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Abstract

Mixtures of Experts (MoEs) have gained prominence in (self-)supervised learning
due to their enhanced inference efficiency, adaptability to distributed training, and
modularity. Previous research has illustrated that MoEs can significantly boost
Deep Reinforcement Learning (DRL) performance by expanding the network’s pa-
rameter count while reducing dormant neurons1, thereby enhancing the model’s
learning capacity and ability to deal with non-stationarity. In this work, we shed
more light on MoEs’ ability to deal with non-stationarity and investigate MoEs in
DRL settings with “amplified” non-stationarity via multi-task training, providing
further evidence that MoEs improve learning capacity. In contrast to previous work,
our multi-task results allow us to better understand the underlying causes for the
beneficial effect of MoE in DRL training, the impact of the various MoE compo-
nents, and insights into how best to incorporate them in actor-critic-based DRL
networks. Finally, we also confirm results from previous work.

1 Introduction

Deep Reinforcement Learning (RL), which integrates reinforcement learning algorithms with deep
neural networks, has demonstrated remarkable success in enabling agents to achieve complex tasks
beyond human capabilities in domains ranging from video games to strategic board games and
beyond (Mnih et al., 2015; Berner et al., 2019; Vinyals et al., 2019; Fawzi et al., 2022; Bellemare et al.,
2020). Despite the pivotal role of deep networks in these advanced RL applications, their learning
dynamics within RL contexts still need to be fully understood. Recent research has uncovered
unexpected behaviours and phenomena associated with the use of deep networks in RL, which often
diverge from those observed in traditional supervised learning environments (Ostrovski et al., 2021;
Kumar et al., 2021; Lyle et al., 2022; Graesser et al., 2022; Nikishin et al., 2022a; Sokar et al., 2023;
Obando Ceron et al., 2023).

Transformers (Vaswani et al., 2017), adapters (Houlsby et al., 2019), and Mixture of Experts (MoEs;
Shazeer et al., 2017), are crucial for the scalability of supervised learning models, particularly within
the domains of natural language processing and computer vision. MoEs stand out by facilitating the
scaling of networks to encompass trillions of parameters, a feat made possible through their modular
design that seamlessly integrates with distributed computing techniques (Fedus et al., 2022). More-
over, MoEs introduce a form of structured sparsity into the network architecture, a characteristic
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1Dormant neurons: neurons that have become practically inactive through low activations.
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associated with enhancements in network performance through various studies on network sparsity
(Evci et al., 2020; Gale et al., 2019; Jin et al., 2022). Finally, there is growing evidence in the
supervised learning literature that MoEs specialise on different problem characteristics in multi-task
settings (Gupta et al., 2022). These settings are inherently non-stationary and may benefit from the
modularity and sparsity induced by MoE-based architectures.

Recently, Ceron et al. (2024b) demonstrated that MoEs unlock scaling in DRL networks for single-
task settings. However, they did so under a specific setting where only the penultimate layer was
replaced by an MoE module. Their analyses suggest that incorporating MoEs makes networks less
susceptible to loss of plasticity, as evidenced by measurements including the fraction of dormant
neurons. Sokar et al. (2023), in exploring the phenomenon of dormant neurons in DRL, provided
strong evidence that their growth is due mainly to the non-stationary nature of RL training.

In this work, we set out to better understand how MoEs help training under non-stationarity and
which aspects of MoEs yield these results. To do so, we “amplify” the non-stationarity of DRL
training by investigating settings where multiple tasks are learned concurrently by the same agent.
Specifically, we investigate the incorporation of a variety of MoE architectures in Multi-Task Re-
inforcement Learning (MTRL) and Continual Reinforcement Learning (CRL) settings. Our results
demonstrate that the induced sparsity of expert modules is critical to mitigating plasticity loss
under amplified non-stationarity and highlight the difficulty and importance of properly training
the router. While focusing on the MTRL and CRL settings, some insights below apply to more
traditional single-task settings.

2 Background

2.1 Reinforcement Learning

A Markov Decision Process (MDP; Bellman, 1957; Puterman, 1990; Sutton & Barto, 2018) is defined
by a tupleM = 〈S,A,P, r, ρ, γ〉, where S denotes the set of all possible states, A denotes the set of
possible actions, P : S×A → S is the state transition probability kernel, r : S×A → R is the reward
function, ρ denotes the initial state distribution, and γ (where 0 < γ ≤ 1) is the discount factor that
determines the present value of future rewards. In Reinforcement Learning (RL), a policy π assigns
to each state s a probability distribution π(s) over actions in A. The objective in RL is to devise
a policy π that maximises the expected sum of discounted rewards J(π) = Eπ [

∑∞
t=0 γ

tr (st, at)].
The policy parameterised by θ is denoted as πθ(at | st). The parameter θ is chosen via optimisation
maximising J(θ), thereby achieving the highest possible cumulative reward.

In Multi-Task Reinforcement Learning (MTRL), an agent engages with a variety of tasks τ
from a set T , with each task τ constituting a distinct Markov Decision Process (MDP) denoted
by Mτ = 〈Sτ ,Aτ ,Pτ , rτ , ρτ , γτ 〉. The objective in MTRL is to devise a unified policy π that
optimises the average expected cumulative discounted return across all tasks, expressed as J(θ) =

1
|T |

∑
τ Jτ (θ). In our work, at each training step a single agent trains synchronously on multiple

tasks. MTRL is effective at measuring an agent’s capabilities at devising control policies from a
highly varying set of inputs and environment dynamics.

Continual RL (Abbas et al., 2023) is a variant of MTRL where the agent trains on one task for
an extended period before switching to a new task (Khetarpal et al., 2022); once all tasks have been
trained on once, the agent once again trains on all the environments in the same order. This setting
enables measuring an agent’s ability to learn new tasks while retaining previously learned policies.

As a concrete example, imagine we have two MDPs (M1, M2). MTRL would train on both
(M1,M2) at each step, whereas CRL would train on M1 for an extended number of steps, then
M2, and so on: M1 →M2 →M1 →M2.
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Figure 1: Architectures considered: (a) Baseline architecture; (b) Middle, used by Ceron et al.
(2024b); (c) Final, where an MoE module replaces the final layer; (d) All, where all layers are
replaced with an MoE module; (e) Big, with a single MoE module where an expert comprises the
full original network.

2.2 MoEs

Mixtures of Experts (MoEs) emerged as a cornerstone in designing Large Language Models (LLMs),
integrating a collection of n “expert” sub-networks. A gating mechanism, known as the router and
usually learned during training, manages the experts by directing each incoming token to k selected
experts (Shazeer et al., 2017). Typically, k is less than the total count of experts (in our case,
k = 1). This sparsity is key for enhancing inference speed and facilitating distributed computing,
making it a pivotal factor in training LLMs. In transformer architectures, MoE units substitute all
dense feedforward layers (Vaswani et al., 2017). The impressive empirical performance of MoEs has
sparked significant research interest (Shazeer et al., 2017; Lewis et al., 2021; Fedus et al., 2022; Zhou
et al., 2022; Puigcerver et al., 2023; Lepikhin et al., 2020; Zoph et al., 2022; Gale et al., 2023).

The strict routing of tokens to specific experts, known as hard assignments, presents several issues,
including training instability, token loss, and obstacles in expanding the number of experts (Fedus
et al., 2022; Puigcerver et al., 2023). To mitigate these issues, Puigcerver et al. (2023) proposed
the concept of Soft MoE, which utilises a soft, fully differentiable method for allocating tokens
to experts, thereby circumventing the limitations associated with router-based hard assignments.
This soft assignment method calculates a blend of weights for each token across the experts and
aggregates their outputs accordingly. Adopting the terminology of Puigcerver et al. (2023), consider
input tokens represented by X ∈ Rm×d, with m indicating the count of d-dimensional tokens. A
Soft MoE layer processes these tokens through n experts, each defined as {fi : Rd → Rd}1:n. Every
expert is associated with p slots for both input and output, each slot characterised by a d-dimensional
vector of parameters. These parameters are collectively denoted as Φ ∈ Rd×(n·p).

The input slots X̃ ∈ R(n·p)×d represent a weighted average of all tokens, given by X̃ = D>X, where
D is commonly known as the dispatch weights. The outputs from the experts are expressed as
Ỹi = fbi/pc(X̃i). For the Soft MoE layer, the overall output Y results from merging Ỹ with the
combined weights C, described by Y = CỸ. D and C are represented by the following expressions:

Dij = exp ((XΦ)ij)∑m
i′=1 exp ((XΦ)i′j)

, Cij = exp ((XΦ)ij)∑n·p
j′=1 exp ((XΦ)ij′)

.
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The findings from Puigcerver et al. (2023) indicate that Soft MoE provides an improved balance
between accuracy and computational expense relative to alternative MoE approaches.

3 Mixtures of Experts in a mixture of RL settings

Although shifting targets (due to bootstrapping) and dynamic data collection (from the agent’s
policy) already render single-task RL a non-stationary problem, MTRL and CRL take this non-
stationarity to an extreme by changing the environments during training. A critical difference
between the two is that in MTRL, at every step, the agent interacts and learns from each environment
(e.g. regular task-switching). In contrast, in CRL tasks are switched very infrequently. Thus, both
settings provide complementary perspectives when investigating the efficacy of MoEs under high
levels of non-stationarity.

3.1 Experimental setup

As we investigate many settings in many scenarios, we wanted to maximise the number of runs per
setting to ensure statistical robustness, while keeping the computational expense at bay. For this
reason, we chose to run our experiments with the PureJaxRL codebase2 (Lu et al., 2022b;a; 2023),
which is a high-performance and parallelisable library including an implementation of Proximal
Policy Optimisation (Schulman et al., 2017, PPO). Since Ceron et al. (2024b) focused on value-
based methods, our use of PPO provides complementary insights and results. We rely on the
Gymnax suite (Lange, 2022) to implement optimised versions of MinAtar environments (Young &
Tian, 2019), which have been shown to provide insights comparable to the full ALE suite (Obando-
Ceron & Castro, 2021). The hyper-parameters used are provided in Appendix H and were adapted
from Jesson et al. (2023) (we deviate in the network size due to computational constraints). For all
experiments, we evaluate on three environments: SpaceInvaders (SI), Breakout (BO), and Asterix
(Ast). The input observations from Asterix differ substantially from SpaceInvaders and Breakout,
whereas the latter are similar in observation and action space. This environment selection allows us
to investigate whether MDP similarity encourages sharing representations between experts.

For MTRL we train simultaneously on SI, BO, and Ast; in practice, the PPO agent performs one
update step per environment in sequence. For CRL, we train the agent on a fixed sequence of MDPs
(Abbas et al., 2023) for 1e7 environment steps (∼ 80k update steps), specifically SI → BO → Ast
→ SI → BO → Ast. We present further analysis with different task orders in Section 4.

Ceron et al. (2024b) propose replacing the penultimate layer with an MoE module and sharing the
other layers across the network. We term this variant Middle. We also evaluate a variant called
Final, where the MoE module replaces the last layer. We also propose two new architectures: All,
where MoE modules replace all three layers, and Big, where the network contains a single MoE
module and each expert consists of a full network (see Figure 1). Since we are dealing with three
distinct environments, all versions of MoEs have three experts. In all cases, we are using per-
sample tokenization: one token – the state – per forward pass (Ceron et al., 2024b). All other
hyper-parameters are reported in Appendix H.

We use a hardcoded routing strategy for many of our experiments to isolate the impact of routing
versus expert architecture. This routing strategy will assign one expert for each task and route inputs
accordingly. For the Big architecture, this effectively trains a separate network for each task and
serves as a useful baseline. For all our results, we report the mean, averaged over 10 independent
seeds, with shaded areas representing standard error. In most figures, we also present the average
normalised performance across all tasks (in parentheses in the legend), where normalisation scores
were taken from Jesson et al. (2023). Our experiments were run on a single Tesla P100 or A100
GPU, each taking 10 minutes. In total, we ran 870 distinct settings over 10 seeds each and are
reported in Sections 3.2, 3.3 and 4 and Appendices A to G.

2PureJaxRL code available at: https://github.com/luchris429/purejaxrl

https://github.com/luchris429/purejaxrl
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Figure 2: Measuring the impact of MoE architectures with hardcoded routing in MTRL (top).
and CRL (bottom). In each legend, the numbers in parentheses indicate the average performance
of each approach over all games. Big outperforms all other methods.
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Figure 3: Measuring the impact of routing with Big architecture using different routing ap-
proaches under the MTRL (top row) and CRL (bottom row) settings. In each legend, the numbers in
parentheses indicate the average performance of each approach across all games. SoftMoE and Hard-
coded work best in MTRL, and Hardcoded works best in CRL, though SoftMoE still outperforms
the baseline.
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3.2 The impact of MoE architectures

To evaluate the impact of the choice of MoE architectures (Figure 1), we make use of the hardcoded
router, which avoids potentially confounding factors due to also learning a routing strategy. In
Figure 2, it is evident that the Big architecture performs best as expected since it is essentially a
separate network per task. Still, it is promising to observe that all architectures outperform the
baseline in the CRL setting, with All being the strongest performer. Surprisingly, in the MTRL
setting, only Big outperforms the baseline. We hypothesise that All struggles due to suboptimal
hyperparameters, as it was not computationally feasible to run a hyperparameter search over all
possible settings. For Middle and Final, it is possible that gradient interference (Lyle et al., 2023)
is complicating the learning process since there is parameter sharing outside of the MoE modules.

3.3 The impact of learned routers

The Big architecture provides a direct way to evaluate the impact of routing, as gating and combining
are only done before and after the original network parameters, respectively. In Figure 3, we present
the learning curves for Big architecture with varying routing strategies under CRL and MTRL.

In MTRL, we see little difference between the hardcoded router and SoftMoE. This is surprising
since the hardcoded router trains separate networks for each task (performing as well as the baseline
trained on each environment individually). This suggests that the gating used by SoftMoE is effective
in situations where tasks are frequently changed. The rigidity of TopK routing appears to make it
difficult for it to learn proper routing strategies, resulting in deteriorated performance.

In CRL, the hardcoded router performs best and retains previously learned policies (as evidenced by
the second time the tasks are run). While SoftMoE ultimately outperforms the baseline in each task,
it struggles in retaining previously learned policies; it is worth noting that the second time training
on Ast, although its starting performance is essentially at zero, its final performance is higher than
the first time training through, suggesting some policy retention (bottom right of Fig. 3).

A major learning challenge in the CRL setting is that no signal is provided to the network when
the environment changes. Thus, a natural question is whether learned routers can effectively use
task information. To investigate this, in Figure 4, we added the task ID as an input to the router
(top row) and observed the surprising result that including task ID slightly hurts performance for
Big-SoftMoE. Examining the gradient similarity from one update to the next (bottom left panel
of Figure 4), it becomes evident that task-switching induces a discontinuity in the gradients used
for learning. Interestingly, including this gradient similarity information as part of the input to the
router does not hurt performance, but it does not improve either (bottom right).

In summary, our results suggest that SoftMoE routing is effective at dealing with high levels of non-
stationarity, provided that discontinuous changes in environment dynamics (such as those arising
from task switching) occur with relative frequency.

4 Extra Analyses

In the previous section, we provided empirical evidence suggesting that MoEs can improve DRL
agents’ performance in various non-stationary training regimes. Next, we conduct additional analyses
to uncover the underlying causes of MoEs’ benefits.

Impact on network plasticity. We measure the fraction of dormant neurons (Sokar et al., 2023)
during training as a proxy for network plasticity. As Figs. 5 (top), 11, and 15 demonstrate, all MoE
variants reduce the fraction of dormant neurons, suggesting MoEs help with maintaining network
plasticity, consistent with the findings of Ceron et al. (2024b).

Expert specialisation. In Figs. 5 (bottom), 10, and 16 we measure the probabilities assigned to
each expert during training; what these values indicate is the likelihood that inputs will be routed
to each respective expert; observe that the hardcoded router has maximal specialisation, where each
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Figure 4: Top: Adding the task ID as an input to the router hurts performance for Big-SoftMoE.
Bottom left: Sequential gradient similarity calculated throughout training, where dashed vertical
lines represent when tasks switch. Bottom right: Adding gradient information as an input to the
router does not improve performance.

expert is assigned to one task. We can also observe that both Big-SoftMoE and All-SoftMoE variants
tend to specialise in all layers.

In supervised learning settings, it is common to use load-balancing losses to avoid this type of spe-
cialisation to maximise expert usage. We explored this idea by adding entropy regularisation during
training and observed that, while we do see a decrease in expert specialisation (c.f. Figs. 4 (bottom),
10, and 16), this does not affect performance in any meaningful way (c.f. Fig. 14 and Table 8).

Impact on actor and critic networks. Ceron et al. (2024b) focused on value-based methods
(where a single network serves as critic and actor), so using an actor-critic method like PPO provides
a novel, complementary perspective. By default, we use MoE modules on the actor and critic
networks, but in Figs. 6, 17 and 18 and Tables 9 and 10, we show that, in the two settings, it is best
to use MoEs on both networks. However, the results suggest that MoEs have a greater impact on
the actor than on the critic network. The fact that actor networks seem to benefit more from MoEs
than critic networks is aligned with the findings of Graesser et al. (2022), where they found that
actor networks could handle much higher levels of sparsity than critics without any degradation in
performance.

Order of environments. To investigate the impact of environment ordering, we train using the
ordering Ast → BO → SI to compare with the orderings we have used thus far; we present results
for MTRL and CRL in Figs. 20 and 21, respectively. While conclusions do not change in MTRL,
changing the order of environments affects CRL performance significantly (excluding the hardcoded
router). We observe two interesting changes: (i) training BO after Ast (as opposed to after SI)
causes all methods (excluding hardcoded) to collapse, and (ii) when training on Ast last, none of the
agents were able to retain the learned policy (c.f. Fig. 3), whereas when training on Ast first there
is some policy retention (as seen on the bottom left of Fig. 20). As mentioned previously, Ast differs
substantially from the other two environments, so our findings in Fig. 20 suggest that the agents
have overfit the input distribution of Ast, hindering its ability to adapt to the other environments
but allowing the retention of the policy learned on Ast.
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Figure 5: Top: presents the ratio of dormant neurons for CRL under different routing approaches
using Big. The numbers in the legend represent average dormant neuron fractions across all games.
MoE variants have lower dormant neurons than the baseline. Bottom: Regularising the entropy
of the router makes the expert selection more uniform. Without regularisation, there is more spe-
cialisation. This shows one seed, as different seeds might choose different experts. See section 4 for
more details.

Single Environment. Despite the clear improvements from CRL and MTRL, there are no signif-
icant performance improvements across all games in the single environment setting. However, Big
improves over the baseline in Asterix while performing worse in Breakout, as shown in Figure 30
and Table 21, suggesting that MoEs might be beneficial in specific types of environments. Adding
gradient information did not affect performance (see Figure 34).

5 Related Work

Parameter underutilisation is a roadblock to parameter efficiency in deep Reinforcement Learning
(RL). The latter was highlighted by Sokar et al. (2023) in the form of dormant neurons. Arnob
et al. (2021) demonstrate that in offline RL, up to 95% of network parameters can be pruned at
initialisation without impacting performance. Further, several studies have shown that periodic
network weight resets enhance performance (Igl et al., 2020; Dohare et al., 2021; Nikishin et al.,
2022b; D’Oro et al., 2022; Sokar et al., 2023; Schwarzer et al., 2023) and that RL networks maintain
performance when trained with a high degree of sparsity (Tan et al., 2022; Sokar et al., 2022;
Graesser et al., 2022; Ceron et al., 2024a). These findings underscore the need for methods that
more effectively leverage network parameters in RL training. Our work explores the use of Mixture
of Experts (MoEs) for actor-critic methods, demonstrating significant reductions in dormant neurons
across various tasks and network architectures.
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Figure 6: Comparing the impact of MoE architectures on actor and critic networks with
the hardcoded router, under the MTRL (top row) and CRL (bottom row) settings. In each legend,
the numbers in parentheses indicate the average performance of each approach across all games.
It is best to use MoEs on both networks. However, the results suggest that MoEs have a greater
impact when used on the actor network than on the critic. See section 4 for more details.

Mixtures of Experts (MoEs) revolutionised large-scale language/vision models primarily due to their
modular design, which supports distributed training and enhances parameter efficiency during in-
ference (Lepikhin et al., 2020; Fedus et al., 2022; Yang et al., 2019; Wang et al., 2020; Abbas &
Andreopoulos, 2020; Pavlitskaya et al., 2020). MoEs show benefits in transfer and multi-task learn-
ing scenarios, e.g., by assigning experts to specific sub-problems (Puigcerver et al., 2023; Chen et al.,
2023; Ye & Xu, 2023), or by improving the statistical performance of routers (Hazimeh et al., 2021).

MoEs have been studied in DRL (Ren et al., 2021; Hendawy et al., 2024; Akrour et al., 2021) but
based on a previous definition of MoE (Jacobs et al., 1991), closely related to ensembling, and not
the more recent interpretation of MoEs in LLMs. Ensembles are often used to represent the policy
(Anschel et al., 2016; Lan et al., 2020; Agarwal et al., 2020; Peer et al., 2021; Chen et al., 2021; An
et al., 2021; Wu et al., 2021; Liang et al., 2022) or to predict model dynamics (Shyam et al., 2019;
Chua et al., 2018; Kurutach et al., 2018). Most closely related to ensembling is our Big architecture,
where each expert is a full model. Fan et al. (2023) could be interpreted as using multiple meta-
controllers as routers for Big and ensembling the resulting policy. In contrast to our work, they do
not investigate different MoE architectures and rely on population-based training.

Two recent works have explored using MoEs (as used in LLMs) in DRL: the work of Ceron et al.
(2024b) has already been referenced extensively above, as our work builds on their findings. More
recently, Farebrother et al. (2024) argued that classification losses yield stabler learning dynamics
than regression losses, which also applies to using MoEs.

6 Conclusion

Our work provides additional evidence of the effectiveness of MoEs in improving the training of
DRL agents. Using MTRL and CRL grants us a novel perspective on evaluating and analysing
MoEs under “extreme” non-stationarity. Consistent with the findings of Ceron et al. (2024b), DRL
is most performant using SoftMoE, whereas it struggles with hard TopK routing.
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Our use of the hardcoded router served as a useful baseline for our analyses and demonstrates much
room for improvement in training DRL agents in multi-task settings. Indeed, in CRL, only mild
policy retention was observed in Ast, and the retention amount was dependent on the order in which
the environments were trained. An exciting avenue for future work is thus investigating what task
curricula would lead to best agent performance and policy retention. As mentioned previously, the
observations in Ast differ substantially from those of BO and SI (which are similar to each other);
the fact that we only observed policy retention in Ast thus begs the question of whether the agent
is over-fitting to the anomalous input distribution of Ast, at the expense of being able to generalise
to the other environments.

Expert specialisation and whether load-balancing is desirable are also interesting questions for future
research. The findings from the supervised learning community in this respect may not naturally
carry over to DRL settings, largely due to training’s inherent non-stationarity. Finally, MoEs could
be investigated in multi-agent settings, where experts represent different agents in cooperative (Ellis
et al., 2024) or general-sum settings (Lu et al., 2022b; Willi et al., 2022), where vectorised environ-
ments are widely available (Khan et al., 2023; Rutherford et al., 2023).
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A Continual RL
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Figure 7: CRL: Variants with shared parameters across task do not necessarily improve
performance over the baseline. Middle performs better than the baseline, whereas Final does not.

Game Baseline Final-Hardcoded Middle-Hardcoded
SI 0.97± 0.01 0.95± 0.01 0.94± 0.01
BO 0.08± 0.05 0.38± 0.04 0.13± 0.01
Ast 0.35± 0.04 0.34± 0.01 0.37± 0.01
SI-2 0.78± 0.12 0.19± 0.12 0.98± 0.01
BO-2 0.08± 0.02 0.09± 0.03 0.07± 0.02
Ast-2 0.51± 0.06 0.57± 0.02 0.60± 0.02
Total 0.46± 0.03 0.42± 0.02 0.52± 0.01

Table 1: CRL: Variants with shared parameters across task do not necessarily improve
performance over the baseline. Middle performs better than the baseline, whereas Final does not.
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Figure 8: CRL: Isolated Params: Variants with isolated parameters across task improve
performance over the baseline. Big-Hardcoded works the best.
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Game Baseline All-Hardcoded Big-Hardcoded Middle-Hardcoded
Game Baseline Final-Hardcoded Middle-Hardcoded Additional-Column
SI 0.97± 0.01 0.95± 0.01 0.95± 0.00 0.94± 0.01
BO 0.08± 0.05 0.13± 0.00 0.32± 0.03 0.13± 0.01
Ast 0.35± 0.04 0.45± 0.03 0.56± 0.04 0.37± 0.01
SI-2 0.78± 0.12 1.00± 0.00 0.98± 0.01 0.98± 0.01
BO-2 0.08± 0.02 0.16± 0.01 0.34± 0.04 0.07± 0.02
Ast-2 0.51± 0.06 0.65± 0.06 0.87± 0.06 0.60± 0.02
Total 0.46± 0.03 0.56± 0.02 0.67± 0.02 0.52± 0.01

Table 2: CRL: Isolated Params: Variants with isolated parameters across task improve
performance over the baseline. Big-Hardcoded works the best.
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Figure 9: CRL: Adding Task ID as input slightly hurts performance for Big-SoftMoE.

Game Baseline w/ Task-ID w/o Task-ID
SI 0.97± 0.01 0.98± 0.01 0.99± 0.01
BO 0.08± 0.05 0.08± 0.03 0.07± 0.02
Ast 0.35± 0.04 0.46± 0.03 0.47± 0.04
SI-2 0.78± 0.12 0.81± 0.13 0.51± 0.16
BO-2 0.08± 0.02 0.13± 0.03 0.04± 0.02
Ast-2 0.51± 0.06 0.73± 0.04 0.76± 0.05
Total 0.46± 0.03 0.53± 0.02 0.47± 0.02

Table 3: CRL: Adding Task ID as input slightly hurts performance for Big-SoftMoE.

Game Baseline Big-Hardcoded Big-SoftGradMoE Big-SoftMoE
SI 0.97± 0.01 0.95± 0.00 0.99± 0.01 0.98± 0.01
BO 0.08± 0.05 0.32± 0.03 0.12± 0.03 0.08± 0.03
Ast 0.35± 0.04 0.56± 0.04 0.45± 0.04 0.46± 0.03
SI-2 0.78± 0.12 0.98± 0.01 0.79± 0.13 0.81± 0.13
BO-2 0.08± 0.02 0.34± 0.04 0.14± 0.03 0.13± 0.03
Ast-2 0.51± 0.06 0.87± 0.06 0.69± 0.06 0.73± 0.04
Total 0.46± 0.03 0.67± 0.02 0.53± 0.02 0.53± 0.02

Table 4: Performance of algorithms across games with total performance.
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Figure 10: CRL: Big-SoftMoE also specialises in the CRL setting.
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Figure 11: CRL: MoE variants have less dormant neurons than the baseline without MoE
modules.

Game Baseline Big-Hardcoded Big-TopK Big-SoftMoE
SI 20.86± 1.41 17.19± 0.94 19.22± 1.78 1.72± 0.45
BO 55.94± 5.38 7.58± 1.44 23.20± 4.71 20.86± 4.34
Ast 65.31± 3.13 22.89± 1.49 32.73± 1.72 15.70± 1.65
SI-2 67.34± 5.38 16.41± 1.22 47.11± 4.49 21.17± 7.97
BO-2 84.06± 2.41 12.11± 1.61 63.52± 2.47 41.33± 4.19
Ast-2 79.30± 2.65 28.05± 1.27 46.17± 1.76 47.58± 3.94
Total 62.14± 1.53 17.37± 0.83 38.66± 1.59 24.73± 1.58

Table 5: CRL Dormant Neurons for Big router variants. The hardcoded variant has the least
dormant neurons



RLJ | RLC 2024

A.1 Hard-switching based on Gradient Similarity

We also attempt to route when the gradient similarity drops below a threshold. However, this proved
difficult as the thresholds depend on the architecture and expert might switch too early, as shown
in Figure 12.

0 20 40 60 80
0.0

0.5

SpaceInvaders

0 20 40 60 80
0.0

0.1

Breakout

0 20 40 60 80
0.00

0.25

Asterix

0 20 40 60 80
0

1

Model: Baseline SMSMHC

0 20 40 60 80
Number of Updates (in 1k)

0.0

0.1

0 20 40 60 80
0.0

0.5

Re
tu

rn

Figure 12: CRL: As shown here with SMSMHC, finding a correct threshold for gradient switching
proves difficult, as the experts might switch too early, as in this case it already switches twice during
SpaceInvaders (see the dips)

Game Baseline Big-Hardcoded Big-TopK Big-SoftMoE
SI 21.95± 1.15 22.34± 1.12 19.61± 2.10 2.89± 0.40
BO 22.50± 3.02 7.89± 1.21 20.39± 1.36 3.91± 1.23
Ast 72.66± 1.59 29.14± 1.11 44.30± 2.35 26.02± 1.21
Total 39.04± 0.88 19.79± 0.92 28.10± 1.81 10.94± 0.77

Table 6: MTRL Dormant Neurons for Big router variants. Big-SoftMoE has the least
dormant neurons.
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B Multi-Task RL

Combining router learning with some task-specialized layers via Hardcoding. We per-
form preliminary tests how enforced task-specialization in the final layer affects performance. For
this, we introduce a new architecture termed SMSMHC (SoftMoE, SoftMoE, Hardcoded Router).
This architecture consists of two initial layers of learned SoftMoE and a final layer with a Hardcoded
Router. Contrary to expectations, SMSMHC does not yield a performance improvement (0.56 ±
0.02 and 0.53 ± 0.01), as shown in Figure 13, leading to questions about the value of specialization
in this context.
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Figure 13: MTRL: SMSMHC does not improve performance over All, suggesting that
extreme specialisation in the last layer is not necessarily helpful.

Game Baseline All SMSMHC
SI 0.90± 0.01 0.94± 0.01 0.95± 0.00
BO 0.46± 0.07 0.33± 0.01 0.28± 0.03
Ast 0.51± 0.05 0.43± 0.05 0.36± 0.04
Total 0.63± 0.03 0.56± 0.02 0.53± 0.01

Table 7: MTRL: SMSMHC does not improve performance over All, suggesting that extreme
specialisation in the last layer is not necessarily helpful.
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Figure 14: MTRL: Regularising the entropy does not affect performance significantly,
suggesting that specialisation only plays a limited role for performance.

Game Baseline All w/o RE All w/ RE Big w/o RE Big w/ RE
SI 0.90± 0.01 0.94± 0.01 0.94± 0.01 0.95± 0.01 0.93± 0.01
BO 0.46± 0.07 0.28± 0.01 0.33± 0.01 0.47± 0.08 0.60± 0.09
Ast 0.51± 0.05 0.42± 0.05 0.43± 0.05 0.68± 0.04 0.62± 0.05
Total 0.63± 0.03 0.55± 0.02 0.56± 0.02 0.70± 0.02 0.72± 0.03

Table 8: MTRL: Regularising the entropy does not affect performance significantly, suggesting that
specialisation only plays a limited role for performance.
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Figure 15: MTRL: Generally, dormant neurons are lower when using Big variants.
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Figure 16: MTRL: Row 1-3 is Layer 1-3 when playing SpaveInvaders, row 4-6, is layer 1-3 when
playing Breakout, row 7-9 is layer 1-3 when playing Asterix.
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C Actor/Critic Ablation

Figure 17: CRL: In general, having an MoE module in the actor seems to be most helpful
for performance, whereas the critic MoE module does not improve performance significantly. We
used the Big variant for the ablation.

Game Baseline /C A/ A/C
SI 0.96± 0.00 0.98± 0.01 0.95± 0.01 0.99± 0.01
BO 0.06± 0.02 0.09± 0.03 0.12± 0.03 0.08± 0.03
Ast 0.38± 0.04 0.33± 0.02 0.44± 0.03 0.53± 0.04
SI-2 0.78± 0.12 0.88± 0.09 0.97± 0.01 0.91± 0.10
BO-2 0.08± 0.02 0.09± 0.02 0.12± 0.03 0.07± 0.03
Ast-2 0.56± 0.06 0.56± 0.03 0.71± 0.05 0.81± 0.05

Table 9: CRL: In general, having an MoE module in the actor seems to be most helpful
for performance, whereas the critic MoE module does not improve performance significantly. We
used the Big variant for the ablation.

Figure 18: MTRL: The combination of Actor and Critic MoE modules appears most
beneficial. We used the Big variant for the ablation.

Game Baseline /C A/ A/C
SI 0.91± 0.01 0.93± 0.01 0.92± 0.00 0.95± 0.01
BO 0.38± 0.04 0.37± 0.03 0.46± 0.06 0.52± 0.07
Ast 0.52± 0.04 0.52± 0.05 0.55± 0.04 0.64± 0.04
Total 0.60± 0.02 0.61± 0.02 0.64± 0.02 0.70± 0.03

Table 10: MTRL: The combination of Actor and Critic MoE modules appears most
beneficial. We used the Big variant for the ablation.
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Figure 19: There is no significant difference in using either Actor or Critic, though the combination
of both works significantly better than using only the Critic.

Game Baseline A/C A/ C/
SI 0.95± 0.01 0.98± 0.00 0.86± 0.09 0.96± 0.00
BO 0.64± 0.08 0.68± 0.08 0.57± 0.09 0.47± 0.08
Ast 0.54± 0.02 0.70± 0.02 0.70± 0.02 0.59± 0.01
Total 0.71± 0.05 0.79± 0.05 0.71± 0.07 0.67± 0.05

Table 11: There is no significant difference in using either Actor or Critic, though the
combination of both works significantly better than using only the Critic.
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D Order Ablation
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Figure 20: CRL: The order does affect the conclusion for CRL, especially because Breakout perfor-
mance completely collapses if trained first on Asterix, then Breakout, then SpaceInvaders. Learned
routers now do not perform better than the baseline. Big-Hardcoded still works as expected.

Game Baseline Big-Hardcoded Big-TopK Big-SoftMoE
SI 0.31± 0.13 0.95± 0.01 0.10± 0.08 0.17± 0.10
BO 0.01± 0.00 0.30± 0.03 0.01± 0.00 0.01± 0.00
Ast 0.60± 0.02 0.61± 0.02 0.35± 0.02 0.70± 0.02
SI-2 0.38± 0.14 0.98± 0.01 0.20± 0.11 0.48± 0.15
BO-2 0.01± 0.00 0.34± 0.04 0.01± 0.00 0.01± 0.00
Ast-2 0.91± 0.03 0.93± 0.03 0.55± 0.02 1.04± 0.03
Total 0.37± 0.03 0.69± 0.01 0.20± 0.03 0.40± 0.03

Table 12: CRL: The order does affect the conclusion for CRL, especially because Breakout perfor-
mance completely collapses if trained first on Asterix, then Breakout, then SpaceInvaders. Learned
routers now do not perform better than the baseline. Big-Hardcoded still works as expected.
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Figure 21: MTRL: The conclusions do not change when changing the order of training
for MTRL. Learned routers and hardcoded routers perform on par and better than the baseline.

Game Baseline Big-Hardcoded Big-TopK Big-SoftMOE
SI 0.92± 0.01 0.95± 0.00 0.90± 0.01 0.97± 0.00
BO 0.34± 0.05 0.39± 0.05 0.29± 0.02 0.49± 0.04
Ast 0.51± 0.04 0.61± 0.02 0.39± 0.04 0.60± 0.03
Total 0.59± 0.02 0.65± 0.02 0.53± 0.01 0.68± 0.02

Table 13: MTRL: The conclusions do not change when changing the order of training
for MTRL. Learned routers and hardcoded routers perform on par and better than the baseline.
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E MTRL - More Results
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Figure 22: MTRL: All Hardcoded architectures, Big-Hardcoded works best. It is unclear
why All does not perform as well as Big, though we hypothesise it is due to suboptimal hyperpa-
rameters

Game Baseline All Big Final Middle
SI 0.90± 0.01 0.94± 0.01 0.95± 0.01 0.93± 0.01 0.96± 0.01
BO 0.46± 0.07 0.26± 0.03 0.57± 0.07 0.38± 0.07 0.29± 0.02
Ast 0.51± 0.05 0.35± 0.04 0.59± 0.01 0.47± 0.03 0.43± 0.03
Total 0.63± 0.03 0.52± 0.01 0.70± 0.02 0.59± 0.02 0.56± 0.01

Table 14: MTRL: All Hardcoded architectures: Big-Hardcoded works best. It is unclear
why All does not perform as well as Big, though we hypothesise it is due to suboptimal hyperpa-
rameters.
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Figure 23: MTRL: All TopKRouter architectures: Generally, TopKRouters perform worse
than the baseline.

Game Baseline All Big Final Middle
SI 0.90± 0.01 0.83± 0.01 0.91± 0.01 0.92± 0.00 0.90± 0.01
BO 0.46± 0.07 0.27± 0.02 0.40± 0.04 0.33± 0.04 0.40± 0.07
Ast 0.51± 0.05 0.19± 0.02 0.34± 0.03 0.54± 0.03 0.43± 0.05
Total 0.63± 0.03 0.43± 0.01 0.55± 0.02 0.60± 0.01 0.58± 0.03

Table 15: MTRL: All TopKRouter architectures: Generally, TopKRouters perform worse than
the baseline.
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Figure 24: MTRL: All SoftMoE Architectures: Only Big-SoftMoE performs better than the
baseline.

Game Baseline All Big Final Middle
SI 0.90± 0.01 0.94± 0.01 0.93± 0.01 0.92± 0.01 0.92± 0.01
BO 0.46± 0.07 0.33± 0.01 0.60± 0.09 0.35± 0.03 0.39± 0.05
Ast 0.51± 0.05 0.43± 0.05 0.62± 0.05 0.51± 0.04 0.51± 0.05
Total 0.63± 0.03 0.56± 0.02 0.72± 0.03 0.60± 0.02 0.61± 0.02

Table 16: MTRL: All SoftMoE Architectures: Only Big-SoftMoE performs better than the
baseline.
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Figure 25: MTRL: Big-SoftGradientMoE vs. Big-SoftMoE, adding gradient information does
not improve performance.

Game Baseline Big-Hardcoded Big-SoftGradientMoE Big-SoftMoE
SI 0.90± 0.01 0.95± 0.01 0.95± 0.00 0.93± 0.01
BO 0.46± 0.07 0.57± 0.07 0.51± 0.07 0.60± 0.09
Ast 0.51± 0.05 0.59± 0.01 0.66± 0.03 0.62± 0.05
Total 0.63± 0.03 0.70± 0.02 0.70± 0.03 0.72± 0.03

Table 17: MTRL: Big-SoftGradientMoE vs. Big-SoftMoE, adding gradient information does
not improve performance.
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F CRL - More Results
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Figure 26: CRL: All HardcodedRouter Architectures. Big-Hardcoded works best. It is
unclear why AllLayers performs significantly worse on Breakout, though we hypothesise it is due to
suboptimal hyperparameters

Game Baseline All Big Final Middle
SI 0.97± 0.01 0.95± 0.01 0.95± 0.00 0.95± 0.01 0.94± 0.01
BO 0.08± 0.05 0.13± 0.00 0.32± 0.03 0.38± 0.04 0.13± 0.01
Ast 0.35± 0.04 0.45± 0.03 0.56± 0.04 0.34± 0.01 0.37± 0.01
SI-2 0.78± 0.12 1.00± 0.00 0.98± 0.01 0.19± 0.12 0.98± 0.01
BO-2 0.08± 0.02 0.16± 0.01 0.34± 0.04 0.09± 0.03 0.07± 0.02
Ast-2 0.51± 0.06 0.65± 0.06 0.87± 0.06 0.57± 0.02 0.60± 0.02
Total 0.46± 0.03 0.56± 0.02 0.67± 0.02 0.42± 0.02 0.52± 0.01

Table 18: CRL: All HardcodedRouter Architectures. Big-Hardcoded works best. It is un-
clear why AllLayers performs significantly worse on Breakout, though we hypothesise it is due to
suboptimal hyperparameters
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Figure 27: CRL: All TopK variants perform worse than the baseline except for Middle.
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Game Baseline All Big Final Middle
SI 0.97± 0.01 0.86± 0.01 0.90± 0.01 0.94± 0.01 0.94± 0.01
BO 0.08± 0.05 0.14± 0.01 0.13± 0.02 0.15± 0.03 0.08± 0.02
Ast 0.35± 0.04 0.10± 0.01 0.20± 0.01 0.37± 0.02 0.34± 0.05
SI-2 0.78± 0.12 0.91± 0.01 0.74± 0.12 0.57± 0.15 0.96± 0.01
BO-2 0.08± 0.02 0.19± 0.02 0.02± 0.01 0.08± 0.03 0.10± 0.01
Ast-2 0.51± 0.06 0.17± 0.02 0.35± 0.02 0.61± 0.04 0.52± 0.09
Total 0.46± 0.03 0.39± 0.01 0.39± 0.02 0.45± 0.02 0.49± 0.02

Table 19: CRL: All TopK variants perform worse than the baseline except for Middle.

Figure 28: CRL: All SoftMoE Architectures: Big-SoftMoE is the only variant that performs
better than the baseline.

Game Baseline All Big Final Middle
SI 0.97± 0.01 0.97± 0.01 0.98± 0.01 0.94± 0.01 0.97± 0.01
BO 0.08± 0.05 0.13± 0.03 0.08± 0.03 0.17± 0.03 0.10± 0.02
Ast 0.35± 0.04 0.20± 0.02 0.46± 0.03 0.30± 0.03 0.35± 0.03
SI-2 0.78± 0.12 0.99± 0.01 0.81± 0.13 0.66± 0.14 0.97± 0.01
BO-2 0.08± 0.02 0.18± 0.03 0.13± 0.03 0.08± 0.02 0.15± 0.02
Ast-2 0.51± 0.06 0.36± 0.06 0.73± 0.04 0.50± 0.05 0.49± 0.05
Total 0.46± 0.03 0.47± 0.01 0.53± 0.02 0.44± 0.03 0.50± 0.01

Table 20: CRL: All SoftMoE Architectures: Big-SoftMoE is the only variant that performs
better than the baseline.
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Figure 29: CRL: Adding gradient information to the input does not improve performance
significantly.
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Figure 30: Left: Aggregate Interquantile Mean (Agarwal et al., 2021) of scores. Right Compar-
ison of different models and routers on the single environment setup. We report the mean of the
normalised scores for 3 Atari games. All games run with 10 independent seeds, shaded areas repre-
senting the standard error. We normalise performance according to the single environment results
reported in Jesson et al. (2023). BigMoE improves performance over the baseline, especially due to
performance improvements in Asterix.

Game Big-SoftMoE Baseline Big-Hardcoded Big-TopK
SI 0.98± 0.01 0.95± 0.01 0.94± 0.01 0.90± 0.01
BO 0.54± 0.09 0.66± 0.08 0.52± 0.07 0.54± 0.07
Ast 0.67± 0.03 0.58± 0.03 0.57± 0.03 0.32± 0.01
Total 0.73± 0.06 0.73± 0.05 0.67± 0.05 0.59± 0.04

Table 21: Single environment: Normalised Performance of algorithms across games with
average total performance. We normalise performance according to the single environment
results reported in Jesson et al. (2023). We do not achieve the same performance as we use smaller
networks due to computational limits.
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Figure 31: Single environment: All TopK Architectures, all variants perform worse than the
baseline.

Game All Final Middle Baseline Big
SI 0.86± 0.01 0.94± 0.01 0.94± 0.00 0.95± 0.01 0.92± 0.01
BO 0.31± 0.03 0.40± 0.03 0.43± 0.05 0.66± 0.08 0.43± 0.07
Ast 0.19± 0.01 0.54± 0.02 0.60± 0.02 0.58± 0.03 0.30± 0.02
Total 0.45± 0.02 0.63± 0.02 0.66± 0.03 0.73± 0.05 0.55± 0.04

Table 22: Single environment: All TopK Architectures, all variants perform worse than the
baseline.
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Figure 32: Single environment: All SoftMoE Architectures: Big, Final, and Middle all
perform as well as the baseline.

Game Big All Final Baseline Middle
SI 0.98± 0.01 0.96± 0.00 0.94± 0.01 0.95± 0.01 0.95± 0.01
BO 0.54± 0.09 0.31± 0.02 0.67± 0.08 0.66± 0.08 0.44± 0.05
Ast 0.67± 0.03 0.55± 0.04 0.56± 0.03 0.58± 0.03 0.65± 0.02
Total 0.73± 0.06 0.61± 0.03 0.72± 0.05 0.73± 0.05 0.68± 0.03

Table 23: Single environment: All SoftMoE Architectures: Big, Final, and Middle all perform
as well as the baseline.
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Figure 33: Single environment: All SoftGradientMoE Architectures., adding gradient in-
formation does not change the conclusions of the softmoe architectures above.

Game Baseline Middle Big Final All
SI 0.95± 0.01 0.86± 0.09 0.99± 0.00 0.93± 0.01 0.96± 0.01
BO 0.60± 0.09 0.42± 0.07 0.46± 0.04 0.53± 0.07 0.39± 0.06
Ast 0.59± 0.03 0.64± 0.03 0.70± 0.02 0.55± 0.03 0.47± 0.04
Total 0.71± 0.05 0.64± 0.07 0.72± 0.03 0.67± 0.05 0.60± 0.04

Table 24: Single environment: All SoftGradientMoE Architectures, adding gradient infor-
mation does not change the conclusions of the softmoe architectures above.

Game w/ Gradient Info w/o Gradient Info
SI 0.95± 0.01 0.95± 0.01
BO 0.66± 0.08 0.60± 0.09
Ast 0.58± 0.03 0.59± 0.03
Total 0.73± 0.05 0.71± 0.05

Table 25: Baseline vs. Baseline with Gradient Information: Adding gradient information to
the input of the baseline does not affect its performance.
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Figure 34: Single environment: Baseline vs. Baseline with Gradient Information, adding
gradient information to the input of the baseline does not affect its performance.
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H Hyperparameters

Hyperparameter Value
Number of Environments 128
Learning Rate 9e-4
Steps 64
Total Timesteps 1e7
Updates total_timesteps // num_steps // num_envs
Update Epochs 10
Minibatches 8
Minibatch Size num_envs * num_steps // num_minibatches
GAE-γ 0.99
GAE-λ 0.7
Clip ε 0.2
Entropy Coefficient 0.01
Value Function Coeffficient 0.5
Max Gradient Norm 1.9
Activation relu
Environment {SpaceInvaders-MinAtar, Breakout-Minatar, Asterix-MinAtar}
Anneal learning rate True
# Experts 3
Layer Size 64
Expert Hidden Size 64
Model {BigMoE, FinalLayer, AllLayers, MiddleLayer}
MoE {SoftMoE, MoE, SoftGradientMoE}
Expert {BigExpert, Expert}
Router {TopKRouter, HardcodedRouter}
Number of Selected Experts 1
Task ID {True, False}
Actor MoE {True, False}
Critic MoE {True, False}
Gradient Buckets 5
Router Entropy {True, False}

Table 26: Potential Hyperparameters configurations. We did not run a grid search over all
potential combinations but report meaningful selections.


