
RLJ | RLC 2024

Resource Usage Evaluation of Discrete Model-Free
Deep Reinforcement Learning Algorithms

Olivia P. Dizon-Paradis∗, Stephen E. Wormald, Daniel E. Capecci, Avanti Bhandarkar,
and Damon L. Woodard†

Florida Institute for National Security, Electrical and Computer Engineering Department
University of Florida, Gainesville, FL, USA
Email: ∗paradiso@ufl.edu, †dwoodard@ece.ufl.edu

Abstract

Deep Reinforcement Learning (DRL) has become popular due to promising results
in chatbot, healthcare, and autonomous driving applications. However, few DRL
algorithms are rigorously evaluated in terms of their space or time efficiency, mak-
ing them difficult to develop and deploy in practice. In current literature, existing
performance comparisons mostly focus on inference accuracy, without considering
real-world limitations such as maximum runtime and memory. Furthermore, many
works do not make their code publicly accessible for others to use. This paper
addresses this gap by presenting the most comprehensive resource usage evaluation
and performance comparison of DRL algorithms known to date. This work focuses
on publicly-accessible discrete model-free DRL algorithms because of their practical-
ity in real-world problems where efficient implementations are necessary. Although
there are other state-of-the art algorithms, few were presently deployment-ready for
training on a large number of environments. In total, sixteen DRL algorithms were
trained in 23 different environments (468 seeds total), which collectively required
256 GB and 830 CPU days to run all experiments and 1.8 GB to store all models.
Overall, our results validate several known challenges in DRL, including exploration
and memory inefficiencies, the classic exploration-exploitation trade-off, and large
resource utilizations. To address these challenges, this paper suggests numerous op-
portunities for future work to help improve the capabilities of modern algorithms.
The findings of this paper are intended to aid researchers and practitioners in im-
proving and employing DRL algorithms in time-sensitive and resource-constrained
applications such as economics, cybersecurity, robotics, and the Internet of Things.

1 Introduction

Lately, Deep Reinforcement Learning (DRL) has become widespread due to the growing popularity of
deep neural networks, the rise of big data, and the overwhelming success in various applications (Li,
2017). For example, OpenAI (2023)’s GPT-4 is fine-tuned using DRL from human feedback to
answer questions, summarize information, and translate text (Christiano et al., 2017; Uc-Cetina
et al., 2023; Liu et al., 2023). In healthcare, DRL has been used to automatically diagnose medical
conditions and develop drugs and treatment regimes (Yu et al., 2021). In the autonomous driving
domain, DRL has been used to optimize navigation, estimate safety and risk, and predict intentions
of pedestrians and other vehicles (Kiran et al., 2021). DRL has also been used in other domains such
as finance, advertising, and games (Fischer, 2018; Zhao et al., 2019; Fürnkranz, 2001; Shao et al.,
2019). Overall, DRL plays a critical role in many areas in the public and private sectors.

However, few DRL algorithms have been rigorously evaluated, and hence understood, in terms
of their time and memory utilizations, which makes it difficult for others to understand which
algorithms, if any, can be practically deployed for a given use case. Although there exist some



RLJ | RLC 2024

performance comparisons, many only report inference accuracy (e.g., return) without considering
practical limitations such as runtime and memory constraints, and do not publicly release their
code. To address these challenges, this paper presents a comprehensive resource usage evaluation
and performance comparison of several popular DRL algorithms.

This paper primarily concerns publicly-available discrete model-free DRL algorithms. Although
there are other state-of-the art algorithms, few are deployment-ready for training on a large number
of environments and, hence, would likely not be adopted in a real-world scenario. Discrete DRL
was chosen because of its popularity in real-life applications due to the reduced computational
complexity of finite actions spaces, versus the infinite action spaces in continuous DRL (Smart &
Kaelbling, 2000). Model-free DRL is used instead of model-based DRL because of the former’s ease
of implementation and tuning in environments without a ground-truth model, which is not available
in most practical applications (Sutton & Barto, 2018). Due to these reasons, publicly-inaccessible,
continuous, and model-based DRL algorithms are considered out of scope for this study. To our
knowledge, this paper presents the most exhaustive resource usage evaluation and performance
comparison of DRL algorithms to date, with the following contributions:

• Performance analysis of sixteen DRL algorithms in twenty-three different base environments
(468 environment seeds), considering rewards, runtimes, and memory usages

• Open challenges, recommendations for future work, and practical implications
• Re-implemented source code available to facilitate future benchmarking endeavors, collab-

oration, and development of new technologies1

The rest of this paper is organized as follows. Sec. 2 overviews the related works to motivate this
study. Sec. 3 describes the performance analysis methodologies. Sec. 4 presents the results and
discussion. Sec. 5 presents open challenges, recommendations, and practical implications. Finally,
the paper is concluded in Sec. 6 with the key takeaways and future works.

2 Related Works

Prior works related to this study are described in the following subsections. First, existing re-
views and comparisons of DRL algorithms are discussed to identify research gaps and highlight the
importance of the proposed work. The next subsection introduces bsuite, the RL environment
suite underpinning this study. Finally, an overview of the existing algorithms used in this paper’s
methodology is provided.

2.1 Existing Reviews and Comparisons

There are a variety of literature reviews and application surveys in DRL literature that are rich in
theory. Literature reviews such as Mousavi et al. (2018), Li (2017), Arulkumaran et al. (2017), Dayan
& Niv (2008), and Glorennec (2000) compare DRL algorithms using mathematical equations and
pseudocode. Application surveys such as Esteso et al. (2022), Noaeen et al. (2022), den Hengst et al.
(2020), and Tran-Dang et al. (2022) investigate the applications of different DRL algorithms across
various domains using keyword analyses and bibliometric studies. This paper seeks to complement
these theoretical works from a practical perspective by offering a resource usage evaluation and
performance comparison with experimental results.

Although there exist some performance comparisons in the DRL literature, most works focus only
on inference accuracy (e.g. reward) and rarely report runtimes or memory usages (Fujimoto et al.,
2019; Stone et al., 2021; Lin et al., 2021). Of the few works that have addressed time and space
efficiencies, Wang et al. (2019) focused on model-based DRL whereas Duan et al. (2016) focused on
continuous DRL, which are both considered impractical in many real-world scenarios, for reasons
discussed in Sec. 1. Moreover, very few existing works in DRL literature publicly release their
source code. This study seeks to build upon the existing works by offering a robust resource usage

1source code available at https://github.com/olivia-dizon-paradis/RLPerformanceAnalysis

https://github.com/olivia-dizon-paradis/RLPerformanceAnalysis


RLJ | RLC 2024

evaluation and performance comparison of DRL algorithms, and publicly release the source code for
others to incorporate into their frameworks.

2.2 Behavior Suite for Reinforcement Learning

This work uses DeepMind’s Behaviour Suite for RL (bsuite), i.e. the “MNIST of RL”, which
is a publicly-available suite of twenty-three different base environments (468 seeds total) (Osband
et al., 2019a). Although there are a variety of other environment suites, such as Brockman et al.
(2016)’s OpenAI Gym classic control environments, Todorov et al. (2012)’s Multi-Joint dynamics
with Contact (MuJoCo), Bellemare et al. (2013)’s and Machado et al. (2018)’s Atari 2600, Tassa
et al. (2018)’s DeepMind Control Suite, and Cobbe et al. (2020)’s Procgen, bsuite was found to be
the most comprehensive in testing core RL capabilities for fundamental research and generalization.
Among the twenty-three different base bsuite environments, 468 total unique environment seeds,
or variations, are defined. Each environment is categorized into seven different tags, or categories,
based on core challenges in DRL: ‘basic’, ‘noise’ , ‘scale’, ‘exploration’, ‘credit assignment’, ‘memory’,
and ‘generalization’ (Osband et al., 2020). A summary of all environments can be found in Table 1.

Table 1: Overview of the 23 different bsuite environments (Osband et al., 2020).

Environment Tagsa # Actions # Episodesb Observation Shapec id

bandit bas 11 10000 (1, 1) 20
bandit_noise noi 11 10000 (1, 1) 20
bandit_scale sca 11 10000 (1, 1) 20

cartpole bas, cre, gen 3 1000 (1, 6) 20
cartpole_noise gen, noi 3 1000 (1, 6) 20
cartpole_scale gen, sca 3 1000 (1, 6) 20

cartpole_swingup exp, gen 3 1000 (1, 8) 20
catch bas, cre 3 10000 (10, 5) 20

catch_noise cre, noi 3 10000 (10, 5) 20
catch_scale cre, sca 3 10000 (10, 5) 20
deep_sea exp 2 10000 {(2n, 2n)|5 ≤ n ≤ 25} 21

deep_sea_stochastic exp,noi 2 10000 {(2n, 2n)|5 ≤ n ≤ 25} 21
discounting_chain cre 5 1000 (1, 2) 20

memory_len mem 2 10000 (1, 3) 23
memory_size mem 2 10000 {(1, n)|3 ≤ n ≤ 42, logspaced} 17

mnist bas, gen 10 10000 (28, 28) 20
mnist_noise gen, noi 10 10000 (28, 28) 20
mnist_scale gen, sca 10 10000 (28, 28) 20

mountain_car bas, gen 3 1000 (1, 3) 20
mountain_car_noise gen, noi 3 1000 (1, 3) 20
mountain_car_scale gen, sca 3 1000 (1, 3) 20

umbrella_distract cre, noi 2 10000 {(1, n)|4 ≤ n ≤ 103, logspaced} 23
umbrella_length cre, noi 2 10000 (1, 23) 23

TOTAL 468
a Environment tags (i.e. categories), shortened to the first three letters
b Number of episodes an agent is trained on each seed
c Shape of the observation tensor describing the environment’s state. Note, for all sets in this column, n ∈ N
d Number of unique environment seeds (i.e. variations)

2.3 Existing Deep Reinforcement Learning Algorithms

Given the abundance of different DRL algorithms and variations, this paper focuses on several pop-
ular and representative algorithms for each of the main paradigms, especially those with publicly
available code. For example, traditional Q-learning methods, i.e. value-based methods that aim to
optimize the expected return based on a function of the expected immediate reward, include DQN,
Double DQN, and Dueling DQN (Mnih et al., 2013; Van Hasselt et al., 2016; Wang et al., 2016).
Distributional Q-learning algorithms, which build on traditional Q-learning models by incorporating
full distributions instead of scalar expectations for reward calculations, include Categorical Deep Q-
Network (C51) and Rainbow DQN (Bellemare et al., 2017; Hessel et al., 2018). Quantile methods,
which further build upon the distributional Q-Learning algorithms by modeling the reward distribu-



RLJ | RLC 2024

tions as quantile functions rather than probability mass functions, include Implicit Quantile Network
(IQN) and Fully-parameterized Quantile Function (FQF) (Dabney et al., 2018; Yang et al., 2019).
Policy gradient algorithms, which are policy-based methods that explicitly build a mapping between
states and actions, include REINFORCE and Natural Policy Gradient (NPG) (Sutton et al., 1999;
Kakade, 2001). Actor-critic methods, which combine the value-based and policy-based approaches
by using both an “actor” to estimate a policy and a “critic” to estimate the value function, include
Synchronous Advantage Actor-Critic (A2C), Proximal Policy Optimization (PPO), and Discrete
Soft Actor-Critic (SAC) (Mnih et al., 2016; Schulman et al., 2017; Christodoulou, 2019). In ad-
dition, there are also several algorithms specifically designed to address certain challenges in RL,
such as Boot DQN (which aids exploration) and A2C RNN (which improves memory). Boot DQN
is a DQN variant adapted specifically for exploration problems by using bootstrapping methods to
approximate action-value distributions (Osband et al., 2016; 2019b; 2018). A2C RNN is an A2C
variant adapted specifically for memory (or exploitation) problems, through the use of a recurrent
network to approximate temporal relationships (Williams, 1992; Hochreiter & Schmidhuber, 1997).
There are a variety of different ways to classify different DRL algorithms, and many algorithms
combine different approaches so they may belong in multiple groups. Here, algorithms are grouped
based on their base code implementations for written clarity and ease of reading, particularly for the
next section. Although there are certainly other state-of-the art algorithms, very few have publicly
accessible code or are not yet deployment-ready for training on a massive number of environments
at this time.

3 Methodology

In this study, sixteen DRL algorithms were trained in 23 different base environments (468 seeds),
resulting in a total of 7,488 trained agents. Programs were run using Python 3.8.16 (2022), Osband
et al. (2020)’s bsuite v0.3.5, and Weng et al. (2022)’s Tianshou v0.5.0. Experiments were conducted
on NVIDIA GeForce 2080Ti nodes, each with a cyclic allocation of 16GB CPU and 11GB GPU for
processing. In total, it took 256 GB and 830 days CPU time (i.e., sixty-nine days on a twelve-node
parallel system) to run all experiments and 1.8 GB to store all models.

3.1 Reinforcement Learning Algorithms

Implementation details for the sixteen DRL algorithms used in this study are described in the
following subsections. Unless otherwise stated, this work primarily uses algorithm implementations
from Weng et al. (2022)’s Tianshou framework. Although there are a variety of other state-of-the-art
methods and libraries such as Hill et al. (2018)’s and Raffin et al. (2021)’s Stable Baselines, Kuhnle
et al. (2017)’s Tensorforce, Liang et al. (2018)’s RLlib, Pardo (2020b)’s Tonic, Hoffman et al. (2020)’s
Acme, Huang et al. (2022)’s CleanRL, and D’Eramo et al. (2021)’s MushroomRL, Tianshou was
found to offer the best balance between the number of supported algorithms, training time, and
memory consumption at the time of writing given the sheer number of environment seeds and the
limited available resources. Although most architectures and hyperparameters were kept faithful
to their original base implementations, some parameters among similar algorithms (e.g., discount
factor for DQN and double DQN) were set so agent training methodologies were more consistent.

3.1.1 Traditional Q-Learning

Deep Q Network (DQN), Double DQN, and Dueling DQN were implemented with a feedforward
multilayer perceptron (MLP) with two sixty-four-unit hidden layers and reLU activation functions.
The Dueling DQN’s action value (Q) and state value (V) heads each had an additional thirty-two-
unit hidden layer. For all Q-learning models, the discount factor was set to 0.99 and the number of
steps to look ahead was set to one.



RLJ | RLC 2024

3.1.2 Distributional Q-Learning

Similar to the traditional Q-learning methods, Categorical Deep Q-Network (C51) and Rainbow
DQN were both implemented with the same MLP architecture, discount factor, and number of steps
to look ahead. For both distributional Q learning methods, the number of atoms (or “canonical
returns”) was set to the recommended value of fifty-one, with the values of the smallest and largest
atoms set to negative and positive ten, respectively.

3.1.3 Quantile

Implicit Quantile Network (IQN) was implemented using a thirty-two-unit hidden layer quantile Q-
Network with a double sixty-four-unit hidden layer preprocess MLP. Fully-parameterized Quantile
Function (FQF) was implemented using a quantile Q-Network similar to IQN, but with an addi-
tional fraction proposal network set to propose thirty-two fractions. For both quantile methods,
the discount factor, the number of steps to look ahead, and the number of cosines to use for cosine
embedding were set to 0.99, 1, and 64, respectively.

3.1.4 Policy Gradient

REINFORCE Policy Gradient was implemented with a similar MLP and discount factor as the
traditional Q-Learning methods. Natural Policy Gradient (NPG) was implemented with thirty-two-
unit hidden layer actor and critic modules, where each module consisted of a double sixty-four-unit
hidden layer preprocess MLP. For both policy gradient methods, a “categorical” distribution was
used for computing the actions.

3.1.5 Actor-Critic

Synchronous Advantage Actor-Critic (A2C), Proximal Policy Optimization (PPO), and Discrete Soft
Actor-Critic (SAC) were all implemented with a similar actor-critic architecture to NPG. In addition,
A2C’s and PPO’s discount factor, value loss weight, entropy loss weight, and action distribution were
set to 0.99, 0.5, 0.01, and “categorical”, respectively. Discrete SAC’s discount factor, τ parameter
for soft update of the target network, and entropy regularization coefficient were set to 0.99, 0.005,
and 0.2, respectively. Moreover, Discrete SAC was designed with an additional critic module, i.e.,
it had one actor and two critics in total.

3.1.6 bsuite Baselines

In addition, five bsuite baselines were re-implemented from Osband et al. (2020) for comparison:
four from baselines/tf (A2C, DQN, Boot DQN, and A2C RNN) and the randomly-acting agent
from baselines/random. A2C was implemented with a double sixty-four-unit hidden layer policy
value net. DQN was implemented with a double fifty-unit hidden layer MLP. Boot DQN was
implemented with a twenty-network ensemble architecture, with each network defined with a similar
architecture as the bsuite DQN baseline. A2C RNN was implemented with a double sixty-four-
unit hidden recurrent layers. As a simple, naive baseline for comparison, experiments were also run
using a randomly-acting agent, which randomly picked actions with equal probability. Although
bootstrapping and recurrency may be implemented for other algorithms, this paper focused on the
algorithms implemented in Osband et al. (2020) at the time of writing for baseline comparison.

Agents were trained using the protocol described in Osband et al. (2019a) and tensorflow baseline
scripts in bsuite (Osband et al., 2020), which defines the number of training episodes for each
environment seed. To ensure the same experiment runner code could be used for DRL algorithms
from different libraries, minor changes were made to variable and object names. Agents were trained
with an Adam optimizer and random seed of 42 for the random number generator. A summary of
the DRL algorithms used in this study can be found in Table 2.



RLJ | RLC 2024

Table 2: Architecture summary of reinforcement learning models used in this study.

Type Model # Paramsa lrc bufferd General Architecturee

Traditional DQN 5k-164k 3e-4 1e4 MLP
Q-Learning Double DQN 5k-164k 3e-4 1e4 MLP

Dueling DQN 9k-168k 3e-4 1e4 MLP + (ActionValueHead + StateValueHead)
Distributional C51 11k-171k 3e-4 1e4 MLP + 51 Atoms

Q-Learning Rainbow 11k-171k 3e-4 1e4 MLP + 51 Atoms
Quantile IQN 5k-165k 3e-4 1e4 MLP + CosineEmbedding

FQF 5k-165k 3e-4 1e4 MLP + CosineEmbedding + FractionProposal
Policy Gradient REINFORCE 5k-164k 3e-4 1e4 MLP

NPG 19k-658k 3e-4 1e4 MLP + (Actor + Critic)
Actor-Critic A2C 19k-658k 3e-4 1e4 MLP + (Actor + Critic)

PPO 19k-658k 3e-4 1e4 MLP + (Actor + Critic)
SAC 24k-823k 3e-4 1e4 MLP + (Actor + 2 Critics)

bsuite Baselines A2C 5k-164k 3e-3 32 MLP + (Actor + Critic)
DQN 3k-128k 1e-3 1e4 MLP

Boot DQN 114k-5108kb 1e-3 1e4 20 MLPs
A2C RNN 38k-197k 3e-3 32 RNN + MLP + (Actor + Critic)

a Range of trainable parameters, i.e. size of the agent trained on the smallest/largest state-action space environment
b Boot DQN is an ensemble of multiple DQNs, with each individual DQN possessing 6k-255k trainable parameters
c Learning rate for the Adam optimizer
d Buffer size
e Although environments varied, the general internal architectures for each algorithm were kept consistent

3.2 Evaluation

To evaluate the resource usage and performance of the DRL agents, this study considers runtime,
memory usage, and inference accuracy. Runtime was measured in terms of the wall time needed to
train each agent, with the timer starting after agent/environment initialization, and ending before
model-saving, testing, and evaluation. Memory usage was measured in terms of the amount of space
needed to initialize, update, and save the different agent models. Inference accuracy was computed
using bsuite’s evaluation framework, by averaging their results across various episodes (Osband
et al., 2020). For ease of optimization, performances for most environments were computed as
functions of normalized regret scores, i.e. the difference between the payoff of an agent’s action and
the payoff of the optimal action. For one episode, the bsuite performance score, β, was computed
for most environments as 2:

100 ×

(
1 − 1

T

T∑
t=0

r∗
t − rt

r∗

)
, (1)

where T is the maximum number of timesteps per episode, r∗
t is the reward for taking the best

possible action at timestep t, and rt is the reward the agent actually received at timestep t. Here,
obtained reward is subtracted from and divided by the optimal payout, so scores are normalized to
allow comparison of performances among environments with different optimal payouts. This term is
then divided by T so scores are normalized to allow comparison of performances among environments
with different maximum timesteps. Finally, the term is subtracted from one and multiplied by one
hundred so results are scaled between zero and one hundred, with the latter defined as the optimal
value. To provide insight into each DRL agent’s overall performances, results are summarized in the
following section by environment tag.

4 Results and Discussion

The inference accuracy, runtime, and memory utilization for each algorithm are summarized by tag
in Tables 3, 4a and 4b, respectively. In these tables, “bas”, “noi”, “sca”, “exp”, “cre”, “mem”, and
“gen” are three-letter abbreviations for each of the seven tags, as listed in Sec. 2.2.

2Note: Although “most environments” were evaluated this way, a different scoring function needed to be used for
exploration environments (e.g. deep sea, deep sea stochastic, and cartpole swingup) to prevent penalizing agents
for exploring. See Osband et al. (2019a) for more details.



RLJ | RLC 2024

4.1 Inference Accuracy

Quantitatively, the top performing agents in our experiments were as follows. For the ‘basic,’ ‘noise,’
‘scale,’ and ‘generalization’ environments, the top performers were bsuite DQN and then Boot
DQN, with the next-best algorithms trailing by about twenty to thirty points. For the ‘exploration’
and ‘memory’ environments, Boot DQN and A2C RNN performed best, respectively, while other
agents produced relatively insignificant scores. For the ‘credit_assignment’ environments, the top
performing agent was bsuite DQN, with Boot DQN, Double DQN, and tianshou DQN trailing
by about ten points. Overall, bsuite DQN outperformed in all environment categories except
‘exploration’ and ‘memory,’ where Boot DQN and A2C RNN performed best, respectively.

There are several potential explanations for the observed quantitative results. The bsuite imple-
mentations of DQN and Boot DQN, which both encouraged exploration, likely performed well overall
because many environments required some level of exploration to prevent from getting stuck in lo-
cally optimal, but globally suboptimal, solutions. Boot DQN likely outperformed in the exploration
environments because its use of the bootstrap method encouraged higher levels of exploration. For
the same reason, Boot DQN likely performed poorly in the memory environments because they did
not require (i.e. penalize) heavy exploration. A2C RNN likely performed the best in the mem-
ory environments because the recurrent RNN backbone facilitated its ability to approximate and
exploit temporal relationships. For the same reason, A2C RNN likely performed poorly in the explo-
ration environments because they did not require (i.e. penalize) heavy exploitation. The traditional
Q-learning algorithms also performed well overall, aside from the exploration and memory envi-
ronments, because the epsilon-greedy algorithm incorporated within their implementations likely
encouraged some degree of exploration. Discrete SAC achieved decent results similar to the tra-
ditional Q-learning methods and generally outperformed the other actor-critic methods (e.g., A2C
and PPO), likely due to Discrete SAC’s ability to more accurately estimate the impact of an agent’s
actions due to the addition of an extra critic module. The distributional Q-learning algorithms and
quantile algorithms underperformed, likely because there were not enough features and environment
interactions relative to the number of trainable parameters to properly model the value distributions.
The policy gradient algorithms generally underperformed, likely due to the relative lack of effective
exploration mechanisms in the implementations to prevent agents from getting stuck in locally opti-
mal solutions. The random agent, which was implemented as a naive baseline, performed the worst
as expected because it was not designed to learn anything. In general, the bsuite variants of DQN
and A2C performed better than the tianshou ones, likely due to implementation differences in the
weight update, action selection, or buffer interaction protocols in the implementation back-ends.
Overall, many of the observed results were consistent with theoretical expectations, with some of
the more complex models likely underperforming due to the limited number of interactions with the
environment relative to the number of trainable parameters. Quantitative results indicate future
opportunities for techniques to improve sample efficiency and tune hyperparameters.

Qualitatively, our experiments showed that the most difficult environment categories for the DRL
agents overall were ‘exploration’ and ‘memory’. Although Boot DQN performed relatively well in
the exploration environments, it performed poorly in the memory ones. The reverse is true for
A2C RNN. Of the algorithms tested in this study, none performed well in both exploration and
memory environments. Although the results of this study are snapshots of the capabilities of DRL
algorithms, they validate several known challenges in applying DRL in real-world scenarios. Many
application scenarios are significantly more complex than the toy environments within bsuite, as
they may involve both memory and exploration elements, require higher inference accuracy with
less variation, or limit the number of interactions from which an agent can learn. Overall, inference
accuracy results indicate that existing algorithms show promise for simple applications, but that
additional research may be required to adapt them for practical ones which are generally more
complex.



RLJ | RLC 2024

Algorithm/Tag bas noi sca exp cre mem gen

DQN 51 26 31 0 47 2 28

Double DQN 49 25 33 3 48 2 28

Dueling DQN 44 22 24 0 40 2 23

C51 4 4 4 3 1 0 5

Rainbow 4 3 7 2 3 0 5

IQN 28 18 21 2 35 2 8

FQF 16 10 16 3 17 2 7

REINFORCE 20 12 19 2 8 2 7

NPG 8 4 6 0 7 2 6

A2C 30 15 17 6 12 2 6

PPO 28 14 17 3 11 2 6

Discrete SAC 50 26 17 0 43 2 18

Random (bsuite) 4 2 4 0 3 0 6

52 30 28 0 46 2 16

77 49 63 0 60 2 53

Boot DQN (bsuite) 73 44 55 33 49 2 47

A2C RNN (bsuite) 51 24 23 0 40 50 13

Algorithm/Tag bas noi sca exp cre mem gen

DQN 51 ± 25 26 ± 20 31 ± 18 0 ± 0 47 ± 25 2 ± 2 28 ± 19

Double DQN 49 ± 28 25 ± 18 33 ± 20 3 ± 4 48 ± 27 2 ± 2 28 ± 18

Dueling DQN 44 ± 36 22 ± 21 24 ± 19 0 ± 0 40 ± 30 2 ± 2 23 ± 24

C51 4 ± 4 4 ± 4 4 ± 4 3 ± 4 1 ± 2 0 ± 0 5 ± 4

Rainbow 4 ± 4 3 ± 3 7 ± 5 2 ± 2 3 ± 5 0 ± 0 5 ± 3

IQN 28 ± 35 18 ± 18 21 ± 19 2 ± 2 35 ± 31 2 ± 2 8 ± 8

FQF 16 ± 17 10 ± 8 16 ± 12 3 ± 4 17 ± 16 2 ± 2 7 ± 5

REINFORCE 20 ± 28 12 ± 15 19 ± 28 2 ± 2 8 ± 8 2 ± 2 7 ± 3

NPG 8 ± 3 4 ± 4 6 ± 3 0 ± 0 7 ± 8 2 ± 2 6 ± 3

A2C 30 ± 34 15 ± 24 17 ± 16 6 ± 4 12 ± 10 2 ± 2 6 ± 3

PPO 28 ± 35 14 ± 26 17 ± 16 3 ± 4 11 ± 9 2 ± 2 6 ± 3

Discrete SAC 50 ± 32 26 ± 24 17 ± 9 0 ± 0 43 ± 28 2 ± 2 18 ± 15

Random (bsuite) 4 ± 4 2 ± 3 4 ± 4 0 ± 0 3 ± 7 0 ± 0 6 ± 3

A2C (bsuite) 52 ± 37 30 ± 21 28 ± 26 0 ± 0 46 ± 22 2 ± 2 16 ± 15

DQN (bsuite) 77 ± 28 49 ± 31 63 ± 27 0 ± 0 60 ± 25 2 ± 2 53 ± 36

Boot DQN (bsuite) 73 ± 31 44 ± 26 55 ± 25 33 ± 16 49 ± 28 2 ± 2 47 ± 31

A2C RNN (bsuite) 51 ± 38 24 ± 22 23 ± 21 0 ± 0 40 ± 23 50 ± 15 13 ± 14

* The top 33% scores are highlighted in blue, while the bottom 33% are in red.

Table 3: Average inference accuracy (and standard deviation) for each DRL algorithm

Algorithm/Tag bas noi sca exp cre mem gen

DQN 12 116 14 549 18 19 22

Double DQN 12 113 14 545 18 19 21

Dueling DQN 11 118 15 558 20 23 23

C51 22 90 21 338 26 36 30

Rainbow 19 86 21 338 27 33 29

IQN 21 126 23 563 25 30 38

FQF 40 159 40 633 51 64 64

REINFORCE 16 106 17 487 16 15 24

NPG 103 367 102 1273 150 148 138

A2C 38 185 37 752 55 70 52

PPO 44 199 47 804 58 75 65

Discrete SAC 43 188 45 777 39 39 60

Random (bsuite) 9 9 10 14 4 3 15

A2C (bsuite) 40 37 38 79 21 24 67

DQN (bsuite) 90 107 78 285 98 86 157

Boot DQN (bsuite) 458 958 514 2902 598 620 772

A2C RNN (bsuite) 47 39 40 61 30 21 69

(a) Runtimes (in minutes)

Algorithm/Tag bas noi sca exp cre mem gen

DQN 64 82 64 199 28 22 81

Double DQN 64 82 64 199 28 22 81

Dueling DQN 82 101 82 217 46 40 99

C51 142 141 142 230 67 48 148

Rainbow 142 141 142 230 67 48 148

IQN 69 87 70 203 32 25 87

FQF 71 89 71 204 33 26 88

REINFORCE 64 82 64 199 28 22 81

NPG 74 93 75 208 37 31 92

A2C 74 93 75 208 37 31 92

PPO 74 93 75 208 37 31 92

Discrete SAC 210 264 210 611 97 79 262

Random (bsuite) 0 0 0 0 0 0 0

A2C (bsuite) 66 84 66 201 29 24 83

DQN (bsuite) 48 63 48 154 20 15 62

Boot DQN (bsuite) 1896 2478 1896 6119 764 583 2447

A2C RNN (bsuite) 198 217 198 333 162 156 216

(b) Memory utilization (in KB)
(a) The fastest 33% runtimes are shown in blue, while the slowest 33% runtimes are in red
(b) The smallest 33% memory usages are in blue, while the largest 33% memory usages are in red

Table 4: Average resource usages for each DRL algorithm



RLJ | RLC 2024

4.2 Runtime and Memory Utilization

In addition to inference accuracy, it is important to discuss the resources utilized for the top-
performing algorithms, notably bsuite DQN, Boot DQN and A2C RNN. Quantitatively, the training
times and memory requirements to store all models were two days and 51 MB for DQN, twenty-three
days and 1022 MB for Boot DQN, and one day and 97 MB for A2C RNN. For many applications,
these training times are long, as even one day can significantly increase development and deployment
times.

Many of the possible reasons the top algorithms performed well in our experiments are likely to be the
same reasons that they had such high resource usages. For example, the bsuite variants of DQN were
slower than the tianshou ones despite using less memory, likely due to implementation differences
in the weight update, action selection, or buffer interaction protocols in the implementation back-
ends that added additional computations per step. Boot DQN’s ensemble structure significantly
increased the number of model parameters that needed to be processed and stored, and its use of
the bootstrapping algorithm to amalgamate ensemble results increased the agents’ training time at
every step. For A2C RNN, the increase in space and time complexity is likely due to the additional
parameters in the recurrent network and the time required to run recurrent operations. Relative to
the other algorithms, the traditional Q-learning agents had lower overall time and space complexities
due to their simple MLP structures, but had relatively high time and space complexities in the
exploration and noise environments because their model sizes scaled directly with the size of the
state-action spaces. Of the actor-critic algorithms, Discrete SAC’s extra critic allowed it to generally
outperformed A2C and PPO, but also increased its space complexity due to the extra parameters.
Consistent with expectation, the randomly acting agent ran fastest and consumed the least amount
of space, since it was implemented as a naive baseline that was not designed to learn anything.

Moreover, it is important to consider that a twelve-node system similar to the one we used, with each
node allocated 16GB CPU and 11GB GPU for processing, is often not available in practice. Many
modern commercial servers may only support four such nodes. On a four-node system with 64GB
CPU and 44GB GPU total, DQN, Boot DQN, and A2C RNN may take approximately seven, seventy,
and three days, respectively, to train. Training times increase significantly when considering robotics
or IoT devices, which may only support one 16GB CPU/11GB GPU node. On such a device, DQN,
Boot DQN, and A2C RNN may take around 27, 279, and 14 days to train. For most applications,
these training times are unacceptable, as the increased development and deployment times would
crucially impact time-to-market, revenue, and deliverable deadlines.

Resource usage results from our experiments validate that most algorithms generally struggled in
exploration and memory environments. The runtimes and memory usages for the top-performing
algorithms were high. This presents numerous challenges in practical DRL applications, especially
those in which exploration or memory are important aspects, computational resources may be lim-
ited, and decisions must be made quickly.

5 Open Challenges and Practical Implications

Based on this study’s results, one can validate several known challenges in DRL and envision several
opportunities for future work. In the following subsections, open challenges are discussed to facilitate
collaboration between practitioners and researchers and guide development of new DRL technologies.

5.1 Exploration Inefficiencies

In our experiments, most agents struggled with the exploration environments in general. The one
algorithm that showed promising exploration results, Boot DQN, had a very high runtime and
memory utilization. This exploration and resource trade-off limits the effectiveness and application
of DRL in practical applications where the most rewards are found in the unknown. Future work can
focus on characterizing and improving this trade-off, e.g. efficiently adapting rewards to encourage



RLJ | RLC 2024

agents to explore and incorporating traditional path optimization algorithms. If addressed, efficient
exploration benefits practical applications where time is critical and decisions must be made quickly,
such as deep-sea salvaging and medical drug discovery.

5.2 Memory Inefficiencies

Most agents in this study also struggled with the memory environments; while the one algorithm
that showed promising results, A2C RNN, had a high memory utilization and moderately high
runtime. This trade-off between memory and resources limits the effectiveness and application of
DRL in practical applications where the past significantly affects the future, especially the far future.
Future work should focus on characterizing and improving this trade-off, e.g., data compression,
importance sampling and weighting, data selection, and attention. If successful, efficient memory
benefits applications where the amount of temporal data is particularly massive and resources may
be limited, such as economics and cyber-security.

5.3 Exploration-Exploitation Trade-off

It is also important to consider the two previous challenges together. In our experiments, no agent
performed well in both exploration and memory environments. This finding validates a classic, yet
persistent problem in DRL: the exploration-exploitation trade-off. To help address this problem,
future research in this area should focus on better quantifying the trade-off and perhaps looking to
other areas of machine learning to develop mitigation strategies (e.g., meta-learning, causal AI, itera-
tive theoretic learning). If successful, this research would benefit applications where both exploration
and memory are important, such as chatbots and automated driving.

5.4 Resource Usages

In this study, most well-performing algorithms are estimated to take around 64 GB and seven days
to train (based on the bsuite DQN resource projections on a four-node system in Sec. 4). Although
there are some applications where this resource utilization is acceptable, there are many where it is
not. Lengthy time and space complexities greatly decrease the ability of practitioners and researchers
to quickly develop and deploy their models. Future works in this field should focus on better
quantifying and evaluating the trade-off between performance, time, and space complexities for
both training and deployment, and perhaps looking into foundational computer science optimization
methodologies to help address it, e.g. algorithm and code optimization, approximate computing,
parallel computing, and federated learning paradigms. If resource usages are effectively reduced,
such technologies would greatly benefit many resource-constrained fields such as robotics or the
Internet of Things (IoT), where a large amount of sensor data must be processed very quickly and
the device may go offline, and businesses with quick time-to-markets, where high development and
deployment times can result in crushing losses in revenue and missed deliverable deadlines.

5.5 Extensions

There are also several opportunities to improve and extend this line of DRL performance compari-
son research to other areas not examined in this work. For example, algorithms here were trained
similarly across the entire suite of environments for consistency. Future works could focus on im-
proved hyperparameter tuning, such as tuning per environment (e.g. larger buffer sizes for memory
environments, higher exploration fractions for exploration environments, etc.). Moreover, although
the bsuite environment benchmark provides great insight into the core capabilities of reinforce-
ment learning algorithms, it would be beneficial for future work to focus on improving the scale and
rigor of more practical real-world challenges as well, such as Dulac-Arnold et al. (2021)’s promis-
ing Real-World DRL (RWRL) Challenge Framework which is currently in development. As novel
DRL algorithms, frameworks, and model variations are developed, future work should also focus
on comprehensively testing and evaluating these new works for their practical implications, such as



RLJ | RLC 2024

in Henderson et al. (2017)’s and Pardo (2020a)’s works, which compare implementation variations.
Although this work focused on discrete model-free DRL, many other areas of reinforcement learning
would benefit from more comprehensive testing and evaluation, such as multi-agent RL, multi-task
RL, and meta-RL. Moreover, although the current work evaluates DRL algorithms across different
environment categories, these categories were determined by the creators of bsuite and were not
rigorously quantified. There is great value in future work that more rigorously quantifies the perfor-
mances of DRL algorithms, as well as the specific challenges within and difficulty levels of different
environments. If successful, such research would help engineers and scientists better identify the
reinforcement learning qualities of their specific application scenarios and, hence, select appropriate
learning algorithm(s) for their use case.

5.5.1 Explainability

Although understanding and improving the performance, time, and space efficiency of different
DRL agents is of great importance, it is often more important to understand why agents behave
the way they do. As highlighted in a report from the U.S.A National Security Commission on
Artificial Intelligence (AI), the development of ethically-designed, trustworthy AI systems, which are
robust, explainable, and fair, is essential for operational integrity and adoption (National Security
Commission on Artificial Intelligence, 2019). Explainability helps researchers and practitioners gain
human-understandable insights from well-performing models, and improve poorly-performing ones.
Future research in DRL should focus on developing more tools to make DRL agents more explainable,
ideally through the use of inherently interpretable components such as feature-driven correlation and
human-friendly prototypes (Kenny et al., 2023). Such inherently interpretable methods are required
to build trustworthy systems for applications such as national security, healthcare, and law, where
decisions have a substantial direct impact on human lives.

5.5.2 Imitation Learning and Inverse Reinforcement Learning

Although this paper focuses on scenarios where the reward is known, this is often unrealistic for many
practical applications. Future research is necessary to comprehensively test and evaluate algorithms
that operate in unknown reward situations, such as imitation learning or inverse reinforcement learn-
ing (IRL). Possible avenues for this research include: 1) comparisons between performance, time,
and space complexities across different types of environments, 2) imitation or behavior prediction
effectiveness across different types of DRL agents, and 3) observation imputation effectiveness across
different levels of noise and partial observability. If addressed, such extensions into imitation learning
and IRL would benefit applications such as cybersecurity, military, intelligence, reverse-engineering,
and inverse goal planning applications where scenarios are constantly changing as each actor seeks
an intelligence advantage over the others.

5.6 Inaccessible Code and Data

Perhaps the most important barrier that prevents the adoption of modern DRL techniques is the
general lack of shared code and data. As discussed in Sec. 2, many of the state-of-the-art DRL
methods remain mainly theoretical. Before anything else, more researchers and practitioners in this
field should commit to sharing code and data to mitigate duplication of work, e.g. public release
of repositories or supplemental information upon paper acceptance, proper documentation with
example scripts and set-up instructions, and publishing all findings including limitations. If more
resources were shared, it would facilitate development of new technologies and increase collaboration
among researchers and practitioners in industry and academia.

6 Conclusions and Future Work

The key takeaways from this paper are as follows. Deep Reinforcement Learning (DRL), an area of
trial-and-error deep learning, has shown promising performances in a variety of difficult applications



RLJ | RLC 2024

within the public and private sectors. However, one of the main challenges in DRL research today is
the difficulty in understanding which DRL algorithms are practical for a given use case because many
algorithms are not thoroughly tested or evaluated in terms of runtime or memory usage. Therefore,
this paper presented the most comprehensive resource evaluation and performance comparison on
the practicality of DRL algorithms to date.

Empirical results found the top-performing algorithm overall was bsuite DQN for all but the
exploration-intensive and memory-intensive environments, where Boot DQN and A2C RNN per-
formed best, respectively. Overall, results indicated that many studied algorithms struggled the
most in exploration and memory environments. Moreover, the top performing algorithms had high
runtimes or memory utilizations. Such high resource usages are not practical for many real-life
applications, as the ensuing increase in development and deployment times can significantly affect
time-to-market, revenue, and deliverable deadlines in industry and academia. Although many chal-
lenges in practical DRL were validated, from exploration and memory inefficiencies to the classic
trade-off between exploration an exploitation, these challenges present numerous opportunities for
future work. Efficient resource usage and public availability of code and data can greatly increase the
reliability and transparency of DRL research, and hence the operational integrity and adoption of
modern DRL algorithms. In future work, the authors seek to extend this work and tackle challenges
presented in this paper. If successful, this work can help impact a variety of real-life applications,
such as self-driving cars, economics, and cybersecurity.

References
Python 3.8.16. Python Release Python 3.8.16, 12 2022. URL https://www.python.org/downloads/

release/python-3816/.

Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath. Deep
reinforcement learning: A brief survey. IEEE Signal Processing Magazine, 34(6):26–38, 2017.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In International conference on machine learning, pp. 449–458. PMLR, 2017.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep re-
inforcement learning from human preferences. Advances in neural information processing systems,
30, 2017.

Petros Christodoulou. Soft actor-critic for discrete action settings. arXiv preprint arXiv:1910.07207,
2019.

Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation to
benchmark reinforcement learning. In International conference on machine learning, pp. 2048–
2056. PMLR, 2020.

Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit quantile networks for
distributional reinforcement learning. In International conference on machine learning, pp. 1096–
1105. PMLR, 2018.

Peter Dayan and Yael Niv. Reinforcement learning: the good, the bad and the ugly. Current opinion
in neurobiology, 18(2):185–196, 2008.

Floris den Hengst, Eoin Martino Grua, Ali el Hassouni, and Mark Hoogendoorn. Reinforcement
learning for personalization: A systematic literature review. Data Sci., 3:107–147, 2020.

https://www.python.org/downloads/release/python-3816/
https://www.python.org/downloads/release/python-3816/


RLJ | RLC 2024

Carlo D’Eramo, Davide Tateo, Andrea Bonarini, Marcello Restelli, and Jan Peters. Mushroomrl:
Simplifying reinforcement learning research. Journal of Machine Learning Research, 22(131):1–5,
2021. URL http://jmlr.org/papers/v22/18-056.html.

Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep
reinforcement learning for continuous control. In International conference on machine learning,
pp. 1329–1338. PMLR, 2016.

Gabriel Dulac-Arnold, Nir Levine, Daniel J Mankowitz, Jerry Li, Cosmin Paduraru, Sven Gowal,
and Todd Hester. Challenges of real-world reinforcement learning: definitions, benchmarks and
analysis. Machine Learning, 110(9):2419–2468, 2021.

Ana Esteso, David Peidro, Josefa Mula, and Manuel Díaz-Madroñero. Reinforcement learning ap-
plied to production planning and control. International Journal of Production Research, pp. 1–18,
2022.

Thomas G Fischer. Reinforcement learning in financial markets-a survey. Technical report, FAU
Discussion Papers in Economics, 2018.

Scott Fujimoto, Edoardo Conti, Mohammad Ghavamzadeh, and Joelle Pineau. Benchmarking batch
deep reinforcement learning algorithms. arXiv preprint arXiv:1910.01708, 2019.

Johannes Fürnkranz. Machine learning in games: A survey. Machines that learn to play games, pp.
11–59, 2001.

Pierre Yves Glorennec. Reinforcement learning: An overview. In Proceedings European Symposium
on Intelligent Techniques (ESIT-00), Aachen, Germany, pp. 14–15. Citeseer, 2000.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. CoRR, abs/1709.06560, 2017. URL http://arxiv.
org/abs/1709.06560.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney,
Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements
in deep reinforcement learning. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, Rene Traore,
Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Rad-
ford, John Schulman, Szymon Sidor, and Yuhuai Wu. Stable baselines. https://github.com/
hill-a/stable-baselines, 2018.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Matthew W. Hoffman, Bobak Shahriari, John Aslanides, Gabriel Barth-Maron, Nikola Momchev,
Danila Sinopalnikov, Piotr Stańczyk, Sabela Ramos, Anton Raichuk, Damien Vincent, Léonard
Hussenot, Robert Dadashi, Gabriel Dulac-Arnold, Manu Orsini, Alexis Jacq, Johan Ferret, Nino
Vieillard, Seyed Kamyar Seyed Ghasemipour, Sertan Girgin, Olivier Pietquin, Feryal Behbahani,
Tamara Norman, Abbas Abdolmaleki, Albin Cassirer, Fan Yang, Kate Baumli, Sarah Henderson,
Abe Friesen, Ruba Haroun, Alex Novikov, Sergio Gómez Colmenarejo, Serkan Cabi, Caglar Gul-
cehre, Tom Le Paine, Srivatsan Srinivasan, Andrew Cowie, Ziyu Wang, Bilal Piot, and Nando
de Freitas. Acme: A research framework for distributed reinforcement learning. arXiv preprint
arXiv:2006.00979, 2020. URL https://arxiv.org/abs/2006.00979.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Kinal
Mehta, and João G.M. Araújo. Cleanrl: High-quality single-file implementations of deep rein-
forcement learning algorithms. Journal of Machine Learning Research, 23(274):1–18, 2022. URL
http://jmlr.org/papers/v23/21-1342.html.

http://jmlr.org/papers/v22/18-056.html
http://arxiv.org/abs/1709.06560
http://arxiv.org/abs/1709.06560
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
https://arxiv.org/abs/2006.00979
http://jmlr.org/papers/v23/21-1342.html


RLJ | RLC 2024

Sham M Kakade. A natural policy gradient. Advances in neural information processing systems,
14, 2001.

Eoin M Kenny, Mycal Tucker, and Julie Shah. Towards interpretable deep reinforcement learning
with human-friendly prototypes. In The Eleventh International Conference on Learning Repre-
sentations, 2023.

B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A Al Sallab, Senthil Yoga-
mani, and Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey. IEEE
Transactions on Intelligent Transportation Systems, 23(6):4909–4926, 2021.

Alexander Kuhnle, Michael Schaarschmidt, and Kai Fricke. Tensorforce: a tensorflow library for
applied reinforcement learning. Web page, 2017. URL https://github.com/tensorforce/
tensorforce.

Yuxi Li. Deep reinforcement learning: An overview. arXiv preprint arXiv:1701.07274, 2017.

Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg, Joseph E.
Gonzalez, Michael I. Jordan, and Ion Stoica. RLlib: Abstractions for distributed reinforcement
learning. In International Conference on Machine Learning (ICML), 2018.

Xingyu Lin, Yufei Wang, Jake Olkin, and David Held. Softgym: Benchmarking deep reinforcement
learning for deformable object manipulation. In Conference on Robot Learning, pp. 432–448.
PMLR, 2021.

Yiheng Liu, Tianle Han, Siyuan Ma, Jiayue Zhang, Yuanyuan Yang, Jiaming Tian, Hao He, Antong
Li, Mengshen He, Zhengliang Liu, et al. Summary of chatgpt/gpt-4 research and perspective
towards the future of large language models. arXiv preprint arXiv:2304.01852, 2023.

Marlos C Machado, Marc G Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and Michael
Bowling. Revisiting the arcade learning environment: Evaluation protocols and open problems
for general agents. Journal of Artificial Intelligence Research, 61:523–562, 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928–1937. PMLR, 2016.

Seyed Sajad Mousavi, Michael Schukat, and Enda Howley. Deep reinforcement learning: an overview.
In Proceedings of SAI Intelligent Systems Conference (IntelliSys) 2016: Volume 2, pp. 426–440.
Springer, 2018.

National Security Commission on Artificial Intelligence. Interim Report. Technical report, National
Security Commission on Artificial Intelligence, November 2019. URL https://www.nscai.gov/
wp-content/uploads/2021/01/NSCAI-Interim-Report-for-Congress_201911.pdf.

Mohammad Noaeen, Atharva Naik, Liana Goodman, Jared Crebo, Taimoor Abrar, Zahra Shak-
eri Hossein Abad, Ana L.C. Bazzan, and Behrouz Far. Reinforcement learning in urban net-
work traffic signal control: A systematic literature review. Expert Systems with Applications,
199:116830, 2022. ISSN 0957-4174. doi: https://doi.org/10.1016/j.eswa.2022.116830. URL
https://www.sciencedirect.com/science/article/pii/S0957417422002858.

OpenAI. Gpt-4 technical report, 2023.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped dqn. Advances in neural information processing systems, 29, 2016.

https://github.com/tensorforce/tensorforce
https://github.com/tensorforce/tensorforce
https://www.nscai.gov/wp-content/uploads/2021/01/NSCAI-Interim-Report-for-Congress_201911.pdf
https://www.nscai.gov/wp-content/uploads/2021/01/NSCAI-Interim-Report-for-Congress_201911.pdf
https://www.sciencedirect.com/science/article/pii/S0957417422002858


RLJ | RLC 2024

Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions for deep reinforcement
learning. Advances in Neural Information Processing Systems, 31, 2018.

Ian Osband, Yotam Doron, Matteo Hessel, John Aslanides, Eren Sezener, Andre Saraiva, Katrina
McKinney, Tor Lattimore, Csaba Szepesvari, Satinder Singh, et al. Behaviour suite for reinforce-
ment learning. arXiv preprint arXiv:1908.03568, 2019a.

Ian Osband, Benjamin Van Roy, Daniel J Russo, Zheng Wen, et al. Deep exploration via randomized
value functions. J. Mach. Learn. Res., 20(124):1–62, 2019b.

Ian Osband, Yotam Doron, Matteo Hessel, John Aslanides, Eren Sezener, Andre Saraiva, Katrina
McKinney, Tor Lattimore, Csaba Szepesvári, Satinder Singh, Benjamin Van Roy, Richard Sutton,
David Silver, and Hado van Hasselt. Behaviour suite for reinforcement learning. In Interna-
tional Conference on Learning Representations, 2020. URL https://openreview.net/forum?
id=rygf-kSYwH.

Fabio Pardo. Tonic: A deep reinforcement learning library for fast prototyping and benchmarking.
CoRR, abs/2011.07537, 2020a. URL https://arxiv.org/abs/2011.07537.

Fabio Pardo. Tonic: A deep reinforcement learning library for fast prototyping and benchmarking.
arXiv preprint arXiv:2011.07537, 2020b.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dor-
mann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of Machine
Learning Research, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/20-1364.html.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Kun Shao, Zhentao Tang, Yuanheng Zhu, Nannan Li, and Dongbin Zhao. A survey of deep rein-
forcement learning in video games. arXiv preprint arXiv:1912.10944, 2019.

William D Smart and Leslie Pack Kaelbling. Practical reinforcement learning in continuous spaces.
In ICML, pp. 903–910, 2000.

Austin Stone, Oscar Ramirez, Kurt Konolige, and Rico Jonschkowski. The distracting control suite
- A challenging benchmark for reinforcement learning from pixels. CoRR, abs/2101.02722, 2021.
URL https://arxiv.org/abs/2101.02722.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods
for reinforcement learning with function approximation. Advances in neural information processing
systems, 12, 1999.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012. doi: 10.1109/IROS.2012.6386109.

Hoa Tran-Dang, Sanjay Bhardwaj, Tariq Rahim, Arslan Musaddiq, and Dong-Seong Kim. Rein-
forcement learning based resource management for fog computing environment: Literature review,
challenges, and open issues. Journal of Communications and Networks, 24(1):83–98, 2022. doi:
10.23919/JCN.2021.000041.

https://openreview.net/forum?id=rygf-kSYwH
https://openreview.net/forum?id=rygf-kSYwH
https://arxiv.org/abs/2011.07537
http://jmlr.org/papers/v22/20-1364.html
https://arxiv.org/abs/2101.02722


RLJ | RLC 2024

Victor Uc-Cetina, Nicolas Navarro-Guerrero, Anabel Martin-Gonzalez, Cornelius Weber, and Stefan
Wermter. Survey on reinforcement learning for language processing. Artificial Intelligence Review,
56(2):1543–1575, 2023.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

Tingwu Wang, Xuchan Bao, Ignasi Clavera, Jerrick Hoang, Yeming Wen, Eric Langlois, Shunshi
Zhang, Guodong Zhang, Pieter Abbeel, and Jimmy Ba. Benchmarking model-based reinforcement
learning. arXiv preprint arXiv:1907.02057, 2019.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas. Dueling
network architectures for deep reinforcement learning. In International conference on machine
learning, pp. 1995–2003. PMLR, 2016.

Jiayi Weng, Huayu Chen, Dong Yan, Kaichao You, Alexis Duburcq, Minghao Zhang, Yi Su, Hang
Su, and Jun Zhu. Tianshou: A highly modularized deep reinforcement learning library. Journal of
Machine Learning Research, 23(267):1–6, 2022. URL http://jmlr.org/papers/v23/21-1127.
html.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Reinforcement learning, pp. 5–32, 1992.

Derek Yang, Li Zhao, Zichuan Lin, Tao Qin, Jiang Bian, and Tie-Yan Liu. Fully parameterized quan-
tile function for distributional reinforcement learning. Advances in neural information processing
systems, 32, 2019.

Chao Yu, Jiming Liu, Shamim Nemati, and Guosheng Yin. Reinforcement learning in healthcare:
A survey. ACM Computing Surveys (CSUR), 55(1):1–36, 2021.

Xiangyu Zhao, Long Xia, Jiliang Tang, and Dawei Yin. “deep reinforcement learning for search,
recommendation, and online advertising: a survey” by xiangyu zhao, long xia, jiliang tang, and
dawei yin with martin vesely as coordinator. ACM SIGWEB Newsletter, 2019(Spring):1–15, July
2019. ISSN 1931-1435. doi: 10.1145/3320496.3320500. URL http://dx.doi.org/10.1145/
3320496.3320500.

http://jmlr.org/papers/v23/21-1127.html
http://jmlr.org/papers/v23/21-1127.html
http://dx.doi.org/10.1145/3320496.3320500
http://dx.doi.org/10.1145/3320496.3320500

