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Abstract

For many sequential decision making problems, planning is often necessary to find
solutions. However, for domains such as those encountered in robotics, the transi-
tion function, also known as the world model, is often unknown. While model-based
reinforcement learning methods learn world models that can then be used for plan-
ning, such approaches are limited by errors that accumulate when the model is
applied across many timesteps as well as the inability to re-identify states dur-
ing planning. To solve these problems, we introduce DeepCubeAI, an algorithm
that learns a world model that represents states in a discrete latent space, uses
reinforcement learning to learn a heuristic function that generalizes over start and
goal states using this learned model, and combines the learned model and learned
heuristic function with heuristic search to solve problems. Since the latent space is
discrete, we can prevent the accumulation of small errors by rounding and we can
re-identify states by simply comparing two binary vectors. In our experiments on
a pixel representation of the Rubik’s cube, Sokoban, IceSlider, and DigitJump, we
find that DeepCubeAI is able to apply the model for thousands of steps without ac-
cumulating any error. Furthermore, DeepCubeAI solves over 99% of test instances
in all domains, generalizes across goal states, and significantly outperforms a greedy
policy that does not plan with the learned world model.

1 Introduction

Planning requires a state-transition function, also known as a world model, that can accurately map
states and actions to next states. While it is often convenient to manually construct a world model
for environments with symbolic representations, this approach becomes impractical for environments
with sub-symbolic representations, such as pixels. On the other hand, using machine learning
techniques to learn a model from observed transitions offers the promise of a domain-independent
approach to model construction. Reinforcement learning can then be used with these learned models
to learn a policy or heuristic function without needing to collect any additional real-world data.
Furthermore, at test time, the learned model can be used with search to improve performance.
However, there are two major hindrances to this approach: 1) many learned models suffer from model
degradation, thus rendering them ineffective for long-horizon planning; 2) many learned models do
not have the ability to re-identify states during search, resulting in loops in the search-tree and,
thus, inefficient planning.

Model degradation happens when small errors in the model’s prediction accumulate over timesteps,
resulting in decreasingly reliable predictions over long horizons. Model degradation has been ob-
served in domains such as the Atari Learning Environment (Oh et al., 2015), Sokoban (Racanière
et al., 2017), and robot manipulation tasks (Finn et al., 2016). Since this limits the usage of learned
models to short horizon tasks, if such a learned model is used to learn a heuristic function, the agent
will be limited to exploring states close to states observed in the real-world, which can lead to poor
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generalization. While this can be remedied by more real-world exploration, real-world exploration
is often many times more time-consuming than using a learned model that simulates the real-world.
When planning with a model that degrades, only states that are relatively close to the starting state
will be able to be considered. This can result in poor plans and the need for frequent re-planning
(Tian et al., 2021). State re-identification is the ability to know when two latent embeddings rep-
resent the same state. This is crucial to planning because, without state re-identification, the same
state will be visited multiple times during the search process. In the worst case, this leads to an
exponential increase in computation time and memory as the depth of the search tree increases.

To address these problems, we will learn a mapping from states to a discrete latent space and learn a
model that captures state transitions in this discrete latent space. This will allow us to combat model
degradation because errors that are less than 0.5 can be readily fixed by rounding. This will allow
the model to be used across thousands of timesteps without accumulating any errors. Furthermore,
this discrete representation makes state re-identification a simple comparison between two binary
vectors. Once the model is learned, a heuristic function represented by a deep neural network (DNN)
(Schmidhuber, 2015), namely a deep Q-network (DQN) (Mnih et al., 2015), will be learned using
Q-learning (Watkins & Dayan, 1992; Sutton & Barto, 2018). Since the goals that will be specified
at test time are not assumed to be known beforehand, the heuristic function will be trained with a
method inspired by hindsight experience replay (Andrychowicz et al., 2017) to allow it to generalize
over goals. This results in a domain-independent algorithm for training domain-specific heuristic
functions that generalize across problem instances. This heuristic function will then be used with
Q* search (Agostinelli et al., 2024b), a variant of A* search (Hart et al., 1968) for DQNs, to solve
problems. Since this method builds on the DeepCubeA algorithm (Agostinelli et al., 2019), which
combines deep reinforcement learning and search to solve classical planning problems, we will call
our method DeepCubeA-Imagination (DeepCubeAI), where imagination is in reference to the ability
to use a learned model to “imagine” future scenarios (Racanière et al., 2017).

2 Related Work

Model-based reinforcement learning (RL) methods seek to leverage learned models to reduce the
amount of real-world training data needed to learn a policy or value function as well as to do
policy improvement at test time. One of the earliest instances of this is the Dyna architecture
(Sutton, 1991). The Dyna architecture approach, which is similar to many approaches today, is to
use observed transitions to train a model that can be subsequently used for learning and planning.
Although strong results were demonstrated in the tabular setting, reliable results in large state spaces
that cannot be represented by tables were not obtained and remain elusive to this day. An example
of a modern model-based RL approach is Model-Based RL with Offline Learned Distance (MBOLD)
(Tian et al., 2021). MBOLD presents an approach for using offline data to train a model to predict
the pixels of the next state. It uses this offline data and model to train a heuristic function to
estimate the cost-to-go. However, the model operates in a continuous latent space and accumulates
error. Therefore, it is limited in how training data for the heuristic function is generated, cannot
plan until the goal is reached, and does not re-identify states.

Work conducted by Bagatella et al. (2021) introduces a method named Planning from Pixels through
Graph Search (PPGS), which learns to represent the states in a continuous latent space. State re-
identification is done by comparing the distance between two vectors and setting a threshold for
re-identification. By leveraging state re-identification, they create a latent graph and deploy graph
search algorithms to solve classical planning problems. This architecture incorporates an encoder,
a forward model, and an inverse model, the latter of which is employed to ensure the latent states
contain relevant information that the model will need to use. Subsequently, they introduce two
new environments, IceSlider and DigitJump, with an underlying combinatorial structure in which
they verify the superior performance of PPGS in comparison to model-free methods, such as PPO
(Schulman et al., 2017). However, the learned model accumulates errors and requires re-planning
when the predicted latent states do not match what is observed. Furthermore, PPGS does not learn
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a heuristic function, so it relies on breadth-first search to solve problems, which will not scale to
more complex problems.

DreamerV3 (Hafner et al., 2023) uses a Recurrent State-Space Model (RSSM) (Hafner et al., 2019)
to model states in a discrete latent space. They use this model and actor-critic methods to train a
policy function. DreamerV3 is able to collect diamonds in Minecraft from scratch without human
data. However, DreamerV3 only uses the learned model for training and not for planning at test
time; as a result, it has not shown the ability to plan until a goal is reached or to re-identify states.

Instead of learning black-box models that operates in a latent space that is not readily understood
by humans, research has been done on learning models that can be explicitly represented in Planning
Domain Definition Language (PDDL) format (Asai & Fukunaga, 2018; Asai et al., 2022). Given
such a representation, domain-independent planners can be employed to solve problems. However,
these domain-independent planners may often fail when solving problems such as the Rubik’s cube
(Muppasani et al., 2023; Agostinelli et al., 2024a). Furthermore, since learning a PDDL model from
data is not always feasible, a learned black-box model and domain-independent heuristics that work
with black-box models, such as the goal-count heuristic, may have to be used.

3 Preliminaries

In this work, we are designing an algorithm capable of learning a discrete world model in determin-
istic, fully-observable domains. A domain, D, can be represented as a deterministic un-discounted
Markov decision process (MDP) (Puterman, 2014), which is a tuple < S, A, T, G >, where S is the
set of all states, A is the set of all actions, and T is the state-transition function that maps states
and actions to next states, and G, the transition cost function that maps states, actions, and next
states to a transition cost. It can also be represented as a weighted directed graph (Pohl, 1970)
whose nodes represent states, edges represent transition between states, and edge weights represent
transition costs. Goals correspond to a set of states that are considered goal states. Given a start
state, the objective is to then find a sequence of actions that transforms the start state into a goal
state while attempting to minimize the path cost, which is the sum of transition costs. The state-
transition function and the transition cost function comprise the world model. When the transition
costs are uniform, then learning a model is simplified to just learning the state transition function.

4 Methods

4.1 Learning a Discrete World Model
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Figure 1: Overview for training the au-
toencoder and discrete world model.

We seek to learn a model, m, that represents the state-
transition function, T , in some latent space. In this set-
ting, we assume that all transition costs are one. Similar
to Tian et al. (2021), we will learn a model from offline
data collected from random exploration. This dataset will
contain a set of tuples, (s, a, s′), of states, actions, and
next states. An enconder will be trained to project a given
state to a state in a latent space. The encoder will use a
logistic function at its output layer which will be rounded
to be either 0 or 1. A straight-through gradient estimator
(Bengio et al., 2013) will be used during gradient descent
to account for the fact that the derivative of a rounding
function with respect to its input is zero. A decoder will
then map the latent space back to the state space. A mean
squared error will be used as the reconstruction error to
encourage the output of the decoder to be as close to the input of the encoder as possible. This
ensures that the encoding captures what is present in the state. The reconstruction error is shown



RLJ | RLC 2024

in Equation 1 where N is the batch size, ŝ is the output of the decoder, and θ are the parameters of
the autoencoder and model.

Lr(θ) = 1
N

N∑
i=1

1
2 ||si − ŝi||22 + 1

2 ||s′
i − ŝ′

i||
2
2 (1)

Simultaneously, a model will be trained to map latent states and actions to next latent states. A
loss will be used to encourage the output of the model and the output of the encoder to be as
close to each other as possible. In our experiments, we found that the best way to train the model
together with the autoencoder was to encourage the output of the model to match the output of
the encoder while simultaneously encouraging the output of the encoder to match the output of
the model. However, we only round the output of the model when encouraging the output of the
encoder to match the output of the model and the output of the encoder is always rounded. This is
shown below in Equation 2, where r() is the rounding function that uses a straight-through estimator
during gradient descent and .detach() removes the tensor from the computation graph.
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In our experiments, we observed that first training the autoencoder, then the model, resulted in an
imperfect model, meaning that it was not able to predict the next latent state with 100% accuracy.
Therefore, we saw the need to train the autoencoder and model together to ensure that the param-
eters of the autoencoder are encouraged to learn a representation that the model can also learn.
However, the loss functions in Equation 1 and Equation 2 can conflict with one another because Lr

does not consider the ability of the model to predict the latent state and Lm does not consider the
reconstruction error. Therefore, we use a weight ω to first weight the Lr loss higher than Lm and
gradually adjust ω to be 0.5 to weight them equally. The loss is shown in Equation 3.

L(θ) = (1 − ω)Lr(θ) + ωLm(θ) (3)

The training process is summarized in Figure 1. After training, every time the model is applied, a
rounding operation is applied to its output to correct errors and prevent error accumulation.

4.2 Learning a Heuristic Function

Given a trained model and offline data, training data consisting of pairs of start and goal states
can then be generated to train a heuristic function that generalizes over both start and goal states.
For each training example, a real-world state is sampled from the offline data. The encoder is then
used to obtain the corresponding latent state. A start state is then obtained by starting from the
sampled latent state and using the model to randomly take ts steps in the latent space, where ts is
uniform randomly distributed between 0 and Ts. A goal state is then obtained by starting from the
start state and taking tg steps, where tg is randomly distributed between 0 and Tg. From this data,
a DQN is trained with reinforcement learning to map start states and goal states to the cost-to-go
of every action.

A DQN is a neural network that maps states to a vector of size |A|, where each element at index
a represents the expected cost-to-go when starting in a given state and taking action a, denoted as
Q(s, a). In the un-discounted deterministic setting, the estimate of Q(s, a) is iteratively updated to
be G(s, a, s′) + mina′ Q(s′, a′). However, since Q is represented as a DQN with parameters ϕ, qϕ,
bootstrapping from itself will lead to problems due to the non-stationary target. To address this,
following previous work (Mnih et al., 2015), a target network with parameters ϕ− is maintained
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and periodically updated to be ϕ during training. The loss function used is L(ϕ) = (G(s, a, s′) +
mina′ qϕ−(s′, a′, sg) − qϕ(s, a, sg))2, where sg is the goal state.

To select an action to update for Q-learning, we prioritize more promising actions over less promising
actions because, in many environments, the majority of actions in a given state are not on a shortest
path, resulting in bias. Therefore, we select actions according to a Boltzmann distribution where
each action a is selected with probability according to Equation 4, where τ is the temperature.

e(−qϕ(s,a,sg)/τ)∑|A|
a′=1 e(−qϕ(s,a′,sg)/τ)

(4)

4.3 Planning with a Learned Model and Learned Heuristic Function

Given a learned model and heuristic function, planning can be done in the form of state-space
search. While the DQN can be used with A* search by setting the heuristic function, h(s, sg), to
mina′ qϕ(s, a′, sg), A* search requires that the model be used |A| times per iteration. Given that
the model is a computationally expensive DNN, we would like to minimize the number of times we
use it. Therefore, we instead use Q* search (Agostinelli et al., 2024b), a modification of A* search
that takes advantage of the fact that Q* search can compute the heuristic values for all next states
with a single pass through a DQN. In practice, Q* search has been shown to perform similar to
A* search while being orders of magnitude faster and more memory efficient. To take advantage of
GPU parallelism and speed up search, we also use a batched and weighted (Pohl, 1970) version of
Q* search as DeepCubeA did with A* search.

5 Experiments

We test our approach on the Rubik’s cube, Sokoban, IceSlider, and DigitJump. For the Rubik’s
cube, states are represented by two 32 by 32 RGB images, where each image shows three faces of the
Rubik’s cube. For Sokoban, states are represented by one 40 by 40 RGB image showing the agent,
walls, and boxes. IceSlider and DigitJump (introduced by Bagatella et al. (2021)), are represented
as one 64 by 64 RGB image representing a two dimensional 8 by 8 grid. In IceSlider, the agent
must slide across the ice, where only a rock or environment boundary stops its movement, to reach a
given cell. In our work, we indicate the goal cell using the agent as an indicator instead of a purple
square, as used in previous work. In DigitJump, the agent starts from the top left corner, and the
goal is to reach the bottom right corner. The number of cells an agent will jump in a given cell is
denoted by the MNIST (LeCun et al., 1998) digit in the given cell, where digits range from 1 to 6.
Examples of states are shown in Figure 3.

In our experiments, we generate an offline dataset by observing transitions across episodes where,
in each episode, the agent takes random actions1. For the Rubik’s cube and Sokoban, we generate
300,000 transitions across 10,000 episodes, with 30 random actions taken in each episode. For
IceSlider and DigitJump, we generate offline data in a similar manner to that of Bagatella et al.
(2021). Specifically, we generate 400,000 transitions across 20,000 episodes, with 20 random actions
taken in each episode. For the Rubik’s cube, starting states for each episode are obtained by
randomly scrambling the goal state between 100 and 200 times. For Sokoban, starting states for
each episode are randomly sampled from training examples provided by Guez et al. (2018). For
IceSlider and DigitJump, starting states for each episode are obtained from the same 1,000 levels
used by Bagatella et al. (2021). For the Rubik’s cube and Sokoban, 90% of the generated data is
used for training the model and 10% is used for validation. For IceSlider and DigitJump, validation
data is generated by repeating the procedure with 20 random actions across 5,000 episodes, using
another set of 1,000 distinct levels, resulting in a total of 100,000 transitions. During training and
search, two latent states are considered equal if 100% of the bits in the latent state are equal.

1Future work could use intrinsic motivation (Barto et al., 2004) to encourage the exploration of diverse states.
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For the Rubik’s cube, the autoencoder architecture is a fully connected neural network where both
the encoder and decoder have one hidden layer and an encoding dimension of size 400. The encoder
uses a logistic activation function while the decoder uses a linear activation function. Though the
RGB values are bounded between 0 and 1, we found that a linear layer in the last layer of the decoder
performed better. The discrete world model is a fully connected neural network with four layers
of size 500, 500, 500, and 400. It uses batch normalization in all layers, excluding the last layer.
Additionally, rectified linear units (ReLU) (Glorot et al., 2011) are utilized in all layers, except for
the last layer, which uses a logistic activation function. The model uses a one-hot representation for
the action which is concatenated with the latent state.

For Sokoban, the autoencoder architecture uses a convolutional encoder and decoder, both with two
layers with 16 channels, a kernel size of 2, a stride of 2, and batch normalization in the first layer.
The decoder uses an additional convolutional layer with a kernel size of 1 and a linear activation
function. The discrete world model is a convolutional neural network with three layers with channel
sizes of 32, 32, and 16, all with kernel sizes of 3, strides of 1, batch normalization in the first two
layers, rectified linear units in the first two layers, and a logistic activation function in the last layer.
The model represents the actions with a one-hot representation that is extended into a tensor with
a length and width the size of the latent representation and number of channels that equals the
number of actions. This is then concatenated with the latent state along the channel dimension.

For IceSlider, the autoencoder architecture is similar to that of Sokoban, utilizing a two-layer con-
volutional encoder with 32 channels in the first layer and 3 channels in the last layer. The decoder
utilizes transposed convolutional layers with 32 channels. The convolutional layers have kernel sizes
of 4 and 2, and strides of 4 and 2, respectively. Batch normalization and activation functions are the
same as Sokoban. The decoder also includes an additional layer with a linear activation function.
In the discrete world model, we follow Sokoban’s concatenation process. Initially, a convolutional
layer with a kernel size of 1 and a stride of 1, processes the input. This is then given to four residual
blocks, maintaining the same number of channels as the input. The output from the last residual
block is passed to a convolutional layer with a kernel size of 1 and a stride of 1. Finally, an ad-
ditional layer with a kernel size of 1 serves as the output layer. Batch normalization and rectified
linear units are applied in all layers except for the first layer, which uses layer normalization, and
the last layer, which uses a logistic activation function without normalization. DigitJump shares the
same architectural layers as IceSlider, with the encoder having an output of 12 channels, and the
residual blocks utilizing 47 channels.

All models are trained with gradient descent with the ADAM optimizer (Kingma & Ba, 2014) with
a learning rate of 0.001, a decay rate of 0.9999993, and a batch size of 100. ω is initialized to
0.0001 and is gradually shifted to 0.5 by iteration 120,000. The neural network is then trained until
iteration 180,000 and the learning rate is reduced by a factor of 10 every 20,000 iterations.

Q-learning is then used to train the heuristic function. To generate start and goal pairs, both Ts

and Tg are set to be 30 for the Rubik’s cube and Sokoban, and 20 for IceSlider and DigitJump.
The heuristic function is trained with Q-learning with the ADAM optimizer, with a learning rate
of 0.001, a decay rate of 0.9999993, and a batch size of 10,000 for 1 million iterations. Actions are
selected according to Equation 4 with τ set to 3.0. To better explore the state space during learning,
new states are also generated by behaving greedily with respect to the DQN for up to 30 steps for
the Rubik’s cube and Sokoban, and for up to 20 steps for IceSlider and DigitJump. The DQN is
tested with a greedy policy every 5,000 iterations and the target network’s parameters are updated
if the greedy policy has improved.

The respective batch size and weight on the path cost for Q* is 10,000 and 0.6 for the Rubik’s cube,
100 and 0.8 for Sokoban, and 1 and 0.7 for IceSlider and DigitJump. To specify a goal state, an
image of the goal is given, encoded to the latent space, and given to the heuristic function. For
Sokoban, goals are specified by an image of where the boxes should be with the agent randomly
selected to be placed next to a box. We will discuss more robust goal specification in the Future
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Work Section. We compare DeepCubeAI to DeepCubeA, as well as a domain-specific PDB that
leverages group-theory knowledge (Rokicki, 2016; Rokicki et al., 2014).

5.1 Model Performance
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Figure 2: Mean squared reconstruction error as
a function of timestep. For the Rubik’s cube,
the continuous model accumulates error over time
while, for Sokoban, IceSlider, and DigitJump, nei-
ther model accumulates error.

To determine how well the model performs, we
test it on 10 sequences of 10,000 steps where ac-
tions are selected randomly. We obtain ground-
truth images for each step as well as take steps in
the latent space and obtain reconstructions from
the decoder. Furthermore, we compare to a con-
tinuous model that has the same architecture
and training procedure as the discrete model,
but without the discretization. Results from
this comparison are shown in Figure 2. The
figure shows that, while the continuous model
does not accumulate errors for Sokoban, IceS-
lider and DigitJump, it accumulates a signifi-
cant amount of error for the Rubik’s cube. Fig-
ure 3a shows an example for the Rubik’s cube
where the continuous model makes significant
errors but the discrete model does not. Figures
3b, 3c, and 3d show examples for Sokoban, IceS-
lider and DigitJump, where both the continuous
and discrete models do not make significant er-
rors. This may be attributed to theses environ-
ments being easier to reconstruct across many
timesteps. In Sokoban, for instance, the boxes
quickly get pushed up against walls and, there-
fore, become immovable thereafter, with only the location of the agent changing between transitions.
Similarly, in IceSlider and DigitJump, actions only affect the agent’s position and there are states
for which the agent cannot move, such as in Figure 3d.

5.2 Problem Solving Performance

We evaluate DeepCubeAI on 1,000 test instances for the Rubik’s cube and Sokoban obtained from the
DeepCubeA repository (Agostinelli et al., 2020), and on the 100 test instances for each of IceSlider
and DigitJump used to evaluate PPGS (Bagatella et al., 2021). To determine the importance of
planning when solving these test instances, we also use them to evaluate a greedy policy obtained by
behaving greedily with respect to the trained DQN for 100 steps. To test DeepCubeAI’s ability to
generalize to new goal states, we include a test set where the start and goal state are reversed for the
Rubik’s cube. As a result, each test instance has a different goal state. We note that DeepCubeAI
was not told of the test goal states during training.

A detailed comparison of DeepCubeAI to DeepCubeA, PDBs, and the greedy policy is shown in Table
1. The results show that DeepCubeAI solved 100% of all test instances for the Rubik’s cube with the
canonical goal state as well as for Sokoban, IceSlider, and DigitJump. For the reversed start and goal
states, DeepCubeAI solved 99.9% (only missing 1) of all test cases and had similar performance to
the canonical goal test instances. We note that DeepCubeA and PDBs cannot be readily applied to
this test set because they are specific to the canonical goal state. To apply DeepCubeA to different
goal states, we would have to train a new DNN for each of the 1,000 goal states. The greedy policy
does not solve any problem instances for the Rubik’s cube and solves 41.9%, 46.0%, and 90.0% of
problem instances for Sokoban, IceSlider, and DigitJump, respectively. This shows that planning
with a learned world model is crucial to solving these problems. DeepCubeAI has a longer path cost
than DeepCubeA. This could be because DeepCubeAI is learning a more complex heuristic function
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Figure 3: A visualization of the reconstructions for models with continuous and discrete latent states
at different timesteps. For the Rubik’s cube, the discrete model accurately represents the ground
truth while the continuous model makes errors. For Sokoban, IceSlider, and DigitJump both the
discrete and continuous models accurately reconstruct the ground truth image after thousands of
timesteps.

that generalizes over goals, while DeepCubeA is trained for a pre-determined goal. However, for
the Rubik’s cube, despite processing fewer nodes a second due to the fact the learned model is
more computationally expensive than a hand-coded model, DeepCubeAI generates fewer nodes and
takes less time when finding solutions. This may be partially due to the speedup provided by Q*
search. However, for Sokoban, we found that a batch size of 100 for DeepCubeAI was necessary
when performing Q* search, while DeepCubeA used a batch size of 1 for A* search, so the number
of nodes generated for DeepCubeAI is still larger than DeepCubeA.

6 Future Work

In the one case where DeepCubeAI was not able to find a path, we saw that it was not able to
correctly identify the latent goal state. This could be that an error of greater than 0.5 was made
by the model during search, meaning rounding was unable to correct it. Future work could address
these rare mistakes by training a DNN to correct slightly corrupted latent states.

Similar to research in model-based reinforcement learning (Tian et al., 2021), we specify goals
with a goal image. While this may be feasible for some environments, this becomes impractical
in environments where goal images are difficult to generate. Furthermore, if one only knows high-
level information about a goal without knowing the low-level details, a goal image will be impossible
to generate. To solve this, research has been done to use formal logic to specify goals, where a goal
can be a set of states (Agostinelli et al., 2024a). This approach can be extended to learned models
and allow one to specify goals without having to generate any goal images.
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Domain Solver Len Opt Nodes Secs Nodes/Sec Solved

RC

PDBs+ 20.67 100.0% 2.05E+06 2.20 1.79E+06 100%
DeepCubeA 21.50 60.3% 6.62E+06 24.22 2.90E+05 100%
Greedy - 0% - - - 0%
DeepCubeAI 22.85 19.5% 2.00E+05 6.21 3.22E+04 100%

RCrev
Greedy - 0% - - - 0%
DeepCubeAI 22.81 21.92% 2.00E+05 6.30 3.18+04 99.9%

Sokoban

LevinTS 39.80 - 6.60E+03 - - 100%
LevinTS (*) 39.50 - 5.03E+03 - - 100%
LAMA 51.60 - 3.15E+03 - - 100%
DeepCubeA 32.88 - 1.05E+03 2.35 5.60E+01 100%
Greedy 29.55 - - 1.68 - 41.9%
DeepCubeAI 33.12 - 3.30E+03 2.62 1.38E+03 100%

IceSlider
PPGS - - - - - 97.0%
Greedy 9.83 84.78% - 0.03 - 46.0%
DeepCubeAI 9.85 100% 31.84 0.09 3.50E+02 100%

DigitJump
PPGS - - - - - 99.0%
Greedy 5.72 88.89% - 0.04 - 90.0%
DeepCubeAI 5.83 96.0% 8.97 0.06 1.40E+02 100%

Table 1: Comparison of DeepCubeAI (ours) with a greedy policy (ours), DeepCubeA, and PDBs
along the dimension of solution length, percentage of optimal solutions, number of nodes generated,
time taken to solve the problem (in seconds), number of nodes generated per second, and percentage
solved. RC is the Rubik’s cube and RCrev is the Rubik’s cube with the start and goal states reversed.
Note that DeepCubeA cannot be applied to RCrev since it is only trained on the canonical goal state.
PDBs+ refers to domain-specific PDBs for the Rubik’s cube that leverage knowledge of group theory
(Rokicki, 2016; Rokicki et al., 2014), DeepCubeA refers to work by Agostinelli et al. (2019), LevinTS
and LAMA refer to work by Orseau et al. (2018), PPGS refers to work by Bagatella et al. (2021).

For certain robotic manipulation tasks, given enough sensors and enough experience in the environ-
ment, the domain can be thought of as deterministic and fully-observable. However, many tasks
in robotics are stochastic due inherit characteristics of the domain or lack of knowledge of the en-
vironment dynamics and partially observable due to limited sensing. Research has been done on
learning models in stochastic environments by training DNNs to sample possible next states (Kaiser
et al., 2020; Hafner et al., 2021). Sequence models, such as recurrent neural networks (Hochreiter
& Schmidhuber, 1997), have been used to learn to embed belief states (Hausknecht & Stone, 2015;
Cassandra et al., 1994) on which we can plan. The benefits of discrete models could extend to these
domains, as well, allowing for the model to be applied over long horizons to improve exploration for
training and to obtain more lookahead during search.

7 Conclusion

We introduce DeepCubeAI, a domain-independent method for learning a model that operates on
discrete latent states. This learned model is then used to learn a heuristic function that generalizes
over problem instances. The learned model and learned heuristic function are then combined with
search to solve problems. In the case of the Rubik’s cube, results show that having a discrete model is
crucial to preventing error accumulation. In the case of all the Rubik’s cube, Sokoban, IceSlider, and
DigitJump, results show that DeepCubeAI solves over 99% of test cases and effectively generalizes
across goal states.
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