
RLJ | RLC 2024

Can Differentiable Decision Trees Enable Inter-
pretable Reward Learning from Human Feedback?

Akansha Kalra
Kahlert School of Computing
University of Utah
akanshak@cs.utah.edu

Daniel S. Brown
Kahlert School of Computing
University of Utah
daniel.s.brown@utah.edu

Abstract

Reinforcement Learning from Human Feedback (RLHF) has emerged as a popular
paradigm for capturing human intent to alleviate the challenges of hand-crafting
the reward values. Despite the increasing interest in RLHF, most works learn
black box reward functions that while expressive are difficult to interpret and often
require running the whole costly process of RL before we can even decipher if these
frameworks are actually aligned with human preferences. We propose and evaluate
a novel approach for learning expressive and interpretable reward functions from
preferences using Differentiable Decision Trees (DDTs). Our experiments across
several domains, including CartPole, Visual Gridworld environments and Atari
games, provide evidence that the tree structure of our learned reward function is
useful in determining the extent to which the reward function is aligned with human
preferences. We also provide experimental evidence that not only shows that reward
DDTs can often achieve competitive RL performance when compared with larger
capacity deep neural network reward functions but also demonstrates the diagnostic
utility of our framework in checking alignment of learned reward functions. We
also observe that the choice between soft and hard (argmax) output of reward
DDT reveals a tension between wanting highly shaped rewards to ensure good RL
performance, while also wanting simpler, more interpretable rewards. Videos and
code, are available at: https://sites.google.com/view/ddt-rlhf

1 Introduction

Figure 1: We propose an end-to-end differen-
tiable approach for training reward functions
using differentiable decision trees via trajec-
tory preference labels to enable interpretabil-
ity and identification of misalignment of the
learned reward function.

The reward function is central to reinforcement learn-
ing (RL) algorithms (Sutton and Barto, 2018); how-
ever, it is difficult to manually specify a good reward
function for many tasks (Ng et al., 1999; Krakovna
et al., 2020), motivating learning reward functions
from human input (Jeon et al., 2020). We focus on the
problem of learning interpretable reward functions.

Most modern reward learning methods use deep neu-
ral networks (Finn et al., 2016; Christiano et al.,
2017; Ibarz et al., 2018; Hejna and Sadigh, 2022; Tien
et al., 2023). However, despite the growing interest in
explaining black box models trained via deep learn-
ing (Gilpin et al., 2018; Zhang and Zhu, 2018; Heuillet
et al., 2021; Räukur et al., 2022), deep neural networks remain extremely difficult to interpret. In the
context of reward learning, it is especially critical that we can interpret the learned objective—if we
cannot understand the objective that a robot or AI system has learned, then it is difficult to know if
the AI system’s behavior will be aligned with human preferences and intent (Russell et al., 2015;

https://sites.google.com/view/ddt-rlhf


RLJ | RLC 2024

Leike et al., 2018; Brown et al., 2021). This is particularly significant in tasks where human safety is
on the line, for example in healthcare, autonomous navigation, and assistive robots.

Thus, we are faced with a problem: we want highly accurate and expressive reward models, but we
also want to be able to interpret the learned reward function. In particular, we seek to integrate
structural and interpretability constraints into the reinforcement learning from human feedback
(RLHF) pipeline to improve diagnostic capabilities for misalignment issues. A natural step towards
both of these goals is to combine the expressiveness of neural networks with an architecture choice
that is easier for a human to interpret, such as a decision tree. To tackle the the aforementioned
problems, we propose a novel reward learning approach that uses an end-to-end differentiable decision
tree model for learning interpretable reward functions from pairwise preferences. We evaluate our
approach on three different domains: CartPole (Brockman et al., 2016), a novel set of Visual MNIST
Gridworld environments, and two Atari games from the Arcade Learning Environment (Bellemare
et al., 2013). We investigate the ability to learn expressive and interpretable reward functions from
both low- and high-dimensional state inputs.

Learning a reward model as a differentiable decision tree has the advantage that the tree structure
explicitly breaks the reward prediction for a state into a finite number of routing decisions within
the tree. This provides the potential to understand how the reward predictions are being made.
Leveraging the tree structure, we can provide global explanations across both low- and medium-
dimensional environments such as CartPole and visual MNIST gridworlds. For high-dimensional
visual state spaces, such as Atari, we propose a novel form of hybrid explanation that seeks to provide
global explanations by leveraging aggregations of individual input states.

Our paper makes the following contributions: (1) We introduce a reward learning framework (Fig 1)
that employs differentiable decision trees (DDTs) to learn human intent using trajectory preference
labels without necessitating any hand-crafting of the input feature space. To the best of our knowledge,
our framework is the first interpretable tree-based method for reward learning that can be applied
in visual domains. (2) We propose hybrid explanations for internal nodes that approximate global
explanations by leveraging aggregations of individual input states. (3) We study the ability of DDTs
to learn interpretable rewards on visual-control tasks and find that Reward DDTs can often learn
interpretable reward functions. We also provide evidence that reward DDTs can be used to identify
reward misalignment. (4) We find that the policies obtained by optimizing our reward DDTs via RL
often perform comparably to policies trained with black-box neural network reward functions.

2 Related Work

Preference Learning Reinforcement learning from human feedback (RLHF), is a common ap-
proach for learning reward functions and corresponding RL policies (Wirth et al., 2016). It has been
shown that preference learning allows generalizing to various domains, even when sub-optimal demon-
strations are provided without any explicit preferences and can achieve better-than-demonstrator
performance (Brown et al., 2019). Preference learning is also applicable across multiple forms of
human input: prior work has shown that demonstrations (Brown et al., 2020), e-stops (Ghosal
et al., 2023a), rankings (Ouyang et al., 2022), and corrections (Mehta and Losey, 2022), can all be
represented in terms of pairwise preferences. Thus, our approach is also applicable in these other
settings. Prior work on RLHF typically either assumes access to a set of hand-designed reward
features (Sadigh et al., 2017; Biyik et al., 2020; Mehta and Losey, 2022; Ghosal et al., 2023a) or
uses deep convolutional or fully connected networks for reward learning (Christiano et al., 2017;
Brown et al., 2019; Lee et al., 2021a; Hejna and Sadigh, 2022; Ouyang et al., 2022; Liu et al., 2023;
Karimi et al., 2024). By contrast, we study the extent to which we can learn expressive, but also
interpretable reward functions via differentiable decision trees (Frosst and Hinton, 2017).

Explaining and Interpreting Reward Functions In the past few years, various attempts
have been made to understand learned reward functions. Prior work compares learned reward
functions to a ground truth reward using pseudometrics (Gleave et al., 2021), saliency maps and



RLJ | RLC 2024

counterfactuals (Brown et al., 2019; Michaud et al., 2020; Mahmud et al., 2023; Tien et al., 2023).
Other work leverages human teaching strategies (Lee et al., 2021b; Booth et al., 2022) or uses human-
centric evaluation methods for reward explanation (Sanneman and Shah, 2022). Prior work has also
looked at using expert-driven reward design techniques to incorporate structural and interpretability
constraints (Jiang et al., 2021; Devidze et al., 2021; Icarte et al., 2022). We seek to investigate to
what extent differentiable decision trees enable interpretable reward functions.

Differentiable Decision Trees Differential decision trees (DDTs) seek to combine the flexibility of
neural networks with the logical and interpretable structure of decision trees (Quinlan, 1986; Jordan,
1994). DDTs have been previously applied to supervised learning tasks (Frosst and Hinton, 2017;
Tanno et al., 2019; Hazimeh et al., 2020) and unsupervised tasks (Zantedeschi et al., 2021). Recent
work has also investigated using DDTs for reinforcement learning tasks (Silva et al., 2020; Coppens
et al., 2019; Tambwekar et al., 2023; Ding et al., 2021; Pace et al., 2022), but focuses on policy learning
using DDTs. Compared to prior work, the primary objective of our work is to learn interpretable
reward functions using DDTs. While policy explanations are important, they only show what triggers
an agent to take a certain action, rather than explaining the underlying reason why the policy has
learned to take take an action. By understanding agent’s reward function, we gain insight into the
agent’s value alignment (Leike et al., 2018; Fisac et al., 2020; Brown et al., 2021). Importantly,
understanding an agent’s reward function can enable an understanding of how that agent would act
across different embodiments and dynamics Fu et al. (2018); Zakka et al. (2022), unlike policies which
are tied to the specifics of the MDP transition dynamics and action space. Furthermore, prior work
using DDTs for policy learning only considers low-dimensional, non-visual inputs (Silva et al., 2020;
Coppens et al., 2019). By contrast, we study DDTs applied to high-dimensional image observations.

Decision Trees for Reward Learning There has been very little prior work on using decision
trees for reward learning. Bewley and Lecue (2022) recently pioneered the idea of a tree-based
reward function. However, their approach to learning a tree-based reward requires a complex,
non-differentiable, multi-stage optimization procedure. By contrast, our approach is end-to-end
differentiable and trainable using a simple cross entropy loss. Bewley and Lecue (2022) also only
consider low-dimensional inputs where internal nodes in tree have the form (s, a)d ≥ c for each
dimension d of the state-action space and threshold c. This approach divides state-action space into
axis aligned hyperrectangles, which often works for lower-dimensional spaces, but does not scale to
higher-dimensional state and action spaces. Follow-on work (Bewley et al., 2023) uses a differentiable
loss function but is not end-to-end differentiable as it requires reward tree to regrow at each update
and requires hand crafting input features per decision node in the tree, making it intractable to scale
to the types of visual inputs we consider. We seek to extend the state-of-the-art in interpretable
tree-based reward learning by learning reward function DDTs that are end-to-end differentiable, do
not require hand-crafted features, and scale easily to high dimensional pixel inputs.

3 Reward Learning using Differentiable Decision Trees

Classical decision trees are often interpretable and easy to tune (Kotsiantis, 2013; Molnar, 2020);
however, they require feature engineering which can result in lower performance and less generalization
compared with other machine learning approaches (Frosst and Hinton, 2017; Hazimeh et al., 2020).
In this section, we discuss our proposed approach for learning interpretable but expressive reward
functions via differentiable decision trees (DDTs).

While classical decision trees consist of internal nodes that deterministically route inputs, we want
our reward function tree to be easily trained using backpropagation. Thus, we need a differentiable
soft routing function that retains the expressiveness of a neural network by learning the routing
function for each non-leaf node. We define an internal node in the DDT as a sequence of one or more
parameterized functions applied, to the input to the DDT to determine probability of routing left
or right. To facilitate interpretability, each internal node depends directly on the input—this is a
common design choice in DDTs (Frosst and Hinton, 2017) and serves our purpose well by allowing us



RLJ | RLC 2024

to easily trace each routing decision in the tree to the raw input features. Thus, the differentiable
decision tree learns a hierarchy of decision boundaries that determine the routing probabilities for
each input. We describe two variants of an internal node below:

3.1 Internal Nodes

Figure 2: Routing probability
of an internal node in a DDT.

Simple Internal Node Proposed by Frosst and Hinton (2017),
a simple internal routing node, i, has a linear layer with learnable
parameters wi and a bias term b upon which a sigmoid activation
function, σ, is applied to derive the routing probability given an input
x (Fig 2). Thus, the probability at node i of routing to the left
branch is defined as pi(x) = σ(β(x ·wi +b)). The inverse temperature
parameter, β, controls the degree of soft decisions.

Sophisticated Internal Node For higher-dimensional inputs we propose an alternative internal
node architecture, which consists of a single convolutional layer with Leaky ReLU as the non-linearity
followed by a fully connected linear layer, as before. The probability of going to the leftmost branch
at an internal node i is defined as pi(x) = σ((LeakyReLU(Conv2d(x))) · wi + b).

3.2 Leaf Nodes

Following prior work that uses DDTs for classification problems (Frosst and Hinton, 2017), we
parameterize each leaf node, l, with a learnable parameter vector ϕl, that defines a softmax distribution
over a discrete number of classes c. The probability distribution, Ql, over outputs at a leaf is defined
as Ql

i = exp(ϕl
i)/(

∑c
j=0 exp(ϕl

j)). We propose two ways to obtain rewards at the leaf nodes:

Multi-Class Reward Leaf (CRL) This formulation of leaf node performs multi-class classification
and assumes that the user specifies a set of c unique discrete reward values that the DDT can output
in the form of a vector R = (r1, r2, . . . , rc), where c denotes the number of classes for the DDT, and
each class index i is assigned reward value ri. Thus, the learnable parameters, ϕl, at multi-class
reward leaf l form the logit values of a classification problem over the possible reward values in R.

Min-Max Reward Interpolation Leaf (IL) As an alternative to the classification approach,
we also propose to model the reward of a DDT as regression problem, that only requires the user
to specify the minimum and maximum range of possible reward values as opposed to requiring
finite set of possible reward values as in CRL. Thus, c = 2 and the reward vector is of the form
R = (Rmin, Rmax), where Rmin and Rmax correspond to minimum and maximum desired reward
output, respectively. Given this parameterization, we interpret the reward output of a DDT leaf
node as a convex combination of Rmin and Rmax based on the learned parameters ϕl.

3.3 Training DDTs for Reward Learning using Human Preferences

As we want our reward DDT to be end-to-end differentiable when learning a reward function from
preference labels, we need to find a way to formulate soft reward prediction. Given a tree of depth
d ≥ 1, we have

∑d−1
k=0 2k internal nodes and 2d leaves. To formulate a differentiable objective, we

first denote the path probability, given an input x, from the root node to a leaf ℓ by P ℓ(x). The
soft reward prediction of the tree is given by the sum over all leaves, ℓ, of the path probability of
reaching each leaf, P ℓ(x), multiplied with the soft reward output at that leaf:

rθ(x) =
∑

ℓ

P ℓ(x)(Qℓ · R) .

To train our reward function DDT, we propose to leverage pairwise preference labels over trajectories.
Given preferences over trajectories of the form τi ≺ τj , where τ = (x1, x2, ...xT ), we can train our



RLJ | RLC 2024

entire differentiable decision tree via the following cross entropy loss resulting from the Bradley Terry
model of preferences (Bradley and Terry, 1952; Christiano et al., 2017; Brown et al., 2019):

L(θ) = −
∑

τi≺τj

log

exp
∑
x∈τj

rθ(x)

exp
∑
x∈τi

rθ(x) + exp
∑
x∈τj

rθ(x)
.

3.4 Using a Trained Reward DDT for Reward Prediction

Given a trained reward DDT, we want to optimize the learned reward using RL. One option is to use
the soft reward (averaged across all leaf nodes weighted by routing probability); however, this loses
interpretability since we cannot trace the predicted reward to a small number of discrete decisions.
To enable interpretable reward predictions, we can alternatively output a single reward prediction by
first finding the leaf node with maximum routing probability for a given input x:

l∗ = arg max
ℓ∈L

P ℓ(x) ,

where L denotes set of all leaf nodes in the DDT. The test-time output of a reward DDT with a multi-
class reward leaf (CRL) nodes is given as rmax(x) = ri, for i = arg maxi Qℓ∗

i ; while for a reward DDT
with min-max interpolation leaf (IL) nodes the reward output is given as rmax(x) = Qℓ∗

·(Rmin, Rmax).

3.5 Hybrid Explanations of Learned Reward DDT

Depending on the dimensionality of the state space in a given environment, our framework allows
us to create global explanations across all inputs in form of node activation heatmaps (discussed in
further detail later). As an alternative, we also investigate hybrid explanations that approximate
global explanations by leveraging aggregations of input states to visually understand the routing
probability of each internal node. Inspired by Bobu et al. (2022), we do this by visualizing a synthetic
trace at each internal node. The synthetic trace is a sequence of states sorted by the probability of
being routing left in decreasing order—the trace begins with the state that has maximum probability
of being routed left and ends with the state that has minimum probability of being routed left.

4 Experiments and Results

We designed our experiments to investigate the following questions: (1) Can we detect misalignment
in reward function by learning the reward function as a DDT? (2) How does modeling a reward
function as a DDT influence downstream RL performance? (3) How does the choice of leaf node
(multi-class reward leaf (CRL) or min-max reward interpolation leaf (IL)) affect performance? (4)
How does an increase in the environment complexity impact our design choices as well as our ability
to interpret the learned reward function? To explore and address these questions, we perform
evaluations on three different types of environments: CartPole, a novel set of MNIST Gridworld
environments, and Atari 2600 games (Bellemare et al., 2013).

We use CartPole to perform an initial assessment of our framework and provide an example of how
interpreting a learned reward DDT enables detection of a silent misalignment problem—the reward
function is misaligned but the policy still performs well. To evaluate our framework’s ability on
visual domains, we explore two MNIST Gridworld environments of increasing complexity, where the
gridworlds have image based observations. Finally we examine our framework on Atari where the true
score is masked and the agent must learn a reward function by interpreting high-dimensional pixel
observations derived from video frames. The Atari domains provide evidence in higher-dimensional
environments of the ability to detect reward misalignment.



RLJ | RLC 2024

Figure 3: Identifying Misalignment in the CartPole Reward DDT. The heatmap for each
internal node depicts the learned routing probability. Leaf nodes are depicted as circular nodes with
their soft reward values. The tree learns that small magnitude pole angles are good and should be
routed to a +1 reward but there is no learned decision boundary that clearly captures the preference
that cart position stay within the range [−2.4, 2.4] showing that learned reward is misaligned due to
the bias in the training dataset—the cartpole usually falls over long before the cart runs off the track.

4.1 CartPole

The CartPole environment comprises a cart with a pole attached to it, sliding on a friction-less
track (Brockman et al., 2016). For this task, we wish to teach the agent to balance the pole on the
cart for as long as possible while cart moves to left and right along the track without letting pole fall
beyond ±12◦ from the upright position and without letting the cart move beyond ±2.4 units along
the track. We assume no access to the true reward and must learn this from trajectory preferences.
Setup To train a reward function DDT, we generate trajectories by running a random policy in the
environment for 200 steps for each trajectory. Following the advice of Freire et al. (2020), we remove
the standard terminal or done flag to avoid leaking information about the true reward. The terminal
flag normally is triggered in CartPole when either the pole falls or the cart goes off the track. Instead,
we make CartPole a fixed horizon task by always accumulating states in each trajectory for 200
timesteps—even if the pole falls over. We design a synthetic preference labeler that returns pairwise
preferences based on the true (but unobserved) reward of +1 only if the cart position x ∈ [−2.4, 2.4]
and the pole angle θ ∈ [−12◦, +12◦] and 0 otherwise. Pairwise preferences are assigned based on the
true reward for each trajectory.

Given pairwise preference labels over suboptimal trajectories, we train a reward DDT with 3 internal
nodes and 4 leaf nodes. We use multi-class reward leaf (CRL) nodes with 2 classes: R = (0.0, 1.0)
(for more details, refer to Appendix B). It is important to note that even though the ground truth
preferences are based on both cart position and pole angle, the pole usually falls past the desirable
range long before the cart leaves the desirable range. Thus, our dataset is biased and may lead to a
misaligned reward function. We evaluate RL performance of the learned reward DDT, by running
PPO on the learned reward function to obtain the final policy and then evaluate this learned policy
on the ground-truth reward function. We also compute the performance of a PPO policy trained on
the same dataset using a neural network reward function. To unveil the fact that our learned reward
functions (using both DDT and neural network) are biased, we run RL experiments in two settings:
(1) In-Distribution uses the default starting cart position in the range [−0.05, 0.05] as in our training
dataset and (2) Out-Of-Distribution where the starting cart position is in the range [2.35, 2.45] (the
boundary of the range of desired track positions).

Results The In-Distribution results in Table 1 show that RL performance of a simple reward DDT
is comparable to that of a neural network made up of fully-connected layers as well as to RL policy
learned under ground truth reward, irrespective of whether the policy is learned using soft rewards
or using the maximum probability path across the learned reward DDT. This primarily gives us



RLJ | RLC 2024

DDT Baselines
CRL Soft CRL Argmax Neural Network Ground Truth

In-Distribution Mean (Std) 190.9 (28.1) 200.0 (0.0) 156.3 (59.0) 200.0 (0.0)
IQM 200.0 200.0 179.5 200.0

Out-Of-Distribution Mean (Std) 8.8 (3.7) 7.7 (2.1) 20.7 (39.2) 172.0 (45.6)
IQM 8.3 7.9 8.8 185.3

Table 1: Silent Misalignment in CartPole. CRL denotes Class Reward Leaf nodes. For In-
Distribution, DDTs with soft outputs and argmax rewards perform on par with a non-interpretable
fully connected 2-layer reward network baseline and with RL policy learned under ground truth
reward. For Out-Of-Distribution, the RL policy of learned reward models, both DDT and neural
network fails to learn to balance pole while moving along the track while RL policy under ground
truth reward learns to balance pole as it moves on track. The table shows Mean and Standard
deviation across 10 seeds averaged over 100 rollouts as well as the Interquartile Mean (IQM).

the evidence that our framework can achieve relatively competitive performance as that of a neural
network for state based observations,before we move on to image-based observations.

Fig 3 shows learned reward DDT. Because the input space to the reward function is 2-dimensional
(cart position and pole angle) we visualize the heatmap of routing probability at each internal node
(as a function of cart position and pole angle) along with leaf distributions. From DDT it is clear
that most of the routing decisions are made based on pole angle, rather than cart position. A nice
feature of the reward DDT is that we can easily visually interpret the learned reward just by looking
at the tree. From Fig 3 we see that while the tree learns that small magnitude pole angles are good
and should be routed to a +1 reward, there is no learned decision boundary that clearly captures the
preference that cart position stay within the range [−2.4, 2.4]. We call this a silent misalignment
problem. Similar to a silent bug in programming, it is not obvious by running RL that anything is
wrong with the learned reward function—it turns out that trying not to tip the pole is a decent
surrogate reward function that works well in the standard CartPole environment. Thus, the agent
has learned the right policy for the wrong reason, something that is only clear by interpreting the
learned reward. While this poses no serious issues in the standard CartPole environment, silent
alignment problems could lead to unwanted behavior under distribution shifts and detecting these
silent alignment problems is an open challenge in AI safety and alignment research (Ji et al., 2023).

Indeed, the Out-Of-Distribution results in Table 1 demonstrate this silent misalignment in the learned
reward functions, where the policies learned from the reward DDTs as well as neural network reward
learn to balance the pole, but fail to stay in the desired track range. In contrast, the RL policy under
ground truth reward learns to balance pole correctly while moving along the track, starting from any
state. Our DDT framework makes it easier to detect this misalignment in learned reward function
prior to running RL, but with non-interpretable black box neural network’s learned reward function
we had to incur cost of running RL before we could uncover the bias in the learned reward.

4.2 MNIST Gridworlds

Figure 4: MNIST Grid-
world with a pair of tra-
jectories where the blue
trajectory is preferred.

Next we evaluated our reward DDT framework on two novel MNIST
gridworld environments of increasing difficulty. In each environment the
agent can move in the 4 cardinal directions and each state is associated
with a 28 × 28 grey-scale image of the MNIST digit and the value of
the digit determines the true unobserved reward at that state (for more
details, refer to Appendix C) .

The true reward is unobserved and must be inferred from preferences over
pairwise preferences over trajectories. To interpret the learned reward
DDT, we construct a pixel-level activation heatmap for each internal node by starting with a blank
image and iteratively toggling on and off each pixel and computing the resulting difference in routing



RLJ | RLC 2024

(a)
(b)

Figure 5: Interpreting the MNIST (0-3) Interpolated Leaf Reward DDT. Leaf nodes are
depicted as circular nodes with their learned reward values. (a) Visualization of activation maps
give insight into the learned routing of the DDT. (b) Visualization of synthetic traces along with
their respective routing probabilities.

Reward DDT Baselines
CRL Soft CRL Argmax IL Soft IL Argmax NNet Random

MNIST 0-3 71.7% 71.7% 98.9% 97.8% 99.5% 7.6%
MNIST 0-9 79.6% 79.6% 97.3% 92.9% 97.7% 7.9%

Table 2: RL Performance as the percentage of expected return obtained relative to the performance of
an optimal policy on the ground-truth reward. Results are averaged across 100 different MDPs. We
find evidence that reward DDTs with Interpolated Leaf nodes (IL) perform similar to neural network
reward functions, while using Class Reward Leaf nodes (CRL) results in much lower performance,
but still outperforms a random policy (Random). These results provides evidence that DDTs can
learn both interpretable reward functions without causing a large degradation in RL performance.

probabilities for each internal node. We compare the performance of a policy optimized using the
learned DDT reward function against the optimal policy under the true reward, a random policy,
and a policy learned by optimizing a black-box neural network reward function trained on the same
preference dataset. We also report accuracy of the learned reward models on validation set of pairwise
preferences over trajectories in Appendix C.

4.2.1 MNIST (0-3) Gridworld

Setup We begin by examining our framework for image based inputs on a simple 5x5 gridworld
where each state in the MDP corresponds to a MNIST digit 0, 1, 2, or 3 (see Fig 4 for an example
pairwise trajectory comparison). We trained reward DDTs of depth 2 with 3 simple internal nodes
and 4 leaf nodes either all of type CRL with R = (0, 1, 2, 3) and or all of type IL with Rmin = 0 and
Rmax = 3 using a learning rate of 0.001 and weight decay 0.005 and the Adam optimizer.

Results We visualized and compared the reward DDTs with CRL and IL leaf nodes and found
that in CRL formulation the leaf nodes fail to specialize and the argmax output of the leaf nodes is
either 0 or 3, despite investigating several regularization techniques (see Appendix E for details and
visualizations). This provides evidence that using IL leaf nodes is better when learning complicated
reward functions where we wish to output more than two possible rewards. Table 2 also provides



RLJ | RLC 2024

empirical evidence supporting the user of IL nodes. IL nodes are also simpler, as they only require
specifying a range of desired reward output values, [Rmin, Rmax]. Thus, we focus on our analysis on
the interpretability of the IL reward DDT.

Interestingly, we see in Fig 5a that the activation heatmaps isolate pixel features that are maximally
discriminative and aid in understanding of what the reward DDT has learned. These heatmaps
show that DDT learns to route based on visual representations of each digit: Node B has learned to
discriminate between 1’s and 2’s by assigning a high routing probability left for vertical pixels in the
center (corresponding to the vertical stroke of the digit 1), while using upper and lower curves of digit
2 to route 2’s right (note the black shadow that looks like a 2). Node C discriminates between digits
0 and 3 based on the middle cusp of 3 and left curve of the 0. Finally, node A learns to route 1’s and
2’s left and 0’s and 3’s right based on the presence of central lower pixels—the highest activation
for node A is intersection of the 1 and 2 which falls between middle and lower cusps of 3 and inside
digit 0. Despite the lack of fine-grained feedback and no explicit reward labels, when using min-max
reward interpolation between Rmin = 0 and Rmax = 3, the DDT learns a close approximation to the
actual state rewards and the learned rules in DDT are visually interpretable.

We also interpret the same reward DDT using synthetic traces as shown in Fig 5b. As described in
Section 3.5, these traces approximate global explanation by leveraging aggregations of input states
for each internal node. Each trace is a sequence of states sorted by the probability of being routed
left in decreasing order. We find visual evidence that the DDT has learned to route digits with a
vertical stroke to Node B which then discriminates between 1 and 2s, while digits with a circular
curve form often get routed to Node C which then discriminates between digits 0, 2 and 3s.

Row 1 of Table 2 shows that RL performance of using a reward DDT trained with IL leaf nodes
exceeds the performance when using the classification-based CRL leaf nodes, both when running RL
using soft reward outputs and when using the output of the maximum probability path in the tree
(argmax). We also found that the learned reward DDT with CRL leaf nodes learns very high/low
routing probabilities at each internal node and thus yields nearly identical reward values in both
soft and argmax reward setting. Moreover, RL performance of IL reward DDT using soft reward is
only slightly lower than the performance of a deep neural network reward function. In Appendix E,
we compare the reward DDT in Fig 5a, that is learned from pairwise preferences, with a DDT
trained with explicit reward labels and a classification loss and find no significant degradation in
interpretability from using pairwise preferences.

4.2.2 MNIST (0-9) Gridworld

Setup To assess the scalability of our framework, we next explored a 10x10 gridworld with state
space comprising of MNIST digits 0 to 9. To further study the effects of leaf node type, we used
reward DDTs of depth 4 with simple internal nodes and trained them with one of two types of leaf
nodes: either CRL nodes with R = (0, 1, .., 9) or IL nodes with Rmin = 0 and Rmax = 9.

Results Row 2 of Table 2 shows the IL soft reward performance is very similar to the performance
of a black-box ConvNet learned reward. However, we find that performance of CRL softmax and
argmax is significantly degraded, but much better than a random policy. This provides further
evidence simply framing DDT learning as a classification problem is in sufficient for learning good
reward function and that the flexibility of interpolation leaf nodes (IL) to learn real valued reward
outputs helps with both interpretability and downstream RL performance.

This provides evidence that our framework maintains high performance for much longer horizon
and more difficult tasks when using interpolated leaf nodes (IL). Even though tree structures can
help with interpretability, the deeper the tree, the harder it is to understand what is going on. In
Figure 13 in the Appendix, we visualize the learned IL Reward DDT. While there are some noticeable
trends, it is also hard to interpret exactly how the DDT has learned to route nodes. Thus, while our
results provide evidence that high-performing policies can be learned via RLHF using reward DDTs,
the more complex the DDT, the more difficult it is to interpret.



RLJ | RLC 2024

(a) DDT without activation penalty regularization (b) DDT with activation penalty regularization

Figure 6: Visualization of Breakout Reward DDTs. We plot the DDTs trained without (a) vs
with (b) a regularization penalty on the internal node routing probabilities. Dashed lines denote leaf
nodes that are never reachable.

(a) DDT without activation penalty regularization (b) DDT with activation penalty regularization

Figure 7: Visualization of Beam Rider Reward DDTs. We plot the DDTs trained without (a)
vs with (b) a regularization penalty on the internal node routing probabilities.

4.3 Atari

As a final test of the efficacy and scalability of learning interpretable rewards via DDTs, we trained
reward DDTs on the Beam Rider and Breakout Atari games (Bellemare et al., 2013). Learning
rewards for these games is challenging as the states are high-dimensional pixel inputs consisting of
stacks of four 84 × 84 video frames and many prior works have used Atari games to study reward
function learning (Christiano et al., 2017; Tucker et al., 2018; Ibarz et al., 2018; Brown et al., 2019).

Setup To train our reward DDT, we used the open-source offline preference datasets collected
by Brown et al. (2019)1. We then examine whether a reward DDT can match the RL performance
of T-REX, a deep convolutional neural network offline RLHF approach proposed by Brown et al.
(2019), while also being interpretable. Because of the complexity of the task, we use sophisticated
internal nodes and IL leaf nodes with Rmin = 0 and Rmax = 1 (see Appendix G for full details).

Because generated heatmaps for Atari, have been shown to have mixed results (Brown et al., 2019),
we opt to use traces for interpreting the learned reward DDTs. As before, the trace for an internal
node begins with the state that has maximum probability of being routed left and ends with the
state that has minimum probability of being routed left. For ease of visualization, we show the first
and last state in the trace and find that they still provide useful information about the internals of
the learned reward function.

1https://github.com/hiwonjoon/ICML2019-TREX

https://github.com/hiwonjoon/ICML2019-TREX


RLJ | RLC 2024

DDT Baseline
¬penalty ¬penalty penalty penalty T-REX

Game ¬argmax argmax ¬argmax argmax

Breakout: Mean(Std) 20.2 (34.4) 50.0 (105.3) 83.5 (130.9) 51.5 (100.6) 58.3 (42.4)
Breakout: IQM 12.8 16.6 29.3 15.0 48.9
Beam Rider: Mean (Std) 237.2 (322.2) 189.4 (284.6) 39.9 (40.7) 107.6 (288.2) 323.1 (335.9)
Beam Rider: IQM 94.9 64.1 30.2 7.6 254.9

Table 3: Reinforcement learning using reward DDTs. We report mean, standard deviation
(Std) and inter-quartile mean (IQM) across 10 different seeds of RL evaluated for 100 epsiodes each.

For each learned reward, we optimized a policy by training an A2C (Mnih et al., 2016) agent using
Stable Baselines 3 for 10 million timesteps. As done in our previous experiments, when training
the RL agent, we utilize each learned reward DDT in two ways: we either obtain a soft reward
over all leaves from tree or we choose the path with maximum routing probability and the reward
in this case is obtained by argmaxing over the maximum probability path. We report mean and
standard deviation across 10 seeds evaluated for 100 episodes each as well as the inter-quartile mean
(IQM), which has been proposed as a better alternative when evaluating smaller numbers of seeds as
recommended by prior works (Patterson et al., 2023; Agarwal et al., 2021).

Results

While trying to create synthetic traces, we discovered that some of the leaf nodes were never reachable
(e.g., the right child of Node B and C in case of Breakout Fig 6a and the right child of Node C in case
of BeamRider Fig 7a). We re-trained the sophisticated reward DDT with the same hyperparameters,
but with an added penalty regularization to ensure that, on average across many inputs, each internal
node routes left and right equally often across both environments (see Appendix A for details).

We create a synthetic trace for the unregularized reward DDT for Breakout Fig 6a by visualizing
states that are routed with maximum and minimum probability to left and found evidence that
states that have more bricks missing are routed left to Node B while the states in Node A that
have few bricks missing have a lower routing probability and thus are routed right to Node C. Both
child nodes of the root node only use their respective left leaves and do not route any state to their
respective right leaves, thus a synthetic trace could not be visualized for either Node B or Node C.
Fig. 6b shows a similar trend, where the DDT learns to reward missing bricks. Interestingly, we did
not find any evidence that the reward DDT learned to recognize the event of the ball hitting a brick.
Instead of learning the causal ground truth reward that provides a reward each time a brick is hit,
the reward DDT exhibits causal confusion (Tien et al., 2023) by learning to reward missing bricks.
Similar to CartPole, we describe this as a “silent misalignment problem". The reward function has
learned to reward the wrong thing but this actually leads to behavior that appears aligned based on
RL performance in distribution.

We similarly visualize traces for each internal node in the sophisticated reward DDT trained for the
Beam Rider game without penalty (Fig 7a) and compare it against that of reward DDT trained
using penalty (Fig 7b). In Fig 7a we see that Node A routes states where agent hits an enemy ship
to the left and states where it misses enemy ships to right. Then Node B routes states where it
looks like it will hit an enemy ship to a reward of 1.0 but interestingly routes states where it has hit
an enemy ship to a reward of 0 (yellow flash indicates an enemy being destroyed). This allows us
to see a misalignment in the learned reward function. We investigated this further and found that
when the agent loses a life, this also triggers a flashing yellow screen. Thus, the agent appears to be
misinterpreting the yellow flash and associating it with losing a life, when it should be associated
with a good reward for destroying an enemy ship. We also created traces for reward DDT trained
with regularization penalty on routing probabilities for Breakout and BeamRider. We observe similar
trends of misalignment (Node B) of the learned regularized reward DDT for BeamRider (Fig 7b).



RLJ | RLC 2024

In Table 3 we summarize learned policy performance under 4 different scenarios (without penalty
and without argmax (returning soft reward averaged over all leaf nodes), without penalty and with
argmax, with penalty and without argmax, with penalty and with argmax) for both Beam Rider
and Breakout along with T-REX performance on each of these games. Our results in terms of
performance are mixed. We find evidence that using the soft reward output (¬argmax) of a DDT
leads to the best RL performance. Interestingly, we observe that penalty regularization helps RL
performance in case of Breakout but leads to degradation in RL performance in case of Beam Rider.
However, in terms of IQM, the RL performance when optimizing the DDT rewards is not able to
match the performance of the end-to-end neural network baseline.

For Beam Rider, we examined the learned RL policies for both reward DDTs and TREX and found
that the misaligned reward did lead to misaligned behavior: agents across various seeds for both
DDT and TREX move to one end of a screen, learn to stay alive, but never fire at the enemy ship,
thus avoiding getting hit but also avoiding scoring points. Notably, in case of reward DDTs, both
with and without penalty, we could detect this misalignment before running RL using our synthetic
traces, but for TREX which use a dense black box neural network for learning reward, we could not
diagnose this misalignment in reward function prior to running RL.

5 Discussion and Future Work

Our work provides mixed results regarding the utility of reward DDTs. On one hand, we provide
evidence that reward DDTs are a viable alternative to end-to-end deep network rewards and can
sometimes perform on-par with their deep neural network reward counterparts; however, for complex
domains like Atari, the best performance comes at the cost of using DDT in a way that is not
interpretable: using a soft reward output that is a weighted sum of outputs of all leaf nodes. Ideally,
we could use reward DDTs with hard (argmax) reward outputs—the reward output during policy
optimization would come from a single leaf node, allowing us to trace the reward output to a
small number of binary routing decisions at the internal nodes. While optimizing this kind of hard
output (argmax) process works well for the simpler domains we studied (e.g., CartPole and MNIST
Gridworlds); it seems to hurt performance on more complex domains. We hypothesize this might be
a result of the reward function being too sparse. Thus, our results reveal a tension between wanting
highly shaped rewards to ensure good RL performance, while also wanting simple, non-shaped
rewards to afford interpretability. Future work should investigate this trade-off in more depth.

In terms of interpretability, we find that for low dimensional tasks such as Cartpole and MNIST
GridWorld environments, our framework is capable of providing global explanations that reveal inter-
esting insights into the learned reward. For higher dimensional tasks such as Atari, we approximate
global explanations by leveraging aggregations of local explanations by finding the input states that
maximally and minimally activate the routing probability of each internal node. However, we also
find that the deeper the DDT, the harder it becomes to interpret the learned reward. We also present
evidence that demonstrates the practicality of using reward DDTs as a kind of alignment debugger
tool to inspect learned reward functions for alignment with human intent. In particular, we provide
evidence that reward DDTs can reveal cases of silent misalignment. By running policy optimization,
we also find that baseline black-box neural network rewards are also misaligned. Importantly, the
interpretability of a reward DDT reveals the silent misalignment without needing to run RL.

Future work should investigate using our framework to understand and interpret existing pre-trained
neural network reward models that are known to lead to unintended consequences (Christiano et al.,
2017; Ibarz et al., 2018; Javed et al., 2021; Tien et al., 2023) by distilling these networks into reward
DDTs. Future work also includes investigating how to fix a known misaligned reward DDT by
fine-tuning leaf and internal nodes based on human feedback, perhaps by using human-in-the-loop
representation and feature learning (Bobu et al., 2022; 2023) or using methods for identifying
causal features using small amounts of human annotations (Ghosal et al., 2023b). Future work
shouldalso explore how to extend the ideas in this paper to transformer-based reward functions used
in LLMs (Ouyang et al., 2022) and investigate the effects of increasing tree depth on interpretability.



RLJ | RLC 2024

Acknowledgments

This work has taken place in the Aligned, Robust, and Interactive Autonomy (ARIA) Lab at The
University of Utah. ARIA Lab research is supported in part by the NSF (IIS-2310759), the NIH
(R21EB035378), Open Philanthropy, and the ARL STRONG program.

References
Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.

Deep reinforcement learning at the edge of the statistical precipice. Advances in neural information
processing systems, 34:29304–29320, 2021.

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279, Jun
2013.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environment:
An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279,
2013.

Tom Bewley and Freddy Lecue. Interpretable preference-based reinforcement learning with tree-
structured reward functions. In Proceedings of the 21st International Conference on Autonomous
Agents and Multiagent Systems, pages 118–126, 2022.

Tom Bewley, Jonathan Lawry, Arthur Richards, Rachel Craddock, and Ian Henderson. Reward
learning with trees: Methods and evaluation, 2023. URL https://openreview.net/forum?id=
xl2-MIX2DCD.

Erdem Biyik, Malayandi Palan, Nicholas C Landolfi, Dylan P Losey, Dorsa Sadigh, et al. Asking easy
questions: A user-friendly approach to active reward learning. In Conference on Robot Learning,
pages 1177–1190. PMLR, 2020.

Andreea Bobu, Marius Wiggert, Claire Tomlin, and Anca D Dragan. Inducing structure in reward
learning by learning features. The International Journal of Robotics Research, 41(5):497–518, 2022.

Andreea Bobu, Yi Liu, Rohin Shah, Daniel S. Brown, and Anca D. Dragan. Sirl: Similarity-based
implicit representation learning. In Proceedings of the 2023 ACM/IEEE International Conference
on Human-Robot Interaction (HRI), 2023.

Serena Booth, Sanjana Sharma, Sarah Chung, Julie Shah, and Elena L Glassman. Revisiting
human-robot teaching and learning through the lens of human concept learning. In 2022 17th
ACM/IEEE International Conference on Human-Robot Interaction (HRI), pages 147–156. IEEE,
2022.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Daniel S. Brown, Wonjoon Goo, Prabhat Nagarajan, and Scott Niekum. Extrapolating beyond
suboptimal demonstrations via inverse reinforcement learning from observations. In International
conference on machine learning, pages 783–792. PMLR, 2019.

Daniel S. Brown, Wonjoon Goo, and Scott Niekum. Better-than-demonstrator imitation learning via
automatically-ranked demonstrations. In Conference on robot learning, pages 330–359. PMLR,
2020.

Daniel S. Brown, Jordan Schneider, Anca Dragan, and Scott Niekum. Value alignment verification.
In International Conference on Machine Learning, pages 1105–1115. PMLR, 2021.

https://openreview.net/forum?id=xl2-MIX2DCD
https://openreview.net/forum?id=xl2-MIX2DCD


RLJ | RLC 2024

Paul F Christiano, Jan Leike, Tom B Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. In NIPS, 2017.

Youri Coppens, Kyriakos Efthymiadis, Tom Lenaerts, Ann Nowé, Tim Miller, Rosina Weber, and
Daniele Magazzeni. Distilling deep reinforcement learning policies in soft decision trees. In
Proceedings of the IJCAI 2019 workshop on explainable artificial intelligence, pages 1–6, 2019.

Rati Devidze, Goran Radanovic, Parameswaran Kamalaruban, and Adish Singla. Explicable reward
design for reinforcement learning agents. Advances in Neural Information Processing Systems, 34:
20118–20131, 2021.

Zihan Ding, Pablo Hernandez-Leal, Gavin Weiguang Ding, Changjian Li, and Ruitong Huang. Cdt:
Cascading decision trees for explainable reinforcement learning, 2021.

Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep inverse optimal control
via policy optimization. In International conference on machine learning, pages 49–58. PMLR,
2016.

Jaime F Fisac, Monica A Gates, Jessica B Hamrick, Chang Liu, Dylan Hadfield-Menell, Malayandi
Palaniappan, Dhruv Malik, S Shankar Sastry, Thomas L Griffiths, and Anca D Dragan. Pragmatic-
pedagogic value alignment. In Robotics Research: The 18th International Symposium ISRR, pages
49–57. Springer, 2020.

Pedro Freire, Adam Gleave, Sam Toyer, and Stuart Russell. Derail: Diagnostic environments for
reward and imitation learning. arXiv preprint arXiv:2012.01365, 2020.

Nicholas Frosst and Geoffrey Hinton. Distilling a neural network into a soft decision tree. arXiv
preprint arXiv:1711.09784, 2017.

Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adverserial inverse reinforce-
ment learning. In International Conference on Learning Representations, 2018.

Gaurav R Ghosal, Matthew Zurek, Daniel S Brown, and Anca D Dragan. The effect of modeling
human rationality level on learning rewards from multiple feedback types. AAAI Conference on
Artificial Intelligence, 2023a.

Gaurav Rohit Ghosal, Amrith Setlur, Daniel S. Brown, Anca Dragan, and Aditi Raghunathan.
Contextual reliability: When different features matter in different contexts. In International
Conference on Machine Learning (ICML), 2023b.

Leilani H Gilpin, David Bau, Ben Z Yuan, Ayesha Bajwa, Michael Specter, and Lalana Kagal.
Explaining explanations: An overview of interpretability of machine learning. In 2018 IEEE 5th
International Conference on data science and advanced analytics (DSAA), pages 80–89. IEEE,
2018.

Adam Gleave, Michael Dennis, Shane Legg, Stuart Russell, and Jan Leike. Quantifying differences
in reward functions. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=LwEQnp6CYev.

Hussein Hazimeh, Natalia Ponomareva, Petros Mol, Zhenyu Tan, and Rahul Mazumder. The tree
ensemble layer: Differentiability meets conditional computation. In International Conference on
Machine Learning, pages 4138–4148. PMLR, 2020.

Donald Joseph Hejna and Dorsa Sadigh. Few-shot preference learning for human-in-the-loop RL.
In 6th Annual Conference on Robot Learning, 2022. URL https://openreview.net/forum?id=
IKC5TfXLuW0.

Alexandre Heuillet, Fabien Couthouis, and Natalia Díaz-Rodríguez. Explainability in deep reinforce-
ment learning. Knowledge-Based Systems, 214:106685, 2021.

https://openreview.net/forum?id=LwEQnp6CYev
https://openreview.net/forum?id=IKC5TfXLuW0
https://openreview.net/forum?id=IKC5TfXLuW0


RLJ | RLC 2024

Borja Ibarz, Jan Leike, Tobias Pohlen, Geoffrey Irving, Shane Legg, and Dario Amodei. Reward
learning from human preferences and demonstrations in atari. arXiv preprint arXiv:1811.06521,
2018.

Rodrigo Toro Icarte, Toryn Q Klassen, Richard Valenzano, and Sheila A McIlraith. Reward machines:
Exploiting reward function structure in reinforcement learning. Journal of Artificial Intelligence
Research, 73:173–208, 2022.

Zaynah Javed, Daniel S. Brown, Satvik Sharma, Jerry Zhu, Ashwin Balakrishna, Marek Petrik,
Anca D. Dragan, and Ken Goldberg. Policy gradient bayesian robust optimization. In International
Conference on Machine Learning (ICML), 2021.

Hong Jun Jeon, Smitha Milli, and Anca Dragan. Reward-rational (implicit) choice: A unifying
formalism for reward learning. Advances in Neural Information Processing Systems, 33:4415–4426,
2020.

Jiaming Ji, Tianyi Qiu, Boyuan Chen, Borong Zhang, Hantao Lou, Kaile Wang, Yawen Duan,
Zhonghao He, Jiayi Zhou, Zhaowei Zhang, et al. Ai alignment: A comprehensive survey. arXiv
preprint arXiv:2310.19852, 2023.

Yuqian Jiang, Suda Bharadwaj, Bo Wu, Rishi Shah, Ufuk Topcu, and Peter Stone. Temporal-logic-
based reward shaping for continuing reinforcement learning tasks. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pages 7995–8003, 2021.

Michael I. Jordan. A statistical approach to decision tree modeling. In Proceedings of the Eleventh
International Conference on International Conference on Machine Learning, ICML’94, page
363–370, San Francisco, CA, USA, 1994. Morgan Kaufmann Publishers Inc. ISBN 1558603352.

Zohre Karimi, Shing-Hei Ho, Bao Thach, Alan Kuntz, and Daniel S Brown. Reward learning from
suboptimal demonstrations with applications in surgical electrocautery. International Symposium
on Medical Robotics (ISMR), 2024.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Sotiris B Kotsiantis. Decision trees: a recent overview. Artificial Intelligence Review, 39:261–283,
2013.

Victoria Krakovna, Jonathan Uesato, Vladimir Mikulik, Matthew Rahtz, Tom Everitt, Ramana
Kumar, Zac Kenton, Jan Leike, and Shane Legg. Specification gaming: the flip side of ai ingenuity.
DeepMind Blog, 2020.

Kimin Lee, Laura Smith, and Pieter Abbeel. Pebble: Feedback-efficient interactive reinforcement
learning via relabeling experience and unsupervised pre-training. arXiv preprint arXiv:2106.05091,
2021a.

Michael S Lee, Henny Admoni, and Reid Simmons. Machine teaching for human inverse reinforcement
learning. Frontiers in Robotics and AI, 8:693050, 2021b.

Jan Leike, David Krueger, Tom Everitt, Miljan Martic, Vishal Maini, and Shane Legg. Scalable
agent alignment via reward modeling: a research direction. arXiv preprint arXiv:1811.07871, 2018.

Yi Liu, Gaurav Datta, Ellen Novoseller, and Daniel S Brown. Efficient preference-based reinforcement
learning using learned dynamics models. In 2023 IEEE International Conference on Robotics and
Automation (ICRA), pages 2921–2928. IEEE, 2023.

Saaduddin Mahmud, Sandhya Saisubramanian, and Shlomo Zilberstein. Reveale: Reward verification
and learning using explanations. 2023.



RLJ | RLC 2024

Shaunak A Mehta and Dylan P Losey. Unified learning from demonstrations, corrections, and
preferences during physical human-robot interaction. arXiv preprint arXiv:2207.03395, 2022.

Eric J Michaud, Adam Gleave, and Stuart Russell. Understanding learned reward functions. arXiv
preprint arXiv:2012.05862, 2020.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pages 1928–1937. PMLR, 2016.

Christoph Molnar. Interpretable machine learning. Lulu. com, 2020.

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In Icml, volume 99, pages 278–287, 1999.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730–27744, 2022.

Alizée Pace, Alex J. Chan, and Mihaela van der Schaar. Poetree: Interpretable policy learning with
adaptive decision trees, 2022.

Andrew Patterson, Samuel Neumann, Martha White, and Adam White. Empirical design in
reinforcement learning. arXiv preprint arXiv:2304.01315, 2023.

J. Ross Quinlan. Induction of decision trees. Machine learning, 1:81–106, 1986.

Tilman Räukur, Anson Ho, Stephen Casper, and Dylan Hadfield-Menell. Toward transparent ai: A
survey on interpreting the inner structures of deep neural networks. arXiv preprint arXiv:2207.13243,
2022.

Stuart Russell, Daniel Dewey, and Max Tegmark. Research priorities for robust and beneficial
artificial intelligence. Ai Magazine, 36(4):105–114, 2015.

Dorsa Sadigh, Anca D Dragan, Shankar Sastry, and Sanjit A Seshia. Active preference-based learning
of reward functions. In Robotics: Science and Systems, 2017.

Lindsay Sanneman and Julie A. Shah. An empirical study of reward explanations with human-robot
interaction applications. IEEE Robotics and Automation Letters, 7(4):8956–8963, 2022. doi:
10.1109/LRA.2022.3189441.

Andrew Silva, Matthew Gombolay, Taylor Killian, Ivan Jimenez, and Sung-Hyun Son. Optimization
methods for interpretable differentiable decision trees applied to reinforcement learning. In
International conference on artificial intelligence and statistics, pages 1855–1865. PMLR, 2020.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Pradyumna Tambwekar, Andrew Silva, Nakul Gopalan, and Matthew Gombolay. Natural language
specification of reinforcement learning policies through differentiable decision trees. IEEE Robotics
and Automation Letters, pages 1–8, 2023. doi: 10.1109/LRA.2023.3268593.

Ryutaro Tanno, Kai Arulkumaran, Daniel Alexander, Antonio Criminisi, and Aditya Nori. Adaptive
neural trees. In International Conference on Machine Learning, pages 6166–6175. PMLR, 2019.

Jeremy Tien, Jerry Zhi-Yang He, Zackory Erickson, Anca Dragan, and Daniel S Brown. Causal
confusion and reward misidentification in preference-based reward learning. In International
Conference on Learning Representations, 2023.

Aaron Tucker, Adam Gleave, and Stuart Russell. Inverse reinforcement learning for video games.
arXiv preprint arXiv:1810.10593, 2018.



RLJ | RLC 2024

Christian Wirth, Johannes Fürnkranz, and Gerhard Neumann. Model-free preference-based rein-
forcement learning. In Thirtieth AAAI Conference on Artificial Intelligence, 2016.

Kevin Zakka, Andy Zeng, Pete Florence, Jonathan Tompson, Jeannette Bohg, and Debidatta Dwibedi.
Xirl: Cross-embodiment inverse reinforcement learning. In Conference on Robot Learning, pages
537–546. PMLR, 2022.

Valentina Zantedeschi, Matt J Kusner, and Vlad Niculae. Learning binary trees by argmin differenti-
ation. ICML, 2021.

Quan-shi Zhang and Song-Chun Zhu. Visual interpretability for deep learning: a survey. Frontiers
of Information Technology & Electronic Engineering, 19(1):27–39, 2018.



RLJ | RLC 2024

A DDT Routing Penalty Regularization

We take inspiration from [19] for adding penalty regularization and we first explain how penalty is
defined at each internal node and then elaborate on calculating penalty for a single state over the
whole DDT.

The cross-entropy between desired routing probability distribution of an internal node such that
it’s children nodes are equally used and the actual routing probability distribution is referred to as
Penalty and is given by

αi =
∑

x P i(x)pi(x)∑
x P i(x)

where the probability of a current internal node is pi(x) and path probability from root node to an
internal node is P i(x).

Penalty over the whole DDT for a single state is defined as sum over all internal nodes for the given
input x

C = −λ
∑

i∈ Inner Nodes
0.5 log (αi) + 0.5 log (1 − αi)

where hyper-parameter λ controls the strength of penalty λ in reward DDT so that the penalty
strength is proportional to 2−d and decays exponentially with depth of tree. Finally the penalty
term for learning reward tree from pairwise preferences is calculated by taking the mean over all
penalties for all states in the pairwise demonstrations.

B Cartpole

The baseline neural network is comprised of 2 fully connected layers, each of dimension 16 to learn
the reward function. For reward models, both DDT and neural network, we use 2000 training and
200 validation pairwise preference demonstrations, each of length 20, with Adam optimizer and
lr = 0.001 and weight decay= 0.

For running RL on ground truth reward as well as under learned reward models, we use Stable
Baselines3 PPO with batchsize = 1024, lr = 0.001, gaelambda = 0.8, gamma = 0.98, nepochs =
20, nsteps = 2048 for 500000 total timesteps across 5 environments for both In-Distribution and
Out-Of-Distribution starting cart positions.

In case of In-Distribution starting cart positions, we found that out of 10 seeds that we report results
on ,3 seeds of RL policy learned under the neural network reward function seem to suffer from
catastrophic forgetting leading a high standard deviation , with Mean and IQM, marginally lower
than RL performance under ground truth reward function as well as performance of policices learned
under soft reward and maximum probability path of DDT.

C MNIST Gridworld Additional Details

In this environment,the action space a contains 4 main actions: go left, go right, move up, move
down. The transition function is stochastic and moves the agent in the direction chosen with an 80%
probability as long as the action does not take it off of the grid. Actions that would result in leaving
the grid result in a self transition.

And the neural network used to learn reward from pairwise human preferences consisted 2 convolutional
layers with kernel size 7 and 5 respectively and stride 1 with LeakyRelu as the non-linearities followed
by 2 fully connected layers.



RLJ | RLC 2024

(a) Pairwise trajectory preference (b) Visualization of Learned Reward DDT

Figure 8: MNIST (0/1) Gridworld. (a) A pair of trajectories with the same starting state, where
the blue trajectory (which visits more 1’s) is preferred over the red trajectory. (b) Heatmap of
Learned Reward DDT : The dark pixels at center of heatmap form an approximate shape of digit 1
and are routed to right as the dark colors in heatmap mean that those pixels are turned off, while
lighter pixels represent shape of digit 0 and routed to left as those pixels are turned on. Leaf nodes
are depicted as circular nodes with their soft reward values.

In Table 4, we report the accuracy of learned reward DDTs with CRL and IL leaf nodes over pairwise
preferences generated using the held-out validation dataset, both when using soft reward outputs
and when using the output of the maximum probability path in the tree (argmax) for both type of
our DDT and compare it against that of a convolutional neural network. Our results show that our
IL DDTs can often achieve high accuracy despite not using any convolutional filters even on held out
data. Using soft reward with IL leaf nodes offers comparable accuracy to that of CNN while using
the reward from maximum probability path leads to a small decrease in accuracy, but still performs
better than a DDT with CRL leaf nodes in both soft and argmax settings.

Reward DDT Baselines
CRL Soft CRL Argmax IL Soft IL Argmax NNet

MNIST 0-3 77.57% 77.10% 97.75% 94.88% 99.21%
MNIST 0-9 72.71% 68.46% 90.83% 81.78% 92.40%

Table 4: Accuracy of the learned reward models on the 25000 pairwise preferences generated using
the held-out validation dataset. Since MNIST 0-3 Gridworld is of size 5x5, we use trajectory length
of 5 in the pairwise preferences while MNIST 0-9 Gridworld has size 10x10 , thus we use trajectory
length 10.

D Additional domain: MNIST (0/1) Gridworld

We also show here an even simpler version of MNIST gridworld where there are only two possible
digits. For training the reward DDT with simple internal nodes and CRL leaf nodes, we use a
learning rate of 0.001, weight decay of 0.05, and the Adam optimizer (Kingma and Ba, 2014).

Reward DDT Baselines
CRL Soft CRL Argmax IL Soft IL Argmax NNet Random

MNIST 0-1 92.37% 82.27% 99.98 100% 98.2% 7.38%

Table 5: RL Performance as the percentage of expected return obtained relative to the performance
of an optimal policy on the ground-truth reward.

Setup We begin by examining our framework for image based inputs on the simplest gridworld
environment. In this 5x5 gridworld each state in the MDP corresponds to a MNIST digit 0 or 1. To
test whether we can learn an interpretable reward function from pairs of preference demonstrations
over trajectories (see Fig 8a for an example), we modeled the reward as a DDT of depth 1 with one
simple internal node as the root node and 2 CRL leaf nodes with reward vector R = (0.0, 1.0). We
also compare the RL performance of the same reward DDT but with IL leaf nodes.



RLJ | RLC 2024

Results The resulting heatmap in Fig 8b provides evidence that the reward DDT learns to branch
based on visually interpretable features that correspond to a hand-written 0 (routes to left leaf node)
and a hand-written 1 (routes to right leaf node). The RL performance using the Soft Reward from
CRL Leaf DDT on MNIST 0-1 environment is shown in Table 5 is comparable to a deep neural
network reward function trained on pairwise preferences. We observe that taking the maximum
probability path across the learned reward tree results in a small decrease in performance relative to
when we take soft reward from the learned DDT. The RL performance of IL Leaf DDT outperforms
that of both CRL DDT and a deep neural network, hence it provides evidence that our DDT
framework is capable of learning an interpretable and useful reward function.

E MNIST (0-3) Gridworld Additional Results and Analysis

In this section we provide detailed analysis about interpretability of different DDTs, beginning from
comparison between Reward DDT and Classification DDT, then comparing Reward DDTs constructed
using two different leaf node formulations, followed by comparison of different regularization on a
reward DDT.

Note that for both reward DDTs with different leaf nodes CRL and IL, we trained using a learning
rate of 0.001 and weight decay 0.005 and the Adam optimizer. And the neural network details are
same as defined above in Appendix D.

E.1 Min-Max Reward Interpolation Tree vs Classification tree

We train a DDT with explicit reward labels and a classification loss, as in, we re-produce the
classification DDT from [19] and compare it to reward tree learned using preferences(refer to Sec
4.2.2 of main paper).

For comparison of reward tree against the classification tree trained using ground truth labels, we plot
the heatmaps of internal nodes in both the trees and our results in Figure 9 give evidence that reward
tree can capture visual features without any loss in interpretability when compared to the one learnt
from simple ground truth labels, even though preferences used here are weaker supervision than
ground truth label since preferences used in our experiments are binary as compared to ground truth
labels which are 0,1,2,3 corresponding to each actual digit image. This is particularly important in
cases where explicit labels are either missing or are hard to be specified or require intensive user-input
efforts.

In Figure 9b Node A activates strongly for pixels in the middle of 1s and 2s, routing them left, while
and 0s and 3s are routed right. Node B routes left for vertical pixels in the center and sends 2’s
left and 1’s right (note the light shadow looks like a 2 while the darker shadow in the middle that
looks like a 1). Node C learns to distinguish between 0s and 3s, routing 3s left and 0s right. This is
comparable to the activation heatmaps of the node probability distribution at each of the internal
node described for reward tree(in Sec 4.2.2 of main paper).

E.2 Min-Max Reward Interpolation Leaf DDT vs Multi-Class Reward Leaf DDT

We train and compare two reward DDTs with simple internal node architecture but with different
leaf formulations using the same Bradley-Terry loss over preference demonstration in Figure 10 by
visualizing the activation heatmaps of routing probability distributions for the internal nodes and
the leaf distribution for each leaf node.

In Figure 10b, each internal node learns to capture almost the same visual feature while the leaf
nodes fail to specialize as the argmax output from first two leaf nodes is always a 0 and last two leaf
nodes always return a 3. Multi-class Leaf DDT fails to pick up on individual digit in the trajectory,
despite requiring the user to input discrete reward vector whereas in the Min-Max Interpolation
Leaf DDT each internal node captures different visual attributes and each of the leaf nodes in the



RLJ | RLC 2024

(a) Reward Tree trained using preferences

(b) Classification Tree trained on ground truth label

Figure 9: Visualization of MNSIT (0-3) Reward vs Classification Tree

interpolated reward DDT is specialized, even though no discrete reward values were given as an
input.

This shows that Min-Max Reward Interpolation Leaf DDT is beneficial over Multi-Class Reward
Leaf DDT with respect to interpretability and also in terms of human-input efforts. for all states in
the pairwise demonstrations.

E.3 Min-Max Reward Interpolation DDTs with Simple Internal Nodes vs
Sophisticated Internal Node

We compare our 2 methods of constructing internal nodes for a reward DDTs.

Since Min-Max Reward Interpolation Leaf DDT outperforms Multi-Class Reward Leaf DDT, hence
we train two different Min-Max Reward Interpolation Leaf DDTs, first one with simple internal nodes



RLJ | RLC 2024

(a) Min-Max Reward Interpolation Leaf
DDT (b) Multi-Class Leaf Reward DDT

Figure 10: Visualization of MNSIT (0-3) Reward Trees: Min-Max Reward Interpolation
Leaf vs Multi-Class Leaf

(a) Min-Max Reward Interpolation Leaf DDT
with Simple Internal Nodes

(b) Min-Max Reward Interpolation Leaf DDT with So-
phisticated Internal Nodes

Figure 11: Visualization of MNSIT (0-3) Reward Trees :Simple Internal Node vs Sophis-
ticated Internal Node

and second one with sophisticated internal nodes where a sophisticated internal node contains a
single convolutional layer with filter of size 3x3 and stride 1 with Leaky ReLU as the non-linearity
followed by the fully connected layer.

In Figure 11b Node A activates strongly for pixels in the middle of 1s and 3s, routing them left, while
and 0s and 3s are routed right. Node B routes left for vertical pixels in the center and sends 1’s left
and 3’s right (note the darker shadow in the middle that looks like a 3). Node C learns to distinguish
between 0s and 2s, routing 0s left and 2s right. This is comparable to the activation heatmaps of the
node probability distribution at each of the internal node described for reward tree(in Sec 4.2.2 of
main paper).

Our results depict that in a medium-complexity environment with visual inputs, both DDTs yield
relatively equal interpretability but with a higher-complexity environment with larger visual input



RLJ | RLC 2024

size such as Atari, the reward DDT with sophisticated node should be used as convolution layer with
non-linearity are more powerful in terms of processing an input than a simple fully connected layer.

E.4 Multi-Class Reward Leaf DDT Regularization

Since the DDT with Multi-Class Reward Leaves failed to specialize, this lead us to add the penalty
term to the Bradley-Terry preference loss for training the Multi-Class Reward Leaf DDT.

(a) Multi-Class Leaf Reward DDT with penalty calculated over a batch of 50 pairwise preference
demonstrations where each demonstration has a single state

(b) Multi-Class Leaf Reward DDT with penalty calculated over a batch of 50 pairwise preference
demonstrations where each demonstration has a single state

Figure 12: Multi-Class Leaf Reward DDT with penalty calculated over different temporal window
lengths

For training the Reward DDT,we calculate penalty over batch of 50 pairwise demonstrations where
each demonstration contains a single 28x28 greyscale image.To check interpretability, we plot
the activation heatmaps of routing probability distributions for the internal nodes and the leaf



RLJ | RLC 2024

Figure 13: Synthetic traces of MNIST 0-9 IL Reward DDT of depth 4.

distribution for each leaf node in Figure 12a and the resulting plots are hugely pixelated, causing a
loss in interpretability.

Following this, we increase the temporal window size for calculating penalty, as suggested in [19],
and thus we calculate penalty over a pair of 50 preference demonstration where each demonstration
is now 50 states long, as opposed to previous case where each demonstration contained a single state.
And we again visualize the heatmaps at internal nodes and leaf distributions for each leaf node in
Figure 12b. The heatmaps here are little better in contrast to Figure 12a but still have a huge loss
of interpretability as compared to Figure 10b.

F Synthetic trace for MNIST 0-9 Reward DDT

We create synthetic traces Fig 13 of learned DDT with IL leaf nodes across all digits in MNIST. From
the traces, we can observe that root node splits the digits based on whether they have more of vertical
formulation or circular formulation. The digits with more vertical edges (such as 1,2,3,4,5,8,7,9) are
routed to Node B while those with more curved edges (such as 0,2,3,5,6,8) are routed to Node C.
Note some digits such as 2,3,4,8 in the actual MNIST dataset can either be more lean with straight
form or can possess more rounded-curve form. The children node of Node B and C then differentiate
further between each of the digits routed, as in, children of Node B learn to pick on spread of vertical
edges while children of Node C distinguish between forms of curvature. These children’s children
then learns to pick and specialize in certain specific digits.

G Atari

The input to DDT here is a 5-dimensional tensor of size B × 2 × S × 84 × 84 × 4 where B represents
batch size of pairwise preference demonstrations while 2 is represents of number of demonstrations in
a pairwise preference and S represents number of states in a single trajectory. We used batch size
B = 25 and S = 25.The sophisticated internal node architecture here consists of a single convolution
layer with kernel of size 7 × 7 with a stride of 2 and LeakyRelu as the non-linearity followed by
the fully connected linear layer for producing the routing probability inside a tree.We used IL leaf
nodes with Rmin = 0 and Rmax = 1. Note that we choose these min and max values for simplicity;
though the actual numerical value of Rmin and Rmax can be chosen at the discretion of the user since
policies are invariant to positive scaling and affine. The baseline T-REX, that we compare to has an
architecture similar to Christiano et al. (2017) and consists of 4 convolutional layers of sizes 7x7,
5x5, 3x3 and 3x3 with strides 3,2,1 and 1 respectively, where each convolutional layer has 16 filters
and LeakyReLU as non-linearity, followed by a fully connected layer with 64 hidden units and a
single scalar output.


