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Abstract

In many real-world settings, agents must learn from an offline dataset gathered
by some prior behavior policy. Such a setting naturally leads to distribution shift
between the behavior policy and the target policy being trained—requiring policy
conservatism to avoid instability and overestimation bias. Autoregressive world
models offer a different solution to this by generating synthetic, on-policy experience.
However, in practice, model rollouts must be severely truncated to avoid compounding
error. As an alternative, we propose policy-guided diffusion. Our method uses
diffusion models to generate multi-step trajectories under the behavior distribution,
applying guidance from the target policy to move synthetic experience further on-
policy. We show that policy-guided diffusion models a regularized form of the target
distribution that balances action likelihood under both the target and behavior
policies, leading to plausible trajectories with high target policy probability, while
retaining a lower dynamics error than an offline world model baseline. Using synthetic
experience from policy-guided diffusion as a drop-in substitute for real data, we
demonstrate significant improvements in performance across a range of standard
offline reinforcement learning algorithms and environments. Our approach provides
an effective alternative to autoregressive offline world models, opening the door to
the controllable generation of synthetic training data.

1 Introduction

A key obstacle to the real-world adoption of reinforcement learning (RL, Sutton & Barto, 2018) is its
notorious sample inefficiency, preventing agents from being trained on environments with expensive
or slow online data collection. A closely related challenge arises in environments where exploration,
required by standard RL methods, is inherently dangerous, limiting their applicability. Yet many
such settings come with an abundance of pre-collected or offline experience, gathered under one or
more behavior policies (Yu et al., 2020). These settings enable the application of offline RL (Levine
et al., 2020), where a policy is optimized from an offline dataset without access to the environment.
However, the distribution shift between the target policy (i.e., the policy being optimized) and the
collected data poses many challenges (Kumar et al., 2020; Kostrikov et al., 2021; Fujimoto et al.,
2019).

In particular, distribution shift between the target and behavior policies leads to an out-of-sample
issue: since the goal of offline RL is to exceed the performance of the behavior policy, the distribution
of state-action pairs sampled by the target policy necessarily differs from that of the behavior policy,
and its samples are therefore underrepresented (or unavailable) in the offline dataset. However,
the maximizing nature of RL classically leads to overestimation bias when generalizing to rarely
seen state-action pairs, resulting in an overly optimistic target policy. As a solution, most previous
model-free work has proposed severe regularization of the target policy—such as penalizing value
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Figure 1: Offline reinforcement learning with policy-guided diffusion. Offline data from a behavior
policy is first used to train a trajectory diffusion model. Synthetic experience is then generated with
diffusion, guided by the target policy in order to move trajectories further on-policy. An agent is
then trained for multiple steps on the synthetic dataset, before it is regenerated.

estimates in uncertain states (Kumar et al., 2020; An et al., 2021) or regularizing it towards the
behavior policy (Fujimoto & Gu, 2021)—sacrificing target policy performance for stability.

In this paper, we focus on an alternative class of methods: generating synthetic experience to both
augment the offline dataset and lessen the out-of-sample issue. Prior methods in this area use a
model-based approach (Yu et al., 2020; Kidambi et al., 2020; Ball et al., 2021, see Section 3.1), in
which a single-step world model is learned from the offline dataset, which the target policy interacts
with to generate synthetic on-policy training experience. While this allows the target policy to
sample synthetic trajectories under its own action distribution, compounding model error usually
forces these methods to severely truncate model rollouts to a handful of interactions. Thus, there are
two options which trade off coverage and bias. The first is to roll out from the initial state, which is
unbiased but lacks coverage. The second is to roll out from states randomly sampled from the data
set, which increases coverage but introduces bias. Neither option fully addresses the difference in
observed states between the behavior and target policy when deployed, nor the out-of-sample issue
mentioned above.

Instead, we propose policy-guided diffusion (PGD, Figure 1), which avoids compounding error by
modeling entire trajectories (Section 3.2) rather than single-step transitions. To achieve this, we
train a diffusion model on the offline dataset, from which we can sample synthetic trajectories
under the behavior policy. However, while this addresses data sparsity, these trajectories are still
off-distribution from our target policy. Therefore, inspired by classifier-guided diffusion (Dhariwal &
Nichol, 2021), we apply guidance from the target policy to shift the sampling distribution towards
that of the target policy. At each diffusion step, our guidance term directly increases the likelihood
of sampled synthetic actions under the target policy, while the diffusion model updates the entire
trajectory towards those in the dataset. This yields a regularized target distribution that we name
the behavior-regularized target distribution, ensuring actions do not diverge too far from the behavior
policy, limiting generalization error. As a result, PGD does not suffer from compounding error, while
also generating synthetic trajectories that are more representative of the target policy. We illustrate
this point in Figure 2.

Our approach results in consistent improvements in offline RL performance for agents trained on
policy-guided synthetic data, compared to those trained on unguided synthetic or real data. We
evaluate using the standard TD3+BC (Fujimoto & Gu, 2021) and IQL (Kostrikov et al., 2021)
algorithms across a variety of D4RL (Fu et al., 2020) datasets. Notably, we see a statistically significant
11.2% improvement in performance for the TD3+BC algorithm aggregated across MuJoCo (Todorov
et al., 2012) locomotion tasks compared to training on the real data, with no algorithmic changes. Our
results also extend to even larger improvements for the challenging Maze2d navigation environments.
Furthermore, we analyze synthetic trajectories generated by PGD and show that PGD achieves lower
dynamics error than PETS (Chua et al., 2018)—a prior offline model-based method—while matching
the target policy likelihood of PETS. Together, our experiments illustrate the potential of PGD as
an effective drop-in replacement for real data—across agents, environments, and behavior policies.
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2 Background

2.1 Offline Reinforcement Learning

Formulation We adopt the standard reinforcement learning formulation, in which an agent acts
in a Markov Decision Process (MDP, Sutton & Barto, 2018). An MDP is defined as a tuple
M = ⟨S,A, p0, T, R, H⟩, where s ∈ S and a ∈ A are the state and action spaces, p0(s0) is a
probability distribution over the initial state, T (st+1|st, at) is a conditional probability distribution
defining the transition dynamics, R : S ×A −→ R is the reward function, γ is the discount factor, and
H is the horizon.

In RL, we learn a policy π(a|s) that defines a conditional probability distribution over actions for
each state, inducing a distribution over trajectories τ := (s0, a1, r1, s1, . . . , sH) given by

pπ,M (τ ) = p0(s0)
H−1∏
t=0

π(at|st) · T (st+1|st, at), (1)

omitting the reward function throughout our work for conciseness. Our goal is to learn a policy
that maximizes the expected return, defined as Epπ,M

[V (τ )] where V (τ ) :=
∑H

t=0 rt is the return of
a trajectory. The offline RL setting (Levine et al., 2020) extends this, preventing the agent from
interacting with the environment and instead presenting it with a dataset of trajectories τ ∈ Doff
gathered by some unknown behavior policy πoff, with which to optimize a target policy πtarget.

Out-of-Sample Generalization The core challenge of offline RL emerges from the distribution
shift between the behavior distribution pπoff,M (τ ) and the target distribution pπtarget,M (τ ), which are
otherwise denoted poff(τ ) and ptarget(τ ) for conciseness. Optimization of πtarget on Doff can lead
to catastrophic value overestimation at unobserved actions, a problem termed the out-of-sample
issue (Kostrikov et al., 2021). As such, model-free offline algorithms typically regularize the policy
towards the behavior distribution, either explicitly (Fujimoto & Gu, 2021; Kumar et al., 2020) or
implicitly (Kostrikov et al., 2021).

Alternatively, prior work proposes learning a single-step world model M from Doff (Yu et al., 2020;
Kidambi et al., 2020; Lu et al., 2022). By rolling out the target policy using M, we generate
trajectories τ ∼ ptarget(τ ), with the aim of avoiding distribution shift. However, in practice, this
technique only pushes the generalization issue into the world model. In particular, RL policies are
prone to exploiting errors in the world model, which can compound over the course of an episode.
When combined with typical maximizing operations used in off-policy RL, this results in value
overestimation bias (Sims et al., 2024).

2.2 Diffusion Models

Definition To generate synthetic data, we consider diffusion models (Sohl-Dickstein et al., 2015;
Ho et al., 2020), a class of generative model that allows one to sample from a distribution p(x) by
iteratively reversing a forward noising process. Karras et al. (2022) present an ODE formulation of
diffusion which, given a noise schedule σ(i) indexed by i, mutates data according to

dx = −σ̇(i)σ(i)∇x log p (x; σ(i)) di, (2)

where σ̇ = dσ
di and ∇x log p (x; σ(i)) is the score function (Hyvärinen & Dayan, 2005), which points

towards areas of high data density. Intuitively, infinitesimal forward or backward steps of this ODE
respectively nudge a sample away from or towards the data. To generate a sample, we start with pure
noise at the highest noise level σmax, and iteratively denoise in discrete timesteps under Equation 2.

Classifier Guidance Our method is designed to augment the data-generating process towards
on-policy trajectories from the target distribution ptarget(τ ), rather than the behavior distribution
poff(τ ). To achieve this, we take inspiration from classifier guidance (Dhariwal & Nichol, 2021),
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Figure 2: Trajectories from an illustrative 2D environment, in which the start location is indicated
by • and the goals for the behavior and target policies are indicated by × and × respectively. Left:
Rollouts from the target policy in the real environment. Right: Offline datasets gathered by the
behavior policy suffer from distribution shift and limited sample size. Truncated world models (Yu
et al., 2020; Kidambi et al., 2020) previously used in offline model-based reinforcement learning offer
a partial solution to this problem but suffer from bias due to short rollouts. Meanwhile, unguided
diffusion (Lu et al., 2023) can increase the sample size, but maintains the original distribution shift.
In contrast, policy-guided diffusion samples from a regularized target distribution, generating entire
trajectories with low transition error but higher likelihood under the target distribution.

which leverages a differentiable classifier to augment the score function of a pre-trained diffusion
model towards a class-conditional distribution p(x|y). Concretely, this adds a classifier gradient to
the score function, giving

∇x log pλ (x|y; σ(i)) = ∇x log p (x; σ(i)) + λ∇x log pθ (y|x; σ(i)) , (3)

where ∇x log pθ (y|x; σ(i)) is the gradient of the classifier and λ is the guidance weight.

3 On-Policy Sampling from Offline Data

Generating synthetic agent experience is a promising approach to solving out-of-sample generalization
in offline RL. By generating experience that is unseen in the dataset, the policy may be directly
optimized on OOD samples, thereby moving the generalization problem from the policy to the
generative model. Some prior work has suggested learning a model from the offline dataset (Lu
et al., 2023), thereby sampling synthetic experience from the behavior distribution. Although this
improves sample coverage, the approach retains many of the original challenges of offline RL. As
with the behavior policy, the synthetic trajectories may be suboptimal, meaning that we still require
conservative off-policy RL techniques to train the agent.

Instead, we seek to extend this approach by making our generative model sample from the target
distribution. This reduces the need for conservatism and generates synthetic trajectories with
increasing performance as the agent improves over training. Practically, the effectiveness of this
approach depends on how we parameterize each of the terms of the trajectory distribution (Equation 1).
In this section, we consider two parameterizations: autoregressive and direct.

3.1 Autoregressive Generation — Model T , Sample p(s0)

The autoregressive—or model-based—approach to generating on-policy data is to use the offline
dataset to train a one-step transition model T (st+1|st, at; θ). To generate unbiased sample trajectories
from the target distribution, we first sample an initial state (i.e., one that starts an episode) from the
offline dataset s0 ∼ Doff. Next, we roll out our agent in the learned model by iteratively sampling
actions from the target policy and approximating environment transitions with the learned dynamics
model. However, compounding error from the transition model usually requires agent rollouts to be
much shorter than the environment horizon—such that the agent takes k ≪ H steps.‡ Consequently,

‡Typically k ≤ 5 (Janner et al., 2019; Yu et al., 2020).
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any states more than k steps away from any initial state cannot be generated in this manner, limiting
the applicability of this approach.

As an approximation, autoregressive methods typically sample initial states from any timestep
st ∼ Doff in the offline dataset. Given a truncated rollout length k, this may be seen as approximating
the sub-trajectory distribution—i.e., the trajectory from time t to t + k—given by

ptarget(τt:t+k; θ) = ptarget(st) · ptarget(τt:t+k|st; θ), (4)

by instead modeling

F(τt:t+k; θ) = poff(st) · ptarget(τt:t+k|st; θ). (5)

Here, we denote the stationary state distributions of the target and behavior policies at time t by
ptarget(st) and poff(st) respectively, and define the conditional sub-trajectory distribution as

ptarget(τt:t+k|st; θ) :=
k−1∏
j=0

πtarget(at+j |st+j) · T (st+j+1|st+j , at+j ; θ). (6)

When generating trajectories from this distribution, the difference between ptarget(st) and poff(st)
biases the start of rollouts towards states visited by the behavior policy. Furthermore, we still require
k to be small to avoid compounding error. In combination, sampling from the offline dataset “anchors”
synthetic rollouts to states in the offline dataset, while truncated rollouts prevent synthetic trajectories
from moving far from this anchor. Therefore, the practical application of autoregressive generation
leads to a strong bias towards the behavior distribution and fails to address the out-of-sample
problem.

3.2 Direct Generation — Model poff (τ )

As an alternative to autoregressive generation, we can parameterize the target distribution by directly
modeling the behavior distribution, as follows:

ptarget(τ ) = p(s0)
H−1∏
t=0

πtarget(at|st) · T (st+1|st, at)

= p(s0)
H−1∏
t=0

πtarget(at|st)
πoff(at|st)

· πoff(at|st) · T (st+1|st, at)

= poff(τ )
H−1∏
t=0

wat,st

≈ poff(τ ; θ)
H−1∏
t=0

wat,st
= ptarget(τ ; θ) (7)

where wa,s := πtarget(a|s)
πoff(a|s) denotes the importance sampling weight for (a, s) (Precup, 2000). This

directly parameterizes the behavior distribution poff(τ ; θ)—which may be learned by modeling entire
trajectories on the offline dataset—and adjusts their likelihoods by the relative probabilities of actions
wat,st

under the target and behavior policies. By jointly modeling the initial state distribution,
transition function, and behavior policy, such a parameterization is not required to enforce the Markov
property. As a result, it can directly generate entire trajectories, thereby avoiding the compounding
model error suffered by autoregressive methods when iteratively generating transitions.

However, computing wat,st
requires access to the behavior policy πoff(a|s), which is not assumed in

offline RL. Prior work has explored modeling the behavior policy from the offline dataset and using
this to compute importance sampling corrections. However, products of many importance weights
can lead to problems with high variance (Precup et al., 2000; Levine et al., 2020).
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4 Policy-Guided Diffusion

In this work, we propose a method following the direct generation approach outlined in Section 3.2,
named policy-guided diffusion (PGD, Algorithm 1). Following the success of diffusion models at
generating trajectories (Janner et al., 2022; Lu et al., 2023), we first train a trajectory-level diffusion
model on the offline dataset to model the behavior distribution. Then, inspired by classifier-guided
diffusion (Section 2.2), we guide the diffusion process using the target policy to move closer to the
target distribution. Specifically, during the denoising process, we compute the gradient of the action
distribution for each action under the target policy, using it to augment the diffusion process towards
high-probability actions. In doing so, we approximate a regularized target distribution that equally
weights action likelihoods under the behavior and target policies.

In this section, we derive PGD as an approximation of the behavior-regularized target distribution
(Section 4.1), then describe practical details for controlling and stabilizing policy guidance (Section 4.2).
We provide a summary of PGD against alternative sources of training data in Table 1.

Algorithm 1 Trajectory sampling via policy-guided diffusion — based on Karras et al. (2022).
1: Parameters: Noise schedule σn, guidance schedule λn, noise factor γn, noise level Snoise,

number of diffusion steps N
2: Required: Denoiser model Dθ, target policy πϕ

3: sample τ0 ∼ N (0, σ2
0I) ▷ Sample random noise trajectory

4: for n = 0 to N − 1 do
5: sample ϵn ∼ N (0, S2

noiseI) ▷ Temporarily increase noise level
6: σ̂n ← σn + γnσn

7: τ̂n ← τn +
√

σ̂2
n − σ2

nϵn

8: τ̄n ← Dθ(τ̂n; σ̂n) ▷ Estimate denoised trajectory
9: dn ← (τ̂n − τ̄n) /σ̂n ▷ Evaluate ∂τ

∂σ at σ̂n

10: gn ← ∇τ̄actions
n

πϕ(τ̄ actions
n |τ̄ states

n ) ▷ Compute denoised action gradient
11: τ̂ actions

n ← τ̂ actions
n + λn(gn/∥gn∥2) ▷ Apply policy guidance to noised actions

12: τn+1 ← τ̂n + (σn+1 − σ̂n)dn ▷ Apply Euler step
13: if σn+1 ̸= 0 then
14: d′

n ← (τn+1 −Dθ(τn+1; σn+1)) /σn+1 ▷ Apply 2nd order correction
15: τ̂n+1 ← τ̂n + (σn+1 − σ̂n)

( 1
2 dn + 1

2 d′
n

)
16: end if
17: end for
18: return τN

4.1 Behavior-Regularized Target Distribution

Policy Guidance Derivation To sample a trajectory via diffusion, we require a noise-conditioned
score function ∇τ̂ log p(τ̂ ; σ) for a noised trajectory τ̂ := (ŝ0, â1, r̂1, ŝ1, . . . , ŝH) under a distribution
p(τ ) at a noise level σ. Given an offline dataset Doff, it is straightforward to learn this function
under the behavior distribution, ∇τ̂ log poff(τ̂ ; σ), by training a denoiser model to reconstruct noised
trajectories from Doff. However, there is no apparent method to directly model the noise-conditioned
score function ∇τ̂ log ptarget(τ̂ ; σ) for the target distribution (see Appendix B for further discussion),
meaning we require an approximation.

To achieve this, we consider the score function of a noise-free trajectory τ under the target distribution,
based on the formulation from Equation 7,

∇τ log ptarget(τ ) = ∇τ log poff(τ ) +
H−1∑
t=0

(∇τ log πtarget (at|st)−∇τ log πoff (at|st)) . (8)
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In the limit of noise σ → 0, the noise-conditioned score function ∇τ̂ log ptarget(τ̂ ; σ) clearly approaches
∇τ log ptarget(τ ). Therefore, we may approximate this function by

∇τ̂ log ptarget(τ̂ ; σ) ≈ ∇τ̂ log poff(τ̂ ; σ) +
H−1∑
t=0

(∇τ̂ log πtarget (ât|ŝt)−∇τ̂ log πoff (ât|ŝt)) , (9)

for σ ≈ 0. Whilst iteratively denoising under this function (Section 2.2) does not model ptarget(τ )
exactly, the score function approaches ∇τ̂ log ptarget(τ̂ ; σ) towards the end of the denoising process,
which we believe provides an effective approximation.

Excluding Behavior Policy Guidance As discussed, we may directly model the first term of
Equation 9 by training a denoiser model. Furthermore, we may directly compute target policy guidance
∇τ̂ log πtarget (ât|ŝt)—the second term of this approximation—as we assume access to a (differentiable)
target policy in the offline RL setting. However, we generally do not have access to the behavior policy,
preventing us from computing ∇τ̂ log πoff (ât|ŝt). Due to this, we exclude behavior policy guidance
from our approximation, resulting in the score function ∇τ̂ log poff(τ̂ ; σ)+

∑H−1
t=0 ∇τ̂ log πtarget (ât|ŝt).

As σ → 0, this approaches the score function for a proxy distribution of the form

F(τ ; πtarget) ∝ poff(τ )
H−1∏
t=0

πtarget(at|st)

= poff(τ ) · qtarget(τ ) = ptarget(τ ) · qoff(τ ), (10)

where qtarget(τ ) :=
∏H−1

t=0 πtarget(at|st) denotes the product of action probabilities under the target
policy and qoff(τ ) denotes the same quantity under the behavior policy. Therefore, we hypothesize
that excluding behavior policy guidance is an effective form of regularization, as it biases trajectories
towards the support of the offline data, thereby limiting model error and the out-of-sample problem.
We refer to F(τ ; πtarget) as the behavior-regularized target distribution due to it balancing action
likelihoods under the behavior and target policies, and provide further discussion in Appendix C.
Finally, as a promising avenue for future work, we note that the behavior policy may be modeled by
applying behavior cloning to Doff, allowing for the inclusion of behavior policy guidance in the offline
RL setting.

Excluding State Guidance Target policy guidance ∇τ̂ log πtarget (ât|ŝt) has non-zero gradients for
the state and action at timestep t. In practice, the action component ∇ât

log πtarget (ât|ŝt) typically
has an efficient, closed-form solution, with πtarget (ât|ŝt) commonly being Gaussian for continuous
action spaces. In contrast, for neural network policies, the state component ∇ŝt log πtarget (ât|ŝt)
requires backpropagating gradients through the policy network, which is both expensive to compute
and can lead to high variance on noisy, out-of-distribution states. Due to this, we apply policy
guidance to only the noised action, yielding our policy-guided score function

sPGD(τ̂ ; σ) = ∇τ̂ log poff(τ̂ ; σ)︸ ︷︷ ︸
Behavior score function

+∇â log qtarget(τ̂ )︸ ︷︷ ︸
Target policy guidance

, (11)

where (abusing notation) ∇â denotes the gradient ∇τ̂ of τ̂ , with non-action components set to 0.

4.2 Improving Policy Guidance

Controlling Guidance Strength A standard technique from classifier-guided diffusion is the
use of guidance coefficients (Dhariwal & Nichol, 2021). These augment the guided score function
by introducing a controllable coefficient on the guidance term. Applied to the PGD score function
(Equation 11), this has the form

sPGD(τ̂ ; σ, λ) = ∇τ̂ log poff(τ̂ ; σ) + λ∇â log qtarget(τ̂ ), (12)
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Figure 3: Left: Trajectory probability distribution for an example behavior distribution poff(τ ) and
target policy likelihood qtarget(τ ). Right: Corresponding PGD sampling distribution (Equation 13)
computed over a range of policy-guidance coefficients λ. By increasing λ, we transform from the
sampling distribution towards the regions of high target policy likelihood, making PGD an effective
mechanism for controlling the level of regularization towards the behavior distribution.

where λ denotes the guidance coefficient. As σ → 0, this transforms the sampling distribution to

F(τ |πtarget; λ) ∝ poff(τ ) · qtarget(τ )λ. (13)

Intuitively, λ interpolates the actions in the sampling distribution between the behavior and target
distributions. By tuning λ, we can therefore control the strength of guidance towards the target
policy, avoiding high dynamics error when the target policy is far from the behavior policy. We
visualize this effect in Figure 3 and analyze its impact on target policy likelihood in Figure 5.

Following Ma et al. (2023), we also apply a cosine guidance schedule to the guidance coefficient,

λn = λ · (σn + βσN · sin(π · n/N)), (14)

where β is the cosine weight, which is set to 0.3 in all experiments. By decreasing the strength of
guidance in later steps, we find that this schedule stabilizes guidance and reduces dynamics error.

Stabilizing Guided Diffusion When under distribution shift, RL policies are known to suffer
from poor generalization to unseen states (Kirk et al., 2023). This makes policy guidance challenging,
since the policy must operate on noised states, and compute action gradients from noised actions.
Similar issues have been studied in classifier-guided diffusion (Ma et al., 2023), where the classifier
gradient can be unstable when exposed to out-of-distribution inputs. Bansal et al. (2023) alleviate
this issue by applying guidance to the denoised sample estimated by the denoiser model, rather than
the original noised sample, in addition to normalizing the guidance gradient to a unit vector. By
applying these techniques to policy guidance, we lessen the need for the target policy to generalize to
noisy states, which we find decreases dynamics error.

Table 1: Overview of training experience sources in offline RL—for each, we consider the sampling
distribution, expected error in transition dynamics, likelihood of actions under the target policy,
and state space coverage beyond the behavior distribution. Policy-guided diffusion provides an
effective trade-off between each error, likelihood, and coverage.

Data source Distribution Error (↓) Likelihood (↑) Coverage (↑)

Offline dataset poff(τ ) — Low Low

Episodic world model ptarget(τ ) High — High
Truncated world model Equation 5 Low — Low

Unguided diffusion poff(τ ) Low Low High
Policy-guided diffusion Equation 10 Low High High
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5 Results

Through our experiments, we first demonstrate that agents trained with synthetic experience
from PGD outperform those trained on unguided synthetic data or directly on the offline dataset
(Section 5.2). We show that this effect is consistent across agents (TD3+BC and IQL), environments
(HalfCheetah, Walker2d, Hopper, and Maze), behavior policies (random, mixed, and medium), and
modes of data generation (continuous and periodic). Following this, we demonstrate that tuning
the guidance coefficient enables PGD to sample trajectories with high action likelihood across a
range of target policies. Finally, we verify that PGD retains low dynamics error despite sampling
high-likelihood actions from the policy (Section 5.3).

5.1 Experimental Setup

We evaluate PGD on the MuJoCo and Maze2d continuous control datasets from D4RL (Fu et al.,
2020; Todorov et al., 2012). For MuJoCo, we consider the HalfCheetah, Walker2d, and Hopper
environments with random (randomly initialized behavior policy), medium (suboptimal behavior
policy), and medium-replay (or “mixed”, the replay buffer from medium policy training) datasets.
For Maze2d we consider the original (sparse reward) instances of the umaze, medium and large
layouts. We train 4 trajectory diffusion models on each dataset, for which we detail hyperparameters
in Appendix A. In Section 5.3, we conduct analysis of PGD against MOPO-style PETS (Chua et al.,
2018) models, an autoregressive world model composed of an ensemble of probabilistic models, for
which we use model weights from OfflineRL-Kit (Sun, 2023).

To demonstrate synthetic experience from PGD as a drop-in substitute for the real dataset, we transfer
the original hyperparameters for IQL (Kostrikov et al., 2021) and TD3+BC (Fujimoto & Gu, 2021)—
as tuned on the real datasets—without any further tuning. Policy guidance requires a stochastic
target policy, in order to compute the gradient of the action distribution. Since TD3+BC trains a
deterministic policy, we perform guidance by modeling the action distribution as a unit Gaussian
centered on the deterministic action. We implement all agents and diffusion models from scratch
in Jax (Bradbury et al., 2018), which may be found at https://github.com/EmptyJackson/policy-
guided-diffusion.

5.2 Offline Reinforcement Learning

For each D4RL dataset, we train two popular model-free offline algorithms, TD3+BC (Fujimoto &
Gu, 2021) and IQL (Kostrikov et al., 2021) on synthetic experience generated by trajectory diffusion
models with and without policy guidance, as well as on the real dataset. We first consider periodic
generation of synthetic data, in which the synthetic dataset is regenerated after extended periods of
agent training, such that the agent is near convergence on the synthetic dataset at the point it is
regenerated with the current policy. Each epoch, we generate a dataset of 214 synthetic trajectories
of length 16. Following the notation of Algorithm 2, we set the number of epochs to Nepochs = 4
with Npolicy = 250,000 train steps per epoch, meaning the agent is trained to close to convergence
before the dataset is regenerated. This can be viewed as solving a sequence of offline RL tasks with
synthetic datasets, in which the behavior policy is the target policy from the previous generation.

Using periodic generation, performance improves significantly across benchmarks for both IQL and
TD3+BC (Table 2). In MuJoCo, the most consistent improvement is on mixed datasets, with 4 out
of 6 experiments achieving significant performance improvement. This is to be expected, as these
datasets contain experience from a mixture of behavior policy levels. In this case, the diffusion model
is likely to be able to represent a wide variety of policies, and on-policy guidance would naturally
produce higher return trajectories as the target policy improves.

In order to demonstrate the flexibility of PGD, we also evaluate PGD in a continuous generation
setting, using a data generation rate closer to that of traditional model-based methods. For this,
we set Nepochs = 100 and Npolicy = 10,000, then lower the sample size to match the overall number
of synthetic trajectories generated by periodic generation across training. Due to the decrease in

https://github.com/EmptyJackson/policy-guided-diffusion
https://github.com/EmptyJackson/policy-guided-diffusion
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Table 2: Final return of IQL and TD3+BC agents trained on real, unguided (λ = 0) synthetic
and policy-guided (λ = 1) synthetic data—mean and standard error over 4 seeds (diffusion models
and agents) is presented, with shaded values denoting significant improvement (p < 0.05) over all
unshaded values.

IQL TD3+BC

Dataset Unguided Guided Dataset Unguided Guided

R
an

do
m HalfCheetah 9.1 ± 2.2 2.6 ± 0.1 6.5 ± 1.7 11.2 ± 0.8 11.0 ± 0.4 21.1 ± 0.9

Walker2d 4.3 ± 0.5 2.7 ± 0.7 5.3 ± 0.3 0.5 ± 0.3 1.1 ± 1.2 −0.3 ± 0.1
Hopper 7.4 ± 0.4 5.2 ± 0.9 4.9 ± 1.0 7.4 ± 0.6 4.2 ± 1.4 5.5 ± 2.1

M
ix

ed HalfCheetah 44.2 ± 0.2 43.6 ± 0.2 43.6 ± 0.2 44.7 ± 0.1 43.1 ± 0.2 46.1 ± 0.3
Walker2d 81.3 ± 2.0 85.2 ± 0.3 84.9 ± 1.4 82.7 ± 1.3 70.7 ± 10.1 84.0 ± 1.0
Hopper 82.9 ± 3.5 97.4 ± 2.7 100.5 ± 0.5 58.6 ± 11.2 52.1 ± 1.8 91.9 ± 4.3

M
ed

iu
m HalfCheetah 48.4 ± 0.1 45.4 ± 0.1 45.1 ± 0.1 48.6 ± 0.1 45.3 ± 0.2 47.6 ± 0.3

Walker2d 81.7 ± 1.4 82.1 ± 0.9 77.8 ± 3.6 84.8 ± 0.1 85.2 ± 0.2 86.3 ± 0.3
Hopper 63.6 ± 0.8 59.7 ± 2.0 62.8 ± 1.2 62.4 ± 0.9 57.4 ± 0.4 63.1 ± 0.6

Total 46.9 ± 0.4 47.0 ± 0.4 47.9 ± 0.3 44.5 ± 1.1 41.1 ± 1.1 49.5 ± 0.9

M
az

e2
d UMaze 42.6 ± 0.4 42.9 ± 1.8 43.8 ± 3.5 50.0 ± 2.4 33.8 ± 3.0 76.2 ± 17.4

Medium 38.5 ± 1.9 33.4 ± 3.2 60.0 ± 13.9 32.1 ± 6.8 24.0 ± 4.0 89.6 ± 19.9
Large 50.9 ± 5.8 23.4 ± 8.0 45.3 ± 14.8 137.2 ± 20.2 93.3 ± 31.0 131.1 ± 37.5

Total 44.0 ± 2.2 33.2 ± 1.8 49.7 ± 9.5 73.1 ± 6.7 50.4 ± 11.1 99.0 ± 14.5

sample size, we maintain each generated dataset across epochs in a replay buffer, with each dataset
being removed after 10 epochs.

We see similar improvements in performance against real and unguided synthetic data under this
approach, with PGD outperforming real data on 2 out of 3 environments and datasets (Figure 4).
Periodic generation outperforms continuous generation across environments and behavior policies,
which we attribute to training stability, especially when performing guidance early in training.
Regardless, both approaches consistently outperform training on real and unguided synthetic data,
demonstrating the potential of PGD as a drop-in extension to replay and model-based RL methods.

5.3 Synthetic Trajectory Analysis

We now analyze the quality of trajectories produced by PGD against those from unguided diffusion
and autoregressive world model (PETS) rollouts. In principle, we seek to evaluate the divergence
of these sampling distributions from the true target distribution. However, this is not tractable to
compute directly, so we instead investigate two proxy objectives:

1. Trajectory Likelihood: mean log-likelihood of actions under the target policy; and

2. Dynamics Error: mean squared error between states in the synthetic trajectory and real
environment, when rolled out with the same initial state and action sequence.

In our experiments, we consider trajectory diffusion and MOPO-style PETS (Chua et al., 2018)
models trained on representative datasets from the D4RL (Fu et al., 2020) benchmark that were
featured in the previous section. Specifically, we consider the models trained on halfcheetah-medium,
before sampling trajectories with IQL target policies trained on the halfcheetah-random, -medium,
and -expert. This enables us to test the robustness of these models to target policies far from the
behavior policy, both in performance and policy entropy.
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Figure 4: Aggregate MuJoCo performance after training on unguided or policy-guided synthetic data
under continuous and periodic dataset generation, as well as on the real dataset. For each setting,
mean return over TD3+BC and IQL agents is marked, with standard error over 4 seeds (diffusion
models and agents) highlighted.

Policy Guidance Increases Trajectory Likelihood In Figure 5, we present the trajectory
likelihood of synthetic trajectories over varying degrees of guidance. Unsurprisingly, unguided
diffusion generates low probability trajectories for all target policies, due to it directly modeling
the behavior distribution. However, as we increase the guidance coefficient λ, trajectory likelihood
increases monotonically under each target policy. Furthermore, this effect is robust across target
policies, giving the ability to sample high-probability trajectories with OOD target policies. The
value of λ required to achieve the same action likelihood as direct action sampling (PETS) varies
with the target policy. Since this threshold increases with target policy performance, we hypothesize
that it increases with target policy entropy. Based on this, a promising avenue for future work is
automatically tuning λ for hyperparameter-free guidance.

10 1 100 101

10

5

Ac
tio

n 
lo

g-
pr

ob
ab

ilit
y Random policy

10 1 100 101

Policy guidance coefficient ( )

50

0
Medium policy

10 1 100 101

150

100

50

0
Expert policy

MOPO
Unguided
PGD

Figure 5: Action probability of synthetic trajectories generated by diffusion and PETS models trained
on halfcheetah-medium. Target policies are trained on halfcheetah-random, halfcheetah-medium,
and halfcheetah-expert datasets, demonstrating robustness to OOD actions. Standard error over 4
diffusion model seeds is shaded (but negligible), with mean computed over 2048 synthetic trajectories.

Policy Guided Diffusion Achieves Lower Error Than Autoregressive Models In Figure 6,
we present the dynamics error of synthetic trajectories over 16 rollout steps. For a fair comparison,
we fix the guidance coefficient of PGD to λ = 1.0, since this was sufficient to match the trajectory
likelihood of PETS (Figure 5). Over all target policies, PGD achieves significantly lower error than
PETS. Furthermore, PGD has similar levels of error across target policies, while PETS suffers from
significantly higher error on OOD (random and expert) target policies. This highlights the robustness
of PGD to target policy, a critical feature for generating high-likelihood data throughout training.
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Figure 6: Dynamics mean squared error of synthetic trajectories generated by diffusion and PETS
models trained on halfcheetah-medium. Standard error over 4 diffusion model seeds and 3 PETS
seeds (via OfflineRL-Kit) is shaded, with each generating 2048 synthetic trajectories for analysis.

6 Related Work

Offline RL methods can be broadly categorized as model-based or model-free. Model-based methods
in offline RL (Yu et al., 2020; Kidambi et al., 2020; Rigter et al., 2022; Lu et al., 2022) are designed
to augment the offline buffer with additional on-policy samples in order to mitigate distribution
shift. This is typically done by rolling out a policy in a learned world model (Janner et al., 2019)
and applying a suitable pessimism term in order to account for dynamics model errors. While these
methods share the same overall motivation as our paper, the empirical realization is quite different.
In particular, forward dynamics models are liable to compounding errors over long horizons, resulting
in model exploitation, whereas our trajectories are generated in a single step.

Model-free methods in offline RL typically tackle the out-of-sample issue by applying conservatism to
the value function or by constraining the policy to remain close to the data. For example, CQL (Kumar
et al., 2020) and EDAC (An et al., 2021) both aim to minimize the values of out-of-distribution
actions. Meanwhile, BCQ (Fujimoto et al., 2019) ensures that actions used in value targets are
in-distribution with the behavioral policy using constrained optimization. We take the opposite
approach in this paper: by enabling our diffusion model to generate on-policy samples without
diverging from the behavior distribution, we reduce the need for conservatism.

Finally, a range of prior work has applied diffusion to RL, which we detail in Appendix E.

7 Conclusion

We presented policy-guided diffusion, a method for controllable generation of synthetic trajectories
in offline RL. We provided a theoretical analysis of existing approaches to synthetic experience
generation, identifying the advantages of direct trajectory generation compared to autoregressive
methods. Motivated by this, we proposed PGD under the direct approach, deriving the regularized
target distribution modeled by policy guidance.

Evaluating against PETS deep ensembles, a state-of-the-art autoregressive approach, we found that
PGD can generate synthetic experience at the same target policy likelihood with significantly lower
dynamics error. Furthermore, we found consistent improvements in downstream agent performance
over a range of environments and behavior policies when trained on policy-guided synthetic data,
against real and unguided synthetic experience.

By addressing the out-of-sample issue through synthetic data, we hope that this work enables the
development of less conservative algorithms for offline RL. There are a range of promising avenues
for future work, including automatically tuning the guidance coefficient for hyperparameter-free
guidance, leveraging on-policy RL techniques with policy-guided data, and extending this approach
to large-scale video generation models.
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Appendix
A Hyperparameters

We open-source our implementation at https://github.com/EmptyJackson/policy-guided-diffusion.

A.1 Diffusion Model

For the diffusion model, we used a U-Net architecture (Ronneberger et al., 2015) with hyperparameters
outlined in Table 3. We transformed the trajectory by stacking the observation, action, reward, and
done flags for each transition, before performing 1D convolution across the sequence of transitions.

Table 3: U-Net hyperparameters

Hyperparameter Value
Trajectory length 16

Kernel size 3
Features 1024

U-Net blocks 3
Batch size 16

Dataset epochs 250
Optimizer Adam

Learning rate 2× 10−3

LR schedule Cosine decay

A.2 Diffusion Sampling

We use EDM (Karras et al., 2022) for diffusion sampling, retaining many of the default hyperparame-
ters from Lu et al. (2023) (Table 4). We tuned the number of diffusion timesteps, finding diminishing
improvement in dynamics error beyond 256 timesteps.

Table 4: EDM hyperparameters

Hyperparameter Value
Diffusion timesteps 256

Schurn 80
Snoise 1.003
Stmax 50
Stmin 0.05
σmax 80
σmin 0.002

https://github.com/EmptyJackson/policy-guided-diffusion
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B Noised Target Distribution

To model the target distribution with diffusion, we require the noise-conditioned score function
∇τ̂ log ptarget(τ̂ ; σ) for the target distribution. However, since we do not have access to samples from
ptarget(τ̂ ; σ), one might wish to apply a factorization of the target distribution, such as

ptarget(τ ) = poff(τ )
H−1∏
t=0

πtarget(a|s)
πoff(a|s) , (15)

before modeling its terms separately. However, by applying independent Gaussian noise to each of
the elements in τ̂ , we lose conditional independence between contiguous states and actions—i.e.,
ptarget(ât|τ̂ \ât; σ) ̸= ptarget(ât|ŝt; σ)—preventing us from applying an equivalent factorization. Due
to this, we must approximate ∇τ̂ log ptarget(τ̂ ; σ) directly, as we propose in Section 4.1.

C Behavior-Regularized Target Distribution

Intuitively, the behavior-regularized target distribution transforms the target distribution by increasing
the likelihood of actions under the behavior policy. As is typical in offline RL (Kumar et al., 2020;
Fujimoto & Gu, 2021; Fujimoto et al., 2019), regularizing the policy towards the behavior distribution
is required in order to avoid out-of-sample states and consequently minimize value overestimation.
Rather than regularizing the policy, PGD shifts this regularization to the data generation process,
which helps our guided samples remain in-distribution with respect to the diffusion model, and thus
less susceptible to model error.

Moreover, we note that this type of regularization is not immediately available for prior autoregressive
world models, and thus they typically penalize reward by dynamics error (Yu et al., 2020; Kidambi
et al., 2020; Lu et al., 2022) in an ad-hoc fashion in order to avoid model exploitation. In contrast,
PGD presents a natural mechanism for behavioral regularization during data generation, making
offline policy optimization without regularization a promising path for future work.

D Agent Training with Policy-Guided Diffusion

In Algorithm 2, we present pseudocode for training an agent with synthetic experience generated by
PGD. PGD is agnostic to the underlying offline RL algorithm used to train the target policy, making
it a drop-in extension to any model-free method.

Algorithm 2 Agent training via policy-guided diffusion.
1: Parameters: Number of epochs Nepochs, steps per epoch Npolicy
2: Required: Diffusion trajectory sampler F(τ |π; θ, λ)
3: Initialize policy πϕ

4: for epoch = 0 to Nepochs do
5: Generate synthetic dataset Depoch ∼ F(τ |πϕ; θ, λ)
6: for step = 0 to Npolicy do
7: Sample mini-batch {τ} ∼ Depoch
8: Update policy πϕ on mini-batch {τ}
9: end for

10: end for
11: return πϕ
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E Diffusion in Reinforcement Learning

Diffusion models are a flexible method for data augmentation in reinforcement learning. SynthER (Lu
et al., 2023) uses unguided diffusion models to upsample offline or online RL datasets, which are
then used by model-free off-policy algorithms. While this improves performance, SynthER uses
unguided diffusion to model the behavior distribution, resulting in the same issue of distributional
shift. Similarly, MTDiff (He et al., 2023) considers unguided data generation in multitask settings.

Diffusion models have also been used to train world models. Zhang et al. (2023) train a world model
for sensor observations by first tokenizing using VQ-VAE and then predicting future observations via
discrete diffusion. Alonso et al. (2023) also train a world model using diffusion and demonstrate it can
more accurately predict future observations. However, neither of these approaches model the whole
trajectory, thereby suffering from compounding error, nor do they apply policy guidance. Parallel
to this work, Rigter et al. (2023) use guidance from a policy to augment a diffusion world model
for online RL. By contrast, we focus on the offline RL setting, provide a theoretical derivation and
motivation for the trajectory distribution modeled by policy guidance, and demonstrate improvements
in downstream policy performance.

Diffusion models are also used elsewhere in reinforcement learning. For example, Diffuser (Janner
et al., 2022) and Decision Diffuser (Ajay et al., 2023) use trajectory diffusion models for planning and
to bias planned trajectories towards high return. By contrast, we use on-policy guidance and train
on the generated data. Diffusion models have also been used as an expressive policy class (Wang
et al., 2023) for Q-learning, showing improvement over MLPs.


