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Abstract

Stochastic Approximation (SA) is a widely used algorithmic approach in various
fields, including optimization and reinforcement learning (RL). Among RL algo-
rithms, Q-learning is particularly popular due to its empirical success. In this paper,
we study asynchronous Q-learning with constant stepsize, which is commonly used
in practice for its fast convergence. By connecting the constant stepsize Q-learning
to a time-homogeneous Markov chain, we show the distributional convergence of
the iterates in Wasserstein distance and establish its exponential convergence rate.
We also establish a Central Limit Theory for Q-learning iterates, demonstrating
the asymptotic normality of the averaged iterates. Moreover, we provide an explicit
expansion of the asymptotic bias of the averaged iterate in stepsize. Specifically,
the bias is proportional to the stepsize up to higher-order terms, and we provide
an explicit expression for the linear coefficient. This precise characterization of the
bias allows the application of Richardson-Romberg (RR) extrapolation technique
to construct a new estimate that is provably closer to the optimal Q function. Nu-
merical results corroborate our theoretical finding on the improvement of the RR
extrapolation method.

1 Introduction

Stochastic Approximation (SA) is a fundamental algorithmic paradigm in various fields, including
machine learning, stochastic control and reinforcement learning (RL). SA uses recursive stochastic
updates to solve fixed-point equations. One prominent example is the stochastic gradient descent
(SGD) algorithm for optimizing an objective function (Lan, 2020). In RL, well-known algorithms
such as Q-learning and TD-learning can be viewed as SA algorithms for solving Bellman equations
(Bertsekas & Tsitsiklis, 1996). Classical SA theory suggests using diminishing stepsize, ensuring
asymptotic convergence to the desired solution (Borkar, 2008). However, SA with constant stepsize
is commonly used in practice due to its simplicity and faster convergence. In this case, SA iterates
can be viewed as a time-homogeneous Markov chain. Adopting this perspective, a growing line of
recent work establishes weak convergence of constant stepsize SA and characterizes the stationary
distribution (Durmus et al., 2021a; Huo et al., 2023; Dieuleveut et al., 2020; Yu et al., 2021).

In this paper, we investigate constant-stepsize Q-learning, which is an important instance of nons-
mooth SA with Markovian noise. Q-learning is a popular algorithm that has played a significant role
in the empirical success of RL (Mnih et al., 2015). It aims to learn the optimal action-value function
q∗ by iteratively updating the estimator qk from sample trajectories. Consequently, the iterations
inherently involve Markovian noise resulting from the sampling process of a Markov chain under
the behavior policy. Finite-time guarantees of Q-learning variants have been extensively studied
(Tsitsiklis, 1994; Szepesvári, 1997; Even-Dar et al., 2003; Chen et al., 2021; Li et al., 2020). These
non-asymptotic results provide upper bounds on either the mean squared error (MSE) E[∥qk −q∗∥2

∞
]

or high probability ℓ∞ error ∥qk − q∗∥∞ of the estimated Q-function qk.
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The main goal of this paper is to gain a more comprehensive understanding of the behavior of
constant-stepsize Q-learning and its error decomposition. In the discounted setting, Q-learning aims
to solve the fixed-point equation involving the Bellman operator, which is contractive in the nons-
mooth ℓ∞ norm. Hence Q-learning is an instance of SA with a nonsmooth operator and Markovian
noise. Recently, non-asymptotic analysis of Markovian SA has been gaining attention (Bhandari
et al., 2021; Srikant & Ying, 2019; Chen et al., 2020a; 2021; Huo et al., 2023). However, these
results either concern linear SA or provide upper bounds on the error.

In this work, we study Q-learning through Markov chain theory, which allows us to quantify the
fluctuations and bias of the iterates. Our results lead to a more precise characterization of the error
∥qk − q∗∥: the error is composed of a stochastic part qk − Eq

(α)
∞ and a deterministic part (bias)

Eq
(α)
∞ − q∗, where q

(α)
∞ denotes the limit random vector of the Q-learning iterate {qk} with stepsize

α. Our contributions are summarized as follows.

• (Weak Convergence) Viewing the joint process of the iterates {qk}k≥0 and data trajectory as a
time-homogeneous Markov chain, we establish its distributional convergence in W2, Wasserstein
distance of order 2. Moreover, {qk}k≥0 converges to a limit random vector q

(α)
∞ exponentially fast

due to the use of a constant stepsize α. We further prove a central limit theorem (CLT) for the
iterates {qk}k≥0, thus proving the asymptotic normality of the averaging iterates.

• (Bias Characterization) We provide an explicit expansion of the deterministic bias Eq
(α)
∞ − q∗

with respect to the stepsize α:
Eq(α)

∞ − q∗ = αB + Õ(α2)1,

where B is a vector independent of the stepsize α. Importantly, the leading term in bias scales
linearly with α. Consequently, one can use the Richardson-Romberg (RR) extrapolation technique
to reduce the bias and obtain an estimate closer to q∗ with order-wise smaller bias Õ(α2).

• For the stochastic part, E∥qk−Eq
(α)
∞ ∥2 ≍

∥∥Eqk − Eq
(α)
∞
∥∥2+Var (qk), we show that the optimization

error ∥Eqk − Eq
(α)
∞ ∥ decays exponentially in k. The convergence rate cannot be obtained from

the existing upper bound on E∥qk − q∗∥2 or ∥qk − q∗∥∞, which does not vanish as k → ∞. We
further show that the variance Var (qk) is of order O(1). By law of large numbers, one can use
Polyak-Ruppert averaging to achieve a variance of order O(1/k). Consequently, for large k, the
deviation between the averaged iterate and q∗ for large k is dominated by the deterministic bias.

Compared with prior work focusing on MSE guarantee, we establish the distributional convergence,
CLT and bias expansion of asynchronous Q-learning, which are completely new in this setting. On
the technical side, we emphasize that Markovian noise and nonsmoothness of Q-learning operator
bring additional challenges in showing weak convergence and bias characterization. The recent work
of Huo et al. (2023) establishes the weak convergence of linear SA with Markovian noise, by analyz-
ing the difference of two coupled iterates, which reduces to a special instance of linear SA. However,
this observation does not apply to Q-learning due to the nonsmooth/nonlinear dynamic. We note
that the very recent work by Lauand & Meyn (2023) studies nonlinear SA with Markovian noise,
and a similar challenge arises. To this end, we develop a novel technique to analyze the difference
of two coupled iterates; See Section 4.1 for a detailed discussion. For bias characterization, to deal
with the nonsmooth operator, we employ a local linearization of the operator in the neighborhood
of the optimal solution q∗. While local linearization has been explored in nonlinear SA literature,
they mainly consider the asymptotic regime with diminishing stepsizes (Lee & He, 2020; Li et al.,
2023b; Melo et al., 2008; Gopalan & Thoppe, 2023). We generalize this approach to characterize the
dependence on the constant stepsize. It is worth noting that while the linear approximation compo-
nent resembles similar behavior as linear SA (Huo et al., 2023), a precise characterization of the bias
requires a careful analysis of the linear approximation error to show a proper higher order of α. We
establish this result by analyzing the fourth moment of the iterates. Our techniques may be of inde-
pendent interest and have the potential to be applied to the analysis of other nonsmooth/nonlinear
SA algorithms.

1In this paper, Õ denotes the variant of big O that ignores logarithmic order.
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1.1 Related Work

We discuss closely related work and defer other related work to Section A in supplementary materials.

Q-learning. Recent work has been dedicated to understanding finite-time guarantees of Q-learning
variants, with two main types of results: high probability bounds and mean (square) error bounds.
For asynchronous Q-learning, as considered in this paper, Beck & Srikant (2012) provide the first
result on MSE with constant stepsize and Chen et al. (2021) improve the result by a |S||A| factor.
The work by Li et al. (2023a) presents the best known high probability sample complexity. It is
worth noting that these two types of bounds are not directly comparable, as discussed in Chen et al.
(2021). Importantly, existing results are achieved either by rescaled linear stepsize αk = a/(b + k)
(Qu & Wierman, 2020; Chen et al., 2021) or by a carefully chosen constant stepsize based on the
target accuracy (Chen et al., 2021; Li et al., 2023a). In contrast, we precisely characterize the
convergence rate and the bias induced by any constant-stepsize α in a given range. Our explicit
characterization enables the application of RR technique, leading to an estimate with reduced bias,
while simultaneously enjoying the exponential convergence of the optimization error.

Some recent work also studies Polyak-Ruppert averaged Q-learning. Xie & Zhang (2022) and Li et al.
(2023b) prove a functional CLT for synchronous Q-learning with constant stepsize and diminishing
stepsize, respectively. In this work, we focus on asynchronous Q-learning involving Markovian data.

Stochastic approximation. There is a growing interest in investigating general SA with constant
stepsize. Most work considers i.i.d. or martingale difference noise, and establishes finite-time guar-
antees for contractive/linear SA (Chen et al., 2020a; Mou et al., 2020; Durmus et al., 2021b) or
SGD (Dieuleveut et al., 2020; Yu et al., 2021). Recent work investigates SA with Markovian noise,
motivated by applications in RL (Srikant & Ying, 2019; Mou et al., 2021; Chen et al., 2022b).

Our results have some similarities to Dieuleveut et al. (2020, Proposition 2), Durmus et al. (2021b,
Theorem 3) and Huo et al. (2023), in that we also study instances of SA with constant stepsizes
through Markov chain theory. However, our setting is different from Dieuleveut et al. (2020); Durmus
et al. (2021b), where they assume i.i.d. data. While the work (Huo et al., 2023) also considers
Markovian noise, their focus is linear SA. In contrast, Q-learning involves nonsmooth update, which
brings additional challenges on the analysis of convergence and bias as discussed earlier.

2 Preliminaries

Consider a discounted Markov decision process (MDP) defined by the tuple (S, A, T, r, γ), where
S and A are the (finite) state space and action space, T : S × A → ∆(S) is the transition kernel,
r : S × A → [0, rmax] is the reward function, and γ ∈ (0, 1) is the discounted factor. At time
t ∈ {0, 1, . . . }, the system is in state st ∈ S; upon taking action at ∈ A, the system transits to
st+1 ∈ S with probability T (st+1|st, at) and generates a reward rt = r(st, at).

A stationary policy π : S → ∆(A) maps each state to a distribution over the actions. For each policy
π, the Q-function is defined as follows: ∀s ∈ S, ∀a ∈ A, qπ(s, a) = E

[∑∞
t=0 γtr(st, at)|s0 = s, a0 =

a
]
, where ak ∼ π(·|sk) for all k > 0. An optimal policy π∗ is the policy that maximizes qπ(s, a) for

all s ∈ S and a ∈ A simultaneously (Bertsekas, 2017). We denote the associated Q functions as
q∗ ≡ qπ∗ . Notably, given q∗, one can obtain the optimal policy π∗(s) ∈ arg maxa∈A Q∗(s, a).

Behavior policy. The goal of RL is to learn the optimal policy based on transition data from the
system with unknown model (T, r). In this paper, we consider the off-policy setting, where we have
access to a sample trajectory {sk, ak, rk}k≥0 generated by the MDP under a fixed behavior policy π̃.
Define X := S × A × S, and let xk = (sk, ak, sk+1). Note that when π̃ is stationary, {xk}k≥0 forms a
time-homogeneous Markov chain. We use P = (pij) to denote the corresponding transition matrix.

Assumption 1. {xk}k≥0 is an irreducible and aperiodic Markov chain on a finite state X with
stationary distribution µX . Also, the distribution of the initial state x0 is µX .
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Assumption 1 is equivalent to assuming that the Markov chain {sk, ak}k≥0 induced by the behavior
policy π̃ is uniformly ergodic with a unique stationary distribution µS (Chen et al., 2021). This
assumption is standard for analyzing off-policy Q-learning (Li et al., 2020; Qu & Wierman, 2020).
It implies that {xk}k≥0 mixes geometrically fast to the stationary distribution µX (Levin & Peres,
2017), and there exist c ≥ 0 and ρ ∈ (0, 1) s.t. max

x∈X
∥pk(x, ·) − µX (·)∥T V ≤ cρk, where pk(x, ·)

denotes the distribution of xk at time k given x0 = x.

To quantify how fast {xk}k≥0 mixes to a specified precision, we define the mixing time below.
Definition 1. ∀δ > 0, define the mixing time tδ := min{k ≥ 0 : maxx∈X ∥pk(x, ·) − µX (·)∥T V ≤ δ}.

Under Assumption 1, we have tα ≤ log(c/ρ)+log(1/α)
log(1/ρ) , which implies limα→0 αm1tαm2 = 0, ∀m1, m2 >

0. We assume that x0 ∼ µX to simplify some presentation. This assumption can be relaxed by
adapting our result after the Markov chain {xk}k≥0 has almost mixed. The same assumption is
considered in many previous works (Bhandari et al., 2021; Huo et al., 2023; Mou et al., 2021).

Q-learning. The Q-learning algorithm (Watkins & Dayan, 1992) is an iterative method for esti-
mating the function Q∗ based on the sample trajectory {sk, ak, rk}k≥0. It generates a sequence of
Q-function estimate {qk : S × A → R}k, according to the following recursion:

qk+1 = qk + αkF (xk, qk), (1)

where αk is the stepsize. Here the operator F : X × R|S∥A| 7→ R|S∥A|, known as empirical Bellman
operator, is defined as: ∀(s, a) ̸= (sk, ak), [F (x, q)](s, a) = 0; and

[F (x, q)](sk, ak) = r(sk, ak) + γ max
v

qk(sk+1, v) − qk(sk, ak).

In this paper, we focus on constant stepsize αk ≡ α > 0. We use superscript q
(α)
k to emphasize the

dependence on the stepsize α, but omit it when it is clear from the context.

We state some properties of Q-learning. (1) By the boundedness of reward, there exists a constant
qmax such that ∥qk∥∞ ≤ qmax, ∀k. (2) Denote the expected operator of F by F̄ (q) := Ex∼µX [F (x, q)].
It has been shown that F̄ (q) + q is a β-contraction mapping w.r.t. ∥ · ∥∞ (Chen et al., 2021), where
β = 1 − (1 − γ) min(s,a) µS(s, a). Recall that µS is the stationary distribution of Markov chain
{sk, ak}k≥0. By Assumption 1, min(s,a) µS(s, a) > 0, thus β < 1. (3) Crucially, the iterates {qk}
generated by Q-learning is not a Markov chain. On the other hand, we can see that the joint process
{xk, qk}k≥0 is a Markov chain on the state space X × R|S|×|A|.

Part of our results on Q-learning (cf. Theorem 3) requires the following assumption.
Assumption 2. The optimal policy π is unique. That is, ∃∆ > 0 such that for ∀s ∈ S, q∗(s, a∗

s) −
q∗(s, a) ≥ 2∆, ∀a ̸= a∗

s, where a∗
s := arg max

a
q∗(s, a) denotes the optimal action for each state s.

Similar conditions have been considered in prior work on the analysis of Q-learning variants (Devraj
& Meyn, 2017; Li et al., 2023b). Assumption 2 implies that the operator in (1) can be approximated
by local linearization around q∗ and high-order approximation error, which leads to our precise
characterization of the bias induced by constant stepsize.

3 Main Results

In this section, we present our main results. In Section 3.1, we show that joint data-iterates
{xk, qk}k≥0 converges to a unique limit distribution exponentially fast. We show a central limit
theorem (CLT) for the iterates {qk}k≥0 in Section 3.2. We then precisely characterize the relation-
ship between the limit and the stepsize in Section 3.3. Furthermore, we investigate the implications
of these results for Polyak-Ruppert averaging and Richardson-Romberg extrapolation in Section 3.4.



RLJ | RLC 2024

3.1 Stationary Distribution and Convergence Rate

Note that the Q-learning iterate {qk}k≥0 is not a Markov chain by itself, as its dynamic depends on
the Markovian data {xk}k≥0. To show the distributional convergence of {qk}k≥0, we consider the
joint process {xk, qk}k≥0, which can be cast as a time-homogeneous Markov chain. We will analyze
the convergence of this Markov chain using the Wasserstein 2-distance, which is defined as follows
for any distributions µ and ν in P2(Rd), the space of square-integrable distributions on Rd:

W2(µ, ν) = inf
ξ∈Π(µ,ν)

(∫
Rd

∥u − v∥2
∞ dξ(u, v)

)1/2
= inf

{(
E
[

∥θ − θ′∥2
∞
]) 1

2 : L(θ) = µ, L (θ′) = ν
}

,

where L(θ) denote the distribution of θ and Π(µ, ν) is the set of all joint distributions in P2(Rd ×Rd)
with marginal distributions µ and ν. To analyze the Markov chain {xk, qk}k≥0, we define the
extended Wasserstein 2-distance. Let d̄ ((x, θ), (x′, θ′)) :=

√
1 {x ̸= x′} + ∥θ − θ′∥2

∞, which defines
a metric on X × Rd. The extended Wasserstein 2-distance w.r.t. the metric d̄ is defined as follows:

W̄2(µ̄, ν̄) = inf
{(

E[d̄(z, z′)2]
)1/2 : L(z) = µ̄, L (z′) = ν̄

}
, ∀µ̄, ν̄ ∈ P2(X × Rd). (2)

We show that the Markov chain {xk, qk}k≥0 converges in W̄2 to a unique stationary distribution,
geometrically fast, as stated in the following Theorem.
Theorem 1 (Weak Convergence). Suppose that Assumption 1 holds, and the stepsize α for Q-
learning (1) satisfies αtα ≤ c0

(1−β)2

log(|S∥A|) for some constant c0.

1. Under all initial distribution of q0, the chain {xk, qk}k≥0 converges in W̄2 to a a unique limit
(x∞, q∞) ∼ µ̄. Moreover, we have Var(q∞) ≤ cQ

log(|S∥A|)
(1−β)2 αtα, where cQ = 912e (3∥q∗∥∞ + rmax) .

2. µ̄ is the unique stationary distribution of the Markov chain {xk, qk}k≥0.

3. Let µ := L(q∞) be the second marginal of µ̄. Let η = 1 − (1 − β) α/2. For all k ≥ tα, we have

W 2
2 (L(qk), µ) ≤ 24ηk−tα

(
E
[
∥q0∥2

∞
]

+ E
[
∥q∞∥2

∞
])

. (3)

Theorem 1 states that the Markov chain {xk, qk}k≥0 admits a unique stationary distribution. Recall
that under Assumption 1, for all m1, m2 > 0, we have limα→0 αm1tαm2 = 0. Therefore, there always
exists a sufficiently small stepsize α such that the condition in Theorem 1 holds.

We remark that the convergence results of Theorem 1 cannot be obtained from the existing error
bounds on Q-learning. For example, the sharpest high probability bound on ℓ∞ error scales as
∥qk − q∗∥∞ ≲ (1 − ρ)k∥q0 − q∗∥∞ + O(

√
α), where ρ ∈ (0, 1) (Li et al., 2020). Another type of upper

bound is on the MSE that scales as E[∥qk − q∗∥2
∞] ≲ (1 − (1 − β)α/2)k−tα∥q0 − q∗∥2

∞ + O(αtα)
(Chen et al., 2021). Both upper bounds imply that the sequence eventually falls in a neighbor of the
optimal solution q∗ and the initial condition is forgotten exponentially fast. However, these results
do not imply the distributional convergence of the sequence {qk}k≥0 or its convergence rate in the
W2 metric.

We would like to highlight the techniques employed to prove Theorem 1. A standard method to
prove the convergence of a Markov chain is to verify the irreducibility and the Lyapunov drift
condition (Meyn & Tweedie, 2009), as used in prior work on SA (Borkar et al., 2021) and SGD (Yu
et al., 2021). However, this method requires a strong condition on the randomness of the Markov
chain dynamics, which typically does not hold in Q-learning. Instead, we draw inspiration from
recent work on constant-stepsize SA (Dieuleveut et al., 2020; Huo et al., 2023), and prove weak
convergence by showing the convergence in W2 distance through coupling arguments. We remark
that the coupling argument in our proof is more involved due to the nonsmoothness of the update
operator F . We sketch the proof outline in Section 4.1 and defer the complete proof to Section B.

A direct consequence of the convergence in W2 metric is the convergence of the first two moments.
We can also obtain explicit convergence rates from Theorem 1, as detailed in the following corollary.
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Corollary 1. Under the setting of Theorem 1, for all k ≥ tα,

∥E[qk − q∞]∥2
∞ ≤ C ·

(
1 − (1 − β) α/2

)k−tα
,
∥∥E [qkq⊤

k

]
− E

[
q∞q⊤

∞
]∥∥

∞ ≤ C ′ ·
(
1 − (1 − β) α/2

) k−tα
2 ,

where C and C ′ are constants independent of α and k.

3.2 Central Limit Theorem

Building on the convergence result, we establish a CLT for {qk}k≥0. Here we define Sn =
∑n−1

k=0
(
qk −

E[q∞]
)

and Yn(t) = n− 1
2 S⌊nt⌋. Let D = D[0, 1] denote the Skorokhod space, which is a separable

and complete function space under some proper metrics (Prokhorov, 1956).
Theorem 2 (CLT). Under the setting of Theorem 1, Σ := limn→∞ n−1Eπ

(
SnS⊤

n

)
exists, and for

µ̄-almost every point (x0, q0), the sequence {Sn/
√

n}n≥0 converge in distribution to the Gaussian
distribution N (0, Σ). Furthermore, the process (Yn(t))0≤t≤1 converges weakly to

(
Σ

1
2 B(t)

)
0≤t≤1

on the Skorokhod space D[0, 1], where B = (B(t))t≥0 is the standard Brownian motion.

Theorem 2 states that the average of Q-learning iterates is asymptotically normally distributed
around the expected value of the unique stationary distribution. Establishing such a CLT is im-
portant for uncertainty quantification and statistical inference (Li et al., 2023b). A similar result
has been established for synchronous Q-learning with constant stepsize (Xie & Zhang, 2022), where
the data used in each iteration is independently generated. It is worth highlighting that one key
step in Xie & Zhang (2022) uses the Kantorovich–Rubinstein theorem (Edwards, 2011) defined on a
Wasserstein distance with single-step contraction. However, such result does not hold in our setting
due to Markovian data. To this end, we use the result in Theorem 1 and ergodicity of {xk}k≥0 to
establish CLT. The detailed proof is provided in Section C.

3.3 Bias Characterization

Under constant stepsize α, Theorem 1 asserts that the convergence of q
(α)
k to q

(α)
∞ , which is of

distribution µ. Therefore, the estimates q
(α)
k of Q-learning with constant stepsize do not converge

to a point, but oscillate around the mean E[q(α)
∞ ]. Here we would like to quantify the bias, i.e.,

the deviation of the mean E[q(α)
∞ ] from the optimal solution q∗. One of our main contributions is to

provide an explicit expansion of the bias E[q(α)
∞ ] − q∗ in the step-size α.

Theorem 3 (Bias Characterization). Suppose that Assumptions 1 and 2 hold and α ≤ α0 for some
α0. Then the following holds for a vector B = B(r, γ, P ) independent of α:

E [q∞] = q∗ + αB + O(α2 + α2t2
α2). (4)

Theorem 3 states that the asymptotic bias of Q-learning can be decomposed into a linear term and
a higher order term of α. We emphasize that our bias characterization of the linear dependence on
α is exact. As discussed in the previous subsection, existing results are typically in the form of an
upper bound on the bias. Specifically, the high probability upper bound on ℓ∞ error (Li et al., 2020)
implies a bias of O(

√
α). In contrast, our analysis reveals a refined result with αB + Õ(α2) bias.

One key step in the proof of Theorem 3 is to calculate E[F (x∞, q∞) | x∞ = i], ∀i ∈ X . For linear
SA, this step is straightforward. However, for asynchronous Q learning, the operator F is nonlinear
and not even smooth, making the analysis more complicated. In our proof, we develop a local
linearization method which can bridge the gap between nonlinear SA and linear SA. We outline the
proof of Theorem 3 in Section 4.2. The complete proof is provided in Section D.

We remark that the coefficient B of the linear term is independent of α. It depends only on the
underlying MDP and the behavior policy. One can find an explicit expression of B in the proof
(cf. Equation (31)). Importantly, for the special case where the associated data sequence {xk}k≥0 is
i.i.d., we have B = 0. However, the bias term O(α2 + α2t2

α2) still remains, due to the nonlinearity
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of the Q-learning operator. This should be contrasted with the LSA where the bias vanishes under
i.i.d. data (Huo et al., 2023). In general, the existence of bias implies that the mean of the sequence
{qk}k≥0 limit deviates from the optimal solution q∗. Therefore, averaging the iterates qk does not
eliminate the bias. However, thanks to the independence of B on α, we can leverage an extrapolation
technique to reduce the bias, as detailed in Section 3.4.

3.4 Polyak-Ruppert Tail Average and Richardson-Romberg Extrapolation

We now utilize the bias expansion result Theorem 3 to study the behavior of Q-learning when
combined with Polyak-Ruppert (PR) average and Richardson-Romberg extrapolation.

Polyak-Ruppert Averaging. The celebrated PR averaging procedure (Ruppert, 1988; Polyak
& Juditsky, 1992) can reduce the estimator variance and accelerate the convergence rate. Here we
consider the PR tail averaging (Jain et al., 2018), defined as follows with a burn-in period k0:

q̄k0,k := 1
k − k0

∑k−1

t=k0
qt, for k ≥ k0 + 1. (5)

The following corollary provides non-asymptotic results for the first and second moments of q̄k0,k.
Corollary 2. Under the setting of Theorem 3, the tail-averaged iterates (5) satisfy the following:
∀k > k0 ≥ tα2 :

E [q̄k0,k] − q∗ = αB + O(α2 + α2t2
α2) + O

( 1
α(k − k0) exp

(
− α(1 − β)k0

4
))

, (6)

E
[
∥q̄k0,k − q∗∥2] = α2B′ + O(α3 + α3t2

α2)︸ ︷︷ ︸
asymptotic squared bias

+ O
( 1

(k − k0)α

)
︸ ︷︷ ︸

variance

+ O
( 1

(k − k0)2α2 exp
(

− α(1 − β)k0

4
))

︸ ︷︷ ︸
optimization error

,

(7)

where B and B′ are independent of α.

The proof is provide in Section E. For simplicity, let us consider the case k0 = k/2 and discuss the
mean squared distance between the averaged-iterate q̄k/2,k and q∗. The MSE can be decomposed
into three parts: (1) the asymptotic squared bias term ∥E[q̄∞/2,∞ − q∗]∥2 is independent of k and
averaging; (2) the variance of q̄k/2,k scales as 1/k; (3) and the optimization error ∥E[q̄∞/2,∞−q̄k/2,k]∥2

decays to 0 geometrically fast. Importantly, the larger the stepsize α is, the faster the variance and
optimization error decay.

Richardson-Romberg Extrapolation. Given the explicit expansion of the bias in stepsize α
(cf. Theorem 3), we can leverage the RR extrapolation technique from numerical analysis (Gautschi,
2011) to reduce the bias. Specifically, consider running two Q-learning recursions using the same data
stream {xk}k≥0, but with different stepsizes α and 2α. Denote by q̄

(α)
k0,k and q̄

(2α)
k0,k the corresponding

tail-averaged iterates. The corresponding RR extrapolated iterates are given by

q̃
(α)
k0,k = 2q̄

(α)
k0,k − q̄

(2α)
k0,k . (8)

With k0, k → ∞, Theorems 1 and 3 imply that q̃
(α)
k0,k converges to 2q

(α)
∞ − q

(2α)
∞ , which has a bias

2Eq(α)
∞ − Eq(2α)

∞ − q∗ = 2
(
αB + O(α2 + α2t2

α2)
)

−
(
2αB + O(α2 + α2t2

α2)
)

= O(α2 + α2t2
α2).

Compared with q
(α)
∞ and q

(2α)
∞ , the extrapolated sequence reduces the bias by a factor of α. We

formally state the result in the following corollary, which quantifies the non-asymptotic behavior of
the first two moments of extrapolated sequence {q̃

(α)
k0,k}k≥0. The proof is provided in Section F.
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Corollary 3. Under the setting of Theorem 3, the RR extrapolated iterates (8) with stepsizes α and
2α satisfy the following for all k > k0 ≥ tα2 :

E
[
q̃

(α)
k0,k

]
− q∗ = O(α2 + α2t2

α2) + O
(

1
α(k − k0) exp

(
−α(1 − β)k0

4

))
, (9)

E
[
∥q̃

(α)
k0,k − q∗∥2] ∈ O

(
α4 + α4t4

α2

)
+ O

(
1

(k − k0)α

)
+ O

(
1

(k − k0)2α2 exp
(

−α(1 − β)k0

4

))
.

(10)

Let us compare the MSE bounds (7) on the PR-averaged iterates and the extrapolated iterates (10).
Note that the asymptotic squared bias is reduced from O(α2) to O(α4) by RR extrapolation! Mean-
while, RR extrapolation still enjoys similar decaying rates of variance and optimization error. We
remark that the RR procedure involves the computation of two parallel Q-learning iterates, using
either the same or different data sequences. This makes the RR procedure inherently parallelizable,
offering potential performance improvements when implemented on parallel computing architectures.

4 Proof Outlines

4.1 Proof Outline for Theorem 1 on Weak Convergence

Here we outline the proof of the existence of the limit distribution, which is the most challenging part.
Note that the space P(X ×R|S|×|A|) endowed with our extended Wasserstein 2-distance W̄2 is a Polish
space (Villani et al., 2009, Theorem 6.18). We will show that

∑∞
k=0 W̄ 2

2 (L (xk, qk) , L (xk+1, qk+1)) <
∞, thus the sequence {xk, qk}k≥0 forms a Cauchy sequence. This result implies the existence of the
limit distribution, by the fact that all Cauchy sequences converge in a Polish space.

The key step involves coupling through the construction of two Markov chains, {x
[1]
k , q

[1]
k }k≥0 and

{x
[2]
k , q

[2]
k }k≥0, which share the same underlying data stream {x

[1]
k }k≥0 = {x

[2]
k }k≥0 = {xk}k≥0. We

observe that the iterates difference wk := q
[1]
k − q

[2]
k exhibits the following double-recursion that in-

volves both wk and q
[1]
k : wk+1(sk, ak) = (1−α)wk(sk, ak)+αγ

(
max

a
q

[1]
k (sk+1, a)−max

a
q

[2]
k (sk+1, a)

)
.

Proposition 1. Under the setting of Theorem 1, the following bound holds with η = 1− (1−β)α/2:

E
[

∥wk∥2
∞
]

≤ 12E
[
∥w0∥2

∞
]

ηk−tα , ∀k ≥ tα.

For linear SA (Huo et al., 2023), the iterates difference wk is a single-recursion that only involves
wk, which reduces to a special case of linear SA. In constrast, the nonsmoothness of Q-learning leads
to the double recursion of wt, which brings an additional challenge in analyzing the convergence of
wt. Our key idea for proving Proposition 1 is to exploit the fact that the difference between two
max operators can be lower bounded by the minimum of the difference, and upper bounded by the
maximum of the difference. We thus construct two new sequences that serve as lower and upper
bounds on {wk}k≥0, and prove that both sequences decay geometrically fast to 0, which immediately
implies a geometric decay of {wk}k≥0. Next, by carefully choosing the initial distribution of q

[2]
0 ,

we can ensure that (xk, q
[2]
k ) d= (xk+1, q

[1]
k+1). Consequently, W̄ 2

2
(
L
(
xk, qk

)
, L
(
xk+1, qk+1

))
→ 0

geometrically fast, which allows us to show
∑∞

k=0 W̄ 2
2
(
L
(
xk, qk

)
, L
(
xk+1, qk+1

))
< ∞.

4.2 Proof Outline for Theorem 3 on Bias Expansion

A crucial technique employed in the proof of Theorem 3 is the linearization of the non-smooth
operator F (x, q). Specifically, for a fixed x, we linearize F (x, q) around the optimal solution q∗

according to the following proposition.
Proposition 2. There exists a function Gq∗ : X 7→ R|S∥A|×|S∥A| s.t. for any (x, q) ∈ X × R|S∥A|,

F (x, q) = F (x, q∗) + (Gq∗(x) − Id)(q − q∗) + R(x, q), (11)
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where d = |S∥A|, ∥R(x, q)∥∞ = O
(
∥q − q∗∥4

∞
)

, and Ex∼µX [Gq∗(x)] does not have eigenvalue of 1.

We next provide a finite-time upper bound on the fourth moment of the error, which shows that
the remaining term R(x, q) in Proposition 2 is of a higher order of α. We remark that existing
non-asymptotic results for Q-learning are limited to the first moment and second moment of the
error.
Proposition 3. Suppose that Assumption 1 holds and α ∈ (0, α0) for some α0. Then

E[∥qk − q∗∥4
∞] ≤ b1(1 − α(1 − γ)2)k−tα2 + b2α2 + b3α2t2

α2 , ∀k ≥ tα2 , (12)

where b1, b2 and b3 are constants independent of α.

To deal with the nonsmooth ℓ∞ norm, we consider a Generalized Moreau Envelope M(·), which has
been used to analyze MSE ∥·∥2

∞ (Chen et al., 2021). We derive the bound for M(·)2, which provides
a bound for ∥ · ∥4

∞. We defer the complete proof of Proposition 2 and 3 to Section D.1.

Note that the first term on RHS of (12) decays geometrically in k, whereas the remaining two
terms are independent of k. Consequently, as k → ∞, the upper bound is of order O

(
α2 + α2t2

α2

)
.

Therefore, the RHS of equation (11) can be viewed as a combination of a linear operator and a
high-order remaining term R(x, q) of order O

(
α2 + α2t2

α2

)
. We then can analyze the dynamic of

{xk, qk}k≥0 as a combination of linear SA with a remaining term.

5 Numerical Experiments

We consider two MDPs: the first example is a 1 × 3 Gridword with two actions (left/right); the
second one is a classical 4 × 4 Gridworld with the slippery mechanism in Frozen-Lake, and four
actions (left/up/right/down). For both MDPs, the discounted factor is γ = 0.9 and the Markovian
data {xk}k≥0 is generated from a uniformly random behavior policy. We defer details of the reward
function and the transition kernel for the MDPs to Section G.

We run Q-learning with constant stepsize α ∈ {0.1, 0.2, 0.4}. We also consider two commonly used
diminishing stepsizes: a rescaled linear stepsize αk = 1/

(
1 + (1 − γ)k

)
(Qu & Wierman, 2020; Chen

et al., 2020b) and a polynomial stepsize αk = 1/k0.75. The results are illustrated in Figure 1(a) and
1(b). We plot the ℓ1-norm error ∥q̄

(α)
k/2,k − q∗∥1 for the tail-averaged (TA) iterates q̄

(α)
k/2,k, the RR

extrapolated iterates q̃
(α)
k with stepsizes α and 2α, and iterates with diminishing stepsizes.

(a) 1 × 3 Gridworld. (b) 4 × 4 Gridworld.

Figure 1: Errors of tail-averaged (TA) iterates and RR extrapolated iterates with different stepsizes.

We first observe that the larger the stepsize α, the faster it converges, as implied by Corollary 2. We
note that the final TA error, which corresponds to the asymptotic bias, is approximately proportional
to the stepsize, as indicated by the roughly equal space between three TA lines in the log-scale
plots. Moreover, RR extrapolated iterates reduce the bias, which can be observed by comparing,
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e.g, the solid orange line (TA with α = 0.2) and the dotted red line (RR with α = 0.2 and 0.4).
These results are consistent with Corollary 3. Furthermore, the TA and RR-extrapolated iterates
with constant stepsizes enjoy significantly faster initial convergence than those with diminishing
stepsizes. A general choice of diminishing stepsize is of the form αk = a/(b + kc), where a, b and c
are hyperparameters. Tuning the best hyperparameters for diminishing stepsize is generally more
challenging than a single parameter for constant stepsize.

We also perform experiments on MDPs with linear function approximation. We observe similar
behaviors of TA iterates and RR extrapolated iterates as in the tabular case; see Section G for
details.

Our next set of experiments demonstrates the asympotitic normality of Q-learning averaging iterates.
We consider different initializations q0, different number of iterations n and different stepsizes α = 0.4
and α′ = 0.2. We plot the density of n−1/2Sn(ϕ) = n−1/2∑n

k=1 ϕ(qk) with the test function
ϕ(qk) = ∥qk − q∗∥∞ for 1000 Monte Carlo runs. Figures (2(a),2(d)) show the effect of different
initializations (blue, orange) on the normality after a moderate number of iterations n = 2×103. We
observe that the impact of initialization becomes negligible in the long run from Figures (2(b),2(e)),
and the distribution is approximately Gaussian. Lastly, Figures (2(c),2(f)) show the impact of
stepsize on the normality. In particular, a larger stepsize α (blue) induces a larger mean. These
observations are consistent with our Theorems 2 and 3.

(a) (b) (c)

(d) (e) (f)

Figure 2: First and second rows correspond to 1 × 3 Gridword and 4 × 4 Gridworld, respectively.
Figures (2(a), 2(d)) and (2(b), 2(e)) show the density of n− 1

2 Sn(ϕ) with different initializations for
different number of iterations. Figure (2(c), 2(f)) show the density with different stepsizes.

6 Conclusions

In this work, we provide a comprehensive study of asynchronous Q-learning with constant stepsizes,
through the framework of Markov chain theory. We establish the distributional convergence of
the iterates, characterize the convergence rate, and prove a central limit theorem for the averaged
iterates. Our convergence results lead to a refined characterization of the error. In particular, the
explicit expansion of the asymptotic bias w.r.t. stepsize α allows one to use the RR extrapolation
for bias reduction. There are several interesting directions one can take to extend our work. First,
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our CLT, together with our bias characterization and the Richardson-Romberg de-biasing scheme,
allow one to create confidence intervals for the output of the Q-learning algorithms. Second, our
current results require the assumption of local linearity in the neighborhood of the optimal solution.
Extending our analysis without this assumption is a direction worth pursuing.
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A Additional Related Work

Q-learning. An increasing volume of recent work has been dedicated to understanding finite-time
guarantees of Q-learning variants. There are two types of results on the error of the estimate qk:
high probability bounds and mean (square) error bounds. For classical asynchronous Q-learning,
as considered in this paper, Beck & Srikant (2012) provide the first result on MSE with constant
stepsize and Chen et al. (2021) improve the result by at least a |S||A| factor. The work by Li et al.
(2023a) presents the best known high probability sample complexity. It is worth noting that these
two types of bounds are not directly comparable, as discussed in Chen et al. (2021). Importantly,
these results are achieved either by rescaled linear stepsize αk = a/(b + k) (Qu & Wierman, 2020;
Chen et al., 2021) or by a carefully chosen constant stepsize based on the target accuracy (Chen
et al., 2021; Li et al., 2023a; Bravo & Cominetti, 2024). Contrasting with these findings, our results
provide a precise characterization of the convergence rate as well as the bias induced by any constant-
stepsize α in a given range. Our explicit characterization enables the application of RR technique,
leading to an estimate with reduced bias, while simultaneously enjoying the exponential convergence
of the optimization error.

Some recent work also studies Polyak-Ruppert averaged Q-learning. Xie & Zhang (2022) and Li et al.
(2023b) prove a functional central limit theorem for the averaged iterates of synchronous Q-learning
with constant stepsize and diminishing stepsize, respectively. In contrast, we focus on asynchronous
Q-learning involving Markovian data.

Stochastic approximation. There is a growing interest in investigating general SA with constant
stepsize. Most work along this line considers i.i.d. or martingale difference noise, and establishes
finite-time guarantees for contractive/linear SA (Chen et al., 2020a; Mou et al., 2020; Durmus et al.,
2021b) or SGD (Dieuleveut et al., 2020; Yu et al., 2021). Recent work investigates constant-stepsize
SA with Markovian noise, motivated by applications in RL. For linear SA, the work by Srikant &
Ying (2019) provides finite-time upper bounds on the MSE. Mou et al. (2021) study LSA with PR
averaging and presents instance-dependent MSE upper bounds with tight dimension dependence.
The work by Durmus et al. (2021c) shows a finite-time upper bound for the p-th of LSA iterate
on general state space. The paper Lauand & Meyn (2022) shows that LSA with Markovian noise
admits a biass that can not be eliminated by averaging. The work Huo et al. (2023) establishes
the distributional convergence of LSA iterates, and provides an explicit asymptotic expansion of the
bias in stepsize. Going beyond LSA, the work Chen et al. (2022b) considers contractive SA under a
strong monotone condition and provides finite-time upper bound on the MSE.

Our results have some similarities to Dieuleveut et al. (2020, Proposition 2), Durmus et al. (2021b,
Theorem 3) and Huo et al. (2023), in that we also study instances of SA with constant stepsizes
through Markov chain theory. However, our setting is different from Durmus et al. (2021b, Theorem
3) as the sampling process in RL naturally induces Markovian noise, whereas they consider i.i.d.
data. While the work Huo et al. (2023) also considers Markovian noise, their focus is on linear SA. In
contrast, Q-learning involves nonsmooth update, which brings additional challenges on the analysis
of convergence and bias. In particular, for convergence proof, the difference between two coupled
LSA iterates can be reformulated as an LSA; however, this is not the case for Q-learning, which
requires a novel analysis for the coupled iterates. For the bias analysis, we employ a local linearization
method to decompose the Q-learning operator into a linear term and a remaining approximation
term. While the technique for LSA (Huo et al., 2023) can be used to analyse the linear part, it is
highly nontrivial to show the remaining term is of higher order dependence on α. We establish this
result by analyzing the fourth moment of the iterates. Our techniques may be of independent interest
and have the potential to be applied to the analysis of other nonsmooth/nonlinear SA algorithms.

Q-learning Earlier work established the asymptotic convergence of Q-learning algorithm with
diminishing stepsize (Tsitsiklis, 1994; Szepesvári, 1997). Over the past few years, an increasing
volume of work has been dedicated to understanding finite-time guarantees of Q-learning in various
scenarios. from tabular setting (Beck & Srikant, 2012; Chen et al., 2021; Qu & Wierman, 2020;
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Wainwright, 2019a; Li et al., 2023a) to function approximation (Chen et al., 2022b; Xu & Gu, 2020;
Du et al., 2020; Cai et al., 2019). In this paper we focus on the classical asynchrounous Q-learning.
There is another variant of Q-learning that concerns an synchronous setting, where all state-action
pairs are updated simultaneously at each step. This setting requires access to a simulator, which
generates independent samples for each state-action pair. For synchronous Q-learning, the best-
known sample complexity for mean error bound is Õ(SA(1 − γ)−5ϵ−2) (Wainwright, 2019a; Chen
et al., 2020b). The paper Li et al. (2021) provides the state-of-art high probability sample complexity
Õ( SA

(1−γ)4ϵ2 ). In this paper, we focus on the classical asynchronous Q-learning which updates only a
single state-action pair upon each observation. The Markovian noise inherited in the asynchronous
model makes it considerably more challenging to analyze than the synchronous case.

We also note that there are other lines of work focusing on Q-learning variants that aim to accelerate
convergence and improve sample complexity, such as variance-reduced Q-learning (Li et al., 2020;
Wainwright, 2019b; Sidford et al., 2018), speedy Q-learning (Azar et al., 2011) and double Q-
learning (Weng et al., 2020). Another direction considers Q-learning with sophisticated exploration
strategies, with an emphasis on regret bound (Jin et al., 2018; Bai et al., 2019). Regret is a metric
fundamentally different from finite-sample bounds, and techniques for these two types of guarantees
are quite different. A comparison with these results is beyond the scope of this paper.

Stochastic approximation. There is a rich literature on the study of SA. Classical SA theory
mainly focuses on the asymptotic convergence (Kushner & Yin, 2003; Borkar, 2008; Borkar & Meyn,
2000; Blum, 1954), typically assuming a diminishing stepsize sequence. More recent studies have
shifted the focus to non-asymptotic results. In particular, there is a growing interest in investigating
general SA and SGD algorithms with constant stepsize. Most work along this line considers SA or
SGD with i.i.d. or martingale difference noise, and establishes finite-time bounds. The paper Chen
et al. (2020a) considers contractive SA and presents an upper bounds on the MSE. Lakshminarayanan
& Szepesvári (2018) analyzes linear SA (LSA) and establishes finite-time upper and lower bounds
on the MSE. The work Mou et al. (2020) refines these results, providing tight bounds with the
optimal dependence on problem-specific constants as well as a central limit theorem (CLT) for the
averaged iterates. There are also some recent studies developing new bounds on random matrix
products to analyze LSA: Durmus et al. (2021b) establishes tight concentration bounds of LSA, and
Durmus et al. (2022) extends these bounds to LSA with iterate averaging. In the context of SGD,
the work in Dieuleveut et al. (2020) considers strongly convex and smooth functions. They prove
that the iterates converge to a unique stationary distribution by Markov chain theory. Subsequent
work generalizes this result to non-convex and non-smooth functions with quadratic growth (Yu
et al., 2021), and proves asymptotic normality of the averaged SGD iterates. The work Chen et al.
(2022a) exams the limit of the stationary distribution as stepsize goes to zero. All these results are
established under the i.i.d. noise setting. Additionally, Bianchi et al. (2022) explores SGD for non-
smooth non-convex functions with martingale difference noise, and establishes the weak convergence
of the iterates to the set of critical points of the objective function.

B Proof of Theorem 1

In this section, we provide the proof of Theorem 1. The first part of the proof, Section B.1, involves
coupling through the construction of two iterates of Q-learning. Using the result of this step, we
then establish the existence and uniqueness of the stationary distribution for the joint Markov chain
(xk, qk)k≥0 (part 1 and 2 of Theorem 1) in Section B.2. We prove the convergence rate (part 3 of
Theorem 1) in Section B.3.
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B.1 Coupling and Geometric Convergence

We construct a pair of coupled Markov chains, (xk, q
[1]
k )k≥0 and (xk, q

[2]
k )k≥0, defined as

q
[1]
k+1(sk, ak) = q

[1]
k (sk, ak) + α

(
r(sk, ak) + γ max

a
q

[1]
k (sk+1, a) − q

[1]
k (sk, ak)

)
,

q
[2]
k+1(sk, ak) = q

[2]
k (sk, ak) + α

(
r(sk, ak) + γ max

a
q

[2]
k (sk+1, a) − q

[2]
k (sk, ak)

)
.

(13)

Here (q[1]
k )k≥0 and (q[2]

k )k≥0 are two iterates generated by the Q-learning algorithm, coupled by
sharing the underlying data stream (xk)k≥0. We assume that the initial iterates q

[1]
0 and q

[2]
0 may

depend on each other and on x0, but are independent of (xk)k≥1 given x0.

Define the iterates difference as wk := q
[1]
k − q

[2]
k . Note that the dynamic for {wk}k≥0 can be

formulated as follows:

wk+1(sk, ak) = (1 − α)wk(sk, ak) + αγ
(

max
a

q
[1]
k (sk+1, a) − max

a
q

[2]
k (sk+1, a)

)
.

We can exploit the dynamic of {wk}k≥0 to establish its convergence rate, as stated in Proposition 1.
The proof of Proposition 1 is deferred to Section B.4.

When αtα ≤ c0
(1−β)2

log(|S∥A|) , we can apply Proposition 1 to bound the square of W2 distance between
q

[1]
k and q

[2]
k as follows: for all k ≥ tα,

W 2
2

(
L
(

q
[1]
k

)
, L
(

q
[2]
k

)) (i)
≤ W̄ 2

2

(
L
(

xk, q
[1]
k

)
, L
(

xk, q
[2]
k

))
(ii)
≤ E

[∥∥∥q
[1]
k − q

[2]
k

∥∥∥2

∞

]
= E

[
∥wk∥2

∞

]
(iii)
≤ 12E

[
∥w0∥2

∞
](

1 − (1 − β) α

2

)k−tα

,

(14)

where the inequality (i) follows from the definition of W2 and W̄2; the inequality (ii) holds as the W̄2
is defined by an infimum as in equation (2); the inequality (iii) follows from applying Proposition 1.

Therefore, W 2
2

(
L
(

q
[1]
k

)
, L
(

q
[2]
k

))
decays geometrically. We will use this result in the next sub-

section to prove that (xk, qk)k≥0 converges to a unique stationary distribution.

B.2 Existence and Uniqueness of Stationary Distribution

Additional Notations. Throughout the proof, we denote the discrete metric d0(x′
0, x0) := 1{x′

0 ̸=
x0}, which is used in the definition of extended Wasserstein distance (2). Part of our analysis uses
the reversed Markov chains. An implication of Assumption 1 is that the chain {xk}k≥0 running
backward in time is also a Markov chain (Norris, 1998), with transition kernel P̂ = (p̂ij) given by
µX (j)p̂ji = µX (i)pij .

Note that equation (14) always holds for any joint distribution of initial iterates (x0, q
[1]
0 , q

[2]
0 ). After

fixing an arbitrarily chosen distribution of (x0, q
[1]
0 ), we need to carefully choose the conditional

distribution of q
[2]
0 to ensure that (xk, q

[2]
k ) d= (xk+1, q

[1]
k+1) holds for all k ≥ 0, where d= denotes

equality in distribution. Recall that P̂ represents the transition kernel for the time-reversed Markov
chain of (xk)k≥0, and the initial distribution of x0 is assumed to be mixed already. Given a specific
x0, we sample x−1 from P̂ (· | x0). Additionally, we use q

[2]
−1 to denote a random variable that satisfies
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q
[2]
−1

d= q
[1]
0 and is independent of (xk)k≥0. Finally, we set q

[2]
0 as

q
[2]
0 = q

[2]
−1 + αF (x−1, q

[2]
−1). (15)

By the property of time-reversed Markov chains, we have (xk)k≥−1
d= (xk)k≥0. Given that q

[2]
−1

d= q
[1]
0

and q
[2]
−1 is independent with (xk)k≥−1, we can prove (xk, q

[2]
k ) d= (xk+1, q

[1]
k+1) for all k ≥ 0 by

comparing the dynamic of (q[1]
k )k≥0 and (q[2]

k )k≥0 as given in equations (13) and (15).

We thus have for all k ≥ tα:

W̄ 2
2

(
L
(

xk, q
[1]
k

)
, L
(

xk+1, q
[1]
k+1

))
= W̄ 2

2

(
L
(

xk, q
[1]
k

)
, L
(

xk, q
[2]
k

))
≤ 12E

[
∥w0∥2

∞
](

1 − (1 − β) α

2

)k−tα

,

where the second inequality follows from equation (14). It follows that
∞∑

k=0
W̄ 2

2

(
L
(

xk, q
[1]
k

)
, L
(

xk+1, q
[1]
k+1

))
≤

tα−1∑
k=0

W̄ 2
2

(
L
(

xk, q
[1]
k

)
, L
(

xk+1, q
[1]
k+1

))
+ 12E

[
∥w0∥2

∞
] ∞∑

k=0

(
1 − (1 − β) α

2

)k

<∞,

where the last step holds since (1−β)α
2 ∈ (0, 1). Consequently, (L(xk, q

[1]
k ))k≥0 forms a Cauchy se-

quence with respect to the metric W̄2. Since the space P2(X × Rd) endowed with W̄2 is a Polish
space, every Cauchy sequence converges (Villani et al., 2009, Theorem 6.18). Furthermore, conver-
gence in Wasserstein 2-distance also implies weak convergence (Villani et al., 2009, Theorem 6.9).
Therefore, we conclude that the sequence (L(xk, q

[1]
k ))k≥0 converges weakly to a limit distribution

µ̄ ∈ P2(X × Rd).

Next, we show that µ̄ is independent of the initial iterate distribution of q
[1]
0 , when x0 is initialized

from its unique stationary distribution µX . Suppose there exists another sequence (xk, q̃
[1]
k )k≥0 with

a different initial distribution that converges to a limit µ̃. By triangle inequality, we have

W̄2(µ̄, µ̃) ≤ W̄2

(
µ̄, L

(
xk, q

[1]
k

))
+ W̄2

(
L
(

xk, q
[1]
k

)
, L
(

xk, q̃
[1]
k

))
+ W̄2

(
L
(

xk, q̃
[1]
k

)
, µ̃
)

k→∞−→ 0.

Note that the last step holds since W̄2

(
L
(

xk, q
[1]
k

)
, L
(

xk, q̃
[1]
k

))
k→∞−→ 0 by equation (14). We thus

have W̄2(µ̄, µ̃) = 0, which implies the uniqueness of the limit µ̄.

Moreover, we will show that the unique limit distribution µ is also a stationary distribution for the
Markov chain (xk, qk)k≥0, as stated in the following lemma.
Lemma 1. Let (xk, qk)k≥0 and (x′

k, q′
k)k≥0 be two trajectories of Q-learning iterates, where

L (x0, q0) = µ̄ and L(x′
0, q′

0) ∈ P2(X × Rd) is arbitrary. Under Assumption 1 we have

W̄ 2
2 (L (x1, q1) , L(x′

1, q′
1)) ≤ ρW̄ 2

2 (L (x0, q0) , L(x′
0, q′

0)) ,

where the quantity ρ := max
(
1 + 2(αRmax + αγqmax)2, 2(1 + αγ)2) is independent of L(x′

0, q′
0). In

particular, for any k ≥ 0, if we set L(x′
0, q′

0) = L(xk, qk), then

W̄ 2
2 (L (x1, q1) , L(xk+1, qk+1)) ≤ ρW̄ 2

2 (µ̄, L(xk, qk)) .

Proof of Lemma 1. We prove this lemma by coupling the two processes (xk, qk)k≥0 and (x′
k, q′

k)k≥0
such that

W̄ 2
2 (L (x0, q0) , L(x′

0, q′
0)) = E

[
d0(x0, x′

0) + ∥q0 − q′
0∥2

∞
]

and
xk+1 = x′

k+1 if xk = x′
k, ∀k ≥ 0.
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Since W̄2 is defined by infimum over all couplings, we have

W̄ 2
2 (L (x1, q1) , L(x′

1, q′
1)) ≤ E

[
d0(x1, x′

1) + ∥q1 − q′
1∥2

∞
]

.

We denote by e(s,a) ∈ R|S∥A| the one-hot vector with only one “1” in the location of (s, a). We have

∥q1 − q′
1∥∞ = ∥q0 − q′

0 − αe(s0,a0)q0(s0, a0) + αe(s′
0,a′

0)q
′
0(s′

0, a′
0)

+ αe(s0,a0)r(s0, a0) − αe(s′
0,a′

0)r(s′
0, a′

0)
+ αγe(s0,a0) max

a
q0(s1, a) − αγe(s′

0,a′
0) max

a
q′

0(s′
1, a)∥∞

≤ ∥q0 − q′
0 − αe(s0,a0)q0(s0, a0) + αe(s′

0,a′
0)q

′
0(s′

0, a′
0)∥∞

+ α∥e(s0,a0)r(s0, a0) − e(s′
0,a′

0)r(s′
0, a′

0)∥∞

+ αγ∥e(s0,a0) max
a

q0(s1, a) − e(s′
0,a′

0) max
a

q′
0(s′

1, a)∥∞

≤ ∥q0 − q′
0∥∞ + αd0(x′

0, x0)qmax + αrmaxd0(x′
0, x0) + αγ∥q0 − q′

0∥∞ + αγqmaxd0(x′
0, x0)

= (1 + αγ)∥q0 − q′
0∥∞ + (αrmax + α(γ + 1)qmax)d0(x′

0, x0).

Therefore, we obtain

E
[
d0(x1, x′

1) + ∥q1 − q′
1∥2

∞
]

= E [d0(x1, x′
1)] + E

[
∥q1 − q′

1∥2
∞
]

≤ E [d0(x0, x′
0)] + 2(1 + αγ)2E

[
∥q0 − q′

0∥2
∞
]

+ 2(αrmax + α(γ + 1)qmax)2E [d0(x0, x′
0)]

≤ ρW̄ 2
2 (L (x0, q0) , L(x′

0, q′
0)) ,

with ρ = max
(
1 + 2(αrmax + α(γ + 1)qmax)2, 2(1 + αγ)2) .

By the triangle inequality of extended Wasserstein 2-distance, we obtain

W̄2 (L (x1, q1) , µ̄) ≤ W̄2 (L (x1, q1) , L (xk+1, qk+1)) + W̄2 (L (xk+1, qk+1) , µ̄)
≤ ρW̄ 2

2 (µ̄, L(xk, qk)) + W̄2 (L (xk+1, qk+1) , µ̄)
k→∞−→ 0,

(16)

where the second inequality holds by Lemma 1 and last step comes from the weak convergence
result. Therefore, we have proved that (xk, qk)k≥0 converge to a unique stationary distribution µ̄.

Next, we provide the mean squared error (MSE) bound for Q-learning algorithm by restating a
variant of Theorem 3.1 in Chen et al. (2021) as follows without the assumption that rmax ≤ 1, which
can be proved by Theorem 2.1 and 3.1 in Chen et al. (2021).

Proposition 4. Under Assumption 1, and αtα ≤ c0
(1−β)2

log(|S∥A|) (c0 is a constant), for all k ≥ tα, we
obtain

E
[
∥qk − q∗∥2

∞

]
≤ cQ,1

(
1 − (1 − β) α

2

)k−tα

+ cQ
log(|S∥A|)
(1 − β)2 αtα, (17)

where cQ,1 = 3
(
∥q0 − q∗∥∞ + ∥q0∥∞ + rmax

3
)2 and cQ = 912e (3∥q∗∥∞ + rmax) .

Here, c0 is the same constant as cQ,0 appearing in Theorem 3.1 in Chen et al. (2021). We remark
that under a constant stepsize, the MSE can be upper bounded by one geometrically decaying term
and one bias term that cannot be eliminated as k → ∞; in contrast, using diminishing stepsize
αk ∝ 1

k can ensure that the MSE decays to zero, but the decaying rate is linear (Chen et al., 2021).

Finally, we establish the following lemma to bound the variance of the limit random vector q∞,
Var (q∞).
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Lemma 2. Under Assumption 1, and αtα ≤ c0
(1−β)2

log(|S∥A|) (c0 is a constant), we obtain

Var (q∞) ≤ cQ
log(|S∥A|)
(1 − β)2 αtα

and
(E[∥q∞∥∞])2 ≤ E[∥q∞∥2

∞] ≤ 2cQc0 + 2∥q∗∥2,

where cQ = 912e (3∥q∗∥∞ + rmax) .

Proof for Lemma 2. We have shown that the sequence (qk)k≥0 converges weakly to q∞ in P2(Rd).
It is well known that weak convergence in P2(Rd) is equivalent to convergence in distribution and
the convergence of the first two moments. As a result, we have

E
[
∥q∞ − q∗∥2

∞
]

= lim
k→∞

E
[
∥qk − q∗∥2

∞
]

. (18)

Taking k → ∞ on the both sides of equation (17) and combining with equation 18 yields

E[∥q∞ − q∗∥2
∞] ≤ cQ

log(|S∥A|)
(1 − β)2 αtα.

Note that q∗ is a deterministic quantity. We thus have

Var (q∞)
(i)
≤ max

s,a
Var (q∞(s, a)) ≤ E[∥q∞ − q∗∥2

∞] ≤ cQ
log(|S∥A|)
(1 − β)2 αtα,

where the inequality (i) means an upper bound on elementwise ℓ∞ norm for the covariance matrix
Var (q∞).

In addition, we have
(E[∥q∞∥∞])2 ≤ E[∥q∞∥2

∞]
≤ E[(∥q∞ − q∗∥∞ + ∥q∗∥∞)2]
≤ 2E(∥q∞ − q∗∥2

∞) + 2∥q∗∥2
∞

≤ 2cQ
log(|S∥A|)
(1 − β)2 αtα + 2∥q∗∥2

∞

≤ 2cQc0 + 2∥q∗∥2
∞.

Therefore, we have proved parts 1 and 2 of Theorem 1.

B.3 Convergence Rate

So far we have established that the Markov chain (xk, qk)k≥0 converges to a unique stationary
distribution µ̄ ∈ P2(X ×R|S||A|). As a result, (qk)k≥0 converges weakly to µ ∈ P2(R|S||A|), where µ
is the second marginal of µ̄ over R|S||A|. We next focus on the convergence rate of (qk)k≥0.

Let us consider the coupled processes defined as equation (13) in Section B.1. Suppose that the
initial iterate (x0, q

[2]
0 ) follows the stationary distribution µ̄, thus L(xk, q

[2]
k ) = µ̄ and L(q[2]

k ) = µ for
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all k ≥ 0. By equation (14), we have for all k ≥ 0 :

W 2
2

(
L(q[1]

k ), µ
)

= W 2
2

(
L(q[1]

k ), L(q[2]
k )
)

≤ W̄ 2
2

(
L(xk, q

[1]
k ), L(xk, q

[2]
k )
)

≤ 12E
[
∥q

[1]
0 − q

[2]
0 ∥2

∞

](
1 − (1 − β) α

2

)k−tα

≤ 24
(

1 − (1 − β) α

2

)k−tα

·(
E
[
∥q

[1]
0 ∥2

∞

]
+ E

[
∥q[1]

∞ ∥2
∞

])
.

(19)

Here the last step follows from the fact that (x0, q
[2]
0 ) follows the stationary distribution, and thus

E
[
∥q

[2]
0 ∥2

∞

]
= E

[
∥q

[2]
∞ ∥2

∞

]
= E

[
∥q

[1]
∞ ∥2

∞

]
.

We have completed the proof of Theorem 1.

B.4 Proof of Proposition 1

To analyze the convergence rate of wk, we construct two new sequences {wk}k≥0 and {w̄k}k≥0 that
satisfy the following recursion:

wk+1(sk, ak) = (1 − α)wk(sk, ak) + αγ
(

min
a′

wk(sk+1, a′)
)

,

w̄k+1(sk, ak) = (1 − α)w̄k(sk, ak) + αγ
(

max
a′

w̄k(sk+1, a′)
)

.

Let w0 = w0 = w̄0. We then prove that wk and w̄k provide a lower bound and upper bound for wk,
respectively.
Lemma 3. For all k ≥ 0 and all (s, a) ∈ S × A, wk(s, a) ≤ wk(s, a) ≤ w̄k(s, a).

Proof of Lemma 3. We use an inductive argument to prove this lemma.

For k = 0, w0 = w0 = w̄0 by definition.

Now assume for k = k0, wk0
≤ wk0 ≤ w̄k0 . For k = k0 + 1, we consider the following two cases:

For (s, a) ̸= (sk0 , ak0), we have

wk0+1(s, a) = wk0
(s, a) ≤ wk0(s, a) = wk0+1(s, a) ≤ w̄k0(s, a) = w̄k0+1(s, a).

For (s, a) = (sk0 , ak0), we have

wk0+1(s, a) = (1 − α)wk0(s, a) + αγ
(

max
a′

q
[1]
k0

(sk0+1, a′) − max
a′

q
[2]
k0

(sk0+1, a′)
)

≤ (1 − α)wk0(s, a) + αγ max
a′

(
q

[1]
k0

(sk0+1, a′) − q
[2]
k0

(sk0+1, a′)
)

= (1 − α)wk0(s, a) + αγ max
a′

(wk0(sk0+1, a′))

≤ (1 − α)w̄k0(s, a) + αγ max
a′

(w̄k0(sk0+1, a′)) = w̄k0+1(s, a).

wk0+1(s, a) = (1 − α)wk0(s, a) + αγ
(

max
a′

q
[1]
k0

(xk0+1, a′) − max
a′

q
[2]
k0

(sk0+1, a′)
)

≥ (1 − α)wk0(s, a) + αγ min
a′

(
q

[1]
k0

(sk0+1, a′) − q
[2]
k0

(sk0+1, a′)
)

= (1 − α)wk0(s, a) + αγ min
a′

(wk0(sk0+1, a′))

≥ (1 − α)wk0
(s, a) + αγ min

a′

(
wk0

(sk0+1, a′)
)

= wk0+1(s, a).
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By induction, we complete the proof of Lemma 3.

Notice that {−wk} and {w̄k} can be viewed as the iterates generated by the Q-learning algorithm
with r(s, a) = 0 for all (s, a). Then, for both {−wk} and {w̄k}, we obtain the following bound for
the second moment of wk and w̄k by Proposition 4 with the special case of q∗ = 0 and rmax = 0.

E
[
∥wk∥2

∞

]
≤ 12E

[
∥w0∥2

∞
](

1 − (1 − β) α

2

)k−tα

,

E
[
∥w̄k∥2

∞

]
≤ 12E

[
∥w0∥2

∞
](

1 − (1 − β) α

2

)k−tα

.

By Lemma 3, the same bound can also be applied to E
[
∥wk∥2

∞

]
. We thus have

E
[
∥wk∥2

∞

]
≤ 12E

[
∥w0∥2

∞
](

1 − (1 − β) α

2

)k−tα

.

B.5 Proof of Corollary 1

Lemma 2 states that the second moment of q∞ is bounded by a constant, which is E
[
∥q∞∥2

∞
]

= O(1).
Combining this bound with equation (3) in Theorem 1, we obtain

W 2
2 (L(qk), µ) ≤ C(r, γ, P ) ·

(
1 − (1 − β) α

2

)k−tα

,

where C(r, γ, P ) is a numerical constant that only depends on the reward function r, discounted
factor γ, and stationary distribution for Markov chain (xk)k≥0.

By (Villani et al., 2009, Theorem 4.1), there exists a coupling between qk and q∞ such that

W 2
2 (L(qk), µ) = E[∥qk − q∞∥2

∞].

By the above bounds and applying Jensen’s inequality twice, we obtain that

∥E[qk − q∞]∥2
∞ ≤ (E[∥qk − q∞∥∞])2

≤ E[∥qk − q∞∥2
∞]

≤ C(r, γ, P )
(

1 − (1 − β) α

2

)k−tα

.

We thus have for all k ≥ tα,

∥E[qk] − E[q∞]∥∞ ≤ E[∥qk − q∞∥∞] ≤ C(r, γ, P )
(

1 − (1 − β) α

2

) k−tα
2

.
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For the second moment, we notice that∥∥E [qkq⊤
k

]
− E

[
q∞q⊤

∞
]∥∥

∞

=
∥∥∥E [(qk − q∞ + q∞) (qk − q∞ + q∞)⊤

]
− E

[
q∞q⊤

∞
]∥∥∥

∞

=
∥∥∥E [(qk − q∞) (qk − q∞)⊤

]
+ E

[
q∞ (qk − q∞)⊤

]
+ E

[
(qk − q∞) q⊤

∞
]∥∥∥

∞

≤
∥∥∥E [(qk − q∞) (qk − q∞)⊤

]∥∥∥
∞

+
∥∥∥E [q∞ (qk − q∞)⊤

]∥∥∥
∞

+
∥∥E [(qk − q∞) q⊤

∞
]∥∥

∞

≤ E
[∥∥∥(qk − q∞) (qk − q∞)⊤

∥∥∥
∞

]
+ E

[∥∥∥q∞ (qk − q∞)⊤
∥∥∥

∞

]
+ E

[∥∥(qk − q∞) q⊤
∞
∥∥

∞

]
≤ E

[
∥qk − q∞∥2

∞

]
+ 2E

[∥∥q⊤
∞ (qk − q∞)

∥∥
∞

]
≤ E

[
∥qk − q∞∥2

∞

]
+ 2

(
E
[
∥qk − q∞∥2

∞

]
E
[
∥q∞∥2

∞

])1/2
.

(20)

Meanwhile, we have

E
[
∥qk − q∞∥2

∞

]
≤ C(r, γ, P )

(
1 − (1 − β) α

2

)k−tα

and E
[
∥q∞∥2

∞

]
= O(1).

Substituting the above bounds into the right-hand side of inequality (20) yields

∥∥E [qkq⊤
k

]
− E

[
q∞q⊤

∞
]∥∥

∞ ≤ C ′(r, γ, P )
(

1 − (1 − β) α

2

) k−tα
2

,

thereby completing the proof for Corollary 1.

C Proof of Theorem 2

Define f : X × R|S||A| → R|S||A|, such that f(x, q) := q − E(q∞). Consider {(xk, qk)}k≥0 with
x0 ∼ µX and q0 ∼ µ̄(· | x0).

∥∥∥∥∥
n−1∑
k=0

P kf

∥∥∥∥∥
∞,L2

µ̄

=

√√√√E(x0,q0)∼µ̄∥
n−1∑
k=0

E[f(xk, qk) | x0, q0]∥2
∞

=

√√√√E(x0,q0)∼µ̄∥
n−1∑
k=0

E[qk | x0, q0] − nE(q∞)∥2
∞

≤

√√√√E(x0,q0)∼µ̄∥
n−1∑
k=0

E[qk | x0, q0] − nE(q∞)∥2
2

=

√√√√E(x0,q0)∼µ̄

n−1∑
i,j=0

E[qi − E(q∞) | x0, q0]TE[qj − E(q∞) | x0, q0].

Define gk(x, q) := E[qk −E(q∞) | (x0, q0) = (x, q)], we then give the following Lemma 4 to uniformly
bound gk(x, q) for all (x, q) ∈ X × R|S||A|. The proof of Lemma 4 is given at section C.1.
Lemma 4. For all (x, q) ∈ X × R|S||A|, when k ≥ tα, there exist two constant λ0, λ1 such that

∥gk(x, q)∥2 ≤ λ0 · λk
1 ,

where λ0 > 0 and 0 < λ1 < 1.
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By Lemma 4, we obtain∥∥∥∥∥
n−1∑
k=0

P kf

∥∥∥∥∥
∞,L2

µ̄

≤

√√√√E(x0,q0)∼µ̄

n−1∑
i,j=0

E[qi − E(q∞) | x0, q0]TE[qj − E(q∞) | x0, q0]

≤

√√√√E(x0,q0)∼µ̄

n−1∑
i,j=0

∥gi(x0, q0)∥2∥gj(x0, q0)∥2

≤

√
λ2

0
(1 − λ1)2 = O(1).

By Lemma 2, we can observe that
∫

∥f(x, q)∥2
∞µ̄(d(x, q)) < ∞ and

∫
f(x)µ̄(d(x, q)) = 0. Therefore,

by Theorem 2.1 in Xie & Zhang (2022), we complete the proof for Theorem 2.

C.1 Proof of Lemma 4

Recall that the Markov chain {xk}k≥0 mixes geometrically fast to the stationary distribution µX ,
and there exist c ≥ 0 and ρ ∈ (0, 1) s.t.

max
x∈X

∥pk(x, ·) − µX (·)∥T V ≤ cρk,

When k ≥ tα, we have

gk(x, q) =
∑

x′∈X

∫
q′∈R|S||A|

E[qk − E(q∞) | (x⌊ k
2 ⌋, q⌊ k

2 ⌋) = (x, q)]dP
(

(x⌊ k
2 ⌋, q⌊ k

2 ⌋) = (x′, q′) | (x0, q0) = (x, q)
)

=
∑

x′∈X

∫
q′∈R|S||A|

gk−⌊ k
2 ⌋(x′, q′)dP

(
(x⌊ k

2 ⌋, q⌊ k
2 ⌋) = (x′, q′) | (x0, q0) = (x, q)

)
=
∑

x′∈X

∫
q′∈R|S||A|

gk−⌊ k
2 ⌋(x′, q′)P

(
x⌊ k

2 ⌋ = x′ | (x0, q0) = (x, q)
)

︸ ︷︷ ︸
p(x′)

dP
(

q⌊ k
2 ⌋ = q′ | x⌊ k

2 ⌋ = x′, (x0, q0) = (x, q)
)

︸ ︷︷ ︸
η(q′|x′)

=
∑

x′∈X

∫
q′∈R|S||A|

gk−⌊ k
2 ⌋(x′, q′)µX (x′)dη(q′ | x′)︸ ︷︷ ︸

T1

+
∑

x′∈X

∫
q′∈R|S||A|

gk−⌊ k
2 ⌋(x′, q′)(p(x′) − µX (x′))dη(q′ | x′)︸ ︷︷ ︸

T2

.

By Corollary 1, when x0 ∼ µX , for all k ≥ tα and arbitrary q0 we have

∥E[qk] − E[q∞]∥∞ ≤ C(r, γ, P )
(

1 − (1 − β) α

2

) k−tα
2

.

Therefore, we obtain

∥T1∥2 ≤
√

|S||A|∥T1∥∞

=
√

|S||A|∥Ex′∼µX ,q′∼η(q′|x′)gk−⌊ k
2 ⌋∥∞

≤
√

|S||A|C(r, γ, P )
(

1 − (1 − β) α

2

) k−⌊ k
2 ⌋−tα

2

≤

(√
|S||A|C(r, γ, P )

(
1 − (1 − β) α

2

)−tα
2
)(

1 − (1 − β) α

2

) k
2

.
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Note that ∥qk∥∞ ≤ qmax, ∥gk(x, q)∥∞ ≤ 2qmax, we have

∥T2∥2 ≤
√

|S||A|∥T2∥∞ ≤
√

|S||A|cρ⌊ k
2 ⌋|S|2|A| = |S| 5

2 |A| 3
2 cρ⌊ k

2 ⌋ ≤ |S| 5
2 |A| 3

2 cρ−1ρ
k
2 .

Therefore, we have

∥gk(x, q)∥2 = ∥T1 + T2∥2

≤ ∥T1∥2 + ∥T2∥2

≤

((√
|S||A|C(r, γ, P )

(
1 − (1 − β) α

2

)−tα
2
)

+ |S| 5
2 |A| 3

2 cρ−1

)(
max

{√(
1 − (1 − β) α

2

)
,
√

ρ

})k

.

Let λ0 =
((√

|S||A|C(r, γ, P )
(

1 − (1−β)α
2

)−tα
2
)

+ |S| 5
2 |A| 3

2 cρ−1
)

and λ1 =

max
{√(

1 − (1−β)α
2

)
,
√

ρ

}
, we complete the proof of Lemma 4.

D Proof of Theorem 3

In this section, we prove Theorem 3 on the characterization of the bias E(q∞) − q∗. The proof
consists of five steps, which are given in the following five sub-sections.

D.1 Step 1: Local linearization of Operator F

Unlike linear SA, the operator F in the update rule of Q-learning (cf. equation (1)) is nonlinear
and nonsmooth, which makes the analysis considerably more challenging. To address this issue, we
employ the local linearization of the operator F around the optimal solution q∗, with a higher order
remaining term as stated in Proposition 2 and 3. We provide complete proof here.

Proof of Proposition 2. Recall that we define the unique optimal action with respect to the optimal
Q-function q∗ as

a∗
s := arg max

a
q∗(s, a).

We define a function Gq∗ : X → R|S||A|×|S||A| as follows: for each x = (s0, a0, s1) ∈ X ,

[Gq∗(x)] [(s, a), (s̄, ā)] =


1, (s, a) = (s̄, ā) ̸= (s0, a0)
γ, (s, a) = (s0, a0), (s̄, ā) = (s1, a∗

s1
)

0, otherwise.

Note that the operator F (x, ·) is nonsmooth and does not admit any gradient. On the other hand,
by the uniqueness of the optimal policy π∗, we can locally linearize F (x, ·) around q∗. In particular,
Gq∗(x) − Id serves as an approximate "gradient" of the operator F (x, ·) around q∗. Define

R(x, q) = F (x, q) − F (x, q∗) − (Gq∗(x) − Id)(q − q∗).

We can observe that for ∀(s, a) ̸= (s0, a0), [R(x, q)] (s, a) = 0. For (s, a) = (s0, a0), we have

[R(x, q)] (s0, a0) = γ
(

max
a

q(s1, a) − q(s1, a∗
s1

)
)

≥ 0.

If ∥q − q∗∥∞ < ∆, by Assumption 2, for any action a ̸= a∗
s1

, we have

q(s1, a∗
s1

) > q∗(s1, a∗
s1

) − δ

≥ q∗(s1, a) + δ

> q(s1, a).
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Thus,
[R(x, q)] (s0, a0) = γ

(
max

a
q(s1, a) − q(s1, a∗

s1
)
)

= 0.

If ∥q − q∗∥∞ ≥ ∆, we have

| [R(x, q)] (s0, a0)| = γ| max
a

q(s1, a) − q(s1, a∗
s1

)|

= γ| max
a

q(s1, a) − max
a

q∗(s1, a) + q∗(s1, a∗
s1

) − q(s1, a∗
s1

)|

≤ 2γ∥q − q∗∥∞

≤ 2γ

∆3 ∥q − q∗∥4
∞.

Combining the two situations considered above, we finally obtain that

∥R(x, q)∥∞ ≤ 2γ

∆3 ∥q − q∗∥4
∞.

which proves the first part of Proposition 2.

For the second part, we can multiply the Gq∗(x) by an arbitrary nonzero vector H ∈ R|S∥A|. Let
(sh, ah) = arg max

(s,a)∈S×A
H(s, a) and ph = µS(sh, ah). By Assumption 1, ph > 0. Without loss of

generality, we can assume H(sh, ah) > 0, otherwise we can replace H with −H. We then have

E
[
G′

q∗(x)H
]

(sh, ah) = γphE
(
H(s1, a∗

s1
) | s0 = sh, a0 = ah

)
+ (1 − ph)H(sh, ah)

≤ γphH(sh, ah) + (1 − ph)H(sh, ah)
< H(sh, ah),

where the second step hold as the definition of (sh, ah) uses the maximum.

We thus have
E[Gq∗(x)]H = E [Gq∗(x)H] ̸= H.

As H is an arbitrary vector, we conclude that E(Gq∗(x)) does not have an eigenvalue of 1, thereby
completing the proof for Proposition 2.

Proof of Proposition 3: Let f(z) = 1
2 ∥z∥2

∞ and g(z) = 1
2 ∥z∥2

2. Note that g(·) is a convex, differen-
tiable, and 1-smooth function. In Proposition 3, we work with a finite demensional space R|S∥A|.
By Cauchy-Schwarz Inequality, 1√

|S∥A|
∥ · ∥2 ≤ ∥ · ∥∞ ≤ ∥ · ∥2. We construct the Generalized Moreau

Envelope of f(·) with respect to g(·) as follows:

Mη,g
f (z) = min

u∈R|S∥A|

{
f(u) + 1

η
g(z − u)

}
,

where η > 0. For the ease of exposition, we use M(·) to denote Mη,g
f (·). We restate Lemma 2.1 in

Chen et al. (2020b) below on the properties of M(·).

Lemma 5 (Lemma 2.1 in Chen et al. (2020b)). For given η > 0. Then M(·) constructed above has
the following properties:

1. (Smoothness) M(·) is convex, 1
η -smooth with respect to ∥ · ∥2.

2. There exists a norm ∥ · ∥m such that M(z) = 1
2 ∥z∥2

m. Furthermore, there exist lm, um > 0, such
that lm∥ · ∥m ≤ ∥ · ∥∞ ≤ um∥ · ∥m. Specifically, we can let lm = (1 + η

|S∥A| )1/2, um = (1 + η)1/2.
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Therefore, M(·) serves as a smooth approximation of the non-smooth function f(·). Then, we have
for ∀k ≥ 0 :

M2(qk+1 − q∗)
(a)
≤
(

M(qk − q∗) + ⟨∇M(qk − q∗), qk+1 − qk⟩ + 1
2η

∥qk+1 − qk∥2
2

)2

(b)=
(

M(qk − q∗) + α⟨∇M(qk − q∗), F (xk, qk)⟩ + α2

2η
∥F (xk, qk)∥2

2

)2

= (M(qk − q∗) + α⟨∇M(qk − q∗), F̄ (qk)⟩

+ α⟨∇M(qk − q∗), F (xk, qk) − F̄ (qk)⟩ + α2

2η
∥F (xk, qk)∥2

2)2

(c)
≤ M2(qk − q∗) + 2αM(qk − q∗)⟨∇M(qk − q∗), F̄ (qk)⟩︸ ︷︷ ︸

T1

+ 2αM(qk − q∗)⟨∇M(qk − q∗), F (xk, qk) − F̄ (qk)⟩︸ ︷︷ ︸
T2

+ α2

η
M(qk − q∗)∥F (xk, qk)∥2

2︸ ︷︷ ︸
T3

+ 3α2⟨∇M(qk − q∗), F̄ (qk)⟩2︸ ︷︷ ︸
T4

+3α2 ⟨∇M(qk − q∗), F (xk, qk) − F̄ (qk)⟩2︸ ︷︷ ︸
T5

+ 3α4

4η2 ∥F (xk, qk)∥4
2︸ ︷︷ ︸

T6

,

(21)

where (a) follows from the smoothness of M(·) in Lemma 5, (b) follows from the update rule of qk

in (1), and (c) holds by the inequality (x + y + z)2 ≤ 3(x2 + y2 + z2).

Next we derive an upper bound on M(·)2 by bounding each term of T1 − T6.

Lemma 6. For all k ≥ 0, T1 ≤ −4α (1 − γ)2
M2(qk − q∗).

Proof of Lemma 6. By Proposition 2.1 in Chen et al. (2020b), we have that

⟨∇M(qk − q∗), F̄ (qk)⟩ ≤ −2

1 − γ

(
1 + η

√
|S∥A|

1 + η

) 1
2
M(qk − q∗).

We can always choose a sufficiently small η such that
(

1+η
√

|S∥A|
1+η

) 1
2

≤ 2 − γ because γ < 1, which
is equivalent to

η ≤ (2 − γ)2 − 1√
|S∥A| − 1

. (22)

Since M(·) is non-negative, we complete the proof by multiplying 2αM(qk − q∗) on both sides.

By Lemma 6, T1 can give us a desired negative drift term of order −O(α).

By Cauchy-Schwarz Inequality, we can bound T2 by two terms. One term is proportional to M2(qk −
q∗) but still keep the negative drift generated by T1 and the other term is proportional to T5:

T2 ≤ α(1 − γ)2M2(qk − q∗) + α(1 − γ)−2⟨∇M(qk − q∗), F (xk, qk) − F̄ (qk)⟩2

= α(1 − γ)2M2(qk − q∗) + α(1 − γ)−2T5.



RLJ | RLC 2024

Then, we can simplify equation (21) as follows when 3α ≤ (1 − γ)−2:

M2(qk+1 − q∗) ≤ (1 − 3α(1 − γ)2)M2(qk − q∗) + T3 + T4 + 2α(1 − γ)−2T5 + T6.

By Cauchy-Schwarz Inequality and Lemma A.5 in Chen et al. (2021), T3 can be bounded as follows:

T3 = α2

η
M(qk − q∗)∥F (xk, qk)∥2

2

≤ α2

η
M(qk − q∗)

(
36u2

m|S∥A|M(qk − q∗) + 2|S∥A|(3∥q∗∥∞ + rmax)2)
= 36u2

m|S∥A|α2

η
M2(qk − q∗) + 2|S∥A|α2

η
M(qk − q∗)(3∥q∗∥∞ + rmax)2

≤ 36u2
m|S∥A|α2

η
M2(qk − q∗) + α(1 − γ)2M2(qk − q∗) + |S|2|A|2α3

(1 − γ)2η2 (3∥q∗∥∞ + rmax)4.

The term T4 can be directly bounded as follows:

T4 = 3α2⟨∇M(qk − q∗), F̄ (qk)⟩2

≤ 3α2 (∥∇M(qk − q∗)∥2∥F̄ (qk)∥2
)2

= 3α2 (∥∇M(qk − q∗) − ∇M(q∗ − q∗)∥2∥F̄ (qk) − F̄ (q∗)∥2
)2

≤ 3α2

(√
|S∥A|
η

∥qk − q∗∥2∥F̄ (qk) − F̄ (q∗)∥∞

)2

≤ 3α2
(

2
η

|S∥A|∥qk − q∗∥2
∞

)2

≤ 12u4
m|S|2|A|2α2

η2 ∥qk − q∗∥4
m

= 48u4
m|S|2|A|2α2

η2 M2(qk − q∗).

By Cauchy-Schwarz Inequality, we bound T5 by the following three parts:

T5 ≤ 3⟨∇M(qk − q∗) − ∇M(qk−tα2 − q∗), F (xk, qk) − F̄ (qk)⟩2︸ ︷︷ ︸
T51

+ 3⟨∇M(qk−tα2 − q∗), F (xk, qk) − F (xk, qk−tα2 ) + F̄ (qk−tα2 ) − F̄ (qk)⟩2︸ ︷︷ ︸
T52

+ 3⟨∇M(qk−tα2 − q∗), F (xk, qk−tα2 ) − F̄ (qk−tα2 )⟩2︸ ︷︷ ︸
T53

.

By Lemma A.3 in Chen et al. (2021), for all k ≥ tα2 with α satisfying αtα2 ≤ 1
12 :

T51 ≤ 3
(

144u2
m|S∥A|αtα2

η
M(qk − q∗) + 8|S∥A|αtα2

η
(3∥q∗∥∞ + rmax)2

)2

≤
124416u4

m|S|2|A|2α2t2
α2

η2 M2(qk − q∗) + 384|S|2|A|2α2t2
α2

η2 (3∥q∗∥∞ + rmax)4,

T52 ≤ 3
(

576u2
m|S∥A|αtα2

η
M(qk − q∗) + 32|S∥A|αtα2

η
(3∥q∗∥∞ + rmax)2

)2

≤
1990656u4

m|S|2|A|2α2t2
α2

η2 M2(qk − q∗) + 6144|S|2|A|2α2t2
α2

η2 (3∥q∗∥∞ + rmax)4.
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For term T53, we use the conditional expectation as follows:

E[T53|xk−tα2 , qk−tα2 ]
=3E

[
⟨∇M(qk−tα2 − q∗), F (xk, qk−tα2 ) − F̄ (qk−tα2 )⟩2|xk−tα2 , qk−tα2

] (23)

Let H = ∇M(qk−tα2 − q∗) · ∇M(qk−tα2 − q∗)⊤. Equation (23) can be reformulated as follows:

E[T53|xk−tα2 , qk−tα2 ]
= 3E

[
(F (xk, qk−tα2 ) − F̄ (qk−tα2 ))⊤H(F (xk, qk−tα2 ) − F̄ (qk−tα2 ))|xk−tα2 , qk−tα2

]
= 3E

[
F (xk, qk−tα2 )⊤HF (xk, qk−tα2 ) − F̄ (qk−tα2 )⊤HF̄ (qk−tα2 )|xk−tα2 , qk−tα2

]
− 6E

[
(F (xk, qk−tα2 ) − F̄ (qk−tα2 ))⊤HF̄ (qk−tα2 )|xk−tα2 , qk−tα2

]
= 3

(∑
x∈X

(
P tα2

(
xk−tα2 , x

)
− µX (x)

)
F
(
x, qk−tα2

)⊤
HF

(
x, qk−tα2

))

− 6
(∑

x∈X

(
P tα2

(
xk−tα2 , x

)
− µX (x)

)
F
(
x, qk−tα2

)⊤
HF̄

(
qk−tα2

))
(a)
≤ 6α2∥F (x̃0, qk−tα2 )∥2

2∥H∥2 + 12α2∥F (x̃1, qk−tα2 )∥2∥H∥2∥F̄ (qk−tα2 )∥2

≤ 18α2|S|2|A|2

η2 (2∥qk−tα2 ∥∞ + rmax)2∥qk−tα2 − q∗∥2
∞

≤ 18α2|S|2|A|2

η2 (2∥qk−tα2 − q∗∥∞ + 2∥q∗∥∞ + rmax)2∥qk−tα2 − q∗∥2
∞

≤ 18α2|S|2|A|2

η2 (2∥qk−tα2 − qk∥∞ + 2∥qk − q∗∥∞ + 2∥q∗∥∞ + rmax)2

· (∥qk−tα2 − qk∥∞ + ∥qk − q∗∥∞)2

≤ 18α2|S|2|A|2

η2 (2(∥qk∥∞ + rmax

3 ) + 2∥qk − q∗∥∞ + 2∥q∗∥∞ + rmax)2

· ((∥qk∥∞ + rmax

3 ) + ∥qk − q∗∥∞)2

≤ 18α2|S|2|A|2

η2 (6∥qk − q∗∥∞ + 6∥q∗∥∞ + 2rmax)2(3∥qk − q∗∥∞ + 3∥q∗∥∞ + rmax)2

= 72α2|S|2|A|2

η2 (3∥qk − q∗∥∞ + 3∥q∗∥∞ + rmax)4

≤ 186624α2|S|2|A|2

η2 M2(qk − q∗) + 576α2|S|2|A|2

η2 (3∥q∗∥∞ + rmax)4.

where (a) follows with some x̃0, x̃1 ∈ X . Here we use the facts that
∑

x∈X |P tα2
(
xk−tα2 , x

)
−

µX (x)| ≤ 2α2 (by Definition 1 of mixing time) and ∥qk−tα2 − qk∥∞ ≤ ∥qk∥∞ + rmax
3 , which has been

proved in Lemma A.2 in Chen et al. (2021).

By putting these three terms together, we obtain the following bound for E[T5]:

E(T5) ≤
|S|2|A|2(2115072u4

mα2t2
α2 + 186624α2)

η2 M2(qk − q∗)

+ |S|2|A|2(6528α2t2
α2 + 576α2)

η2 (3∥q∗∥∞ + rmax)4.
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By Lemma A.5 in Chen et al. (2021), we have

T6 ≤ 3α4

4η2

(
36u2

m|S∥A|M(qk − q∗) + 2|S∥A|(3∥q∗∥∞ + rmax)2)2

≤ 1944u4
m|S|2|A|2α4

η2 M2(qk − q∗) + 6|S|2|A|2α4

η2 (3∥q∗∥∞ + rmax)4.

Using the above bounds for T1 − T6, we can finally bound E[M2(qk+1 − q∗)] by following:

E[M2(qk+1 − q∗)] ≤ (1 − 3α(1 − γ)2)E[M2(qk − q∗)]

+ 36u2
m|S∥A|α2

η
E[M2(qk − q∗)] + α(1 − γ)2E[M2(qk − q∗)]

+ |S|2|A|2α3

(1 − γ)2η2 (3∥q∗∥∞ + rmax)2 + 48u4
m|S|2|A|2α2

η2 E[M2(qk − q∗)]

+ |S|2|A|2(4230144u4
mα3t2

α2 + 373248α3)
η2(1 − γ)2 E[M2(qk − q∗)]

+ |S|2|A|2(13056α3t2
α2 + 1152α3)

η2(1 − γ)2 (3∥q∗∥∞ + rmax)4

+ 1944u4
m|S|2|A|2α4

η2 E[M2(qk − q∗)] + 6|S|2|A|2α4

η2 (3∥q∗∥∞ + rmax)4

≤ (1 − α(1 − γ)2)E[M2(qk − q∗)]

+ |S|2|A|2(374007α3 + 13056α3t2
α2)

η2(1 − γ)2 (3∥q∗∥∞ + rmax)4,

where there exists a α0 > 0 such that the last step always hold for all α ≤ α0.

Then, we obtain that for all k ≥ tα2 :

E[M2(qk − q∗)] ≤ E[M2(qtα2 − q∗)](1 − α(1 − γ)2)k−tα2

+ |S|2|A|2(374007α2 + 13056α2t2
α2)

η2(1 − γ)4 (3∥q∗∥∞ + rmax)4.
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We can choose η = (1−γ)2√
|S∥A|

satisfying equation (22) and by (Chen et al., 2021, Theorem A.1), we
obtain the following bound for E[∥qk − q∗∥4

∞]:

E[∥qk − q∗∥4
∞] ≤ 4u4

mE[M2(qk − q∗)]
≤ 4u4

mE[M2(qtα2 − q∗)](1 − α(1 − γ)2)k−tα2

+ 4u4
m

|S|3|A|3(374007α2 + 13056α2t2
α2)

(1 − γ)8 (3∥q∗∥∞ + rmax)4

≤ u4
m

l4
m

E[∥qtα2 − q∗∥4
∞](1 − α(1 − γ)2)k−tα2

+ 4u4
m|S|3|A|3(374007α2 + 13056α2t2

α2)
(1 − γ)8 (3∥q∗∥∞ + rmax)4

≤ u4
m

l4
m

E((∥qtα2 − q0∥∞ + ∥q0 − q∗∥∞)4)(1 − α(1 − γ)2)k−tα2

+ 4u4
m|S|3|A|3(374007α2 + 13056α2t2

α2)
(1 − γ)8 (3∥q∗∥∞ + rmax)4

≤ u4
m

l4
m

(∥q0∥∞ + ∥q0 − q∗∥∞ + rmax

3 )4(1 − α(1 − γ)2)k−tα2

+ 4u4
m|S|3|A|3(374007α2 + 13056α2t2

α2)
(1 − γ)8 (3∥q∗∥∞ + rmax)4.

By Lemma 5, we can let lm = (1 + η
|S∥A| )1/2, um = (1 + η)1/2. Define

b1 =
(1 + (1−γ)2√

|S∥A|
)2

(1 + (1−γ)2

(|S∥A|)
3
2

)2
(∥q0∥∞ + ∥q0 − q∗∥∞ + rmax

3 )4,

b2 =
374007 × 4(1 + (1−γ)2√

(|S∥A|)
)2|S|3|A|3

(1 − γ)8 (3∥q∗∥∞ + rmax)4,

b3 =
13056 × 4(1 + (1−γ)2√

(|S∥A|)
)2|S|3|A|3

(1 − γ)8 (3∥q∗∥∞ + rmax)4.

We have for all k ≥ tα2 ,

E[∥qk − q∗∥4
∞] ≤ b1(1 − α(1 − γ)2)k−tα2 + b2α2 + b3α2t2

α2 .

This completes the proof of Proposition 3.

D.2 Step 2: Basic Adjoint Relationship

We first derive a recursive relationship for the following quantities

z(i) := E [q∞ | x∞ = i] , i ∈ X .

Recall that (xk)k≥0 is a time-homogeneous Markov chain with transition probability matrix P = (pij)
and a unique stationary distribution µX . Theorem 1 shows that (xk, qk)k≥0 converges in distribution
to a limit (x∞, q∞) ∼ µ̄, with marginal q∞ ∼ µ and x∞ ∼ µX . Given (x∞, q∞), let x∞+1 be a random
variable with conditional distribution P(x∞+1 = j | x∞ = i) = pij , and q∞+1 = q∞ + αF (x∞, q∞).

Since (x∞, q∞) is in the stationary, (x∞+1, q∞+1) also follows the stationary distribution µ̄. Let
d = |S∥A|. Therefore, for any test function f : X ×Rd 7→ Rd that satisfies ∥f(x, q)∥∞ ≤ C(1+∥q∥2

∞)
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for some C ∈ R, the following relationship holds (Villani et al., 2009, Theorem 6.9)

E[f(x∞, q∞)] = E[f(x∞+1, q∞+1)],

which is called Basic Adjoint Relationship (BAR).

Consider the test function f (i), i ∈ X , defined as

f (i)(x, q) = q · 1{x = i}.

Substituting f = f (i) into BAR gives

E[q∞ · 1{x∞ = i}] = E[q∞+1 · 1{x∞+1 = i}]. (24)

To simplify the presentation, we denote by ν(i) := µX (i) the probability of the Markov chain (xk)k≥0
being in state i ∈ X when in stationary. The LHS of equation (24) can be written as follows

E [q∞ · 1{x∞ = i}] = ν(i) · E [q∞ | x∞ = i] = ν(i)z(i).

Recall that P̂ = (p̂ij) is the transition kernel of the time-reversal of the Markov chain (xk)k≥0. The
RHS of equation (24) can be reformulated as

E [q∞+1 · 1{x∞+1 = i}] = ν(i)E [q∞+1 | x∞+1 = i]
= ν(i)E [q∞ + αF (x∞, q∞) | x∞+1 = i]

= ν(i)
∑
j∈X

p̂ijE [q∞ + αF (x∞, q∞) | x∞ = j, x∞+1 = i]

= ν(i)
∑
j∈X

p̂ijE [q∞ + αF (j, q∞) | x∞ = j] .

The last step follows from the fact that condition on xk, qk is conditionally independent of xk+1 for
all k ≥ 1.

By Proposition 2, we can further rewrite the above equation as

E [q∞+1 · 1{x∞+1 = i}]

= ν(i)
∑
j∈X

p̂ijE [q∞ + α (F (j, q∗) + (Gq∗(j) − Id)(q∞ − q∗) + R(j, q∞)) | x∞ = j]

= ν(i)
∑
j∈X

p̂ij [z(j) + α (F (j, q∗) + (Gq∗(j) − Id)(z(j) − q∗) + E(R(j, q∞) | x∞ = j))] .

We thus obtain the following recursive relationship for {z(i)}i∈X :

z(i) =
∑
j∈X

p̂ij [z(j) + α (F (j, q∗) + (Gq∗(j) − Id)(z(j) − q∗) + E(R(j, q∞) | x∞ = j))]

=
∑
j∈X

p̂ij [z(j) + α (F (j, q∗) + (Gq∗(j) − Id)(z(j) − q∗))] + αE [R(x∞, q∞) | x∞+1 = i] .
(25)

Note that the second term of the RHS of equation (25) can be bounded as

E [R(x∞, q∞) | x∞+1 = i] = 1
ν(i)E [R(x∞, q∞)1{x∞+1 = i}]

(i)
≤ 1

ν(i)E [R(x∞, q∞)]

(ii)= O(α2 + α2t2
α2),
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where (i) holds because R(x, q) is always positive, as shown in the proof of Proposition 2; (ii) follows
from Proposition 2, Proposition 3 and Hölder’s inequality.

Let A(x) = Gq∗(x) − Id and b(x) = F (x, q∗) − (Gq∗(x) − Id)q∗. Let D denote the operator given by
(Df)(x) = A(x)f(x) for each x ∈ X . We thus can simplify equation (25) by

z = P̂ (z + α(Dz + b)) + O(α3 + α3t2
α2). (26)

D.3 Step 3: Setting up System of δ

Define the difference
δ(i) := z(i) − µX z for each i ∈ X ,

where µX z :=
∑

i∈X ν(i)z(i). Let Π = 1 ⊗ µX . Then, by applying the operator (P̂ − Π) to both side
of above equation we obtain

(P ∗ − Π) z = (P ∗ − Π) δ.

Subtracting Πz from both sides of equation (26), we obtain

δ = (P̂ − Π)z + αP̂ (Dz + b) + O(α3 + α3t2
α2)

= (P̂ − Π)δ + αP̂ (Dz + b) + O(α3 + α3t2
α2).

(27)

Applying µX to both sides of equation (26), we obtain

µX (Dz + b) = O(α2 + α2t2
α2). (28)

Subtracting equation (28) from equation (27), we obtain

δ = (P̂ − Π)δ + α(P̂ − Π)(Dz + b) + O(α3 + α3t2
α2).

Then, we have

(I − P̂ + Π)δ = α(P̂ − Π)(Dz + b) + O(α3 + α3t2
α2).

It is well-known that (I − P̂ + Π)−1 exists by Huo et al. (2023). Therefore, we obtain

δ = α(I − P̂ + Π)−1(P̂ − Π)(Dz + b) + O(α3 + α3t2
α2). (29)

D.4 Step 4: Establishing δ = O(α)

In this sub-section, we show that δ⃗ = O(α), as stated in the following Lemma.

Lemma 7. Under Assumption 1, and αtα ≤ c0
(1−β)2

log(|S∥A|) , we have

∥δ⃗∥∞ ≤ α · B′′(r, γ, P )

for some number B′′(r, γ, P ) ∈ R that is independent of α.

Proof of Lemma 7. Recalling the definition for z(i), we have

z(i) = E [q∞ | x∞ = i] = E [q∞1 {x∞ = i}]
ν(i) .
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Then by Lemma 2 and the fact that ν(i) > 0, we have

∥z(i)∥∞ ≤
E [∥q∞∥∞]

ν(i) ≤ 1
νmin

·
√

2cQc0 + 2∥q∗∥2
∞,

where νmin := min
i

ν(i) > 0.

By equation (29), we conclude that

∥δ⃗∥∞ ≤ α · B′′(r, γ, P )

for some number B′′(r, γ, P ) that is independent of α.

D.5 Step 5: Expansion of the bias

By definition, F̄ (q∗) = 0 and R(x, q∗) ≡ 0. Define Ā = EµX A(x) and b̄ = EµX b(x). Then, we have
Āq∗ + b̄ = 0. From Proposition 2, Ā is a non-singular matrix. Define D̄ be the normalized D such
that (D̄f)(x) = Ā−1A(x)f(x). Therefore, we obtain

q∗ = −Ā−1b̄

= −Ā−1µX b

= µX D̄z + O(α2 + α2t2
α2),

where the last inequality holds by equation (28).

Because δ = z − Πz, we can further obtain

q∗ = µX D̄δ + µX z + O(α2 + α2t2
α2).

Then,

µX z = q∗ − µX D̄δ + O(α2 + α2t2
α2).

z(i) = δ(i) + µX z = δ(i) + q∗ − µX D̄δ + O(α2 + α2t2
α2).

Therefore, we obtain

z = q∗ + (I − ΠD̄)δ + O(α2 + α2t2
α2). (30)

Substituting equation (30) into equation (29), we obtain

δ = α(I − P̂ + Π)−1(P̂ − Π)(Dz + b) + O(α3 + α3t2
α2)

= α (I − P̂ + Π)−1(P̂ − Π)(Aq∗ + b)︸ ︷︷ ︸
v

+ α (I − P̂ + Π)−1(P̂ − Π)D(I − ΠD̄)︸ ︷︷ ︸
Ξ

δ

+ O(α3 + α3t2
α2)

= αv + αΞδ + O(α3 + α3t2
α2).

Therefore, we can finally obtain
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E(q∞) = µX z

= q∗ − µX D̄δ + O(α2 + α2t2
α2)

= q∗ − αµX D̄v − αµX D̄Ξδ + O(α2 + α2t2
α2)

Let B = −µX D̄v. By Lemma 7, we have µX D̄Ξδ = O(α)

Therefore, we have

E(q∞) = q∗ + αB + O(α2 + α2t2
α2)

with

B = −µX D̄(I − P̂ + Π)−1(P̂ − Π)(Aq∗ + b). (31)

We complete the proof of Theorem 3.

E Proof of Corollary 2

In this section, we provide the proof of the first and second moment bounds in Corollary 2.

E.1 First Moment

First, we have

E [q̄k0,k] − q∗ = (E [q∞] − q∗) + 1
k − k0

k−1∑
t=k0

E [qt − q∞]︸ ︷︷ ︸
T1

.

By Corollary 1, we have that for k ≥ tα,

∥E[qk] − E[q∞]∥∞ ≤ C(r, γ, P ) ·
(

1 − (1 − β) α

2

) k−tα
2

.

Then, when αtα ≤ 1, we have the following bound for T1,

∥T1∥∞ =
∥∥∥∥∥

k−1∑
t=k0

E [qt − q∞]
∥∥∥∥∥

∞

≤
k−1∑
t=k0

∥E [qt] − E [q∞]∥∞

≤ C(r, γ, P )
(

1 − (1 − β) α

2

) k0−tα
2 1

1 −
√

1 − (1−β)α
2

≤ C(r, γ, P )
(

1 − (1 − β) α

2

) k0−tα
2 4

(1 − β) α

(i)
≤ C(r, γ, P ) exp

(
− (1 − β)α(k0 − tα)

4

)
4

(1 − β) α

≤ C ′′(r, γ, P ) · 1
α

· exp
(

−α(1 − β)k0

4

)
,

where (i) follows from the inequality that (1 − u)m ≤ exp(−um) for 0 < u < 1.
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Together with Theorem 3, we have

E [q̄k0,k] − q∗ = αB(r, γ, P ) + O(α2 + α2t2
α2) + O

(
1

α(k − k0) exp
(

−α(1 − β)k0

4

))
,

thereby finishing the proof of equation (6) for the first moment.

E.2 Second Moment

We first derive the bound for the second moment of the tail-averaged iterate. Note that

E
[
(q̄k0,k − E [q∞]) (q̄k0,k − E [q∞])⊤

]
= 1

(k − k0)2E

( k−1∑
t=k0

(qt − E [q∞])
)(

k−1∑
t=k0

(qt − E [q∞])
)⊤

= 1
(k − k0)2

k−1∑
t=k0

E
[
(qt − E [q∞]) (qt − E [q∞])⊤

]
︸ ︷︷ ︸

T1

+ 1
(k − k0)2

k−1∑
t=k0

k−1∑
l=t+1

(
E
[
(qt − E [q∞]) (ql − E [q∞])⊤

]
+ E

[
(ql − E [q∞]) (qt − E [q∞])⊤

])
︸ ︷︷ ︸

T2

.

For the term T1, we have the following decomposition,

E
[
(qt − E [q∞]) (qt − E [q∞])⊤

]
= E

[
qtq

⊤
t − qtE

[
q⊤

∞
]

− E [q∞] q⊤
t + E [q∞]E

[
q⊤

∞
]]

= E
[
qtq

⊤
t

]
− E [qt]E

[
q⊤

∞
]

− E [q∞]E
[
q⊤

t

]
+ E [q∞]E

[
q⊤

∞
]

=
(
E
[
qtq

⊤
t

]
− E

[
q∞q⊤

∞
])

+
(
E
[
q∞q⊤

∞
]

− E [q∞]E
[
q⊤

∞
])

−
(
E [qt]E

[
q⊤

∞
]

+ E [q∞]E
[
q⊤

t

]
− 2E [q∞]E

[
q⊤

∞
])

=
(
E
[
qtq

⊤
t

]
− E

[
q∞q⊤

∞
])

+ Var (q∞) − E [qt − q∞]E
[
q⊤

∞
]

− E [q∞]E
[
(qt − q∞)⊤

]
(32)

Corollary 1 and Lemma 2 imply the following bounds for k ≥ tα,

E [∥qt − q∞∥∞] ≤ C(r, γ, P ) ·
(

1 − (1 − β) α

2

) t−tα
2

(33)

∥∥E [qtq
⊤
t

]
− E

[
q∞q⊤

∞
]∥∥

∞ ≤ C ′(r, γ, P ) ·
(

1 − (1 − β) α

2

) t−tα
2

E [∥q∞∥∞] ≤ C ′′(r, γ, P ),
Var (q∞) ≤ C ′′′(r, γ, P ) · αtα. (34)

Substituting these bounds into equation (32), we have

E
[
(qt − E [q∞]) (qt − E [q∞])⊤

]
= O

((
1 − (1 − β) α

2

) t−tα
2

+ αtα

)
.
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Therefore, we can bound T1 as follows,

T1 = 1
(k − k0)2

k−1∑
t=k0

E
[
(qt − E [q∞]) (qt − E [q∞])⊤

]

= 1
(k − k0)2

k−1∑
t=k0

O

((
1 − (1 − β) α

2

) t−tα
2

+ αtα

)

= O
(

1
α(k − k0)2 exp

(
−α(1 − β)k0

4

))
+ O

(
αtα

k − k0

)
= O

(
1

α(k − k0)2 exp
(

−α(1 − β)k0

4

)
+ αtα

k − k0

)
.

Regarding the term T2, notice that for l > t, we have

E
[
(qt − E [q∞]) (ql − E [q∞])⊤

]
= E

[
E
[
(qt − E [q∞]) (ql − E [q∞])⊤ | qt

]]
= E

[
(qt − E [q∞])E [ql − E [q∞] | qt]⊤

]
= E

[
(qt − E [q∞]) (E [ql | qt] − E [q∞])⊤

]
.

Note that for any y ∈ Rd, it holds that

∥E [ql | qt = y] − E [q∞]∥ = ∥E [ql−t | q0 = y] − E [q∞]∥ ≤ C(r, γ, P ) ·
(

1 − (1 − β) α

2

) l−t−tα
2

,

where the second inequality holds since Corollary 1 holds for all initial value of q0.

Therefore, when l > t, we have

E
[∥∥∥(qt − E [q∞]) (E [ql | qt] − E [q∞])⊤

∥∥∥
∞

]
≤E [∥qt − E [q∞]∥∞ ∥E [ql | qt] − E [q∞]∥∞]

≤E [∥qt − E [q∞]∥∞] ·

(
C(r, γ, P ) ·

(
1 − (1 − β) α

2

) l−t−tα
2
)

≤ (E [∥qt − q∞∥∞] + E [∥q∞ − E [q∞]∥∞]) ·

(
C(r, γ, P ) ·

(
1 − (1 − β) α

2

) l−t−tα
2
)

(i)
≤
(
E [∥qt − q∞∥∞] + (Tr(Var(q∞)))1/2

)
·

(
C(r, γ, P ) ·

(
1 − (1 − β) α

2

) l−t−tα
2
)

(ii)
≤

(
C(r, γ, P ) ·

(
1 − (1 − β) α

2

) t−tα
2

+ C ′(r, γ, P )
√

αtα

)
·

(
C(r, γ, P ) ·

(
1 − (1 − β) α

2

) l−t−tα
2
)

=C2(r, γ, P ) ·
(

1 − (1 − β) α

2

) l−2tα
2

+ C ′′′′(r, γ, P ) ·
√

αtα ·
(

1 − (1 − β) α

2

) l−t−tα
2

,

where in (i) Tr(·) denotes the trace operator and we use the fact that E [∥q∞ − E [q∞]∥∞] ≤√
E
[
∥q∞ − E [q∞]∥2

∞

]
= Tr(Var(q∞))1/2; in (ii) we use the bounds in equations (33) and (34).
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In addition, note that

1
(k − k0)2

k−1∑
t=k0

k−1∑
l=t+1

O

((
1 − (1 − β) α

2

) l−2tα
2
)

≤ 1
(k − k0)2

∞∑
t=k0

∞∑
l=t+1

O

((
1 − (1 − β) α

2

) l−2tα
2
)

≤ 1
(k − k0)2

(
4

(1 − β)α

)2
O

(1 − (1 − β) α

2

) k0−2tα
2


= O

(
1

(k − k0)2α2 exp
(

−α(1 − β)k0

4

))
,

and
1

(k − k0)2

k−1∑
t=k0

k−1∑
l=t+1

O

((
1 − (1 − β) α

2

) l−t−tα
2
)

≤ 1
(k − k0)2

k−1∑
t=k0

∞∑
l=t+1

O

((
1 − (1 − β) α

2

) l−t−tα
2
)

= O
(

1
(k − k0)α

)
.

Putting together, we obtain the following upper bound for T2,

T2 = 1
(k − k0)2

k−1∑
t=k0

k−1∑
l=t+1

O

((
1 − (1 − β) α

2

) l−2tα
2

+
√

αtα

(
1 − (1 − β) α

2

) l−t−tα
2
)

= O
(

1
(k − k0)2α2 exp

(
−α(1 − β)k0

4

)
+

√
αtα

(k − k0)α

)
.

Combining the above bounds for T1 and T2, we obtain

E
[
(q̄k0,k − E [q∞]) (q̄k0,k − E [q∞])⊤

]
=O

(
1

α(k − k0)2 exp
(

−α(1 − β)k0

4

)
+ αtα

k − k0

)
+ O

(
1

(k − k0)2α2 exp
(

−α(1 − β)k0

4

)
+
√

tα/α

(k − k0)

)

=O

( √
tα/α

(k − k0) + 1
(k − k0)2α2 exp

(
−α(1 − β)k0

4

))
.

(35)

Now we are ready to bound the LHS of equation (7). First, we have the following decomposition

E
[
(q̄k0,k − q∗) (q̄k0,k − q∗)⊤

]
=E

[
(q̄k0,k − E [q∞] + E [q∞] − q∗) (q̄k0,k − E [q∞] + E [q∞] − q∗)⊤

]
=E

[
(q̄k0,k − E [q∞]) (q̄k0,k − E [q∞])⊤

]
+ E

[
(E [q∞] − q∗) (q̄k0,k − E [q∞])⊤

]
+ E

[
(q̄k0,k − E [q∞]) (E [q∞] − q∗)⊤

]
+ E

[
(E [q∞] − q∗) (E [q∞] − q∗)⊤

]
. (36)
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For the second term of RHS of equation 36, we have

E
[
(q̄k0,k − E [q∞]) (E [q∞] − q∗)⊤

]
= 1

k − k0

(
k−1∑
t=k0

E [qt − q∞]
)

(E [q∞] − q∗)⊤

=O
(

1
α(k − k0) exp

(
−α(1 − β)k0

4

))(
αB(r, γ, P ) + O(α2 + α2t2

α2)
)

=O
(

1
k − k0

exp
(

−α(1 − β)k0

4

))
.

Similarly, we have the same bound for the third term of equation (36). For the last term of RHS of
equation (36), we have

E
[
(E [q∞] − q∗) (E [q∞] − q∗)⊤

]
= (E [q∞] − q∗) (E [q∞] − q∗)⊤

=
(
αB(r, γ, P ) + O(α2 + α2t2

α2)
) (

αB(r, γ, P ) + O(α2 + α2t2
α2)
)⊤

= α2B′(r, γ, P ) + O(α3 + α3t2
α2).

Combining all these bounds, we obtain

E
[
(q̄k0,k − q∗) (q̄k0,k − q∗)⊤

]
= α2B′(r, γ, P ) + O(α3 + α3t2

α2)

+ O

( √
tα/α

(k − k0) + 1
(k − k0)2α2 exp

(
−α(1 − β)k0

4

))

= α2B′ + O

(
α3 + α3t2

α2 +
√

tα/α

(k − k0) + + 1
(k − k0)2α2 exp

(
−α(1 − β)k0

4

))
.

thereby completing the proof of Corollary 2.

F Proof of Corollary 3

In this section, we give the proof of the first and second moment bounds in Corollary 3.

F.1 First Moment

We have

E
[
q̃

(α)
k0,k

]
− q∗ =

(
2q̄

(α)
k0,k − q̄

(2α)
k0,k

)
− q∗

=2
(

q̄
(α)
k0,k − q∗

)
−
(

q̄
(2α)
k0,k − q∗

)
(i)=2
(

αB(r, γ, P ) + O(α2 + α2t2
α2) + O

(
1

α(k − k0) exp
(

−α(1 − β)k0

4

)))
−
(

2αB(r, γ, P ) + O(α2 + α2t2
α2) + O

(
1

α(k − k0) exp
(

−α(1 − β)k0

2

)))
=O(α2 + α2t2

α2) + O
(

1
α(k − k0) exp

(
−α(1 − β)k0

4

))
where (i) follows from Corollary 2.
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F.2 Second Moment

We first introduce the following short-hands:

u1 := q̄
(α)
k0,k − E

[
q(α)

∞

]
, u2 := q̄

(2α)
k0,k − E

[
q(2α)

∞

]
and v := 2E

[
q(α)

∞

]
− E

[
q(2α)

∞

]
+ q∗.

With these notations, q̃k0,k − q∗ = 2u1 − u2 + v. We then have the following bound∥∥∥∥E [(q̃
(α)
k0,k − q∗

)(
q̃

(α)
k0,k − q∗

)⊤
]∥∥∥∥

∞
≤
∥∥∥∥E [(q̃

(α)
k0,k − q∗

)(
q̃

(α)
k0,k − q∗

)⊤
]∥∥∥∥

2

=
∥∥∥E [(2u1 − u2 + v) (2u1 − u2 + v)⊤

]∥∥∥
2

≤ E
[
∥2u1 − u2 + v∥2

2

]
≤ 3E ∥2u1∥2

2 + 3E ∥u2∥2
2 + 3∥v∥2

2.

By equation (35), we have

E ∥u1∥2
2 = Tr

(
E
[
u1u⊤

1
] )

= O

( √
tα/α

(k − k0) + 1
(k − k0)2α2 exp

(
−α(1 − β)k0

4

))
.

Similarly, we have

E ∥u2∥2
2 = O

( √
tα/α

(k − k0) + 1
(k − k0)2α2 exp

(
−α(1 − β)k0

2

))
.

By Theorem 3, we have ∥v∥2
2 = O

(
α4 + α4t4

α2

)
.

Combining these bounds together, we have

E
[
(q̃k−k0 − q∗) (q̃k−k0 − q∗)⊤

]
= O

(
α4 + α4t4

α2

)
+ O

( √
tα/α

(k − k0) + 1
(k − k0)2α2 exp

(
−α(1 − β)k0

4

))
.

G Experiment Details

Tabular case. We consider two MDPs for our numerical experiments.

The first example is a 1 × 3 Gridword with S = {0, 1, 2} and A = {−1, 1}. For each step, the agent
can walk in two directions: left or right. If the agent walks out of the space, the agent would get
a reward of -4 and stay at the same state. Otherwise, the agent can walk to the next state with
probability of 0.95 or still stay at the same state with probability of 0.05. For the case that the agent
does not exceed the space, the reward function is determined by the current state r(s, a) = r(s) with
r(0) = 0, r(1) = 10 and r(2) = 0.5. The discounted factor is set as γ = 0.9.

The second example is a classical 4 × 4 Gridworld combined with the slippery mechanism in Frozen-
Lake. For each step, the agent can walk in four directions: left, up, right or down. Specially, there
are two state A and B in which the agent can only intend to move to A′ and B′. After the action
is selected by the behavior policy, the agent will walk in the intended direction with probability of
0.9 else will move in either perpendicular direction with equal probability of 0.05 in both directions.
If the agent walks out of the space, the agent would get a reward of -1 and stay in the same state.
Otherwise, the reward function is also determined by the current state with r(A) = 10, r(B) = 5
and r(s) = 0 for s ̸= A, B. The discounted factor is set as γ = 0.9.
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Linear function approximation. Our second set of experiments consider Q-learning with linear
function approximation. More specifically, we consider approximating the Q-function by a linear
subspace spanned by basis vectors ϕ = (ϕ1, . . . , ϕd)⊤ : S × A → Rd. The goal is to find θ∗ such
that q̃θ∗ := Φθ∗ best approximates the optimal Q function q∗, where Φ denotes the feature matrix
Φ =

[
ϕ(s1, a1) · · · ϕ(s|S|, a|A|)

]⊤ ∈ R|S||A|×d. We assume that Φ has a full column rank, which
is standard in literature (Bertsekas & Tsitsiklis, 1996; Chen et al., 2022b; Melo et al., 2008). Note
that θ∗ can be calculated by projected value iteration algorithm.

In this case, the Q-earning algorithm reduces to updating the parameter θ ∈ Rd as follows Bertsekas
& Tsitsiklis (1996):

θk+1 = θk + αϕ(sk, ak)
(

rk + γ max
a′

ϕ(sk+1, a′)⊤θk − ϕ(sk, ak)⊤θk

)
, (37)

where (sk, ak, rk, sk+1) is the sample generated by the behavior policy at time step k.

For the MDP and feature vectors, we consider a similar setup as the work (Chen et al., 2022b,
Appendix D.1). We provide the detail description here for completeness. We consider an MDP with
|S| = 20 states and |A| = 5 actions. We generate the rewards and transition probabilities as follows:
for each (s, a) ∈ S × A,

• The reward r(s, a) is drawn uniformly in [0, 1].

• For the transition probability T (·|s, a), we first obtain |S| numbers by uniformly sampling
of [0, 1], and then normalize these |S| numbers by their sum to make it a valid probability
distribution.

As for the feature matrix, we consider d = 10. For each (s, a), each element of ϕ(s, a) is drawn
from Bernoulli distribution with parameter p = 0.5, and then we normalize the features to ensure
∥ϕ(s, a) ∥ ≤ 1. We repeat this process until the matrix Φ has a full column rank.

We set the discounted factor to be γ = 0.5 and the Markovian data {xk}k≥0 is generated from a
uniformly random behavior policy.

We run Q-learning with linear function approximation (37) with initialization θ
(α)
0 = θ∗ + 10 and

stepsize α ∈ {0.1, 0.2, 0.4}. We also consider two diminishing stepsizes: αk = 1/
(
1 + (1 − γ)k

)
and

αk = 1/k0.75 as we used in tabular Q-learning. The simulation results for the Q-learning with linear
function approximation are illustrated in Figure 3. We plot the ℓ1-norm error ∥θ̄

(α)
k/2,k − θ∗∥1 for the

tail-averaged (TA) iterates θ̄
(α)
k/2,k, the RR extrapolated iterates θ̃

(α)
k with stepsizes α and 2α, and

iterates with diminishing stepsizes.

We can observe some similar results as tabular Q-learning’s:

• The larger the stepsize α, the faster it converges.

• The final TA error, which corresponds to the asymptotic bias, is approximately proportional
to the stepsize.

• RR extrapolated iterates reduce the bias.

• The TA and RR-extrapolated iterates with constant stepsizes enjoy significantly faster initial
convergence than those with diminishing stepsizes.
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Figure 3: The Q-learning with linear function approximation errors of tail-averaged (TA) iterates
and RR extrapolated iterates with different stepsizes.


