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Abstract

Self-supervised learning has brought about a revolutionary paradigm shift in var-
ious computing domains, including NLP, vision, and biology. Recent approaches
involve pretraining transformer models on vast amounts of unlabeled data, serv-
ing as a starting point for efficiently solving downstream tasks. In reinforcement
learning, researchers have recently adapted these approaches, developing models
pretrained on expert trajectories. However, existing methods mostly rely on intri-
cate pretraining objectives tailored to specific downstream applications. This paper
conducts a comprehensive investigation of models, referred to as pre-trained action-
state transformer agents (PASTA). Our study covers a unified framework and cov-
ers an extensive set of general downstream tasks including behavioral cloning, of-
fline Reinforcement Learning (RL), sensor failure robustness, and dynamics change
adaptation. We systematically compare various design choices and offer valuable
insights that will aid practitioners in developing robust models. Key findings high-
light improved performance of component-level tokenization, the use of fundamental
pretraining objectives such as next token prediction or masked language modeling,
and simultaneous training of models across multiple domains. In this study, the
developed models contain fewer than 7M parameters allowing a broad community
to use these models and reproduce our experiments. We hope that this study will
encourage further research into the use of transformers with first principle design
choices to represent RL trajectories and contribute to robust policy learning.

1 Introduction

Reinforcement Learning (RL) has emerged as a robust framework for training efficient agents to learn
optimal decision-making policies. This approach has led to remarkable achievements in diverse fields,
including gaming and robotics (Silver et al., 2014; Schulman et al., 2016; Lillicrap et al., 2016). These
algorithms often comprise multiple components that are essential for training and adapting neural
policies. For example, model-based RL involves learning a model of the world (Racanière et al.,
2017; Hafner et al., 2019; Janner et al., 2019; Schrittwieser et al., 2020) while most model-free policy
gradient methods train a value or Q-network to control the variance of the gradient update (Mnih
et al., 2013; Schulman et al., 2017; Haarnoja et al., 2018; Hessel et al., 2018). Training these
multifaceted networks poses challenges due to their nested nature (Boyan & Moore, 1994; Anschel
et al., 2017) and the necessity to extract meaningful features from state-action spaces, coupled
with assigning appropriate credit in complex decision-making scenarios. Consequently, these factors
contribute to fragile learning procedures, high sensitivity to hyperparameters, and limitations on
the network’s parameter capacity (Islam et al., 2017; Henderson et al., 2018; Engstrom et al., 2020).

To address these challenges, various auxiliary tasks have been proposed, including pretraining differ-
ent networks to solve various tasks, such as forward or backward dynamics learning (Ha & Schmid-
huber, 2018; Schwarzer et al., 2021) as well as using online contrastive learning to disentangle feature

∗Equal Contribution
†Corresponding author: t.pierrot@instadeep.com



RLJ | RLC 2024

extraction from task-solving (Laskin et al., 2020; Nachum & Yang, 2021; Eysenbach et al., 2022).
Alternatively, pretraining agents from a static dataset via offline RL without requiring interaction
with the environment also enables robust policies to be deployed for real applications. Most of these
approaches rely either on conservative policy optimization (Fujimoto & Gu, 2021; Kumar et al., 2020)
or supervised training on state-action-rewards trajectory inputs where the transformer architecture
has proven to be particularly powerful (Chen et al., 2021; Janner et al., 2021).

Recently, self-supervised learning has emerged as a powerful paradigm for pretraining neural net-
works in various domains including NLP (Chowdhery et al., 2022; Brown et al., 2020; Touvron et al.,
2023), computer vision (Dosovitskiy et al., 2020; Bao et al., 2021; He et al., 2022) or biology (Lin
et al., 2023; Dalla-Torre et al., 2023), especially when combined with the transformer architecture.
Inspired by impressive NLP results using transformer neural networks, most self-supervised tech-
niques use tokenization, representing input data as a sequence of discrete elements called tokens.
Once the data is transformed, simple objectives such as mask modeling (Devlin et al., 2018) or next
token prediction (Brown et al., 2020) can be used for self-supervised training of the model. In RL,
recent works have explored the use of transformer networks with expert data. While these investi-
gations have yielded exciting outcomes, such as zero-shot capabilities and transfer learning between
environments, methods such as MTM (Wu et al., 2023) and SMART (Sun et al., 2023) often rely on
highly specific masking techniques and masking schedules (Liu et al., 2022a), and explore transfer
learning across a limited number of tasks. Hence, further exploration of this class of methods is
warranted. In this paper, we provide a general study of the different self-supervised objectives and
tokenization schemes. In addition, we outline a standardized set of downstream tasks for evaluating
the transfer learning performance of pretrained models, ranging from behavioral cloning to offline
RL, robustness to sensor failure, and adaptation to changing dynamics.

Our contributions. The PASTA study, which stands for pretrained action-state transformer
agents, provides comprehensive comparisons including 4 pretraining objectives, two tokenization
techniques, 5 pretraining datasets (from Brax and Atari), and 7 downstream tasks. In addition to
imitation learning and standard RL, we explore scenarios involving 4 physical regime changes and
11 observation alterations to assess the robustness of the learned representations. Finally, we assess
the zero-shot performance of the models for predictions related to decision-making. We summarize
the key findings of our study below:

1. Tokenize trajectories at the component level. Tokenization at the component level sig-
nificantly outperforms tokenization at the modality level. In other words, it is more effective
to tokenize trajectories based on the individual components of the state and action vectors,
rather than directly tokenizing states and actions as is commonly done in existing works.

2. Prefer first principle objectives over convoluted ones. First principle training ob-
jectives, such as random masking or next-token prediction with standard hyperparameters
match or outperform more intricate and task-specific objectives carefully designed for RL,
such as those considered in MTM or SMART.

3. Pretrain the same model on datasets from multiple domains. Simultaneously
pretraining the model on datasets from all environments leads to enhanced performance
across all tasks compared to training separate models for each individually.

4. Generalize with a small parameter count. All of the examined models have fewer
than 7M parameters. Hence, while these approaches are both affordable and practical even
on limited hardware resources, the above results are corroborated by experimentation with
4 transfer learning scenarios: a) probing (the pretrained models generate embeddings and
only the policy head is trained to address downstream tasks), b) last layer fine-tuning (only
the pretrained model’s last layer is fine-tuned), c) full fine-tuning and d) zero-shot transfer.
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Figure 1: Illustration of the PASTA study. Left: State-action trajectories are collected from
multiple environments and tokenized. Middle: A transformer model learns latent representations
T (s) of the environments’ states. In this study, we compare different masking patterns, e.g., random
tokens prediction (BERT) or next token prediction (GPT). Right: The learned representations
T (s) serve as surrogate states for the policy and are evaluated on multiple downstream tasks.

2 Related Work

Self-supervised Learning for RL. Self-supervised learning trains models using unlabeled data
and has been successful in various control domains (Liu & Abbeel, 2021; Yuan et al., 2022; Laskin
et al., 2022). One effective approach is contrastive self-prediction (Chopra et al., 2005; Le-Khac et al.,
2020; Yang & Nachum, 2021; Banino et al., 2021) which has proven valuable in data augmentation
strategies, enabling downstream task solving through fine-tuning, particularly in RL tasks (Laskin
et al., 2020; Nachum & Yang, 2021). Our study aligns with this trend, focusing on domain-agnostic
self-supervised mechanisms that leverage masked predictions to pretrain RL policy networks.

Offline RL and Imitation Learning. Offline learning for control involves leveraging historical
data from a fixed behavior policy πb to learn a reward-maximizing policy in an unknown environment.
Offline RL methods are typically designed to restrict the learned policy from producing out-of-
distribution actions (Kumar et al., 2019; Fujimoto & Gu, 2021; Fakoor et al., 2021; Dong et al., 2023)
or constrain the learning process within the support of the dataset via importance sampling (Sutton
et al., 2016; Nair et al., 2020; Liu et al., 2022b). In contrast, Imitation learning (IL) focuses on
learning policies by imitating expert demonstrations. Behavior cloning (BC) involves training a
policy to mimic expert actions directly while Inverse RL (Ng et al., 2000) aims to infer the underlying
reward function to train policies that generalize well to new situations. In contrast, the models
investigated in PASTA focus on learning general reward-free representations that can accelerate
and facilitate the training of any off-the-shelf offline RL or IL algorithm.

Masked Predictions and Transformers in RL. Recently, self-supervised learning techniques
based on next token prediction (Brown et al., 2020) and random masked predictions (Devlin et al.,
2018) have gained popularity. Transformer-based models, notably the decision transformer (Chen
et al., 2021) and trajectory transformer (Janner et al., 2021), have proven effective in offline RL by
implementing a causal transformer structure for direct reward-conditioned policy fitting, inspiring
further developments (Zheng et al., 2022; Yamagata et al., 2022; Liu et al., 2022a; Lee et al., 2023;
Badrinath et al., 2023). Notably, GATO (Reed et al., 2022) is a multi-modal behavioral cloning
method that directly learns policies. These work contrast with PASTA which studies pretrained
self-supervised representations learned from different masking patterns and objectives. MTM (Wu
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Figure 2: Interquartile Mean (IQM) of the expert-normalized scores, aggregated over all 4 envi-
ronments, computed with stratified bootstrap confidence intervals (95% CI) over 5 seeds and 256
rollouts. ↑ (resp. ↓) indicates that higher (resp. lower) is better. (a) Representation learning and
(b) Zero-shot transfer tasks.

et al., 2023) and SMART (Sun et al., 2023) are relevant to this study: MTM uses modality-level
masking for single-domain pretraining whereas SMART uses a comprehensive objective involving
forward and inverse predictions in addition to “random masked hindsight control” for cross-domain
generalization with real-valued visual observations.

3 The PASTA Study

3.1 Preliminaries

Self-supervised Learning. In this paper, we study self-supervised learning (Balestriero et al.,
2023) techniques to pretrain models on a large corpus of static (offline) datasets from interactions
with simulated environments, as done in Shah & Kumar (2021); Schwarzer et al. (2023). By solving
pretraining objectives, such as predicting future states or filling in missing information, the models
learn to extract meaningful features that capture the underlying structure of the data. We focus our
study on the use of the transformer architecture due to its ability to model long-range dependencies
and capture complex patterns in sequential data. In addition, the attention mechanism is designed
to consider the temporal and intra-modality (position in the state or action vectors) dependencies.
After pretraining the models, we evaluate their capabilities to solve downstream tasks. This analysis
is done through the lenses of 3 mechanisms: (i) probing, (ii) fine-tuning, and (iii) zero-shot transfer.
The goal of the study is to investigate which pretraining process makes the model learn the most
generalizable representations to provide a strong foundation for adaptation and learning in specified
environments. An illustration of the approach adopted in PASTA is given in Figure 1.

Reinforcement Learning. We place ourselves in the Markov Decision Processes (Puterman,
1994) framework. A Markov Decision Process (MDP) is a tuple M = {S, A, P, R, γ}, where S is the
state space, A is the action space, P is the transition kernel, R is the bounded reward function and
γ ∈ [0, 1) is the discount factor. Let π denote a stochastic policy mapping states to distributions over
actions. In the infinite-horizon setting, we seek a policy that optimizes J(π) = Eπ[

∑∞
t=0 γtr (st, at)].

3.2 Component-level Tokenization

A key focus of this study is the component-level representation of the states and actions, i.e., their
vector components are dissected into individual tokens, as depicted in the middle panel of Figure 1,
rather than at the modality-level where one state corresponds to one token. Most previous work,
including SMART (Sun et al., 2023) and MTM (Wu et al., 2023) use the modality-level and consider
a trajectory as a sequence of state-action (often -return) tuples. Instead, in this study, we break
the sequences down to individual state and action components and exclude the return to allow
applicability to reward-free settings and the learning of representations not tied to task-specific
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Figure 3: (a) Performance profile of models after full, last layer and no fine-tuning (probing), and
MLP policies trained from raw observations. Shaded areas show bootstrapped CI over 5 seeds and
256 rollouts. (b) Evaluation in all downstream tasks with multi- and single-domain pretraining,
no-pretraining and training from raw observations. Remarkably, multi-domain pretraining performs
better or on par with single-domain pretraining, despite being trained on the same amount of data.

rewards (Stooke et al., 2021; Yarats et al., 2021). Based on our experimental results (Section 4), we
argue that component-level level tokenization allows capturing better dynamics and dependencies at
different space scales. As a result, more generalizable representations are learned that improve the
performance of downstream tasks across different robotic structures.

3.3 Pretraining

Trajectory modeling. The PASTA study includes different types of self-supervised learning
strategies, each using different combinations of random token masking and/or next token prediction.
Next token prediction uses autoregressive masking, while random masked prediction aims to learn
from a sequence of trajectory tokens denoted as τ = (s0

0, ..., sK
0 , a0

0, ..., aL
0 , ..., s0

T , ..., sK
T ). The model’s

task is to reconstruct this sequence when presented with a masked version τ̂ = Tθ(Masked(τ)),
where K is the observation space size, L is the action space size and T is an arbitrary trajectory
size. Here, Tθ refers to a bi-directional transformer, and Masked(τ) represents a modified view
of τ where certain elements in the sequence are masked. For instance, a masked view could be
(s0

0, ..., sK
0 , a0

0, ..., aL
0 , ..., _, ..., _), where the underscore “_” symbol denotes a masked element.

Pretraining objectives. Our study explores various masking strategies for pretraining. First, the
C-GPT masking pattern mimics GPT’s masking mechanism and uses causal (backward-looking)
attention to predict the next unseen token in RL trajectories. Second, the C-BERT masking
pattern is derived from BERT and uses random masks to facilitate diverse learning signals from
each trajectory by enabling different combinations. Figure 1 (middle) illustrates C-BERT’s and C-
GPT’s masking mechanisms. Third, the MTM masking scheme (Wu et al., 2023) combines random
masking (similar to BERT) and causal prediction of the last elements of the trajectory. This latter
aims to prevent the model from overly relying on future token information. While MTM operates at
the modality level, we adapt it to operate directly on components by masking random tokens within
the trajectory and a certain proportion of the last tokens. We refer to this method as C-MTM,
i.e., component-level MTM. Finally, SMART uses 3 different masking patterns (Sun et al., 2023):
forward prediction, inverse prediction and “random masked hindsight control”. Similarly, we derive
C-SMART, where instead of masking an entire modality at each stage, we mask a random fraction
of the tokens within that modality. See Appendix C for additional details.
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Table 1: Expert-normalized returns obtained with representations learned from modality-level tok-
enization, component-level tokenization, and from an MLP policy network in the 4 representation
learning downstream tasks. We include the maximum performance obtained using modality- or
component-level tokenization. (↑) indicates higher is better and [11] means 11 variations per task.
We trained all methods with 5 different random seeds and evaluated them using 256 rollouts.

Domain Task MLP
(raw observations)

Modality-level
tokenization

Component-level
tokenization

HalfCheetah

IL (↑) [1] 1.132 ± 0.003 1.151 ± 0.003 1.154 ± 0.003
Offline-RL (↑) [1] 0.571 ± 0.030 1.152 ± 0.004 1.154 ± 0.003
Sensor failure (↑) [11] 0.896 ± 0.003 1.006 ± 0.002 1.048 ± 0.002
Dynamics change (↑) [4] 0.251 ± 0.003 0.339 ± 0.003 0.369 ± 0.004

Hopper

IL (↑) [1] 0.898 ± 0.022 0.847 ± 0.019 1.078 ± 0.021
Offline-RL (↑) [1] 0.890 ± 0.022 0.812 ± 0.020 0.971 ± 0.022
Sensor failure (↑) [11] 0.307 ± 0.005 0.554 ± 0.006 0.584 ± 0.007
Dynamics change (↑) [4] 0.169 ± 0.035 0.290 ± 0.035 0.290 ± 0.038

Walker2d

IL (↑) [1] 0.736 ± 0.010 1.128 ± 0.029 1.178 ± 0.031
Offline-RL (↑) [1] 0.911 ± 0.025 0.923 ± 0.025 1.046 ± 0.023
Sensor failure (↑) [11] 0.339 ± 0.003 0.419 ± 0.003 0.511 ± 0.003
Dynamics change (↑) [4] 0.000 ± 0.000 0.004 ± 0.001 0.005 ± 0.001

Ant

IL (↑) [1] 0.876 ± 0.032 1.203 ± 0.008 1.209 ± 0.005
Offline-RL (↑) [1] 0.846 ± 0.030 0.907 ± 0.035 1.213 ± 0.021
Sensor failure (↑) [11] 0.082 ± 0.004 0.615 ± 0.007 0.717 ± 0.007
Dynamics change (↑) [4] 0.015 ± 0.001 0.065 ± 0.001 0.068 ± 0.001

3.4 Downstream evaluation

In this study, we evaluate the learned representations from two perspectives: (i) their ability to
generate high-quality representations through probing, full fine-tuning, and last layer fine-tuning
(4 Representation learning tasks), and (ii) their capability to solve new tasks in a zero-shot
transfer setting (3 Zero-shot transfer tasks). Representation learning tasks: We use Imitation
Learning, Offline RL, Sensor Failure, and Dynamics Change. First, we evaluate the quality of raw
representations learned by pretrained agents using probing, i.e., the pretrained models weights are
frozen and the final attention layer’s embeddings are fed into a single dense layer network. Second,
we assess the quality of the representations through full fine-tuning and last layer fine-tuning, i.e.,
the weights of the pretrained agents are further updated to solve the downstream tasks. Fine-tuning
just the last layer updates only a small fraction of the total weight volume (<1M parameters),
enhancing efficiency and computational cost. In all settings, a held-out dataset is used for training
on the downstream tasks, and in the Sensor Failure and Dynamics Change tasks, the alterations
are only introduced when evaluating the learned policies in the environments. Zero-shot transfer
tasks: These tasks entail Action Prediction (AP), Forward Prediction (FP), and Inverse Prediction
(IP). They evaluate the pretrained models’ ability to directly predict states or actions based on
trajectory information. Specifically, the prediction problems can be expressed as follows; AP:
(τt−1, st → at), FP: (τt−1, st, at → st+1) and IP: (τt−1, st, st+1 → at), where the input to the model
is shown on the left side of the parentheses, and the prediction target is shown on the right side. For
each category, we examine both component prediction and modality (state or action) prediction.

4 Experimental Analysis

In this section, we present the experimental study of the impact of pretraining objectives, tokeniza-
tion, and dataset preparation on the generalization capabilities of pretrained PASTA models.



RLJ | RLC 2024

4.1 Experimental Setup

Domains. To assess the effectiveness of our approach, we select tasks from the Brax library (Free-
man et al., 2021a), which provides environments designed to closely match (Freeman et al., 2021b)
the original MuJoCo versions (Todorov et al., 2012) while offering a highly flexible and scalable
framework for simulating robotic systems. More information about the environments is given in Ap-
pendix D.2. The pretraining datasets consist of trajectories collected from 4 environments: HalfChee-
tah, Hopper, Walker2d and Ant. Following the protocols used in previous work (Fu et al., 2020; Sun
et al., 2023), we trained 10 Soft Actor-Critic (SAC) (Haarnoja et al., 2018) agents initialized with
different seeds and collected single- and multi-domain datasets composed of 680M tokens in total.
For details about the pretraining datasets, we refer the reader to Appendix D.3.

To assess the reproducibility of our findings and compare the performance of multi-domain versus
single-domain pretrained models, we provide 7 downstream tasks across 4 environments, totaling 28
tasks, with further details in Appendix D.4.

Furthermore, we validate the generalization of our findings on a different domain with experiments
on Atari 2600 (Bellemare et al., 2013). We refer the reader to Appendix E for details and results.

Implementation details. In this study, we focus on reasonably sized and efficient models, typi-
cally consisting of around 7M parameters. To capture positional information effectively, we incorpo-
rate a learned positional embedding layer at the component level. Additionally, we include a rotary
position encoding layer following the approach in Su et al. (2021) to account for relative positional
information. More details are provided in Appendix B. To convert state or action components into
tokens, we adopt a tokenization scheme similar to Reed et al. (2022). Continuous values are mu-law
encoded to [-1, 1] and discretized into 1024 uniform bins. The sequence order follows observation
tokens then action tokens with transitions arranged in timestep order. Finally, we put in perspective
the performance of the different pretrained models by comparing them to an agent learning directly
from raw observations without pretraining. For fairness, its hyperparameters have been tuned by
taking the best performance for each domain and downstream task.

4.2 Results

Component-level Tokenization. Our initial analysis probes the influence of tokenization, how
finely we dissect the data (component- or modility-level), on the models’ performance. We train
models using both the SMART and MTM protocols at two levels of granularity: modality-level
(predicting entire observations and actions) for SMART and MTM, and component-level (pre-
dicting individual observation and action elements) for C-SMART and C-MTM. Despite sharing
identical architectures and training conditions, and being trained on the same multi-domain dataset,
the models’ fine-tuning performance vary. As depicted in Figure 2 (a), component-level tokenization
markedly enhances performance across a spectrum of tasks, including Imitation Learning, Offline
RL, variations of Sensor Failure, and Dynamics Change tasks. Furthermore, Table 1 provides a
breakdown of performance for both tokenization techniques across different domains. Our exper-
iments on the Atari domain in Appendix E reveal the same conclusion, i.e., transitioning from
modality-level to component-level tokenization improves performance.

Masking objectives. In the light of the previous section demonstrating the advantages of using
component-level tokenization, we design C-BERT for masked language modeling and C-GPT for
next token prediction. In this section, we compare these two fundamental masking approaches
against the state-of-the-art methods C-MTM and C-SMART which incorporate more tailored
design choices. These models are trained on the multi-domain dataset and we systematically fine-
tune all models for all downstream tasks and domains. Figure 2 (a) reveals that C-BERT exhibits
on average higher performance on the considered downstream tasks compared to other masking
schemes and training objectives. Based on C-BERT showing the best performance among other
models, it is selected for further analysis within this study. Our experiments on Atari shown in
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Figure 6 in Appendix E reveal that C-GPT and C-BERT outperform all other models, confirming
that simpler masking objectives are sufficient to achieve robust generalization performance.

Multi-domain representation. Our exploration of learning multi-domain representations via
component-level tokenization reveals that models pretrained in this manner outperform those that
are specialized and trained on single-domain data. Multi-domain representations also surpass models
randomly initialized, confirming the positive impact of pretraining on model performance, and vanilla
MLP policy networks. These findings, illustrated in Figure 3(b), underscore the benefits of leveraging
diverse domain knowledge, thereby enhancing the model’s ability to generate useful representations
across various tasks and domains. This suggests that multi-domain models effectively consolidate the
representation knowledge from various domains into a unified model. To ensure a fair comparison, all
models were trained on an equal amount of tokens and possess equivalent representation capabilities
in terms of architecture and learned parameters. Detailed results for each specific task can be found
in the appendices, specifically in Appendix A.1.

Fine-tuning and Zero-shot. Figure 3 (a) presents the performance profiles for various fine-
tuning strategies: probing (the transformer’s parameters are frozen), last layer fine-tuning (only
the last layer’s parameters are trained) and full fine-tuning (all the parameters are trained). Full
fine-tuning results in a higher fraction of runs achieving near-expert scores, followed by last-layer
fine-tuning, MLP, and probing. This shows that fine-tuning appears to bridge the gap between the
generic representations and the specialized requirements of the downstream tasks. We further study
the zero-shot capabilities of the pretrained models which we evaluate on an additional suite of tasks,
outlined in Section 3.4, originally introduced in MTM (He et al., 2022). Figure 2 (b) reveals that the
errors in Action Prediction (AP), Forward Prediction (FP), and Inverse Prediction (IP) for C-GPT
and C-BERT are on par with those of more sophisticated models like C-MTM or C-SMART. This
suggests that even simple pretraining objectives are well-aligned with the inference tasks, despite the
models not being explicitly trained for these tasks. Such findings reinforce our conclusion that simple
objective functions and masking patterns combined with component-level tokenization are sufficient
to produce good performance. Importantly, we note that the masking strategy of C-BERT and
C-GPT allows the emergence of competitive Action Prediction (AP) performance, which, according
to the results in Figure 2 (a) is sufficient and indicative of strong downstream performance.

Robust representations. Here, we focus on resilience to sensor failure and adaptability to dy-
namics change. These factors play a crucial role in real-world robotics scenarios, where sensor
malfunctions and environmental variations can pose risks and impact decision-making processes.
We used BC as the training algorithm and during evaluation, we systematically disabled each of
the 11 sensors individually by assigning a value of 0 to the corresponding coordinate in the state
vector. In Table 2 in Appendix A.2, multi-domain models exhibit higher performance compared to
the baselines, demonstrating their enhanced robustness in handling sensor failures. Furthermore,
we introduced 4 gravity changes during the inference phase, and the results reaffirm the resilience
of multi-domain learning in adapting to dynamics change, corroborating our previous findings.

5 Discussion

This paper introduces the PASTA study which investigates self-supervised pretrained transformers
for RL applications. The study contributes analyses across 4 training objectives, 2 tokenization
methods, 5 training datasets and 7 downstream tasks. PASTA evaluates the efficacy of different
design choices in probing, fine-tuning, and zero-shot evaluation in the Brax and the Atari domains.

Key findings include the effectiveness of simple self-supervised objectives such as random masking
or next token prediction over more complex ones. Component-level tokenization proved superior to
modality-level, underscoring the importance of finer tokenization for richer representations. Addi-
tionally, multi-domain pretraining led to better performance than domain-specific training, demon-
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strating the value of cross-domain knowledge transfer. Finally, results highlighted these models’
adaptability to sensor failure or dynamic change, mitigating risks in robotics applications.

We hope PASTA will provide valuable guidance to researchers interested in leveraging self-
supervised learning for RL in complex decision-making tasks. The models studied are relatively
lightweight, enabling the replication of both pretraining and fine-tuning experiments on readily
available hardware. In future work, we anticipate further exploration of self-supervised objectives,
tokenization methods, and a broader spectrum of tasks to evaluate adaptability to online learning.
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A Brax additional results

A.1 Detailed Breakdown of Downstream Tasks Results

We present in Figure 4 the detailed results per-downstream task on the Brax domain.

Figure 4: Detailed breakdown of the Mean, Interquartile Mean (IQM) and Median expert normal-
ized scores, computed with stratified bootstrap confidence intervals, obtained in the 4 fine-tuning
downstream tasks for the 4 environments HalfCheetah, Hopper, Walker2d and Ant. We repeatedly
trained all methods with 5 different random seeds and evaluated them using 256 rollouts.

A.2 Robust Representations

We present in Table 2 the results for different pretraining settings on the task of Sensor Failure and
Dynamics Change.

B Sequence Modeling Details

Positional encoding We use two positional-embedding methods to account for the inherent causal
nature of the RL trajectories. The first positional embedding is at the component-level, similarly
to Reed et al. (2022) we assing an arbitrary order to the components within one state vector or
one action vector, and we learn associated representations with a learned embedding layer. For
example, in Hopper, one observation consists in 11 components, these components will be indexed
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Table 2: Breakdown of expert-normalized returns in the Sensor Failure and Dynamics Change tasks.
(↑) indicates that higher is better.

Model Sensor Failure (↑) Dynamics Change (↑)

Multi-domain pretraining 0.69 ± 0.01 0.17 ± 0.01
Single-domain pretraining 0.66 ± 0.01 0.18 ± 0.01
MLP (raw observations) 0.41 ± 0.02 0.11 ± 0.01
No pretraining 0.55 ± 0.01 0.16 ± 0.01

from 0 to 10 and passed to the positionnal embedding layer, then these embeddings are added
to the tokens embeddings. The second embedding layer is a Rotary Embedding Layer (Su et al.,
2021) that accounts for relative positions insisde the sequence, capturing both within-timestep and
between-timestep dependencies.

Handling action-spaces in the Brax domain In the sequence tokenization phase, we do not use
return conditioning but since the representation models are pretrained on multiple environments and
tasks, we use environment conditioning, i.e., du ring training, an environment token is appended
at the beginning of the sequences in each batch, providing the model with additional contextual
information. In practice, the length of the last two modalities (state and action concatenated)
varies across different environments. Therefore, the maximum portion of masked tokens at the end
of the sequence differs depending on the environment. For instance, in the Hopper environment
with 3 actions and 11 observation tokens, the maximum portion of masked tokens is 14, while in
HalfCheetah with 6 actions and 18 observation tokens, it is 24. Additionally, as we maintain a fixed-
size context window of 128, the sequences’ starting points will have varying truncations for different
environments, ensuring a non-truncated state at the end of the window. Another design choice is the
embedding aggregation, i.e., how to come from a context_window x embedding_dimension tensor
to a 1 x embedding_dimension tensor. We decided to use take the embedding from the last observed
token.

Computational Cost. A significant advantage of the component-level sequencing approach is its
reduced input dimension, allowing cheaper computational costs. By capturing the components of
states and actions at different time steps, the input space expands linearly rather than quadratically
mitigating the challenges associated with the curse of dimensionality. To illustrate this, consider a
simple example of a 2-dimensional state space with a discretization size of 9. With a component-level
granularity, the input size becomes 2 × 9 = 18. In contrast, a state-level granularity results in an
input size of 9 × 9 = 81. The former exhibits linear growth within the observation space, while
the latter demonstrates quadratic growth. Moreover, while it effectively multiplies the length of the
input sequence by the average number of components in a state, this drawback is absorbed by the
increased context window of transformer models. Lastly, for an equal number of trajectories, the
number of tokens is also trivially larger than that with a state- and action-level granularity.

C Masking Patterns

In this section, we provide further details on the masking patterns and schedule used in the
SMART (Sun et al., 2023) and MTM (Wu et al., 2023) baselines. In C-GPT or C-BERT, we
focused on reducing the technicalities to their minimum: a simple masking pattern, i.e., GPT-like
or BERT-like, and no masking schedule.

In SMART, the objective involves 3 components: forward prediction, inverse prediction, and “ran-
dom masked hindsight control”. The masking schedule involves two masking sizes, k and k′, which
determine the number of masked actions and observations during pretraining. The masking sched-
ule for actions (k) is designed to gradually increase the difficulty of the random masked hindsight
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control task. It starts with k = 1, ensuring the model initially predicts masked actions based on a
single observed action. As training progresses, the value of k is increased in a curriculum fashion.
The masking schedule for observations (k′) ensures that the model learns to predict masked actions
based on a revealed subsequence of observations and actions, rather than relying solely on local
dynamics. Similar to the action masking schedule, k′ starts at 1 and gradually increases during
training. SMART’s paper suggests that the masking schedule is essential for effective pretraining
in control environments. By gradually increasing the masking difficulty, the model is exposed to
a range of training scenarios, starting with simple local dynamics and gradually transitioning to
complex long-term dependencies.

In MTM, the masking pattern is implemented by requiring at least one token in the masked sequence
to be autoregressive, which means it must be predicted based solely on previous tokens, and all future
tokens are masked. In addition, MTM uses a modality-specific encoder to elevate the raw trajectory
inputs to a common representation space for the tokens. Finally, MTM is trained with a range
(between 0.0 and 0.6) of randomly sampled masking ratios.

Note that in order to accurately compare different design choice and training objectives, we developed
our own implementation of the methods presented in this study.

D Brax Experimental Details and Hyperparameters

In this section, we provide more details about the experiments, including hyperparameter configu-
ration and details of each environment (e.g., version). For all experiments, we run 256 rollouts with
5 different random seeds and report the mean and stratified bootstrap confidence intervals.

D.1 Fair Comparison

To ensure a fair comparison between the representation models using an MLP or a transformer
architecture, we made sure to have a comparable number of parameters. Both models consist of
a minimum of 3 layers with a size of 256 for the baseline, while transformer models use a single
layer with a hidden size of 512 for the policy. We tested bigger architecture for the MLP without
performance gain.

Moreover, we choose to fine-tune the MLP baselines to achieve the best performance in each environ-
ment. In contrast, we use the same set of hyperparameters for all domains involving PASTA models.
This approach puts PASTA models at a slight disadvantage while holding the promise of potentially
achieving even better performance with the PASTA methods with further hyperparameter tuning.

Finally, when a pretrained model is involved, we always select the final checkpoint after the fixed 3
epochs done over the pretraining dataset.

D.2 Environment Details

Figure 5: Continuous Control Downstream Tasks.

For all experiments, we use the 0.0.15 version of Brax (Freeman et al., 2021a). Each environment
in Brax, illustrated in Figure 5, provides a realistic physics simulation, enabling agents to interact
with objects and the environment in a physically plausible manner. The tasks studied in this paper
feature (i) a HalfCheetah robot (Wawrzyński, 2009) with 9 links and 8 joints. The objective is to
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apply torques on the joints to make the cheetah run forward as fast as possible. The action space
for the agents consists of a 6-element vector representing torques applied between the different links;
(ii) a Hopper robot (Erez et al., 2011) which is a two-dimensional one-legged figure consisting of
4 main body parts: the torso, thigh, leg, and foot. The objective is to make hops in the forward
direction by applying torques on the hinges connecting the body parts. The action space for the
agent is a 3-element vector representing the torques applied to the thigh, leg, and foot joints; (iii)
a Walker robot (Erez et al., 2011) which is a two-dimensional two-legged figure comprising a single
torso at the top, two thighs below the torso, two legs below the thighs, and two feet attached to
the legs. The objective is to coordinate the movements of both sets of feet, legs, and thighs to
achieve forward motion in the right direction. The action space for the agent is a 6-element vector
representing the torques applied to the thigh, leg, foot, left thigh, left leg, and left foot joints; (iv) an
Ant robot (Schulman et al., 2016) which is a one torso body with 4 legs attached to it with each leg
having two body parts. The objective is to coordinate the movements of the 4 legs to achieve forward
motion in the right direction. The action space for the agent is an 8-element vector representing the
torques applied at the hinge joints.

D.3 Dataset Details

In this section, we provide further detail on the collection of the datasets. We trained 10
SAC (Haarnoja et al., 2018) agents for a total of 5M timesteps in each of the 4 environments.
From each, we select the 20% latest trajectories of size 1000. This choice aims to explore the poten-
tial of self-supervised learning in leveraging “expert” knowledge. Future explorations will investigate
the impact of diverse data qualities, including suboptimal or exploratory behaviors. This results in
a combined total of 40M transitions. With each environment comprising different observation and
action sizes, the overall multi-domain dataset is composed of 680M tokens. We also have one dataset
for each domain.

Next, we give the hyperparameters of the SAC agents used to collect the pretraining trajectories.
These are given in Table 3.

Table 3: Hyperparameters used in SAC.

Hyperparameter Value

Adam stepsize 3 · 10−4

Discount (γ) 0.99
Replay buffer size 106

Batch size 256
Nb. hidden layers 2
Nb. hidden units per layer 256
Nonlinearity ReLU
Target smoothing coefficient (τ) 0.005
Target update interval 1
Gradient steps per timestep 1
Training steps 20,000

We also provide a concrete example of the state and action components with their corresponding
properties for the simplest robot structure, Hopper. The number of components for each property
is given in parentheses. In this case, the action space consists of torques applied to the rotors (3),
while the observation space includes the following components: z-coordinate of the top (1), angle
(4), velocity (2), and angular velocity (4).
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D.4 Downstream Tasks Details

In this section, we provide the hyperparameters used in the training of the imitation learning algo-
rithm Behavioural Cloning (BC) (Table 4) and the offline RL algorithm TD3-BC (Table 5).

Table 4: Hyperparameters used in the BC downstream task.

Hyperparameter Value
Horizon T 1000
Batch Size 1024
Non-Linearity GELU (Hendrycks & Gimpel, 2016)
Nb. hidden layers 1
Nb. hidden units per layer 512
Adam stepsize 3 · 10−4

Training steps 80,000

Table 5: Hyperparameters used in the TD3-BC downstream task.

Hyperparameter Value
Horizon T 1000
Batch Size 1024
Discount γ 0.99
Non-Linearity GELU (Hendrycks & Gimpel, 2016)
Nb. hidden layers 1
Nb. hidden units per layer 512
Adam stepsize (actor) 1 · 10−4

Adam stepsize (critic) 3 · 10−4

Target update rate 5 · 10−3

Policy noise 0.2
Policy noise clipping (-0.5, 0.5)
Policy update frequency 2
Conservatism coefficient α 2.5
Training steps 140,000

Then, we give additional details about the Sensor Failures downstream task. In Table 6, 7, 8 and 9 we
include the correspondence between each sensor number and its associated name in all environments.
In the 11 variations of the Sensor Failure downstream task, we switch off each one of these sensors.

Finally, to implement the Dynamics Change downstream task we use the GravityWrapper for Brax
environments of the QDax library (Chalumeau et al., 2023) and similarly to Chalumeau et al. (2022)
we train the policies with a gravity multiplier of 1 and we vary this coefficient at inference by the
following constant values: 0.1, 0.25, 4, and 10.
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Table 6: Sensor name / Sensor number in Halfcheetah.

Sensor name Sensor number

z-coordinate of the center of mass 1
w-orientation of the front tip 2
y-orientation of the front tip 3
angle of the back thigh rotor 4
angle of the back shin rotor 5
angle of the back foot rotor 6
velocity of the tip along the y-axis 7
angular velocity of front tip 8
angular velocity of second rotor 9
x-coordinate of the front tip 10
y-coordinate of the front tip 11

Table 7: Sensor name / Sensor number in Hopper.

Sensor name Sensor number

z-coordinate of the top (height of hopper) 1
angle of the top 2
angle of the thigh joint 3
angle of the leg joint 4
angle of the foot joint 5
velocity of the x-coordinate of the top 6
velocity of the z-coordinate (height) of the top 7
angular velocity of the angle of the top 8
angular velocity of the thigh hinge 9
angular velocity of the leg hinge 10
angular velocity of the foot hinge 11

Table 8: Sensor name / Sensor number in Walker2d.

Sensor name Sensor number

z-coordinate of the top (height of hopper) 1
angle of the top 2
angle of the thigh joint 3
angle of the leg joint 4
angle of the foot joint 5
angle of the left thigh joint 6
angle of the left leg joint 7
angle of the left foot joint 8
velocity of the x-coordinate of the top 9
velocity of the z-coordinate (height) of the top 10
angular velocity of the angle of the top 11
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Table 9: Sensor name / Sensor number in Ant.

Sensor name Sensor number

z-coordinate of the torso (centre) 1
x-orientation of the torso (centre) 2
y-orientation of the torso (centre) 3
z-orientation of the torso (centre) 4
w-orientation of the torso (centre) 5
angle between torso and first link on front left 6
angle between the two links on the front left 7
angle between torso and first link on front right 8
angle between the two links on the front right 9
angle between torso and first link on back left 10
angle between the two links on the back left 11

D.5 Hyperparameters

In Table 10, we show the shared hyperparameters for all transformer backbones used during the
pretraining phase as well as C-BERT specific parameters.

Table 10: Hyperparameters and configuration details for transformer backbones.

Hyperparameter Value

Shared

Transformer Layers 10
Transformer Heads 8
Non-Linearity GELU (Hendrycks & Gimpel, 2016)
Learning Rate 3e − 4
Num Epochs 3
Batch Size 4096
Num Quantization Tokens 1024
Embedding Dimension 256

C-BERT specific

Noising Ratio 0.15
Masking Probability 0.8
Random Token Probability 0.1

E Atari experiments

In this section we present the details of the additional experiments we conducted on the Atari
domain.

E.1 Implementation details

The Atari benchmark (Bellemare et al., 2013) offers a playground for agents across 60 Atari 2600
games. Within this domain, the DQN Replay Dataset, as proposed by Agarwal et al. (2020), com-
prises a collection of five logged training trajectories of models trained using deep Q-learning for
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each of the 60 Atari 2600 environments. Each of these training trajectories consists of 50, 000, 000
transitions. This large dataset allows for reproducible benchmarks of proposed offline RL algo-
rithms (Gulcehre et al., 2020).

We use the DQN Replay Dataset in our experiments on the Atari domain. Since the dataset’s
observations are images, we choose to encode them using a VQ-VAE (Van Den Oord et al., 2017).
This approach follows the methodology outlined by Micheli et al. (2022), and we train the auto-
encoder by minimizing a combination of the reconstruction loss and a perceptual loss (Johnson et al.,
2016). Additional hyperparameters for the VQ-VAE model are described in Table 13. The discrete
encodings of these images are then used as tokens for the transformer model.

For the pretraining phase, we closely follow the settings used for the Brax domain, and use the 20%
last trajectories to construct the pretraining dataset. See Table 11 for detailed hyperparameters.

For the downstream tasks, we limit ourselves to the Imitation Learning setting. To construct the
BC dataset, we follow Gulcehre et al. (2020) and we use all the 50M transitions for each of the 5
seeds in the dataset, resulting in a dataset with 250M transitions equating to about 4.25B tokens.

E.2 Results

Figure 6 compares the performance of different pretraining objectives for the task of Imitation Learn-
ing in the Ms-Pacman environment. Consistently with the observations made for the Brax domain,
the methods with component-level masking show higher performance than the modality-level ones.
Additionally, C-GPT and C-BERT exhibit the best overall performance across Mean, Interquartile
Mean (IQM), and Median scores, which strengthen the claim that simple but foundational pretrain-
ing objectives can foster the learning of strong representations for RL downstream tasks.

Figure 6: Detailed breakdown of the Median, Interquartile Mean (IQM) and Mean expert-normalized
scores, computed with stratified bootstrap 95% confidence intervals, obtained in the fine-tuning
downstream task for the Ms-Pacman environment. We repeatedly trained all methods with 3 dif-
ferent random seeds and evaluated them using 128 rollouts.

E.3 Hyperparameters

Table 11 shows the hyperparameters for the pretraining, Table 12 for the Imitation Learning down-
stream task, Table 13 for the training on the VQ-VAE model used for the Atari domain.
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Table 11: Hyperparameters and configuration details shared across all methods for the pretraining
in the Atari domain.

Hyperparameter Value

Transformer Layers 4
Transformer Heads 8
Non-Linearity GELU (Hendrycks & Gimpel, 2016)
Learning Rate 3e − 4
Num Epochs 4
Batch Size 1024
Num Quantization Tokens 1024
Embedding Dimension 256

Table 12: Hyperparameters used in the BC downstream task.

Hyperparameter Value
Horizon T (in frames) 108K
Frame skip 4
Batch Size 256
Non-Linearity GELU (Hendrycks & Gimpel, 2016)
Nb. hidden layers 2
Nb. hidden units per layer 256
Adam stepsize 3 · 10−4

Training steps 1M

Table 13: Hyperparameters for the VQVAE model.

Hyperparameter Value

Frame dimensions 80 × 80
Layers 4
Channels in convolutions 64
Codebook size 1024
Embedding Dimension 512
Tokens per frame 16
Self-attention layers at resolution [10, 20, 40]


