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Abstract

Offline reinforcement learning (RL) is a promising direction that allows RL agents
to pre-train on large datasets, avoiding the recurrence of expensive data collection.
To advance the field, it is crucial to generate large-scale datasets. Compositional
RL is particularly appealing for generating such large datasets, since 1) it permits
creating many tasks from few components, 2) the task structure may enable trained
agents to solve new tasks by combining relevant learned components, and 3) the
compositional dimensions provide a notion of task relatedness. This paper provides
four offline RL datasets for simulated robotic manipulation created using the 256
tasks from CompoSuite (Mendez et al., 2022a). Each dataset is collected from an
agent with a different degree of performance, and consists of 256 million transitions.
We provide training and evaluation settings for assessing an agent’s ability to learn
compositional task policies. Our benchmarking experiments show that current offline
RL methods can learn the training tasks to some extent and that compositional
methods outperform non-compositional methods. Yet current methods are unable
to extract the compositional structure to generalize to unseen tasks, highlighting a
need for future research in offline compositional RL.

1 Introduction

Large-scale data has generated much of the success of deep learning. We would expect robot learning
techniques to similarly leverage vast amounts of data to solve multitudes of real-world problems.
However, generating datasets for robotics is expensive and time consuming, even in simulation.
Large-scale data collection is imperative to maximizing the utility of deep learning for robotics.

Much of the efforts in deep learning research for robotics have been devoted to reinforcement
learning (RL). However, online RL methods require the agent to collect data over time, and therefore
each new online RL experiment requires a new round of large-scale data collection. Offline RL
approaches (Lange et al., 2011; Fujimoto et al., 2019) train on a fixed (previously collected) dataset,
potentially permitting to learn high-quality policies without the need to obtain additional data. Once
an agent has been pre-trained on offline data, its model can be fine-tuned to unseen tasks in the real
world with little additional data (Chebotar et al., 2021). Despite these advantages, the offline setting
comes with its own challenges. First, offline RL requires large datasets (Fu et al., 2020) labeled with
reward functions. Image labels, the computer vision counterpart, can easily be crowdsourced, which
has facilitated the creation of large vision datasets; crowdsourcing is not readily applicable to RL
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⟨IIWA, box, no_obstacle,
pick_and_place⟩

⟨Jaco, hollow_box,
object_door, push⟩

⟨Gen3, plate, goal_wall,
trash_can⟩

⟨Panda, dumbbell,
object_wall, shelf⟩

Figure 1: Examples of four CompoSuite tasks, showing each task’s initial state. Each task is
composed of one element from each of four compositional axes, involving a robot (IIWA, Jaco,
Gen3, or Panda) manipulating an object (box, hollow_box, plate, or dumbbell) while avoiding
an obstacle (no_obstacle, object_door, goal_wall, object_wall) to achieve a specific objective
(pick_and_place, push, trash_can, or shelf). Images from Mendez et al. (2022a).

rewards. Second, offline RL agents are not allowed to explore new states during training, and must
generalize to unseen states at evaluation time. Notably, unlike in supervised settings, RL agents do
not make a single prediction on a new state, but instead the actions they choose lead them to traverse
the state space, moving them increasingly far away from the original training distribution. This leads
to a unique form of distribution shift. These issues are exacerbated by the fact that standard offline
RL evaluations are limited to single-task problems, further restricting the scale of current datasets.

To address these issues, we consider compositional agents and environments. A compositional agent
decomposes complex problems into components, re-composes the components to solve the problems,
and re-uses the acquired knowledge throughout the state space, improving state generalization.
Further, compositional RL agents exhibit sample efficiency improvements in multi-task and lifelong
RL via generalizable components and behaviors that can be combined to solve new tasks (Mendez
et al., 2022b). On the other hand, compositional environments offer re-usability of reward functions
to induce a plethora of training behaviors (Mendez et al., 2022a). They also enable the creation of
numerous tasks with a clear notion of task relatedness along the different compositional dimensions,
which is useful for selective transfer and for analyzing performance.

To facilitate the combined study of offline RL and compositionality, we provide multiple datasets
collected using CompoSuite (Mendez et al., 2022a)—a simulated robotic manipulation benchmark
designed for studying online compositional RL—and experiment scenarios designed to answer questions
related to the interplay of the two fields. Specifically, we contribute the following1:

1. Four datasets of varying performance with trajectories from each of the 256 CompoSuite tasks,
2. Training-test split lists for evaluation to ensure comparability and reproducibility of results, and
3. An evaluation demonstrating the utility of our datasets for offline compositional RL research, and

the (relatively) poor ability of current offline RL techniques to leverage compositional structures.
These results validate both the learnability and difficulty of the datasets using common learning
techniques, and demonstrate the need for improved algorithms for offline compositional RL.

2 Preliminaries

Offline RL Standard online RL solves a Markov decision process M = {S, A, R, P, γ, µ} via direct
interaction with M, where S is the state space, A is the action space, R is the reward function,
P are the transition probabilities, γ is a discount factor, and µ is the distribution over starting
states. In offline RL, the agent does not have access to M for training, but instead receives a dataset
D = {(si, ai, s′

i, ri)}N
i=1 of transition tuples, where s′

i and ri are the state and reward obtained by
executing action ai in state si using an unknown behavioral policy ai ∼ πβ(si) in M. Consequently,
D is a sample from the distribution dπβ (s)πβ(s, a), where dπβ (s) is the marginal state distribution

1Datasets are available at datadryad.org/stash/dataset/doi:10.5061/dryad.9cnp5hqps; train-test split lists and code
for the experiments can be found at github.com/lifelong-ml/offline-compositional-rl-datasets.

https://datadryad.org/stash/dataset/doi:10.5061/dryad.9cnp5hqps
https://github.com/lifelong-ml/offline-compositional-rl-datasets
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induced by πβ . The goal in offline RL is to find an optimal policy π∗ which maximizes the expected
cumulative return Jπ = E[

∑∞
t=0 γtr(st, at)] in M without interacting with M.

Functional composition in RL Unlike traditional temporal sequencing of skills, functionally
compositional RL considers the composition of functional transformations of the state by a chain
of computations that results in a chosen action (Mendez et al., 2022b). These functional modules
are akin to functions in programming, which consume as inputs the outputs of other functions and
produce inputs to yet other functions. At each timestep, multiple functions are involved in computing
the action to take from the current state; compare this to temporal composition (e.g., in the Options
framework (Sutton et al., 1999b; Bacon et al., 2017)) in which only one module (an option) is active
at each time. A set of RL tasks related via functional composition can be described formally as a
compositional problem graph whose paths represent the transformations required to solve each task.

CompoSuite benchmark for compositional RL CompoSuite (Mendez et al., 2022a) is a recent
simulated robotics benchmark for RL built on top of robosuite (Zhu et al., 2020), designed to study
functional composition in RL. Every CompoSuite task is created by composing elements of four
different axes: a robot manipulator that moves an object to achieve an objective while avoiding
an obstacle. Each axis consists of four elements, for a total of 256 tasks (Figure 1). For a given
objective, the reward function is constant across other axes, making it easy to scale the number of
tasks without the need to craft labeling functions for each individual task.

3 Datasets and experimental setup for offline compositional RL

We elaborate on the specific training setting we consider and structure of the datasets we provide,
and detail several reproducible experiment configurations for analyzing offline compositional RL.
Figure 2 provides an overview of the dataset collection process and its use in training and evaluation.

3.1 Data shape and spaces

Following Fu et al. (2020), we collect one million transitions for each task, totaling 256 million
transitions per dataset. Every transition contains: observation, action, reward, next observation,
timeout indicator, and terminal indicator. Observations are vectors of size 93 containing proprioceptive
robot information such as joint and finger positions and velocities, absolute and relative object,
obstacle, and goal positions, and a multi-hot task indicator to identify the elements of the current task.
The action space is eight-dimensional; the first seven dimensions correspond to target joint angles of
the 7-DoF robots for joint position control, and the last dimension is a gripper action. Tasks use dense
rewards to ensure that every transition has a non-zero reward. Rewards are specific to each objective
and encourage the learning of a policy in stages (e.g., the rewards for pick-and-place encourage first
reaching the object, then grasping the object, lifting the object, and finally approaching the target).
The reward for being in a goal-satisfying state is 1 for all tasks. Episodes time out after 500 timesteps,
and push tasks additionally terminate if the grasped object is lifted from the table.

3.2 Data collection

To collect our datasets, we trained agents using standard online RL methods to obtain the behavioral
policies πβ . For three of the datasets, we trained a single agent via proximal policy optimization
(PPO; Schulman et al., 2017) across all tasks, storing trained policies at various levels of performance
for each task. PPO can be parallelized and offers a fast algorithm to obtain these policies in terms
of wall-clock time. To ensure that the agent would achieve high success rate on all tasks, we used
the compositional neural network architecture of Mendez et al. (2022b). For the fourth dataset, we
trained a separate agent on each task via soft actor critic (SAC; Haarnoja et al., 2018) to simulate a
warmstart scenario in which some data from an RL run is available. Here, we use SAC due to its
sample efficiency. Concretely, we provide the following four datasets.

• Expert dataset: Transitions from an agent trained to achieve 90% success on every task.
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Figure 2: An overview of our dataset creation and training process. Manipulation tasks vary along
four compositional dimensions, as taken from CompoSuite. Trajectories are sampled from pre-trained
PPO agents, forming four different datasets of varying difficulties (Section 3.2). Three different
training settings (Section 3.3) provide different views into these data for training, and evaluation of
the learned policies is performed on the CompoSuite simulator using mujoco.

• Medium dataset: Transitions from an agent trained to achieve 30% success on every task.
• Warmstart dataset: Transitions that were stored during the training of one SAC agent per

task for 1 million steps. The average success rate across all trajectories is in the order of 1%.
• Medium-replay (subsampled) dataset: Transitions that were stored during the training of

an agent up to 30% success. For tasks that required more than one million steps to achieve 30%
success, the one million transitions were obtained by uniformly sampling trajectories.

The different datasets were collected to serve various research purposes. In the real world, expert data
is rarely available. Instead, datasets have varying levels of performance, represented by the expert,
medium, and warmstart datasets. This allows for the construction of training sets containing data
from trajectories of varying success rates and task progress (as discussed in Section 3.3), which both
offers realistic data collection settings and lets researchers experiment with diverse levels of difficulty
of offline RL tasks. We chose to replace the random agents commonly used in the literature (e.g.,
Fu et al., 2020) with warmstart agents trained for a short period to ensure that the data contained
diverse states covering the various stages of each task—because the tasks are long-horizon, a random
policy would only cover a small portion of the state space, since it would never even grasp the object.
Warmstart agents simulate a setting where a researcher can do some online-RL but is limited in time.

In addition, the medium-replay dataset contains data that an online RL agent would see during
training, exhibiting varied levels of proficiency at solving the task. Intuitively, this should be sufficient
to learn good policies via offline RL, yet current approaches struggle in this setting (Fujimoto et al.,
2019; Fu et al., 2020). Note that since our agents require substantially more than one million samples
to converge in many of the tasks, the medium-replay dataset subsamples trajectories observed during
training. Since some trajectories from push tasks might be truncated (due to the termination
condition), we artificially truncate the last subsampled trajectory and place a time-out at the final
position. This might, in rare cases, lead to one incorrect trajectory if the datasets are used for
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explicitly finite horizon RL experimentation. However, the truncation ensures a consistent dataset
size of one million across tasks and compatibility with other standard code implementations.

3.3 Training task lists and multi-task training

We consider multiple training settings to analyze an agent’s ability to functionally decompose a task
and re-use its acquired knowledge. These settings are represented by different samplings of tasks
across the various datasets. To facilitate comparability of results, we provide lists splitting the tasks
into training and zero-shot tasks, analogous to train-test splits in supervised learning problems. Any
of the following sampling techniques can be used with any of the datasets from section 3.2.

Uniform sampling This standard multi-task setting is used to evaluate training performance and
zero-shot generalization. Akin to data splits in supervised learning, the agent trains offline on 224
tasks and is evaluated for generalization to 32 online test tasks without any data for those tasks.

Compositional sampling A more realistic setting should not assume access to data of equal
performance for every task. To simulate this scenario, we split the data into 76 training tasks from
the expert dataset, 148 additional training tasks from one of the other (non-expert) datasets, and 32
zero-shot tasks. The 76 expert tasks contain all 16 CompoSuite components in equal proportions.
This setting acts as a proxy for measuring compositionality in a learning approach; a model that
can successfully decompose its knowledge about successful executions from the expert tasks into the
relevant components should be able to combine this knowledge with the noisier information from
remaining tasks to compositionally generalize to those and the unseen tasks. Note that, if non-expert
tasks are drawn from the warmstart dataset, the combined dataset has similar average success as the
medium dataset but with a substantially different success distribution across tasks.

Restricted sampling Similar to the equivalent setting in online CompoSuite, restricted sampling
constitutes a harder setting to evaluate an agent’s ability to extract compositional information. This
is achieved by restricting the training dataset to be smaller and to contain only a single task for a
specific element. For example, if the selected element is the IIWA arm, then the training set contains
exactly one task which uses an IIWA arm and 55 tasks that use other arms. The training set contains
a total of 56 tasks while the zero-shot set contains the remaining 63 tasks that contain the IIWA arm.

4 Experiments

4.1 Implementation and experiment details

We evaluated various settings from Section 3.3 over three different random seeds controlling the choice
of train-test split list, network parameter initialization, and data sampling within each algorithm—
because our comparisons are over large numbers of tasks, the results have low variance and so three
seeds are sufficient to show general trends. We consider four baselines2: Behavioral Cloning (BC),
Compositional BC (CP-BC), Implicit Q-Learning (IQL; Kostrikov et al., 2022) and Compositional IQL
(CP-IQL), using the d3rlpy implementations (Takuma Seno, 2021) (hyperparameters in Appendix B).
BC imitates the behavioral policy πβ by learning to predict the correct action given a state from
the dataset, and we expect it to perform well given high-performance data. IQL is an offline RL
baseline designed to generalize beyond the training data distribution and is expected to achieve
better performance given non-expert data. These two baselines use standard multilayer perceptrons
(MLP) to encode policies and value functions. The CP versions of the algorithms instead employ a
compositional neural network architecture as described by Mendez et al. (2022b;a) for all networks
(see Appendix D for details). The compositional network architecture consists of hierarchically
stacked modules that correspond to the various elements in CompoSuite. Each module operates in
two stages: the pre-processing stage is an MLP that takes as input the module-specific state (e.g.,
object modules take only the object state as input); the post-processing stage is a second MLP that

2We additionally ran the evaluations using conservative Q-learning (Kumar et al., 2020), but found that it attained
0% success on all settings (including the training tasks with Expert data), so we omit it from our results.
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Table 1: Test and training return and success rates achieved by Behavioral Cloning (BC), Implicit
Q-Learning (IQL), Compositional BC (CP-BC), and Compositional IQL (CP-IQL) on the various
datasets using 224 training tasks and 32 test tasks. All agents achieve decent success and generalize
when given access to expert data (sub-table 1). IQL agents strictly outperform BC on the medium
and replay datasets (sub-tables 2 and 3). When having to extract compositional information from
expert data, the compositional policy yields some benefits over feed-forward networks but is still far
from optimal (sub-table 4). Success rates are shaded from green (100%) to yellow (50%) to red (0%).
All values represent mean ± standard deviation.

Dataset: Expert; Sampling: Uniform
Train Return Test Return Train Success Test Success

Behavioral Cloning 339.05 ±4.26 297.29 ±7.18 0.87 ±0.01 0.73 ±0.02

Implicit Q-Learning 264.97 ±2.16 279.67 ±33.92 0.65 ±0.01 0.68 ±0.07

CP Behavioral Cloning 380.42 ±2.44 354.61 ±11.23 0.97 ±0.01 0.88 ±0.05

CP Implicit Q-Learning 351.62 ±1.98 345.19 ±10.16 0.90 ±0.01 0.86 ±0.03

Dataset: Medium; Sampling: Uniform
Train Return Test Return Train Success Test Success

Behavioral Cloning 190.84 ±8.40 162.93 ±6.11 0.24 ±0.03 0.21 ±0.06

Implicit Q-Learning 176.84 ±11.46 150.66 ±22.31 0.30 ±0.02 0.24 ±0.02

CP Behavioral Cloning 211.10 ±3.27 190.04 ±21.61 0.28 ±0.02 0.22 ±0.08

CP Implicit Q-Learning 223.44 ±4.23 196.98 ±30.63 0.47 ±0.02 0.38 ±0.1

Dataset: Medium-Replay; Sampling: Uniform
Train Return Test Return Train Success Test Success

Behavioral Cloning 102.65 ±4.63 95.04 ±12.00 0.00 ±0.01 0.00 ±0.00

Implicit Q-Learning 138.37 ±1.68 142.35 ±23.51 0.10 ±0.02 0.09 ±0.05

CP Behavioral Cloning 95.31 ±1.04 91.60 ±5.02 0.00 ±0.00 0.00 ±0.00

CP Implicit Q-Learning 102.66 ±10.11 99.08 ±20.67 0.09 ±0.03 0.09 ±0.03

Dataset: Warmstart (+ Expert); Sampling: Compositional
Train Return Test Return Train Success Test Success

Behavioral Cloning 132.54 ±3.45 51.04 ±18.34 0.29 ±0.01 0.07 ±0.06

Implicit Q-Learning 98.64 ±3.13 57.82 ±11.90 0.18 ±0.01 0.07 ±0.03

CP Behavioral Cloning 153.36 ±7.94 89.86 ±10.51 0.35 ±0.01 0.17 ±0.01

CP Implicit Q-Learning 127.75 ±5.97 87.31 ±22.72 0.30 ±0.01 0.18 ±0.10

takes as input the concatenation of the output of the previous module (in the hierarchy) and the
output of the pre-processing stage. Intuitively, encoding the tasks’ inherent compositional structures
into the policies should facilitate transfer to unseen tasks.

We trained each agent simultaneously on a subset of the 256 tasks, and evaluated it on held-out
tasks per the task lists from Section 3.3. All BC and IQL agents were trained for 50,000 and 300,000
update steps respectively using a batch size of #training tasks × 256. Trained agents are evaluated
online using CompoSuite (Mendez et al., 2022a), with the metrics from Appendix C. We report mean
cumulative return and success rate over one evaluation trajectory per task for train and test tasks.
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Table 2: Test and training return and success rates achieved by Behavioral Cloning (BC), Implicit
Q-Learning (IQL) and Compositional BC (CP-BC) and Compositional IQL (CP-IQL) on the expert
datasets in the restricted sampling setting. All agents achieve decent training success. However,
transfer to unseen tasks remains a challenge, especially for non-compositional agents. All values
represent mean ± standard deviation.

Dataset: Expert; Fixed Element: IIWA
Train Return Test Return Train Success Test Success

Behavioral Cloning 371.57 ±10.27 18.54 ±5.54 0.95 ±0.03 0.02 ±0.01

Implicit Q-Learning 273.71 ±17.64 34.85 ±5.25 0.70 ±0.05 0.03 ±0.02

CP Behavioral Cloning 386.30 ± 4.79 77.02 ±40.17 0.98 ±0.02 0.11 ±0.11

CP Implicit Q-Learning 361.49 ± 8.82 127.49 ±25.98 0.95 ±0.02 0.18 ±0.04

Dataset: Expert; Fixed Element: pick_and_place
Train Return Test Return Train Success Test Success

Behavioral Cloning 346.84 ±19.94 41.76 ± 9.27 0.88 ±0.06 0.06 ±0.03

Implicit Q-Learning 262.24 ±13.35 49.82 ±11.46 0.64 ±0.05 0.07 ±0.01

CP Behavioral Cloning 382.70 ±5.03 81.83 ±34.19 0.97 ±0.01 0.13 ±0.07

CP Implicit Q-Learning 368.92 ±7.38 75.18 ±21.34 0.93 ±0.02 0.16 ±0.08

Dataset: Expert; Fixed Element: hollow_box
Train Return Test Return Train Success Test Success

Behavioral Cloning 363.83 ±13.15 45.38 ±25.12 0.92 ±0.03 0.08 ±0.08

Implicit Q-Learning 278.81 ±41.53 63.48 ±13.99 0.69 ±0.12 0.11 ±0.04

CP Behavioral Cloning 383.11 ±0.62 103.27 ± 24.06 0.97 ±0.02 0.25 ±0.05

CP Implicit Q-Learning 377.45 ±0.69 60.50 ± 4.32 0.97 ±0.02 0.14 ±0.01

Dataset: Expert; Fixed Element: object_wall
Train Return Test Return Train Success Test Success

Behavioral Cloning 349.58 ±14.81 12.69 ± 3.31 0.88 ±0.04 0.02 ±0.03

Implicit Q-Learning 267.90 ±20.08 19.56 ± 2.39 0.64 ±0.07 0.02 ±0.02

CP Behavioral Cloning 393.10 ± 3.64 41.42 ±9.64 0.99 ±0.01 0.10 ±0.01

CP Implicit Q-Learning 377.43 ± 1.19 23.39 ±11.84 0.96 ±0.01 0.04 ±0.03

4.2 Experimental results

Training on uniformly sampled datasets To evaluate learnability and characterize different
levels of challenge among our scenarios, we trained the BC, IQL, CP-BC and CP-IQL agents on the
expert, medium, and medium-replay datasets. We used uniform sampling of 224 training and 32
zero-shot test tasks as discussed in section 3.3. The results in the first three sub-tables of Table 1
verify that the four baselines can achieve high performance on the expert datasets. IQL baselines
strictly outperform BC baselines in the settings where fewer successful trajectories are available
(medium and replay), and generalize better to unseen configurations. When trained on replay data,
BC attains no success, while IQL achieves some success. Further, while the compositional architecture
boosts performance on the medium dataset, its generalization capabilities remain far from optimal.

Training on Expert-Warmstart composition We demonstrate the importance of composition-
ality by evaluating agents using compositional sampling combining expert and warmstart datasets.
As shown in the fourth sub-table of Table 1, all four agents are able to extract some information from
the expert datasets. The compositional architecture leads to an increase in training performance,
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which translates to better zero-shot performance. This indicates that the learned modules discover
how to solve pieces of tasks on the training set, which are then re-used on the zero-shot tasks. BC
and standard IQL agents perform substantially better on the medium dataset (sub-table 2) even
though the medium dataset and the warmstart-expert dataset with compositional sampling contain a
similar amount of successful trajectories. This suggests that they learn something akin to an “average”
policy, instead of extracting the compositional structure and specializing it to each task.

Training on restricted sampling As one additional test of compositionality, we compared agents
on four restricted settings, each restricting one element from a distinct axis (Table 2). Agents were
trained on expert data that only contains one task with the restricted element, while all zero-shot
tasks contain the restricted element. The four agents perform well on the training tasks, but fail to
generalize to the zero-shot tasks. Together with the uniform sampling results in Table 1, these results
demonstrate that the baselines require a large amount of data from varied task combinations for
every single task element to generalize to unseen tasks. This is further evidence that current methods
are incapable of extracting and leveraging the compositional structure of the environment. However,
the compositional architecture shows signs of zero-shot generalization across all tasks, encouraging
the study of compositional methods for robotic transfer learning problems.

5 Related work

Compositional RL Composition has been used in RL for decades in attempts to improve sampling
efficiency (Mendez & Eaton, 2023). Intuitively, learning components of a problem may be easier
than learning the full problem, and learned components can be combined with others to solve new
tasks. The majority of such works in RL focused on learning temporally extended actions (skills or
options) that can be sequenced to construct a compositional policy (Sutton et al., 1999a; Konidaris
& Barto, 2009; Bacon et al., 2017; Tessler et al., 2017). Other common forms of composition include
logical composition (Nangue Tasse et al., 2020; Barreto et al., 2018; Van Niekerk et al., 2019),
state abstraction learning (Dayan & Hinton, 1993; Dietterich, 2000; Vezhnevets et al., 2017), and
object-based RL (Li et al., 2020; Mu et al., 2020). We consider the functional composition perspective,
described in Section 2, where components correspond to successive functional transformations of the
state to generate actions (Devin et al., 2017; Goyal et al., 2021; Mendez et al., 2022b).

Offline RL Offline RL research has grown steeply in recent years (Lange et al., 2011; Levine et al.,
2020). Most methods operate in the single-task setting (Fujimoto et al., 2019; Kumar et al., 2019b;
Nair et al., 2020; Kumar et al., 2020; Ma et al., 2021; Kostrikov et al., 2022), failing to leverage related
datasets to train more powerful and general policies. Works on multi-task offline RL have been
successful, but their scale remains limited (Siegel et al., 2020; Yu et al., 2021). Recently, large-scale
datasets have enabled generalization of multi-task offline Q-learning (Kumar et al., 2023). Offline
meta-RL, which pre-trains models on varied tasks to rapidly adapt to new tasks, shares motivation
with our work. While most such methods consider offline fine-tuning (Mitchell et al., 2021; Dorfman
et al., 2021; Li et al., 2021), others instead adapt the policy to new tasks online via exploration (Pong
et al., 2022; Zhao et al., 2022). These prior works share information across tasks in an unstructured
way, without considering common elements. Our explicitly compositional datasets promote the study
of algorithms that reason about compositional relations across tasks.

Datasets and benchmarks Large image datasets have driven many advancements of deep
learning (Deng et al., 2009; Krizhevsky & Hinton, 2009). Conversely, (online) RL has been restricted
to the use of simulation benchmarks for assessing new methods’ performance, primarily focused
on single-task training (Bellemare et al., 2013; Brockman et al., 2016; Vinyals et al., 2017). More
recent work has developed online benchmarks for multi-task, lifelong, and meta-RL (James et al.,
2020; Cobbe et al., 2020; Chevalier-Boisvert et al., 2019; Henderson et al., 2017; Ahmed et al., 2021;
Yu et al., 2020; Tomilin et al., 2023). With the advent of offline RL, it has become desirable to
leverage large datasets for standardized RL training. Several such datasets have been proposed to
benchmark offline RL (Mandlekar et al., 2018; Dasari et al., 2020; Fu et al., 2020; Gulcehre et al.,
2020; Qin et al., 2022; Zhou et al., 2022; Liu et al., 2023) and offline multi-agent RL (Qu et al.,
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2023) approaches. However, none of these study the interplay of deep RL and compositionality. Our
dataset construction follows D4RL (Fu et al., 2020) to collect data from existing online benchmarks
(in particular, CompoSuite; Mendez et al., 2022a). Offline RL datasets are important for moving
towards benchmarks on robot hardware (Collins et al., 2020; Gürtler et al., 2023), and so our work
relates to the development of low-cost (Yang et al., 2019; Ahn et al., 2019) or remote-access (Pickem
et al., 2017; Paull et al., 2017; Kumar et al., 2019a) robotic platforms for data collection.

6 Limitations

While our datasets are collected from simulation of commercially available robotic manipulators, it is
well known that most learning algorithms suffer from a simulation-to-real (sim2real) performance gap.
In consequence, work that seeks to apply learned policies or modules directly to physical robots would
need to develop mechanisms to bridge this gap. Notably, compositionality might enable one such
technique: training a new module for the physical robot in combination with pre-trained modules for
the remaining task components. In addition, our focus is on releasing large-scale data sets to enable
pre-training of powerful, generalizable offline RL models. As such, the computing requirements for
running experiments on the full data sets would be prohibitive for organizations without access to
powerful computers (see Appendix A for details of the computational setup used in our experiments).
That being said, several of the proposed experimental settings require substantially less computation,
making them more accessible for such organizations. Beside these limitations, our datasets inherit
some of the limitations of the original CompoSuite benchmark. Namely, our datasets use symbolic
(and not image) observations, the observation space reveals the compositional structure of the tasks
explicitly, and the tasks contain a fixed number of four compositional axes (Mendez et al., 2022a).

7 Conclusion

In this paper we have introduced several novel datasets to study the intersection of offline and
compositional RL. Our results indicate that current offline RL approaches do not capture the
compositional structure of our tasks well, and that further research is required in this area. An
interesting direction for future work is the explicit modeling of modularity in neural networks,
or the discovery of modular structure, required to obtain networks that are capable of zero-shot
generalization. Other directions include the study of offline to online transfer in a multi-task setting
as well as a continual learning setting. An interesting open scientific question would be whether
increasing the variety of compositional tasks has significant benefits over training on single tasks. We
hope that, by releasing the datasets and the experimental settings described in this work, we can
further research efforts in offline and compositional RL for robotics applications.
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A Computational requirements

We ran our experiments using both server-grade (e.g., NVIDIA RTX A6000s) and consumer-grade
(e.g., NVIDIA RTX 3090) GPUs, depending on the number of tasks we consider. Large experiment’s
training on 224 tasks can be run within two days on a single NVIDIA A6000 GPU, but require up to
256GB of RAM. Smaller experiments with up to 64 training tasks can be trained within less than
one day on a single RTX 3090 and 70GB of RAM. For evaluation, we used consumer-grade AMD
CPUs with 16 cores and a single RTX 3090 for model inference.

B Hyperparameters

With the exception of the batch size, hyperparameters were left at the default values used in d3rlpy.
Table 3 contains the hyperparameters used to generate the BC results, Table 4 contains those for
IQL. Compositional BC/IQL used the same hyperparamters as BC/IQL, with the exception of the
neural network architecture, which is described in detail in Appendix D. For the standard BC and
IQL training, each neural network (all policies, Q-functions, and value functions) is encoded as a
multi-layer perceptron (MLP) with 2 hidden layers and 256 hidden units per layer.

Table 3: Hyperparameters for Behavioral Cloning

Optimizer Adam
Adam β1 0.9
Adam β2 0.999
Adam ε 1e-8
Learning Rate 1e-3

Batch Size #Tasks
×256

Table 4: Hyperparameters for Implicit Q-Learning
Optimizer Adam
Adam β1 0.9
Adam β2 0.999
Adam ε 1e − 8
Actor Learning Rate 4e − 3
Critic Learning Rate 4e − 3

Batch Size #Tasks
×256

n_steps 1
γ 0.99
τ 0.005
n_critics 2
expectile 0.7
weight_temp 3.0
max_weight 100
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C Metrics

The metrics we report follow the original CompoSuite publication (Mendez et al., 2022a). The two
metrics are given by:

• per-task cumulative returns: R = 1
NM

∑N
i=1

∑M
j=1

∑H
t=1 Ri(st, at), and

• per-task success rate: S = 1
NM

∑N
i=1

∑M
j=1 maxt∈[1,H] 1[Ri(st, at) = 1],

where N is the number of tasks, M is the number of evaluation trajectories, the length of each
trajectory is H, and 1 is the indicator function. A success is defined as reaching the maximum reward
of 1 per step in a single step during evaluation. Note that the success metric counts trajectories
in which the agent is in a successful state at any time. In consequence, if the agent receives the
maximum step reward once but then moves to a non-successful configuration, the trajectory is still
counted as successful. We evaluate these two metrics separately over the training tasks and the
(remaining) zero-shot tasks.

D Details on Compositional Policy

Our compositional policies use the same neural network architecture as used by Mendez et al. (2022a;b),
which follows a graph structure that exploits the compositional relations across CompoSuite tasks.
The full network consists of 16 MLP modules, each of which corresponds to a single element in
CompoSuite—four obstacle modules, four object modules, four objective modules, and four robot
modules. The graph is constructed hierarchically by passing the output of the previous module as
(part of the) input to the next module. Each module operates in three stages: 1) a pre-processing
MLP that consumes the module-specific component of the state as input (e.g., the robot module
processes only the proprioceptive state features), 2) a concatenation layer that combines the output
of the pre-processing module and the output of the previous module, and 3) a post-processing MLP
that consumes the concatenated input and produces the module’s output. The order of the hierarchy
is obstacle → object → objective → robot. The obstacle modules have a single stage (since
they are the first module), which is an MLP with a single hidden layer of size 32. The MLPs of the
object module have each one hidden layer of 32 units. The first stage of the objective modules
is an MLP with two hidden layers of 64 units each, and the second stage is an MLP with a single
hidden layer of size 64. The robot module’s first stage MLP has three hidden layers of size 64 and
the second stage is the policy’s output layer of dimension 8 for the 8 actions.


