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Abstract

Goals fundamentally shape how we experience the world. For example, when we
are hungry, we tend to view objects in our environment according to whether or not
they are edible (or tasty). Alternatively, when we are cold, we view the very same
objects according to their ability to produce heat. Computational theories of learn-
ing in cognitive systems, such as reinforcement learning, use state-representations to
describe how agents determine behaviorally-relevant features of their environment.
However, these approaches typically assume ground-truth state representations that
are known to the agent, and reward functions that need to be learned. Here we
suggest an alternative approach in which state-representations are not assumed
veridical, or even pre-defined, but rather emerge from the agent’s goals through in-
teraction with its environment. We illustrate this novel perspective using a rodent
odor-guided choice task and discuss its potential role in developing a unified theory
of experience based learning in natural and artificial agents.

1 Introduction

Concepts are the building blocks of mental representations, providing scaffolding for generalizations
over individual objects or events. How do animals (including humans) form concepts and why do
they form the particular ones that they do? These questions have a long history in both Eastern and
Western philosophy (Hume, 1896; Wittgenstein, 1953; Rosch & Mervis, 1975; Siderits et al., 2011).
More recently, computational cognitive science has started addressing a related question, namely,
how do cognitive agents generate internal models of their environment, called “state-representations”,
generalizing over their experiences for efficient learning (Niv, 2019; Langdon et al., 2019; Song et al.,
2022)? Here, we suggest that state-representations can be understood as conceptual frameworks
formed by an agent in order to achieve particular goals (Dunne, 2004). Under this account, a
concept, such as “fire”, is formed because some set of interests, such as a desire for warmth, leads
agents to construe particular entities as similar to each other in virtue of their efficacy in obtaining
the goal of warming up. Utilizing this parallel between “concepts” and “states”, we propose that
state-representations should be understood in terms of the goals they subserve. To explore this
hypothesis, we develop a formal framework for describing goal-dependent state-representations and
illustrate its application by inferring animals’ goals from empirically observed behavior in a well-
studied odor-guided choice task.

2 Formal setting

2.1 Telic states as goal-equivalent experiences

We assume the setting of a perception-action cycle, i.e., streams of observation-action pairs repre-
senting the flow of information between agent and environment. We denote by O and A the set
of possible observations and actions, respectively. An experience sequence, or experience for short,
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is a finite sequence of observation-action pairs: h = o1, a1, o2, a2, ..., on, an. For every non-negative
integer, n ≥ 0, we denote by Hn ≡ (O × A)n the set of all experiences of length n. The collection of
all finite experiences is denoted by H = ∪∞

n=1Hn. In non-deterministic settings, it will be useful to
consider distributions over experiences rather than individual experiences themselves and we denote
the set of all probability distributions over finite experiences by ∆(H). Following Bowling et al.
(2022), we define a goal as a binary preference relation over experience distributions. For any pair
of experience distributions, A, B ∈ ∆(H), we write A ⪰g B to indicate that experience distribution
A is weakly preferred by the agent over B (i.e., that A is at least as desirable as B) with respect
to goal g. When A ⪰g B and B ⪰g A both hold, A and B are equally preferred with respect to
g, denoted as A ∼g B. We observe that ∼g is an equivalence relation, i.e., it satisfies the following
properties:

• Reflexivity: A ∼g A for all A ∈ ∆(H).

• Symmetry: A ∼g B implies B ∼g A for all A, B ∈ ∆(H).

• Transitivity: if A ∼g B and B ∼g C then A ∼g C for all A, B, C ∈ ∆(H).

Therefore, every goal induces a partition of ∆(H) into disjoint sets of equally desirable experience
distributions. For goal g, we define the goal-directed, or telic, state representation, Sg, as the
partition of experience distributions into equivalence classes it induces:

Sg = ∆(H)/ ∼g . (1)

In other words, each telic state represents a generalization over all equally desirable experience distri-
butions. This definition captures the intuition that agents need not distinguish between experiences
that are equivalent (in a statistical sense) with respect to their goal. Furthermore, since different
telic states are, by definition, non-equivalent with respect to ⪰g, the goal g also determines whether
a transition between any two telic states brings the agent in closer alignment to, or further away
from its goal.

2.2 Learning with telic states

How can telic state representations guide goal-directed behavior? To address this question, we start
by defining a policy, π, as a distribution over actions given the past experience sequence and current
observation:

π(ai|o1, a1, ..., oi). (2)

Analogously, we define an environment, e, as a distribution over observations given the past experi-
ence sequence:

e(oi|o1, a1, ..., ai−1). (3)

The distribution over experience sequences can be factored, using the chain rule, as follows:

Pπ(o1, a1, ..., on, an) = P (o1, a1, ..., on, an|e, π) =
n∏

i=1
e(oi|o1, a1, ..., ai−1)π(ai|o1, a1, ..., oi). (4)

Typically, the environment is assumed to be fixed, and hence not explicitly parameterized in Pπ(h)
above. Our definition of telic states as goal-induced equivalence classes can now be extended to
equivalence between policy-induced experience distributions as follows:

π1 ∼g π2 ⇐⇒ Pπ1 ∼g Pπ2 . (5)

The question we are interested in can now be stated as follows: how can an agent learn an efficient
policy for reaching a desired telic state? In other words, how can the agent’s policy be updated
to increase its likelihood of generating experiences that belong to a certain desirable telic state,
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Si ∈ Sg? To answer this question, we begin by writing down the empirical distribution of N
experience sequences generated by policy π:

P̂π(h) = |{k : hk = h}|
N

. (6)

We would like to estimate the probability that P̂π(h) belongs to telic state Si, and update π to
increase this probability. A fundamental result from large deviation theory, known as Sanov’s
theorem (Cover, 1999), shows that this probability decays exponentially with a rate of

R = min
P ∈Si

DKL(P ||Pπ). (7)

Since R determines the probability that experiences sampled from Pπ belong to telic state Si, we
refer to it as the telic distance from π to Si. Assuming now the agent’s policy can be expressed using
some parameterization θ, the following policy gradient method updates πθ in a way that minimizes
the telic distance, i.e., maximizes the likelihood of generating experiences belonging to telic state Si:

θt+1 = θt − η∇θDKL(P ⋆
i ||Pπθ

), (8)

where η > 0 is a learning rate parameter and,

P ⋆
i = arg min

P ∈Si

DKL(P ||Pπ), (9)

is called information projection of Pπ onto Si, i.e., the distribution in Si which is closest, in the
KL sense, to Pπ. Equation 8 thus describes a general policy gradient method for learning with telic
state representations.

2.3 Illustrative example: the two-armed bandit

To illustrate our proposed learning algorithm, we compute the goal-directed policy gradient for a
fully-tractable bandit learning problem and show that, in this simple case, minimizing telic distance
yields a commonly reported empirical choice strategy known as probability-matching. We consider
a two-armed bandit in which the set of actions is defined as of choosing a left (L) or right (R) lever
and the observations are winning (1) or losing (0):

A = {L, R}, O = {1, 0}. (10)

For simplicity we consider a past-independent policy, πθ, that is parameterized by the probability
of choosing action L:

πθ(L) = θ, πθ(R) = 1 − θ. (11)
The environment e is specified by the probabilities of winning when choosing L or R, denoted pL

and pR, respectively:

e(1|L) = pL, e(0|L) = 1 − pL; e(1|R) = pR, e(0|R) = 1 − pR. (12)

The likelihood that an experience sequence, h, will be generated by the policy induced distribution
Pπθ

can be expressed as:

Pπθ
(h) = θNh

L (1 − θ)Nh
Rp

Nh
L,1

L (1 − pL)Nh
L−Nh

L,1p
Nh

R,1
R (1 − pR)Nh

R−Nh
R,1 , (13)

where Nh
L, Nh

R are the number of times the agents selected the L and R actions, respectively, and
Nh

L,1, Nh
R,1 are the number of “win” observations following L and R choices, respectively. For sim-

plicity, we assume that the agents goal is to reach a specific number of wins, so that two policies are
equivalent if and only if the expected number of wins obtained by following both is equal:

πθ1 ∼g πθ2 ⇐⇒ EPπθ1 (h)

(
N∑
i

1hi=1

)
= EPπθ2

(h)

(
N∑
i

1hi=1

)
, (14)
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where N = Nh
L + Nh

R is the total number of action/observation pairs and 1hi=1 denotes an indicator
function which is one if the ith observation in h is 1 and zero otherwise. Thus, for every j = 1, ..., N ,
the telic state Sj is defined simply as the set of all experience distributions with an expected number
of wins equal to j:

Sj = {P (h) : s.t. Eh∼P

(
N∑
i

1hi=1

)
= j}. (15)

The telic distance (Eq.7) between a policy πθ and Sj is given by:

DKL(Sj ||Pπθ
) = min

P ∈Sj

DKL(P ||Pπθ
) =

∑
h

P ⋆
j (h) log

P ⋆
j (h)

Pπθ
(h) , (16)

where P ⋆
j (h) is the distribution in Sj closest to Pπ(h) in the KL sense, as defined in Eq. 9 above.

Using Eq. 13 we can compute the telic distance gradient:

∇θDKL(Si||Pπθ
) =

∑
h P ⋆

j (h)Nh
R

1 − θ
−
∑

h P ⋆
j (h)Nh

L

θ
, (17)

so that the optimal policy for reaching j wins, πθ∗
j
, is given by:

θ∗
j = Eh∼P ⋆

j
( Nh

L

Nh
L + Nh

R

). (18)

In words, the policy maximizing the likelihood of reaching telic state Sj , is one matching the expected
choice probability of P ⋆

j (h). Interestingly, a similar “probability-matching” strategy was found in
human iterated binary choice behavior (Erev & Barron, 2005).

2.4 Transition sensitive goals and the flow of experience

So far, we considered goals that are sensitive to individual action or observation counts within expe-
rience sequences. Indeed, the standard reinforcement learning framework can be viewed as special
cases of ours, under a goal of maximizing a (possibly discounted) sum of individual observations
deemed as rewarding by the agent or task-designer. Real cognitive agents however, typically pursue
more ecological goals, that reflect complex preferences over higher-order statistics of experience,
beyond the accumulation of local reward signals. For example, people engaged in activities such as
games, artistic creation, sports, meditation etc., often describe the goal of such pursuits as enter-
ing a state of “flow”(Csikszentmihalyi & Csikszentmihalyi, 1992), described in terms of matching
skill and challenge levels. While such activities may not typically be thought of as goal directed,
and thus do not readily lend themselves to standard reward-driven learning modelling frameworks,
they can be expressed in the current framework in terms of higher order experience correlations
structures. For example, consider an agent that prefers certain observations (or actions), but only
when they follow certain actions (or observations). This “second-order” preference structure can
be described by a class of goals in which experiences are ordered according to the weighted sum of
possible observation-action and action-observation transition counts:

gα,β(h) =
|O|∑
i=1

|A|∑
j=1

(Nh
ijαij + Mh

jiβji), (19)

where Nh
ij denotes the number of transitions between observation ot = i and action at+1 = j,

and Mh
ji the number of transitions between action at−1 = j and observation ot = i, in a given

experience sequence h = o1, a1, ..., on, an. Under this goal, experience sequences sharing the same
empirical transition frequencies will be deemed equivalent by the agent, with the αij and βji param-
eters determining the relative weight of different action-observation or observation-action transition,
respectively. As a concrete example, consider a setting where observations depend only on the im-
mediately preceding action and actions depend only on the immediately preceding observation. The
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environment can thus be expressed as e(oi|o1, a1, ..., oi−1, ai−1) = e(oi|ai−1), and the policy of the
agent as π(ai|o1, a1, ..., oi) = π(ai|oi). The experience distribution induced by the environment e
and the policy π can be factorized in this case as:

Pπ(h) = e(o1)π(a1|o1)
n∏

i=2
e(oi|ai−1)π(ai|oi). (20)

This distribution can be parameterized using the switching probabilities eji ≡ e(ot = i|at−1 = j),
with an initial observation distribution, ei = e(o1 = i), and πij ≡ π(at = j|ot = i) for i = 1, ..., |O|
and j = 1, ..., |A|. Using this notation, we can express the log-probability of experience h given
policy π (and environment e) as:

log Pπ(h) = log (e(o1)
|O|∏
i=1

|A|∏
j=1

π
Nh

ij

ij e
Mh

ji

ji ) = log e(o1) +
|O|∑
i=1

|A|∑
j=1

(Nh
ij log(πij) + Mh

ji log(eji)). (21)

Assuming sufficiently long sequences, Nh
ij ≈ n

2 πij and Mh
ji ≈ n

2 eji, the goal gα,β(h) can be approxi-
mated by:

gα,β(h) ≈ n

2

|O|∑
i=1

|A|∑
j=1

(πijαij + ejiβji) = −n

2 (H(π, πα) + H(e, eβ)) (22)

where H(p, q) = −Ep[log q] denotes the cross entropy of distribution q relative to p, and the distri-
butions πα and eβ are defined as:

πα(at = j|ot−1 = i) = exp(αij), (23)

and
eβ(ot = i|at−1 = j) = exp(βji), (24)

with the following normalization constraints on αij and βji:

|A|∑
j=1

exp(αkj) =
|O|∑
i=1

exp(βli) = 1, for k = 1, ..., |O| and l = 1, ..., |A|. (25)

Thus, for a fixed environment, a goal of maximizing a weighted sum of specific action-observation
and observation-action transitions, gα,β(h), corresponds to minimizing the cross entropy between
the true policy π, and a reference one πα, induced only by the observation-action transition weight
parameters, αij . Such a transition-sensitive goal therefore drives agents to optimize an intrinsically
emergent policy complexity cost (Amir et al., 2020; Lai & Gershman, 2024; Arumugam et al., 2024).
Extending this analysis to preferences over longer flows of experience, i.e., action-observation sub-
sequences, can provide a formal approach to learning in cognitive systems, driven by ecological goals
that are sensitive to intricate statistical features of experience, beyond accumulation of local events
designated as “rewarding” by an external task or agent designer.

2.5 Closing the loop: telic state conditioned policies

Above we have assumed that the policy depends on the full past experience but this assumption can
be relaxed. Within the current framework, we assume that the agent maintains an estimate of the
most likely telic state it is currently in and updates it at each time point. Concretely, given a goal g
and a past experience sequence at time t, ht = o1, a1, ..., ot, the agent can estimate its current telic
state, i.e., the equivalence class of the experience distribution most likely to have generated ht:

Ŝt(ht) = [arg max
P ∈∆(Ht)

P (ht)]∼g
. (26)

The policy can now be expressed in terms of the estimated telic state:

π(at|Ŝt(h)), (27)
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so that in choosing actions the agent generalizes over past experiences that are estimated to originate
from the same telic state. Since the borders between telic states are determined by the goal, the
same experience may be assigned to different telic states under different goals. This clustering of
past experience into estimated telic states is lossy: it ignores goal-irrelevant information, and is
not necessarily Markovian. Thus, while it may not be optimal in the Bayesian sense, it provides a
self contained account of how goals, i.e., preferences over experience distributions, generate intrinsic
(telic) state representation, which in turn provide a foundation for action selection and learning.

3 Results: goal inference in an odor-guided choice task

To illustrate the application of our proposed framework to behavioral data analysis, we infer the
preference profile, i.e., goal, of individual animals from their empirical choice behavior and use it to
explain reaction time in a well-studied perceptual decision making task (Roesch et al., 2006). Briefly,
rats were trained to sample an odor at a central odor port, before responding by nose-poking in one
of two fluid wells. The odor stimulus provided a cue for which of two wells would be associated with
delivery of a certain amount of sucrose liquid. Two of the odors signalled “forced choice” trials, one
indicating that the liquid will be available in the left well, and one indicating the right well. A third
odor—“free choice”—indicated liquid availability in either well. After liquid delivery, or choice of a
non-indicated well, the rat waited for a cue indicating the start of the next trial. Importantly, if a
“valid” well was chosen on any trial (i.e., the indicated well on forced-choice trials, or either well on
free-choice trials), the delay to and amount of liquid was determined by the side of the well, not the
odor. Unsignaled to the animal, in each block of the task, one well delivered either at a shorter delay
or a larger amount than the other well; amount and delay contingencies changed between blocks
during a session. We denote the set of possible observations and actions in the task as follows:

O = {Left Odor, Right Odor, Free Odor,
Long Delay, Short Delay, Small Amount, Big Amount},

A = {Right Poke, Left Poke, Wait for Cue}.

We define an experience for this task as a sequence of trials, each consisting of an observation-action
pair, for example:

h = LO, LP, LD, WC, FO, RP, SD, WC, ... (28)

where elements of O and A are denoted by their initials.

While goals are generally defined as preferences over experience distributions, here we shall consider
a simplified special case in which the goal is defined in terms of order over individual experiences.
This is indeed a special case, since any individual experience can be thought of as a delta function
distribution concentrated around itself. Specifically, we define a parameterized family of goals that
assign a score to an experience h based on the weighted sum, normalized by length, of the difference
between the number of big vs. small amount observations, short vs. long delay observations, and
right vs. left nose poke actions appearing in it:

gβ(h) = 1
Nh

(
β1(Nh

BA − Nh
SA) + β2(Nh

SD − Nh
LD) + β3(Nh

RP − Nh
LP )

)
, (29)

where Nh
BA, Nh

SA, Nh
SD and Nh

LD denote the number of of Big Amount, Small Amount, Short Delay
and Long Delay observations, respectively, and Nh

RP and Nh
LP denote the number of Right Poke

and Left Poke actions, respectively, in experience h. The normalization by the total experience
length, Nh, renders the goal score scale-invariant, allowing experiences of different lengths to be
compared in terms of their alignment with goal gβ (see Eq. 31 below). The parameters: β1, β2,
and β3, determine the relative weight of the corresponding difference between action or observation
counts in determining each animal’s goal. Thus, we assume that the preference profile, i.e., goal, of
each rat is characterized by its unique 3D parameter vector β = (β1, β2, β3). While our formalism
is general with respect to the form of the goal, this particular goal parameterisation allows us to
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monitor preference for earlier rewards, larger rewards, and side biases – known characteristics of
animal behavior in this task.

To illustrate our framework in the context of this task (Fig. 2), we define a telic state-trajectory as
a sequence of estimated telic states, {Ŝβ

t (h)}n
t=1, where Ŝβ

t (h) consists of all experiences of length t
that are gβ-equivalent to the first t trials of the experience h:

Ŝβ
t (h) = {h′ ∈ Ht : gβ(h′) = gβ(h1:t)}, (30)

where h1:t = o1, a1, ..., ot, at denotes sub-sequence consisting of the first t observations and actions
in h. We quantify the alignment of an empirical experience h with a goal gβ using the following
Goal Alignment Coefficient (GAC), defined simply as the gβ score of h:

GAC(h; gβ) = gβ(h). (31)

For a given experience, h, the GAC measures the average increase in the goal value (Eq. 29) per
trial in h. We used the GAC, to estimate the parameters β∗ that maximize the alignment between a
given empirical set of M experience sequences {hj}M

j=1 and the goal gβ∗ , subject to a regularization
constraint on β:

β∗ = arg max
β

M∑
j=1

GAC(hj ; gβ) s.t ∥β∥2 = 1, (32)

where we impose the regularization constraint ∥β∥2 =
∑3

i=1 β2
i = 1 on the weight parameters to fix

the scale of gβ . In other words, given the empirical experience sequences of an individual animal,
and a class of β-parameterized goals, we estimated the parameter values, β∗ such that the animal’s
behavior is maximally aligned with the goal gβ∗ . The β∗ values for all animals are plotted in Fig. 1
(orange histograms). As a baseline for comparison, we also plotted β∗ values for simulated animals
using the same odor observations and liquid-outcome contingencies as the empirical data but with
randomly selected left or right action choices (blue histograms). This analysis revealed that goals
fit to the empirical behavior had significantly larger weights on the difference between the number
of short vs. long delays and big vs. small liquid amounts compared to goals fitted to simulated
random behavior. Fig. 2 shows the telic state trajectories for empirical and simulated experience
sequences, and illustrates how this novel analysis may be used to explain features of behavioral
learning. We plotted the optimized goal scores, gβ∗(h), for the first 1000 trials of individual animals
using empirical and random choice simulated data (Fig. 2A, orange and blue lines respectively).
Optimized goal alignment coefficients were significantly higher for empirical compared to simulated
animals (Fig. 2B, orange and blue bars, respectively), demonstrating the sensitivity of the GAC as as
general-purpose measure of goal-directed behavior. Finally, (Fig. 2C) shows choice reaction time as
a function of telic state and trial number for an individual animal, whose state trajectory is marked
by the gradient-colored line in panel (A), with darker colors corresponding to earlier trials. Reaction
times were significantly correlated with telic state (top) despite not being consistently related to trial
number (bottom). Overall, this analysis illustrates the potential use of telic state-based analysis to
uncover new features of behavioral learning.

4 Discussion

The need for a formal theory of learning in cognitive systems that centers on agent’s goals has
recently been called into attention (Molinaro & Collins, 2023). The current work provides a step
in this direction, leveraging a novel definition of telic states as equivalence classes of experiences
distributions with respect to goals. While the notion of states as equivalence classes is not new
(Minsky, 1967), we suggest that goals, defined as preference relations over experience distributions
(Bowling et al., 2022), provide a natural foundation for state representation learning in cognitive
systems. Our approach is related to recent results in preference-based reinforcement learning (Wirth
et al., 2017; Carr et al., 2024) and goal directed state-abstraction (Li et al., 2006; Abel et al., 2019).
However, unlike previous accounts that assume a pre-defined “ground” state representation or reward
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Figure 1: Optimized weight parameters for liquid amount (left), delay duration (cen-
ter) and side choice (right) preferences. Optimized β values maximizing the goal-alignment
coefficient of empirical experience sequences (orange) are significantly larger than those of simulated
random actions yoked to the observation experience sequences of each animal (blue) for big vs. small
amount and short vs. long delay but not for right vs. left nose pokes. Solid lines show Gaussian
kernel density distribution estimates. Asterisks indicate significance levels (paired t-test, ∗p < 0.01;
∗∗p < 0.001).

Figure 2: Telic state trajectories and choice reaction times. (A) Telic state trajectories for
the first 1000 trials, defined as the optimized goal function score gβ∗(h) (ordinate) along consecutive
experience sub-sequences (abscissa). Each trajectory represents a sequence of trials experienced
by an individual rodent, with orange ones corresponding to empirical behavior and blue ones to
simulated behavior using the same observation sequences experiences by the real animals but with
randomly chosen actions. (B) The corresponding Goal Alignment Coefficient (GAC) histograms
show that real animals (orange bars) achieve significantly higher telic states than simulated ones
(blue bars) (paired t-test, p < 10−4) (B). (C) Reaction times as a function of telic state (top) and
trial number (bottom) for an individual rat, indicated by the gradient colored line in panel (A).
Each dot represents a single choice trial, with lighter colors indicating later serial trial positions. For
this animal, higher telic states were correlated with longer reaction times overall (top), despite the
lack of significant correlation between trial number and reaction time (bottom).

function (or both), we posit that state representations are inherently goal directed, obviating the
need to assume given states and reward functions. While reward functions can be extended to
experience-based learning settings (Lu et al., 2023), we suggest that replacing rewards by goals
has several advantages. Beyond its conceptual parsimony, a goal-based framework may be used to
bridge natural and artificial perspectives on state representation learning by using telic states to
describe both the evaluative and the descriptive aspects of learning models. Thus, whereas previous
goal-conditioned reinforcement learning frameworks typically treat goals as a special subset of states
(Kaelbling, 1993) or as a parameterization of the reward function within a given state space (Schaul
et al., 2015), our framework views goals and states as distinct yet coupled constructs. This coupling



RLJ | RLC 2024

between goals and telic state representations suggests a “double dissosoacition” between experiences
and telic states: on the one hand, the same telic state can be obtained via two different, yet equally
desirable, experiences; while on the other hand, the same experience can result in different telic
states under different goals, as goals determine which aspects of experience are important in a
given context. Thus, unlike standard Bayesian or decision theoretic models that attempt to explain
behavioral response variability for identical stimuli as noise or suboptimality, our framework can
account for such variability as epistemic optimally under switching goals, e.g., engagement and
relaxation (Ashwood et al., 2022). From a neurocognitive perspective, our framework predicts that
state representations in the brain, such as those believed to be encoded by neuronal activity patterns
in the hippocampus (Crivelli-Decker et al., 2023) and prefrontal areas such as the orbitofrontal
cortex (Schuck et al., 2018), should be sensitive to agents’ goals and reflect their “position” within
a corresponding telic state space (De Martino & Cortese, 2023).

In a sense, our approach shifts the burden from explaining the origin of state representations to
explaining the origin sensory-motor ones, as it assumes given sets of possible actions and observations.
However, sensory-motor affordances can also be explained in terms of underlying goals, as evinced
by recent studies on motivated perception (Balcetis & Dunning, 2006; Leong et al., 2019) and
task-conditioned action representation (Fogassi et al., 2005; Aberbach-Goodman et al., 2022; Ahn
et al., 2022). Furthermore, as the biological nervous systems has arguably been evolutionary shaped
to detect and respond to goal relevant information (Lettvin et al., 1959), a hierarchy of goals,
operating at different timescales, may generate a hierarchy of state representations at multiple levels
of temporal abstraction (Sutton et al., 1999; Shah et al., 2021).

Finally, our framework can provide a formal setting for addressing the fundamental problem of
goal selection, namely, where do goals come from and how do agents choose between different goals
the first place? By coupling goals and state representations, the current framework suggests that
goals may be formed based on properties of the state representations they induce. For example,
all else being equal, agents may prefer state representations that are more “controllable”, i.e., ones
that make it easier to explore all regions within their space of telic states, and adjust their goals
accordingly (Amir et al., 2024; Klyubin et al., 2005). Ultimately, our framework provides a step
towards a formal account of how goals can structure experience in cognitive systems.
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