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Abstract

Reinforcement-learning agents seek to maximize a reward signal through environ-
mental interactions. As humans, our job in the learning process is to design reward
functions to express desired behavior and enable the agent to learn such behavior
swiftly. However, designing good reward functions to induce the desired behav-
ior is generally hard, let alone the question of which rewards make learning fast.
In this work, we introduce a family of a reward structures we call Tiered Reward
that addresses both of these questions. We consider the reward-design problem in
tasks formulated as reaching desirable states and avoiding undesirable states. To
start, we propose a strict partial ordering of the policy space to resolve trade-offs
in behavior preference. We prefer policies that reach the good states faster and
with higher probability while avoiding the bad states longer. Next, we introduce
Tiered Reward, a class of environment-independent reward functions and show it is
guaranteed to induce policies that are Pareto-optimal according to our preference
relation. Finally, we demonstrate that Tiered Reward leads to fast learning with
multiple tabular and deep reinforcement-learning algorithms.

1 Introduction

Reinforcement learning (Sutton & Barto, 1998) (RL) is concerned with the problem of learning
to behave to maximize a reward signal. In biological systems, this reward signal is considered to
be the organism’s motivational system, using pain and pleasure to modulate behavior (Porreca &
Navratilova, 2017; Leknes & Tracey, 2010; Navratilova & Porreca, 2014). In engineered systems, how-
ever, rewards must be selected by the system designer (Nagpal et al., 2020; Dewey, 2014). We view
rewards as a kind of programming language—a specification of the agent’s target behavior (Littman
et al., 2017; Zhou & Li, 2022). As arbiters of behavior correctness in the learning process, humans
bear the responsibility of authoring this program. This is referred to as the reward-design prob-
lem (Dewey, 2014; Devidze et al., 2021; Sorg et al., 2010; Sowerby et al., 2022): given a set of desired
behavior, what kind of reward functions would efficiently express these behavior? In this paper, we
look at rewards that can correctly and efficiently express desirable states (goals and subgoals) and
undesirable states (obstacles).

There are two essential steps in designing reward functions. First, one must decide what kind of
behavior is desirable and should be conveyed. Then, there’s the choice of reward function that
induces such behavior. The first step is hard because there is no universal preference over behavior
and having to explicitly write down all possible trade-offs is challenging. Even if the reward designer
has a way of expressing preferences for all possible exchanges, it can be difficult, or even impossible,
to design a reward function that captures them without prior knowledge of the environment.

First, let us consider the question of how to specify preference over a set of policies (Roy et al., 2021).
In the goal–obstacle class of tasks we consider, preferences over policies are simple in deterministic
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environments. We imagine all states are either goal states, obstacle states, or neither (background
states), and all goals and obstacles are absorbing. Preferences in deterministic environments form
a total order: reaching goals is better than reaching obstacles; if the policy reaches goals, faster is
better; if the policy reaches obstacles, avoiding them longer is better. However, even in this simple
setting, providing such precise trade-offs is difficult in stochastic environments. Is it better for an
agent to increase the chance of getting to the goal by 5% if it also incurs 8% higher probability
of hitting an obstacle? Is it better to increase by 50% the probability of getting to a goal if the
expected time of getting there also increases by 20%? Preferences are less clear in a stochastic setting
because there can be trade-offs between different outcomes and their probabilities. However, some
comparisons are arguably clear cut. Informally, if one policy induces uniformly better outcomes
than another—being more likely to reach a goal and doing so faster, being less likely to reach an
obstacle and getting there more slowly—we prefer such a policy. If the policies can’t be directly
compared, we propose to be indifferent between them. Thus, we replace the standard reinforcement-
learning notion of optimality with Pareto-optimality (Mornati, 2013) which is commonly adopted
in multiobjective RL (Vamplew et al., 2011; Van Moffaert & Nowé, 2014); we seek a policy that is
either preferred or incomparable to every other policy.

Even after resolving the issue of specifying behavior preference, policies are hard to express through
reward functions in general (Zhang et al., 2009; Amodei & Clark, 2016), and some are even impossible
to convey with a Markov (state–action-based) reward (Abel et al., 2021). Even when policies are
expressible, designing bad reward functions can lead to undesirable or dangerous actions (Amodei
& Clark, 2016), easy reward hacking (Amodei et al., 2016; Skalse et al., 2022), and more. We
seek to design good reward functions, which can be characterized by many properties, such as
interpretability and learning speed (Devidze et al., 2021). But the most important property a
reward function must have is to guarantee the adoption of a desired policy. As we will show later in
Section 5, even intuitively correct reward designs can lead to suboptimal policies. To hedge against
this, we introduce a tiered reward structure that is guaranteed to induce Pareto-optimal policies.
Intuitively, we partition the state space into several tiers, or goodness levels. States in the same
tier are associated with the same reward, while states in a more desirable tier are associated with
an exponentially higher reward. We prove that these tiered reward structures, with the proper
constraints between reward values, induce Pareto-optimal behavior and empirically show that they
can lead to fast learning.

In this paper, we propose Tiered Reward as a way to design reward functions that can correctly
and swiftly express desired behavior. Our contribution is threefold: First, we define a preference
over the entire policy space via a strict partial ordering on outcomes using the notion of Pareto-
optimality. This addresses the question of behavior preference in stochastic environments. Then, we
introduce a class of environment-independent tiered reward structure that provably induce Pareto-
optimal policies with respect to this preference ordering. Finally, we demonstrate these tiered reward
functions can lead to fast learning in both tabular and deep RL settings and is invariant to the choice
of RL algorithms.

2 Related Work

Specifying behavior through rewards: Preference-based RL methods (Wirth et al., 2017;
Brown et al., 2019; Liu et al., 2022) learn a reward function based on a dataset of preferences
over trajectories. But, as we have argued, preferences over trajectory probabilities can be very diffi-
cult to specify. In addition, our reward scheme relieves the need for environment-specific preference
datasets created by human experts. Multi-objective RL (Vamplew et al., 2011; Toro Icarte et al.,
2018; Hayes et al., 2022) allows for different tasks to be specified through a set of reward functions.
Our work proceeds in the orthogonal direction by designing a single reward function to trade off
among multiple behaviors, instead of incentivizing all of them. Reward machines (Icarte et al., 2018;
2022) are finite state machines that compose reward functions and allow different rewards to be de-
livered dependent on the agent’s trajectory. They reveal the structure of the reward function to the
RL agent to support decomposition of complex tasks. Our focus on how to provide incentives for
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specific outcomes is complementary and the two approaches can be used in concert. Temporal logic
based languages (Littman et al., 2017; Camacho et al., 2017; Li et al., 2017; Camacho et al., 2019)
have been used to specify behavior. Though these methods can be more expressive, they often lead
to intractable planning and learning problems due to state-space explosion issues (Wongpiromsarn
et al., 2010). We offer a different expressibility–tractability tradeoff.

Reward Design for fast learning: Mataric (1994) proposed to accelerate learning by incorporat-
ing domain knowledge and using a progress estimator, but does not provide a principled method of
designing a reward function. Sowerby et al. (2022) showed that reward functions that maximize the
action gap given a measure of horizon length lead to fast learning. However, designing such reward
functions requires solving an optimization problem with detailed knowledge of the environment,
making this approach impractical. Similarly, Devidze et al. (2021) formulated the reward-design
problem as an optimization problem to maximize informativeness and sparsity. However, their
method requires solving the MDP with ground truth transition dynamics and a reference reward
function, which is often not available in practice.

3 Problem Setting

We view an RL environment as a Markov Decision Process (MDP), with state space S, action space
A, transition model T , reward function R, and discount factor γ. A policy π : S × A → [0, 1]
is a mapping from the current state to a probability distribution of the action to be taken. The
optimal policy starting from some initial state s0 in the MDP is defined as any reward-maximizing
policy π∗ ∈ argmaxπ E[

∑
t γtrt|s0, π]. To make the reward-design problem as simple as possible for

designers, we limit the reward function R : S → R to be defined solely on states. In goal–obstacle
tasks, we consider the goal states and obstacle states to be absorbing.

We are interested in the reward-design problem. In the common RL framework, tasks are specified
by the reward function and the agent’s objective is to maximize cumulative rewards. We take an
alternative perspective: We specify tasks by prescribing a set of desirable policies and seek reward
functions such that maximizing the reward will lead to the desirable policies. Formally, given a set
of desirable (Pareto-optimal) policies Π, the reward-design problem is to create a reward function
R : S → R such that the optimal policy π∗

R ∈ Π.

We imagine the state space S as exhibiting a tiered structure, where higher tiers are more desirable
than lower tiers, and states within the same tier are equally desirable. Formally, we define:
Definition 3.1. k-Tier Markov Decision Process: A Tier MDP is an MDP with state space S, action
space A, transition model T : S×A×S → R, reward function R : S → R, and discount factor γ. The
state space is partitioned into k tiers, where S = S1 ·∪S2 ·∪ . . . ·∪Sk and Si ∩Sj = ∅, ∀i ̸= j ∈ 1, 2, ..., k.
The reward function has the form R(s) = ri, ∀s ∈ Si, i = 1, 2, ..., k. In addition, r1 < r2 < . . . < rk.

As an example, the grid world from Russell & Norvig (2010), as illustrated in Figure 1a, could be
formulated as a 3-Tier MDP—the goal state is one tier (S3), the lava state one tier (S1), and all
other states reside in the background tier (S2). It is important to note that we put no constraints on
how many states could be in each tier, nor how many tiers there can be. Therefore, the framework
has a high degree of generality: any finite MDP with reward defined on states could be formulated
as a Tier MDP by placing states with the same reward in the same tier. However, the Tier MDP
is most useful when there are clear good and bad states in the state space, such as when there are
goal and obstacle states, or even states of intermediate desirability such as subgoal states. In the
following sections, we will show how to perform reward design in Tier MDPs.

4 Policy Ordering with Pareto-optimality

A policy induces a probability distribution over an infinite set of outcomes (specifically the proba-
bility of reaching each of the states after t steps, for all t). In goal–obstacle tasks, policies can be
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(a) Russell/Norvig grid world. Objective
is to reach the goal (green) without first
visiting lava (orange) (γ = 0.9). (b) A Tiered Reward in a grid world with 6 tiers. Start

state in bottom left, goal state in top right. Darker
colors correspond to more negative reward values.

Figure 1

characterized by statistics such as probability of reaching the goal and probability of avoiding the
obstacle for each possible horizon length. Using these statistics, we will show below how the entire
policy space can form a strict partial ordering to specify which policies are preferable.

We define ot to be the probability of being in S1 at timestep t, and gt that of S3. Given two policies
πA and πB , we say πA dominates πB when both of these inequalities hold (and not both being
strictly equal at all times):

t∑
i=0

oA
i ≤

t∑
i=0

oB
i ,

t∑
i=0

gA
i ≥

t∑
i=0

gB
i , ∀t = 0, 1, 2, ..., ∞.

In words, one policy dominates another if it gets to the goal faster, while delaying encountering
obstacles longer. The set of policies that are not dominated by any other policy is the set of Pareto-
optimal policies. Because there is a finite number of policies and domination is transitive, the set of
Pareto-optimal policies is non-empty. See a visualization of Pareto-optimal policies in Appendix C.

Pareto-optimal policies are interesting to consider for two main reasons. First, Pareto-optimal
behavior always exists, even when policies that achieve other reasonable things do not. Secondly,
Pareto-optimality addresses the preference problem by defining a strict partial ordering over the
entire policy space. Although the policies on the Pareto frontier are incomparable among themselves,
they are all better than the set of Pareto-dominated policies. We simply deem the set of Pareto-
optimal policies to be the desirable behavior, and all others undesirable. Next, we show how to
design rewards that guarantee Pareto-optimal policies.

5 Tiered Reward

In this section, we seek a sufficient condition on the reward function so that optimizing expected
discounted reward will result in a Pareto-optimal policy with respect to our preference relation.
Definition 5.1. Pareto-optimal rewards: A reward function R(s) is called Pareto-optimal if the
policy it induces, πR ∈ argmaxπ E[

∑
t γtrt|s0, π], is Pareto-optimal.

Even some reasonable-sounding reward functions need not be Pareto-optimal. Going back to the
Russell/Norvig grid example, an intuitive reward design would be requiring rlava < rbackground <
rgoal. Consider three example reward functions in Table 1 that satisfy this constraint: Both R and
G are Pareto-optimal, while B is Pareto-dominated (see Figure 8 in Appendix). Roughly, B doesn’t
encourage getting to the goal but is also not good at avoiding lava.

In fact, many of the reward functions that satisfy rlava < rbackground < rgoal are not Pareto-optimal.
Out of 1000 such rewards that we sampled randomly, 90.5% were Pareto-dominated (See Figure 11 in
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Policy rlava rbackground rgoal

R −1 −0.1 +1
G −1 0 +0.5
B −1 −0.9 0

Table 1: Three intuitive reward functions of Russell/Norvig grid world. B is Pareto-dominated.

Appendix). Next, we present a simple rule that is sufficient to guarantee environment-independent
Pareto-optimal reward functions.

5.1 The 3 Tiers Case

To facilitate understanding, we limit the problem space to 3-Tier MDPs for now, and generalize to
k-Tier MDPs in Section 5.2. In a 3-Tier MDP, we will call the 3 tiers obstacles (S1), background
(S2), and goals (S3), in order of increasing desirability. States in S1 and S3 are absorbing.
Definition 5.2. Tiered Reward: In a 3-Tier Markov Decision Process with discount factor γ ∈ (0, 1),
a reward function defined by

R(s) =


robs if s ∈ S1

rbackground if s ∈ S2

rgoal if s ∈ S3

is considered a Tiered Reward if

robs <
1

1 − γ
rbackground < rgoal.

and states in S1 and S3 are absorbing.
Theorem 5.3 (Pareto-optimal rewards in 3-Tier MDP). In a 3-Tier Markov Decision Process, a
Tiered Reward is Pareto-optimal.

We leave the proof in Appendix A but provide some intuition for Tiered Reward here. The middle
term in Definition 5.2, 1

1−γ rbackground, is equal to the cumulative discounted return for infinitely
getting a reward in the background tier ((1 + γ + γ2 + ...)rbackground). So, in a gross simplification,
as long as the reward at the goal is more appealing than infinitely wandering in background states,
and the obstacle less appealing, the reward induces behavior that arrives at the goal early and
avoids the obstacles. Following this simple constraint, we as reward designers can easily create
Pareto-optimal reward functions without requiring knowledge of the transition probabilities in the
environment. Though environment-specific knowledge is needed partition the state space into tiers,
Tiered Reward is generally applicable and environment-independent in the sense that the reward
structure remain the same and the reward values for each tier are shared across different MDPs.

5.2 Generalizing to k Tiers

MDPs with more than 3 tiers can usefully model important problems such as those with well-defined
subgoal states. Specifically, each subgoal region could be its own tier, instead of being grouped into
one big background tier. Even though these problems could still be solved as a 3-Tier MDP, more
knowledge about the environment could help design better reward functions and accelerate learning.
Definition 5.4. Tiered Reward: In a k-Tier(k > 3) Markov Decision Process with discount factor
γ ∈ (0, 1) where the goal tier (k) is absorbing, the reward function R is a Tiered Reward if R(s) =
ri, ∀s ∈ Si, i = 1, 2, ..., k, for reward values r1, r2, ..., rk ∈ R, that satisfy

r1 < ( 1
1 − γ

)r2 < ( 1
1 − γ

)2r3 < · · · < ( 1
1 − γ

)k−1rk ≤ 0.
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One such reward is visualized in Figure 1b. Notice that the k-Tiered Reward (Definition 5.4) uses a
stricter condition than that of 3-Tiered Reward (Definition 5.2). In fact, Definition 5.4 is a sufficient
condition for Definition 5.2 because 3 tiers is a special case with only one non-absorbing tier. One
can also design a stricter 3-Tiered Reward with Definition 5.4 with k = 3. Definition 5.4 is stricter
in that: first, all reward values are non-positive. This is a sufficient but not necessary condition to
guarantee Pareto-optimality. We enforce this constraint not only to make it a sufficient condition,
but also because step-wise penalty has been proved to support faster learning (Koenig & Simmons,
1993; Sowerby et al., 2022). Specifically, with a zero-initialized value function, step penalties create
an incentive for the agent to try state–action pairs it has never experienced before, resulting in rapid
exploration. Secondly, the reward values of higher tiers are exponentially greater than the lower
ones. For adjacent tiers i and i + 1, The reward values always satisfy ri < 1

1−γ ri+1 < 0.

This definition can be understood as a generalization of the 3-Tiered Reward. When the agent
resides within tier i ∈ {2, 3, ..., k − 1}, the k tiers could be partitioned into 3 groups to construct
a 3-Tier MDP. In particular, S1 will include tiers 1 through i − 1, S2 is just tier i, and S3 is tiers
i + 1 to k. Note that we can generalize Theorem 5.3 to allow states in S1 and S3 to have any reward
values as long as they satisfy the inequality in Definition 5.2 for a fixed reward value in S2. Namely,
denote rlow = max{r1, ..., ri−1} and rhigh = min{ri+1, ..., rk}, and as a k-Tiered Reward they satisfy
rlow < ( 1

1−γ )ri < ( 1
1−γ )2rhigh And since γ ∈ (0, 1), rlow < ( 1

1−γ )ri < ( 1
1−γ )2rhigh ≤ rhigh. That

is, (rlow, ri, rhigh) is a Tiered Reward function in the 3-Tier MDP with tiers S1, S2, and S3, and
therefore induces Pareto-optimal policies (Theorem 5.3). So, at tier i, the policy that optimizes the
k-Tiered Reward will push agents to higher tiers as fast as possible and avoid lower tiers, as if they
were goals and obstacles, respectively. In the special case that the agent resides within tier i = 1,
the constraint from Definition 5.4 will treat tiers 2 through k as if they are all goals, pushing the
agent towards them. In the case that i = k, the agent is already in the “goal tier". So overall,
k-Tiered Reward will induce in a ratchet-like policy—go to the higher tiers as fast as possible while
not fall back to the lower tiers—that makes learning fast. In fact, it has been shown that a similar
increasing reward profile (Sowerby et al., 2022) leads to fast learning. Okudo & Yamada (2021) and
Zhai et al. (2022) have also shown that intermediate rewards can accelerate learning and provably
improve sample efficiency in goal–reaching tasks.

Besides encouraging early visitation of good tiers, using Tiered Reward also guarantees maximum
total visitation of all good tiers. This property is formalized in Theorem 5.5.
Theorem 5.5 (Tiered Reward and Cumulative Tier Visitation). In a k-Tier Markov Decision
Process that has Tiered Reward R(s), the induced optimal policy is π∗. Let p∗

t
d ∈ [0, 1] be the

probability of being in tier d ∈ {1, 2, ..., k} for the first time at timestep t following policy π∗. Then,
there is no policy π, along with its induced probability distribution pd

t , that satisfies both:

t∑
i=0

p1
i ≤

t∑
i=0

p∗
i

1, ∀t = 0, 1, 2, ..., ∞
t∑

i=0
pd

i ≥
t∑

i=0
p∗

i
d, ∀d = [2..k], ∀t = 0, 1, 2, ..., ∞.

The proof is similar to that of Theorem 5.3 and can be found in Appendix B. To state the theorem
in words, if a k-Tier MDP has a Tiered Reward structure, then the resulting policy will visit the
worst tier (S1) for as few times as possible, while visiting all the other good tiers (S2, ..., Sk) as
often as possible, respectively.

6 Experiments

Guaranteeing Pareto-optimal behavior is not the sole benefit of using Tiered Rewards; we find that it
also leads to fast learning compared to two baseline reward functions. The first one, following Koenig
& Simmons (1993), we call action penalty. This reward penalizes each step with −1, until the goal
state is reached and the agent is awarded +1. To reiterate, such step-wise negative reinforcement
encourages directed exploration assuming only knowledge about position of the goal. The second
one uses reward shaping as Ng et al. (1999) showed that subgoals can be leveraged through shaping
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(a) Flag Grid. The
state space is the
location of the
agent plus the flag
it has collected.

(b) Q Learning curves for Flag Grid. The two plots use different initial Q-values.
γ ∈ {0.99, 0.95, 0.90, 0.85} and Qinit ∈ {1010, 105, 103} all had similar performances,
so we only report γ = 0.90, Qinit = 105 here. Error bar show standard deviation
from 30 seeds.

Figure 2: Tiered Reward leads to fast learning on the Flag Grid.

rewards to guide the learning process. Reward shaping using an optimal value function is not a
fair comparison both because it contains more information about the environment than tiers and it
requires solving the environment with a pre-specified ground truth reward function, which induces
a circular logic in reward design. For direct comparability, we use the Tiered Reward as a potential
function Φ(s) = Rtier(s) to shape the action-penalty reward, resulting in what we call tier-based
shaping reward: Rtbs(s, a, s′) = Rpenalty(s) + γΦ(s′) − Φ(s).

There are many ways to design a Tiered Reward because it is a class of reward functions that is only
constrained by an inequality (Definition 5.4), and not by specific reward values. In this section, for
simplicity and clarity we use k-Tiered Reward defined by:

ri =
{

0 if i = k
1

1−γ ri+1 − δ if i < k

where δ is a small constant used to satisfy the strict inequality constraint.

Empirically, we show Tiered Reward provides faster learning on multiple tabular domains. We
further extend our results to environments with high-dimensional image inputs and deep RL algo-
rithms. Finally, we also explore the influence of the number of tiers and find that having more tiers
can induce faster learning.

6.1 Fast Learning with Tiered Reward

The “Flag Grid” from Ng et al. (1999) is a natural 6-Tier MDP to study Tiered Reward. In this grid
world (Figure 2a), the agent begins in the bottom-left corner and must learn to pick up four flags
in sequence before reaching the goal. The agent can move in 4 directions with an 80% success rate,
while acting randomly 20% of the time. All states in which the agent possesses the same number of
flags constitute a tier, totaling 5 tiers. The goal constitutes the sixth and final tier.

We evaluate all three reward functions with Q-Learning (Watkins & Dayan, 1992), arguably the
most well-understood and widely applicable RL algorithm. As Figure 2b (left) shows, Tiered Reward
learns fastest of the three. Perhaps surprisingly, Tier Based Shaping performs orders of magnitudes
worse than even action penalty. That is because, with discounting, the shaping function F (s, a, s′) =
γΦ(s′) − Φ(s) becomes positive when s and s′ belong to the same tier. As a result, zero-initialized
Q-values are not optimistic with respect to these rewards, and so exploration with Rtbs is undirected
and slow. For a fairer comparison, we also plot the learning curves where all Q-values are initialized
to some arbitrary large value so that Rtbs also enjoys directed exploration as the two other rewards
(Figure 2b, right). There is a noticeable spike in time taken to reach the goal early on during
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Figure 3: Illustration of EmptyGrid, FourRooms, and DoorKey from left to right. The agent is in
red, and the goal in green. The objective is to navigate to the goal; in FourRooms, the agent has
to find the gaps in the wall; in DoorKey, the agent must first pick up the key and unlock the yellow
door. All three environments use visual observations.

Figure 4: Learning curves of three reward functions on EmptyGrid, FourRooms, and DoorKey.
Each agent is trained with the reward function labeled on the plot, but evaluated using the original
MiniGrid reward (1 − 0.9 ∗ step count/max steps for success, and 0 for failure). Error bars show
standard deviation from 30 random seeds.

training. It is the result of optimistic Q-value initialization, which leads to more exploration and
thus slower learning. Regardless of this trade off, Tiered Reward still consistently outperforms the
two baselines.

It is important to note that our goal here is not to argue shaping is ineffective, nor to determine how
to initialize Q-values for fast learning, but solely to demonstrate the usefulness of Tiered Reward
in various different settings. To start, it makes learning faster than tier-based shaping reward and
action penalty for different discount factors and Q-value initialization schemes. Moreover, it is simple
to design and implement; there is no need to engineer environment-specific reward structures and
initial Q-values to accelerate learning.

6.2 Tiered Reward in Deep RL

We further show that Tiered Reward also make learning faster in Deep RL with image observations.
We choose three goal–obstacle environments from MiniGrid (Chevalier-Boisvert et al., 2023): Emp-
tyGrid, FourRooms, and DoorKey. In all three environments (Figure 3), the agent aims to learn a
policy to navigate to the goal using image observations. FourRooms is a long-horizon problem; the
DoorKey environment has a complicated transition function and action space, and is hard to solve
using classical RL algorithms with a sparse reward. In all three environments, we design Tiered Re-
ward with three tiers. For EmptyGrid and FourRooms, tiers are assigned based on each state’s L1
distance to the goal; for DoorKey, tiers are assigned based on the sub-goals the agent has completed
(getting key, opening door, and reaching goal).

We use Proximal Policy Optimization (Schulman et al., 2017) (PPO) as the RL algorithm. To
provide numerical stability, deep RL methods often employ reward scaling and clipping (Henderson
et al., 2018). To follow, we linearly scale the tiered reward values to be between −1 and 0. More
experiment details are included in Appendix F.
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(a) Top: Frozen
lake environment
with holes in dark
blue.
Bottom: Wall Grid
environment with
walls in black and
lava in orange. (b) Q-Learning results with γ = 0.9. Since there are 3 types of states in the latter

two environments, we start at 3 tiers instead of 2. Error bar show standard deviation
from 300 seeds.

Figure 5: Influence of more tiers on four grid worlds with Q learning. RMAX results in Figure 9.

For evaluation, we plot the episodic return with respect to the original reward function from Min-
iGrid (Chevalier-Boisvert et al., 2023). The original reward functions in MiniGrid are designed by
human experts and express the task of reaching the goal quickly and avoiding obstacles. Thus,
performance on the original reward function shows how quickly the agent has learned the specified
behavior. Figure 4 shows the learning performance of PPO trained on different reward functions
on MiniGrid. Across the three environments, Tiered Reward show the fastest learning, outperform-
ing the Action Penalty and Tier Based Shaping baselines. Tier Based Shaping performs differently
according to how hard the exploration problem is: as discussed before, when s and s′ are in the
same tier, the shaping function F (s, a, s′) = γΦ(s′) − Φ(s) > 0, and therefore encourages the agent
to exploit rather than explore. For FourRooms, Tiered Reward initially learns slower than Tier
Based Shaping, but later catches on and eventually outperforms its counterpart. All three reward
functions suffer from large standard deviation in FourRooms likely because this environment is a
hard exploration problem; different exploration during learning leads to wildly different outcomes.

6.3 Influence of More Tiers

Finally, we explore Tiered Reward with a varying number of tiers. First, we choose for simplicity
and clarity four grid-world domains with absorbing goals and obstacles that are suited to a flexible
number of tiers:

1. Chain: a 90–state 1D environment with left and right actions. Starting from one end, the
agent tries to reach the other end with actions of success rate 80%; failed actions transition
to the opposite direction.

2. Grid: a 9 × 9 grid where the agent starts in one corner and aims for the opposite corner.
The agent can move in four cardinal directions with a 80% success rate, while slipping to
either side with a 10% chance.
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3. Frozen Lake: a slippery grid with holes that will swallow the agent (Figure 5a top). The
objective is to reach the goal without falling into any holes. Each of the 4 directional actions
succeed 1/3 of the time, and slip to either side with probability 1/3.

4. Wall Grid: a grid world with multiple lava states and wall states (Figure 5a bottom). The
agent has to circle around the walls while avoiding the lava to get to the goal. Transition
dynamics same as Grid.

For Chain and Grid, tiers are decided based on their L1 distance to the goal; for Frozen Lake and
Wall Grid, tiers are based on the sum of L1 distance to the goal and start state, weighted 2 : 1.

In absence of a “correct" reward function that expresses the tasks, we measure the learning speed by
recording the steps required for the agent to reach the goal for the first time. For fair comparison,
we optimistically initialize Qinit = 105 so that Rtbs also enjoys the benefit of directed exploration.
The results are presented in Figure 5b. We repeat the same experiments with a model-based RL
algorithm, RMAX (Brafman & Tennenholtz, 2002). The results are similar to that of Q-learning
(Figure 9 in Appendix E). As expected, Tiered Reward makes learning faster as the number of
tiers increases because more information about the environment aids reward design. Tiered Reward
consistently beats action penalty and is at least as good as tier-based shaping reward, and often
much better. Even when Tiered Reward performs the same as shaped reward, it provides the added
benefit of simplicity and better interpretability—it is based only on states, and not (s, a, s′) triples.

Figure 6: Learning curves on EmptyGrid, FourRooms, and DoorKey with different number of tiers
in Tiered Reward. Error bars show standard deviation from 30 random seeds.

Adding more tiers achieves similar effects in deep RL settings under numerical constraints. Figure 6
shows the learning performance of Tiered Reward with 3, 5, 7, and 9 tiers on MiniGrid environments.
In EmptyGrid, having more tiers makes learning faster and more stable. In DoorKey, 7 and 9 tiers
produce similar results, both significantly faster than 3 or 5 tiers. In FourRooms, 5 tier leads to the
fastest learning result, and using more than 5 tiers monotonically decreases learning performance.
We believe this is because of numerical issues during scaling of Tiered Reward: we scale reward
values to [−1, 0] for stability in learning, but it also decreases the difference of reward value among
tiers, especially among higher (more desirable) tiers. Reward values for all states in tiers higher
than 3 gets normalized to very close to 0 (in the range 10−6 to 10−15), and therefore tiers become
indistinguishable under some numerical accuracy. Having more tiers suffers more from this problem
because more states become indistinguishable, and as a result have worse performance. 1 We
hypothesize that this issue can be resolved with a smarter reward scaling or clipping method, and
leave that for future work. In practice, the optimal number of tiers can be determined a priori with
MDP-specific information or empirically. Though more tiers sometimes leads to slower learning than
3 tiers, all Tiered Rewards provide faster learning than the two reward baselines in Figure 4.

1To alleviate the numerical issues caused by scaling, we set discount factor to 0.5 in these experiments to obtain
smaller original Tiered Reward. See Appendix H for further details
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7 Conclusion

In contrast to standard reward-design solutions that are environment-dependent, we presented Tiered
Rewards—a class of environment-independent reward structures that provably leads to (Pareto)
optimal behavior and empirically leads to fast learning. Tiered Reward can be defined in both
tabular and high dimensional environments, and is RL-algorithm agnostic. Interesting future work
includes getting theoretical guarantees that Tiered Reward lead to asymptotically faster learning
and addressing the numerical issues with more tiers.
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A Proof of Theorem 5.3

Proof. Let π∗ be the optimal policy induced with Tiered Reward R(s). Suppose, for the sake of
contradiction, there exists some policy π that dominates π∗. Then, by our definition of Pareto
dominance,

t∑
i=0

oi ≤
t∑

i=0
o∗

i , ∀t = 0, 1, 2, ..., ∞,

t∑
i=0

gi ≥
t∑

i=0
g∗

i , ∀t = 0, 1, 2, ..., ∞,

where ot and gt are the probabilities of reaching obstacles and goals in exactly t steps following π,
and o∗

t and g∗
t are the same for π∗. We can write the value function (of π being evaluated on R(s))

as

V =
∞∑

t=0
gt(γtrgoal +

t−1∑
j=0

γjrback) + ot(γtrobs +
t−1∑
j=0

γjrback).

The value of π∗ (V ∗) can be written similarly. Denote

fg
t = γtrgoal +

t−1∑
j=0

γjrback, and

fo
t = γtrobs +

t−1∑
j=0

γjrback.

That is, f t
g is the reward obtained on a trajectory that reaches a goal in t steps and f t

o is the reward
obtained on a trajectory that reaches an obstacle in t steps. With robs < 1

1−γ rback < rgoal, we show
below that fg

t is strictly decreasing and fo
t strictly increasing with respect to t.

Proof that fg
t is strictly decreasing:

fg
t+1 − fg

t = γt+1rgoal +
t∑

j=0
γjrback − γtrgoal −

t−1∑
j=0

γjrback

= γt(γ − 1)rgoal + γtrback

= γt(1 − γ)( 1
1 − γ

rback − rgoal)

< 0

because 0 < γ < 1 and 1
1−γ rback < rgoal.

Proof that fo
t is strictly increasing:

fo
t+1 − fo

t = γt+1robs +
t∑

j=0
γjrback − γtrobs −

t−1∑
j=0

γjrback

= γt(γ − 1)robs + γtrback

= γt(1 − γ)( 1
1 − γ

rback − robs)

> 0

because 0 < γ < 1 and robs < 1
1−γ rback.
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Then,

V − V ∗ =
∞∑

t=0
(gt − g∗

t )fg
t +

∞∑
t=0

(ot − o∗
t )fo

t

=
∞∑

t=0
(

t∑
j=0

gj − g∗
j )(fg

t − fg
t+1) +

∞∑
t=0

(
t∑

j=0
oj − o∗

j )(fo
t − fo

t+1) (∗)

> 0 + 0
= 0.

The pass from the first equality to the second (*) is justified as follows:

∞∑
t=0

(gt − g∗
t )fg

t =
∞∑

t=0

t∑
j=0

(gj − g∗
j )fg

t −
∞∑

t=0

t−1∑
j=0

(gj − g∗
j )fg

t

=
∞∑

t=0

t∑
j=0

(gj − g∗
j )fg

t −
∞∑

t=1

t−1∑
j=0

(gj − g∗
j )fg

t

=
∞∑

t=0

t∑
j=0

(gj − g∗
j )fg

t −
∞∑

t′=0

t′∑
j=0

(gj − g∗
j )fg

t′+1

=
∞∑

t=0
(

t∑
j=0

gj − g∗
j )(fg

t − fg
t+1)

Similarly,
∞∑

t=0
(ot − o∗

t )fo
t =

∞∑
t=0

(
t∑

j=0
oj − o∗

j )(fo
t − fo

t+1)

We have shown, through the value function, that π is strictly better than π∗ with respect to the
reward function R. But π∗ was chosen to optimize R, so that’s a contradiction. Since no such π can
exist, that means π∗ is not dominated by any policy, and is therefore Pareto-optimal.
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B Proof of Theorem 5.5

Proof. The proof is similar to that of Theorem 5.3. Suppose, for the sake of contradiction, that
there exists some such policy π. We can express the value functions as

V =
∞∑

t=0
γt

k∑
m=1

rm · pm
t , and

V ∗ =
∞∑

t=0
γt

k∑
m=1

rm · p∗
t

m.

Denote fm
t = γtrm. Then, fm

t − fm
t+1 = rmγt(1 − γ) ≤ 0, ∀m. It’s easy to see fm

t − fm
t+1 is strictly

increasing in m, so

V − V ∗ =
∞∑

t=0
γt

k∑
m=1

rm(pm
t − p∗

t
m)

=
k∑

m=1

∞∑
t=0

fm
t (pm

t − p∗
t

m)

=
k∑

m=1

∞∑
t=0

(fm
t − fm

t+1)(
t∑

j=0
pm

j − p∗
j

m)

>

k∑
m=1

∞∑
t=0

(f1
t − f1

t+1)(
t∑

j=0
pm

j − p∗
j

m) (∗∗)

=
∞∑

t=0
(f1

t − f1
t+1)

k∑
m=1

(
t∑

j=0
pm

j − p∗
j

m)

=
∞∑

t=0
(f1

t − f1
t+1) ·

t∑
j=0

(
k∑

m=1
pm

j −
k∑

m=1
p∗

j
m)

=
∞∑

t=0
(f1

t − f1
t+1) ·

t∑
j=0

(1 − 1)

= 0

Note that the (∗∗) step is justified only because
∑t

j=0 pm
j −p∗

j
m ≥ 0, ∀m = [2..k], ∀t. The inequalities

show that π achieves higher reward than the optimal policy, which is a contradiction. No such π
exists.
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C Visualization of Pareto-optimal Policies

Going back to the example of the Russell/Norvig grid, we can visualize how the probability of
reaching the goal (gt) and reaching lava (ot) changes over time for different policies. Consider two
simple policies on the Russell/Norvig grid—(1) going left from all states (“always left”) and (2)
going right from all states (“always right”).

Figure 7: Visualization of the policies of always going left and always going right in the (stochastic)
Russell/Norvig grid. The policy R is the same as R in Figure 8. To avoid color overlapping, we
separated each policy into disjoint regions visualized by distinct colors. Each colored region in the
figure represent the probability-region of one or more policies, joined by ∩. For example, the policy
“always right” covers the areas in brown and orange.

We visualize each policy as a shaded area upper bounded by
∑

t gt and lower bounded by −1+
∑

t ot

in Figure 7. This visualization can be understood as separating the probability space into two, with
the goal-reaching probability on the top half of the y-axis in [0, 1] and obstacle-hitting probability
in the bottom half of the y-axis in [−1, 0]. With this visualization, a Pareto-dominated policy
will cover an area that is entirely enclosed by that of a dominating policy because of lower goal-
reaching probabilities on the top half and higher obstacle-hitting probabilities on the bottom half. As
Figure 7 shows, “always right" and “always left" do not cover each other, so they are incomparable.
Specifically, “always right" has a slightly higher probability of reaching the goal (brown), but “always
left’ has a lower probability of reaching the lava (purple and teal).

For comparison, we plot another policy, which we call R, that is state-dependent and moves in
the direction of the goal. For policy R, the probability of reaching the target increases with time
because each step has a 20% slip probability; agents could slip early on and take longer to reach the
goal. Note that area covered by R (red, brown, orange, and purple) completely subsumes that of
“always right” (brown and orange), demonstrating that “always right" is dominated by R. “Always
left”, on the other hand, is not dominated by R because it has a lower probability of reaching lava
(teal). However, “always left” is not Pareto-optimal of course, because it is dominated by policy G
in Table 1.

In Figure 8, we visualize the three policies R, G, and B in Table 1. Both R and G are Pareto-optimal,
while B is Pareto-dominated because B’s areas are entirely enclosed by that of R and of G.



RLJ | RLC 2024

Figure 8: Visualization of three different policies (R, G, B) on Russell/Norvig grid. Visualization
scheme is the same as described in Figure 7.
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D Tabular Grid Worlds Experiment Details

The implementation of many tabular environments and algorithms is based on the MSDM library
by Ho et al. (2021). All MSDM experiments are run on an Ubuntu 18.04 system with an Intel Core
i7-9700K CPU and 32G of RAM.

Following Koenig & Simmons (1993), we use a greedy policy for action selection and initialize the
Q-values optimistically to exploit directed exploration. Since all reward values are non-positive,
it is sufficient to initialize the Q-values to 0. We use a learning rate of α = 0.90 (tuned from
α ∈ {0.95, 0.90, 0.85}, all of which performed similarly). We set the small constant δ = 0.1.

E RMAX results

We set maximal reward rmax = 105 , use the first m = 3 transition samples to model the MDP
(tuned from m ∈ {2, 3, 5, 7, 10} and selected based on good resulting policy while taking similar
learning time to Q-Learning), and did 200 iterations of value iteration during each update.

Figure 9: RMAX results with γ = 0.9. Each experiment was run with 300 seeds.
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F MiniGrid Experiment Details

The DeepRL experiments on MiniGrid environment were run on an Ubuntu 18.04 system using a
single 6GB GPU (NVIDIA GeForce GTX 980 Ti) and took between 40-60min per seed, depending
on the environment.

A Proximal Policy Optimization (PPO) agent was trained on the three MiniGrid environments using
the following hyperparameters:

Hyperparameter Paramter Value Note

Epochs 4
Batch Size 256
Learning Rate (α) 1 × 10−3

Total Env Steps 200000 Total training steps in each environment
Discount Factor (γ) 0.5 See Appendix H
Small Constant (δ) 5 Used to satisfy the strict inequality in Tiered Reward
GAE λ 0.95 λ coefficient in the GAE formula
Entropy Coefficient 0.01
Value Loss Coefficient 0.5
Max Grad Norm 0.5 Maximum norm of gradient
Clipping ϵ 0.2

Table 2: PPO hyperparameters on MiniGrid experiments.

The PPO agent used an ImpalaCNN architecture (Espeholt et al., 2018) for the policy and value
network. The architecture of the policy network is as follows:

Layer Name Layer Type Output Dimension

Conv Sequence 1 Convolutional Layers 16
Conv Sequence 2 Convolutional Layers 32
Conv Sequence 3 Convolutional Layers 32

Hidden Layer Linear Layer 256
Logit Layer Linear Layer 256
Value Layer Linear Layer 256

Table 3: Architecture of the policy network of the Proximal Policy Optimization agent used in
MiniGrid experiments.

Each Conv Sequence in Table 4 is a sequence of convolutional and pooling layers with residual
connections. Each convolutional and pooling layer in the conv sequence has the same number of
output channels, as specified in the output dimension in Table 4. The architecture of a Conv
Sequence is as follows:

There are two residual connections: one between layers 3 and 6, and another between layers 7 and
10.
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Layer # Layer Type Kernel Size Stride Padding

1 Conv 3 1 1
2 Max Pool 3 2 1
3 Relu
4 Conv 3 1 1
5 Relu
6 Conv 3 1 1
7 Relu
8 Conv 3 1 1
9 Relu
10 Conv 3 1 1

Table 4: Architecture of a Conv Sequence.
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G Visualizing Additional Tiers on Empty Grid

To aid the understanding of Tiered Reward, we provide below visualizations of Tiered Reward on a
grid world with different number of Tiers. In this grid world, the agent starts at the bottom right
corner, and the goal is the top left corner. We assign the tiers based on a state’s L1 distance to the
goal.

Figure 10: A visualization of Tiered Reward for 3 (top left), 5 (top right), 7 (bottom left), and
9 (bottom right) tiers on a grid world. Each color in the plot represents one single tiers, and the
numbers represent the tier number.
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H Scaled Tiered Reward for Different Tiers

We provide here the numerical values of the Tiered Reward after scaling it to be between [−1, 0].
This provides intuition on how using smaller discount values can reduce the numerical problems
during reward scaling because big values of γ (for example, γ = 0.99 or γ = 0.9) will make scaled
reward values numerically equal for different tiers, especially the higher tiers.

Tier γ = 0.99 γ = 0.5

Tiered
Reward

5 0 0
4 −5 −5
3 −505 −15
2 −50505 −35
1 −5050505 −75

Scaled
Tiered
Reward

5 0 0
4 −9.9 × 10−7 −0.06
3 −9.9 × 10−5 −0.2
2 −9 × 10−3 −0.4667
1 −1 −1

Table 5: Comparing scaled and unscaled reward values using a total of 5 tiers and delta = 5. Reward
values for two discount factors (γ) are provided.

tier γ = 0.99 γ = 0.5

Tiered
Reward

9 0 0
8 −5 −5
7 −505 −15
6 −50505 −35
5 −5050505 −75
4 −505050505 −155
3 −50505050505 −315
2 −5050505050505 −635
1 −505050505050505 −1275

Scaled
Tiered
Reward

9 0 0
8 −9 × 10−15 −0.0039
7 −9 × 10−13 −0.0118
6 −9 × 10−11 −0.2258
5 −9 × 10−9 −0.0588
4 −1 × 10−6 −0.1216
3 −9 × 10−5 −0.2471
2 −0.01 −0.4980
1 −1 −1

Table 6: Comparing scaled and unscaled reward values using a total of 9 tiers and delta = 5. Reward
values for two discount factors (γ) are provided.
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I Additional Figure: Pareto-optimal Rewards

Figure 11: 1000 policies that are induced by random reward functions that satisfy rlava < rback <
rgoal from the Russell/Norvig grid. Each point in the scatter plot represents one policy’s probability
of success (reaching the goal) and failure (reaching the lava), showing that the majority (90.5%) of
policies in the policy space are Pareto-dominated.


