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Abstract

Q-learning algorithms are appealing for real-world applications due to their
data-efficiency, but they are very prone to overfitting and training instabilities
when trained from visual observations. Prior work, namely SVEA, finds that
selective application of data augmentation can improve the visual generalization
of RL agents without destabilizing training. We revisit its recipe for data aug-
mentation, and find an assumption that limits its effectiveness to augmentations
of a photometric nature. Addressing these limitations, we propose a generalized
recipe, SADA, that works with wider varieties of augmentations. We benchmark
its effectiveness on DMC-GB2 – our proposed extension of the popular DMControl
Generalization Benchmark – as well as tasks from Meta-World and the Distracting
Control Suite, and find that our method, SADA, greatly improves training stability
and generalization of RL agents across a diverse set of augmentations.

Visualizations, code and benchmark: https://aalmuzairee.github.io/SADA

1 Introduction

Visual Reinforcement Learning (RL) has a myriad of real-world applications (Mnih et al., 2013;
Levine et al., 2016; Pinto & Gupta, 2016; Kalashnikov et al., 2018; Berner et al., 2019; Vinyals
et al., 2019), and visual Q-learning algorithms are especially enticing because of their potential for
high data-efficiency. However, they are very prone to overfitting on their training distribution due
to the combination of flexible representation, high-dimensional data, and limited visual diversity in
training environments (Peng et al., 2018; Cobbe et al., 2019; Julian et al., 2020).

Data augmentation is a widely used technique for learning visual invariances in supervised learning
(Noroozi & Favaro, 2016; Tian et al., 2019; Chen et al., 2020), but has been found to cause training
instabilities when applied to visual RL (Lee et al., 2019; Laskin et al., 2020; Hansen & Wang,
2021). Prior work, SVEA (Hansen et al., 2021b), found that a more selective application of data
augmentation in the critic update of actor-critic algorithms (Lillicrap et al., 2016; Haarnoja et al.,
2018) improved training stability significantly. The actor (policy) – which shares its visual backbone
with the critic (Q-function) – is then optimized solely from unaugmented observations. By sharing
their visual backbone, the actor indirectly benefits from the learned invariances.

In this work, we revisit the data augmentation recipe proposed in SVEA, and discover an assumption
that limits its practicality to augmentations of a photometric (color or light altering) nature. SVEA
assumes that an encoder’s output embedding can become fully invariant to input augmentations.
If an encoder’s output is fully invariant to input augmentations, then an actor, only trained on
unaugmented observations, can become robust to input augmentations indirectly through a shared
actor-critic encoder. However, this leads to two key failure cases: (i) the output of a convolutional
neural network (CNN) encoder can not become invariant to input geometric augmentations e.g.,
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Figure 1. Augmentation Effect on CNN Output. We illustrate how the output embedding of a
trained CNN changes wrt. image augmentations. The output of unaugmented and photometrically
augmented images are identical due to the ability of a CNN to learn color invariances. However, the
output of a CNN is generally not invariant to geometric augmentations (e.g., rotation).

rotation or translation; (see Figure 1) and (ii) the encoder and critic are trained end-to-end, thus,
part of the invariance may be off-loaded to the critic regardless of the type of augmentation.

To address these limitations, we propose SADA: Stabilized Actor-Critic under Data Augmentation,
a generalized data augmentation recipe that supports a wide variety of augmentations. Instead of
only augmenting critic inputs, SADA augments both actor and critic inputs, but does so carefully
to avoid training instabilities: (1) in actor updates, only the policy input is augmented while the
Q-function input is left unaugmented, (2) in critic updates, only the online Q-function input is aug-
mented while the target Q-function input is unaugmented, and (3) we jointly optimize components
on both augmented and unaugmented data. Importantly, SADA requires no additional forward
passes, losses, or parameters.

To stress-test our method, we propose DMC-GB2, an extension of the DeepMind Control Suite
Generalization Benchmark (Hansen & Wang, 2021) that encompasses a wider and more challenging
collection of test environments than existing benchmarks. We benchmark methods across DMC-
GB2, tasks from Meta-World (Yu et al., 2020), and the Distracting Control Suite (Stone et al.,
2021), and find that SADA greatly improves training stability and generalization of RL agents
under a diverse set of augmentations.

2 Prior Work on Data Augmentation for Visual RL

The practice of learning visual invariances by augmenting data is ubiquitous in machine learning
literature, and has been studied extensively in the context of supervised and self-supervised learning
algorithms for computer vision problems (Noroozi & Favaro, 2016; Wu et al., 2018; van den Oord
et al., 2018; Tian et al., 2019; Chen et al., 2020; He et al., 2022). More recently, use of augmentation
has also been popularized in the context of visual RL. However, there is mounting evidence that
much of the wisdom and practices developed in other areas (e.g. computer vision) do not translate
to RL problems, presumably due to differences in learning objectives, datasets, and network archi-
tectures used. For example, while machine learning literature commonly considers a fixed dataset,
RL algorithms are often trained on a non-stationary data distribution (replay buffer) that changes
throughout training, and incoming data is typically a function of the current (behavioral) policy. As
a result, RL datasets are often small and have limited diversity. This section provides an overview
of prior work that leverages data augmentation to improve data-efficiency and generalization.

Improving data-efficiency with data augmentation. Much of the existing literature on visual
RL leverages weak data augmentation (e.g. random crop or image shift) as a regularizer when data
is limited, i.e., when data-efficiency is critical (Srinivas et al., 2020; Laskin et al., 2020; Kostrikov
et al., 2020; Stooke et al., 2020; Yarats et al., 2021; Hansen et al., 2023), without particular em-
phasis on generalization or robustness to changes in the environment. For example, seminal works
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RAD (Laskin et al., 2020) and DrQ (Kostrikov et al., 2020) demonstrate that randomly cropping or
shifting images, respectively, by a few pixels greatly improves data-efficiency and training stability
of Q-learning algorithms – even when agents are trained and tested in the same environment. How-
ever, Laskin et al. (2020) simultaneously find that other types of augmentation (rotation, random
convolution, masking) lead to training instabilities and a substantial decrease in data-efficiency.

Improving generalization with data augmentation. Visual generalization is a challenging but
increasingly important problem in RL due to its limited data diversity. Multiple prior works aim
to improve the training stability and generalization of RL algorithms by, e.g., proposing new types
of augmentation (Lee et al., 2019; Wang et al., 2020; Hansen & Wang, 2021; Hansen et al., 2021b;
Zhang & Guo, 2021; Wang et al., 2023), or introducing new (auxiliary) objectives (Raileanu et al.,
2020; Hansen et al., 2021a; Wang et al., 2021; Fan et al., 2021; Yuan et al., 2022; Yang et al., 2024).
For example, Lee et al. (2019) augment high-frequency content in observations using random convo-
lution, Hansen & Wang (2021) randomly overlay observations with out-of-domain images, and Yang
et al. (2024) adapt to camera changes at test-time using an auxiliary self-supervised objective and
augmented data. Perhaps most importantly, SVEA (Hansen et al., 2021b) investigate why strong
augmentations (such as those used in the aforementioned works) often destabilize training in an RL
context, and propose an alternative method of applying augmentations that mitigate these instabil-
ities. Our work builds upon SVEA and demonstrates that – while SVEA is robust to photometric
augmentations – it largely fails when applied to (equally important) geometric augmentations.

We recommend the survey by Kirk et al. (2023) for a more comprehensive overview of prior work.

3 Background & Definitions

Visual Reinforcement Learning (RL) formulates interaction between an agent and its environ-
ment as a Partially Observable Markov Decision Process (POMDP) (Kaelbling et al., 1998). A
POMDP can be formalized as a tuple (S,O,A, T , R, γ), where S is an unobservable state space,
o ∈ O are observations from the environment (e.g., RGB images), a ∈ A are actions, T : S ×A 7→ S
is a transition function, r is a task reward from a reward function R : S × A 7→ R, and γ is a
discount factor. Throughout this work, we approximate the unobservable states s ∈ S by defining
observations as a stack of the three most recent RGB frames ot

.= {xt, xt−1, xt−2} for frames xt:t−2
at time t (Mnih et al., 2013). The goal is then to learn a policy π : O 7→ A such that the discounted
sum of rewards Eπ [

∑∞
t=0 γtrt] is maximized (in expectation) when following the policy π.

Q-Learning algorithms developed for visual RL generally estimate the optimal state-action value
function Q∗ : O × A 7→ R with a neural network (denoted the critic). This is achieved by dy-
namic programming using the single-step Bellman error Q(ot, at) − yt where yt is the temporal
difference (TD) target yt

.= rt + γQ(ot+1, at+1), at+1 ∼ π(·|ot+1). In practice, the Q-network
used to compute yt is usually chosen to be an exponential moving average of the Q-function being
learned (Lillicrap et al., 2016; Haarnoja et al., 2018). The policy π is obtained by taking the action
at ≈ arg maxat

Q(ot, at) ∀ot in the current dataset (replay buffer), which is typically estimated by
training a separate actor network when A is continuous. These two components – the actor and
the critic – are iteratively updated by collecting data in the environment, appending it to a replay
buffer D, and optimizing Q, π with the following objectives using stochastic gradient descent:

LQ(D) = E(ot,at,rt,ot+1)∼D [∥Q(ot, at)− yt∥2] (critic) (1)
Lπ(D) = Eot∼D [−Q(ot, π(ot)] (actor) (2)

where gradients of the first objective are computed wrt. Q only, and gradients of the second objective
are computed wrt. π only. When learning from images, observations are commonly encoded using
a shared convolutional encoder f such that Q, π are redefined as Q(f(ot), a) and π(f(ot)), with f
only being updated by the critic objective LQ. Due to the recurrent and self-referential nature of
Equations 1-2, Q-learning algorithms are often more data-efficient than other algorithm classes, but
are very prone to training instabilities – especially when data augmentation is applied to observations.
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Figure 2. Our approach. Overview of SADA applied to a generic actor-critic algorithm. We
highlight our algorithmic contributions in yellow. SADA selectively applies augmentations to the
actor and critic inputs, and modifies the learning objectives accordingly.

Image transformations. Throughout this work, we classify image transformations into two types:
photometric and geometric transformations. Photometric transformations alter image color and
lighting properties while preserving the spatial arrangement of pixels (e.g. random convolution,
image overlay). Geometric transformations alter the spatial arrangement of pixels while keeping
image color and lighting properties intact (e.g. rotation, shift). We visualize examples of photometric
and geometric transformations in Figure 1.

4 Stabilized Actor-Critic Learning under Data Augmentation

We revisit common wisdom and practices when applying data augmentation in Q-learning algo-
rithms, and discover that prior work makes an assumption that only holds for augmentations
that are photometric in nature. We propose SADA: Stabilized Actor-Critic Learning under Data
Augmentation, a generalized recipe for data augmentation that significantly improves the perfor-
mance of a wider variety of augmentations. We start by outlining the assumptions of prior work, its
implications, and then present our proposed solution.

4.1 Shortcomings of Prior Work

Naive augmentation, where all inputs are indiscriminately augmented, has been shown to lead poli-
cies to suboptimal convergence (Raileanu et al., 2020; Hansen et al., 2021b). Unlike supervised
learning, the application of augmentation in RL can lead to a conflict of task objective, conflict of
learning objective, or increased variance that exacerbates instabilities within actor-critic frameworks.

To stabilize actor-critic learning under strong applications of data augmentation, SVEA (Hansen
et al., 2021b) selectively applies augmentations in the critic updates, without any application of
augmentation in the actor updates. The actor – optimized purely from unaugmented observations
– becomes robust to augmentations indirectly, through the use of a shared actor-critic encoder. By
using this formulation, SVEA assumes that the encoder can output embeddings that are invariant
to input augmentations, such that an actor can indirectly become robust to input augmentations.
This assumption leads to two key failure cases: (i) the output embedding of a CNN encoder can
not become invariant to input geometric augmentations, (ii) even with photometric augmentations,
part of the robustness could be off-loaded to the critic.

We provide a motivating example for key failure case (i) in Figure 1 and show that geometric
transformations will always induce changes in a CNN’s output embedding. Therefore, an actor
not directly trained on these changed output embeddings will not become robust to these geometric
transformations. As for key failure case (ii), a CNN can learn to output embeddings that are invariant
to input photometric augmentations. However, the objective is formulated such that the output of
the critic is robust to input image augmentations, indicating that if either the encoder or the critic
is robust, the objective will be satisfied. Therefore, some of the photometric resistance might be
contained within the critic, rendering the actor weaker against photometric transformations.
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4.2 Our Proposed Recipe

To mitigate shortcomings of previous works, the actor needs to directly train on the augmented
stream. However, naively training the actor on the augmented stream exacerbates training insta-
bilities. Each image augmentation applied adds a more complex distribution for the agent to learn
compared to the original training distribution. To overcome this complexity, we introduce SADA, a
general framework for stabilizing actor-critic agents under strong applications of data augmentation.

In the actor’s update, we elect to use asymmetric observation inputs to the policy and Q-function
(Pinto et al., 2017). Specifically, we allow the policy to observe both the augmented and unaugmented
streams, while the Q-function estimates the Q-value observing only the unaugmented stream. Since
the Q-value estimates of both the augmented and unaugmented streams should be identical, we allow
the Q-function to exploit only the unaugmented stream (easier distribution) in making accurate Q-
value estimates. Given an observation ot, replay buffer D, and an encoder fξ, the actor objective
for a generic actor critic thus becomes:

LSADA
πϕ

(D) = Eot∼D [−Qθ(mt, πϕ(pt))] (actor) (3)

where pt = fξ([ot, oaug
t ]N ), mt = fξ([ot, ot]N ) and oaug

t = aug(ot, vt), vt ∼ V. We use [·]N to denote
concatenation for batch size of dimensionality N where ot, oaug

t ∈ RN×C×H×W . We use aug() as the
augmentation operator where we stochastically sample from the augmentation distribution V and
apply it to the input observation.

In the critic update, we apply a similar asymmetric observation setup with the Q-value and Q-
target estimates. We allow the online Q-function, Qθ, to estimate the Q-value observing both the
augmented and unaugmented streams, while the target Q-function, Qθ, estimates the Q-targets
observing only the unaugmented stream. Since the Q-target estimates of both the augmented and
unaugmented streams should be identical, this reduces the variance in Q-target estimates and allows
the target Q-function to exploit the unaugmented stream (easier distribution) in making accurate
Q-target estimates. The Q-target estimate, qtgt

t , is unaltered while the critic objective, LSADA
Qθ

, is
changed such that:

qtgt
t = r(ot, at) + γmaxa′

t
Qθ(fξ(ot+1), a′) (4)

LSADA
Qθ

(D) = E(ot,at,rt,ot+1)∼D [∥Qθ(pt, at)− yt∥2] (critic) (5)

where pt = fξ([ot, oaug
t ]N ), and yt =

[
qtgt

t , qtgt
t

]
N

. An overview of our algorithm is provided
in Figure 2. A detailed SAC-based formulation is provided in Appendix A.3, and pseudocode is
provided in Appendix A.4.

5 Experiments

We evaluate our method and baselines across 11 visual RL tasks from the DMControl (Tassa et al.,
2018) and Meta-World-v2 (Yu et al., 2020) benchmarks and 12 test distributions from our proposed
DMControl - Generalization Benchmark 2 (DMC-GB2). We additionally evaluate on the Distracting
Control Suite (Stone et al., 2021) and provide the results in Appendix B.2. All methods are trained
under strong augmentations in the training environments and evaluated in a zero-shot manner on
their respective test distributions. See Figure 3 for a visualization of DMC-GB2 test environments.
The full DMControl and Meta-World task lists are provided in Appendix A.2. Concretely, we aim
to answer the following questions through experimentation:

- Robustness. How does SADA compare to baselines in terms of overall augmentation robust-
ness? In terms of geometric vs photometric robustness?

- Analysis. Why do baselines fail to display geometric robustness, and how does SADA solve
the problem? How do each of the SADA design choices affect results?

- Generality. Can SADA be readily applied to other RL backbones and benchmarks?
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Figure 3. Overall Robustness. (Top) Samples from the DMC-GB2 test distributions, divided into
geometric and photometric test sets. (Bottom) Episode reward on DMC-GB2 when trained under
all (geometric and photometric) augmentations, averaged across all DMControl tasks. Mean and
95% CI over 5 seeds.

Setup. We build on DrQ (Laskin et al., 2020) as our backbone algorithm, and use a fixed set of
hyperparameters across all tasks and environments. All agents are trained for one million environ-
ments steps and use stacks of the three most recent RGB frames (3× R(3×84×84)) as observations.
A full list of hyperparameters and training details is provided in Appendix A.

Test environments. As our experiments will reveal, previous methods largely fail to generalize
to geometric changes, which has gone unnoticed due to existing benchmarks predominantly evalu-
ating photometric robustness. Therefore, we propose the Deepmind Control Suite Generalization
Benchmark 2 (DMC-GB2), an extension of DMC-GB (Hansen & Wang, 2021) to encompass a wider
collection of photometric and geometric test distributions. In DMC-GB2, we provide geometric
and photometric test sets. The geometric test set considers two types of geometric distributions –
rotations and shifts – both individually and jointly, and at varying intensities categorized as easy
and hard environments. The photometric test set considers a complementary setup for two types
of photometric distributions – colors and videos. Detailed visualizations of all 12 DMC-GB2 test
distributions is provided in Appendix C.2.

Data augmentation. We apply a weak augmentation of random shifting to all our inputs as
conducted in our DrQ baseline, and consider it unaugmented. We further employ a set of strong
augmentations, taking into account both geometric and photometric transformations. For geometric
augmentations, we use random shift (Laskin et al., 2020), random rotation, and a combination
consisting of random rotation followed by random shift. For photometric augmentations we use
random convolution (Lee et al., 2019), random overlay (Hansen & Wang, 2021), and a combination
consisting of random convolution followed by random overlay. We sample an augmentation from this
set of six strong augmentations for each input sample in all our experiments unless stated otherwise.
Detailed visualizations of all augmentations is provided in Appendix C.1.

Baselines. We benchmark our method against the following well-established baselines. 1) DrQ
Laskin et al. (2020), a visual based Soft Actor Critic baseline that uses random shifts as the default
augmentation for all inputs. 2) DrQ + Aug, a variant of DrQ implemented with a naive application
of strong augmentations. 3) SVEA Hansen et al. (2021b), which builds on DrQ with a selective
application of augmentation in the Q-function to increase robustness under strong augmentations.

5.1 Results & Discussion

Robustness. For measuring the overall robustness, we train all methods under all augmentations
(geometric and photometric augmentations) and evaluate them on all DMC-GB2 test sets (geometric
and photometric test sets). As our empirical results indicate in Figure 3, SADA’s overall robustness
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Figure 4. Geometric vs Photometric Robustness. Episode reward averaged over all DMControl
tasks. (Top) Trained under geometric augmentations and evaluated on DMC-GB2 geometric test
set. (Bottom) Trained under photometric augmentations and evaluated on DMC-GB2 photometric
test set. All hard levels visualized. Mean and 95% CI over 5 random seeds.

surpasses the baselines in all DMC-GB2 test sets by a large margin (77%), all while attaining a
similar sample efficiency to its unaugmented DrQ baseline on the training environment.

To analyze the geometric vs photometric robustness of each method, we conduct another experiment
where we train under each set of augmentations separately. We train under strong geometric aug-
mentations and evaluate on the geometric test set, and follow a complementary setup under strong
photometric augmentations with the photometric test set. We visualize the results in Figure 4 along
with all the individual hard level intensities in our test suite. SADA consistently shows superior
robustness, outperforming baselines in all separate test sets and individual levels while achieving
similar training sample efficiency to its unaugmented DrQ baseline. Extended results and per-task
breakdowns are provided in Appendix D.

Analysis. While baselines show varying degrees of photometric robustness, they fail to display
geometric robustness in Figures 3 and 4. For the DrQ baseline, geometric transformations are out
of its training distribution. With naive application of data augmentation, DrQ + Aug achieves
poor training sample efficiency. To achieve high training sample efficiency, SVEA selectively applies
augmentation in the critic update. Nevertheless, this performance does not translate to the geometric
test distributions due to key failure case (i), the output embedding of a CNN can not become invariant
to input geometric transformations. This failure case can only be resolved with an actor directly
trained on the input augmentations. When the actor is directly trained on the input augmentations
using SADA’s objective, the agent is able to achieve high training sample efficiency that effectively
translates to the geometric test distributions.
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Even in terms of photometric robustness, SADA surpasses all baselines,
including SVEA. This is mainly due to failure case (ii) of SVEA’s assump-
tion, where some of the augmentation robustness is contained within the
critic and not the encoder. This can also be resolved by training the actor
directly on the input augmentations using SADA’s objective.

To quantitatively assess the augmentation robustness of converged SADA
and SVEA agents, we measure the variance of actions predicted on the
augmented observations with respect to the unaugmented observations in
Figure 5. Despite being trained on all augmentations, SVEA’s action pre-
dictions have high variance when observing geometric augmentations as
opposed to photometric augmentations, confirming SVEA’s shortcomings.
For a qualitative assessment, we utilize T-SNE to visualize the encoder’s
output embedding before being fed into the actor and the critic in Ap-
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Figure 6. Ablations. Episode reward on DMC-GB2 when trained under all augmentations, av-
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pendix B.3. Our findings reveal that photometric distributions can share the same space in the
latent embedding as the original training distribution, while geometric distributions are distant in
the latent space and seem to have little overlap with the training distribution, necessitating the need
to directly train the actor on them.

We ablate each of our design choices, evaluating methods under all augmentations on all DMC-
GB2 test sets, and show results in Figure 6. Naively applying augmentation to the actor or the
critic, as displayed in SADA (Naive Actor Aug) and SADA (Naive Critic Aug) respectively, leads
to deteriorated performance. As for SADA (No Critic Aug), we only apply augmentation to the
actor using SADA’s objective without any application of augmentation to the critic. SADA (No
Critic Aug) displays impressive geometric robustness and training sample efficiency, but lacks in
photometric robustness. If a user is only interested in geometric robustness, SADA (No Critic Aug)
provides commendable geometric robustness. Overall, each of our design choices play a key role in
establishing the superiority of SADA in all applications of data augmentation.

Generality. To demonstrate the generality of our approach, we swap our DrQ backbone with
TD-MPC2 (Hansen et al., 2022; 2024), a state-of-the-art model-based RL algorithm; results are
shown in Figure 7. We observe that SADA similarly improves training stability and generalization
of TD-MPC2 on DMC-GB2.

We further evaluate our DrQ-based SADA on our Meta-World setup (see Appendix C.3), and show-
case the results in Figure 8. Even on Meta-World, SADA surpasses all other baselines in terms of
success rate, all while achieving similar training sample efficiency to its unaugmented DrQ baseline.
This asserts that SADA can be readily applied to diverse tasks, environments, and backbones, and
can be used a generic data augmentation strategy for modern visual based reinforcement learning.
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6 Summary

Throughout this work, we give an overview of data augmentation within visual RL, highlighting the
shortcomings of previous work, its implications, and presenting SADA, a generic data augmentation
recipe for modern visual based reinforcement learning. We empirically prove SADA’s superiority
to previous methods and provide a deep analysis of its effectiveness. Concurrently, we curated a
comprehensive visual generalization benchmark, DMC-GB2, which we make publicly available at
https://aalmuzairee.github.io/SADA, with the aim of furthering research efforts within visual RL.

https://aalmuzairee.github.io/SADA
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A Setup and Implementation

A.1 Hyper-parameters

Parameter Setting
Replay buffer capacity 106

Action repeat 2
Frame stack 3
Seed frames 4000
Exploration steps 2000
Mini-batch size 256
Discount γ 0.99
Optimizer Adam
Learning rate 5× 10−4

Agent update frequency 2
Critic Q-function soft-update rate τ 0.01
Features dim. 50
Hidden dim. 1024
Actor log stddev bounds [−10, 2]
Init temperature 0.1

Strong Augmentations
Max Random Shift Pixels: 16× 16

Max Random Rotation Degrees: 180◦

Random Overlay Alpha: 0.5

Table 1. The default set of hyper-parameters used in our experiments.

A.2 Training and Evaluation Setup

DMControl. Each episode length is set to 1000 environment steps. We train all models for 1M
environment steps, evaluating on the training environment every 20,000 environment steps for 10
episodes. Post training, we evaluate trained agents on each level of our test suite for 100 episodes
and report our mean episode reward. We consider six tasks defined below:

Table 2. DMControl. Task observations are rgb frames of dimensionality R(3×84×84). We use frame
stacking of the three most recent rgb frames such that the observation dimensionality becomes R(9×84×84).
Task difficulty is based on the difficulty classification defined in Yarats et al. (2021).

Tasks Action Dim Difficulty
Walker Walk 6 Easy
Walker Stand 6 Easy
Cheetah Run 6 Medium
Finger Spin 2 Easy

Cartpole Swingup 1 Easy
Cup Catch 2 Easy

Meta-World. Each episode length is set to 200 environment steps. We train all models for 1M
environment steps. Every 20,000 environment steps, we evaluate for 50 episodes and report the
mean success rate. At the end of training we evaluate on the test environments for 50 episodes as
well, and report the mean success rate. We use the same camera setup as Seo et al. (2023) and
consider five tasks defined below:
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Table 3. Meta-World. Task observations are rgb frames of dimensionality R(3×84×84). We use frame
stacking of the three most recent rgb frames such that the observation dimensionality becomes R(9×84×84).
Task difficulty is based on the difficulty classification defined in Seo et al. (2023).

Tasks Action Dim Difficulty
Door Open 4 Easy

Peg Unplug Side 4 Easy
Sweep Into 4 Medium
Basketball 4 Medium

Push 4 Hard

A.3 SAC Based Formulation

In the following section, we formulate our objective in the context of our base algorithm, Soft Actor
Critic (Haarnoja et al., 2018), but we stress that these changes are applicable to any actor critic
framework. The actor update objective for SAC with a learned temperature α thus becomes:

LSADA
πϕ

(D) = Eot∼D[DKL(πϕ(·|pt))|| exp{ 1
α

Qθ(mt, ·)})]. (6)

LSADA
α (D) = E ot∼D

at∼πϕ(·|pt)
[−α log πϕ(at|pt)− αH̄], (7)

where pt = fξ([ot, oaug
t ]N), mt = fξ([ot, ot]N), and oaug

t = aug(ot, vt), vt ∼ V . We use fξ to
denote the CNN encoder, and [·]N to denote concatenation for batch size of dimensionality N where
ot, oaug

t ∈ RN×C×H×W. We use aug() as the augmentation operator where we stochastically sample
from the augmentation distribution V and apply it to the input.

On the critic’s side, the critic’s target prediction is unaltered:

qtgt
t = r(ot, at) + γmaxa′

t
Qθ(fξ(ot+1), a′) (8)

while the critic’s objective is changed to become:

LSADA
Qθ

(D) = Eot,at,rt,ot+1∼D

[∥∥Qθ(pt, at)− yt

∥∥
2

]
(9)

where pt = fξ([ot, oaug
t ]N), and yt =

[
qtgt

t , qtgt
t

]
N.
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A.4 Pseudocode

Algorithm 1 Generic SADA Visual Actor Critic Algorithm
(▶ naïve augmentation, ▶ our modifications)

fξ, πϕ, Qθ: encoder, policy, and Q-function respectively
T , η, D, τ : training steps, learning rate, data replay buffer, target update rate
aug,V: choice of strong image augmentation, augmentation distribution

1: for each timestep t = 1..T do
2: at ∼ π(·|ot)
3: ot+1 ∼ p(·|ot, at)
4: D ← D ∪ (ot, at, r(ot, at), ot+1)
5: UpdateCritic(D)
6: UpdateActor(D)
7: procedure UpdateCritic(D)
8: {oi, ai, r(oi, ai), oi+1 | i = 1...N} ∼ D ▷ Sample batch of transitions
9: oi, oi+1 = aug(oi, νi), aug(oi+1, νi′) νi, νi′ ∼ V

10: qtgt
i = r(oi, ai) + γmaxa′

i
Qθ(fξ(oi+1), a′) ▷ Compute Q-target

11: oaug
i = aug(oi, νi), νi ∼ V ▶ Apply stochastic data augmentation

12: pi = [oi, oaug
i ]N , yi =

[
qtgt

i , qtgt
i

]
N ▶ Pack data streams

13: θ ←− θ − η∇θLSADA
Qθ

(pi, yi) ▶ Update Q-function and encoder
14: θ ←− (1− τ)θ + τθ ▷ Update target Q-function weights
15: end procedure
16: procedure UpdateActor(D)
17: {oi, ai, r(oi, ai), oi+1 | i = 1...N} ∼ D ▷ Sample batch of transitions
18: oi = aug(oi, νi), νi ∼ V
19: oaug

i = aug(oi, νi), νi ∼ V ▶ Apply stochastic data augmentation
20: pi = [oi, oaug

i ]N , mi = [oi, oi]N ▶ Pack data streams
21: ϕ←− ϕ− η∇ϕLSADA

πϕ
(pi, mi) ▶ Update policy

22: end procedure
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B Extended Analysis

B.1 Ablations

We ablate all our design choices and show the specific modifications in Figure 9. We refer to SADA’s
application of augmentation as selective, where not all inputs are augmented. We use ’naive’ to refer
to a naive application of augmentation, where all inputs are augmented. We use - to denote no
application of augmentation.

Method Actor Aug Critic Aug Avg Geometric Avg Photometric Avg All
SADA Selective Selective 690 658 674

SADA (Naive Actor Aug) Naive Selective 410 581 496
SADA (Naive Critic Aug) Selective Naive 358 312 335

SADA (No Critic Aug) Selective - 655 432 543
SVEA - Selective 232 527 380

DrQ + Aug Naive Naive 217 246 231
DrQ - - 184 322 253

Figure 9. Ablations. Episode reward on DMC-GB2. Methods trained under all augmentations
and averaged across all DMControl tasks. Mean and 95% CI for 5 random seeds.

B.2 Distracting Control Suite Results

We train all methods in the DMControl training environments under all strong augmentations, and
evaluate them in a zero-shot manner on the Distracting Control Suite. The results are shown below
in Figure 10, where SADA outperforms all baselines using the current augmentations.
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Figure 10. Distracting Control Suite. Episode reward on Distracting Control Suite. Methods
trained under all augmentations and averaged across all DMControl tasks. Mean and 95% CI for 5
random seeds.
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B.3 T-SNE Visualization

We visualize the T-SNE projection of converged SADA and SVEA agents in Figure 11. Analyzing the
graph, we notice a general trend where photometric distributions largely overlap with the training
distribution, while geometric distributions seem distant and have little overlap with the training
distribution. This asserts the fact presented in Figure 1, that the CNN encoder can align the
photometric augmentations with the training distribution, such that their latent space is similar.
On the other hand, geometric augmentations induce changes in the encoder’s output embedding
that force it to be placed in seperate latent space.
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Figure 11. T-SNE Embeddings. We use T-SNE to visualize the projections of converged SADA
and SVEA agents trained under all augmentations in the Walker Walk task.
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C Visuals

C.1 Augmentations

(a) No augmentation (cheetah) (b) No augmentation (cartpole)

(c) Random convolution (cheetah) (d) Random convolution (cartpole)

(e) Random overlay (cheetah) (f) Random overlay (cartpole)

(g) Random convolution and overlay (cheetah) (h) Random convolution and overlay (cartpole)

(i) Random rotate (cheetah) (j) Random rotate (cartpole)

(k) Random shift (cheetah) (l) Random shift (cartpole)

(m) Random rotate and shift (cheetah) (n) Random rotate and shift (cartpole)

Figure 12. Data augmentation. Visualizations of data augmentations applied in this study.
Left column contains samples from the Cheetah Run task, and right column contains samples from
the Cartpole Swingup task. Sets (c)-(h) constitute of photometric augmentations while sets (i)-(n)
constitute of geometric augmentations.
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C.2 DeepMind Control Suite

(a) Training environment (cheetah) (b) Training environment (cartpole)

Figure 13. DMControl Train environment. (Left) Cheetah Run task. (Right) Cartpole Swingup
task.

(a) color_easy environment (cheetah) (b) color_easy environment (cartpole)

(c) color_hard environment (cheetah) (d) color_hard environment (cartpole)

(e) video_easy environment (cheetah) (f) video_easy environment (cartpole)

(g) video_hard environment (cheetah) (h) video_hard environment (cartpole)

(i) color_video_easy environment (cheetah) (j) color_video_easy environment (cartpole)

(k) color_video_hard environment (cheetah) (l) color_video_hard environment (cartpole)

Figure 14. DMC-GB2 Photometric Test Set. Visualizations from the 6 photometric test
distributions in DMC-GB2.
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(a) rotate_easy environment (cheetah) (b) rotate_easy environment (cartpole)

(c) rotate_hard environment (cheetah) (d) rotate_hard environment (cartpole)

(e) shift_easy environment (cheetah) (f) shift_easy environment (cartpole)

(g) shift_hard environment (cheetah) (h) shift_hard environment (cartpole)

(i) rotate_shift_easy environment (cheetah) (j) rotate_shift_easy environment (cartpole)

(k) rotate_shift_hard environment (cheetah) (l) rotate_shift_easy environment (cartpole).

Figure 15. DMC-GB2 Geometric Test Set. Visualizations from the 6 geometric test distribu-
tions in DMC-GB2.

C.3 Meta-World

(a) Training environment (door-open) (b) Training environment (basketball)

Figure 16. Meta-World Train environment. (Left) Door Open task. (Right) Basketball task.

(a) shift_hard environment (door-open) (b) shift_hard environment (basketball)

Figure 17. Meta-World Test environment. Geometric test distribution in Meta-World.
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D Extended Results

D.1 DeepMind Control Suite Results

a) Rotate Easy
DrQ DrQ + Aug SVEA SADA

Walker Walk 232±23 166±33 278±21 808±90 *
Walker Stand 408±24 329±113 505±24 958±6 *
Cheetah Run 89±10 84±44 127±26 302±57 *
Finger Spin 116±39 618±80 148±15 870±152 *

Cartpole Swingup 228±29 219±17 295±23 743±56 *
Cup Catch 409±45 111±40 408±150 909±30 *

b) Rotate Hard
DrQ DrQ + Aug SVEA SADA

Walker Walk 133±11 147±22 154±7 799±89 *
Walker Stand 268±11 288±79 330±20 960±9 *
Cheetah Run 46±3 86±48 72±16 290±80 *
Finger Spin 59±20 603±116 75±7 862±149 *

Cartpole Swingup 178±15 211±19 219±9 746±57 *
Cup Catch 277±38 107±46 241±76 908±39 *

c) Shift Easy
DrQ DrQ + Aug SVEA SADA

Walker Walk 63±8 153±32 288±36 824±95 *
Walker Stand 299±73 307±89 656±53 962±5 *
Cheetah Run 35±7 104±45 90±28 348±27 *
Finger Spin 287±84 772±23 386±47 903±152

Cartpole Swingup 274±43 212±20 421±80 798±33 *
Cup Catch 884±77 128±60 771±353 947±15

d) Shift Hard
DrQ DrQ + Aug SVEA SADA

Walker Walk 36±2 93±25 58±8 641±139 *
Walker Stand 161±12 251±59 228±30 870±38 *
Cheetah Run 11±4 54±30 23±15 284±26 *
Finger Spin 3±2 573±38 13±15 802±112 *

Cartpole Swingup 206±31 189±29 284±53 719±59 *
Cup Catch 676±91 131±50 674±284 871±62

e) Rotate Shift Easy
DrQ DrQ + Aug SVEA SADA

Walker Walk 43±5 107±32 102±13 663±140 *
Walker Stand 196±27 280±83 327±19 897±30 *
Cheetah Run 12±6 50±24 25±9 231±44 *
Finger Spin 2±2 381±83 3±2 732±93 *

Cartpole Swingup 139±28 189±12 195±14 644±71 *
Cup Catch 353±93 131±64 369±147 815±70 *

f) Rotate Shift Hard
DrQ DrQ + Aug SVEA SADA

Walker Walk 34±3 57±11 38±4 307±70 *
Walker Stand 147±10 191±35 180±19 652±78 *
Cheetah Run 6±2 19±13 13±6 131±18 *
Finger Spin 1±0 155±61 0±0 476±46 *

Cartpole Swingup 111±16 172±12 149±12 497±33 *
Cup Catch 189±52 144±80 204±72 668±102 *

a) Color Easy
DrQ DrQ + Aug SVEA SADA

Walker Walk 582±47 228±48 755±55 837±70 *
Walker Stand 826±39 333±103 900±47 965±10 *
Cheetah Run 341±42 * 88±39 203±89 252±69
Finger Spin 795±61 693±74 924±33 895±162

Cartpole Swingup 696±54 230±28 542±104 704±33
Cup Catch 833±37 139±62 821±322 969±5

b) Color Hard
DrQ DrQ + Aug SVEA SADA

Walker Walk 265±41 238±44 667±51 825±72 *
Walker Stand 527±65 355±121 861±60 963±7 *
Cheetah Run 178±25 87±35 133±73 239±75
Finger Spin 466±73 661±76 802±108 868±150

Cartpole Swingup 441±43 240±22 478±101 716±34 *
Cup Catch 520±68 157±66 779±320 961±11

c) Video Easy
DrQ DrQ + Aug SVEA SADA

Walker Walk 390±56 132±33 788±103 791±56
Walker Stand 603±41 279±63 945±13 923±45
Cheetah Run 75±52 49±9 102±56 121±59
Finger Spin 441±39 654±88 774±137 875±157

Cartpole Swingup 375±54 204±34 427±85 524±49 *
Cup Catch 523±21 150±45 736±303 934±23

d) Video Hard
DrQ DrQ + Aug SVEA SADA

Walker Walk 36±5 166±29 264±57 270±31
Walker Stand 154±17 225±47 429±95 702±65 *
Cheetah Run 25±16 75±20 28±8 82±20
Finger Spin 7±4 234±29 263±123 566±118 *

Cartpole Swingup 98±21 154±26 259±32 363±31 *
Cup Catch 111±31 152±55 416±252 662±43 *

e) Color Video Easy
DrQ DrQ + Aug SVEA SADA

Walker Walk 208±49 219±36 681±44 791±59 *
Walker Stand 487±28 330±105 852±36 945±15 *
Cheetah Run 60±36 64±16 100±58 153±64
Finger Spin 310±30 653±74 705±147 850±150

Cartpole Swingup 327±43 217±23 427±86 570±38 *
Cup Catch 447±61 160±54 716±318 931±36

f) Color Video Hard
DrQ DrQ + Aug SVEA SADA

Walker Walk 42±10 215±37 421±67 686±61 *
Walker Stand 170±17 288±84 659±69 906±30 *
Cheetah Run 26±17 82±23 44±24 99±43
Finger Spin 2±2 365±52 307±139 633±106 *

Cartpole Swingup 94±17 166±30 294±45 426±39 *
Cup Catch 122±48 163±77 484±291 697±37

Figure 18. DMC-GB2 Overall Robustness Results. Episode Reward. Methods trained under
all (geometric and photometric) augmentations and evaluated on the all DMC-GB2 Test Sets. Mean
and Stddev over 5 random seeds. Highest scores in bold. Asterisk (*) indicates that the method is
statistically significantly greater than all compared methods with 95% confidence.
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Figure 19. DMC-GB2 Overall Robustness Graphs. Episode Reward. Methods trained under
all (geometric and photometric) augmentations and evaluated on all DMC-GB2 Test Sets. Hard
levels visualized. Mean and 95% CI over 5 random seeds.



RLJ | RLC 2024

a) Rotate Easy
DrQ DrQ + Aug SVEA SADA

Walker Walk 232±23 431±41 426±37 728±369
Walker Stand 408±24 809±159 629±60 968±5 *
Cheetah Run 89±10 180±33 147±31 420±76 *
Finger Spin 116±39 829±26 257±58 885±150

Cartpole Swingup 228±29 304±77 422±23 801±54 *
Cup Catch 409±45 600±167 618±86 803±350

b) Rotate Hard
DrQ DrQ + Aug SVEA SADA

Walker Walk 133±11 416±45 228±25 729±367
Walker Stand 268±11 777±167 406±46 961±9 *
Cheetah Run 46±3 168±42 86±26 415±76 *
Finger Spin 59±20 820±28 128±25 862±158

Cartpole Swingup 178±15 289±63 280±11 798±62 *
Cup Catch 277±38 569±173 397±94 797±352

c) Shift Easy
DrQ DrQ + Aug SVEA SADA

Walker Walk 63±8 415±61 692±67 740±374
Walker Stand 299±73 822±166 765±98 946±15
Cheetah Run 35±7 179±22 133±18 413±72 *
Finger Spin 287±84 678±142 460±85 899±136 *

Cartpole Swingup 274±43 288±29 564±89 767±57 *
Cup Catch 884±77 695±137 940±43 811±343

d) Shift Hard
DrQ DrQ + Aug SVEA SADA

Walker Walk 36±2 304±83 154±46 636±324 *
Walker Stand 161±12 671±167 387±70 897±31 *
Cheetah Run 11±4 129±14 52±18 344±43 *
Finger Spin 3±2 588±204 90±48 781±147

Cartpole Swingup 206±31 216±23 318±33 634±104 *
Cup Catch 676±91 604±188 859±77 790±348

e) Rotate Shift Easy
DrQ DrQ + Aug SVEA SADA

Walker Walk 43±5 316±72 228±17 678±345 *
Walker Stand 196±27 705±196 489±92 934±22 *
Cheetah Run 12±6 146±14 56±16 331±28 *
Finger Spin 2±2 683±169 52±39 802±147

Cartpole Swingup 139±28 257±51 269±37 742±58 *
Cup Catch 353±93 586±156 589±61 788±347

f) Rotate Shift Hard
DrQ DrQ + Aug SVEA SADA

Walker Walk 34±3 166±75 62±12 356±183 *
Walker Stand 147±10 484±189 222±33 791±41 *
Cheetah Run 6±2 78±13 20±6 180±57 *
Finger Spin 1±0 513±201 1±1 663±193

Cartpole Swingup 111±16 183±28 162±14 553±94 *
Cup Catch 189±52 512±159 327±49 749±333

Figure 20. DMC-GB2 Geometric Test Set Results. Episode Reward. Methods trained under
geometric augmentations and evaluated on DMC-GB2 Geometric Test Set. Mean and Stddev over
5 random seeds. Highest scores in bold. Asterisk (*) indicates that the method is statistically
significantly greater than all compared methods with 95% confidence.

a) Color Easy
DrQ DrQ + Aug SVEA SADA

Walker Walk 582±47 911±34 841±126 947±26
Walker Stand 826±39 964±7 815±341 975±4
Cheetah Run 341±42 274±34 348±71 368±54
Finger Spin 795±61 948±51 910±142 983±2

Cartpole Swingup 696±54 626±152 843±16 842±19
Cup Catch 833±37 713±353 976±2 973±3

b) Color Hard
DrQ DrQ + Aug SVEA SADA

Walker Walk 265±41 907±31 834±127 946±23
Walker Stand 527±65 963±10 813±343 974±2
Cheetah Run 178±25 273±37 333±60 362±48
Finger Spin 466±73 944±53 882±132 980±3

Cartpole Swingup 441±43 627±149 833±15 843±17
Cup Catch 520±68 722±339 974±2 972±4

c) Video Easy
DrQ DrQ + Aug SVEA SADA

Walker Walk 390±56 885±41 824±143 936±24
Walker Stand 603±41 964±5 813±339 972±2
Cheetah Run 75±52 264±41 298±40 340±50
Finger Spin 441±39 923±41 879±140 972±4

Cartpole Swingup 375±54 533±157 770±44 749±74
Cup Catch 523±21 690±355 947±16 961±5

d) Video Hard
DrQ DrQ + Aug SVEA SADA

Walker Walk 36±5 255±49 243±91 329±20
Walker Stand 154±17 669±79 533±203 692±40
Cheetah Run 25±16 151±38 105±54 91±27
Finger Spin 7±4 600±100 436±106 735±44 *

Cartpole Swingup 98±21 257±41 387±51 407±81
Cup Catch 111±31 518±256 664±48 816±70 *

e) Color Video Easy
DrQ DrQ + Aug SVEA SADA

Walker Walk 208±49 879±42 817±140 935±24
Walker Stand 487±28 963±6 811±341 970±4
Cheetah Run 60±36 263±48 294±27 331±57
Finger Spin 310±30 920±42 866±137 972±4

Cartpole Swingup 327±43 528±154 761±44 748±64
Cup Catch 447±61 697±353 944±17 959±8

f) Color Video Hard
DrQ DrQ + Aug SVEA SADA

Walker Walk 42±10 639±69 600±150 736±68
Walker Stand 170±17 889±48 730±315 920±22
Cheetah Run 26±17 216±53 153±66 187±63
Finger Spin 2±2 684±82 500±151 815±25 *

Cartpole Swingup 94±17 300±57 464±63 469±80
Cup Catch 122±48 570±300 792±63 873±43 *

Figure 21. DMC-GB2 Photometric Test Set Results. Episode Reward. Methods trained
under photometric augmentations and evaluated on DMC-GB2 Photometric Test Set. Mean and
Stddev over 5 random seeds. Highest scores in bold. Asterisk (*) indicates that the method is
statistically significantly greater than all compared methods with 95% confidence.
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Figure 22. DMC-GB2 Geometric Test Set Graphs. Episode Reward. Methods trained under
geometric augmentations and evaluated on DMC-GB2 Geometric Test Set. Hard levels visualized.
Mean and 95% CI over 5 random seeds.
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Figure 23. DMC-GB2 Photometric Test Set Graphs. Episode Reward. Methods trained
under photometric augmentations and evaluated on DMC-GB2 Photometric Test Set. Hard levels
visualized. Mean and 95% CI over 5 random seeds.
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D.2 Meta-World Results

Shift Hard (Meta-World)
DrQ DrQ + Aug SVEA SADA

Door Open 2±2 51±12 28±7 59±9
Peg Unplug Side 2±1 33±27 32±13 70±18 *

Sweep Into 3±2 76±9 42±8 74±8
Basketball 0±0 48±31 18±16 75±16

Push 2±2 43±23 28±4 61±16

Figure 24. Meta-World Results. Success rate (%). Trained under strong shift augmentation
only. Evaluated on Meta-World Shift Hard. Mean and Stddev of 5 random seeds. Highest scores in
bold. Asterisk (*) indicates that the method is statistically significantly greater than all compared
methods with 95% confidence.
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Figure 25. Meta-World Graphs. Success rate (%). Trained under Shift Augmentation, Evaluated
on Meta-World Shift Hard. Mean and 95% CI of 5 random seeds.
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E Statistical Significance Testing

We conduct statistical significance testing for all our experiments and provide it below. Given two
methods A and B, we use a one tailed Welch t-test to determine the statistical significance and
formulate the following hypotheses:

Null Hypothesis Ho: A ≤ B (10)
Alternative Hypothesis Ha: A > B (11)

Using an alpha value of 0.05 (95% confidence), all p-values greater than 0.05 indicate that the null
hypothesis cannot be rejected and that the expected mean of A is statistically significantly less
than or equal to the expected mean of B. On the other hand, all p-values less than 0.05 indicate
that we should reject the null hypothesis in favor of the alternative hypothesis, indicating that the
expected mean of A is statistically significantly greater than the expected mean of B. To control
for multiple pairwise comparisons, we apply the Holm-Bonferroni method, where we sort the p-
values in ascending order, and compare them with their adjusted alpha values (0.0167, 0.025, 0.05)
respectively. Using the Holm-Bonferroni method, there is only a 5% chance of rejecting at least one
true null hypothesis (i.e., making a Type I error) from the three hypotheses in every comparison.

We provide per-task statistical significance testing results in the tables in Appendix D. We also
provide the overall category statistical significance testing results below.

E.1 Overall Category Results:

For all the overall category results of the experiments conducted throughout this paper,
there is sufficient evidence (with 95% confidence) that the mean performance of SADA
is statistically significantly greater than all of the baselines.

In the overall category statistical significance testing, we provide both the p and t values for the
Welch t-test results. p denotes the p-value which represents the probability of observing the data
or more extreme data under the assumption that the null hypothesis is true. t denotes the test
statistic which is a standardized measure of the difference between two group means, adjusted for
the variability within the groups, used to assess the significance of the observed difference.

Overall Robustness

Method A Method B
SVEA DrQ + Aug DrQ

SADA
Avg Geometric p=4.0×10−9, t=27.21 p=8.1×10−10, t=30.62 p=4.0×10−8, t=45.78

Avg Photometric p=1.2×10−3, t=5.77 p=1.4×10−10, t=47.60 p=2.9×10−10, t=36.17
Avg All p=3.4×10−6, t=15.42 p=1.1×10−10, t=38.84 p=1.9×10−9, t=44.27

Figure 26. Overall Robustness. Statistical Significance Measurement using Welch t-test on the
episode reward on DMC-GB2. Methods trained under all augmentations and averaged across all
DMControl tasks. Mean over 5 random seeds.
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Geometric vs Photometric Robustness

Method A Method B
SVEA DrQ + Aug DrQ

SADA Avg Geometric p=6.2×10−5, t=12.96 p=8.8×10−5, t=7.53 p=2.0×10−5, t=18.28
Avg Photometric p=7.3×10−3, t=3.80 p=1.4×10−2, t=3.29 p=1.3×10−11, t=50.40

Figure 27. Geometric vs Photometric Robustness. Statistical Significance Measurement using
Welch t-test on the episode reward on DMC-GB2. Methods were trained under geometric augmen-
tations and evaluated on the geometric test set, and trained under photometric augmentations and
evaluated on the photometric test set, averaged across all DMControl tasks. Mean over 5 random
seeds.

Ablations

Method A Method B
SADA (Naive

Actor Aug)
SADA (Naive

Critic Aug)
SADA (No Critic
Aug)

SADA
Avg Geometric p=1.3×10−7, t=16.88 p=6.3×10−9, t=23.43 p=1.6×10−2, t=2.61

Avg Photometric p=3.2×10−3, t=4.30 p=2.0×10−7, t=22.86 p=2.3×10−8, t=20.58
Avg All p=1.1×10−5, t=10.89 p=1.6×10−8, t=24.05 p=1.3×10−6, t=12.01

Figure 28. Ablations. Statistical Significance Measurement using Welch t-test on the episode
reward on DMC-GB2. Methods trained under all augmentations and averaged across all DMControl
tasks. Mean over 5 random seeds.

TD-MPC2 Baseline

Method A Method B
TD-MPC2 + Aug

TD-MPC2 + SADA Avg All p=8.1×10−5, t=7.90

Figure 29. TD-MPC2 Baseline. Statistical Significance Measurement using Welch t-test on
the episode reward on DMC-GB2. Trained under all augmentations with a TD-MPC2 backbone,
averaged across all DMControl tasks. Mean over 5 random seeds.

Meta-World

Method A Method B
SVEA DrQ + Aug DrQ

SADA Shift Hard p=1.5×10−5, t=10.26 p=2.2×10−3, t=3.90 p=1.4×10−5, t=20.45

Figure 30. Meta-World. Statistical Significance Measurement using Welch t-test on the success
rate (%) on Shift Hard (Meta-World) distribution. Trained under strong shift augmentation only,
averaged across all Meta-World tasks. Mean over 5 random seeds.


