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Abstract

Imitation Learning from Observation (ILfO) is a setting in which a learner tries
to imitate the behavior of an expert, using only observational data and without
the direct guidance of demonstrated actions. In this paper, we re-examine optimal
transport for IL, in which a reward is generated based on the Wasserstein distance
between the state trajectories of the learner and expert. We show that existing
methods can be simplified to generate a reward function without requiring learned
models or adversarial learning. Unlike many other state-of-the-art methods, our
approach can be integrated with any RL algorithm and is amenable to ILfO. We
demonstrate the effectiveness of this simple approach on a variety of continuous
control tasks and find that it surpasses the state of the art in the IlfO setting,
achieving expert-level performance across a range of evaluation domains even when
observing only a single expert trajectory without actions.

1 Introduction

Imitation Learning (IL) is a widely used and effective tool for teaching robots complex behaviors. Al-
though Reinforcement Learning (RL) has demonstrated success in learning motor skills from scratch
in real-world systems (Haarnoja et al., 2018b; Kalashnikov et al., 2018), Imitation Learning (IL) re-
mains a proven and practical way to learn behaviors from demonstrations, without the need for a
hand-tuned and engineered reward signal required for RL. However, acquiring access to expert ac-
tions can be highly impractical. For example, robotic systems that are too challenging to teleoperate
smoothly or in applications where the action spaces of the demonstrator and the imitator do not
match, such as in Sim-to-Real problems (Desai et al., 2020).

Imitation Learning from Observation (ILfO) eliminates the need for demonstrated actions by learning
behaviors from sequences of expert states instead of requiring both expert states and actions. Similar
to how humans learn new skills from watching others, ILfO algorithms learn from observational data
alone. Consequently, this reduces the cost of data collection, making ILfO algorithms instrumental
for deploying IL in complex real-world systems.

Moving to the observation-only space, however, introduces new challenges. While IL algorithms
can learn by copying actions, ILfO algorithms require more exploration to succeed (Kidambi et al.,
2021), as they can only indirectly imitate the expert through observed outcomes. This emphasis on
exploration creates a further challenge in that the states visited by the learner are more likely to be
distant or non-overlapping with those of the expert. Distant states are problematic for imitation via
distribution matching (Ho & Ermon, 2016; Ghasemipour et al., 2020; Ni et al., 2020), as the widely
used KL divergence is ill-defined for non-overlapping distributions. While IL methods can circumvent
this problem by accelerating early learning with behavior cloning, ILfO methods must deal with
randomly initialized policies, which are unlikely to behave similarly to an expert demonstrator.

The field of optimal transport has garnered much attention in recent years, with theoretical and
computational developments allowing it to evaluate distances between distributions defined on high-
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dimensional metric spaces (Cuturi, 2013; Bonneel et al., 2015). The Wasserstein distance, in particu-
lar, can compare non-overlapping distributions and quantify the spatial shift between the supports of
the distributions. These properties make it a natural alternative to KL divergence-based objectives
used by existing methods. Moreover, the Wasserstein distance can be computed without requiring
separate models or learned components. This makes the Wasserstein distance more computationally
efficient and conceptually simpler than other methods that rely on incremental adversarial signals
learned via online interaction (Ho & Ermon, 2016; Kostrikov et al., 2019; Papagiannis & Li, 2020).

Prior work (Papagiannis & Li, 2020; Dadashi et al., 2020; Durugkar et al., 2021) based on the
Wasserstein distance for IL or ILfO relies on numerous techniques, such as adversarial or learned
components, or designed for sample-inefficient on-policy RL algorithms. Building on prior work (Pa-
pagiannis & Li, 2020), we introduce a simpler approach that does not require adversarial components
or on-policy learning. Our resulting approach, Observational Off-Policy Sinkhorn (OOPS), gener-
ates a reward function for any RL algorithm, which minimizes the Wasserstein distance between
expert and learner state trajectories. We benchmark OOPS against existing methods proposed to
optimize the Wasserstein distance (Papagiannis & Li, 2020; Dadashi et al., 2020), as well as current
state-of-the-art ILfO algorithms (Ghasemipour et al., 2020; Zhu et al., 2020) on a variety of con-
tinuous control tasks. OOPS outperforms state-of-the-art methods for ILfO, achieving near-expert
performance in every evaluated task with only a single trajectory without observing any actions. To
facilitate reproducibility, all of our code is open-sourced1.

2 Background

Setting. Our task is formulated by an episodic finite-horizon MDP (S, A, P, r, p0, T ), with state
space S, action space A, transition dynamics P : S × A × S → [0, 1], reward function r : S × A → R,
initial state distribution p0 : S → [0, 1], and T the horizon. While the overarching objective is
to maximize reward, in the Imitation Learning from Observation (ILfO) setting, the agent never
observes the true reward. Instead, ILfO algorithms must use sequences of states (trajectories τ),
generated by an unknown expert, to infer a reward signal or objective. We therefore only assume
access to a dataset DE of N state-only trajectories, DE = {τ0, τ1, ..., τN−1}.

Optimal Transport. Optimal Transport (OT) seeks to compute a matching between the source
and target measures while minimizing the transport cost (Villani, 2009). In our work, we aim to
minimize the distance between the distribution of trajectories defined by the learner and the expert.

Writing out trajectories in terms of their transitions τ = {(s0, s1), (s1, s2), ..., (sT −1, sT )}, and view-
ing each transition as a datapoint, forms a discrete measure α over the state transition space
S × S, with weights a and locations (si, si+1)E ∈ S × S for the expert: α =

∑T
i=0 aiσ(si,si+1)E

where σ(si,si+1) is the Dirac delta function at position (si, si+1). Similarly for the learner, with
weights b and locations (si, si+1)π for the learner, the trajectory rollout forms the measure
β =

∑T
i=0 biσ(si,si+1)π

(Peyré et al., 2019). In each trajectory, we consider each timestep as being
equally important, and as such restrict the weight vectors a and b to the uniform weight vectors:∑T

i=0 ai = 1, ai = 1
T ∀ 0 < i < T , and

∑T
i=0 bi = 1, bi = 1

T ∀ 0 < i < T .

While the Monge formulation of OT enforces a one-to-one matching between measures, the Kan-
torovich formulation relaxes the OT problem by allowing each source point to split mass: the mass
at any source point may be distributed across several locations (Villani, 2009; Peyré et al., 2019).
This provides the Wasserstein distance (or Kantorovich metric) over a distance metric d:

Wp(α, β) :=

min
P

 T∑
i

T∑
j

d(αi, βj)pPi,j

 1
p

, (1)

1Link removed for anonymization. Code in supplementary material.
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which uses a coupling matrix P ∈ Rn×m
+ , where Pi,j is the mass flowing from bin i to bin j:

P ∈ Rn×m such that
∑

j

Pi,j = a and
∑

i

Pi,j = b. (2)

The optimal coupling P between α and β gives us the minimal cost transport plan between the
measures defined by the trajectories τπ and τE .

Sinkhorn distance. The Sinkhorn distance WSk is an entropy regularized version of the Wasserstein
distance (Cuturi, 2013), for W1, with p = 1 this equals:

WSk(τπ, τE) := min
P̃

T∑
i=0

T∑
j=0

d(αi, βj)P̃i,j − λH(P̃ ), (3)

where the entropy term H(P̃ ) :=
∑T

i=0
∑T

j=0 P̃ij log P̃ij . For any given value of λ > 0, the op-
timal coupling matrix P̃ for WSk can be computed efficiently using the iterative Sinkhorn algo-
rithm (Sinkhorn, 1967). At the cost of convergence speed, as λ approaches 0, the Wasserstein
distance is recovered, while increasing its value blurs out the transport matrix and spreads the mass
between the two measures. This approximation is useful as it provides a computationally efficient
method for estimating the optimal coupling matrix for the Wasserstein distance P̃ ≈ P for small λ,
where WSk upper bounds W1.

3 Related Work

Imitation Learning. Learning from Demonstrations (LfD) approaches can be generally classified
into two types of approaches: IL methods, which learn directly from expert data, and Inverse
Reinforcement Learning (IRL) methods (Ziebart et al., 2008) which infer a reward function that
is optimized by RL. GAIL (Ho & Ermon, 2016) and related methods (Kostrikov et al., 2019; Fu
et al., 2017) leverage adversarial training. These methods optimize a distribution matching objective
between the state-action distribution of the learner and the expert, in terms of various probability
divergence metrics (Ho & Ermon, 2016; Ghasemipour et al., 2020; Kostrikov et al., 2018; Ni et al.,
2020). Each divergence objective leads to distinct imitative behavior (zero-forcing or mean-seeking
or both), which can be exploited in different scenarios (Ke et al., 2019). In contrast, our approach
minimizes a Wasserstein distance-based objective, better suited for our ILfO context.

Imitation Learning from Observations. Due to the challenging nature of ILfO, many methods
rely on learning a model, via an inverse dynamics model used to infer the missing actions of the
expert (Torabi et al., 2018a), use objectives based on the transition dynamics of the expert (Jaegle
et al., 2021; Chang et al., 2022), or simply model the entire MDP (Kidambi et al., 2021). Adver-
sarial methods have also been adapted from the IL context (Sun et al., 2019; Torabi et al., 2018b).
Another common theme is f -divergence minimization, (Ni et al., 2020) derive an approach based on
the analytical gradients of f -divergences and show that different variants (FKL, RKL, JS) can be
achieved through their framework. OPOLO (Zhu et al., 2020), leverages off-policy learning on top of
an inverse dynamics model and adversarial training. As opposed to existing methods, our approach
leverages the Wasserstein distance to compute a non-adversarial and model-free reward for ILfO.

Optimal Transport for Imitation Learning. Minimization of the Wasserstein distance for IL has
been previously considered in (Xiao et al., 2019; Zhang et al., 2020) through Wasserstein Generative
Adversarial Network (WGAN)-inspired approaches (Arjovsky et al., 2017). In an adversarial policy
learning set up similarly to GAIL (Ho & Ermon, 2016) and by restricting the discriminator to
be a 1-Lipschitz function, these approaches can minimize the W1 distance between the policy and
the reference trajectory data distribution. However these methods suffer from the drawbacks of
adversarial frameworks, which are hard to optimize and tune (Arjovsky & Bottou, 2017), and have
been shown to be poor estimators of W1 (Stanczuk et al., 2021).

More recent works (Papagiannis & Li, 2020; Dadashi et al., 2020; Haldar et al., 2023) use Wasser-
stein distance solvers, or related approximations, for IL. Our approach is closely based on Sinkhorn
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Imitation Learning (SIL) (Papagiannis & Li, 2020), which uses the Sinkhorn distance (Cuturi, 2013)
to compute an entropy regularized Wasserstein distance between the state-action occupancy of the
learner and expert. However, rather than use an upper bound defined by off-policy samples, they
use on-policy RL (Schulman et al., 2015) to optimize the cosine distance over the representation
space of an adversarial discriminator trained alongside the imitation agent. In our work, we found
that we can vastly improve sample efficiency by using an off-policy agent instead and can consider a
more straightforward objective without adversarial or learned representations, an aspect previously
thought required for good performance. Another related approach, PWIL (Dadashi et al., 2020),
uses a greedy formulation of the Wasserstein distance and matches the current state-action pair
(s, a) to its closest counterpart in the expert demonstration dataset at every rollout step. In our
experimental analysis (Figure 3), we show that our approximation via the Sinkhorn distance creates
a tighter upper bound of the true Wasserstein distance and is crucial for consistent performance.
Contrary to SIL and PWIL, we focus on ILfO, giving new results and insights into the capabilities
of OT in this context, and show that our approach matches or outperforms existing state-of-the-art
methods.

4 Wasserstein Imitation Learning from Observational Demonstrations

In this section, we introduce our approach for minimizing the Wasserstein distance between expert
trajectories and learner rollouts. To do so, we derive a reward function based on the distance between
state transitions in pairs of trajectories.

Deriving a reward from the Wasserstein distance. With the absence of a true reward signal,
the ILfO setting can be framed as a divergence-minimization problem, where the objective is to match
the trajectory distributions of the learner and the expert. In our case, we choose the Wasserstein
distance as a metric for this task. Unlike the widely used KL divergence, the Wasserstein distance is
defined for distributions with non-overlapping support, making it amenable to scenarios where the
behavior of the learner and the expert may be particularly distinct. We can define our ILfO task as
minimizing the Wasserstein distance W1 between trajectories τπ sampled from the learner policy π
and example trajectories τE provided by an expert E:

min
π

Eτπ,τE
[W1(τπ, τE)] = min

π
Eτπ,τE

min
P

 T∑
i=0

T∑
j=0

d((si, si+1)π, (sj , sj+1)E)Pi,j

 . (4)

As the Wasserstein distance between a pair of trajectories can be defined as a sum over each of the
transitions in each trajectory, for a given coupling matrix P , we can define a reward function

r̃t(st, st+1|τπ, τE , P ) := −
T∑

j=0
d((st, st+1)π, (sj , sj+1)E)Pt,j , (5)

such that summing the reward r̃t over a learner trajectory τπ is equal to the Wasserstein distance

W1(τπ, τE) = min
P

(
−

T∑
i=0

r̃t(st, st+1|τπ, τE , P )
)

. (6)

This naturally suggests an objective that involves the sum of rewards r̃t over learner trajectories

J(π|E, P ) := Eπ,E

[
T∑

t=0
r̃t(st, st+1|τπ, τE , P )

]
, (7)

where our original objective (Equation (4)) can be recovered:

max
π

min
P

J(π|E, P ) = min
π

Eτπ,τE
[W1(τπ, τE)] . (8)
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As the optimal coupling matrix P can be approximated by the iterative Sinkhorn algo-
rithm (Sinkhorn, 1967), the maximization of the objective J with any RL algorithm, can be used as
a replacement to minimizing the Wasserstein distance.

Off-policy minimization of the Wasserstein distance. As the reward r̃t(st, st+1|τπn , τE , P ) is
defined as a function of a trajectory τπn gathered by the learner πn, any stale reward determined by
trajectories from a previous policy πn−m, m ≥ 1, will not correspond with the Wasserstein distance
of the current learner (as noted in Equation (6)). However, working with the assumption that a
policy πn is better than any previous policy with respect to J , (i.e. J(πn) ≥ J(πn−m) where m ≥ 1),
we remark that stale rewards provide an upper bound on the Wasserstein distance:

W1(τπn
, τE) = min

P

(
−

T∑
i=0

r̃t(st, st+1|τπn
, τE , P )

)
≤ min

P

(
−

T∑
i=0

r̃t(st, st+1|τπn−m
, τE , P )

)
. (9)

This means that previously collected off-policy trajectories can be used for learning in a principled
manner, at the cost of the tightness of the upper bound of the Wasserstein distance. In our experi-
mental results, we show that reusing prior data dramatically improves the sample efficiency of our
algorithm over approaches which rely exclusively on online data (Papagiannis & Li, 2020).

Our final approach, Observational Off-Policy Sinkhorn (OOPS) discovers a reward function in a
similar manner to existing approaches (Papagiannis & Li, 2020; Dadashi et al., 2020), but in state
transition space rather than state-action space. Unlike these prior approaches, OOPS avoids com-
plexities such as adversarial learning or heuristic-based design of the reward function with multiple
hyperparameters. OOPS is summarized in Algorithm 1.

Algorithm 1 OOPS
1: Input: Dataset of expert demonstrations DE .
2: for episodes n = 1, ..., N do
3: Collect a trajectory from the environment.
4: Compute the coupling matrix P using the Sinkhorn algorithm (Sinkhorn, 1967).
5: Compute the reward r̃ with DE and P (Equation (5)).
6: Train learner with a RL algorithm, and the collected trajectories and reward r̃.

5 Experiments

5.1 Results

We evaluate our algorithm on five MuJoCo locomotion benchmark environments from the OpenAI
Gym suite (Todorov et al., 2012; Brockman et al., 2016), and three robotics tasks (Coumans &
Bai, 2016; Tan et al., 2018) in the ILfO setting. For each environment, the dataset of expert
trajectories DE is generated via a pre-trained Soft Actor-Critic agent (Haarnoja et al., 2018a).
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Figure 1: Learning curves for 1 expert demonstrations across 5 random seeds. The shaded area represents
a standard deviation. OOPS+TD3 consistently matches or outperforms the baseline approaches.
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# Expert Algorithm Hopper Walker2d HalfCheetah Ant Humanoid
Traj. 3420 ± 36 4370 ± 124 11340 ± 95 5018 ± 140 5973 ± 17

1

f -IRL (FKL) 0.91 ± 0.03 0.42 ± 0.10 0.63 ± 0.13 0.47 ± 0.10 0.47 ± 0.32
OPOLO 0.73 ± 0.09 0.80 ± 0.14 0.88 ± 0.02 0.89 ± 0.04 0.04 ± 0.01
SIL – (s, s′) 0.17 ± 0.06 0.07 ± 0.02 -0.17 ± 0.09 -0.41 ± 0.07 0.07 ± 0.00
PWIL – (s) 0.91 ± 0.14 0.71 ± 0.30 0.01 ± 0.01 0.76 ± 0.05 0.14 ± 0.14
OOPS+DDPG (Ours) 0.90 ± 0.10 0.99 ± 0.03 1.05 ± 0.01 1.00 ± 0.02 0.16 ± 0.20
OOPS+TD3 (Ours) 0.98 ± 0.02 0.95 ± 0.09 1.05 ± 0.01 1.00 ± 0.03 0.74 ± 0.04

4

f -IRL (FKL) 0.92 ± 0.04 0.38 ± 0.12 0.69 ± 0.12 0.38 ± 0.07 0.51 ± 0.28
OPOLO 0.72 ± 0.15 0.91 ± 0.03 0.90 ± 0.02 1.02 ± 0.04 0.20 ± 0.12
SIL – (s, s′) 0.25 ± 0.07 0.09 ± 0.03 -0.22 ± 0.14 -0.61 ± 0.22 0.07 ± 0.01
PWIL – (s) 0.98 ± 0.02 0.88 ± 0.03 0.00 ± 0.02 0.78 ± 0.03 0.23 ± 0.28
OOPS+DDPG (Ours) 0.75 ± 0.34 0.96 ± 0.03 1.05 ± 0.01 0.99 ± 0.01 0.07 ± 0.01
OOPS+TD3 (Ours) 0.94 ± 0.07 0.97 ± 0.01 1.05 ± 0.01 0.99 ± 0.03 0.65 ± 0.15

10

f -IRL (FKL) 0.91 ± 0.05 0.39 ± 0.09 0.65 ± 0.10 0.39 ± 0.17 0.40 ± 0.22
OPOLO 0.66 ± 0.08 0.96 ± 0.04 0.95 ± 0.01 1.00 ± 0.03 0.16 ± 0.06
SIL – (s, s′) 0.17 ± 0.09 0.08 ± 0.03 -0.20 ± 0.09 -0.24 ± 0.11 0.07 ± 0.00
PWIL – (s) 0.98 ± 0.01 0.87 ± 0.08 0.01 ± 0.02 0.78 ± 0.04 0.23 ± 0.28
OOPS+DDPG (Ours) 0.93 ± 0.03 0.78 ± 0.39 1.03 ± 0.04 0.79 ± 0.38 0.21 ± 0.25
OOPS+TD3 (Ours) 0.97 ± 0.01 0.95 ± 0.03 1.05 ± 0.01 1.00 ± 0.02 0.64 ± 0.22

Table 1: Final performance of different ILfO algorithms at 1M timesteps, using 1, 4, 10 expert demonstra-
tions. Values for each task are normalized by the average return of the expert. ± captures the standard
deviation. The highest value and any within 0.05 are bolded. The average un-normalized return of the
expert is listed below each task. All results are averaged across 5 seeds and 10 evaluations.

We use OOPS to generate a reward function for two RL algorithms, TD3 (Fujimoto et al., 2018)
and DDPG (Lillicrap et al., 2015). Our baselines include state-of-the-art ILfO methods: f-IRL (Ni
et al., 2020) (its best-performing FKL variant in particular) and OPOLO (Zhu et al., 2020), as well
as IL methods which also consider the Wasserstein distance: Primal Wasserstein Imitation Learning
(PWIL) (Dadashi et al., 2020) and Sinkhorn Imitation Learning (SIL) (Papagiannis & Li, 2020). In
order to compare algorithms in the ILfO setting, we use the state-only version of PWIL, PWIL–
(s) (Dadashi et al., 2020), and modify SIL (Papagiannis & Li, 2020) by replacing the action a in all
pairs (s, a) with the corresponding next state s′ in the transition. All algorithms are given a budget
of 1M environment interactions (and 1M updates), are evaluated on 5 random seeds, and use the
original implementations provided by the authors.

Locomotion. We report the evaluation results of our approach compared against the four baseline
algorithms in Table 1, varying the number of expert demonstrations used for imitation. The learning
curves for the single demonstration setting are shown in Figure 1.

# Expert Traj. BipedalWalker Minitaur MinitaurDuck
318.90 ± 9.20 12.36 ± 0.75 10.68 ± 1.20

1
OPOLO 0.96 ± 0.01 0.76 ± 0.08 1.00 ± 0.04
PWIL – (s) 0.89 ± 0.01 0.53 ± 0.19 0.30 ± 0.14
OOPS+TD3 0.93 ± 0.01 1.01 ± 0.04 0.94 ± 0.18

4
OPOLO 0.96 ± 0.01 0.84 ± 0.09 1.01 ± 0.03
PWIL – (s) 0.90 ± 0.01 0.52 ± 0.15 0.21 ± 0.09
OOPS+TD3 0.92 ± 0.01 0.91 ± 0.09 1.02 ± 0.05

10
OPOLO 0.98 ± 0.00 0.98 ± 0.04 1.00 ± 0.02
PWIL – (s) 0.88 ± 0.01 0.58 ± 0.09 0.15 ± 0.16
OOPS+TD3 0.93 ± 0.01 1.03 ± 0.03 0.99 ± 0.09

Table 2: Final performance of ILfO algorithms when using 1, 4,
and 10 expert demonstrations. Values for each task are normal-
ized by the average return of the expert. ± captures the standard
deviation. The highest value and any within 0.05 are bolded.
The average un-normalized return of the expert is listed below
each task. Results are averaged across 5 seeds and 10 evaluations.

OOPS+TD3 consistently matches or
outperforms all baseline methods re-
gardless of task and number of ex-
pert demonstrations. OOPS+DDPG
roughly matches the performance of
the expert in every environment other
than Humanoid. The poor results
on Humanoid are unsurprising, as
previous results have demonstrated
that DDPG tends to fail at the Hu-
manoid task in the standard RL set-
ting (Haarnoja et al., 2018a). Regard-
less, since DDPG is known to under-
perform TD3 and SAC, matching the
performance of the SAC expert sug-
gests that the OOPS reward function
can produce a stronger learning signal
than the original task reward. This
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Figure 2: Calibration plot comparing the proxy reward with the original reward function of the benchmark
domains. Each point represents the average of the sum of each reward function, over 5 trajectories. Tra-
jectories are generated by adding noise N (0, ℓ2) to the expert policy. The calibration plots show a strong
correlation between the proxy reward and the true task reward.

result indicates that OOPS might not be dependent on the choice of the RL algorithm, assuming
the RL algorithm is capable of solving the desired task.

Additional environments. For the top three performing algorithms (OPOLO, PWIL–(s),
and OOPS+TD3), we benchmark on three additional robotic-centric tasks in Table 2. While
OOPS+TD3 and OPOLO achieve a similar high performance when using all 10 expert demon-
strations, OOPS+TD3 surpasses OPOLO when using fewer demonstrations.
5.2 Analysis and Ablations

To better understand the performance of our approach, in this section, we perform additional analysis
to test the quality and importance of various components. These results fill the gap in knowledge
left by previous work leveraging the Wasserstein distance in IL, examining hyperparameters such
as the regularization parameter in the Sinkhorn distance or the effect of using different distance
metrics, and provide direct comparison between the various approximations available to use when
comparing policy trajectories.

Accuracy of proxy reward. OOPS generates a proxy reward function that minimizes the Wasser-
stein distance between the learner’s trajectories and the demonstrated expert trajectories. We eval-
uate the correlation between this proxy reward and the true environment reward. To do so, we
collect a dataset of varied trajectory quality using the expert policy from the main results, with
added Gaussian noise N (0, ℓ2) with ℓ ∈ [0, 1.5]. Figure 2 shows the calibration plots between the
proxy reward and the original task reward, showing a strong correlation in every environment.

Next, we compare the quality of trajectories in terms of the Wasserstein distance rather than the
true environment reward. In Table 3, we compare the Wasserstein distance between the expert
trajectories and the final policy rollouts obtained at the end of training from each of the top-3
performing methods (OOPS, OPOLO, PWIL–(s)). The Wasserstein distance is measured in three
spaces: state-only (s), state-transition (s, s′), and state-action (s, a).

Environment Hopper Walker2d HalfCheetah Ant Humanoid
Space (s) (s, s’) (s, a) (s) (s, s’) (s, a) (s) (s, s’) (s, a) (s) (s, s’) (s, a) (s) (s, s’) (s, a)

OPOLO 5.91 8.40 6.33 3.02 4.32 3.47 1.60 2.39 1.91 4.64 7.24 5.05 80.75 114.53 81.90
PWIL – (s) 1.74 2.56 2.38 2.04 2.96 2.78 6.48 9.27 6.93 3.83 6.00 5.90 53.52 76.06 54.94
OOPS+TD3 1.66 2.38 2.06 2.28 3.27 3.02 1.63 2.41 2.01 3.83 5.90 5.17 25.64 37.03 27.63

Table 3: Final Wasserstein distance in state occupancy, state transition, and state-action space of the 10 final
trained agent rollouts to the expert trajectories for different ILfO algorithms, lower is better. We highlight in
blue the best performing agent in state-action space, considered ground truth in this experiment, and bold
the best performing agent according to each metric. Agents were trained using 10 expert demonstration
trajectories, for 1M timesteps. Distances are averaged over 10 reference expert trajectories.
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We find that OOPS obtains the lowest state-action Wasserstein distance to the expert trajectories in
four of the five studied environments, with Walker2d being the only disagreement with the previous
experiment, as even though OOPS+TD3 obtains a better task reward in Table 1, PWIL–(s) obtains
a lower state-action Wasserstein distance to the expert.

Finally, to further evaluate the quality of the Wasserstein distance used by PWIL, we take OOPS and
replace the Sinkhorn algorithm with the greedy formulation Wgreedy proposed by PWIL to compute
the Wasserstein distance in (s, s′) space. The results are reported in Table 4 (under Wgreedy), and
show a loss in performance.

Quality of estimated Wasserstein distance. In Figure 3, we compare the quality of different
approximations of the state transition Wasserstein distance: the Sinkhorn distance WSk with varying
λ, the network simplex solver Wsimplex introduced in (Bonneel et al., 2011), and Wgreedy proposed
for PWIL (Dadashi et al., 2020). Additional results can be found in the Appendix.

2.8 3.0 3.2 3.4 3.6 3.8

0.001 0.5 1.0

Sinkhorn hyperparameter λ

Wsimplex Wgreedy

Figure 3: Wasserstein distances between the 10 final rollout tra-
jectories of OOPS+TD3 and the expert on the Hopper environ-
ment, using different solvers for the coupling matrix P (Wgreedy
and Wsimplex) compared against the Sinkhorn distance WSk when
varying the parameter λ. Results are averaged over 10 expert
trajectories. The Sinkhorn distance, for low enough values of λ
computes a tighter upper bound to the Wasserstein distance esti-
mates than Wgreedy (Dadashi et al., 2020). Results for the other
environments can be found in the Appendix.

To compare each approach, we com-
pute the Wasserstein distance be-
tween trajectories generated by the
final policy of OOPS+TD3 and the
expert trajectories, using each of
the various approximations. Each
method results in different estimates
of the coupling matrix P ; they pro-
vide an upper bound on the true
Wasserstein distance, where lower es-
timates of the Wasserstein distance
are a tighter bound. We find that for
very low values of λ, WSk computes
lower cost couplings than Wsimplex,
and up to λ ≈ 0.4 obtains better ap-
proximations than Wgreedy.

Hopper Walker2d HalfCheetah Ant Humanoid

Occupancy (Default: (s, s′))

State only 0.10 -33.93 -0.57 0.30 -0.94

Wasserstein Distance Solver (Default: λ = 0.05)

Wgreedy -14.99 -7.75 -45.46 -0.79 -19.21
Wsimplex -10.91 -6.09 -1.03 -2.40 -33.99
λ = 0.005 -3.12 -2.65 -0.35 -1.48 -2.34
λ = 0.1 -1.72 -3.87 -1.39 -3.88 -9.18
λ = 0.5 -58.64 -25.20 -15.09 -10.95 -24.44

Distance Metric (Default: W1, d =
√

|| · ||2)

W2, d = || · ||2 -36.52 -21.83 -11.88 -16.10 -47.92
W1, d = || · ||2 -4.61 -1.42 -1.73 -1.95 -22.80
W1, d = cos 0.13 -10.04 -4.09 -2.84 -34.63

Adversarial Distance (Default: Unused)

SIL – (s, s′) -82.50 -91.61 -119.10 -124.88 -90.83
OOPSadv -21.09 -76.58 -101.84 -17.68 -97.87

Table 4: Results for different variations of OOPS in terms of
percent difference. All results use 10 expert trajectories and
are averaged across 5 seeds and 10 evaluations. State only
uses W1 over (s) rather than (s, s′). Wasserstein distance
solver modifies the solver used by OOPS to determine the
coupling matrix P . Adversarial distance refers to the use of
the adversarial distance function from SIL (Papagiannis & Li,
2020) and also includes the full SIL method for comparison.

Next, we compare these three approaches
for computing the Wasserstein distance
in terms of performance. The results are
shown in Table 4 (Wasserstein Distance
Solver). Unsurprisingly, large values of
λ, which approximate the Wasserstein
distance W1 poorly, results in lower per-
formance. For sufficiently small values of
λ, we find that OOPS+TD3 maintains
a consistent performance. This suggests
that λ can generally be ignored and left
to a default value.

Finally, we attempt different settings for
the Wasserstein distance. In Table 4 we
display the change in performance from
OOPS when using W1 or W2 when the
distance metric d is the Euclidean dis-
tance || · ||2, and W1 when d is the co-
sine distance. OOPS uses W1 with the
square root of the Euclidean distance,
which de-emphasizes large differences in
magnitude in a similar fashion to the co-
sine distance. We find that this choice
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of d provides significant benefits in high
dimensional domains (Humanoid) where
magnitudes matter but can vary significantly. We also compare with the learned adversarial distance
metric used by SIL (Papagiannis & Li, 2020) (denoted OOPSadv) and find that while this version
outperforms vanilla SIL, the adversarial component is harmful.

Transition vs. state occupancy. For OOPS, we define trajectories by their state-next-state
transitions (s, s′), rather than individual states s. Matching based on states can potentially admit
multiple minimums since trajectories with the same states out of order can still minimize the state
occupation distributional distance. Furthermore, if the reward function is based on state and action,
then it is clear that only matching state occupancy is insufficient. Since expert actions are unavailable
in the ILfO setting, we must rely on (s, s′). We posit that enforcing a local ordering of states provides
a higher fidelity signal for ILfO. We validate this empirically in our ablations (Table 4 - Occupancy).
While using state-only occupancy matches the performance of OOPS+TD3 in most environments,
there is a large drop in performance in Walker2d. This aligns with our intuition: matching by state
occupancy will often work but can be problematic in certain environments depending on the state
representation and transition dynamics.

6 Conclusion

In this paper, we introduce OOPS, an ILfO algorithm that produces a reward function that mini-
mizes the Wasserstein distance between the state transition trajectory of the expert and the imita-
tion agent. We validate our approach through extensive experiments and demonstrate that OOPS
surpasses the current state-of-the-art methods in the ILfO setting across benchmark and robotics do-
mains. Combined with off-policy RL, OOPS exhibits exceptional sample efficiency and low variance
in performance, key qualities for the practical deployment of IL algorithms on real systems.
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A Additional Results and Experiments

A.1 Comparing Solvers for the State Transition Wasserstein Distance

We show in Figure 4 the full set of results for the comparison of solvers used when computing the
Wasserstein distance. See Section 5.2 for the description and discussion of this experiment.

Hopper

2.8 3.0 3.2 3.4 3.6 3.8

Walker2d

2.8 3.0 3.2 3.4 3.6 3.8 4.0

HalfCheetah

2.2 2.4 2.6 2.8 3.0 3.2 3.4

Ant

6.0 6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6

Humanoid

51.8 52.0 52.2 52.4 52.6 52.8 53.0 53.2

Estimated Wasserstein Distance
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Sinkhorn hyperparameter λ

Wsimplex Wgreedy

Figure 4: Wasserstein distances between the 10 final rollout trajectories of OOPS+TD3 and the expert,
using different solvers for the coupling matrix P (Wgreedy and Wsimplex) compared against the Sinkhorn
distance WSk when varying the parameter λ. Results are averaged over 10 expert trajectories. The Sinkhorn
distance, for low enough values of λ computes a tighter upper bound to the Wasserstein distance estimates
than Wgreedy (Dadashi et al., 2020).

B Experimental Details

In Table 5, we list the hyperparameters used for TD3 (Fujimoto et al., 2018), our underlying off-
policy RL algorithm. On top of these hyperparameters, we use the PAL variant of TD3 for the
loss function of the critic (Fujimoto et al., 2020). In Table 6, we list the hyperparameters for the
computation of the Sinkhorn distance (Cuturi, 2013) used for OOPS across all experiments, except
experiments studying the effect of specific hyperparameters (distance metric and λ).

Parameter Value
τ 3e-3

Exploration noise 2e-1
Policy noise 1e-1

Actor network architecture (hidden) [256]
Critic network architecture (hidden) [1024]

Actor LR 3e-4
Critic LR 3e-4
Optimizer Adam

Actor non linearity ReLU
Critic non linearity ReLU

Table 5: TD3 hyperparameters
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Parameter Value
Maximum number of iterations 20000

λ 0.05
Distance metric

√
|| · ||2

Table 6: Sinkhorn distance computation hyperparameters


