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Abstract

We study an inverse reinforcement learning (IRL) problem where the experts are
planning under a shared reward function but with different, unknown planning hori-
zons. Without the knowledge of discount factors, the reward function has a larger
feasible solution set, which makes it harder for existing IRL approaches to identify
a reward function. To overcome this challenge, we develop two algorithms that
can learn a global multi-agent reward function with agent-specific discount factors
that reconstruct the expert policies. We characterize the feasible solution space of
the reward function and discount factors for both algorithms and demonstrate the
generalizability of the learned reward function across multiple domains.

1 Introduction

Designing reward functions in reinforcement learning (RL) that appropriately capture key aspects
of a real-world task can be difficult in domains such as healthcare (Riachi et al., 2021) and fi-
nance (Charpentier et al., 2021). Inverse reinforcement learning (IRL) addresses this challenge by
learning a reward function from expert demonstrations for a given task. The learned reward serves
as a succinct description of the task and then can be transferred to similar tasks. Recent research
in IRL has focused on the additional challenge of learning the reward function from heterogeneous
expert behaviors, for example, where expert demonstrations vary in quality (Shiarlis et al., 2016;
Brown et al., 2019), or where each expert is optimizing a different reward function (Mendez et al.,
2018; Gleave & Habryka, 2018; Yu et al., 2019).

In this work, we focus on the setting where the expert behaviors vary because each expert is
optimizing for a different planning horizon, using the same reward function. In RL, the planning
horizon is encoded in the discount factor, which discounts future (expected) rewards attained by a
given policy. A small discount factor corresponds to a short planning horizon, implying that the
expert prioritizes short-term goals, whereas a large discount factor corresponds to a long planning
horizon. For example, in an intensive care unit, the ventilation weaning practice is influenced by
specific unit protocols and team or individual physician preferences (Kapnadak et al., 2015). Here,
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a more aggressive weaning practice implies a small discount factor, since it prioritizes immediate
changes in the patient’s state. In a mobile health application that helps users manage their own
wellness, users may select the planning horizon by choosing to set up short-term (< 1 year), long-
term (1-2 years), or maintenance (> 2 years) health goals (Dicianno et al., 2017).

Existing IRL work often first chooses discount factors based on domain knowledge, and then learns
the reward function by fixing these discount factors (Ng et al., 2000; Ziebart, 2010; Ramachandran &
Amir, 2007). For entropy-regularized Markov decision processes (MDPs), when observing multiple
experts and when the true discount factors of the experts are known, prior work shows that IRL can
identify the true reward function up to a constant (Cao et al., 2021; Rolland et al., 2022). However,
in most applications, we do not know the set of true discount factors a priori – this set must be
learned alongside the reward function. Unfortunately, when the discount factors are misspecified or
unknown, current IRL literature does not address the inference, nor the identifiability of the reward
function. In this work, we fill this gap in the literature and study settings where both the discount
factors (one per expert) and the reward function are unknown.

In this work, we assume that a global reward function is shared among the experts as the first
step in understanding how unknown discount factors pose challenges to existing IRL work. This
setting corresponds to experts having a shared goal, but different attention to the time needed to
achieve them. We first provide analyses on the hardness of adapting existing IRL approaches to our
problem setting, where both the set of discount factors and the reward must be inferred from the
data. In particular, we consider two classes of popular IRL approaches: linear programming IRL
(LP-IRL; Ng et al. (2000)) and max causal entropy IRL (MCE-IRL; Ziebart (2010)). We show that
naive extensions of LP-IRL admit undesirable feasible solutions such as the degenerate solution
wherein multiple experts are assigned the same discount factor.

In the case of MCE-IRL, whose Lagrangian dual problem can be interpreted as maximum likelihood
IRL (ML-IRL) (Zeng et al., 2022), we show that when discount factors are unknown, strong duality
does not hold for MCE-IRL and ML-IRL. Thus, solving ML-IRL does not guarantee convergence
towards a feasible solution that reconstructs the expert policies. Furthermore, we show that for
MCE-IRL, when the discount factors are misspecified, then either: (1) there does not exist a
reward function that recovers the expert policy, or (2) there exists a unique reward function (up to
a constant), which recovers the expert policy but may not be the true reward function. Fortunately,
in Section 6.2, we observe that, in practice, when there are more than two experts, the set of reward
functions that recovers the expert policy is non-empty only for a small set of discount factors. That
is, in many applications, both the discount factors and the reward function are identifiable.

Finally, to address the failure modes of naive adaptations of LP-IRL and MCE-IRL, we develop
two novel algorithms to learn a global multi-agent reward function with agent-specific discount
factors based on LP-IRL and MCE-IRL. We (1) characterize the feasible solution space of the
reward function and discount factors for both algorithms, and (2) empirically demonstrate the
generalizability of the learned reward function across multiple domains.

2 Related Work

IRL with homogeneous demonstrations. Previous IRL work focuses on identifying a reward
function that explains expert behavior when the demonstrations are generated by a single expert.
For example, max-margin IRL methods (Ng et al., 2000; Abbeel & Ng, 2004) seek a reward function
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that maximally separates the optimal policy and the second-most optimal policy. Max entropy
IRL methods (Ziebart et al., 2008; Ziebart, 2010) estimate a reward function that maximizes the
likelihood of the expert demonstrations. Bayesian IRL methods (Ramachandran & Amir, 2007; Jin
et al., 2010) use prior knowledge to infer a posterior distribution over all possible reward functions.
However, when given trajectories from multiple experts, each of these IRL approaches learns a
separate reward function for each expert by default, which is data inefficient. In our work, we
focus on a common scenario where the global reward function is shared by all experts with discount
factors specific to each expert; these different discount factors lead to different optimal policies.

IRL with heterogeneous demonstrations. Recent IRL work explores heterogeneous expert
demonstrations. Some methods study the scenario where expert demonstrations vary in quality.
For example, Shiarlis et al. (2016) learn from demonstrations of both optimal policies and policies
with undesirable behaviors (e.g., violating safety constraints). Similarly, Brown et al. (2019) assume
that one has access to a set of demonstrations ranked by their expected return. Other work studies
the setting where each expert optimizes for a different task. For example, Babes et al. (2011)
first identify the tasks by clustering the expert demonstrations and then identify a reward function
for each task. In Yu et al. (2019), the authors use deep latent generative models to capture the
shared reward structure of expert demonstrations. Finally, Mendez et al. (2018) consider a lifelong
learning setting where the agent faces a sequence of similar tasks and optimizes overall performance.
In contrast, we consider the scenario where experts share the same reward function but have different
planning horizons. To the best of our knowledge, we are the first to study this type of IRL problem.

Identifiability in IRL with respect to the reward function and discount factors. Recent
work provides identifiability analysis on the reward function when the true discount factors are
known for entropy-regularized MDPs (Cao et al., 2021; Rolland et al., 2022). Specifically, the
authors show that, given optimal policies from two distinct discount factors and a shared reward
function, one can identify the true reward function up to a constant. However, their analysis
assumes that the true discount factors are provided, which is not realistic. In this work, we show
that given misspecified discount factors, the feasible reward function set may not include the true
reward function under the same rank conditions in Cao et al. (2021). We develop algorithms to
recover the set of discount factors and the reward function for settings where both are unknown.

3 Problem Setting

Markov decision processes (MDPs). Consider an MDP, M∗ = (S, A, r∗, T, γ∗), where S is a
finite state space, A is a set of discrete actions, T : S × A × S → [0, 1] is the transition dynamics
describing the probability of reaching the next state s′ by taking action a in the current state s,
r∗(s) is an action-independent reward function, and γ∗ ∈ [0, 1] is the discount factor that controls
the weight of the future reward. For standard MDPs, the optimal policy is defined as,

π∗(a|s) = arg max
a

Qr∗,γ∗

π (s, a) = arg max
a

Eπ

[ ∞∑
t=0

γ∗tr∗(St+1)

∣∣∣∣∣St = s, At = a

]
. (1)

For entropy-regularized MDPs, the optimal policy is defined as,

π̃∗(a|s) = arg max
π

Q̃r∗,γ∗

π (s, a) = arg max
π

Eπ

[ ∞∑
t=0

γ∗t [r∗(St+1) + λH(π(·|St))]

∣∣∣∣∣St = s, At = a

]
,

(2)
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where λ is a temperature parameter with a larger λ leading to a more stochastic policy. When
λ → 0, we will recover the expert policy of standard MDPs (π∗ = π̃∗).

Multi-planning horizon IRL (MP-IRL). We assume that we are given an MDP, M∗\{r∗, γ∗},
with an unknown reward function and discount factor. We observe demonstrations from a set of K
expert policies, each optimized under a shared global reward function r∗, and transition dynamics
T , but using distinct discount factors (γ∗

i ̸= γ∗
j for i ̸= j). We denote the set of distinct discount

factors by Γ∗ = {γ∗
k}K

k=1. We assume that the expert policies are solved using Eq. 1 or 2 given
appropriate contexts, and denote the set of expert policies for standard or entropy regularized
MDPs by Π∗ = {π∗

k}K
k=1 or Π̃∗ = {π̃∗

k}K
k=1, respectively.

In MP-IRL, we wish to find a reward function r and a set of distinct discount factors Γ = {γk}K
k=1

such that each expert policy remains optimal under the reconstructed MDP M = (S, A, r, T, γk).

4 Algorithms for MP-IRL: LP-IRL

In this section, we introduce a popular class of IRL algorithms, linear programming IRL (LP-IRL),
for the single known discount factor IRL setting. We explain how naive extensions of LP-IRL to
the MP-IRL setting fail. Finally, we present a novel algorithm, multi-planning horizon LP-IRL
(MPLP-IRL), that extends LP-IRL to jointly learn a set of distinct discount factors and a global
reward function.

In the following, we assume that the expert policies are obtained by solving standard MDPs, and
are denoted by, Π∗ = {π∗

k}K
k=1. In Ng et al. (2000), the authors assume that expert demonstrations

are obtained from a single known planning horizon. They learn a reward function from expert
demonstrations by solving the following optimization problem,

max
r

∑
s∈S

min
a∈A\π∗(s)

{Qr,γ
π∗ (s, π∗(s)) − Qr,γ

π∗ (s, a)} − λ∥r∥1 (3a)

subject to Qr,γ
π∗ (s, π∗(s)) − Qr,γ

π∗ (s, a) ≥ 0 for s ∈ S, a ∈ A \ π∗(s) (3b)
|r| ⪯ rmax (3c)

where the l1 norm penalty, λ∥r∥1, regularizes the sparsity of the reward function. In the above
optimization problem, constraints (3b) ensure that π∗ is optimal under the inferred reward function
r. The reward function solution to Eq. 3a maximizes the sum of the differences of the Q-functions
between the best and the next-best action over all states. The LP-IRL problem in Eq. 3 can be
solved with linear programming (LP) (Ng et al., 2000). We extend the LP-IRL approach to expert
demonstrations with multiple planning horizons. As such, we make an additional assumption:
Assumption 1. For any two distinct expert policies π∗

i , π∗
j ∈ Π∗, optimized under γ∗

i , γ∗
j , respec-

tively, there exists a state s ∈ S such that Q
r∗,γ∗

i

π∗
i

(s, π∗
i (s)) > Q

r∗,γ∗
i

π∗
i

(s, π∗
j (s)).

The above assumption ensures that each expert policy is uniquely optimal in at least one of the
states, i.e., no two expert policies are equally optimal in all states. Since we assume a common
reward function, this assumption implies that γi ̸= γj for i ̸= j. In other words, our assumption
states that the discount factors lead to distinct policies. This assumption is necessary because,
otherwise, we cannot distinguish the expert policies from the observed data and the reward function
is non-identifiable. In Appendix C.1, we also show that in practice, Assumption 1 is rarely violated.
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4.1 Naive Extension of LP-IRL Fails

We first note that naive extensions of the formulation in Eq. 3 to the MP-IRL setting return optimal
solutions that violate Assumption 1. The naive solution would be to simply maximize the sum of
the differences of the Q-functions over all experts and states, i.e.,

max
Γ∈[0,1]K

max
r

∑
k∈[K]

∑
s∈S

min
a∈A\π∗

k
(s)

{Qr,γk

π∗
k

(s, π∗
k(s)) − Qr,γk

π∗
k

(s, a)} − λ∥r∥1 (4a)

subject to Qr,γk

π∗
k

(s, π∗
k(s)) − Qr,γk

π∗
k

(s, a) ≥ 0 ∀s ∈ S, a ∈ A\π∗
k(s), k ∈ [K] (4b)

|r| ⪯ rmax (4c)

In Appendix E.1, we show that without further constraining the discount factors, there are situations
where the above optimization problem assigns the same discount factors to multiple experts. This
implies that, under the learned discount factors, some expert policies are not distinguishable from
each other under any reward function, which violates Assumption 1. The expert policies should be
sufficiently different in terms of Q-functions under the learned reward function and discount factors.
We modify this naive optimization problem to address this problem below in Section 4.2.

4.2 Multi-planning horizon LP-IRL (MPLP-IRL)

To avoid undesirable global optimum in Appendix E.1, we need to incorporate the constraints in
Assumption 1. This is challenging because optimization problems that include strict inequality
constraints may not have attainable optimal solutions. We avoid incorporating strict inequalities
by first selecting states where the expert policies are distinguishable and then maximizing the
differences of Q-functions only on those states. The proposed MPLP-IRL problem is as follows:

max
Γ∈[0,1]K

max
r

min
k∈[K],(s,a)∈Ωk

{Qr,γk

π∗
k

(s, π∗
k(s)) − Qr,γk

π∗
k

(s, a)} − λ∥r∥1 (5a)

subject to Qr,γk

π∗
k

(s, π∗
k(s)) − Qr,γk

π∗
k

(s, a) ≥ 0 ∀s ∈ S, a ∈ A\π∗
k(s), k ∈ [K] (5b)

|r| ⪯ rmax, (5c)

where Ωk is a set of state-action tuples ensuring that there exists a feasible reward solution r such
that, for any (s, a) ∈ Ωk, Qγk

π∗
k
(s, π∗

k(s)) − Qγk

π∗
k
(s, a) > 0. Ωk is constructed by solving another LP

problem which distinguishes the optimal action from other actions on as many states as possible.
Theorem 1. For a set of arbitrary distinct discount factors, Γ (γi ̸= γj for i ̸= j), let {z∗

k}K
k=1 (z∗

k ∈
R|S|×(|A−1|)) be the optimal solution to the following LP problem,

min
r,{zk}

K∑
k=1

1⊺zk (6a)

subject to Qr,γk

π∗
k

(s, π∗
k(s)) − Qr,γk

π∗
k

(s, a) + zk(s, a) ≥ 1 ∀s ∈ S, a ∈ A\π∗
k(s), k ∈ [K] (6b)

Qr,γk

π∗
k

(s, π∗
k(s)) − Qr,γk

π∗
k

(s, a) ≥ 0 ∀s ∈ S, a ∈ A\π∗
k(s), k ∈ [K] (6c)

zk ≥ 0 ∀k ∈ [K], (6d)

where zk(s, a) denotes the element of vector zk corresponding to the state-action tuple (s, a). There
exists a feasible reward solution r that satisfies Assumption 1 if, for any pair of expert policies
π∗

i , π∗
j (i ̸= j), there exists a state s such that z∗

i (s, π∗
j (s)) = 0.
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Proof (Sketch). The optimization problem in Eq. 6 is equivalent to

max
r

K∑
k=1

∑
s∈S

∑
a∈{A\π∗

k
(s)}

1{Q
r,γk
π∗

k

(s,π∗
k

(s))−Q
r,γk
π∗

k

(s,a)>0},

which maximizes the number of state-action pairs where the Q-function difference is positive (where
the expert policy is strictly better). z∗

k(s, a) = 1 if the optimal solution cannot distinguish the
optimal action, π∗

k(s), from action a on state s. If under the optimal solution, there is a pair of
expert policies π∗

i , π∗
j that cannot be distinguished on any states (i.e., (s, π∗

i (s)) /∈ Ωj for ∀s ∈ S), we
fail to find a reward solution that does not violate Assumption 1, and we claim the inner optimization
problem in Eq. 5 to be infeasible under Γ. Otherwise, we have that Ωk = {(s, a)|z∗

k(s, a) = 0}. See
full proof in Appendix A.1.

Intuitively, our proposed optimization problem seeks a reward function that maximizes the mini-
mal non-zero difference of Q-functions over states where expert policies are distinguishable, thus
encouraging expert policies to be sufficiently different and ensuring the satisfaction of Assumption 1.

4.3 Inference for MPLP-IRL

While the objective function in 5a gives us the desired solutions, it is not convex with respect to
the discount factors Γ. To solve for the global optima, we perform a bi-level optimization. Denote
the lower-level objective function as

g(Γ, r) = min
k∈[K],(s,a)∈Ωk

{Qr,γk

π∗
k

(s, π∗
k(s)) − Qr,γk

π∗
k

(s, a)} − λ∥r∥1.

We rewrite the optimization problem in Eq. 5 as,

max
Γ∈[0,1]K

g∗(Γ), where g∗(Γ) = max
r

g(Γ, r) subject to constraints as in 5b, 5c. (7)

Given any Γ ∈ [0, 1]K , the lower-level objective function g can be solved analytically with LP. The
upper-level optimization problem can be solved by performing a grid search over the space [0, 1]K .
However, the computation complexity of grid search increases exponentially with respect to the
total number of expert policies. To improve computation efficiency, we use Bayesian optimization
(BO) techniques, which are suitable for nonconvex objective functions that are expensive to evaluate.
See full algorithm details in Appendix B.

5 Algorithms for multi-planning horizon IRL: MCE-IRL

Although LP-IRL is easy to solve, we cannot apply it to domains with continuous state spaces as
this will result in an infinite number of constraints. In this section, we switch our focus to MCE-IRL,
which is a popular class of IRL algorithms for continuous domains. As is standard in this setting,
we assume that the expert policies, Π̃∗ = {π̃∗

k}K
k=1, are solved with entropy-regularized MDPs and

are optimizing a linear reward function,

rθ∗(s) = θ∗⊺ϕs, θ∗, ϕs ∈ R|S|.
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We first introduce notations used for MCE-IRL. For any state s ∈ S and action a ∈ A, given an
initial state distribution ρ0, the expected discounted state-action visitation count, and the expected
discounted state visitation count of policy π̃ are defined as,

µγ

π̃(s, a) = Eπ̃

[ ∞∑
t=0

γt
1{St=s,At=a}

]
, and µγ

π̃(s) = Eπ̃

[ ∞∑
t=0

γt
1{St=s}

]
=
∑

a

µγ

π̃(s, a),

respectively. We further define the expected feature count of policy π̃ as

fγ

π̃ = Eπ̃

[ ∞∑
t=0

γtϕ(St = s)

]
∈ R|S|.

Note that, the expected feature count can also be written as fγ

π̃ =
∑

s µγ

π̃(s)ϕs. Assuming that the
discount factor γ is given, MCE-IRL solves the following constrained optimization problem:

max
µγ

π̃(s, a)
Hγ

π̃ = Eπ̃

[ ∞∑
t=0

−γt log π̃(At|St)

]
=
∑
(s,a)

− log

(
µγ

π̃(s, a)∑
a µγ

π̃(s, a)

)
µγ

π̃(s, a) (8a)

subject to fγ

π̃ = fγ

π̃∗ (8b)∑
a

µγ

π̃(s′, a) = ρ0(s′) + γ
∑

s

∑
a

T (s′|s, a)µγ

π̃(s, a) ∀s′ ∈ S (8c)

µγ

π̃(s, a) ≥ 0 ∀(s, a) ∈ (S × A). (8d)

MCE-IRL (Ziebart, 2010) identifies a reward function by the principle of maximum causal entropy
(Eq. 8a) while matching the feature expectations between the expert and the learned policy (Eq. 8b).
The Bellman flow constraints in Eqs. 8c-8d ensure that µγ

π̃(s, a) are state-action visitation count of
a valid stochastic policy π̃ with discount factor γ. When the reward function is linear, Zeng et al.
(2022) establish a strong duality between the MCE-IRL problem (Eq. 8) and its Lagrangian dual
problem, which is equivalent to the following ML-IRL problem:

max
θ

L(θ) = Eπ̃∗

[ ∞∑
t=0

γt log π̃θ(At|St)

]
(9a)

subject to π̃θ = arg max
π

Q̃θ,γ
π (s, a), (9b)

where L(θ) is the expectation of the discounted likelihood of expert trajectories under policy π̃θ. In
practice, one often solves the above ML-IRL problem instead because it is more tractable.

5.1 Strong duality does not hold for multi-planning horizon MCE-IRL
(MPMCE-IRL)

Although extending the formulation in Eq. 8 to the MP-IRL setting is straightforward, we cannot
solve the Lagrangian dual or the ML-IRL problem as alternative optimization problems. In this
section, we show that when the discount factors are unknown, strong duality does not hold between
the MCE-IRL problem and its Lagrangian dual, which makes the inference less tractable. We
extend the MCE-IRL formulation to the MP-IRL setting by maximizing the sum of causal entropy
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while matching the expected feature counts for all expert policies:

max
Γ∈[0,1]K

max
{µ

γk

π̃k
(s,a)}

K∑
k=1

Hγk

π̃k
=

K∑
k=1

∑
(s,a)

− log

(
µ

γk

π̃k
(s, a)∑

a
µ

γk

π̃k
(s, a)

)
µ

γk

π̃k
(s, a) (10a)

subject to f
γk

π̃k
= f

γk

π̃∗
k

∀k ∈ [K] (10b)∑
a

µ
γk

π̃k
(s′, a) = ρ0(s′) + γk

∑
s

∑
a

T (s′|s, a)µγk

π̃k
(s, a) ∀s′ ∈ S, k ∈ [K] (10c)

µ
γk

π̃k
(s, a) ≥ 0 ∀(s, a) ∈ (S × A), k ∈ [K]. (10d)

The multi-planning horizon ML-IRL (MPML-IRL) formulation is as follows:

max
Γ∈[0,1]K

max
θ

L(θ, Γ) =
K∑

k=1

Eπ̃∗
k

[ ∞∑
t=0

γt log π̃θ
k(At|St)

]
(11a)

subject to π̃θ
k = arg max

π
Q̃θ,γk

π (s, a) ∀k ∈ [K] (11b)

We first show that strong duality does not hold between the MPMCE-IRL problem and its La-
grangian dual problem.
Theorem 2. Let H∗, G∗ be the optimal value of the MPMCE-IRL problem in Eq. 10 and its
Lagrangian dual problem, respectively. Let L∗ be the optimal value of the MPML-IRL problem in
Eq. 11. Then, we have that G∗ ≥ H∗ ≥ −L∗.

Proof (Sketch). The MPMCE-IRL problem in Eq. 10 is nonconcave because the constraints in
Eq. 10c are not affine. In Appendix A.2, we show that there are no saddle points for the Lagrangian
dual function. Thus, strong duality does not hold.

Theorem 2 also implies that, for MP-IRL problems, solving the MPMCE-IRL problem is not equiva-
lent to solving the MPML-IRL problem. In Proposition 1, we further show that an optimal solution
to the MPML-IRL problem may not reconstruct the expert policies. Thus, we cannot solve the
MPML-IRL as an alternative even though it is more computationally convenient.
Proposition 1. Let Γ, θ be an optimal solution to the MPML-IRL in Eq. 11 and π̃θ

k be the optimal
policy for the reward parameters θ and the discount factor γk. Then Q̃θ,γk

π̃θ
k

≥ Q̃θ,γk

π̃∗
k

(i.e., π̃∗
k may

not be optimal under the optimal solution Γ, θ).

Proof (Sketch). Let θ̂, Γ̂ be any reward parameters and discount factors in the parameter space
such that for all k ∈ [K], π̃θ̂

k = π̃∗
k. In Appendix A.3, we show that such a feasible solution that

reconstructs expert policies Π̃∗ may not be a critical point of L(θ, Γ).

5.2 Inference for multi-planning horizon MCE-IRL

Our theory in Section 5.1 above implies that for MP-IRL problems, we cannot solve the MPMCE-
IRL problem by solving the MPML-IRL problem. To solve the MPMCE-RL problem, similar to
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MPLP-IRL (Sec. 4.3), we propose a bi-level optimization in Eq. 10. Given a fixed set of discount
factors, Γ ∈ [0, 1]K , let the lower-level optimization problem be

g∗(Γ) = max
{µ

γk

π̃k
(s,a)}

∑
k=1

Hγk

π̃k
subject to constraints as in Eq. 10b-10d. (12)

In practice, we observe that the above optimization problem is feasible for only a small set of
discount factors (see the full discussion in Sec. 5.3). To ensure convergence to a feasible solution,
for each lower-level optimization problem, we calculate the duality gap between the primal problem
and its Lagrangian dual problem. For the upper-level optimization problem, we use BO to quickly
identify discount factors with feasible reward functions. The full algorithm is given in Algorithm 2.

5.3 Feasibilty and Identifiability Analysis for Inference

Although the optimization problem in Eq. 12 is concave and can be solved with the Lagrangian
duality method, it may not be feasible when the discount factors are misspecified. In this section,
we study the effect of misspecified or unknown discount factors on the identifiability of the true
reward function, which further determines the feasible solution space of the MPMCE-IRL problem.

Similar to Rolland et al. (2022), we first give matrix rank conditions that determine the set of
reward functions that reconstruct optimal policies, Π̃∗.
Proposition 2. Consider an MP-IRL problem defined in Sec. 3 with K expert policies, Π̃∗ =
{π̃∗

k}K
k=1, solved with entropy-regularized RL. Assume that we are given a set of arbitrary discount

factors, Γ = {γk}K
k=1 (γi ̸= γj for i ̸= j). Tai

is the transition dynamics under action ai. Let

TA =

 Ta1
...

Ta|A|

 , Φ =

TA −(1 ⊗ I − γ1TA) 0 · · ·
...

...
. . .

...
TA 0 · · · −(1 ⊗ I − γkTA)


and b⊺ = λ

[
log π∗

1(a1|·), · · · , log π∗
1(a|A||·), · · · , log π∗

k(a1|·), · · · , log π∗
k(a|A||·)

]⊺
.

Then there does not exist any reward function that reconstructs optimal policies if and only if
rank(Φ|b) > rank(Φ). There exists a unique reward function (up to a constant factor) that recon-
structs optimal policies if rank(Φ|b) = rank(Φ) = K|S| + |S| − 1.

Proof. The proof of Proposition 2, follows in a similar manner to that of Theorem 3 in Rolland
et al. (2022). To find a reward function that reconstructs optimal policies, the linear system Φx = b,
with K|A||S| equations and (K + 1)|S| variables, needs to be consistent.

Unlike the proof of Theorem 3 in Rolland et al. (2022), we do not assume the linear system is
consistent because when the discount factors, Γ, are misspecified, the expert policies may not be
optimal for the true reward function r∗. According to the Rouché-Capelli theorem, the above system
of equations is inconsistent if rank(Φ|b) > rank(Φ). The linear system has a unique solution (up
to a constant factor) if rank(Φ|b) = rank(Φ) = (K + 1)|S| − 1.

Proposition 2 implies that, without correctly specified discount factors, the reward set that recon-
structs optimal policies may not include the true reward function, which emphasizes the importance
of inferring the discount factors (and learning them correctly) rather than fixing them arbitrarily.
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But is it possible to identify the true discount factors and the true reward function in practice?
By the proof of Proposition 2, with more expert policies, the number of constraints of the linear
system grows faster than the number of variables, which makes the set of feasible solutions of
the linear system smaller. In Section 6.2, we empirically show that when the number of experts is
sufficiently large, the reward set is non-empty for only a small set of discount factors. Thus, in highly
heterogenous settings, both the reward function and the discount factors are more identifiable.

The rank conditions in Proposition 2 also determine if the optimization problem in Eq. 12 is feasible.
Corollary 1. Given a set of discount factors Γ = {γk}K

k=1, the optimization problem in Eq. 12 is
feasible if and only if rank(Φ|b) = rank(Φ) where Φ, b is defined in Proposition 2. Additionally, if
the optimization problem is feasible, the optimal solution is achieved at µγk

π̃k
(s, a) = µγk

π̃∗
k
(s, a).

Proof (Sketch). We show that, when the optimization problem is feasible, an optimal solution of
the Lagrangian multipliers is a reward function that induces the same visitation variables as the
expert policies, {µγk

π̃∗
k
(s, a)}. Thus, for the primal problem to be feasible, it is sufficient to find a

reward function that reconstructs the expert policies. See full details in Appendix A.4.

6 Experiments and Results

In this section, we provide details of our designed domains and experiment setup. We first study the
identifiability and generalizability of both the reward function and discount factors of each domain.
We then study the properties of the learned reward function and the set of discount factors of
MPLP-IRL and MPMCE-IRL algorithms, and investigate how well the learned reward functions
generalize to similar tasks. Last, we demonstrate the fast convergence of our algorithms.

6.1 Domains

We test the MPLP-IRL (Algorithm 1) and MPMCE-IRL (Algorithm 2) on three domains: (1) the
toy domain (Fig. 4a), in which the experts trade off between the probability of getting the reward
and the reward magnitude; (2) the big-small domain (Ankile et al., 2023), in which experts choose
between a small reward close by or a large one that is far away; and (3) the cliff domain, in which
the experts trade off the risk of falling off the cliff with a large reward. For each domain, we provide
expert demonstrations from 3 distinct expert policies. See full details in Appendix C.

6.2 Identifiability and Generalizability Analysis

For each domain, we solve the linear system Φx = b (Proposition 2) by performing a grid search
over the space of Γ ∈ [0, 1]K with an interval of 0.01. Across all designed domains, we observe that
there exist reward functions that reconstruct expert policies only when Γ = Γ∗, which implies that
the MPMCE-IRL problem (Eq. 10) has a small feasible solution space.

For the toy domain, if we only provide expert demonstrations from 2 expert policies, for all the given
discount factors obtained form [0, 1]2, there always exists a unique reward function (up to a constant)
that reconstructs the optimal policy, which may not include the true reward function. We further
conduct a generalizability analysis of these reward functions with the full procedure described in
Appendix D. In Appendix Fig. 11, we see that ∼ 40% of these feasible reward functions do not
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generalize well to new tasks with generalization errors (Eq. 27) larger than 0.5, which emphasizes
the importance of learning the discount factors correctly.

6.3 Results

(a) The value function V γ,r∗
π∗

k
(s0) of expert poli-

cies π∗
0 , π∗

1 , π∗
2 under the true reward r∗.

(b) The value function V
r̃, γ̃

πk (s0) of reconstructed op-
timal policies π0, π1, π2 under the learned reward
function of MPLP-IRL, r̃.

Figure 1: Plots of the value function of the initial state under (a) the true reward function r∗, (b)
the learned reward function of MPLP-IRL, r̃: x, y-axes represent the discount factor γ ∈ [0, 1]
and the value function of expert policies or reconstructed optimal policies, respectively. Each color
represents a different policy. The dashed lines in (b) represent the learned discount factors, Γ̃. We
see that MPLP-IRL recovers the order of true discount factors.

Toy Big Small Cliff
MPLP-IRL 0.009 ± 0.040 0.039 ± 0.117 0.0 ± 0.0
MPMCE-IRL 0.21 ± 0.25 0.040 ± 0.065 0.0 ± 0.0

Figure 2: The table of the generalization error (Eq. 27) with one standard deviation of the learned
reward function: each row and column represents a different algorithm and domain, respectively.

The learned discount factors recover the order of the true discount factors. From Fig. 1,
we see that although the learned discount factor (Γ̃ ≈ {0, 0.35, 1}) does not exactly align with
the ground truth, they follow the same order of the true discount factors (γ∗

0 ≤ γ∗
1 ≤ γ∗

2). This is
also true for the big-small domain and the cliff domain (see full comparison of the true discount
factors and the learned discount factors in Appendix Table 1). This property allows us to interpret
the bias of each expert’s goal—a small discount factor implies that the expert cares more about
short-term outcomes and vice versa.

MPLP-IRL and MPMCE-IRL can appropriately capture key aspects of the task and
the learned reward functions generalize well to similar new tasks. For the toy domain,
we see that both MPLP-IRL and MPMCE-IRL learn a larger reward at state s2 than at state s1
(Appendix Fig. 4). When the discount factor is large, this reward structure encourages the agent
to collect the large reward even in the face of more stochasticity. For the big-small domain, the
learned reward functions have a small reward for the bottom left grid and a large reward for the
bottom right grid (Appendix Fig. 5). For the cliff domain, the learned reward functions have large
penalties for the top rows and a large reward for the upper right grid (Appendix Fig. 7). Thus,
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all the learned reward functions have similar structures to the true reward function, which allows
us to transfer the reward function to new RL tasks. The setup of the generalizability analysis is
described in Appendix Section D. In Table 2, we see that our learned reward functions have good
generalizability (all the generalization errors are below 0.04 except for that of the toy domain of
MPMCE-IRL, which fails to learn r(s0) correctly (Appendix Fig. 4c)).

(a) MPLP-IRL: the toy domain (b) MPMCE-IRL: the toy domain

Figure 3: Trace plots of the best observed objective value of BO: x, y-axis represent the iteration
and the best observed objective value, respectively. The red dashed line represents an approximate
global maximum or the objective value under the ground truth.

MPLP-IRL and MPMCE-IRL converge quickly. For MPLP-IRL, we approximate the global
optimum by performing a grid search over [0, 1]K with an interval of 0.01. For MPMCE-IRL, it is
computationally heavy to solve the optimization problem in Eq. 12 106 times. We instead compare
the best current objective value of BO to the objective value evaluated under the true reward
function and discount factors. In Fig. 3, we see that on the toy domain, MPLP-IRL converges to
the global maximum within 100 iterations while MPMCE-IRL converges within 50, reducing the
computational burden by a factor of ∼ 104 compared to grid search. See Appendix E.3 for details.

7 Discussion and Future Work

In this work, we study the MP-IRL setting where each expert is planning under different plan-
ning horizons but the same reward function. We provide theoretical and empirical evidence that
highlights the importance of learning correct discount factors.

We develop two novel algorithms, MPLP-IRL and MPMCE-IRL, that learn the reward function and
the discount factors jointly. Although MPLP-IRL is more computationally efficient (LP problems
are faster to solve), it only applies to discrete domains. Additionally, MPLP-IRL does not guarantee
identifying the true reward function and discount factors (in fact, for standard MDPs, identifying
the set of discount factors for which the policy is optimal is nontrivial (Denis, 2019)). In contrast,
we show that when there is a sufficiently large number of experts, MPMCE-IRL can identify both
the reward function and discount factors. However, in practice, MPMCE-IRL has a larger feasible
solution set than Corollary 1 suggests because we only require the algorithm to match the feature
expectation in Eq. 10b within some threshold. Moreover, if the optimization problem in Eq. 12 is
feasible for any Γ ∈ [0, 1]K , MPMCE-IRL does not have attainable optimal solutions.

Interesting future work includes studying when the reward function is identifiable for an MP-IRL
problem and extending to an IRL setting where both planning horizons and reward functions vary.
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A Theorems

A.1 Proof of Theorem 1

In this section, we prove that the pre-computed state-action tuple Ωk allows us to find a feasible
reward function that satisfies the following assumptions:
Assumption 1. For any two distinct expert policies π∗

i , π∗
j ∈ Π∗, i ̸= j, optimized under γ∗

i , γ∗
j

(γ∗
i ̸= γ∗

j ), respectively, there is at least one state s ∈ S such that Q
r∗,γ∗

i

π∗
i

(s, π∗
i (s)) > Q

r∗,γ∗
i

π∗
i

(s, π∗
j (s)).

Theorem 1. (Restated) For a set of arbitrary distinct discount factors, Γ (γi ̸= γj for i ̸= j), let
{z∗

k}K
k=1 (z∗

k ∈ R|S|×(|A−1|)) be the optimal solution to the following problem,

min
r,zk

K∑
k=1

1⊺zk (13a)

subject to Qr,γk

π∗
k

(s, π∗
k(s)) − Qr,γk

π∗
k

(s, a) + zk(s, a) ≥ 1 ∀s ∈ S, a ∈ A\π∗
k(s), k ∈ [K] (13b)

Qr,γk

π∗
k

(s, π∗
k(s)) − Qr,γk

π∗
k

(s, a) ≥ 0 ∀s ∈ S, a ∈ A\π∗
k(s), k ∈ [K] (13c)

zk ≥ 0 ∀k ∈ [K], (13d)

where zk(s, a) denotes the element of vector zk corresponding to the state-action tuple (s, a). There
exists a feasible reward solution r that satisfies Assumption 1 if, for any pair of policies π∗

i , π∗
j

(i ̸= j), there exists a state s such that z∗
i (s, π∗

j (s)) = 0.

Proof. Given an optimization problem in the following:

max
r

∑
(s,a)

1{Q
r,γk
π∗

k

(s,π∗
k

(s))−Q
r,γk
π∗

k

(s,a)}≥0 (14a)

subject to Qr,γk

π∗
k

(s, π∗
k(s)) − Qr,γk

π∗
k

(s, a) ≥ 0 ∀s ∈ S, a ∈ A\π∗
k(s), k ∈ [K] (14b)

Let r̂ be an optimal solution to the optimization problem in Eq. 14. It is easy to see that if, for any
pair of policies π∗

i , π∗
j (i ̸= j), there exists a state s such that Qr̂,γi

π∗
i

(s, π∗
i (s)) − Qr̂,γi

π∗
i

(s, π∗
j (s)) > 0,

then Assumption 1 is satisfied.

We start the proof by showing that an optimal solution to optimization problem 13 is also an
optimal solution to optimization problem 14.

With Bellman Equations, the difference of the Q-functions can be written as,

Qr,γk

π∗
k

(s, π∗
k(s)) − Qr,γk

π∗
k

(s, a) = (T (·|s, π∗
k(s)) − T (·|s, a))(I − γkT π∗

k )−1r.

Let W ∈ R(|S|×(|A|−1)×K)×|S| be a matrix where each row

w⊺
s,a,k = (T (·|s, π∗

k(s)) − T (·|s, a))(I − γkT π∗
k )−1, ∀s ∈ S, a ∈ A \ π∗

k(s), k ∈ [K].

The optimization problem in Eq. 13 then can be rewritten as

max
r

|Wr|0 (15a)

subject to Wr ≥ 0 (15b)
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The optimization problem in Eq. 14 can be rewritten as

min
r,z

1⊺z (16a)

subject to Wr + z ≥ 1 (16b)
Wr ≥ 0 (16c)
z ≥ 0 (16d)

Let r be a reward function that satisfies Constraint 16c. Then for any constant c > 0, cr also satisfies
Constraint 16c. Now, let c be a constant such that any positive element in cWr is larger than 1.
Denote the i-th element of any vector x by xi. An optimal solution, z∗ and r̂. of optimization
problem in 16 has the following form:

z∗
i = 1 if (cW r̂)i = 0, z∗

i = 0 if (cW r̂)i ≥ 1. (17)

We show that r̂ is also an optimal solution to optimization problem 15 with proof by contradiction.

Let z∗, r̂ be an optimal solution to optimization problem 16, but r̂ is not an optimal solution to
optimization problem 15. Then there exists another r̃ such that Wr̃ ≥ 0 and |Wr̃|0 > |Wr̂|0. Now,
let c be a constant such that any positive element in W (cr̃) is larger than or equal 1 and construct
a vector z̃ according to Eq. 17. Because |cW r̃|0 = |Wr̃|0 > |Wr̂|0, Wr̃ ≥ 0 and Wr̂ ≥ 0, z̃ will
have more zero elements than z∗. Thus, 1⊺z̃ < 1⊺z∗, which contradicts the assumption that z∗ is
optimal.

Additionally, with the definition of z∗ in Eq. 17, we can see that

w⊺
s,a,k = Qr̂,γk

π∗
k

(s, π∗
k(s)) − Qr̂,γk

π∗
k

(s, a) > 0

if and only if z∗
k(s, a) = 0. Thus, there exists a feasible reward solution r that satisfies Assumption 1

if, for any pair of policies π∗
i , π∗

j , there exists a state s such that z∗
i (s, π∗

j (s)) = 0.

A.2 Proof of Theorem 2

In this section, we show that under our targetted IRL setting in 3, strong duality does not hold
between the MCE-IRL problem and its Lagrangian dual. Furthermore, solving the MCE-IRL
problem is not equivalent to solving the ML-IRL problem.
Theorem 2. (Restated) Let the multi-planning horizon MCE-IRL problem be

max
Γ∈[0,1]K

max
{µ

γk
π̃k

(s,a)}

K∑
k=1

Hγk
π̃k

=
K∑

k=1

∑
(s,a)

− log
(

µ
γk
π̃k

(s, a)∑
a

µ
γk
π̃k

(s, a)

)
µ

γk
π̃k

(s, a) (18a)

subject to f
γk
π̃k

= f
γk
π̃∗

k
∀k ∈ [K] (18b)∑

a

µ
γk
π̃k

(s′, a) = ρ0(s′) + γk

∑
s

∑
a

T (s′|s, a)µγk
π̃k

(s, a) ∀s′ ∈ S, k ∈ [K] (18c)

µ
γk
π̃k

(s, a) ≥ 0 ∀(s, a) ∈ (S × A), k ∈ [K]. (18d)
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Let the multi-planning horizon ML-IRL problem be

max
Γ∈[0,1]K

max
θ

L(θ, Γ) =
K∑

k=1

Eπ̃∗
k

[ ∞∑
t=0

γt log π̃θ
k(At|St)

]
(19a)

=
K∑

k=1

∑
(s,a)

log
(

µγk

π̃k
(s, a)∑

a µγk

π̃k
(s, a)

)
µγ

π̃∗
k
(s, a) (19b)

subject to π̃θ
k = arg max

π
Q̃θ,γk

π (s, a) ∀k ∈ [K] (19c)

Let H∗, G∗ be the optimal value of the multi-planning horizon MCE-IRL problem in Eq. 10 and its
Lagrangian dual, respectively. Let L∗ be the optimal value of the ML-IRL problem in Eq. 11. Then,
we have G∗ ≥ H∗ ≥ −L∗.

Proof.
Part I – Proof of G∗ ≥ H∗:

The first inequality holds G∗ ≥ H∗ by the weak duality. We further show that when the expert
policies are stochastic, the optimal solutions to the primal problem are not critical points of the
Lagrangian dual function. Thus, strong duality may not always hold.

The Lagrangian dual problem of the primal problem in Eq. 18 is

min
Θ

max
Γ,M

G(Θ, Γ, M) ,where

G(Θ, Γ, M) =
K∑

k=1

∑
(s,a)

− log
(

µγk

π̃k
(s, a)∑

a µγk

π̃k
(s, a)

)
µγk

π̃k
(s, a) + θ⊺k(fγk

π̃k
− fγk

π̃∗
k
)

+
∑
s′,k

xs′,k

(
µγk

π̃k
(s′) − ρ0(s′) − γk

∑
s

∑
a

T (s′|s, a)µγk

π̃k
(s, a)

)
M = {µγk

π̃k
(s, a)}, Θ = {θk, xs,k}, Γ = {γk}K

k=1.

We treat the constraints in Eq. 18d as implicit because the objective function in Eq. 18a is not
defined under non-positive µγk

π̃k
(s, a).

For any Lagrangian multipliers Θ, we find the critical points of G(Θ, Γ, M) by setting the gradient
to zero.

∂G
∂µγk

π̃k
(s, a)

= − log
(

µγk

π̃k
(s, a)∑

a µγk

π̃k
(s, a)

)
+ θ⊺kϕs + xs,k − γk

∑
s′

xs′,kT (s′|s, a) = 0

log
(

µγk

π̃k
(s, a)∑

a µγk

π̃k
(s, a)

)
= θ⊺kϕs + xs,k − γk

∑
s′

xs′,kT (s′|s, a) (20)

By Theorem 1 in Cao et al. (2021), Eq. 20 is satisfied by the state-action visitation count of the
optimal policy under the reward parameters θk and discount factor γk with −xs,k being its value
function. Under our targetted IRL setting, the state-action visitation counts need to be induced by
a global reward function. Thus, we have θ1 = · · · = θk = θ.
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Denote the optimal policy under the reward parameters θ and discount factor γk as π̃θ
k and plug it

into G, the Lagrangian dual problem becomes

min
θ

max
Γ

f(θ, γ) =
K∑

k=1

∑
(s,a)

− log

 µγk

π̃θ
k

(s, a)∑
a µγk

π̃θ
k

(s, a)

µγk

π̃θ
k

(s, a) + θ⊺k(fγk

π̃θ
k

− fγk

π̃∗
k
) (21a)

subject to π̃θ
k = arg max

π
Q̃θ,γk

π (s, a) ∀k ∈ [K] (21b)

Both the primal and the dual problems have an optimal solution because both of them feasible and
bounded. Strong duality holds iff there exists a saddle point for function f(θ, Γ). That is, there
exists some θ̃, Γ̃ such that

∀θ, Γ ∈ [0, 1]K , f(θ̃, Γ) ≤ f(θ̃, Γ̃) ≤ f(θ, Γ̃).

Furthermore, if strong duality holds, Γ̃ is a global maximum point of the primal problem and θ̃ is a
global minimum point of the Lagrangian dual. By Corollary 1, we know that Γ̃ is a global maximum
point iff there exist feasible reward functions that reconstruct the expert policies. Corollary 1 also
tells us that θ̃ ∈ arg min f(θ, Γ̃) are the reward parameters such that µγk

π̃θ̃
k

= µγk

π̃∗
k
.

We now rewrite the Lagrangian dual function f as follows:

f(θ, Γ) =
K∑

k=1

Hγk

π̃θ
k

+ θ⊺k(fγk

π̃θ
k

− fγk

π̃∗
k
) =

K∑
k=1

Ṽ θ,γ

π̃θ
k

− Ṽ θ,γ

π̃∗
k

+ Hγk

π̃∗
k

When µγk

π̃θ̃
k

= µγk

π̃∗
k
, we have that f(θ̃, Γ̃) = Hγ̃k

π̃∗
k
. However, for such θ̃, we can find another γk > γ̃k

for some k ∈ [K] such that

f(θ̃, Γ) =
K∑

k=1

Ṽ
θ̃, γ

π̃θ̃
k

− Ṽ
θ̃, γ
π̃∗

k
+ Hγk

π̃∗
k

(i)
≥ 0 + Hγk

π̃∗
k

(ii)
> Hγ̃k

π̃∗
k

where (i) follows from the fact that π̃θ̃
k is optimal for reward parameter θ̃ and discount fact γk and

(ii) follows from the fact that the entropy is monotonically increasing on γk ∈ [0, 1]. Thus, strong
duality does not hold.

Part II – Proof of H∗ ≥ −L∗:

By negating the objective function in Eq. 19a, we have that

min
Γ∈[0,1]K

min
θ

−L(θ, Γ) =
K∑

k=1

∑
(s,a)

log

 µγk

π̃θ
k

(s, a)∑
a µγk

π̃θ
k

(s, a)

µγ

π̃∗
k
(s, a)

subject to π̃θ
k = arg max

π
Q̃θ,γk

π (s, a) ∀k ∈ [K]

Because an optimal solution to the multi-planing horizon MCE-IRL problem in Eq. 18 is a feasible
solution to the multi-planing horizon ML-IRL problem in Eq. 19. Thus, H∗ ≥ H ≥ −L∗.
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A.3 Proof of Proposition 1

In this section, we show that an optimal solution to the naive multi-planning horizon ML-IRL
problem may not reconstruct the expert policies. Thus, we cannot use this formulation to learn a
feasible reward function.

Proposition 3. (Restated) Let Γ, θ be an optimal solution to the ML-IRL in Eq. 11 and π̃θ
k be the

optimal policy for the reward parameters θ and the discount factor γk. Then Q̃θ,γk

π̃θ
k

≥ Q̃θ,γk

π̃∗
k

(i.e.,
π̃∗

k may not be optimal under the optimal solution Γ, θ).

Proof. Given any reward parameters θ, the optimal value function and Q-value function satisfy,

Ṽ θ,γ
π̃θ (s) = λ log

∑
a

exp(Q̃θ,γ
π̃θ (s, a)/λ) (22)

πθ(a|s) = exp

(
Q̃θ,γ

π̃θ (s, a) − Ṽ θ,γ
π̃θ (s))

λ

)
(23)

Given the above equations, we can rewrite the expectation of the discount likelihood of expert
trajectories as,

L(θ, Γ) =
K∑

k=1

E(St,At)∼π̃∗
k

[ ∞∑
t=0

γt
k log π̃θ

k(At|St)

]
(i)= 1

λ

K∑
k=1

E(St,At)∼π̃∗
k

[ ∞∑
t=0

γt
k

(
Q̃θ,γk

π̃θ
k

(St, At) − Ṽ θ,γk

π̃θ
k

(St))
)]

= 1
λ

K∑
k=1

E(St,At)∼π̃∗
k

[ ∞∑
t=0

γt
k

(
r(St+1) + γkṼ θ,γk

π̃θ
k

(St+1) − Ṽ θ,γk

π̃θ
k

(St)
)]

= 1
λ

K∑
k=1

(
E(St,At)∼π̃∗

k

[ ∞∑
t=0

γt
kr(St+1)

]
+E(St,At)∼π̃∗

k

[ ∞∑
t=1

γt
kṼ θ,γk

π̃θ
k

(St+1)

]
−E(St,At)∼π̃∗

k

[ ∞∑
t=0

γt
kṼ θ,γk

π̃θ
k

(St)

])

= 1
λ

K∑
k=1

(
E(St,At)∼π̃∗

k

[ ∞∑
t=0

γt
kr(St+1)

]
−ES0∼ρ

[ ∞∑
t=0

γt
kṼ θ,γk

π̃θ
k

(S0)

])

(ii)=
K∑

k=1

 1
λ
E(St,At)∼π̃∗

k

[ ∞∑
t=0

γt
kr(St+1)

]
−ES0∼ρ

log
∑

a

exp

 Q̃θ,γk

π̃θ
k

(S0, A0)

λ

 ,

where (i) and (ii) follow from Eq. 22 and 23, respectively. Let θ̂, Γ̂ be any reward parameters and
discount factors in the parameter space such that for all k ∈ [K], π̃θ̂

k = π̃∗
k. We further map γk to

an unconstrained variable space: δk = logit(γk) and ∆ = {δk}K
k=1.
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We now show that ∂L
∂δk

(δ̂k) ≤ 0. Calculating the gradient of L(θ, Γ) with respect to δk gives us the
following:

∂L
∂δk

= 1
λ

∂

∂δk
E(St,At)∼π̃∗

k

[ ∞∑
t=0

∂γt
k

∂δk
r(St+1)

]

− 1
λ
ES0∼ρ

∑
a

exp

 Q̃θ,γk

π̃θ
k

(S0, A0)

λ
− log

∑
a

exp

 Q̃θ,γk

π̃θ
k

(S0, A0)

λ

 ∂Q̃θ,γk

π̃θ
k

(S0, A0)

∂δk


(i)= 1

λ

E(St,At)∼π̃∗
k

[ ∞∑
t=0

∂γt
k

∂δk
r(St+1)

]
−ES0∼ρ

∑
a

π̃θ
k(A0|S0)

∂Q̃θ,γk

π̃θ
k

(S0, A0)

∂δk

 , (24)

where (i) follows from Eq. 22 and 23.

The gradient of Q̃θ,γk

π̃θ
k

(S0, A0) can be further expanded as,

∂Q̃θ,γk

π̃θ
k

(S0, A0)

∂δk
= E(St,At)∼π̃θ

k

[ ∞∑
t=0

∂γt
k

∂δk
r(St+1)

]
+ λ

∂

∂δk
E(St,At)∼π̃θ

k

[ ∞∑
t=0

γtπ̃θ
k(·|St) log π̃θ

k(·|St)

]
.

Plugging the gradient of Q̃θ,γk

π̃θ
k

(S0, A0) into Eq. 24 and evaluating the gradient at π̃θ
k = π̃∗

k gives us,

∂L
∂δk

(δ̂k) ∝
��������������

E(St,At)∼π̃∗
k

[ ∞∑
t=0

∂γt
k

∂δk
r(St+1)

]
−
��������������

E(St,At)∼π̃∗
k

[ ∞∑
t=0

∂γt
k

∂δk
r(St+1)

]

− λ
∂

∂δk
E(St,At)∼π̃θ

k

[ ∞∑
t=0

γt
kπ̃θ

k(·|St) log π̃θ
k(·|St)

]
(i)= − λE(St,At)∼π̃∗

k

[ ∞∑
t=0

tγ̂t−1
k γ̂k(1 − γ̂k)π̃∗

k(·|St) log π̃∗
k(·|St)

]

=
∞∑

t=1
−λ(1 − γ̂k)E(St,At)∼π̃∗

k

[ ∞∑
t′=t

γ̂t
kπ̃∗

k(·|St) log π̃∗
k(·|St)

]
≥ 0,

where (i) follows from the fact ∂γk

∂δk
= ∂σ(δk)

∂δk
= σ(δk)(1 − σ(δk)) = γk(1 − γk). We see that when

γ̂k ∈ (0, 1) ∂L
∂δk

(δ̂k) > 0 and Q̃θ,γk

π̃∗
k

< L∗.

A.4 Proof of Corollary 1

In this section, we provide a characterization of the feasible solution space of the reward function
and discount factors for the lower-level optimization problem in Eq. 10.
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Corollary 1. (Restated) Given a set of discount factors Γ = {γk}K
k=1, the following optimization

problem

max
{µ

γk

π̃k
(s,a)}

K∑
k=1

Hγk

π̃k
=

K∑
k=1

∑
(s,a)

− log

(
µ

γk

π̃k
(s, a)∑

a
µ

γk

π̃k
(s, a)

)
µ

γk

π̃k
(s, a) (25a)

subject to f
γk

π̃k
= f

γk

π̃∗
k

∀k ∈ [K] (25b)∑
a

µ
γk

π̃k
(s′, a) = ρ0(s′) + γk

∑
s

∑
a

T (s′|s, a)µγk

π̃k
(s, a) ∀s′ ∈ S, k ∈ [K] (25c)

µ
γk

π̃k
(s, a) ≥ 0 ∀(s, a) ∈ (S × A), k ∈ [K], (25d)

is feasible if and only if rank(Φ|b) = rank(Φ) where Φ, b is defined in Proposition 2. Additionally,
if the optimization problem is feasible, the optimal solution is achieved at µγk

π̃k
(s, a) = µγk

π̃∗
k
(s, a).

Proof. In Zeng et al. (2022), the authors show that when the optimization problem in Eq. 25 is
feasible, strong duality holds. We first show that when the optimization problem is feasible, the
optimal solution to the optimization problem in Eq. 25 are the visitation variables induced by the
expert policies (i.e. µγk

π̃k
(s, a) = µγk

π̃∗
k
(s, a)). Thus, Theorem 2 in Syed et al. (2008), π̃k(a|s) = π̃∗

k(a|s).

By strong duality, if the primal problem has an optimal solution, the Lagrangian dual problem also
has an optimal solution, which we denote by θ̂, {µγk

π̂k
(s, a)}K

k=1. Previous work shows that, µγk

π̂k
(s, a)

are the visitation variables induced by the entropy-regularized optimal policy, π̂k, under reward
parameters θ̂ and the discount factor γk (Zhou et al., 2017).

By proof by contradiction, assume that there exists a k such that π̂k ̸= π̃∗
k. By strong duality,

an optimal solution to the dual problem satisfies the constraints of the primal problem. Thus,
fγk

π̂k
= fγk

π̃∗
k
. Because π̂k is a unique optimal policy for reward parameters θ̂ (Haarnoja et al., 2017),

we have that

Ṽ θ̂,γk

π̂k
> Ṽ θ̂,γk

π̃∗
k

θ̂⊺fγk

π̂k
+ Hγk

π̂k
> θ̂⊺fγk

π̃k
+ Hγk

π̃k

Hγk

π̂k
> Hγk

π̃k
.

This implies that for any reward parameters θ, π̃∗
k cannot be optimal because

Ṽ θ,γk

π̂k
= θ⊺fγk

π̂k
+ Hγk

π̂k
= θ⊺fγk

π̃k
+ Hγk

π̂k
> Ṽ θ,γk

π̃∗
k

. (26)

However, we can construct a reward function as

r′ = r∗ + (γ∗
k − γk)Ṽ r∗,γ∗

k
π̃k

=

(
θ +

(γ∗
k − γk)Ṽ r∗,γ∗

k
π̃k∑

s ϕs(s)
1
)⊺

ϕs.

By Theorem 5 in Cao et al. (2021), we have that

T ar′ = T a(r∗ + (γ∗
k − γk)Ṽ r∗,γ∗

k
π̃k

)

= T a(r∗ + γ∗
k Ṽ

r∗,γ∗
k

π̃k
) − γkT aṼ

r∗,γ∗
k

π̃k

= λ log π̃∗
k(a|·) − γkT aṼ

r∗,γ∗
k

π̃k
+ Ṽ

r∗,γ∗
k

π̃k
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Thus, policy π̃k is optimal for reward function r′ and the discount factor γk, which conflicts Eq. 26.

Thus, if the optimization problem is feasible, µγk

π̂k
(s, a) = µγk

π̃∗
k
(s, a) and π̂k = π̃∗

k. By Proposition 2,
there exists Lagrangian multipliers θ such that π̂k = π̃∗

k if rank(Φ|b) = rank(Φ).

On the other hand, if rank(Φ|b) = rank(Φ), then there exist reward parameters θ such that π̃∗
k is

optimal for θ and γk. We can see that the solution µγk

π̃∗
k
(s, a) satisfy the KKT conditions. By strong

duality, the primal problem is feasible and has an optimal solution, µγk

π̃∗
k
(s, a).

B Algorithm

In Algorithm 1 and 2, we give the pseudocode of MPLP-IRL and MPMCE-IRL algorithms.

Algorithm 1 Mutli-planning horizon LP-IRL (MPLP-IRL)

1: Given a set of K observed policies Π∗ = {π∗
k}K

k=1, the transition dynamics T .
2: Place a Gaussian process prior on g∗(Γ) (Eq. 7).
3: Observe g∗ at a set of m points, {Γ(i)}m

i=1, with Γ(i) ∼ Unif(0, 1)K

4: while m ≤ MaxIter do
5: Update the posterior distribution of g∗ given all observed points.
6: Query a new point Γ(m) based on the acquisition function.
7: Observe g∗

m = maxr g(Γ(m), r) with constraints in Eq. 5b, 5c.
8: increment m
9: end while

10: Return the reward function r and the set of discount factors Γ with the largest observed g∗.

C Domains

C.1 Toy Domain with a Discrete MDP

The toy domain is designed such that the optimal policy when solving standard MDPs is a 3-step
piecewise function with respect to the discount factor γ ∈ [0, 1].

The MDP is described in Fig. 4a. Specifically, s0 is the initial state, s3 is the absorbing state. The
agent gets a large positive reward when getting to the absorbing state (r∗(s3) = 10). The agent
gets some small rewards when getting to s1, s2 (r∗(s1) = 6, r∗(s2) = 7). With action a0, the agent
moves to the absorbing state s3 with probability (w.p.) 0.95. With action a1, the agent moves to
s1 w.p. 0.9. With action a2, the agent moves to s2 w.p. 0.6. The agent stays otherwise. Note that
although s2 has a larger reward, the agent faces more stochasticity. Thus, there is a trade-off when
the discount factor γ varies.

Expert policies for MPLP-IRL. Let π∗
0 , π∗

1 , π∗
2 denote the optimal policies where the optimal

actions are a0, a1, a2 (π∗
i = 1ai

), respectively. We note that for this toy example, in state s1, s2, s3,
π∗

0 , π∗
1 , π∗

2 are equally optimal. Thus, we focus on s0 in the later analysis.
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s0

+0

s1

+6

s2

+7

s3

+10

a0 w.p. 0.95

a1 w.p. 0.9

a2 w.p. 0.6

(a) Discrete MDP with the true reward
function.

s0

+0

s1

+8.83

s2

+10

s3

+10

a0 w.p. 0.95

a1 w.p. 0.9

a2 w.p. 0.6

(b) Discrete MDP with the learned function
of MPLP-IRL.

s0

+3.4

s1

+4.2

s2

+3.1

s3

+9.7

a0 w.p. 0.95

a1 w.p. 0.9

a2 w.p. 0.6

(c) Discrete MDP with the learned function
of MPMCE-IRL.

s0

+0

s1

+0

s2

+0

s3

+10

a0 w.p. 0.95

a1 w.p. 0.9

a2 w.p. 0.6

(d) Discrete MDP with the learned function
of naive LP-IRL.

Figure 4: Toy Domain
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Algorithm 2 Mutli-planning horizon MCE-IRL (MCELP-IRL)

1: Given a set of K observed policies Π̃∗ = {π̃∗
k}K

k=1 and the transition dynamics T .
2: Place a Gaussian process prior on g∗(Γ) (Eq. 12).
3: Observe g∗ at a set of m points, {Γ(i)}m

i=1, with Γ(i) ∼ Unif(0, 1)K

4: while m ≤ MaxIter do
5: Update the posterior distribution of g∗ given all observed points.
6: Query a new point Γ(m) based on the acquisition function.
7: Solve the Lagrangian dual of the constrained optimization problem in Eq. 12 using the ML-

IRL algorithm in Zeng et al. (2022).
8: Denote the optimal solution to the Lagrangian dual problem as θ̃. Calculate the duality gap

as l =
∑K

k=1 θ̃⊺(fγk

π̃θ̃
k

− fγk

π̃∗
k
)

9: if l ≤ ϵ then
10: g∗

m(Γ) =
∑K

k=1 Hγk

π̃θ̃
k

11: else
12: g∗

m(Γ) = −|l|
13: end if
14: increment m
15: end while
16: Return the reward parameters θ and the set of discount factors Γ with the largest observed g∗.


V π0

γ (s0) = 0.95·10
1−0.05γ

V π1
γ (s0) = 0.9(6+10γ)

1−0.1γ

V π2
γ (s0) = 0.6(7+10γ)

1−0.4γ

Solve pairwise difference between value functions and let γ0 ≈ 0.432, γ1 ≈ 0.876. When γ < γ0,
π∗ = π0. When γ0 < γ < γ1, π∗ = π1. When γ > γ1, π∗ = π2. The value functions of these 3
expert policies, Π∗, under different discount values are shown in 1a.

Satisfaction of Assumption 1. Figure 9a plots the value function of all three expert policies
of s0 under the true reward function r∗ with respect to discount factors γ ∈ [0, 1]. Assumption 1
is violated (Qr∗,γ∗

i

π∗
i

(s, π∗
i (s)) = Q

r∗,γ∗
i

π∗
i

(s, π∗
j (s))) if and only if any of the two lines intersect. We

see that across the entire domain ([0, 1]3), there are only three sets of discount factors that violate
Assumption 1. Thus in practice, the likelihood of violating Assumption 1 is low.

Expert policies for MPMCE-IRL. For MPMCE-IRL, we observe expert demonstrations from
3 expert policies under discount factors Γ∗ = {0.3, 0.5, 0.95}.

C.2 Big-Small Domain

In the big-small domain, there are two absorbing states: one at the left bottom cell with a small
reward (+2) and one at the right bottom cell with a large reward (+20). Each step costs −2 if the
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agent does not reach the absorbing state. The true reward function is plotted in 5a. The agent
can start from anywhere in the grid world except for the absorbing states. The agent can choose
to move {right, down, left, up} at each state. If the agent comes across the wall by taking an
action, the agent stays where it is and moves to the corresponding state otherwise. The transition
dynamics of the grid domain are deterministic.

Expert policies for MPLP-IRL. We observe expert demonstrations from 3 distinct expert
policies whose optimal actions are visualized in Fig. 6. We see that when the discount factor is
small, the agent will go for the closest reward regardless of its magnitude (Fig. 6a). When the
discount factor is large, the agent prefers the large reward regardless of how far the reward is
(Fig. 6c).

Expert policies for MPMCE-IRL. For MPMCE-IRL, we observe expert demonstrations from
3 expert policies under discount factors Γ∗ = {0.1, 0.45, 0.9}

(a) The true reward function r∗. (b) The learned reward function of MPLP-IRL. (c) The learned reward function of MPMCE-IRL.

Figure 5: The reward function of the big-small domain of each state.

(a) The optimal actions of expert policy π∗
0 , (γ∗

0 ∈
[0, 0.2])

(b) The optimal actions of expert policy π∗
1 , (γ∗

1 ∈
(0.2, 0.68])

(c) The optimal actions of expert policy π∗
2 , (γ∗

2 ∈
[0.87, 1])

Figure 6: Visualization of the optimal policies for standard MDPs of the big-small domain.

C.3 Cliff Domain

In the cliff domain, the trajectory ends whenever the agent falls off the cliff (the top row in Fig 7a.
There is one rewarding state at the upper right (+20). The agent gets a large penalty whenever it
falls off the cliff (−10). There is a small cost for each step (−2 when the agent is close to the cliff
and −1 when the agent is far away from the cliff). For each action, the agent moves in the intended
direction with probability 0.9, and moves in a random other direction with probability 0.1.

Expert policies for MPLP-IRL. We observe 3 distinct expert policies whose optimal actions
are visualized in Fig. 8. We see that when the discount factor is small, the agent is not willing to
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risk and tries to avoid walking along the cliff (Fig. 8a). When the discount factor is large, the agent
risks falling off the cliff for good returns (Fig. 8c).

Expert policies for MPMCE-IRL. For MPMCE-IRL, we observe expert demonstrations from
3 expert policies under discount factors Γ∗ = {0, 0.2, 0.52}.

(a) The true reward function r∗. (b) The learned reward function
of MPLP-IRL.

(c) The learned reward function
of MPMCE-IRL.

Figure 7: The reward function of the cliff domain of each state.

(a) The optimal ac-
tions of expert policy
π∗

0 , (γ∗
0 ∈ [0.06, 0.28])

(b) The optimal ac-
tions of expert policy
π∗

1 , (γ∗
1 ∈ (0.28, 0.52])

(c) The optimal actions of expert
policy π∗

2 , (γ∗
2 ∈ (0.52, 0.95])

Figure 8: Visualization of the optimal policies for standard MDPs of the cliff domain.

D Generalization Error

D.1 Generation of random environments

To test the generalizability of the learned reward function of our algorithms, for each domain
environment, we generate N = 100 random transition dynamics {T (n)}N

n=1 and discount factors
{γ(n)}N

n=1. For the toy domain, we randomize the probability of the agent’ moving to the next state
by taking actions from state s0. From state s1, s2, the agent still moves to the absorbing state with
probability 1 regardless of its actions. For the big-small and cliff domains, we generate random
environments by adding noise to the agent’s intended direction. For each action, the agent moves
in the intended direction with probability ϵ ∼ Unif(0, 1), and moves in a random other direction
with probability 1 − ϵ.
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D.2 Evaluation Metrics

For each randomized transition dynamics and discount factor generated from Appendix D.1, we
first solve the optimal policies under the true reward function r∗ and the learned reward function r̂,
denoted as π∗(n), π̂(n) respectively. We evaluate the generalizability of the learned reward function
r̂ by computing the normalized difference of the value function under the true r∗ and randomly
generated environments,

△Vr̂ = 1
N

N∑
n=1

(
V r∗,T (n),γ(n)

π∗(n) − V r∗,T (n),γ(n)

π̂(n)

)
/V r∗,T (n),γ(n)

π∗(n) (27)

E Additional Results

E.1 Undesirable Global Maxima of Naive Extensions of LP-IRL

In this Section, we demonstrate that naive extensions of LP-IRL in Eq. 4 give an undesirable global
optimum. In Fig. 9a, we see that under the true reward function, r∗, each expert policy is optimal
(when the corresponding line is on the top) for a continuous interval. However, in Fig. 9b, we see
that naive LP-IRL algorithm identifies a set of discount factors, Γ̃ = {0, 1, 1} (the orange and the
purple dashed lines intersect at γ = 1). Under the learned discount factors, expert policies π∗

1 and
π∗

2 are not distinguishable from each other under any reward function, which violates assumption 1.

Furthermore, the naive LP-IRL cannot recover the structure of the true reward function In Fig. 4d,
we see that the naive LP-IRL assigns a reward only to the absorbing state with r(s1) = r(s2) = 0.
This reward function gives a generalization error (Eq. 27) of 0.213 ± 0.218. In Fig. 9b, we see that
under this learned reward function, when γ < 1, the expert policy π∗

0 performs substantially better
than π∗

1 , π∗
2 while expert policies π∗

1 , π∗
2 perform similarly to each other. In contrast, under the true

reward function (Fig. 9a), we can find a set of discount factors such that the expert policies are
distinguishable from each other.

E.2 Comparison of the order of true and learned discount factors

In Table 1, we provide a full comparison of the true discount factors Γ∗ and the learned discount
factors Γ̃. Both MPLP-IRL and MPMCE-IRL recover the order of the true discount factors.

E.3 Convergence of MPLP-IRL and MPMCE-IRL

For MPLP-IRL, we approximate the global optimum by performing a grid search on the range
[0, 1]K . For MPMCE-IRL, it is computationally heavy to solve the optimization problem in Eq. 12
for 10K times. We instead compare the best current objective value of BO to the objective value
evaluated under the true reward function and discount factors. From Fig. 3, we see across all
domains, MPLP-IRL converges to the global maximum within 100 iterations while MPMCE-IRL
converges within 50 iterations,
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(a) The value function V γ,r∗
π∗

k
(s0) of expert poli-

cies π∗
0 , π∗

1 , π∗
2 under the true reward r∗.

(b) The value function V
γ̃, r̃

πk (s0) of reconstructed
optimal policies π0, π1, π2 under the learned
reward function of the naive extension of LP-IRL
(Eq. 4), r̃.

Figure 9: Plots of the value function of the initial state under (a) the true reward function r∗,
(b) the learned reward function of the naive extensions of LP-IRL, r̃: x, y-axes represent the
discount factor γ ∈ [0, 1] and the value function of expert policies or reconstructed optimal policies,
respectively. Each color represents a different policy. The dashed lines in (b) represent the learned
discount factors, Γ̃. Each policy is optimal when the corresponding line is on the top. Policies are
equally optimal when the lines interest.

True Γ∗ Learned Γ̃ True Γ∗ Learned Γ̃
of MPLP-IRL of MPLP-IRL of MPMCE-IRL of MPMCE-IRL

Toy
π∗

1 :[0,0.43] π1 : 0 π̃∗
1 : 0.3 π̃1 : 0.53

π∗
2 :(0.43, 0.87] π2 : 0.35 π̃∗

2 : 0.5 π̃2 : 0.82
π∗

3 :[0.87,1) π3 : 1 π̃∗
3 : 0.95 π̃3 : 0.98

Big-Small
π∗

1 :[0,0.2] π1 : 0.38 π̃∗
1 : 0 π̃1 : 0.30

π∗
2 :(0.2,0.68] π3 : 0.74 π̃∗

2 : 0.45 π̃2 : 0.62
π∗

3 :[0.87,1] π3 : 1 π̃∗
3 : 0.9 π̃3 : 0.98

Cliff
π∗

1 :[0.06, 0.28] π1 : 0.04 π̃∗
1 : 0 π̃1 : 0

π∗
2 :(0.28,0.52] π2 : 0.44 π̃∗

2 : 0.2 π̃2 : 0.31
π∗

3 :(0.52,0.95] π3 : 0.84 π̃∗
3 : 0.52 π̃3 : 0.55

Table 1: Table of the true discount factors Γ∗ and the learned discount factors Γ̃. Both MPLP-IRL
and MPMCE-IRL recover the order of the true discount factors.
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(a) MPLP-IRL: the toy domain (b) MPLP-IRL: the big-small do-
main

(c) MPLP-IRL: the cliff domain

(d) MPMCE-IRL: the toy domain (e) MPMCE-IRL: the big-small
domain

(f) MPMCE-IRL: the cliff domain

Figure 10: Trace plots of the best observed objective value of BO: x, y-axis represent the iteration
and the best observed objective value, respectively. The red dashed line represents an approximate
global maximum from performing a grid search over [0, 1]K or the objective value under the ground
truth.
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E.4 Identifiability and Generalizability Analysis for the Toy Domain

In this section, we study the identifiability of the reward function for the toy domain, when the
discount factors are misspecified. We only provide expert demonstrations from 2 expert policies.
We obtain Γ on a grid space of Γ ∈ [0, 1]K with an interval of 0.01. For each set of assigned discount
factors, we calculate rank(Φ|b) and rank(Φ). We find out that for all the given discount factors,
rank(Φ|b) = rank(Φ) = 3|S| − 1. By Proposition 2, this result implies that there exists reward
functions that reconstruct expert policies for a large set of discount factors.

We further study the generalizability of these reward functions. In Fig. 11, we see that ∼ 40% of
these feasible reward functions do not generalize well to new tasks with generalization errors (Eq. 27)
larger than 0.5, which emphasizes the importance of learning the discount factors correctly.

(a) Heatmap of the generalization error of the re-
ward functions (Eq. 27) given (mis)specified dis-
count factors.

(b) Percentile plot of the generalization error of
the reward functions (Eq. 27) given (mis)specified
discount factors.)

Figure 11: The (a) heatmap and (2) percentile plot of the generalization error of the reward
functions (Eq. 27) given (mis)specified discount factors: In (a) x, y-axis represents the given γ0, γ1
respectively. The red star represents the true discount factors γ∗

0 , γ∗
1 . There are no feasible solutions

along the diagonal. Lighter blue indicates a smaller error and vice versa. In (b) x, y-axis represents
the percentile and the generalization error, respectively.


