
RLJ | RLC 2024

Offline Reinforcement Learning from Datasets with
Structured Non-Stationarity

Johannes Ackermann
ackermann@ms.k.u-tokyo.ac.jp
The University of Tokyo, RIKEN AIP

Takayuki Osa
The University of Tokyo, RIKEN AIP

Masashi Sugiyama
RIKEN AIP, The University of Tokyo

Abstract

Current Reinforcement Learning (RL) is often limited by the large amount of data
needed to learn a successful policy. Offline RL aims to solve this issue by using
transitions collected by a different behavior policy. We address a novel Offline RL
problem setting in which, while collecting the dataset, the transition and reward
functions gradually change between episodes but stay constant within each episode.
We propose a method based on Contrastive Predictive Coding that identifies this
non-stationarity in the offline dataset, accounts for it when training a policy, and
predicts it during evaluation. We analyze our proposed method and show that it
performs well in simple continuous control tasks and challenging, high-dimensional
locomotion tasks. We show that our method often achieves the oracle performance
and performs better than baselines.

1 Introduction

A main challenge of Reinforcement Learning (RL) is the large amount of interactions required to learn
a proficient policy. One recently popular way to tackle this challenge is to use Offline Reinforcement
Learning (Levine et al., 2020). In Offline RL we aim to learn a policy from a given dataset of
previous transitions generated by a different behavior policy, without needing to interact with the
environment further. This avoids the cost and potential risks of online data collection, allowing us
to collect large datasets. Consider, for example, a policy being trained to improve the controller of
a deployed pick and place robot. Over shorter time frames, we would not expect wear and tear to
have a large effect on the robot: We can expect our environment to be stationary, i.e., the reward
and transition functions should be the same over the course of data collection. However, if we collect
the dataset over a longer time frame wear and tear does occur, leading to nonstationarity which
causes an important challenge to real world RL (Dulac-Arnold et al., 2021). With recent works such
as Kalashnikov et al. (2021) training on multiple robots over time-frames of up to 16 months, this
challenge is becoming increasingly relevant.

As episodes tend to be short compared to the lifespan of a robot, we can assume that the change
in transition and reward functions during each episode is small. We thus tackle this setting by
making the structural assumption of a slowly evolving non-stationarity, that remains fixed during
each episode and changes between them, allowing us to formulate the setting as multiple rollouts
of a Dynamic-Parameter MDP (DP-MDP) (Xie et al., 2021). A DP-MDP is a Hidden-Parameter
MDP (HiP-MDP) (Doshi-Velez & Konidaris, 2013) in which the hidden-parameter (HiP) depends on
the previous HiPs. One way to address our problem setting is to use Bayes-Adaptive RL methods,
such as BOReL (Dorfman et al., 2021) or ContraBAR (Choshen & Tamar, 2023). These methods
learn a policy that optimally identifies and exploits the HiP during the same episode. Another way
to approach our problem setting is to derive an offline variant of a lifelong-learning methods like

RLJ | RLC 2024

Figure 1: We address an Offline RL setting in which the dataset is generated from multiple de-
ployments with evolving non-stationarity. We make the structural assumption of the reward and
transition functions depending on a hidden-parameter z that is constant during each episode but
evolves between episodes. Following this assumption, we develop a method based on Contrastive
Predictive Coding that infers the hidden parameter from the deployments in our dataset. We then
train a predictor and policy to use during evaluation with access to context trajectories.

Lifelong Actor Critic (LILAC) (Xie et al., 2021) which trains a Dynamic Variational Autoencoder
(VAE) (Chung et al.) to learn a model of the reward and transition functions. However, as we will
discuss in detail later, these methods contain techniques (reward relabeling, policy replaying, and
hard negative mining) that are not applicable in our setting and struggle in high-dimensional tasks
with changing transition functions.

We therefore propose a method that avoids the need for these additional techniques and performs
well in high-dimensional tasks by using Contrastive Predicitive Coding (CPC) (Oord et al., 2019).
We show that our method is able to learn a meaningful representation of the HiP, identify it in
the dataset, predict it during evaluation and use it to learn an effective policy. To summarize our
contributions, we 1) propose a new offline RL problem setting of learning from a dataset including
a structured nonstationarity, 2) address this setting by deriving a method based on CPC that infers
the non-stationarity in the dataset and predicts it during evaluation, 3) show that our method
outperforms baselines in both simple and high-dimensional continuous control tasks and publish our
code and datasets for the community to use.

2 Background

In this section, we will briefly describe the necessary background on RL, CPC and HiP-MDPs.

2.1 Reinforcement Learning

In RL, we are given an MDP M = (S, A, R, p, p0) with, in this work, continuous state space S,
continuous action space A, deterministic reward function R(s, a), transition probability density
p(s′|s, a) and initial state density p0(s) (Sutton & Barto, 2018). We then aim to learn a policy with
conditional probability density π(a|s) of choosing action a in state s, that maximizes the expected
return J = E

[∑H
t=0 rt

]
, where H is the duration of an episode. We refer to a rollout of this MDP

as trajectory τ = (s0, a0, r0, . . . , sH , aH , rH).One important quantity of interest is the value function
Q(s, a) = E[

∑
t γt−1rt|s0 = s, a0 = a]. A common way to estimate it is to use the recurrent formula

Q(s, a) = r(s, a) + γE[Q(s′, a′)], where s′, a′ are the subsequent state and action. In the continuous
control setting, Twin Delayed Deep Deterministic Policy Gradient (TD3) (Fujimoto et al., 2018) is
one popular method to learn the policy. As an actor-critic method it consists of a critic-network Qθ

that estimates the action-value function and a deterministic policy µϕ : S → A. Both are represented
as Multi Layer Preceptrons (MLPs) with parameters θ and ϕ respectively and the policy is updated
according to the deterministic policy gradient ∇ϕJ(ϕ) = E[∇ϕµϕ(s)∇aQθ(s, a)|a=µϕ(s)].

RLJ | RLC 2024

In Offline RL, we train a policy from a dataset of transitions D = {(si, ai, ri, s′i)}ND
i=1 obtained by

executing a behavior policy β(a|s). The main challenge in Offline RL is the distribution shift between
the states visited and actions chosen by the behavior policy β and the learned policy π (Levine et al.,
2020). If the shift is large, estimates of the Q-value become inaccurate, leading to the policy choosing
actions that result in a poor performance. Therefore, methods such as TD3 do not perform well if
applied directly in Offline RL (Fujimoto & Gu, 2021), and instead most methods introduce some
way to constrain the learned policy π to remain close to the behavior policy β. TD3+BC (Fujimoto
& Gu, 2021) is a successful Offline RL method that achieves this by adding a behavior cloning (BC)
penalty E(s,a)∼D[(π(s) − a)2] to the policy loss, weighted by a hyperparameter λ > 0.

2.2 Contrastive Predictive Coding

CPC (Oord et al., 2019) uses contrastive learning to learn a representation ct for a sequence of
observations o1:t

1. Each observation o is first encoded by the same encoder genc, yielding encodings
xt = genc(ot). These encodings are then processed by an auto-regressive model gar, such as a
Gated-Recurrent Unit (GRU) (Cho et al., 2014), which gives us a representation of the sequence
ct = gar(x1:t). We then take the future observation o+

t+k from the same sequence as a positive
sample and sample a set of N− observations {o−,j

t+k}N−

j=1 from different sequences as negative samples.
A classifier fk(ct, xt+k) is then trained to classify which embeddings are from the positive sample
x+
t+k = genc(o+

t+k) or negative samples x−,j
t+k = genc(o−,j

t+k). The encoder genc, autoregressive model
gar and classifier f are trained jointly to optimize the InfoNCE loss:

LInfoNCE = −E

[
log

exp fk(ct, x+
t+k)

exp fk(ct, x+
t+k) +

∑N−

j=1 exp fk(ct, x−,j
t+k)

]
, (1)

which is minimized when the classifier is proportional to the density ratio of a sample being from the
conditional density p(ok+t|ct) instead of the proposal density p(ok+t), i.e., f(ot+k, ct) ∝ p(ok+t|ct)

p(ok+t) ,
thereby maximizing the mutual information I(ct; ot+k) (Oord et al., 2019).

2.3 Partially-Observable MDPs

In the classical MDP the reward function R and transition function P are stationary during training,
i.e., they do not change. While this assumption is easily satisfied in constructed examples, in
realistic settings external influences and unobservable factors can make it difficult or impossible to
choose a state formulation that permits a stationary transition and reward functions. Partially-
Observable MDPs (POMDPs) (Åström, 1965) extend the MDP formulation by assuming that while
the transition and reward functions seem non-stationary from the given observation s, they are
stationary given the unobserved state ŝ. The observation is given by an observation function h :
Ŝ → S. We can represent any kind of non-stationary transition- or reward-function as a POMDP,
however, the generality of the formulation makes efficient training difficult. HiP-MDPs introduced
by Doshi-Velez & Konidaris (2013) address this issue by constraining the true state ŝ to be the
combination of the observation received by the agent with a hidden parameter z, i.e. ŝ = (s, z).
While in general continuous sets of HiPs can be considered, following related works (Xie et al., 2021;
Dorfman et al., 2021) we focus on a discrete set of HiPs Z in our experiments and thus also in the
rest of this work. This HiP is sampled at the beginning of each episode from a distribution z ∼ P (z)
and remains constant throughout the episode. The transition function P (s′|s, a, z) then depends
on the hidden parameter z. DP-MDPs (Xie et al., 2021), visualized in Fig. 2 (left), generalize the
HiP-MDP by considering a structured evolution of HiPs:
Definition 2.1. Dynamic-Parameter MDP (Xie et al., 2021) A DP-MDP is a is an MDP with
the addition of a HiP space Z, transition probability Pz(zi|z0:i−1), and initial probability Pz0(z0).
The HiP is constant during each episode and follows Pz(zi|z0:i−1) between episodes. The transition
density p(s′|s, a, z) and reward function R(s, a, z) depend on the HiP.

1We sometimes use the notation xa:b := (xa, xa+1, . . . , xb) for brevity.

RLJ | RLC 2024

2.4 Bayes-Adaptive RL

The HiP-MDP setting can be addressed by Bayes-Adaptive RL methods, which train a policy that
infers and exploits the HiP during an episode. Variational Bayes Adaptive Deep RL (VariBAD) (Zint-
graf et al., 2020) achieved this by training a VAE with a Gaussian encoder [µt, Σt] = qϕ(s1:t, a1:t, r1:t),
reward decoder pr,ϕ(rt′ |st′ , at′ , b̃t) and transition decoder pt,ϕ(s′

t′ |st′ , at′ , b̃t), for 1 ≤ t′ << t, where
b̃t ∼ N (µt, Σt). N (µ, Σ) is a multivariate Gaussian distribution with mean µ and diagonal covari-
ance matrix Σ. bt = (µ, Σ) is the belief over the current HiP, which the policy is then conditioned
on. Dorfman et al. (2021) investigated the application of VariBAD to offline datasets generated
by behavior policies β(a|s, z), conditioned on the task HiP z, and introduced Bayes Adaptive Of-
fline Reinforcement Learning (BOReL) with two new techniques that enable successful training:
Reward Relabeling which for each transition (s, a, r, s′) in the dataset creates additional transitions
(s, a, R(s, a, zi), s′) for all HiPs zi ∈ Z. Policy Replaying, which generates trajectories with HiP z us-
ing the behavior policy conditioned on each other HiP zi ̸= z. Choshen & Tamar (2023) introduced
Contrastive Bayes Adaptive Deep RL (ContraBAR) which instead of a VAE uses CPC to learn a
belief over the HiP. Specifically, it encodes transitions using an encoder zt = genc(st, at−1, rt) and
combines them using a Recurrent Neural Network (RNN) to a belief bt = gar(z1:t), which is trained
by discriminating the next transitions (s+

t+k, r+
t+k) from the same episode against those from a dif-

ferent episode (s−
t+k, r−

t+k). However, as they pointed out, it is possible to discriminate the future
transition not by learning a belief over the HiP but by learning a transition model p(st+k|st), leading
the training to fail. To prevent this they used hard negative mining, either by reward relabeling when
only the reward changes or by simulating transitions when the transition function changes, requiring
access to a simulator of the environment. As we will see in the next section, reward relabeling is not
applicable in our setting as we do not consider access to the reward function, policy replaying is not
applicable as our behavior policy is not conditioned on z and hard negative mining is not applicable
as we do not have access to a simulator of the environment.

2.5 Problem Formulation

Recall that our motivation is a setting in which data is collected from multiple deployments over an
extended time-frame. As episodes tend to be short compared to the lifespan of a deployment, it is
reasonable to assume stationarity during the duration of each episode, making the DP-MDP (Xie
et al., 2021) a natural fit. We further assume that the data is generated by a behavior policy β(a|s),
that does not have access to the HiP z, for example a robust controller that performs well but not
optimally on all HiPs. We aim to improve on this behavior policy by inferring and using the HiP z.

Problem Setting: We are given a dataset D = {dj}Nj=1 consisting of N deployments d =
(τ1, . . . , τi, . . . , τM), each containing M trajectories τi. Each deployment d is a rollout of the same
DP-MDP M. The deployments are generated by, for each deployment, first sampling a HiP sequence
z0 ∼ Pz0(z), zi ∼ Pz(zi|z1:i−1) and then each trajectory τi is generated by sampling s0 ∼ p0(s) and
following behavior policy β(a|s), transition density p(s′|s, a, zi), and reward function R(s, a, zi). Dur-
ing evaluation we are given a context of Nc previous trajectories τi−Nc:i−1 generated by the behavior
policy β and our objective is to learn a policy conditioned on the context π(a|s, τi−Nc:i−1) that max-
imizes the return over the next episode, i.e., J = Eπ,Pz,P,P0,zi−Nc:i−1,τi−Nc:i−1

[∑H
t=0 R(st, at, zi)

]
.

3 Algorithm

We introduce our proposed method named Contrastive Predictive Non-Stationarity Adaptation
(COSPA). As the reward and transition functions depend on the HiP zi, we first must infer it
in the dataset, use it to train a policy and then predict it during evaluation. The offline setting
allows us to separate these steps and train an inference model and predictor model first.

Inferring the Hidden Parameter From the generative model of the DP-MDP, shown in Fig.
2, we know that the next episode τi with HiP zi only depends on the HiPs (zi−1, zi−2, . . . , z1) of

RLJ | RLC 2024

Figure 2: Left: Graphical model of the DP-MDP. Right: Illustration of a deployment sampled
from the dataset and our approach to infer the hidden variable. We use Contrastive Predictive
Coding to learn a model that can discriminate future trajectories τi+k based on past trajectories
(τi, τi−1, . . . , τ1) by learning a representation of the past trajectories (z̃i, z̃i−1, . . . , z̃1).

previous episodes (τi−1, τi−2, . . . , τ1). One way of learning to infer an approximate HiP z̃ in this
setting is to derive an offline variant of LILAC (Xie et al., 2021). LILAC trains a Dynamic VAE with
an encoder z̃i = qϕ(τi), dynamic prior pψ(z̃i|z̃i−1, . . . , z̃1) and decoder pϕ(τi|z̃i). While training an
accurate decoder pϕ(τi|z̃i) is feasible in settings with varying reward functions or in low-dimensional
problems, it becomes challenging in high-dimensional settings with small variations in the transition
function, as we will see in the experiments in Section 4.1.

Instead of learning a generative model pϕ(τi|z̃i), it is often easier to learn a discriminative model.
This makes the application of contrastive learning and in particular CPC a natural choice for our
problem setting. As shown in Fig. 2 (right), we treat each trajectory τ as an observation of a
time-sequence, encode them separately using an encoder z̃i = genc(τi) and then summarize the
past encodings to a context ci using an autoregressive encoder ci = gar(z̃i, z̃i−1, . . . , z̃1). Finally, in
the InfoNCE loss, a classifier f(ct, τt+k) is used to distinguish a future trajectory τ+

i+k of the same
deployment from negative trajectory samples {τ−,j

i+k}N−

j=1 from different deployments. The InfoNCE
loss in (1) therefore becomes

Lrepr = −E

[
log

exp fk(τ+
i+k, ci)

exp fk(τ+
i+k, ci) +

∑N−

j=1 exp fk(τ−,j
i+k, ci)

]
. (2)

This structure is shown in Fig. 2 (right). As we learn to discriminate future trajectories τ+
i+k, instead

of future transitions (s+
t+k, r+

t+k) as in ContraBAR, the model can not simply learn the transition
function p(st+k|st) but has to learn a representation of the HiP z to discriminate τi+k.

Following the same argument as Oord et al. (2019), we can show that minimizing this loss maximizes
the mutual information I(ci; τi+k), which we show in Appendix B for completeness. We could thus
directly use ci as an approximation of the hidden parameter zi+k. However, this would have the
disadvantage of requiring at least k episodes as context during evaluation, and prevent usage of the
first k episodes per deployment during training. We avoid this issue by using the output of the
encoder z̃i = genc(τi) as an approximation of the HiP, obtaining the augmented dataset D̂ with
ŝ = (s, z̃) to train the policy π, and train a separate prediction network to use during evaluation.

Predicting the Next Hidden State During evaluation we only have access to a context of Nc
previous trajectories and need to infer the next HiP τi+1 to condition our policy on. We therefore
train a predictor RNN fpred to predict the next HiP zi+1. To train it, we sample sequences of
inferred latents (z̃i−Nc , . . . , z̃i) from the dataset D̂ and minimize the mean squared error Lpred =
E(z̃i−Nc ,...,z̃i)∼D̂[(fpred(z̃i−Nc , . . . , z̃i−1) − z̃i)2]. As we will show in Section 4.1, we found that this
works well even with relatively simple network structure, consisting of two hidden layers and a GRU.

RLJ | RLC 2024

1D-Goal 2D-Goal 2D-Wind Ant-Leg Ant-Weight Barkour-Weight

Figure 3: Illustrations of our evaluation environments. From left to right: 1D-Goal, 2D-Goal, 2D-
Wind, Ant-Leg, Ant-Weight, Barkour-Weight. In 1D-Goal and 2D-Goal the goal location and thus
the reward function depends on the HiP z. In the remaining tasks the transition function changes.

Reinforcement Learning Having inferred the HiP and relabeled our offline dataset as ŝ = (s, z̃),
we now need to train a policy π(a|ŝ). While in principle any Offline RL method may be used, we
need to consider how our problem setting differs from the popular D4RL benchmark (Fu et al., 2021),
which many popular methods are designed for. More so than in D4RL, our setting requires large
deviations from the behavior policy due to the difference in transition and reward functions. This
makes methods such as Advantage-Weighted Regression (Peng et al., 2019) or Implicit Q Learn-
ing (Kostrikov et al., 2021) that contain strong constraints to in-dataset actions disadvantageous.
TD3+BC (Fujimoto & Gu, 2021) uses a deterministic policy µϕ(s) and conservativity is achieved
by a BC term E(s,a)∼D

[
(µϕ(s) − a)2]

. In our setting we extend this to E(s,a,z̃)∼D̂
[
(µϕ(s, z̃) − a)2]

,
which can be estimated using samples from the augmented dataset D̂. We can adjust the strength
of this constraint by varying the hyperparameter λ, allowing more flexibility to learn the policy µϕ,
and thus use TD3+BC in our experiments.

4 Implementation and Experiments

We make several design choices in the implementation of our method to enable efficient training.
We implement genc as a two-layer MLP with ReLU activations, gar as a GRU (Cho et al., 2014)
and the classifier f as an MLP with two hidden-layers. One important consideration is how to
encode the trajectory τ with encoder genc. To enable efficient training, we use sampled transitions
(st, at, rt, st+1) as input. This works well in tasks with changing transition dynamics, such as changes
to the configuration of a robot, or dense reward functions. For sparse reward tasks recurrent encoders
can be considered, but we focus on the case with changing transition functions. When augmenting
the dataset, we average the output over each trajectory, i.e., each transition of trajectory τi is
augmented with the average embedding 1

H

∑H−1
t=1 genc(st, at, rt, st+1) of the trajectory. We further

use a low dimensionality (2, 4, 8) for z̃ and normalize it before using it in the policy training. The
prediction RNN fpred is implemented as a two-layer MLP followed by a GRU. For TD3+BC, we
use similar parameters to the ones proposed by the authors Fujimoto & Gu (2021), but decrease
the strength of the BC penalty to account for the larger difference between behavior policy and
optimal policy. Finally, we also add layer-normalization (Ba et al., 2016) after each hidden layer of
the critic, as suggested by Kumar et al. (2022). We implement our method using JAX and publish
our implementation.2 We use the same RL hyper-parameters per environment for all methods, but
optimize the hyper-parameters of our baseline representation methods by extensive grid-search per
task on the low-dimensional and Ant tasks. Additional details can be found in Appendix C.

4.1 Evaluation

To validate our approach, we compare its performance with multiple baselines: 1) Blind, where we
do not add any information to the states in the offline dataset, ŝ = (s). 2) Oracle, where we augment

2see https://github.com/JohannesAck/OfflineRLStructuredNonstationarity

https://github.com/JohannesAck/OfflineRLStructuredNonstationarity

RLJ | RLC 2024

2D
-G

oa
l

A
n

t-
W

ei
gh

t

BOReL– ContraBAR– VRNN COSPA (ours)
BOReL

–

Con
tra

BAR–

VRNN

COSP
A

(ou
rs)

0.2

0.4

0.6

0.8

1

Li
ne

ar
Pr

ob
e

A
cc

. 2D-Goal
Ant-Weight

Figure 4: Comparison of the learned representations. The left side shows T-SNE visualizations,
the right side shows the mean test accuracy with 95% CIs across 20 trials of linear probes trained
to predict the ground-truth HiPs. Each dot is the embedding of a trajectory, the HiP of which is
represented by the color. For BOReL and VRNN the mean µ of the posterior is visualized.

the dataset with the ground-truth HiP ŝ = (s, z). Note that this value is not accessible in practice.
3) BOReL, a method that infers the HiP during the episode using a VAE (Dorfman et al., 2021). As
we are not able to use reward relabeling or policy replaying for the complete BOReL, we denote it
with BOReL–. 4) ContraBAR–, ContraBAR (Choshen & Tamar, 2023) addresses the same setting
as BOReL, but like us uses a CPC-based architecture. We are not able to use reward relabeling or
hard negative mining and therefore denote it ContraBAR–. 5) VRNN, we also evaluate a Dynamic
VAE based method, similar to the LILAC (Xie et al., 2021) which was proposed to address the
online DP-MDP setting. Our implementation deviates from LILAC by using a Variational RNN
(Chung et al.) as dynamic VAE, as we found it to perform well in preliminary experiments. We also
use TD3-BC to train the policy, while LILAC uses SAC.

To generate our dataset, we train a policy using TD3, or PPO for Barkour, in the same DP-MDP
without access to the HiP. As the HiP changes after each episode, this is similar to utilizing domain
randomization (Tobin et al., 2017), resulting in a robust policy that is not specialized to any HiP
but close to optimal on the "marginal" MDP, i.e., an MDP where the transition density and reward
functions are marginalized over z. We then collect the dataset by generating rollouts with the same
exploration noise as during training. Our evaluation tasks are based on related work (Xie et al.,
2021; Dorfman et al., 2021) and we begin with three low-dimensional tasks: In 1D-Goal the agent
starts in a random position and navigates to one of two goals, while in 2D-Goal the agent moves
to a goal location on a circle, the exact position of which depends on the HiP z. In 2D-Wind we
instead change the transition function, by adding a disturbance to the location depending on the
HiP z. As higher-dimensional tasks we consider two variations of the well known Ant (Schulman
et al., 2018) task, simulated using BRAX (Freeman et al., 2021). In Ant-Weight we vary the mass
of the body of the ant to simulate a varying load, in Ant-Leg we change the length of the legs of the
ant to simulate dyanmics change due to wear and tear. Finally, in Barkour-Weight we validate our
approach on a realistic simulation of a full robot. We utilize the simulation of the Barkour robot
provided by Caluwaerts et al. (2023), which they have shown to be successful in sim-to-real transfer.
We therefore consider it to be a good proxy for real world applications. Note that the observation
here includes the last three observations and actions, st = (ot−2, at−2, ot−1, at−1, ot), such that the
weight could be inferred without any additional input. We illustrate these tasks in Fig. 3.

We split our evaluation into three parts: 1) Does the model learn a useful representation of the HiP?
2) Can we accurately infer the next latent during evaluation? 3) Does this allow us to learn a better
policy from the offline dataset?

Learned Representation To evaluate our learned representation of the HiP, we follow common
practices from the representation learning community (Nozawa & Sato, 2022). We quantitatively
evaluate the learned representation using linear probes and qualitatively evaluate it using T-SNE

RLJ | RLC 2024

Figure 5: T-SNE visualization of the inferred latents z̃ as crosses (×), and predicted latents z̄i =
fpred(z̃i−Nc , . . . , z̃i−1) as circles (◦).

0.2 0.4 0.6 0.8 1
·105

−60

−40

−20

Step

R
ew

ar
d

1D-Goal

0.4 0.6 0.8 1
·104

−80

−60

−40

Step

2D-Goal

0.2 0.4 0.6 0.8 1
·105

10

20

30

Step

2D-Wind

0.5 1.0 1.5 2.0
·106

2,000

2,500

3,000

Step

R
ew

ar
d

Ant-Weight

0.5 1.0 1.5 2.0
·106

800

1,000
1,200
1,400
1,600

Step

Ant-Leg

0.2 0.4 0.6 0.8 1.0
·106

14

16

18

Steps

Barkour-Weight

COSPA (ours)
VRNN
BOReL–
ContraBAR–
Oracle
Blind

Figure 6: Results of our proposed method on the evaluation environments. Shown are the mean
evaluation rewards for 20 seeds per experiment, the shaded areas show 95% confidence intervals.

(Maaten & Hinton, 2008) to visualize the learned representation. As we show in Fig. 4, our method
learns a representation which captures the underlying structure well, clustering tasks by HiP. The
baselines perform reasonably well in the 2D-Goal task. On the more difficult Ant-Weight task, our
method performs significantly better. While we can see some structure in the representations learned
by the ContraBAR and BOReL baselines, they are not able to learn a useful representation.

Next Latent Prediction As we need to predict the latent z̃i from the given context during de-
ployment, we also evaluate the prediction. We visualize the similarity between predicted latent
z̄i = fpred(z̃i−Nc:i−1) and inferred latents z̃i = genc(τi) by embedding them in a shared T-SNE
visualization. The results are shown in Fig. 5, and we can see a good correspondence between
the inferred and predicted latents. The predicted latents are more concentrated than the inferred
latents, which can be explained by the denoising properties of the regression loss.

Offline RL Having shown that our method is able to identify a useful latent and predict it during
inference, we now evaluate the performance of policies trained with the augmented state ŝ = (s, z̃).
The results are shown in Fig. 6. Overall, our proposed method performs well, matching or exceeding

Blind Oracle VRNN- BOReL ContraBAR- COSPA (ours)
1D-Goal −50.95 ± 0.02 −20.79 ± 2.40 −21.86 ± 3.96 −36.41 ± 4.32 −42.43 ± 3.85 −18.59 ± 1.83
2D-Goal −52.34 ± 0.10 −31.48 ± 1.46 −56.20 ± 3.47 −52.09 ± 1.18 −68.77 ± 6.63 −36.39 ± 2.72
2D-Wind 18.88 ± 2.03 22.81 ± 2.01 13.03 ± 2.75 10.63 ± 2.17 12.04 ± 4.45 23.63 ± 2.38

Ant-Weight 2797 ± 87 2750 ± 98 3035 ± 211 2637 ± 188 2715 ± 79 3104 ± 100
Ant-Leg 1273 ± 142 1407 ± 92 1231 ± 98 862 ± 121 1201 ± 92 1493 ± 97

Barkour-Weight 17.19 ± 0.40 18.71 ± 0.05 15.34 ± 0.46 17.22 ± 0.50 14.90 ± 1.38 18.13 ± 0.14

Table 1: Evaluation reward at the end of the training. Mean and 95% CI across 20 trials. The best
performing method and overlapping CIs without access to privileged information are printed bold.

RLJ | RLC 2024

0.4 0.6 0.8 1
·104

−60

−40

Steps

R
ew

ar
d

P (z̃ = z) = 1.0
P (z̃ = z) = 0.92
P (z̃ = z) = 0.84
P (z̃ = z) = 0.76
P (z̃ = z) = 0.68
P (z̃ = z) = 0.6
P (z̃ = z) = 0.52
P (z̃ = z) = 0.36
P (z̃ = z) = 0.2 0.

00
0.

05
0.

10
0.

15
0.

20
0.

25
0.

30
0.

35
0.

40
0.

45
0.

50
0.

60
0.

70
0.

80
1.

00

−80
−60
−40
−20

0

ContraBARBOReL

Transition Randomness σ

R
ew

ar
d

Figure 7: Left: Performance on 2D-Goal when using a noisy ground-truth HiP, with a uniformly
random HiP being chosen with probability σ to achieve a desired P (z̃ = z). Right: Performance of
our method on 1D-Goal with varying randomness of the HiP transition. Both show means and 95%
CI across 10 trials.

the Oracle performance in most tasks. Interestingly, our proposed method and VRNN perform better
than the Oracle in the Ant-Weight task. One explanation for this is that the learned representation
is better able to represent similarity between different HiPs than the simple ground-truth weight
value. While the baselines perform well in the simple 1D-Goal task, they generally do not perform
well in the more difficult settings, sometimes performing worse than the blind baseline. As noted
above, in the Barkour-Weight task the state includes the previous two observations and actions, in
principle allowing even the blind baseline to perform optimally. However, we find that in practice
our method still performs significantly better with the inclusion of the inferred latent z̃.

ContraBAR and BOReL The relatively poor performance of the ContraBAR– and BOReL–
baselines in some of our experiments might be surprising, we therefore highlight some differences
between their settings and ours to explain the difference in performance. Compared to BOReL and
(offline) ContraBAR, one signficant difference is the nature of the datasets and environments. While
BOReL and offline ContraBAR were designed for datasets generated by task-specific policies for each
different HiP, our datasets are generated by a HiP-agnostic policy, making the task inference more
challenging. Further, the majority of the experiments by Dorfman et al. (2021) and Choshen &
Tamar (2023) focus on settings with varying reward functions, while our setting focuses on settings
with varying transition functions. Finally, as outlined above, the techniques of reward relabeling,
policy replaying and hard negative mining are not applicable in our setting and are shown to be
important in the ablations in Dorfman et al. (2021); Choshen & Tamar (2023).

4.2 Further Experiments

It is interesting that BOReL performs relatively poor in the 2D-Goal task, while achieving a relatively
high linear probe accuracy. To investigate this finding, we perfomed an experiment in which we
simulate a noisy Oracle that returns the correct HiP with probability P (z̃ = z) and else returns a
uniformly random different HiP. The results in Fig. 7 (left) show that even with a relatively high
accuracy P (z̃ = z) = 0.84 the noise can lead to significantly worse results. This is consistent with
results in Yang et al. (2022; 2024), showing the sensitivity of Offline RL to state noise.

We are also interested in the question of when our method should be prefered over Bayes Adaptive
approaches such as BOReL and ContraBAR. Intuitively, our method should perform better when
the next HiP can be accurately predicted, while Bayes Adaptive methods should be preferable if it
is less predictable, i.e. closer to a HiP-MDP than a DP-MDP. In Fig. 7 (right) we show the attained
reward when the HiP transition function P (zi|z1:i−1) is changed to a uniformly random HiP with
probability σ. The results align with our intuition of our method performing better than BOReL
when the HiP is predictable, but worse when it becomes less predictable.

RLJ | RLC 2024

5 Conclusion

We investigated a novel problem setting in Offline Reinforcement Learning, in which the training data
is generated from multiple deployments with non-stationary transition and reward functions. The
problem is formulated as multiple rollouts of a Dynamic-Parameter MDP, a Hidden-Parameter MDP
(HiP-MDP) in which the HiP evolves across trajectories. We proposed a method using contrastive
learning that learns a representation of the HiP, predicts the HiP during evaluation and trains a
policy conditioned on it. We showed that our method is able to learn a useful representation of the
HiP, allowing us to train a policy that often performs better than baseline methods in experiments.

Acknowledgements

J.A. was supported by the Microsoft Research Asia D-CORE program. T.O. was partially supported
by JSPS KAKENHI Grant Number JP23K18476.

A Further Related Work

We will here discuss additional related work, first on Nonstationary RL, then Multi-Task Offline RL
and finally Contrastive Learning in RL.

Nonstationary RL The perhaps closest related work has been presented by Xie et al. (2021),
in which they propose the DP-MDP formulation which we use in our problem setting. Unlike
us, their work focuses on an online lifelong-RL setting with a single deployment for both training
and evaluation. They also proposed the method LILAC, an offline variation of which we use as a
baseline. Chen et al. (2022) address non-stationary environments with piece-wise stable context.
They address a setting where parts of each episode are stationary, but do not consider structure
between tasks. Wang et al. (2023) derive a robust method to test whether nonstationarity occurs in
a given offline RL dataset. Their work focuses on identifying whether such non-stationarity occurs,
while we focus on how we can learn a policy that adapts to it. Yin & Wang (2021) provide a
theoretical investigation of nonstationary Offline RL in a setting where the nonstationary occurs
during each episode but not between episodes, while in our setting it occurs between episodes and
not within each episode. Dulac-Arnold et al. (2021) also discusses non-stationarity introduced by
wear and tear and proposes environments to investigate these challenges in online RL. Chandak
et al. (2022) consider off-policy evaluation in a generalization of the DP-MDP in which the next
HiP depends on the previous HiPs and the actions taken within the previous episode. Off-policy
evaluation is an important step towards Offline RL, but it is not immediately clear how to extend
their method to the control setting or to complex environments which we address in our work.

Multi-Task Offline RL A related setting to ours is Multi-Task Offline RL. The main difference
is that in Multi-Task RL we are given the task identity during training and therefore do not have
to learn an inference model in an unsupervised setting. Li et al. (2020) and Li et al. (2022) propose
methods to address such a setting where the task ID is given during training and can therefore not be
applied to our setting. Liu et al. (2022) and Xue et al. (2023) address the Offline Transfer Learning
setting, in which a large amount of source domain data is available but limited target domain data
with different dynamics.

Contrastive Learning CPC (Oord et al., 2019) has been used in RL before, the original authors
themselves used it as an auxiliary loss in Atari tasks (Oord et al., 2019). ContraBAR (Choshen &
Tamar, 2023) proposed to use CPC to learn Bayes-Optimal policies in the Bayes adaptive RL setting
(Zintgraf et al., 2020). Aside from CPC, other contrastive learning approaches have been applied in
RL, for representation learning (Kipf et al., 2019; Srinivas et al., 2020; van der Pol et al., 2020), or
for domain inference networks in multi-task RL (Li et al., 2022; Lan et al., 2023).

RLJ | RLC 2024

References
Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G. Bellemare.

Deep Reinforcement Learning at the Edge of the Statistical Precipice. In NeurIPS 2021, January
2022. doi: 10.48550/arXiv.2108.13264. URL http://arxiv.org/abs/2108.13264.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer Normalization, July 2016. URL
http://arxiv.org/abs/1607.06450.

Ken Caluwaerts, Atil Iscen, J. Chase Kew, Wenhao Yu, Tingnan Zhang, Daniel Freeman, Kuang-
Huei Lee, Lisa Lee, Stefano Saliceti, Vincent Zhuang, Nathan Batchelor, Steven Bohez, Federico
Casarini, Jose Enrique Chen, Omar Cortes, Erwin Coumans, Adil Dostmohamed, Gabriel Dulac-
Arnold, Alejandro Escontrela, Erik Frey, Roland Hafner, Deepali Jain, Bauyrjan Jyenis, Yuheng
Kuang, Edward Lee, Linda Luu, Ofir Nachum, Ken Oslund, Jason Powell, Diego Reyes, Francesco
Romano, Feresteh Sadeghi, Ron Sloat, Baruch Tabanpour, Daniel Zheng, Michael Neunert, Raia
Hadsell, Nicolas Heess, Francesco Nori, Jeff Seto, Carolina Parada, Vikas Sindhwani, Vincent
Vanhoucke, and Jie Tan. Barkour: Benchmarking Animal-level Agility with Quadruped Robots,
May 2023. URL http://arxiv.org/abs/2305.14654.

Yash Chandak, Shiv Shankar, Nathaniel D. Bastian, Bruno Castro da Silva, Emma Brunskill, and
Philip S. Thomas. Off-Policy Evaluation for Action-Dependent Non-stationary Environments. In
NeurIPS 2022, 2022. URL https://openreview.net/forum?id=PuagBLcAf8n.

Xiaoyu Chen, Xiangming Zhu, Yufeng Zheng, Pushi Zhang, Li Zhao, Wenxue Cheng, Peng Cheng,
Yongqiang Xiong, Tao Qin, Jianyu Chen, and Tie-Yan Liu. An Adaptive Deep RL Method for
Non-Stationary Environments with Piecewise Stable Context. In NeurIPS 2022, December 2022.
URL http://arxiv.org/abs/2212.12735.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder-decoder
for statistical machine translation. EMMNLP, 2014. doi: 10.3115/v1/d14-1179.

Era Choshen and Aviv Tamar. ContraBAR: Contrastive Bayes-Adaptive Deep RL. In ICML 2023,
June 2023. URL http://arxiv.org/abs/2306.02418.

Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron Courville, and Yoshua Bengio.
A Recurrent Latent Variable Model for Sequential Data. In NeurIPS 2015. doi: 10.48550/arXiv.
1506.02216. URL http://arxiv.org/abs/1506.02216.

Ron Dorfman, Idan Shenfeld, and Aviv Tamar. Offline Meta Reinforcement Learning – Identifiability
Challenges and Effective Data Collection Strategies. In NeurIPS 2021, October 2021. URL
https://openreview.net/forum?id=IBdEfhLveS.

Finale Doshi-Velez and George Konidaris. Hidden Parameter Markov Decision Processes: A Semi-
parametric Regression Approach for Discovering Latent Task Parametrizations. In IJCAI 2016,
August 2013. URL https://arxiv.org/abs/1308.3513v1.

Gabriel Dulac-Arnold, Nir Levine, Daniel J Mankowitz, Jerry Li, Cosmin Paduraru, Sven Gowal,
and Todd Hester. Challenges of real-world reinforcement learning: definitions, benchmarks and
analysis. Machine Learning, 110(9):2419–2468, 2021.

C. Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier Bachem.
Brax – A Differentiable Physics Engine for Large Scale Rigid Body Simulation. In NeurIPS 2021
Datasets and Benchmarks Tracl, 2021. URL http://arxiv.org/abs/2106.13281.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: Datasets for Deep
Data-Driven Reinforcement Learning, February 2021. URL http://arxiv.org/abs/2004.07219.

http://arxiv.org/abs/2108.13264
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/2305.14654
https://openreview.net/forum?id=PuagBLcAf8n
http://arxiv.org/abs/2212.12735
http://arxiv.org/abs/2306.02418
http://arxiv.org/abs/1506.02216
https://openreview.net/forum?id=IBdEfhLveS
https://arxiv.org/abs/1308.3513v1
http://arxiv.org/abs/2106.13281
http://arxiv.org/abs/2004.07219

RLJ | RLC 2024

Scott Fujimoto and Shixiang Shane Gu. A Minimalist Approach to Offline Reinforcement Learning.
In NeurIPS 2021, December 2021. doi: 10.48550/arXiv.2106.06860. URL http://arxiv.org/
abs/2106.06860.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing Function Approximation Error in
Actor-Critic Methods. In ICML 2018, February 2018. URL http://arxiv.org/abs/1802.09477.

Dmitry Kalashnikov, Jacob Varley, Yevgen Chebotar, Benjamin Swanson, Rico Jonschkowski,
Chelsea Finn, Sergey Levine, and Karol Hausman. MT-Opt: Continuous Multi-Task Robotic
Reinforcement Learning at Scale, April 2021. URL http://arxiv.org/abs/2104.08212.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In ICLR 2015,
2015. URL http://arxiv.org/abs/1412.6980.

Thomas Kipf, Elise van der Pol, and Max Welling. Contrastive Learning of Structured World
Models. In ICLR 2020, volume 2, pp. 235–239, November 2019. URL http://arxiv.org/abs/
1911.12247.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline Reinforcement Learning with Implicit Q-
Learning, October 2021. URL http://arxiv.org/abs/2110.06169.

Aviral Kumar, Rishabh Agarwal, Tengyu Ma, Aaron Courville, George Tucker, and Sergey Levine.
DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization. In ICLR 2022,
May 2022. URL https://openreview.net/forum?id=POvMvLi91f.

Siming Lan, Rui Zhang, Qi Yi, Jiaming Guo, Shaohui Peng, Yunkai Gao, Fan Wu, Ruizhi Chen,
Zidong Du, Xing Hu, Xishan Zhang, Ling Li, and Yunji Chen. Contrastive Modules with Temporal
Attention for Multi-Task Reinforcement Learning, November 2023. URL http://arxiv.org/abs/
2311.01075.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline Reinforcement Learning: Tu-
torial, Review, and Perspectives on Open Problems, November 2020. URL http://arxiv.org/
abs/2005.01643.

Jiachen Li, Quan Vuong, Shuang Liu, Minghua Liu, Kamil Ciosek, Keith Ross, Henrik Iskov Chris-
tensen, and Hao Su. Multi-task Batch Reinforcement Learning with Metric Learning. In NeurIPS
2020, 2020. URL http://arxiv.org/abs/1909.11373.

Lanqing Li, Rui Yang, and Dijun Luo. FOCAL: Efficient Fully-Offline Meta-Reinforcement Learning
via Distance Metric Learning and Behavior Regularization. In ICLR 2021, February 2022. URL
https://openreview.net/forum?id=8cpHIfgY4Dj.

Jinxin Liu, Zhang Hongyin, and Donglin Wang. DARA: Dynamics-Aware Reward Augmentation
in Offline Reinforcement Learning. March 2022. URL https://openreview.net/forum?id=
9SDQB3b68K.

Laurens van der Maaten and Geoffrey Hinton. Visualizing Data using t-SNE. MLR, 9(86):2579–2605,
2008. ISSN 1533-7928. URL http://jmlr.org/papers/v9/vandermaaten08a.html.

Kento Nozawa and Issei Sato. Empirical Evaluation and Theoretical Analysis for Representation
Learning: A Survey, April 2022. URL http://arxiv.org/abs/2204.08226.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation Learning with Contrastive Pre-
dictive Coding, January 2019. URL http://arxiv.org/abs/1807.03748.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-Weighted Regression:
Simple and Scalable Off-Policy Reinforcement Learning, October 2019. URL http://arxiv.org/
abs/1910.00177.

http://arxiv.org/abs/2106.06860
http://arxiv.org/abs/2106.06860
http://arxiv.org/abs/1802.09477
http://arxiv.org/abs/2104.08212
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1911.12247
http://arxiv.org/abs/1911.12247
http://arxiv.org/abs/2110.06169
https://openreview.net/forum?id=POvMvLi91f
http://arxiv.org/abs/2311.01075
http://arxiv.org/abs/2311.01075
http://arxiv.org/abs/2005.01643
http://arxiv.org/abs/2005.01643
http://arxiv.org/abs/1909.11373
https://openreview.net/forum?id=8cpHIfgY4Dj
https://openreview.net/forum?id=9SDQB3b68K
https://openreview.net/forum?id=9SDQB3b68K
http://jmlr.org/papers/v9/vandermaaten08a.html
http://arxiv.org/abs/2204.08226
http://arxiv.org/abs/1807.03748
http://arxiv.org/abs/1910.00177
http://arxiv.org/abs/1910.00177

RLJ | RLC 2024

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
Dimensional Continuous Control Using Generalized Advantage Estimation, October 2018. URL
http://arxiv.org/abs/1506.02438.

Aravind Srinivas, Michael Laskin, and Pieter Abbeel. CURL: Contrastive Unsupervised Represen-
tations for Reinforcement Learning. In ICML 2020, 2020. URL http://arxiv.org/abs/2004.
04136.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Domain
Randomization for Transferring Deep Neural Networks from Simulation to the Real World. In
IROS 2017, 2017. URL http://arxiv.org/abs/1703.06907.

Elise van der Pol, Thomas Kipf, Frans A. Oliehoek, and Max Welling. Plannable Approximations
to MDP Homomorphisms: Equivariance under Actions. In AAMAS 2020, 2020. URL http:
//arxiv.org/abs/2002.11963.

Jitao Wang, Chengchun Shi, and Zhenke Wu. A Robust Test for the Stationarity Assumption
in Sequential Decision Making. In ICML 2023, 2023. URL https://proceedings.mlr.press/
v202/wang23ai.html.

Annie Xie, James Harrison, and Chelsea Finn. Deep Reinforcement Learning amidst Continual
Structured Non-Stationarity. In ICML 2021, pp. 11393–11403. PMLR, July 2021. URL https:
//proceedings.mlr.press/v139/xie21c.html.

Zhenghai Xue, Qingpeng Cai, Shuchang Liu, Dong Zheng, Peng Jiang, Kun Gai, and Bo An. State
Regularized Policy Optimization on Data with Dynamics Shift. In NeurIPS 2023. arXiv, October
2023. URL http://arxiv.org/abs/2306.03552. arXiv:2306.03552 [cs].

Rui Yang, Chenjia Bai, Xiaoteng Ma, Zhaoran Wang, Chongjie Zhang, and Lei Han. RORL: Robust
Offline Reinforcement Learning via Conservative Smoothing. In NeurIPS 2022, May 2022. URL
https://openreview.net/forum?id=_QzJJGH_KE.

Rui Yang, Han Zhong, Jiawei Xu, Amy Zhang, Chongjie Zhang, Lei Han, and Tong Zhang. Towards
Robust Offline Reinforcement Learning under Diverse Data Corruption. In ICLR 2024. arXiv,
January 2024. URL http://arxiv.org/abs/2310.12955.

Ming Yin and Yu-Xiang Wang. Towards Instance-Optimal Offline Reinforcement Learning with Pes-
simism. In NeurIPS2021, 2021. URL https://proceedings.neurips.cc/paper_files/paper/
2021/hash/212ab20dbdf4191cbcdcf015511783f4-Abstract.html.

Luisa Zintgraf, Kyriacos Shiarlis, Maximilian Igl, Sebastian Schulze, Yarin Gal, Katja Hofmann,
and Shimon Whiteson. VariBAD: A Very Good Method for Bayes-Adaptive Deep RL via Meta-
Learning. ICLR 2020, pp. 1–20, October 2020. URL http://arxiv.org/abs/1910.08348.

Karl Johan Åström. Optimal Control of Markov Processes with Incomplete State Information I.
Journal of Mathematical Analysis and Applications, 10:174–205, 1965. URL http://lup.lub.
lu.se/record/8867084.

http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/2004.04136
http://arxiv.org/abs/2004.04136
http://arxiv.org/abs/1703.06907
http://arxiv.org/abs/2002.11963
http://arxiv.org/abs/2002.11963
https://proceedings.mlr.press/v202/wang23ai.html
https://proceedings.mlr.press/v202/wang23ai.html
https://proceedings.mlr.press/v139/xie21c.html
https://proceedings.mlr.press/v139/xie21c.html
http://arxiv.org/abs/2306.03552
https://openreview.net/forum?id=_QzJJGH_KE
http://arxiv.org/abs/2310.12955
https://proceedings.neurips.cc/paper_files/paper/2021/hash/212ab20dbdf4191cbcdcf015511783f4-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2021/hash/212ab20dbdf4191cbcdcf015511783f4-Abstract.html
http://arxiv.org/abs/1910.08348
http://lup.lub.lu.se/record/8867084
http://lup.lub.lu.se/record/8867084

RLJ | RLC 2024

B Theoretical Analysis of CPC Inference

For completeness, we show our derivation which follows the original CPC paper closely (Oord et al.,
2019) and is related to those by Choshen & Tamar (2023), which studies CPC in a Bayes-Adaptive
MDP setting.

One difference to note between our setting and that considered in Choshen & Tamar (2023), is the
change of the hidden-parameter between episodes and therefore between inputs to the CPC model.
While in their setting the hidden-parameter is the same for all inputs (transitions), in our setting it
evolves between inputs (trajectories). We provide a full illustration of the data generation graphical
model and CPC model in Fig. 8:

Figure 8: Illustration of the data generation and our model.

To show that CPC maximizes the mutual information between ci and τi+k, we use the same deriva-
tion as 2.3 and A.1 of Oord et al. (2019):
Lemma B.1. Let the InfoNCE loss in equation 2 be jointly minimized by f, genc, gar, then for any
trajectory τ , with ci = gar(genc(τi−1, τi−2, . . . , τ1)), we have

f(τi+k, ci) ∝ P (τi+k|ci)
P (τi+k)

Proof. This follows from the InfoNCE loss (2) being the categorical cross-entropy of correctly clas-
sifying the positive sample in the given batch of samples B = (τ1

i+k, . . . , τNi+k). Following Oord et al.
(2019), we can write the classification problem as learning a classifier P (d = o|B, ci) with [d = o]
being the indicator of the positive sample (omitting the subscript i + k for all τ):

p(d = o|B, ci) =
p(τo|ci)

∏
l ̸=o p(τ l)∑N

j=1 p(τ j |ci)
∏
l ̸=j p(τ l)

=
p(τo|ci)
p(τo)∑N

j=1
p(τj |ci)
p(τj)

,

which we can see is proportional to P (τi+k|ci)
P (τi+k) . As such, the optimal value of the classification problem

learned by f(τi+k, ci) is proportional to it as well.

RLJ | RLC 2024

Lemma B.2. Let the InfoNCE loss in equation 2 be jointly minimized by f, genc, gar, then for any
trajectory τ , with c = gar(genc(τi−1, τi−2, . . . , τ1), we have

Lrepr ≥ log(N − 1) − I(τi+k; ci)

Proof. Let Bneg be the negative samples in a batch B. By inserting the optimal value of f(τi+k, ci)
into the loss function (2), we get (omitting the subscript i + k for all τ)

Lrepr = −E log

 p(τ+|ci)
p(τ+)

p(τ+|ci)
p(τ+) +

∑
τ−∈Bneg

p(τ−|ci)
p(τ−)

= E log

1 + p(τ+)
p(τ+|ci)

∑
τ−∈Bneg

p(τ−|ci)
p(τ−)

≈ E log

[
1 + p(τ+)

p(τ+|ci)
(N − 1)Eτ−

p(τ−|ci)
p(τ−)

]
= E log

[
1 + p(τ+)

p(τ+|ct)
(N − 1)

]
≥ E log

[
p(τ+)

p(τ+|ct)
(N − 1)

]
= H(τ+|ci) − H(τ+) + log(N − 1)
= −I(τ+; ci) + log(N − 1) .

C Implementation Details

Our implementation is available on github, additional implementation details can be found there.
Note that we smooth the reward plots with a moving window of size 3 for clarity. Confidence
intervals and means are calculated across trials consisting of representation learning and offline RL
with a fixed dataset for all trials.

C.1 Environments

We use the same DP-MDPs and thus the same sets of HiPs in training and evaluation.

C.1.1 Low-Dimensional Tasks

In 1D-Goal, the state space is S = [−2, 2] and action space is A = [−0.1, 0.1]. The initial state
is uniformly sampled from S and the goal g is at g = z ∈ {−1, 1}, depending on the hidden
parameter z. The deterministic transition function is st+1 = st + at and the reward is the negative
absolute distance to the goal location rt = −|st − g|. The hidden parameter deterministically
switches each episode, i.e. P (zi+1 = −1|zi = 1) = P (zi+1 = 1|zi = −1) = 1, with each deployment
consisting of 10 episodes. For the experiment in Fig. 7 (right), we change the transition function to
P (zi+1 = 1|zi = −1) = P (zi+1 = −1|zi = 1) = 1 − σ/2.

Our 2D-tasks are a continuous environment with action space S = [−2, 2]2 and action space
A = [−0.1, 0.1]2. The transition function is deterministic and follows st+1 = st + at. The goal is to
navigate to a goal location. In 2D Goal, the agent starts at a uniformly random location and the re-
ward function is the negative Euclidean distance to the goal location rt = −|st−g|2. The goal location
g lies on the unit circle and is determined by the hidden-parameter z: g(z) = (sin(z), cos(z))⊺. The
hidden-parameter follows a triangle-wave with period 8 with z ∈ [0, 3

2 π], i.e.z ∈ {0, 3
8 π, 6

8 π, 9
8 π, 3

2 π}
, and each deployment is 20 episodes long. This task is similar to "Semi-Circle" in Dorfman et al.
(2021).

RLJ | RLC 2024

In 2D Wind, the agent always starts at the origin (0, 0)⊺ and the goal location is always g = (1, 0)⊺.
Here we use a sparse unit reward rt = 1 if the distance |st − g|2 < 0.2, else no reward is given
rt = 0. The dynamics are changed to include a disturbance, st+1 = st + at + 0.09(sin(z), cos(z))⊺,
where z follows a sawtooth-wave with period five on [0, 2π], i.e. z ∈ {(0, 2

5 π, 4
5 π, 6

5 π, 8
5 π}, and each

deployment is 20 episodes long. This task is based on "Wind" in Dorfman et al. (2021).

C.1.2 Ant

We modify the Ant environment provided in Brax (Freeman et al., 2021) to allow for multiple
different robot configurations. We keep the original reward function, which rewards the robot for
forward movement.

In Ant-Weight, we modify the mass of the base (the sphere) of the robot by multiplying it by the
current hidden-parameter z. For the HiP evolution we here use a sawtooth-wave with period 5 and
z ∈ [0.5, 2.5], i.e. z ∈ {0.5, 1.0, 1.5, 2.0, 2.5}, with each deployment lasting 20 episodes. We use the
default observation.

In Ant-Leg we multiply the length of each leg, both the "femur" and "tibia", by the hidden-
parameter z. We again use a sawtooth-wave with period 5 and z ∈ [0.75, 1.25], i.e. z ∈
{0.75, 0.875, 1.0, 1.125, 1.25}, with 20 episodes per deployment. We alter the observation by removing
the z-component of the position of the base, as it otherwise directly represents the hidden-parameter
in the first timestep.

C.1.3 Barkour

Unlike for the Ant experiment, for Barkour we now use Mujoco-MJX to simulate the robot and
modify the environment provided in the Mujoco-MJX Tutorial.3 The Barkour environment usually
trains the robot to track an input command linear velocity and angular velocity, which is sampled
uniformly during training. As this sampling adds a high amount of variance to reward function, we
change the reward-function by setting a constant desired forward velocity and removing the reward
for angular velocity tracking. We use this altered reward to finetune a pretrained Barkour policy and
then also to collect the dataset and evaluate the Offline RL policy. To simulate the robot having to
carry a varying load, we alter the weight of the chassis by multiplying it with the hidden-parameter,
following a sawtooth-wave with period 5 in z ∈ [1.0, 4.0], i.e. z ∈ {1.0, 1.75, 2.5, 3.25, 4.0}, for 15
episodes per deployment. This task is inspired by "minitaur-payload" in Xie et al. (2021).

D Method Details

We outline the main implementation details here, while additional details can be found in the
implementation on github. We use Adam (Kingma & Ba, 2015) in all experiments.

D.1 CPC Implementation

We implement genc as a two layer MLP with 128 units per layer and ReLU activations and gar as a
GRU with 16 units in the low-dimensional and 32 units in the high-dimensional tasks. The classifier
f is implemented as an MLP with two hidden layers with 128 units per layer and ReLU activations.
As the initial parameters performed well across tasks, we did not perform extensive grid-search as
for the baselines, and only searched over latent dimensionality {2, 4, 6, 8} per task.

The positive and negative samples are sampled as follows: To obtain positive and negative trajec-
tories we sample one positive deployment d+ = (τ+

1 , . . . , τ+
M), N− negative deployments {d−,j}N−

j=1,
with d−,j = (τ−,j

1 , . . . , τ−,j
M) and deployment step i ∼ U([NCPC, M −k]). Then we obtain the context

3https://github.com/google-deepmind/mujoco/blob/721e2d5589d3fdafd440009374a31521214088b7/mjx/
tutorial.ipynb

https://github.com/google-deepmind/mujoco/blob/721e2d5589d3fdafd440009374a31521214088b7/mjx/tutorial.ipynb
https://github.com/google-deepmind/mujoco/blob/721e2d5589d3fdafd440009374a31521214088b7/mjx/tutorial.ipynb

RLJ | RLC 2024

Hyperparameter Gridsearch Values BORel, VRNN
Hidden Units Decoder/Encoder {128, 256}

Decoder Hidden Layers {2, 3}
VAE β {10−4, 10−5, 10−6, 10−7, 0}

Latent Dimensionality {4, 8}

Table 2: Hyperparameters values used in Grid-Search for BOReL and VRNN

encoding ci = gar(genc(τi), . . . , genc(τi−NCPC)) and use it as input to f with positive sample τ+
i+k and

negative samples {τ−,j
i+k}Nj=1.

D.2 Bayesian RL Baseline Implementation

We implement our Bayesian RL baselines based on VariBAD (Zintgraf et al., 2020)/BOReL (Dorf-
man et al., 2021) and ContraBAR (Choshen & Tamar, 2023). We note that while they use two
episodes to measure the performance of the agent, we measure the reward over a single episode due
to hidden-parameter changing after each episode in our setting. We truncate the trajectory length
used for HiP inference to 10 in Ant-Leg and Barkour-Weight and 50 in Ant-Weight, to allow for
efficient training. We freeze the last inferred latent and use it for the remainder of the episode.

D.2.1 BOReL Implementation

We use a recurrent encoder consisting of two fully connected layers with RELU activations, followed
by a GRU, followed by a fully connected layer each to output µ and Σ. The reward and transitions
decoders each consist of two or three hidden layers with ReLU activations, where the latent is input
into the second layer. We only use either the reward or transition decoder depending on whether the
reward or transition function changes in an environment. We found RL training to perform better
when only conditioning on the mean µ without the covariance matrix Σ. We perform a grid-search
over representation hyperparameters as shown in the Table 2 on 1D-Goal, 2D-Goal, 2D-Wind, Ant-
Weight and Ant-Leg. Due to resource constraints we do not perform a full grid-search on barkour,
but did our best effort to choose well-performing hyperaprameters and evaluated different choices
for the latent-dimensionality.

D.2.2 ContraBAR Implementation

For ContraBAR we found the network structure of encoder and classifier to strongly impact the
achieved performance. For fairness of comparison we evaluated two different structures: Firstly, a
network structure as proposed by Choshen & Tamar (2023) with separate encoders for reward, state,
and action, a GRU with larger dimensionality d = 64 and a small, single-layer classifier f . Secondly,
we evaluated the same structure as used in our approach, with more powerful fully-connected en-
coders and classifiers, but smaller GRU dimensionality d = 4, 8. We found the latter structure to
perform better on the 2D tasks, while the former usually resulted in better representations in the
other tasks. As recommended by Choshen & Tamar (2023), we use the Action-GRU only in tasks
where the transition function changes, omitting it otherwise. We performed a gridsearch to optimize
the hyperparameters over the values shown in Table 3 on 1D-Goal, 2D-Goal, 2D-Wind, Ant-Weight
and Ant-Leg. Due to resource constraints we do not perform a full grid-search on Barkour, but did
our best effort to choose well-performing hyperaprameters and evaluated different choices for the
latent-dimensionality.

D.3 VRNN Implementation

We evaluated different approaches to creating an offline variant of LILAC with different network
architectures and training mechanisms, and report the most successful one we found. As it is different
in network structure and training method we refer to it simply as VRNN in our experiments. We base

RLJ | RLC 2024

Hyperparameter Gridsearch Values ContraBAR
Hidden Units Decoder/Encoder {64, 128, 256}

Encoder Architecture {SplitEnc, MLPEnc}
Encoder Hidden Layers {1, 2}
Latent Dimensionality {2, 4, 8}

Table 3: Hyperparameters values used in Grid-Search for ContraBAR

our implementation on a VRNN (Chung et al.), a type of dynamic VAE with an LSTM prior. The
encoder is a two layer MLP with ReLU activations, the observation and latent feature extractors are
implemented as fully connected layers with ReLU activations and the learned prior is implemented
an LSTM followed by a fully connected layer with ReLU activations and two linear output layers for
µ, Σ. The decoders are MLPs with two or three layers and ReLU activations. We train the VRNN
by sampling two different transitions from each episode, where one transition is used in the encoder
and a different transition is used in the decoder, to prevent the encoder from simply learning the
state or reward functions. We had issues with innacurate predictions and thus, during evaluation, we
condition the policy on a sampled latent z̃ of an episode from our dataset with the same HiP z. This
method can therefore be considered a semi-oracle that uses oracle information during evaluation but
not during training. As in BOReL, we found RL training to perform better when only conditioning
on the mean µ without the covariance matrix Σ. Hyperparameters are optimized by gridsearch
over values shown in Table 2 on 1D-Goal, 2D-Goal, 2D-Wind, Ant-Weight and Ant-Leg. Due to
resource constraints we do not perform a full grid-search on Barkour, but did our best effort to choose
well-performing hyperaprameters and evaluated different choices for the latent-dimensionality.

D.4 Offline Reinforcement Learning Implementation

On each task, we use the same network structure and RL hyper-parameters for all methods. We do
deviate from the original parameters of TD3+BC (Fujimoto & Gu, 2021) as shown in Table 4.

Hyperparameter 1D-Goal 2D-Win 2D-Goal Ant-Weight, Ant-Leg Barkour
Critic Network [256, 256] [256, 256] [256, 256] [128, 128] [128, 128, 128]
Policy Network [256, 256] [256, 256] [256, 256] [128, 128] [128, 128, 128]

Layer Norm Yes Yes No Yes Yes
BC λ 2.5 6.5 6.5 6.5 6.5

Learning Rate 3 · 10−4 3 · 10−4 1 · 10−3 1 · 10−3 1 · 10−3

Batch Size 512 512 512 512 512

Table 4: TD3 BC Hyperparameters

E RLiable Visualization

To provide more informative evaluation metrics than the mean reward values reported in the main
text, we provide additional visualizations as suggested by Agarwal et al. (2022), using the RLiable
package.

RLJ | RLC 2024

E.1 1D-Goal

−50 −40 −30 −20
ContraBAR

BOReL
VRNN

COSPA
Blind

Oracle

Median

−50 −40 −30 −20

IQM

−50 −40 −30 −20

Mean

−50 −40 −30 −20 −10

0

0.2

0.4

0.6

0.8

1

Eval reward (τ)

Fr
ac

tio
n

of
ru

ns
w

ith
sc

or
e

>
τ

ContraBAR
BOReL
VRNN
COSPA
Blind
Oracle

E.2 2D-Goal

−80 −60 −40
ContraBAR

VRNN
BOReL
COSPA

Oracle
Blind

Median

−70 −60 −50 −40 −30

IQM

−60 −40

Mean

RLJ | RLC 2024

−70 −60 −50 −40 −30

0

0.2

0.4

0.6

0.8

1

Eval reward (τ)

Fr
ac

tio
n

of
ru

ns
w

ith
sc

or
e

>
τ

ContraBAR
VRNN
BOReL
COSPA
Oracle
Blind

E.3 2D-Wind

10 20
VRNN

ContraBAR–
BOReL–
COSPA

Blind
Oracle

Median

10 20

IQM

10 20

Mean

0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

Eval reward (τ)

Fr
ac

tio
n

of
ru

ns
w

ith
sc

or
e

>
τ

VRNN
ContraBAR
BOReL
COSPA
Blind
Oracle

RLJ | RLC 2024

E.4 Ant-Weight

2.4 2.6 2.8 3 3.2
·103

VRNN
ContraBAR

BOREL
COSPA

Blind
Oracle

Median

2.8 3 3.2
·103

IQM

2.4 2.6 2.8 3 3.2
·103

Mean

1,000 1,500 2,000 2,500 3,000 3,500

0

0.2

0.4

0.6

0.8

1

Eval reward (τ)

Fr
ac

tio
n

of
ru

ns
w

ith
sc

or
e

>
τ

VRNN
ContraBAR
BOREL
COSPA
Blind
Oracle

E.5 Ant-Leg

0.8 1 1.2 1.4 1.6
·103

VRNN
ContraBAR

COSPA
BOReL
Oracle
Blind

Median

0.8 1 1.2 1.4 1.6
·103

IQM

0.8 1 1.2 1.4 1.6
·103

Mean

RLJ | RLC 2024

400 600 800 1,0001,2001,4001,6001,800

0

0.2

0.4

0.6

0.8

1

Eval reward (τ)

Fr
ac

tio
n

of
ru

ns
w

ith
sc

or
e

>
τ

VRNN
ContraBAR
COSPA
BOReL
Oracle
Blind

E.6 Barkour-Weight

14 16 18
ContraBAR

VRNN
Blind

COSPA
Oracle

BOReL

Median

16 18

IQM

14 16 18

Mean

12 14 16 18

0

0.2

0.4

0.6

0.8

1

Eval reward (τ)

Fr
ac

tio
n

of
ru

ns
w

ith
sc

or
e

>
τ

ContraBAR
VRNN
Blind
COSPA
Oracle
BOReL

