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Abstract

In offline reinforcement learning (RL), the absence of active exploration calls for
attention on the model robustness to tackle the sim-to-real gap, where the discrep-
ancy between the simulated and deployed environments can significantly undermine
the performance of the learned policy. To endow the learned policy with robust-
ness in a sample-efficient manner in the presence of high-dimensional state-action
space, this paper considers the sample complexity of distributionally robust linear
Markov decision processes (MDPs) with an uncertainty set characterized by the
total variation distance using offline data. We develop a pessimistic model-based
algorithm and establish its sample complexity bound under minimal data coverage
assumptions, which outperforms prior art by at least Õ(d), where d is the feature
dimension. We further improve the performance guarantee of the proposed algorithm
by incorporating a carefully-designed variance estimator.

1 Introduction

In reinforcement learning (RL), agents aim to learn an optimal policy that maximizes the expected
total rewards, by actively interacting with an unknown environment. However, online data collection
may be prohibitively expensive or potentially risky in many real-world applications, e.g., autonomous
driving (Gu et al., 2022), healthcare (Yu et al., 2021), and wireless security (Uprety and Rawat, 2020).
This motivates the study of offline RL, which leverages existing historical data (aka batch data)
collected in the past to improve policy learning, and has attracted growing attention (Levine et al.,
2020). Nonetheless, the performance of the learned policy invoking standard offline RL techniques
could drop dramatically when the deployed environment shifts from the one experienced by the
historical data even slightly, necessitating the development of robust RL algorithms that are resilient
against environmental uncertainty.

In response, recent years have witnessed a surge of interests in distributionally robust offline RL
(Zhou et al., 2021b; Yang et al., 2022; Shi and Chi, 2022; Blanchet et al., 2024). In particular, given
only historical data from a nominal environment, distributionally robust offline RL aims to learn a
policy that optimizes the worst-case performance when the environment falls into some prescribed
uncertainty set around the nominal one. Such a framework ensures that the performance of the
learned policy does not fail drastically, provided that the distribution shift between the nominal and
deployment environments is not excessively large.

Nevertheless, most existing provable algorithms in distributionally robust offline RL only focus on
the tabular setting with finite state and action spaces (Zhou et al., 2021b; Yang et al., 2022; Shi
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and Chi, 2022), where the sample complexity scales linearly with the size of the state-action space,
which is prohibitive when the problem is high-dimensional. To expand the reach of distributionally
robust offline RL, a few latest works (Ma et al., 2022; Blanchet et al., 2024) attempt to develop
sample-efficient solutions by leveraging linear function approximation (Bertsekas, 2012), which is
widely used in both theoretic (Jin et al., 2020; 2021; Xiong et al., 2023) and practical (Prashanth and
Bhatnagar, 2010; Bellemare et al., 2019) developments of standard RL. However, the existing sample
complexity is still far from satisfactory and notably larger than the counterpart of standard offline
RL (Jin et al., 2021; Xiong et al., 2023) with linear function approximation, especially in terms of
the dependency on the dimension of the feature space d. Therefore, it is natural to ask:

Can we design a provably sample-efficient algorithm for distributionally robust offline
RL with linear representations?

1.1 Main contribution

To answer this question, we focus on learning a robust variant of linear Markov decision processes
in the offline setting. Throughout this paper, we consider a class of finite-horizon distributionally
robust linear MDPs (Lin-RMDPs), where the uncertainty set is characterized by the total variation
(TV) distance between the feature representations in the latent space, motivated by its practical
(Pan et al., 2024) and theoretical appeals (Shi et al., 2023). The highlights of our contributions can
be summarized as follows.

• We propose a distributionally robust variant of pessimistic least-squares value iteration,
referred to as DROP, which incorporates linear representations of the MDP model and devises
a data-driven penalty function to account for data scarcity in the offline setting. We also
establish the sub-optimality bound for DROP under the minimal offline data assumption
(cf. Theorem 1).

• We introduce a clipped single-policy concentrability coefficient C⋆
rob ≥ 1 tailored to character-

ize the partial feature coverage of the offline data in Lin-RMDPs, and demonstrate that DROP
attains ϵ-accuracy (for learning the robust optimal policy) as soon as the sample complexity
is above Õ(C⋆

robd2H4/ϵ2) (cf. Corollary 1). Compared with the prior art (Blanchet et al.,
2024), DROP improves the sample complexity by at least Õ(d).

• We further develop a variance-weighted variant of DROP by integrating a carefully designed
variance estimator, dubbed by DROP-V. Due to tighter control of the variance, DROP-V exhibits
an improved sub-optimality gap under the full feature coverage assumption (see Section 4).

See Table 1 for a summary of our results in terms of the sub-optimality gap.

1.2 Related works

In this section, we mainly discuss works that study sample complexity of linear MDPs and robust
RL, which are closely related to this paper.

Finite-sample guarantees for linear MDPs. Considering linear function approximation in RL,
a significant body of works study linear MDPs with linear transitions and rewards. Focusing on
offline settings, Jin et al. (2021) proposed Pessimistic Value Iteration (PEVI) for offline RL with
finite-horizon linear MDPs, which incorporated linear function approximation together with the
principle of pessimism (Rashidinejad et al., 2021; Shi et al., 2022; Yan et al., 2023; Woo et al., 2024;
Li et al., 2024). However, the temporally statistical dependency arising from backward updates leads
to an O(

√
d) amplification in the sub-optimality gap with comparison to the lower bound (Zanette

et al., 2021). Subsequently, Min et al. (2021) and Yin et al. (2022) attempted to address this gap. The
near-optimal sample complexity in Xiong et al. (2023) is achieved by applying variance estimation
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Algorithm Coverage Sub-optimality gap

Blanchet et al. (2024) partial
√

C⋆
1 d4H4

K

DROP (this work) partial
√

C⋆
robd2H4

K

DROP (this work) arbitrary
√

dH
∑d

i=1
∑H

h=1 max
P ∈Pρ(P 0)

Eπ⋆,P ∥ϕi(s, a)1i∥(Λh)−1

DROP-V (this work) full
√

d
∑d

i=1
∑H

h=1 max
P ∈Pρ(P 0)

Eπ⋆,P ∥ϕi(s, a)1i∥(Σ⋆
h

)−1

Table 1: Our results and comparisons with prior art (up to log factors) in terms of sub-optimality
gap, for learning robust linear MDPs with an uncertainty set measured by the TV distance. Here, d
is the feature dimension, H is the horizon length, K is the number of trajectories, C⋆

1 , C⋆
rob ∈ [1,∞)

are some concentrability coefficients (defined in Section 3.3.1) satisfying C⋆
rob ≤ dC⋆

1 . In addition,
Pρ(P 0) denotes the uncertainty set around the nominal kernel P 0, ϕi(s, a) is the i-th coordinate of
the feature vector given any state-action pair (s, a) ∈ S ×A, Λh and Σ⋆

h are some sort of cumulative
sample covariance matrix and variance-weighted cumulative sample covariance matrix, satisfying
HΛ−1

h ⪰ (Σ⋆
h)−1.

techniques, motivating us to explore variance information for robust offline RL. Beyond these works,
there are many offline RL works that investigate model-free algorithms or the infinite-horizon setting
that deviates from our focus (Zanette et al., 2021; Uehara and Sun, 2021; Xie et al., 2021). In addition
to the offline setting, linear MDPs are also widely explored in other settings such as generative model
or online RL (Yang and Wang, 2020; Jin et al., 2020; Agarwal et al., 2023; He et al., 2023).

Distributionally robust RL with tabular MDPs. To promote robustness in the face of
environmental uncertainty, a line of research known as distributionally robust RL incorporates
distributionally robust optimization tools with RL to ensure robustness in a worst-case manner
(Iyengar, 2005; Xu and Mannor, 2012; Wolff et al., 2012; Kaufman and Schaefer, 2013; Tamar et al.,
2014; Ho et al., 2018; Smirnova et al., 2019; Derman and Mannor, 2020; Ho et al., 2021; Badrinath
and Kalathil, 2021; Goyal and Grand-Clement, 2022; Ding et al., 2024). Recently, a surge of works
focus on understanding/improving sample complexity and computation complexity of RL algorithms
in the tabular setting (Wang and Zou, 2021; Zhou et al., 2021b; Dong et al., 2022; Yang et al.,
2022; Panaganti and Kalathil, 2022; Liu et al., 2022; Li et al., 2022; Xu et al., 2023; Wang et al.,
2023a;c; Liang et al., 2023; Wang et al., 2023b; Li and Lan, 2023; Yang et al., 2023; Zhang et al.,
2023; Kumar et al., 2024; Blanchet et al., 2024; Shi et al., 2024). Among them, Zhou et al. (2021b);
Yang et al. (2022); Shi and Chi (2022); Blanchet et al. (2024) consider distributionally robust RL in
the offline setting, which are most related to us. Different from the sample complexity achieved in
the tabular setting that largely depends on the size of state and action spaces, this work advances
beyond the tabular setting and develops a sample complexity guarantee that only depends on the
feature dimension based on the linear MDP model assumption.

Distributionally robust RL with linear MDPs. The prior art (Blanchet et al., 2024) studies
the same robust linear MDP (Lin-RMDP) problem as this work, while the sample complexity
dependency on the feature dimension d is still worse than that of standard linear MDPs in offline
setting (Jin et al., 2021; Xiong et al., 2023), highlighting gap for potential improvements. Besides
TV distance considered herein, Ma et al. (2022); Blanchet et al. (2024) consider the Kullback-Leibler
(KL) divergence for the uncertainty set. Moreover, Liu and Xu (2024a) explores Lin-RMDPs with an
additional structure assumption in the online setting, which diverges from our focus on the offline
context. We also note that a concurrent work (Liu and Xu, 2024b) studies offline Lin-RMDPs,
which aligns with our interest. However, their focus is limited to the well-explored data coverage
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assumption. In addition to linear representations for robust MDPs, Badrinath and Kalathil (2021);
Ramesh et al. (2024) consider other classes of function for model approximation.

Notation. Throughout this paper, we define ∆(S) as the probability simplex over a set S, [H] :=
{1, . . . , H} and [d] := {1, . . . , d} for some positive integer H, d > 0. We also denote 1i as the vector
with appropriate dimension, where the i-th coordinate is 1 and others are 0. We use Id to represent
the identity matrix of the size d. For any vector x ∈ Rd, we use ∥x∥2 and ∥x∥1 to represent its l2
and l1 norm, respectively. In addition, we denote

√
x⊤Ax as ∥x∥A given any vector x ∈ Rd and any

semi-definite matrix A ∈ Rd×d. For any set D, we use |D| to represent the cardinality (i.e., the size)
of the set D. Additionally, we use min{a, b}+ to denote the minimum of a and b when a, b > 0, and
0 otherwise. We also let λmin(A) to denote the smallest eigenvalue of any matrix A.

2 Problem Setup

In this section, we introduce the formulation of finite-horizon distributionally robust linear MDPs
(Lin-RMDPs), together with the batch data assumptions and the learning objective.

Standard linear MDPs. Consider a finite-horizon standard linear MDP M = (S,A, H, P =
{Ph}H

h=1, r = {rh}H
h=1), where S and A denote the state space and action space respectively, and H

is the horizon length. At each step h ∈ [H], we denote Ph : S ×A → ∆(S) as the transition kernel
and rh : S ×A → [0, 1] as the deterministic reward function, which satisfy the following assumption
used in Yang and Wang (2019); Jin et al. (2020).
Assumption 1 (Linear MDPs). A finite-horizon MDP M = (S,A, H, P, r) is called a linear MDP
if given a known feature map ϕ : S ×A → Rd, there exist d unknown measures µP

h = (µP
h,1, · · · , µP

h,d)
over the state space S and an unknown vector θh ∈ Rd at each step h such that

rh(s, a) = ϕ(s, a)⊤θh, Ph(s′ | s, a) = ϕ(s, a)⊤µP
h (s′), ∀(h, s, a, s′) ∈ [H]× S ×A× S. (1)

Without loss of generality, we assume ∥ϕ(s, a)∥2 ≤ 1 and ϕi(s, a) ≥ 0 for any (s, a, i) ∈ S ×A× [d],
and max{

∫
S ∥µ

P
h (s)∥2ds, ∥θh∥2} ≤

√
d for all h ∈ [H].

In addition, we denote π = {πh}H
h=1 as the policy of the agent, where πh : S → ∆(A) is the action

selection probability over the action space A at time step h. Given the policy π and the transition
kernel P , the value function V π,P

h and the Q-function Qπ,P
h at the h-th step are defined as: for any

(s, a) ∈ S ×A,

V π,P
h (s) = Eπ,P

[ H∑
t=h

rt(st, at) | sh =s

]
, Qπ,P

h (s, a) = rh(s, a)+Eπ,P

[ H∑
t=h+1

rt(st, at) | sh = s, ah = a

]
,

where the expectation is taken over the randomness of the trajectory induced by the policy π and
the transition kernel P .

Lin-RMDPs: distributionally robust linear MDPs. In this work, we consider distributionally
robust linear MDPs (Lin-RMDPs), where the transition kernel can be an arbitrary one within an
uncertainty set around the nominal kernel — an ensemble of probability transition kernels, rather
than a fixed transition in standard linear MDPs (Jin et al., 2021; Yin et al., 2022; Xiong et al., 2023).
Formally, we denote it by Mrob = (S,A, H,Pρ(P 0), r), where P 0 represents a nominal transition
kernel and then Pρ(P 0) represents the uncertainty set (a ball) around the nominal P 0 with some
uncertainty level ρ ≥ 0. For notational simplicity, we denote µ0

h := µP 0

h and according to (1), we let

∀(h, s, a, s′) ∈ [H]× S ×A× S : P 0
h,s,a(s′) := P 0

h (s′ | s, a) = ϕ(s, a)⊤µ0
h(s′).

In this work, we consider the total variation (TV) distance (Tsybakov, 2008) as the divergence
metric for the uncertainty set Pρ and we assume that Lin-RMDPs satisfy the following d-rectangular
assumption (Ma et al., 2022; Blanchet et al., 2024).
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Assumption 2 (Lin-RMDPs). In Lin-RMDPs, the uncertainty set Pρ(P 0) is d-rectangular, i.e.,
µ0

h,i ∈ ∆(S) for any (h, i) ∈ [H]× [d] and

Pρ(P 0) := ⊗[H],S,APρ(P 0
h,s,a), with Pρ(P 0

h,s,a) :=
{

ϕ(s, a)⊤µh(·) : µh ∈ Uρ(µ0
h)
}

,

where Uρ(µ0
h) := ⊗[d]Uρ(µ0

h,i), with Uρ(µ0
h,i) :=

{
µh,i : DTV

(
µh,i ∥ µ0

h,i

)
≤ ρ and µh,i ∈ ∆(S)

}
.

Here, DTV(µh,i ∥ µ0
h,i) represents the TV-distance between two measures over the state space, i.e.

DTV(µh,i, µ0
h,i) = 1

2∥µh,i − µ0
h,i∥1,

where ⊗[d] (resp. ⊗[H],S,A) denotes Cartesian products over [d] (resp. [H], S, and A).

Assumption 2 indicates that the uncertainty set can be decoupled into each feature dimension i ∈ [d]
independently, so called d-rectangularity. Note that by letting d = SA and ϕi(s, a) = 1i for any
(i, s, a) ∈ [d] × S × A, the Lin-RMDP is instantiated to the tabular RMDP and d rectangularity
becomes the (s, a)-rectangularity commonly used in prior literatures (Yang et al., 2022; Shi et al.,
2023). Moreover, when the uncertainty level ρ = 0, Lin-RMDPs reduce to a subclass of standard
linear MDPs satisfying Assumption 1.

Robust value function and robust Bellman equations. Considering Lin-RMDPs with any
given policy π, we define robust value function (resp. robust Q-function) to characterize the worst-case
performance induced by all possible transition kernels over the uncertainty set, denoted as

∀(h, s, a) ∈ [H]× S ×A : V π,ρ
h (s) := inf

P ∈Pρ(P 0)
V π,P

h (s), Qπ,ρ
h (s, a) = inf

P ∈Pρ(P 0)
Qπ,P

h (s, a).

They satisfy the following robust Bellman consistency equations:

∀(h, s, a) ∈ [H]× S ×A : Qπ,ρ
h (s, a) = Bρ

hV π,ρ
h+1(s, a), where V π,ρ

h (s) = Ea∼πh(·|s)[Qπ,ρ
h (s, a)], (2)

and the robust linear Bellman operator and transition operator for any function f : S → R is defined
by

[Bρ
hf ](s, a) := rh(s, a) + [Pρ

hf ](s, a), (3)

[Pρ
hf ](s, a) := inf

µh∈Uρ(µ0
h

)

∫
S

ϕ(s, a)⊤µh(s′)f(s′)ds′. (4)

Note that under Assumption 2, the robust Bellman operator inherits the linearity of the Bellman
operator in standard linear MDPs (Jin et al., 2020, Proposition 2.3), as shown in the following lemma.
The proof is postponed to Appendix A.1.
Lemma 1 (Linearity of robust Bellman operators). Suppose that the finite-horizon Lin-RMDPs
satisfies Assumption 1 and 2. There exist weights wρ = {wρ

h}H
h=1, where wρ

h := θh +
infµh∈Uρ(µ0

h
)
∫

S µh(s′)f(s′)ds′ for any h ∈ [H], such that Bρ
hf(s, a) is linear with respect to the

feature map ϕ, i.e., Bρ
hf(s, a) = ϕ(s, a)⊤wρ

h.

In addition, conditioned on some initial state distribution ζ, we define the induced occupancy
distribution w.r.t. any policy π and transition kernel P by

∀(h, s, a) ∈ [H]×S ×A : dπ,P
h (s) := dπ,P

h (s; ζ) = P(sh = s | ζ, π, P ), dπ,P
h (s, a) = dπ,P

h (s)πh(a | s).
(5)

To continue, we denote π⋆ = {π⋆
h}H

h=1 as a deterministic optimal robust policy (Iyengar, 2005). The
resulting optimal robust value function and optimal robust Q-function are defined as:

V ⋆,ρ
h (s) := V π⋆,ρ

h (s) = max
π

V π,ρ
h (s), ∀(h, s) ∈ [H]× S,

Q⋆,ρ
h (s, a) := Qπ⋆,ρ

h (s, a) = max
π

Qπ,ρ
h (s, a), ∀(h, s, a) ∈ [H]× S ×A.
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Accordingly, we also have the following robust Bellman optimality equation:

Q⋆,ρ
h (s, a) = [Bρ

hV ⋆,ρ
h+1](s, a), ∀(h, s, a) ∈ [H]× S ×A. (6)

Similar to (5), we also denote the occupancy distribution associated with the optimal robust policy
π⋆ and some transition kernel P by

∀(h, s, a) ∈ [H]× S ×A : d⋆,P
h (s) := dπ⋆,P

h (s; ζ), d⋆,P
h (s, a) := dπ⋆,P

h (s)π⋆
h(a | s). (7)

Offline data. Suppose that we can access a batch dataset D = {(sτ
h, aτ

h, rτ
h, sτ

h+1)}h∈[H],τ∈[K],
which consists K i.i.d. trajectories that are generated by executing some (mixed) behavior policy
πb = {πb

h}H
h=1 over some nominal linear MDP M0 = (S,A, H, P 0, r). Note that D contains KH

transition-reward sample tuples in total, where each sample tuple (sτ
h, aτ

h, rτ
h, sτ

h+1) represents that
the agent took the action aτ

h at the state sτ
h, received the reward rτ

h = rh(sτ
h, aτ

h), and then observed
the next state sτ

h+1 ∼ P 0
h (· | sh = sτ

h, ah = aτ
h). To proceed, we define

D0
h = {(sτ

h, aτ
h, rτ

h, sτ
h+1)}τ∈[K],

which contains all samples at the h-th step in D. For simplicity, we abuse the notation τ ∈ D0
h to

denote (sτ
h, aτ

h, rτ
h, sτ

h+1) ∈ D0
h. In addition, we define the induced occupancy distribution w.r.t. the

behavior policy πb and the nominal transition kernel P 0 at each step h by

∀(h, s, a) ∈ [H]× S ×A : db
h(s) := dπb,P 0

h (s; ζ) and db
h(s, a) := dπb,P 0

h (s, a; ζ), (8)

which is conditioned on the initial distribution ζ.

Learning goal. Given the batch dataset D, the goal of solving the Lin-RMDP Mrob with a given
initial state distribution ζ is to learn an ϵ-optimal robust policy π̂ such that the sub-optimality gap
satisfies

SubOpt(π̂; ζ,Pρ) := V ⋆,ρ
1 (ζ)− V π̂,ρ

1 (ζ) ≤ ϵ, (9)
using as few samples as possible, where ϵ is the targeted accuracy level,

V ⋆,ρ
1 (ζ) = Es1∼ζ [V ⋆,ρ

1 (s1)] and V π̂,ρ
1 (ζ) = Es1∼ζ [V π̂,ρ

1 (s1)].

3 Algorithm and Performance Guarantees

In this section, we propose a model-based approach referred to as Distributionally Robust Pessimistic
Least-squares Value Iteration (DROP), by constructing an empirical Bellman operator for Lin-RMDPs
in an offline fashion. Then we analyze the sub-optimality bound of the robust policy learned from
DROP and discuss the sample complexity under different historical data quality scenarios.

3.1 Empirical robust Bellman operator and strong duality

Recalling the robust Bellman operator in (3) gives that for any value function V : S → [0, H],

(Bρ
hV )(s, a) = rh(s, a) + inf

µh∈Uρ(µ0
h

)

∫
S

ϕ(s, a)⊤µh(s′)V (s′)ds′,

which can be equivalently rewritten as its dual form:

(Bρ
hV )(s, a) = ϕ(s, a)⊤(θh + νρ,V

h

)
, (10)

from the views of strong duality (Iyengar, 2005; Shi et al., 2023) (see the detailed proof in Appendix
B.1). Here, νρ,V

h = [νρ,V
h,1 , νρ,V

h,2 . . . , νρ,V
h,d ]⊤ ∈ Rd and its i-th coordinate is defined by

νρ,V
h,i := max

α∈[mins V (s),maxs V (s)]

{
Es∼µ0

h,i
[V ]α(s)−ρ(α−min

s′
[V ]α(s′))

}
, with [V ]α(s) =

{
α, if V (s) > α,

V (s), otherwise.

(11)
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However, notice that we cannot directly apply the above robust Bellman operator and perform value
iterations since we cannot have access to the ground-truth nominal linear MDP M0 (i.e., θh and µ0

h).
Therefore, for each time step h, we incorporate ridge regression to obtain the estimator θ̂h ∈ Rd and
ν̂ρ,V

h ∈ Rd, based on the batch dataset D0
h that contains all the samples at h-th step collected in D0.

In particular, for any value function V : S → [0, H] and any time step h ∈ [H], the estimator θ̂h and
the i-th coordinate of ν̂ρ,V

h are defined by

θ̂h = arg min
θ∈Rd

∑
τ∈D0

h

(
ϕ(sτ

h, aτ
h)⊤θ − rτ

h

)2 + λ0∥θ∥2
2 = Λ−1

h

( ∑
τ∈D0

h

ϕ(sτ
h, aτ

h)rτ
h

)
, (12)

ν̂ρ,V
h,i = max

α∈[mins V (s),maxs V (s)]

{
ν̄V

h,i(α)− ρ
(
α−min

s′
[V ]α(s′)

)}
, ∀i ∈ [d], (13)

where λ0 > 0 is the regularization coefficient, ν̄V
h,i(α) is the i-th coordinate of ν̄V

h (α) defined by

ν̄V
h (α) = arg min

ν∈Rd

∑
τ∈D0

h

(
ϕ(sτ

h, aτ
h)⊤ν − [V ]α(sτ

h+1)
)2 + λ0∥ν∥2

2 = Λ−1
h

( ∑
τ∈D0

h

ϕ(sτ
h, aτ

h)[V ]α(sτ
h+1)

)
,

(14)

and the cumulative sample covariance matrix is denoted as

Λh =
∑

τ∈D0
h

ϕ(sτ
h, aτ

h)ϕ(sτ
h, aτ

h)⊤ + λ0Id. (15)

Then following the linearity of the robust Bellman operator shown in Lemma 1, we construct the
empirical robust Bellman operator B̂ρ

h to approximate Bρ
h, using the estimators obtained from (12)

and (13): for any value function V : S → [0, H],

(B̂ρ
hV )(s, a) = ϕ(s, a)⊤(θ̂h + ν̂ρ,V

h ), ∀(s, a, h) ∈ S ×A× [H]. (16)

3.2 DROP: distributionally robust pessimistic least-squares value iteration

To compute (16) for all time steps h ∈ [H] recursively, we propose a distributionally robust pessimistic
least-squares value iteration algorithm, referred to as DROP and summarized as Algorithm 1.

In Algorithm 1, we first construct a dataset D0 by subsampling from D by Two-fold-subsampling
(cf. Algorithm 2), inspired by Li et al. (2024) to tackle the statistical dependency between different
time steps h ∈ [H] in the original batch dataset D. As the space is limited, we defer the details
of Two-fold-subsampling and the corresponding statistical independence property to Section B.2.
With D0 in hand and initializations Q̂H+1(·, ·) = 0 and V̂H+1(·) = 0, the updates at time step h
in DROP can be boiled down to the following two steps. The first one is to construct the empirical
robust Bellman operator via (12)-(16) conditioned on a fixed V̂h+1 from the previous iteration (see
the line 3-8 in Algorithm 1). Then we can estimate the robust Q-function from the pessimistic value
iteration as below:

Q̄h(s, a) = B̂ρ
h(V̂h+1)(s, a)− γ0

d∑
i=1
∥ϕi(s, a)1i∥Λ−1

h︸ ︷︷ ︸
penalty function Γh:S×A→R

, ∀(s, a) ∈ S ×A,

where γ0 > 0 is the coefficient of the penalty term.

The above pessimistic principle is widely advocated in both standard and robust offline RL (Jin et al.,
2021; Xiong et al., 2023; Shi and Chi, 2022). When dealing with the uncertainty set characterized by
TV distance, previous penalty designs tailored for standard linear MDPs (Jin et al., 2021; Xiong
et al., 2023) and robust linear MDPs specifically addressing KL divergence (Ma et al., 2022), are
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Algorithm 1 Distributionally Robust Pessimistic Least-Squares Value Iteration (DROP)
Input: Dataset D; feature map ϕ(s, a) for (s, a) ∈ S ×A; parameters λ0, γ0 > 0.

1: Construct a temporally independent dataset D0 = Two-fold-subsampling(D) (Algorithm 2).
Initialization: Set Q̂H+1(·, ·) = 0 and V̂H+1(·) = 0.

2: for step h = H, H − 1, · · · , 1 do
3: Λh =

∑
τ∈D0

h
ϕ(sτ

h, aτ
h)ϕ(sτ

h, aτ
h)⊤ + λ0Id.

4: θ̂h = Λ−1
h

(∑
τ∈D0

h
ϕ(sτ

h, aτ
h)rτ

h

)
.

5: for feature i = 1, · · · , d do
6: Update ν̂ρ,V̂

h,i via (13).
7: end for
8: ŵρ,V̂

h = θ̂h + ν̂ρ,V̂
h .

9: Q̄h(·, ·) = ϕ(·, ·)⊤ŵρ,V̂
h − γ0

∑d
i=1 ∥ϕi(·, ·)1i∥Λ−1

h
.

10: Q̂h(·, ·) = min
{

Q̄h(·, ·), H − h + 1
}

+.
11: π̂h(·) = arg maxa∈A Q̂h(·, a).
12: V̂h(·) = Q̂h(·, π̂h(·)).
13: end for
Ouput: V̂ := {V̂ }H+1

h=1 , π̂ := {π̂h}H
h=1.

no longer applicable. To this end, we carefully devise the penalty function, denoted as Γh, for
Lin-RMDPs with TV distance. Compared to the prior art (Blanchet et al., 2024) which promotes
pessimism by solving an inner constrained optimization problem, our proposed penalty function
efficiently addresses the uncertainty in every feature dimension i ∈ [d], which plays a crucial role in
improving the sub-optimality gap.

3.3 Performance guarantees of DROP

Next, we provide the theoretical guarantees for DROP, under different assumptions on the batch data
quality. We start without any coverage assumption on the batch dataset D, where the proof is
postponed to Appendix B.3.
Theorem 1. Consider any δ ∈ (0, 1). Suppose that Assumption 1 and 2 hold. By setting

λ0 = 1, γ0 = 6
√

dξ0H, where ξ0 = log(3HK/δ),

one has with the probability at least 1− 3δ, the policy π̂ generated by Algorithm 1 satisfies

SubOpt(π̂; ζ,Pρ) ≤ Õ(
√

dH)
H∑

h=1

d∑
i=1

max
P ∈Pρ(P 0)

Eπ⋆,P

[
∥ϕi(sh, ah)1i∥Λ−1

h

]
. (17)

Since we do not impose any coverage assumption on the batch data, Theorem 1 demonstrates an
“instance-dependent” sub-optimality gap, which can be controlled by some general term (the right
hand side of (17)) and the confidence level δ. The sub-optimality gap largely depends on the quality
of the batch data — specifically, how well it explores the feature space within Rd. Building upon
the above foundational result, we proceed to examine the sample complexity required to achieve an
ϵ-optimal policy, considering different data qualities in the subsequent discussion.

3.3.1 The case of partial feature coverage

We first consider the partial feature coverage, which only compares the behavior policy with the
optimal policy, in terms of the ability to explore each feature dimension. To accommodate with our
Lin-RMDPs, we propose a tailored partial data coverage assumption, which depicts the worst-case
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dissimilarity between the optimal robust policy π⋆ in any transition kernel P ∈ Pρ(P 0) and the
behavior policy πb in the nominal kernel P 0 over every feature space dimension i ∈ [d], as follows.
Assumption 3 (Robust single-policy clipped concentrability). The behavior policy of the batch
dataset D satisfies

max
(u,h,i,P )∈Rd×[H]×[d]×Pρ(P 0)

u⊤
(

min{Ed⋆,P
h

ϕ2
i (s, a), 1/d} · 1i,i

)
u

u⊤
(
Edb

h
[ϕ(s, a)ϕ(s, a)⊤]

)
u

≤ C⋆
rob
d

, (18)

for some finite quantity C⋆
rob ∈ [1,∞). In addition, we follow the convention 0/0 = 0.

The quantity C⋆
rob measures the expected quality of batch data, by comparing to the desired dataset

associated with the optimal robust policy. Intuitively, C⋆
rob decreases as the batch dataset contains

more expert data, and increases when the quality of the dataset is poorer — generated from
some policy far from the optimal policy. Note that prior knowledge of C⋆

rob is not required when
implementing DROP in practice. Here, we assume C⋆

rob <∞, which requires that the behavior policy
is able to explore the same feature dimensions as the optimal robust policy. Under Assumption 3, the
following corollary provides the provable sample complexity of DROP to achieve an ϵ-optimal robust
policy. The proof is postponed to Appendix B.4.
Corollary 1 (Partial feature coverage). With Theorem 1 and Assumption 3 hold and consider any
δ ∈ (0, 1). Let db

min = minh,s,a{db
h(s, a) : db

h(s, a) > 0}. With probability exceeding 1− 4δ, the policy
π̂ returned by Algorithm 1 achieves

SubOpt(π̂; ζ,Pρ) ≤ 96
√

d2H4C⋆
rob log(3HK/δ)

K

as long as K ≥ c0 log(KH/δ)/db
min for some sufficiently large universal constant c0 > 0. In other

words, the learned policy π̂ is ϵ-optimal if the total number of sample trajectories satisfies

K ≥ Õ
(C⋆

robd2H4

ϵ2

)
. (19)

Notice that Corollary 1 implies the sub-optimality bound of DROP is comparable to that of the prior
art in standard linear MDPs (Jin et al., 2021, Corollary 4.5), in terms of the feature dimension d and
the horizon length H.

Comparisons to prior art for Lin-RMDPs. With high probability, the existing Assumption
6.2 proposed in Blanchet et al. (2024) can be transferred into the following condition (see (66)-(68)
in Appendix B.4):

max
(u,h,i,P )∈Rd×[H]×[d]×Pρ(P 0)

u⊤
(
Ed⋆,P

h
ϕ2

i (s, a) · 1i,i

)
u

u⊤
(
Edb

h
[ϕ(s, a)ϕ(s, a)⊤]

)
u
≤ C⋆

1 ∈ [1,∞). (20)

Thanks to the clipping operation in (18), C⋆
rob ≤ d · C⋆

1 for any given batch dataset D. Notice that
both C⋆

rob and C⋆
1 are lower bounded by 1. The proposed algorithm in Blanchet et al. (2024) can

achieve ϵ-accuracy provided that the total number of sample trajectories obeys

K ≥ Õ
(C⋆

1 d4H4

ϵ2

)
.

It shows that the sample complexity (19) of DROP improves the one in Blanchet et al. (2024) by at
least Õ(d).
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3.3.2 The case of full feature coverage

Then, we introduce the following full feature coverage assumption that is also widely used in standard
offline linear MDPs (Jin et al., 2021; Xiong et al., 2023; Yin et al., 2022; Ma et al., 2022), which
requires the behavior policy exploring the feature space uniformly well.
Assumption 4 (Well-explored data coverage). We assume κ = minh∈[H] λmin(Edb

h
[ϕ(s, a)ϕ(s, a)⊤]) >

0.

Compared to Assumption 3, Assumption 4 necessitates the behavior policy to be more exploratory
to reach every feature dimension, which is a stronger assumption requiring full coverage of all feature
dimensions. The following corollary provides the sample complexity guarantee of DROP under the full
feature coverage, where the proof is postponed to Appendix B.5.
Corollary 2 (Full feature coverage). With Theorem 1 and Assumption 4 hold and consider any
δ ∈ (0, 1). Let db

min = minh,s,a{db
h(s, a) : db

h(s, a) > 0}. With probability at least 1− 5δ, the policy π̂
returned by Algorithm 1 achieves

SubOpt(π̂; ζ,Pρ) ≤ 96
√

dH4 log(3HK/δ)
κK

,

as long as K ≥ max{c0 log(2Hd/δ)/κ2, c0 log(KH/δ)/db
min} for some sufficiently large universal

constant c0. In other words, the learned policy π̂ is ϵ-optimal if the total number of sample trajectories
satisfies

K ≥ Õ
(dH4

κϵ2

)
. (21)

Notice that the sample complexity in (21) matches the prior arts in standard linear MDPs (Yin
et al., 2022; Xiong et al., 2023) when robustness is not considered. A careful reader may observe that
(21) has better dependency on d compared to (19). While noting that the upper bound of κ is 1/d

(Wang et al., 2021), the sample complexity of DROP (cf. (21)) is at least Õ(d2H4/ϵ2).

4 Tightening the Sample Complexity by Leveraging Variance Estimation

To tighten our results, we further explore the variance information to reweight the ridge regression
in DROP and develop its variance-aware variant called DROP-V. The key idea is to design a tighter
penalty term with the estimated variance, which is widely used in standard linear MDPs (Zhou et al.,
2021a; Min et al., 2021; Yin et al., 2022; Xiong et al., 2023) to achieve near-optimal results.

4.1 DROP-V: a variance-aware variant of DROP

We first highlight the design features of DROP-V that are different from DROP, which can boiled down
to the following two steps.

Constructing a variance estimator. First, we run the Algorithm 1 on a sub-dataset D̃0 ∈ D
to obtain the estimated value function {Ṽh}H+1

h=1 . Then with {Ṽh}H+1
h=1 at our hands, we design the

variance estimator σ̂2
h : S ×A → [1, H2] by

σ̂2
h(s, a) = max{[ϕ(s, a)⊤νh,1][0,H2] −

(
[ϕ(s, a)⊤νh,2][0,H]

)2
, 1}, ∀(s, a, h) ∈ S ×A× [H], (22)

where νh,1 and νh,2 are obtained from ridge regression as follows:

νh,1 = arg min
ν∈Rd

∑
τ∈D̃0

h

(
ϕ(sτ

h, aτ
h)⊤ν − (Ṽh+1(sτ

h+1))2)2 + ∥ν∥2
2, (23)

νh,2 = arg min
ν∈Rd

∑
τ∈D̃0

h

(
ϕ(sτ

h, aτ
h)⊤ν − Ṽh+1(sτ

h+1)
)2 + ∥ν∥2

2. (24)
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Notice that the technique of variance estimation is also used in Xiong et al. (2023); Yin et al. (2022)
for standard linear MDPs, while we address the temporal dependency via a carefully designed
three-fold subsampling approach detailed in Appendix C.2.

Variance-weighted ridge regression. Incorporating with the variance estimator σ̂2
h computed

on D̃0, we replace the ridge regression updates (i.e. (12) and (14)) by their variance-weighted
counterparts as follows:

θ̂σ
h = arg min

θ∈Rd

∑
τ∈D0

h

(
ϕ(sτ

h, aτ
h)⊤θ − rτ

h

)2

σ̂2
h(sτ

h, aτ
h) + λ1∥θ∥2

2 = Σ−1
h

( ∑
τ∈D0

h

ϕ(sτ
h, aτ

h)rτ
h

σ̂2
h(sτ

h, aτ
h)

)
, (25)

ν̄ρ,σ,V
h (α) = arg min

ν∈Rd

∑
τ∈D0

h

(
ϕ(sτ

h, aτ
h)⊤ν − [V ]α(sτ

h+1)
)2

σ̂2
h(sτ

h, aτ
h) +λ1∥ν∥2

2 = Σ−1
h

( ∑
τ∈D0

h

ϕ(sτ
h, aτ

h)[V ]α(sτ
h+1)

σ̂2
h(sτ

h, aτ
h)

)
,

(26)

for any value function V : S → [0, H] and h ∈ [H], where

Σh :=
∑

τ∈D0
h

ϕ(sτ
h, aτ

h)ϕ(sτ
h, aτ

h)⊤

σ̂2
h(sτ

h, aτ
h) + λ1Id

with the regularization coefficient λ1 and D0 is another sub-dataset of D that is independent of D̃0.
Accordingly, DROP-V constructs an empirical variance-aware robust Bellman operator as

(B̂ρ,σ
h V )(s, a) = ϕ(s, a)⊤(θ̂σ

h + ν̂ρ,σ,V
h ), (27)

where the i-th coordinate of ν̂ρ,σ,V
h is defined as

ν̂ρ,σ,V
h,i = max

α∈[mins V (s),maxs V (s)]

{
ν̄ρ,σ,V

h,i (α)− ρ(α−min
s′

V (s′))
}

. (28)

Similar to DROP, we also perform the pessimistic value iterations, where the estimated Q function is
updated by

Q̄h(s, a) = B̂ρ,σ
h (V̂h+1)(s, a)− γ1

d∑
i=1
∥ϕi(s, a)1i∥Σ−1

h︸ ︷︷ ︸
penalty function Γσ

h
:S×A→R

, ∀(s, a, h) ∈ S ×A× [H],

with a fixed, estimated V̂h+1 obtained from previous iteration and some coefficient γ1 > 0.

The rest of DROP-V follows the procedure described in Algorithm 1. To avoid redundancy, the detailed
implementation of DROP-V is provided in Appendix C.1.

4.2 Performance guarantees of DROP-V

Then, we are ready to present our improved results, where the proof is postponed to Appendix C.3.
Theorem 2. Suppose that Assumption 1, 2, and 4 hold and consider any δ ∈ (0, 1). In DROP-V, we
set

λ1 = 1/H2, γ1 = ξ1
√

d, where ξ1 = 66 log(3HK/δ).

Provided that
√

d ≥ H and K ≥ Õ
(

H4+H6dκ
κ2 + 1

db
min

)
, then with probability exceeding 1− δ, the robust

policy π̂ learned by DROP-V satisfies

SubOpt(π̂; ζ,Pρ) ≤ Õ(
√

d)
H∑

h=1

d∑
i=1

max
P ∈Pρ(P 0)

Eπ⋆,P

[
∥ϕi(sh, ah)1i∥(Σ⋆

h
)−1

]
, (29)
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where the variance-weighted cumulative sample covariance matrix Σ⋆
h is defined by

Σ⋆
h =

∑
τ∈D0

h

ϕ(sτ
h, aτ

h)ϕ(sτ
h, aτ

h)⊤

max{1, VarP 0
h
[V ⋆,ρ

h+1](sτ
h, aτ

h)} + 1
H2 Id, (30)

and VarP 0
h
[V ](s, a) =

∫
S P 0

h,s,a(s′)V 2(s′)ds′ − (
∫

S P 0
h,s,a(s′)V (s′)ds′)2 represents the conditional vari-

ance for any value function V : S → [0, H] and any (s, a, h) ∈ S ×A× [H].

Compared to the instance-dependent sub-optimality bound of DROP (cf. Theorem 1), the above
guarantee for DROP-V is tighter since H2Λ−1

h ⪰ (Σ⋆
h)−1. The underlying reason for the improvement

is the use of the variance estimator to control the conditional variance and the tighter penalty
function designed via the Bernstein-type inequality, while that of DROP depends on the Hoeffding-type
counterpart.

5 Conclusion

In this paper, we investigate the sample complexity for distributionally robust offline RL when the
model has linear representations and the uncertainty set can be characterized by TV distance. We
develop a robust variant of pessimistic value iteration with linear function approximation, called
DROP. We establish the sub-optimality guarantees for DROP under various offline data assumptions.
Compared to the prior art, DROP notably improves the sample complexity by at least Õ(d), under
the partial feature coverage assumption. We further incorporate DROP with variance estimation to
develop an enhanced DROP, referred to as DROP-V, which improves the sub-optimality bound of DROP.
In the future, it will be of interest to consider different choices of the uncertainty sets and establish
the lower bound for the entire range of the uncertainty level.
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A Technical Lemmas

A.1 Proof of Lemma 1

For a Lin-RMDP satisfying Assumption 2, the robust linear transition operator defined in (4) obeys:
for any time step h ∈ [H],

(Pρ
hf)(s, a) = inf

µh∈Uρ(µ0
h

)

∫
S

ϕ(s, a)⊤µh(s′)f(s′)ds′

= inf
µh∈Uρ(µ0

h
)

d∑
i=1

ϕi(s, a)
∫

S
µh,i(s′)f(s′)ds′

=
d∑

i=1
ϕi(s, a) inf

µh,i∈Uρ(µ0
h,i

)

∫
S

µh,i(s′)f(s′)ds′

= ϕ(s, a)⊤

(
inf

µh∈Uρ(µ0
h

)

∫
S

µh(s′)f(s′)ds′

)
,

where the penultimate equality is due to ϕi(s, a) ≥ 0,∀(i, s, a) ∈ [d]×S×A and Uρ(µ0
h) := ⊗[d]Uρ(µ0

h,i).
Therefore, the robust linear Bellman operator defined in (3) is linear in the feature map ϕ: for
(h, s, a) ∈ [H]× S ×A,

(Bρ
hf)(s, a) = rh(s, a) + [Pρ

hf ](s, a)

= ϕ(s, a)⊤θh + ϕ(s, a)⊤

(
inf

µh∈Uρ(µ0
h

)

∫
S

µh(s′)f(s′)ds′

)

= ϕ(s, a)⊤

(
θh + inf

µh∈Uρ(µ0
h

)

∫
S

µh(s′)f(s′)ds′

)
︸ ︷︷ ︸

:=wρ
h

,

where the second equality is due to Assumption 1.

A.2 Preliminary facts

A.2.1 Useful concenrtation inequalities

Lemma 2 (Hoeffding-type inequality for self-normalized process (Abbasi-Yadkori et al., 2011)).
Let {ηt}∞

t=1 be a real-valued stochastic process and let {Ft}∞
t=0 be a filtration such that ηt is Ft-

measurable. Let {xt}∞
t=1 be an Rd-valued stochastic process where xt is Ft−1 measurable and xt ≤ L.

Let Λt = λId +
∑t

s=1 xsx⊤
s . Assume that conditioned on Ft−1, ηt is mean-zero and R-sub-Gaussian.

Then, for any δ > 0, with probability at least 1− δ, for all t > 0, we have

∥
t∑

s=1
xsηs∥Λ−1

t
≤ R

√
d log(1 + tL/λ) + 2 log(1/δ).
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Lemma 3 (Bernstein-type inequality for self-normalized process (Zhou et al., 2021a)). Let {ηt}∞
t=1

be a real-valued stochastic process and let {Ft}∞
t=0 be a filtration such that ηt is Ft-measurable.

Let {xt}∞
t=1 be an Rd-valued stochastic process where xt is Ft−1 measurable and xt ≤ L. Let

Λt = λId +
∑t

s=1 xsx⊤
s . Assume that

|ηt| ≤ R, E[ηt|Ft−1] = 0, E[η2
t |Ft−1] ≤ σ2.

Then for any δ > 0, with probability at least 1− δ, for all t > 0, we have

∥
t∑

s=1
xsηs∥Λ−1

t
≤ 8σ

√
d log

(
1 + tL2

λd

)
log(4t2

δ
) + 4R log(4t2

δ
).

Lemma 4 (Lemma H.5, Min et al. (2021)). Let ϕ : S × A → Rd be a bounded function
such that ∥ϕ(s, a)∥2 ≤ C for all (s, a) ∈ S × A. For any K > 0 and λ > 0, define
ḠK =

∑K
k=1 ϕ(sk, ak)ϕ(sk, ak)⊤ + λId where (sk, ak) are i.i.d. samples from some distribution

ν over S ×A. Let G = Ev[ϕ(s, a)ϕ(s, a)⊤]. Then for any δ ∈ (0, 1), if K satisfies that

K ≥ max{512C4∥G−1∥2 log(2d/δ), 4λ∥G−1∥}.

Then with probability at least 1− δ, it holds simultaneously for all u ∈ Rd that

∥u∥Ḡ−1
k
≤ 2√

K
∥u∥G−1 .

Lemma 5 (Lemma 5.1, Jin et al. (2021)). Under the condition that with probability at least 1− δ,
the penalty function Γh : S ×A → R in Algorithm 1 and satisfying

|(B̂ρ
hV̂h+1)(s, a)− (Bρ

hV̂h+1)(s, a)| ≤ Γh(s, a), ∀(s, a, h) ∈ S ×A× [H], (31)

we have
0 ≤ ιh(s, a) ≤ 2Γh(s, a), ∀(s, a, h) ∈ S ×A× [H].

A.2.2 Useful facts

Lemma 6. For any function f1 : C ⊆ R→ R and f2 : C ⊆ R→ R, we have

max
α∈C

f1(α)−max
α∈C

f2(α) ≤ max
α∈C

(f1(α)− f2(α)) .

Proof. Let α⋆
1 = arg maxα∈C f1(α). Then,

max
α∈C

f1(α)−max
α∈C

f2(α) ≤ f1(α⋆
1)−max

α∈C
f2(α)

≤ f1(α⋆
1)− f2(α⋆

1)
≤ max

α∈C
(f1(α)− f2(α)) .

Lemma 7. For any positive semi-definite matrix A ∈ Rd×d and any constant c ≥ 0, we have

Tr
(
A(I + cA)−1) ≤ d∑

i=1

λi

1 + cλi
, (32)

where {λi}d
i=1 are the eigenvalues of A and Tr(·) denotes the trace of the given matrix.
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Proof. Note that

A(I + cA)−1 = A(I + cA)−1 + 1
c

(I + cA)−1 − 1
c

(I + cA)−1

= 1
c

I − 1
c

(I + cA)−1.

In addition, the eigenvalues of (I + cA)−1 are { 1
1+cλi

}d
i=1. Therefore,

Tr
(
A(I + cA)−1) =

d∑
i=1

λi

1 + cλi
.

Lemma 8 (modified Lemma 4, Shi et al. (2023)). Consider any probability vector µ0 ∈ ∆(S), any
fixed uncertainty level ρ and the uncertainty set Uρ(µ0) satisfying Assumption 2. For any value
function V : S → [0, H], recalling the definition of [V ]α in (11), one has

inf
µ∈Uρ(µ0)

∫
S

µ(s′)V (s′)ds′ = max
α∈[mins V (s),maxs V (s)]

{Es′∼µ0 [V ]α(s′)− ρ(α−min
s′

[V ]α(s′))}. (33)

B Analysis for DROP: Algorithm 1

B.1 Proof of equation (10)

Recall that for any (s, a, h) ∈ S ×A× [H], one has

(Bρ
hV )(s, a) = rh(s, a) + inf

µh∈Uρ(µ0
h

)

∫
S

ϕ(s, a)⊤µh(s′)V (s′)ds′

= ϕ(s, a)⊤θh +
d∑

i=1
ϕi(s, a) inf

µh,i∈Uρ(µ0
h,i

)

∫
S

µh,i(s′)V (s′)ds′.

According to Lemma 8, for any value function V : S → [0, H] and any uncertainty set
Uρ(µ0

h,i),∀(h, i) ∈ [H]× [d] that satisfies Assumption 2, one has

inf
µh,i∈Uρ(µ0

h,i
)

∫
S

µh,i(s′)V (s′)ds′ = max
α∈[mins V (s),maxs V (s)]

{∫
S

µh,i(s′)[V ]α(s′)ds′ − ρ(α−min
s′

[V ]α(s′))
}

.

Denote νρ,V
h = [νρ,V

h,1 , νρ,V
h,2 . . . , νρ,V

h,d ]⊤ ∈ Rd, where νρ,V
h,i =

maxα∈[mins V (s),maxs V (s)]
{ ∫

S µh,i(s′)[V ]α(s′)ds′ − ρ(α−mins′ [V ]α(s′))
}

for any i ∈ [d]. Therefore,

(Bρ
hV )(s, a) = ϕ(s, a)⊤(θh + νρ,V

h

)
.

B.2 Two-fold subsampling method

To tackle the temporal dependency in batch dataset D, we apply the insights from the subsampling
approach inspired by Li et al. (2024). The key idea is to utilize half of the data to establish a valid
lower bound of the number of samples, which is employed to achieve the statistical independence in
the remaining half of the dataset. The detailed implementation of the two-fold subsampling can be
summarized in the Algorithm 2.

Recall that we assume the sample trajectories in D are generated independently. Then, the following
lemma shows that (34) is a valid lower bound of Nmain

h (s) for any s ∈ S and h ∈ [H], which can be
obtained by a slight modification on Lemma 3 and Lemma 7 in Li et al. (2024)
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Algorithm 2 Two-fold-subsampling

Input: Batch dataset D;
1: Split Data: Split D into two haves Dmain and Daux, where |Dmain| = |Daux| = Nh/2. Denote

Nmain
h (s) (resp. Naux

h (s)) as the number of sample transitions from state s at step h in Dmain

(resp. Daux).
2: Construct the high-probability lower bound N trim

h (s) by Daux: For each s ∈ S and
1 ≤ h ≤ H, compute

N trim
h (s) = max{Naux

h (s)− 10
√

Naux
h (s) log KH

δ
, 0}. (34)

3: Construct the almost temporally statistically independent Dtrim: Let Dmain
h (s) denote

the dataset containing all transition-reward sample tuples at the current state s and step h from
Dmain. For any (s, h) ∈ S × [H], subsample min{N trim

h (s), Nmain
h (s)} transition-reward sample

tuples randomly from Dmain
h (s), denoted as Dmain,sub.

Ouput: D0 = Dmain,sub.

Lemma 9. With probability at least 1− 2δ, if N trim
h (s) satisfies (34) for every s ∈ S and h ∈ [H],

then D0 := Dmain,sub contains temporally statistically independent samples and the following bound
holds simultaneously, i.e.,

N trim
h (s) ≤ Nmain

h (s), ∀(s, h) ∈ S × [H].

In addition, with probability at least 1− 3δ, the following lower bound also holds, i.e.,

N trim
h (s, a) ≥ Kdb

h(s, a)
8 − 5

√
Kdb

h(s, a) log(KH

δ
), ∀(s, a, h) ∈ S ×A× [H].

Proof. Let SD be the collection of all the states appearing in any batch dataset D, where |SD| ≤ K.
By changing the union bound over S to SD in the proof of Li et al. (2024, Lemma 3), the remaining
proof still holds, since N trim

h (s) = Nmain
h (s) = 0,∀s /∈ SD. Together with Li et al. (2024, Lemma 7), D0

contains temporally statistically independent samples if N trim
h (s) ≤ Nmain

h (s),∀(s, h) ∈ S × [H].

B.3 Proof of Theorem 1

Notations. Before starting the proof of Theorem 1, we introduce several notations for the conve-
nience of the following analysis. First, we use

ιh(s, a) = Bρ
hV̂h+1(s, a)− Q̂h(s, a), ∀(h, s, a) ∈ [H]× S ×A, (35)

to represent the model evaluation error at the h-th step of DROP. In addition, we denote the estimated
weight of the transition kernel at the h-th step by

∀(s, h) ∈ S × [H] : µ̂h(s) = Λ−1
h

∑
τ∈D0

h

ϕ(sτ
h, aτ

h)1(sτ
h+1 = s)

 ∈ Rd, (36)

where 1(·) is the indicator function. Accordingly, it holds that ν̄V̂
h (α) =

∫
S µ̂h(s′)[V̂h+1(s′)]αds′ ∈ Rd.

We denote the set of all the possible state occupancy distributions associated with the optimal policy
π⋆ and any P ∈ Pρ(P 0) as

D⋆
h =

{[
d⋆,P

h (s)
]

s∈S
: P ∈ Pρ(P 0)

}
=
{[

d⋆,P
h (s, π⋆

h(s))
]

s∈S
: P ∈ Pρ(P 0)

}
, (37)

for any time step h ∈ [H].
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B.3.1 Proof sketch for Theorem 1

We first claim that Theorem 1 holds as long as the following theorem can be established.
Theorem 3. Consider δ ∈ (0, 1). Suppose that the dataset D0 in Algorithm 1 contains Nh < K
transition-reward sample tuples at every h ∈ [H]. Assume that conditional on {Nh}h∈[H], all the
sample tuples in D0

h are statistically independent. Suppose that Assumption 1 and 2 hold. In DROP,
we set

λ0 = 1, γ0 = 6
√

dξ0H, where ξ0 = log(3HK/δ). (38)
Here, δ ∈ (0, 1) is the confidence parameter and K is the upper bound of Nh for any h ∈ [H]. Then,
{π̂h}H

h=1 generated by Algorithm 1, with the probability at least 1− δ, satisfies

SubOpt(π̂; ζ,Pρ) ≤ Õ(
√

dH)
H∑

h=1

d∑
i=1

max
d⋆

h
∈D⋆

h

Ed⋆
h

[
∥ϕi(sh, ah)1i∥Λ−1

h

]
.

As the construction in Algorithm 2, {N trim
h (s)}s∈S,h∈[H] is computed using Daux that is independent

of D0. From Lemma 14, N trim
h (s) is a valid sampling number for any s ∈ S and h ∈ [H] such that

|D0
h| =

∑
s∈S N trim

h (s) ≤ K, and D0
h can be treated as containing temporally statistically independent

samples with probability exceeding 1− 2δ. Therefore, by invoking Theorem 3 with Nh := |D0
h|, we

have

SubOpt(π̂; ζ,Pρ) ≤ Õ(
√

dH)
H∑

h=1

d∑
i=1

max
d⋆

h
∈D⋆

h

Ed⋆
h

[
∥ϕi(sh, ah)1i∥Λ−1

h

]
,

with probability exceeding 1− 3δ.

B.3.2 Proof of Theorem 3

The proof of Theorem 3 can be summarized as following key steps.

Step 1: establishing the pessimistic property. To substantiate the pessimism, we heavily
depend on the following lemma, where the proof is postponed to Appendix B.3.3.
Lemma 10. Suppose all the assumptions in Theorem 3 hold and follow all the parameters setting in
(38). Then for any (s, a, h) ∈ S ×A× [H], with probability at least 1− δ, the value function {V̂ }H

h=1
generated by DROP satisfies

|(B̂ρ
hV̂h+1)(s, a)− (Bρ

hV̂h+1)(s, a)| ≤ Γh(s, a) := γ0

d∑
i=1
∥ϕi(s, a)1i∥Λ−1

h
. (39)

In the following, we will show that the following relations hold:

Q⋆,ρ
h (s, a) ≥ Qπ̂,ρ

h (s, a) ≥ Q̂h(s, a) and V ⋆,ρ
h (s) ≥ V π̂,ρ

h (s) ≥ V̂h(s), ∀(s, a, h) ∈ S×A×[H], (40)

if the condition (39) holds. It implies that Q̂h(s, a) and V̂h(s) is the pessimistic estimates of Qπ̂,ρ
h (s, a)

and V π̂,ρ
h (s) for any s ∈ S, respectively. Notice that if Qπ̂,ρ

h (s, a) ≥ Q̂h(s, a) for all (s, a) ∈ S × A,
one simultaneously has the following relation:

V π̂,ρ
h (s) = Qπ̂,ρ

h (s, π̂h(s)) ≥ Q̂h(s, π̂h(s)) = V̂h(s), ∀(s, h) ∈ S × [H].

Therefore, we shall verify that

Qπ̂,ρ
h (s, a) ≥ Q̂h(s, a), ∀(s, a) ∈ S ×A, (41)

by induction, and V π̂,ρ
h (s) ≥ V̂h(s) will spontaneously hold for s ∈ S.
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• At step h = H + 1: From the initialization step in Algorithm 1, we have Qπ̂,ρ
H+1(s, a) =

Q̂H+1(s, a) = 0, for any (s, a) ∈ S ×A, and (41) holds.

• For any step h ≤ H: Suppose Qπ̂,ρ
h+1(s, a) ≥ Q̂h+1(s, a). From (40), we have V π̂,ρ

h+1(s) ≥
V̂h+1(s). Therefore, if Q̂h(s, a) = 0, Qπ̂,ρ

h (s, a) ≥ 0 = Q̂h(s, a), for any (s, a) ∈ S × A.
Otherwise,

Q̂h(s, a) ≤ (B̂ρ
hV̂h+1)(s, a)− Γh(s, a)

= (Bρ
hV̂h+1)(s, a) + (B̂ρ

hV̂h+1)(s, a)− (Bρ
hV̂h+1)(s, a)− Γh(s, a)

≤ (Bρ
hV̂h+1)(s, a) + |(B̂ρ

hV̂h+1)(s, a)− (Bρ
hV̂h+1)(s, a)| − Γh(s, a)

≤ (Bρ
hV̂h+1)(s, a) + Γh(s, a)− Γh(s, a)

≤ (Bρ
hV̂h+1)(s, a)

≤ (Bρ
hV π̂,ρ

h+1)(s, a) = Qπ̂,ρ
h (s, a),

where the first inequality is from the definition of Q̂h(s, a) (cf. Line 10 in Algorithm 1), and
third inequality is based on the condition (39).

Combining these two cases, for any h ∈ [H + 1], we could verify the pessimistic property, i.e. the
equation (40).

Step 2: bounding the suboptimality gap. Notice that for any h ∈ [H] and any s ∈ S,

V ⋆,ρ
h (s)− V π̂,ρ

h (s) = V ⋆,ρ
h (s)− V̂h(s) + V̂h(s)− V π̂,ρ

h (s)
≤ V ⋆,ρ

h (s)− V̂h(s), (42)

where the inequality is due to the pessimistic property in (40).

In the following, we will control the value difference, i.e., V ⋆,ρ
h (s)− V̂h(s), for any (s, h) ∈ S × [H].

First, recall the definition of V̂h (cf. Line 12 in Algorithm 1) and the robust Bellman consistency
equation (2). For all s ∈ S,

V ⋆,ρ
h (s)− V̂h(s) = Q⋆,ρ

h (s, π⋆
h(s))− Q̂h(s, π̂h(s))

≤ Q⋆,ρ
h (s, π⋆

h(s))− Q̂h(s, π⋆
h(s)), (43)

where the last inequality is from π̂h is the greedy policy with respect to Q̂h (cf. Line 11 in Algorithm
1.) From the definition of the model evaluation error (i.e., equation (35)) and the robust Bellman
optimality equation (6), we have

Q̂h(s, a) = (Bρ
hV̂h+1)(s, a)− ιh(s, a), ∀(s, a) ∈ S ×A,

Q⋆,ρ
h (s, a) = (Bρ

hV ⋆,ρ
h+1)(s, a) ∀(s, a) ∈ S ×A,

which leads to

Q⋆,ρ
h (s, π⋆

h(s))−Q̂h(s, π⋆
h(s)) = (Pρ

hV ⋆,ρ
h+1)(s, π⋆

h(s))−(Pρ
hV̂h+1)(s, π⋆

h(s))+ιh(s, π⋆
h(s)), ∀s ∈ S. (44)

Denote

P inf,V̂
h,s,π⋆

h
(s)(·) := arg min

P (·)∈Pρ(P 0
h,s,π⋆

h
(s))

∫
S

P (s′)V̂h+1(s′)ds′. (45)
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Therefore, (44) becomes

Q⋆,ρ
h (s, π⋆

h(s))−Q̂h(s, π⋆
h(s)) ≤

∫
S

P inf,V̂
h,s,π⋆

h
(s)(s

′)
(

V ⋆,ρ
h+1(s′)− V̂h+1(s′)

)
ds′+ιh(s, π⋆

h(s)), ∀(s, a) ∈ S×A.

(46)
Substituting (46) into (43), one has

V ⋆,ρ
h (s)− V̂h(s) ≤

∫
S

P inf,V̂
h,s,π⋆

h
(s)(s

′)
(

V ⋆,ρ
h+1(s′)− V̂h+1(s′)

)
ds′ + ιh(s, π⋆

h(s)). (47)

For any h ∈ [H], define P̂ inf
h,s : S → S and ι⋆

h ∈ S → R by

P̂ inf
h (s) = P inf,V̂

h,s,π⋆
h

(s)(·) and and ι⋆
h(s) := ιh(s, π⋆(s)), ∀s ∈ S. (48)

By telescoping sum, we finally obtain that for any s ∈ S,

V ⋆,ρ
h (s)− V̂h(s) = ⟨1s, V ⋆,ρ

h − V̂h⟩ ≤

(
H∏

t=h

P̂ inf
j

)(
V ⋆,ρ

H+1 − V̂H+1

)
(s) +

H∑
t=h

t−1∏
j=h

P̂ inf
j

 ι⋆
t (s)

=
H∑

t=h

t−1∏
j=h

P̂ inf
j

 ι⋆
t (s),

where the equality is from V ⋆,ρ
H+1(s) = V̂H+1(s) = 0 and

(∏t−1
j=t P̂ inf

j

)
(s) = 1s.

Step 3: finishing up. For any d⋆
h ∈ D⋆

h, denote

d⋆
h:t = d⋆

h

t−1∏
j=h

P̂ inf
j

 ∈ D⋆
t .

Together with (42), the sub-optimality gap defined in (9) satisfies

SubOpt(π̂; ζ,Pρ) ≤ Es1∼ζV ⋆,ρ
1 (s1)− Es1∼ζ V̂1(s1) ≤

H∑
t=1

Est∼d⋆
1:t

ι⋆
t (st). (49)

For any h ∈ [H], we let Γ⋆
h : S → R satisfy

Γ⋆
h(s) = Γh(s, π⋆

h(s)), ∀s ∈ S. (50)

Combining Lemma 5 together with Lemma 10 will lead to

SubOpt(π̂; ζ,Pρ) ≤ 2
H∑

h=1
Esh∼d⋆

1:h
Γ⋆

h(sh).

Note that Γ⋆
h(s) = γ0

∑d
i=1 ∥ϕi(s, π⋆

h(s))1i∥Λ−1
h

for any (s, h) ∈ S × [H]. Following the definition
(37), we have d⋆

1:h ∈ D⋆
h and correspondingly,

SubOpt(π̂; ζ,Pρ) ≤ 2
H∑

h=1
Esh∼d⋆

1:h
Γ⋆

h(sh)

≤ 2γ0

H∑
h=1

max
d⋆

h
∈D⋆

h

E(sh,ah)∼d⋆
h

[
d∑

i=1
∥ϕi(sh, ah)1i∥Λ−1

h

]
,

with probability exceeding 1− δ.
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B.3.3 Proof of Lemma 10

To control |(B̂ρ
hV̂h+1)(s, a)−(Bρ

hV̂h+1)(s, a)| for any (s, a, h) ∈ S×A× [H], we first show the following
lemma, where the proof can be found in Appendix B.3.4.
Lemma 11. Suppose Assumption 1 and 2 hold. Then, for any (s, a, h) ∈ S ×A× [H], the estimated
value function V̂h+1 generated by DROP satisfies

|(B̂ρ
hV̂h+1)(s, a)− (Bρ

hV̂h+1)(s, a)|

≤


√

λ0dH + max
α∈[mins V̂h+1(s),maxs V̂h+1(s)]

∥
∑

τ∈D0
h

ϕ(sτ
h, aτ

h)ϵτ
h(α, V̂h+1)∥Λ−1

h︸ ︷︷ ︸
T1,h


d∑

i=1
∥ϕi(s, a)1i∥Λ−1

h
,

(51)
where ϵτ

h(α, V ) =
∫

S P 0
h (s′|sτ

h, aτ
h)[V ]α(s′)ds′ − [V ]α(sτ

h+1) for any value function V : S → [0, H],
α ∈ [mins V (s), maxs V (s)] and τ ∈ D0

h.

We observe that the second term (i.e., T1,h) in (51) will become dominating, as long as λ0 is sufficiently
small. In the following analysis, we will control T1,h via uniform concentration and the concentration
of self-normalized process.

Notice that α and V̂h+1 are coupled with each other, which makes controlling T1,h intractable. To
this end, we propose the minimal ϵ0-covering set for α. Since V̂h+1(s) ∈ [0, H] for any s ∈ S, we
construct N (ϵ0, H) as the minimal ϵ0-cover of the [0, H] whose size satisfies |N (ϵ0, H)| ≤ 3H

ϵ0
. In

other words, for any α ∈ [0, H], there exists α† ∈ N (ϵ0, H), we have

|α− α†| ≤ ϵ0. (52)

Then we can rewrite T 2
1,h as

T 2
1,h = max

α∈[mins V̂h+1(s),maxs V̂h+1(s)]
∥
∑

τ∈D0
h

ϕ(sτ
h, aτ

h)
(

ϵτ
h(α, V̂h+1)− ϵτ

h(α†, V̂h+1) + ϵτ
h(α†, V̂h+1)

)
∥2

Λ−1
h

≤ max
α∈[0,H]

2∥
∑

τ∈D0
h

ϕ(sτ
h, aτ

h)
(

ϵτ
h(α, V̂h+1)− ϵτ

h(α†, V̂h+1)
)
∥2

Λ−1
h

+ 2∥
∑

τ∈D0
h

ϕ(sτ
h, aτ

h)ϵτ
h(α†, V̂h+1)∥2

Λ−1
h

≤ 8ϵ2
0K2/λ0 + 2∥

∑
τ∈D0

h

ϕ(sτ
h, aτ

h)ϵτ
h(α†, V̂h+1)∥2

Λ−1
h︸ ︷︷ ︸

T2,h

, (53)

for some α† ∈ N (ϵ0, H), where the proof of the last inequality is postponed to Appendix B.3.5.
Alternatively,

T2,h ≤ sup
α∈N (ϵ0,H)

∥
∑

τ∈D0
h

ϕ(sτ
h, aτ

h)ϵτ
h(α, V̂h+1)∥2

Λ−1
h

. (54)

Noted that the samples in D0 are temporally statistically independent, i.e., V̂h+1 is independent of
D0

h, or to say, µ̂h. Therefore, we can directly control T2,h via the following lemma.
Lemma 12 (Concentration of self-normalized process). Let V : S → [0, H] be any fixed vector that
is independent with µ̂h and α ∈ [0, H] be a fixed constant. For any fixed h ∈ [H] and any δ ∈ (0, 1),
we have

PD

∥ ∑
τ∈D0

h

ϕ(sτ
h, aτ

h)ϵτ
h(α, V )∥2

Λ−1
h

> H2 (2 · log(1/δ) + d · log(1 + Nh/λ0))

 ≤ δ.
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The proof of Lemma 12 is postponed to Appendix B.3.6. Then applying Lemma 12 and the union
bound over N (ϵ0, H), we have

PD

 sup
α∈N (ϵ0,H)

∥
∑

τ∈D0
h

ϕ(sτ
h, aτ

h)ϵτ
h(α, V̂h+1)∥2

Λ−1
h

≥ H2(2 log(H|N (ϵ0, H)|/δ) + d log(1 + Nh/λ0))


≤ δ/H,

for any fixed h ∈ [H]. According to Vershynin (2018), one has |N (ϵ0, H)| ≤ 3H
ϵ0

. Taking the union
bound for any h ∈ [H], we arrive at

sup
α∈N (ϵ0,H)

∥
∑

τ∈D0
h

ϕ(sτ
h, aτ

h)ϵτ
h(α, V̂h+1)∥2

Λ−1
h

≤ 2H2 log(3H2

ϵ0δ
) + H2d log(1 + K

λ0
), (55)

with probability exceeding 1− δ, where we utilize Nh ≤ K for every h ∈ [H] on the right-hand side.

Combining (53), (54) and (55), we have

T 2
1,h ≤ 8ϵ2

0K2/λ0 + 4H2 log(3H2

ϵ0δ
) + 2H2d log(1 + K

λ0
),

with probability at least 1− δ. Let ϵ0 = H/K and λ0 = 1. Then,

T 2
1,h ≤ 8H2 + 4H2 log(3HK

δ
) + 2H2d log(1 + K)

≤ 8H2 + 4H2 log(3HK/δ) + 2dH2 log(2K).

Let ξ0 = log(3HK/δ) ≥ 1. Note that log(2K) ≤ log(3HK/δ) = ξ0. Then, we have

T 2
1,h ≤ 8H2 + 4H2ξ0 + 2dH2ξ0 ≤ 16dH2ξ0.

Therefore, with probability exceeding 1− δ, one has

|(B̂ρ
hV̂h+1)(s, a)− (Bρ

hV̂h+1)(s, a)| ≤
(√

dH + 4
√

dξ0H
) d∑

i=1
∥ϕi(s, a)∥Λ−1

h

≤ γ0

d∑
i=1
∥ϕi(sh, ah)∥Λ−1

h
= Γh(s, a),

where γ0 = 6
√

dξ0H and the above inequality satisfies (31).

B.3.4 Proof of Lemma 11

It follows Lemma 1 and (16) that

|(B̂ρ
hV̂h+1)(s, a)− (Bρ

hV̂h+1)(s, a)| = |ϕ(s, a)⊤(ŵρ,V̂
h − wρ,V̂

h )|

= |ϕ(s, a)⊤
(

θ̂h − θh

)
|︸ ︷︷ ︸

(i)

+ |ϕ(s, a)⊤
(

ν̂ρ,V̂
h − νρ,V̂

h

)
|︸ ︷︷ ︸

(ii)

, ∀(s, a, h)× S ×A× [H]. (56)

We first bound the term (i), for any h ∈ [H]. By the update (12), we have

(i) = |ϕ(s, a)⊤Λ−1
h

∑
τ∈D0

h

ϕ(sτ
h, aτ

h)rτ
h

− ϕ(s, a)⊤θh|

= |ϕ(s, a)⊤Λ−1
h (Λh − λ0I) θh − ϕ(s, a)⊤θh|

= |λ0ϕ(s, a)⊤Λ−1
h θh|,
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where the second equality is from Assumption 1 and (15). Applying the Cauchy-Schwarz inequality
leads to

(i) ≤ λ0 ∥ϕ(s, a)∥Λ−1
h
∥θh∥Λ−1

h
≤
√

dλ0

d∑
i=1
∥ϕi(s, a)1i∥Λ−1

h
, (57)

where the last inequality is ∥θh∥ ≤
√

d and ∥Λ−1
h ∥ ≤ 1/λ0 such that

∥θh∥Λ−1
h
≤ ∥Λ−1

h ∥
1/2∥θh∥ ≤

√
d/λ0, ∀h ∈ [H].

Next, to bound the term (ii), we define the following notations for simplicity. Let ϵτ
h(α, V ) =∫

S P 0
h (s′|sτ

h, aτ
h)[V ]α(s′)ds′ − [V ]α(sτ

h+1) for any V : S → [0, H] and α ∈ [mins V (s), maxs V (s)].
Also, we define two auxiliary functions:

ĝh,i(α) =
∫

S
µ̂h,i(s′)[V̂h+1]α(s′)ds′ − ρ(α−min

s′
[V̂h+1]α(s′)),

g0
h,i(α) =

∫
S

µ0
h,i(s′)[V̂h+1]α(s′)ds′ − ρ(α−min

s′
[V̂h+1]α(s′)).

With the new notations in hand, we can bound (ii) by

(ii) =
∣∣∣∣∣

d∑
i=1

ϕi(s, a)
(

ν̂ρ,V̂
h,i − νρ,V̂

h,i

)∣∣∣∣∣
≤

d∑
i=1

ϕi(s, a) max
α∈[mins V̂h+1(s),maxs V̂h+1(s)]

∣∣ĝh,i(α)− g0
h,i(α)

∣∣
≤

d∑
i=1

ϕi(s, a) max
α∈[mins V̂h+1(s),maxs V̂h+1(s)]

∣∣∣∣∫
S

(
µ̂h,i(s′)− µ0

h,i(s′)
)

[V̂h+1]α(s′)ds′
∣∣∣∣

≤
d∑

i=1
max

α∈[mins V̂h+1(s),maxs V̂h+1(s)]

∣∣∣∣ϕi(s, a)
∫

S

(
µ̂h,i(s′)− µ0

h,i(s′)
)

[V̂h+1]α(s′)ds′
∣∣∣∣ , (58)

where the first inequality is due to (11), (13) as well as Lemma 6, and the last inequality is based on
ϕi(s, a) ≥ 0 for any (s, a) ∈ S ×A from Assumption 1. Moreover,∣∣∣∣∫

S
µ0

h,i(s′)[V̂h+1]α(s′)ds′ −
∫

S
µ̂h,i(s′)[V̂h+1]α(s′)ds′

∣∣∣∣
=

∣∣∣∣∣∣
∫

S
µ0

h,i(s′)[V̂h+1]α(s′)ds′ − 1⊤
i Λ−1

h

∑
τ∈D0

h

ϕ(sτ
h, aτ

h)[V̂h+1]α(sτ
h+1)

∣∣∣∣∣∣
=

∣∣∣∣∣∣1⊤
i Λ−1

h

Λh

∫
S

µ0
h(s′)[V̂h+1]α(s′)ds′ −

∑
τ∈D0

h

ϕ(sτ
h, aτ

h)[V̂h+1]α(sτ
h+1)

∣∣∣∣∣∣
=

∣∣∣∣∣∣1⊤
i Λ−1

h

λ0

∫
S

µ0
h(s′)[V̂h+1]α(s′)ds′ +

∑
τ∈D0

h

ϕ(sτ
h, aτ

h)
(∫

S
P 0

h (s′|sτ
h, aτ

h)[V̂h+1]α(s′)ds′ − [V̂h+1]α(sτ
h+1)

)∣∣∣∣∣∣
=

∣∣∣∣∣∣1⊤
i Λ−1

h

λ0

∫
S

µ0
h(s′)[V̂h+1]α(s′)ds′ +

∑
τ∈D0

h

ϕ(sτ
h, aτ

h)ϵτ
h(α, V̂h+1)

∣∣∣∣∣∣ (59)

where the first equality is from (36), the third one is due to (15) and we let

ϵτ
h(α, V ) =

∫
S

P 0
h (s′|sτ

h, aτ
h)[V ]α(s′)ds′ − [V ]α(sτ

h+1),
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for any V : S → [0, H] and α ∈ [mins V (s), maxs V (s)]. Then, we have∣∣∣ϕi(s, a) · (µ̂h,i − µ0
h,i)[V̂h+1]α

∣∣∣
≤

∣∣∣∣∣∣ϕi(s, a)1⊤
i Λ−1

h

λ0

∫
S

µ0
h(s′)[V̂h+1]α(s′)ds′ +

∑
τ∈D0

h

ϕ(sτ
h, aτ

h)ϵτ
h(α, V̂h+1)

∣∣∣∣∣∣
≤ ∥ϕi(s, a)1i∥Λ−1

h

λ0

∥∥∥∫
S

µ0
h(s′)[V̂h+1]α(s′)ds′

∥∥∥
Λ−1

h︸ ︷︷ ︸
(iii)

+
∥∥∥ ∑

τ∈D0
h

ϕ(sτ
h, aτ

h)ϵτ
h(α, V̂h+1)

∥∥∥
Λ−1

h

 , (60)

where the last inequality holds due to the Cauchy-Schwarz inequality.

Moreover, the term (iii) in (60) can be further simplified to

(iii) ≤ λ0∥Λ−1
h ∥

1
2 ∥
∫

S
µ0

h(s′)[V̂h+1]α(s′)ds′∥ ≤
√

λ0H,

since |V̂h+1(s)| ≤ H for any s ∈ S and ∥Λ−1
h ∥ ≤ 1/λ0. Then we have

(ii) ≤

√λ0H + max
α∈[mins V̂h+1(s),maxs V̂h+1(s)]

∥
∑

τ∈D0
h

ϕ(sτ
h, aτ

h)ϵτ
h(α, V̂h+1)∥Λ−1

h

 d∑
i=1
∥ϕi(s, a)1i∥Λ−1

h
,

(61)
for any (s, a, h) ∈ S ×A× [H]. Combining (61) with (57) finally leads to (51), which completes our
proof.

B.3.5 Proof of (53)

Since ϵτ
h(α, V ) is 2-Lipschitz with respect to α for any V : S → [0, H], i.e.

|ϵτ
h(α, V )− ϵτ

h(α†, V )| ≤2|α− α†| ≤ 2ϵ0.

Therefore, for any α ∈ [0, H], one has

∥
∑

τ∈D0
h

ϕ(sτ
h, aτ

h)
(
ϵτ

h(α, V )− ϵτ
h(α†, V )

)
∥2

Λ−1
h

=
∑

τ,τ ′∈D0
h

ϕ(sτ
h, aτ

h)⊤Λ−1
h ϕ(sτ ′

h , aτ ′

h )
[(

ϵτ
h(α, V )− ϵτ

h(α†, V )
) (

ϵτ ′

h (α, V )− ϵτ ′

h (α†, V )
)]

≤
∑

τ,τ ′∈D0
h

ϕ(sh, aτ
h)⊤Λ−1

h ϕ(sτ ′

h , aτ ′

h ) · 4ϵ2
0

≤4ϵ2
0N2

h/λ0,

where the last inequality is based on ∥ϕ(s, a)∥ ≤ 1 and λmin(Λh) ≥ λ0 for any (s, a, h) ∈ S ×A× [H]
such that∑

τ,τ ′∈D0
h

ϕ(sτ
h, aτ

h)⊤Λ−1
h ϕ(sτ ′

h , aτ ′

h ) =
∑

τ,τ ′∈D0
h

∥ϕ(sτ
h, aτ

h)∥2 · ∥ϕ(sτ ′

h , aτ ′

h )∥2 · ∥Λ−1
h ∥ ≤ N2

h/λ0. (62)

Thus,

max
α∈[0,H]

∥
∑

τ∈D0
h

ϕ(sτ
h, aτ

h)
(

ϵτ
h(α, V̂h+1)− ϵτ

h(α†, V̂h+1)
)
∥2

Λ−1
h

≤ 4ϵ2
0N2

h/λ0 ≤ 4ϵ2
0K2/λ0,

due to the fact Nh ≤ K for any h ∈ [H], which completes the proof of (53).
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B.3.6 Proof of Lemma 12

For any fixed h ∈ [H] and τ ∈ D0
h, we define the σ-algebra

Fh,τ = σ({(sj
h, aj

h)}(τ+1)∧|Nh|
j=1 , {rj

h, sj
h+1}

τ
j=1).

As shown in Jin et al. (2021, Lemma B.2), for any τ ∈ D0
h, we have ϕ(sτ

h, aτ
h) is Fh,τ−1-measurable and

ϵτ
h(α, V ) is Fh,τ−1-measurable. Hence {ϵτ

h(α, V )}τ∈D0
h

is stochastic process adapted to the filtration
{Fh,τ}τ∈D0

h
. Then, we have

ED0
h
[ϵτ

h(α, V )|F ] =
∫

S
P 0

h (s′|sτ
h, aτ

h)[V ]α − ED0
h

[
[V (sτ

h+1)]α|{(sj
h, aj

h)}(τ)∧Nh

j=1 , {rj
h, sj

h+1}
τ−1
j=1

]
=
∫

S
P 0

h (s′|sτ
h, aτ

h)[V ]α − ED0
h

[
[V (sτ

h+1)]α
]

= 0.

Note that ϵτ
h(α, V ) =

∫
S P 0

h (s′|sτ
h, aτ

h)[V ]α − [V (sτ
h+1)]α for any V ∈ [0, H]S and α ∈ [0, H]. Then,

we have

|ϵτ
h(α, V )| ≤ H.

Hence, for the fixed h ∈ [H] and all τ ∈ [H], the random variable ϵτ
h(α, V ) is mean-zero and

H-sub-Gaussian conditioning on Fh,τ−1. Then, we invoke the Lemma 2 with ητ = ϵτ
h(α, V ) and

xτ = ϕ(sτ
h, aτ

h). For any δ > 0, we have

PD

∥ ∑
τ∈D0

h

ϕ(sτ
h, aτ

h)ϵτ
h(α, V )∥2

Λ−1
h

> 2H2 log( det(Λ1/2
h )

δ det(λ0Id)1/2 )

 ≤ δ.

Together with the facts that det(Λ1/2
h ) = (λ0 + Nh)d/2 and det(λ0Id)1/2 = λ

d/2
0 , we can conclude the

proof of Lemma 12.

B.4 Proof of Corollary 1

Before continuing, we introduce some additional notations that will be used in the following analysis.
For any (h, i) ∈ [H]× [d], define Φ⋆

h,i : S → Rd×d and b⋆
h,i : S → R by

Φ⋆
h,i(s) = (ϕi(s, π⋆

h(s))1i)(ϕi(s, π⋆
h(s))1i)⊤ ∈ Rd×d, (63)

b⋆
h,i(s) = (ϕi(s, π⋆

h(s))1i)⊤Λ−1
h (ϕi(s, π⋆

h(s))1i). (64)

With these notations in hand and recalling (17) in Theorem 1, one has

V ⋆,ρ
1 (ζ)− V π̂,ρ

1 (ζ) ≤ 2γ0

H∑
h=1

d∑
i=1

sup
d⋆

h
∈D⋆

h

Es∼d⋆
h

√
b⋆

h,i(s)

≤ 2γ0

H∑
h=1

d∑
i=1

sup
d⋆

h
∈D⋆

h

√
Es∼d⋆

h
b⋆

h,i(s)

= 2γ0

H∑
h=1

sup
d⋆

h
∈D⋆

h

d∑
i=1

√
Es∼d⋆

h
b⋆

h,i(s), (65)

where the second inequality is due to the Jensen’s inequality and concavity.

In the following, we will control the key term
∑d

i=1

√
Es∼d⋆

h
b⋆

h,i(s) for any d⋆
h ∈ D⋆

h. Before continuing,
we first denote

Cb
h = {(s, a) : db

h(s, a) > 0}.
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Considering any (s, a) s.t. db
h(s, a) > 0 and from Lemma 9, the following lower bound holds with

probability at least 1− 3δ, i.e.,

Nh(s, a) ≥ Kdb
h(s, a)
8 − 5

√
Kdb

h(s, a) log(KH

δ
) ≥ Kdb

h(s, a)
16 , (66)

as long as
K ≥ c0

log(KH/δ)
db

min
≥ c0

log(KH/δ)
db

h(s, a)
(67)

for some sufficiently large c0 and db
min = minh,s,a{db

h(s, a) : db
h(s, a) > 0}. Therefore,

Λh =
∑

(s,a)∈Cb
h

Nh(s, a)ϕ(s, a)ϕ(s, a)⊤ + Id

⪰
∑

(s,a)∈Cb
h

Kdb
h(s, a)
16 ϕ(s, a)ϕ(s, a)⊤ + Id

⪰ K

16Edb
h
[ϕ(s, a)ϕ(s, a)⊤] + Id.

From Assumption 3,

Edb
h
[ϕ(s, a)ϕ(s, a)⊤] ⪰ max

P ∈Pρ(P 0)

d ·min{Ed⋆,P
h

ϕ2
i (s, a), 1/d}

C⋆
rob

1i,i, ∀i ∈ [d]

Thus, for any i ∈ [d],

Λh ⪰ Id +
Kd ·min{Ed⋆

h
ϕ2

i (s, π⋆
h(s)), 1/d}

16C⋆
rob

· 1i,i. (68)

Here, 1i,j represents a matrix with the (i, j)-th coordinate as 1 and all other elements as 0. Conse-
quently,

Es∼d⋆
h
b⋆

h,i(s) = Es∼d⋆
h

Tr(Φ⋆
h,i(s)Λ−1

h ) = Tr(Es∼d⋆
h
Φ⋆

h,i(s)Λ−1
h )

≤
Ed⋆

h
ϕ2

i (s, π⋆
h(s))

1 + Kd ·min{Ed⋆
h
ϕ2

i (s, π⋆
h(s)), 1/d}/16C⋆

rob
, (69)

where the second equality is because the trace is a linear mapping and the last inequality holds by
Lemma 7. We further define Eh,larger = {i : E(s,a)∼d⋆

h
ϕ2

i (s, a) ≥ 1
d}. Due to Assumption 1, we first

claim that
|Eh,larger| ≤

√
d, (70)

where the proof can be found at the end of this subsection.

By utilizing Assumption 3, we discuss the following three cases.

• If E(s,a)∼d⋆
h
ϕ2

i (s, a) = 0 (i /∈ Eh,larger), it is easily observed that (69) can be controlled by
⟨d⋆

h, b⋆
h,i⟩ ≤ 0.

• If 0 < E(s,a)∼d⋆
h
ϕ2

i (s, a) ≤ 1
d (i /∈ Eh,larger),we have

(69) ≤
16C⋆

rob · Ed⋆
h
ϕ2

i (s, π⋆
h(s))

Kd · Ed⋆
h
ϕ2

i (s, π⋆
h(s)) = 16C⋆

rob
Kd

. (71)

• If i ∈ Eh,larger, i.e., 1
d ≤ E(s,a)∼d⋆

h
ϕ2

i (s, a) ≤ 1, we have

(69) ≤
16C⋆

rob · Ed⋆
h
ϕ2

i (s, π⋆
h(s))

K
≤ 16C⋆

rob
K

, (72)

where the last inequality holds due to ϕ2
i (s, π⋆

h(s)) ≤ 1.
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Summing up the above three cases and (70), we have

d∑
i=1

√
Es∼d⋆

h
b⋆

h,i(s) ≤
∑

i∈Eh,larger

√
Es∼d⋆

h
b⋆

h,i(s) +
∑

i/∈Eh,larger

√
Es∼d⋆

h
b⋆

h,i(s)

≤ |Eh,larger|
√

16C⋆
rob

K
+ |d− Eh,larger|

√
16C⋆

rob
Kd

≤ 8
√

C⋆
rob

√
d

K
.

Together with (65) and setting γ0 = 6
√

dH
√

log(3HK/δ), one obtains

V ⋆,ρ
1 (ζ)− V π̂,ρ

1 (ζ) ≤ 2γ0

H∑
h=1

sup
d⋆

h
∈D⋆

h

d∑
i=1

√
Es∼d⋆

h
b⋆

h,i(s)

≤ 96dH2
√

C⋆
rob/K

√
log(3HK/δ),

with probability at least 1− 4δ, as long as K ≥ c0
log(KH/δ)

db
min

for some universal constant c0.

Proof of (70). Let Ẽh,larger = {i : E(s,a)∼d⋆
h
ϕi(s, a) ≥ 1√

d
}.

• We first show that |Ẽh,larger| should be no larger than
√

d by contradiction. Suppose |Ẽh,larger| >√
d. Then, there are more than

√
d coordinates of E(s,a)∼d⋆

h
ϕ(s, a) ∈ Rd that is larger than

1/
√

d. In other words, ∑
i∈Ẽh,larger

E(s,a)∼d⋆
h
ϕi(s, a) > 1, (73)

which is equivalent to

max
(s,a)∈S×A

∥ϕ(s, a)∥1 ≥ E(s,a)∼d⋆
h
∥ϕ(s, a)∥1 ≥ E(s,a)∼d⋆

h

∑
i∈Ẽh,larger

ϕi(s, a) > 1, (74)

where the last inequality is from the linearity of the expectation mapping. It contradicts to
our Assumption 2, which implies ∥ϕ(s, a)∥1 = 1 for any (s, a) ∈ S ×A× [H].

• Then, we show that Ẽh,larger ⊆ Eh,larger: For every element i ∈ Ẽh,larger, we have

1
d
≤ (E(s,a)∼d⋆

h
ϕi(s, a))2 ≤ E(s,a)∼d⋆

h
ϕ2

i (s, a),

where the second inequality is due to the Jensen’s inequality. Thus, Ẽh,larger ⊆ Eh,larger.

Combining these two arguments, we show that |Eh,larger| ≥
√

d.

B.5 Proof of Corollary 2

We first establish the following lemma to control the sub-optimality, under the full feature coverage.
Lemma 13. Consider δ ∈ (0, 1). Suppose Assumption 2, Assumption 4 and all conditions in Lemma
4 hold. For any h ∈ [H], if Nh ≥ max{512 log(2Hd/δ)/κ2, 4/κ}, we have

d∑
i=1
∥ϕi(s, a)1i∥Λ−1

h
≤ 2√

Nhκ
, ∀(s, a) ∈ S ×A,

with probability exceeding 1− δ.
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Proof. From Lemma 4 and Assumption 4, one has

∥ϕi(s, a)1i∥Λ−1
h
≤ 2ϕi(s, a)√

Nhκ
, ∀(i, s, a) ∈ [d]× S ×A,

as long as Nh ≥ max{512 log(2Hd/δ)/κ2, 4/κ}. In addition,

1 =
∫

S
P 0

h (s′|s, a)ds′ =
∫

S
ϕ(s, a)⊤µ0

h(s′)ds′ =
d∑

i=1
ϕi(s, a)

∫
S

µ0
h,i(s′)ds′ =

d∑
i=1

ϕi(s, a), (75)

where the last equality is implied by Assumption 2. Therefore,

d∑
i=1
∥ϕi(s, a)1i∥Λ−1

h
≤

d∑
i=1

2ϕi(s, a)√
Nhκ

≤ 2√
Nhκ

.

From (66), we have Nh ≥ K
16 with probability exceeding 1− 3δ, as long as K obeys (67). Together

will Lemma 13, with probability exceeding 1− 4δ, one has

d∑
i=1
∥ϕi(s, a)1i∥Λ−1

h
≤ 8√

Kκ
,∀(s, a, h) ∈ S ×A× [H],

as long as K ≥ max{c0 log(2Hd/δ)/κ2, c0 log(KH/δ)/db
min} for some sufficiently large universal

constant c0. It follows Theorem 1 that

SubOpt(π̂; ζ,Pρ) ≤ 96
√

dH2

√
log(3HK/δ)

Kκ
,

which completes the proof.

C Analysis for DROP-V: Algorithm 3

C.1 The implementation of DROP-V

The implementation of DROP-V is detailed in Algorithm 3, which can be divided into three steps.
First, we carefully design Three-fold-subsampling (cf. Algorithm 4), to generate two almost
temporally statistically independent datasets, D̃0,D0, which are also independent from each other.
The theoretical analysis of Three-fold-subsampling is postponed to Appendix C.2. The second
step is to construct a variance estimator σ̂2

h for any h ∈ [H] via D̃0, which is independent of D0
h. The

key idea is to utilize the intermediate results {Ṽh}H+1
h=1 of running DROP on D̃0 to approximate the

variance as (22). With the variance estimator at our hands, the last step is to apply the weighted
ridge regression to construct the empirical variance-aware robust Bellman operator via (25)-(28),
which is slightly different from DROP.

C.2 Theoretical guarantee for Three-fold-subsampling

As the three-fold subsampling method presented in Appendix C.1, it is slightly different from the
two-fold variant. Thus, we establish the following lemma to show that (76) is a valid high-probability
lower bound of Nmain(s) for any s ∈ S and h ∈ [H], which follows the proof of Lemma 3 in Li et al.
(2024).
Lemma 14. Consider δ ∈ (0, 1). With probability at least 1− 3δ, if N trim

h (s) satisfies (76) for every
s ∈ S and h ∈ [H], then the following bounds hold, i.e.,

N trim
h (s) ≤ Nmain

h (s), N trim
h (s) ≤ Nvar

h (s), ∀(s, h) ∈ S × [H]. (77)



RLJ | RLC 2024

Algorithm 3 Distributionally Robust Pessimistic Least-Squares Value Iteration with Variance
Estimation (DROP-V)

Input: Datasets D̃0,D0 ← Three-fold-subsampling(D); feature map ϕ(s, a) for (s, a) ∈ S × A;
γ1, λ1 > 0.

Construct the variance estimator: Obtain (Ṽ , π̃)← DROP(D̃0, ϕ)
1: For every h ∈ [H], compute Λ̃h =

∑
τ∈D0

h
ϕ(sτ

h, aτ
h)ϕ(sτ

h, aτ
h)⊤ + Id and

νh,1 = (Λ̃h)−1
( ∑

τ∈D̃0
h

ϕ(sτ
h, aτ

h)Ṽ 2
h+1(sτ

h+1)
)

, νh,2 = (Λ̃h)−1
( ∑

τ∈D̃0
h

ϕ(sτ
h, aτ

h)Ṽh+1(sτ
h+1)

)
.

2: Update σ̂2
h(s, a) via (22), for any (s, a) ∈ S ×A.

Initialization: Set Q̂H+1(·, ·) = 0 and V̂H+1(·) = 0.
3: for step h = H, H − 1, · · · , 1 do
4: Σh =

∑
τ∈D0

h

ϕ(sτ
h,aτ

h)ϕ(sτ
h,aτ

h)⊤

σ̂2
h

(sτ
h

,aτ
h

)
+ λ1Id.

5: θ̂σ
h = Σ−1

h

(∑
τ∈D0

h

ϕ(sτ
h,aτ

h)rτ
h

σ̂2
h

(sτ
h

,aτ
h

)

)
.

6: for feature i = 1, · · · , d do
7: Update ν̂ρ,σ,V̂

h,i via (28).
8: end for
9: ŵρ,σ,V̂

h = θ̂h + ν̂ρ,σ,V̂
h .

10: Q̄h(·, ·) = ϕ(·, ·)⊤ŵρ,σ,V̂
h − γ1

∑d
i=1 ∥ϕi(·, ·)1i∥Σ−1

h
.

11: Q̂h(·, ·) = min
{

Q̄h, H − h + 1
}

+.
12: π̂h(·) = arg maxa∈A Q̂h(·, a).
13: V̂h(·) = Q̂h(·, π̂h(·)).
14: end for
Ouput: π̂ := {π̂h}H

h=1

Algorithm 4 Three-fold-subsampling

Input: Batch dataset D;
1: Split Data: Split D into three haves Daux, Dmain and Dvar, where |Daux| = |Dmain| = |Dvar| =

K/3. Denote Nmain
h (s) (resp. Naux

h (s) or Nvar
h (s)) as the number of sample transitions from

state s at step h in Dmain (resp. Daux or Dvar).
2: Construct the high-probability lower bound N trim

h (s) by Daux: For each s ∈ S and
1 ≤ h ≤ H, compute

N trim
h (s) = max{Naux

h (s)− 6
√

Naux
h (s) log KH

δ
, 0}. (76)

3: Construct the almost temporally statistically independent Dmain,sub and Dvar,sub: Let
Dmain

h (s) (resp. Dvar
h (s)) be the set of all transition-reward sample tuples at state s and step h

from Dmain (resp. Dvar). For any (s, h) ∈ S × [H], subsample min{N trim
h (s), Nmain

h (s)} (resp.
min{N trim

h (s), Nvar
h (s)}) sample tuples randomly from Dmain

h (s) (resp. Dvar
h (s)), denoted as

Dmain,sub (resp. Dmain,sub).
Ouput: Dmain,sub, Dvar,sub.

In addition, with probability at least 1− 4δ, the following bound also holds:

N trim
h (s, a) ≥ Kdb

h(s, a)
12 −

√
6Kdb

h(s, a) log KH

δ
,∀(s, a, h) ∈ S ×A× [H]. (78)
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Proof. We begin with proving the first claim (77). Let SDaux ⊂ S be the collection of all the states
appearing for the dataset Daux, where |SDaux | ≤ K/3. Without loss of generality, we assume that
Daux contains the first K/3 trajectories and satisfies

Naux
h (s) =

K/3∑
k=1

1(sk
h = s), ∀(s, h) ∈ S × [H],

which can be viewed as the sum of K/3 independent Bernoulli random variables. By the union bound
and the Bernstein inequality,

P

(
∃(s, h) ∈ SDaux × [H] :

∣∣∣∣Naux
h (s)− K

3 db
h(s)

∣∣∣∣ ≥ t

)
≤

∑
s∈SDaux ,h∈[H]

P

(∣∣∣∣Naux
h (s)− K

3 db
h(s)

∣∣∣∣ ≥ t

)

≤ 2KH

3 exp
(
− t2/2

vs,h + t/3

)
,

for any t ≥ 0, where

vs,h = K

3 Var[1(sk
h = s)] ≤ Kdb

h(s)
3 .

Here, we abuse the notation Var to represent the variance of the Bernoulli distributed 1(sk
h = s).

Then, with probability at least 1− 2δ/3, we have∣∣∣∣Naux
h (s)− K

3 db
h(s)

∣∣∣∣ ≤
√

2vs,h log(KH

δ
) + 2

3 log(KH

δ
)

≤
√

Kdb
h(s) log(KH

δ
) + log(KH

δ
), ∀(s, h) ∈ S × [H]. (79)

Similarly, with probability at least 1− 2δ/3, we have∣∣∣∣Nmain
h (s)− K

3 db
h(s)

∣∣∣∣ ≤
√

Kdb
h(s) log(KH

δ
) + log(KH

δ
), ∀(s, h) ∈ S × [H]. (80)

Therefore, combining (79) and (80) leads to

∣∣Nmain
h (s)−Naux

h (s)
∣∣ ≤ 2

√
Kdb

h(s) log(KH

δ
) + 2 log(KH

δ
), ∀(s, h) ∈ S × [H], (81)

with probability at least 1− 4δ/3. Then, we consider the following two cases

• Case 1: Naux
h (s) ≤ 36 log KH

δ . One has

N trim
h (s) = max{Naux

h (s)− 6
√

Naux
h (s) log HK

δ
, 0} = 0 ≤ Nmain

h (s).

• Case 2: Naux
h (s) > 36 log KH

δ . From (79), we have

K

3 db
h(s) +

√
Kdb

h(s) log(KH

δ
) + log(KH

δ
) ≥ Naux

h (s) ≥ 36 log KH

δ
,

implying
Kdb

h(s) ≥ 72 log KH

δ
.

Also from (79),

Naux
h (s) ≥ K

3 db
h(s)−

√
Kdb

h(s) log(KH

δ
)− log(KH

δ
) ≥ K

6 db
h(s).
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Therefore, with probability exceeding 1− 4δ/3

N trim
h (s) = Naux

h (s)− 6
√

Naux
h (s) log HK

δ
≤ Naux

h (s)−
√

6
√

Kdb
h(s) log HK

δ

≤ Naux
h (s)− 2

√
Kdb

h(s) log HK

δ
− 1

3

√
Kdb

h(s) log HK

δ

≤ Naux
h (s)− 2

√
Kdb

h(s) log HK

δ
− 2 log HK

δ

≤ Nmain
h (s),

where the last inequality is from (81).

Following the same arguments, we also have

|Nvar
h (s)−Naux

h (s)| ≤ 2
√

Kdb
h(s) log(KH

δ
) + 2 log(KH

δ
), ∀(s, h) ∈ S × [H]. (82)

holds, with probability at least 1− 4δ/3. Therefore, we can also guarantee that N trim
h (s) ≤ Nvar

h (s)
with probability at least 1− 4δ/3, for any (s, h) ∈ S × [H].

Putting these two results together, we prove the first claim (77).

Next, we will establish the second claim (78). To begin with, we claim the following statement holds
with probability exceeding 1− 2δ/3,

N trim
h (s, a) ≥ N trim

h (s)πb
h(a|s)−

√
2N trim

h (s)πb
h(a|s) log(KH

δ
)− log KH

δ
, ∀(s, a, h) ∈ S ×A× [H],

(83)
conditioned on the high-probability event that the first part (77) holds. In the sequel, we discuss the
following two cases, provided that the inequality (83) holds.

• Case 1:Kdb
h(s, a) = Kdb

h(s)πb
h(a|s) > 864 log KH

δ . From (79), with probability exceeding
1− 2δ/3, one has

Naux
h (s) ≥ K

3 db
h(s)−

√
Kdb

h(s) log(KH

δ
)− log(KH

δ
) ≥ K

6 db
h(s) ≥ 144 log KH

δ
.

Together with the definition (76), we have

N trim
h (s) ≥ Naux

h (s)− 6
√

Naux
h (s) log KH

δ
≥ 1

2Naux
h (s) ≥ K

12db
h(s).

Therefore,
N trim

h (s)πb
h(a|s) ≥ K

12db
h(s)πb

h(a|s) ≥ 72 log KH

δ
.

Combining with (83), one can derive

N trim
h (s, a) ≥ Kdb

h(s, a)
12 −

√
1
6Kdb

h(s, a) log(KH

δ
)− log KH

δ

≥ Kdb
h(s, a)
12 −

√
6Kdb

h(s, a) log KH

δ
.

with probability exceeding 1− 4δ/3

• Case 2: Kdb
h(s, a) ≤ 864 log KH

δ . From (76), one has

N trim
h (s, a) ≥ 0 ≥ Kdb

h(s, a)
12 −

√
6Kdb

h(s, a) log KH

δ
.
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By integrating these two cases, we can claim (78) is valid with probability exceeding 1− 4δ/3, as
long as the inequality (83) holds under the condition of the high-probability event described in the
the first part (77). Thus, the second claim (78) holds with probability at least 1− 4δ.

Proof of inequality (83). First, we can observe that the inequality (83) holds if N trim
h (s)πb

h(s, a) ≤
2 log KH

δ . Thus, we focus on the other case that N trim
h (s)πb

h(s, a) > 2 log KH
δ . Denote that

E = {(s, a, h) ∈ S ×A× [H]| N trim
h (s)πb

h(a|s) > 2 log(KH

δ
)}.

Noticed that from Algorithm 4, one has that |E| ≤ KH
3 . Supposing that the first claim (77) holds,

one has N trim
h (s) = min{N trim

h (s), Nmain
h (s), Nvar

h (s)}. Therefore, N trim
h (s, a) can be viewed as the

sum of N trim
h (s) independent Bernoulli random variables, where each is with the mean πb

h(a|s). Then,
by the union bound and the Bernstein inequality,

P
(
∃(s, a, h) ∈ E :

∣∣N trim
h (s, a)−N trim

h (s)πb
h(a|s)

∣∣ ≥ t
)

≤
∑

(s,a,h)∈E

P
(∣∣N trim

h (s, a)−N trim
h (s)πb

h(a|s)
∣∣ ≥ t

)
≤ 2KH

3 exp
(
− t2/2

vs,h + t/3

)
,

for any t ≥ 0, where

vs,h = N trim
h (s) Var[1((sk

h, ak
h) = (s, a))] ≤ N trim

h (s)πb
h(a|s)

A little algebra yields that with probability at least 1− 2δ/3, one can obtain

∣∣N trim
h (s, a)−N trim

h (s)πb
h(a|s)

∣∣ ≤√2vs,h log(KH

δ
) + 2

3 log(KH

δ
)

≤
√

2N trim
h (s)πb

h(a|s) log(KH

δ
) + log(KH

δ
), ∀(s, h) ∈ S × [H].

(84)

Therefore, with probability 1− 2δ/3, one can obtain

N trim
h (s, a) ≥ N trim

h (s)πb
h(a|s)−

√
2N trim

h (s)πb
h(a|s) log(KH

δ
)− log(KH

δ
),

for any (s, a, h) ∈ E , conditioned on the first claim (77) holds.

In addition, the following lemma guarantees that the samples in Dmain,sub and Dvar,sub are statistically
independent with probability exceeding 1− 3δ. Before continuing, we denote Di.i.d. as the dataset
containing N trim

h (s) independent transition-reward sample tuples for every (s, h) ∈ S × [H], following
πb

h and P 0
h .

Lemma 15 (Modified Lemma 7, Li et al. (2024)). With probability exceeding 1− 3δ, Dmain,sub and
Dvar,sub generated by Algorithm 4 as well as Di.i.d. have the same distributions.

C.3 Proof of Theorem 2

To show that Theorem 2 holds, we first establish the following theorem that considers the temporally
independent dataset, where the proof is deferred to the next subsection.
Theorem 4. Consider the dataset D0 and D̃0 used for constructing the variance estimator in DROP-V
and δ ∈ (0, 1). Suppose that both D0 and D̃0 contain Nh < K sample tuples at every h ∈ [H]. Assume
that conditional on {Nh}h∈[H], the sample tuples in D0 and D̃0 are statistically independent, where

Nh(s, a) ≥ Kdb
h(s, a)
24 , ∀(s, a, h) ∈ S ×A× [H].



RLJ | RLC 2024

Suppose that Assumption 1, 2, and 3 hold. In DROP-V, we set

λ1 = 1/H2, γ1 = ξ1
√

d, where ξ1 = 66 log(3HK/δ). (85)

Then, with probability at least 1− 7δ, {π̂h}H
h=1 generated by DROP-V satisfies

SubOpt(π̂; ζ,Pρ) ≤ Õ(
√

d)
H∑

h=1

d∑
i=1

max
d⋆

h
∈D⋆

h

Ed⋆
h

[
∥ϕi(sh, ah)1i∥(Σ⋆

h
)−1

]
,

if
√

d ≥ H and K ≥ max{Õ(H4/κ2), Õ(H6d/κ)}, where Σ⋆
h is defined in (30).

As the construction in Algorithm 4, {N trim
h (s)}s∈S,h∈[H] is computed using Daux that is independent

of D0 := Dmain,sub and D̃0 := Dvar,sub. Moreover, from Lemma 14 and Lemma 15 in the Section
C.2, {N trim

h (s)}s∈S is a valid sampling number and D0
h and D̃0

h can be treated as being temporally
statistically independent samples and ∑

s∈S
N trim

h (s) ≥ K/24,

with probability exceeding 1− 4δ, as long as K ≥ c1 log KH
δ /db

min for some sufficiently large c1.

Therefore, by invoking Theorem 3 with Nh :=
∑

s∈S N trim(s), we have

SubOpt(π̂; ζ,Pρ) ≤ Õ(
√

d)
H∑

h=1

d∑
i=1

max
d⋆

h
∈D⋆

h

Ed⋆
h

[
∥ϕi(sh, ah)1i∥(Σ⋆

h
)−1

]
,

with probability exceeding 1− 11δ, if
√

d ≥ H and K ≥ max{Õ(H4/κ2), Õ(H6d/κ), Õ(1/db
min)}.

C.4 Proof of Theorem 4

Before starting, we first introduce some notations that will be used in the following analysis. First,
we use

ισ
h(s, a) = Bρ,σ

h V̂h+1(s, a)− Q̂h(s, a), ∀(s, a, h) ∈ S ×A× [H], (86)

to represent the model evaluation error at the h-th step of our proposed Algorithm 3. In addition,
For any h ∈ [H], we let Γ⋆,σ

h : S → R satisfy

Γ⋆,σ
h (s) = Γσ

h(s, π⋆
h(s)), ∀s ∈ S. (87)

Also, denote VP 0
h
V (s, a) = max{1, VarP 0

h
[V ](s, a)} for any V : S → [0, H] and any (s, a, h) ∈

S ×A× [H]. Similar to Lemma 10, we have the following key lemma, where the proof can be found
in Appendix C.5.
Lemma 16. Suppose all the assumptions in Theorem 4 hold and follow all the parameters setting in
(85). In addition, suppose that the number of trajectories K ≥ max{Õ(H4/κ2), Õ(H6d/κ)}.Then for
any (s, a, h) ∈ S ×A× [H], with probability at least 1− 7δ, one has

|(B̂ρ,σ
h V̂h+1)(s, a)− (Bρ

hV̂h+1)(s, a)| ≤ Γσ
h(s, a) := γ1

d∑
i=1
∥ϕi(s, a)1i∥Σ−1

h
. (88)

In addition,

γ1

d∑
i=1
∥ϕi(s, a)1i∥Σ−1

h
≤ 2γ1

d∑
i=1
∥ϕi(s, a)1i∥(Σ⋆

h
)−1 .
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Next, following the same steps in Appendix B.3.2, with probability exceeding 1− 7δ, one has

SubOpt(π̂; ζ,Pρ) ≤ 2γ1

H∑
h=1

d∑
i=1

max
d⋆

h
∈D⋆

h

Ed⋆
h

[
∥ϕi(sh, ah)1i∥Σ−1

h

]
≤ 4γ1

H∑
h=1

d∑
i=1

max
d⋆

h
∈D⋆

h

Ed⋆
h

[
∥ϕi(sh, ah)1i∥(Σ⋆

h
)−1

]
.

C.5 Proof of Lemma 16

Similar to Lemma 11, we first establish the following lemma, which proof is postponed to Appendix
C.5.1.
Lemma 17. Suppose the Assumption 1 and 2 hold. Then, for any (s, a, h) ∈ S ×A× [H] and any
Vh+1 : S → [0, H], we have

|(B̂ρ,σ
h Vh+1)(s, a)− (Bρ

hVh+1)(s, a)|

≤

2
√

λ1dH + max
α∈[mins Vh+1(s),maxs Vh+1(s)]

∥
∑

τ∈D0
h

ϕ(sτ
h, aτ

h)
σ̂h(sτ

h, aτ
h)ϵτ,σ

h (α, Vh+1)∥Σ−1
h

 d∑
i=1
∥ϕi(s, a)1i∥Σ−1

h
,

(89)

where ϵτ,σ
h (α, V ) =

∫
S

P 0
h (s′|sτ

h,aτ
h)[V ]α(s′)ds′−[V ]α(sτ

h+1)

σ̂h(sτ
h

,aτ
h

)
for any V : S → [0, H], any τ ∈ D0

h and
α ∈ [mins V (s), maxs V (s)].

Letting λ1 = 1/H2 in (89), then Lemma 17 becomes

|(B̂ρ,σ
h V̂h+1)(s, a)− (Bρ,σ

h V̂h+1)(s, a)|

≤

2
√

d + max
α∈[mins V̂h+1(s),maxs V̂h+1(s)]

∥
∑

τ∈D0
h

ϕ(sτ
h, aτ

h)
σ̂(sτ

h, aτ
h)ϵτ,σ

h (α, V̂h+1)∥Σ−1
h︸ ︷︷ ︸

M1,h


d∑

i=1
∥ϕi(s, a)1i∥Σ−1

h
.

(90)
Due to the correlation between α and V̂h+1, we also apply the uniform concentration with the minimal
ϵ1-covering set N (ϵ1, H) for α defined in (52). Similar to (53), there exists α† ∈ N (ϵ1, H) s.t.

M2
1,h ≤ 8ϵ2

1H2K2 + 2

∥∥∥∥∥∥
∑

τ∈D0
h

ϕ(sτ
h, aτ

h)
σ̂h(sτ

h, aτ
h)ϵτ,σ

h (α†, V̂h+1)

∥∥∥∥∥∥
2

Σ−1
h︸ ︷︷ ︸

M2,h

≤ 8 + 2M2,h, (91)

where the second inequality holds if ϵ1 ≤ 1
HK . Without the loss of generality, we let ϵ1 = 1

HK in the
following analysis. The detailed proof of (91) is postponed to Appendix C.5.2.

Next, we will focus on bound the term M2,h. Before proceeding, we first define the σ-algebra

Fh,τ = σ({(sj
h, aj

h)}(τ+1)∧Nh

j=1 , {rj
h, sj

h+1}
τ
j=1),

for any fixed h ∈ [H] and τ ∈ D0
h. Noted that the samples in D0 are temporally statistically

independent, i.e., V̂h+1 is independent of D0
h for any h ∈ [H]. In addition, {σ̂2

h}h∈[H] is constructed
using an additional dataset D̃0, which is also independent of D0. Thus, for any h ∈ [H] and τ ∈ D0

h,
we have ϕ(sτ

h,aτ
h)

σ̂h(sτ
h

,aτ
h

)
is Fh,τ−1-measurable and | ϕ(sτ

h,aτ
h)

σ̂h(sτ
h

,aτ
h

)
| ≤ 1. Also, ϵτ,σ

h (α†, V̂h+1) is Fh,τ -measurable,

E[ϵτ,σ
h (α†, V̂h+1)|Fh,τ−1] = 0, |ϵτ,σ

h (α†, V̂h+1)| ≤ H,
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It follows the independence between σ̂2
h and D0

h that

VarP 0
h

[∫
S P 0

h (s′|sτ
h, aτ

h)[V̂h+1]α(s′)ds′ − [V̂h+1]α(s)
σ̂h(sτ

h, aτ
h)

]
(sτ

h, aτ
h) =

VarP 0
h
[V̂h+1]α(sτ

h, aτ
h)

σ̂2
h(sτ

h, aτ
h)

≤
VP 0

h
V̂h+1(sτ

h, aτ
h)

σ̂2
h(sτ

h, aτ
h) , (92)

for any h ∈ [H] and τ ∈ D0
h, where the inequality is from VP 0

h
V̂h+1(sτ

h, aτ
h) =

max{1, VarP 0
h
[V̂h+1](sτ

h, aτ
h)}.

The analysis of the improvement on sample complexity heavily relies on the following lemma about
the variance estimation error, where the proof is deferred to Appendix C.5.3.
Lemma 18. Suppose that D0 and D̃0 satisfy all the conditions imposed in Theorem 4. Assume the
Assumption 1, 2 and 3 hold . For any h ∈ [H] and given the nominal transition kernel P 0

h : S×A → S,
the V̂h+1 generated by the DROP-V on D0 and σ̂2

h generated by DROP on D̃0 satisfies∣∣∣VP 0
h
V ⋆,ρ

h+1(sτ
h, aτ

h)− σ̂2
h(sτ

h, aτ
h)
∣∣∣ ≤ 70cbH3

√
d√

Kκ
, ∀τ ∈ D0

h, (93)∣∣∣VP 0
h
V̂h+1(sτ

h, aτ
h)− VP 0

h
V ⋆,ρ

h+1(sτ
h, aτ

h)
∣∣∣ ≤ 320cbH3

√
d√

Kκ
, ∀τ ∈ D0

h, (94)

where cb = 12 log(3HK/δ) and K ≥ c1 log(2Hd/δ)H4/κ2 for some sufficiently large universal
constant c1, with probability at least 1− 6δ.

Notice that 1 ≤ σ̂2
h(s, a) ≤ H2 for any (s, a, h) ∈ S ×A× [H]. Invoking the Lemma 18, we have

VP 0
h
V̂h+1(sτ

h, aτ
h)

σ̂2
h(sτ

h, aτ
h) =

VP 0
h
V ⋆,ρ

h+1(sτ
h, aτ

h)
σ̂2

h(sτ
h, aτ

h) +

∣∣∣VP 0
h
V̂h+1(sτ

h, aτ
h)− VP 0

h
V ⋆,ρ

h+1(sτ
h, aτ

h)
∣∣∣

σ̂2
h(sτ

h, aτ
h)

≤ 1 +
70cbH3√

d√
Kκ

σ̂2
h(sτ

h, aτ
h) + 320cbH3

√
d√

Kκ · σ̂2
h(sτ

h, aτ
h)
≤ 1 + 400cbH3

√
d√

Kκ
≤ 2

where the penultimate inequality uses 1 ≤ σ̂2
h(s, a) for any (s, a, h) ∈ S × A × [H] and the last

inequality holds as long as K ≥ ckH6d/κ for some sufficiently large universal constant ck. Therefore,
combining with (92) leads to Var[ϵτ,σ

h (α†, Vh+1)|Fh,τ−1] ≤ 2.

Suppose that
√

d ≥ H. From Vershynin (2018), one has |N (ϵ1, H)| ≤ 3H
ϵ1

= 3H2K. By the union
bound and invoking Lemma 3, we have

sup
α∈N (ϵ1,H)

∥∥∥∥∥∥
∑

τ∈D0
h

ϕ(sτ
h, aτ

h)
σ̂(sτ

h, aτ
h)ϵτ,σ

h (α, V̂h+1)

∥∥∥∥∥∥
Σ−1

h

≤ 16
√

d log(1 + H2K/d) log(12H3K3/δ) + 4H log(12H3K3/δ)

≤ c1
√

d

with probability 1− 7δ and for a fixed α ∈ N (ϵ1, V̂h+1), for c1 = 40 log(3HK/δ). Then, the equation
(89) becomes

|(B̂ρ,σ
h V̂h+1)(s, a)− (Bρ

hV̂h+1)(s, a)| ≤ (2
√

d + 2
√

2 +
√

2c1
√

d)
d∑

i=1
∥ϕi(s, a)1i∥Σ−1

h

= γ1

d∑
i=1
∥ϕi(s, a)1i∥Σ−1

h
:= Γσ

h(s, a).
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Moreover, from (93), we have

∑
τ∈D0

h

ϕτ
h(sτ

h, aτ
h)ϕτ

h(sτ
h, aτ

h)⊤

σ̂2
h(sτ

h, aτ
h) ⪰

∑
τ∈D0

h

ϕτ
h(sτ

h, aτ
h)ϕτ

h(sτ
h, aτ

h)⊤

VP 0
h
V ⋆,ρ

h+1(sτ
h, aτ

h) + 70cbH3d√
Kjiκ

⪰
∑

τ∈D0
h

ϕτ
h(sτ

h, aτ
h)ϕτ

h(sτ
h, aτ

h)⊤

2VP 0
h
V ⋆,ρ

h+1(sτ
h, aτ

h)

where the last inequality is from 70cbH3√
d√

Kκ
≤ 1

2 . Then, we obtain Σh ⪰ 1
2 Σ⋆

h for any h ∈ [H], which
completes the proof.

C.5.1 Proof of Lemma 17

Following (56)-(58), we have

|(B̂ρ,σ
h Vh+1)(s, a)− (Bρ

hVh+1)(s, a)|

≤
√

dλ1

d∑
i=1
∥ϕi(s, a)1i∥Σ−1

h
+

d∑
i=1

max
α∈[mins Vh+1(s),maxs Vh+1(s)]

∣∣∣∣ϕi(s, a)
∫

S
(µ̂σ

h,i(s′)− µh,i(s′))[Vh+1]α(s′)ds′
∣∣∣∣︸ ︷︷ ︸

(i)

,

for ∀(s, a, h)× S ×A× [H], where µ̂σ
h,i(s) is the i-th coordinate of

µ̂σ
h(s) = Σ−1

h

∑
τ∈D0

h

ϕ(sτ
h, aτ

h)1(s = sτ
h+1)

σ̂2
h(sτ

h, aτ
h)

 ∈ Rd

such that ν̄V̂
h (α) =

∫
S µ̂σ

h(s′)[V̂h+1(s′)]αds′ defined in the update (26). Similar to (59), by let-

ting ϵτ,σ
h (α, V ) =

∫
S

P 0
h (s′|sτ

h,aτ
h)[V ]α(s′)ds′−[V ]α(sτ

h+1)

σ̂(sτ
h

,aτ
h

)
for any V : S → [0, H], any τ ∈ D0

h and
α ∈ [mins V (s), maxs V (s)], we have∣∣∣∣∫

S
µ0

h,i(s′)[Vh+1]α(s′)ds′ −
∫

S
µ̂σ

h,i(s′)[Vh+1]α(s′)ds′
∣∣∣∣

=

∣∣∣∣∣∣1⊤
i Σ−1

h

λ1

∫
S

µ0
h(s′)[Vh+1]α(s′)ds′ +

∑
τ∈D0

h

ϕ(sτ
h, aτ

h)
σ̂2

h(sτ
h, aτ

h)

(∫
S

P 0
h (s′|sτ

h, aτ
h)[Vh+1]α(s′)ds′ − [Vh+1]α(sτ

h+1)
)∣∣∣∣∣∣

=

∣∣∣∣∣∣1⊤
i Σ−1

h

λ1

∫
S

µ0
h(s′)[Vh+1]α(s′)ds′ +

∑
τ∈D0

h

ϕ(sτ
h, aτ

h)
σ̂h(sτ

h, aτ
h)ϵτ,σ

h (α, Vh+1)

∣∣∣∣∣∣
Then, we obtain∣∣∣∣ϕi(s, a)

∫
S

(µ̂σ
h,i(s′)− µh,i(s′))[Vh+1]α(s′)ds′

∣∣∣∣
≤

∣∣∣∣∣∣ϕi(s, a)1⊤
i Σ−1

h

λ1

∫
S

µ0
h(s′)[Vh+1]α(s′)ds′ +

∑
τ∈D0

h

ϕ(sτ
h, aτ

h)
σ̂(sτ

h, aτ
h)ϵτ,σ

h (α, Vh+1)

∣∣∣∣∣∣
≤ ∥ϕi(s, a)1i∥Σ−1

h

λ1∥
∫

S
µ0

h(s′)[Vh+1]α(s′)ds′∥Σ−1
h︸ ︷︷ ︸

(ii)

+ ∥
∑

τ∈D0
h

ϕ(sτ
h, aτ

h)
σ̂(sτ

h, aτ
h)ϵτ,σ

h (α, Vh+1)∥Σ−1
h

 , (95)
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where the last inequality follows Cauchy-Schwarz inequality. Moreover, the term (ii) in (95) can be
further simplified

(ii) ≤ λ1∥Σ−1
h ∥

1
2 ∥
∫

S
µ0

h(s′)[Vh+1]α(s′)ds′∥ ≤
√

λ1H,

since V (s) ≤ H for any s ∈ S and ∥Σ−1
h ∥ ≤ 1/λ1. Then we have

(i) ≤

√λ1H + max
α∈[mins Vh+1(s),maxs Vh+1(s)]

∥
∑

τ∈D0
h

ϕ(sτ
h, aτ

h)
σ̂(sτ

h, aτ
h)ϵτ,σ

h (α, Vh+1)∥Σ−1
h

 d∑
i=1
∥ϕi(s, a)1i∥Σ−1

h
,

(96)
which concludes our proof of (89).

C.5.2 Proof of (91)

Due to the semi-positiveness of Σ−1
h , one can control M2

1,h for any h ∈ [H] as

max
α∈[mins V̂h+1(s),maxs V̂h+1(s)]

∥
∑

τ∈D0
h

ϕ(sτ
h, aτ

h)
σ̂h(sτ

h, aτ
h)ϵτ,σ

h (α, V̂h+1)∥2
Σ−1

h

≤ max
α∈[0,H]

2∥
∑

τ∈D0
h

ϕ(sτ
h, aτ

h)
σ̂h(sτ

h, aτ
h)

(
ϵτ,σ

h (α, V̂h+1)− ϵτ,σ
h (α†, V̂h+1)

)
∥2

Σ−1
h

+ 2∥
∑

τ∈D0
h

ϕ(sτ
h, aτ

h)
σ̂h(sτ

h, aτ
h)ϵτ,σ

h (α†, V̂h+1)∥2
Σ−1

h

,

for some α† ∈ N (ϵ1, H). Note that ϵτ,σ
h (α, V ) is 2-Lipschitz w.r.t. α for any V : S → [0, H], i.e.,

|ϵτ,σ
h (α, V )− ϵτ,σ

h (α†, V )| ≤2|α− α†| ≤ 2ϵ1.

Therefore, for any α ∈ [0, H], we have

∥
∑

τ∈D0
h

ϕ(sτ
h, aτ

h)
σ̂h(sτ

h, aτ
h)
(
ϵτ,σ

h (α, V )− ϵτ,σ
h (α†, V )

)
∥2

Σ−1
h

=
∑

τ,τ ′∈D0
h

ϕ(sτ
h, aτ

h)
σ̂h(sτ

h, aτ
h)

⊤
Σ−1

h

ϕ(sτ ′

h , aτ ′

h )
σ̂h(sτ ′

h , aτ ′
h )

[(
ϵτ,σ

h (α, V )− ϵτ,σ
h (α†, V )

) (
ϵτ ′,σ

h (α, V )− ϵτ ′,σ
h (α†, V )

)]

≤
∑

τ,τ ′∈D0
h

ϕ(sτ
h, aτ

h)
σ̂h(sτ

h, aτ
h)

⊤
Σ−1

h

ϕ(sτ ′

h , aτ ′

h )
σ̂h(sτ ′

h , aτ ′
h )
· 4ϵ2

1

≤4ϵ2
1N2

h/λ1,

where the last inequality is based on ∥ϕ(s, a)∥2 ≤ 1, σ̂h(s, a) ≥ 1 for any (s, a, h) ∈ S ×A× [H] and
λmin(Σh) ≥ λ1 = 1

H2 for any h ∈ [H] such that∑
τ,τ ′∈D0

h

ϕ(sτ
h, aτ

h)⊤Σ−1
h ϕ(sτ ′

h , aτ ′

h ) =
∑

τ,τ ′∈D0
h

∥ϕ(sτ
h, aτ

h)∥2 · ∥ϕ(sτ ′

h , aτ ′

h )∥2 · ∥Σ−1
h ∥ ≤ N2

h/λ1. (97)

Due to the fact Nh ≤ K for nay h ∈ [H], we conclude that

M2
1,h ≤ 8ϵ2

1H2K2 + 2

∥∥∥∥∥∥
∑

τ∈D0
h

ϕ(sτ
h, aτ

h)
σ̂h(sτ

h, aτ
h)ϵτ,σ

h (α†, V̂h+1)

∥∥∥∥∥∥
2

Σ−1
h︸ ︷︷ ︸

M2,h

≤ 8 + 2M2,h, (98)

where the second inequality holds if ϵ1 ≤ 1
HK .
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C.5.3 Proof of Lemma 18

Recall that in Section 4.1, {σ̂2
h}H

h=1 is constructed via {Ṽh+1}H
h=1 generated by DROP on D̃0. Before

starting, we define

V̂arhṼh+1(s, a) = [ϕ(s, a)⊤νh,1][0,H2] −
(
[ϕ(s, a)⊤νh,2][0,H]

)2
, ∀(s, a, h) ∈ S ×A× [H],

such that σ̂2
h(s, a) = max{1, V̂arhṼh+1(s, a)}. In addition, recall that VP 0

h
V (s, a) =

max{1, VarP 0
h

V (s, a)} for any value function V : S → [0, H] and any (s, a, h) ∈ S × A × [H].
Then, we can decompose the target terms by∣∣∣VP 0

h
V ⋆,ρ

h+1(sτ
h, aτ

h)− σ̂2
h(sτ

h, aτ
h)
∣∣∣

≤
∣∣∣VP 0

h
Ṽh+1(sτ

h, aτ
h)− σ̂2

h(sτ
h, aτ

h)
∣∣∣+
∣∣∣VP 0

h
V ⋆,ρ

h+1(sτ
h, aτ

h)− VP 0
h
Ṽh+1(sτ

h, aτ
h)
∣∣∣

≤
∣∣∣VarP 0

h
Ṽh+1(sτ

h, aτ
h)− V̂arhṼh+1(sτ

h, aτ
h)
∣∣∣︸ ︷︷ ︸

(a)

+
∣∣∣VarP 0

h
V ⋆,ρ

h+1(sτ
h, aτ

h)−VarP 0
h

Ṽh+1(sτ
h, aτ

h)
∣∣∣︸ ︷︷ ︸

(b)

,

for every h ∈ [H], where the last inequality is based on the non-expansiveness of max{1, ·}. Similarly,∣∣∣VP 0
h
V̂h+1(sτ

h, aτ
h)− VP 0

h
V ⋆,ρ

h+1(sτ
h, aτ

h)
∣∣∣ ≤ ∣∣∣VarP 0

h
V ⋆,ρ

h+1(sτ
h, aτ

h)−VarP 0
h

V̂h+1(sτ
h, aτ

h)
∣∣∣︸ ︷︷ ︸

(c)

.

In the sequel, we will control (a), (b) and (c) respectively.

Step 1: controlling (a). For each τ ∈ D0
h, we decompose the term (a) by

(a) =
∣∣∣V̂arhṼh+1(sτ

h, aτ
h)−VarP 0

h
Ṽh+1(sτ

h, aτ
h)
∣∣∣

≤
∣∣∣∣[ϕ(sτ

h, aτ
h)⊤νh,1][0,H2] −

∫
S

P 0
h,sτ

h
,aτ

h
(s′)Ṽ 2

h+1(s′)ds′
∣∣∣∣

+
∣∣∣∣∣([ϕ(s, a)⊤νh,2][0,H]

)2 −
[∫

S
P 0

h,sτ
h

,aτ
h
(s′)Ṽh+1(s′)ds′

]2
∣∣∣∣∣

≤
∣∣∣∣ϕ(sτ

h, aτ
h)⊤

(
νh,1 −

∫
S

µ0
h(s′)Ṽ 2

h+1(s′)ds′
)∣∣∣∣︸ ︷︷ ︸

(a1)

+ 2H

∣∣∣∣ϕ(sτ
h, aτ

h)⊤
(

νh,2 −
∫

S
µ0

h(s′)Ṽh+1(s′)ds′
)∣∣∣∣︸ ︷︷ ︸

(a2)

,

where the last inequality is based on a2− b2 = (a+ b)(a− b) for any a, b ∈ R. In the sequel, we control
(a1) and (a2), respectively. Before continuing, we first define µ̃h,i : S → R is the i-th coordinate of

µ̃h(s) = (Λ̃h)−1

 ∑
τ ′∈D̃0

h

ϕ(sτ ′

h , aτ ′

h )1(s = sτ ′

h+1)

 ∈ Rd

such that νh,1 =
∫

S µ̃h(s′)Ṽ 2
h+1(s′)ds′ ∈ Rd and νh,2 =

∫
S µ̃h(s′)Ṽh+1(s′)ds′. With this new notation,

we reformulate (a1) as

(a1) = |ϕ(sτ
h, aτ

h)
∫

S
(µ̃h(s′)− µ0

h(s′))Ṽ 2
h+1(s′)ds′|.
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Following the steps in Lemma 11, i.e., the equations (59)-(61) with λ0 = 1, we can obtain

(a1) ≤

H + max
α∈[mins Ṽh+1(s),maxs Ṽh+1(s)]

∥
∑

τ ′∈D̃0
h

ϕ(sτ ′

h , aτ ′

h )ϵτ ′

h (α, Ṽ 2
h+1)∥(Λ̃h)−1

 d∑
i=1
∥ϕi(sτ

h, aτ
h)1i∥Λ̃−1

h

≤

H + 2
√

2H +
√

2 sup
α∈N (ϵ0,H)

∥
∑

τ ′∈D̃0
h

ϕ(sτ ′

h , aτ ′

h )ϵτ ′

h (α, Ṽ 2
h+1)∥(Λ̃h)−1

 d∑
i=1
∥ϕi(sτ

h, aτ
h)1i∥Λ̃−1

h
,

(99)

where ϵτ
h(α, V ) =

∫
S P 0

h (s′|sτ
h, aτ

h)[V ]α(s′)ds′ − [V ]α(sτ
h+1) for any V : S → [0, H], τ ′ ∈ D̃0

h and
α ∈ [mins V (s), maxs V (s)]. Since Ṽh+1 is independent of D̃0

h, we can directly apply Lemma 2
following the same arguments in Lemma 12. Therefore, with probability exceeding 1− δ, we have

sup
α∈N (ϵ0,H)

∥
∑

τ ′∈D̃0
h

ϕ(sτ ′

h , aτ ′

h )ϵτ ′

h (α, Ṽ 2
h+1)∥(Λ̃h)−1 ≤ H2

√
2 log(3HK/δ) + d log(1 + K) ≤ caH2

√
d,

(100)
where ca = 3 log(3HK/δ). Therefore, with probability exceeding 1− δ,

(a1) ≤ 6caH2
√

d

d∑
i=1
∥ϕi(sτ

h, aτ
h)1i∥Λ̃−1

h
.

Similarly, with probability exceeding 1− δ, one has

(a2) = |ϕ(sτ
h, aτ

h)
∫

S
(µ̃h(s′)− µ0

h(s′))Ṽh+1(s′)ds′| ≤ 6caH
√

d

d∑
i=1
∥ϕi(sτ

h, aτ
h)1i∥Λ̃−1

h
. (101)

Combining (99), (100), and (101), we can obtain

(a) ≤ (a1) + 2H(a2) ≤ 12caH2
√

d

d∑
i=1
∥ϕi(sτ

h, aτ
h)1i∥Λ̃−1

h

with probability exceeding 1− 2δ.

Step 2: controlling (b). Then,

(b) =
∣∣∣VarP 0

h
V ⋆,ρ

h+1(sτ
h, aτ

h)−VarP 0
h

Ṽh+1(sτ
h, aτ

h)
∣∣∣

≤
∣∣∣∣∫

S
Ph,sτ

h
,aτ

h
(s′)

(
V ⋆,ρ

h+1(s′)− Ṽh+1(s′)
) (

V ⋆,ρ
h+1(s′) + Ṽh+1(s′)

)
ds′
∣∣∣∣

+
∣∣∣∣∫

S
Ph,sτ

h
,aτ

h
(s′)

(
V ⋆,ρ

h+1(s′)− Ṽh+1(s′)
)

ds′
∣∣∣∣ ∣∣∣∣∫

S
Ph,sτ

h
,aτ

h
(s′)

(
V ⋆,ρ

h+1(s′) + Ṽh+1(s′)
)

ds′
∣∣∣∣

≤ 4H

∣∣∣∣∫
S

Ph,sτ
h

,aτ
h
(s′)

(
V ⋆,ρ

h+1(s′)− Ṽh+1(s′)
)

ds′
∣∣∣∣ ≤ 4H max

s∈S
V ⋆,ρ

h+1(s)− Ṽh+1(s).

Denote ι̃h(s, a) = Bρ
hṼh+1(s, a)− Q̃h(s, a), for any (s, a) ∈ S ×A and

P inf,Ṽ
h,s,π⋆

h
(s)(·) := arg min

P (·)∈Pρ(P 0
h,s,π⋆

h
(s))

∫
S

P (s′)Ṽh+1(s′)ds′. (102)

For any h ∈ [H], define P̃ inf
h : S → S and ι̃⋆

h ∈ S → R by

P̃ inf
h (s) = P inf,Ṽ

h,s,π⋆
h

(s)(·) and and ι̃⋆
h(s) := ι̃h(s, π⋆(s)), ∀s ∈ S. (103)
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Following the step 1 and 2 in Section B.3.2, we have

V ⋆,ρ
h (s)− Ṽh(s) ≤

(
H∏

t=h

P̃ inf
j

)(
V ⋆,ρ

H+1 − ṼH+1
)

(s) +
H∑

t=h

t−1∏
j=h

P̃ inf
j

 ι̃⋆
t (s)

=
H∑

t=h

t−1∏
j=h

P̃ inf
j

 ι̃t
⋆(s)

for any s ∈ S and h ∈ [H], where the equality is from V ⋆,ρ
H+1(s) = ṼH+1(s) = 0 for any s ∈ S and we

denote t−1∏
j=t

P̃ inf
j

 (s) = 1s and d̃⋆
h:t = d⋆

h

t−1∏
j=h

P̃ inf
j

 ∈ D⋆
t .

for any d⋆
h ∈ D⋆

h. Therefore,

max
s∈S

V ⋆,ρ
h+1(s)− Ṽh+1(s) ≤

H∑
t=h+1

max
s∈S

Ed̃⋆
h:t

ι̃⋆
t ≤

H∑
h=1

max
(s,a)∈S×A

ι̃h(s, a). (104)

Note that for any (s, a, h) ∈ S ×A× [H]

|ι̃h(s, a)| ≤ |(B̂ρ
hṼh+1)(s, a)− (Bρ

hṼh+1)(s, a)|+ Γh(s, a) ≤ 2Γh(s, a)

≤ cbH
√

d

d∑
i=1
∥ϕi(s, a)1i∥Λ̃−1

h
, (105)

where cb = 12 log(3HK/δ). Substituting (105) into (104), we have

max
s∈S

V ⋆,ρ
h+1(s)− Ṽh+1(s) ≤ max

(s,a)∈S×A
cbH2

√
d

d∑
i=1
∥ϕi(s, a)1i∥Λ̃−1

h
.

Therefore,

(b) ≤ max
(s,a)∈S×A

4cbH3
√

d

d∑
i=1
∥ϕi(s, a)1i∥Λ̃−1

h

with probability exceeding 1− δ.

Step 3: controlling (c). Similarly,

(c) ≤ 4H max
s∈S

V ⋆,ρ
h+1(s)− V̂h+1(s) ≤

H∑
t=h+1

sup
(s,a)∈S×A

|ισ
t (s, a)| (106)

where

|ισ
h(s, a)| ≤ |(B̂ρ,σ

h V̂h+1)(s, a)− (Bρ
hV̂h+1)(s, a)|+ Γσ

h(s, a). (107)

Following (90) and (91), we have

|(B̂ρ,σ
h V̂h+1)(s, a)− (Bρ

hV̂h+1)(s, a)| ≤
(

5
√

d +
√

2M3,h

) d∑
i=1
∥ϕi(s, a)1i∥Σ−1

h
, (108)
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where M3,h := supα†∈N (ϵ1,H)

∥∥∥∥∑Nh

τ=1
ϕ(sτ

h,aτ
h)

σ̂h(sτ
h

,aτ
h

)
ϵτ,σ

h (α†, V̂h+1)
∥∥∥∥

Σ−1
h

. Since σ̂h and V̂h+1 are independent

of D0
h, then we can directly apply Lemma 2 following the same arguments in Lemma 12. Therefore,

with probability exceeding 1− δ, we have

M3,h ≤ H

√
2 log(3H2

ϵ1δ
) + d log(1 + Nh/λ1)

≤ H
√

2 log(3H3K/δ) + d log(2H2K) ≤ cbH
√

d/
√

2, (109)

where cb = 12 log(3HK/δ). Substituting (109) into (108) and combining with (107) result in

|ισ
h(s, a)| ≤ (5 + cb + ξ1)H

√
d

d∑
i=1
∥ϕi(s, a)1i∥Σ−1

h
,

≤ 8cbH
√

d

d∑
i=1
∥ϕi(s, a)1i∥Σ−1

h
, ∀(s, a, h) ∈ S ×A× [H].

Therefore,

(c) ≤ 4H max
s∈S

V ⋆,ρ
h+1(s)− V̂h+1(s) ≤ sup

(s,a)∈S×A
32cbH3

√
d

d∑
i=1
∥ϕi(s, a)1i∥Σ−1

h

with probability at least 1− δ.

Step 4: finishing up. Then, with probability at least 1− 3δ, we have∣∣∣VP 0
h
V ⋆,ρ

h+1(sτ
h, aτ

h)− σ̂2
h(sτ

h, aτ
h)
∣∣∣ ≤ sup

(s,a)∈S×A
7cbH3

√
d

d∑
i=1
∥ϕi(s, a)1i∥Λ̃−1

h
, (110)

since cb = 4ca. With probability at least 1− δ,∣∣∣VP 0
h
V̂h+1(sτ

h, aτ
h)− VP 0

h
V ⋆,ρ

h+1(sτ
h, aτ

h)
∣∣∣ ≤ sup

(s,a)∈S×A
32cbH3

√
d

d∑
i=1
∥ϕi(s, a)1i∥Σ−1

h
. (111)

Recall that from Lemma 13, we can control the term
∑d

i=1 ∥ϕi(s, a)1i∥Λ̃−1
h

for any (s, a, h) ∈
S ×A× [H], as long as Nh is sufficiently large. Similar to Lemma 13, we also employ Lemma 4 to
control the term

∑d
i=1 ∥ϕi(s, a)1i∥Σ−1

h
for any (s, a, h) ∈ S ×A× [H] as follows, where the proof is

deferred to Appendix C.5.4.
Lemma 19. Consider δ ∈ (0, 1). Suppose Assumption 2, Assumption 4 and all conditions in Lemma
4 hold. For any h ∈ [H], if Nh ≥ 512 log(2Hd/δ)H4/κ2, we have

d∑
i=1
∥ϕi(s, a)1i∥Σ−1

h
≤ 2√

Nhκ
, ∀(s, a) ∈ S ×A,

with probability exceeding 1− δ.

From Lemma 13, Lemma 19 and the fact Nh ≥ K
24 , with probability exceeding 1− 2δ, we have

d∑
i=1
∥ϕi(s, a)1i∥Λ̃−1

h
≤ 2√

Nhκ
≤ 10√

Kκ
, ∀(s, a, h) ∈ S ×A× [H], (112)

d∑
i=1
∥ϕi(s, a)1i∥Σ−1

h
≤ 2√

Nhκ
≤ 10√

Kκ
, ∀(s, a, h) ∈ S ×A× [H], (113)
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as long as K ≥ c1 log(2Hd/δ)H4/κ2 for some sufficient large universal constant c1. Substituting
(112) and (113) into (110) and (111) respectively, we finally arrive at∣∣∣VP 0

h
V ⋆,ρ

h+1(sτ
h, aτ

h)− σ̂2
h(sτ

h, aτ
h)
∣∣∣ ≤ 70cbH3

√
d√

Kκ
, (114)

∣∣∣VP 0
h
V̂h+1(sτ

h, aτ
h)− VP 0

h
V ⋆,ρ

h+1(sτ
h, aτ

h)
∣∣∣ ≤ 320cbH3

√
d√

Kκ
, (115)

for any (s, a, h) ∈ S ×A× [H], with probability at least 1− 6δ, which completes the proof as long as
K ≥ c1 log(2Hd/δ)H4/κ2 for some sufficient large universal constant c1.

C.5.4 Proof of Lemma 19

From Assumption 4, one has λmin(Edb
h
[ ϕ(s,a)ϕ(s,a)⊤

σ̂2
h

(s,a)
]) ≥ κ

H2 for any (s, a, h) ∈ S ×A× [H]. Following
Lemma 4, we can obtain

∥ϕi(s, a)1i∥Σ−1
h
≤ 2ϕi(s, a)√

Nhκ
, ∀(i, s, a) ∈ [d]× S ×A,

as long as Nh ≥ max{512H4 log(2Hd/δ)/κ2, 4/κ}. In addition,

1 =
∫

S
P 0

h (s′|s, a)ds′ =
∫

S
ϕ(s, a)⊤µ0

h(s′)ds′ =
d∑

i=1
ϕi(s, a)

∫
S

µ0
h,i(s′)ds′ =

d∑
i=1

ϕi(s, a), (116)

where the last equality is implied by Assumption 2. Therefore,

d∑
i=1
∥ϕi(s, a)1i∥Σ−1

h
≤

d∑
i=1

2ϕi(s, a)√
Nhκ

≤ 2√
Nhκ

.


