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Abstract

Existing posterior sampling algorithms for continuing reinforcement learning (RL)
rely on maintaining state-action visitation counts, making them unsuitable for com-
plex environments with high-dimensional state spaces. We develop the first exten-
sion of posterior sampling for RL (PSRL) that is suited for a continuing agent-
environment interface and integrates naturally into scalable agent designs. Our
approach, Continuing PSRL, determines when to resample a new model of the en-
vironment from the posterior distribution based on a simple randomization scheme.
We establish an Õ(τS

√
AT ) bound on the Bayesian regret in the tabular setting,

where S is the number of environment states, A is the number of actions, and
τ denotes the reward averaging time, which is a bound on the duration required
to accurately estimate the average reward of any policy. Our work is the first
to formalize and rigorously analyze this random resampling approach. Our simula-
tions demonstrate Continuing PSRL’s effectiveness in high-dimensional state spaces
where traditional algorithms fail.

1 Introduction

A reinforcement learning (RL) agent is faced with the task of interacting with an unknown envi-
ronment while trying to maximize the total reward accrued over time. A core challenge in RL is
how to balance the fundamental tradeoff: when taking exploratory actions, the agent accrues more
knowledge about the unknown environment, but exploiting the knowledge obtained so far may result
in higher immediate return.

A growing literature builds on Thompson sampling (Thompson, 1933; Russo et al., 2018) to develop
randomized approaches to exploration (Osband et al., 2013; 2016b;a). While these approaches have
proved to be effective, they have largely been limited to episodic environments. In particular, the
modus oparandi involves randomly sampling a new policy, which aims to maximize expected return
in a statistically plausible model of the environment, immediately before the start of each episode,
and following that policy throughout the episode. For example, bootstrapped DQN (Osband et al.,
2016a) maintains an ensemble that approximates the posterior distribution of the optimal action
value function Q∗ and, before each ℓth episode, samples a random element Q̂ℓ. Then, a greedy
policy with respect to Q̂ℓ is executed.

While learning in continuing environments is a fundamental problem in RL (Naik et al., 2019), work
on randomized approaches to exploration have largely focused on episodic environments, with few
exceptions specific to a tabula rasa context (Ouyang et al., 2017; Theocharous et al., 2018). We
develop for the first time a version of posterior sampling for reinforcement learning (PSRL) that
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is easily extended to work with function approximation in complex environments. Our proposed
method, Continuing PSRL, resamples a new policy at each time with a probability p. Here, p
is specified as a part of the agent design and represents how the agent chooses to partition its
experience into intervals that it interprets as trials. With this resampling rule, it is natural to
execute a policy that maximizes discounted return with a discount factor γ = 1 − p. Indeed, a
simple lemma shows that, with this choice of γ, the undiscounted return attained between consecutive
resampling times constitutes an unbiased estimate of the γ-discounted return of the policy used. This
simple resampling scheme easily integrates into randomized exploration algorithms with function
approximation. For example, bootstrapped DQN (Osband et al., 2016a) can be modified to address
continuing environments by resampling the action value function from the prevailing approximate
posterior distribution at each time with probability p. As with the original version of bootstrapped
DQN, each executed action is greedy with respect to the most recently sampled action value function.

Many theoretical works consider γ as part of the environment, e.g. they directly analyze γ-discounted
regret (Lattimore & Hutter, 2012; Wang et al., 2020). In contrast, we assess agent performance in
terms of undiscounted regret. Thus, while the discount factor γ plays a role in agent design, it does
not reflect what we view as the designer’s objective. This viewpoint aligns with empirical work that
regards the discount factor as a tunable hyperparameter (Mnih et al., 2015; François-Lavet et al.,
2015). Our analysis shows that, while resampling with a probability p = 1− γ and planning with a
γ-discounted objective does not lead to vanishing per-timestep regret, that can be accomplished by
increasing γ over time.

Prior works considered versions of PSRL that treat continuing environments (Ouyang et al., 2017;
Theocharous et al., 2018) by directly planning under the undiscounted regret. The algorithm pro-
posed in Ouyang et al. (2017) resamples an environment from the environment posterior each time
either of the two following criteria holds: 1) the time elapsed since the last resampling exceeds the
interval between the two most recent resamplings, and 2) the number of visits to any state-action
pair is doubled since the previous resampling. The latter criterion plays an essential role but is not
viable when operating in a complex environment, for example, addressing an intractably large state
space and approximating a distribution of action value functions using a neural network (Osband
et al., 2016a; Dwaracherla et al., 2020). In particular, it is not clear how to efficiently track visita-
tion counts, and even if that were possible, the counts could be irrelevant since it may even be rare
to visit any individual state more than once. In order to address large state spaces, Theocharous
et al. (2018) considers simply doubling the duration between each successive pair of resampling
times. Although the resulting algorithm circumvents maintaining visitation counts, their analysis
relies heavily on technical assumptions, without which the regret bound grows linearly with time.
Another work (Tang et al., 2024) that came after the first version of our paper considered using
a fixed resampling schedule that yields a prior-dependent regret bound, but their result exhibits a
loose dependence on problem parameters.

In this paper, we formalize our aforementioned resampling approach to randomized exploration –
both with fixed and decreasing reset probabilities – and provide a first rigorous analysis, which
establishes regret bounds similar to Ouyang et al. (2017) but with a resampling criterion much
simpler and more scalable than what is proposed in that paper. Interestingly, our analysis is also
simpler than that of Ouyang et al. (2017) because our resampling criterion is policy-independent.
Specifically, we show that for a choice of discount factor that suitably depends on the horizon T ,
our algorithm, continuing posterior sampling, satisfies an Õ(τS

√
AT ) regret bound, where S is the

number of environment states, A is the number of actions, and τ denotes the reward averaging time
(Dong et al., 2022), which is a bound on the duration required to accurately estimate the average
reward of any policy. This regret bound matches that established by Ouyang et al. (2017), though
their use of “span” replaced by the reward averaging time τ .
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2 Problem Formulation

We consider the problem of learning to optimize performance through a single stream of interactions
with an unknown environment E = (A,S, ρ), modeled as a Markov decision process (MDP). Here
A is a finite action space with cardinality A, S is a finite state space with cardinality S, and ρ is
a function that specifies a state transition probability ρ(s′ | s, a) given a current state s ∈ S and
action a ∈ A. Interactions up to time t make up a history Ht = (S0, A0, S1, A1, S2, . . . , At−1, St),
and the agent selects action At after observing St. The environment and all associated random
quantities we consider are defined within a common probability space (Ω,F ,P). In particular, the
environment E itself is random, and we use a distribution P(E ∈ ·) to capture the agent designer’s
prior belief over all possible environments. As the history evolves, what can be learned is represented
by the posterior distribution P(E ∈ ·|Ht). We additionally assume that A and S are deterministic
and known, but the observation probability function ρ is a random variable that the agent needs to
learn. For simplicity, we assume S0 is deterministic, but the same analysis can be easily extended
to consider a distribution over initial states.

An agent’s preferences can be represented by a reward function r : S × A 7→ [0, 1]. After selecting
action At in state St, the agent observes St+1 and receives a deterministic reward Rt+1 = r(St, At)
bounded in [0, 1]. We take r to be deterministic and known for simplicity, but our result easily
generalizes to randomized reward functions. The agent specifies its actions via policies. A stochastic
policy π can be represented by a probability mass function π(· | St) that an agent assigns to actions
in A given situational state St.

Regret. Before we formally define the learning objectives of the agent, we extend the agent state to
account for randomized policies. We consider the notion of an algorithmic state Zt introduced in Lu
et al. (2021), which captures the algorithmic randomness at time t. An algorithm is a deterministic
sequence {µt | t = 1, 2, . . . } of functions, each mapping the pair (Ht, Zt) to a policy. At each time
step t, the algorithm samples a random algorithmic state Zt and computes a policy πt = µt(Ht, Zt).
We also write πt ∼ µt(Ht) when the randomness introduced by Zt is clear in the context. The
algorithm then samples actions At ∼ πt(· | St) at times t. For a policy π, we denote the average
reward starting at state s as

λπ,E(s) = lim inf
T →∞

Eπ

[
1
T

T −1∑
t=0

Rt+1

∣∣∣∣∣E , S0 = s

]
, (1)

where the subscript of the expectation indicates that the reward sequence is realized by following
policy π, and the subscript E emphasizes the dependence of the average reward on the environment
E . We also denote the optimal average reward as

λ∗,E(s) = sup
π

λπ,E(s) ∀s ∈ S.

We consider weakly-communicating Markovian environments, the most general subclass of MDPs
for which finite time regret bounds are plausible. This assumption also appears in Ouyang et al.
(2017); Agrawal & Goyal (2013). We give a formal definition for MDPs with finite state spaces
below.
Definition 2.1. (weakly-communicating MDP) An MDP is weakly communicating if there
exists a set of states, where each state in that set is accessible from every other state in that set under
some deterministic stationary policy, along with a possibly empty set of states which is transient
under every policy.

We remark that the optimal average reward λ∗,E(·) is state-independent under weakly-
communicating MDPs. Thus, we override the notation λ∗,E to denote the optimal average reward
λ∗,E(s) for all states s ∈ S. For a policy π, we define its regret up to time T to be

Regret(T, π) :=
T −1∑
t=0

(λ∗,E −Rt+1) . (2)
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The regret itself is a random variable depending on the random environment E , the algorithm’s
internal random sampling, and random transitions. We will measure agent performance in terms of
regret and its expected value.

3 Continuing PSRL Algorithm

For episodic MDPs, the planning horizon is fixed ahead and known to the agent. The planning
objective is often naturally the cumulative reward over the finite number of timesteps until the
end of each episode. When the horizon is infinite, planning ahead becomes a challenge for the
agent. One way to address this challenge is to set an effective finite planning horizon for the agent
by maintaining a discount factor γ ∈ [0, 1). Essentially, γ dictates the frequency with which the
algorithm resamples an independent environment model used for planning. Given this discount
factor, we divide the original infinite-horizon learning problem into pseudo-episodes with random
lengths. Each pseudo-episode terminates when the algorithm resamples and computes a new policy.
Concretely, at the beginning of timestep t = 0, 1, . . . , the agent samples a binary indicator Xt. If
Xt = 0, the agent samples a new environment E based on the history Ht available at that time,
and marks t as the start of a new pseudo-episode. It then computes a new policy π to follow in this
pseudo-episode, and acts according to π. If Xt = 1, it continues the current pseudo-episode and
follows the most recently computed policy π. When Xt ∼ Bernoulli(γ), one may interpret γ as the
survival probability of a pseudo-episode at timestep t. We let Ek denote the set of timesteps in the
k-th pseudo-episode, tk denote the starting timestep of the k-th pseudo-episode, and sk,1 denote the
starting state of the k-th pseudo-episode.

Discounted value. At each timestep, the agent optimizes a discounted objective with the afore-
mentioned discount factor γ. For each environment E and policy π, the γ-discounted value function
V γ

π,E ∈ RS of π in E is defined as

V γ
π,E := E

[
H−1∑
h=0

P h
π rπ | E

]
= E

[ ∞∑
h=0

γhP h
π rπ | E

]
, (3)

where Pπss′ =
∑

a∈A π(a | s)ρ(s′ | s, a) and rπs =
∑

a∈A π(a | s)ras for all s, s′ ∈ S and a ∈ A, and
the expectation is over the random episode length H. Since a pseudo-episode terminates at time t
when the independently sampled Xt ∼ Bernoulli(γ) takes value 0, its length H follows a binomial
distribution with parameter γ. The second equality above is a direct consequence of this observation.
A policy π is said to be optimal for the environment E if V γ

π,E = supπ′ V γ
π′,E . For an optimal policy

π, we also write its value V γ
∗,E(s) ≡ V γ

π,E(s) as the optimal value. Furthermore, we denote an optimal
policy with respect to V γ

∗,E for each E as πE
γ , which will be useful in the analysis. When γ is clear

from the context, we omit the γ subscript to avoid cluttering. Note that V γ
π,E satisfies the Bellman

equation

V γ
π,E = rπ + γPπV γ

π,E . (4)

Reward averaging time. We consider the notion of reward averaging times τπ,E of policies
introduced in Dong et al. (2022) and derive regret bounds that depend on τπ,E .
Definition 3.1. (reward averaging time) The reward averaging time τπ,E of a policy π is the
smallest value τ ∈ [0,∞) such that∣∣∣∣∣Eπ

[
T −1∑
t=0

Rt+1 | E , S0 = s

]
− T · λπ,E(s)

∣∣∣∣∣ ≤ τ,

for all T ≥ 0 and s ∈ S.

When π∗ is an optimal policy for E , τ∗,E := τπ∗,E is equivalent to the notion of span in Bartlett &
Tewari (2009). We define Ω∗ to be the set of all weakly communicating MDPs E and further make



RLJ | RLC 2024

the following assumption on the prior distribution P(E ∈ ·). This assumption says that we focus on
weakly communicating MDPs with bounded reward averaging time.
Assumption 3.2. There exists τ < ∞ such that the prior distribution over possible environments
P(E ∈ ·) satisfies

P
(
E ∈ Ω∗, τ∗,E ≤ τ

)
= 1.

Below, we restate an important lemma, Lemma 2 in Dong et al. (2022), that relates λπ,E , τπ,E , and
V γ

π,E .
Lemma 3.3. For all π, s ∈ S and γ ∈ [0, 1),∣∣∣∣V γ

π,E(s)− λπ,E(s)
1− γ

∣∣∣∣ ≤ τπ,E .

We note again that for weakly communicating E ∈ Ω∗, the optimal average reward is state indepen-
dent, i.e., λ∗,E = λπ∗,E(s) for all s ∈ S. Thus, under Assumption 3.2, we have∣∣∣V γ

∗,E(s)− V γ
∗,E(s′)

∣∣∣ ≤ 2τ∗,E ≤ 2τ (5)

almost surely for all s, s′ ∈ S.

Discounted regret. Although the regret we eventually hope to analyze is defined by equation 2,
we also consider a discounted version of the regret to aid our analysis. To analyze the performance
of our algorithm over T timesteps, we set K = arg max{k : tk ≤ T} to be the number of pseudo-
episodes until time T . In our subsequent analysis, we adopt the convention that tK+1 = T + 1. To
get a bound for general T , we can always fill in the rest of the timesteps to make a full pseudo-
episode and the asymptotic rate stays the same. Moreover, it is easy to see that for all γ ∈ [0, 1),
E[K] ≤ (1− γ)T + 1. Given a discount factor γ ∈ [0, 1), the γ-discounted regret up to time T is

Regretγ(K, π) :=
K∑

k=1
∆k, (6)

where ∆k = V γ
∗,E(sk,1)− V γ

πk,E(sk,1) is the regret over pseudo-episode k, with V γ
∗,E = V γ

π∗,E = V γ
πE ,E ,

πk ∼ µk(Htk
), At ∼ πk(· | St), St+1 ∼ ρ(·|St, At), and Rt = r(St, At, St+1) for t ∈ Ek.

Empirical estimates. Finally, we define the empirical transition probabilities used by the al-
gorithm. Let Nt(s, a) =

∑t
τ=1 1{(Sτ , Aτ ) = (s, a)} be the number of times action a has been

sampled in state s up to timestep t. For every pair (s, a) with Ntk
(s, a) > 0, the empirical transition

probabilities up to pseudo-episode k are

ρ̂k(s′ | s, a) =
k−1∑
ℓ=1

∑
t∈Ek

1{(St, At, St+1) = (s, a, s′)}
Ntk

(s, a) (7)

for all s′ ∈ S. If the pair (s, a) has never been sampled before pseudo-episode k, we let ρ̂k(s′ | s, a) = 1
for a random s′ ∈ S, and ρ̂k(s′′ | s, a) = 0 for s′′ ∈ S \ {s′}. The corresponding matrix notation P̂ k

are defined analogously.

3.1 The Algorithm

We present the Continuing Posterior Sampling for Reinforcement Learning algorithm in Algorithm 1,
which extends PSRL Osband et al. (2013) to the infinite horizon setting with γ-discounted planning.
The algorithm begins with a prior distribution over environments with actions A and state space S.
In addition, the algorithm takes an indicator X1 = 0 and assumes a discount factor γ. At the start
of each timestep t, if the indicator Xt = 0, Continuing PSRL samples an environment Et = (A,S, ρt)
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from the posterior distribution conditioned on the history Ht available at that time, and mark t
as the start of a new pseudo-episode. It then computes and follows the policy πt = πEt at time
t. Otherwise, if Xt = 1, it sticks to the policy πt = πt−1 at time t and adds step t to the current
pseudo-episode. Then Xt+1 is drawn from a Bernoulli distribution with parameter γ to be used in
the next timestep.

Algorithm 1 Continuing PSRL (Continuing Posterior Sampling for Reinforcement Learn-
ing)
input Prior distribution f , discount factor γ, total learning time T

1: initialize t = 1, k = 1, X1 = 0
2: for t ≤ T do
3: if Xt = 0 then
4: tk ← t
5: sample Ek ∼ f(· | Htk

)
6: compute πk = πEk

k ← k + 1
7: end if
8: sample and apply At ∼ πk(· | St)
9: observe Rt+1 and St+1

10: t← t + 1
11: sample Xt+1 ∼ Bernoulli (γ)
12: end for

Compared with the vanilla PSRL, Continuing PSRL simply adds an independent Bernoulli random
number generator to determine when to resample. Although Continuing PSRL is not designed to
be implemented in practice per se, we note that such resampling scheme brings both scalability
and generalizability. For example, when the environment has an extremely large state or action
space, e.g. Atari games Mnih et al. (2015), prior resampling methods relying on state-action visita-
tion statistics Ouyang et al. (2017) require a huge look-up table, while the resampling method in
Continuing PSRL can still be easily applied, with little computational overhead.

4 Main Results

We present our main results in this section. Theorem 4.1 establishes that PSRL with discounted
planning satisfies a polynomial Bayesian regret bound for infinite-horizon tabular MDP environ-
ments. The bounds for the expected regret of Continuing PSRL are of order Õ(τS

√
AT ), where

Õ omits logarithmic factors, matching the regret bound for TSDE in Ouyang et al. (2017), but
achieved by a simple and elegant algorithm without additional episode termination criteria.

Theorem 4.1. With γ = 1−
√

SA/T , the regret of Algorithm 1 satisfies

E [Regret(T, π)] = Õ
(

τS
√

AT
)

.

Note that our main theorem bounds the regret with respect to the optimal average reward, and
thus has no dependence on the discount factor γ, which, as we emphasized, is only a design factor
within the algorithm. For the purpose of the analysis, we utilize the γ-discounted regret defined in
equation 6 and prove the following intermediate bound for the discounted regret.

Theorem 4.2. Given T and K = arg max{k : tk ≤ T},

E
[
Regretγ(K, π)

]
≤ (4τ + 2)S

√
28AT log(2SAT ) + SA

1− γ
log

(
1

1− γ
log

(
2T

1− γ

))
+ 1

2 + 2
1− γ

.
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5 Analysis

As discussed in Osband et al. (2013), a key property of posterior sampling algorithms is that for
any function g measurable with respect to the sigma algebra generated by the history, E[g(E)|Ht] =
E[g(Et)|Ht] if Et is sampled from the posterior distribution at time t. Under our pseudo-episode
construction, we state a stopping-time version of this property similar to the one in Ouyang et al.
(2017).
Lemma 5.1. If f is the distribution of E, then for any σ(Htk

)-measurable function g, we have

E[g(E)|Htk
] = E[g(Ek)|Htk

], (8)

where the expectation is taken over f .

We include a proof in Appendix D.1 for completeness. We let V γ
πk,k = V γ

πk,Ek denote the value
function of πk, the policy employed by Continuing PSRL, under the sampled environment Ek, and
define

∆̃k = V γ
πk,k(sk,1)− V γ

πk,E(sk,1)

as the difference in performance of πk under Ek and the true environment E . The next lemma allows
us to evaluate regret in terms of ∆̃k, which we can analyze using the known sampled environment
and our observation from the true environment, whereas it is typically hard to directly analyze ∆k

since we do not know what the optimal policy π∗ = πE is.
Lemma 5.2.

E

[
K∑

k=1
∆k

]
= E

[
K∑

k=1
∆̃k

]
. (9)

Proof. The claim follows by applying Lemma 5.1 and a similar argument as that in Theorem 2 in
Osband et al. (2013).

We prove a value decomposition lemma that allows us to express the difference in values of πk in
the true environment E and sampled environment Ek in terms of a sum of Bellman errors over one
stochastic pseudo-episode.
Lemma 5.3 (Value decomposition). For any environment Ê and any policy π,

E
[
V γ

π,E(s0)− V γ

π,Ê(s0) | E , Ê
]

= E

[
η−1∑
t=0

γ
〈

Pπ(st)st
− P̂π(st)st

, V γ

π,Ê

〉
| E , Ê , π

]
,

where η is the random length of a pseudo-episode, and the expectation is over the distribution of η,
conditioned on the sampled state trajectory s0, s1, . . . drawn from following π in the environment E.

We defer the proof to Appendix D.3. At the start of each pseudo-episode k, we consider a confidence
set

Mk =
{

(A,O, ρ) :
∥∥∥Pas − P̂as

∥∥∥
1
≤

√
14S log(2SAKtk)
max{Ntk

(s, a), 1} ∀(s, a)
}

.

The following lemma bounds the probability that the true environment falls outside of the confidence
set Mk for all k ∈ [K].
Lemma 5.4. For k ∈ [K],

P (E /∈Mk) ≤ 1
K

.

The proof follows standard concentration arguments, which we defer to Appendix D.3. We let

m = 1
1− γ

log
(

2K

1− γ

)
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be a high probability upper bound for the length of each episode Ek, k = 1, . . . , K. Since ∆̃k ≤ 1
1−γ ,

we can decompose the regret as

K∑
k=1

∆̃k ≤
K∑

k=1
∆̃k1{E,Ek∈Mk} · 1{|Ek|≤m} + 1

1− γ

K∑
k=1

[
1{|Ek|>m} + 1{E /∈Mk} + 1{Ek /∈Mk}

]
.

SinceMk is σ(Htk
)-measurable, by Lemma 5.1, E[1{E /∈Mk} | Htk

] = E[1{Ek /∈Mk} | Htk
]. Therefore,

E

[
K∑

k=1
∆̃k

]
≤ E

[
K∑

k=1
∆̃k1{E,Ek∈Mk} · 1{|Ek|≤m}

]
+ 1

1− γ
E

[
K∑

k=1
1{|Ek|>m}

]
+ 2

1− γ
· E

[
K∑

k=1
1{E /∈Mk}

]
.

(10)

The third term can be bounded by 2
1−γ via Lemma 5.4. In what follows, we show how to bound the

second and the first term.

Second term. For the second term, since |Ek| follows a geometric distribution with parameter
1− γ, applying the inequality (1 + x

n )n ≤ ex by taking n = 1
1−γ ≥ 1, x = −1, we have

1
1− γ

E

[
K∑

k=1
1{|Ek|>m}

]
= 1

1− γ

K∑
k=1

γm = 1
1− γ

K∑
k=1

γ
1

1−γ log(2K/(1−γ)) ≤ 1
1− γ

K∑
k=1

2e− log( 2K
1−γ ) = 1

2 .

First term. It remains to bound the first term in equation 10. In Appendix A, we provide a
detailed proof for the bound

E

[
K∑

k=1
∆̃k1{E,Ek∈Mk} · 1{|Ek|≤m}

]
≤ 4τ · S

√
28AT log(2SAT ) + SA

1− γ
log

(
1

1− γ
log

(
2T

1− γ

))
.

Proof of Theorem 4.2. Combining the bound for each term in equation 10, we have

E

[
K∑

k=1
∆̃k

]
≤ 4τS

√
28AT log(2SAT ) + SA

1− γ
log

(
1

1− γ
log

(
2T

1− γ

))
+ 1

2 + 2
1− γ

.

The claim follows from Lemma 5.2.

5.1 Average Reward Regret

We have treated γ as constant so far, resulting in a regret bound in equation 6 that scales linearly with
1

1−γ , ignoring logarithmic factors. However, the Continuing PSRL algorithm does not constrain γ to
be a constant during the learning process, i.e. we are able to allow the discount factor to increase over
time, accounting for the growing horizon. Specifically, at each time step t, we can consider a discount
factor γt, and Continuing PSRL resamples a new environment with probability 1−γt. If resampling
happens, the agent switches to the optimal policy in the resampled environment maximizing the
γt-discounted cumulative reward. Otherwise, the agent keeps following the previous policy. If γt

increases with t, the agent is effectively planning over a longer horizon as interactions continue, and
as Theorem 4.2 justifies, the agent’s performance should always keep up with that of the optimal
policy in the environment, regardless of the planning horizon. We detail in Appendix B a modified
version of Continuing PSRL with a schedule of γt that attains the bound in Theorem 4.2.

Although Theorem 4.2 provides a sublinear upper bound for the discounted regret with a fixed
discount factor γ, we are ultimately interested in the performance shortfall with respect to the
optimal average-reward policy. To obtain a sublinear upper bound for the latter, we employ such
time-dependent discount factors discussed above, which allows us to show Theorem 4.1, a regret
bound for the Bayesian regret that does not depend on a discount factor, the proof of which is
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relegated to Appendix C. If we assume the knowledge of T , optimizing for γ, the best rate in terms
of T can be achieved by setting 1/(1 − γ) =

√
T

SA . If the total learning horizon T is unknown,
we can utilize a classical doubling trick argument that is common in the design of online learning
algorithms Zhang et al. (2020). The idea is to divide the learning horizon into time intervals of the
form [2k, 2k+1) and set 1/(1− γt) =

√
2k+1

SA for t ∈ [2k, 2k+1), k ∈ N.

6 Simulations

We conduct two sets of simulations to empirically validate our proposed method. The first is a
tabular RiverSwim environment introduced in (Osband et al., 2016a), and the second a RiverSwim
environment with continuous features as observations. We modify both environments so that there
is no episodic reset.

Figure 1: Riverswim - continuous and dotted arrows represent the MDP under the actions “right”
and “left”, respectively.

The tabular RiverSwim environment consists of six states arranged in a chain, as shown in Figure
1. The agent is placed at the far left state in the beginning. The agent receives a small reward of
0.005 for reaching the leftmost state, but the rightmost state contains a much larger reward of 1.
The optimal policy is thus to always try to swim right.

We compare the performance of Continuing PSRL to TSDE (Ouyang et al., 2017) and DS-PSRL
(Theocharous et al., 2018). Note that both baselines require planning with respect to the average
reward directly. All agents start with a prior of Dirichlet and normal-gamma distributions over the
transitions and rewards, respectively. We use pseudocount n = 1, α = 1/S, and µ = σ2 = 1 for a
diffuse uniform prior. Figure 2 (left) shows that Continuing PSRL is on par with TSDE despite the
latter optimizing directly for average reward, and outperforms DS-PSRL by a large margin.

Figure 2: Regret curves aggregated across 50 Monte Carlo runs for all algorithms.

The second set of simulations aims to provide a concrete illustration of how our resampling technique
can be extended and applied to complex scenarios. We consider a similar setup as RiverSwim, but
with observations as raw pixel features, obtained via a feature mapping ϕ(st) = 1{x ≤ st} in [0, 1]N .
To extend our algorithm design to the continuous state space and model-free setting, we enhance
the finite-horizon bootstrapped DQN with a similar resampling design as Continuing PSRL. The
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idea is to resample a new ensemble index to use in each pseudo-episode if Xt ∼ Bernoulli(γ) equals
zero. For this experiment, we choose a fixed γ = 0.99. The tabular baseline TSDE has to utilize
visitation counts, and thus cannot be adapted to a continuous state space. DS-PSRL requires an
oracle or subroutine that computes the optimal average reward, which is not readily available in
their paper. Instead, we run a comparison against a uniformly random agent and a vanilla DQN
agent with ϵ-greedy exploration, where we set ϵ = 0.1. As shown in Figure 2 (right), Bootstrapped
DQN with our random sampling schedule achieves sublinear regret, implying that the average regret
tends to zero as T grows. In contrast, the vanilla DQN agent incurs linear regret, possibly due to
its poor exploration ability.

7 Conclusion

We proposed a novel algorithm design extending PSRL to the setting where the environment does
not have a reset schedule, and the agent has to plan over a possibly infinite horizon. We establish
theoretically that our algorithm, Continuing PSRL, enjoys a regret upper bound that is close to the
theoretical optimality. Notably, Continuing PSRL only relies on a single Bernoulli random number
generator to resample the environment, as opposed to the complex episode-stopping schemes in
prior works. Such design principle can be readily applied to general environments with large state
spaces. Our simulations in both tabular and continuous RiverSwim environments demonstrate the
effectiveness of our method. Moreover, Continuing PSRL also highlights the role of discount factor
in agent design, as the discount factor is no longer considered as a part of the learning target, but
mainly acts as a tool for the agent to dynamically adjust its planning horizon. As such, this work
might provide an important step towards understanding discount factors, which have seen wide
popularity in practical RL applications.
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A Bounding the sum of confidence set widths

We are interested in bounding

E

[
K∑

k=1
∆̃k1{E,Ek∈Mk} · 1{|Ek|≤m}

]
.

Proof. For each k, we define the event

Bk :=
{

Ntk+1−1(s, a) + 1 ≤ 2Ntk
(s, a) for all (s, a) ∈ S ×A

}
.

Then Bc
k = {Ntk+1−1(s, a) ≥ 2Ntk

(s, a) for some (s, a) ∈ S ×A}.

Following a similar strategy as in Osband et al. (2013), we can write

E

[
K∑

k=1
∆̃k1{E,Ek∈Mk} · 1{|Ek|≤m}

]
≤ E

[
K∑

k=1
∆̃k1{E,Ek∈Mk} · 1Bk

]
+ E

[
K∑

k=1
∆̃k1{|Ek|≤m} · 1Bc

k

]

≤ E

[
K∑

k=1
E

[
∆̃k | E , Ek

]
1{E,Ek∈Mk} · 1Bk

]
+ E

[
K∑

k=1
∆̃k1{|Ek|≤m} · 1Bc

k

]
.

The event Ntk+1−1(s, a) ≥ 2Ntk
(s, a) can happen in at most log m episodes per state action pair

under the event {|Ek| ≤ m}. Thus, the second term can be bounded by

E

[
K∑

k=1
∆̃k1{|Ek|≤m} · 1Bc

k

]
≤ SA

1− γ
log m.

We define {(sk,i, ak,i)}|Ek|
i=1 to be the trajectory followed by πk in pseudo-episode k starting from

state sk,1 = stk
, the state at the beginning of pseudo-episode k. By equation 5, |mins∈S V γ

πk,Ek (s)−
maxs∈S V γ

πk,Ek (s)| ≤ 2τ for all s ∈ S. Thus, we can bound the first term

E

[
K∑

k=1
E

[
∆̃k | E , Ek

]
1{E,Ek∈Mk} · 1Bk

]

≤ E
K∑

k=1

|Ek|∑
i=1

E
[
γ

∣∣∣⟨Pπk(sk,i)sk,i
− P k

πk(sk,i)sk,i
, V γ

πk,Ek⟩
∣∣∣ | E , Ek

]
· 1{E,Ek∈Mk} · 1Bk

= E
K∑

k=1

|Ek|∑
i=1

E
[
γ

∣∣∣∣⟨Pπk(sk,i)sk,i
− P k

πk(sk,i)sk,i
, V γ

πk,Ek −min
s∈S

V γ
πk,Ek (s) · 1⟩

∣∣∣∣
+ γ

∣∣∣∣⟨Pπk(sk,i)sk,i
− P k

πk(sk,i)sk,i
, min

s∈S
V γ

πk,Ek (s) · 1⟩
∣∣∣∣ | E , Ek

]
· 1{E,Ek∈Mk} · 1Bk

= E
K∑

k=1

|Ek|∑
i=1

E
[
γ

∣∣∣∣⟨Pπk(sk,i)sk,i
− P k

πk(sk,i)sk,i
, V γ

πk,Ek −min
s∈S

V γ
πk,Ek (s) · 1⟩

∣∣∣∣ | E , Ek
]
· 1{E,Ek∈Mk} · 1Bk

≤ E
K∑

k=1

|Ek|∑
i=1

γ
∥∥∥Pπk(sk,i)sk,i

− P k
πk(sk,i)sk,i

∥∥∥
1

∥∥∥∥V γ
πk,Ek −min

s∈S
V γ

πk,Ek (s) · 1
∥∥∥∥

∞
· 1{E,Ek∈Mk} · 1Bk

≤ E
K∑

k=1

|Ek|∑
i=1

min{4τγβk(sk,i, ak,i), 1} · 1Bk
.

where the second equality follows since Pπk(sk,i)sk,i
and P k

πk(sk,i)sk,i
are probability distributions,

in the second-to-last inequality we apply Hölder’s inequality, and in the last inequality we apply
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Lemma 5.3. We proceed to bounding the first term. Recall that βk(s, a) =
√

14S log(2SAKtk)
max{Ntk

(s,a),1} , then

K∑
k=1

|Ek|∑
i=1

min{4τγβk(sk,i, ak,i), 1} · 1Bk
≤ 4τ

K∑
k=1

|Ek|∑
i=1

1Bk

√
14S log(2SAKtk)

max{1, Ntk
(sk,i, ak,i)}

.

Under the event Bk = {Ntk+1−1(s, a)+1 ≤ 2Ntk
(s, a) ∀(s, a) ∈ S×A}, for any t ∈ Ek, Nt(s, a)+1 ≤

Ntk+1−1(s, a) + 1 ≤ 2Ntk
(s, a). Therefore,

K∑
k=1

∑
t∈Ek

√
1Bk

Ntk
(st, at)

≤
K∑

k=1

∑
t∈Ek

√
2

Nt(st, at) + 1

=
√

2
T∑

t=1
(Nt(st, at) + 1)−1/2

≤
√

2
∑
s,a

NT +1(s,a)∑
j=1

j−1/2

≤
√

2
∑
s,a

∫ NT +1(s,a)

x=0
x−1/2dx

≤
√

2SA
∑
s,a

NT +1(s, a)

=
√

2SAT .

Since all rewards and transitions are absolutely constrained in [0, 1], our term of interest

K∑
k=1

|Ek|∑
i=1

min{4τγβk(sk,i, ak,i), 1} · 1Bk
≤ 4τ · S

√
28AT log(2SAT ).

B Continuing PSRL with γ-scheduling

Algorithm 2 Continuing PSRL with γ-scheduling
input Prior distribution f , discount factor schedule function Schedule, total learning time T

1: initialize t = 1, k = 1, X1 = 0
2: for t ≤ T do
3: if Xt = 0 then
4: tk ← t
5: sample Ek ∼ f(· | Htk

)
6: compute πk = πEk

k ← k + 1
7: end if
8: sample and apply At ∼ πk(· | St)
9: observe Rt+1 and St+1

10: t← t + 1
11: γt ← Schedule(t, T )
12: sample Xt+1 ∼ Bernoulli (γt)
13: end for
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C Proof of Theorem 4.1

Proof of Theorem 4.1. To better represent the dependence on K, set

R(K, π) := Regret(T, π),

where T is at the end of the K-th pseudo-episode. The expected regret can be written as

E [R(K, π)] = Eπ

[
K∑

k=1

∑
t∈Ek

(λ∗ −Rt)
]

= Eπ

[
K∑

k=1
|Ek|λ∗ −

K∑
k=1

∑
t∈Ek

Rt

]
.

Adding and subtracting the optimal discounted value,

E [R(K, π)] = E

[
K∑

k=1
(|Ek|λ∗ − V γ

∗,E(sk,1))
]

︸ ︷︷ ︸
(a)

+E

[
K∑

k=1

[
V γ

∗,E(sk,1)− V γ
πk,E(sk,1)

]]
︸ ︷︷ ︸

(b)

.

Since the length of each pseudo-episode is independent of the policy or the environment itself with
mean 1

1−γ , term (a) is the difference between the optimal average reward, weighted by the effective
horizon, and the optimal discounted reward. By Lemma 3.3,

(a) = E

[
K∑

k=1
( 1
1− γ

λ∗ − V γ
∗,E(sk,1))

]
= E

[
K∑

k=1

∣∣∣∣ 1
1− γ

λ∗ − V γ
∗,E(sk,1)

∣∣∣∣
]
≤ τE[K].

The expectation (b) is the sum of differences between the optimal discounted value and the dis-
counted value of the deployed policy over K pseudo-episodes. From equation 6 we can see that (b)
is exactly E

[
Regretγ(K, π)

]
. By Theorem 4.2, we have that the regret can be bounded in terms of

γ as

E [R(K, π)] ≤ τE[K] + Õ

(
4τS
√

AT + SA

1− γ

)
≤ (1− γ)Tτ + τ + Õ

(
4τS
√

AT + SA

1− γ

)
.

If we assume the knowledge of T , optimizing for γ, the best rate in terms of T can be achieved by
setting 1/(1− γ) =

√
T

SA , and the final bound becomes

E[Regret(T, π)] = E [R(K, π)] ≤ τ
√

SAT + Õ
(

4τS
√

AT
)

= Õ
(

τS
√

AT
)

.

If the total learning horizon T is unknown, we can utilize a classical doubling trick argument that
is common in the design of online learning algorithms Zhang et al. (2020). The idea is to divide
the learning horizon into time intervals of the form [2k, 2k+1) and set 1/(1 − γt) =

√
2k+1

SA for
t ∈ [2k, 2k+1), k ∈ N.

D Supporting Lemmas

D.1 Proof of Lemma 5.1

Proof. By definition, tk is a stopping time, so it is σ(Htk
)-measurable. Since Ek is sampled from the

posterior distribution P(E ∈ ·|Htk
), Ek and P(E ∈ ·|Htk

) are also measurable with respect to σ(Htk
).

Conditioning on Htk
, the only randomness in g(Ek) is the random sampling in the algorithm. The

proof follows by integrating over P(E ∈ ·|Htk
).
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D.2 Proof of Lemma 5.3

Proof. Expanding the right hand side by the tower property, we get

E

[
η−1∑
t=0

γ
〈

Pπ(st)st
− P̂π(st)st

, V γ

π,Ê

〉
| E , Ê , π

]

=
∞∑

H=1
E

[
H−1∑
t=0

γ
〈

Pπ(st)st
− P̂π(st)st

, V γ

π,Ê

〉
| E , Ê , π, η = H

]
· P(η = H)

=
∞∑

H=1
E

[
H−1∑
t=0

γ
〈

Pπ(st)st
− P̂π(st)st

, V γ

π,Ê

〉
| E , Ê , π

]
· γH−1(1− γ)

= E

[ ∞∑
t=0

∞∑
h=t

γh(1− γ) · γ
〈

Pπ(st)st
− P̂π(st)st

, V γ

π,Ê

〉
| E , Ê , π

]

= E

[ ∞∑
t=0

γt+1
〈

Pπ(st)st
− P̂π(st)st

, V γ

π,Ê

〉
| E , Ê , π

]
.

Now we consider the left hand side. By Bellman equations,

V γ
π,E(s0)− V γ

π,Ê(s0) = rπs0 + γ⟨Pπ(s0)s0 , V γ
π,E⟩ − rπs0 − γ⟨P̂π(s0)s0 , V γ

π,Ê⟩

= γ⟨Pπ(s0)s0 − P̂π(s0)s0 , V γ

π,Ê⟩+ γ⟨Pπ(s0)s0 , V γ
π,E − V γ

π,Ê⟩

= γ⟨Pπ(s0)s0 − P̂π(s0)s0 , V γ

π,Ê⟩+ d0 + γ
(

V γ
π,E(s1)− V γ

π,Ê(s1)
)

,

where di := γ⟨Pπ(si)si
, V γ

π,E − V γ

π,Ê⟩ − γ
(

V γ
π,E(si+1)− V γ

π,Ê(si+1)
)

. Applying recursion, we have

V γ
π,E(s0)− V γ

π,Ê(s0) =
∞∑

t=0
γt+1⟨Pπ(st)st

− P̂π(st)st
, V γ

π,E⟩+
∞∑

t=1
dt.

In state si under policy π, the expected value of γ
(

V γ
π,E(si+1)− V γ

π,Ê(si+1)
)

is exactly
γ⟨Pπ(si)si

, V γ
π,E − V γ

π,Ê⟩, so conditioning on the true environment E and the sampled environment Ê ,
the expectation of

∑∞
t=0 dt is zero. Thus, the left hand side can be written as

E
[
V γ

π,E(s0)− V γ

π,Ê(s0) | E , Ê
]

= E

[ ∞∑
t=0

γt+1⟨Pπ(st)st
− P̂π(st)st

, V γ

π,Ê⟩ | E , Ê , π

]
,

and our claim is proved.

D.3 Proof of Lemma 5.4

Proof. By the L1-deviation bound for empirical distributions in Weissman et al. (2003), when
Ntk

(s, a) > 0,

P
(∥∥∥P̂as − Pas

∥∥∥
1
≥ βk(s, a)|Htk

)
≤ (2S − 2) exp

(
−Ntk

(s, a)β2
k(s, a)

2

)
≤ 2S exp (−7S log(2SAKtk)) ≤ 2S exp

(
− log

(
4 · 2SSAKt2

k

))
= 1

4SAKt2
k

,

where the second line is due to
∑

s′∈S P̂as(s′) =
∑

s′∈S Pas(s′) = 1, and the third line follows from
Hölder’s inequality. When Ntk

(s, a) = 0, the bounds trivially hold. Applying a union bound over
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all possible values of tk = 1, . . . ,∞, we get

P
(
∥P̂as − Pas∥1 ≥ βk(s, a)

)
≤

∞∑
t=1

1
4SAKt2 = π2

24SAK
≤ 1

2SAK
.

We may conclude the proof with a union bound over all (s, a).


