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Abstract

Experience replay serves as a key component in the success of online reinforcement
learning (RL). Prioritized experience replay (PER) reweights experiences by the
temporal difference (TD) error empirically enhancing the performance. However,
few works have explored the motivation of using TD error. In this work, we provide
an alternative perspective on TD-error-based reweighting. We show the connec-
tions between the experience prioritization and occupancy optimization. By using
a regularized RL objective with f−divergence regularizer and employing its dual
form, we show that an optimal solution to the objective is obtained by shifting
the distribution of off-policy data in the replay buffer towards the on-policy op-
timal distribution using TD-error-based occupancy ratios. Our derivation results
in a new pipeline of TD error prioritization. We specifically explore the KL di-
vergence as the regularizer and obtain a new form of prioritization scheme, the
regularized optimal experience replay (ROER). We evaluate the proposed priori-
tization scheme with the Soft Actor-Critic (SAC) algorithm in continuous control
MuJoCo and DM Control benchmark tasks where our proposed scheme outper-
forms baselines in 6 out of 11 tasks while the results of the rest match with or do
not deviate far from the baselines. Further, using pretraining, ROER achieves
noticeable improvement on difficult Antmaze environment where baselines fail,
showing applicability to offline-to-online fine-tuning. Code is available at https:
//github.com/XavierChanglingLi/Regularized-Optimal-Experience-Replay.

1 Introduction

Deep reinforcement learning (RL) have shown wide applications in various domains (Mnih et al.,
2015; Levine et al., 2016; Koert et al., 2019; Li et al., 2022; Hong et al., 2024). One key factor
for its success is the integrated structure of experience replay (Zhang & Sutton, 2017). Experience
replay (Lin, 1992) allows RL algorithms to use collected experience to compute updates for the
current policy. It significantly increases the data efficiency and allows RL to be applied to fields
where online data collection is expensive. On the other hand, sampling from experience replay
buffer breaks the temporal correlations among experiences and stabilizes the gradient update (Mnih
et al., 2013). However, past work shows that not all samples are equally informative in updating
policy (Katharopoulos & Fleuret, 2018). To enhance the performance, techniques of weighted ex-
perience replay (Schaul et al., 2015; Kumar et al., 2020a; Liu et al., 2021; Sinha et al., 2022) are
proposed to perform importance sampling and shape the distribution of the data in the replay buffer.

Among the proposed reweighting frameworks, prioritized experience replay (PER) is most commonly
utilized for its simplicity and empirically good performance (Hessel et al., 2018). PER attempts to
accelerate learning by assigning experiences with the temporal-difference (TD) error to enable higher
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sampling frequency for transitions with high error. However, PER inherits several shortcomings.
First, experience replay reuses experiences from the past iterations to update the current policy. The
resulted distribution shift between the data distribution of the replay buffer and the distribution of
the current policy can cause incorrect TD error estimations which is detrimental to the performance
of PER. On the other hand, it has been empirically shown that staying on policy (Schulman et al.,
2015) or maintaining an on-policy sample distribution can be beneficial to the performance (Sutton
& Barto, 2018; Fu et al., 2019; Novati & Koumoutsakos, 2019). Second, even though the motivation
of using TD error is intuitive, limited works have explored the theoretical foundation (Fujimoto
et al., 2020; Lahire et al., 2021).

In this work, we revisit the prioritization scheme and attempt to tackle the aforementioned problems.
We provide a new perspective on the TD error prioritization by making connection to the occupancy
optimization. We leverage the dual function of the regularized RL objective with f -divergence
regularizer between off-policy and on-policy data distributions (Nachum et al., 2019b) and show
that an optimal solution (occupancy ratio) to the objective is obtained by shifting the off-policy
distribution towards the on-policy optimal distribution which results in a TD error prioritization.
The form of TD error prioritization is closely associated with the regularized objective which implies
that using simple TD error alone may not work best for every RL objectives. On the other hand,
introducing regularizer into the objective penalizes TD-error estimation when the distribution of the
data from the replay buffer differs too much from the distribution induced by the current policy and
thus, gives a smaller priority to mitigate the bias induced by the distribution shift. Together, our
derivation provides an alternative perspective on PER and results in a new pipeline of TD-error-
based prioritization scheme whose form depends on the choice of the regularizer. Similar to PER,
the new framework can be easily integrated with existing RL algorithms by using an additional value
network with the regularized objective.

We specifically focus on KL-divergence as a regularizer and derive its corresponding objective. From
this objective, we obtain a new form of prioritized experience replay, the regularized optimal expe-
rience replay (ROER). We combine our proposed ROER with Soft Actor-Critic (SAC) (Haarnoja
et al., 2018) algorithm and evaluate on continuous control MuJoCo and DM control benchmark
tasks. ROER outperforms baselines in 6 out of 11 tasks while the rest match with or do not deviate
far from the best performance. Especially, ROER shows performance improvements on environments
where PER and LaBER (Lahire et al., 2021) fails. Further evaluation on the value estimations shows
that the performance improvement of ROER attributes to the more accurate value estimation by
mitigating the underestimation bias of SAC with double critics (Li et al., 2021; Zhou et al., 2022) and
thus ROER can obtain or converge to the optimal solutions much faster than baselines. Further, we
consider the setting of online with pretraining and ROER achieves noticeable improvement on dif-
ficult Antmaze environment whereas the baselines fail, showing the applicability to offline-to-online
fine-tuning.

2 Preliminaries

Online RL. Online reinforcement learning concerns optimizing an agent’s policy in a Markov deci-
sion process (MDP) (Puterman, 2014). The MDP is defined by a tuple M = (S, A, P, r, ρ0, γ) where
S and A represent the state space and action space respectively, P (s′|s, a) denotes the dynamic
model, r(s, a) the reward function, ρ0 the initial state distribution, and γ ∈ (0, 1) the discount factor.
The agent’s behavior is described by its policy π : S → ∆A. The performance of a given policy can
be measured by the state-action value function Qπ(s, a) = E[

∑∞
t=0 γtr(st, at)|s0 = s, a0 = a, st+1 ∼

P (·|st, at), at ∼ π(·|st)]. The corresponding value function is V π(s) := E[Qπ(s, a)|a ∼ π(·|s)]. The
goal is to learn a policy that maximizes the γ-discounted expected cumulative return (Sutton &
Barto, 2018):

max
π

JP (π) := (1 − γ)Es0∼ρ0,a0∼π(·|s0)[Qπ(s0, a0)] (1)
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For a fixed policy π, we can rewrite the expected return in terms of its state-action distribution
(Wang et al., 2007; Puterman, 2014) as

max
π

JD(π) := E(s,a)∼dπ [r(s, a)] (2)

where dπ(s, a) = (1 − γ)
∑∞
t−0 γtPr[st = s, at = a|s0 ∼ ρ0, at ∼ π(·|st), st+1 ∼ P (·|st, at)].

In actor critic methods, one alternates between updating policy π (the actor) and Q-approximator
Qθ (the critic)(Konda & Tsitsiklis, 1999). The policy updates according to the policy gradient
theorem (Sutton et al., 1999) as

∂

∂π
JP (π) = E(s,a)∼dπ [Qπ(s, a)∇logπ(a|s)] (3)

The critic is learned via TD learning based on Bellman equation (Bellman, 1966) BπQπ := r(s, a) +
γEs′,a′Qπ(s′, a′) where Bπ denotes the expected Bellman operator. Given some experience replay
buffer D collected in the same MDP but by potentially different policies, the Q-approximator is
learned via a variation of the following form

minQθ
J (Qθ) := 1

2E(s,a)∼D[(BπQθ − Qθ)(s, a)2]. (4)

In practice, we generally cannot access the true target value BπQθ and thus, we use an estimation
B̂πQθ to fit Qθ(s, a).

Prioritization in Experience Replay. Prioritization in experience replay applies weighted sam-
pling to the experiences by assigning weights to individual state-action which is equivalent to the
weighted objective. We define the weight for a experience with state s and action a as w(s, a) which
is positive. Then, under the sampling distribution d ∈ P (S × A), we have the weighted learning
objective:

minQθ
J (Qθ) := 1

2Ed[w(s, a)(BπQθ − Qθ)(s, a)2]. (5)

In practice, w(s, a) can be in various forms such as likelihood (Sinha et al., 2022). TD error is
the most commonly considered and it forms prioritized experience replay (PER) which samples
transitions proportional to their TD errors (Schaul et al., 2015). We denote TD error as δ and at
time step t, it is defined as

δt = rt+1 + γV (st+1) − V (st). (6)
Even though PER shows heuristically good results, the motivation of using TD error is under
explored. In addition, using the TD error estimated by the Q-function induced by the current policy
can be sub-optimal as the estimation of TD error can be inaccurate especially on the states that are
infrequently visited under the current policy.

3 Experience Prioritization as Occupancy Optimization

The goal of using prioritization is to accelerate learning and obtain an optimal policy which induces
an optimal on-policy distribution. We reverse this process and motivate our formulation by the
problem of obtaining an optimal policy by finding the optimal on-policy distribution d∗, given access
to an off-policy distribution dD. Here, d∗ is unknown and we assume to only have samples from
dD which is the distribution of the experience replay buffer. For an MDP with a reward function
r, there exists a unique d∗. We consider the following regularized objective with an f -divergence
regularizer to include dD (Nachum et al., 2019a)

max
dD

JD,f (d∗, dD) := E(s,a)∼d∗ [r(s, a)] − βDf

(
d∗∥dD)

(7)

where β > 0 and Df denotes the f -divergence induced by a convex function f :

Df (d∗||dD) = E(s,a)∼dD [f(w∗/D(s, a))] (8)
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where w∗/D := d∗(s,a)
dD(s,a) . The regularizer encourages conservative estimation and serves as a penalty

when the off-policy distribution deviates too much from the on-policy distribution. Note that the
strength of regularization can be controlled by β. The above objective J is maximized for dD = d∗,
where it becomes the unconstrained RL problem.

The regularized objective (Equation 7) can be transformed to the following dual problem (Nachum
et al., 2019b; Nachum & Dai, 2020). Let x : S × A → R. We have the dual function of J :

J̃D,f (d∗, dD) = min
x

E(s,a)∼d∗ [r(s, a)] + βE(s,a)∼dD [f∗(x(s, a))] − βE(s,a)∼d∗ [x(s, a)]] (9)

where f∗ is the convex conjugate of f . Note that the optimal x∗(s, a) w.r.t the dual objective satisfies
f ′

∗(x∗) = d∗/dD. We apply the change of variable. Let Q(s, a)−γV ∗(s′) = −βx(s, a)+ r(s, a) where
Q(s, a) is a fixed point of a variant of Bellman equation (Nachum et al., 2019a) and γV ∗(s′)+r(s, a) =
B∗Q(s, a). We obtain the new objective which is independent of d∗:

J̃D,f (d∗, dD) = min
Q

β · E(s,a)∼dD [f∗ ((B∗Q(s, a) − Q(s, a))/β)] + (1 − γ)Es0∼µ0,a0∼π∗(s0) [Q (s0, a0)]
(10)

Using δQ := B∗Q(s, a) − Q(s, a) to denote the TD error, we obtain a solution Q∗ to the objective
satisfying:

f ′
∗(δQ∗/β) = d∗/dD, (11)

which gives the TD-error based occupancy ratio between the optimal distribution and the current
distribution. We point out two key observations:

• Using the property of convex conjugate: f ′
∗(f ′(x)) = x and f ′′(x) ≥ 0, we can rewrite

B∗Q∗(s, a) − Q∗(s, a) = βf ′(d∗/dD). By absorbing the term βE(s,a)∼d∗ [x(s, a)]] of the dual
objective into the reward, we have that Q∗ is the optimal Q-function for the augmented
reward r̃ = r − βf ′(d∗/dD).

• When d∗ = dD, as f ′(1) = 0, Q∗ is the optimal Q-function to the reward r and solves the
unregularized RL problem of maximizing r.

Thus, in theory, the above problem has a unique saddle point solution where dD = d∗ and Q∗ is
the optimal Q-function, which can be found by shaping dD towards d∗ using the following weighting
formulation:

d∗ = f ′
∗(δQ∗/β) · dD. (12)

We include the details of derivation in Appendix A. In practice, we have a changing distribution of
dD for online reinforcement learning due to the collection of the new data and update to the policy.
However, we solve the optimization problem in many steps. We show that the distribution can
still asymptotically converge to the optimal d∗ by empirically showing that our proposed method
mitigates the value underestimation bias of Soft-Actor Critic with double q-learning and converges
to the true value in section 5.2.

4 Regularized Optimal Experience Replay

In this section, we discuss our choice of using Kullback-Leibler (KL) divergence as the regularizer
and proceed to the practical implementation of the prioritization scheme with the KL-divergence
regularizer which forms our proposed method, the regularized optimal experience replay (ROER).
Other forms of f -divergence can also be suitable candidates and we provide further discussions in
Appendix B.

4.1 KL Divergence as Regularizer

f -divergence consists of numerous forms and past works have explored the application of it in the
policy update rules of RL (Belousov & Peters, 2017; Kumar et al., 2020b). Particularly, many
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works focus on KL-divergence as it improves the efficiency and performance of RL algorithms such
as Trust Region Policy Optimization (Schulman et al., 2015) and Maximum a Posteriori Policy
Optimization (Abdolmaleki et al., 2018). Theoretical exploration also shows the advantage of KL
regularization (Vieillard et al., 2020). Thus, we consider KL-divergence as the regularizer in our
formulation for it penalizing the off-policy distribution being too far from the on-policy distribution
and the later-on derived objective.

Recall that the function of KL-divergence has the form f(x) = x log(x) and its convex conjugate
has the form f∗(y) = ey − 1. Let y = (B∗Q(s, a) − Q(s, a))/β, we follow the derivation in section 3
and obtain the following objective:

min
Q

E(s,a)∼dD

[
e(B∗Q(s,a)−Q(s,a))/β

]
− E(s,a,s′)∼dD [B∗Q(s, a) − Q(s, a)] − 1 (13)

We note that this objective is reminiscent to the loss function of Extreme-Q learning (Garg et al.,
2023) which leverages Extreme Value Theory to avoid computing Q-values using out of distribution
actions and thus, mitigate the estimation error. This allows for obtaining a more accurate TD error
for priority calculation. We note that our method differs from extreme q-learning as we only uses
this loss to obtain TD error to shape the data distribution towards an optimal on-policy distribution.
Using this objective, the occupancy ratio has the form

d∗/dD = f ′
∗(δQ/β) = eδQ/β (14)

which gives our proposed regularized optimal experience replay formulation.

4.2 Practical Implementation

Algorithm 1 Actor Critic with Regularized Optimal Experience Replay
1: Initialize Qθ, πψ, value network Vϕ, training start step τ
2: Let D be the empty replay buffer or filled with offline data with d(s, a) = 1
3: for step t in 1, ..., N do
4: Update (s, a, r, s’) to D with d(s, a) = 1
5: if t ≥ τ then
6: Update d(s, a) with d′ from Eq. 16
7: Train Qθ with J(Qθ) from Eq. 5 using d(s, a) as w(s, a)
8: Train Vϕ with L(V ) from Eq. 15
9: Update πψ

10: end if
11: end for
12: return Q∗, π∗

Note that the form of occupancy ratio is derived from a regularized objective which can be different
from the objective of the applied algorithm. For smooth integration to the existing algorithms,
we propose to incorporate a separate value network using the regularized objective for TD error
estimation and priority calculation. The above KL divergence gives the value network the following
objective of the ExtremeV loss (Garg et al., 2023)

L(V) = E(s,a)∼dD

[
e(B∗Q(s,a)−V (s))/β

]
− E(s,a,s′)∼dD [Q(s, a) − V (s)] − 1. (15)

We then use the TD error obtained from the value network to calculate the priority. Since the
distribution of dD is changing, we consider a stable convergence and solve the optimization problem
in many steps. We introduce a convergence parameter λ and formulate the following priority update
function

d′ = [λeδQ∗/β + (1 − λ)] · dD with λ ∈ (0, 1]. (16)
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where dD is the current priority of the samples and d′ is the updated priority (used as w). In an online
setting, we start by assigning each sample in replay buffer D with priority d = 1 and use the above
update function to update the priority after each Q-iteration step. The loss temperature β here
controls the scale of TD-error and thus, the scale of the priority. We note that exponential function
is sensitive to outliers. Thus, we use mean normalization and clip the exponential of TD error
and the priority to control the range and avoid outliers. The general procedure of our approach
is summarized in Algorithm 1 and more implementation details are listed in Appendix C. The
proposed priority update function slowly improves the current distribution d′ towards the optimal
policy distribution d∗, and ultimately maximizes the objective J .

5 Experimental Evaluation

We combine our proposed prioritization scheme ROER with Soft-Actor Critic (Haarnoja et al., 2018)
algorithm for evaluation. We compare our method with two state-of-art prioritization schemes
namely uniform experience replay (UER) and the initial TD error prioritized experience replay
(PER) (Schaul et al., 2015), and one additional baseline namely large batch experience replay
(LaBER) (Lahire et al., 2021) across a wide set of MuJoCo continuous control tasks interfaced
through OpenAI Gym (Brockman et al., 2016) and DM Control tasks (Tunyasuvunakool et al.,
2020) in an online setting. Additionally, we consider a suite of more difficult environment Antmaze
with pretraining using the data from D4RL (Fu et al., 2020) to show that ROER can achieve good
performance in settings where both UER and PER fail. To allow for reproducibility, we use the orig-
inal set of tasks without modification to the environment or rewards. For a fair comparison between
baselines and our approach, our implementations are all based on JAXRL (Kostrikov, 2021).

Compared to the initial PER, even though our proposed method ROER has four more hyperparam-
eters namely the architecture of value network, loss temperature (β), Gumbel loss clip (Grad Clip),
and maximum exponential of TD-error clip (Max Exp Clip), we note that β and Grad Clip are not
new and they come from the objective of Extreme Q-Learning. Grad Clip is shown to affect the
results lightly and the value network can use the default parameters as the critic network. A set of
values works well for multiple environments. We provide more details of implementation, ablations
and hyperparameters in Appendix C.

5.1 Online

Env SAC SAC+PER SAC+LaBER SAC+ROER (ours)
Ant-v2 1153.1 ± 335.5 1654.1 ± 342.9 1006.0 ± 546.0 2275.5 ± 598.6
HalfCheetah-v2 9017.4 ± 172.5 9240.4 ± 276.5 7962.8 ± 304.5 10695.5 ± 183.4
Hopper-v2 2813.0 ± 481.2 2937.7 ± 334.3 2330.8 ± 514.3 3010.2 ± 299.0
Humanoid-v2 5026.8 ± 154.1 4993.4 ± 198.0 5000.9 ± 319.5 5257.0 ± 153.2
Walker2d-v2 4344.3 ± 177.7 4003.9 ± 318.7 4033.1 ± 375.7 4328.5 ± 311.4
Fish-swim 247.7 ± 59.6 234.6 ± 63.6 178.3 ± 49.9 301.9 ± 54.9
Hopper-hop 134.4 ± 34.2 147.2 ± 31.3 146.7 ± 29.8 125.7 ± 35.2
Hopper-stand 521.1 ± 120.1 384.7 ± 94.9 475.5 ± 111.0 798.5 ± 89.2
Humanoid-run 130.3 ± 21.7 116.3 ± 18.7 144.8 ± 18.1 137.3 ± 12.3
Humanoid-stand 733.4 ± 53.9 765.0 ± 38.8 827.8 ± 40.9 691.6 ± 57.8
Quadruped-run 761.2 ± 89.4 606.2 ± 114.7 796.3 ± 82.6 772.1 ± 77.7

Table 1: Average evaluation performance attained over the last 10 evaluations over 1 million time
steps for MuJoCo and DM Control tasks. Average performance and 95% confidence interval (±) are
attained over 20 random seeds. Maximum average value for each task is highlighted as bold

In the online setting, the empirical results demonstrate that our proposed ROER outperforms state-
of-the-arts on 6 out of 11 continuous control tasks in terms of the average evaluation while do not
deviate far from the baselines for the rest 3 environments as shown in Table 1. We find that ROER
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with SAC achieves noticeable improvement on HalfCheetah-v2, Ant-v2, Humanoid-v2 from MuJoCo
and Fish-Swim, Hopper-stand from DM Control. Especially for Hopper-stand environment, our
proposed ROER with SAC nearly doubles the performance of UER or PER with SAC. We attribute
the improvements to the more accurate TD error estimation using a separate value network with
divergence regularized objective and the associated priority update form. Within the five under-
performed tasks, ROER obtains a similar performance as the UER in Walker2d-v2 and outperforms
PER and LaBER.

In contrast, PER only shows slight improvement on limited number of continuous control tasks
compared to UER including HalfCheetah-v2, Hopper-v2, Hopper-hop, and Humanoid-stand. In
many tasks, PER even worsens the performance such as Walker2d, Hopper-stand, Humanoid-run
and Quadruped-run whereas our proposed method can maintain a similar or achieve much better
performance. We consider the reasons for PER failing to be the biased priority induced by the
inaccurate TD error estimation and the less stable priority update scheme. We note that LaBER
achieves better results in Humanoid-run, Humanoid-stand and Quadruped-run but in the cost of
much longer training time due to the larger batch required by the algorithm. The hyperparameter
selection for LaBER can be found in Appendix C.

We notice that all three prioritization schemes under perform in Ant-v2. Our proposed ROER
with SAC, even though achieves higher average performance in Ant-v2, has a very large confidence
interval. This requires additional tuning to hyperparameters of SAC and training steps. We keep
our current results for a fair comparison across tasks. Evaluation curves and additional discussion
of results can be found in Appendix D.

5.2 Value Estimation Analysis
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Figure 1: Measuring underestimation bias in the value estimates of SAC, SAC with PER and SAC
with ROER of continuous control tasks in MuJoCo by the difference between the true values and
the value estimates. True value is obtained by Monte Carlo returns. Value estimates and true values
are averaged over 20 random seeds and the error bar represents 95% confidence interval.

The better performance can be empirically confirmed by the faster convergence to the true value.
Besides the derivation that shows our proposed prioritization scheme results in the optimal solution,
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ROER also demonstrates empirically more accurate value estimation and faster convergence than the
baselines. We compare the value estimation with the true value for each algorithm trained online over
tasks in MuJoCo as shown in Fig. 1. SAC with double critics tends to underestimate the value (Li
et al., 2021; Zhou et al., 2022). Compared to the baselines, ROER reduces the underestimation biases
and converge to the true values much faster especially in Hopper-v2, Humanoid-v2 and Walker2d-v2.
We note that ROER reaches the true value in reward saturated cases such as Hopper-v2 while the
baselines still show the underestimation bias. This result serves as an empirical evidence that our
proposed prioritization scheme reshapes the replay buffer towards the optimal on-policy distribution
and results in the optimal Q∗ which is the solution to the objective.

5.3 Online with Pretraining

Our proposed ROER prioritization scheme can benefit from pretraining using offline data and show
significant performance improvement over more difficult environment Antmaze-Umaze and Antmaze-
Medium as revealed in Table 2. We recognize that using the average performance over the last 200
evaluations may not be the most suitable metric here due to the sparsity of rewards and the difficulty
of the environments. Thus, we also include the learning curves to illustrate the results as in Fig. 2.
We found that SAC with ROER can obtain good performance at a very early stage in Antmaze-
Umaze environment using both Antmaze-Umaze-v2 dataset and Antmaze-Umaze-diverse-v2 dataset.
Especially with Antmaze-Umaze-diverse-v2 dataset, SAC with ROER achieved a significantly better
performance compared to the state-of-art prioritization schemes while PER and LaBER are shown to
be detrimental to the learning process. We also note that for a more difficult environment Antmaze-
Medium, our proposed method can obtain rewards at an early stage and shows improvement over
training steps as in Fig. 2c and Fig. 2d. In contrast, SAC with UER, SAC with PER and SAC with
LaBER completely fail to obtain any reward signal. This implication is crucial to improve training
efficiency and safety by using offline data and correct the distribution to obtain a good performance
online. It shows the potential applicability of our method in offline-to-online finetuning.
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Figure 2: Learning curves for the Antmaze tasks in Gym-Robotics with data from D4RL. Curves are
averaged over 10 random seeds, where the shaded area represents the standard error of the average
evaluation.

Env SAC SAC+PER SAC+LaBER SAC+ROER (ours)
antmaze-umaze-v2 99.6 ± 0.4 99.6 ± 0.5 99.45 ± 0.5 99.9 ± 0.2
antmaze-umaze-diverse-v2 57.8 ± 22.7 9.5 ± 13.5 0.0 92.7 ± 1.9
antmaze-medium-play-v2 0.0 0.0 0.0 31.3 ± 17.3
antmaze-medium-diverse-v2 0.0 0.0 0.0 26.3 ± 14.0

Table 2: Average evaluation performance attained over the last 200 evaluations over 2e6 time steps
after Antmaze environments. Average performance and 95% confidence interval (±) are attained
over 10 random seeds.
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6 Related Work

Our approach builds upon regularized RL objective and weighted experience replay.

Regularized RL. Regularization is commonly utilized in offline reinforcement learning to constrain
the behavior policy and action selection (Kumar et al., 2020b; Wu et al., 2019; Kumar et al., 2019).
Other works have considered regularized Q-function of the behavior policy (Shi et al., 2023) and
state-action value offset (Kostrikov et al., 2021). Adapting such regularizers in online setting can
achieve more stable performance (Fujimoto et al., 2019; Schulman et al., 2015). Maximizing the
regularizer as a way to encourage exploration also shows improvement in performance and forms
the framework of max entropy RL (Ziebart et al., 2008; Haarnoja et al., 2017; 2018). Our work
builds upon the line of work that utilizes the dual function of the regularized objective (Belousov &
Peters, 2017; Nachum & Dai, 2020; Nachum et al., 2019b) which allows to express the max-return
optimization by an expectation over an arbitrary behavior-agnostic and off-policy data distribution.
We extend this approach and formulate the prioritization scheme that allows the data distribution
in replay buffer gradually converge to the optimal distribution which gives the optimal Q-function.
Theoretical analysis of the regularized RL shows that despite its non-convexity, this problem has
zero duality gap and can be solved exactly in the dual domain (Geist et al., 2019; Neu et al., 2017;
Paternain et al., 2019).

Weighted experience replay. Experience replay is crucial to the success of deep RL for improv-
ing the data efficiency by using off-policy data (Lin, 1992; Hessel et al., 2018). Various frameworks
have been proposed to change the sampling strategy to achieve superior performance than uniform
sampling. Prioritized experience replay (PER) weights the experiences by their TD errors and
shows empirical improvement when applying to deep RL (Schaul et al., 2015; Fujimoto et al., 2020).
However, few works have explored the theoretical motivation of using TD-error based reweighting
scheme. Lahire et al. (2021) suggest that PER can be considered as an importance sampling scheme
using approximated per-sample gradient norms and prioritizing stochastic gradient descent variance
reduction. Our work, on the other hand, uses dual function of the regularized RL objective to
provide an alternative perspective on TD-error-based prioritization. Other considerations of priori-
tization scheme include loss value (Hessel et al., 2018), accuracy of the TD-error estimation (Sinha
et al., 2022), regret minimization (Liu et al., 2021), and leveraging neural network for experience
selection (Zha et al., 2019). We note that Kumar et al. (2020a) shares similarity to our work in
correcting the replay buffer towards optimal distribution. However, they consider optimizing cor-
rective feedback while our work builds on dual function of regularized RL objective. Another work
that shares slight similarity with our method is ReF-ER (Novati & Koumoutsakos, 2019) where
they ignore the updates from experiences that deviates significantly from the current policy. Our
work focuses on penalizing the TD errors of the samples that deviate from the current policy which
leads to smaller priority instead of completely ignoring those experiences. In addition, our proposed
method forms a new pipeline of TD-error-based prioritization scheme.

7 Conclusion

By leveraging the regularized RL objective and its dual function, we propose a new pipeline of TD-
error-based prioritization scheme that is more robust towards distribution shift between off-policy
data and current policy. By considering KL-divergence as the reuglarizer, we formulated a new
prioritized experience replay, namely regularized optimal experience replay (ROER). Our proposed
ROER when applied to SAC empirically demonstrates the ability of mitigating the underestimation
bias and shows faster convergence to the true value. It outperforms baselines in 6 out of 11 continu-
ous control tasks in the online setting and significantly improves the performance in Antmaze with
pretraining. However, we recognize the tuning of additional hyperparameters can limit the appli-
cation. Future work can explore an adaptive loss temperature to dynamically adjust the strength
of the regularization. Additionally, it would be valuable to extend the application of the proposed
method to offline setting and further explore the applicability to offline-to-online fine tuning.
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Limitations. Although our method provides theoretical motivations and empirically shows perfor-
mance improvement and convergence to the optimal solutions over various environments, we lack
theoretical guarantees to ensure the convergence. Few works have provided the theoretical ground
of analyzing convergence using f -divergence regularizer (Paternain et al., 2019). More exploration
is required to understand the convergence in online setting.
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A Derivation Details

In this section, we provide the detailed derivation of our method for completeness. We reference
Nachum et al. (2019b) for the derivation. We start by using the regularized max-return objective
with divergence term between the on-policy optiaml distribution d∗ and off-policy distribution dD

maxπJD,f (π) := E(s,a)∼d∗ [r(s, a)] − βDf (d∗||dD), (17)

where β > 0 and Df denotes the f -divergence induced by a convex function f :

Df (d∗||dD) = E(s,a)∼dD [f(w∗/D(s, a))], (18)

where w∗/D := d∗(s,a)
dD(s,a) .

We then transform the f -divergence to its variational form using a dual function x : S × A → R
that is bounded which gives the following expressions

J̃D,f (π, x) : = min
x

E(s,a)∼d∗ [r(s, a)] + β · E(s,a)∼dD [f∗(x(s, a))] − β · E(s,a)∼d∗ [x(s, a)]

= min
x

E(s,a)∼d∗ [r(s, a) − β · x(s, a)] + β · E(s,a)∼dD [f∗(x(s, a)]. (19)

Here, f∗ is the convex conjugate of f . Recall the definition of convex conjugate: the convex conjugate
of f(x) is defined as f∗(x) = supx∈domf{⟨y, x⟩ − f(x)}, where ⟨y, x⟩ denotes the dot product (Boyd
& Vandenberghe, 2004).

To eliminate the dependence on d∗, we use change of variables and let Q(s, a)−γV ∗(s′) = −βx(s, a)+
r(s, a). Applying the change of variable to Eq.19, we obtain:

JD,f (π, Q) := min
Q

E(s,a)∼d∗ [r(s, a) + Q(s, a) − γV ∗(s′) − r(s, a)]

+ β · E(s,a)∼dD [f∗(γV ∗(s′) − Q(s, a) + r(s, a))/β]. (20)

Note that B∗Q(s, a) = r(s, a) + γV ∗(s′). We simplify the above as

JD,f (π, Q) := min
Q

E(s,a)∼d∗ [Q(s, a) − γV ∗(s′)] + β · E(s,a)∼dD [f∗(B∗Q(s, a) − Q(s, a))/β]. (21)

Since x(s, a) is bounded and γ < 1, Q(s, a) is also bounded. Define

Ωt(s) := Pr(s = st|s ∼ Ω, ak ∼ π∗(sk), sk+1 ∼ P (·|sk, ak) for 0 ≤ k ≤ t), (22)
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as the state visitation probability at step t following policy π∗ (Nachum et al., 2019a). Then by
telescoping, we have the following process for E(s,a)∼d∗ [Q(s, a) − γV ∗(s′)] (denoting this term as ∗)

∗ = E(s,a)∼d∗ [Q(s, a) − γEs′∼P (·|s,a),a′∼π∗(s′)[Q(s′, a′)]]

= (1 − γ)
∞∑
t=0

γtEs∼Ωt,a∼π∗(s)[Q(s, a) − γEs′∼P (·|s,a),a′∼π∗(s′)[Q(s′, a′)]]

= (1 − γ)
∞∑
t=1

γtEs∼Ωt,a∼π∗(s)[Q(s, a)] − (1 − γ)
∞∑
t=1

γt+1Es∼Ωt,a∼π∗(s)[Q(s, a)]

= (1 − γ)Es∼Ω,a∼π∗(s)[Q(s, a)]. (23)

Applying the above result to the dual objective, we obtain the final objective:

JD,f (π, Q) := min
Q

β ·E(s,a)∼dD [f∗(B∗Q(s, a) − Q(s, a))/β] + (1 − γ)Es0∼µ0,a0∼π∗(s0)[Q(s0, a0)] (24)

which completes the derivation.

B Other divergence

In this section, we firstly show the connection between the dual objective and the actor-critc ob-
jective. Then we give another consideration of regularizer which results in a different form of
prioritization.

B.1 Derivation Details of ROER

KL-divergence has the form f(x) = x log(x) and its convex conjugate has the form f∗(y) = ey − 1.
Let y = (B∗Q(s, a) − Q(s, a))/β, we follow the derivation in section 3 and obtain the following dual
objective:

min
Q

E(s,a)∼dD

[
e(B∗Q(s,a)−Q(s,a))/β

]
+ (1 − γ)Es0∼µ0 [V ∗ (s0)] − 1 (25)

which can be expanded to:

min
Q

E(s,a)∼dD

[
e(B∗Q(s,a)−Q(s,a))/β

]
+ E(s,a,s′)∼dD [V ∗(s) − γV ∗(s′)] − 1. (26)

Recall that γV ∗(s′) = B∗Q(s, a)−r(s, a). We substitute the expression of γV ∗(s′) back to the above
objective and obtain

min
Q

E(s,a)∼dD

[
e(B∗Q(s,a)−Q(s,a))/β

]
+ E(s,a,s′)∼dD [V ∗(s) − B∗Q(s, a) + r(s, a)] − 1, (27)

and we can further simplify the expression and obtain

min
Q

E(s,a)∼dD

[
e(B∗Q(s,a)−Q(s,a))/β

]
− E(s,a,s′)∼dD [B∗Q(s, a) − Q(s, a)] − 1 (28)

which completes the derivation. This objective corresponds to ExtremeQ loss as in Garg et al.
(2023). It has a corresponding ExtremeV loss in the following form:

L(V) = E(s,a)∼dD

[
e(B∗Q(s,a)−V (s))/β

]
− E(s,a,s′)∼dD [Q(s, a) − V (s)] − 1 (29)

which is the objective of our value network.
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B.2 Connection to Actor Critic

Recall that the dual function of the regularized RL objective with the change of variable has the
following form

JD,f (π, Q) = min
Q

β · E(s,a)∼dD [f∗ ((B∗Q(s, a) − Q(s, a))/β)] + (1 − γ)Es0∼µ0,a0∼π∗(s0) [Q (s0, a0)]
(30)

We consider a convex function of the form f(x) = 1
2 x2. Its convex conjugate has the same form as

itself f∗(y) = 1
2 y2. Let y := B∗Q(s, a) − Q(s, a). The above function can be expressed as below:

JD,f (π, Q) = min
Q

1
2β

·E(s,a)∼dD

[
(B∗Q(s, a) − Q(s, a))2

]
+(1−γ)Es0∼µ0,a0∼π∗(s0) [Q (s0, a0)] (31)

which transforms the off-policy actor-critic to an on-policy actor-critic by introducing the second
term. This unifies the two separate objectives of value and policy into a single objective and both
functions are trained with respect to the same off-policy objective (Nachum et al., 2019b).

B.3 Pearson χ2 Divergence

A variety of f -divergence can be suitable candidates for the dual objective and prioritization deriva-
tion. Here, we provide a list of f -divergences f(x), its corresponding convex conjugates f∗(y) and
the potential priority forms f ′

∗(y) in Table 3. We note that the forms presented are theoretical forms
and they may vary when applying to the RL objectives.

Divergence f(x) f∗(y) f ′
∗(y)

KL x log x ey − 1 dy

Reverse KL − log x − log(1 − y) 1
1−y

Pearson χ2 1
2 (x − 1)2 1

2 y2 + y y + 1

Neyman χ2 (x−1)2

2x −
√

1 − 2y + 1 1√
1−2y

Total variation 1
2 |x − 1| y 1

Squared Hellinger 2(
√

x − 1)2 2y
2−y

4
(2−y)2

Table 3: List of f -divergence functions f(x), convex conjugates f∗(y) and the potential priority
forms f ′

∗(y).

We use Pearson χ2 divergence as an example as the resulting objective has a particular implication.
Pearson χ2 divergence has the form f(x) = 1

2 (x − 1)2 and its convex conjugate has the form f∗(y) =
1
2 y2 + y. Again, let y := B∗Q(s, a) − Q(s, a). We can obtain the following dual objective:

min
Q

1
2β

·E(s,a)∼dD

[
(B∗Q(s, a) − Q(s, a))2

]
+E(s,a)∼dD [B∗Q(s, a) − Q(s, a)]+(1−γ)Es0∼µ0 [V ∗ (s0)]

(32)
Using γV ∗(s′) + r(s, a) = B∗Q(s, a), the objective can be further simplified to:

min
Q

1
2β

· E(s,a)∼dD

[
(B∗Q(s, a) − Q(s, a))2

]
+ E(s,a)∼dD [V ∗(s) − Q(s, a)] (33)

We note that this corresponds to the learning objective of conservative Q-learning (Kumar et al.,
2020b). This objective is optimized when d∗/dD = f ′

∗(δ∗
Q/β) = δQ/β + 1 which gives a new form of

priority calculation. We address that even though this form is almost identical to PER, the source
of δ is different. We derive this priority form from the conservative Q-learning objective and thus, it
requires the value network to use the corresponding loss function. In addition, the loss temperature
β here also controls the scale of the TD error and the strength of the regularizer which we expect
to give better performance than the naive PER.
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C Experiments

In this section, we provide details of the implementation and the experiments with further discussion
on hyperparameter ablation and selection.

C.1 Experimental Details

Environment

In the online setting, our agents are evaluated in MuJoCo via OpenAI gym interface using the v2
environments (Brockman et al., 2016) and DM Control tasks (Tunyasuvunakool et al., 2020). For
the MuJoCo environment, we do not modify or preprocess the state space, action space and reward
function for easy reproducibility. For the DM Control tasks, we adapt to the gym environment
interface. In the online with pretraining settings, our agents are evaluated in the environment with
D4RL datasets (Fu et al., 2020). We shaped the reward of Antmaze by subtracting 1 as suggested in
Kumar et al. (2020b) which shows to largely benefit the performance in Antmaze. Each environment
runs for a maximum of 1000 time steps which is the default setting or until a termination state is
reached.

Value estimation

Value estimates are averaged over mini-batches of 256 and sampled every 2000 iterations. The
true value is estimated by sample 256 state-action pairs from the replay buffer and compute the
discounted return by running the episode following the current policy until termination.

Reward Evaluation

In the online setting, we evaluate the current policy over 10 episodes for every 5000 training steps.
The evaluation reward takes the average over the 10 episodes. In the online with pretraining setting,
we evaluate the current policy over 100 episodes for every 10000 training steps due to the difficulty
of the environments. The evaluation reward takes the average over the 100 episodes.

Algorithm implementation

We base our implementation of SAC off Kostrikov (2021). It uses one target critic, double critics,
a single actor network and a single network for temperature adjustment for maximum entropy. We
add an additional value network with extreme q-learning loss for ROER TD error estimation and
priority calculation. We use the default hyperparameters and network architectures for the SAC
algorithms for all of our experiments. The hyperparameters and the network architecture are shown
in Table 4.

Parameter Value
optimizer Adam
learning rate 3 × 10−3

actor, critic, and value network arch (256, 256)
non-linearity ReLU
value network noise 0.1
batch size 256
buffer size 1,000,000 , 2,000,000(antmaze)
discount 0.99
target smoothing coefficient 5 × 10−3

gradient penalty coefficient 1

Table 4: Hyperparameters of SAC and network architecture.

We adapt the code in Lahire et al. (2021) into JAX implementation for LaBER. We adapt the
proposed method in Fujimoto et al. (2020) for PER implementation and uses the loss adjusted
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version of PER as it shows similar or even better performance than the original implementation.
Loss adjusted PER (LAP) uses Huber loss for critic objective which has the following form (Huber,
1992)

LHuber(δ(i)) =
{

0.5δ(i)2 if |δ(i)| ≤ k

k(|δ(i)| − 0.5k) otherwise
(34)

where k is the bound for the Huber loss transformation and the default value is 1. We also uses
Huber loss for our proposed ROER in the same idea as LAP. For SAC with uniform experience
replay, we keep the original loss form which uses mean square loss. To stabilize the performance of
all algorithms used in this study, we apply an additional gradient penalty to the critic loss inspired
by Petzka et al. (2017) which penalizes gradient with norm great than 1. The penalty κ has the
following form

κ = max(∥∇Qθ − 1∥, 0)2 (35)

We note ROER uses exponential function in the formulation and it is sensitive to outliers. Thus, we
lower clip the immediate weight with value 1 and use batch mean normalization on the immediate
weight eδQ/β as following

e
δQ/β
normalized = eδQ/β

ēδQ/β
(36)

where ēδQ/β denotes the batch mean. To further stabilize the performance and prevent the outliers,
we clip the immediate weight and add minimum clip on the final priority which are further discussed
in the following section of ablation study and hyperparameter selections.

C.2 Hyper-parameter Selection

Online

For the value of parameter of PER, we use Fujimoto et al. (2020) as a reference for MuJoCo envi-
ronment where they show that a weight scale α = 0.4 works best for the set of tasks. As to DM
Control, we search over the set [0.1, 0.2, 0.4, 0.6, 0.8] for individual task. The final choice of the value
for each task is shown in Table 5.

For the value of parameter large batch of LaBER, we search over the set [768, 1024, 1280, 1536] for
individual task in both MuJoCo and DM Control environment. The final choice of the value for
each task is shown in Table 5.

For our proposed method ROER, we have 5 parameters, namely convergence rate (λ), gumbel loss
clip (Grad Clip), loss temperature (β), immediate weight clip (Max Exp Clip), and minimum priority
clip (Min Clip) that require tuning. However, we discover that only β and the clip range requires
tuning for each specific environment while we can use a set of values for the rest. We use the set
of value used in Garg et al. (2023) as a reference and search over the set [0.005, 0.01, 0.05] for λ,
[5, 7, 10] for the Grad Clip, [0.4, 1, 4] for β, [25, 50, 100] for the Max Exp Clip, and [1, 5, 10] for the Min
Priority Clip. The final choice of the value for each task is shown in Table 5. We take HalfCheetaah-
v2 from MuJoCo and Hopper-Stand from DM Control as examples to show the hyper-parammeter
ablations for the online experiments. We show the effect of each parameter by fixing the rest as
the default values. The default parameter values for HalfCheetah-v2 is λ = 0.01, Grad Clip =
7, β = 4, Max Exp Clip = 50, Min Clip = 10. The default parameter values for Hopper-Stand is
λ = 0.01, Grad Clip = 7, β = 1, Max Exp Clip = 100, Min Clip = 1. The performance comparisons
of the two task for varying each parameter are plotted in Fig. 3 and Fig. 4 respectively.

According to Fig. 3a and Fig. 4a, λ = 0.01 achieves the best performance for the two environments.
We note that a too big λ can results in divergence as in Fig. 4a where λ = 0.05 achieves bad
performance due to the too quick priority update which results in numerical instability. A small λ
gives stable convergence but too small λ may slow down the convergence in some cases as in Fig. 4a.
We discover that generally β = 0.01 works well across a wide domain and we use this value for all
environments in our study.
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ROER PER LaBER
Env λ β Grad Clip Min Priority Clip Max Exp Clip α Min Priority Clip Large Batch
Ant-v2 0.01 1 7 10 100 0.4 1 1280
HalfCheetah-v2 0.01 4 7 10 50 0.4 1 1024
Hopper-v2 0.01 0.4 7 10 100 0.4 1 1536
Humanoid-v2 0.01 4 7 10 50 0.4 1 768
Walker2d-v2 0.01 4 7 10 50 0.4 1 1024
Fish-swim 0.01 1 7 1 100 0.4 1 768
Hopper-hop 0.01 1 7 1 50 0.6 1 1024
Hopper-stand 0.01 1 7 1 100 0.2 1 1280
Humanoid-run 0.01 4 7 1 100 0.4 1 1536
Humanoid-stand 0.01 4 7 1 100 0.4 1 1280
Quadruped-run 0.01 1 7 10 100 0.4 1 1024

Table 5: Hyperparameters for ROER, PER and LaBER in online setting
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Figure 3: Convergence rate (λ), Gumbel loss clip (Grad Clip), loss temperature (β), Maximum
exponential clip (Max Exp Clip), and minimum priority clip (Min Clip) Ablation for HalfCheetah-v2
over 5 random seeds. One parameter is changing while the rest are fixed. The default combination
is [0.01, 7, 4, 50, 10] which is the set used in our final results. All curves are smoothed with
Savitzky–Golay filter for visual clarity. The shaded region represents standard error which is favored
in this case to separate the curves.
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(b) Grad Clip
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Figure 4: Convergence rate (λ), Gumbel loss clip (Grad Clip), loss temperature (β), Maximum
exponential clip (Max Exp Clip), and minimum priority clip (Min Clip) Ablation for Hopper-stand
over 5 random seeds. One parameter is changing while the rest are fixed. The default combination
is [0.01, 7, 1, 10, 1] which is the set used in our final results. All curves are smoothed with Sav-
itzky–Golay filter for visual clarity. The shaded region represents standard error which is favored in
this case to separate the curves.

Grad Clip is initially leveraged to prevent the outliers in gumbel loss of extreme q-learning (Garg
et al., 2023). In our case, we found that varying its value has negligible effect on the final result. As
shown in Fig. 3b and Fig. 4b, all three values give similar performance. We use 7 as the value for
all environments in our study.

The loss temperature β controls the strength of the penalization from the KL regularizer on the
distributions between the on-policy data and off-policy data in replay buffer. It also scales the TD
error and thus affect the value of the priority. Theoretically, a small β is beneficial for datasets with
lots of random noisy actions and far from the on-policy distributions while a high β works well for
datasets close to the on-policy distribution. In practice, we note that using a fixed value requires
tuning for specific environments due to the different dynamics. β = 4 works well for most tasks in
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MuJoCo while β = 1 works well for most tasks in DM Control. The affect of β is more obvious and
easier to interpret in online with pretraining setting which is discussed in the following subsection.
We recognize the difficulty of deciding the value for β and a solution to this can be using adaptive
loss temperature. As the off-policy data in replay buffer converges to the on-policy distribution, we
increase the value of β.

The Max Exp Clip and Min Priority Clip serve to prevent outliers and control the range of priority
distribution. In most cases, a Max Exp Clip of value 50 or 100 works well. Min Clip requires tuning
for each environment but we find Min Priority Clip = 10 works well for all MuJoCo tasks and Min
Priority Clip = 1 works well for most of DM Control tasks except quadruped-run which uses value
10. A lower Max Exp Clip and a higher Min Priority Clip reduce the range of distribution and
tend to stabilize the performance but may give sub-optimal performance. In addition, a higher Min
Priority Clip can also prevent experience forgetting as the downweighted samples do not differ too
much from the rest.

Online with Pretraining

To select the appropriate value of α for PER, we searched over [0.1, 0.2, 0.4, 0.6, 0.8, 1]. To select the
appropriate value of large batch for LaBER, we search over [768, 1024, 1280, 1536]. The final choices
for each environment are listed in Table 6.

To select the appropriate parameter values for ROER, we searched over the same sets of values for λ,
Grad Clip, Max Exp Clip, and Min Priority Clip as in the online setting. For the loss temperature
β, we consider a slightly larger set [0.4, 0.8, 2, 4] to better demonstrate the effect of β. Similar to
the online setting, we also found that a set of values work well across different environments and
the final choices are shown in Table 6. We take Antmaze-Umaze with pretraining using antmaze-
umaze-diverse-v2 dataset as an example to ablate the hyperparameters. While varying the value
of one parameter, we fix the rest as the default values. The default parameter values for antmaze-
umaze-diverse-v2 is λ = 0.01, Grad Clip = 7, β = 0.4, Max Exp Clip = 50, Min Clip = 1.

ROER PER LaBER
Env λ β Grad Clip Min Priority Clip Max Exp Clip α Priority Clip Large Batch
antmaze-umaze-v2 0.01 0.4 7 10 50 0.1 1 1024
antmaze-umaze-diverse-v2 0.01 0.4 7 1 50 0.4 1 1024
antmaze-mediumm-play-v2 0.01 0.4 7 1 50 0.4 1 1536
antmaze-medium-diverse-v2 0.01 0.4 7 1 50 0.4 1 1024

Table 6: Hyperparameters for ROER, PER, and LaBER in online with pretraining setting
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Figure 5: Gumbel loss clip (Grad Clip), loss temperature (β), and minimum priority clip (Min Clip)
Ablation for Antmaze with Antmaze-umaze-diverse-v2 dataset over 5 random seeds. One parameter
is changing while the rest are fixed. The default combination is [0.01, 7, 0.4, 50, 1] which is the set
used in our final results. The shaded region represents standard error which is favored in this case
to separate the curves.

Similar to the online setting, λ = 0.01 shows good performance and the value of Grad Clip only
slightly affect the final performance. We choose the values for the two parameters same as before.
Varying β shows that a smaller value results in early performance improvement while bigger value
only shows improvement after the on-policy data overweight in the replay buffer as demonstrated in
Fig. 5c. This confirms our previous discussion that a small β is beneficial for datasets that differ from
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the on-policy distribution while a high β favors datasets close to the on-policy distribution. The
behavior of varying Max Exp Clip and Min Priority Clip also corresponds to our previous discussion
that a smaller range of priority distribution gives a stable but potentially sub-optimal performance
while a wider range can benefit the agent to explore and potentially learn faster.

D Additional Results

In this section, we present the additional results and discussions of our experiments. The learn-
ing curves in the online setting are shown in Fig. 6 for tasks in MuJoCo and Fig. 7 for tasks in
DM Control. Besides the better performance, we note that our proposed ROER also shows faster
improvement in Ant-v2, HalfCheetah-v2, Hopper-v2, Humanoid-v2, Fish-Swim and Hopper-Stand.
This implies that ROER can obtain better data efficiency than the baselines. We additionally
evaluate our proposed ROER in comparison to baselines in MuJoCo over 3 million steps to better
illustrate the advantage of our proposed method as shown in Fig. 8. ROER shows consistently
better performance as in the evaluation over 1 million steps and outperforms baselines in Ant-v2,
HalfCheetah-v2, and Humanoid-v2 with very little or without overlapping shaded region. We did
not include LaBER for this comparison due to the long training time it takes. We note that the per-
formance of ROER gets worse in Hopper-v2 for longer steps as it reaches the reward saturation very
early and the extra training can be harmful for the policy update due to over-fitting and additional
updates on Q-functions with weights that causes loss explosion.
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Figure 6: Learning curves for continuous control tasks in MuJoCo over 1 million steps. Curves are
averaged over 20 random seeds, where the shaded area represents the 95% confidence interval of the
average evaluation. All curves are smoothed with Savitzky–Golay filter for visual clarity.
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Figure 7: Learning curves for continuous control tasks in DM Control over 1 million steps. Curves
are averaged over 20 random seeds, where the shaded area represents the 95% confidence interval of
the average evaluation. All curves are smoothed with Savitzky–Golay filter for visual clarity.
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Figure 8: Learning curves for continuous control tasks in MuJoCo over 3 million steps. Curves are
averaged over 10 random seeds, where the shaded area represents the 95% confidence interval of the
average evaluation. All curves are smoothed with Savitzky–Golay filter for visual clarity.


