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Abstract

The recency heuristic in reinforcement learning is the assumption that stimuli that
occurred closer in time to an acquired reward should be more heavily reinforced.
The recency heuristic is one of the key assumptions made by TD(λ), which
reinforces recent experiences according to an exponentially decaying weighting.
In fact, all other widely used return estimators for TD learning, such as n-step
returns, satisfy a weaker (i.e., non-monotonic) recency heuristic. Why is the
recency heuristic effective for temporal credit assignment? What happens when
credit is assigned in a way that violates this heuristic? In this paper, we analyze the
specific mathematical implications of adopting the recency heuristic in TD learning.
We prove that any return estimator satisfying this heuristic: 1) is guaranteed to
converge to the correct value function, 2) has a relatively fast contraction rate,
and 3) has a long window of effective credit assignment, yet bounded worst-case
variance. We also give a counterexample where on-policy, tabular TD methods
violating the recency heuristic diverge. Our results offer some of the first theoretical
evidence that credit assignment based on the recency heuristic facilitates learning.

1 Introduction

The temporal credit-assignment problem in reinforcement learning (RL) is the challenge of determin-
ing which past actions taken by a decision-making agent contributed to a certain outcome (Minsky,
1961). Addressing the temporal credit-assignment problem effectively is paramount to efficient RL.
Unfortunately, an optimal solution is likely infeasible for an agent acting in an arbitrary, unknown
environment; perfect credit assignment would require precise knowledge of the environment’s dy-
namics. Even then, the complexity of the problem grows enormously as the agent takes more actions
over its lifetime. Instead, heuristics—simplifying rules or assumptions for credit assignment—can be
adopted to make the problem more approachable. In the absence of any prior knowledge of the en-
vironment, a common and reasonable choice is the recency heuristic: “One assigns credit for current
reinforcement to past actions according to how recently they were made” (Sutton, 1984, p. 94). The
recency heuristic reflects the fact that there is likely to be a cause-and-effect relationship between
actions and rewards that are close together in time.

In computational RL, the reinforcement signal is taken to be the temporal-difference (TD) error:
the difference between the observed and expected reward earned by an action. TD(λ) (Sutton,
1988) is the prime example of the recency heuristic; each TD error is applied to past actions in
proportion to an exponentially decaying eligibility, achieving credit assignment that gracefully fades
as the time between the action and TD error increases. This strategy, although simple, is highly
effective and has been used by many recent algorithms (e.g., Schulman et al., 2015; Harb & Precup,
2016; Harutyunyan et al., 2016; Munos et al., 2016; van Seijen, 2016; Mahmood et al., 2017; Mousavi
et al., 2017; Daley & Amato, 2019; Kozuno et al., 2021; Gupta et al., 2023; Tang et al., 2024).
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Figure 1: Illustrations of the eligibility curves for (a) λ-return, (b) n-step return, (c) inverted U-
shape assignment inspired by Klopf (1972), and (d) time-delayed λ-return. The horizontal axis
represents the elapsed time since the stimulus. Neither (c) nor (d) satisfy the recency heuristic.

However, the recency heuristic is, by definition, a simplifying assumption; one can imagine complex
environments where non-recent credit assignment would theoretically be more beneficial. For exam-
ple, if it were known that there is always some fixed delay between actions and their corresponding
effects—especially when under partial observability (Kaelbling et al., 1998)—then this information
could theoretically be exploited for faster learning. Klopf (1972), for instance, describes credit-
assignment functions based on an inverted-U shape (see Figure 1c) that could achieve this exact
effect. The shape of the credit-assignment curve encodes a prior belief over the likelihood of when
a reward will arrive following an action, with the smooth distribution reflecting some uncertainty in
the exact time of arrival. Klopf (1972) hypothesized that reactions in a firing neuron would leave
it eligible to learn for a short duration. This later inspired the simplified spike-and-decay model of
eligibility traces (Barto et al., 1983; Sutton, 1984) used by TD(λ), which obeys the recency heuristic
and has become a standard approach for credit assignment in computational RL.

Although there is potential for more efficient learning with non-recent credit assignment, it has not
been tried in computational RL. Even alternatives to TD(λ) that are not generally connoted with
the recency heuristic, such as n-step TD methods (Cichosz, 1995), implement a crude form of recency
heuristic: TD errors within some fixed time interval following an action are reinforced, while those
outside are not. In fact, all other return estimators used for TD learning (which are constructed
from n-step returns) satisfy some form of recency heuristic (see Section 5). We are not aware of any
results that analyze what happens when TD updates do not follow the recency heuristic.

The goals of this paper are to understand the implications of forgoing the recency heuristic in TD
learning, and to provide new insights into why assigning credit based on the recency heuristic has
been so effective for RL. We test a model of non-recent credit assignment based on a short, time-
delayed pulse inspired by Klopf’s (1972) inverted-U function. Although this is one of the simplest
and most benign forms of non-recency in TD learning, we show that it diverges under the favorable
conditions of tabular, on-policy learning. We prove that the root cause of divergence is negative
weights on some of the n-step returns in the return estimate, which appear whenever the recency
heuristic is violated, and counteract learning by increasing the contraction modulus. In the off-
policy setting, our analysis resolves the open problem by Daley et al. (2023) on the convergence of
trajectory-aware eligibility traces. Finally, we show that satisfying the recency heuristic increases
the effective credit-assignment window of a return estimate without increasing its bias and variance
in the worst case, which partly explains the empirical success of methods like TD(λ). Overall, our
results demonstrate that the recency heuristic is not an overly simplistic assumption but is actually
a crucial component in the mathematical basis of TD learning.

2 Background

We adopt the standard RL perspective of a decision-making agent learning in an unknown environ-
ment through trial and error (Sutton & Barto, 2018, Sec. 3.1). The agent-environment interface is
modeled by a Markov decision process (MDP) formally described by the tuple (S,A, p, r). The finite
sets S and A contain the possible environment states and agent actions, respectively. At each time
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step t ≥ 0, the agent observes the current state of the environment, St, and takes an action, At ∈ A,
with probability π(At|St), where π is the agent’s policy. Consequently, the environment state tran-
sitions to St+1 ∈ S with probability p(St+1|St, At), and the agent receives a reward, Rt

def= r(St, At).

In prediction problems, the agent’s objective is to learn the value function vπ(s) def= Eπ[Gt | St = s],
where Gt

def=
∑∞

i=0 γiRt+i is the observed discounted return. The constant γ ∈ [0, 1] is called the
discount factor and determines the agent’s relative preference for delay rewards. In the rest of this
section, we discuss various types of temporal-difference (TD) learning (Sutton, 1988), a common
approach for prediction in reinforcement learning.

TD(λ) and the Recency Heuristic TD methods estimate vπ by iteratively reducing an error
between predicted and observed returns, bootstrapping from the previous (biased) estimates in order
to reduce variance. Let v : S → A be the agent’s estimate of the value function, and define Vt

def= v(St)
for brevity. The TD error, defined as δt

def= Rt + γVt+1 − Vt, is the fundamental unit of reinforcement
in TD methods. For instance, the simplest TD method, known as TD(0) or 1-step TD (Sutton, 1988),
performs the update v(St) ← Vt + αtδt, where αt ∈ (0, 1] is the step size. TD(0) is a special case
of TD(λ) (Sutton, 1988), one of the earliest and most widely used TD methods. TD(λ) is able
to assign credit simultaneously to multiple states through the use of eligibility traces (Klopf, 1972;
Barto et al., 1983; Sutton, 1984), a function z : S → R that tracks recent state visitations. On each
time step, TD(λ) performs the following updates:

z(s)← γλ z(s) , ∀ s ∈ S , z(St)← z(St) + 1 , v(s)← v(s) + αtδt z(s) , ∀ s ∈ S , (1)

where λ ∈ [0, 1] is the recency hyperparameter. Every eligibility trace is unconditionally decayed by
a factor of γλ, but only the trace for the current state is incremented. Then, every state is updated
in proportion to its eligibility trace, using the current TD error. Eligibility traces are an efficient
mechanism for assigning credit to recently visited states.

The above updates are known as the backward view of TD(λ). An alternative perspective is the
forward view. Suppose we hold the value function and step size fixed, and track the cumulative
update for a single state visitation. We would find that the state is updated according to

v(St)← Vt + αt

(
Gλ

t − Vt) , (2)

where Gλ
t

def= Vt +
∞∑

i=0
(γλ)iδt+i . (3)

The forward and backward views are equivalent under the conditions described above (Sutton, 1988;
Watkins, 1989). The quantity defined in Eq. (3) is known as the λ-return and represents the theoreti-
cal target of the TD(λ) update. Although the forward view is acausal and not directly implementable
as an online algorithm, it reveals the temporal relationship between a state and the degree to which
future TD errors are reinforced. The exponential decay of Eq. (3) represents a form of recency
heuristic, the assumption that the causality between events weakens as the time between them in-
creases. Mathematically, the hyperparameter λ controls the bias-variance trade-off by interpolating
between high-bias 1-step TD (λ = 0) and high-variance Monte Carlo (λ = 1) methods (Kearns &
Singh, 2000). As we show next, non-exponential implementations of the recency heuristic are also
possible; however, they do not enjoy the same efficient implementation with eligibility traces.

n-step Returns and Compound Returns More generally, TD methods can be expressed as a
forward-view update in terms of an arbitrary return estimate, Ĝt:

v(St)← Vt + αt

(
Ĝt − Vt

)
. (4)

This operation is known as a value backup, and we refer to the estimate Ĝt as its target. We already
established in Eq. (2) that the λ-return, Gλ

t , is one possible target. Another common target is
the n-step return (Watkins, 1989; Cichosz, 1995), defined as G

(n)
t

def=
∑n−1

i=0 γiRt+i + γnVt+n, where



RLJ | RLC 2024

n ≥ 1 determines the length of the return. Just like the λ-return, the n-step return interpolates
between high-bias TD (n = 1) and high-variance Monte Carlo (n = ∞) methods. Although not
commonly used, the n-step return admits a forward-view cumulative error similar to Eq. (3):

G
(n)
t = Vt +

n−1∑
i=0

γiδt+i , (5)

This reveals that the n-step return also satisfies the recency heuristic, albeit a weaker notion than
that of the λ-return (see Section 3). Nevertheless, it still fulfills the basic assumption that TD errors
nearer in time to a given state should be reinforced, whereas those farther away should not. The
n-step return is also useful as a fundamental building block for constructing other estimates. For
instance, the λ-return from Eq. (3) is equivalent to a weighted average of n-step returns:

Gλ
t = (1− λ)

∞∑
n=1

λn−1G
(n)
t . (6)

More generally, we can consider arbitrary convex combinations of n-step returns, strictly generalizing
both λ-returns and n-step returns. Let (cn)∞

n=1 be a sequence of nonnegative weights such that∑∞
n=1 cn = 1. We refer to the following estimate as a convex return:

Gc
t

def=
∞∑

n=1
cnG

(n)
t . (7)

When at least two weights are nonzero, a convex return becomes a weighted average of n-step returns
known as a compound return (Watkins, 1989; Sutton & Barto, 2018; Daley et al., 2024). Examples
of compound returns include λ-returns, γ-returns (Konidaris et al., 2011), and Ω-returns (Thomas
et al., 2015). In Section 5, we show that the definition of a convex return is inherently related to the
recency heuristic. Prior to our work, convex returns were the most general form of return estimator
for TD learning, but we generalize them further in Section 5.

Value-Function Operators and Convergence Conditions We have discussed a variety of TD
methods based on forward-view return estimates, but we have not yet established what makes an
estimate valid for learning. Convergence to vπ is perhaps most easily seen from the perspective
of value-function operators. An operator H : R|S| → R|S| transforms a value function. The most
fundamental value-function operator is the Bellman operator (Bellman, 1957), defined as

Tπv
def= r + γPπv , where (Pπv)(s) def=

∑
a∈A

π(a|s)
∑
s′∈S

p(s′|s, a) v(s′) .

Note that r and v here are treated as vectors in R|S|, and Pπ is treated as a |S|×|S| stochastic matrix.
Let T n

π v
def= TπT n−1

π v and T 0
π v

def= v. The n-iterated Bellman operator, T n
π , corresponds to the n-step

return. Hence, convex returns are associated with the operator v 7→
∑∞

n=1 cnT n
π v. More generally,

every value backup like Eq. (4) is equivalent to the noisy application of some operator, H, to an
element of the value function. That is, a return estimate can be represented as Ĝt = (Hv)(St) + ωt,
where ωt is zero-mean noise. TD updates can thus be expressed in the form

v(s)←
{

(1− αt) v(s) +αt

(
(Hv)(s) + ωt

)
, if s = St ,

v(s) , otherwise.
(8)

To produce a TD method of the form of Eq. (4) that converges to vπ under general conditions
(e.g., Bertsekas & Tsitsiklis, 1996, Proposition 4.4), it is required that H is a maximum-norm
contraction mapping with vπ as its unique fixed point, and that the step sizes are annealed such
that

∑∞
t=0 αt =∞ and

∑∞
t=0 α2

t <∞ (Robbins & Monro, 1951). An operator H is a contraction
mapping if and only if ∥Hv −Hv′∥∞ ≤ β∥v − v′∥∞, where β ∈ [0, 1) is the contraction modulus.
All of the operators discussed so far satisfy these properties because they are convex combinations of
n-step Bellman operators, each of which are contraction mappings around vπ with a modulus of γn.
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3 Formalizing the Recency Heuristic

In this section, we precisely define the notion of the recency heuristic. We consider a general
estimator for TD learning of the form

Ĝt = Vt +
∞∑

i=0
hiγ

iδt+i , (9)

where (hi)∞
i=0 is a sequence of real numbers. Although this may appear to be restrictive, we show in

Section 5 that it can represent every valid return estimate (i.e., converges to vπ) that comprises a
linear combination of future rewards and state values, and thus is implementable as a TD method.

We can think of Eq. (9) as an abstract form of TD(λ): one with an arbitrary stimulus-response model
rather than the familiar exponential decay. At time t, the agent experiences an external stimulus
modulated by the current environment state, St. Positive or negative reinforcement subsequently
arrives in the form of the TD errors, (δt, δt+1, δt+2, . . . ). Each weight, hi, determines the agent’s
receptiveness, or eligibility, to learn from the TD error that occurs exactly i steps after the initial
stimulus. In this view, a return estimate, Ĝt, is uniquely determined by the impulse response of a
linear time-invariant system encoded by (hi)∞

i=0. One possible interpretation of the recency heuristic,
then, is a constraint on the impulse response such that it never increases after the initial stimulus.
This gives us the following definition.
Definition 3.1 (Weak Recency Heuristic). A return estimate satisfies the weak recency heuristic if
and only if it has the form of Eq. (9), and hi ≥ hi+1 ≥ 0 holds for all i ≥ 0.

We show in Section 5 that this definition is highly related to the question of whether (and how
fast) TD learning using this estimator converges in expectation, but it is slightly weaker than what
is typically thought of as the recency heuristic. For instance, Sutton (1984, p. 94) is explicit that
“Credit assigned should be a monotonically decreasing function of the time between action and re-
inforcement, approaching zero as this time approaches infinity.” The credit-assignment function in
Definition 3.1 is merely nonincreasing, and so we refer to it as the weak recency heuristic. Alterna-
tively, we refer to the monotonically decreasing case as the strong recency heuristic, defined below.
Definition 3.2 (Strong Recency Heuristic). A return estimate satisfies the strong recency heuristic
if and only if it has the form of Eq. (9), and hi > hi+1 > 0 holds for all i ≥ 0.

Notice that Definition 3.2 implies Definition 3.1. We make the distinction between these more
concrete with a few examples. The λ-return, used by TD(λ), is the canonical example of the strong
recency heuristic; its eligibility weights in Eq. (3) are strictly decreasing for any λ ∈ (0, 1). In
contrast, the n-step return remains equally receptive to the first n TD errors, and then abruptly
stops responding to the ones afterwards. However, these two updates are alike in that the weights
never increase at any point: they both satisfy the weak recency heuristic. We could also imagine
arbitrary weights in Eq. (9) that do not satisfy either definition of recency heuristic. For example,
the inverted-U shape described by Klopf (1972) takes time to reach its peak value before falling back
to zero, and thus violates Definitions 3.1 and 3.2. Similarly, we can take the standard spike-and-
decay model of a λ-return and introduce a delay between the initial stimulus and the response. Both
of these could exploit some known structure regarding the agent’s environment, and may be more
biologically plausible, but their mathematical implications are not yet known. These four examples
are graphed in Figure 1. Notably, there are many more possibilities in Eq. (9), most of which have
not yet been explored.

4 What Happens When the Recency Heuristic Is Violated?

We conduct an experiment to demonstrate that on-policy TD learning with a tabular value function
can diverge when the recency heuristic is violated. This is surprising, since one view of the TD-error
weights, (hi)∞

i=0, is that they encode a belief over the time when rewards will arrive following a
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Figure 2: (Left) MRP for Counterexample 4.1; rewards are zero. (Center) Credit-assignment func-
tion for delayed TD(0). (Right) Expected update directions of Eq. (10) for τ = 1, γ = 0.9, p = 0.4.

stimulus. Ideally, these weights could represent any shape for the credit-assignment function and
the agent would still learn the correct value function, yet this does not appear to be the case.

We test perhaps the simplest possible example of non-recent credit assignment: an update based on
a single, future TD error. More specifically, we generalize TD(0) by introducing a delay of τ ≥ 0:

v(St)← Vt + αtγ
τ δt+τ . (10)

The impulse response for this method is generally given by hi = 1 if i = τ , and hi = 0 otherwise.
That is, the eligibility curve is a square pulse initiated exactly τ steps after the initial stimulus (see
Figure 2, center). The operator corresponding to this update is H : v 7→ v + (γPπ)τ (Tπv− v). The
fixed point of this operator is vπ for any value of τ because Tπvπ − vπ = 0.

Notice that this is a rather benign form of non-recent credit assignment; we are taking the simplest
TD method and merely translating its impulse response along the time axis. More complex forms of
non-recent credit assignment would consist of a superposition of multiple such updates, and so this
example provides insight into other methods. Nevertheless, despite the simplicity of this method, we
present a simple Markov reward process (MRP) that causes almost every value-function initialization
to diverge away from vπ.

Counterexample 4.1. Consider a 2-state MRP with reward r(s, s′) = 0, ∀ s, s′ ∈ {s1, s2}. Let
p ∈ [0, 1] be the self-transition probability (see Figure 2, left) and let v0 be the initial value function.
If τ = 1, γ = 0.9, and p = 0.4, then the TD update in Eq. (10) diverges whenever v0(s1) ̸= v0(s2).

We give specific values of τ , γ, and p for the sake of the counterexample; however, it appears that
divergence is inevitable for any τ > 0 as γ → 1 and p→ 0. The divergent behavior of the method is
visualized in Figure 2 (right), where the arrows represent unit vectors pointing in the direction the
expected update (i.e., Hv − v). Because the reward is zero for all transitions, vπ is the origin (red
star) regardless of γ and p. However, we see that every value-function initialization not on the blue
line where v0(s1) = v0(s2) progresses arbitrarily far away from the fixed point, vπ.

Why does violating the recency heuristic in this easy problem cause divergence? The reason becomes
more clear when we observe that γτ δt+τ = G

(τ+1)
t −G

(τ)
t . Thus, an equivalent operator for Eq. (10)

is v 7→ v + T τ+1
π v − T τ

π v, whose worst-case contraction modulus is 1 + γτ+1 + γτ by the triangle
inequality—greater than 1. Although this does not automatically mean the operator will diverge, it
does suggest that divergence is possible, and we see one instance of it here. It is important to note
that this divergence is not due to sampling noise nor an uneven state distribution, as we are explicitly
computing the expected result of the operator in both states. Furthermore, the phenomenon is not
unique to this particular algorithm or problem, but generally arises whenever the weak recency
heuristic is violated too much. We prove this formally in the next section.
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5 Only Convex Returns Satisfy the Weak Recency Heuristic

Recall that convex returns are convex combinations of n-step returns: either compound returns
or n-step returns themselves. In this section, we show this definition is logically equivalent to the
weak recency heuristic; Definition 3.1 is satisfied if and only if a return estimate is convex (see
Proposition 5.2).

To illuminate the role of the weak recency heuristic, we first justify the general return estimator in
Eq. (9). In particular, we show that estimates of this form correspond to the largest set of linear
operators suitable for TD learning. This allows us to later analyze how the properties of these
operators are affected by the choice of the weights, (hi)∞

i=0, especially when these weights do not
satisfy the recency heuristic.

To produce a TD method in the form of Eq. (4) that converges to vπ under general conditions, the
return estimate Ĝt must correspond to a maximum-norm contraction mapping, H, with its unique
fixed point at vπ (recall Section 2). In addition to these requirements, we want a sample-realizable
operator in order to create an implementable TD method: one that can be constructed from any
rewards or state values following time t. To match existing TD methods, we assume that this
operator is linear with respect to these quantities, giving us the following definition.
Definition 5.1. A sample-realizable linear operator has the form Hv =

∑∞
i=0 ai(γPπ)ir+bi(γPπ)iv,

where (ai)∞
i=0 and (bi)∞

i=0 are bounded sequences of real numbers.

This definition covers all possible operators based on return estimates that can be constructed from
a linear combination of sampled experiences: i.e., Ĝt =

∑∞
i=0 aiγ

iRt+i +biγ
iVt+i. However, the vast

majority of these operators will not meet our convergence criteria. In the following proposition, we
reduce the space of operators by identifying only those whose fixed point is exactly vπ.
Proposition 5.1. For every sample-realizable operator H whose fixed point is vπ, there exists a
sequence of real numbers (hi)∞

i=0 such that

Hv = v +
∞∑

i=0
hi(γPπ)i(Tπv − v) . (11)

If we let cn
def= hn−1 − hn for n ≥ 1, then H also has the equivalent form

Hv =
(

1−
∞∑

n=1
cn

)
v +

∞∑
n=1

cnT n
π v . (12)

Proof. See Appendix A.1.

Notice that Eq. (11) corresponds exactly to the sample estimate in Eq. (9) that we considered in
Section 3 when defining the weak recency heuristic. We refer to these as linear returns. Hence,
every linear return with vπ as its fixed point is expressible as a weighted sum of either TD errors or
n-step returns, without loss of generality.

We now have a generic operator that is both sample realizable and has the correct fixed point, but
it is not necessarily a contraction mapping without any conditions on its weights, (hi)∞

i=0 . Eq. (12)
expresses the operator in terms of the n-step Bellman operators, facilitating the analysis of its
contraction properties. Because Pπ is a stochastic matrix, we have ∥Pπ∥∞ = 1, which also implies
that ∥T n

π v − T n
π v′∥∞ ≤ γn∥v − v′∥∞, for any v, v′ ∈ R|S|. Thus, by the triangle inequality,

∥Hv −Hv′∥∞ ≤

(∣∣∣∣∣1−
∞∑

n=1
cn

∣∣∣∣∣+
∞∑

n=1
|cn|γn

)
∥v − v′∥∞ , (13)

and the contraction modulus is therefore β = |1−
∑∞

n=1 cn|+
∑∞

n=1 |cn|γn. The operator is a con-
traction mapping if and only if β < 1.
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Notice that Eq. (12) consists of two terms: the original value function scaled by 1 −
∑∞

n=1 cn, and
a linear combination of n-step returns. The first term can be eliminated without loss of generality
by normalizing the sum of weights, i.e., by adding the constraint that

∑∞
n=1 cn = 1. This is because

the first term changes only the magnitude of the update, which can be absorbed into the step size,
αt, in Eq. (8). With this constraint in place, it follows that the weight of the first TD error is h0 = 1
because of the telescoping series: h0 =

∑∞
n=1 hn−1 − hn =

∑∞
n=1 cn = 1. The operator is now an

affine combination of n-step Bellman operators, and so we refer to such return estimates as affine
returns. Note that, since we have h0 = 0 in Eq. (10) when τ > 0, the divergent return estimate
in Counterexample 4.1 is not an affine return, although it is linear. Affine returns look identical to
convex returns from Eq. (7), but they are more general because they allow for negatively weighted
n-step returns. We depict the hierarchical relationship between linear, affine, convex, compound,
and n-step returns in Figure 3, and summarize their operators and corresponding sample estimates
in Table 1.

This analysis provides a hint of why counterexamples like the one in Section 4 are possible; negative
weights increase the contraction modulus due to the absolute value in Eq. (13). It turns out that
such negative weights coincide exactly with the time steps on which the weak recency heuristic is
violated, and therefore only convex returns satisfy the heuristic, as we show in the next proposition.
Proposition 5.2. An affine return satisfies the weak recency heuristic if and only if it is a convex
return (i.e., a compound return or an n-step return).

Proof. See Appendix A.2.

Linear

Affine

n-stepCompound

Convex

Figure 3: Hierarchical relationship between differ-
ent return estimators. A return satisfies the weak
recency heuristic if and only if it is a convex re-
turn: i.e., a compound or n-step return.

An immediate corollary of the above is that the
weak recency heuristic is a sufficient condition
for convergence, since both compound returns
and n-step returns are already known to corre-
spond to contraction mappings (Watkins, 1989,
Sec. 7.2). This stems from the fact that a convex
combination of n-step returns, each of which is
contractive with modulus γn, must also be con-
tractive: i.e.,

∑∞
n=1 cnγn ≤ γ < 1 for every

choice of nonnegative weights that sum to one.
In this view, the weak recency heuristic can be
seen as a convergence test for TD learning, and
explains some of its utility in computational RL:
divergence is impossible under this heuristic.

On the other hand, violating the weak recency
heuristic increases the contraction modulus of
the return estimator, with divergence possible
if the violation becomes too extreme (e.g., Counterexample 4.1). This is because any time an n-
step return has a negative weight, another n-step return must have a larger positive weight to
counterbalance it and ensure the weights sum to 1 overall. This necessarily increases the contraction
modulus in Eq. (13) due to the absolute value, underscoring yet another benefit of the weak recency
heuristic. A convex return is not only guaranteed to converge regardless of its weights, but also has
a faster contraction than a nonconvex (affine) return constructed from the same n-step returns.

6 Are Monotonically Decreasing Weights Necessary?

So far, we have focused on the weak recency heuristic: when the eligibility weights are nonincreasing.
However, as we discussed in Section 3, the connotation of the recency heuristic is often that of strictly
decreasing TD-error weights, i.e., the strong recency heuristic (Definition 3.2). This is why, for ex-
ample, λ-returns are more strongly associated with a recency heuristic than n-step returns are. Does
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Name Operator Sample Estimate Conditions

Linear
(

1−
∞∑

n=1
cn

)
v +

∞∑
n=1

cnT n
π v

(
1−

∞∑
n=1

cn

)
Vt +

∞∑
n=1

cnGn
t None

Affine
∞∑

n=1
cnT n

π v
∞∑

n=1
cnGn

t

∞∑
n=1

cn = 1 and
∞∑

n=1
|cn|γn < 1

Convex
∞∑

n=1
cnT n

π v
∞∑

n=1
cnGn

t Affine and cn ≥ 0, ∀ n ≥ 1

Compound
∞∑

n=1
cnT n

π v
∞∑

n=1
cnGn

t Convex and ∃ ci, cj > 0

n-step T n
π v Gn

t n ≥ 1

Table 1: Summary of operators and sample estimates for the return estimators in Figure 3.

this distinction between weak and strong recency heuristics matter in practice? In this section, we
conduct experiments indicating that the answer is yes, but in a surprising way; the smoothness of the
weights do not appear to be significant, but the strong recency heuristic does imply that the return
estimate consists of infinitely many n-step returns, which empirically improves credit assignment.

To test the question of whether the smoothness of the TD-error weights matters, we introduce the
sparse λ-return, defined as

Gλ,m
t

def=
∞∑

i=0
γiλ⌊ i+m−1

m ⌋δt+i = (1− λ)
∞∑

k=1
λk−1G

(m(k−1)+1)
t , (14)

where m ≥ 1. The contraction modulus of this return is β = γ(1− λ) / (1− γmλ). When m = 1, we
simply recover the standard exponential decay of the λ-return from Eq. (6). However, for m > 1,
the TD-error weights no longer satisfy the strong recency heuristic as they become more stepwise
(see Figure 5). This implies that every m−1 out of m n-step returns have zero weight. For example,
setting m = 2 generates the TD-error weight sequence (1, λ, λ, λ2, λ2, . . . ), which produces an
exponential average of the odd n-step returns: (G(1)

t , G
(3)
t , G

(5)
t , G

(7)
t , G

(9)
t , . . . ). The reason we choose this

form is because it isolates the effects of the two recency heuristics by keeping the type of weighted
average consistent (i.e., exponential). If monotonicity is beneficial to learning, then we would expect
to observe a performance degradation for sparse λ-returns (m > 1) compared to dense (m = 1).

Our experiment setup is a discounted variation (γ = 0.99) of the 19-state random walk from Sutton
& Barto (2018, Sec. 12.1). In this environment, each episode starts with the agent in the center of
a linear chain of 19 connected states (see Figure 4). The agent can move either left or right, and its
behavior is fixed such that it randomly chooses either action with equal probability. Reaching either
end of the chain terminates the episode and yields a reward: −1 for the left or +1 for the right.

We test three different degrees of sparsity for the λ-returns, adjusting λ for each return to maintain
the same contraction modulus in all cases: (λ, m) ∈ {(0.9, 1), (0.75, 3), (0.65, 5)}. The agents are
trained for 10 episodes by applying offline value backups of the form Eq. (4) to every experience
at the end of each episode. In Figure 6, we plot the root-mean-square (RMS) error, ∥v − vπ∥2,

1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 192

start

Figure 4: The 19-state random walk (Sutton & Barto, 2018, Sec. 12.1).
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averaged over the 10 episodes versus the step size, α, for each return. The final results are averaged
over 400 trials with 95% confidence intervals indicated by shaded regions. Code is available online.1
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Figure 5: Impulse responses of
λ-returns with varying degrees of
sparsity.

Figure 6: Random-walk perfor-
mance of λ-returns with varying
degrees of sparsity.

Because the three returns
all have the same con-
traction modulus (i.e.,
expected convergence
rate), their performance
is nearly the same for
small values of α which
are able to average out
the noise in the updates.
Likewise, the returns
share the same lowest
error, as indicated by the
dashed horizontal lines
in Figure 6. However,
as α gets larger, their
performance begins to
separate, achieving lower
average error as the
sparsity of the λ-return
increases. Thus, even though the eligibility curves become more step-like as the sparsity is increased
and they violate the strong recency heuristic, the overall performance of the return improves.
This demonstrates that the monotonicity of the eligibility curves does not directly factor into the
performance of the return estimators.

The main reason for the sparse λ-return’s improvement appears to be that its eligibility initially
decays faster than that of the dense λ-return, but then slower as time goes on (see Figure 5). This
gives the eligibility curve a long-tailed characteristic which, in turn, propagates credit back in time
more quickly. In fact, every return that satisfies the strong recency heuristic must have a similar
characteristic, because Definition 3.2 implies that cn = hn−1−hn > 0 for all n ≥ 1, and thus Eq. (7)
must correspond to a positively weighted average of infinitely many n-step returns. Although this
property is not unique to the strong recency heuristic (e.g., the sparse λ-return has it but does not
satisfy Definition 3.2), it does suggest a practical significance for this heuristic: it implies a longer
horizon for credit assignment.

However, any benefit of a longer credit-assignment horizon is contingent on controlling the variance
of the return. Fortunately, as we show in the following proposition, a long-tailed eligibility curve
does not increase the worst-case variance when the contraction modulus is held constant.
Proposition 6.1. Let κt

def= maxi,j≥0 Cov[δt+i, δt+j | St]. The worst-case conditional variance of
any convex return Gc

t with contraction modulus β has the bound

Var[Gc
t | St] ≤

(
1− β

1− γ

)2
κt . (15)

Proof. See Appendix A.3.

This bound is rather loose, but it is general. Eq. (15) implies that averages of n-step returns
always have finite variance, even as the n-step returns become arbitrarily long. Furthermore, this
upper bound depends only on the contraction modulus of the return itself and not the chosen
weights for the average. Since the contraction modulus is proportional to the worst-case bias of the
return by Eq. (13), we see that both the worst-case bias and worst-case variance of the λ-returns
in our previous experiment remain the same regardless of sparsity. Thus, compound returns with a

1https://github.com/brett-daley/recency-heuristic

https://github.com/brett-daley/recency-heuristic
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long-tailed eligibility curve are able to assign credit more quickly without negatively impacting the
bias-variance trade-off2 (at least, in a worst-case sense).

To test the effect of a longer credit-assignment horizon under a controlled contraction
modulus, we repeat the previous random-walk experiment but with truncated λ-returns:
Gλ

t:t+N
def= Vt +

∑N−1
i=0 (γλ)iδt+i = (1− λ)

∑N−1
n=1 λn−1G

(n)
t + λN−1G

(N)
t , where N ≥ 1 is the trunca-

tion length. The contraction modulus of this return is β =
(
(1 − γ)(γλ)N + γ(1 − λ)

)
/ (1 − γλ).

The eligibility curve for this return is a monotonically decreasing function, up until time N when
it abruptly falls to zero (see Figure 7). As N → ∞, we recover the true λ-return, Eq. (6). We
test three variants of this return: (λ, N) ∈ {(0.99, 10), (0.93, 20), (0.9,∞)}. As before, all of these
values are chosen to produce approximately the same contraction modulus. We plot the average
RMS error in Figure 8, again averaged over 400 trials with 95% confidence intervals shaded. The
performance is roughly identical when α is small, since the same contraction modulus guarantees
the same expected performance. However, as α gets larger, the truncated returns perform poorly
compared to the full λ-return. This suggests that the performance of the returns is strongly tied to
longer n-step returns in the average, but only when the contraction moduli are equalized. This also
supports our earlier hypothesis that the results observed with the sparse λ-returns in Figure 6 are
due to their long-tail eligibility curves and not some other property such as monotonicity.
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Figure 7: Eligibility curves of λ-
returns with varying degrees of
truncation.

Figure 8: Random-walk perfor-
mance of λ-returns with varying
degrees of truncation.

To summarize, satisfy-
ing the strong recency
heuristic creates a com-
pound return consisting
of infinitely many n-step
returns—a long-tailed el-
igibility curve. This im-
proves the effective win-
dow of credit assign-
ment without exacerbat-
ing variance (in a conser-
vative sense), as long as
the contraction modulus
is held constant. How-
ever, this property is not
unique to the strong re-
cency heuristic; for in-
stance, sparse λ-returns
violate this heuristic, but
are still averages of infinitely many n-step returns, and outperform dense λ-returns in Figure 6.
These insights help explain why smooth averages like the λ-return are often effective in practice,
even if not strictly necessary for good performance.

7 Off-Policy Learning and Other Extensions

The weak recency heuristic is closely tied to an open problem on the convergence of off-
policy eligibility traces (Daley et al., 2023, Sec. 5.3). Off-policy learning occurs whenever the
agent’s policy for action selection, b, differs from the policy for return estimation, π. Let
ρt+i

def= π(At+i|St+i) / b(At+i|St+i) be the importance-sampling ratio. Daley et al. (2023) proved that
satisfying hiρt+i+1 ≥ hi+1 ≥ 0, ∀ i ≥ 0, is sufficient for the off-policy update analogous to Eq. (9) to
converge to vπ, where the TD-error weights can generally be trajectory aware (i.e., dependent on past
state-action pairs). The open problem is to determine whether this condition is necessary as well.

2In fact, it is likely such long-tailed returns have a positive impact on the bias-variance trade-off by reducing vari-
ance, under an additional assumption that the TD-error variances are roughly uniform (see Daley et al., 2024, Sec. 6).
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Notably, the condition is exactly the off-policy generalization of the weak recency heuristic (Def-
inition 3.1), since ρt+i = 1 when π = b. Based on the analysis in Section 5, we know that it is
sometimes possible to violate this heuristic and still converge, and so the condition is sufficient but
not necessary. We provide more details in Appendix B, where we also extend our theory to state-
dependent eligibilities (e.g., Yu, 2012; White & White, 2016) and function approximation (Tsitsiklis
& Van Roy, 1997). These results show that the possibility of divergence like in Counterexample 4.1
is a general phenomenon of TD learning when not utilizing a recency heuristic.

8 Conclusion

Although non-recent credit assignment should theoretically be possible and useful in certain learning
environments, it does not seem readily compatible with our current formulation of TD learning.
In particular, violating the recency heuristic manifests as negative weights on some of the n-step
components of the return target. These negative weights appear to counteract learning by increasing
the contraction modulus, without offering a clear benefit to learning, and potentially culminating
in divergence as demonstrated by Counterexample 4.1. The fact that divergence is possible in such
a favorable setting—an on-policy, tabular MRP with fully observable states—points to the severity
of this issue. Indeed, as we discussed in Section 7, this issue persists in more challenging settings
including off-policy learning and function approximation. Successfully implementing new forms of
credit assignment that do not strictly follow the recency heuristic will likely require rethinking how
we formulate the reinforcement signal in computational RL. Our theory will provide a good starting
point for algorithmic development in this direction.

Another major finding is that the recency heuristic is not merely a simple protocol for addressing the
temporal credit-assignment problem, but also has intrinsic importance for learning value functions.
The existence of diverging counterexamples illuminates the critical role of nonincreasing weights
on the TD errors—the weak recency heuristic. The logical equivalence between this heuristic and
the return estimate’s ability to be expressed as a convex combination of n-step returns unifies two
fundamental yet seemingly disparate ideas in RL. More specifically, convex returns were the most
general return estimates for TD learning identified before our work, and so it is surprising to find
they coincide exactly with another foundational concept in RL: the recency heuristic. This appears
to be a novel, unifying perspective between the forward and backward views of TD learning with
arbitrary return estimates. In the off-policy setting, the weak recency heuristic is equivalent to the
convergence condition for eligibility traces discovered by Daley et al. (2023), providing more evidence
for its importance in learning value functions.

Finally, our results help to further explain the strong empirical performance and continued popularity
of TD(λ), along with its many variants, for nearly four decades. Our experiments suggest that the
smoothness of TD(λ)’s exponential decay is not directly responsible for this success; rather, all
compound returns (including λ-returns) that average an infinite number of n-step returns are able
to distribute credit over a longer period without exacerbating the maximum bias or variance. These
results confirm the intuition that “the fading strategy [of TD(λ)] is often the best [versus n-step TD
methods]” (Sutton & Barto, 2018, p. 304), though non-exponential fading strategies are also viable.
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A Proofs

This section contains the omitted proofs of all propositions in the paper.

A.1 Proof of Proposition 5.1

Proposition 5.1. For every sample-realizable operator H whose fixed point is vπ, there exists a
sequence of real numbers (hi)∞

i=0 such that

Hv = v +
∞∑

i=0
hi(γPπ)i(Tπv − v) . (11)

If we let cn
def= hn−1 − hn for n ≥ 1, then H also has the equivalent form

Hv =
(

1−
∞∑

n=1
cn

)
v +

∞∑
n=1

cnT n
π v . (12)

Proof. It is given that H is sample realizable. Without loss of generality, we consider an alterna-
tive parameterization of Definition 5.1 that spans the same space of linear operators. There exist
sequences of real numbers (xi)∞

i=0 and (yi)∞
i=0 such that

Hv = v +
∞∑

i=0
(γPπ)i

[
xi(r + γPπv)− yiv

]
= v +

∞∑
i=0

(γPπ)i
[
xi(r + γPπv − v) + (xi − yi)v

]
= v +

∞∑
i=0

(γPπ)i
[
xi(Tπv − v) + (xi − yi)v

]
= v +

∞∑
i=0

xi(γPπ)i(Tπv − v) +
∞∑

i=0
(xi − yi)(γPπ)iv .

Because Tπvπ = vπ, it follows that Hvπ = vπ +
∑∞

i=0(xi − yi)(γPπ)ivπ . To ensure that vπ is
the fixed point of H (i.e., that Hvπ = vπ), we must make the remaining sum zero. However, this
happens only when xi = yi, ∀ i ≥ 0 . Thus, we substitute hi = xi and hi = yi to get Eq. (11).

To derive Eq. (12), we apply the fact that hi =
∑∞

n=i+1 cn due to the telescoping series. We
complete the proof by rewriting Eq. (11) as

Hv = v +
∞∑

i=0

( ∞∑
n=i+1

cn

)
(γPπ)i(Tπv − v)

= v +
∞∑

n=1
cn

n−1∑
i=0

(γPπ)i(Tπv − v)

= v +
∞∑

n=1
cn(T n

π v − v)

=
(

1−
∞∑

n=1
cn

)
v +

∞∑
n=1

cnT n
π v .

The second equality interchanged the sums using the rule
∑∞

i=0
∑∞

n=i+1 =
∑∞

n=1
∑n−1

i=0 . The third
equality followed from the n-step Bellman operator expansion: T n

π v = v+
∑n−1

i=0 (γPπ)i(Tπv−v).
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A.2 Proof of Proposition 5.2

Proposition 5.2. An affine return satisfies the weak recency heuristic if and only if it is a convex
return (i.e., a compound return or an n-step return).

Proof. Recall that cn = hn−1 − hn. Therefore, the affine operator from Eq. (12) is equal to

Hv =
∞∑

n=1
(hn−1 − hn) T n

π v . (16)

If the weak recency heuristic (Definition 3.1) holds, then we have hn−1 ≥ hn =⇒ hn−1 − hn ≥ 0,
for all n ≥ 1. Thus, Eq. (16) is a convex combination of n-step returns, because we have∑∞

n=1 hn−1 − hn =
∑∞

n=1 cn = 1 for an affine return.

To complete the proof, we also show the contrapositive. Consider an affine return that is not a
convex combination of n-step returns. Consequently, it must have at least one negatively weighted
n-step return: there exists some k ≥ 1 such that ck < 0. However, this implies that hk−1 − hk < 0,
and therefore hk−1 < hk, so the weak recency heuristic is violated. We conclude that an affine return
satisfies the weak recency heuristic if and only if it is a convex return.

A.3 Proof of Proposition 6.1

Proposition 6.1. Let κt
def= maxi,j≥0 Cov[δt+i, δt+j | St]. The worst-case conditional variance of

any convex return Gc
t with contraction modulus β has the bound

Var[Gc
t | St] ≤

(
1− β

1− γ

)2
κt . (15)

Proof. First, note that Var[Ĝt | St] = Var[Ĝt − Vt | St] for any return estimate, Ĝt, since Vt is
deterministic given state St. This allows us to derive an upper bound on the covariance between
two n-step returns with lengths n1 and n2 using Eq. (5):

Cov[G(n1)
t , G

(n2)
t | St] = Cov

[
n1−1∑
i=0

γiδt+i,

n2−1∑
j=0

γjδt+j

∣∣∣∣∣ St

]

=
n1−1∑
i=0

n2−1∑
j=0

γi+jCov[δt+i, δt+j | St]

≤
n1−1∑
i=0

n2−1∑
j=0

γi+jκt

= Γ(n1) Γ(n2) κt ,

where Γ(n) def= (1−γn)/ (1−γ) is the n-th partial sum of the geometric series. Because
∑∞

n=1 cn = 1
and β =

∑∞
n=1 cnγn for a convex return, we also have

∞∑
n=1

cn Γ(n) =
∞∑

n=1
cn

(
1− γn

1− γ

)
=

1−
∑∞

n=1 cnγn

1− γ
= 1− β

1− γ
.
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Therefore, we derive the following upper bound on the variance of a convex return:

Var[Gc
t | St] =

∞∑
i=1

∞∑
j=1

Cov[ciG
(i)
t , cjG

(j)
t | St]

=
∞∑

i=1

∞∑
j=1

cicjCov[G(i)
t , G

(j)
t | St]

≤
∞∑

i=1

∞∑
j=1

cicj Γ(i) Γ(j) κt

=
(

1− β

1− γ

)2
κt ,

which completes the proof.

B Extensions

This section contains extensions of our theory to off-policy learning, state- or trajectory-dependent
eligibility traces, and function approximation.

B.1 Function Approximation

Our results easily generalize to the case where the value function is approximated by a linear para-
metric function: Vt = x⊤

twt, where wt ∈ Rd is the value-function weights, and xt ∈ Rd is a feature
vector corresponding to state St. Because ∂

∂w Vt

∣∣
w=wt

= xt, the semi-gradient TD update becomes

wt+1 = wt + αt

(
Ĝt − Vt

)
xt .

Let X ∈ R|S|×d be the matrix whose rows correspond to the feature vectors for every state in S.
Because Hv generally cannot be represented exactly by the function approximator, the estimate
Ĝt corresponds to a composite linear operator ΠH, where Π is a projection operator onto the
set {Xw | w ∈ Rd} under the state weighting induced by the MDP’s stationary distribution
(Tsitsiklis & Van Roy, 1997). Furthermore, Π is nonexpansive, linear, and independent of wt

(Tsitsiklis & Van Roy, 1997, proof of Lemma 6); hence, if H is a contraction mapping, then so is
ΠH with the same maximum contraction modulus. This implies that violating the weak recency
heuristic too much can still increase the contraction modulus and cause divergence, just like in
Counterexample 4.1.

In the case of nonlinear function approximation, the existence of counterexamples is certain, as even
TD(0) diverges for at least one function (Tsitsiklis & Van Roy, 1997, Fig. 1).

B.2 State-Dependent Eligibility Traces

The general return estimate considered by our work, Eq. (9), determines the eligibility weights solely
based on the elapsed time since the initial state. Additionally, we can have weights that depend on
the actual states experienced on each time step (e.g., Yu, 2012; White & White, 2016). A return
estimate in this case has the form

Ĝt = Vt +
∞∑

i=0
hi(St+i) γiδt+i , (17)

where hi : S → R is now a weighting function over the state space. This estimate satisfies the weak
recency heuristic if

hi(s) ≥ hi+1(s′) ≥ 0 , ∀ i ≥ 0 , ∀ s, s′ ∈ S .
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The operator corresponding to Eq. (17) is (Hv)(s) = Eπ[Ĝt | St = s], i.e., a convex combination
of the estimates in Eq. (17). Therefore, it too satisfies the weak recency heuristic, except that the
weight at each time step is an average of random variables and cannot be explicitly written without
additional information about the MDP. Other than this minor difference, we see that the results
for state-based eligibility curves are analogous to the strictly time-based eligibility curves discussed
in our paper.

B.3 Off-Policy Learning and Trajectory-Aware Eligibility Traces

A further generalization of the state-dependent eligibility traces discussed in the previous section
is trajectory-aware eligibility traces (Daley et al., 2023). These have been studied in the con-
text of off-policy learning with action values, where the agent estimates the action-value function
qπ(s, a) def= E[Gt | (St, At) = (s, a)]. Additionally, it is assumed that the agent samples actions from
a behavior policy, b, that differs from the target policy, π. The off-policy bias resulting from the
mismatch between behavior and target distributions must be corrected to converge to qπ.

Let Ft:t+i
def= (St+j , At+j)i

j=0 be the partial history of the MDP from time t to t + i. Addi-
tionally, let δπ

t
def= Rt + γV̄t+1 − q(St, At) denote the mean TD error using action values, where

V̄t
def=
∑

a′∈A π(a′|St) q(St, a′). A trajectory-aware return estimate has the form

Ĝt = Vt +
∞∑

i=0
hi(Ft:t+i) γiδt+i ,

where hi : (S×A)i → R is a weighting function over partial histories. The corresponding operator is
(Hq)(s, a) = Eµ[Ĝt | (St, At) = (s, a)]. For the operator to converge to qπ, it is sufficient to satisfy
the following condition (Daley et al., 2023, Theorem 5.2):

hi(Ft:t+i) ρt+i+1 ≥ hi+1(Ft:t+i+1) ≥ 0 , ∀ i ≥ 0 , ∀ t ≥ 0 , (18)

where ρt+i
def= π(At+i|St+i) / b(At+i|St+i) is the importance-sampling ratio. An open problem is

whether this condition is necessary in addition to being sufficient (Daley et al., 2023, Sec. 5.3).
Rather interestingly, this condition is the off-policy analog of the weak recency heuristic, since
Eµ[ρt+i+1 | (St, At)] = 1 and therefore the inequality equates to Definition 3.1 in expectation.
Based on our analysis in Section 5, the heuristic can be slightly violated without increasing the
contraction modulus above 1, still allowing the operator to sometimes converge to qπ. We thus
settle the open problem in the negative: the condition in Eq. (18) is sufficient but not necessary for
the operator to converge to its fixed point.


