W is Lipschitz continuous. That is, ∃k ≥ 0 such that ∥fClipped
W (x1) − fClipped

W (x2)∥1 ≤
k∥x1 − x2∥1,∀x1, x2 ∈ X .

This result suggests that weight clipping adds an upper bound to the sharpness level of the network.
In contrast, while other regularization methods can also improve smoothness (e.g., Liu et al. 2022),
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they do not have any guarantees on the bounds of the Lipschitz constant, and, hence, they can
sometimes still reach sharp solutions.

Finally, we show that weight clipping makes the function change bounded. Update boundedness is
a desired property of reinforcement learning methods, especially for the on-policy ones such as PPO
(Schulman et al. 2017), to prevent the policy from changing too much from its old policy, achieving
more learning stability. In corollary 1, we show how weight clipping leads to update boundedness
using the fact that clipped networks are Lipschitz continuous (see proof in Appendix A).
Corollary 1. Update Boundedness of Clipped Networks. Consider a clipped fully-connected
neural network fClipped

W parameterized by the set of augmented weight matrices (include biases)
WAug = {W1, . . . , WL}. If the activation function σ used is 1-Lipschitz (e.g., ReLU), then any
function update ∥∆fClipped

W ∥1 is bounded.

4 Experiments

In this section, we study the effectiveness of weight clipping in 1) improving generalization, 2)
maintaining network plasticity, 3) mitigating policy collapse, and 4) facilitating learning with large
replay ratios. We start by considering the warm start setup (see Ash & Adams 2019) and show
that weight clipping can reduce loss of generalization. We then evaluate weight clipping using non-
stationary streaming learning problems introduced by Elsayed and Mahmood (2024). Specifically,
we use the Input-Permuted MNIST, Label-Permuted EMNIST, and Label-Permuted mini-ImageNet
problems. Finally, we evaluate the effectiveness of weight clipping in addressing policy collapse in
PPO (Schulman et al. 2017) and improving the performance of DQN (Mnih et al. 2015) and Rainbow
(Hessel et al. 2018) with a large replay ratio.

The performance is evaluated based on the test accuracy in the warm-starting problem, the average
online accuracy for the streaming learning problems, and the non-discounted episodic return for
the reinforcement learning problems. We perform a hyper-parameter search (see Appendix B) for
each method and use the best-performing configuration to plot in the following experiments. Our
criterion for the best-performing configuration is the one that maximizes the area under the accuracy
curve in supervised learning problems and the area under the non-discounted episodic return for the
reinforcement learning problems.

4.1 Weight Clipping for Improved Generalization
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Figure 2: Performance when training on
the data sequentially against when data
is aggregated. The shaded region repre-
sents the standard error.

Here, we study the role of weight clipping (WC) in im-
proving generalization. We use the warm starting setup
proposed by Ash and Adams (2019) with the CIFAR-10
dataset (Krizhevsky 2009). Two variations of SGD are
trained from scratch using ResNet18 (He et al. 2016), one
using 100% of the training and another in two stages: on
50% of the data, followed by the other 50%. In Fig. 2,
when SGD is trained in two stages, we observe that its
test accuracy is lower than if it was trained on the full
data in one stage, which gives the same loss of gener-
alization phenomenon demonstrated by Ash and Adams
(2019). We introduce weight clipping in two ways: 1) clip
once after the training on the first half of the data and 2)
clip every time step. We observe that weight clipping only
once removes the generalization gap and improves the test
accuracy significantly. On the other hand, weight clipping
every time step improves generalization in both stages of learning. These results show that large
weights can cause overfitting and reduction in performance, which is alleviated by weight clipping
that can improve generalization. The results are averaged over 10 independent runs.
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(a) I/P MNIST

0 100 200 300 400

Task Number

0.1

0.2

0.3

0.4

0.5

0.6

A
ve

ra
ge

O
nl

in
e

A
cc

ur
ac

y

(b) L/P EMNIST
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(c) L/P mini-ImageNet

Figure 3: Performance of Adam and SGD with Weight Clipping on Input-permuted MNIST, Label-
Permuted EMNIST, and Label-Permuted mini-ImageNet. All curves are averaged over 20 indepen-
dent runs. The shaded area represents the standard error

4.2 Weight Clipping in Streaming Learning

Now, we study weight clipping in addressing loss of plasticity using the Input-permuted MNIST
problem. The input-permuted MNIST problem is a standard problem for studying loss of plasticity in
neural networks since the learned features become irrelevant to the next task after each permutation.
We permute the inputs every 5000 time step. A new task starts when a permutation is performed.
Next, we use the label-permuted EMNIST and label-permuted mini-ImageNet problems where loss
of plasticity is intertwined with catastrophic forgetting (Elsayed & Mahmood 2024). In both label-
permuted problems, we permuted the labels each 2500 time step.

We compare SGD and Adam (Kingma & Ba 2014) along with their variations with two regularization
methods, Shirnk & Perturb (S&P) and L2 Init, against weight clipping with SGD and Adam. In
previous works (Kumar et al. 2023a, Dohare et al. 2023a), L2-Init and S&P have been shown to
be effective in maintaining plasticity when combined with SGD but have not been studied when
combined with Adam. In addition, we compare against the Madam optimizer (Bernstein et al.
2020), which uses weight clipping to reduce its exponential weight growth but has not been studied
in non-stationary settings before. In the streaming classification problems, the learner is required to
maximize the online average accuracy using a stream of data, one sample at a time. Each learner is
presented with 1M samples and uses a multi-layer (300× 150) network with leaky-relu units.

Fig. 3a shows that almost all methods except for SGD and Adam maintain their performance
throughout, but by different degrees. We plot the average online accuracy against the number of
tasks, where each point in the figure represents the percentage of correct predictions within the task
since the sample online prediction is 1 for correct predictions and 0 for incorrect ones.

In Fig. 4, we characterize the solutions of each method using diagnostic statistics. Specifically, we
show the online loss, ℓ2-norm of weights, and ℓ2-norm of gradients. In addition, we show the average
online plasticity of each method using the sample plasticity metric (Elsayed & Mahmood 2024),
which is given by p(Z) = max

(
1− L(W†,Z)

max(L(W,Z),ϵ) , 0
)
∈ [0, 1], where Z is the sample, W† is the set

of weights after performing the update and ϵ is a small number for numerical stability. We observe
a gradual increase of the ℓ2 norm of the weights of SGD and Adam compared to other methods.

Next, we use the label-permuted problems to evaluate the role of weight clipping in not biasing the
weights towards some point. The label-permuted problems involve label permutation, which means
the learned representation by the learner does not need to change, and the learner can continually
improve upon them instead of overwriting and then re-learning. Fig. 3b and 3c show that while all
methods addressing loss of plasticity can maintain their performance, only weight clipping can keep
improving its performance, likely due to not biasing the weights toward a specific point. We defer
the diagnostic statistics on these two problems to Appendix C.
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Figure 4: Diagnostic Statistics of different methods in Input-permuted MNIST. We show the online
loss, the online plasticity, the ℓ2-norm of gradients, and the ℓ2-norm of weights.

4.3 Weight Clipping Against Policy Collapse

In this section, we study the role of weight clipping in mitigating policy collapse (Dohare et al.
2023b). Dohare et al. (2023b) demonstrated that the performance of PPO can collapse if trained for
longer periods of time. We use CleanRL’s implementation (Huang et al. 2022) with the default hyper-
parameters as suggested by Dohare et al. (2023b). The network used is multi-layered (64× 64) with
tanh activations. Fig. 5 illustrates the phenomenon of policy collapse where the performance of PPO
with Adam drops gradually with time in a number of MuJoCo (Todorov et al. 2012) environments.
Weight clipping is effective in mitigating policy collapse, allowing for continual improvement. Here,
we only show the performance in the MuJoCo environments with which policy collapse happens
and exclude other environments where PPO with Adam experiences no policy collapse. We further
investigate why policy collapse happens using the approximate KL given by (1 − r) − log r as our
diagnostic metric, where r is the ratio in PPO between the current policy and the old policy. Fig.
6 shows the approximate KL throughout learning using Adam against Adam+WC. We observe
that the approximate KL with Adam increases, indicating that the current policy deviates a lot
from the old policy, in contrast to Adam+WC, which maintains small values, stabilizing learning
in PPO. Next, we show additional diagnostic statistics in Fig. 7 to characterize the solutions found
by Adam and Adam+WC. Notably, we observe that weight clipping reduces the ℓ2 norm of the
weights and reduces the percentage of saturated units. We defer diagnostic statistics on the rest of
the environment in Appendix C.
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Figure 5: Policy Collapse in PPO. The performance of PPO with Adam drops when trained for longer
in contrast to Adam+WC, which can keep improving its performance. All curves are averaged over
30 independent runs. The shaded area represents the standard error.

4.4 Weight Clipping with Large Replay Ratios

The replay ratio (RR) is the number of gradient updates performed per environment step. An
increase of RR helps a learning agent extract as much information as possible from transitions,
resulting in a higher sample efficiency. However, in practice, when the RR is too high, the learning
agent would overfit to a small amount of data and lose the plasticity to learn new information due
to aggressive parameter updates, thus reducing the learning performance (Nikishin et al. 2022).

In this section, we show that by incorporating weight clipping, we can prevent the agent from
aggressive parameter updates and improve sample efficiency by a large amount under a high RR
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Figure 6: Approximate KL between the current and old policy. The values reach zero at the end
since learning rate annealing is used.
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Figure 7: Diagnostic Statistics for policy collapse. The ℓ2 norm of the weights and percentage of
saturated units are shown. A tanh unit is considered saturated if |x| ≥ 0.95, where x is its output.

setting. Specifically, we train DQN (Mnih et al. 2015) and Rainbow (Hessel et al. 2018) with
RR = 1 in several Atari (Bellemare et al. 2013) tasks, optimized by Adam or Adam+WC. All our
experiments are conducted using the Tianshou framework (Weng et al. 2022) and the default RR
is 0.1. Note that due to the high computation cost of using a high RR, we train both agents for
10M frames and summarize all results across over 5 random seeds, as shown in Figure 8. Overall,
without weight clipping, both DQN and Rainbow perform poorly and have low sample efficiency.
Once weight clipping is applied, we observe a great improvement in sample efficiency and learning
performance, demonstrating the effectiveness of our method.

To further investigate the influence of weight clipping in terms of optimization and generalization,
we visualize the gradient covariance matrices of training DQN in Space Invaders, optimized by
Adam and Adam+WC in Fig. 9. The heatmaps for all Atari tasks are included in Appendix C.3.
Specifically, the gradient covariance matrix is known to be strongly related to optimization and
generalization (Fort et al. 2019, Lyle et al. 2022; Lyle et al. 2023). Formally, we estimate it by
sampling k training points and compute it entrywise as

Ck[i, j] = ⟨∇θℓ(θ, xi),∇θℓ(θ, xj)⟩
∥∇θℓ(θ, xi)∥∥∇θℓ(θ, xj)∥ ,

where x1, · · · , xk are randomly sampled training points and ℓ is the loss function. In Fig. 9, we
observe that when weight clipping is applied, the gradient covariance matrix has smaller off-diagonal
values, indicating a smoother loss landscape and less interference.

5 Related Works

Biologically plausible NNs. Physical and biological systems usually have bounded outputs, as
components or elements within these systems often have inherent limits or constraints. For example,
in neurobiological processes, synaptic weights are assumed to have a maximum value (Michiels van
Kessenich et al. 2016). Weight clipping can be viewed as a biologically plausible mechanism that
improves plasticity in artificial neural networks.
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Figure 8: The performance of DQN and Rainbow trained with RR = 1 in Atari tasks, optimized by
Adam and Adam+WC. Solid lines correspond to the mean performance over 5 random seeds, and
the shaded areas correspond to 90% confidence interval.

Figure 9: The gradient covariance heatmap with
DQN in Space Invaders, optimized by Adam
and Adam+WC, respectively. Optimizing with
Adam+WC results in smaller off-diagonal values
in the heatmap compared to Adam.

Gradient Clipping. Gradient clipping has
been used to stabilize learning which avoids in-
stability by preventing large updates to the net-
work. Barczewski & Ramon (2023) showed that
weight clipping improves optimization perfor-
mance compared to gradient clipping, likely due
to the fact that weight clipping is not biased.
Nevertheless, gradient clipping is often an essen-
tial component of some reinforcement learning
algorithms to stabilize learning and control the
maximum size of the update (e.g., Badia et al.
2020, Hafner et al. 2023, Mnih et al. 2016).

Weight Clipping in the Literature. Weight
clipping has appeared in previous works to
achieve different desiderata. For example, Bern-
stein et al. (2020) introduced the Madam optimizer, which uses weight clipping to limit the expo-
nential growth of the weights when using a multiplicative weight update rule. Arjovsky et al. (2017)
used weight clipping to stabilize Wasserstein generative adversarial networks. Moreover, weight clip-
ping has been used in binary neural networks to help binarize the weights (Courbariaux et al. 2015,
Alizadeh et al. 2018).

Wasserstein Regularization. Wasserstein regularization (Lewandowski et al. 2024) aims to ad-
dress the loss of plasticity while allowing parameters to deviate from initialization. However, the
Wasserstein metric usually requires sorting of the parameters, which can be expensive. Weight Clip-
ping allows the weights to deviate instead of biasing towards a specific point, achieving a similar
goal as Wasserstein regularization but having substantially lower computational requirements.

6 Conclusion

In this paper, we introduced weight clipping as a simple mechanism that helps with learning under
non-stationarity. Weight clipping can be used besides existing methods without any major change
to the optimizer or the network used. Our results show that weight clipping can help mitigate loss
of plasticity in streaming learning, alleviate policy collapse, and improve performance when learning
with large replay ratios. Future work can perform adaptive weight clipping that does not require any
hyper-parameter tuning or develop Lipschitz regularization methods that guarantee smoothness.
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A Proofs

A.1 Proof of Theorem 1

Proof. Let us first rewrite our feed-forward neural network function for a given input x as follows:

fW = (ϕL ◦ σ . . . σ ◦ ϕ1)(x),

where ϕi defines the linear operation given by Wi and ◦ denotes the composition between two
functions. The composition of k1-Lipschitz and k2-Lipschitz function is k1k2-Lipschitz (see Gouk et
al. 2021). Thus, the Lipschitz constant of the network is given by

L(f) ≤
L∏

i=1
L(σi)L(ϕi) =

L∏
i=1

L(ϕi),

where L(ϕi) = supa̸=0
∥Wia∥p

∥a∥p
is the operator norm of Wi. Since L(f) depends on the operator norm

of weight matrices at each layer, it can change during learning, producing less smooth functions.

Next, we show the Lipschitz constant of the clipped network. For simplicity of the proof, we consider
p = 1. The Lipschitz constant of the clipped network L(fClipped) is bounded by:

L(fClipped) ≤
L∏

l=1
sup
a̸=0

∥Wla∥1

∥a∥1
=

L∏
l=1

max
j

(
ml∑
i=1
|Wl,i,j |

)
≤ κL

L∏
i=1

slml,

where Wl ∈ Rml×nl and |Wl,i,j | ≤ κsl,∀l, i, j.

A.2 Proof of Corollary 1

Proof. For simplicity, let us vectorize W and combine it with the input vector x in a single vector
θ ∈ P. Let us consider the two instances θ(1) and θ(2) corresponding to before and after making an
update with the same input, θ(2) = θ(1) + ∆θ(1). From Theorem 1, ∃k ≥ 0 such that the clipped
network fClipped

W is k-Lipschitz. Thus we can write the following:

∥fClipped(θ(2))− fClipped(θ(1))∥1 ≤ k∥θ(2) − θ(1)∥1,∀θ(1), θ(2) ∈ P.

Thus, the change in the function fClipped
W can be written as:

∥∆fClipped
W ∥1 ≤ k∥θ(2) − θ(1)∥1 = k

L∑
l=1

ml∑
i=1

nl∑
j=1
|W (2)

l,i,j −W
(1)
l,i,j | ≤ 2k

L∑
l=1

mlnlsl,

where W
(1)
l ∈ Rml×nl is the weight matrix at layer l before making the update and W

(2)
l ∈ Rml×nl

is the weight matrix at layer l after making the update.
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B Hyperparameter Search Space

In this section, we present the hyper-parameter search space in Table 1 and the best set of hyper-
parameter configurations of each method in Table 2.

Problem Space Method

step size α {0.1, 0.01, 0.001, 0.0001} All
Input-permuted

MNIST noise std. deviation σ {0.0, 0.1, 0.01, 0.001, 0.0001} S&P

Label-permuted weight decay factor λ {0.0, 0.1, 0.01, 0.001, 0.0001} S&P, L2 Init
EMNIST

clipping param κ {1, 2, 3, 4, 5} Madam, WC
Label-permuted
mini-ImageNet Number of Seeds N {20} All

step size α DQN {0.0001}, Rainbow {0.0000625} All

Atari clipping parameter κ {1, 5} Adam+WC
Environments

Number of Seeds N {5} All

step size α {0.0001} All
MuJoCo

Environemnts clipping param κ {1, 3, 5} Adam+WC

Number of Seeds N {30} All

step size α {0.001} All

Warm Starting clipping param κ {1, 2, 5, 10, 20} SGD+WC

Number of Seeds N {10} All

Table 1: Search Space for Streaming Learning Experiments.
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Problem Method Best Set

SGD α = 0.001
Adam α = 0.0001

SGD + L2 Init α = 0.001, λ = 0.01
Adam + L2 Init α = 0.0001, λ = 0.001

Input-permuted SGD + S&P α = 0.001, σ = 0.1, λ = 0.01
MNIST Adam + S&P α = 0.0001, σ = 0.1, λ = 0.001

SGD + WC α = 0.001, κ = 2.0
Adam + WC α = 0.0001, κ = 1.0

Madam α = 0.01, κ = 4,

SGD α = 0.01
Adam α = 0.0001

SGD + L2 Init α = 0.01, λ = 0.001
Adam + L2 Init α = 0.001, λ = 0.01

Label-permuted SGD + S&P α = 0.01, σ = 0.01, λ = 0.001
EMNIST Adam + S&P α = 0.001, σ = 0.001, λ = 0.01

SGD + WC α = 0.01, κ = 2.0
Adam + WC α = 0.0001, κ = 3.0

Madam α = 0.01, κ = 5,

SGD α = 0.01
Adam α = 0.0001

SGD + L2 Init α = 0.01, λ = 0.01
Adam + L2 Init α = 0.001, λ = 0.01

Label-permuted SGD + S&P α = 0.01, σ = 0.01, λ = 0.01
mini-ImageNet Adam + S&P α = 0.001, σ = 0.0, λ = 0.01

SGD + WC α = 0.01, κ = 1.0
Adam + WC α = 0.0001, κ = 3.0

Madam α = 0.01, κ = 5,

MuJoCo Adam α = 0.0003
Environments Adam+WC α = 0.0003 and κ = 3 for all except for Ant-v4 (κ = 5)

Atari Adam α = 0.0001 for DQN and 0.0000625 for Rainbow
Environments Adam+WC α = 0.0001 for DQN and 0.0000625 for Rainbow with κ = 1

SGD α = 0.001
Warm Starting SGD + WC α = 0.001, κ = 10

SGD + WC@300 α = 0.001, κ = 20

Table 2: Best hyperparameter set of each method in each problem.
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C Additional Experimental Results

C.1 Diagnostic statistics for Label-permuted EMNIST and mini-ImageNet
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(a) Label-pertmued EMNIST.
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(b) Label-pertmued mini-ImageNet.

Figure 10: Diagnostic Statistics of different methods in Label-permuted EMNIST and Label-
permuted mini-ImageNet. We show the online loss, the online plasticity, the ℓ2-norm of gradients,
and the ℓ2-norm of weights.

C.2 Diagnostic statistics of PPO
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(a) Ant-v4
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(b) Walker2d-v4
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(c) Humanoid-v4
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(d) HumanoidStandup-v4

Figure 11: Diagnostic Statistics for policy collapse. The ℓ2 norm of the weights and percentage of
saturated units are shown. A tanh unit is considered saturated if |x| ≤ 0.95, where x is its output.
In all environments, we use κ = 3 except for Ant-v4, in which we found that κ = 5 performs better.
The larger value of κ used in Ant-v4 explains the smaller effect of weight clipping on the ℓ2 norm of
the weights and the percentage of saturated units compared to other environments, although it still
has a large effect on reducing the approximate KL (see Fig. 6).
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C.3 The Gradient Covariance Heatmaps of Training DQN and Rainbow in Atari
Games
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(a) DQN in Asterix with Adam
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(b) DQN in Asterix with Adam+WC
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(c) DQN in Beam Rider with Adam
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(d) DQN in Beam Rider with Adam+WC
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(e) DQN in Demon Attack with Adam
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(f) DQN in Demon Attack with Adam+WC
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(g) DQN in Ice Hockey with Adam
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(h) DQN in Ice Hockey with Adam+WC

Figure 12: The gradient covariance heatmaps of training DQN in Asterix, Beam Rider, Demon
Attack, and Ice Hockey, optimized by Adam and Adam+WC, respectively.
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(a) DQN in James Bond with Adam
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(b) DQN in James Bond with Adam+WC
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(c) DQN in Seaquest with Adam
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(d) DQN in Seaquest with Adam+WC
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(e) DQN in Space Invaders with Adam
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(f) DQN in Space Invaders with Adam+WC
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(g) DQN in Yars’ Revenge with Adam
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(h) DQN in Yars’ Revenge with Adam+WC

Figure 13: The gradient covariance heatmaps of training DQN in James Bond, Seaquest, Space
Invaders, and Yars’ Revenge, optimized by Adam and Adam+WC, respectively.
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(a) Rainbow in Asterix with Adam
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(b) Rainbow in Asterix with Adam+WC
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(c) Rainbow in Beam Rider with Adam
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(d) Rainbow in Beam Rider with Adam+WC
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(e) Rainbow in Demon Attack with Adam
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(f) Rainbow in Demon Attack with Adam+WC
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(g) Rainbow in Ice Hockey with Adam
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(h) Rainbow in Ice Hockey with Adam+WC

Figure 14: The gradient covariance heatmaps of training Rainbow in Asterix, Beam Rider, Demon
Attack, and Ice Hockey, optimized by Adam and Adam+WC, respectively.
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(a) Rainbow in James Bond with Adam
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(b) Rainbow in James Bond with Adam+WC
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(c) Rainbow in Seaquest with Adam
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(d) Rainbow in Seaquest with Adam+WC
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(e) Rainbow in Space Invaders with Adam
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(f) Rainbow in Space Invaders with Adam+WC
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(g) Rainbow in Yars’ Revenge with Adam
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(h) Rainbow in Yars’ Revenge with Adam+WC

Figure 15: The gradient covariance heatmaps of training Rainbow in James Bond, Seaquest, Space
Invaders, and Yars’ Revenge, optimized by Adam and Adam+WC, respectively.


