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Abstract

We consider an online decision-making problem with a reward function defined
over graph-structured data. We formally formulate the problem as an instance of
graph action bandit. We then propose GNN-TS, a Graph Neural Network (GNN)
powered Thompson Sampling (TS) algorithm which employs a GNN approximator
for estimating the mean reward function and the graph neural tangent features
for uncertainty estimation. We prove that, under certain boundness assumptions
on the reward function, GNN-TS achieves a state-of-the-art regret bound which
is (1) sub-linear of order Õ((d̃T )1/2) in the number of interaction rounds, T , and
a notion of effective dimension d̃, and (2) independent of the number of graph
nodes. Empirical results validate that our proposed GNN-TS exhibits competitive
performance and scales well on graph action bandit problems.

1 Introduction

Thompson Sampling (Thompson, 1933) is a widely adopted and effective technique in sequential
decision-making problems, known for its ease of implementation and practical success (Chapelle
and Li, 2011; Kawale et al., 2015; Russo et al., 2018; Riquelme et al., 2018). The fundamental
concept behind Thompson Sampling (TS) is to compute the posterior probability of each action being
optimal for the present context, followed by the selection of an action from this distribution. Previous
research has extended TS or developed variants of it to incorporate increasingly complex models
of the reward function, such as Linear TS (Agrawal and Goyal, 2013; Abeille and Lazaric, 2017),
Kernelized TS (Chowdhury and Gopalan, 2017), and Neural TS (Zhang et al., 2020). However, these
efforts have mainly focused on conventional data types. In contrast, the application of sequential
learning to graph-structured data, such as molecular or biological graph representations, introduces
unique challenges that merit further investigation.

Recently, there has been a growing interest in studying bandit optimization over graphs. Several
researchers have initiated this line of work by addressing the challenge of encoding graph structures
in bandit problems (Gómez-Bombarelli et al., 2018; Jin et al., 2018; Griffiths and Hernández-Lobato,
2020; Korovina et al., 2020). More recently, Graph Neural Network (GNN) bandits have been
proposed, which leverage expressive GNNs to approximate reward functions on graphs (Kassraie
et al., 2022). Despite these advancements, the GNN bandits remain relatively unexplored compared
to the extensive research on Neural bandits. Firstly, a formal formulation of this sequential graph
selection problem is yet to be proposed. More importantly, there is a significant lack of comprehensive
theoretical and empirical investigations regarding the use of TS in sequential graph selection.

Contribution. In this work, we address the online decision-making problem over graph-structured
data by contributing a novel algorithm called GNN-TS. We begin by formulating the sequential graph
selection as graph action bandit. We then propose Graph Neural Thompson Sampling, GNN-TS, to
incorporate TS exploration with graph neural networks. We establish a regret bound for the proposed
algorithm with sub-linear growth of order Õ((d̃T )1/2) with respect to the effective dimension d̃ and
the number of interaction round T , and independent of the number of graph nodes. Finally, we
corroborate the analysis with an empirical evaluation of the algorithm in simulations. Experiments
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show that GNN-TS yields competitive performance and scalability, compared to the state-of-the-art
baselines, underscoring its practical value in addition to its strong theoretical guarantees.

Notations. Let [n] = {1, 2, ..., n}. For a set or event E , we denote its complement as Ē . In ∈ Rn×n

is the identity matrix. For a matrix A, Ai∗ and A∗j denote its i-th row and j-th column, respectively.
λmax(A) and λmin(A) represents the maximum and minimum eigenvalues of the matrix A. For any
vector x and square matrix A, ∥x∥A =

√
x⊤Ax. We denote the history of randomness up to (but

not including) round t as Ft and write Pt(·) := P( · | Ft) and Et(·) := E[ · | Ft] for the conditional
probability and expectation given Ft. We use ≲ and big-O, to denote “less than”, up to a constant
factor. We further use Õ(·) for big-O up to logarithmic factor.

2 Related Works
Graph Bandit. Multiple works have studied graph bandit problems, which can be classified into two
categories: graph as structure across arms and graph as data. Most research focuses on the former
category, starting from spectral bandit (Kocák et al., 2014; 2020) to graphical bandit (Liu et al., 2018;
Yu et al., 2020; Gou et al., 2023; Toni and Frossard, 2023). Within this field, bandit problems with
graph feedback have garnered significant attention (Tossou et al., 2017; Dann et al., 2020; Chen et al.,
2021; Kong et al., 2022), where learners observe rewards from selected nodes and their neighborhoods.
The primary focus of these works have been improving sample efficiency (Bellemare et al., 2019;
Waradpande et al., 2020; Idé et al., 2022), with some assuming that payoffs are shared according
to the graph Laplacian (Esposito et al., 2022; Lee et al., 2020; Lykouris et al., 2020; Thaker et al.,
2022; Yang et al., 2020). While the existing literature primarily aims to optimize over geometrical
signal domains, our work focuses on optimization within graph domains. Specifically, we investigate
the online graph selection problem, aligning with the second category of research that considers
the entire graph as input data. A related recent work (Kassraie et al., 2022) proposed a GNN
bandit approach with regret bound based on information gain and an elimination-based algorithm.
In contrast, our work explores regret bound based on the effective dimension and builds upon the
foundation of Thompson Sampling. This second category of research also encompasses empirical
works (Upadhyay et al., 2020; Qi et al., 2022; 2023), particularly those centered around molecule
optimization (Wang-Henderson et al., 2023a;b).

Neural Bandit. Our work contributes to the research on neural bandits, where deep neural networks
are utilized to estimate the reward function. The work of Zahavy and Mannor (2019); Xu et al.
(2020) investigated the Neural Linear bandit, while Zhou et al. (2020) developed Neural Upper
Confidence Bound (UCB), an extension of Linear UCB. Zhang et al. (2020) adapted TS with deep
neural networks, proposing Neural TS. Dai et al. (2022) makes improvements to neural bandit
algorithms to overcome practical limitations. Nguyen-Tang et al. (2021) explores neural bandit in an
offline contextual bandit setting and (Gu et al., 2024) examines batched learning for neural bandit.
Our work can be seen as an extension of Neural TS (Zhang et al., 2020), incorporating significant
improvements such as the utilization of graph neural tangent kernel and a distinct definition of
effective dimension.

3 Problem Formulation and Methodology
3.1 Graph Action Bandit Problem

We consider an online decision-making problem in which the learner aims to optimize an unknown
reward function by sequentially interacting with a stochastic environment. We identify the actions
with graphs from an action space G and assume that the size of this action space, denoted as |G|, is
finite. At time t ∈ [T ], the learner selects a graph Gt from the action space Gt ⊂ G. The learner then
observes a noisy reward yt = µ(Gt) + εt where µ : G → R is the true (unknown) reward function and
{εt}t∈[T ] are i.i.d zero-mean sub-gaussian noise with variance proxy σ2

ε . The goal of the learner is to
maximize the expected cumulative reward in T rounds, which equivalently entails minimizing the
expected (pseudo-)regret denoted as RT =

∑T
t=1 E[µ(G∗

t ) − µ(Gt)] where G∗
t = argmaxG∈Gt

µ(G)
represents the optimal graph at time t.
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The graph space G is a finite set of undirected graphs with at most N nodes. Note that the graphs
with less than N nodes can be treated by adding auxiliary isolated nodes with no features. We
denote an undirected attributed graph with N nodes as G = (X,A), where X ∈ RN×d represents the
feature matrix with d features, and A ∈ {0, 1}N×N is the unweighted adjacency matrix. The rows of
X correspond to node features. The size of the node set of a graph G is denoted as |V(G)| ≤ N .

Graph action bandit has several applications such as chemical molecules optimization. Consider the
graph structures representing the molecules (Weininger, 1988) and rewards are molecular properties.
The goal is to sequentially recommend the optimal molecules for experimental testing.

3.2 Graph Neural Network Model

We propose to learn the unknown reward function µ(·) by fitting a Graph Neural Network (GNN).
We consider a relatively simple GNN architecture where the output of a single graph convolution
layer is normalized (to unit ℓ2 norm) and passed through a multilayer perceptron (MLP). A single-
layer graph convolution can be compactly stated as AX using the adjacency matrix A of the
network. Additionally, we normalize each row of the resulting matrix to have a unit ℓ2 norm. Letting
u(x) = x/∥x∥2 denote the normalization operator, the aggregated feature of node i in a graph G is
hGi = u((AX)i∗) = u(

∑
j∈Ni

Xj∗) where Nj is the neighborhood of node j. Our GNN also consists
of an L-layer m-width MLP neural network fMLP which is defined recursively as follows

f (1)(hGi ) = W (1)hGi , i ∈ [N ],

f (l)(hGi ) = 1√
m
W (l)ReLU(f (l−1)(hGi )), 2 ≤ l ≤ L,

fMLP(hGi ;θ) = f (L)(hGi ).

(1)

Here, ReLU(·) = max(·, 0), W (1) ∈ Rm×d, W (L) ∈ R1×m, W (l) ∈ Rm×m for any 1 < l < L are
weight matrices of the MLP and θ := (W (1), . . . ,W (L)) ∈ Rp is the collection of parameters of the
neural network where p = dm+ (L− 2)m2 +m. Our GNN model to estimate the reward function is

fGNN(G;θ) := 1
N

N∑
i=1

fMLP(hGi ;θ). (2)

The gradient of θ 7→ fGNN(G;θ) denoted as g(G;θ) := ∇θfGNN(G;θ) will play a key role in
uncertainty quantification, which will be discussed in Section 3.3. The GNN model (2) is trained by
minimizing the mean-squared loss with ℓ2 penalty, described concretely in (6). A hyperparameter λ
is used to tune the strength of ℓ2 regularization. For the simplicity of exposition, in the theoretical
analysis, we solve the optimization via gradient descent with learning rate η, total number of iterations
J and initialize parameters θ0 such that fGNN(G;θ0) = 0 for all G ∈ G, which can be fulfilled based
on the work of Zhou et al. (2020); Kassraie and Krause (2022).

3.3 Graph Neural Thompson Sampling

We adapt Thompson Sampling (TS) for graph exploration, due to its robust performance in balancing
exploration against exploitation. Algorithm 1 outlines our proposed GNN Thompson sampling,
following the idea of NeuralTS in Zhang et al. (2020). The key step is the sampling of an estimated
reward mean r̂t(G) for each graph G in the action space at time t, from a normal distribution as in
equation (4). The mean of the normal distribution in (4) is our current estimate, fGNN(G;θt−1), of
the true mean reward for graph G (i.e., µ(G)). This estimate is obtained by fitting the GNN to all
the past data as in (6). The variance of the normal distribution ν2σ2

t (G) is our current measure of
uncertainty about the true reward of graph G. Note that

σ2
t (G) = 1

m
∥g(G;θt−1)∥2

U−1
t−1

where U t−1 = λIp + 1
m

t−1∑
i=1

g(Gi;θi−1)g(Gi;θi−1)⊤. (3)
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Algorithm 1 Graph Neural Thompson Sampling (GNN-TS)
1: Input: T , λ, ν
2: Initialization: θ0, U0 = λIp.
3: for t = 1, ..., T do
4: Compute σ2

t (G) := 1
m∥g(G;θt−1)∥2

U−1
t−1

and sample

r̂t(G) ∼ N
(
fGNN(G;θt−1), ν2σ2

t (G)
)
, for all G ∈ Gt. (4)

5: Select graph Gt = argmaxG∈Gt
r̂t(G), and collect reward yt := µ(Gt) + εt.

6: Update uncertainty estimate as
U t = U t−1 + g(Gt;θt−1)g(Gt;θt−1)⊤/m. (5)

7: Update the parameter estimate as

θt = argmin
θ

1
2t

t∑
i=1

(
fGNN(Gi;θ) − yi

)2 + mλ

2 ∥θ∥2
2. (6)

8: end for

The rationale behind σ2
t (G) comes from a linear approximation to fGNN(G;θ). In particular, the idea is

that (6) approximately looks like a linear ridge regression problem, with features {g(Gi;θi)/
√
m}i∈[t].

The expression (3) is then the familiar estimated covariance matrix from linear bandits after we
make this identification. This approximation can be made rigorous via the neural tangent kernel
idea, as discussed in Section 4.

The sampled reward mean r̂t(G) is the index for decision-making. The learner selects the graph with
the highest index, i.e., Gt = argmaxG∈G r̂t(G). The randomness in r̂t(G), due to the positive variance
of the sampling distribution, is what allows TS to efficiently explore the action space. We want the
uncertainty, as captured by σ2

t (G) not to be too small early on, to allow for effective exploration, but
not too large either to miss out on the optimal choice too often. Lemma 5.2 in Section 5 captures
the two sides of this trade-off in our theory.

It is worth noting that our proposed Algorithm 1 is not exact TS. In our approach, (4) serves as an
approximation to a posterior for mean reward function, rather than a true posterior. The difference
between our proposed method and an exact Bayesian method will be smaller if the GNN model is
better approximated by a linear model.

Lastly, we note that r̂t(G) is also referred to as the perturbed mean reward, as it can be expressed
as: r̂t(G) = fGNN(G;θt−1) + νσt(G)z where z ∼ N (0, 1). This perturbed reward includes both
the estimated part (fgnn(G;θt−1)) and the random perturbation part (νσt(G) · z). The use of
perturbations for exploration has been shown to be a strong strategy in previous works (Kim and
Tewari, 2019; Kveton et al., 2019a). Algorithm 1 can be summarized as greedily selecting the graph
with the highest perturbed mean reward.

4 Regret Bound for GNN-TS

Graph Neural Tangent Kernel. Let us briefly review the idea of graph neural tangent kernel
(GNTK) (Kassraie et al., 2022) which is based on the neural tangent kernel (NTK) of (Jacot et al.,
2018). The tangent kernel on graph space G, induced by initialization θ0, is defined as the inner
product of the gradient at initialization, i.e k̃(G,G′) := g(G;θ0)⊤g(G′;θ0) for any G,G′ ∈ G. The
GNTK is the limiting kernel of k̃(G,G′)/m. We define the finite-width (empirical) and infinite-width
GNTK as

k̂(G,G′) := 1
m

⟨g(G;θ0), g(G′;θ0)⟩, k(G,G′) := lim
m→∞

1
m

⟨g(G;θ0), g(G′;θ0)⟩. (7)

We assume the reward function falls within the RKHS corresponding to the GNTK k defined
in (7). Define K ∈ R|G|×|G| as the GNTK matrix with entries k(G,G′) for all G,G′ ∈ G and
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µ = (µ(G))G∈G ∈ R|G| as the reward function vector. The kernel matrix K is positive definite with
maximum eigenvalue ρmax := λmax(K) and minimum eigenvalue ρmin := λmin(K). We also define
the finite-width GNTK matrix K̂ ∈ R|G|×|G| with entries k̂(G,G′) for all G,G′ ∈ G and maximum
eigenvalues ρ̂max = λmax(K̂). Note that K̂ → K as m → ∞.

Effective Dimension. We define the effective dimension d̃ of the GNTK matrix K with regulariza-
tion λ as

d̃ :=
log det(I |G| + TK/λ)

log(1 + Tρmax/λ) . (8)

This quantity, which appears in our regret bound, measures the actual underlying dimension of the
reward function space as seen by the bandit problem (Valko et al., 2013; Bietti and Mairal, 2019).
Our definition is adapted from (Yang and Wang, 2020). The key difference is that our d̃ does not
directly depend on |G|, which is replaced by ρmax, compared to the definition in (Zhang et al., 2020).
Our definition is the ratio of the sum over the maximum of the sequence of log-eigenvalues of matrix
I |G| + TK/λ. As such, it is a robust measure of matrix rank. In particular, we always have d̃ ≤ |G|.
Moreover, previous work on GNN bandit (Kassraie et al., 2022) utilized the notion of information
gain which we replace with the related, but different, notion of effective dimension d̃.

We will make the following assumptions:
Assumption 1 (Bounded RKHS norm for Reward). The reward function µ has R-bounded RKHS
norm with respect to a positive definite kernel k: ∥µ∥k =

√
µ⊤K−1µ ≤ R.

Assumption 2 (Bounded Reward Differences). Reward differences between any graph in action
space are bounded. Formally, ∀G,G′ ∈ G: |µ(G) − µ(G′)| ≤ B, for some B ≥ 1.
Assumption 3 (Subgaussian Noise). Noise process {ϵt}t∈[T ] satisfies Et−1[eηϵt ] ≤ eσ

2
ϵη

2/2,∀η > 0.

Assumption 1 aligns with the regularity assumption commonly found in the kernelized and neural
bandit literature (Srinivas et al., 2009; Chowdhury and Gopalan, 2017; Kassraie and Krause, 2022).
Assumption 2 implies that instantaneous regret is bounded: |µ(G∗

t ) − µ(Gt)| ≤ B for all t ∈ [T ] and
Assumption 3 is the conditional subgaussian assumption for stochastic process {ϵt}t∈[T ].

We are now ready to state our main result. Recall that N is the maximum number of (graph) nodes
and L the depth of MLP and m its width.
Theorem 4.1. Suppose Assumption 1,2 and 3 hold. For a fixed horizon T ∈ N, let

m ≥ poly
(
T, L, |G|, λ−1, R, σε, ρ

−1
min, log(TLN |G|)

)
ν ≳ 1 + σε

√
d̃ log T +

√
λR, λ ≳ (σ2

ε +R2)3 + ρmax

and learning rate η ≤ (C̃mL + mλ)−1, for some constant C̃. Then, the regret of Algorithm 1 is
bounded as

RT ≤ C B

√
d̃ T log(T |G|) · log(2 + Tρmax/λ)

for some universal constant C > 0.

The order of regret upper bound in Theorem 4.1, Õ((d̃T )1/2) matches the state-of-the-art regret
bounds in the literature of Thompson Sampling (Agrawal and Goyal, 2013; Chowdhury and Gopalan,
2017; Kveton et al., 2020; Zhang et al., 2020). As in (Kassraie et al., 2022), our regret bound is
independent of N , indicating that GNN-TS is valid for large graphs. Moreover, for low complexity
reward functions of effective dimension d̃ = O(1), the regret scales as

√
log |G| in the size of the

action space, showing the robust scalability of GNN-TS.

5 Proof of the Regret Bound
Similar to the previous literature, the key is to to obtain probabilistic control on the ‘discrepancy’ of
the policy in GNN-TS Consider the following events
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Eµt :=
{∣∣fGNN(G;θt−1) − µ(G)

∣∣ ≤ cµt (G), for all G ∈ Gt
}

Eσt :=
{∣∣r̂t(G) − fGNN(G;θt−1)

∣∣ ≤ cσt (G), for all G ∈ Gt
}

Eat :=
{
r̂t(G∗

t ) − fGNN(G∗
t ;θt−1) > νσt(G∗

t )
}

where cµt (G) := νσt(G) + ε(t,m) and cσt (G) := νσt(G)
√

2 log(t2|Gt|) as well as ε(t,m) =
(C0νL

9/2)m−1/6√
logm · t and C0 is some universal constant. Events Eµt and Eσt control the discrep-

ancies with constants cµt (G) and cσt (G) respectively: cµt (G) is bounding the estimation discrepancy
while cσt (G) is bounding the exploration discrepancy. Note that event Eat is only for G∗

t , the optimal
graph at round t.

5.1 Estimation Bound (Eµt )

The following lemma ensures that event Eµt happens with high probability.
Lemma 5.1. Fix δ ∈ (0, 1). For m ≥ poly(R, σε, L, |G|, λ−1, ρ−1

min, log(TLN |G|/δ)) and (ν, λ, η)
satisfying conditions of Theorem 4.1, we have P(Eµt ) ≥ 1 − δ/T .

In other words, given a large enough width of the GNN (m) and a small enough learning rate
(η), there is a high probability upper bound for the estimation error |fGNN(G;θt−1) − µ(G)|. This
Lemma 5.1 also gives an approximate upper confidence bound similar to GNN-UCB in (Kassraie
et al., 2022): µ(G) ≤ fGNN(G;θt−1) + νσt(G) + ε(t,m). Since ε(t,m) is negligible for large m, the
approximate upper confidence bound, fGNN(G;θt−1) + νσt(G) is used as the index for GNN-UCB.
Note that this lemma controls the estimation error produced by GNNs, hence applicable to all GNN
bandit algorithms using model (2). Our cµt (G) = νσt(G) + ε(t,m) is similar in form to that of Zhang
et al. (2020) which is different from the earlier analysis of TS in Agrawal and Goyal (2013).

5.2 Exploration Bound (Eσt , Eat )

We also need event Eσt to quantify the level of exploration achieved by the algorithm. Intuitively, Eσt
ensures our exploration is moderate. On the other hand, indicated by the regret analysis in (Kveton
et al., 2019b), instead of controlling the exploration independently, the relation between two sources
of explorations needs to be considered because this relation is critical for finding the optimal action.
To meet such observation, we define an extra "good" event for anti-concentration on the optimal
actions, which is Eat . Under event Eat , the policy index r̂t(G∗

t ) of the optimal graph has the higher
future positive exploration, which guides the learner to have higher chance to pick the optimal graph.
A formal lemma for exploration discrepancy using TS is given as below:
Lemma 5.2. For GNN-TS, for all t ∈ [T ], we have Pt(Ēσt ) ≤ t−2 and P(Eat ) ≥ (4e

√
π)−1.

Lemma 5.2 shows that GNN-TS has a positive probability of moderate exploration of the optimal arm,
which is beneficial to regret reduction.

5.3 Proof of Theorem 4.1

Let ∆t := µ(G∗
t ) − µ(Gt) be the instantaneous regret. We will need two additional lemmas:

Lemma 5.3 (One Step Regret Bound). Assume the same as Theorem 4.1. Suppose Pt(Eat )−Pt(Ēσt ) >
0. Then for any t ∈ [T ], almost surely,

Et[∆tIEµ
t

] ≤ IEµ
t

·
{( 2

Pt(Eat ) − Pt(Ēσt )
+ 1

)
Et[γt(Gt)] − ε(t,m) +B · Pt(Ēσt )

}

where γt(G) = cµt (G) + cσt (G).
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Lemma 5.4 (Cumulative Uncertainty Bound). Assume the same as Theorem 4.1. Then with
probability at least 1 − δ/T ,

1
2

T∑
t=1

min{1, σ2
t (Gt)} ≤ d̃ log(1 + λ−1Tρmax) + 3Cψ|G|3/2

√
Tλ−1/2εm

where εm = o(1) as m → ∞ and Cψ is some constant. We always have d̃ ≤ |G|.

Main Proof. The expected cumulative regret is

RT =
T∑
t=1

E[∆t] =
T∑
t=1

E[∆tIEµ
t

] +
T∑
t=1

E[∆tIĒµ
t

].

By Lemma 5.1, letting P(Ēµt ) ≤ δ/T and ∆t ≤ B, we have the upper bound for the second term
T∑
t=1

E[∆tIĒµ
t

] ≤ BT (δ/T ) = Bδ.

Now our focus is controlling the first summation term. By Lemma 5.3, almost surely, we have

Et[∆tIEµ
t

] ≤ IEµ
t

·
{( 2

Pt(Eat ) − Pt(Ēσt )
+ 1

)
Et[γt(Gt)] − ε(t,m) +B · Pt(Ēσt )

}
where γt(G) = cµt (G) + cσt (G). Assuming that t ≥ 5, we have t2 ≥ 5e

√
π. By Lemma 5.2,

Pt(Eat ) − P(Ēσt ) ≥ 1
4e

√
π

− 1
t2 ≥ 1

20e
√
π
. Then, for t ≥ 5, dropping ε(t,m) from the bound,

Et[∆tIEµ
t

] ≤ 194Et[γt(Gt)] +Bt−2 ≤
(
194Et[min{1, γt(Gt)}] + t−2)

B

using 40e
√
π + 1 ≤ 194, ∆t ≤ B and B ≥ 1. Therefore, we have

T∑
t=1

E[Et[∆tIEµ
t

]] ≤ 194B
T∑
t=5

E[Et[min{1, γt(Gt)}]] + 4B +B(π2/6) (9)

using
∑∞
t=1 t

−2 = π2/6. Note that γt(Gt) ≤ σt(Gt)
√

8 log(T 2|G|) + ε(T,m) for all t ∈ [T ]. Then by
Cauchy-Schwarz inequality,

T∑
t=5

min{1, γt(Gt)} ≤
√

8T log(T 2|G|)
( T∑
t=5

min{1, σ2
t (Gt)}

)1/2
+ Tε(T,m).

By Lemma 5.4 and take m sufficiently large such that 3Cψ|G|3/2
√
Tλ−1/2εm ≤ d̃ log(1 + λ−1Tρmax),

we have
T∑
t=1

E[min{1, σ2
t (Gt)}] ≤ 4d̃ log(1 + Tρmax/λ) + T (δ/T ).

Recall that the ε(T,m) = C1 T m
−1/6√

logm. Take m large enough we have Tε(T,m) ≤
√
T . Then

put the above results back into (9), we have:
T∑
t=1

E[Et[∆tIEµ
t

]] ≤ 194B
(√

16T log(T |G|) ·
√

4d̃ log(1 + Tρmax/λ) + δ +
√
T

)
+ 4B +B(π2/6)

by using log(T 2|G|) ≤ 2 log(T |G|). Therefore, we have our regret bound:

RT ≤ CB
√
d̃T log(T |G|) ·

(
1 + log(1 + Tρmax/λ)

)
for some universal constant C. We have used d̃ ≥ 1 and B ≥ 1, to simplify the bound. Finally, note
that 1 + log(1 + x) ≤ 2 log(2 + x) for all x ≥ 0.
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Figure 1: Regret over horizon T = 1000 for Erdös–Rényi random graphs with p = 0.4 and N = 50
in the first row and random dot product graphs with N = 50. Three columns are three types of
reward function generation: linear model, Gaussian process with GNTK, Gaussian process with
representation kernel. GNN-TS is competitive and robust to different environment settings.

6 Experiments

We create synthetic graph data and generate the rewards through three different mechanisms. For
the graph structures, we use random graph models including Erdös–Rényi and random dot product
graph models. The features are generated i.i.d. from the N (0, 1). The noisy reward is assumed
to have σε = 0.01. Our experiments investigate GNN-UCB, GNN-PE, NN-UCB, NN-PE, and NN-TS as
baselines from Kassraie et al. (2022). All performance curves in our empirical studies show an average
of over 10 repetitions with a standard deviation of the corresponding bandit algorithm with horizon
T = 1000. We assume the graph domain is fully observable, Gt = G for all t ∈ [T ]. Below is a brief
overview of the simulation elements. For more details, see Appendix D.

Random Graph. We use two types of random graphs including Erdös–Rényi (ER) random graphs
and random dot product graphs (RDPG). ER graphs are generated with edge probability p and
number of nodes N . RDPGs are generated by modeling the expected edge probabilities as the
function of the inner product of features. In the first row of Figure 1, the graphs in G are from the
ER model with p = 0.4 and in the second row from an RDPG, both of size N = 50.

Reward Function. To generate the rewards, we use models of three different types: linear model,
Gaussian Process (GP) with GNTK, Gaussian process with the representation kernel. For the linear
model, we have µ(G) = ⟨θ∗, h̄

G⟩ with true parameter θ∗ ∼ N (0, Id) and h̄G =
∑N
i=1 h

G
i /N . For the

GP with GNTK, we fit a GP regression model with empirical GNTK matrix K̂ ∈ R|G|×|G| as the
covariance matrix of the prior, trained on {(G, yG)}G∈G where {yG}G∈G are i.i.d. from N (0, 1). For
the GP with the representation kernel, we trained a GNN for a graph property prediction task and
used the mean pooling over all the nodes of the last layer representations as the graph representation,
denoted as h̄Grep. We then define the representation kernel as krep(G,G′) := ⟨h̄Grep, h̄

G′

rep⟩ and draw
µ(·) from a zero-mean GP with this covariance function (over G).

Algorithms. We investigate two baselines GNN-UCB and GNN-PE along with our proposed GNN-TS.
GNN-PE is the proposed state-of-the-art algorithm that selects the graph with the highest uncertainty
and eliminates the graph candidates by the upper confidence bounds. All the algorithms in our work
use the loss function (6) which is different from previous work. All gradients used for our experiments
are g(G;θt), not g(G;θ0), unless otherwise specified. In addition, in order to show the benefit of
considering the graph structure, we include NN-UCB, NN-TS, and NN-PE as our baselines. For these
NN-based algorithms, we ignore the adjacency matrix of a graph (setting A = IN ), and pass through
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the model in (1) and (2) with hGi = Xi∗. The MLPs in our experiments have L = 2 layers and
width m = 512. We use SGD as the optimizer, with mini-batch size 5, and train for 30 epochs. For
the tuning of the hyperparameters (η, λ) and other algorithmic setup, see Appendix D. The matrix
inversion in the algorithms is approximated by diagonal inversion across all policy algorithms.

Regret Experiments. In Figure 1, we show the performance of all the algorithms for the six
possible environments: ER or RDPG model coupled with either of the three reward models. We
set the size of the graph domain to |G| = 100 in Figure 1 and we experiment across different |G| in
Appendix D. Figure 1 demonstrates that GNN-TS consistently outperforms the baseline algorithms
and is robust to all types of random graph models and reward function generations in our experiment.
In addition, GNN-based algorithms are clearly better than NN-based algorithms in graph action
bandit settings.
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A Proof for Lemmas in Regret Analysis

A.1 Notations

In the following parts, we further define the some notations to represent the linear and kernelized
models:

Gt = [g(G1;θ0), ..., g(Gt;θt−1))] ∈ Rp×t

Ḡt = [g(G1;θ0), ..., g(Gt;θ0)] ∈ Rp×t

µt = [µ(G1), ..., µ(Gt)]⊤ ∈ Rt×1

yt = [y1, ..., yt]⊤ ∈ Rt×1

ϵt = [ε1, ..., εt]⊤ ∈ Rt×1.

Then we define the uncertainty estimate with initial gradient θ0:

σ̄2
t (G) = 1

m
∥g(G;θ0)∥2

Ū
−1
t−1

and Ū t = λIp +
t∑
i=1

g(Gi;θ0)g(Gi;θ0)⊤/m.

A.2 Proof of Lemma 5.1

Let us write
θ̃t−1 := Ū

−1
t−1Ḡt−1yt−1/m

for the ridge regression solution. We will need the following auxiliary lemmas:
Lemma A.1 (Taylor Approximation of a GNN). Suppose learning rate η ≤ (C̃mL + mλ)−1 for
some constant C̃, then for any fixed t ∈ [T ] and G ∈ G, with probability at least 1 − δ

|fGNN(G;θ(J)
t ) − fGNN(G;θ0) − ⟨g(G;θ0),θ(J)

t − θ0⟩| ≤ CL3
(R2 + σ2

ε

mλ

)2/3√
m log(m)

where C is some constant independent of m and t.
Lemma A.2. Suppose m ≥ poly(R, σε, L, λ−1, |G|, ρ−1

min, log(LN |G|/δ)) given a fixed δ ∈ (0, 1) and
learning rate η ≤ (C̃mL+mλ)−1 for some constant C̃. For G ∈ Gt and t > 1, with probability at
lease 1 − δ,

|⟨g(G;θ0),θt−1 − θ0 − θ̃t−1⟩| ≤ Cσ̄t(G)

where C = (C1(2 − ηmλ)J + C2)
√

σ2
ε+R2

λ (1 + 3ρmax
2λ ) with C1 = O(1) and C2 = O(λ1/3).

Lemma A.3. Fix δ ∈ (0, 1) and let m = Ω(L10T 4|G|6ρ−4
min log(LN2|G|2/δ)). Then, there exists

θ∗ ∈ Rp with
√
m∥θ∗∥2 ≤

√
2R such that with probability at least 1 − δ,

µ(G) = ⟨g(G;θ0),θ∗⟩, for all G ∈ G
log det(λ−1Ū t) ≤ log det(I |G| + λ−1tK) + 1.

Lemma A.4. With probability at least 1 − δ, we have

|σ̄t(G) − σt(G)| ≤ Ctλ−1/6L9/2(R2 + σ2
ε)1/6m−1/6

√
log(m).

We choose an arbitrary small δ ∈ (0, 1) and set δi = δ/(5T ) for i = 1, . . . , 5. For all ∀G ∈ Gt, we have

|fGNN(G;θt−1) − µ(G)| ≤ |fGNN(G;θt−1) − ⟨g(G;θ0), θ̃t−1⟩|︸ ︷︷ ︸
:=I1

+ |µ(G) − ⟨g(G;θ0), θ̃t−1⟩|︸ ︷︷ ︸
:=I2

.

We then turn to bounding I1 and I2. Throughout the proof, let

γm := m−1/6
√

logm
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Bounding I1: By Lemma A.1 and Lemma A.2, with probability at least 1 − δ1 − δ2,

I1 = |fGNN(G;θt−1) − ⟨g(G;θ0), θ̃t−1⟩|

≤ |fGNN(G;θt−1) − ⟨g(G;θ0),θt−1 − θ0⟩| + |⟨g(G;θ0),θt−1 − θ0 − θ̃t−1⟩|
≤ C0L

3γm + C̃2 σ̄t(G).

where C0 := C̃1

(
R2+σ2

ε

λ

)2/3
and C̃2 := (C̄1(2−ηmλ)J+C̄2λ

1/3)
√

σ2
ε+R2

λ (1 + 3ρmax
2λ ) for some constant

C̄1, C̄2. For λ ≳ (σ2
ε +R2)3 + ρmax, we have C0, C̃2 ≲ 1 subject to the constraint in η in Lemma A.2.

Thus, we obtain
I1 ≲ L3γm + σ̄t(G).

Bounding I2: By Lemma B.5, with at least probability 1 − δ3, for all G ∈ G, we have

I2 = |⟨g(G;θ0),θ∗ − θ̃t−1⟩|.

Recall that yt−1 = µt−1 + ϵt−1 and by Lemma A.3, we have µt−1 = Ḡ
⊤
t−1θ

∗. Then,

θ̃t−1 = Ū
−1
t−1Ḡt−1Ḡ

⊤
t−1θ

∗/m+ Ū−1
t−1Ḡt−1ϵt−1/m

We have Ū t = λIp + ḠtḠ
⊤
t /m. Hence, Ū−1

t ḠtḠ
⊤
t /m = Ū

−1
t (Ū t − λIp) = Ip − λŪ

−1
t . This gives

θ̃t−1 = θ∗ − λŪ
−1
t−1θ

∗ + 1√
m
Ū

−1
t−1St−1

where we have defined St−1 := 1√
m
Ḡt−1ϵt−1. Thus, we have

I2 ≤ λ|⟨g(G;θ0), Ū−1
t θ

∗⟩| + 1√
m

|⟨g(G;θ0), Ū−1
t−1St−1⟩| (10)

Recall that
√
mσ̄t(G) = ∥g(G;θ0)∥

Ū
−1
t−1

. Since Ū−1
t−1 ≼ 1

λIp, for any vector v, we have ∥v∥
Ū

−1
t−1

≤
1√
λ

∥v∥. Then, for the first term in (10), we have

λ|g(G;θ0)⊤Ū
−1
t−1θ

∗| ≤ λ∥g(G;θ0)∥
Ū

−1
t−1

· ∥θ∗∥
Ū

−1
t−1

≤
√
mσ̄t(G) ·

√
λ∥θ∗∥2 ≤ σ̄t(G)

√
2λR

where we have used Cauchy-Schwarz inequality for ⟨·, ·⟩U−1
t−1

and Lemma A.3. For the second term
in (10), we have

1√
m

|g(G;θ0)⊤Ū
−1
t−1St−1| ≤ 1√

m
∥g(G;θ0)∥

Ū
−1
t−1

∥St−1∥
Ū

−1
t−1

= σ̄t(G) · ∥St−1∥
Ū

−1
t−1

By Theorem 20.4 of Lattimore and Szepesvári (2020), with probability at least 1 − δ4, we have

1
σ2
ε

∥St∥2
Ū

−1
t

≤ 2 log(1/δ4) + log deg(λ−1Ū t), for all t ∈ N.

By Lemma A.3, with high probability,

log det(λ−1Ū t) ≤ log det(I |G| + TK/λ) + 1 ≤ 2d̃ log(1 + Tρmax/λ).

Using λ ≳ ρmax, we have log det(λ−1Ū t) ≲ d̃ log(T ) + 1 ≲ d̃ log(T ). We also have log(1/δ4) =
log(5T ) ≲ log(T ) ≲ d̃ log(T ).
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Putting the pieces together, we have

1√
m

|g(G;θ0)⊤Ū
−1
t−1St−1| ≲ σε

√
d̃ log T · σ̄t(G).

Combining with the first term, we obtain

I2 ≲
(
σε

√
d̃ log T +

√
λR

)
σ̄t(G).

Combining with the bound on I1, we have

|fGNN(G;θt−1) − µ(G)| ≲ L3γm +
(
1 + σε

√
d̃ log T +

√
λR

)
σ̄t(G)

=: L3γm + α σ̄t(G)

where we have set α := 1 + σε
√
d̃ log T +

√
λR for simplificty.

By Lemma A.4, with probability at least 1 − δ5,

σ̄t(G) − σt(G) ≤ CtL9/2
(R2 + σ2

ε

λ

)1/6
γm ≲ t · L9/2γm

using the assumption λ ≳ R2 + σ2
ε . We obtain

|fGNN(G;θt−1) − µ(G)| ≲ L3γm + t · αL9/2γm + ασt(G)
≤ 2t · αL9/2γm + ασt(G)

since t ≥ 1 and α ≥ 1. Taking ν ≥ α finishes the proof.

A.3 Proof of Lemma 5.2

Proof of Lemma 5.2. Conditioned on Ft, we have

r̂t(G) | Ft ∼ N (fGNN(G;θt−1), ν2σ2
t (G)).

Using standard Gaussian tail bound, followed by a union bound gives

Pt(|r̂t(G) − fGNN(G;θt−1)| ≥ νσt(G) · u) ≤ |Gt|e−u2/2

which shows the first assertion by letting u =
√

2 log(t2|Gt|).

For the second assertion, it is enough to note that P(Z ≥ 1) ≥ (4e
√
π)−1 for Z ∼ N (0, 1).

A.4 Proof of Lemma 5.3

Proof of Lemma 5.3. Our proof is inspired from the proof in Wu et al. (2022). Recall that cµt (G) =
νσt(G) + ε(t,m) and cσt (G) := νσt(G)

√
2 log(t2|Gt|) and

Eµt = {∀G ∈ Gt, |fGNN(G;θt−1) − µ(G)| ≤ cµt (G)}
Eσt = {∀G ∈ Gt, |r̂t(G) − fGNN(G;θt−1)| ≤ cσt (G)}

Let γt(G) = cµt (G) + cσt (G) and ct(G) = γt(G) + ε(t,m). Then, on Eµt ∩ Eσt , by triangle inequality,

|r̂t(G) − µ(G)| ≤ γt(G). (11)

We also recall that Eat := {r̂t(G∗
t ) − fGNN(G∗

t ;θt−1) > νσt(G∗
t )}. Then, on Eµt ∩ Eat , we have

r̂t(G∗
t ) > fGNN(G∗

t ;θt−1) + νσt(G∗
t )

≥ µ(G∗
t ) − cµt (G∗

t ) + νσt(G∗
t )

= µ(G∗
t ) − ε(t,m) (12)
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Recall that ∆t := µ(G∗
t ) − µ(Gt) for convenience. Consider the set of unsaturated actions

Ut =
{
G ∈ Gt : µ(G∗

t ) < µ(G) + ct(G)
}

and let Ḡt be the least uncertain unsaturated action at time t:

Ḡt := argmin
G∈Ut

ct(G).

By Ḡt ∈ Ut, we have ∆t ≤ ct(Ḡt) + µ(Ḡt) − µ(Gt). Applying (11), twice, on Eµt ∩ Eσt , we have

∆t ≤ ct(Ḡt) + γt(Ḡt) + γt(Gt) + r̂t(Ḡt) − r̂t(Gt)
≤ ct(Ḡ) + γt(Ḡt) + γt(Gt)

for all G ∈ Gt where the second inequality follows since Gt maximizes r̂t(·) over Gt, by design.

Recall that Et[·] = E[· | Ft], where Ft is the history up to (but not including) time t. Given Ft,
the event Eµt is deterministic while Eσt is only random due to the independent randomness in the
sampling step (4). Next, we have

Et[∆tIEµ
t

] = IEµ
t

· Et[∆t]
= IEµ

t
·
(
Et[∆tIEσ

t
] + Et[∆tIĒσ

t
]
)

≤ IEµ
t

·
(
Et[∆tIEσ

t
] +B Pt(Ēσt )

)
(13)

using the boundedness Assumption 2. Here, we are using the fact that Eµt is measurable w.r.t. Ft,
hence it is deterministic conditioned on Ft. Due to factor IEµ

t
in the above, the bound is trivial when

Eµt fails, so for the rest of the proof we assume that Eµt holds (conditioned on Ft).

We have

Et[∆tIEσ
t

] ≤ ct(Ḡt) + γt(Ḡt) + Et[γt(Gt)IEσ
t

]
≤ 2ct(Ḡt) − ε(t,m) + Et[γt(Gt)]

where we have used the definition of ct(·) and dropped the indicator IEσ
t

to get a further upper bound.
It remains to bound ct(Ḡt) in terms of γt(Gt).

Since Ḡt is the least uncertain unsaturated action, we have

ct(Ḡt)I{Gt ∈ Ut} ≤ ct(Gt).

Multiplying both sides by IEt
σ
, taking Et[·], and rearranging

ct(Ḡt) ≤
Et[ct(Gt)IEt

σ
]

Pt({Gt ∈ Ut} ∩ Eσt ) ≤ Et[γt(Gt)]
Pt({Gt ∈ Ut} ∩ Eσt ) .

It remains to bound the denominator.

Recall that Gt maximizes r̂t(·) over the entire Gt. Thus, if

r̂t(G∗
t ) > max

G∈ Ūt

r̂t(G) (14)

then Gt cannot belong to Ūt, hence Gt ∈ Ut. On Eµt ∩ Eσt , for any G ∈ Ūt, we have

r̂t(G) ≤ µ(G) + γt(G) ≤ µ(G∗
t ) − ct(G) + γt(G)

≤ µ(G∗
t ) − ε(t,m)
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where the second inequality is by the definition of Ūt. Then for (14) to hold on Eµt ∩ Eσt , it is enough
to have r̂t(G∗

t ) > µ(G∗
t ) − ε(t,m). But this holds on Eµt ∩ Eat by (12). That is,

Eat ∩ Eµt ∩ Eσt ⊂ {r̂t(G∗
t ) > µ(G∗

t ) − ε(t,m)} ∩ Eµt ∩ Eσt
⊂ {r̂t(G∗

t ) > max
G∈ Ūt

r̂t(G)} ∩ Eµt ∩ Eσt

⊂ {Gt ∈ Ut} ∩ Eµt ∩ Eσt .

Assuming as before that Eµt holds, we have

Pt(Eat ∩ Eσt ) ≤ Pt({Gt ∈ Ut} ∩ Eσt ).

We have Pt(Eat ∩ Eσt ) ≥ Pt(Eat ) − Pt(Ēσt ). Putting the pieces together

ct(Ḡt) ≤ Et[γt(Gt)]
Pt(Eat ) − Pt(Ēσt )

and we obtain
Et[∆tIEσ

t
] ≤

( 2
Pt(Eat ) − Pt(Ēσt )

+ 1
)
Et[γt(Gt)] − ε(t,m)

Combining with (13) the result follows.

A.5 Proof of Lemma 5.4

Proof of Lemma 5.4. For simplicity, we define

gt := 1√
m

g(Gt;θt−1), ḡt := 1√
m

g(Gt;θ0).

Then, recall that

σ2
t (Gt) = ∥gt∥2

U−1
t−1
, U t−1 = λIp +

t−1∑
i=1

gtg⊤
t .

Note that U t = U t−1 + gtg⊤
t .

Then we introduce following Lemmas:

Lemma A.5 (Elliptical Potential). Assume that U t = U t−1 + gtg⊤
t for all t ∈ [T ]. Then,

T∑
t=1

min{1, ∥gt∥2
U−1

t−1
} ≤ 2 log

(detUT

detU0

)
.

Lemma A.6. Let A = [a1 a2 · · · an] and Ā = [ā1 ā2 · · · ān] be p×n matrices, with columns {ai}
and {āi}, respectively. Assume that for ε ≤ C, we have

∥ai − āi∥ ≤ ε, ∥ai∥ ≤ C

for all i. Then,

log det(Ip +AA⊤) ≤ log det(Ip + ĀĀ⊤) + p log(1 + 3Cnε)

log det(Ip +AA⊤) ≤ log det(In + Ā⊤
Ā) + 3Cn3/2ε.

By Lemma A.5, we have

1
2

T∑
t=1

min{1, σ2
t (Gt)} ≤ log

(detUT

detU0

)
= log det(λ−1UT ) =: log det(V T )
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using det(U0) = det(λIp) = λp, and defining V t := λ−1U t.

Let G = {Gj : j ∈ [|G|]} be the collection of all the graphs and nj(t) be the number of graphs which
are equal to Gj ∈ G in our selection of graphs up to and including time t, i.e nj(t) :=

∑t
t=1 IGi=Gj .

Let

ψj := 1√
m

g(Gj ;θt−1), ψ̄j := 1√
m

g(Gj ;θ0)

and let Ψ and Ψ̄ be the corresponding p× |G| matrices with the above columns. Then, we have

T∑
i=1

gig⊤
i =

|G|∑
j=1

nj(T )ψjψ
⊤
j = ΨDΨ⊤ ⪯ T · ΨΨ⊤

where D ∈ R|G|×|G| is the diagonal matrix with diagonal elements {nj(T )}|G|
j=1 and the last inequality

due to nj(T ) ≤ T for all j ∈ [|G|].

Note that V T = Ip + λ−1 ∑T
i=1 gig⊤

i , hence

log det(V T ) ≤ log det(Ip + λ−1T · ΨΨ⊤).

By Lemma C.7, fix a δ1 ∈ (0, 1), we have the following bound for ∥ψj∥2 and ∥ψj − ψ̄j∥2, with
probability at least 1 − δ1,

∥ψj∥2 ≤ 1
N

∑
i∈V(Gj)

∥gMLP(hG
j

i ;θt−1)/
√
m∥2 ≤ Cψ

∥ψj − ψ̄j∥2 ≤ 1
N

∑
i∈V(Gj)

∥gMLP(hG
j

i ;θt−1)/
√
m− gMLP(hG

j

i ;θ0)/
√
m∥2 ≤ εm

where εm = o(1) as m → ∞ and Cψ is C7
√
L in Lemma C.7.

Then, applying Lemma A.6 with n = |G|, A =
√
λ−1TΨ, Ā =

√
λ−1T Ψ̄ and ε replaced with√

λ−1Tεm, we obtain

log det(V T ) ≤ log det(I |G| + λ−1T · Ψ̄⊤Ψ̄) + 3Cψ|G|3/2
√
Tλ−1/2εm

Recall K̂ = Ψ̄⊤Ψ̄ and ρ̂max = λmax(K̂) and note that K̂ is the finite-width GNTK matrix. By
Lemma B.6, with high probability, ρ̂max ≤ ρmax + ερ,m and note that ερ,m = Ω(m−1/4). Dropping
ερ,m by large enough m, we have

log det(I |G| + λ−1T · Ψ̄⊤Ψ̄) ≤ |G| log(1 + Tρmax/λ).

Putting the pieces together with the definition of effective dimension d̃ in (8) finishes the proof.

A.6 Proof of Lemma A.5

Proof of Lemma A.5. Since min{1, x} ≤ 2 log(1 + x) for x ≥ 0, we have

T∑
t=1

min{1, ∥gt∥2
U−1

t−1
} ≤ 2

∑
t

log(1 + ∥gt∥2
U−1

t−1
)

= 2
T∑
t=1

log
( detU t

detU t−1

)
= 2 log

(detUT

detU0

)
where the first equality follows from det(A+vv⊤) = det(A)(1+v⊤A−1v), obtained by an application
of Sylvester’s determinant identity: det(I +AB) = det(I +BA).
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A.7 Proof of Lemma A.6

Proof of Lemma A.6. Note that

∥aia⊤
i − āiā⊤

i ∥op = ∥ai(ai − āi)⊤ − (āi − ai)ā⊤
i ∥op

≤ (∥ai∥ + ∥āi∥)∥ai − ai∥ ≤ (2C + ε)ε ≤ 3Cε

Let V = Ip +AA⊤ and V̄ = Ip + ĀĀ⊤. We have

∥V − V̄ ∥op ≤
n∑
i=1

∥aia⊤
i − āiā⊤

i ∥op ≤ n · 3Cε

Write λi(V ) for the ith eigenvalue of matrix V . By Weyl’s inequality |λi(V ) − λi(V̄ )| ≤ 3Cnε.
Then,

log det(V ) =
p∑
i=1

log λi(V ) ≤
∑
i

log
(
λi(V̄ ) + 3Cnε

)
=

∑
i

log(λi(V̄ )) +
∑
i

log
(

1 + 3Cnε
λi(V̄ )

)
≤ log det(V̄ ) + p log(1 + 3Cnε)

using λi(V̄ ) ≥ 1. This proves one of the bounds.

For the second bound, let W = In +A⊤A and W̄ = In + Ā⊤
Ā. Then, then by concavity of the

X 7→ log det(X) and the fact that its derivative is X−1 over symmetric matrices, we have

log det(X + ∆) − log deg(X) ≤ tr(X−1∆) ≤ ∥X−1∥F ∥∆∥F .

Let ∆ = W − W̄ . We have |∆ij | = |⟨ai,aj⟩ − ⟨āi, āj⟩| ≤ 3Cε, hence ∥∆∥F ≤ 3Cnε Then,

log det(V ) − log det(W̄ ) (a)= log det(W ) − log det(W̄ )

≤ tr(W̄−1∆)

≤
√
n∥W̄−1∥op∥∆∥F

(b)
≤

√
n · 3Cnε.

where (a) is by Sylvester’s identity and (b) uses the fact that W̄ ⪰ In, hence W̄−1 ⪯ In giving
∥W̄−1∥op ≤ 1.

B Technical Lemmas

In this Section, we provides the Proof for Lemmas in Appendix A and other Technical Lemmas
supporting the proofs. Most technical Lemmas are related to NTK and optimization in depp learning
theory, mainly modified from the GNN helper Lemmas in (Kassraie et al., 2022) and technical
Lemmas in Zhou et al. (2020); Vakili et al. (2021).

B.1 Notations for MLP

Recall our GNN with one layer of linear graph convolution and a MLP:

f (1)(hGi ) = W (1)hGi , i ∈ [N ],

f (l)(hGi ) = 1√
m
W (l)ReLU(f (l−1)(hGi )), 2 ≤ l ≤ L,

fMLP(hGi ;θ) = f (L)(hGi )

fGNN(G;θ) = 1
N

N∑
i=1

fMLP(hGi ;θ).
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We denote the gradients for GNN and associated MLP as

g(G;θ) := ∇θfGNN(G;θ)
gMLP(·;θ) := ∇θfMLP(·;θ)

and the connection between gradients for the MLP and the gradient for the whole GNN is

g(G;θ) = 1
N

N∑
i=1

gMLP(hGi ;θ)

Similarly, we define a tangent kernel for the a MLP as

k̃MLP (x,x′) := gMLP (G;θ0)⊤gMLP (G′;θ0)

for any MLP inputs x, x′ and the associated neural tangent kernel kMLP (x,x′) is defined as limiting
kernel of k̃MLP (x,x′)/m:

kMLP (x,x′) := lim
m→∞

k̃MLP (x,x′)/m.

By the connection between fGNN and fMLP, we have

k(G,G′) = 1
N2

∑
i∈V(G)

∑
j∈V(G′)

kMLP(hGi ,h
G′

j ).

B.2 Proof for Lemmas in Appendix A

Proof of Lemma A.1. By Lemma C.7, with probability at least 1 − δ ∈ (0, 1)

|fGNN(G;θ(J)
t ) − fGNN(G;θ0) − ⟨g(G;θ0),θ(J)

t − θ0⟩|

≤ 1
N

∑
j∈V(G)

|fMLP(hGj ;θ(J)
t ) − fMLP(hGj ;θ0) − ⟨gMLP(hGj ;θ0),θ(J)

t − θ0⟩|

≤ C1τ
4/3L3

√
m log(m)

≤ C1(C̃
√

(R2 + σ2
ε)/mλ)4/3L3

√
m log(m)

where the last inequality is from the choice of τ = C̃
√

(R2 + σ2
ε)/mλ such that ∥θ(J)

t − θ0∥2 ≤ τ .
Since τ ∝ 1/

√
m, it can be verified that technical condition (23) in Lemma C.7 is satisfied when m is

large. Therefore, set C2 = C1C̃
4/3,

|fGNN(G;θ(J)
t ) − fGNN(G;θ0) − ⟨g(G;θ0),θ(J)

t − θ0⟩| ≤ C2L
3(R

2 + σ2
ε

mλ
)2/3

√
m log(m).

Proof of Lemma A.2. In this proof, set δ1 = δ2 = δ/2 where δ ∈ (0, 1) is an arbitrary small real
value. We introduce {θ̃(j)

t }Jj=1 be the gradient descent update sequence of the following proximal
optimization (Kassraie et al., 2022):

min
θ

1
2t

t∑
i=1

(⟨g(Gi;θ0),θ − θ0⟩ − yi)2 + mλ

2 ∥θ∥2
2

and {θ(j)
t }Jj=1 be the gradient descent update sequence of parameters of our primary optimization

(6). In GNN training step in algorithms, we let θt := θ
(J)
t . Recall that Ū t = λI + ḠtḠ

⊤
t /m. By
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Lemma B.5, with probability at least 1 − δ1 ∈ (0, 1), Ū t ≼ (λ+ 3
2ρmax)I. Therefore,

|⟨g(G;θ0),θt − θ0 − Ū−1
t Ḡtyt/m⟩| ≤ ∥g(G;θ0)∥

Ū
−1
t

∥θt − θ0 − Ū−1
t Ḡtyt/m∥Ūt

≤
√
λ+ 3ρmax/2∥g(G;θ0)∥

Ū
−1
t

∥θt − θ0 − Ū−1
t Ḡtyt/m∥2

≤
√
λ+ 3ρmax/2∥g(G;θ0)∥

Ū
−1
t

(∥θ̃(J)
t − θ0 − Ū−1

t Ḡtyt/m∥2

+ ∥θ̃(J)
t − θt∥2

By Lemma B.3 and Lemma B.1, with probability at least 1 − δ2 ∈ (0, 1), for some constants C1 and
C2, we have

|⟨g(G;θ0),θt − θ0 − Ū−1
t Ḡtyt/m⟩|

≤
√
λ+ 3ρmax/2∥g(G;θ0)∥

Ū
−1
t

(
C1(2 − ηmλ)J

√
σ2
ε +R2

mλ
+ ∥θ̃(J)

t − θt∥2

)
(by Lemma B.3)

≤
√
λ+ 3ρmax/2∥g(G;θ0)∥

Ū
−1
t

×
(
C1(2 − ηmλ)J

√
σ2
ε +R2

mλ
+ C2

√
σ2
ε +R2

mλ

)
(by Lemma B.1)

=
√
m(1 + 3ρmax

2λ )(C1(2 − ηmλ)J + C2)
√
σ2
ε +R2

mλ
σ̄t+1(G)

The last equality is obtained from the definition of σ̄2
t+1(G), which is σ̄2

t+1(G) =
λg⊤(G;θ0)Ū−1

t g(G;θ0)/m = λ
m∥g(G;θ0)∥2

Ū
−1
t

. Now we let C̃ =
√
m(1 + 3ρmax

2λ )(C1(2 − ηmλ)J +

C2)
√

σ2
ε+R2

mλ . Note that this constant C̃ = O(1) with respect to m since η = O(m−1). Then we have
the desired result:

|⟨g(G;θ0),θt − θ0 − Ū−1
t Ḡtyt/m⟩| ≤ C̃σ̄t+1(G)

where C̃ = (C1(2 − ηmλ)J + C2)
√

σ2
ε+R2

λ (1 + 3ρmax
2λ ) with C1 = O(1) and C2 = O(λ1/3).

Proof of Lemma A.3. See Appendix B.4.

Proof of Lemma A.4. Define function ψλ for vectors {v,a1, ...,at−1} as followed:

ψλ(v,a1, ...,at−1) :=

√√√√v⊤(λI +
t−1∑
i=1

aia⊤
i )−1v,

and denote the gradients for ψλ as
∇0ψλ := ∇vψλ(v,a1, ...,at−1)
∇iψλ := ∇aiψλ(v,a1, ...,at−1),∀i ∈ [t− 1].

By setting A = (λI +
∑t−1
i=1 aia

⊤
i )−1 ≼ 1

λI with eigendecomposition A = V DV ⊤. The gradients
are bounded as followed

∥∇0ψλ∥2 = ∥Av∥2√
v⊤Av

=

√
v⊤A2v

v⊤Av
≤

√
λmax(A) ≤ 1/

√
λ

∥∇iψλ∥2 = ∥Avv⊤Aai∥2√
v⊤Av

≤ ∥ai∥2
v⊤A2v√
v⊤Av

≤ ∥ai∥2∥v∥2/λ

(15)

We can express σ̄t(G) and σt(G) by ψλ:

σ̄t(G) = ψλ(g(G;θt−1)√
m

,
g(G1;θ1)√

m
, ...,

g(Gt−1;θt−1)√
m

)

σt(G) = ψλ(g(G;θ0)√
m

,
g(G1;θ0)√

m
, ...,

g(Gt−1;θ0)√
m

).
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From Lemma C.7, there exists positive constants such that the gradients and gradient differences are
bounded with high probability, which indicates for some constant C1 with probability greater than
1 − δ,

∥g(G;θ)∥2 = ∥ 1
N

∑
j∈V(G)

gMLP(hGj ;θ)∥2 ≤ C1
√
mL (16)

Note that ψλ is Lipschitz continuous, then with high probability, we have

|σ̄t(G) − σt(G)| = |ψλ(g(G;θt−1)√
m

,
g(G1;θ1)√

m
, ...,

g(Gt−1;θt−1)√
m

) − ψλ(g(G;θ0)√
m

,
g(G1;θ0)√

m
, ...,

g(Gt−1;θ0)√
m

)|

≤ sup{∥∇0ψλ∥2}∥g(G;θt−1)√
m

− g(G;θ0)√
m

∥2 +
t−1∑
i=1

sup{∥∇iψλ∥2}∥g(Gi;θi)√
m

− g(Gi;θ0)√
m

∥2

≤ 1√
λ

∥g(G;θt−1)√
m

− g(G;θ0)√
m

∥2 + C2
1L

λ

t−1∑
i=1

∥g(Gi;θi)√
m

− g(Gi;θ0)√
m

∥2( by (15) and (16))

≤ C2
√

log(m)τ1/3L3∥g(G;θ0)∥2/
√
m( 1√

λ
+ C2

1Lt

λ
) (by Lemma C.7)

≤ C1C2
√

log(m)τ1/3L7/2( 1√
λ

+ C2
1Lt

λ
) (by (16))

Therefore, if λ ≤ C4
1L

2t2 and let τ = C̃
√

R2+σ2
ε

mλ , C3 = 2C̃C2C
3
1 ,

|σ̄t(G) − σt(G)| ≤ C3tλ
−7/6L9/2(R2 + σ2

ε)1/6m−1/6
√

log(m)

B.3 Lemmas for GNN training

Lemma B.1 (Parameter Bound for Primary Optimization). Let {θ(j)
t }Jj=1 be the gradient descent

update sequence of parameters of the optimization (6) which is,

min
θ

1
2t

t∑
i=1

(fGNN(Gi;θ) − yi)2 + mλ

2 ∥θ∥2
2

then if m ≥ poly(R, σε, L, λ−1, log(Nδ )) and learning rate η ≤ (C̃mL+mλ)−1 for some constant C̃.
Then for a constant C = O(λ1/3) which is independent of m and t, with probability at least 1 − δ

∥θ(j)
t − θ̃(j)

t ∥2 ≤ C

√
R2 + σ2

ε

mλ

where {θ̃(j)
t }Jj=1 be the gradient descent update sequence of parameters of the proximal optimization

with loss function 1
2t

∑t
i=1(⟨g(Gi;θ0),θ − θ0⟩ − yi)2 + mλ

2 ∥θ∥2
2. Both optimization have the same

initialization at θ̃(0)
t = θ

(0)
t = θ0 and same learning rate η.

Proof. In this proof, set δ1 = δ2 = δ/2 where δ ∈ (0, 1) is an arbitrary small real value. Define
G

(j)
t := [g(G1;θ(j)

t ), ..., g(Gt;θ(j)
t ))] ∈ Rp×t as the j-th updates in our primary optimzation with

loss (6) at round t. Also define f (j)
gnn,t := [fGNN(G1;θ(j)

t ), ..., fGNN(Gt;θ(j)
t )]⊤ ∈ Rt×1. The gradient

descent updates for sequences {θ(j)
t }Jj=1 and {θ̃(j)

t }Jj=1 are

θ
(j+1)
t = θ

(j)
t − η

(
1
t
[G(j)

t ]⊤(f (j)
gnn,t − yt) +mλθ

(j)
t

)
θ̃

(j+1)
t = θ̃

(j)
t − η

(
1
t
Ḡ

⊤
t (Ḡt(θ̃

(j)
t − θ0) − yt) +mλθ̃

(j)
t

)
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Therefore,

∥θ(j+1)
t − θ̃(j+1)

t ∥2

=∥(1 − ηmλ)(θ(j)
t − θ̃(j)

t ) − η

t
[G(j)

t ]⊤(f (j)
gnn,t − yt) + η

t
Ḡ

⊤
t (Ḡt(θ̃

(j)
t − θ0) − yt)∥2

=∥(1 − ηmλ)(θ(j)
t − θ̃(j)

t ) − η

t
(G(j)

t − Ḡt)⊤(f (j)
gnn,t − yt) − η

t
Ḡ

⊤
t (f (j)

gnn,t − Ḡt(θ̃
(j)
t − θ0))∥2

=∥(1 − ηmλ)(θ(j)
t − θ̃(j)

t ) − η

t
(G(j)

t − Ḡt)⊤(f (j)
gnn,t − yt) − η

t
Ḡ

⊤
t (f (j)

gnn,t − Ḡt(θ(j)
t − θ0) + Ḡt(θ(j)

t − θ̃(j)
t ))∥2

=∥(I − η(mλI + Ḡ⊤
t Ḡt/t))(θ(j)

t − θ̃(j)
t ) − η

t
(G(j)

t − Ḡt)⊤(f (j)
gnn,t − yt) − η

t
Ḡ

⊤
t (f (j)

gnn,t − Ḡt(θ(j)
t − θ0))∥2

≤ ∥(I − η(mλI + Ḡ⊤
t Ḡt/t))∥2∥θ(j)

t − θ̃(j)
t ∥2︸ ︷︷ ︸

I1

+ η

t
∥Ḡt∥2∥f (j)

gnn,t − Ḡt(θ(j)
t − θ0)∥2︸ ︷︷ ︸

I2

+ η

t
∥G(j)

t − Ḡt∥2∥f (j)
gnn,t − yt∥2︸ ︷︷ ︸

I3

For I1, due to Ḡ⊤
t Ḡt/t ≽ 0, we have

I1 = ∥(I − η(mλI + Ḡ⊤
t Ḡt/t))∥2∥θ(j)

t − θ̃(j)
t ∥2 ≤ (1 − ηmλ)∥θ(j)

t − θ̃(j)
t ∥2

For I2, by Lemma B.4, set τ = C̃
√

(R2 + σ2
ε)/mλ. Since τ ∝ 1/

√
m, it can be verified that technical

condition (23) in Lemma C.7 is satisfied when m is large. Then with probability at least 1−δ1 ∈ (0, 1),

I2 = η

t
∥Ḡt∥2∥f (j)

gnn,t − Ḡt(θ(j)
t − θ0)∥2 ≤ ηC1(C̃ R

2 + σ2
ε

mλ
)2/3L7/2m

√
log(m)

For I3, by Lemma B.2 and Lemma B.4, and Lemma C.7, with probability at least 1 − δ2 ∈ (0, 1),

I3 = η

t
∥G(j)

t − Ḡt∥2∥f (j)
gnn,t − yt∥2 ≤ ηC2(C̃ R

2 + σ2
ε

mλ
)1/6L7/2

√
m log(m)

√
R2 + σ2

ε

Put the upper bound for I1, I2., I3 together and set C3 = (λ1/3C1 + C2)C̃ = O(λ1/3), then we get,

∥θ(j+1)
t − θ̃(j+1)

t ∥2 ≤ (1 − ηmλ)∥θ(j)
t − θ̃(j)

t ∥2 + C3η(R2 + σ2
ε)2/3L7/2m1/3λ−1/6

√
log(m)

Therefore, there exists m = poly(R, σε, λ, L) satisfies that (R2 + σ2
ε)1/6L7/2λ1/3

√
log(m) ≤ m1/6,

which indicates

∥θ(j)
t − θ̃(j)

t ∥2 ≤ C3(R2 + σ2
ε)2/3L7/2m−2/3λ−1/6

√
log(m) ≤ C3

√
R2 + σ2

ε

mλ

Lemma B.2 (Prediction Error Bound in Gradient Descent). Let {θ(j)
t }Jj=1 be the gra-

dient descent update sequence of parameters of the optimization (6). Define f
(j)
gnn,t :=

[fGNN(G1;θ(j)
t ), ..., fGNN(Gt;θ(j)

t )]⊤ ∈ Rt×1. Assume τ is set such that ∥θ(j)
t −θ0∥2 ≤ τ for all t and

∀j ≤ J . Suppose m ≥ poly(L, λ−1, log(N/δ)) where δ ∈ (0, 1) and learning rate η ≤ (C̃mL+mλ)−1

for some constant C̃, then with probability at least 1 − δ,

∥f (j)
gnn,t − yt∥2 ≤ C

√
t(R2 + σ2

ε)

where C is some constant which does not depend on m and t.

Proof. Define f t(θ) and Gt(θ) as follow

f t(θ) = [fGNN(G1;θ), ..., fGNN(Gt;θ)]⊤ ∈ Rt×1

Gt(θ) = [g(G1;θ), ..., g(Gt;θ)] ∈ Rp×t
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Also define Lt(θ) := 1
2t

∑t
i=1(fGNN(Gi;θ)−yi)2+mλ

2 ∥θ∥2
2 as the loss function in primary optimization.

Note that Lt(θ) := 1
2t∥f t(θ) − yt∥2

2 + mλ
2 ∥θ∥2

2 First notice that loss function Lt(θ) is convex due to
the strongly convexity of ∥ · ∥2

2/2. We are going to use the following two-sided bound from strongly
convexity in this proof:

∥y∥2
2/2 − ∥x∥2

2/2 = x⊤(y − x) + 1
2∥y − x∥2

2

By 1-strongly convexity of ∥ · ∥2
2/2, we have

Lt(θ′) − Lt(θ) = 1
2t

(
∥f t(θ

′) − yt∥2
2 − ∥f t(θ) − yt∥2

2

)
+ mλ

2

(
∥θ′∥2

2 − ∥θ∥2
2

)
≤1
t

(
(f t(θ) − yt)⊤(f t(θ

′) − f t(θ)) + 1
2∥f t(θ) − f t(θ

′)∥2
2

)
+mλ

(
θ⊤(θ′ − θ) + 1

2∥θ − θ′∥2
2

)
.

Define et := f t(θ
′) −f t(θ) −G⊤

t (θ)(θ′ −θ). By Lemma B.4, with probability at least 1 − δ1 ∈ (0, 1)

Lt(θ′) − Lt(θ)

≤1
t
(f t(θ) − yt)⊤(G⊤

t (θ)(θ′ − θ) + et) + 1
2t∥G

⊤
t (θ)(θ′ − θ) + et∥2

2 +mλ

(
θ⊤(θ − θ) + 1

2∥θ − θ′∥2
2

)
=1
t
[Gt(θ)(f t(θ) − yt) +mλθ]⊤(θ′ − θ) + 1

t
(f t(θ) − yt)⊤et + 1

2t∥G
⊤
t (θ)(θ′ − θ) + et∥2

2 + mλ

2 ∥θ − θ′∥2
2

=∇Lt(θ)⊤(θ′ − θ) + 1
t
(f t(θ) − yt)⊤et + 1

2t∥G
⊤
t (θ)(θ′ − θ) + et∥2

2 + mλ

2 ∥θ − θ′∥2
2

≤∇Lt(θ)⊤(θ′ − θ) + 1
t
∥f t(θ) − yt∥2∥et∥2 + 1

t
∥Gt(θ)∥2

2∥θ′ − θ∥2
2 + 1

t
∥et∥2

2 + mλ

2 ∥θ − θ′∥2
2

≤∇Lt(θ)⊤(θ′ − θ) + 1
t
∥f t(θ) − yt∥2∥et∥2 + 1

t
∥et∥2

2 + (C2
1mL+mλ/2)∥θ′ − θ∥2

2 (by Lemma B.4)
(17)

Similarly by 1-strongly convexity of ∥ · ∥2
2/2 , we also investigate the lower bound:

Lt(θ′)−Lt(θ) ≥ 1
t

(
(f t(θ)−yt)⊤(f t(θ

′)−f t(θ))+1
2∥f t(θ

′)−f t(θ)∥2
2

)
+mλ

(
θ⊤(θ′−θ)+1

2∥θ′−θ∥2
2

)
Using et := f t(θ

′) − f t(θ) −G⊤
t (θ)(θ′ − θ), we obtain

Lt(θ′) − Lt(θ) ≥1
t
(f t(θ) − yt)⊤(G⊤

t (θ)(θ′ − θ) + et) +mλθ⊤(θ′ − θ) + mλ

2 ∥θ − θ′∥2
2

=1
t
[Gt(θ)(f t(θ) − yt) +mλθ]⊤(θ′ − θ) + 1

t
(f t(θ) − yt)⊤et + mλ

2 ∥θ − θ′∥2
2

Then using ∇Lt(θ) = Gt(θ)(f t(θ) − yt) +mλθ, we have

Lt(θ′) − Lt(θ) ≥∇Lt(θ)⊤(θ′ − θ) + 1
t
(f t(θ) − yt)⊤et + mλ

2 ∥θ − θ′∥2
2

≥∇Lt(θ)⊤(θ′ − θ) + mλ

2 ∥θ − θ′∥2
2 − 1

t
∥f t(θ) − yt∥2∥et∥2

≥ − ∥∇Lt(θ)∥2
2

2mλ − 1
t
∥f t(θ) − yt∥2∥et∥2 (by Lemma C.1)

(18)



RLJ | RLC 2024

Now recall the update step θ(j+1)
t = θ

(j)
t − η∇Lt(θ(j)

t ) and combine the above upper and lower
bounds,

Lt(θ − η∇Lt(θ)) − Lt(θ)

≤ − η∥∇Lt(θ)∥2
2 + 1

t
∥f t(θ) − yt∥2∥et∥2 + 1

t
∥et∥2

2 + η2(C2
1mL+mλ/2)∥∇Lt(θ)∥2

2 (by update step and (17))

= − η

(
1 − η

2 (2C2
1mL+mλ)

)
∥∇Lt(θ)∥2

2 + 1
t
∥f t(θ) − yt∥2∥et∥2 + 1

t
∥et∥2

2

≤ − η

2∥∇Lt(θ)∥2
2 + 1

t
∥f t(θ) − yt∥2∥et∥2 + 1

t
∥et∥2

2 (by choice of η)

≤ηmλ
(

Lt(θ′) − Lt(θ) + 1
t
∥f t(θ) − yt∥2∥et∥2

)
+ 1
t
∥f t(θ) − yt∥2∥et∥2 + 1

t
∥et∥2

2 (by (18))

≤ηmλ
(

Lt(θ′) − Lt(θ) + ∥f t(θ) − yt∥2
2/8t+ 2∥et∥2

2/t

)
+ 1
t
(ηmλ∥f t(θ) − yt∥2

2/8 + 2∥et∥2
2/ηmλ) + 1

t
∥et∥2

2

=ηmλ(Lt(θ′) − Lt(θ)) + ηmλ

4t ∥f t(θ) − yt∥2
2 + (2ηmλ

t
+ 2
ηmλt

+ 1
t
)∥et∥2

2

≤ηmλ(Lt(θ′) − Lt(θ)) + ηmλLt(θ)/2 + (2ηmλ
t

+ 2
ηmλt

+ 1
t
)∥et∥2

2 (by ∥f t(θ) − yt∥2
2 ≤ 2tL(θ))

=ηmλ(Lt(θ′) − Lt(θ)/2) + (2ηmλ
t

+ 2
ηmλt

+ 1
t
)∥et∥2

2

(19)
For ∥et∥2

2, by Lemma C.7, with probability at least 1 − δ2 ∈ (0, 1) for some constant C2, we have

∥et∥2 = ∥f t(θ
′) − f t(θ) −G⊤

t (θ)(θ′ − θ)∥2

≤
√
tmax
i∈[t]

|fGNN(Gi;θ′) − fGNN(Gi;θ) + g⊤(Gi;θ)(θ′ − θ)|

≤
√
t

N
max
i∈[t]

∑
j∈V(Gi)

|fMLP(hj ;θ′) − fMLP(hj ;θ) + gMLP(hj ;θ)⊤(θ′ − θ)|

≤ C2τ
4/3L3

√
tm log(m)

(20)

where V(G) as vertice set of a graph G. Moreove, by Lemma C.4, we have the high probability upper
bound for 1

t ∥yt∥
2
2: with probability at least 1 − δ3 ∈ (0, 1) and some constant C3 depends on δ3,

1
t
∥yt∥2

2 ≤ 1
t
(tR2 + ∥ϵt∥2

2 + 2
√
tR∥ϵt∥2) ≤ C3(σ2

ε +R2) (21)

Then let θ′ = θ0 and plug in θ(j+1)
t and θ(j)

t in (19), by Lemma B.3, with probability at least 1 − δ4,

Lt(θ(j+1)
t ) − Lt(θ0) ≤ (1 − ηmλ/2)(Lt(θ(j)

t ) − Lt(θ0)) + ηmλ

2 Lt(θ0) + (2ηmλ
t

+ 2
ηmλt

+ 1
t
)∥et∥2

2

≤ (1 − ηmλ/2)(Lt(θ(j)
t ) − Lt(θ0)) + ηmλ

2 (1
t
∥yt∥2

2 +mλ∥θ0∥2
2)

+ (2ηmλ+ 2/ηmλ+ 1)C2
2τ

8/3L6m log(m) (by (21))

≤ (1 − ηmλ/2)(Lt(θ(j)
t ) − Lt(θ0)) + ηmλ

2 (C3(σ2
ε +R2) +mλ∥θ0∥2

2)

+ 5
ηmλ

C2
2τ

8/3L6m log(m) (by (20) and ηmλ ≤ 1)

≤ (1 − ηmλ/2)(Lt(θ(j)
t ) − Lt(θ0)) + C4ηmλ(σ2

ε +R2) + 5
ηmλ

C2
2τ

8/3L6m log(m)

(by Lemma B.3)
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Now we further set τ = C̃
√

σ2
ε+R2

mλ and the upper bound for Lt(θ(j+1)
t ) − Lt(θ0) is

Lt(θ(j+1)
t ) − Lt(θ0) ≤ (1 − ηmλ/2)(Lt(θ(j)

t ) − Lt(θ0)) + C4ηmλ(σ2
ε +R2) + 5

ηmλ
C̃2C2

2 (σ2
ε +R2)τ2/3λ−1L6 log(m)

(by τ = C̃

√
σ2
ε +R2

mλ
)

≤ (1 − ηmλ/2)(Lt(θ(j)
t ) − Lt(θ0)) + C4ηmλ(σ2

ε +R2) + C5ηmλ(σ2
ε +R2)

(by choice of τ in Lemma C.7)
where C4 is a constant depends on δ3 and δ4 and C5 depends on δ2, δ3 and δ4. Then by recursion,

Lt(θ(j+1)
t ) − Lt(θ0) ≤ C6ηmλ(σ2

ε +R2)
ηmλ/2 = C̃6(σ2

ε +R2)

where C6 = C4 + C5 and C̃6 = 2C6. Recall that ∥f t(θ) − yt∥2
2 = 2tLt(θ) − mλ

2 ∥θ∥2
2 ≤ 2tLt(θ), with

some constant C7 derived from C6 and C4, then we have

∥f (j)
gnn,t − yt∥2

2 ≤ 2tLt(θ(j)
t ) ≤ 2tC̃6(σ2

ε +R2) + 2tLt(θ0)

= 2tC̃6(σ2
ε +R2) + 2t(1

t
∥yt∥2

2 + mλ

2 ∥θ0∥2
2)

≤ C7t(σ2
ε +R2) (by Lemma B.3)

which implies our result by setting δ1 = δ2 = δ3 = δ4 = δ/4 where δ ∈ (0, 1) is arbitrary small.

Lemma B.3 (Parameter Bound for Proximal Optimization). Let {θ̃(j)
t }Jj=1 be the gradient descent

update sequence of parameters of the following optimization,

min
θ

1
2t

t∑
i=1

(⟨g(Gi;θ0),θ − θ0⟩ − yi)2 + mλ

2 ∥θ∥2
2

Then if m ≥ poly(L, λ−1, log(N/δ)) and learning rate η ≤ (C̃mL + mλ)−1 for some constant C̃.
Then for some constant C and for any ∀t ∈ [T ] and ∀j ∈ [J ], with probability at least 1 − δ ∈ (0, 1),

∥θ̃(j)
t ∥2 ≤ C

√
σ2
ε +R2

mλ

∥θ̃(j)
t − θ0∥2 ≤ C

√
σ2
ε +R2

mλ

∥θ̃(j)
t − θ0 − Ū−1

t Ḡtyt/m∥2 ≤ C(2 − ηmλ)j
√
σ2
ε +R2

mλ

for some constant C which is independent of m and t.

Proof. Denote Lt(θ) := 1
2t

∑t
i=1(⟨g(Gi;θ0),θ − θ0⟩ − yi)2 + mλ

2 ∥θ∥2
2 as the loss function in our

proximal optimization. By Lemma B.4, with probability at least 1 − δ1 ∈ (0, 1) the Hessian of Lt(θ)
satisfies:

0 ≺ ∇2Lt = ḠtḠ
⊤
t /t+mλI ≼ (∥Ḡt∥2

F /t+mλ)I ≼ (C2
1mL+mλ)I

which reveals that Lt is strongly convex and (C2
1mL+mλ)-smooth. Thus if η ≤ (C2

1mL+mλ)−1,
Lt is a monotonically decreasing function:

1
2t∥Ḡ

⊤
t (θ̃(j)

t − θ0) − yt∥2
2 + mλ

2 ∥θ̃(j)
t ∥2

2 ≤ 1
2t∥yt∥

2
2 + mλ

2 ∥θ0∥2
2
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which indicates
∥θ̃(j)

t ∥2
2 ≤ 1

tmλ
∥yt∥2

2 + ∥θ0∥2
2

≤ 1
tmλ

(∥µt∥2
2 + ∥ϵt∥2

2 + 2∥µt∥2∥ϵt∥2) + ∥θ0∥2
2

Note that the proximal optimization is optimization for ridge regression which has the closed form
solution:

θ∗ = θ0 + Ū−1
t Ḡtyt/m

and θ̃(j)
t converges to θ∗ with the following rate:

∥θ̃(j+1)
t − θ∗∥2

2 = ∥θ̃(j)
t − η∇L(θ̃(j)

t ) − θ∗∥2
2

= ∥θ̃(j)
t − θ∗∥2

2 + η2∥∇L(θ̃(j)
t )∥2

2 − 2η(θ̃(j)
t − θ∗)⊤∇L(θ̃(j)

t )

≤ ∥θ̃(j)
t − θ∗∥2

2 + η2(C2
1mL+mλ)2∥θ̃(j)

t − θ∗∥2
2 − 2η(θ̃(j)

t − θ∗)⊤∇L(θ̃(j)
t ) (by smoothness)

≤ ∥θ̃(j)
t − θ∗∥2

2 + η2(C2
1mL+mλ)2∥θ̃(j)

t − θ∗∥2
2 + 2η(L(θ∗) − L(θ̃(j)

t )) (by convexity)

≤ 2∥θ̃(j)
t − θ∗∥2

2 + 2η(L(θ∗) − L(θ̃(j)
t )) (by η ≤ (C2

1mL+mλ)−1)

≤ 2∥θ̃(j)
t − θ∗∥2

2 − ηmλ∥θ̃(j)
t − θ∗∥2

2 (by mλ-strongly convexity)

= (2 − ηmλ)∥θ̃(j)
t − θ∗∥2

2

Therefore,

∥θ̃(j+1)
t − θ∗∥2

2 ≤ (2 − ηmλ)j∥θ0 − θ∗∥2
2

≤ (2 − ηmλ)j 2
mλ

(L(θ0)) − L(θ∗)) (by mλ-strongly convexity)

≤ (2 − ηmλ)j 2
mλ

L(θ0)

= (2 − ηmλ)j
(

1
tmλ

∥yt∥2
2 + ∥θ0∥2

2

)
Then combine with Lemma C.4 and ∥µt∥2 ≤

√
t∥µ∥H ≤

√
tR, we have that with probability at least

1 − δ2 ∈ (0, 1),

1
tmλ

∥yt∥2
2 ≤ 1

tmλ
(tR2 + ∥ϵt∥2

2 + 2
√
tR∥ϵt∥2) ≤ C̃1(σ2

ε +R2)/mλ

where C̃1 is some constant depends on δ2. Therefore, for any δ ∈ (0, 1), set δ1 = δ2 = δ/2, with
probability at least 1 − δ2,

∥θ̃(j)
t ∥2 ≤ C̃2

√
σ2
ε +R2

mλ

∥θ̃(j)
t − θ0∥2 ≤ C̃2

√
σ2
ε +R2

mλ

and

∥θ̃(j)
t − θ0 − Ū−1

t Ḡtyt/m∥2 ≤ (2 − ηmλ)jC̃2

√
σ2
ε +R2

mλ

where C̃2 is some constant depends on δ2 and ∥θ0∥2.

Lemma B.4 (Gradient Descent Norm Bound). Define G(j)
t := [g(G1;θ(j)

t ), ..., g(Gt;θ(j)
t ))] ∈ Rp×t

for the gradients in the j-th updates in GNN training (optimization of (6)) at round t. Also define
f

(j)
gnn,t := [fGNN(G1;θ(j)

t ), ..., fGNN(Gt;θ(j)
t )]⊤ ∈ Rt×1. Assume τ is set such that ∥θ(j)

t − θ0∥2 ≤ τ
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for all t and ∀j ≤ J . Suppose m ≥ poly(L, λ−1, log(N/δ)) where δ ∈ (0, 1), then with probability at
least 1 − δ,

∥Ḡt∥F ≤ C1
√
tmL

∥G(j)
t ∥F ≤ C1

√
tmL

∥Ḡt −G(j)
t ∥F ≤ C2τ

1/3L7/2
√
tm log(m)

∥f (j)
gnn,t − (θ(j)

t − θ0)⊤Ḡt∥2 ≤ C3τ
4/3L3

√
tm log(m)

for some constant C1, C2, C3 which does not depend on m and t.

Proof. From Lemma C.7, we can bounding the ∥g(G;θ0)∥2 with probability at least 1 − δ ∈ (0, 1),
which provides the high probability upper bound for the Frobenius norm of Ḡt:

∥Ḡt∥F ≤
√
tmax
i∈[t]

∥g(Gi;θ0)∥2 ≤
√
t

N
max
i∈[t]

∑
j∈V(Gi)

∥gMLP(hj ;θ0)∥2 ≤ C1
√
tmL

and the high probability upper bound for the Frobenius norm of G(j)
t :

∥G(j)
t ∥F ≤

√
tmax
i∈[t]

∥g(Gi;θ(j)
t )∥2 ≤

√
t

N
max
i∈[t]

∑
j∈V(Gi)

∥gMLP(hj ;θ(j)
t )∥2 ≤ C1

√
tmL

For the gradients difference, by Lemma C.7, with probability at least 1 − δ,

∥Ḡt −G(j)
t ∥F ≤

√
tmax
i∈[t]

∥g(Gi;θ0) − g(Gi;θ(j)
t )∥2

≤
√
t

N
max
i∈[t]

∑
j∈V(Gi)

∥gMLP(hj ;θ0) − gMLP(hj ;θ(j)
t )∥2

≤ C2τ
1/3L7/2

√
tm log(m)

The last norm for difference between the GNN prediction and linearized prediction is bounded due
to Lemma C.7, with probability at least 1 − δ,

∥f (j)
gnn,t − (θ(j)

t − θ0)⊤G
(j)
t ∥2 ≤

√
tmax
i∈[t]

|fGNN(Gi;θ(j)
t ) − (θ(j)

t − θ0)⊤g(Gi;θ0)|

≤
√
t

N
max
i∈[t]

∑
j∈V(Gi)

|fMLP(hj ;θ(j)
t ) − (θ(j)

t − θ0)⊤gMLP(hj ;θ0)|

≤ C3τ
4/3L3

√
tm log(m)

B.4 Lemmas for GNTK

Lemma B.5 (Approximation from GNTK). Set δ ∈ (0, 1) and

m = Ω(L10T 4|G|6ρ−4
min log(LN2|G|2/δ)).

Then with probability at least 1 − δ,
(i) (Approximate Linearized Nerual Network) ∃θ∗ such that, for ∀G ∈ G

µ(G) = ⟨g(G;θ0),θ∗⟩
√
m∥θ∗∥2 ≤

√
2R

(ii) (Spectral Bound for Uncertainty Matrix Ū t by GNTK)

λmax(Ū t) ≤ λ+ 3
2ρmax

log det(λ−1Ū t) ≤ log det(I |G| + λ−1tK) + 1
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Proof. In this proof, set δ1 = δ2 = δ/2 where δ ∈ (0, 1) is an arbitrary real value. Recall the definition
of the true reward function µ : G → R and the GNTK matrix K ∈ R|G|×|G|. We further define the
vector of function values µ ∈ R|G|×1 as well as the gradient matrix Ḡ ∈ Rp×|G| on initialization θ0.

[K]ij = k(Gi, Gj) ∀Gi, Gj ∈ G
[µ]i = µ(Gi) ∀Gi ∈ G
Ḡ∗i = g(Gi;θ0)

Proof for (i): By the connection between GNTK and NTK,

∥K − Ḡ⊤
Ḡ/m∥F =

√√√√ |G|∑
i=1

|G|∑
j=1

(k(Gi, Gj) − g⊤(Gi;θ0)g(Gj ;θ0)/m)2

=

√√√√√ |G|∑
i=1

|G|∑
j=1

(
1
N2

∑
u∈V(Gi)

∑
v∈VGj

(kMLP(hGi

u ,hG
j

v ) − g⊤
MLP(hGi

u ;θ0)gMLP(hGj

v ;θ0)/m)
)2

≤

√√√√√ |G|∑
i=1

|G|∑
j=1

∑
u∈V(Gi)

∑
v∈V(Gj)

(kMLP(hGi

u ,hG
j

v ) − g⊤
MLP(hGi

u ;θ0)gMLP(hGj

v ;θ0)/m)2

where VG denotes the vertice set of a graph G. By Lemma C.6, when m =
Ω(L10N4|G|4ρ−4

min log(LN2|G|2/δ1), then with probability at least 1−δ1/(N2|G|2), |kMLP(hG
i

u ,hG
j

v )−
g⊤

MLP(hG
i

u ;θ0)gMLP(hG
j

v ;θ0)/m| ≤ ρmin

2N |G| . Then apply union bound over all pairs (hG
i

u ,hG
j

v ), the
following holds with probability at least 1 − δ1,

∥K − Ḡ⊤
Ḡ/m∥F ≤ ρmin/2

which shows that

Ḡ
⊤
Ḡ/m ≽K − ∥K − Ḡ⊤

Ḡ/m∥2I |G|

≽K − ∥K − Ḡ⊤
Ḡ/m∥F I |G|

≽K − ρmin
2 I |G|

≽K/2 ≻ 0

(22)

Suppose Ḡ = PΛQ⊤ is the decomposition of Ḡ where P ∈ Rp×|G|, Q ∈ R|G|×|G| are unitary and
Λ ∈ R|G|×|G|. By (22), we know Λ ≻ 0 with probability at least 1 − δ1. Now denote θ∗ = PΛ−1Q⊤µ
and it satisfies

Ḡ
⊤
θ∗ = QΛP⊤PΛ−1Q⊤µ = µ

⇒µ(G) = ⟨g(G;θ0),θ∗⟩ ∀G ∈ G

Moreover, the norm of θ∗ is also bounded:

∥θ∗∥2
2 = µ⊤QΛ−2Q⊤µ = µ⊤(Ḡ⊤

Ḡ)−1µ ≤ 2
m
µ⊤K−1µ ≤ 2R2

m

which completes our proof for (i).
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Proof for (ii): From the definition of Ḡt, we have

log det(I |G| + λ−1Ḡ
⊤
t Ḡt/m) = log det

(
I |G| +

t∑
i=1

g(Gi;θ0)g⊤(Gi;θ0)/(mλ)
)

≤ log det
(
I |G| + t

∑
G∈∪t

i=1Gi

g(G;θ0)g⊤(G;θ0)/(mλ)
)

≤ log det
(
I |G| + t

∑
G∈G

g(G;θ0)g⊤(G;θ0)/(mλ)
)

(by Gt ∈ G for ∀t ∈ [T ])

= log det(I |G| + tḠ
⊤
Ḡ/(mλ))

= log det(I |G| + tK/λ+ t(Ḡ⊤
Ḡ/m−K)/λ)

(by concavity of log det(·)) ≤ log det(I |G| + tK/λ) + ⟨(I + tK/λ)−1, t(Ḡ⊤
Ḡ/m−K)/λ⟩F

≤ log det(I |G| + tK/λ) + ∥(I |G| + tK/λ)−1∥F ∥t(Ḡ⊤
Ḡ/m−K)/λ∥F

≤ log det(I |G| + tK/λ) + t
√

|G|∥(I |G| + tK/λ)−1∥2∥Ḡ⊤
Ḡ/m−K∥F /λ

= log det(I |G| + tK/λ) +
√

|G|(λ/t+ ρmin)−1∥Ḡ⊤
Ḡ/m−K∥F

By Lemma C.6, when m = Ω(L10N4|G|6ρ−4
min log(LN2|G|2/δ2), then with probability at least 1 −

δ2/(N2|G|2), |kMLP(hG
i

u ,hG
j

v ) − g⊤
MLP(hG

i

u ;θ0)gMLP(hG
j

v ;θ0)/m| ≤ ρmin

N |G|3/2 . Then apply union

bound over all pairs (hG
i

u ,hG
j

v ), with probability at least 1 − δ2, ∥Ḡ⊤
Ḡ/m−K∥F ≤ ρmin√

|G|
, which

indicates that

log det(I |G| + λ−1Ḡ
⊤
t Ḡt/m) ≤ log det(I |G| + tK/λ) +

√
|G|(λ/t+ ρmin)−1∥Ḡ⊤

Ḡ/m−K∥F
≤ log det(I |G| + tK/λ) + 1

Finally, with probability at least 1 − δ1,

Ḡ
⊤
Ḡ/m ≼K + ∥K − Ḡ⊤

Ḡ/m∥2I |G| ≼K + ρmax

2 I |G| ≼
3
2ρmaxI |G|

which indicates that λmax(Ū t) ≤ λ+ 3
2ρmax.

Lemma B.6. Fix δ ∈ (0, 1). Then, for m = Ω(L10|G|4ε−4 log(L/δ)), with probability at least 1 − δ,

|ρmax − ρ̂max| ≤ ε.

Proof. Let m be as in Lemma C.6. Recall that ∥hGu ∥ = 1 for all u ∈ V(G) and G ∈ G, by construction.
Let Ni := |V(Gi)|. Then, we have, with probability at least 1 − δ,

|k(Gi, Gj) − k̂(Gi, Gj)|

≤ 1
NiNj

∑
u∈V(Gi)
v∈V(Gj)

∣∣kMLP(hG
i

u ,hG
j

v ) − gMLP(hG
i

u ;θ0)⊤gMLP(hG
j

v ;θ0)/m
∣∣ ≤ ε

by Lemma C.6. Then
∥K − K̂∥op ≤ ∥K − K̂∥F ≤ |G|ε.

Then, from Weyl’s inequality, |ρmax − ρ̂max| ≤ |G|ε. Replacing ε with ε/|G| the result follows.

C Supporting Lemmas

Lemma C.1. Suppose a, b are vectors and A is a matrix. c is assumed to be positive scalar. Then
we have the following results: (i) |a⊤Ab| ≤

√
a⊤Aa

√
b⊤Ab. (ii) a⊤b+ c∥a∥2

2 ≥ −∥b∥2
2/4c.
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Lemma C.2. Suppose X ∼ N (µ, σ2) and β > 0, then

P(|X − µ| ≤ βσ) ≥ 1 − e−β2/2

Lemma C.3. Suppose X ∼ N (µ, σ2) and β > 0, then

P(X − µ > βσ) ≥ e−β2

4β
√
π

Lemma C.4. Suppose ϵ ∈ Rt is a subgaussian random vector with subgaussian constant σ2, then

E[∥ϵ∥2] ≤ 4σ
√
t

and with probability at least 1 − δ for δ ∈ (0, 1),

∥ϵ∥2 ≤ Cσ
√
t.

where C is some constant depending on δ.
Lemma C.5. (Theorem 1 (Chowdhury and Gopalan, 2017)) Let {xt}∞

t=1 be an Rd-valued discrete
time stochastic process that is predictable with respect to the filtration {Ft}∞

t=1. Let {εt}∞
t=1 be a

real-valued stochastic process and for any ∀t, εt is Ft-measurable and subgaussian with constant R
conditionally on Ft−1. Let k : Rd × Rd → R be a symmetric positive-definite kernel. Then for any
η > 0, δ ∈ (0, 1), with probability at least 1 − δ,

∥ϵt∥2
((Kt+ηIt)−1+It)−1 ≤ R2 log det((1 + η)It +Kt) + 2R2 log(1/δ)

where ϵt := (ε1, ..., εt)⊤ ∈ Rt and Kt ∈ Rt×t is a matrix with [Kt]ij = k(xi,xj), 1 ≤ i, j ≤ t.
Lemma C.6 (Theorem 3.1 (Arora et al., 2019)). Fix ε > 0 and δ ∈ (0, 1). Suppose a MLP fMLP(·;θ)
with ReLU activation has L layers and width m = Ω(L10ε−4 log(L/δ)). Then for any input x, x′

such that ∥x∥2 ≤ 1, ∥x′∥2 ≤ 1, with probability at least 1 − δ,

|kMLP(x,x′) − gMLP(x;θ0)⊤gMLP(x′;θ0)/m| ≤ ε

where kMLP is the neural tangent kernel associated with fMLP and gMLP( · ;θ0) = ∇fMLP( · ;θ0) .
Lemma C.7 (Lemma B.4/Lemma B.5/Lemma B.6 (Zhou et al., 2020) / Lemma C.4 (Zhang et al.,
2020)). Suppose θ is parameters for a MLP fMLP(·;θ) with L layers and width m and this neural
network fMLP(·;θ) is trained via gradient descent with initialization θ0, learning rate η and ℓ2
regularization constant λ in a mean squared loss. The input feature set is denoted as X = {xi}i∈[T ].
Then there are positive constants {Ci}7

i=1 such that for ∀δ ∈ (0, 1), if τ satisfies

τ ≥ C1m
−3/2L−3/2max((log(TL2/δ))3/2, (log(m))−3/2)

τ ≤ min(C2L
−6(log(m))−3/2, C3L

−9/2(log(m))−3, C4m
3λ9/2η3L−9(log(m))−3/2)

(23)

then with probability at least 1 − δ, for ∥θ − θ0∥2 ≤ τ and ∥θ′ − θ0∥2 ≤ τ , for ∀x ∈ X , we have

∥gMLP(x;θ) − gMLP(x;θ0)∥2 ≤ C5
√

log(m)τ1/3L3∥gMLP(x;θ0)∥2

and
|fMLP(x;θ) − fMLP(x;θ′) − ⟨gMLP(x,θ′),θ − θ′⟩| ≤ C6τ

4/3L3
√
m log(m)

and
∥gMLP(x;θ)∥2 ≤ C7

√
mL.
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D Supplement to Experiments
D.1 Data Generation
We use synthetic data environments for our experiments. The datasets are generated from two
different random graph models and three different reward function generating models. The random
graph models are Erdös–Rényi random graph model and random dot product graph model. We
use a linear model, Gaussian process with GNTK model, Gaussian process with representation
kernel to generate our reward function. In all data environments, the feature dimension is set as
d = 10. For any synthetic graph, all entries of the associated feature matrix {Xji}j∈[N ],i∈[d] are i.i.d
from a standard Gaussian distribution. The noisy reward is assumed to have standard deviation
σε = 0.01. All performance curves in our empirical studies show an average of over 10 repetitions with
a standard deviation of the corresponding bandit problem with horizon T = 1000. Our experiment
assumes the graph domain is fully observable, Gt = G for all t ∈ [T ]. We experiment four graph size
|G| ∈ {10, 50, 100, 200} in the random dot product graphs with N = 100 and representation kernel.

D.1.1 Random Graph
Erdös–Rényi Random Graphs. Erdös–Rényi random graphs are generated by edge probability p
and number of nodes N . Set the graph has N nodes and for any node pair (i, j) ∈ [N ]2, there is an edge
linking i and j with probability p. We investigate p ∈ {0.2, 0.4, 0.6, 0.8} and N ∈ {10, 50, 100, 500} in
our experiment. Including 3 types of reward function generating and 4 sizes of graph space G, there
are 192 combinations of datasets of Erdös–Rényi random graph environments.

Random Dot Product Graphs. Random dot product graphs are generated by modeling the
expected edge probabilities as the function of the inner product of features. In our experiment, we
set the latent embeddings observed as features, i.e. Xi∗ is the latent embedding of node i. Formally,
the edge probability for node i and j is generated by pij = sigmoid(X⊤

i∗Xj∗). We also investigate
N ∈ {10, 50, 100, 500}. Including 3 types of reward function generating and 4 sizes of graph space G,
there are 48 combinations of datasets of random dot product graph environments.

D.1.2 Reward Function Generation
Linear Model. We generate a true parameter θ∗ ∈ Rd whose elements are i.i.d standard Gaussian.
Then the true reward mean is

µ(G) = ⟨θ∗, h̄
G⟩

where h̄G =
∑N
i=1 h

G
i /N .

Gaussian Process with GNTK. We also use Gaussian process and Graph Neural Tangent
Kernel(GNTK) as introduced from experiment in (Kassraie et al., 2022). We approximately construct
the GNTK matrix K by the empirical GNTK matrix K̂ ∈ R|G|×|G| whose entries are K̂ij =
1
m ⟨g(Gi;θ0), g(Gj ;θ0)⟩ for any Gi, Gj ∈ G. We use this empirical GNTK matrix K̂ as the covariance
matrix of prior, i.e, N (0,Kgntk) and use {(G, yG)}G∈G where {yG}G∈G are i.i.d from N (0, 1) as our
training data. To train this Gaussian process model, we use negative log-likelihood loss with Adam
optimizer with learning rate 0.01 and 30 epochs. The true reward means are sampled from the
posterior in this Gaussian process.

Gaussian Process with Representation Kernel. For the Gaussian process with representation
kernel, we trained a GNN for a graph property prediction task and used the mean pooling over all nodes
of the last layer representations as the graph representation. In our experiment, we utilize the average
degree prediction as our task. That is, suppose outcome is dG = 1

N

∑N
j=1 deg(j) and train GNN in

(2) to predict this outcome. Then denote the last layer representation as h̄Grep = 1
N

∑N
j=1 f

(L−1)(hGj ).
Then we define the representation kernel as the inner product of the graph representations

krep(G,G′) := ⟨h̄Grep, h̄
G′

rep⟩.

The associated kernel matrix is denoted as Krep ∈ R|G|×|G| with entries {krep(G,G′)}G,G′∈mG. In
this Gaussian process, we sample the true reward means by {µ(G)}G∈G ∼ N (0,Krep). To train this
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Gaussian process model, we use MSE loss with Adam optimizer with learning rate 0.01 mini-batch
size 2 and 30 epochs.

D.2 Algorithms Set Up

We provide the practical details and set up on our proposed algorithms and baseline algorithms.

Algorithms. We investigate 3 GNN-based bandit algorithms (GNN-TS, GNN-UCB and GNN-PE)
and 3 corresponding NN-based bandit algorithms (NN-TS, NN-UCB and NN-PE). All algorithms in
our work use the loss function (6) which is different from previous work. All gradients used for in
our experiments are g(G;θt) not g(G;θ0) unless special stated. In addition, in order to show the
benefit of considering the graph structure, we include NN-UCB, NN-TS, NN-PE as our baselines. For
this NN-based algorithm, we ignore the adjacency matrix for a graph (assume A = I), and pass
through the model in (1) and (2) by hGi = Xi∗. For GNN-TS, we tuned the exploration scale with
grid search on ν ∈ {0.01, 0.1, 1.0, 10.0} and NN-TS follows the same value. For GNN-UCB, we tuned
the hyperparameter with grid search on β ∈ {0.01, 0.1, 1.0, 10.0} and NN-UCB follows the same value.
For GNN-PE, we tuned the hyperparameter with grid search on β ∈ {0.01, 0.1, 1.0, 10.0} and NN-PE
follows the same value. All the hyperparameter tuning is performed in Erdös–Rényi random graphs
with p = 0.4, N = 50, |G| = 100 and Gaussian process with GNTK for all the Erdös–Rényi random
graphs settings and random dot product graphs with 50 nodes and |G| = 100 and Gaussian process
with GNTK for all the random dot product graphs settings.

Neural Networks. The MLPs in our experiments have 2 layers (L = 2) and width m = 512. We
use SGD optimizer with mini-batch size 5 and 30 epochs. Learning rates (η) we tuned from and
the regularization hyperparameters λ we tuned from {10−1, 10−2, 10−3, 10−4}. Initialization for the
trainable GNN parameter θ satisfies the condition fGNN(G;θ0) = 0 for all G ∈ G, which is handle by
the treatment in Kassraie and Krause (2022). Suppose the initialization is θ0. The matrix inversion
in the algorithms is approximated by diagonal inversion across all policy algorithms.

D.3 Experiments on Scalability (|G|)

We set the size of the graph domain to |G| = 100 in Figure 1 and we experiment across different sizes
|G| ∈ {10, 50, 100, 200} to check the scalability of the algorithms. Figure 2 shows that given a fixed
horizon length, larger |G| leads to a harder bandit problem. It also shows that GNN-TS can achieve top
performance across all algorithms in all scales of the graph space. This empirical observation shows
that GNN-TS is robust to the scalability of the action space, supporting our theoretical justification in
Section 4.

Figure 2: Competitive performance of GNN-TS is consistent across different sizes of graph space.

D.4 Effect of m and Initial Gradients

Our regret analysis depends on the assumption that the width of the neural network m must be
large enough. We conduct an experiment to observe the effect from the width which is chosen from
{32, 128, 512, 2048}. As some previous works on Neural bandit use the gradients at initialization
(g(Gt;θ0)) for uncertainty calculation (Zhou et al., 2020; Kassraie et al., 2022) while some works
use g(Gt;θt−1) which aligns with ours (Zhang et al., 2020). Formally, instead of the update of
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Figure 3: Increasing m can improve the performance of GNN-TS and no improvement of using
g(Gt;θ0).

uncertainty estimate in (5), using initial gradient means performing the following

σ̄2
t (G) = 1

m
∥g(G;θ0)∥2

Ū
−1
t

, Ū t = Ū t−1 + g(Gt;θ0)g(Gt;θ0)⊤/m.

Part (a) of Figure 3 reflects that the wider MLP has better performance which matches our expectation.
Moreover, part (b) of Figure 3 reflects that there are no benefits from setting gradients used in
algorithms to be the initial gradients for all t ∈ [T ]. One small final observation is that the effects of
m and initialization are not strong.

D.5 Additional Figures and Tables
D.5.1 Results for Erdös–Rényi Random Graphs.

For better visualization of the 192 synthetic data environments using Erdös–Rényi random graphs,
we summarised the result in Table 1. The metrics are relative regret and top rate, which are defined
based on regret as follow. The relative regret of one algorithm in one data environment is defined as

Relative Regret:R̃alg, env = Ralg, env
T

maxalg R
alg, env
T

where Ralg, env
T is the cumulative regret of algorithm alg, and data environment env.

We define the top rate for the policy in algorithm as the number of times such that the policy achieve
the least two cumulative regret RT . The denomnator is the number of total trails, which is the 1920,
the 10 repetition and 192 combinations of ER environments. The top rate of one algorithm is defined
as

Top Rate:αalg = # times alg achieves "Top 2"
# trails .

NN-UCB NN-PE NN-TS GNN-UCB GNN-PE GNN-TS
Top Rate (αalg) 0.0% 1.6% 0.0% 9.4% 90.6% 98.4 %
Relative Regret (R̃alg, env) 0.994(0.02) 0.891(0.06) 0.943(0.05) 0.762(0.15) 0.690(0.14) 0.595(0.16)

Table 1: Results on Erdös–Rényi random graphs. 192 data environments with 10 repetitions.

D.5.2 Results for Random Dot Product Graphs
We provide the experiment results for regret on all random dot product graph settings. In thee plots,
different rows represents different sizes of the graph space (|G|) and columns represents the choices of
the number of nodes in the graph (N).
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Figure 4: Random Dot Product Graphs with linear reward.

Figure 5: Random Dot Product Graphs with GP and GNTK for reward.

Figure 6: Random Dot Product Graphs with GP and representation kernel for reward.


