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Abstract

The research field of automated negotiation has a long history of designing agents
that can negotiate with other agents. Such negotiation strategies are traditionally
based on manual design and heuristics. More recently, reinforcement learning ap-
proaches have also been used to train agents to negotiate. However, negotiation
problems are diverse, causing observation and action dimensions to change, which
cannot be handled by default linear policy networks. Previous work on this topic
has circumvented this issue either by fixing the negotiation problem, causing policies
to be non-transferable between negotiation problems or by abstracting the obser-
vations and actions into fixed-size representations, causing loss of information and
expressiveness due to feature design. We developed an end-to-end reinforcement
learning method for diverse negotiation problems by representing observations and
actions as a graph and applying graph neural networks in the policy. With empirical
evaluations, we show that our method is effective and that we can learn to negotiate
with other agents on never-before-seen negotiation problems. Our result opens up
new opportunities for reinforcement learning in negotiation agents.

1 Introduction

In multi-agent systems, agents sometimes must coordinate actions to improve payoff or even obtain
payoff in the first place (e.g., surveying drone swarms or transporting goods using multiple robots).
In such scenarios, communication between agents can improve insight into other agents’ intentions
and behaviour, leading to better coordination between agents and thus improving payoff. When
agents have individual preferences besides a shared common goal, also known as mixed-motive or
general sum games, communication can become more complex, as this introduces an incentive to
deceive (Dafoe et al., 2020).

A special case of communication in mixed-motive multi-agent systems is negotiation, which allows
for finding and agreeing on mutually beneficial coordinated actions before performing them. Nego-
tiation plays a central role in many present and future real-world applications, such as traffic light
coordination, calendar scheduling, or balancing energy demand and production in local power grids,
but also in games, such as Diplomacy or Werewolves. Automated Negotiation is a long-standing
research field that has focussed on designing agents that can negotiate (Smith, 1980; Rosenschein,
1986; Sycara, 1988; Tawfik Jelassi & Foroughi, 1989; Klein & Lu, 1989; Robinson, 1990).



RLJ | RLC 2024

Traditionally, many negotiating agents were manually designed algorithms based on heuristics, which
is still a commonly seen approach in recent editions of the Automated Negotiation Agents Compe-
tition (ANAC) (Aydoğan et al., 2023). However, manually designing such negotiation strategies is
time-consuming and results in highly specialised and fixed negotiation strategies that often do not
generalise well over a broad set of negotiation settings. In later work, optimisation methods were
used to optimise the parameters of negotiation strategies using evolutionary algorithms (Eymann,
2001; Dworman et al., 1996; Lau et al., 2006), or algorithm configuration techniques (Renting et al.,
2020). Such approaches allow negotiation strategies to be more easily adaptable to different negotia-
tion problems but still require partial manual design to obtain a parameterized negotiation strategy,
making them cumbersome and limiting their generalizability.

With the advent of Reinforcement Learning (RL) (Sutton & Barto, 2018), there have been attempts
at using RL-based methods for creating negotiation agents (Bakker et al., 2019). There is, however,
still an open challenge. In automated negotiation, it is common for agents to deal with various
negotiation problems that would cause differently sized observation and action vectors for default
linear layer-based RL policies. Up until now, this issue has been dealt with by either abstracting
the observations and actions into a fixed-length vector (see, e.g., Bakker et al. (2019)) or by fixing
the negotiation problem, such that the observation and action space remain identical (see, e.g., Higa
et al. (2023)). The first approach causes information loss due to feature design, and the latter renders
the obtained policy non-transferable to other negotiation problems.

We set out on the idea that a more general RL-based negotiation strategy capable of dealing with
various negotiation problems is achievable and that such a strategy can be learned using end-to-end
reinforcement learning without using state abstractions. Developing such an RL negotiation strategy
would open up new avenues for RL in automated negotiation as policies are easily extendable. End-
to-end methods are also able to learn complex relations between observations and actions, minimizing
the risk of information loss that is often imposed by (partially) manual design strategies.

To this extent, we designed a graph-based representation of a negotiation problem. We applied graph
neural networks in the RL policy to deal with the changing dimensions of both the observation and
action space. We show that our method shows similar performance to a recent end-to-end RL-based
method designed to deal only with a fixed negotiation problem. More importantly, we show that
our end-to-end method can successfully learn to negotiate with other agents and that the obtained
policy still performs on unseen, randomly generated negotiation problems.

2 Related Work

Bakker et al. (2019) applied RL to decide what utility to demand in the next offer. They abstracted
the state to utility values of the last few offers and time towards the deadline. Translating utility
to an offer, estimating opponent utility, and deciding when to accept were done without RL. Bagga
et al. (2022) also abstracted the state into a fixed representation with utility statistics of historical
offers. They used an RL policy to decide whether to accept and a separate policy that outputs offers
based on a non-RL opponent utility estimation model.

Sengupta et al. (2021) encoded the state into a fixed length of past utility values. The action is the
utility offer target, translated to an actual offer through an exhaustive search of the outcome space.
They trained a portfolio of policies and tried to select effective counterstrategies by classifying
the opponent type. Li et al. (2023) also build a portfolio of RL-based negotiation strategies by
incrementally training best responses based on the Nash bargaining solution. During evaluation,
their method searches for the best response in an effort to improve cooperativity. They only applied
their method to fixed negotiation problems.

Another line of research on negotiation agents includes natural language. An environment for this
was developed by Lewis et al. (2017). Kwon et al. (2021) used this environment and applied a
combination of RL, supervised learning, and expert annotations (based on a dataset) to iteratively
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train two agents through self-play. The negotiation problems considered are fixed, except for the
preferences.

Takahashi et al. (2022) and Higa et al. (2023) are closest to our work, as they also train an end-to-
end RL method for negotiation games. Their approach does not use state abstractions and linearly
maps the negotiation problem and actions in a policy. The policy obtained can only be used for a
fixed problem. They also trained and tested only against single opponents.

Graph Neural Networks (GNNs) (Kipf & Welling, 2016) have been used before to handle graph-
structured input in policy networks, for example, in molecular design (You et al., 2018). Wang et al.
(2018) and Yang et al. (2024) applied them to transfer learn over variable action spaces of various
multi-joint robots. However, they aimed to speed up learning on unseen tasks while we strive for
complete transferability without additional learning.

3 Methods

We formulate the negotiation game as a turn-based Partially Observable Stochastic Game (POSG),
a partially observable extension of a stochastic game (Shapley, 1953). We model the game as a tuple
M = ⟨I,S,Oi,Ai, T ,Ωi,Ri⟩, where I = {1, · · · , n} denotes the set of agents, S the set of states, Oi

the set of possible observations for agent i, and Ai the set of actions for agent i. For convenience, we
write A = Ai, as we consider a turn-based game where only single agents take actions. Furthermore,
T : S × A 7→ p(S) denotes the transition function, Ωi : S × A 7→ p(Oi) the observation function for
agent i, and Ri : S × A 7→ R the reward function for agent i.

The game starts in a particular state s. Then, at timestep t, an agent i selects an action at,i

independently of other agents. Based on this action, the state of the POSG changes according to
st+1 ∼ T (st+1|st, at). Subsequently, each agent receives its own observation ot,i ∼ Ωi(ot,i|st, at) and
associated reward rt,i ∼ Ri(rt,i|st, at).

Each agent i selects actions according to its own policy πi : Oi×Oi×· · · → p(A). At timestep t, agent
i samples an action at ∼ πi(at|ot,i, ot−1,i, · · · ). Note that we can vary the length of the historical
observations by which we condition the policy for each agent. The more history we include, the
more we can overcome partial observability.

Our goal is to find a policy πi for agent i that maximizes its cumulative expected return:

π⋆
i ∈ arg max

πi

Eπ,T

[
H∑

k=0
Ri(st+k, at+k)

]
, (1)

where H denotes the horizon of the POSG (the number of rounds we select an action). Crucially,
the performance of a particular policy πi depends on the other agents’ policies.

3.1 Negotiation Game

A negotiation game consists of a set of agents and a problem to negotiate over. This work only
considers bilateral negotiation games with two agents. The negotiation problem, also known as a
negotiation domain, generally consists of a set of objectives (or issues) B = {1, · · · ,m} with an
associated set of values Vb to choose from. Value sets can be continuous, integer, or discrete, but
we focus solely on discrete value sets in this work, which is the most general type, as continuous
values can also be discretised. For each of the objectives b ∈ B, both agents must agree upon a value
vb ∈ Vb. The total outcome space is the Cartesian product of all the value sets Ω = V1 × · · · × Vm

with a single outcome being ω = ⟨v1, · · · , vm⟩.

Both agents have preferences over the outcome space expressed through a utility function u : Ω 7→
[0, 1] that is private information. Here, 1 is their best possible outcome, and 0 is their worst. This
paper only considers additive utility functions as shown in Equation 2. Here, weights are assigned
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to all values and objectives through weight functions w : B 7→ [0, 1] and wb : Vb 7→ [0, 1] such that∑
b∈B w(b) = 1, maxvb∈Vb

wb(vb) = 1, and minvb∈Vb
wb(vb) = 0.

u(ω) =
∑
b∈B

w(b) · wb(vb) (2)

3.1.1 Protocol

The negotiation follows the commonly used Alternating Offers Protocol (Rubinstein, 1982), where
agents take turns. During its turn, an agent can make a (counter) offer or accept the opponent’s
offer. A deadline is imposed to prevent the agents from negotiating indefinitely. Failure to reach
an agreement before the deadline results in 0 payoff. When an agreement is reached, both agents
obtain the payoff defined by their utility function.

3.2 PPO

We will use reinforcement learning to optimize the policy πi of our own agent i in the negotiation
problem. For simplicity, we will drop the subscript i and simply write π for the policy of our
own agent. We also simplify by writing o instead of ⟨ot,i, ot−1,i, · · · ⟩. To optimize this policy, we
use Proximal Policy Optimisation (PPO) (Schulman et al., 2017) due to its empirical success and
stability.

At each update iteration k, PPO optimises π relative to the last policy πk by maximising the PPO
clip objective:

πk+1 ∈ arg max
π

Eo,a∼πk

[
min

(
π(a|o)
πk(a|o)Aπk

(o, a), clip
(
π(a|o)
πk(a|o) , 1 ± ϵ

)
Aπk

(o, a)
)]

(3)

where ϵ denotes a clip parameter, and Aπ(a, o) denotes the advantage function of taking action a
in observation o (Sutton & Barto, 2018). The ratio gets clipped to ensure that the new policy does
not change too quickly from the policy at the previous step. Our PPO implementation is based on
the CleanRL repository (Huang et al., 2022).

3.3 Graph Neural Networks

We aim to learn to negotiate across randomly generated problems where the number of objectives
and values differ. This forces us to design a policy/value network where the shape and number
of parameters are independent of the number of objectives and values. Networks of linear layers,
often the default in RL, do not fit this criterion, as they require fixed input dimensions. We chose
to represent the input of the policy network as a graph and make use of Graph Neural Networks
(GNN) to deal with the changing size of the input space, more specifically, Graph Attention Networks
(GAT) (Veličković et al., 2018).

The input graph contains nodes that have node features. A layer of GNN encodes the features xu of
node u into a hidden representation hu based on the features of the set of neighbour nodes Nu and
on its own features. The specific case of GATs is defined in Equation 4. Here, neighbour features
are encoded by a linear layer ψ and then weighted summed through a learned attention coefficient
a(xu, xv). The weighted sum is concatenated with xu and passed through another linear layer ϕ to
obtain the embedding of the node hu.

hu = ϕ

(
xu,

∑
v∈Nu

a(xu, xv) · ψ(xv)
)

(4)
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3.4 Implementation

At each timestep, the agent receives observations that are the actions of the opponent in the ne-
gotiation game. Based on these observations, the agent must select an action. The action space
combines multiple discrete actions: the accept action and an action per objective to select one of
the values in that objective as an offer. If the policy outputs a positive accept, then the offer action
becomes irrelevant as the negotiation will be ended.

A negotiation problem has objectives B and a set of values to decide on per objective Vb. We
represent the structure of objectives and values as a graph and encode the history of observations
⟨ot,i, ot−1,i, · · · ⟩ of a negotiation game in this structure to a single observation o (see the left side of
Figure 1). Each objective and value is represented by a node, where value nodes are connected to
the objective node to which they belong. An additional head node is added that is connected to all
objective nodes. The node features of each node are:

• 5 features for each value node: the weight wb(vb) of the value, a binary value to indicate the
opponent’s last offer, a binary value to indicate the last offer of the agent itself, the fraction
of times this value was offered by the opponent, and the fraction of times this value was
offered by itself. Note that it might have been better to implement a recurrent network to
condition the policy on the full history of offers instead of summary statistics. However,
the added computational complexity would have rendered this work much more difficult.
Our approach enables efficient learning, but future work should explore the use of the raw
history of offers.

• 2 features for each objective node: the number of values in the value set of this objective
|Vb|, and the weight of this objective w(b).

• 2 features for the head node: the number of objectives |B|, and the progress towards the
deadline scaled between 0 and 1.

head node

objective nodes

value nodes

GNNs

value net
observation

accept netoffer net

action logits

Figure 1: Overview of our designed policy network based on GNNs. Observations are encoded in
a graph representation (left) and passed through GNNs. Action distribution logits and state-value
are obtained by passing the learned representation of the head node and value nodes through linear
layers.

As illustrated in Figure 1, we apply GAT layers to the observation graph to propagate information
through the graph and embed the node features (Equation 4). The size of the representation is a
hyperparameter. We then take the representation of the head node and pass it to a linear layer that
predicts the state value V . The head representation is also passed through a linear layer to obtain
the two accept action logits. Finally, we take the representation of every value node and apply a
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single linear layer to obtain the offer action logits. These logits are concatenated per action and used
to create the probability distribution over the action space. As we use the same linear layer for all
value nodes, the number of output logits is independent of the number of parameters in the policy,
thus satisfying our requirement. We also note that although the size of the outcome space suffers
heavily from the curse of dimensionality when the number of objectives increases, our approach does
not. Our code implementation can be found on GitHub1.

4 Emperical Evaluation

To train our agent, we need both negotiation problems and opponents to negotiate against. The ne-
gotiation problems will be randomly generated with an outcome space size |Ω| between 200 and 1000.
As opponents, we use baseline agents and agents developed for the 2022 edition of the Automated Ne-
gotiation Agents Competition (ANAC). The baseline agents are simple negotiation strategies often
used within automated negotiation to evaluate and analyse new agents. We provide a description of
the opponents in Table 1. All agents were originally developed for the GENIUS negotiation software
platform (Lin et al., 2014).

Name Type Description
BoulwareAgent Time-dependent Utility target decreases concave with time
ConcederAgent Time-dependent Utility target decreases convex with time
LinearAgent Time-dependent Utility target decreases linearly with time
RandomAgent Random Makes random offers, accepts any utility > 0.6

Table 1: Description of baseline negotiation agents used for benchmarking.

We set a negotiation deadline of 40 rounds. An opponent is randomly selected during the rollout
phase, and a negotiation problem is randomly generated. The policy is then used to negotiate until
the episode ends, either by finding an agreement or reaching the deadline. The episode is added to
the experience batch, which is repeated until the experience batch is full. We apply 4 layers of GATs
with a hidden representation size of 256. A complete overview of the hyperparameter settings can
be found in Appendix A.

4.1 Fixed Negotiation Problem

As a first experiment, we compare our method to a recent end-to-end RL method by Higa et al.
(2023) that can only be used on a fixed negotiation problem. Their method was originally only
trained and evaluated against single opponents. We chose to train the agent against the set of
baseline players instead, as we consider that a more realistic scenario. The baseline agents show
relatively similar behaviour, making this an acceptable increase in difficulty.

We generated a single negotiation problem and trained a reproduction of their and our own method
for 2 000 000 timesteps on 10 different seeds. The training curve is illustrated in Figure 2, where we
plot both the mean of the episodic return and the 99% confidence interval based on the results from
10 training sessions. Every obtained policy is evaluated in 1000 negotiation games against every
opponent on this fixed negotiation problem. We report the average obtained utility of the trained
policy and the opponent, including a confidence interval based on the 10 evaluation runs in Figure 3.

We can see in Figure 3 that our method performs similarly to the method proposed by Higa et al.
(2023). This result is mostly a sanity check that our method can successfully learn to negotiate in
a relatively simple setup despite being more complex and broadly usable.

1https://github.com/brenting/RL-negotiation/tree/RLC-2024

https://github.com/brenting/RL-negotiation/tree/RLC-2024
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Figure 2: Mean and 99% confidence interval of episodic return during training based on results from
10 random seeds. The results of the policy designed by Higa et al. (2023) and our policy are plotted.
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Figure 3: Evaluation results of the policy designed by Higa et al. (2023) and our GNN-based policy.
Results are obtained by evaluating each trained policy for 1000 negotiation games against the set of
baseline agents. Mean and 99% confidence interval are plotted based on 10 training iterations.

4.2 Random Negotiation Problems

We now evaluate the performance of our end-to-end method on randomly generated negotiation
problems. Negotiation problems will continuously change during both training and evaluation.
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Figure 4: Mean and 99% confidence interval of episodic return during training of our GNN policy
based on results from 10 different random seeds. The results from training against the baseline
agents and training against the competition agents are plotted.

4.2.1 Baseline Opponents

We first train and evaluate against the set of baseline agents as described in Table 1. We train our
method for 2 000 000 steps on 10 random seeds. The learning curve is plotted in Figure 4. Results
are again obtained by running 1000 negotiation sessions against the set of baseline opponents, but
this time, all negotiation problems are randomly generated and are never seen before. We note that
the observation and action space sizes are constantly changing. Results are plotted in Figure 5a.

As seen in Figure 5a, our method performs well against all baseline agents while negotiating on
various structured negotiation problems it has never seen before. It is promising that an end-to-end
learned GNN-based policy appears to generalise over such different problems.
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Figure 5: Evaluation results of our GNN-based policy on randomly generated negotiation problem
both against the set of baseline opponents (left) and against the full set of opponents (right). Results
are obtained by evaluating each trained policy for 1000 negotiation games against the set of agents.
Mean and 99% confidence interval are plotted based on 10 training iterations.

4.2.2 Competition Opponents

We now repeat the experiment from Section 4.2.1, but increase the set of agents we negotiate
against. More specifically, we add the agents of the 2022 edition of the Automated Negotiation
Agents Competition (ANAC)2. The learning curve and results are plotted in Figure 4 and Figure 5b,
respectively.

The results show much lower performance against all opponents, including those outperformed in
Section 4.2.1. Our current method of encoding the observations and design of the policy likely leads
to limited capabilities of learning opponent characteristics. Past work has shown that adapting to
opponents is important to improve performance (Ilany & Gal, 2016; Sengupta et al., 2021; Renting
et al., 2022), which is currently impossible. However, this goes beyond the core contribution of this
work, which is about handling different-sized negotiation problems in end-to-end RL methods. We
discuss potential solutions in Section 5.

5 Conclusion

We developed an end-to-end RL method for training negotiation agents capable of handling differ-
ently structured negotiation problems. We showed that our method performs as well as a recent
end-to-end method that is not transferrable beyond a single fixed negotiation problem. We see the
latter as a serious restriction since, in real-world applications, it would be extremely unlikely to
encounter the exact same negotiation problem more than once.

In our work presented here, for the first time, we have demonstrated how the difficulty of dealing
with changing negotiation problems in end-to-end RL methods can be overcome. Specifically, we
have shown how an agent can learn to negotiate on diverse negotiation problems in such a way that
performance generalises to never-before-seen negotiation problems. Our method is conceptually
simple compared to previous work on reinforcement learning in negotiation agents. Our agent
performs well against strong baseline negotiation strategies, but leaves room for improvement when
negotiating against a broad set of highly competitive agents.

Our approach is based on encoding the stream of observations received by our agent into a graph
whose node features are designed to capture historical statistics about the episode. This manual
feature design likely leads to information loss and goes against the end-to-end aim of our approach.
For example, the expressiveness of history is limited as the graph only encodes the last offer and
frequency of offers. This likely also causes limited adaptivity to a broad set of opponent strategies,
which in turn causes the low performance observed in Section 4.2.2.

2https://web.tuat.ac.jp/~katfuji/ANAC2022/

https://web.tuat.ac.jp/~katfuji/ANAC2022/
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We note that, due to the competition setup of ANAC, competitive agents often play a game of
chicken. Performing well against such strategies means that a policy must also learn this game
of chicken. This can be challenging for RL, due to exploration problems, as it must learn a long
sequence of relatively meaningless actions before having a chance to select a good action. We could
attempt to improve upon this, but it might be more beneficial to prioritize mitigating this game of
chicken behaviour, as it is inefficient and (arguably) undesirable.

The negotiation problems we generated have additive utility functions and a relatively small out-
come space, as is quite typical for benchmarks used in automated negotiation research. Real-world
negotiation problems, however, can have huge outcome spaces (de Jonge & Sierra, 2015). Our de-
signed policy can be applied to larger problems without increasing the trainable parameters, and
the effects on the performance of doing this should be investigated in future work.

Further promising avenues for future work include extending end-to-end policies with additional
components that, e.g., learn opponent representations based on the history of observations in the
current or previous encounter. Changing a negotiation strategy based on the opponent characteristics
has been shown previously to improve performance (Ilany & Gal, 2016; Sengupta et al., 2021; Renting
et al., 2022), but is likely difficult to learn through our current policy design. Furthermore, improving
our method to handle continuous objectives would eliminate the necessity of discretizing them.

Overall, we believe that in this work, we have taken a substantial step towards the effective use
of end-to-end RL for the challenging and important problem of training negotiation agents whose
performance generalises to new negotiation problems and opens numerous exciting avenues for future
research in this area.

Broader Impact Statement

It is often envisioned that negotiating agents will represent humans or other entities in a future where
AI is more integrated into society. Having access to more capable negotiation agents could increase
inequalities in such societies, especially if the development of such agents is a highly skilled endeavour.
Removing the human aspect in negotiation might also lead to more self-centred behaviour. We should
ensure that we design for fairness and cooperative behaviour in such systems.

Acknowledgments

This research was (partly) funded by the Hybrid Intelligence Center, a 10-year programme funded
by the Dutch Ministry of Education, Culture and Science through the Netherlands Organisation for
Scientific Research, grant number 024.004.022 and by EU H2020 ICT48 project“Humane AI Net”
under contract # 952026. This research was also partially supported by TAILOR, a project funded
by the EU Horizon 2020 research and innovation programme under GA No 952215.

References

Reyhan Aydoğan, Tim Baarslag, Katsuhide Fujita, Holger H. Hoos, Catholijn M. Jonker, Yasser
Mohammad, and Bram M. Renting. The 13th International Automated Negotiating Agent Com-
petition Challenges and Results. In Rafik Hadfi, Reyhan Aydoğan, Takayuki Ito, and Ryuta
Arisaka (eds.), Recent Advances in Agent-Based Negotiation: Applications and Competition Chal-
lenges, Studies in Computational Intelligence, pp. 87–101, Singapore, 2023. Springer Nature. ISBN
978-981-9905-61-4. doi: 10.1007/978-981-99-0561-4_5.

Pallavi Bagga, Nicola Paoletti, and Kostas Stathis. Deep Learnable Strategy Templates for Multi-
Issue Bilateral Negotiation. In Proceedings of the 21st International Conference on Autonomous
Agents and Multiagent Systems, AAMAS ’22, pp. 1533–1535, Richland, SC, May 2022. Inter-
national Foundation for Autonomous Agents and Multiagent Systems. ISBN 978-1-4503-9213-6.
URL https://ifaamas.org/Proceedings/aamas2022/pdfs/p1533.pdf.

https://hybrid-intelligence-centre.nl
https://ifaamas.org/Proceedings/aamas2022/pdfs/p1533.pdf


RLJ | RLC 2024

Jasper Bakker, Aron Hammond, Daan Bloembergen, and Tim Baarslag. RLBOA: A Modular Re-
inforcement Learning Framework for Autonomous Negotiating Agents. In Proceedings of the 18th
International Conference on Autonomous Agents and MultiAgent Systems, AAMAS ’19, pp. 260–
268, Richland, SC, May 2019. International Foundation for Autonomous Agents and Multiagent
Systems. ISBN 978-1-4503-6309-9. URL https://www.ifaamas.org/Proceedings/aamas2019/
pdfs/p260.pdf.

Allan Dafoe, Edward Hughes, Yoram Bachrach, Tantum Collins, Kevin R. McKee, Joel Z. Leibo,
Kate Larson, and Thore Graepel. Open Problems in Cooperative AI, December 2020. URL
http://arxiv.org/abs/2012.08630.

Dave de Jonge and Carles Sierra. NB^3: a multilateral negotiation algorithm for large, non-linear
agreement spaces with limited time. Autonomous Agents and Multi-Agent Systems, 29(5):896–942,
September 2015. ISSN 1573-7454. doi: 10.1007/s10458-014-9271-3. URL https://doi.org/10.
1007/s10458-014-9271-3.

Garett Dworman, Steven O. Kimbrough, and James D. Laing. Bargaining by artificial agents in
two coalition games: a study in genetic programming for electronic commerce. In Proceedings of
the 1st annual conference on genetic programming, pp. 54–62, Cambridge, MA, USA, July 1996.
MIT Press. ISBN 978-0-262-61127-5. URL https://dl.acm.org/doi/abs/10.5555/1595536.
1595544.

Torsten Eymann. Co-Evolution of Bargaining Strategies in a Decentralized Multi-Agent System.
In symposium on negotiation methods for autonomous cooperative systems, pp. 126–134, January
2001. ISBN 978-1-57735-137-5.

Ryota Higa, Katsuhide Fujita, Toki Takahashi, Takumu Shimizu, and Shinji Nakadai. Reward-
based negotiating agent strategies. In Proceedings of the Thirty-Seventh AAAI Conference on
Artificial Intelligence and Thirty-Fifth Conference on Innovative Applications of Artificial Intelli-
gence and Thirteenth Symposium on Educational Advances in Artificial Intelligence, volume 37 of
AAAI’23/IAAI’23/EAAI’23, pp. 11569–11577. AAAI Press, February 2023. ISBN 978-1-57735-
880-0. doi: 10.1609/aaai.v37i10.26367. URL https://doi.org/10.1609/aaai.v37i10.26367.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Ki-
nal Mehta, and João G. M. Araújo. CleanRL: High-quality Single-file Implementations of Deep
Reinforcement Learning Algorithms. Journal of Machine Learning Research, 23(274):1–18, 2022.
ISSN 1533-7928. URL http://jmlr.org/papers/v23/21-1342.html.

Litan Ilany and Ya’akov Gal. Algorithm selection in bilateral negotiation. Autonomous Agents and
Multi-Agent Systems, 30(4):697–723, July 2016. ISSN 1573-7454. doi: 10.1007/s10458-015-9302-8.
URL https://doi.org/10.1007/s10458-015-9302-8.

Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional Net-
works. November 2016. URL https://openreview.net/forum?id=SJU4ayYgl.

Mark Klein and Stephen C. Y. Lu. Conflict resolution in cooperative design. Artificial Intelligence in
Engineering, 4(4):168–180, October 1989. ISSN 0954-1810. doi: 10.1016/0954-1810(89)90013-7.
URL https://www.sciencedirect.com/science/article/pii/0954181089900137.

Minae Kwon, Siddharth Karamcheti, Mariano-Florentino Cuellar, and Dorsa Sadigh. Targeted Data
Acquisition for Evolving Negotiation Agents. In Proceedings of the 38th International Conference
on Machine Learning, pp. 5894–5904, Virtual, July 2021. PMLR. URL https://proceedings.
mlr.press/v139/kwon21a.html.

Raymond Y. K. Lau, Maolin Tang, On Wong, Stephen W. Milliner, and Yi-Ping Phoebe Chen. An
evolutionary learning approach for adaptive negotiation agents: Research Articles. International
Journal of Intelligent Systems, 21(1):41–72, January 2006. ISSN 0884-8173.

https://www.ifaamas.org/Proceedings/aamas2019/pdfs/p260.pdf
https://www.ifaamas.org/Proceedings/aamas2019/pdfs/p260.pdf
http://arxiv.org/abs/2012.08630
https://doi.org/10.1007/s10458-014-9271-3
https://doi.org/10.1007/s10458-014-9271-3
https://dl.acm.org/doi/abs/10.5555/1595536.1595544
https://dl.acm.org/doi/abs/10.5555/1595536.1595544
https://doi.org/10.1609/aaai.v37i10.26367
http://jmlr.org/papers/v23/21-1342.html
https://doi.org/10.1007/s10458-015-9302-8
https://openreview.net/forum?id=SJU4ayYgl
https://www.sciencedirect.com/science/article/pii/0954181089900137
https://proceedings.mlr.press/v139/kwon21a.html
https://proceedings.mlr.press/v139/kwon21a.html


RLJ | RLC 2024

Mike Lewis, Denis Yarats, Yann Dauphin, Devi Parikh, and Dhruv Batra. Deal or No Deal? End-to-
End Learning of Negotiation Dialogues. In Martha Palmer, Rebecca Hwa, and Sebastian Riedel
(eds.), Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing,
pp. 2443–2453, Copenhagen, Denmark, September 2017. Association for Computational Linguis-
tics. doi: 10.18653/v1/D17-1259. URL https://aclanthology.org/D17-1259.

Zun Li, Marc Lanctot, Kevin R. McKee, Luke Marris, Ian Gemp, Daniel Hennes, Paul Muller, Kate
Larson, Yoram Bachrach, and Michael P. Wellman. Combining Tree-Search, Generative Models,
and Nash Bargaining Concepts in Game-Theoretic Reinforcement Learning, February 2023. URL
http://arxiv.org/abs/2302.00797.

Raz Lin, Sarit Kraus, Tim Baarslag, Dmytro Tykhonov, Koen Hindriks, and Catholijn M.
Jonker. Genius: An Integrated Environment for Supporting the Design of Generic Auto-
mated Negotiators. Computational Intelligence, 30(1):48–70, 2014. ISSN 1467-8640. doi: 10.
1111/j.1467-8640.2012.00463.x. URL https://onlinelibrary.wiley.com/doi/abs/10.1111/
j.1467-8640.2012.00463.x.

Bram M. Renting, Holger H. Hoos, and Catholijn M. Jonker. Automated Configuration of
Negotiation Strategies. In Proceedings of the 19th International Conference on Autonomous
Agents and MultiAgent Systems, AAMAS ’20, pp. 1116–1124, Auckland, May 2020. International
Foundation for Autonomous Agents and Multiagent Systems. ISBN 978-1-4503-7518-4. URL
http://www.ifaamas.org/Proceedings/aamas2020/pdfs/p1116.pdf.

Bram M. Renting, Holger H. Hoos, and Catholijn M. Jonker. Automated Configuration and Usage
of Strategy Portfolios for Mixed-Motive Bargaining. In Proceedings of the 21st International Con-
ference on Autonomous Agents and Multiagent Systems, AAMAS ’22, pp. 1101–1109, Richland,
SC, May 2022. International Foundation for Autonomous Agents and Multiagent Systems. ISBN
978-1-4503-9213-6. URL https://ifaamas.org/Proceedings/aamas2022/pdfs/p1101.pdf.

W.N. Robinson. Negotiation behavior during requirement specification. In [1990] Proceedings. 12th
International Conference on Software Engineering, pp. 268–276, March 1990. doi: 10.1109/ICSE.
1990.63633.

Jeffrey Solomon Rosenschein. Rational interaction: cooperation among intelligent agents. phd,
Stanford University, Stanford, CA, USA, 1986.

Ariel Rubinstein. Perfect Equilibrium in a Bargaining Model. Econometrica, 50(1):97–109, 1982.
ISSN 0012-9682. doi: 10.2307/1912531. URL https://www.jstor.org/stable/1912531.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
Policy Optimization Algorithms, August 2017. URL http://arxiv.org/abs/1707.06347.
arXiv:1707.06347 [cs].

Ayan Sengupta, Yasser Mohammad, and Shinji Nakadai. An Autonomous Negotiating Agent Frame-
work with Reinforcement Learning based Strategies and Adaptive Strategy Switching Mecha-
nism. In Proceedings of the 20th International Conference on Autonomous Agents and Multi-
Agent Systems, AAMAS ’21, pp. 1163–1172, Richland, SC, May 2021. International Founda-
tion for Autonomous Agents and Multiagent Systems. ISBN 978-1-4503-8307-3. URL https:
//www.ifaamas.org/Proceedings/aamas2021/pdfs/p1163.pdf.

L. S. Shapley. Stochastic Games. Proceedings of the National Academy of Sciences, 39(10):1095–
1100, October 1953. doi: 10.1073/pnas.39.10.1095. URL https://www.pnas.org/doi/abs/10.
1073/pnas.39.10.1095. Publisher: Proceedings of the National Academy of Sciences.

Smith. The Contract Net Protocol: High-Level Communication and Control in a Distributed Prob-
lem Solver. IEEE Transactions on Computers, C-29(12):1104–1113, December 1980. ISSN 1557-
9956. doi: 10.1109/TC.1980.1675516.

https://aclanthology.org/D17-1259
http://arxiv.org/abs/2302.00797
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8640.2012.00463.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8640.2012.00463.x
http://www.ifaamas.org/Proceedings/aamas2020/pdfs/p1116.pdf
https://ifaamas.org/Proceedings/aamas2022/pdfs/p1101.pdf
https://www.jstor.org/stable/1912531
http://arxiv.org/abs/1707.06347
https://www.ifaamas.org/Proceedings/aamas2021/pdfs/p1163.pdf
https://www.ifaamas.org/Proceedings/aamas2021/pdfs/p1163.pdf
https://www.pnas.org/doi/abs/10.1073/pnas.39.10.1095
https://www.pnas.org/doi/abs/10.1073/pnas.39.10.1095


RLJ | RLC 2024

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning, second edition: An Introduction.
MIT Press, USA, November 2018. ISBN 978-0-262-35270-3.

Katia Sycara. Resolving goal conflicts via negotiation. In Proceedings of the Seventh AAAI National
Conference on Artificial Intelligence, AAAI’88, pp. 245–250, Saint Paul, Minnesota, August 1988.
AAAI Press.

Toki Takahashi, Ryota Higa, Katsuhide Fujita, and Shinji Nakadai. VeNAS: Versatile Negotiating
Agent Strategy via Deep Reinforcement Learning (Student Abstract). Proceedings of the AAAI
Conference on Artificial Intelligence, 36(11):13065–13066, June 2022. ISSN 2374-3468. doi: 10.
1609/aaai.v36i11.21669. URL https://ojs.aaai.org/index.php/AAAI/article/view/21669.

M. Tawfik Jelassi and Abbas Foroughi. Negotiation support systems: an overview of design issues
and existing software. Decision Support Systems, 5(2):167–181, June 1989. ISSN 0167-9236.
doi: 10.1016/0167-9236(89)90005-5. URL https://www.sciencedirect.com/science/article/
pii/0167923689900055.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph Attention Networks. February 2018. URL https://openreview.net/forum?id=
rJXMpikCZ.

Tingwu Wang, Renjie Liao, Jimmy Ba, and Sanja Fidler. NerveNet: Learning Structured Policy with
Graph Neural Networks. February 2018. URL https://openreview.net/forum?id=S1sqHMZCb.

Tianpei Yang, Heng You, Jianye Hao, Yan Zheng, and Matthew E. Taylor. A Transfer Approach
Using Graph Neural Networks in Deep Reinforcement Learning. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 38(15):16352–16360, March 2024. ISSN 2374-3468. doi: 10.1609/
aaai.v38i15.29571. URL https://ojs.aaai.org/index.php/AAAI/article/view/29571.

Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay Pande, and Jure Leskovec. Graph Convolutional Policy
Network for Goal-Directed Molecular Graph Generation. In Advances in Neural Information Pro-
cessing Systems, volume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.
cc/paper_files/paper/2018/hash/d60678e8f2ba9c540798ebbde31177e8-Abstract.html.

A PPO training hyperparameters

Parameter Value
total timesteps 2 · 106

batch size 6000
mini batch size 300
policy update epochs 30
entropy coefficient 0.001
discount factor γ 1
value function coefficient 1
GAE λ 0.95
# GAT layers 4
# GAT attention heads 4
hidden representation size 256
Adam learning rate 3 · 10−4

Learning rate annealing True
activation functions ReLU

Table 2: Hyperparameter settings

https://ojs.aaai.org/index.php/AAAI/article/view/21669
https://www.sciencedirect.com/science/article/pii/0167923689900055
https://www.sciencedirect.com/science/article/pii/0167923689900055
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=S1sqHMZCb
https://ojs.aaai.org/index.php/AAAI/article/view/29571
https://proceedings.neurips.cc/paper_files/paper/2018/hash/d60678e8f2ba9c540798ebbde31177e8-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2018/hash/d60678e8f2ba9c540798ebbde31177e8-Abstract.html

