
RLJ | RLC 2024

Combining Automated Optimisation of
Hyperparameters and Reward Shape

Julian Dierkes
dierkes@aim.rwth-aachen.de
Chair for AI Methodology
RWTH Aachen University

Emma Cramer
emma.cramer@dsme.rwth-aachen.de
Institute for Data Science in Mechanical Engineering
RWTH Aachen University

Holger H. Hoos
hh@aim.rwth-aachen.de
Chair for AI Methodology
RWTH Aachen University
LIACS, Universiteit Leiden

Sebastian Trimpe
trimpe@dsme.rwth-aachen.de
Institute for Data Science in Mechanical Engineering
RWTH Aachen University

Abstract

There has been significant progress in deep reinforcement learning (RL) in recent
years. Nevertheless, finding suitable hyperparameter configurations and reward
functions remains challenging even for experts, and performance heavily relies on
these design choices. Also, most RL research is conducted on known benchmarks
where knowledge about these choices already exists. However, novel practical appli-
cations often pose complex tasks for which no prior knowledge about good hyperpa-
rameters and reward functions is available, thus necessitating their derivation from
scratch. Prior work has examined automatically tuning either hyperparameters or
reward functions individually. We demonstrate empirically that an RL algorithm’s
hyperparameter configurations and reward function are often mutually dependent,
meaning neither can be fully optimised without appropriate values for the other.
We then propose a methodology for the combined optimisation of hyperparame-
ters and the reward function. Furthermore, we include a variance penalty as an
optimisation objective to improve the stability of learned policies. We conducted
extensive experiments using Proximal Policy Optimisation and Soft Actor-Critic
on four environments. Our results show that combined optimisation significantly
improves over baseline performance in half of the environments and achieves com-
petitive performance in the others, with only a minor increase in computational
costs. This suggests that combined optimisation should be best practice.

1 Introduction

Deep reinforcement learning (RL) has successfully been applied to various domains, including Silver
et al. (2017); Akkaya et al. (2019); Kaufmann et al. (2023); Bi & D’Andrea (2023). Despite successes
in these and other challenging applications, configuring RL algorithms remains difficult. This is
due to the algorithms typically having several hyperparameter and reward configurations, critically
determining learning speed and the general outcome of the training process. For each task, there
usually is a final objective one wants to achieve. Defining the RL rewards in terms of this objective
is typically insufficient; instead, augmenting the reward with additional intermediate rewards, sub-
goals, and constraints is necessary for effective training. This augmentation of a reward signal is
referred to as reward shaping, and performance and learning speed can crucially depend on it (Ng
et al., 1999). Next, RL algorithms require the optimisation of hyperparameters, such as learning rate
or discount factor. Effective hyperparameter tuning requires an effective reward signal, and effective

RLJ | RLC 2024

reward shaping depends on good hyperparameter configurations. This circular dependency becomes
particularly relevant when applying RL to novel environments beyond commonly used benchmarks,
for which neither effective reward shapes nor good hyperparameter settings are available.

In the area of Automatic RL (AutoRL) (Parker-Holder et al., 2022), different data-driven approaches
have been developed in recent years to automatically approach hyperparameter optimisation (Parker-
Holder et al., 2020; Falkner et al., 2018) and reward shaping (Wang et al., 2022; Zheng et al., 2018).
However, these methods approach each problem individually without considering their interdepen-
dency. Therefore, they require the availability of high-performing configurations of the non-optimised
component. To the best of our knowledge, ours is the first study to thoroughly investigate the effec-
tiveness and broader applicability of jointly optimising hyperparameters and reward shape by using
multiple and different environments and systematically evaluating the benefit thus obtained.

We examine the combined optimisation of hyperparameters and reward shape using two state-
of-the-art RL algorithms: Proximal Policy Optimisation (PPO) (Schulman et al., 2017) and Soft
Actor-Critic (SAC) (Haarnoja et al., 2018). We performed experiments on Gymnasium LunarLander
(Towers et al., 2023), Google Brax Ant and Humanoid (Freeman et al., 2021), and Robosuite Wipe
(Zhu et al., 2020). The Wipe environment is a robot task representing contact-rich interactions
inspired by modern production tasks, which has not been well studied in the literature yet. We
compare the combined optimisation results against baselines from the literature and, in particular,
to individual optimisation of only hyperparameters and reward shape. We employ the state-of-the-
art black-box hyperparameter optimisation algorithm DEHB (Awad et al., 2021) for our experiments,
which recently showed to outperform other optimisation methods in RL (Eimer et al., 2023).

Our key contributions can be summarised as follows:

1. We illustrate the advantage of joint optimisation by showing complex dependencies between
hyperparameters and reward signals in the LunarLander environment. We use an existing
hyperparameter optimisation framework and extend it with additional hyperparameters that
control reward shaping. We show that combined optimisation can match the performance
of individual optimisation with the same compute budget despite the larger search space;
furthermore, we show that it can yield significant improvement in challenging environments,
such as Humanoid and Wipe.

2. We demonstrate that including a variance penalty for multi-objective optimisation can ob-
tain hyperparameter settings and reward shapes that substantially improve performance
variance of a trained policy while achieving similar or better expected performance.

2 Background

We begin with some background on RL, define the optimisation of hyperparameters and reward
shape, and present the selected algorithm applicable to these optimisation problems.

2.1 Reinforcement Learning and Reward-Shaping

In RL, an agent learns to optimise a task objective through interaction with an environment (Sutton
& Barto, 2018). The environment is represented as a discounted Markov Decision Process (MDP)
M := (S, A, p, r, ρ0, γ), with state space S, action space A, an unknown transition probability
distribution p : S × A × S → R, reward function r : S × A → R, distribution of the initial
state ρ : S → R, and discount rate γ ∈ (0, 1). A policy π : S × A → R selects an action with
a certain probability for a given state. The agent interacts with the MDP to collect episodes
τ = (s0, a0, r1, s1, . . . , sT), i.e., sequences of states, actions, and rewards over time steps t = 0, . . . , T .

In applications, RL algorithms are very sensitive to the rewards in a given MDP to infer policies
achieving the desired objective. To ease the policy search, reward shaping is the practice of designing
a reward function r̃α,w := α ·(r+fw) based on the original reward r of M, where the reward shaping
function fw : S × A → R denotes the change in reward (Ng et al., 1999) parameterised by reward

RLJ | RLC 2024

weights w ∈ Rn and scaled by α ∈ R+. The shaped reward essentially yields the modified MDP
Mα,w := (S, A, p, r̃α,w, ρ0, γ). The function fw is commonly designed by identifying key terms or
events that should be rewarded or penalised and combining these as a weighted sum.

To obtain policies, there are now two hierarchical objectives for measuring performance. The outer
task objective measures success in terms of the overall goal one wants to solve, and the inner objective
in terms of maximising the collected shaped rewards when interacting with Mα,w. We formalise the
overall task objective as ogoal, measuring the success of a task in the trajectory τ by assigning it a
score ogoal(τ) ∈ R. Examples of such goals are achieving a certain objective or minimising time to
perform a task. In addition to this outer task objective, we have the inner objective of maximising
the expected return of the shaped rewards given by J(π) = Eτ∼π[

∑T
t=1 γt · r̃t]. The common

approach of RL is to maximise performance with regard to the task’s objective ogoal by finding the
policy π that maximizes the expected return J(π). This typically involves tuning the parameters α
and w of the shaped reward to obtain reward signals that facilitate finding policies in RL training
that perform well with regard to ogoal. The task objective ogoal is not used during RL training and
only measures success for a full trajectory τ . This allows measuring success much sparser than the
shaped reward. Such sparse task objectives are commonly straightforward to define.

2.2 Combined Hyperparameter and Reward Shaping Optimisation

Black-Box
 Parameter Optimiser

(e.g. DEHB)

RL algorithm

Figure 1: Illustration of the
two-level optimisation pro-
cess. Outer loop: hyper- and
reward parameter optimisa-
tion; inner loop: RL training.
In each iteration, the parame-
ter optimiser chooses parame-
ters and receives their perfor-
mance measured by Ogoal(π).

In practical RL applications, both the algorithm’s hyperparameters
and the environment’s reward shape require tuning. For an environ-
ment Mα,w with task objective ogoal, we can approach the refine-
ment of hyper- and reward parameters as a two-level optimisation
process. In the outer loop, an optimisation algorithm selects hyper-
and reward parameters for the algorithm and environment. In the
inner loop, these parameters are used for RL training, yielding a pol-
icy π. This policy is then assessed against a task performance metric
Ogoal based on ogoal, and its score is returned to the optimisation
algorithm to determine the next parameter configuration.

To evaluate a policy’s performance with regard to ogoal, differ-
ent metrics can be used. The single-objective performance metric
Oso

goal(π) := Eτ∼π[ogoal(τ)] is exclusively concerned with optimis-
ing the average task score. The multi-objective metric Omo

goal(π) :=
Eτ∼π[ogoal(τ)]−στ∼π[ogoal(τ)] includes an additional variance-based
penalty, as described by Garcıa & Fernández (2015), preferring poli-
cies with low-performance variance and therefore consistent out-
comes. Figure 1 illustrates the two-level optimisation process. To
formally introduce the optimisation problems, we adopt the defini-
tion of algorithm configuration by Eggensperger et al. (2019) and
adapt it to our RL context. Consequently, our focus is on optimising
the hyperparameters of the RL algorithm, represented by θ, as well
as the reward shaping, represented by α and w.
Definition. Consider an environment Mα,w := (S, A, p, r̃α,w, ρ0, γ) with reward parameters consist-
ing of reward scaling α ∈ A and reward weights w ∈ W . Further, given an RL algorithm Aθ(Mα,w)
parametrised by hyperparameters θ ∈ Θ. This algorithm interacts with the environment Mα,w and
returns a policy π. For performance metric Ogoal(π), we define the following optimisation problems:

Hyperparameter optimisation: For fixed reward parameters α̂ and ŵ, find θ∗ ∈ Θ, s.t.

θ∗ ∈ arg max
θ∈Θ

Ogoal(Aθ(Mα̂,ŵ)).

Reward parameter optimisation: For fixed hyperparameters θ̂, find (α∗, w∗) ∈ A × W , s.t.

(α∗, w∗) ∈ arg max
(α,w)∈A×W

Ogoal(Aθ̂(Mα,w)).

RLJ | RLC 2024

Combined optimisation: Find (θ∗, w∗, α∗) ∈ Θ × W × A, s.t.

(θ∗, w∗, α∗) ∈ arg max
(θ,α,w)∈Θ×A×W

Ogoal(Aθ(Mα,w)).

2.3 DEHB

Among the many optimisation methods for RL, DEHB has recently demonstrated superior perfor-
mance (Eimer et al., 2023) and can be utilised for all three optimisation problems introduced in
Section 2.2. DEHB is a black-box, multi-fidelity hyperparameter optimisation method combining
differential evolution (Storn, 1996) and HyperBand (Li et al., 2018). Its multi-fidelity approach in-
volves running numerous parameter configurations with a limited budget (e.g., a fraction of training
steps) and advancing promising configurations to the next higher budget. This strategy allows for
efficient exploration of the parameter space by testing a large number of configurations while avoid-
ing wasteful evaluations on suboptimal configurations. The best-performing parameter configuration
observed during optimisation is called the incumbent configuration.

3 Related Work

Our work aims to optimise RL algorithms by focusing jointly on hyperparameters and reward shapes
to consistently obtain policies with high performance. The critical importance of hyperparameter
tuning in deep RL is well-established (Andrychowicz et al., 2020; Henderson et al., 2018; Islam*
et al., 2017). Similarly, reward shaping is recognised as important for fast and stable training (Ng
et al., 1999; Gupta et al., 2022). The development of stable and reliable policies has been explored
in risk-averse, multi-objective RL (Garcıa & Fernández, 2015; La & Ghavamzadeh, 2013), employing
a straightforward variance-based performance penalty among many possible methods.

For black-box hyperparameter and reward shape optimisation, several methods have already been
developed in the framework of AutoRL (Parker-Holder et al., 2020), a data-driven approach for sys-
tematically optimising RL algorithms through automated machine learning. However, these methods
only target either the hyperparameter or reward-shape optimisation problem. Black-box methods
optimising hyperparameters comprise population-based (Jaderberg et al., 2019; Parker-Holder et al.,
2020; Wan et al., 2022) and multi-fidelity methods (Falkner et al., 2018; Awad et al., 2021). A re-
cent study (Eimer et al., 2023) highlights the effectiveness of the multi-fidelity DEHB procedure for
RL. Black-box methods for optimising reward shapes have been studied using evolutionary methods
(Zheng et al., 2018; Faust et al., 2019; Wang et al., 2022). None of the mentioned works for AutoRL
consider joint optimisation of hyperparameters and reward parameters.

The differences in performance achieved by separate hyperparameter optimisation and reward weight
optimisations have been discussed by Faust et al. (2019), showing that reward parameters alone can
improve performance and search efficiency compared to hyperparameter tuning. To the best of our
knowledge, no comprehensive investigation has been conducted into whether combined reward and
hyperparameter optimisation is generally possible and examined its potential in depth. Moving
beyond this, Jaderberg et al. (2019) provided initial evidence that joint optimisation of hyperparam-
eters and reward shape can outperform standard hyperparameter optimisation with manual reward
shaping. However, their findings were limited to a single environment and presented as a custom
solution, focusing solely on solving one specific environment. Furthermore, they did not thoroughly
investigate the effects of a combined optimisation approach.

4 Setup of Experiments

In this section, we describe the setup of our experiments, the results of which will be discussed
in Section 5. The experiments detailed in Section 4.1 aim to examine the relationship between
specific hyperparameters and reward weights to better understand their interdependencies and the
necessity of joint optimisation. Subsequently, the experiments in Section 4.2 empirically investigate

RLJ | RLC 2024

the performance of joint optimisation compared to individual optimisation to analyse differences in
performance and cost. We trained PPO and SAC agents in four environments, each with a specific
task objective: in Gymnasium’s continuous LunarLander (Towers et al., 2023), a probe aims to
minimise landing time; in Google Brax Ant and Humanoid (Freeman et al., 2021), a walking robot
aims to maximise travel distance; and in Robosuite Wipe (Zhu et al., 2020), a simulated robot arm
seeks to maximise the amount of dirt wiped from a table. All environments were chosen for non-
trivial reward structures and for posing difficult hyperparameter optimisation problems. Specifically,
Humanoid is notoriously difficult to solve, and the Wipe environment has a large reward parameter
space that needs to be optimised. The Wipe environment represents a task that has not yet been
extensively studied in the literature and is closely related to real-world applications. This allows
us to test the applicability of our combined optimisation approach to environments that are less
well-established in the field, yet of high practical interest. More information about the environments
and their reward structure can be found in Appendix A. For training with LunarLander and Wipe,
we employed the stable-baseline’s Jax PPO and SAC implementation (Raffin et al., 2021), while for
the Google Brax environments, we utilised the Google Brax GPU implementations. Implementation
details can be found in the supplementary code repository https://github.com/ADA-research/
combined_hpo_and_reward_shaping.

4.1 Interdependency of Hyperparameters and Reward Parameters

We conducted an exhaustive landscape analysis for PPO training on LunarLander, exploring pairwise
combinations of a hyper- and reward parameter to better understand their interdependencies and
substantiate the intuition that both components should be optimised jointly. The parameters not
considered in each pair were fixed to their baseline value. A resolution of 100 values per parameter
was applied, and the training performance of each pair was measured by the single-objective task
performance and averaged over 10 seeds. In terms of hyperparameters, we considered the discount
factor γ, generalised advantage estimation λ, and learning rate η, and in terms of reward parameters,
the tilting, distance, and velocity weight. A logarithmic grid was applied to the discount factor and
learning rate, with points positioned at equidistant logarithms. A uniform grid of equidistant points
was applied to all other hyper- and reward parameters. Both choices were also used in our later
optimisation experiments.

4.2 Optimisation of Hyperparameters and Reward Parameters

We conducted optimisation experiments to empirically compare the performance of joint optimi-
sation with individual optimisation of hyperparameters and reward parameters; our goal was to
understand the practicality of joint optimisation in finding well-performing hyperparameters and
reward parameters without requiring any manual tuning.

We used the black-box algorithm DEHB for the three optimisation problems introduced in Section
2.2. The hyperparameter search spaces for PPO and SAC consist of four and seven parameters,
respectively, that are commonly optimised and known to impact performance significantly. In par-
ticular, learning rate and discount factor were optimised for PPO and SAC. The hyperparameters
not included in the search space were fixed at the baseline values of each training. For the reward
function, we adjusted the weight parameters of each environment’s reward shape. LunarLandar has
four reward parameters, Ant and Humanoid three, and Wipe seven. The hyperparameters not opti-
mised in reward-weight-only optimisation were set to the algorithm’s training baseline values for the
respective environment. The reward parameters not optimised in the case of hyperparameter-only
optimisation were set to the default values of the respective environments. In the combined optimi-
sation approaches, all hyperparameters and reward parameters in the search space were optimised
from scratch. The search spaces and baseline values for hyperparameters are detailed in Appendix
C, while the search spaces and default values for reward parameters are provided in Appendix A.
DEHB has been demonstrated to outperform random search for hyperparameter optimisation (Awad
et al., 2021). To analyse its effect on the optimisation of reward parameters, we used a random search

https://github.com/ADA-research/combined_hpo_and_reward_shaping
https://github.com/ADA-research/combined_hpo_and_reward_shaping

RLJ | RLC 2024

approach for the combined optimisation task, where the hyperparameters are optimised with DEHB,
but the reward parameters are chosen randomly in each optimisation step.

In our setup, we set the fidelity of DEHB to equal the number of RL training steps. DEHB evaluates
parameter configurations during the optimisation using three training step budgets, each increasing
by a factor of three, with the largest matching the baseline’s training steps. The fitness of each
configuration is determined by the average performance metric after training with the designated
steps over three random seeds. We performed experiments using the single- and multi-objective
task objective performance metrics introduced in Section 2.2. Each optimisation experiment was
conducted with five random seeds, and each resulting final incumbent configuration was evaluated
by training using ten additional random seeds and evaluating performance on the corresponding
task objective.

SAC is particularly sensitive to the scaling of the reward signal, since it influences the agent’s
exploration behaviour (Haarnoja et al., 2018). The reward scale α has only been optimised as part
of the SAC baseline for Humanoid and Ant. Thus, we separately optimised the reward scale α only
for Humanoid and Ant and kept the reward scale fixed to α = 1 for the other environments. Details
on how reward scaling was performed can be found in Appendix E.

The overall optimisation budget for DEHB with PPO and SAC equals 133 and 80 full training
step budgets, respectively. Due to its computational demands, for the Wipe environment, we only
considered SAC. The wall-clock times for the PPO and SAC optimisations are about 4 h and 60 h for
LunarLander, 12 h and 15 h for Ant, 36 h and 60 h for Humanoid, and 120 h for Wipe. An overview
of our execution environment and the overall computational cost can be found in Appendix G.

5 Empirical Results

We now present the results from our experiments. First, we show the complex interdependencies
between hyperparameters and reward weights. Second, we demonstrate that joint optimisation can
match or outperform individual optimisation and produce policies with substantially lower variance.

5.1 Interdependency between Hyperparameters and Reward Parameters

The parameter landscapes for LunarLander with PPO are shown in Figure 2. We observe an
interdependency of varying strength between the hyperparameters and reward parameters. In all
cases, the behaviour of specific reward parameters changes with different hyperparameter values. The
ranges for reward parameters that lead to successful training vary depending on the hyperparameter
and exhibit sharp boundaries in some cases. In particular, we observed ranges of reward parameters
where performance deteriorates across all possible hyperparameter values.

Regarding the relation between hyperparameters and best-performing reward parameters (indicated
by the blue lines in the plot), we observed a strong dependency for the distance weight and weaker
dependencies for the velocity weights. In particular, we see a non-convex region of successful train-
ing parameters for the distance weight. Furthermore, we see large changes of the distance weight
in its optimisation space. The tilting weight shows almost no dependency on the hyperparameters.
Finally, our landscapes suggest that optimal value of the tilting weight is mostly near zero, which
suggests that it is mostly irrelevant to RL training. In addition, we observed that the incumbent
configurations in the joint optimisation experiments for LunarLander, presented in Section 5.2 (in-
dicated by the black dots in the plot), are often not fully located in high-performing regions. We
believe this is due to the larger search space during optimisation, which introduces additional de-
pendencies on other parameters that impact performance in these regions. This further highlights
the interdependencies of the parameters within the context of the full search space. In Appendix B,
we report landscapes showing the optimal hyperparameters with respect to the reward parameters,
showing similar dependencies.

RLJ | RLC 2024

Overall, our results indicate that hyperparameters and reward parameters are interdependent and
that finding high-performing hyperparameters necessitates well-chosen reward parameters and vice
versa. This confirms the intuition this work is based on: optimising the hyperparameters and reward
shape should not be considered independently but instead approached jointly.

5.2 Joint Optimisation Performance

10.0
8.5
7.0
5.5
3.9
2.4
0.9

w
til

tin
g

10.0
8.5
7.0
5.5
3.9
2.4
0.9

w
di

st

 0
.8

 0
.9

3
 0

.9
8

 0
.9

9
 0

.9
9

 0
.9

99
3

 0
.9

99
8

Discount

10.0
8.5
7.0
5.5
3.9
2.4
0.9

w
ve

l

0.
80

0.
83

0.
86

0.
89

0.
92

0.
95

0.
98

GAE

1e
-5

3e
-5

9e
-5

2e
-4

7e
-4

2e
-3

6e
-3

Learning Rate

Optimal Reward Weight
Optimisation Incumbent
Baseline Value

Figure 2: Landscapes depicting the average return on Lu-
narLander for pairwise hyperparameters and reward weights
over ten PPO trainings. Lower values (lighter) correspond
to faster landing (better performance). Yellow lines mark
each parameter’s default value. Blue lines denote the best-
performing reward weights for each hyperparameter value.
The black dots mark the incumbent configurations found in
the joint optimisation experiments in Section 5.2.

Table 1 reports the results of our op-
timisation experiments. Performance
is shown in terms of single-objective
task performance and the coefficient
of variation (in percent). As outlined
in Section 4.2, each experiment con-
sists of five optimisation runs, with
the incumbent parameter configura-
tion of each run evaluated through ten
RL training runs. The performance
results in Table 1 are derived by
calculating the median performance
for each optimisation run across its
ten evaluations and then computing
the median of these five values for
each experiment. The median co-
efficients of variation are calculated
analogously. We chose the median
over the mean to present our results,
as it is more robust to outliers. To
gain further insights into the statis-
tical differences between the optimi-
sation experiments, we employed lin-
ear mixed-effects model analysis (Gel-
man & Hill, 2006). For each combi-
nation of environment and algorithm,
we performed pairwise comparisons of
the aggregated 50 evaluation runs of
the best-performing experiment with
those of the related optimisation ex-
periments. The mixed-effects model allows us to test for statistically significant differences in the
results of two optimisation experiments, using all available data, while correctly handling the de-
pendencies between optimisation runs. We show the best performance and all results that show no
statistically significant differences (at significance level 0.05) to it in boldface. Details on how the
test was conducted and its assumptions can be found in Appendix H. Boxplots of the median perfor-
mance from the five optimisation runs for each experiment as well as boxplots of the 50 aggregated
evaluations across all optimisation and training runs are presented in Appendix D.2.

Our results show that simultaneously optimising hyperparameters and reward parameters consis-
tently matches or outperforms individual optimisation, without depending on tuned baseline param-
eters for non-optimised components. The only outlier is the single-objective PPO Ant optimisation.
Significant performance gains are observed in the complex Humanoid and Wipe environments, while
the simpler Ant and LunarLander environments, which are mostly solved using baseline parame-
ter settings, generally show no additional improvements from joint optimisation. However, even if
performance only matches the baseline parameters, joint optimisation still offers the advantage of
not requiring hand-tuning, while addressing the mutual dependencies of hyperparameter and reward
parameters.

RLJ | RLC 2024

Environment HPO RPO
Task Performance Eτ∼π[ogoal(τ)] (100 · CVτ∼π[ogoal(τ)])

PPO SAC
Single Obj. Multi Obj. Single Obj. Multi Obj.

Gymnasium
LunarLander
(minimise)

base 273 (11%) 208 (27%)
base DEHB 287 (31%) 223 (10%) 175 (14%) 174 (13%)

DEHB base 265 (27%) 277 (11%) 194 (23%) 186 (15%)
DEHB RS 262 (38%) 252 (24%) 171 (15%) 193 (18%)

DEHB (ours) 234 (25%) 227 (15%) 177 (23%) 182 (21%)

Google Brax
Ant

(maximise)

base 6785 (16%) 8054 (28%)
base DEHB 6706 (17%) 6663 (14%) 7927 (32%) 7994 (29%)

DEHB base 8111 (14%) 7842 (6%) 8282 (21%) 8216 (13%)
DEHB RS 8013 (16%) - 8064 (21%) -

DEHB (ours) 8049 (12%) 7923 (6%) 8199 (23%) 8169 (18%)

Google Brax
Humanoid
(maximise)

base 4196 (<1%) 3273 (11%)
base DEHB 4464 (<1%) 4472 (<1%) 5284 (11%) 5208 (8%)

DEHB base 4826 (1%) 4719 (<1%) 4881 (18%) 4466 (15%)
DEHB RS 5112 (2%) - 5913 (17%) -

DEHB (ours) 5433 (7%) 5485 (1%) 6033 (12%) 6103 (1%)

Robosuite
Wipe

(maximise)

base

-

101 (24%)
base DEHB 108 (24%) 114 (20%)

DEHB base 132 (10%) 131 (11%)
DEHB RS 134 (10%) -

DEHB (ours) 136 (8%) 130 (10%)

Table 1: Median performance for our optimisation experiments. HPO and RPO show the optimisa-
tion method for hyper- and reward parameters: base for fixing to baseline values, DEHB and RS for
optimisation with DEHB or random search. Each environment’s first row is baseline performance,
followed by optimising reward-, hyperparameters, or both. Best performance are highlighted in bold
for each environment and column (multiple bold entries mark statistically insignificant differences).

In LunarLander, Ant, and Humanoid, the optimised incumbent of our joint optimisation on the re-
spective default reward function generally achieves performance considered to solve the environment.
For Robosuite Wipe, the average objective score comes close to the maximum of 142. Especially in
our experiments with LunarLander, Humanoid and Wipe, the policy improvements could be seen
not only in the improved average objective score, but also in qualitative improvements in the agents’
behaviour (representative videos can be found in the supplementary material). Therefore, combined
optimisation shows competitive performance for already well-studied environments as well as the
less-studied Wipe environment. We do not observe a clear pattern in Table 1 that indicates whether
optimising solely hyperparameters or reward parameters consistently outperforms the other. This
underscores the necessity of joint optimisation to automatically determine which component requires
more optimisation, especially for novel environments, where prior knowledge about the dynamics
is lacking. Unsurprisingly, DEHB outperforms random search in almost all our experiments. We
report the best hyperparameter and reward parameter values for each environment and algorithm
in Appendix F. Appendix D.1 provides the results of policies obtained for each configuration when
evaluated using the default shaped reward function of the respective environment.

In Figure 3, we show median incumbent performance during our SAC experiments at each opti-
misation time step. The speed of the combined optimisation is comparable to that of the indi-
vidual optimisation approaches, despite involving much larger search spaces. In all environments
except multi-objective Wipe, combined optimisation already matches the performance of the best-
performing individual optimisation after roughly a third of the total optimisation steps and continues
to improve. For multi-objective Wipe, this is achieved after two-thirds of the total optimisation steps.
Similar trends are observed for the PPO results, shown in Appendix F. This indicates that combined

RLJ | RLC 2024

250

500

750
Si

ng
le

-O
bj

.

SAC LunarLander (minimise):

4000

6000

8000

SAC Ant (maximise):

0

2500

5000

7500
SAC Humanoid (maximise):

0

50

100

SAC Wipe (maximise):

0 20 40 60
Optimisaton Step

200

400

M
ul

ti-
Ob

j.

0 20 40 60
Optimisaton Step

2000

3000

0 20 40 60
Optimisaton Step

0

1000

2000

3000

0 20 40 60
Optimisaton Step

0

20

40

60

In
cu

m
be

nt
 P

er
fo

rm
an

ce

hpo:'base', rpo: 'dehb'
hpo:'dehb', rpo: 'base'

hpo:'dehb', rpo: 'random search'
hpo:'dehb', rpo: 'dehb' (ours)

Baseline

Figure 3: Incumbent performance in terms of median optimisation objective across the five optimi-
sation runs for the SAC experiments at each time step; shaded areas indicate min and max values.
The performance drop in the multi-objective experiments is due to the weighted penalty term.

optimisation, despite the larger search space, requires minimal additional computational effort in
terms of optimisation time.

5.3 Single- vs Multi-objective Optimisation

From Table 1, we conclude that multi-objective optimisation can improve policy stability by including
a penalty for large standard deviation in performance. These improvements come with only marginal
performance loss and sometimes even achieve slight gains; this is the case for Ant, Humanoid and
LunarLander, where, in particular, for Humanoid and PPO LunarLander, improved performance is
achieved. Only for Wipe, we observed that stability is not further improved compared to the single-
objective training. RL is notoriously sensitive to hyperparameter settings. Therefore, optimising
hyperparameters using a variance penalty for newly developed algorithms or novel scenarios can lead
to increased stability and thus greatly facilitate research and applications.

6 Conclusions and Future Work

In this work, we have demonstrated the importance of jointly optimising hyperparameters and re-
ward parameters. We illustrated dependencies in a simple environment, highlighting the circular
dependency encountered in optimising hyperparameters and reward parameters and underscoring
the need for simultaneous optimisation. Our empirical results indicate that this joint optimisation
is feasible and can match or surpass the performance of individual optimisation approaches without
requiring separate parameter tuning for the non-optimised component. Additionally, we demon-
strated that this approach requires minimal extra computational effort and is applicable to practical
environments, not yet extensively studied. We conclude that combined optimisation should be the
best practice for RL optimisation. While we have focused on optimising specific reward parameters
within a predefined reward structure, future work should explore a broader range of reward function
combinations. Such an extension could consider further aspects of the reward function, including
metrics, exponentiation, or specific functional choices, such as nonlinear transformations.

Our results further indicate that including a variance penalty in a multi-objective optimisation can
substantially enhance the performance variance of a given policy, with little or no reductions in per-
formance. This emphasises the value of combined optimisation in achieving a good balance between
a high average objective score and achieving this performance consistently. This improvement in
stability is often a crucial requirement in reinforcement learning, enhancing reproducibility and the
reliability of results in varying environments. Future research should investigate more sophisticated
risk-averse metrics and thoroughly assess the trade-off between a policy’s performance and stability.

RLJ | RLC 2024

Acknowledgments

The authors would like to thank Theresa Eimer for helpful discussions regarding the search space
design, Anna Münz for help with statistical tests, and Anja Jankovic for helpful feedback. We
gratefully acknowledge computing resources provided by the NHR Center NHR4CES at RWTH
Aachen University (p0021208), funded by the Federal Ministry of Education and Research, and
the state governments participating on the basis of the resolutions of the GWK for national high
performance computing at universities. This research was supported in part by an Alexander von
Humboldt Professorship in AI held by HH and by the “Demonstrations- und Transfernetzwerk KI
in der Produktion (ProKI-Netz)” initiative, funded by the German Federal Ministry of Education
and Research (BMBF, grant number 02P22A010).

References
Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron,

Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, et al. Solving rubik’s rube with a
robot hand. arXiv preprint arXiv:1910.07113, 2019.

Marcin Andrychowicz, Anton Raichuk, Piotr Stańczyk, Manu Orsini, Sertan Girgin, Raphaël
Marinier, Leonard Hussenot, Matthieu Geist, Olivier Pietquin, Marcin Michalski, et al. What
matters for on-policy deep actor-critic methods? a large-scale study. In International Conference
on Learning Representations, 2020.

N. Awad, N. Mallik, and F. Hutter. DEHB: Evolutionary hyberband for scalable, robust and efficient
hyperparameter optimization. In Proceedings of the Thirtieth International Joint Conference on
Artificial Intelligence, pp. 2147–2153. IJCAI, 2021.

Thomas Bi and Raffaello D’Andrea. Sample-efficient learning to solve a real-world labyrinth game
using data-augmented model-based reinforcement learning, 2023.

Violet A Brown. An introduction to linear mixed-effects modeling in r. Advances in Methods and
Practices in Psychological Science, 4, 2021.

Katharina Eggensperger, Marius Lindauer, and Frank Hutter. Pitfalls and best practices in algorithm
configuration. Journal of Artificial Intelligence Research, 64:861–893, 2019.

Theresa Eimer, Marius Lindauer, and Roberta Raileanu. Hyperparameters in reinforcement learning
and how to tune them. In International Conference on Machine Learning, pp. 9104–9149. PMLR,
2023.

Stefan Falkner, Aaron Klein, and Frank Hutter. BOHB: Robust and efficient hyperparameter op-
timization at scale. In International Conference on Machine Learning, pp. 1437–1446. PMLR,
2018.

Aleksandra Faust, Anthony Francis, and Dar Mehta. Evolving rewards to automate reinforcement
learning. In 6th ICML Workshop on Automated Machine Learning, 2019.

C. Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier Bachem.
Brax - a differentiable physics engine for large scale rigid body simulation, 2021. URL http:
//github.com/google/brax.

Javier Garcıa and Fernando Fernández. A comprehensive survey on safe reinforcement learning. J.
Mach. Learn. Res., 16:1437–1480, 2015.

Andrew Gelman and Jennifer Hill. Data Analysis Using Regression and Multilevel/Hierarchical
Models. Cambridge university press, 2006.

Abhishek Gupta, Aldo Pacchiano, Yuexiang Zhai, Sham Kakade, and Sergey Levine. Unpacking
reward shaping: Understanding the benefits of reward engineering on sample complexity. Advances
in Neural Information Processing Systems, 35:15281–15295, 2022.

http://github.com/google/brax
http://github.com/google/brax

RLJ | RLC 2024

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Conference
on Machine Learning, pp. 1861–1870. PMLR, 2018.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2018.

Riashat Islam*, Peter Henderson*, Maziar Gomrokchi, and Doina Precup. Reproducibility of bench-
marked deep reinforcement learning tasks for continuous control. ICML Workshop on Reproducibil-
ity in Machine Learning, 2017.

Max Jaderberg, Wojciech M. Czarnecki, Iain Dunning, Luke Marris, Guy Lever, Antonio Gar-
cia Castañeda, Charles Beattie, Neil C. Rabinowitz, Ari S. Morcos, Avraham Ruderman, Nico-
las Sonnerat, Tim Green, Louise Deason, Joel Z. Leibo, David Silver, Demis Hassabis, Ko-
ray Kavukcuoglu, and Thore Graepel. Human-level performance in 3d multiplayer games with
population-based reinforcement learning. Science, 364:859–865, 2019.

Elia Kaufmann, Leonard Bauersfeld, Antonio Loquercio, Matthias Müller, Vladlen Koltun, and
Davide Scaramuzza. Champion-level drone racing using deep reinforcement learning. Nature, 620:
982–987, 2023.

Prashanth La and Mohammad Ghavamzadeh. Actor-critic algorithms for risk-sensitive mdps. Ad-
vances in Neural Information Processing Systems, 26, 2013.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband:
A novel bandit-based approach to hyperparameter optimization. J. Mach. Learn. Res., 18:1–52,
2018.

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In International Conference on Machine Learning,
volume 99, pp. 278–287. Citeseer, 1999.

Jack Parker-Holder, Vu Nguyen, and Stephen J Roberts. Provably efficient online hyperparame-
ter optimization with population-based bandits. In Advances in Neural Information Processing
Systems, volume 33, pp. 17200–17211. Curran Associates, Inc., 2020.

Jack Parker-Holder, Raghu Rajan, Xingyou Song, André Biedenkapp, Yingjie Miao, Theresa Eimer,
Baohe Zhang, Vu Nguyen, Roberto Calandra, Aleksandra Faust, et al. Automated reinforcement
learning (autorl): A survey and open problems. Journal of Artificial Intelligence Research, 74:
517–568, 2022.

Antonin Raffin. Rl baselines3 zoo. https://github.com/DLR-RM/rl-baselines3-zoo, 2020.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dor-
mann. Stable-baselines3: Reliable reinforcement learning implementations. J. Mach. Learn. Res.,
22:1–8, 2021.

Holger Schielzeth, Niels J Dingemanse, Shinichi Nakagawa, David F Westneat, Hassen Allegue,
Céline Teplitsky, Denis Réale, Ned A Dochtermann, László Zsolt Garamszegi, and Yimen G
Araya-Ajoy. Robustness of linear mixed-effects models to violations of distributional assumptions.
Methods in Ecology and Evolution, 11:1141–1152, 2020.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. Nature, 550:354–359, 2017.

https://github.com/DLR-RM/rl-baselines3-zoo

RLJ | RLC 2024

Rainer Storn. On the usage of differential evolution for function optimization. In Proceedings of
North American Fuzzy Information Processing, pp. 519–523. IEEE, 1996.

Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction. MIT press, 2018.

Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-Vicente, Andrea
Pierré, Sander Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G. Younis. Gymnasium,
2023.

Xingchen Wan, Cong Lu, Jack Parker-Holder, Philip J. Ball, Vu Nguyen, Binxin Ru, and Michael Os-
borne. Bayesian generational population-based training. In Proceedings of the First International
Conference on Automated Machine Learning, volume 188 of Proceedings of Machine Learning
Research, pp. 14/1–27. PMLR, 2022.

Ludi Wang, Zhaolei Wang, and Qinghai Gong. Bi-level optimization method for automatic reward
shaping of reinforcement learning. In 31st International Conference on Artificial Neural Networks,
pp. 382–393. Springer, 2022.

Zeyu Zheng, Junhyuk Oh, and Satinder Singh. On learning intrinsic rewards for policy gradient
methods. Advances in Neural Information Processing Systems, 2018.

Yuke Zhu, Josiah Wong, Ajay Mandlekar, Roberto Martín-Martín, Abhishek Joshi, Soroush Nasiri-
any, and Yifeng Zhu. Robosuite: A modular simulation framework and benchmark for robot
learning. In arXiv preprint arXiv:2009.12293, 2020.

RLJ | RLC 2024

Reward Weight LunarLander Ant Humanoid Wipe
Default
Value

Search
Space

Default
Value

Search
Range

Default
Value

Search
Space

Default
Value

Search
Space

wdist 100 [0, 1000] 1 [0, 10] 1.25 [0, 10] 5 [0, 10]
wdist_th -

- -

5 [0, 10]
wvel 100 [0, 1000] 0 [0, 1]
wtilting 100 [0, 1000] -
wcontact 10 [0, 100] 0.01 [0, 1]
whealthy

-

1 [0, 10] 5 [0, 10] -
wunhealthy - - −10 [−100, 0]
wforce 0.5 [0, 1] 0.1 [0, 1] 0.05 [0, 1]
wwiped - - 50 [0, 100]

Table 2: Default reward weights for each environment and the corresponding search spaces of our
optimisation experiments.

Figure 4: Illustrations from left to right of the environments Gymnasium LunarLander, Google Brax
Ant and Humanoid, and Robosuite Wipe.

A Environments and Reward Parameter Search Spaces

In this section, we give a detailed overview of the environments used in our experiments and the
reward parameters we are optimising in each environment’s reward function. The default values
and respective search spaces of the reward parameters can be found in Table 2. We opted not to
optimise the terminal rewards r for the LunarLander and Wipe environments, as these constitute
the sparse rewards that are addressed through the optimisation of the reward shape.

For mapping a reward weight wi to its search space, we always used the mapping wi 7→ [0, 10n],
where n ∈ N0 is the smallest integer such that wi < 10n; we chose this approach, since it preserves
the general magnitude of the reward parameters, while relying less on their initial ratios. We believe
that practitioners typically have a rough idea about the importance of different components but find
it difficult to obtain the exact ratios between them.

A.1 Gymnasium LunarLander:

The objective of the environment is to navigate a probe to a designated landing platform safely. We
considered the environment’s variant with continuous control inputs. In the shaped reward, positive
rewards are given for moving closer to the landing platform and negative rewards for moving further
away. A positive reward is granted for making successful contact with the platform using the
probe’s legs. Negative rewards are imposed for high velocities and tilting the probe excessively.
Fuel consumption by the probe’s engine, when activated, results in negative rewards. However, we
considered fuel consumption as a constant physical attribute of the probe and did not consider it in
our optimisations. The overall shaped reward function is given by

r̃α,w := α · (wdist · r̃dist + wcontact · r̃contact − wvel · r̃vel − wtilting · r̃tilting − r̃fuel + rterminal),

with rterminal being the environment’s sparse reward signal of successful landing or crashing.

RLJ | RLC 2024

A.2 Google Brax Ant and Humanoid:

The task in both environments is to train a robot to walk forward in a specified direction. In Ant, the
robot is designed to resemble a four-legged ant and is human-like in Humanoid. The environment’s
rewards consist of positive rewards for staying healthy (being able to continue walking) and a reward
for the distance travelled in each timestep. A negative reward for exercising large forces on the robot’s
joints is obtained. The overall shaped reward function is given by

r̃α,w := α · (wdist · r̃dist + whealthy · r̃healthy − wforce · r̃force).

A.3 Robosuite Wipe:

The task is to wipe a table of dirt pegs with a simulated robot arm equipped with a sponge. Positive
rewards are obtained for the sponge’s distance to the dirt pegs, having contact with the table and
exercising appropriate pressure on the table. Negative rewards are obtained for applying excessive
force on the table, large accelerations while moving or arm-limit collisions resulting in an unhealthy
state. The overall shaped reward function is given by

r̃α,w := α · (wwiped · r̃wiped + wdist · (1 − tanh(wdist_th · r̃dist)) + wcontact · r̃contact

− wforce · r̃force − wvel · r̃vel + wunhealthy · r̃unhealthy + rterminal),

with rterminal being the environment’s sparse reward for wiping the table clean or not.

B Interdependecy between Hyperparameters and reward parameters

In Figure 5, we present the same landscapes as in Figure 2 but mark the best-performing hyperpa-
rameter value for each reward weight (shown as the blue lines).

 0.9999
 0.9996

 0.99
 0.99
 0.98
 0.96
 0.89

Di
sc

ou
nt

1.00
0.97
0.94
0.91
0.88
0.85
0.82

GA
E

0.
0

1.
5

3.
0

4.
5

6.
1

7.
6

9.
1

wtilting

1e-2
4e-3
1e-3
4e-4
2e-4
5e-5
2e-5Le
ar

ni
ng

 R
at

e

0.
0

1.
5

3.
0

4.
5

6.
1

7.
6

9.
1

wdist

0.
0

1.
5

3.
0

4.
5

6.
1

7.
6

9.
1

wvel

100

101

102

103

Optimal Hyperparameter
Optimisation Incumbent
Baseline Value

Figure 5: Landscapes depicting the average return on Gymnasium LunarLander for pairwise hyper-
and reward parameters over ten PPO trainings. Lower values (lighter) correspond to faster landing
time and, thus, better performance. The yellow lines mark the default values for each parameter.
The blue line denotes the best-performing hyperparameter value for each specific reward value. The
black dots mark the incumbent configurations found in the joint optimisation experiments in Section
5.2

RLJ | RLC 2024

Hyperparameter Baseline Values Search Space
LunarLander Ant Humanoid Range Log-Scale

learning rate 3 · 10−4 [1e−6, 0.01] Yesdiscounting 0.999 0.97 [0.001, 0.02]
gae 0.98 0.95 [0.8, 1.0]

No
clipping rate 0.2 0.3 [0.1, 0.4]
entropy coef 0.01 0.001 [0.0, 0.1]
value coef 0.5 [0.3, 0.7]
batch size 64 2048 1024 {b/2, b, 2b}
training steps 1e6 5242880

-

episode length 1000
num envs 1 256 64
unroll length 1024 5 10
num minibatches - 32
epochs 4 8

Table 3: PPO baseline parameters for each environment. Due to differences in the implementation
of stable baselines 3 JAX and Google Brax PPO, there is no hyperparameter for the number of
minibatches in the case of LunarLander. The search space for the batch size is always a categorical
choice over the power of two below and above the baseline value.

Hyperparameter Baseline Values Search Space
LunarLander Ant Humanoid Wipe Range Log-Scale

learning rate 3 · 10−4 [1e−6, 0.01]
Yesdiscounting 0.99 0.95 0.99 [0.001, 0.02]

tau 0.01 0.005 0.005 [0.001, 0.1]
batch size 256 512 1024 256 {b/2, b, 2b} No
training steps 500000 5242880 5242880 1250000

-

episode length 1000 500
num envs 1 256 64 5
training freq 1
gradient steps 1 64 8 2
min replay buffer size 10000 8192 100
max replay buffer size 106 1038576 106

Table 4: SAC baseline parameters for each environment. The search space for the batch size is
always a categorical choice over the power of two below and above the baseline value.

We can again observe strong dependencies and large changes in the best-performing hyperparam-
eters for the discount factor and the generalised advantage estimate regarding the distance reward
parameter. Only for the learning rate, we see almost no dependency on the reward parameters.

C Hyperparameter Baselines and Search Spaces

In Table 3 and Table 4, we present the baselines and search spaces for PPO and SAC, respectively.
We reproduced all baselines in our setup and, in some cases, made slight modifications to improve
their performance when possible. The baselines for continuous LunarLander PPO and SAC have
both been obtained from the stable-baselines 3 Zoo (Raffin, 2020). The Google Brax Ant and
Humanoid baselines are obtained from Brax’s GitHub repository. For PPO, hyperparameters have
been shared via a Google Colab notebook in the Google Brax GitHub repository. For SAC, we utilise
the performance results of a published hyperparameter sweep. In the case of Humanoid, we made
small adjustments to the reported best-performing parameters in order to obtain the best results in
our setup. Our adjustments align with the considered search space of their hyperparameter sweep.
We utilised the published baseline in Zhu et al. (2020) for Robosuite Wipe with small adjustments
to the training frequency and gradient steps to obtain better performance in our setup.

RLJ | RLC 2024

Environment HPO RPO
Default Shaped Reward Return

PPO SAC
Single Obj. Multi Obj. Single Obj. Multi Obj.

Gymnasium
LunarLander
(maximise)

base 274 (8%) 276 (7%)

base DEHB 266 (10%)
(p = 2.3 · 10−04) 283 (7%) 286 (7%)

(p = 3.4 · 10−02) 287 (7%)

DEHB base 275 (7%)
(p = 5.7 · 10−04)

272 (7%)
(p = 3.1 · 10−04)

280 (7%)
(p = 1.0 · 10−20)

283 (7%)
(p = 5.2 · 10−09)

DEHB RS 275 (8%)
(p = 1.7 · 10−02)

276 (8%)
(p = 1.7 · 10−03) 287 (7%) 283 (7%)

(p = 7.0 · 10−07)

DEHB (ours) 234 (25%) 283 (7%) 287 (7%) 285 (7%)
(p = 2.2 · 10−02)

Google Brax
Ant

(maximise)

base 7293 (17%) 8065 (30%)

base DEHB 7235 (18%)
(p = 3.1 · 10−114)

7236 (17%)
(p = 3.4 · 10−52)

7600 (34%)
(p = 5.9 · 10−19)

7814 (32%)
(p = 1.0 · 10−03)

DEHB base 8379 (17%) 8127 (10%) 8169 (25%) 8037 (19%)

DEHB RS 8063 (18%)
(p = 3.6 · 10−09) - 7636 (24%)

(p = 2.2 · 10−10) -

DEHB (ours) 8254 (16%)
(p = 4.0 · 10−03)

8124 (9%)
(p = 3.9 · 10−02)

7717 (28%)
(p = 1.0 · 10−09)

7866 (19%)
(p = 2.1 · 10−03)

Google Brax
Humanoid
(maximise)

base 10016 (<1%) 3273 (11%)

base DEHB 10256 (<1%)
(p = 6.6 · 10−24)

10439 (<1%)
(p = 5.9 · 10−23)

10509 (11%)
(p = 2.3 · 10−07)

10695 (11%)
(p = 6.4 · 10−13)

DEHB base 10850 (2%)
(p = 1.1 · 10−07)

10726 (<1%)
(p = 2.1 · 10−22)

10317 (19%)
(p = 7.5 · 10−17)

9763 (17%)
(p = 2.6 · 10−64)

DEHB RS 11204 (<1%)
(p = 6.3 · 10−03) - 11746 (17%)

(p = 4.3 · 10−01) -

DEHB (ours) 11599 (7%) 11562 (<1%) 12141 (11%) 12292 (8%)

Robosuite
Wipe

(maximise)

base

-

108 (38%)

base DEHB 77 (57%)
(p = 1.7 · 10−98)

78 (58%)
(p = 1.3 · 10−159)

DEHB base 134 (20%) 131 (20%)
(p = 9.7 · 10−1)

DEHB RS 126 (21%)
(p = 4.7 · 10−11) -

DEHB (ours) 127 (25%)
(p = 2.3 · 10−23) 132 (20%)

Table 5: Results of the trained policies for each optimisation experiment evaluated on each envi-
ronment’s default shaped reward function and the coefficients of variations in parenthesis. Columns
HPO and RPO indicate the respective optimisation methods: base for baseline values, DEHB and
RS for optimisation with DEHB or random search. Hence, the first row of each environment is the
baseline performance, followed by rows optimising reward parameters, hyperparameters, or both.
Each experiment’s performance is computed similarly as in Table 1. Performances without signifi-
cant statistical differences to the best-performing optimisation experiment, are highlighted in bold
for each environment. We reported the test’s p-values of the comparison in each cell.

D Additional Optimisation Results and Visualisations

In the following sections, we present additional plots and tables on the performance distributions of
our different optimisation experiments.

D.1 Default Shaped Reward Function Evaluation

In Table 5, we present the returns of the obtained policies for each optimisation experiment, evaluated
on the corresponding environment’s default-shaped reward function. Our observations indicate that
for LunarLander and Humanoid, the combined optimisation consistently matches or outperforms
the best performance, except for multi-objective SAC training for LunarLander. This suggests that
the benefits on the task performance effectively transfer to the default shaped reward function, even
though the policies were not specifically optimised for it.

RLJ | RLC 2024

250

500

750

1000
Si

ng
le

-O
bj

.

PPO LunarLander (minimise):

0

2500

5000

7500
PPO Ant (maximise):

0

2000

4000

6000
PPO Humanoid (maximise):

0 20 40 60 80 100
Optimisaton Step

200

400

M
ul

ti-
Ob

j.

0 20 40 60 80 100
Optimisaton Step

0

2000

4000

0 20 40 60 80 100
Optimisaton Step

0

1000

2000

3000

In
cu

m
be

nt
 P

er
fo

rm
an

ce

hpo:'base', rpo: 'dehb'
hpo:'dehb', rpo: 'base'

hpo:'dehb', rpo: 'random search'
hpo:'dehb', rpo: 'dehb' (ours)

Baseline

Figure 6: The median optimisation objective’s incumbent performance across the five optimisation
runs for the PPO experiments at each time step. The min and max are given as error bars.

In the case of Ant, the performance is slightly lower than that achieved through hyperparameter-
only optimisation, yet qualitative analysis shows that the environment is still clearly solved. For
the Robosuite Wipe environment, however, the combined optimisation performs significantly worse
than the hyperparameter-only optimisation, which starkly contrasts with the evaluation of the en-
vironment’s task performance.

Further analysis reveals that this discrepancy is due to the default shaped reward function’s inade-
quate representation of the environment’s task objective. Specifically, policies that do not completely
clean the table but maintain contact with it until the end of an episode can accumulate a higher
overall return compared to those that quickly complete the cleaning task. Consequently, the policies
resulting from combined optimisation, which prioritise rapid table cleaning, achieve lower returns
despite better performance in wiping the table.

D.2 Optimisation Performance Boxplots

In addition to the results presented in Table 1, we provide an overview of the full dataset as boxplots.
Figures 7 and 8 display boxplots for the median performances of each experiment’s five optimisation
runs. For each experiment’s optimisation run, we calculate the median performance across its ten
evaluation trainings and present boxplots for the resulting five values per experiment. Figures 9 and
10 showcase boxplots for the combined 50 evaluation training performances, obtained by aggregating
all ten evaluation training performances for each of the five optimisation runs per experiment. In
each boxplot, the baseline’s median performance is marked with a red line.

Consistent with our analysis in Section 4.2, we observe that combined optimisation can match
or surpass the individual optimisations of hyperparameters and reward parameters. Furthermore,
multi-objective optimisation substantially enhances stability with minimal or no reductions in per-
formance.

D.3 Incumbent Performance during Optimisation

Figure 6 depicts the median incumbent performance during each PPO optimisation experiment.
We note that the optimisation steps necessary to surpass the baselines generally occur much earlier
than the complete duration of the optimisation, similar to the findings of Eimer et al. (2023).
However, we also observe that continuous improvement is still achieved after exceeding the baseline
performance. Moreover, the combined optimisation does not seem to be significantly slower than
optimising hyperparameters or reward parameters alone, suggesting that the combined optimisation
can enhance results without additional costs, similar to the SAC results presented in Figure 3.

RLJ | RLC 2024

150

200

250

300

350

400

450

500

550

600
Ex

te
rn

al
 O

bj
ec

tiv
e

LunarLander (minimise):

10

20

30

40

50

60

CV
 [%

]

6250

6500

6750

7000

7250

7500

7750

8000

8250

Ex
te

rn
al

 O
bj

ec
tiv

e

Ant (maximise):

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

CV
 [%

]

hpo='base'
rpo='dehb'

hpo='dehb'
rpo='base'

hpo='dehb'
rpo='rs'

hpo='dehb'
rpo='dehb'

(ours)
Experiment

4250

4500

4750

5000

5250

5500

5750

6000

Ex
te

rn
al

 O
bj

ec
tiv

e

Humanoid (maximise):

hpo='base'
rpo='dehb'

hpo='dehb'
rpo='base'

hpo='dehb'
rpo='rs'

hpo='dehb'
rpo='dehb'

(ours)
Experiment

0

2

4

6

8

10

CV
 [%

]

Single-Objective
Multi-Objective
Baseline

Figure 7: Boxplots for the PPO optimisation of the five median performances of each experiment’s
optimisation runs. We denote by DEHB, rs and base if hyperparameters (hpo) or reward parameters
(rpo) were optimised with DEHB, random search or fixed to their baseline values. The red line
denotes the baseline performance.

RLJ | RLC 2024

100

125

150

175

200

225

250

275
Ex

te
rn

al
 O

bj
ec

tiv
e

LunarLander (minimise):

10

20

30

40

50

CV
 [%

]

7600

7800

8000

8200

8400

Ex
te

rn
al

 O
bj

ec
tiv

e

Ant (maximise):

10

15

20

25

30

CV
 [%

]

4000

4500

5000

5500

6000

6500

Ex
te

rn
al

 O
bj

ec
tiv

e

Humanoid (maximise):

0

5

10

15

20

CV
 [%

]

hpo='base'
rpo='dehb'

hpo='dehb'
rpo='base'

hpo='dehb'
rpo='rs'

hpo='dehb'
rpo='dehb'

(ours)
Experiment

80

90

100

110

120

130

140

Ex
te

rn
al

 O
bj

ec
tiv

e

Wipe (maximise):

hpo='base'
rpo='dehb'

hpo='dehb'
rpo='base'

hpo='dehb'
rpo='rs'

hpo='dehb'
rpo='dehb'

(ours)
Experiment

10

15

20

25

30

35

CV
 [%

]

Single-Objective
Multi-Objective
Baseline

Figure 8: Boxplots for the SAC optimisation of the five median performances of each experiment’s
optimisation runs. We denote by DEHB, rs and base if hyperparameters (hpo) or reward parameters
(rpo) were optimised with DEHB, random search or fixed to their baseline values. The red line
denotes the baseline performance.

RLJ | RLC 2024

150

200

250

300

350

400

450

500

550

600
Ex

te
rn

al
 O

bj
ec

tiv
e

LunarLander (minimise):

10

20

30

40

50

60

70

80

CV
 [%

]

4000

5000

6000

7000

8000

Ex
te

rn
al

 O
bj

ec
tiv

e

Ant (maximise):

0

10

20

30

40

CV
 [%

]

hpo='base'
rpo='dehb'

hpo='dehb'
rpo='base'

hpo='dehb'
rpo='rs'

hpo='dehb'
rpo='dehb'

(ours)
Experiment

1000

2000

3000

4000

5000

6000

7000

Ex
te

rn
al

 O
bj

ec
tiv

e

Humanoid (maximise):

hpo='base'
rpo='dehb'

hpo='dehb'
rpo='base'

hpo='dehb'
rpo='rs'

hpo='dehb'
rpo='dehb'

(ours)
Experiment

0

10

20

30

40

CV
 [%

]

Single-Objective
Multi-Objective
Baseline

Figure 9: Boxplots for the PPO optimisation experiments over all 50 evaluation trainings of each
experiment. We denote by DEHB, rs and base if hyperparameters (hpo) or reward parameters (rpo)
were optimised with DEHB, random search or fixed to their baseline values. The red line denotes
the baseline performance.

RLJ | RLC 2024

100

125

150

175

200

225

250

275
Ex

te
rn

al
 O

bj
ec

tiv
e

LunarLander (minimise):

0

20

40

60

80

CV
 [%

]

6000

6500

7000

7500

8000

8500

9000

Ex
te

rn
al

 O
bj

ec
tiv

e

Ant (maximise):

0

10

20

30

40

CV
 [%

]

2000

4000

6000

8000

Ex
te

rn
al

 O
bj

ec
tiv

e

Humanoid (maximise):

0

10

20

30

40

50

60

CV
 [%

]

hpo='base'
rpo='dehb'

hpo='dehb'
rpo='base'

hpo='dehb'
rpo='rs'

hpo='dehb'
rpo='dehb'

(ours)
Experiment

40

60

80

100

120

140

Ex
te

rn
al

 O
bj

ec
tiv

e

Wipe (maximise):

hpo='base'
rpo='dehb'

hpo='dehb'
rpo='base'

hpo='dehb'
rpo='rs'

hpo='dehb'
rpo='dehb'

(ours)
Experiment

0

10

20

30

40

50

60

CV
 [%

]

Single-Objective
Multi-Objective
Baseline

Figure 10: Boxplots for the SAC optimisation experiments over all 50 evaluation trainings of each
experiment. We denote by DEHB, rs and base if hyperparameters (hpo) or reward parameters (rpo)
were optimised with DEHB, random search or fixed to their baseline values. The red line denotes
the baseline performance.

RLJ | RLC 2024

Reward Weight Explicit Scaling Implicit Scaling
Ant Humanoid Ant Humanoid

wdist [0, 10] [0, 25] [0, 63.5]
whealthy [0, 10] [0, 25] [0, 63.5]
wforce [0, 1] [0, 2.5] [0, 6.35]
α [0, 10] 1 1

Table 6: The different search spaces of explicit and implicit reward scaling. In the case of ex-
plicit reward scaling, the reward weights are normalised to one and scaled by ∥ŵant∥1 = 2.5 and
∥ŵhumanoid∥1 = 6.35 before applying the reward scale α for Ant and Humanoid, respectively.
Thereby, the search spaces in the explicit and implicit scaling have the same upper and lower
bounds.

Environment HPO RPO Task Performance
Implicit Scaling Explicit Scaling

Google Brax
Ant

(maximise)

base DEHB 7741 (28%)
(p = 2.8 · 10−03) 7927 (32%)

DEHB 7625 (23%)
(p = 1.0 · 10−12) 8199 (23%)

Google Brax
Humanoid
(maximise)

base DEHB 5124 (12%)
(p = 4.0 · 10−01) 5284 (11%)

DEHB 5846 (12%)
(p = 8.8 · 10−01) 6033 (12%)

Table 7: Results for the different single-objective optimisation experiments with explicit and implicit
reward scaling. Performances in each row without significant statistical differences to the best scaling
experiment, as determined by a linear mixed-effects model analysis, are highlighted in bold. We
reported the test’s p-values of the comparison in each cell.

E Reward Scaling

We examined two alternative methods to perform reward scaling for the Google Brax experiments
denoted as explicit and implicit scaling:

Explicit reward scaling aims to disentangle effects between the chosen scaling α and the reward
weights w during the optimisation by normalising the reward weights. Formally, the optimiser’s
selected weights w are normalised by

w′ = ∥ŵ∥1 · w

∥w∥1
,

where ŵ are the default reward weights of the given environment. The resulting reward function
r̃α,w′ was then used for RL training as described in Section 5.2. In contrast, implicit reward scaling
is done by keeping the reward scale fixed as α = 1 and instead optimising reward parameters with
search spaces multiplied by the upper bound of the explicit scaling. The detailed search spaces are
given in Table 6.

In Table 7, we report the results of the two scaling approaches. Explicit scaling statistically sig-
nificantly outperforms implicit scaling for Ant, whereas, for Humanoid, the median performance is
better but not significant. Overall, this hints to explicit scaling being a better choice in cases where
scaling matters to the algorithm. Due to its better performance, we used the explicit scaling method
for performing experiments in Section 5.2.

F Best performing Hyperparameter and Reward Weight Configurations
per Algorithm and Environment

We present the best-performing configurations we found for each training algorithm and environment
based on median external objective performance across ten evaluation trainings. Table 8 and Table

RLJ | RLC 2024

Hyperparameter LunarLander Ant Humanoid
learning rate 3e−4 0.00112 0.000359
discounting 0.999 0.964 0.962
gae lambda 0.98 0.8378 0.966
clipping rate 0.2 0.276 0.156
entropy coef 0.01 0.345 0.00657
value coef 0.5 0.469 0.35
batch size 64 1024 512
Reward Parameter
wdist 3.078 1.0 9.28
wvel 0.989

- -wtilting 0.222
wleg 4.53
whealthy - 1.0 2.82
wforce 0.5 0.938
α 1.0 1.0 1.0
Performance
external objective 207 (4%) 8213 (0.1%) 6068 (0.001%)
default shaped return 286 (2%) 8378 (0.2%) 12440 (0.003%)

Table 8: Best performing configurations obtained by our optimisations for PPO training selected by
their external objective performance. For each configuration, we report the achieved performance
measured by the external objective and the default-shaped reward function with the coefficients of
variations in parenthesis.

Hyperparameter LunarLander Ant Humanoid Wipe
learning rate 0.000998 0.000703 0.00078 0.00031
discounting 0.988 0.982 0.968 0.83
tau 0.0771 0.00444 0.0297 0.00601
batch size 256 512 1024 256
Reward Parameter
wdist 5.901 2.253 7.61 7.745
wdist_th -

- -

2.60
wvel 2.691 0.888
wtilting 1.102

-wleg 5.465
whealthy

-

0.136 2.99
wforce 0.109 0.916 0.030
wwiped

- -
82.3

wcontact 0.594
wcollision -83.0
α 1.0 7.44 7.40 1.0
Performance
external objective 160 (6%) 8469 (0.2%) 6583 (0.1%) 137 (5%)
default shaped return 288 (2%) 7903 (0.3%) 12670 (0.07%) 126 (14%)

Table 9: Best performing configurations obtained by our optimisations for SAC training selected by
their external objective performance. For each configuration, we report the achieved performance
measured by the external objective and the default-shaped reward function with the coefficients of
variations in parenthesis.

9 display the parameters for PPO and SAC, respectively, and additionally report the performance on
the external objective and default shaped reward. We hope the configurations can help as baselines
and for future research. The hyperparameter configuration and reward parameters must be used
together in training for each environment to achieve the best performance.

RLJ | RLC 2024

G Execution Environment

All experiments were conducted on a high-performance cluster running the Rocky Linux operating
system, release 8.9. The Gymnasium LunarLander and Robosuite Wipe optimisations were executed
on CPU nodes, while the Google Brax optimisations utilised GPU nodes.

The CPU-based optimisations were carried out on nodes equipped with Intel Xeon Platinum 8160 2.1
GHz processors, each equipped with 24 cores each and 33 792 KB cache, with approximately 3.75 GB
of RAM per core. The GPU-based optimisations utilised NVIDIA Volta 100 GPUs (V100-SXM2)
with 16 GB of memory.

During the optimisation process, the LunarLander and Wipe environments, on average, employed
25 and 32 CPU cores in parallel, respectively. For LunarLander, each RL training run used 4 cores,
while Wipe training utilised 5 cores per run. During optimisation, the Google Brax environments
required an average of 6 parallel GPUs, with each RL training run conducted on a single GPU.

H Linear Mixed Effects Regression Analysis

To thoroughly analyse the differences between our optimisation experiments, we employed a linear
mixed effects regression with a Wald test to analyse the difference in performance between experi-
ments. We conducted the test based on the introduction of Brown (2021), using the Wald test as a
commonly used approximation of the likelihood-ratio test. The linear mixed-effects model analysis
enables us to compare the performance of two optimisation experiments across their respective 50
evaluation runs while accounting for the dependencies induced by the seed of an optimisation run
to which an evaluation belongs. Therefore, we can compare the full extent of our data and avoid
collapsing it by summarising each optimisation run’s performance by the median performance of its
10 evaluation trainings.

For each environment and algorithm, we always pick the best-performing optimisation experiment
based on its median performance presented in Table 1. We then compare this optimisation experi-
ment pairwise to the other corresponding optimisation experiments and test whether the performance
is statistically significantly different. Hence, the value to be predicted by the linear mixed-effects
model is evaluation performance, with the fixed effect being the two compared experiments. The
different evaluations are grouped by their corresponding optimisation seed as the model’s random
effect. Using the Wald test, we then check if removing the fixed experiment effect from the model
would substantially harm the prediction performance of the model. Hence, small p-values of the
test indicate that the model with the fixed experiment effect provides a better fit, and therefore,
the experiments’ performances are statistically significantly different. We applied a commonly used
significance level of 0.05 to test for significance.

For preprocessing the 100 evaluation data points of two experiments, we normalised mean perfor-
mance to 0 and standard deviation to 1. Afterwards, we fit a mixed-effects model on the data and
remove all points as outliers with residuals deviating more than two times the standard deviation
from the mean. We then fit a model on the cleaned data and perform the Wald test to check for
significance in the fixed effect, hence the difference between the two experiments.

The assumptions underlying the test are (a) independence of the random effects and (b) homoskedas-
ticity of the residuals of the fitted linear mixed-effects model. The normality of the residuals is an
assumption of minor importance, as mixed-effect models have been shown to be robust to violations
of this distributional assumption (Schielzeth et al., 2020); Gelman & Hill (2006) even suggest not
to test for normality of the residuals. The independence of the optimisation runs as the random
effect is ensured by using different random seeds. To check the homoskedasticity assumption, we
performed White’s Lagrange multiplier test on the residuals. The null hypothesis of White’s test
is homoskedasticity, and hence, large p-values suggest that the assumption of homoskedasticity is
fulfilled. Further, we can reasonably assume that the evaluations of our experiments follow a normal
distribution, and we further tested normality of the residuals using the Shapiro-Wilk test.

RLJ | RLC 2024

Test Statistics
PPO SACEnvironment HPO RPO

Single Obj. Multi Obj. Single Obj. Multi Obj.

base DEHB
p = 8.1 · 10−06

phw = 0.006
|xout| = 4

best
p = 1.6 · 10−01

phw = 0.526
|xout| = 2

best

DEHB base
p = 4.5 · 10−08

phw = 0.623
|xout| = 2

p = 5.1 · 10−06

phw = 0.485
|xout| = 5

p = 3.4 · 10−15

phw = 0.185
|xout| = 2

p = 2.1 · 10−05

phw = 0.498
|xout| = 2

DEHB RS
p = 2.9 · 10−07

phw = 0.106
|xout| = 5

p = 8.0 · 10−04

phw = 0.254
|xout| = 4

best
p = 1.1 · 10−08

phw = 0.276
|xout| = 5

Gymnasium
LunarLander
(minimise)

DEHB (ours) best
p = 9.2 · 10−01

phw = 0.994
|xout| = 4

p = 3.4 · 10−01

phw = 0.612
|xout| = 4

p = 7.8 · 10−02

phw = 0.612
|xout| = 4

base DEHB
p = 4.0 · 10−243

phw = 0.004
|xout| = 5

p = 4.0 · 10−80

phw = 0.937
|xout| = 9

p = 1.8 · 10−08

phw = 0.079
|xout| = 6

p = 3.4 · 10−03

phw = 0.191
|xout| = 6

DEHB base best
p = 9.3 · 10−03

phw = 0.056
|xout| = 8

best best

DEHB RS
p = 6.8 · 10−04

phw = 0.051
|xout| = 6

-
p = 7.7 · 10−02

phw = 0.109
|xout| = 5

-

Google Brax
Ant

(maximise)

DEHB (ours)
p = 1.7 · 10−02

phw = 0.894
|xout| = 2

best
p = 7.7 · 10−01

phw = 0.978
|xout| = 6

p = 6.4 · 10−01

phw = 0.170
|xout| = 5

base DEHB
p = 1.1 · 10−27

phw = 0.123
|xout| = 7

p = 2.2 · 10−26

phw = 0.797
|xout| = 6

p = 1.0 · 10−04

phw = 0.293
|xout| = 6

p = 3.5 · 10−06

phw = 0.773
|xout| = 4

DEHB base
p = 3.8 · 10−10

phw = 0.086
|xout| = 7

p = 4.8 · 10−23

phw = 0.780
|xout| = 8

p = 1.6 · 10−14

phw = 0.025
|xout| = 7

p = 3.1 · 10−51

phw = 0.018
|xout| = 6

DEHB RS
p = 1.5 · 10−02

phw = 0.094
|xout| = 4

-
p = 9.9 · 10−01

phw = 0.132
|xout| = 5

-

Google Brax
Humanoid
(maximise)

DEHB (ours) best best best best

base DEHB
p = 2.1 · 10−45

phw = 0.001
|xout| = 3

p = 3.5 · 10−82

phw = 0.003
|xout| = 5

DEHB base
p = 4.8 · 10−13

phw = 0.278
|xout| = 3

best

DEHB RS
p = 4.4 · 10−06

phw = 0.022
|xout| = 5

-

Robosuite
Wipe

(maximise)

DEHB (ours)

-

best
p = 3 · 10−1

phw = 0.296
|xout| = 4

Table 10: We show the p-values for significance in the difference of each experiment to the best-
performing optimisation corresponding to the results presented in Table 1. Additionally, pwh gives
the p-values of White’s test for heteroskedasticity and |xout| the number of removed outliers from the
100 data points for each comparison. We require homoskedasticity of the residuals and hence values
of pwh > 0.05. Highlighted cells do not perform significantly differently from the best corresponding
optimisation experiment.

In Table 10, we present the p-values of the Wald and White tests, as well as the number of outliers
removed for the pairwise comparisons detailed in Table 1. The values correspond to comparisons
against the cell identified as the best performer. Entries that do not exhibit a significant difference
from the best-performing cells are highlighted. The assumption of homoskedasticity is satisfied in
the majority of cases, as indicated by p-values greater than 0.05. This is particularly true in sce-
narios where the performance of the experiment is not significantly different from that of the best

RLJ | RLC 2024

optimisation. Moreover, the p-values from the Wald test are generally well above the significance
threshold of 0.05 when there is no significant difference. In our comparisons, the normality assump-
tion was met in 18 out of 35 cases. Given the mixed-effect models’ resilience to deviations from
the normality assumption and the large number of cases where this assumption was satisfied, we
conclude that our test results are reliable for comparing the outcomes of our experiments.

