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Abstract

There has been significant recent progress in the area of unsupervised skill discovery, uti-
lizing various information-theoretic objectives as measures of diversity. Despite these ad-
vances, challenges remain: current methods require significant online interaction, fail to
leverage vast amounts of available task-agnostic data and typically lack a quantitative mea-
sure of skill utility. We address these challenges by proposing a principled offline algorithm
for unsupervised skill discovery that, in addition to maximizing diversity, ensures that each
learned skill imitates state-only expert demonstrations to a certain degree. Our main ana-
lytical contribution is to connect Fenchel duality, reinforcement learning, and unsupervised
skill discovery to maximize a mutual information objective subject to KL-divergence state
occupancy constraints. Furthermore, we demonstrate the effectiveness of our method on
the standard offline benchmark D4RL and on a custom offline dataset collected from a 12-
DoF quadruped robot for which the policies trained in simulation transfer well to the real
robotic system.1

Figure 1: Diverse Offline Imitation (DOI) maximizes a variational lower bound on the mutual information between
latent skills z and states s visited by associated skill-conditioned policies πz , subject to a KL-divergence constraint to
limit the deviation of the state occupancy dz(s) of each latent skill z from that of an expert dE(s).

1Project website with videos: https://tinyurl.com/diversity-via-duality

https://sites.google.com/view/diversity-via-duality/home
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1 Introduction

Recent advancements in reinforcement learning (RL) have included substantial progress in unsupervised skill
discovery, aiming to empower autonomous agents with the capability to acquire a diverse set of skills directly
from their environment, without relying on predefined human-engineered rewards or demonstrations. These
methods have the potential to revolutionize the way RL agents learn to solve complex tasks. The growing in-
terest in unsupervised skill discovery has led to various approaches, typically rooted in information-theoretic
concepts, including empowerment (Klyubin et al., 2005; Mohamed & Jimenez Rezende, 2015; Eysenbach
et al., 2019), information bottleneck (Tishby et al., 1999; Goyal et al., 2019; Kim et al., 2021a) and informa-
tion gain (Houthooft et al., 2016; Strouse et al., 2022; Park & Levine, 2023). Despite these advancements,
there remains a significant challenge. Current methods demand substantial online interaction with the environ-
ment, making exploration in high-dimensional state-action spaces inefficient. Although Zahavy et al. (2022)
introduced constraints to enhance skill performance and narrow the exploration space by incentivizing diverse
skills to meet a certain utility measure, their approach does not eliminate the need for considerable online in-
teraction with the environment. Meanwhile, there have been significant recent advances in large-scale data
collection (Rob, 2020; Walke et al., 2023; Brohan et al., 2023) and in the development of scalable and sample-
efficient offline RL algorithms that leverage diverse behaviors of pre-collected experience. However, these
approaches struggle with well-known challenges, including off-policy evaluation and the out-of-distribution
problem, which have been studied extensively in previous work (Levine et al., 2020; Prudencio et al., 2022).

In this work, we address the aforementioned challenges by introducing a novel problem formulation and com-
plementing it with the first principled offline RL algorithm for unsupervised skill discovery that, in addition
to maximizing diversity, ensures that each learned skill imitates state-only expert demonstrations to a certain
degree. More specifically, we consider a problem formulation with two datasets: a large one with diverse
state-action demonstrations and another much smaller one with state-only expert demonstrations. This set-
ting is particularly valuable in robotics scenarios where expert demonstrations are limited and the domain of
the expert may be different from that of the agent, such as in human demonstrations. Another potential appli-
cation is to enhance the realism of computer games by creating an immersive experience of interacting with
non-player characters, each behaving in a slightly different style, while all partially imitating the behavior of
a human expert.

We formulate the problem as a Constrained Markov Decision Process (CMDP) (Altman, 1999; Szepesvári,
2020) that seeks to maximize diversity through a mutual information objective, subject to Kullback-Leibler
(KL) divergence state occupancy constraints ensuring that each skill imitates state expert demonstrations to a
certain degree. The resulting CMDP has convex objective and constraints, making the optimization problem
intractable. We adopt a tractable relaxation approach consisting of an alternating scheme that maximizes a
variational lower bound on mutual information, and to handle the constraints it applies Lagrange relaxation.
Our method, Diverse Offline Imitation (DOI), overcomes the off-policy evaluation by leveraging the Fenchel-
Rockafellar duality in RL (Nachum & Dai, 2020; Kim et al., 2022; Ma et al., 2022) to connect a dual optimal
value solution (computed using offline samples) with primal optimal state-action occupancy ratios. These
ratios serve as importance weights for offline training of a skill-conditioned policy, skill-discriminator, KL-
divergence estimators, and Lagrange multipliers. We demonstrate the effectiveness of our method on the
standard offline benchmark D4RL (Fu et al., 2020) and on a custom offline dataset collected from a 12-DoF
quadruped robot Solo12 (Léziart et al., 2021). In addition, we show that DOI trained on simulation data
transfers well to a real robot system.

2 Related Work

In the context of skill discovery Achiam et al. (2018) and Campos et al. (2020) showed that methods like
DIAYN (Eysenbach et al., 2019) can struggle to learn large numbers of skills and have a poor coverage of the
state space. Strouse et al. (2022) observed that when a novel state is visited, the discriminator lacks sufficient
training data to accurately classify skills, which results in a low intrinsic reward for exploration. They address
this by introducing an information gain objective (involving an ensemble of discriminators) as a bonus term.
Kim et al. (2021b) gave a skill discovery approach based on an information bottleneck that leads to disentan-
gled and interpretable skill representations. Park et al. (2022; 2023) proposed a Lipschitz-constrained skill
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discovery method based on a distance-maximizing and controllability-aware distance function to overcome
the bias toward static skills and to allow the agent to learn complex and far-reaching behaviors. Sharma et al.
(2020) developed a method that simultaneously discovers predictable skills and learns their dynamics. In a
follow-up work, Park & Levine (2023) addresses the problem of errors in predictive models by learning a
transformed MDP, whose action space contains only easy to model and predictable actions. These works
provide RL algorithms for unsupervised skill discovery that require online interaction with the environment
and do not impose utility measures on the learned skills. In contrast, DOI gives a principled offline algorithm
for maximizing diversity under imitation constraints.

A large body of research has focused on successor features (Dayan, 1993; Barreto et al., 2016), a powerful
technique in RL for transfer of knowledge across tasks by capturing environmental dynamics, particularly
promising for skill discovery when coupled with variational intrinsic motivation (Gregor et al., 2017; Barreto
et al., 2018; Hansen et al., 2020) to enhance feature controllability, generalization, and task inference. In
contrast to our work, these approaches do not impose performance constraints on the learned skills. Zahavy
et al. (2022) cast the task of learning diverse skills, each achieving a near-optimal performance with respect
to a given reward, into a constrained MDP setting with a physics-inspired diversity objective based on a
minimum ℓ2 distance between the successor features of distinct skills. However, this approach requires
significant online interaction with the environment to learn the skills.

Numerous practical algorithms for offline RL have been proposed (Levine et al., 2020; Prudencio et al.,
2022), including methods based on advantage-weighted behavioral cloning (Nair et al., 2020; Wang et al.,
2020), conservative strategies to stay close to the original data distribution (Kumar et al., 2020; Cheng et al.,
2022) and using only on-data samples (Kostrikov et al., 2022; Xu et al., 2023). While these methods excel
at learning a policy that maximizes a fixed reward, they are not directly applicable in our setting, which
has a non-stationary reward that depends on: i) the log-likelihood of a skill discriminator, and ii) Lagrange
multipliers. In addition, these techniques cannot be used to i) train a skill discriminator and ii) estimate a KL
divergence offline.

Naive importance sampling approaches for off-policy estimation are known to suffer from unbounded vari-
ance in the infinite horizon setting, a problem known in the literature as “the curse of horizon”. Liu et al.
(2018); Mousavi et al. (2020) addressed this challenge by providing theoretical foundations and a principled
off-policy algorithm, using a backward Bellman operator, that avoids exploding variance by applying impor-
tance sampling to state-visitation distributions, and by providing practical solutions in Reproducing Kernel
Hilbert Spaces. An alternative research direction in off-policy estimation, referred to as “Distribution Cor-
rection Estimation (DICE)”, has introduced innovative techniques, with Nachum et al. (2019a) mitigating
variance with importance sampling, Nachum et al. (2019b) enabling policy gradient from off-policy data
without importance weighting, Kim et al. (2022) stabilizing offline imitation learning with imperfect demon-
strations, Zhang et al. (2020) improving density ratio estimation, Dai et al. (2020) providing high-confidence
off-policy evaluation. Subsequently, Xu et al. (2021) applied this approach to offline RL and demonstrated
its effectiveness in continuous control tasks. Our work uses a DICE-based off-policy approach similar to Op-
tiDICE (Lee et al., 2021; 2022) for estimating importance ratios, while considering a constrained formulation
with a mutual information objective and KL-divergence imitation constraints.

3 Preliminaries

We utilize the framework of Markov decision processes (MDPs) (Puterman, 2014), where an MDP is defined
by the tuple (S,A,R,P, ρ0, γ) denoting the state space, action space, reward mapping R : S × A 7→ R,
stochastic transition kernel P(s′|s, a), initial state distribution ρ0(s) and discount factor γ. A policy π : S 7→
∆(A) defines a probability distribution over the action space A conditioned on the state, where ∆(·) stands
for the probability simplex.

Given a policy π, the corresponding state-action occupancy measure is defined by

dπ(s, a) := (1 − γ)
∞∑

t=0
γtPr[st = s, at = a | s0 ∼ ρ0, at ∼ π(·|st), st+1 ∼ P(·|st, at)]
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and its associated state occupancy dπ(s) is given by marginalizing over the action space
∑

a∈A d
π(s, a).

In the skill discovery setting, z ∼ p(Z) denotes a fixed latent skill on which we condition a policy πz :
S × Z 7→ ∆(A). We will treat p(Z) as a categorical distribution over a discrete set Z of |Z| many distinct
indicator vectors in R|Z|. The skill-conditioned policy πz induces a state occupancy denoted by dz(s) :=
dπz (s), and when it is clear from the context we will refer to dz(s) as a “skill”.

We consider an offline setting with access to the following datasets: i) DE sampled from an expert state
occupancy dE(S); and ii) DO sampled from a state-action occupancy dO(S,A) generated by a mixture
of behaviors. Similar to Ma et al. (2022), our analysis makes the following assumption, which requires
that the offline state occupancy dO sufficiently covers the expert’s state occupancy dE , a prerequisite for
successful imitation learning. Although this assumption is not required in practice, it ensures well-defined
state occupancy measures (i.e., avoiding division by zero).

Assumption 3.1 (Expert coverage). We assume that dE(s) > 0 implies dO(s) > 0.

4 Method

Given an expert and a coverage dataset as above, we aim to solve offline the constrained optimization problem

max
{dz(S)}z∈Z

I(S;Z) (1)

subject to DKL (dz(S)||dE(S)) ≤ ϵ ∀z, (2)

where I(S;Z) denotes the mutual information between states and skills. The identity I(S;Z) =
Ep(z)KL(dz(S)||Ez′dz′(S)) shows an important geometric perspective that maximizing mutual information
is equivalent to finding a set of |Z| skills whose state occupancies dz(S) correspond as points on a probabil-
ity simplex such that these points are positioned on the boundary of an ellipsoid and the pairwise distance
between each point and the ellipsoid center is maximized (Zahavy et al., 2021; Eysenbach et al., 2022).

Henceforth, we shall make use of color coding to highlight the diversity signal in blue and the imitation
signal in orange. The preceding problem formulation and our algorithmic framework can be easily extended
to capture: i) objectives in (1) that combine conditional mutual information (c.f. DADS in (Sharma et al.,
2020)) and information gain (c.f. DISDAIN in (Strouse et al., 2022)); and ii) general f -divergence constraints
in (2), see Nachum & Dai (2020); Ma et al. (2022). We leave the study of these variants for future work.

Since maximizing the mutual information is generally intractable, in line with previous work (Eysenbach
et al., 2019) we assume that the latent skills are sampled uniformly at random, i.e., p(z) = 1

|Z| , and as a
trackable surrogate we consider instead the following variational lower bound

I (S;Z) ≥ Ep(z),dz(s) [log q(z|s)] + H (p(z)) =
∑

z

Edz(s)

[
log (|Z|q(z|s))

|Z|

]
. (3)

Here with q(z|s) we denote a skill-discriminator tasked with distinguishing between latent skills.

Ma et al. (2022) proposed an offline algorithm (SMODICE) that on input an expert dataset DE ∼ dE(S) and
a coverage dataset DO ∼ dO(S,A) such that DE ⊂ States[DO], trains a policy π

Ẽ
which optimizes the

problem
min

π
DKL (dπ(S)||dE(S)) , (4)

and outputs the associated expert ratios η
Ẽ

(s, a) = d
Ẽ

(s, a)/dO(s, a) for every state-action pair (s, a) ∈ DO,
where d

Ẽ
(s, a) denotes the state-action occupancy induced by the recovered expert policy π

Ẽ
.

An important observation is that given the expert ratios η
Ẽ

(s, a), the state constraints (2) can be relaxed
to constraints with respect to the recovered expert state-action occupancy d

Ẽ
(s, a). While in theory this

relaxation restricts the imitation to the state-action occupancy of a specific expert, it also admits a simpler
estimator (see Lemma 4.3) that is more stable to compute, yields faster runtime performance in practice, and
simultaneously provides enough capacity for diversity by increasing the level ϵ. More specifically, for each
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latent skill z we replace the state constraint (2) with the following state-action constraint

DKL

(
dz(S,A)||d

Ẽ
(S,A)

)
≤ ϵ. (5)

We focus on a reduction of CMDPs to MDPs using gradient-based techniques, known as Lagrangian meth-
ods (Borkar, 2005; Bhatnagar & Lakshmanan, 2012; Tessler et al., 2019). In contrast to prior work on CMDP,
which has focused primarily on linear objectives and constraints, we consider the nonlinear setting with con-
vex objectives and constraints. More specifically, we seek to maximize the right-hand side of eq. (3) subject
to eq. (5). Solving this problem is equivalent to

max
dz(s,a)
q(z|s)

min
λ≥0

∑
z

Edz(s)

[
log (|Z|q(z|s))

|Z|

]
+
∑

z

λz

[
ϵ− DKL

(
dz(S,A)||d

Ẽ
(S,A)

)]
, (6)

where with λz we denote the Lagrange multiplier corresponding to latent skill z.

4.1 Approximation Scheme

Figure 2: Illustration of Algorithm 1. We compute expert importance ratios η
Ẽ

(s, a) by running SMODICE on the
offline datasets DE and DO . These expert ratios are then used in the alternating scheme described in Subsec. 4.1 to
obtain the importance ratios ηz(s, a) (with support in DO) for each skill z. Specifically, the skill-ratios ηz(s, a) are
computed by a DICE-like offline policy evaluation algorithm on input a reward Rµ

z (s, a) that balances skill diversity
(skill-discriminator q(z|s)) and expert imitation (importance ratios η

Ẽ
(s, a)).

We use a popular heuristic, known in the literature as alternating optimization, to approximately compute a
local optimum of Problem (6). More precisely, the method alternates between optimizing each model while
holding all others fixed, and iteratively refines the solution until convergence is reached or a stopping criterion
is met. Furthermore, as we can guarantee in practice that the Lagrange multipliers λ are always positive, we
consider Problem (6) with λ > 0, that is

max
dz(s,a)
q(z|s)

min
λ>0

∑
z

λz

{
ϵ+ Edz(s,a)

[
Rλ

z (s, a)
]

− DKL (dz(S,A)||dO(S,A))
}
, (7)

where

Rλ
z (s, a) := 1

λz︸︷︷︸
Constraint Violation

log (q(z|s)|Z|)
|Z|︸ ︷︷ ︸

Skill Diversity

+ log η
Ẽ

(s, a)︸ ︷︷ ︸
Expert Imitation

. (8)

The reward in (8) is derived in Supp. C and relies on the following equality (see Supp. D.3)
DKL(dz(S,A)||d

Ẽ
(S,A)) = DKL(dz(S,A)||dO(S,A)) − Edz(s,a)[ log(d

Ẽ
(s, a)/dO(s, a))] and the defi-

nition of η
Ẽ

(s, a) = d
Ẽ

(s, a)/dO(s, a).

Intuitively, the reward Rλ
z (s, a) balances between diversity and KL-closeness to the expert state-action occu-

pancy. The Lagrange multiplier λz scales down the log-likelihood of the skill-discriminator q(z|s), effectively
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reducing the diversity signal, when the state-action occupancy dz(S,A) violates the KL-divergence constraint
(5), and vice versa. Each term in the reward (8) involves a separate optimization procedure, which will be
described in the next section.

4.2 Approximation Phases

Using the alternating optimization scheme, Algorithm 1 decomposes into the following three optimization
phases. In PHASE 1, we train a value function V ⋆

z , ratios ηz(s, a) and a skill-conditioned policy πz . In
PHASE 2, we train a skill-discriminator q(z|s). Then in PHASE 3, we compute a KL constraint estimator
ϕz and update accordingly the Lagrange multipliers λz . In addition, we perform a preprocessing phase to
compute the expert ratios η

Ẽ
(s, a) by invoking the SMODICE algorithm.

4.2.1 Phase 1

With fixed skill-discriminator q(z|s) and Lagrange multipliers λ > 0, Problem (7) becomes

max
{dz(s,a)}z∈Z

∑
z

λz

{
Edz(s,a)

[
Rλ

z (s, a)
]

− DKL (dz(S,A)||dO(S,A))
}
, (9)

or equivalently for every skill z:

max
dz(s,a)≥0

Edz(s,a)
[
Rλ

z (s, a)
]

− DKL (dz(S,A)||dO(S,A))

subject to
∑

a dz(s, a) = (1 − γ)ρ0(s) + γT d(s) ∀s, (10)

where we denote with T the transition operator: T d(s′) =
∑

s,a P(s′|s, a)d(s, a).

Assumption 4.1 (Strict Feasibility). We assume there exists a solution such that the constraints (10) are
satisfied and d(s, a) > 0 for all states-action pairs (s, a) ∈ S × A.

Using Lagrange duality, Assum. 4.1 (which implies strong duality) and the Fenchel conjugate (see Supp. B),
Nachum & Dai (2020, Sec. 6) and Ma et al. (2022, Theorem 2) showed that Problem 10 shares the same
optimal value as the following optimization problem

V ⋆ = arg min
V (s)

(1 − γ)Es∼ρ0 [V (s)] + logEdO(s,a) exp
{
Rλ

z (s, a) + γT V (s, a) − V (s)
}
, (11)

where T V (s, a) := EP(s′|s,a)V (s′). Moreover, the primal optimal solution is given by

ηz(s, a) := d⋆
z(s, a)
dO(s, a)

= softmaxdO(s,a)
(
Rλ

z (s, a) + γT V ⋆
z (s, a) − V ⋆

z (s)
)
, (12)

where softmaxp(x)(g(x)) = exp{g(x)}
/
Ep(x′)[exp{g(x′)}]. These ratios ηz(s, a) are then used to design

an offline importance-weighted sampling procedure that, for an arbitrary function f , satisfies

Ep(z)Ed⋆
z(s,a)[f(s, a, z)] = Ep(z)EdO(s,a)[ηz(s, a)f(s, a, z)]. (13)

Afterwards, the optimal skill-conditioned policy π⋆
z is trained offline using a weighted behavioral cloning,

which is obtained by setting f(s, a, z) = log(πz(a|s)) and maximizing the RHS of eq. (13) over all skill-
conditioned policies πz . In practice, gradient descent is used for optimization.

4.2.2 Phase 2

We now give an offline procedure for training a skill-discriminator q(z|s), which takes as input ratios ηz(s, a)
of a skill-conditioned policy π⋆

z . The proof is presented in Supp. D.2.

Lemma 4.2. Given ratios ηz(s, a), using eq. (13) applied with f(s, a, z) = log(q(z|s)), we can compute
offline an optimal skill-discriminator q⋆(z|s). In particular, we optimize by gradient descent the following
optimization problem maxq(z|s) Ep(z)EdO(s,a) [ηz(s, a) log (q(z|s))].
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The skill-conditioned policy π⋆
z (PHASE 1) and the skill-discriminator q⋆ (PHASE 2), allow us to maximize

offline the variational lower bound in eq. (3) and thus skill diversity. It remains to estimate possible constraint
violations in eq. (5) and to update the Lagrange multipliers accordingly.

4.2.3 Phase 3

With fixed skill-discriminator q⋆(z|s) and skill-conditioned policy π⋆
z(s), Problem (7) reduces to

minλ>0
∑

z λz[ϵ − DKL(d⋆
z(S,A)||d

Ẽ
(S,A))]. We optimize the Lagrange multipliers by gradient descent.

To this end, we now give an offline estimator of the KL-divergence term. The proof is presented in Supp. D.3.

Lemma 4.3. Given skill-conditioned policy ratios ηz(s, a) and expert ratios η
Ẽ

(s, a), using eq. (13) applied
with f(s, a, z) = log(ηz(s, a)/η

Ẽ
(s, a)), we can compute offline an estimator of DKL(d⋆

z(S,A)||d
Ẽ

(S,A))
which is given by ϕz := EdO(s,a)[ηz(s, a) log(ηz(s, a)/η

Ẽ
(s, a))].

We note that the ratios ηz(s, a) and η
Ẽ

(s, a) are computed only on state-action pairs within the offline dataset
DO. Furthermore, in practice, we ensure that these ratios are strictly positive, so that the KL estimator ϕz is
well defined and bounded.

5 Algorithm

Our optimization method consists of three phases, each of which optimizes a specific model and fixes the
remaining ones. It is important to emphasize that in contrast to prior work, our problem formulation considers
an optimization problem with constraints. Furthermore, the reward function in eq. (8) is non-stationary,
since it depends on the bounded Lagrange multipliers that balance diversity (log q(z|s)) and expert imitation
(log η

Ẽ
(s, a)). This has significant algorithmic implications, as it requires solving a sequence of standard RL

problems, each of which admits offline policy evaluation.

To smooth the transition of the reward signal between successive iterations, we enforce a slow change of the
Lagrange multipliers. More specifically, we use the technique of bounded Lagrange multipliers (Stooke et al.,
2020; Zahavy et al., 2022), which applies a Sigmoid transformation λ = σ(µ) component-wise to unbounded
variables µ ∈ R|Z|, so that the effective reward is a convex combination of a diversity term and an expert
imitation term. In practice, this transformation ensures that λ > 0. Hence, the reward for each latent skill z
becomes

Rµ
z (s, a) := (1 − σ(µz)) log (q⋆(z|s)|Z|)

|Z|
+ σ(µz) log η

Ẽ
(s, a). (14)

We now present the resulting multi-phase optimization procedure in Algorithm 1. For the offline training of
the policy (in Phase 1), the skill-discriminator (in Phase 2), and the estimation of the KL divergence value (in
Phase 3), we use importance sampling eq. (13) and give the corresponding empirical estimators in Supp. E.
Our practical implementation leverages the power of neural networks and deep learning techniques for ac-
curate function approximation. More specifically, we train an expert policy π

Ẽ
, a skill-conditioned policy

{πz}z∈Z and a value function {Vz}z∈Z . While practically convenient, this means that each phase of Algo-
rithm 1 is only approximately solved. In particular, we do not solve the optimization problem to optimality
in each phase, but rather perform a few gradient descent steps.

We have found that fitting the skill-discriminator q(z|s) is prone to collapse to the uniform distribution. To
alleviate this issue, in addition to the variational lower bound objective (3), we add the DISDAIN information
gain term, proposed in (Strouse et al., 2022). This bonus term is an entropy-based disagreement penalty that
estimates the epistemic uncertainty of the skill-discriminator, and is implemented in practice by an ensemble
of randomly initialized skill-discriminators. Due to the high initial disagreement on unvisited states, this
intrinsic reward provides a strong exploration signal and leads to the discovery of more diverse behaviors.
Intuitively, for states with small epistemic uncertainty, the skill-discriminator (averaged over the ensemble
members) should reliably discriminate between latent skills, thus making the intrinsic reward of the skill-
discriminator’s log-likelihood more accurate.
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Algorithm 1 Diverse Offline Imitation (DOI)
Input: a state-only expert dataset DE ∼ dE(S) and an offline dataset DO ∼ dO(S,A) such that DE ⊂ States[DO].
Pre-compute a state-discriminator c⋆ : S → (0, 1) via optimizing the following objective with the gradient penalty
in (Gulrajani et al., 2017) minc EdE(s)[log c(s)] + EdO(s)[log(1 − c(s))]
Apply Phase 1 with reward R(s, a) = log c⋆(s)

1−c⋆(s) to compute ratios η
Ẽ

(s, a) = d
Ẽ

(s, a)/dO(s, a) for all s, a ∈ DO

Repeat until convergence:
Phase 1. (Fixed Lagrange multipliers σ(µ) and skill-discriminator values q⋆(z|s))
For each latent skill z:

compute a value function V ⋆
z optimizing eq. (11) with reward Rµ

z (s, a) in eq. (14)
compute ratios ηz(s, a) = softmaxdO(s,a) (Rµ

z (s, a) + γT V ⋆
z (s, a) − V ⋆

z (s)) for all s, a ∈ DO

train a skill-conditioned policy π⋆
z = arg maxπz EdO(s,a)[ηz(s, a) log πz(a|s)]

Phase 2. (Fixed ratios ηz(s, a) and bounded Lagrange multipliers σ(µ))
Train a skill-discriminator q⋆ = arg maxq(·|s) Ep(z)EdO(s,a)[ηz(s, a) log q(z|s)]

Phase 3. (Fixed ratios η
Ẽ

(s, a) and ηz(s, a))
Compute for each latent skill z an estimator ϕz := EdO(s,a)[ηz(s, a) log(ηz(s, a)/η

Ẽ
(s, a))]

Optimize the loss minµ

∑
z
σ(µz)(ϵ− ϕz)

6 Experiments

For evaluation of our method we consider 12 degree-of-freedom quadruped robot SOLO12 (Grimminger et al.,
2020), on a simple locomotion task in both the simulation and the real system. We complement this with
an obstacle navigation task, in simulation, and demonstrate that some of the learned diverse skills robustly
reach a target position while the expert fails. Furthermore, we provide evaluation on the ANT, WALKER2D,
HALFCHEETAH and HOPPER environments from the standard D4RL benchmark (Fu et al., 2020).

6.1 Locomotion

Data collection. For the SOLO12 evaluation, we collected domain-randomized offline and expert data from
simulation in the Isaac Gym (Makoviychuk et al., 2021), using pretrained policy checkpoints obtained by
training the robot to track a certain speed of the base with the on-policy diversity maximization algorithm
DOMiNiC (Cheng et al., 2024). We defer the data collection procedure to the Supp. G. The expert dataset
was collected by using the best deterministic policy from the last checkpoint of the training procedure, which
was trained to track forward velocity only without diversity objective. In contrast, the offline dataset was
acquired by employing stochastic policies gathered from various checkpoints throughout the training of the
expert, featuring multiple latent skills. More than half of the offline dataset was collected by a random
Gaussian policy. In line with previous approaches by Kim et al. (2022) and Ma et al. (2022), our practical
implementation aims to fulfill the expert coverage Assum. 3.1. To achieve this, we create the coverage dataset
DO by adding a small number of expert trajectories to the offline dataset, resulting in an unlabeled expert
fraction of 1/160 in DO. We discard expert actions from the expert dataset to ensure that our algorithm does
not have labeled access to them. The resulting expert dataset DE is used to learn a state classifier c(s). Then
the SMODICE is executed to compute the importance ratios η

Ẽ
(s, a), see Sec. 4. We trained the policy for

350 steps, where each step involves the stages described in Sec. 5. In each stage, we execute 200 epochs of
batched training over the data.

Here with DOIϵ we denote an execution of Algorithm 1 with constraint threshold set to ϵ. We proceed by
analyzing the learned DOI skills in three evaluation settings: i) over the fixed offline datasets; ii) a Monte
Carlo on-policy evaluation in the simulator; and iii) the resulting clustering structure involving the offline and
expert datasets, as well as the DOI skills and the SMODICE expert evaluated in the simulation.
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Figure 3: Data points separation by importance ratios ηz(s, a), given different levels of ϵ in SOLO12. (a) Distribution
of importance ratios ηz(s, a) over the offline dataset DO for distinct skills with DOI4 (ϵ = 4) (upper) and a skill-
conditioned variant of SMODICE (lower). (b) Average ℓ1 distance of ratios ηz belonging to distinct skills, depending on
ϵ. The higher the value of ϵ, the greater the ℓ1 distance. The shaded areas show the interval between the 0.25 and 0.75
quantiles, computed over 3 seeds.

Importance ratios distance. In Figure 3, we measure the state-action occupancy dz(s, a) for each latent
skill z through the proxy of importance ratios ηz(s, a),2 for different values of ϵ. As expected, a higher
value of ϵ increases diversity, resulting in different importance ratios per skill for individual data points. This
difference is then aggregated by computing an expected ℓ1 distance between importance ratios of distinct
skills, i.e., E‖ηzi

− ηzj
‖1, and is reported in Figure 3. We note that the looser the constraint (lighter color),

the easier it is to diversify in the sense of ηz . Figure 3b shows the average ℓ1 distance between skill importance
vectors ηz over the dataset for ϵ ∈ {0.0, 1.0, 2.0, 4.0} (lighter color indicates higher ϵ). Moreover, the tighter
the constraint (smaller ϵ), the smaller the difference between the distinct skill importance ratios.

To analyze the influence of the diversity objective on the learned skills, we consider as a baseline a skill-
conditioned variant of (Ma et al., 2022), denoted SMODICE†, which does not have access to the skill dis-
criminator q(z|s). This is equivalent to DOI with fixed σ(µz) = 1 in the reward eq. (14). We defer further
experiments with fixed Lagrange multipliers to Supp. N. In Figure 3a, we observe diversification across the
dataset assignment to skills when using DOI, whereas training an ensemble of skills with only expert imitation
reward (i.e., σ(µz) = 1) collapses to nearly the same importance ratios per skill per data point.

Successor features distance. We have further evaluated diversity on the Monte Carlo estimates of the
expected successor features over the initial state, based on 30 policy rollouts per skill. The γ-discounted suc-
cessor features (SFs) for state s are defined as ψz(s) = Edz(s)[ϕ(s)], where dz(s) is the γ-discounted state
occupancy for a skill policy πz . With slight abuse of notation, we define ψz = Eρ0(s)[ψz(s)], the expected
SFs over the initial state distribution. As a diversity metric, we take the expected ℓ2 distance between the SFs
of distinct skills, i.e., E‖ψz1 − ψz2‖2. The results are presented in Figure 4 and are consistent with the proxy
diversity metric. In particular, there is a correspondence between the offline data separation induced by the
importance ratios ηz (see Figure 3a), and a higher distance between the expected SFs ψz (see Figure 4a). In
terms of performance, DOI achieves a forward velocity comparable to the expert (see Figure 4a) while learn-
ing diverse skills with respect to base height h (see Figure 4b). We also observed that the multipliers σ(µz)
are non-zero for all skills, indicating that the constraint is active. In addition, they stabilize at reasonable
levels as training progresses, which we show in Supp. I for both the SOLO12 and ANT.

DOI skills form well-separated clusters. Here we conduct a controlled experiment with full trajectory
information, which remains hidden to the DOI algorithm. In Figure 5, the Successor Features of each trajec-
tory in the expert dataset are transformed by UMAP (McInnes et al., 2018) algorithm into 2D space. This

2For the computation of the skill-ratios ηz(s, a), we choose a projection Π of the expert state (see Supp. K) that yields 3-dimensional
planar and angular velocities of the robot’s base in the base frame.
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Figure 4: (a) Average ℓ2 distance between Monte Carlo estimates of successor features ψz of distinct skills; (b) return
r as % of expert return and standard deviation of base height stdz(h). Both depend on ϵ for the SOLO12. The shaded
areas show the interval between the 0.25 and 0.75 quantiles, computed over 3 seeds.

transformation is then used to map the SFs of each trajectory into 2D space for: i) the offline dataset, ii) the
SMODICE expert evaluated in simulation, and iii) the learned DOI skills (red, green, blue, purple, cyan) also
evaluated in simulation. The diversity of learned DOI skills is reflected in a well-separated cluster structure.

UMAP Projection Zoom-in Offline Dataset

Figure 5: Successor Features projection onto 2D space using the UMAP algorithm.

6.2 Robust Obstacle Navigation

Data collection. Similarly to the locomotion task in Subsec. 6.1, both expert dataset and offline dataset
were generated from pretrained policy checkpoints from training a robot to navigate in the terrain of obsta-
cles with fixed time limit using the DOMiNiC (Cheng et al., 2024) algorithm. Unlike the previous task, the
expert dataset was collected using the best deterministic skill-conditioned policy from the last checkpoint of
the training procedure, which exhibits diverse strategies to navigate the obstacle terrain, including bypassing
it from both sides or climbing over it. The offline dataset was acquired through rolling out stochastic poli-
cies gathered from multiple checkpoints with multiple skills. Both expert dataset and offline dataset were
collected in a terrain of a single obstacle of a fixed height of 0.2 meters. Similar to Subsec. 6.1, we create
the coverage dataset DO by adding a small number of expert trajectories to the offline dataset. For details on
collecting the dataset for the obstacle navigation task, we refer interested readers to the Supp. G.

Multi-modal expert limitations. Deriving a single policy by SMODICE from expert demonstrations, even
in the setting when the dataset was collected from diverse expert strategies, may lack robustness to distribution
shifts. This observation emphasizes the need for diverse policy extraction. To illustrate this with a concrete
example, consider a scenario where a SOLO12 robot navigates around a single box obstacle to reach a target
position behind it. The target position can be reached either from the sides (left or right) of the box or
by climbing over it (the less robust path). In our experiments, the expert dataset DE contains all of the
above strategies. As shown in Figure 6, for boxes with a height of at least 0.3 meters, the SMODICE expert
consistently positions itself in front of the box and thus fails to robustly reach the target position.
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Extracting robust policies. In Figure 6, we analyze return distributions and sampled trajectories for box
heights of {0.3, 0.6} meters. The SMODICE expert predominantly fails to reach the target position, due to
a bias towards climbing over the box. In contrast, a DOI skill consistently chooses the left side, which leads
robustly to the target position and achieves a superior return distribution. However, it is important to note that
not all learned DOI skills are robust. Hence, a subsequent selection process is required. Further details about
all learned DOI skills, their return distributions and sampled trajectories, different box heights, and additional
experimental information are presented in Supp. M.
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Figure 6: Return distributions and sampled trajectories of SMODICE and a DOI skill for terrains with box height (a) 0.3
and (b) 0.6. The heights of the boxes are out-of-distribution for the SMODICE, which tends to get stuck in front of the
box due to a bias towards climbing over it. In contrast, the robust DOI skill takes a detour to the left side of the box.

6.3 Standard D4RL Environments

We consider the case where we have offline data generated from a random policy mixed with a small amount
of expert trajectories.3 Figure 7 shows the results for both the expected ℓ2 distance between the SFs or the
importance ratios ηz of distinct skills. We normalize the state feature ϕ(s) when comparing SFs ψz across
environments in Figure 7a. In most cases, we report a trade-off between the average skill return and the imi-
tation level ϵ. The larger the imitation slack ϵ, the more diverse the skills become, but at the cost of lowering
the average return, and vice versa. Nevertheless, in Figure 7a we show that ϵ retains some controllability over
diversity. The WALKER2D is particularly sensitive to relaxation of the occupancy constraint with respect to
performance. We hypothesize that this is due to the fact that the space of policies that achieve a stable gait is
very restrictive, resulting in a significant loss of task return for even a small amount of skill diversity. In con-
trast, the ANT exhibits high stability, with several skills achieving close to expert performance in terms of r.
These results are also consistent with SMODICE expert policies used for computing η

Ẽ
(s, a) (see Supp. H).

7 Conclusion

We proposed DOI, a principled offline RL algorithm for unsupervised skill discovery that, in addition to max-
imizing diversity, ensures that each learned skill imitates state-only expert demonstrations to a certain degree.
Our main analytical contribution is to connect Fenchel duality, reinforcement learning, and unsupervised skill
discovery to maximize a mutual information objective subject to KL-divergence state occupancy constraints.
We have shown that DOI can diversify offline policies for a 12-DoF quadruped robot (in simulation and in
reality) and for several environments from the standard D4RL benchmark in terms of both ℓ2 distance of
expected successor features and ℓ1 distance of importance ratios, which is visible from the data separation
induced by ηz(s, a) among skills. The importance ratio distance, computed offline, is a robust indicator of
diversity, which aligns with the online Monte Carlo diversity metric of expected successor features. The re-
sulting skill diversity naturally entails a trade-off in task performance. We can control the amount of diversity
via an imitation level ϵ, which ensures that distinct skills remain close to the expert in terms of state-action

3The same setting was considered by Ma et al. (2022).
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Figure 7: Results on D4RL environments with offline data collected from a random policy for ϵ = 0.0, 0.5, 1.0, 2.0, 4.0.
In figure (a) we observe the tradeoff between average skill return and average successor features distance over skills. In
figure (b), we report the tradeoff w.r.t. average ℓ1 distance of importance ratios ηz . The lines indicate the standard
deviation computed over 3 seeds.

occupancy, which also indirectly controls task performance loss. A promising direction for future research is
to impose constraints on the value function of each skill to ensure near-optimal task performance.

Limitations

Our approach, while promising, is not without limitations. The diversity objective, which is given by a
variational lower bound on the mutual information between states and skills, necessitates the training of a
skill-discriminator. This design choice, however, presents several practical challenges: i) the single-step
policy and skill-discriminator update in the offline setting does not provide as accurate a policy estimate as
sampling a Monte Carlo trajectory in the online setting (Eysenbach et al., 2019); ii) this inaccuracy, when
combined with the non-stationary reward (bounded Lagrange multipliers and skill-discriminator), could result
in a skill-discriminator that fails to accurately discriminate among skills; and iii) while the introduction of
an additional information gain term, as in Strouse et al. (2022), can alleviate this issue, its effect could fade
quickly and serve only as an initial diversity boost in the offline setting. Furthermore, the current paradigm is
well-suited for a discrete number of skills, leaving open the important questions of extending our framework
to infinitely many skills and addressing in a principled way the practical challenges surrounding the skill-
discriminator training. We leave these important open questions for future work.
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Supplementary for Diverse Offline Imitation Learning

A Reproducibility

For implementation of DOI we have used the PyTorch autograd framework. For the SOLO12 training we
made use of Isaac Gym for data collection and evaluation of the learned skill policies. For the D4RL experi-
ments we evaluated the policies using the Mujoco v2.1 rigid body simulator. The training of the skill policies
with evaluation and pre-training of the SMODICE expert ratios takes about 4 hours on an NVIDIA GeForce
RTX 4080 graphics card with a batch size of 512. We plan on opensourcing the code and the SOLO12 data
post conference acceptance. The SOLO12 robot has been developed as part of the Open Dynamic Robot
Initiative (Grimminger et al., 2020), and a full assembly kit is available at a cheap price in order to reproduce
the real system experiments from Supp. J.

B Fenchel Conjugate

The Fenchel conjugate f⋆ of a function f : Ω → R is given by

f⋆(y) = sup
x∈Ω

〈x, y〉 − f(x), (S1)

where 〈·, ·〉 denotes the inner product defined on a space Ω. For any proper, convex and lower semi-continuous
function f the following duality statement holds f⋆⋆ = f , that is

f(x) = sup
y∈Ω⋆

〈x, y〉 − f⋆(y), (S2)

where Ω⋆ denotes the domain of f⋆. For any probability distributions p, q ∈ ∆(S) with p(s) > 0 implying
q(s) > 0, we define for convex continuous functions f the family of f -divergences

Df (p||q) = Eq

[
f

(
p(x)
q(x)

)]
. (S3)

The Fenchel conjugate of an f divergence Df (p||q) at a function y(s) = p(s)/q(s) is, under certain condi-
tions4, given by

D⋆,f (y) = Eq(s) [f⋆(y(s))] . (S4)

Furthermore, its maximizer satisfies
p⋆(s) = q(s)f ′

⋆(y(s)). (S5)

In the important special case where f(x) = x log(x), we obtain the well-known Kullback-Leibler (KL)
divergence

DKL(p||q) =
∑

s

p(s) log p(s)
q(s)

. (S6)

The Fenchel conjugate D⋆,KL of the KL-divergence at a function y(s) = p(s)/q(s) has a closed-form (Boyd
& Vandenberghe, 2004, Example 3.25)

D⋆,KL(y) = logEq(s)[exp y(s)], (S7)

and its maximizer p⋆ satisfies

p⋆(s) = q(s)softmaxq(y(s)), where softmaxq(y(s)) = exp y(s)
Eq(s′)[exp y(s′))]

(S8)

4f needs to satisfy certain regularity conditions (Dai et al., 2017)
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C Lagrange Relaxation

The Lagrange relaxation is given by

max
dz(s,a),q(z|s)

min
λ>0

∑
z

Edz(s)

[
log (|Z|q(z|s))

|Z|

]
+
∑

z

λz

[
ϵ− DKL

(
dz(S,A)||d

Ẽ
(S,A)

)]
.

By combining Lem. D.4 and the definition of η
Ẽ

(s, a) = d
Ẽ

(s, a)/dO(s, a), we have

DKL

(
dz(S,A)||d

Ẽ
(S,A)

)
= DKL (dz(S,A)||dO(S,A)) − Edz(s,a)

[
log η

Ẽ
(s, a)

]
and thus

max
dz(s,a),q(z|s)

min
λ>0

∑
z

λz

[
ϵ+ Edz(s,a)

[
Rλ

z (s, a)
]

− DKL (dz(S,A)||dO(S,A))
]
, (S9)

where the reward is given by

Rλ
z (s, a) := log (|Z|q(z|s))

λz|Z|
+ log η

Ẽ
(s, a).

D Algorithmic Phases

D.1 Value Function Training

With fixed skill-discriminator q(z|s) and Lagrange multipliers λ > 0, the Problem S9 becomes:

max
{dz(s,a)}z∈Z

∑
z

λz

{
Edz(s,a)

[
Rλ

z (s, a)
]

− DKL (dz(s, a)||dO(s, a))
}

or equivalently for every skill z:

max
dz(s,a)≥0

Edz(s,a)
[
Rλ

z (s, a)
]

− DKL (dz(S,A)||dO(S,A))

s.t.
∑

a dz(s, a) = (1 − γ)ρ0(s) + γT d(s) ∀s.
(S10)

We note that the preceding problem formulation involves state-action occupancy.

The strict feasibility in Assumption 4.1 implies strong duality, and thus Problem (S10) shares the same opti-
mal value as the following dual minimization problem (for details see (Nachum & Dai, 2020, Section 6) and
(Ma et al., 2022, Theorem 2)):

V ⋆ = arg minV (s)(1 − γ)Es∼ρ0 [V (s)]
+ logEdO(s,a) exp

{
Rλ

z (s, a) + γT V (s, a) − V (s)
}
,

(S11)

where
T V (s, a) = EP(s′|s,a)V (s′).

Moreover, the optimal primal solution reads

d⋆
z(s, a)
dO(s, a)

= softmaxdO(s,a)
(
Rλ

z (s, a) + γT V ⋆
z (s, a) − V ⋆

z (s)
)
. (S12)

D.2 Skill Discriminator Training

With fixed skill-conditioned policy π⋆
z and Lagrange multipliers λ > 0, the Problem S9 becomes

max
q(z|s)

∑
z

{
Edz(s,a)

[
Rλ

z (s, a)
]

− DKL (dz(S,A)||dO(S,A))
}

and reduces to
max
q(z|s)

Ep(z)Edz(s,a) log q(z|s).
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Lemma D.1. Given ratios ηz(s, a), using weighted-importance sampling, we can train offline an optimal
skill-discriminator q(z|s). In particular, we optimize by gradient descent the following optimization problem

max
q(z|s)

Ep(z)EdO(s,a) [ηz(s, a) log q(z|s)] .

Proof. The statement follows by combining Lem. D.2 and Lem. E.1.

Lemma D.2 (Discriminator Gradient). It holds that

∇ϕEp(s) [DKL (p(Z|s)||qϕ(Z|s))] = −Ep(z)Ep(s|z) [∇ϕ log qϕ(z|s)] .

Proof. Observe that

∇ϕDKL (p(Z|s)||q(Z|s)) = ∇ϕEp(z|s) log p(z|s)
qϕ(z|s)

= −Ep(z|s)∇ϕ log qϕ(z|s),

where the second equality follows by

∇ϕ log p(z|s)
qϕ(z|s)

= −qϕ(z|s)
p(z|s)

p(z|s)∇ϕqϕ(z|s)
[qϕ(z|s)]2

= −∇ϕqϕ(z|s)
qϕ(z|s)

= −∇ϕ log qϕ(z|s).

D.3 KL-divergence Constraint Violation

Lemma D.3 (State-Action KL Estimator). Suppose we are given offline datasets DO(S,A) ∼ dO, DE(S) ∼
dE and optimal ratios ηz(s, a) = dz(s,a)

dO(s,a) and η
Ẽ

(s, a) =
d

Ẽ
(s,a)

dO(s,a) for all (s, a) ∈ DO, where the state-action
occupancy d

Ẽ
is induced by a policy π

Ẽ
agreeing on the state occupancy of an expert πE , i.e.

π
Ẽ

∈ arg min
π

DKL (dπ(S)||dE(S)) .

Then, we can compute offline an estimator of DKL

(
dz(S,A)||d

Ẽ
(S,A)

)
which is given by

ϕz = EdO(s,a)

[
ηz(s, a) log ηz(s, a)

η
Ẽ

(s, a)

]
.

Proof. By Lemma D.4 we have

DKL

(
dz(S,A)||d

Ẽ
(S,A)

)
= DKL (dz(S,A)||dO(S,A)) − Edz(s,a)

[
log

d
Ẽ

(s, a)
dO(s, a)

]
.

For the first term, we have

DKL (dz(S,A)||dO(S,A)) = Edz(s,a) log dz(s, a)
dO(s, a)

= EdO(s,a) [ηz(s, a) log ηz(s, a)] .

The second term reduces to

Edz(s,a)

[
log

d
Ẽ

(s, a)
dO(s, a)

]
= EdO(s,a)

[
ηz(s, a) log η

Ẽ
(s, a)

]
.
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Lemma D.4 (Structural). Suppose 0 < ηz(s, a), η
Ẽ

(s, a) < ∞ for all (s, a) ∈ DO. Then, we have

DKL

(
dz(S,A)||d

Ẽ
(S,A)

)
= DKL (dz(S,A)||dO(S,A)) − Edz(s,a)

[
log

d
Ẽ

(s, a)
dO(s, a)

]
.

Proof. By definition of KL-divergence, we have

DKL

(
dz(S,A)||d

Ẽ
(S,A)

)
= Edz(s,a)

[
log

(
dz(s, a)
dO(s, a)

· dO(s, a)
d

Ẽ
(s, a)

)]

= DKL (dz(S,A)||dO(S,A)) − EdZ (s,a)

[
log

d
Ẽ

(s, a)
dO(s, a)

]
.

E Importance Sampling

Lemma E.1 (Importance Sampling). Given ratios ηz(s, a), it holds for any function f(s, a) that

Ed⋆
z(s,a) [f(s, a)] = EdO(s,a) [ηz(s, a)f(s, a)] .

In particular, for any function g(s) we have

Ed⋆
z(s) [g(s)] = EdO(s,a) [ηz(s, a)g(s)] .

Proof. The first conclusion follows by definition of ηz(s, a) = dz(s, a)/dO(s, a), whereas the second uses

Ed⋆
z(s) [g(s)] = Ed⋆

z(s,a)π⋆
z (a|s) [g(s)] = Ed⋆

z(s,a) [g(s)] = EdO(s,a) [ηz(s, a)g(s)] .

E.1 Empirical Estimators

Recall that the primal optimal solution satisfies

ηz(s, a) := d⋆
z(s, a)
dO(s, a)

= softmaxdO(s,a)
(
Rλ

z (s, a) + γT V ⋆
z (s, a) − V ⋆

z (s)
)
,

where

softmaxp(x)(g(x)) = exp{g(x)}
Ep(x′)[exp{g(x′)}]

. (S13)

In the rest of this section, we denote the above TD-error term by

δz(s, a) = Rµ
z (s, a) + γT V ⋆

z (s, a) − V ⋆
z (s).

By assumption, the offline dataset DO is sampled u.a.r. from a state-action occupancy distribution dO(s, a).
Let {wz(s, a)}(s,a)∈DO

be a discrete probability distribution, computed by a softmax, over the offline dataset
DO, namely

wz(s, a) = softmaxDO
(δz(s, a)) = exp{δz(s, a)}∑

(s′,a′)∈DO
exp{δz(s′, a′)}

.

We are now ready to state the main result of this section.
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Lemma E.2 (KL-divergence Estimator). The following expression∑
(s,a)∈DO

wz(s, a)[ logwz(s, a) − logw
Ẽ

(s, a)]

is an empirical estimator of the KL-divergence DKL

(
dz(S,A)||d

Ẽ
(S,A)

)
.

Proof. We estimate the expectation EdO(s,a) exp{δ(s, a)} using an empirical estimate
1

|DO|
∑

(s,a)∈DO
exp{δz(s, a)} over the offline-dataset DO. By definition of softmaxdO(s,a), see eq. (S13),

the following expression

η̃z(s, a) = exp{δz(s, a)}
1

|DO|
∑

(s′,a′)∈DO
exp{δz(s′, a′)}

= |DO|wz(s, a)

is an empirical estimator of the importance weight ηz(s, a). Similarly, η̃
Ẽ

(s, a) = |DO|w
Ẽ

(s, a) is an esti-
mator of η

Ẽ
(s, a). Then, the statement follows by combining Lemma Lem. D.3, the definition of importance

ratios ηz(s, a) = dz(s, a)/dO(s, a), η
Ẽ

(s, a) = d
Ẽ

(s, a)/dO(s, a) and

DKL

(
dz(S,A)||d

Ẽ
(S,A)

)
= EdO(s,a)

[
ηz(s, a) log ηz(s, a)

η
Ẽ

(s, a)

]

≈ 1
|DO|

∑
(s,a)∈DO

η̃z(s, a) log η̃z(s, a)
η̃

Ẽ
(s, a)

=
∑

(s,a)∈DO

wz(s, a) log

(
wz(s, a)
w

Ẽ
(s, a)

)
.

Lemma E.3 (Off-Policy Expectation Estimator). For any function f(s, a) the following expression∑
(s,a)∈DO

wz(s, a)f(s, a)

is an empirical estimator of the expectation Ed⋆
z(s,a) [f(s, a)].

Proof. By combining Lem. E.1 and similar arguments as in the proof of Lem. E.2, we have

Ed⋆
z(s,a) [f(s, a)] = EdO(s,a) [ηz(s, a)f(s, a)]

≈ 1
|DO|

∑
(s,a)∈DO

η̃z(s, a)f(s, a)

=
∑

(s,a)∈DO

wz(s, a)f(s, a).
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F Unconstrained Formulation

SMODICE (Ma et al., 2022) minimizes a KL-divergence between the policy state occupancy and the expert
state occupancy, expressed as

min
d(S)

DKL (d(S)||dE(S)) . (S14)

A naive approach to extend the above problem formulation to the unsupervised skill discovery setting, is to
consider an additional diversity term in the objective. In particular, adding a scaled mutual information term
I(S;Z) and maximizing over a set of skill-conditioned state occupancies {dz(S)}z∈Z , namely

max
{dz(S)}z∈Z

αI(S;Z) −
∑
z∈Z

DKL (dz(S)||dE(S)) . (S15)

Here, the level of diversity is controlled by a hyperparameter α. However, α is arbitrary, and no constraint
on closeness to the expert state occupancy is enforced. We proceed by using the variational lower bound in
eq. (3) and assuming a categorical uniform distribution p(z) over the set of latent skills Z, which consists of
|Z| distinct indicator vectors in R|Z|. This reduce the optimization problem to

max
dz(s),q(z|s)

∑
z∈Z

{
αEdz(s)

[
log (q(z|s)|Z|)

|Z|

]
− DKL (dz(S)||dE(S))

}
. (S16)

Theorem F.1. (Ma et al., 2022) Suppose Assum. 3.1 holds. Then, we have

DKL (dz(S)‖dE(S)) ≤ Edz(s)

[
log dO(s)

dE(s)

]
+ DKL(dz(S,A)‖dO(S,A)).

By Thm. F.1 and linearity of the objective, Problem (S16) reduces to optimizing separately for each latent
skill z the following optimization problem

max
dz(s),q(z|s)

Edz(s) [Rα
z (s, a)] − DKL(dz(S,A)‖dO(S,A)), (S17)

where Rα
z (s, a) is defined as

Rα
z (s, a) := log dE(s)

dO(s)︸ ︷︷ ︸
Expert Imitation

+α
log (q(z|s)|Z|)

|Z|︸ ︷︷ ︸
Skill Diversity

. (S18)

The ratios dE(s)
dO(s) can be computed by training a discriminator c(s) tasked to distinguish between samples

from dE(s) and dO(s). More specifically, since the optimal Bayesian discriminator satisfies c⋆(s) =
dE(s)/(dE(s) + dO(s)), in practice we can use an estimator c(s)/(1 − c(s)) ≈ dE(s)

dO(s) .

Similar to the DOI, we can apply the alternating optimization scheme, here with two phases:(i) fixed skill-
discriminator (similarly to Subsec. 4.2.1); and (ii) fixed importance ratios and policy π⋆

z , where we train the
skill-discriminator q(z|s) (see Supp. D.2). For the first phase, we use the importance ratios ηz(s, a) computed
by optimizing the dual-value problem and then applying softmax to the corresponding TD error terms (see
eq. (12) and Nachum & Dai (2020); Ma et al. (2022)).

G Solo-12 Dataset Collection

As shown in Figure S1, both expert dataset and offline dataset are collected in parallelized GPU-based en-
vironments in Isaac Gym (Makoviychuk et al., 2021). The policies from both locomotion task and obstacle
navigation tasks with SOLO12 are trained using the DOMiNiC (Cheng et al., 2024) algorithm to exhibit di-
verse behaviors while maintaining a certain level of task completion. For details on the algorithm used to
train the data collection policies, we refer interested readers to (Cheng et al., 2024).
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Figure S1: Solo-12 datasets are collected with 4000 environments in parallel using IsaacGym.

Locomotion task. The collecting policies are trained to track randomly sampled velocity commands on the
flat ground. The state space consists of the linear and angular base velocity vectors, projected gravity vector,
joint position, and velocity and commanded velocity. The actions contain the joint target angles, which will be
taken by a PD controller to generate applied torque for each motor. During collecting, the policies are fed with
a fixed forward velocity command of 1 m/s, and zeros for side velocity and yaw rate. As mentioned in Sec. 6,
the policy used for collecting the expert dataset is the last and best checkpoint (iteration 2000) and trained
without diversity objective, which exhibits a stable mid-height trotting gait pattern. The policies for collecting
the offline dataset are different stochastic checkpoints throughout the training of the skill-conditioned policy.
The intrinsic reward is designed to maximize the ℓ2 distance of the successor features (Barreto et al., 2016)
between distinct skills, where in this setting the feature space includes: the base height velocity, base roll and
pitch velocities, and feet height velocities. The offline dataset is composed of 1/2 data from checkpoint 0,
1/4 data from checkpoint 50, 1/8 data from checkpoint 100, 1/16 data from checkpoint 500, 1/32 data from
checkpoint 1500 and 1/32 data from checkpoint 2000. For each policy checkpoint, we collect data from the
5 corresponding skills, including the target skill. It is worth noting that more than half of the data from the
offline dataset comes from the nearly random policies from the start of the training (checkpoints 0 and 50).
Both datasets contain 4000 trajectories with an episode length of 250 steps, or 1 million transitions each.

Obstacle navigation task. The policies are trained to track the target position in a terrain of random ob-
stacles of various heights of {0.0, 0.05, . . . , 0.25} meters within a fixed time horizon. The state space of
the agent contains the linear and angular base velocity vectors, projected gravity vector, joint position and
velocity, a surrounding height map of the robot and time information, while the actions remain the same as
the locomotion task. During data collection, the policies are tasked with tracking the target 3.0 meter away
in the front direction while confronting a 1.0 × 1.0 meter square obstacle of 0.2 meter height. The intrinsic
reward for training the policy is designed to diversify the base velocity direction such that distinct skills ex-
hibit diverse strategies. For the expert dataset, the used policy is the last and best checkpoint (iteration 2000)
trained with diversity objective. The expert dataset is multi-modal in nature, as the dataset contains diverse
strategies for navigating in front of the obstacle, either avoiding it from both sides or climbing it. On the
other hand, the policies for collecting the offline dataset are the skill-conditioned checkpoints from iterations
{0, 50, 100, 150, 200, 250, 500, 1000, 1500, 2000}. Both datasets contain 2000 trajectories with an episode
length of 500 steps, or 1 million transitions each.

Sim-to-Real transfer. In addition, we use domain randomization during training and data collection, in
order to tackle the sim-to-real transfer and to simulate more diverse environment interaction. Specifically,
we randomize the friction coefficient between [0.5, 1.5], additional base mass between [−0.5, 0.5] kg, and
simulate the observation noise and an actuator lag of 15 ms.
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H SMODICE Expert Return

In table S1 we show the performance of the evaluated policies trained by SMODICE(Ma et al., 2022) on
the WALKER2D and HALFCHEETAH. The results are consistent with the performance that we obtain with
DOI in Figure 7. We also note here the importance of having expert state coverage in the offline data that is
reflected in the performance of the policies.

Environment dataset N r

halfcheetah medium-expert 25 81.25
50 80.47
200 73.56

medium-replay 25 29.28
50 36.73
200 60.67

random 25 10.89
50 27.71
200 78.94

walker2d medium-expert 25 3.98
50 19.22
200 4.10

medium-replay 25 15.09
50 3.60
200 0.95

random 25 52.62
50 103.52
200 108.20

Table S1: Expected return for SMODICE-learned expert policies in the WALKER2D and ANT environments
for N expert trajectories mixed-in.

I Lagrange Multiplier Stability

In Figure S2 we observe the behavior of the Lagrange multipliers for different levels of ϵ for a specific skill
z in the SOLO12 experiment. In case of ϵ ∈ {1.0, 2.0}, the multipliers fluctuate around a specific level
that strikes the balance between diversity and expert imitation. This can also be validated when observing
the violation level in Figure S2b of the constraint given estimator ϕz , which is for ϵ ∈ {1.0, 2.0} around 0.
On the other hand, if we introduce a strong constraint on the KL-divergence (ϵ = 0.0), which is constantly
violated, hence σ(µz) = 1. Similarly, if the constraint is too weak, only diversity is optimized, in which case
there is a significant degradation in performance (see figure Figure 4).

In Figure S3 we show the bounded lagrange multiplier values for three skills and the resulting violations for
different ϵ levels for the ANT experiment. Again, the multiplier values fluctuate around appropriate levels
ensuring the the violation of the constraint remains close to 0.

J Real Robot Deployment

For the locomotion task, we successfully deployed policies exhibiting diverse skills extracted from the of-
fline dataset while being able to track a certain velocity similar to the expert on real hardware. Our skill-
conditioned policy exhibits different walking behaviors with diverse base motions. Snapshots of these diverse
behaviors can be seen in Figure S4.
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Figure S2: Behavior of Lagrange multipliers. (a) Evolution of σ(λz) for one skill (z = 1 chosen arbitrarily), (b)
violation of the constraint for different ϵ. Negative ϕz − ϵ indicates no violation. Means and standard deviation across
restarts. The shaded areas show the interval between the 0.25 and 0.75 quantiles, computed over 3 seeds.
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Figure S3: Behavior of Lagrange multipliers. (a) Evolution of σ(λz) for one skill (z = 1 chosen arbitrarily), (b)
violation of the constraint for different ϵ. Negative ϕz − ϵ indicates no violation. Means and standard deviation across
restarts. The shaded areas show the interval between the 0.25 and 0.75 quantiles, computed over 3 seeds.
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(a) Trot locomotion with wave trunk motion and low base height.

(b) Trot locomotion with middle base height.

(c) Trot locomotion with high base height.

Figure S4: Snapshots of the trained policy exhibiting distinct skills on hardware. From above to bottom, the policy has
low, middle and high base positions while moving forward.

K Observation Projection

Imitation learning is of particular interest when the agent’s and the target expert policy’s state spaces do
not necessarily match, but overlap in certain parts, as is often the case when learning from demonstrations.
Our framework naturally accounts for this. If we consider S ′ to be the state space of the expert and S the
state space of the agent, we assume that there exists a simple projection mapping Π : S ′ 7→ O, where
O := {o : o ⊂ s, s ∈ S} is the power set of observations, allowing us to potentially imitate beyond expert
policies with the same state space as the agent. Note that the agent still observes its full state s, however
the projected state Π(s) is observed by the expert classifier and skill discriminator. The projection Π can
be selected to specify which parts of the state we want to diversify and constrain in terms of occupancy,
depending on the task at hand.

L Limitations

The DOI method also comes with certain caveats. Maximizing the mutual information, as a diversity objec-
tive, poses a hard optimization problem due to its convexity. Thus, designing alternative diversity objectives
can be beneficial. Furthermore, closeness in state-action occupancy can be quite restrictive in terms of avail-
ability of diverse behaviors that satisfy the constraint. Replacing this with constraints on the return of the
policy would allow more freedom to optimize diversity in cases where the optimal policy may be multimodal.
The above challenges are promising directions for future work.
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M Robust Obstacle Navigation

When the expert data is multi-modal, some modes might be more robust to distribution shift than others.
However, using a uni-modal algorithm such as SMODICE, which tries to match the expert’s state occupancy
distribution, may not result in a robust policy. In contrast, each learned DOI skill recovers a particular mode,
and as shown in this experiment, at least one DOI skill is robust against a distribution shift.

We consider the task of navigating across a box obstacle to a target position behind it, for the SOLO12 robot.
For training the DOI skills, we choose the feature vector ϕ(s) with linear and angular velocity as input to
the skill-discriminator q(z|ϕ(s)). The agent used to collect the expert dataset can go over or around the box
obstacle from the left or right side to reach the target position in the traversable obstacle terrain. The box
has a height of 0.2 meters and a square size of 1.0 × 1.0 meters. As a result, the collected expert data is
multi-modal and consists of trajectories over and from the sides of the box obstacle to the target position.

It is important to emphasize that the less direct route to the target position (left or right side of the box) is
always the more robust choice, since the agent runs into the risk of slipping or falling while climbing the box.
We evaluate the learned DOI skills and SMODICE expert on 6 different heights: {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}
meters. The {0.3, 0.4, 0.5, 0.6} meters boxes are out-of-distribution and increasingly difficult to traverse from
above the box. In Figure S5, we observe the trajectory distributions of the DOI skills and SMODICE expert
collected in simulation. The arrows indicate the yaw angle of the robot at the trajectory points.

As we can see from the return distributions in Figure S7, the performance of the SMODICE expert is strongly
affected by the height of the box, as it is biased towards climbing over the box (this also depends on the initial
state of the agent), which becomes increasingly difficult and may not be feasible. This can be observed from
the trajectory distribution shown in the right-most column of Figure S5; the trajectories of the SMODICE
expert become increasingly concentrated in front of the box as its height increases. On the other hand, the
three DOI skills (learned with a fixed Lagrange multiplier σ(µ) = 0.5) recover diverse behaviors and robustly
reach the goal. Here it is DOI-Skill 3, which is the most robust in reaching the target position and gives the
highest return (see Figure S5 and Figure S7).

In Figure S5, each row corresponds to a box with a fixed height H ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6} meters.
Each of the first three columns is associated with a fixed DOI skill (red, green, and blue) and the last column
represents the SMODICE expert. Each cell shows every 10th step of 60 randomly initialized trajectories, all
computed in simulation. This experiment demonstrates that although SMODICE expert is multimodal, it gets
stuck in front of the box and fails to robustly reach the target position already at a box height of 0.4 meters.
In contrast, the DOI-Skill 3 robustly reaches the target position by bypassing the box from the left side. The
fraction of randomly initialized trajectories stuck in front of the box is significantly smaller for the DOI-Skill
3 than the SMODICE expert. This is reflected in the return distribution shown in Figure S7, which has the
same row and column structure as Figure S5.

N Additional Experiments

Instead of learning the Lagrange multipliers λz via KL estimators ϕz , we can also fix λz at a certain level,
making it a hyperparameter. In our setting, this also works well, and we demonstrate a tradeoff between
diversity and task reward optimization, see Figures S8 and S9. However, in this case we lose the possibility
to enforce a certain constraint on the KL-divergence between the skill state-action occupancy and expert
state-action occupancy.

We further provide results of applying DOI to different levels of expert trajectory mix-in to the medium-replay
and random datasets of WALKER2D and HALFCHEETAH in tables S2 and S3.
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Figure S5: A performance benchmark of the DOI skills and the SMODICE expert on an obstacle navigation
task, where the SOLO12 is initialized in front of a box and tries to reach a target position behind the box. The
task consists of six levels of increasing difficulty depending on the height of the box.



RLJ | RLC 2024

Skill 1

Skill 2

Skill 3

Figure S6: Frames from rollout videos of the learned DOI skills for the highest box task, skills 1 and 3 go
from the side of the boxes to the goal, and skill 2 reimains in front of the box since it mostly tries to climb it.
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Figure S7: Return distributions for DOI skills and SMODICE, we see in particular that the SMODICE policy
return distribution is greatly affected by increasing the height of the box.
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Figure S8: (a) Average ℓ2 distance between Monte Carlo estimated successor representations ψz of distinct skills, (b)
return r as % of expert return and standard deviation of base height stdz(h), depending on a fixed σ(λz) (see legend).
The shaded areas show the interval between the 0.25 and 0.75 quantiles, computed over 3 seeds.
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Figure S9: Divergence estimate and ηz distance for the case of fixed σ(λz). (a) Value of divergence estimator ϕz for a
specific skill over the course of training (z = 1 chosen arbitrarily), (b) average ℓ1 distance of ηz’s of skills. Means and
standard deviation across restarts. The shaded areas show the interval between the 0.25 and 0.75 quantiles, computed
over 3 seeds.
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dataset # expert mixin ϵ E‖ηz1 − ηz2‖ r E‖ψz1 − ψz2‖

medium-replay 25 0.0 0.00 ± 0.00 46.00 ± 1.46 6.16 ± 0.30
0.5 0.21 ± 0.08 0.33 ± 0.48 3.54 ± 2.14
1.0 1.40 ± 0.05 2.33 ± 0.51 6.09 ± 2.40
2.0 1.30 ± 0.03 0.64 ± 0.11 7.67 ± 4.27
4.0 1.54 ± 0.08 2.30 ± 1.64 19.26 ± 2.29

50 0.0 0.00 ± 0.00 54.29 ± 2.13 5.53 ± 0.14
0.5 0.82 ± 0.28 31.31 ± 7.03 14.13 ± 1.86
1.0 1.21 ± 0.15 4.33 ± 0.75 0.42 ± 0.05
2.0 1.37 ± 0.03 1.61 ± 0.41 13.85 ± 2.50
4.0 1.48 ± 0.12 1.11 ± 0.36 22.02 ± 1.33

200 0.0 0.00 ± 0.00 98.33 ± 0.44 2.67 ± 0.26
0.5 0.45 ± 0.11 74.59 ± 8.96 6.22 ± 1.17
1.0 1.20 ± 0.09 2.52 ± 1.50 12.97 ± 4.33
2.0 1.30 ± 0.03 2.07 ± 0.65 3.23 ± 2.02
4.0 1.59 ± 0.06 1.43 ± 0.64 19.48 ± 1.43

random 25 0.0 0.00 ± 0.00 36.49 ± 11.54 15.70 ± 0.48
0.5 0.93 ± 0.02 20.48 ± 7.90 16.81 ± 3.14
1.0 1.30 ± 0.12 3.72 ± 1.38 8.16 ± 5.43
2.0 1.45 ± 0.09 1.22 ± 0.32 20.47 ± 3.08
4.0 1.27 ± 0.05 0.60 ± 0.26 20.60 ± 4.17

50 0.0 0.00 ± 0.00 103.16 ± 0.69 3.32 ± 0.07
0.5 1.03 ± 0.13 33.60 ± 6.64 18.27 ± 2.50
1.0 1.37 ± 0.09 5.05 ± 2.66 20.16 ± 3.05
2.0 1.46 ± 0.06 0.77 ± 0.29 10.46 ± 3.77
4.0 1.23 ± 0.09 0.26 ± 0.11 14.33 ± 1.97

200 0.0 0.00 ± 0.00 107.43 ± 0.26 1.84 ± 0.08
0.5 1.29 ± 0.07 103.29 ± 1.38 6.75 ± 0.77
1.0 1.26 ± 0.22 2.43 ± 0.30 7.30 ± 4.86
2.0 1.46 ± 0.10 0.47 ± 0.15 15.39 ± 1.56
4.0 1.29 ± 0.01 1.91 ± 0.57 19.66 ± 3.36

Table S2: WALKER2D metrics across random and medium-replay variants with varying number of mixed-in trajectories
of the expert to satisfy the coverage assumption.
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dataset # expert mixin ϵ E‖ηz1 − ηz2‖ r E‖ψz1 − ψz2‖

medium-replay 25 0.0 0.00 ± 0.00 37.64 ± 0.30 3.22 ± 0.06
0.5 0.83 ± 0.12 36.95 ± 0.63 3.02 ± 0.10
1.0 1.36 ± 0.09 24.30 ± 6.28 13.34 ± 4.84
2.0 1.44 ± 0.06 6.73 ± 3.65 22.09 ± 8.15
4.0 1.27 ± 0.09 2.68 ± 0.72 21.68 ± 1.87

50 0.0 0.01 ± 0.01 45.40 ± 0.22 3.26 ± 0.27
0.5 1.14 ± 0.02 42.89 ± 0.19 2.94 ± 0.12
1.0 1.41 ± 0.12 37.28 ± 2.41 6.18 ± 1.21
2.0 1.32 ± 0.11 8.60 ± 4.66 13.66 ± 1.97
4.0 1.24 ± 0.16 1.72 ± 0.18 28.74 ± 7.84

200 0.0 0.00 ± 0.00 73.60 ± 0.39 3.65 ± 0.09
0.5 1.16 ± 0.08 69.91 ± 1.14 3.67 ± 0.10
1.0 1.28 ± 0.13 23.74 ± 12.94 13.47 ± 1.73
2.0 1.49 ± 0.10 15.52 ± 4.29 32.03 ± 0.56
4.0 1.42 ± 0.07 2.16 ± 0.04 11.92 ± 2.28

random 25 0.0 0.00 ± 0.00 2.80 ± 0.36 5.55 ± 1.18
0.5 1.12 ± 0.04 3.03 ± 0.28 4.30 ± 0.85
1.0 1.14 ± 0.12 2.24 ± 0.09 10.45 ± 3.30
2.0 1.24 ± 0.08 1.73 ± 0.33 25.01 ± 8.78
4.0 1.44 ± 0.03 1.60 ± 0.30 35.08 ± 8.27

50 0.0 0.00 ± 0.00 31.89 ± 1.14 9.97 ± 0.58
0.5 1.14 ± 0.11 10.29 ± 3.13 17.90 ± 6.01
1.0 1.42 ± 0.15 6.45 ± 2.95 23.30 ± 0.96
2.0 1.41 ± 0.08 2.73 ± 0.43 23.91 ± 6.98
4.0 1.68 ± 0.06 1.44 ± 0.27 35.07 ± 8.08

200 0.0 0.00 ± 0.00 68.35 ± 1.25 5.20 ± 0.31
0.5 1.30 ± 0.08 50.85 ± 17.30 9.80 ± 3.68
1.0 1.21 ± 0.12 15.06 ± 5.58 29.57 ± 4.26
2.0 1.03 ± 0.10 2.10 ± 1.99 10.84 ± 7.57
4.0 1.20 ± 0.20 2.16 ± 0.05 16.90 ± 5.95

Table S3: HALFCHEETAH metrics across random and medium-replay variants with varying number of mixed-in trajec-
tories of the expert to satisfy the coverage assumption.


