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Abstract

In standard reinforcement learning settings, agents typically assume immediate feed-
back about the effects of their actions after taking them. However, in practice, this
assumption may not hold true due to physical constraints and can significantly im-
pact the performance of learning algorithms. In this paper, we address observation
delays in partially observable environments. We propose leveraging world models,
which have shown success in integrating past observations and learning dynamics,
to handle observation delays. By reducing delayed POMDPs to delayed MDPs with
world models, our methods can effectively handle partial observability, where exist-
ing approaches achieve sub-optimal performance or degrade quickly as observability
decreases. Experiments suggest that one of our methods can outperform a naive
model-based approach by up to 250%. Moreover, we evaluate our methods on vi-
sual delayed environments, for the first time showcasing delay-aware reinforcement
learning continuous control with visual observations.

1 Introduction

Reinforcement Learning (RL) has emerged as a powerful framework for training agents to make
sequential decisions in their environment. In traditional RL settings, agents assume immediate ob-
servational feedback from the environment about the effect of their actions. However, in many real-
world applications, observations are delayed due to physical or technological constraints on sensors
and communication, challenging this fundamental assumption. Delay can arise from various sources,
such as computational limitations (Dulac-Arnold et al., 2019), communication latency and intercon-
nection (Ge et al., 2013; Rostami & Kia, 2023), or physical constraints in robotic systems (Imaida
et al., 2004).

For example, drone navigation based on computation offloading might experience lag when the
network is congested (Almutairi et al., 2022), or robots equipped with shielding may encounter
delays in execution to ensure the safe behavior of the policy (Corsi et al., 2024). In scenarios where
timely decision-making is critical and agents cannot afford to wait for updated state observations,
RL algorithms must nonetheless find effective control policies subject to delay constraints. In this
paper, we focus on observation delays that prevent the agent from immediately perceiving world
state transitions, rather than execution delays that prevent the immediate application of the agent’s
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control action, although these types of delay are interconnected and can in some settings be effectively
addressed within a unified framework (Katsikopoulos & Engelbrecht, 2003). Specifically, at time t,
the agent receives observation ot−d and reward rt−d, where d is the time delay.

The body of work on RL with delay has explored several approaches within the Markov Deci-
sion Process (MDP) framework. Memoryless approaches build a policy based on the last observed
state (Schuitema et al., 2010). A second type of approach aims to reduce the problem into an un-
delayed MDP by extending the states with additional information, typically the actions taken since
the last available observation (Walsh et al., 2007; Derman et al., 2020). Finally, recent approaches
compute, from the extended state, perceptual features predictive of the hidden current state to in-
form action selection (Chen et al., 2021; Liotet et al., 2021; 2022; Wang et al., 2024). While there are
many existing works on delays in MDPs, surprisingly few study delays in Partially Observable MDPs
(POMDPs) where the delayed observations are non-Markov (Kim & Jeong, 1987; Varakantham &
Marecki, 2012), and these works do not provide a learning paradigm.

World models have recently shown significant success in integrating past observations and learning
the dynamics of the environment (Ha & Schmidhuber, 2018). These models, comprising a repre-
sentation of the environment’s state, a transition model depicting state evolution over time, and an
observation model linking states to observations, have proven effective in capturing intricate tempo-
ral dependencies and enhancing decision-making. One such family is Dreamer (Hafner et al., 2023),
a model-based RL framework that trains the agent through trajectories simulated by a learned world
model. Dreamer benefits from the sample efficiency inherent in model-based RL techniques and is
relatively insensitive to task-specific hyperparameter tuning.

In this paper, we propose leveraging world models to learn in the face of observation delays. We
employ world models to form the extended state in the latent space, demonstrating that this latent
extended state contains sufficient information for the current delayed state. This suggests two
different strategies for adapting world models to POMDPs with observation delay: either by directly
modifying the policy or by predicting the delayed latent state with imagination. While naively using
world models for delays can lead to significant performance degradation as the delay increases, our
methods exhibit greater resilience and one of them improves policy value upon the naive baseline
by approximately 250%. Despite their simple implementation, these modifications achieve better or
comparable performance to other approaches without the need for domain-specific hyperparameter
tuning. Moreover, we evaluate our methods not only on vector inputs, but on continuous control
tasks with visual inputs, a crucial aspect that was missing in the delayed RL community.

Contributions of this paper are summarized as follows:

• We propose three methods that use world models to address observation delays. As a case
study, we have adapted Dreamer-V3 to evaluate the effectiveness of our proposed strategies.

• We formalize observation delays in POMDPs and establish a link between delays in MDPs
and POMDPs.

• We conduct extensive experiments that, among other domains, benchmark for the first time
delayed RL in visual domains that are inherently partially observable.

2 Related Work

Several prior works have addressed delays in the MDP framework. One line of research employs
a memoryless approach, where an agent uses only the last available state as input. For instance,
Schuitema et al. (2010) proposed dSARSA, a memoryless extension of SARSA (Sutton & Barto,
2018) for delays in MDPs. Although this approach perceives the environment with partial informa-
tion, it was shown to work quite well in some domains.

Another approach is to reduce a delayed MDP, which is known to be a structured POMDP, to an
extended-state MDP by augmenting the recently observed state with the actions that have been
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Figure 1: Panels (a) and (b) depict the standard Dreamer learning process, while (c) and (d)
illustrate two strategies for adapting Dreamer for observation delays. (see section 4.2 and 4.3)

taken since then (Walsh et al., 2007; Derman et al., 2020; Bouteiller et al., 2020). For instance,
DCAC (Bouteiller et al., 2020) extends SAC (Haarnoja et al., 2018) to take the extended state and
achieves good sample efficiency through resampling techniques, but it suffers from an exponentially
growing input dimension as the delay increases.

Recent strategies focus on deriving useful features from the extended state for policy input.
Walsh et al. (2009) developed a deterministic dynamics model to predict the unobserved state.
Chen et al. (2021) employed a particle-based method to simulate potential current state outcomes.
Similarly, D-TRPO (Liotet et al., 2021) obtains a belief representation of the current state using a
normalizing flow, enhancing policy input with these features.

More recently, Liotet et al. (2022) applied imitation learning to train a delayed agent using an expert
policy from an undelayed environment, though this approach is constrained by the need for access to
the undelayed environment, limiting its practicality. Concurrently with our work, Wang et al. (2024)
introduces a method for delay-reconciled training that integrates a critic and an extended-state actor
and Valensi et al. (2024) uses EfficientZero (Ye et al., 2021) for inferring future states, similarly to
one of our methods.

3 Preliminaries

3.1 Delayed POMDPs

A Partially Observable Markov Decision Process (POMDP) consists of a tuple ⟨S, A, T , Ω, O, γ⟩,
where S and A are the sets of states and actions, T (s′, r|s, a) is the joint probability distribution
of the next state and reward, Ω is the set of observations, O(o|s) is the conditional probability of
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observing o ∈ Ω in state s, and γ ∈ [0, 1) is the discount factor. At each timestep t, in state st the
agent receives an observation ot ∼ O(ot|st) and selects an action at, causing a transition and reward
with distribution T (st+1, rt|st, at). The goal is to maximize the expected return E[

∑
t≥0 γtrt].

We define a Delayed Partially Observable Markov Decision Process (DPOMDP) as a tuple ⟨Po, D⟩,
where Po represents a POMDP and D is a distribution dictating the delay in receiving observations
from Po. Specifically, at time t, the agent receives observation ot−d and reward rt−d, where d ∼ D.
The objective is to maximize the expected return while operating in Po under these delays. For
simplicity, we assume in this work that D generates a constant non-negative integer delay d, though
our methods can be easily generalized to handle random delays as well.

In a similar fashion, delayed Markov Decision Processes (DMDPs) are defined in previous
works (Wang et al., 2024; Liotet et al., 2022) as a tuple ⟨M, D⟩, where M = ⟨S, A, T , γ⟩ is an MDP.
Like their undelayed counterparts, DMDPs can be considered a special case of DPOMDPs in which
the (delayed) observation gives full information about the state at that time. Any DMDP can be re-
duced to an extended MDP M̃ by defining the states as a concatenation of the last observed state and
the subsequent actions, which the agent needs to explicitly remember (Altman & Nain, 1992). In par-
ticular, M̃ = ⟨X , A, T̃ , γ⟩, where X = S × Ad and for x =

(
s, a1, . . . , ad

)
, x′ =

(
s′, a′1, . . . , a′d) ∈ X ,

T̃ (x′, r|x, a) = T (s′, r|s, a1)1([a′1, . . . , a′d] = [a2, . . . , ad, a]). (1)

By definition, any DPOMDP is another POMDP with a specific structure. It can be formally con-
structed by defining the set of states in the new PODMP as the concatenation of the last d+1 states,
of which only the earliest one is observable, and defining the transition probabilities accordingly.
Thus, we can employ the POMDP framework to tackle the observation delays by constructing the
equivalent POMDP (Varakantham & Marecki, 2012). On the other hand, one can exploit the struc-
ture introduced by delay in the process. Specifically, delay in receiving observations is equivalent
to delay in inferring the latent states. As latent space enjoys the Markov property, we can then
work with the DMDP defined over latent states and induced by delay in observations. Proposition
3 in section 4.1 formalizes this intuition. Note, however, that there is a tradeoff between these two
choices: on the one hand, POMDPs are harder to learn than MDPs; on the other hand, in the
POMDP formulation, the world remembers the history for us, avoiding the curse of dimensionality
in explicit agent context.

3.2 World models

World models (Schmidhuber, 2015; Ha & Schmidhuber, 2018) simulate aspects of the environment
by learning an internal representation through an encoder and a dynamics model. The encoder com-
presses high-dimensional inputs, such as image observations, into a lower-dimensional embedding,
while the dynamics model forecasts future states from historical information. This streamlined state
representation then serves as input to an RL agent.

Dreamer (Hafner et al., 2020; 2021; 2023), a pioneering model-based RL (MBRL) approach uti-
lizing world models, surpasses many model-free RL algorithms in data efficiency and performance.
Dreamer’s training involves three alternating phases: 1) training the world model on past experi-
ences; 2) learning behaviors with actor–critic algorithm through imagined sequences; and 3) collect-
ing data in the environment.

Figure 1a depicts the world model comprising an encoder-decoder and a Recurrent State Space
Model (RSSM) (Hafner et al., 2019) to model dynamics. Alongside reconstructed observation ôt,
the model includes prediction heads for reward and episode continuation, omitted for clarity. The
model state mt = [ht, zt] comprises deterministic and stochastic components, respectively, given by

ht = fϕ(ht−1, zt−1, at−1) (2)
zt ∼ qϕ(zt|ot, ht). (3)
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Dreamer also learns a dynamic predictor for estimating imagined latent states as

z′
t ∼ pϕ(z′

t|ht). (4)

As (2) and (3) suggest, the latent states are constructed to have a Markov structure, regardless
of whether the observations themselves are Markov. In other words, Dreamer attempts to learn a
latent-state MDP that is as nearly as possible equivalent to the observed POMDP. If it succeeds,
this equivalence means that, for any policy π(a|m), the stochastic process {mt, at, rt}t≥0 induced
by the policy in the world model (Figure 1b) has the same joint distribution as the embedding of
real policy rollouts (Figure 1a). Figure 1b also illustrates Dreamer’s behavior learning using an
actor–critic method, policy and value heads on latent trajectories predicted by the world model.

3.3 Hardness of delayed control

s1 s2

s3

a1, 1 − δ

a1, δ

a2, 1

a2, δ

a2, 1 − δ

a1, 1

Figure 2

Before presenting our methods, we provide an example to show that
optimal values in DMDPs are generally incomparable for different
delays. Depending on the stochasticity of the environment and the
length of the delay, the optimal value function can be made arbitrary
worse compared to that of the undelayed environment.

Let V ∗ be the optimal value function of the MDP sketched in Figure 2
and similarly Ṽ ∗ be the optimal value function with constant obser-
vation delay of 1. Starting at state s1, the agent will receive a reward
of +1 for taking a1 in s1 and 0 otherwise. 0 ≤ δ ≤ 1

2 controls the
stochasticity of the environment. To maximize the expected return,
the agent should try to stay in s1 by taking a1 in s1 and a2 in s2.
When there is no delay, the agent can take the appropriate action and
avoid the absorbing state s3. However, with delay, the agent does not
observe the current state and for 0 < δ it eventually ends up in s3 for any policy. The ratio between
the optimal values of the delayed and undelayed case can be computed (see appendix A) as

Ṽ ∗(s1)
V ∗(s1) = (1 − γ)

(1 − γδ) (1 − γ(1 − δ)) .

When δ = 0 the ratio is 1, while the minimal ratio of 1−γ
(1−γ/2)2 is obtained for δ = 1

2 with the ratio
approaching 0 as γ → 1. These two extreme cases correspond to the scenarios with the least and
the most stochasticity in the transitions, respectively.

In general, depending on the underlying MDP, even introducing small observation delays could
downgrade the optimal policies much. By assuming smooth transition dynamics and rewards,
Liotet et al. (2022) bounded this gap as a function of smoothness parameters of the underlying
MDP.

4 Delayed Control via World Models

In this section, we begin with a seemingly simple yet crucial insight into the relationship between
converting POMDPs into MDPs via world models, and translating DPOMDPs into DMDPs. This
insight forms the basis for combining techniques initially developed for POMDPs and DMDPs to
tackle delays in partially observable environments. Next, we elaborate on the adaptations required
to incorporate delays and examine two distinct methodologies within this framework.

4.1 World models reduce DPOMDPs to DMDPs

A world model, denoted by M̂ , has two modes of operation: imagination, where it can operate as a
stateful simulator of the world with which the agent can interact (Figure 1b); and interaction, where
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it can ground its latent state mt in real observations by sequentially incorporating their embedding
into the state (Figure 1a). In some world models, imagination is implemented using the interaction
mode, by replacing the real embedded observations by their reconstruction from the latent state (Ha
& Schmidhuber, 2018). In Dreamer, the two modes are modeled separately through (3) and (4) and
kept equivalent in training by a dedicated loss term. In the following, we keep our discussion general
by not constraining the functional form of the world model, and only requiring the two modes to be
equivalent in the sense of the following definition.
Definition 1. A world model M̂ is congruent with a POMDP Po if, for any action sequence
a⃗ = {at}t≥0, the stochastic process {ot, mt, rt}t≥0 induced by rolling out a⃗ in Po and feeding its
observations into M̂ ’s interaction mode has the same joint distribution (marginalized over {ot}t≥0)
as the process {mt, rt}t≥0 induced by rolling out a⃗ in M̂ ’s imagination mode.

Definition 2. Given a world model M̂ , the operation of the d-step delayed world model M̂d is
defined as follows: in imagination step t, the delayed state mt−d (or dummy for t < d) is read from
M̂ , action at is taken in M̂ , and the delayed reward rt−d (or 0 for t < d) is returned; in interaction
step t ≥ d (following d dummy steps), the current observation õt = ot−d is fed into M̂ , the current
state m̃t is read, the action at is taken in the delayed environment but ãt = at−d in M̂ , and the
delayed environment reward r̃t = rt−d is returned.

Proposition 3. If a world model M̂ is congruent with a POMDP Po, then the d-step delayed world
model M̂d is congruent with the d-step delayed DPOMDP Pd

o .

Proof. For a given action sequence a⃗, let {õt, r̃t}t≥0 be the stochastic process induced by rolling out
a⃗ in Pd

o . In M̂d’s interaction mode, the first d dummy steps are skipped, and then the sequence
{õt, ãt}t≥d = {ot−d, at−d}t≥d is fed into M̂ . Because this is the same process as M̂ ’s interaction with
Po using a⃗, it has the same distribution over {m̃t, r̃t}t≥d as M̂ ’s imagination process. It remains to
be verified that prepending d dummy states and rewards to M̂ ’s imagination process yields M̂d’s
imagination process with the same action sequence, completing the proof.

Proposition 3 solves a critical issue with training world models in delayed environments: training
M̂d with a blackbox Pd

o treats the latter as a POMDP and fails to leverage its specific structure
as a DPOMDP (see Sec. 3.1). Instead, we can recover Po from Pd

o by shifting back the delays in
training time, train M̂ for Po, and then Definition 2 gives us the structure of M̂d in terms of M̂ .
Proposition 3 guarantees that this process indeed models Pd

o correctly.

4.2 Delay-aware training

The learning of the world model relies on data stored in an experience replay buffer, accumulated by
the agent throughout training. With delays, the storage of these data remains unaffected, as the data
collection mechanism can store a transition once the subsequent observation becomes available; thus,
the world model can be trained using undelayed data {(ot, at, rt)}t≥0. However, the distribution of
collected samples is influenced by the fact that actions are selected without observing the past d states
of the environment. This discrepancy leads to a divergence in the distribution of data trajectories
between delayed and undelayed environments. Nevertheless, as we will see in the experiment section,
the world model can still learn successfully.

In contrast to world model learning, the actor–critic component must take delays into account, as
the agent is required to select at based on the available information at time t, generated at time t−d.
To account for delayed observations, there are two primary design strategies: either to design the
policy as π(·|xt), conditioned on the extended state xt, or condition the policy on the latent state
m̂t predicted from xt. In both cases, the agent needs access to the action sequence (at−d, ..., at−1).
Thus, we augment the experience replay buffer to store subsequent actions. In the following two
sections, we will explore each of these design approaches.
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4.3 Delayed actor-critic

In actor–critic learning, the critic provides an estimate of the value function V to aid the learning of
the actor, while the actor aims to maximize the return guided by the critic’s value. Since the world
model is a DMDP and the extended state xt = (mt−d, at−d, . . . , at−1) is a state of its equivalent
extended MDP, it is sufficient to condition at on xt. The critic, in contrast, only provides feedback in
training time and can therefore wait to see the true state to provide a more accurate value estimate
to the actor. This idea has also been explored concurrently with this work (Wang et al., 2024). Thus,
to directly handle observation delays in the policy, we can use the extended state to design the policy
π(at|xt) along with the same critic as in the undelayed case V (mt). We refer to this method as an
Extended actor. In practice, the policy network can be implemented with any neural architecture,
such as a Multi-Layer Perceptrons (MLP), Recurrent Neural Networks (RNN), or Transformers.

Figure 1c illustrates the Extended actor diagram adapted for Dreamer. At time t, the agent retrieves
xt from the replay buffer and performs on-policy actor–critic learning in imagination by updating the
extended state with the next action. In particular, at ∼ πθ(at|xt) and xt+1 = (mt−d+1, {ai}ti=t−d+1)
where mt−d+1 is the imagined latent state in (4). Note that the critic predicts the value for the
current latent state Vψ(mt−d) while the actor outputs at based on xt. Thus, the imagination horizon
will be increased for d additional time steps since the critic provide feedback for actor’s action d
timesteps later. The estimates of the critic and the actions of the actor are then realigned to compute
the policy gradient loss function.

Another variant of the extended actor involves drawing actions from the policy π(at|mt−d) without
maintaining a memory to track previously performed actions, a concept referred to as the Mem-
oryless actor. While this design choice might appear to lack the ability to capture the necessary
information, the rationale behind it is that the policy π(at|mt−d) can theoretically represent the ex-
tended state’s previously performed actions within its network. This is because no new information
is introduced after time t − d, and therefore, no additional memory is needed to store those actions.

4.4 Latent state imagination

Another approach is to estimate the current latent state m̂t, without modifying the policy architec-
ture, and draw actions from π(at|m̂t). Specifically, we can use the world model’s forward dynamics
in (2) and (4) (Figure 1b) for d time steps, starting with mt−d, to sample a prediction m̂t. Then,
the agent uses m̂t as the current latent state of the environment both in training and inference time.
Figure 1d depicts this process, which we refer to as a Latent actor. After computing m̂t, the agent
performs training or policy execution the same way as in the undelayed case.

Note that estimation of the current state happens in the latent space, otherwise this approach will
lead to suboptimal decisions as the agent needs to form an approximate belief over the hidden state to
act optimally in the presence of delays. In other words, the agent should account for uncertainty over
the true state of the environment. This also implies that the latent state should have a deterministic
component to allow the agent to avoid losing information through sampling. Furthermore, Extended
and Latent actors do not assume that d is constant. The Latent actor can imagine for variable step
lengths and Extended can employ RNNs or pad the action sequence with a special action to manage
delay variability. In principle, Memoryless actors can also handle stochastic delays by conditioning
the policy on d, though this has uncertain practical effectiveness.

5 Experiments

5.1 Experimental setup

Tasks. To evaluate our proposed methods, we conducted experiments across a diverse set of en-
vironments. We have considered four continuous control tasks from MuJoCo (Todorov et al., 2012)
in Gymnasium (Gym) (Towers et al., 2023): HalfCheetah-v4, HumanoidStandup-v4, Reacher-v4,
and Swimmer-v4 for comparison with previous studies. Also, we extended our evaluation to six
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more environments from the DeepMind Control Suite (DMC) (Tunyasuvunakool et al., 2020), to
further examine our methods with both proprioceptive and visual observations. The distinction be-
tween these input types is critical; vector inputs provide a fully observable state of the environment,
but image-based observations introduce partial observability, necessitating approaches capable of
addressing delays within the POMDP framework.

Methods. We utilized Dreamer-V3 (Hafner et al., 2023) as our primary framework1 and compare
with prior studies, including D-TRPO (Liotet et al., 2021) and DC-AC (Bouteiller et al., 2020). We
also evaluated a Dreamer-V3 agent, similar to the Latent method, except trained in an undelayed
setting and tested under delayed conditions with latent imagination. This approach, referred to as
Agnostic, can be e considered a naive use of world models to address delays. Although our meth-
ods can handle both constant and random delays, we chose to focus on fixed delays for simplicity
and comparability with the baselines. While we experiment in both Gym and DMC, the baselines
were originally designed and tuned for Gym environments with vector inputs, and we found the
task of modifying them for image observations or tuning their hyperparameters for DMC nontriv-
ial (Cetin et al., 2022) and thus outside our scope. Also, for Gym environments, we trained Dreamer
variants with a budget of 500K interactions, while D-TRPO and DC-AC trained with 5M and 1M
environment interactions, respectively. For DMC tasks with visual inputs, we have increased the
number of interactions to 1M.

Architectures and hyperparameters. For D-TRPO, we adopted the hyperparameters and ar-
chitecture detailed in Liotet et al. (2022). Similarly, for DC-AC, we replicated the hyperparameters
and model from the original paper (Bouteiller et al., 2020). In our delayed variants of Dreamer-V3,
we maintained consistency by using the same set of hyperparameters and architecture as the original
implementation (Hafner et al., 2023). The only architectural adjustment was for the extended agent,
where we incorporated a Multi-Layer Perceptron (MLP) for the policy network to extend the latent
state with actions. Note that while we used the same set of hyperparameters provided in the original
Dreamer, we conjecture that the optimal horizon length should be smaller in both the Extended
and Latent methods, where the effective horizon is longer due to the action buffer (Figures 1c and
1d), because accumulation of one-step errors in imagination via forward dynamics could harm the
actor-critic learning part. Each experiment has been repeated with 5 random seeds.

Note that, in all experiments, the agent will perform random actions until the first observation
becomes available. While one could utilize better strategies for initial actions, using random actions
is common in all existing delayed RL methods.

5.2 Results

Figures 3a–3d depict the results obtained from the experiments conducted on the selected Gym envi-
ronments. The Dreamer variants demonstrate a significant performance improvement over D-TRPO
across all tasks. However, DC-AC exhibits comparable performance to our methods on HalfCheetah-
v4 and HumanoidStandup-v4, outperforms them on Reacher-v4, and underperforms on Swimmer-v4.
One reason why our methods are not performing well on Reacher-v4 could be underperformance of
the standard Dreamer, trained and tested on the undelayed environment itself. This is evident as
DC-AC achieves comparable or superior performance to the standard Dreamer on these environ-
ments with small delays. One potential explanation for this phenomenon could be the significant
portion of samples in actor–critic learning that fall outside the planning horizon. This is likely due
to our use of the same imagination horizon length H = 16 and an episode length of 50 for this task.

Figures 3e and 3f display the performance of our methods averaged over selected suites in DMC with
proprioceptive and image inputs, respectively. Remarkably, the Agnostic method performs very
well across all tasks without knowing about the delay in training time. Also, the Agnostic method
needs not know the delay distribution beforehand and can be deployed on any delayed environment.
However, as delay increases the performance drops more rapidly than for other methods. This is

1The code is available at https://github.com/indylab/DelayedDreamer.

https://github.com/indylab/DelayedDreamer
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Figure 3: Normalized returns across different environments for varying delays. Bars and caps rep-
resent the mean and standard error of the mean over 5 trials, respectively. Panels (e) and (f) are
averaged over the selected suites in DMC, after normalizing the agent in the undelayed environment
to 1 and the random policy to 0.

because the distribution shift between the undelayed training and delayed evaluation increases for
larger delays. Similarly, the Latent method does not exhibit robustness against long delays, as we
are using a one-step prediction world model. The accumulation of one-step prediction errors over
longer delays causes the predicted latent state to diverge significantly from the true latent state. As
expected, Extended proves to be the most robust among our variants, as it utilizes next actions and
avoids the accumulation of errors present in Latent and Agnostic. Notably, Extended improves by
250% on average in DMC vision tasks compared to Agnostic.

Additionally, we include training curves and tables summarizing the final test performance for all
tasks in Appendix B.

5.3 Degree of observability

Figure 4 illustrates the resilience of the Extended method and the baselines faced with an increasing
level of partial observability in the HalfCheetah-v4 environment. Originally, the environment’s
observations encompass both the positional and the velocity information for the agent’s joints. To
simulate partial observability, we modified the environment to omit a ρ percentage of the velocity
components. The results demonstrate that both Extended and D-TRPO were capable of inferring
the missing velocity components from historical observations. Although D-TRPO is specifically
designed for delays in MDPs, in this particular scenario, it was able to compute the relative velocities
by utilizing a transformer used to process the extended state. In contrast, DC-AC deteriorated
significantly as environments became less observable.
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Figure 4: Return against the degree of observability in HalfCheeth-v4 for d = 5.

5.4 Takeaways

Although world models work as a good proxy of the true environment during training, we found
that applying world models naively at test time (Agnostic) is not the most effective strategy. Our
experiments revealed that for shorter delays, the Memoryless and Latent approaches work the best
while keeping the original architecture unchanged. However, as delays get longer they degrade the
performance due to the issues of a lack of action memory and the accumulation of one-step errors
issues, respectively. The Extended method, on the other hand, can maintain its performance at the
expense of adding architectural complexity to the undelayed model.

6 Conclusion

In this paper, we have proposed using world models for delayed observation within the POMDP
framework. To showcase our methods, we adapted Dreamer-V3 for delay in observations and pro-
posed two strategies, one using a delayed actor and the other latent state imagination. We discussed
another version of the delayed actor which operates without action memory and additionally intro-
duced a delay-agnostic strategy which needs not know the delay distribution beforehand. Evaluation
revealed that the best of our methods, Extended, is robust to partial observability of the environment
and can outperform the baselines overall, but can be sensitive to the tuning of hyperparameters.
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A MDP example

The optimal policy will select a1 in s1 and a2 in s2. Then, by Bellman optimal equation for the
state-value function we have

V ∗(s1) = 1 + γ(1 − δ)V ∗(s1) + γδV ∗(s2) (5)
V ∗(s2) = γ(1 − δ)V ∗(s1) + γδV ∗(s2), (6)

which yields V ∗(s1) = 1−γδ
1−γ . In the case of observation delay with d = 1, the optimal policy will

select a1 in every state since 1
2 ≤ δ and thus,

Ṽ ∗(x1) = (1 − δ)
(

1 + γṼ ∗(x1)
)

, (7)

where x1 is the extended state (s1, a1). For the current state of the environment in s1, we have
Ṽ ∗(s1) = 1 + γṼ ∗(x1). Therefore, Ṽ ∗(s1) = 1

1−γ(1−δ) .

B Experiment Details

In this section, we have included the training curves and the final results of our experiments across the
selected environments in Gym and DMC. In order to have a fair comparison between the methods,
we have used the same random seed for generating random actions at the beginning of the episode.
We refer to DMC tasks with proprioceptive and image observations as DMC proprio and vision,
respectively.

B.1 Gym results

Task Delay Extended Memoryless Latent Agnostic D-TRPO DC-AC

HalfCheetah-v4
(×103)

2 5.13 ± 0.28 4.65 ± 0.47 2.57 ± 0.61 3.37 ± 0.49 1.91 ± 0.18 7.82 ± 0.25
5 3.47 ± 0.48 3.53 ± 0.47 1.87 ± 0.20 1.28 ± 0.37 1.46 ± 0.01 3.48 ± 0.95
10 3.43 ± 0.39 2.70 ± 0.33 0.93 ± 0.25 0.42 ± 0.19 1.49 ± 0.08 2.35 ± 0.41
20 1.93 ± 0.47 2.49 ± 0.35 0.60 ± 0.16 0.15 ± 0.02 1.44 ± 0.37 0.65 ± 0.34

HumanoidStandup-v4
(×105)

2 1.51 ± 0.18 1.49 ± 0.06 1.36 ± 0.08 1.37 ± 0.15 1.11 ± 0.09 1.60 ± 0.23
5 1.57 ± 0.06 1.52 ± 0.10 1.63 ± 0.02 1.37 ± 0.23 0.64 ± 0.21 1.52 ± 0.03
10 1.35 ± 0.11 1.37 ± 0.11 1.48 ± 0.04 1.24 ± 0.15 0.87 ± 0.22 1.63 ± 0.07
20 1.14 ± 0.19 1.41 ± 0.04 1.19 ± 0.09 1.17 ± 0.08 0.88 ± 0.16 1.53 ± 0.02

Reacher-v4

2 −7.8 ± 0.7 −6.8 ± 0.4 −7.8 ± 0.6 −9.4 ± 0.1 −12.9 ± 1.1 −4.6 ± 0.0
5 −11.4 ± 0.6 −11.0 ± 0.2 −11.7 ± 0.7 −11.5 ± 0.4 −12.9 ± 0.8 −4.8 ± 0.1
10 −15.4 ± 0.2 −16.8 ± 0.8 −15.2 ± 0.9 −15.3 ± 0.3 −15.6 ± 0.9 −5.3 ± 0.1
20 −25.3 ± 0.7 −26.0 ± 0.3 −23.9 ± 0.3 −23.1 ± 0.2 −23.3 ± 0.4 −7.2 ± 0.2

Swimmer-v4

2 229.2 ± 46.8 251.2 ± 38.5 297.5 ± 12.0 305.9 ± 32.3 98.3 ± 7.1 42.1 ± 1.0
5 236.0 ± 33.6 261.5 ± 38.6 283.3 ± 13.1 306.3 ± 31.5 87.5 ± 5.7 41.5 ± 0.7
10 213.1 ± 39.2 255.0 ± 36.3 258.6 ± 54.6 302.3 ± 33.7 52.1 ± 4.4 38.6 ± 0.9
20 285.1 ± 12.4 200.2 ± 25.0 315.5 ± 9.7 297.8 ± 34.2 36.0 ± 1.4 37.2 ± 0.2

Table 1: Final test returns on tasks in Gym. Results are presented as the mean ± standard error of
the mean.



RLJ | RLC 2024

B.2 DMC proprio results

Task Delay Extended Memoryless Latent Agnostic

Acrobot Swingup
2 223.0 ± 9.5 234.8 ± 26.0 224.4 ± 19.7 256.6 ± 22.9
5 208.5 ± 42.1 228.6 ± 32.6 257.9 ± 36.2 240.9 ± 13.1
10 120.7 ± 12.8 159.7 ± 15.2 193.2 ± 30.3 197.0 ± 17.0
20 78.7 ± 15.0 93.7 ± 15.6 144.0 ± 14.5 129.7 ± 11.3

Cartpole Balance
2 986.7 ± 4.2 993.2 ± 0.4 990.4 ± 1.0 992.4 ± 2.4
5 990.6 ± 1.1 986.5 ± 2.0 985.0 ± 3.9 990.0 ± 3.4
10 966.4 ± 4.9 948.0 ± 12.0 916.7 ± 48.7 980.4 ± 2.1
20 799.8 ± 32.5 664.8 ± 15.0 699.9 ± 40.0 511.9 ± 32.8

Cheetah Run
2 632.9 ± 25.3 666.3 ± 22.7 668.9 ± 30.0 596.1 ± 72.8
5 600.2 ± 24.8 648.3 ± 17.4 534.9 ± 54.7 373.2 ± 39.5
10 446.7 ± 20.1 496.1 ± 6.6 304.0 ± 60.3 173.6 ± 20.6
20 418.0 ± 16.9 337.3 ± 14.2 204.4 ± 11.7 119.7 ± 3.4

Finger Spin
2 504.0 ± 21.1 426.7 ± 18.4 253.4 ± 83.0 561.1 ± 93.5
5 303.6 ± 14.8 279.8 ± 17.8 310.0 ± 57.0 278.3 ± 31.1
10 307.0 ± 23.3 171.5 ± 12.4 153.7 ± 22.1 111.1 ± 7.5
20 183.9 ± 13.6 116.3 ± 4.6 118.4 ± 11.0 59.5 ± 8.1

Hopper Hop
2 206.6 ± 31.7 143.5 ± 15.9 164.4 ± 22.3 121.0 ± 11.9
5 99.3 ± 23.4 130.8 ± 37.4 54.1 ± 11.4 53.6 ± 6.2
10 112.9 ± 16.4 64.6 ± 15.4 33.9 ± 8.5 20.0 ± 4.7
20 31.8 ± 19.8 0.0 ± 0.0 7.7 ± 1.8 11.1 ± 3.6

Walker Walk
2 877.9 ± 17.2 916.1 ± 6.7 873.5 ± 29.8 732.5 ± 39.1
5 789.5 ± 50.2 622.9 ± 47.2 530.9 ± 22.2 389.5 ± 18.0
10 518.9 ± 16.9 461.8 ± 44.9 278.0 ± 13.8 230.6 ± 14.3
20 381.6 ± 19.3 339.5 ± 43.1 173.2 ± 7.7 170.3 ± 0.2

Table 2: Final test returns on tasks in DMC with proprioceptive inputs. Results are presented as
the mean ± standard error of the mean.

B.3 DMC vision results

Task Delay Extended Memoryless Latent Agnostic

Acrobot Swingup
2 300.8 ± 32.6 355.4 ± 38.8 374.9 ± 35.0 396.3 ± 67.3
5 301.1 ± 16.8 284.6 ± 26.5 336.3 ± 26.8 382.6 ± 28.5
10 278.7 ± 11.7 191.0 ± 18.2 328.0 ± 28.0 326.0 ± 49.3
20 139.4 ± 7.9 108.1 ± 21.3 212.9 ± 34.7 230.4 ± 16.5

Cartpole Balance
2 994.7 ± 1.3 996.0 ± 0.2 996.3 ± 0.1 996.3 ± 0.1
5 994.6 ± 0.1 992.6 ± 0.3 994.8 ± 0.5 995.2 ± 0.1
10 975.7 ± 5.6 953.8 ± 12.5 979.9 ± 5.3 926.0 ± 60.7
20 928.0 ± 11.6 681.3 ± 4.2 935.3 ± 8.4 570.8 ± 27.0

Cheetah Run
2 871.7 ± 11.3 839.8 ± 28.9 873.0 ± 4.1 799.1 ± 32.0
5 816.2 ± 20.9 812.1 ± 13.0 783.9 ± 44.3 533.1 ± 37.3
10 640.0 ± 32.9 610.9 ± 16.4 542.2 ± 24.8 251.2 ± 49.5
20 493.3 ± 21.8 395.5 ± 21.2 273.1 ± 24.6 118.8 ± 11.4

Finger Spin
2 521.6 ± 123.3 391.4 ± 25.2 576.7 ± 117.7 418.0 ± 211.1
5 374.9 ± 11.3 321.7 ± 19.3 316.7 ± 34.6 254.4 ± 128.8
10 291.7 ± 30.9 186.9 ± 7.7 53.0 ± 35.3 99.7 ± 50.1
20 172.2 ± 11.9 108.3 ± 3.4 33.8 ± 22.8 49.3 ± 24.2

Hopper Hop
2 304.6 ± 27.2 313.2 ± 27.4 325.2 ± 41.5 64.0 ± 64.0
5 232.5 ± 33.6 246.7 ± 32.3 114.8 ± 25.9 18.0 ± 17.8
10 136.7 ± 6.3 131.3 ± 13.4 33.3 ± 4.9 3.5 ± 3.5
20 103.0 ± 28.3 45.3 ± 18.1 4.4 ± 1.3 2.3 ± 2.3

Walker Walk
2 932.0 ± 9.6 895.6 ± 27.7 944.7 ± 8.1 916.0 ± 12.8
5 821.8 ± 60.8 819.2 ± 33.8 718.7 ± 30.1 524.4 ± 35.6
10 657.1 ± 56.2 499.7 ± 23.4 344.4 ± 18.0 219.4 ± 5.5
20 474.4 ± 39.2 399.0 ± 38.3 166.3 ± 3.1 147.3 ± 11.2

Table 3: Final test returns on tasks in DMC with visual inputs. Results are presented as the mean
± standard error of the mean.
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B.4 Gym training curves
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Figure 5: Training curves for the set of tasks in Gym. Dreamer variants trained with 500K inter-
actions of the environment, while D-TRPO and DC-AC used 5M and 1M interactions, respectively.
For D-TRPO and DC-AC, we have plotted the final training performance.
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B.5 DMC proprio training curves
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Figure 6: Training curves for the set of tasks in DMC with proprioceptive inputs with 500K inter-
actions.
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B.6 DMC vision training curves
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Figure 7: Training curves for the set of tasks in DMC with visual inputs with 1M interactions.


