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Abstract

We study the problem of Distributionally Robust Constrained RL (DRC-RL), where
the goal is to maximize the expected reward subject to environmental distribution
shifts and constraints. This setting captures situations where training and testing
environments differ, and policies must satisfy constraints motivated by safety or
limited budgets. Despite significant progress toward algorithm design for the sep-
arate problems of distributionally robust RL and constrained RL, there do not yet
exist algorithms with end-to-end convergence guarantees for DRC-RL. We develop
an algorithmic framework based on strong duality that enables the first efficient and
provable solution in a class of environmental uncertainties. Further, our framework
exposes an inherent structure of DRC-RL that arises from the combination of dis-
tributional robustness and constraints, which prevents a popular class of iterative
methods from tractably solving DRC-RL, despite such frameworks being applicable
for each of distributionally robust RL and constrained RL individually. Finally, we
conduct experiments on a car racing benchmark to evaluate the effectiveness of the
proposed algorithm.

1 Introduction

In many real-world decision-making tasks, policies must not only be reward-maximizing but also be
robust to environmental distribution shifts while satisfying application constraints. Environmental
distribution shifts occur in scenarios where there is a mismatch between the training and testing
environments, such as due to environment changes (Maraun, 2016), modeling errors (Chen et al.,
1996), or adversarial disturbances (Pioch et al., 2009). Constraints are imposed in tasks that require
adherence to safety factors (Haddadin et al., 2012; Weidemann et al., 2023), budgets in strategy
games (Vinyals et al., 2019), diverse interests in advertisement recommendations (KRM et al., 2021;
Bagenal et al., 2023), and so on. This motivates us to tackle both challenges simultaneously, inspiring
the study of problems called distributionally robust constrained RL (DRC-RL) (Russel et al., 2020;
Wang et al., 2022).

∗This work was initiated during the visiting undergraduate research program at the California Institute of Tech-
nology.
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The goal of DRC-RL is to learn a policy that simultaneously optimizes the expected reward and
satisfies the constraints in the worst-case scenario when the deployed environment deviates from the
nominal one within a prescribed uncertainty set. DRC-RL has received growing attention in recent
years and is typically modeled as a constrained optimization problem. As it is unknown if the strong
duality holds for the DRC-RL problems, most recent works either use different formulations (e.g.,
risk-averse) to consider environmental uncertainty (Queeney & Benosman, 2024; Kim et al., 2024),
or simply focus on one of the primal (Sun et al., 2024) and the dual problem (Wang et al., 2022;
Bossens, 2023), such that an end-to-end guarantee is still absent. More broadly, there has been
significant progress in developing rigorous algorithms that address the two challenges that make up
DRC-RL individually: distributionally robust RL (DR-RL) (Iyengar, 2005; Wiesemann et al., 2013;
Li et al., 2022; Panaganti et al., 2022) and constrained RL (C-RL) (Le et al., 2019; Miryoosefi et al.,
2019; Efroni et al., 2020; Ding et al., 2021). Many of these works have focused on a simple, intuitive,
greedy policy induced by taking the greedy (best) action with respect to the current learned value
functions. This raises the question of whether a similar greedy approach can be effective in DRC-RL
or if additional challenges arise from the combination of distributional robustness and constraints.

To address this question, in this paper, we develop a general framework that transfers the policy
learning problem to a game-theoretic formulation with a constructed strong duality, where the dual
problem is treated as a player’s objective. In DR-RL and C-RL, targets similar to this dual function
are solved via greedy policies (Iyengar, 2005; Le et al., 2019). Mathematically, one can think of such
a procedure as applying an operator efficiently and greedily, and convergence depends on proving
that this operator is a contraction. While such a greedy approach works for DR-RL (Iyengar, 2005)
and C-RL (Miryoosefi et al., 2019) in isolation, we show that only with further assumptions can
one apply this approach to DRC-RL, e.g., for R-contamination uncertainty sets (Huber, 1965; Wang
& Zou, 2022). We prove that, in general, no such operator exists for the joint DRC-RL problem,
implying an impossibility result for a commonly applied class of algorithms.

In summary, this paper makes the following main contributions:

• We propose a multi-level systematic framework to solve DRC-RL for general uncertainty
sets in Section 3. We show that guarantees for subroutines combine to ensure end-to-end
guarantees for DRC-RL.

• Focusing on the R-contamination uncertainty set, we instantiate our framework to provide
the first provable efficient solution for DRC-RL in Section 4. Our solution uses a shortened
horizon in subroutines to ensure distributional robustness. We verify its effectiveness with
an experiment using a high-dimensional car-racing task.

• We consider general uncertainty sets in Section 5 and show that the combination of con-
straints and distributional robustness requirements yields that DRC-RL cannot be solved by
considering greedy policies, which is the key of a popular class of iteration methods proposed
previously for standard RL, DR-RL, and C-RL problems (Iyengar, 2005; Le et al., 2019).

Notation. For any set S, ∆(S) denotes the set of probability distribution over S. We use ⊗iXi to
denote a product space of spaces Xi’s. We use ⟨x, y⟩ to denote the inner product of two same-sized
vectors. We claim f(T ) is o(T ) if f(T )/T → 0 as T →∞. f(x) ≤ O(g(x)) denote f(x) ≤ Cg(x) for
some positive constant C.

2 Preliminaries and Problem Formulation

Robust Markov Decision Process. A robust Markov decision process (MDP) with infinite
horizon can be specified by a tuple (S,A,P, r, γ, µ), where S denotes the finite state space1, A
denotes the finite action space, r : S × A → [0, R̄] is the known deterministic reward function
with some positive maximal magnitude R̄, γ ∈ [0, 1) is the discount factor, and µ is the initial

1We study the finite state space here for simplicity sake, while all theoretical and empirical results in the main
text should hold for any bounded and closed finite-dimensional state space as well.
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state distribution. In this paper, we focus on (s, a)-rectangularity uncertainty set for the transition
kernel P (Nilim & Ghaoui, 2003; Iyengar, 2005), i.e. P = ⊗(s,a)∈S×APs,a, where Ps,a = {Ps,a ∈
∆(S)|D(Ps,a, P o

s,a) ≤ βs,a}, describing a neighborhood of the nominal model P o = (P o
s,a, (s, a) ∈

S × A) by some measurement function D : ∆(S)×∆(S)→ R and robustness level β ∈ RS×A. We
consider any policy π : S → A in the class of deterministic policies Π. The robust value function of
a policy π is then defined as the worst-case accumulated reward following the policy π over MDPs
within the uncertainty set as below (Iyengar, 2005, Sec.3):

V π
r (s) := min

K∈⊗t≥0P
EK[

∞∑
t=0

γtr(st, at)|s0 = s, π]. (1)

Here K is a sequence of transition kernels within the same uncertainty set P over each time step.
Moreover, for any policy π, the robust value function V π

r is the unique stationary point of the robust
Bellman consistency operator (Iyengar, 2005),

T π
r,robv(s) := r(s, π(s)) + γ min

P ∈P
⟨Ps,π(s), v⟩. (2)

The ultimate goal of distributionally robust RL is to find the optimal robust policy π∗ that attains
maximized robust value function V ∗

r = maxπ V π
r . To attain the optimal robust value V ∗

r , we have
various dynamic programming procedures (Iyengar, 2005), e.g. iterations vk+1 = T ∗

r,robvk converge
to V ∗

r , where the optimality operator T ∗
r,robv(s) := maxπ T π

r,robv(s) = T G(v)
r,rob v(s) using the greedy

policy G(v)[s] := arg maxa{r(s, a) + γ minP ∈P⟨Ps,a, v⟩}. Typically, such problems that are usually
solved by greedy policy G(v)[s] = arg maxπ T π

r,robv(s) has the name of policy improvement step.

Distributionally Robust Constrained RL (DRC-RL). We formulate the distributionally
robust constrained MDP as a tuple (S,A,P, r, g, τ, γ, µ), where S,A,P, r, γ, µ are identical to that in
robust MDPs. Here, g := [g1, g2, · · · gm] with gi : S ×A → [0, τi] for all i ∈ 1, 2, · · · , m, representing
the aggregation vector of m known deterministic reward-based constraint functions based on the
constraint thresholds τ = [τ1, · · · , τm]. We aim to learn a policy π within the deterministic policy
class denoted as Π. As environmental distribution shifts can be applied to constraints and the
objective independently, e.g. estimation errors, we formulate the goal of distributionally robust
constrained RL (DRC-RL) as solving the following constrained optimization problem:

max
π∈Π

V π
r (µ) s.t. V π

gi
(µ) ≥ τi, 1 ≤ i ≤ m, (3)

where V π
r , V π

gi
is the robust value functions (1) corresponding to the objective reward function r and

constraint functions gi’s, and their corresponding expected robust values according to the initial
state distributions are V π

r (µ) = ⟨V π
r , µ⟩ and V π

gi
(µ) = ⟨V π

gi
, µ⟩. For brevity sake, we denote the

constraint vector as V π
g := [V π

g1
, V π

g2
, · · · , V π

gm
]⊤ ∈ Rm.

3 DRC-RL with General Uncertainty Sets

In this section, we develop a general framework and meta algorithm for DRC-RL with an arbitrary
uncertainty set in Section 3.1 and introduce the subroutines of the framework in Section 3.2.

3.1 A Meta Algorithm for DRC-RL

Constrained RL can be viewed as a constrained optimization problem that has been proven to have
strong duality generally by Paternain et al. (2019). However, it is currently not known whether
DRC-RL maintains strong duality. To show strong duality of DRC-RL problem (3), we consider
a class of mixed policies denoted as Conv(Π), defined as below (Miryoosefi et al., 2019; Le et al.,
2019):{

πα,{πi}T
i=1
∼ Categorical

(
{πi}T

i=1, α
)

: 0 < T <∞, πi ∈ Π,∀i; α = [α1, · · · , αT ] ∈ ∆(T )
}

, (4)
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Algorithm 1 Meta Algorithm for DRC-RL
1: for each round t do
2: πt ← BestResponse(λt) ▷ Non-trivial for DRC-RL problems
3: π̂t ← 1

t

∑t
t′=1 πt′ , λ̂t ← 1

t

∑t
t′=1 λt′ ▷ Mixed policy π̂t

4: Lmax = L(BestResponse(λ̂t), λ̂t)
5: Lmin = minλ L(π̂t, λ)
6: if Lmax − Lmin < ω then ▷ Calculating current duality gap
7: return π̂t

8: end if
9: λt+1 ← OnlineAlgo(π1, ..., πt−1, πt)

10: end for

where Categorical({πi}T
i=1, α) is a categorical distribution such that P(πα,{πi}T

i=1
= πi) = αi for

all i = 1, 2, · · · , T . To execute any mixed policy πα,{πi}T
i=1
∈ Conv(Π), at the beginning of each

episode, a deterministic policy π is sampled independently from Categorical({πi}T
i=1, α) and serve as

the action selection rule for the entire episode. Thus, the robust value function of a mixed policy
V

π
α,{πi}T

i=1
r is defined as V

π
α,{πi}T

i=1
r := Eπ∼Categorical({πi}T

i=1,α)[V π
r ] =

∑T
i=1 αiV

πi
r .

Proposition 3.1. When substituting Π with its convex hull Conv(Π) in the DRC-RL problem (3),
strong duality holds if Slater’s condition holds.

The proof of the above proposition and other results of this section are postponed to Appendix A.

We assume the DRC-RL problem (3) is feasible and that Slater’s condition (Boyd & Vandenberghe,
2004) holds, where the latter only requires the existence of an interior solution upon feasibility. The
problem considering the augmented solution class Conv(Π) has a solution no worse than the original
problem (3), and the convexification itself does not pose any restriction on deterministic policies.
As such, we directly denote the convex hull Conv(Π) as Π in the rest of the paper, and always treat
π as a mixed policy unless specified.

The Lagrangian of (3) is L(π, λ) := V π
r (µ) − λ⊤(V π

g (µ) − τ) for some λ ∈ Rm
+ . Strong duality

indicates maxπ∈Π minλ∈Rm
+

L(π, λ) = minλ∈Rm
+

maxπ∈Π L(π, λ). By the definition of mixed polices,
V π

r (µ) and V π
g (µ) are all linear to policy π (see Appendix A.1). Therefore, L(π, λ) is linear to

both λ and π, and a game-theoretic perspective can be applied. That is, we view the problem as
a two-player game between a π-player and a λ-player (Freund & Schapire, 1999; Miryoosefi et al.,
2019).

Algorithm 1 describes this repeated game, where both players seek to decrease the duality gap. The
π-player runs Best-response to maximize Lagrangian L(π, λt) given the current λt,

πt := Best-response(λt) ∈ argmaxπL(π, λt). (5)

The λ-player then employs any no-regret Online-Algorithm (Shalev-Shwartz, 2007) to minimize
L(πt, λ), which satisfies: ∑

t

(−L)(πt, λt) ≥ max
λ

∑
t

(−L)(πt, λ)− o(T ). (6)

Algorithm 1 terminates when the estimated primal-dual gap is below a threshold w.
Proposition 3.2. Algorithm 1 is guaranteed to converge if (i) Best-response gives the best
deterministic policy in the deterministic policy class (ii) Lmax and Lmin in Algorithm 1 are precisely
evaluated. Additionally, the exact convergence rate depends on the regret of Online-Algorithm.

3.2 The Online-Algorithm and Best-response Subroutines

Given Proposition 3.2, the remaining task is to instantiate the Online-Algorithm and Best-
response subroutines. The requirements for Online-Algorithm are standard. Any no-regret
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(6) online optimization algorithm is valid. Examples include Online Gradient Descent (Zinkevich,
2003), Exponentiated Gradient (Kivinen & Warmuth, 1997), and Follow-the-Regularized-Leader
(Shalev-Shwartz, 2007). The Best-response subroutine, which corresponds to the dual function
of the DRC-RL problem (3), is more difficult to instantiate and currently has no provable method for
any specific uncertainty set among related works (Mankowitz et al., 2020; Wang et al., 2022; Bossens,
2023). Therefore, the key challenge is to efficiently and provably solve Best-response problem
(5).

In detail, the Best-response problem with a given λt corresponds to the maximization problem
of value functions of a form that often occurs in RL, e.g. maxπ V π

r in DR-RL, where

πt ∈ argmax
π∈Π

L(π, λt) = argmax
π∈Π

V π
r (µ)− λ⊤

t V π
g (µ). (7)

With a finite action space, similar maximization problems can be efficiently solved using iterative
methods over greedy policies using some operators in various popular RL problems, such as standard
RL (Scherrer et al., 2015), distributionally robust RL (Iyengar, 2005; Derman et al., 2021; Panaganti
et al., 2022), constrained RL (Le et al., 2019; Miryoosefi et al., 2019), and regularized RL (Geist
et al., 2019). Using a similar approach, for any policy π, we propose a consistency operator T π :
v ∈ RS 7→ T πv ∈ RS so that for any given λt,

[T πv](s) = (r − λ⊤
t g)(s, π(s)) + γ⟨P o

s,π(s), v⟩+ γ min
P ∈P
⟨Ps,π(s) − P o

s,π(s), V π
r ⟩ (8)

− γλ⊤
t min

P ∈P
⟨Ps,π(s) − P o

s,π(s), V π
g ⟩.

where (r − λ⊤
t g)(s, π(s)) := r(s, π(s)) − λ⊤

t g(s, π(s)) for the brevity sake.2 Correspondingly, an
optimality operator T ∗ with a fixed state s can be defined as [T ∗v](s) = maxπ∈Π[T πv](s).
Proposition 3.3. The consistency and optimality operators, i.e., T π and T ∗, satisfy:
(1) Monotonicity: let v1, v2 ∈ RS such that v1 ≥ v2, then T πv1 ≥ T πv2 and T ∗v1 ≥ T ∗v2.
(2) Transition Invariance: for any c ∈ R, we have T π(v + c1) = T πv + γc1 and T ∗(v + c1) =
T ∗v + γc1.
(3) Contraction: The operator T π and T ∗ are γ-contractions. Further, V π

r − λ⊤
t V π

g is the unique
stationary points of operator T π.

The properties summarized in Proposition 3.3 allow us to apply the consistency operator in an ap-
proximate modified policy iteration (AMPI) scheme (Scherrer et al., 2015) to solve Best-response.
AMPI scheme generalizes both value iteration (as used in Section 2) and policy iteration methods
and is widely used for other RL problems (Scherrer et al., 2015; Geist et al., 2019; Panaganti et al.,
2022). The procedure of AMPI can be described as follows:

πk+1 = arg max
π

ϵ′
k+1T πvk and vk+1 = (T πk+1

)mvk + ϵk+1, (9)

where ϵk ∈ RS , ϵ′
k ∈ RS are some optimization errors in the k-th iteration. Here, we assume the

operator maxϵ′
k+1

π T πvk guarantees maxπ[T πvk](s) ≤ [T πk+1
vk](s) + ϵ′

k+1(s) for all s ∈ S for now.

In words, the two update rules in (9) correspond to approximate policy improvement and approxi-
mate policy evaluation, respectively. In RL literature, those two steps can be solved by some oracles.
Especially, the approximate policy improvement step is often represented as πk+1 = Gϵk+1(vk), being
the greedy policy with respect to vk and an error term ϵk+1 (Munos & Szepesvári, 2008; Lazaric
et al., 2012; Scherrer et al., 2015; Geist et al., 2019). In these RL problems, such formulations, while
being nominally different, coincide with ours in (9) as the greedy policy T G(vk)vk = maxπ T πvk is
optimal for the policy improvement step. Inspired by the literature, we first assume two oracles to
execute these two steps for now, leading to the following assumption:

2Here V π
r and V π

g are the robust value functions that are fixed given π, making T π in (8) not a practical operator
yet until further specification.
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Assumption 3.4. There exist oracles that approximately solve (i) the policy improvement step with
errors {ϵk}, and (ii) the policy evaluation step in AMPI (9) with error {ϵ′

k}.

Assumption 3.4 also requires the existence of an ϵ′-approximated policy for policy improvement,
which is not obviously valid as T ∗ may correspond to different best policies for different states. This
issue is resolved if the greedy policy is optimal (as in Section 4) and is further discussed in Section
5. We also provide a standalone solution for this issue in Appendix D.1.

Now, under Assumption 3.4, for any k-th iteration, we are ready to control the loss lk := vπt − vπk

via AMPI, where πt is the solution to Best-response problem with respect to λt, vπ represents
the unique stationary point of T π for any policy π whose uniqueness is guaranteed by contraction
in Proposition 3.3. The analysis is analogous to that in Scherrer et al. (2015).
Theorem 3.5. Under Assumption 3.4, applying (9) for k-th iterations, the loss lk satisfy,

lk ≤ O(γk) + (2ϵ̄(γ − γk) + ϵ̄′(1− γk))/(1− γ)2 k→∞−−−−→ (2ϵ̄γ + ϵ̄′)/(1− γ)2, (10)

where ϵ̄ ∈ RS is the upperbound of errors {ϵk}, i.e. ∀k, ϵk ≤ ϵ̄, and ϵ̄′ ∈ RS is similarly defined as
the upper bound of {ϵ′

k}.

Theorem 3.5 shows that, when errors are relatively small, our AMPI (9) guarantees convergence to
the solution of Best-response under Assumption 3.4. Combining this with a no-regret online
algorithm, we complete the general framework for the DRC-RL problem as in Algorithm 1.

Finally, while the oracle for the approximate policy evaluation step can be implemented for several
popular uncertainty sets (Shi et al., 2023; Clavier et al., 2023), the greedy policy solution for the ap-
proximate policy improvement step does not work, at least for our consistency operator T π. This is
due to its dependency on the whole policy in its definition (8). Moreover, there is currently no prov-
able efficient instantiation for general uncertainty set to enable the approximate policy improvement
step in DRC-RL problems. Given the fact that Best-response corresponds to the fundamental
dual function of (3), and that the policy improvement step consists of a popular class of iteration
methods for Best-response type problems, we wonder:

(Q1) Can we design a specific uncertainty set for our operator T π that enables solving DRC-RL
without oracles, e.g. using greedy policies?

(Q2) Is it possible to design a better consistency operator that makes greedy policies optimal that
in turn provably solves DRC-RL with our framework?

We address these two questions in the next two sections, respectively.

4 DRC-RL with R-Contamination Uncertainty Sets

In this section, we address (Q1) via a focus on the R-contamination uncertainty sets Ps,a := {(1 −
β)P o

s,a + βq | q ∈ △(S)} with a scalar robust level β ∈ R. This uncertainty set has been studied in
distributionally robust RL recently (Wang et al., 2022; Li & Lan, 2023). Considering this, we can
simplify our consistency operator T π without any loss in solving Best-response as

[T πv](s) = (r − λ⊤
t g)(s, π(s)) + γ(1− β)⟨P o

s,π(s), v⟩+ γβ(min
s′

V π
r (s′)− λ⊤

t min
s′

V π
g (s′)). (11)

Please refer to Appendix B for detailed proof. Additionally, we adopt the following fail-state as-
sumption (Panaganti et al., 2022).
Assumption 4.1 (fail-state). There is a fail state sf for all the RMDPs, such that r(sf , a) =
0, gi(sf , a) = 0 and Psf ,a(sf ) = 1, for all a ∈ A and P ∈ P.

The fail-state assumption is commonly satisfied in practice as it corresponds to an end-game state
in the simulator or real-world systems, in which all constraints are violated and the reward is zero.



RLJ | RLC 2024

Under this fail-state assumption, we always have mins′ V π
r (s′) = mins′ V π

g (s′) = 0, which makes the
operator T π correspond to a standard bellman consistency operator with shortened discount factor,

[T πv](s) = (r − λ⊤
t g)(s, π(s)) + γ(1− β)⟨P 0

s,π(s), v⟩. (12)

Given that T π takes the form of a standard consistency operator, the greedy policy is available for
the policy improvement step. Thus, any instantiation of AMPI (9), such as simple value iteration
or policy iteration, can efficiently and provably solve Best-response problem under small errors.
The distributionally robust constrained problem therefore has a provable solution in the case of the
R-contamination uncertainty set. The details of an instantiation of Best-response and Online-
Algorithm are discussed in Appendix D.2.

Our result for the R-contamination uncertainty set indicates that a smaller discount factor, i.e. a
smaller effective horizon, gives higher distributional robustness. However, as this smaller discount
factor is a consequence of the robustness objective, the discount factor should remain unchanged,
when designing constraints threshold τ and testing in shifted environments. Such an unchanged
discount factor in thresholds and tests differs our solution from simply scaling the problem.

Finally, it is worth noting that the case of no constraints, e.g. g = τ = 0, implies that our analysis also
gives a provable solution to the distributionally robust RL problem on R-contamination uncertainty
sets.

5 On the Intractability of Greedy Policies for DRC-RL

In this section, we answer question (Q2) with a negative result showing that the combination of
constraints and distributional robustness requires different algorithmic tools than either robust RL
or constrained RL do alone. In detail, we show that for any ‘good’ consistency operator, the greedy
policies are not generally optimal for the policy improvement step in (9). This, in turn, prevents any
algorithm from a popular class of iteration methods from tractably solving the DRC-RL problem.

To begin, we formally define the optimality of greedy policy and connect it to the operator. We
assume policy π ∈ RS×A includes both deterministic and stochastic policies.
Definition 5.1 (Greedy Policy Enabling). We state an consistency operator T π enables the greedy
policy if there exist a function g : RS × A → RS such that ∀v ∈ RS , s ∈ S, maxa∈A g(v, a)[s] =
maxπ∈Π[T πv](s), i.e. greedy policies are optimal.
Definition 5.2 (Operator Linearity). The consistency operator T π, that takes policy π as an input,
is linear if there exists a function f : RS → RS×A that is independent of π, such that ∀v ∈ RS , s ∈ S,
we have [T πv](s) = ⟨π[s, ·], f(v)[s, ·]⟩ = ⟨π, f(v)⟩s.

Take distributional robust RL as an example, its robust consistency operator (2): [T π
r,robv](s) =

⟨π[s, ·], f(v)[s, ·]⟩ is linear where f(v)[s, a] = rs,a + minP ∈P⟨Ps,a, v⟩. Thus, one only needs to treat
f(v)[s, a] as g(v, a)[s] in Definition 5.1 to enable the greedy policy. It is not hard to find that a linear
operator naturally enables the greedy policy as in the above example, and we generalize this in the
following result. All proofs for this section are presented in Appendix C.
Lemma 5.3. The linear operator is equivalent to greedy policy-enabled operators in Definition 5.1
in the following ways: (i) If a consistency operator is a linear operator, then it enables the greedy
policy. (ii) If a consistency operator T π enables the greedy policy, then there always exists a linear
operator T π

linear that can substitute T π without any loss in policy improvement step, i.e. ∀v ∈ RS , s ∈
S, maxπ∈Π[T πv](s) = maxπ∈Π[T π

linearv](s).

However, the following shows that it is impossible to have a consistency operator that simultaneously
converges as a contraction to our target in Best-response and enables the greedy policy.
Theorem 5.4. There is no consistency operator T π, that takes any policy π as an input, simultane-
ously satisfies for given γ and every λt: (i) Linearity. (ii) γ-Contraction to our target: the operator
T π is a contraction such that for every policy π ∈ Π, V π

r − λ⊤
t V π

g is the unique stationary point of
T π.
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(a) Constraints Satisfaction under Shifts (b) Performance under Steering Shift

Figure 1: The four bar graphs denote the constraints satisfaction (green means satisfied) when shifts
of power, inertia, braking magnitude, and steering angle occur. The lower right figure indicates the
value of the objective (higher is better) when the steering angle is shifted. All evaluations are based
on the value function (accumulated rewards) of mixture policy π̂.

Corollary 5.5. There is no consistency operator T π that enables greedy policy while retaining as a
γ-contraction to V π

r − λ⊤
t V π

g .

Theorem 5.4 and Corollary 5.5 highlight the additional difficulty of DRC-RL as compared to robust or
constrained RL, where iterative methods can be successful. Our proof (Appendix C.2) demonstrates
how this difficulty arises from the combination of constraints and distributional robustness.

Comparing our previous success in the case of R-contamination sets (Section 4) to these impossible
results, it becomes evident that the additional fail-state assumption is critical. This assumption
restricts the possible value function space and provides an additional transition structure that avoids
the challenges underlying Theorem 5.4.

Following the fail-state assumption, we believe it is possible to design additional conditions for other
forms of uncertainty sets that resolve such impossibilities. Although we have not yet found clear and
rigorous guidance, we tentatively acknowledge that the absence of linearity in worst-case transition
kernels is essential for Theorem 5.4. Therefore a structured value function space or an augmented
state space (such as in Sootla et al. (2022)) might be helpful to give tractable solutions with our
framework in Section 3.

6 Experiments and Evaluation

In this section, we present a focused experiment to validate our solution in Section 4. This solution
specializes to the case of constrained RL in Le et al. (2019) when setting the robustness level to 0.
We present critical settings here and refer to Appendix E for more details.

Task Setting. We choose the high-dimensional Car Racing task (Towers et al., 2023) where the
agents must traverse as far as possible on track, with each reward for a passed tile of track and a
small negative reward for each second. Two constraints are designed: slow driving and edge driving.
States off the track excessively are considered fail-states.

Algorithms Design and Baseline. We adopt Fitted Q Iteration (Ernst et al., 2005) and Expo-
nentiated Gradient (Kivinen & Warmuth, 1997) for Best-response and Online-Algorithm.
Evaluations are executed using the simulator and meet the requirements of Proposition 3.2. We
choose γ = 0.95 as the initial discount factor for the baseline, since in this case our solution retrieves
the constrained RL algorithm in Le et al. (2019) and is considered as zero robustness level. We select
two robustness levels β for evaluation. These result in discount factors γ(1 − β) = {0.90, 0.925},
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and correspond to a maximized 50% decrease of the effective horizon. All other hyperparameters,
including random seeds, do not change across γ.

Procedure and Criteria. For each γ, 25 rounds are executed, which guarantees a duality gap of
less than .01. The mixture policy π̂ =

∑25
t=1

1
25 πt is then tested in the shifted environments. When

testing with a shifted environment, the objective and two constraints for each mixture policy are
measured with value function and initial discount factor γ = 0.95. All results in shifted environments
are smoothed as the mean of 3 random seeds and a 1% shift window. We regard constraints as hard
and prioritize constraint satisfaction as the main criterion for robustness, with the value of the
objective as the secondary criterion.

Results. Our experiments verify that smaller γ learns a more robust policy in the car-racing
example. Results are shown in Figure 1: In the left plot, we present constraint satisfaction under
shifts of power, inertia, and brake magnitude. Our learned policies with smaller discount factors
perform better. In the right plot, we present a full set of evaluations when the steering angle is
shifted. Here the learned policies with smaller discount factors not only satisfy more constraints but
may also have better objective value when a certain shift occurs.

7 Related Works

Constrained RL. Constrained RL aims at maximizing expected cumulative reward while adhering
to specified constraints. Applications of Constrained RL cover a wide array of topics, such as resource
allocation for numerous users in grid systems (Wang et al., 2020; De Nijs et al., 2021; Mo et al., 2023),
human satisfaction in human-robot interaction (El-Shamouty et al., 2020; Liu et al., 2023), and the
safety level of robotic agents (Wachi & Sui, 2020; Zhang et al., 2020; Brunke et al., 2022; Tambon
et al., 2022). The underlying decision-making problem in constrained RL can be represented as a
constrained Markov decision process (Altman, 2021) that has a bilevel structure with strong duality
(Miryoosefi et al., 2019; Paternain et al., 2019). Most works in constrained RL employ model-based
methods (Efroni et al., 2020; Bura et al., 2022). To develop model-free and policy gradient methods,
many additional constrained RL algorithms, involving online (Ding et al., 2021; Wachi et al., 2021)
or offline (Le et al., 2019) interactions, embrace a primal-dual methodology.

Distributionally Robust RL. Distributionally robust RL tackles the challenge of formulating a
policy resilient to shifts between training and testing environments by using robust Markov decision
process (Nilim & Ghaoui, 2003; Iyengar, 2005) as the underlying decision-making problem. Prior
works (Xu & Mannor, 2010; Wiesemann et al., 2013; Yu & Xu, 2015; Mannor et al., 2016; Russel
& Petrik, 2019) have shown that distributional robustness is essential when the environment shifts.
Recently, work has also started to provide a concrete theoretical understanding of distributionally
robust RL about the convergence of algorithms and sample complexity (Yang et al., 2021b; Panaganti
& Kalathil, 2021b; Zhou et al., 2021; Shi & Chi, 2022; Wang et al., 2023a; Blanchet et al., 2023; Liu
et al., 2022; Wang et al., 2023c; Liang et al., 2023; Shi et al., 2023; Wang & Zou, 2021; Xu et al.,
2023; Dong et al., 2022; Ramesh et al., 2023; Panaganti et al., 2022; Ma et al., 2022; Wang et al.,
2023b; Li et al., 2022; Kumar et al., 2023; Clavier et al., 2023; Yang et al., 2023; Zhang et al., 2023;
Li & Lan, 2023; Wang et al., 2024; Yang et al., 2021a; Panaganti & Kalathil, 2022; Shi et al., 2024).
Additionally, other recent work (Panaganti & Kalathil, 2021a; Wang & Zou, 2021; Panaganti et al.,
2022; 2024) has employed general function approximation to devise model-free online and offline
robust RL algorithms.

Related work on DRC-RL. The study of DRC-RL can be traced back to at least Russel et al.
(2020) and Mankowitz et al. (2020), where the basic formulation is proposed and first-order methods,
such as Robust Constrained Policy Gradient (RCPG), are studied. More recently, Wang et al.
(2022) focuses on the dual problem and proposes a first-order method that achieves the convergence
guarantee to a stationary point with additional approximation, and Bossens (2023) extends RCPG
to Lagrangian or adversarial updates for the dual problem of a different formulation. A simultaneous
work of ours is Sun et al. (2024), where they proposed a projected gradient descend style algorithm
that guarantees per-step improvement and constraints violation. However, these existing works do



RLJ | RLC 2024

not provide provable guarantees for an end-to-end framework of DRC-RL, which instead makes
relaxations for devising tractable objectives.

Beyond the distributional robustness we studied, a variety of relaxations quantifying robustness,
such as assuming a stochastic setting with uncertainty on the distribution of kernels (Queeney
& Benosman, 2024) or considering risk-averse constraints (Kim et al., 2024), are studied. Such
relaxation provides a more informative structure to avoid the minimax formulation, and is therefore
beyond the scope of this paper.

8 Limitations and Future Directions

This paper is initiated from the primal-dual framework upon mixed policies, and derives algorithmic
and theoretical results that hold independently for every DRC-RL problem. While we highlight these
results mainly presented in Section 4 and Section 5, we consider our framework immature and has
certain limitations. In specific, the use of mixed policies may be inefficient and has a large variance
under resource limitation. Any single policy inside the resulting mixed policies, on the other hand,
might not satisfy the constraints when executed consistently. Moreover, the intractability of greedy
policies indicates that the primal-dual paradigm might not fit with DRC-RL problems.

As per, we regard applying other methods, such as epi-graph methods, as a future direction to fully
solve DRC-RL problems. Another interesting direction is to study additional structures, as provided
by the fail-state assumption, to encompass both distributional robustness and constraint satisfaction
upon the proposed framework. Because of the fundamental role of iterative methods in RL, such
structures should be significant despite the context and may correspond to other findings in related
fields such as neuroscience.

9 Conclusion

In this paper, we present a primal-dual algorithmic framework for the distributionally robust con-
strained RL problem (DRC-RL). Our framework provides the first efficient provable solution for
R-contamination uncertainty sets. We additionally prove the intractability of greedy policies for
general uncertainty sets, which prevents the use of popular iterative methods unless the uncertainty
sets and additional assumptions maintain additional structures. In the case of R-contamination un-
certainty sets, a simple rule relating the discount factor and distributional robustness is discovered.
We view this paper as a stepping stone to explore the theoretical and algorithmic understanding of
distributional robustness and constraints in RL, and anticipate future research stemming from our
framework and results.
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A Proof for Section 3: DRC-RL with General Uncertainty Sets

A.1 Proof of Proposition 3.1

We assume πα,{πi}T
i=1

, π′
α′,{πi}T

i=1
∈ Conv(Π) are two mixed policies defined in Section 3.1 with

the same candidate deterministic policy set without loss of generality (Otherwise we could simply
combine two sets and set zero to new candidate policy for each categorical distribution). For brevity,
we use πα and πα′ to denote them.

First, by the definition of mixed policy in Section 3.1, Conv(Π) is indeed a convex hull that linear
combination of policies over c ∈ [0, 1] satisfies,

πcα+(1−c)α′ = cπα + (1− c)πα′ ∈ Conv(Π). (13)

Then we show that the robust value function is linear to mixed policy, with c ∈ [0, 1],

V
πcα+(1−c)α′

r =
∑

π

(cα(π) + (1− c)α′(π))V π
r (14)

= c
∑

π

α(π)V π
r + (1− c)

∑
π

α′(π)V π
r (15)

= cV πα + (1− c)V πα′ . (16)

where the first equality comes from the definition of the robust value function of a mixed policy in
Section 3.1.

Naturally, the robust value function for rewards of constraints V π
g is also linear to mixed policy.

Therefore, the constrained optimization problem (3) becomes convex, and hence the strong duality
holds with Slater’s condition (Boyd & Vandenberghe, 2004).

A.2 Proof of Proposition 3.2

First, as proved in A.1, Lagrangian L(π, λ) = V π
r − λT V π

g is linear to both policy π and multiplier
λ. (We are treating Π as its convex hull Conv(Π) now.)

When Online-Algorithm is chosen as a no-regret online learning algorithm with the negative
Lagrangian −L(π, λ) as loss (Kivinen & Warmuth, 1997; Zinkevich, 2003), we have∑

t

(−L)(πt, λt) ≥ max
λ

∑
t

(−L)(πt, λ)− o(T ) (17)

Then, recalling that πt is the Best-response (5) given current λt, we have

min
λ

L(π̂T , λ) = min
λ

1
T

∑
t

L(πt, λ) (18)

= −max
λ

1
T

∑
t

−L(πt, λ) (19)

(i)
≥ 1

T

∑
t

L(πt, λt)−
o(T )

T
(20)

(ii)
≥ 1

T

∑
t

L(π, λt)−
o(T )

T
, ∀π ∈ Π (21)

= L(π, λ̂T )− o(T )
T

, ∀π ∈ Π (22)

where the first and the last equalities come from the linearity of the Lagrangian w.r.t. the policy and
the Lagrange multiplier, and the definition of π̂T and λ̂T in meta algorithm 1; (i) holds by Eq.(17),
and (ii) arises from the fact that πt is the Best-response (5)
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Additionally, inserting the fact maxπ L(π, λ̂T ) ≥ L(π̂T , λ̂T ) ≥ minλ L(π̂T , λ) one has

max
π

L(π, λ̂T ) ≥ min
λ

L(π̂T , λ) ≥ max
π

L(π, λ̂T )− o(T )
T

. (23)

Finally, recalling that Lmax = maxπ L(π, λ̂T ) and Lmin = minλ L(π̂T , λ) in meta algorithm 1. The
duality gap Lmax −Lmin is bound to smaller than positive threshold ω. The exact convergence rate
of Algorithm 1 will depend on the choice of Online-Algorithm. For example, the algorithm will
terminate after O( 1

ω2 ) rounds if online algorithms with regret scaling as Ω(
√

T ) are chosen (such as
online gradient descent with regularizer).

A.3 Proof for Proposition 3.3

Through out this proof, we denote P o
π as the vector [P o

s,π(s)]⊤s∈S , and v1, v2 ∈ RS , s ∈ S.

Monotonicity. By the definition of T π , we have with v1 ≥ v2,

T πv1 − T πv2 = γ⟨P o
π , v1 − v2⟩ ≥ 0. (24)

Then for T ∗, we denote πs
1 := argmaxπ∈Π T πv1(s) and similar for πs

2, we then have for every state
s,

T ∗v1(s)− T ∗v2(s) = T πs
1

s v1(s)− T πs
2

s v2(s) ≥ T πs
1

s v1(s)− T πs
1

s v2(s) ≥ 0. (25)

The last inequality comes from the monotonicity of T π, which completes the proof.

Transition Invariance. From the definition of T π in (8), we have

T π(v1 + c1) = T πv1 + γ⟨P o
π , c1⟩ = T πv1 + γc1. (26)

Then similar for T ∗, we have,

T ∗(v1 + c1) = T ∗v1 + γ⟨P o
π , c1⟩ = T ∗v1 + γc1. (27)

Contraction. we first show the γ-contraction property of T π by its definition in (8),

|[T πv1](s)− [T πv2](s)| = |γ⟨P 0
s,π(s), v1 − v2⟩| ≤ γ∥v1 − v2∥∞. (28)

where the last inequality comes from the distribution nature of P 0
s,π(s).

Then for T ∗ and state s, we assume v1(s) ≥ v2(s) without losing generality,

|[T ∗v1](s)− [T ∗v2)](s)| = [T πs
1

s ]v1(s)− [T πs
2

s ]v2(s)
(i)
≤ [T πs

1
s v1](s)− [T πs

1
s v2](s) (29)

≤ |[T πs
1

s v1](s)− [T πs
1

s v2](s)| (30)
(ii)
≤ γ∥v1 − v2∥∞ (31)

where the first equality comes from the definitions of πs
1 and πs

2, inequality (i) comes from the
fact that [T πs

2
s ]v2(s) = [maxπ T πv2](s) ≥ [T πs

1
s v2](s), and inequality (ii) comes from the contraction

property of T π in (28).

Finally, We apply T π on our objective V π
r − λ⊤

t V π
g , which yields

[T π(V π
r − λ⊤

t V π
g )](s) = (r − λ⊤

t g)(s, π(s)) + γ⟨P o
s,π(s), V π

r − λ⊤
t V π

g )⟩ (32)

+ γ min
P ∈P
⟨Ps,π(s) − P o

s,π(s), V π
r ⟩ − γλ⊤

t min
P ∈P
⟨Ps,π(s) − P o

s,π(s), V π
g ⟩

= r(s, π(s)) + γ⟨P o
s,π(s), V π

r ⟩+ γ min
P ∈P
⟨Ps,π(s) − P o

s,π(s), V π
r ⟩ (33)
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− λ⊤
t

(
g(s, π(s)) + γ⟨P o

s,π(s), V π
g ⟩+ γ min

P ∈P
⟨Ps,π(s) − P o

s,π(s), V π
g )⟩

)
= r(s, π(s)) + γ min

P ∈P
⟨Ps,π(s), V π

r ⟩ (34)

− λ⊤
t

(
g(s, π(s)) + γ min

P ∈P
⟨Ps,π(s), V π

g )⟩
)

= [T π
r,robV π

r ](s)− λ⊤
t [T π

g,robV π
g ](s) (35)

= (V π
r − λ⊤

t V π
g )(s) (36)

where the first equality comes from the definition of consistency operator T π in (8), the second
equality is a simple rearrangement, the third equality comes from the fact that ⟨P o

s,π(s), V π
g ⟩ is

independent of P ∈ P, the fourth equality comes from the definition of robust consistency operator
in 2, and the last equality comes from the contraction property of robust consistency operator
(Iyengar, 2005).

Combine with the fact that operator T π is a γ-contraction, V π
r − λ⊤

t V π
g is the only stationary point

of T π, the proof is complete.

A.4 Proof for Theorem 3.5

A.4.1 Preliminary

To start with, we introduce two preliminary propositions from Scherrer et al. (2015) where Propo-
sition A.3 builds three relations, and Proposition A.1 is a direct application of these three relations.
Definition A.2 is used to simplify notation in proposition A.1.
Proposition A.1 (Lemma 2, Scherrer et al. (2015)). Consider approximate modified policy iteration
scheme with standard bellman operator T π

st .{
πk+1 = argmaxϵ′

k+1
π T π

st vk = Gϵ′
k+1vk

vk+1 = (T πk+1

st )mvk + ϵk+1
(37)

where πk+1 is the greedy policy with respect to vk with some error ϵ′
k+1, e.g. ∀π ∈ Π, T πk+1

st vk+ϵ′
k+1 ≥

T π
st vk.

Let v∗ denote the optimal value function, dk := v∗ − (T πk

st )mvk−1, sk := (T πk

st )mvk−1 − vπk and
bk := vk − T πk+1

st vk, then for k ≥ 1, we have,

bk ≤ (γPπk )mbk−1 + xk (38)

dk+1 ≤ γPπ∗dk + yk +
m−1∑
j=1

(γPπk+1)jbk (39)

sk = (γPπk )m(I − γPπk )−1bk−1 (40)

where xk := (I − γPπk )ϵk + ϵ′
k+1 and yk := −γPπ∗ϵk + ϵ′

k+1.
Definition A.2 (Γ-matrix (Scherrer et al., 2015)). For a positive integer n, we define Pn as the
smallest set of discounted transition kernels that are defined as (i) for any set of n policies {πi},
(γP o

π1)(γP o
π2) · · · (γP o

πn) ∈ Pn, where P o
π(s, s′) = P o

s,π(s)(s′). (ii) for any α ∈ (0, 1) and (P1, P2) ∈
Pn × Pn, αP1 + (1− α)P2 ∈ Pn. With slight abuse of notation, Γn is used to denote any element of
Pn.
Proposition A.3 (Lemma 4, Scherrer et al. (2015)). After k iterations of approximate modified
policy iteration scheme with standard bellman operator T π

st , the losses lk := v∗ − vπk satisfy

lk ≤ 2
k−1∑
i=1

∞∑
j=i

Γj |ϵk−i|+
k−1∑
i=0

∞∑
j=i

Γj |ϵ′
k−i|+ h(k) (41)

where h(k) := 2
∑∞

j=k Γj |d0| or h(k) := 2
∑∞

j=k Γj |b0|.
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A.4.2 Proof pipelne of Theorem 3.5

We first prove a technical result for our losses lk := vπt
− vπk that is similar to Proposition A.3.

Lemma A.4. Under assumption 3.4, after k iterations of scheme (9), our losses satisfy

lk ≤ 2
k−1∑
i=1

∞∑
j=i

Γj |ϵk−i|+
k−1∑
i=0

∞∑
j=i

Γj |ϵ′
k−i|+ h(k), (42)

where h(k) := 2
∑∞

j=k Γj |l0| or h(k) := 2
∑∞

j=k Γj |b0|, with b0 = T π1
v0 − v0 that is related to the

choice of the starting point.

Proof. Similar to the proofs in Scherrer et al. (2015) for Proposition A.3, we first derive three
relations that are identical to those in Proposition A.1, then apply these relations to bound our
losses lk := vπt

− vπk .

To start with, we define

bk := vk − T πk+1
vk, sk := (T πk

)mvk−1 − vπk , dk := vπt
− (T πk

)mvk−1. (43)

Bounding bk With the definitions of ϵk and ϵ′
k, and the property that

(T π)mv − (T π)mv′ = (γP o
π)m(v − v′), (44)

we have,

bk = vk − T πk

vk + T πk

vk − T πk+1
vk (45)

(i)
≤ vk − T πk

vk + ϵ′
k+1 (46)

= vk − ϵk − T πk

vk + P o
πk ϵk + ϵk − P o

πk ϵk + ϵ′
k+1 (47)

(ii)= vk − ϵk − T πk

(vk − ϵk) + (I − γP o
πk )ϵk + ϵ′

k+1 (48)

= vk − ϵk − T πk

(vk − ϵk) + xk, (49)

where xk := (I − γP o
πk )ϵk + ϵ′

k+1, inequality (i) comes from the definition of ϵ′
k+1 in (9), equality (ii)

comes from property (44).

bk ≤ vk − ϵk − T πk

(vk − ϵk) + xk (50)
(i)= (T πk

)mvk−1 − T πk

(T πk

)mvk−1 + xk (51)

= (T πk

)mvk−1 − (T πk

)m(T πk

vk−1) + xk (52)
(ii)
≤ (γP o

πk )m(vk−1 − T πk

vk−1) + xk (53)
= (γP o

πk )mbk−1 + xk, (54)

where equality (i) comes from the definition of ϵ in (9), and equality (ii) comes from property (44).

Bounding sk With the property that ∀v, vπk = (T πk )∞v, we have

sk = (T πk

)mvk−1 − (T πk

)∞vk−1 (55)
= (γP o

πk )m(I − γP o
πk )−1bk−1, (56)

where the last equality comes from property (44).
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Bounding dk Define yk := −γP o
πt

ϵk + ϵ′
k+1, then

dk+1 = vπt
− (T πk+1

)mvk (57)
(i)= T πtvπt

− T πtvk + T πtvk − T πk+1
vk + T πk+1

vk − (T πk+1
)mvk (58)

(i)
≤ γP o

πt
(vπt
− vk) + ϵ′

k+1 + T πk+1
vk − (T πk+1

)mvk (59)

= γP o
πt

(vπt
− vk) + γP o

πt
ϵk − γP o

πt
ϵk + ϵ′

k+1 + T πk+1
vk − (T πk+1

)mvk (60)

= γP o
πt

dk + yk + T πk+1
vk − (T πk+1

)mvk (61)

(iii)= γP o
πt

dk + yk +
m−1∑
j=1

(γP o
πk+1)jbk, (62)

where equality (i) comes from vπt
= T πtvπt

, inequality (ii) comes from T πtvπt
−T πtvk = γP o

πt
(vπt
−

vk) and the definition of ϵ′
k+1, and equality (iii) comes from iteratively applying property of (T π)jv−

(T π)jv′ = (γP o
π)j(v − v′).

After bounding all three elements, using the notation introduced in Definition A.2, we may rewrite
(56) as

sk = Γm
∞∑

j=0
Γjbk−1, (63)

And by induction from Eq.(54) and (62), we obtain

bk ≤
k∑

i=1
Γm(k−i)xi + Γmkb0, (64)

dk ≤
k−1∑
j=1

Γk−1−j(yj +
m−1∑
l=1

Γlbj) + Γkd0. (65)

Combine with the fact of lk = sk + dk, now we recover exactl the same expression of sk, bk, and
dk as in the proof of proposition A.3. All the rest are therefore standard as in theirs except for the
relation between b0 and d0,

b0 = v0 − T π1
v0 (66)

= v0 − vπt
+ T πtvπt

− π⊔v0 + π⊔v0 − T π1
v0 (67)

≤ (I − γP o
πt

)(−d0) + ϵ′
1, (68)

where the fact of ϵ0 = 0 is used and we again recover the same relation.

Finally we finish the proof of theorem 3.5 by noticing that Γn ≤ γn in Definition A.2. Therefore,
we have

lk ≤ 2
k−1∑
i=1

∞∑
j=i

Γj |ϵk−i|+
k−1∑
i=0

∞∑
j=i

Γj |ϵ′
k−i|+ h(k) (69)

≤ 2ϵ̄(γ − γk) + ϵ̄′(1− γk)
(1− γ)2 + O(γk) (70)

k→∞−−−−→ 2ϵ̄γ + ϵ̄′

(1− γ)2 . (71)
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B Derivation of Section 4 : DRC-RL with R-Contamination
Uncertainty Sets

There exist a variety class of operators of our proposed operator T π in (8), that keep properties as
in Proposition 3.3. We present one of them and upon which derive the exact consistency operator
(11) used for R-contamination uncertainty set in Section 4.

Formally, ∀λt ∈ R+, s ∈ S, v ∈ RS , we define a class of consistency operators [T π
1 v](s) := [T πv](s)−

γh⟨P o
s,π(s), v−V π

r +λ⊤
t V π

g ⟩ controlled by coefficient h ∈ [0, 1). We use P o
π to denote vector [P o

s,π(s)]⊤s∈S .
Proposition B.1. The consistency operator T π

1 satisfies the following :

(1) Monotonicity: let v1, v2 ∈ RS such that v1 ≥ v2, then T π
1 v1 ≥ T π

1 v2.

(2) Transition Invariance: for any c ∈ R, we have T π
1 (v + c1) = T π

1 v + γ(1− h)c1.

(3) Contraction: The operator T π
1 is a γ(1−h)-contraction. Further, V π

r −λ⊤
t V π

g is the unique
stationary point.

Proof. Monotonicity. By the definition of T π
1 , we have ∀v1, v2 ∈ RS such that v1 ≥ v2,

T π
1 v1 − T π

1 v2 = γ(1− h)⟨P o
π , v1 − v2⟩ ≥ 0. (72)

Transition Invariance. By the definition of T π
1 , we have ∀v1 ∈ RS , c ∈ R

T π
1 (v1 + c1) = T π

1 v1 + γ(1− h)⟨P o
π , c1⟩ = T π

1 v1 + γ(1− h)c1. (73)

Contraction. We first show that T π
1 is a γ(1 − h) contraction by its definition, that we have

∀v1, v2 ∈ RS , s ∈ S,

|[T π
1 v1](s)− [T π

1 v2](s)| = |γ(1− h)⟨P 0
s,π(s), v1 − v2⟩| ≤ γ(1− h)∥v1 − v2∥∞. (74)

Finally, we apply T π
1 on V π

r − λ⊤
t V π

g ,

[T π
1 (V π

r − λ⊤
t V π

g )](s) = [T π(V π
r − λ⊤

t V π
g )](s)− γh⟨P o

s,π(s), V π
r − λ⊤

t V π
g − V π

r + λ⊤
t V π

g ⟩ (75)

= [T π(V π
r − λ⊤

t V π
g )](s) (76)

= V π
r (s)− λ⊤

t V π
g (s), (77)

where the first equality comes from the definition of T π
1 , the last equality comes from the contraction

property of T π in Proposition 3.3.

By setting h = β and specifying the uncertainty set as R-contamination uncertainty set Ps,a =
{(1−β)P o

s,a +βq | q ∈ △(S)} with a scalar robust level β ∈ R, we have for T π
1 defined in Proposition

B.1 and s ∈ S, v ∈ RS ,

[T π
1 v](s) = [T πv](s)− γβ⟨P o

s,π(s), v − V π
r + λ⊤

t V π
g ⟩ (78)

(i)= (r − λ⊤
t g)(s, π(s)) + γ⟨P o

s,π(s), v⟩+ γ min
P ∈P
⟨Ps,π(s) − P o

s,π(s), V π
r ⟩ (79)

− γλ⊤
t min

P ∈P
⟨Ps,π(s) − P o

s,π(s), V π
g ⟩ − γβ⟨P o

s,π(s), v − V π
r + λ⊤

t V π
g ⟩

(ii)= (r − λ⊤
t g)(s, π(s)) + γ⟨P o

s,π(s), v⟩+ γ min
q∈∆(S)

⟨β(q − P o
s,π(s)), V π

r ⟩ (80)

− γλ⊤
t min

q∈∆(S)
⟨β(q − P o

s,π(s)), V π
g ⟩ − γβ⟨P o

s,π(s), v − V π
r + λ⊤

t V π
g ⟩

= (r − λ⊤
t g)(s, π(s)) + γ(1− β)⟨P o

s,π(s), v⟩+ γβ( min
q∈∆(S)

⟨q, V π
r ⟩ − λ⊤

t min
q∈∆(S)

⟨q, V π
g ⟩) (81)
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= (r − λ⊤
t g)(s, π(s)) + γ(1− β)⟨P o

s,π(s), v⟩+ γβ(min
s′

V π
r (s′)− λ⊤

t min
s′

V π
g (s′)). (82)

where equality (i) comes from the definition of consistency operator T π in (8), and equality (ii)
comes from the definition of R-contamination uncertainty set.

Now we have obtained the same consistency operator as in (11) that is derived from proposed
consistency operator T π in (8), so we use the same notation as T π in the main text for brevity sake
(and one can certainly proof everything in Section 3 as they mostly depend on these three properties,
but it is no need to do that as following).

In the following content of Section 4, we will further simplify to obtain a standard consistency
operator, thus the convergence result is standard from Scherrer et al. (2015), such as in Proposition
A.3.

C Proof of Section 5: On the Intractability of DRC-RL

C.1 Proof of Lemma 5.3

For brevity, we denote policy as π ∈ ∆(A)S ⊆ RA×S which includes both the class of stochastic and
deterministic policies. We therefore use π[s, a] to denote the probability of action a given state s,
and use π(s) to denote the whole probability simplex given state s.

When an operator is linear, by the definition of linearity, there exists a function f : R|S| → R|S||A|,
such that for every value function v ∈ R|S| and state s ∈ S,

max
π∈Π

[T πv](s) = max
π∈Π
⟨π, f(v)⟩s (83)

= max
π∈Π
⟨π[s, ·], f(v)[s, ·]⟩ (84)

= max
π(s)∈∆(A)

⟨π(s), f(v)[s, ·]⟩ (85)

= max
a

f(v)[s, a] (86)

The greedy policy can be set as g(v, a)s = f(v)[s, a], which completes the proof for the first part.

When an operator T π enables the greedy policy, by its definition, there exists a function g : R|S| ×
A → R|S| such that ∀v ∈ R|S|, s ∈ S, maxπ∈Π[T πv](s) = maxa∈A g(v, a)s. Therefore, when defining
the linear operator T π

linear := ⟨π(s), g(v, ·)⟩, we complete the proof by showing:

max
π∈Π

[T πv](s) = max
a∈A

g(v, a)s (87)

= max
π(s)∈∆(A)

⟨π(s), g(v, ·)⟩ (88)

= max
π∈Π
⟨π(s), g(v, ·)⟩ (89)

= max
π∈Π

[T π
linearv](s). (90)

C.2 Proof for Theorem 5.4

Throughout this proof, for convenience, we denote vπ := V π
r − λT

t V π
g for any policy π ∈ Π and any

λt.

To start with, we suppose that there exists a consistency operator denoted as T ′ that satisfies both
conditions in Theorem 5.4 for all policy π, namely, ∀s ∈ S, π1, π2 ∈ Π, we have:

|[T ′π1vπ1 ](s)− [T ′π2vπ2 ](s)| = |[T ′π1vπ1 ](s)− [T ′π1vπ2 ](s) + [T ′π1vπ2 ](s)− [T ′π2vπ2 ](s)| (91)
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(i)
≤ |[T ′π1vπ1 ](s)− [T ′π1vπ2 ](s)|+ |[T ′π1vπ2 ](s)− [T ′π2vπ2 ](s)| (92)

(ii)
≤ γ ∥vπ1 − vπ2∥∞ + | ⟨π1(s)− π2(s), f(vπ2)[s, ·]⟩ |, (93)

where inequality (i) uses the triangle inequality, inequality (ii) comes from the contraction property
in Proposition 5.4 and the linearity property defined in definition 5.2.

Moreover, as vπ is the stationary point of consistency operator T ′π, we arrive at an inequality that
is independent of any operator,

|vπ1(s)− vπ2(s)| = |[T ′π1vπ1 ](s)− [T ′π2vπ2 ](s)| (94)
≤ γ ∥vπ1 − vπ2∥∞ + | ⟨π1(s)− π2(s), f(vπ2)[s, ·]⟩ |, (95)

where the last inequality holds by applying (93).

For the rest of the proof, we will construct an example that contradicts with (95), which shows that
there is no such operator T ′ that satisfies two conditions introduced in Theorem 5.4.

Figure 2: A two states, two actions Markov decision process used in example C.1 : the left and the
right figures present the transition probabilities for actions a0 and a1.

Example C.1. Consider Markov decision process as in figure 2, where state space S = {s0, s1},
action space A = {a0, a1}, discount factor γ = 0.95. The transition kernel for state s0 and action a0
is parameterized by ξ that indicates the probability to state s1, i.e. Ps0,a0 = {[1 − ξ, ξ]|ξ ∈ [0.9, 1]}.
For other state action pairs, the only consequence is staye at the current state, i.e. Ps1,a0 = Ps1,a1 =
{[0, 1]},Ps0,a1 = {[1, 0]}.

We assume there is one additional constraint, and design the rewards r and g for the objective and
the constraint respectively,

rs,a =


1, if s = s0, a = a0

0, if s = s0, a = a1

1, if s = s1, a = a0

2, if s = s1, a = a1

gs,a =


1, if s = s0, a = a0

0, if s = s0, a = a1

0, if s = s1, a = a0

1, if s = s1, a = a1

(96)

The derived inequality (95) should hold for any choice of policies π1 and π2, we thus choose

π1(s) =
{

a0, if s = s0

a0, if s = s1
π2(s) =

{
a0, if s = s0

a1, if s = s1
(97)

The derived inequality (95) then becomes,

|vπ1(s0)− vπ2(s0)| ≤ γ ∥vπ1 − vπ2∥∞ + | ⟨π1(s0)− π2(s0), f(vπ2)[s0, ·]⟩ | (98)
= γ ∥vπ1 − vπ2∥∞ (99)

where the second equation comes from the fact that π1(s0)− π2(s0) = 0.

One can then calculate the robust value function V π1
r ,

V π1
r (s1) =

rs1,π1(s1)

1− γ
= 20 (100)
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V π1
r (s0) = [T π1

r,robV π1
r ](s0) (101)

= rs0,π1(s0) + γ min
P ∈Ps0,π1(s0)

⟨P, V π1
r ⟩ (102)

= 1 + γ min
ξ∈[0.9,1]

{(1− ξ)V π1
r (s0) + ξV π1

r (s1)} (103)

= 1 + γ min
ξ∈[0.9,1]

{(1− ξ)V π1
r (s0) + 20ξ} (104)

= 1 + γ

{
20, V π1

r (s0) ≥ 20
0.1V π1

r (s0) + 18, V π1
r (s0) < 20

(105)

where the first two equations in calculating V π1
r (s0) comes from the fact that V π1

r is the stationary
point of consistency operator T π1

r,rob in (2), and the last equation illustrates the solution of the inner
minimization problem in (104).

One can easily calculate both cases in (105) and find that V π1
r (s0) = 20. Similarly, we can calculate

other robust value functions,

V π1
g (s1) =

gs1,π1(s1)

1− γ
= 0 (106)

V π1
g (s0) = gs0,π1(s0) + γ min

ξ∈[0.9,1]
{(1− ξ)V π1

g (s0) + ξV π1
g (s1)} = 1 (107)

V π2
r (s1) =

rs1,π2(s1)

1− γ
= 40 (108)

V π2
r (s0) = rs0,π2(s0) + γ min

ξ∈[0.9,1]
{(1− ξ)V π2

r (s0) + ξV π2
r (s1)} (109)

= 0 + γ

{
40, V π1

r (s0) ≥ 40
0.1V π1

r (s0) + 36, V π1
r (s0) < 40

(110)

= 6840
181 ≈ 37.79 (111)

V π2
g (s1) =

gs1,π2(s1)

1− γ
= 20 (112)

V π2
g (s0) = gs0,π2(s0) + γ min

ξ∈[0.9,1]
{(1− ξ)V π2

g (s0) + ξV π2
g (s1)} = 20 (113)

Therefore, we have

vπ1 = V π1
r − λtV

π1
g =

[
20
20

]
− λt

[
1
0

]
=

[
20− λt

20

]
(114)

vπ2 = V π2
r − λtV

π2
g =

[ 6840
181
40

]
− λt

[
20
20

]
=

[ 6840
181 − 20λt

40− 20λt

]
(115)

Finally, for every λt ∈ [0.969, 2.209], we have

|vπ1(s0)− vπ2(s0)| = ∥vπ1 − vπ2∥∞ > γ ∥vπ1 − vπ2∥∞ (116)

which gives a clear contradiction to derived inequality (99).

Remark C.2. The simplified derived inequality (99) is true to the non-robust or non-constrained
counterparts of DRC-RL.
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D Additional Discussions

D.1 Discussions about Assumption 3.4

We start from the definitions of our consistency operator T π in (8) and the corresponding optimality
operator T ∗,

[T πv](s) = (r − λ⊤
t g)(s, π(s)) + γ⟨P o

s,π(s), v⟩+ γ min
P ∈P
⟨Ps,π(s) − P o

s,π(s), V π
r ⟩

− γλ⊤
t min

P ∈P
⟨Ps,π(s) − P o

s,π(s), V π
g ⟩

[T ∗v](s) = max
π∈Π

[T πv](s)

Given that consistency operator T π does not have linearity defined in definition 5.2, the optimality
operator T ∗ cannot take greedy policy as proved in lemma 5.3. Further, for a fixed value function
v and different states s and s′, there might not exist a single policy that can be returned by the
optimality operator T ∗ acting on both states, i.e. maximize T πv(s) and T πv(s′) at the same time.
Therefore, assumption 3.4 for the policy improvement step actually consists of two statements : (1)
There exists a policy that can be ϵ′-approximate to the optimality operator. (2) There exists a solver
that efficiently finds this policy.

In this discussion, we will introduce a modified operator that guarantees the existence
of a ϵ′-approximate policy to the optimality operator. Then further build the related
AMPI scheme to solve distributionally robust constrained RL.. To start with, we first
denote v(µ) := ⟨v, µ⟩ for any vector v ∈ RS . We then define the µ-consistency operator T π

µ : R→ R,

T π
µ v(µ) = [T πv](µ) (117)

and its corresponding µ-optimality operator is,

T ∗
µ v(µ) = max

π∈Π
T π

µ v(µ) = max
π∈Π
{[T πv](µ)} (118)

As µ-optimality operator now gives a scalar, for any value function v ∈ RS , there always exist a
policy πv such that T ∗

µ v(µ) = T πv
µ v(µ). And the existence of ϵ′-approximate policy in the policy

improvement step is automatically proved, and we further have the existence of optimal policy
π∗ = πt.
Proposition D.1. The µ-consistency operator T π

µ and the optimality operator T ∗ have the following
properties,

1. Monotonicity: let v1, v2 ∈ R|S| such that v1(µ) ≥ v2(µ), then T π
µ v1(µ) ≥ T π

µ v2(µ) and
T ∗

µ v1(µ) ≥ T ∗
µ v2(µ) .

2. Transition Invariance: for any c ∈ R, we have T π
µ (v + c1)(µ) = T π

µ v(µ) + γc1(µ) and
T ∗

µ (v + c1)(µ) = T ∗
µ v(µ) + γc1(µ)

3. Contraction: The operator T π
µ and T ∗

µ are γ-contractions, whose unique stationary points
are (V π

r − λ⊤
t V π

g )(µ) and (V πt
r − λ⊤

t V πt
g )(µ) respectively.

Proof. By the definition of the µ-consistency operator T π
µ v(µ) = [T πv](µ), it is straightforward that

the monotonicity, transition invariance, and contraction properties hold for µ-consistency operator.
And that the unique stationary point of µ-consistency operator is (V π

r − λ⊤
t V π

g )(µ).

We then consider µ-optimality operator T ∗
µ v(µ).

Monotonicity Let π1 satisfies T ∗
µ v1(µ) = T π1

µ v1(µ) and similar to π2, we have

T ∗
µ v1(µ)− T ∗

µ v2(µ) = max
π
T π

µ v1(µ)− T π2
µ v2(µ) ≥ T π2

µ v1(µ)− T π2
µ v2(µ) ≥ 0 (119)
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Transition Invariance

T ∗
µ (v1 + c1)(µ) = max

π
T π

µ (v1 + c1)(µ) = max
π
T π

µ v1(µ) + γc1(µ) (120)

Contraction We first assume T ∗
µ v1(µ) > T ∗

µ v2(µ) without loss of generality,

|T ∗
µ v1(µ)− T ∗

µ v2(µ)| = T π1
µ v1(µ)−max

π
T π

µ v2(µ) ≤ T π1
µ v1(µ)− T π1

µ v2(µ) ≤ γ|v1(µ)− v2(µ)| (121)

Then as (V πt
r − λ⊤

t V πt
g )(µ) is the unique stationary point of T πt

µ , we have (V πt
r − λ⊤

t V πt
g )(µ) ≤

T π∗

µ (V πt
r − λ⊤

t V πt
g )(µ) ≤ (V π∗

r − λ⊤
t V π∗

g )(µ) where π∗ is the stationary policy of T π∗

µ .

At the same time, by the definition of πt, we have,

(V πt
r − λ⊤

t V πt
g )(µ) ≥ (V π∗

r − λ⊤
t V π∗

g )(µ) (122)

Therefore, (V πt
r − λ⊤

t V πt
g )(µ) is the unique stationary point of T π∗

µ .

Now consider the related AMPI scheme, with which the assumption 3.4 only assumes the availability
of approximate solvers, {

πk+1 = argmaxϵ′
k+1,µ

π T π
µ vk(µ)

vk+1 = (T πk+1)mvk + ϵk+1
(123)

Unlike AMPI scheme (9), the error for policy improvement step ϵ′
µ ∈ R is a scalar that guarantees

maxπ T π
µ vk(µ) ≤ T πk+1

µ vk(µ) + ϵ′
k+1,µ. We then define the non-negative scalar loss lk,µ = vπt

(µ)−
vπk (µ) and finally obtain its absolute error bounds.
Theorem D.2. Under assumption 3.4, after k iterations of scheme (123), the losses satisfy

|lk,µ| ≤ 2
k−1∑
i=1

∞∑
j=i

Γj |ϵk−i(µ)|+
k−1∑
i=0

∞∑
j=i

Γj |ϵ′
k−i,µ|+ h(k) (124)

where h(k) := 2
∑∞

j=k Γj |l0,µ| or h(k) := 2
∑∞

j=k Γj |b0,µ|, with b0,µ = (T π1
v0 − v0)(µ) that is related

to the choice of the starting point.

Proof. Given the relation of T π
µ v(µ) = [T πv](µ) and the properties in proposition D.1, one can

define bk,µ = bk(µ) and similar for sk,µ and dk,µ. Similar to proof for theorem 3.5, we have

bk,µ ≤
k∑

i=1
Γm(k−i)xi(µ) + Γmkb0,µ (125)

dk,µ ≤
k−1∑
j=1

Γk−1−j(yj(µ) +
m−1∑
l=1

Γlbj,µ) + Γkd0,µ (126)

sk,µ = Γm
∞∑

j=0
Γjbk−1,µ (127)

and the relation between b0,µ and d0,µ,

b0,µ ≤ (I − γP o
πt

)(−d0,µ) + ϵ′
1,µ (128)

Then follow with the proof in proposition A.3, we complete by noticing lk,µ is non-negative given
the definition of Best-responseπt.
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Algorithm 2 DRC-RL with Contamination Set
Input : Dataset D = {xi, ai, x′

i, ri, gi}n
i=1. Online algorithm parameters: ℓ1 norm bound B, learning

rate η. Robust level β. Initial discounted horizon γ0.

1: Initialize λ1 = ( B
m+1 , . . . , B

m+1 ) ∈ Rm+1

2: Initialize γ = (1− β)γ0
3: for each round t do do
4: Learn πt ← FQI(r − λ⊤

t g)
5: Evaluate R̂(πt)← FQE(πt, r), Ĝ(πt)← FQE(πt, g)
6: π̂t ← 1

t

∑t
t′=1 πt′ , λ̂t ← 1

t

∑t
t′=1 λt′

7: R̂(π̂t)← 1
t

∑t
t′=1 R̂(πt′)

8: Ĝ(π̂t)← 1
t

∑t
t′=1 Ĝ(πt′)

9: Learn π̃ ← FQI(r − λ̂⊤
t g)

10: Evaluate R̂(π̃)← FQE(π̃, r), Ĝ(π̃)FQE(π̃, g)

11: L̂max = R̂(π̃)− λ̂⊤
t

[
(Ĝ(π̃)− τ)⊤, 0

]⊤

12: L̂min = min
λ,∥λ∥1=B

(
R̂(π̂t)− λ̂⊤

t [(Ĝ(π̂t)− τ)⊤, 0]⊤
)

13: if L̂max − L̂min ≤ ω then
14: return π̂t

15: end if
16: Set zt ←

[
(τ − Ĝ(πt))⊤, 0

]⊤
∈ Rm+1

17: λt+1[i]← B λt[i]e−ηzt[i]∑
j

λt[j]e−ηzt[j] ∀i

18: end for

D.2 An Instantiation of the Solution with Contamination Set

In this section, we give a specific instantiation for our solution to distributionally robust constrained
RL (DRC-RL) with R-contamination uncertainty sets. In short, as our solution simplified to the
non-robust counterpart of DRC-RL with asmaller discount factor, we use the same subroutines as
in Le et al. (2019) and get the theoretical results with generalization needs.

In specific, Best-response is instatiated with fitted Q iteration (FQI) (Ernst et al., 2005),
Online-Algorithm is chosen as exponentiated gradient (EG) (Kivinen & Warmuth, 1997). The
EG algorithm requires bounded λ, we thus force ∥λ∥1 ≤ B. When evaluating Lagrangian, e.g. Lmax
and Lmin in meta algorithm 1, fitted Q evaluation (FQE) (Le et al., 2019) is used. We represent the
resulting instantiation in algorithm 2, which has its true performance that could be arbitrarily close
to the optimal policy for DRC-RL.
Proposition D.3 (Theorem 4.4, Le et al. (2019)). Let π∗ be the optimal policy to (3). Denote
V̄ = R̄ + BḠ. Let K be the number of iterations of FQE and FQI, π̂ be the policy returned by
algorithm 2, with termination threshold ω and robust level β. For ϵ > 0 and δ ∈ (0, 1), when
n = O( V̄ 4

ϵ2 (log K(m+1)
δ + dimF log V̄ 2

ϵ2 + log dimF )), we have with probability at least 1− δ:

V π̂
r (µ) ≥ V π∗

r (µ)− ω − (4 + B)(1− β)γ
(1− (1− β)γ)3 (

√
βµϵ + 2((1− β)γ)K/2V̄ ), (129)

and
V π̂

g (µ) ≥ τ − 2 V̄ + ω

B
− ((1− β)γ)1/2

(1− (1− β)γ)3/2 (
√

βµϵ + 2((1− β)γ)K/2V̄

(1− (1− β)γ)1/2 ) (130)

where dimF is the pseudo-dimension (Hastie et al., 2009) for function approximation class F used in
FQI and FQE , βµ is the concentration coefficient of future state-action distribution (Munos, 2007;
Le et al., 2019).

Proof. The proof is standard as in Le et al. (2019) up to a different discount factor.
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E Experiments

In this section, we illustrate the detailed setting of our verification for a solution with R-
contamination uncertainty set as in Section 4. Notably, the resulting operator (12) for Best-
response subroutine coincides with the standard consistency operator, which is used for Best-
response subroutine in Constrained RL (Le et al., 2019), up to a discount factor difference. We
thus focus on the joint constrained-robustness comparison as our target, and refer to constrained
RL literature (Miryoosefi et al., 2019; Le et al., 2019) for broader comparisons.

Algorithm Design. We adopt the same choices of Best-response and Online-
Algorithm with a shortened discount factor in subroutines as in Le et al. (2019). In specific,
the Best-response algorithm is instantiated with Fitted Q Iteration (FQI) (Ernst et al., 2005),
a model-free off-policy learning approach on the well-collected dataset from Le et al. (2019) with
modifications on constraints. And we use multi-layered CNNs. The Online-Algorithm is chosen
as Exponentiated Gradient (EG) algorithm (Kivinen & Warmuth, 1997), a variant of online mirror
descent. The EG algorithm requires bounded λ, we thus force ∥λ∥1 ≤ B which has minor harm on
the theoretical analysis as shown in proposition D.3. To meet the requirement of proposition 3.2,
we use the simulator to precisely evaluate value functions of specific policies and Lagrangians, as
shown in Algorithm 2. We set the initial position of our car as fixed, i.e. µ = {s0}, for the accuracy
of all the evaluations.

E.1 Car Racing

Figure 3: Car Racing environment

The environment is chosen as the car racing environment, a high-dimensional domain from Gym-
nasium (Towers et al., 2023), as shown in figure 3. This environment is a racetrack, where each
state s ∈ S is a 96 × 96 × 3 tensor of raw pixels. Given each state, the agent has 12 actions
a ∈ A = {(i, j, k)|i ∈ {−1, 0, 1}, j ∈ {0, 1}, k ∈ {0, .2}}, corresponding to steering angle, amount of
gas applied and amount of brake applied, respectively. In each episode, the goal is to traverse over
95% of the track, measured by the number of tiles which amount to 281 tiles in total. The agent
receives a reward of 1000

281 for passing each single tile and no reward if off-track. A small positive cost
of .1 applies at every time step with a maximum horizon of 1000. We further utilize the popular
frame-stacking option that is common in practice in online RL for Atari and video games.

We describe the two constraints we studied as slow driving and edge driving. In slow driving
constraint, the agent receives a reward g0(s, a) = 1 if a contains braking action and 0 otherwise.
In edge driving, the agent receives its normalized Euclidean distance of the closest point between
the track and the agent from the lane center as its reward g1(s, a) ∈ [0, 10]. Both constraints may
intervene with the primary goal of track traversing. Let Nt be the number of tiles that are traversed
by the agent, then the distributionally robust constrained reinforcement learning problem is :

max
π∈Π

min
K∈⊗t≥0P

EK[
∞∑

t=0
γt(1000

281 (Nt+1 −Nt)− .1)|s0 = s, π] (131)
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s.t. min
K∈⊗t≥0P

EK[
∞∑

t=0
γtI(at ∈ Abraking)|s0 = s, π] ≥ τ0

min
K∈⊗t≥0P

EK[
∞∑

t=0
γt 10d(st)

dmax
|s0 = s, π] ≥ τ1.

We finally set the thresholds τ = [τ0, τ1] = [2, 4] being close to the constraints satisfaction of
baseline (γ = 0.95), such that the slow driving constraint is satisfied and the edge driving constraint
is violated.

E.2 Full Results

In figure E.2, the full results of our car racing experiments are presented.

(a) Shift of Braking Magnitude

(b) Shift of Steering Angle

(c) Shift of Power

(d) Shift of Inertia of Wheel

Figure 4: Full results with Four different shifts: Higher is better, Left two are constraints and the
right one is the objective. The bar graphs of constraints satisfaction are directly produced from
these results.


