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Abstract

We propose a welfare-centric fair reinforcement-learning setting, in which an agent
enjoys vector-valued reward from a set of beneficiaries. Given a welfare function W(·),
the task is to select a policy π̂ that approximately optimizes the welfare of their value
functions from start state s0, i.e., π̂ ≈ argmaxπW

(
Vπ

1 (s0), Vπ
2 (s0), . . . , Vπ

g (s0)
)
. We

find that welfare-optimal policies are stochastic and start-state dependent. Whether
individual actions are mistakes depends on the policy, thus mistake bounds, regret
analysis, and PAC-MDP learning do not readily generalize to our setting. We develop
the adversarial-fair KWIK (Kwik-Af) learning model, wherein at each timestep,
an agent either takes an exploration action or outputs an exploitation policy, such
that the number of exploration actions is bounded and each exploitation policy
is ε-welfare optimal. Finally, we reduce PAC-MDP to Kwik-Af, introduce the
Equitable Explicit Explore Exploit (E4) learner, and show that it Kwik-Af learns.
Keywords: Fair RL · Vector-Valued MDP · PAC-MDP · KWIK Learning

1 Introduction

As the negative societal consequences of machine learning (ML) run amok become increasingly
apparent, fair ML methods have seen increased attention for tasks like facial recognition (Buolamwini
and Gebru, 2018; Cook et al., 2019; Cavazos et al., 2020) and hiring (Kleinberg et al., 2018; Raghavan
et al., 2020). Despite this positive trend, most attention on the theory side has been focused on fair
supervised (Agarwal et al., 2018; Thomas et al., 2019; Cousins, 2021) and unsupervised (Chierichetti
et al., 2017; Chhabra et al., 2021) learning, whereas the second-order societal-welfare impact of ML
models, such as the runaway positive feedback loops in settings like predictive policing (Ensign et al.,
2018; Alikhademi et al., 2021), are more naturally posed as reinforcement learning (RL) problems.

We apply ideas from welfare-centric supervised learning to the RL setting; in particular, we assume an
agent receives a vector-valued reward signal from a set of beneficiaries, each representing, e.g., different
racial, gender, or religious groups, and the task is to learn a single policy that treats beneficiaries
fairly. We argue that it is not our role as algorithm designers to dictate what fairness means, or how
one should compromise among beneficiaries, but rather we should seek to optimize for a given fairness
notion (ideally one agreed upon by society, government, impacted groups, political philosophers, and
other interested parties), as encapsulated by a metric of societal welfare. In supervised learning, this
is relatively straightforward, as we generally maximize the welfare of expected per-beneficiary value
(Cousins, 2023b), and in our setting, we take utility to be the standard geometrically discounted
reward (value) for each beneficiary. In general, decision making to optimize welfare is referred to as
the social planner’s problem, so in a sense our work addresses this problem in the context of RL.

While optimizing the welfare of beneficiary value functions is a well-specified goal for planning
and asymptotic learning, we also ask how quickly we can learn to act fairly in an unknown MDP.
Quantifying whether an action is fair is substantially more difficult than quantifying whether an
action is optimal to a single agent because fairness depends on the context of the agent’s policy

∗University of Massachusetts Amherst, College of Information and Computer Sciences
†Brown University, Department of Computer Science

cbcousins@umass.edu
elobo@umass.edu
mlittman@cs.brown.edu


RLJ | RLC 2024

(i.e., tradeoffs among beneficiaries should be balanced). To address this issue, we combine ideas
from the PAC-MDP framework and KWIK (Know What It Knows) learning (Li et al., 2011) to
create the adversarial fair KWIK MDP learning framework (Kwik-Af). We require a Kwik-Af
agent to explicitly output at each step either a fair policy or an exploration action, and with high
probability the agent must always output ε-optimal fair policies while taking only a bounded number
of exploration actions over its infinite lifetime. For the sake of generality, we allow an adversary to
move the agent arbitrarily after it outputs a policy. At any step, the adversary is allowed to select
a new welfare function, representing changing societal ideals of how fairness should work, and the
agent is expected to output either an exploration action or a policy optimizing said welfare function.
Finally, we introduce an algorithm inspired by the classic E3 algorithm of Kearns and Singh (2002),
which we call Equitable Explicit Explore Exploit (E4), and show that it is a Kwik-Af learner.

We summarize our contributions below.

1. We frame the traditionally egocentric challenge of reinforcement learning as a social problem,
where the actions taken by an agent impact a set of beneficiaries, each with their own reward function.
2. Using ideas from vector-valued RL, econometrics, and social welfare theory, we establish the goal
of learning policies to optimize the welfare of per-beneficiary expected discounted rewards.
3. Section 3 introduces the adversarial fair KWIK MDP (Kwik-Af) learning framework, in which an
agent learns only from exploration actions, and an adversary moves the agent when the agent outputs
an exploitation policy. W.h.p., a learner must output only ε-optimal exploitation policies and take
polynomially many exploration actions. We assess policies rather than actions, since welfare-optimal
policies may be stochastic and start-state dependent, thus actions can not be assessed without context.
4. In section 4, we first present efficient welfare-optimal planning routines, then we discuss exploration
in fair RL, define the E4 algorithm, and show that it is a Kwik-Af learner.

1.1 Related Work

With the rapid adoption of ML algorithms, authors such as Thomas et al. (2019) note that it is
imperative to ensure such algorithms are well-behaved, and do not perpetuate harmful biases. Many
works study fairness in supervised and unsupervised learning with various fairness definitions. The
welfare-centric approach has recently seen success as a generic solution to fair compromise among the
wants and needs of various groups, but has thus far been studied primarily in supervised learning
(Cousins, 2021; 2022; 2023b; Cousins et al., 2024). Defining fairness in the RL setting is particularly
challenging due to the sequential nature of RL decision-makers (Thomas et al., 2019; Jabbari et al.,
2017), as we must also decide how fair decisions should be distributed over time.

There is a rich body of literature on multi-objective sequential decision making, which arises naturally
in bandit settings (Metevier et al., 2019; Chen et al., 2020), and more generally in planning and
RL (Roijers et al., 2013). One approach to fairness is to optimize some objective subject to fairness
constraints, usually requiring approximate parity among groups. In contextual bandit settings, Metevier
et al. (2019) learn and plan while (probabilistically) satisfying various fairness constraints. Similarly,
Wen et al. (2021) show guarantees for learning and planning in MDPs under parity constraints on
per-group value functions, Satija et al. (2021) propose finding policies that improve returns while
also satisfying certain group fairness constraints, and Satija et al. (2022) generalize their setting by
allowing not just rewards, but also the transition function, to differ among groups.

In welfare-centric RL, the final objective is a (nonlinear) function of per-group objectives (value
functions). Assuming monotonicity of welfare, the optimal policy lies on the Pareto frontier of feasible
utility vectors (Van Moffaert and Nowé, 2014). Lizotte et al. (2012) show how to identify globally
dominated actions in the multi-objective case under linear function approximation, and Siddique
et al. (2020); Yu et al. (2023) study the problem of learning welfare-optimal for multi-objective deep
RL. Cousins et al. (2022) consider welfare objectives in a similar tabular setting, and Fan et al. (2023)
show how to plan for Nash social welfare, by leveraging its differentiability and linearizability. This
work theoretically treats fair RL, in particular analyzing sample complexity, which has been a core
tool for studying exploration in RL (Kearns and Singh, 2002; Kakade, 2003; Li et al., 2011).
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1.2 Background

We now present relevant background material on RL, fairness, and welfare-centric ML.

Reinforcement Learning Reinforcement learning (RL) is the study of an environment and an
agent that learns to maximize reward through environmental interaction. The Markov decision
process (Puterman, 1994), or MDP, is the standard mathematical formalism of RL. Standard single-
beneficiary MDPs are specified by the tuple M = ⟨S,A, P, R, γ⟩. Here the environment is described
by the state set S, action set A, and transition function P(s, a) : S ×A → P(S), where P(S) denotes
the probability simplex over S. The agent’s goals or desires are then encoded by the reward function
R(s, a) : S × A → R≥0, which may be randomized, and the discount rate γ, which geometrically
downweights future rewards, representing a preference for near-term rewards over delayed gratification.

The standard goal in the RL problem is to learn a policy π : S → P(A) that can achieve high sums
of future discounted rewards. An important concept in RL is the value function, defined as

Vπ(s) .= E
at∼π(st)

st+1∼P(st,at)

[ ∞∑
t=0

γtR(st, at)

∣∣∣∣∣ s0 = s

]
= E

a0∼π(s0)
s1∼P(s0,a0)

[
R(s0, π(s0)) + γVπ(s1)

∣∣∣ s0 = s
]

.

The value function Vπ(s) describes the expected utility of the following policy π at state s. RL often
adopts a egocentric view, in which the scalar-valued reward function R(s, a) : S ×A → R is intrinsic
to the agent, who selfishly wishes to optimize their wellbeing (as measured by the value function).

On Welfare In this paper, we are interested in vector-valued or multi-beneficiary MDPs, denoted
M = ⟨S,A, P, R, γ⟩. The state set S, action set A, transition function P, and discount factor γ are
exactly as in the standard RL setting. We consciously use the term beneficiary to explicitly extricate
the passive nature of preferences of those impacted by the system from the active role played by the
agent. In this setting, there exist g beneficiaries, each with a corresponding reward function Ri and
value function Vπ

i . In this work, we define the utility of a beneficiary to be the standard RL target of
their geometrically discounted accumulated reward (value). The scale of reward is a crucial quantity,
which we measure as Rmax

.= maxs∈S,a∈A∥R(s, a)∥∞, thus utility is limited to the range
[
0, Rmax

1−γ

]
.

A welfare function W(·) : Rg
≥0 → R≥0 summarizes the utility of all beneficiaries as a cardinal value,

thus establishing a preference or ranking over policies, and our goal is select a policy to maximize
welfare. For example, the utilitarian welfare and egalitarian welfare of value vector v are defined as

W1(v) = W1(v1, v2, . . . , vg) = 1
g

g∑
i=1

vi and W−∞(v) = W−∞(v1, v2, . . . , vg) = min
i∈1,...,g

vi .

Utilitarian welfare draws on classical ideas of utilitarian philosophy (Bentham, 1789; Mill, 1863),
wherein all members of society should be treated equally, and the goal is to maximize overall utility.
On the other hand, egalitarian welfare draws from Rawlsian theory (Rawls, 1971; 2001), where the
idea is that society should seek to uplift its most disadvantaged (or impoverished) members. Both
can be interpreted through a mechanism design or game theoretic lens (Cousins, 2023a), wherein a
Dæmon creates a society populated by the beneficiaries, and an Angel then banishes the Dæmon to
join the society. If the Angel uniformly randomly selects who the Dæmon becomes, the Dæmon should
maximize utilitarian welfare to maximize their expected utility. However, if the Angel adversarially
selects the worst-off beneficiary, the Dæmon should instead maximize egalitarian welfare.

Utilitarian welfare is “fair” in the sense that it treats everyone ostensibly equally, however, it has no
preference for equity, and can thus incentivize high utility for some beneficiaries at the cost of low
utility for others. On the other hand, egalitarian welfare is “fair” in the sense that it allocates resources
optimally to help those most in need first, however, beneficiaries that are difficult or impossible
to satisfy may be catered to exclusively, at the expense of all others. Between these extremes,
prioritarian welfare concepts (Parfit, 1997; Arneson, 2000) seek a middle ground, incentivizing equity
by prioritizing the needs of disadvantaged people, but not to the extreme degree of egalitarianism.
We now describe two prioritarian families, both of which contain utilitarian and egalitarian welfare
as extreme cases, as well as a continuum of intermediate cases.
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s1

R(s1, a1) = ⟨1, 0⟩ R(s1, a2) = ⟨0, 1⟩

π1 = ⟨1, 0⟩ , π2 = ⟨0, 1⟩
π∗ = ⟨ 1

2 , 1
2 ⟩

(a) Symmetric 2-Armed Bandit

s1

R(s1, a1) = ⟨1, 0⟩ R(s1, a2) = ⟨0, 1⟩

R(s1, a3) = ⟨ 2
3 , 2

3 ⟩

π1 = ⟨1, 0, 0⟩ , π2 = ⟨0, 1, 0⟩
π∗ = ⟨0, 0, 1⟩

(b) Compromise 3-Armed Bandit

s1

R(s1, a1) = ⟨1, 0⟩ R(s1, a2) = ⟨0, 1⟩

s2 s3R(s2,
·)=
⟨α

, 0⟩
R(s3 , ·)=⟨0, α⟩

π1(s1) = ⟨1, 0⟩ , π2(s1) = ⟨0, 1⟩
π∗(s1 from s2)=⟨ 1

2−
1−γ
2γ α, 1

2 + 1−γ
2γ α⟩ or ⟨0, 1⟩

(c) Asymmetric Start Bandit MDP
Figure 1: Small MDPs that exhibit surprising behavior under multi-beneficiary objectives.

Definition 1.1 (Power-Mean Welfare). We define the power-mean family Wp(v), for power p ≤ 1,
for any utility vector v ∈ Rg

≥0, as

Wp(v) .= p

√√√√1
g

g∑
i=1

vp
i , W−∞(v) .= min

i∈1,...,g
vi , or W0(v) .= g

√√√√ g∏
i=1

vi .

Definition 1.2 (Gini Social Welfare). Given a decreasing stochastic weight vector w ∈ △g (i.e.,
1 ≥ w1 ≥ w2 ≥ · · · ≥ wg ≥ 0 s.t. ∥w∥1 = 1), the Gini social welfare of utility vector v ∈ Rg

≥0 is

Ww(v) .=
g∑

i=1
wiv

↑
i ,

where v↑ denotes the entries in v in ascending sorted order.

These classes are intuitive from a prioritarian perspective, as the marginal gain of utility is larger for
low-utility groups than for high-utility groups. This preference for equity is captured by the Pigou
(1912)-Dalton (1920) transfer principle, which states that equitable redistribution of utility should
never decrease welfare. Cardinal welfare theory provides axiomatizations for both the power-mean
(Debreu, 1959; Gorman, 1968; Cousins, 2021; 2023b) and Gini (Weymark, 1981; Gajdos and Weymark,
2005) classes. For technical reasons, we assume the welfare function must be λ-∥·∥∞ Lipschitz
continuous, and concavity is often convenient for planning, but our methods treat any welfare
function that meets these conditions. Cousins (2023b) shows that the power-mean family is Lipschitz
continuous except when p ∈ [0, 1), and the entire Gini family is 1-∥·∥∞ Lipschitz continuous.

In the context of fair RL, our goal is, roughly speaking, to learn a policy to maximize the welfare of
MDP M from start state s0. In other words, we want to find π̂ to approximate π∗, where

W
(

Vπ̂
1 (s0), . . . , Vπ̂

g (s0)
)
≥ argmax

π∗∈ΠM

W
(

Vπ∗

1 (s0), . . . , Vπ∗

g (s0)
)
− ε .

In section 3, we define how agents interact with their environments and receive feedback in this
setting, and we make precise what it means to learn to plan fairly.

2 Illuminating Examples

Here we present a few simple examples (visualized in figure 1) to illustrate that intuition from the
standard scalar-reward RL setting can be misleading. We consider the simple egalitarian welfare
objective for two beneficiaries, on essentially stateless (single recurrent state) MDPs. Even in this
elementary setting, we draw surprising conclusions as to the nature of welfare-optimal policies π∗ (as
compared to per-beneficiary optimal policies π1 and π2) and the behavior of RL algorithms (in both
planning and exploration). Section 2.1 presents these simple MDPs, and section 2.2 then discusses
the challenges of evaluating fair policies and the learners that produce them.
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2.1 Simple Multi-Beneficiary MDPs

We first consider a basic 2-armed bandit, in which the beneficiaries prefer different arms. We then
extend our analysis to allow for a third “compromise” arm. Finally, we also allow for additional
transient states that immediately reward one of the beneficiaries to represent an “unfair start,”
wherein one beneficiary or the other is “privileged,” and fair agents must learn to compensate.

One might expect, or at least hope, that convenient properties from standard RL would be preserved
in the fair-RL setting. In particular, one might expect the following.

1. We need only consider deterministic stationary policies, i.e., we can assume that there always
exists an optimal policy that is deterministic and stationary.
2. We can explore by letting individually beneficiaries take turns controlling the agent (thus mitigating
potentially challenging learning problems with well-studied techniques).
3. A single policy is optimal from all starting states.

Unfortunately, none of these properties hold in the welfare setting. The examples of this section are
presented to disabuse the reader of such notions.

Example 2.1 (Symmetric 2-Armed Bandit; Figure 1a). Suppose a 2-armed bandit with reward
R(s1, a1) .= ⟨1, 0⟩ and R(s1, a2) .= ⟨0, 1⟩. The unique welfare-optimal stationary policy is π∗ = ⟨ 1

2 , 1
2 ⟩.

There are several surprises here:
1. The (unique) optimal policy is stationary (see lemma 3.1), but not deterministic (i.e., stochastic).
2. Policy iteration iteratively selects the greedy welfare-optimal policy, i.e., selects the policy

π(t+1) ← argmax
π∈ΠM

W
(

E
π,s1

[
R1(s0, π(s0)) + γVπ(t)

1 (s1)
]

, . . . , E
π,s1

[
Rg(s0, π(s0)) + γVπ(t)

g (s1)
])

, (1)

where π(t) is the policy selected at iterate t. This would optimize the policy in one step if updating
the policy did not impact the value function, and this strategy is convergent for linear (value)
MDP objectives. However, policy iteration for the egalitarian welfare objective, initiated at either
deterministic policy, oscillates between π(s1) = ⟨1, 0⟩ and π(s1) = ⟨0, 1⟩ for any γ ≥ 1

2 . This occurs
since, assuming π(t)(s1) = ⟨1, 0⟩, the (stale) value function is Vπ(t)(s1) = ⟨ 1

1−γ , 0⟩, thus taking
π(t+1)(s1) = ⟨0, 1⟩ maximizes egalitarian welfare at min( γ

1−γ , 1) = 1 in (1). In other words, each
iteration overcorrects for initial policy unfairness, yielding oscillatory behavior. Notably, for γ < 1

2 ,
the oscillation is damped and (1) actually converges to the optimal stochastic policy, but this is
case-specific, and policy iteration is not in general a valid planning strategy for welfare objectives.

We now consider an extension to this MDP that includes a third arm (action), which is not preferred
by either beneficiary, but is more effective as a compromise than any mixture of the first two arms.
Example 2.2 (Compromise 3-Armed Bandit; Figure 1b). Suppose reward R(s1, a1) .= ⟨1, 0⟩,
R(s1, a2) .= ⟨0, 1⟩, and R(s1, a3) .= ⟨ 2

3 , 2
3 ⟩. The unique optimal stationary per-beneficiary and

welfare-optimal policies are π1 = ⟨1, 0, 0⟩, π2 = ⟨0, 1, 0⟩, and π∗ = ⟨0, 0, 1⟩, respectively.

This example starkly illustrates how different the welfare-optimal policy π∗ may be from the per-
beneficiary optimal policies π1 and π2. Observe that π∗ is not a linear combination of π1 and π2;
these policies are totally disjoint, as no two optimal policies will ever prescribe the same action.

This divergence in optimal policies also has implications for how the MDP should be explored. For
instance, if beneficiaries 1 and 2 are independently allowed to run a UCB-style algorithm (Auer et al.,
2008), in all likelihood, neither will even bother to adequately a3, thus even together they do not
collect the appropriate information for welfare-optimal planning. We can conclude that, not only the
planning, but also the exploration aspect of RL is “more than the sum of its parts,” as under welfare
objectives, there is an obligation to explore the MDP more thoroughly.

We now extend the 2-armed bandit example further by adding two additional states, which represent
disparate starting conditions that favor one beneficiary or the other.
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Example 2.3 (Symmetric 2-Armed Bandit, with Asymmetric Starting Conditions; Figure 1c).
Suppose an MDP with recurrent state s1 and transient states s2 and s3, thus the environment is a
2-armed bandit from s1. Any action from s2 yields reward α to beneficiary 1, and any action from s3
yields reward α to beneficiary 2. Upon reaching state s1, the MDP is identical to example 2.1.
From s1, neither beneficiary is privileged, and the recurrent MDP matches example 2.1, but from s2
or s3, some beneficiary begins with an advantage of α utility. The unique optimal stationary policy
thus selects π∗(s1) to benefit the disadvantaged group. Starting from s2, to achieve equity, we require

γ
1−γ

π∗(s1, a1) + α = Vπ∗
1 (s2) = Vπ∗

2 (s2) = γ
1−γ

(1− π∗(s1, a1)) , thus π∗(s1) = ⟨ 1
2 −

1−γ
2γ

α, 1
2 + 1−γ

2γ
α⟩

or π∗(s1) = ⟨0, 1⟩ if equality is infeasible. By symmetry, starting at s3 swaps these action probabilities.

2.2 On Evaluation and Optimality of Fair Learners

When we consider example 2.3, two extremely subtle points arise as to how we are to evaluate the
performance of a learner and the actions it makes. First, for any α < γ

γ−1 , welfare-optimal stationary
policies are stochastic at s1, (i.e., actions a1 and a2 are both taken with nonzero probability). It is
thus impossible to determine whether individual actions taken by a learner are fair in isolation, and
a simple mistake-bound style of analysis thus seems inapplicable. This issue is not unique to fair RL,
as it arises whenever no deterministic policy is optimal, for instance in game-theortic multi-agent
RL settings (Buşoniu et al., 2010), and also with various constrained (Prashanth and Ghavamzadeh,
2016) or risk-averse (Wang and Chapman, 2022) RL objectives. In particular, evaluating a policy
requires the probability distribution over actions, not just the individual actions taken over the course
of executing the policy. An issue more specific to our fair RL setting is that the optimal policy π∗

depends on the start state, so it is meaningless to decompose the learning process into a sequence of
individual decisions at each timestep and evaluate them independently, as this erases the context
(i.e., the start state of welfare-optimal actions) in which decisions are made.

The next section explores these issues further and derives an appropriate learning model that evaluates
agents — not just on individual actions, but on their ability to output nearly welfare-optimal policies.
Evaluating fair RL agents is deceptively tricky, particularly due to the contextual nature of start-state
dependent policies. Due to the complexity of introducing the context of a starting state, we adopt an
adversarial setting, in which many design decisions — in particular those regarding episodic versus
continuous learning, choice of start states or distributions, and the welfare function — are made
adversarially. Section 4 then shows that even in this general adversarial setting, fair learning remains
possible and algorithmically practical.

3 A Model of Adversarial Fair Reinforcement Learning

In this section, we review the PAC-MDP framework, explain why a straightforward generalization to
fairness-sensitive settings is troublesome, and define the Kwik-Af framework. Our guarantees are
similar to the classical E3 policy-centric guarantees of Kearns and Singh (2002), but are adapted to
adversarial state and welfare-function selection. Both are important to the welfare-centric RL setting,
as the adversary can be used to model how policies generated by the agent are actually used (and
thus how they impact society), as well as shifts in human fairness concepts over time. Furthermore,
we show constructively via reduction that our setting is at least as hard as the PAC-MDP framework.
Before further describing the learning setting, we lead with a key lemma that allows us to restrict
our attention to start-state dependent stationary stochastic MDPs.
Lemma 3.1 (Optimality of Stationary Policies: Lemma 3.1 of Siddique et al. (2020)). For any start
state s0 ∈ S, there exists some W(·)-optimal policy

π∗ .= argmax
π∈ΠM

W
(
Vπ

1 (s0), . . . , Vπ
g (s0)

)
that is a stationary stochastic policy, i.e., given the current state st, π∗(st) may prescribe distributions
over actions, but they may not depend on the history other than s0 (i.e., not on s1, s2, . . . , st−1).
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3.1 Motivation

Our framework introduces two major ideas. First, we explicitly model the explore-exploit tradeoff
by requiring learners to either take exploration actions when uncertain about how to behave, or to
output exploitation policies when they can ε-optimally plan from the current state. In particular,
we require that, with high probability, the agent takes a bounded (usually polynomial) number of
exploration actions, and every exploitation policy is ε-welfare-optimal. Second, many decisions in
our learning model are made adversarially, and thus our model encompasses a plethora of related
settings, including episodic, continual, teacher-assisted, fair, and single-beneficiary (or egocentric)
RL settings. Consequently, our algorithms and analysis can be directly applied to these more specific
settings. The central motivation for our policy-centric framework is that simple per-action regret or
mistake bounds don’t translate to the fair RL setting. This is because, as discussed in section 2.2,
it is not possible to evaluate the optimality of individual actions of a fair learner, as they may be
stochastic, and they may also depend on the context of the start state s0.

Ideally, we could still ensure the agent behaved ε-optimally during learning, however, because fair
policies are inherently contextual, it also does not make sense to have the learner follow its own
policies at each timestep, as these policies may disagree, so from where would we even measure
suboptimality? While resetting the start state at each step ignores historical context, indefinitely
using the agent’s original start state puts too much emphasis on the past, as from a geometric
discounting perspective, we are only planning for optimal behavior in a geometric-length episode,
and as time progresses, the start state should become irrelevant in any recurrent MDP. In either
case, the agent behaves poorly in some sense during learning; one may consider example 2.3 starting
from state s2, where keeping the start state indefinitely favors beneficiary 2, whereas resetting it
each step favors beneficiary 1 (as their initial privilege is never addressed).

There are many reasonable ways to resolve this issue, but we wish not to limit our framework by
committing to one of them. For example, running the agent’s policy for a geometric-length episode
before returning control to the agent (to choose either an exploration action or to output another
exploitation policy) would ensure that behavior during policy execution is fair. However, even here,
reasonable design decisions abound: After a policy execution episode, should we continue from the
current state, or start afresh from a new state? If we restart, should the start state be drawn i.i.d., or
might its distribution change over time? Should the welfare function be fixed, or could it too change
over time to reflect evolving societal values or shifting demographics? Rather than adopt some fixed
control flow, we require agents to behave ε-optimally against a largely adversarial system.

Essentially, the adversary provides modular flexibility to fairness-sensitive decisions and parameters,
and robustness against a learning agent exploiting the structure of the learning procedure. This
preëmpts fairness issues arising from a limited model, by requiring that the agent itself must operate
under general (adversarial) conditions, which modelers may select to fit domain-specific conditions
and ideals of fairness. Furthermore, while exploitation policies are guaranteed to be ε-welfare-optimal,
how they are actually used is equally important to fairness. In this context, adversarial state selection
may be interpreted as taking arbitrary real-world actions informed by the agent’s policy, which
should be ε-optimal, before returning control to the agent.

3.2 MDP Policy Agents and the Adversarial Fair KWIK Framework

We now define the MDP policy agent, which codifies how a learner interacts with its environment.
This interface is more complicated than standard PAC-MDP learners, because it explicitly models
both exploration and exploitation, but this complexity is necessary to disambiguate good from bad
decisions in rich environments where individual actions do not suffice.
Definition 3.2 (MDP Policy Agent). An MDP policy agent interacts with an MDP M =
⟨S,A, P, R, γ⟩ by starting from some start state s0. At any timestep t, at state st, the agent
then produces either an exploration action or an exploitation policy z ∈ Z from the space

Z .= A︸︷︷︸
Exploration Action

⋃
ΠM︸︷︷︸

Exploitation Policy

.
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Timestep Start:
At state s

Explore:
Output action a

Observe s, a, r, s′

Exploit:
Output policy π
Observe nothing

Single Step:
s′ ∼ P(s, π(s))

Episodic:
Bernoulli(γ) coin

Common Start:
Distribution p over S

Take s′ ∼ p

Adversary:
Adversarial s′

Heads:
s← s′∼ P(s, π(s))

Tails:
Return control to agent

s← s′ s← s′ 1: procedure DeployAgent(S,A, γ, ε, δ, Rmax, s)
2: AgentInit(S,A, γ, Rmax, ε, δ)
3: loop
4: W(·)← Adversary ▷ Adversarial welfare
5: z ← AgentStep(s, W(·))
6: if z ∈ A then ▷ Explore action
7: s′, r ←M(s, z) ▷ Take action z in M
8: AgentSarsUpdate(s, a, r, s′); s← s′

9: else if z ∈ ΠM then ▷ Exploit policy
10: case Single Step
11: s ∼ P(s, z(s))
12: case Episode
13: while Bernoulli(γ) do
14: s ∼ P(s, z(s))
15: case Common Start
16: s ∼ p
17: case Adversary
18: s← Adversary ▷ Adversarial state

Figure 2: Illustration of MDP Policy Agent control flow. The flowchart (left) describes the control
flow of the pseudocode (right). An MDP policy agent must implement the AgentInit(. . . ),
AgentStep(. . . ), and AgentSarsUpdate(. . . ) subroutines to interact with the environment.

If the agent outputs an exploration action at, it is executed in state st of M to produce reward
rt+1 ∼ R(st, at) and subsequent state st+1 ∼ P(st, at), and the agent observes ⟨st, at rt+1, st+1⟩.

Alternatively, if the agent outputs an exploitation policy πt, a new state st+1 is produced, and the
agent observes the new state, but the agent does not observe any reward or action. There are many
reasonable models for selecting st+1, and we propose any of the following models:
1. Single Step: The agent’s policy is run for a single step, yielding st+1 ∼ P(st, πt(st));
2. Episode: Let k ∼ Geometric(1− γ), s′

0 = st, and s′
i+1 ∼ P(s′

i, πt(s′
i)), then take st+1 = s′

k;
3. Common Start: Given some start-state distribution p ∈ P(S), we take st+1 ∼ p; or
4. Adversary: st+1 is selected adversarially.

Figure 2 illustrates the control flow of this system. Note that definition 3.2 resembles the interface of
the standard E3 algorithm, in which an agent takes individual exploration actions until it is ready
to output an ε-optimal policy from its current state, at which point it terminates. We require our
agents to continue operating after producing an exploitation policy, and based on the discussion of
section 3.1, we present several reasonable modes of operation following an agent producing policies,
but all are encompassed by adversarial choice of subsequent state. To describe successful or efficient
MDP-policy agents, we define the policy-KWIK class, which resembles the KWIK framework for
supervised learning (Li et al., 2011), in the sense that the agent is issued “queries” (what to do at
the current state), and the agent may either say “I don’t know” to receive information (i.e., issue an
exploration action to receive reward and transition samples), or answer the query (give a policy).
Definition 3.3 (Policy-KWIK Learner). An MDP policy agent is a policy-KWIK learner with
sample complexity m(|S|, |A|, γ, Rmax, ε, δ) if, for any error tolerance ε > 0 and failure probability
δ ∈ (0, 1), the following pair of conditions hold with probability at least 1− δ.

1. Exploration condition: The number of exploration actions is bounded, i.e.,
∞∑

t=1
1A(zt) ≤ m

(
|S|, |A|, γ, Rmax, ε, δ

)
.

2. Exploitation condition: All exploitation policies are ε-optimal, i.e., for all t, if zt ∈ ΠM, then

Vzt(st) ≥ sup
π∗∈ΠM

Vπ∗
(st)− ε .

Definitions 3.2 and 3.3 explicitly delineate between exploration and exploitation. In particular, the
agent output space Z is explicitly factored into exploration actions, which are used to take a single
step and learn from the environment, and exploitation policies, through which the agent demonstrates
that it knows how to act ε-optimally from the current state. This is codified in conditions 1 and 2 of
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definition 3.3, as condition 1 requires that an agent may not take too many exploration actions, and
condition 2 requires that each policy an agent dares to output must be ε-optimal.
Theorem 3.4 (Policy-KWIK and PAC-MDP Learners). Every policy-KWIK learner that outputs
deterministic policies with polynomial sample complexity is a PAC-MDP learner, in the sense that
executing an exploitation policy or exploration action at each timestep produces no more than
m(|S|, |A|, γ, Rmax, ε, δ) total mistakes (i.e., ε-suboptimal actions) with probability at least 1− δ.

Proof Sketch. Essentially, this result follows by noting that a policy-KWIK learner can be converted
to a PAC-MDP learner by executing each exploration action a, or π(s) for each exploitation policy π
at state s, and in doing so, with probability at least 1− δ, no exploitation action is ε-suboptimal.
See appendix A for full proof of this result.

Group-Fair Models of Reinforcement Learning Definitions 3.2 and 3.3 describe standard
(scalar-valued) learning settings, so we now generalize them to definitions 3.5 and 3.6 to model
efficient fair learning with welfare objectives for multiple beneficiaries.
Definition 3.5 (Adversarial Fair MDP Policy Agent). At each timestep t, at state st, the adversary
presents a welfare function Wt(·) from some class W. The agent then produces either an exploration
action or an exploitation policy z ∈ Z from the space

Z .= A︸︷︷︸
Exploration Action

⋃
ΠM︸︷︷︸

Exploitation Policy

.

At this point, if the agent selected an exploration action at, the action is executed in state st of
the MDP to produce reward rt+1 ∼ R(st, at) and subsequent state st+1 ∼ P(st, at), and the agent
observes the tuple ⟨st, at, rt+1, st+1⟩. Alternatively, if the agent selected exploitation policy πt, the
adversary then selects the next state st+1, and the agent does not observe any reward or action.
Definition 3.6 (Kwik-Af Learner). An agent is Kwik-Af over welfare class W with sample
complexity m(|S|, |A|, γ, Rmax, g, ε, δ) if, for any error tolerance ε > 0 and failure probability δ ∈ (0, 1),
the following pair of conditions hold with probability at least 1− δ:

1. Exploration condition: The number of exploration actions is bounded, i.e.,
∞∑

t=1
1A(zt) ≤ m

(
|S|, |A|, γ, Rmax, g, ε, δ

)
.

2. Exploitation condition: All exploitation policies are ε-optimal (with respect to the welfare
function Wt ∈ W provided by the adversary at each timestep t), i.e., for all t, if zt ∈ ΠM, then

Wt

(
Vzt

1 (st), Vzt
2 (st), . . . , Vzt

g (st)
)
≥ sup

π∗∈ΠM

Wt

(
Vπ∗

1 (st), Vπ∗

2 (st), . . . , Vπ∗

g (st)
)
− ε .

In other words, the key differences are that reward is now vector-valued, and optimal policies may
now be stochastic and must now be welfare-optimal.

4 Algorithms for Fair Planning and Learning

We now present algorithms for fair planning and learning in our multi-beneficiary MDP setting. We
first demonstrate how to plan in an MDP to maximize concave welfare objectives in section 4.1.
We then introduce the Equitable Explicit Explore Exploit (E4) adversarial fair MDP policy agent in
section 4.2. Finally, we show that E4 is a Kwik-Af learner in section 4.3.

4.1 On Welfare-Optimal Planning

For a given start-state distribution vector p ∈ P(S), let dπ ∈ RS×A
≥0 be the geometrically-discounted

state-action occupancy measure of the policy π, defined as

dπ
s,a

.= E
at∼π(st)

s0∼p
st+1∼P(st,at)

[ ∞∑
t=0

γt
1s(st)1a(at)

]
= π(s, a)

(
ps + γ

∑
s′∈S
a′∈A

Ps(s′, a′)dπ
s′,a′

)
. (2)
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Algorithm 1 Equitable Explicit Explore Exploit (E4)
1: procedure AgentInit(S,A, γ, Rmax, ε, δ)
2: T ← max

(
1,
⌈

log 1
γ

(
6λRmax
ε(1−γ)

)⌉)
; t← T ▷ Set escape time T and timer t

3: α← 2ε(1−γ)2

3λ
(

2
√

Rmax+γRmax+6T (1−γ)Rmax
) ▷ Set transition ∥·∥1 error tolerance α

4: E ← 2αT ▷ Set escape probability threshold E

5: mknw ←
⌈

1
2α2 ln

(
2|S||A|(2|S| − 2 + 2g)

δ

)⌉
▷ Compute sufficient per-state-action pair sample size

6: ∀s ∈ S, a ∈ A : ms,a ← 0 ▷ Initialize per-(s, a) visitation counters
7: Sunk ← S; Sout ← ∅; Sinn ← ∅ ▷ Initialize all states to unknown
8: M̂ = ⟨S,A, P̂, R̂, γ⟩ ← ⟨S,A, (s, a) 7→ 1s, (s, a) 7→ 0, γ⟩ ▷ Initialize empirical MDP to 0-reward recurrent
9: procedure AgentStep(s, W(·))

10: case s ∈ Sunk ▷ Successful escape attempt has reached Sunk
11: t← T ▷ Stop escape timer
12: return axpr ← argmin

a∈A
ms,a ▷ Select explore action axpr using balanced wandering

13: case t < T ▷ Ongoing attempt to escape to Sunk
14: t← t + 1 ▷ Increment escape timer
15: return axpr ← πesc(s, t) ▷ Explore action axpr from escape policy πesc

16: case s ∈ Sinn ▷ Return exploit policy
17: return πxpt ← argmax

π∈ΠM

W
(
V̂π(s)

)
▷ Exploit policy πxpt computed from V̂ and M̂

18: case s ∈ Sout ▷ Begin escape attempt
19: t← 0 ▷ Start escape timer
20: return axpr ← πesc(s, t)
21: procedure AgentSarsUpdate(s, a, r, s′)
22: if s ∈ Sunk then
23: ms,a ← ms,a + 1 ▷ Increment visitation count
24: XP

s,a,ms,a
← s′; XR

s,a,ms,a
← r ▷ Append to experience buffers for transitions XP and rewards XR

25: if min
a∈A

ms,a = mknw then ▷ State s is now known
26: ∀a ∈ A, s′ ∈ S : P̂s′ (s, a)← 1

mknw

mknw∑
i=1

1s′ (XP
s,a,i) ▷ Empirical transition model P̂

27: ∀a : R̂(s, a)← 1
mknw

mknw∑
i=1

XR
s,a,i ▷ Empirical reward function R̂

28: πesc ← argmax
π∈ΠT

∑
s∈S

P
st+1∼P̂(st,π(st,t))

( T∨
i=0

si ∈ Sunk

∣∣∣s0 = s
)

▷ T -step deterministic escape policy in P̂

29: Sunk ← Sunk \ {s} ▷ Remove s from the unknown set

30: Sout ←
{

s ∈
(
S \ Sunk

) ∣∣∣∣ P
st+1∼P̂(st,πesc(st,t))

( T∨
i=0

si ∈ Sunk

∣∣∣s0 = s
)
≥ E

}
▷

Known states where
T -step escape is E-likely

31: Sinn ← S \ (Sunk ∪ Sout) ▷ Known states where T -step escape is not E-likely

Wang et al. (2008) show that the state-action occupancy measure gives rise to linear programs that
efficiently plan (optimize value) in scalar-valued MDPs, and Zahavy et al. (2021) extend this idea to
minimize arbitrary convex objectives of the state-action occupancy measure. We now apply this idea
to address welfare-optimal planning in multi-beneficiary MDPs.
Proposition 4.1 (Welfare-Optimal Planning). Suppose start-state distribution p and λ-Lipschitz
concave welfare function W(·). Then the welfare-optimal policy π∗ = argmaxπ∈ΠM

W
(
Es∼p [Vπ(s)]

)
from p can be identified by first solving for

d∗ = argmax
d∈RS×A

≥0

W
( ∑

s∈S,a∈A
ds,aR1(s, a),

∑
s∈S,a∈A

ds,aR2(s, a), . . . ,
∑

s∈S,a∈A
ds,aRg(s, a)

)
(3)

such that ∀s ∈ S :
∑
a∈A

ds,a = ps + γ
∑

s′∈S,a′∈A
Ps(s′, a′)ds′,a′ ,

and then setting π∗(s, ·) ∝ d∗
s,· for all s ∈ S. Moreover, an ε-optimal policy can be computed using

standard convex optimization methods in Poly (|S|, |A|, 1
1−γ , Rmax, g, 1

ε , λ) time.

4.2 The E4 Algorithm

We now describe E4, for which we give pseudocode in algorithm 1. The key to E4 is that the state
space S is partitioned into three sets: The unknown set Sunk, the outer-known set Sout, and the



RLJ | RLC 2024

S1

S2

S3

S4

S5

S6

S7

S8

S9
S10

S11

S12

S13
S14

S15

S16

S17

S18

S19

S20
S21S22

S23

S24

S25

S26

S27

S28

S29

S30
S31 S32

S33

S34

S35

A

S1

S2

S3

S4

S5

S6

S7

S8

S9
S10

S11

S12

S13
S14

S15

S16

S17
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S27

S28

S29
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S31 S32

S33

S34
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Learning is
Happening!

A

A

S18

S6

Figure 3: Depiction of an E4 agent A learning, showing the inner-known Sinn (solid), outer-known
Sout (dashed), and unknown Sunk (dotted) sets. All actions self-loop with probability ≈ T/2

√
1− E,

and arrows denote 1-step reachability via some action with probability ≈ 1 − T/2
√

1− E. As the
agent acts (explores) to reach s19 from s18, s18 enters Sout, which cascades to s6 entering Sinn.

inner-known set Sinn. Initially, all states are unexplored in Sunk (line 6). After visiting a state
s ∈ Sunk and taking all actions enough times (line 25) using balanced wandering (line 12), s becomes
known, entering either Sinn or Sout. We then construct an empirical MDP M̂ using the empirical
transition frequencies and mean rewards from each known state and each action (lines 26 and 27),
and self-loop probability 1 and reward 0 from unknown states (line 8). Then, for each known state s,
if with nonnegligible probability (at least E) in M̂ it is possible to reach Sunk from s within T steps,
we place s into Sout (line 30), otherwise we place s into Sinn (line 31). This process is graphically
illustrated in figure 3. Note that E and T are set so as to ensure E4 is Kwik-Af (lines 2 and 4).

As in the classic E3 algorithm, within Sinn, if all tail bounds hold, then the value functions of
M̂ approximate the value functions of M. Furthermore, under λ-Lipschitz continuity of welfare,
optimizing welfare in M̂ ε-optimizes welfare in M. Therefore, at each step, if the agent is in Sinn, it
outputs a ε-optimal policy (line 16). Otherwise, if the agent is in Sout, it begins an escape attempt
(line 18), which follows a T -step temporal policy (i.e., a policy π ∈ ΠT , where the action π(s, t)
depends on the current state and timestep) that maximizes the probability of reaching Sunk in
M̂ (line 28). The escape attempt either proceeds for T steps (line 13), or until Sunk is reached
(line 10). The main concrete difference between the E3 and E4algorithms is that E4 has higher
sample complexity, due both to vector-valued reward and to the nonlinearity of the welfare function.
Furthermore, our analysis is more complex, as we show that E4 Kwik-Af learns M, which requires
robustness against adversarial state selection even after an arbitrary number of exploitation steps,
whereas the classical E3 analysis only guarantees a single ε-optimal exploitation policy is output.

4.3 Theoretical Analysis

We are now ready to theoretically analyze E4 in the Kwik-Af framework. We begin by defining
(α, β)-uniform approximations of MDPs and computing the per-state sample complexity of attaining
such approximations. All claims stated here are all proved in appendix A.
Definition 4.2 (Uniform Approximation MDPs). Let TVD(x, y) denote the total variation distance
between probability distributions x and y. An (α, β)-uniform approximation M′ = ⟨S,A, P′, R′, γ⟩ of
a vector-reward MDP M = ⟨S,A, P, R, γ⟩ is an MDP that, for all s ∈ S and a ∈ A, satisfies
1. TVD

(
P′(s, a), P(s, a)

)
≤ α ; and 2. ∥R′(s, a)−R(s, a)∥∞ ≤ β .

Lemma 4.3 (Per-State Sample Complexity). Suppose MDP M = ⟨S,A, P, R, γ⟩, and let

mknw
.=
⌈

max
(

1
2α2 ,

Rmax

2β2

)
ln
(
|S||A|(2|S| − 2 + 2g)

δ

)⌉
. (4)
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If M̂ is estimated as the mean over mknw samples of the reward and destination state from each
state-action pair, then with probability at least 1− δ, M̂ is an (α, β)-uniform approximation of M.

When combined with Lipschitz continuity and a simulation lemma (Strehl et al., 2009), lemma 4.3
bounds the number of times we must take each action from each state before we can ε-δ maximize
Lipschitz welfare functions. This gives us some sense of how E4 operates (see line 5), although it
says nothing of exploration and the learning process. The following result completes the story for the
E4 algorithm, analyzing its sample complexity in the Kwik-Af framework.
Theorem 4.4 (E4 is a Kwik-Af Learner). Algorithm 1 is a Kwik-Af learner w.r.t. the class of all
λ-∥·∥∞ Lipschitz-continuous welfare functions, with sample complexity

m (|S|, |A|, γ, Rmax, g, ε, δ) ∈ O
(
|S|2|A|

(
λRmax
ε(1−γ) log 1

γ

(
λRmax
ε(1−γ)

))3
log |S||A|g

δ

)
⊆ Poly

(
|S|, |A|, 1

1−γ , Rmax, log g, 1
ε , log 1

δ , λ
)

.

Proof Sketch. Proof of this result is rather involved, and relies on several technical lemmata shown in
appendix A. However, the crucial observation is that, subject to all tail bounds of lemma 4.3 holding
over the course of algorithm 1 (which holds by union bound with probability at least 1− δ

2 ), then
the E4 agent is able to act in accordance with the duties of a Kwik-Af learner (definition 3.6).

Indeed, the explore-exploit lemma (A.4) shows that from anywhere in Sinn, exploitation is possible,
and from within Sout, exploration is possible (i.e., escape attempts are worthwhile), which we use to
satisfy both conditions of definition 3.6. In particular, from any inner-known state s ∈ Sinn, V(s) is
approximately preserved between M and M̂, and welfare-optimal planning in M̂ is ε-optimal in
M. Finally, from any outer-known state s ∈ Sout, each escape attempt terminates within T steps,
and reaches Sunk with probability at least E

2 , thus the expected number of exploration actions is
bounded above by 2(T +1)

E |S||A| mknw, and standard binomial tail bounds yield the result.

5 Conclusion

This work motivates and defines a formal model of welfare-centric fair reinforcement learning. We
find that naïve approaches, like planning via policy iteration (example 2.1), and independent per-
beneficiary exploration (example 2.2) do not yield fair RL agents. Defining fair RL and quantifying a
learner’s efficiency are challenging problems (section 3), as we must consider stochastic policies, and
thus can not evaluate learners in terms of the regret or mistakes of individual actions. We thus define
the Adversarial Fair MDP Policy Agent (definition 3.5) and the Kwik-Af learner (definition 3.6)
to model fair RL and codify efficient learning in this domain. We then show (section 4) that it is
possible to Kwik-Af learn the class of Lipschitz-continuous welfare functions in finite MDPs.

In practice, the decision to learn a policy de novo is quite radical, and many suboptimal actions will
likely be taken while learning. This is a general issue for RL in sensitive settings: In medical contexts,
Thomas et al. (2019) start from a reference policy, and seek to improve the policy while ensuring no
reduction in performance. While reasonable in high-risk settings, when fairness among groups is a
concern, it is inherently a conservative approach (as comparison to a reference policy centers the
status quo), whereas starting ex-nihilo solely depends on the structure of the MDP and the learning
algorithm, rather than existing societal biases, which may be encoded in the reference policy.

Finally, we note that suboptimal exploration actions could adversely affect some groups unfairly, and
this should be monitored and controlled for. We note also that the number of suboptimal actions
taken (as bounded by theorem 4.4) can be further reduced with more careful analysis; for instance
the sample complexity of learning transition functions is much smaller when they are sparse, admit a
factoring, or destination distributions are far from uniform, and the sample complexity of learning
rewards may be much smaller when the variance of rewards is small. We are hopeful that future work
will lead to Kwik-Af learners that explore more efficiently under various RL settings of interest.



RLJ | RLC 2024

References
A. Agarwal, A. Beygelzimer, M. Dudík, J. Langford, and H. Wallach. A reductions approach to fair

classification. In International Conference on Machine Learning, pages 60–69. PMLR, 2018.
A. Agarwal, N. Jiang, S. M. Kakade, and W. Sun. Reinforcement Learning: Theory and Algorithms. 2022.
K. Alikhademi, E. Drobina, D. Prioleau, B. Richardson, D. Purves, and J. E. Gilbert. A review of predictive

policing from the perspective of fairness. Artificial Intelligence and Law, pages 1–17, 2021.
R. J. Arneson. Luck egalitarianism and prioritarianism. Ethics, 110(2):339–349, 2000.
P. Auer, T. Jaksch, and R. Ortner. Near-optimal regret bounds for reinforcement learning. Advances in

neural information processing systems, 21, 2008.
J. Bentham. An introduction to the principles of morals and legislation. University of London: the Athlone

Press, 1789.
J. Buolamwini and T. Gebru. Gender shades: Intersectional accuracy disparities in commercial gender

classification. In Conference on fairness, accountability and transparency, pages 77–91. PMLR, 2018.
L. Buşoniu, R. Babuška, and B. De Schutter. Multi-agent reinforcement learning: An overview. Innovations

in multi-agent systems and applications-1, pages 183–221, 2010.
J. G. Cavazos, P. J. Phillips, C. D. Castillo, and A. J. O’Toole. Accuracy comparison across face recognition

algorithms: Where are we on measuring race bias? IEEE Transactions on Biometrics, Behavior, and
Identity Science, 2020.

Y. Chen, A. Cuellar, H. Luo, J. Modi, H. Nemlekar, and S. Nikolaidis. Fair contextual multi-armed bandits:
Theory and experiments. In Conference on Uncertainty in Artificial Intelligence, pages 181–190. PMLR,
2020.
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