
RLJ | RLC 2024

SwiftTD: A Fast and Robust Algorithm
for Temporal Difference Learning

Khurram Javed
kjaved@ualberta.ca

Arsalan Sharifnassab
sharifna@ualberta.ca

Richard S. Sutton
rsutton@ualberta.ca

Alberta Machine Intelligence Institute (Amii)
Department of Computing Science, University of Alberta

Edmonton, Canada

Abstract

Learning to make temporal predictions is a key component of reinforcement learn-
ing algorithms. The dominant paradigm for learning predictions from an online
stream of data is Temporal Difference (TD) learning. In this work we introduce
a new TD algorithm—SwiftTD—that learns more accurate predictions than exist-
ing algorithms. SwiftTD combines True Online TD(λ) with per-feature step-size
parameters, step-size optimization, a bound on the rate of learning, and step-size
decay. Per-feature step-size parameters and step-size optimization improve credit
assignment by increasing step-size parameters of important signals and reducing
them for irrelevant signals. The bound on the rate of learning prevents overcor-
rections. Step-size decay reduces step-size parameters if they are too large. We
benchmark SwiftTD on the Atari Prediction Benchmark and show that even with
linear function approximation it can learn accurate predictions. We further show
that SwiftTD can be combined with neural networks to improve their performance.
Finally, we show that all three ideas—step-size optimization, the bound on the rate
of learning, and step-size decay—contribute to the strong performance of SwiftTD.

1 Temporal Difference Learning for Learning Predictions

Algorithms that can learn to predict the future are useful. First, predicting the future is essential
for sound decision making, planning and reasoning. An agent that wants to take the best action
must be able to predict the values of different actions. Second, predicting the future is a scalable
way to encode knowledge about the world. Unlike supervised learning that requires ground-truth
labels, predictions can be learned solely from experience (Sutton et al., 2011). This makes predictive
knowledge scalable.

A common issue when learning predictive knowledge is dealing with delayed feedback. Many
predictions—such as will it rain in two hours?—require waiting for the predicted outcome to hap-
pen before the ground truth is available. The naive way to learn such predictions is to store agent’s
experience and wait for the outcome. This scales poorly. An alternative is to use Temporal Difference
(TD) learning (Sutton, 1988).

TD learning is an online and scalable mechanism for learning predictive knowledge. It is also a
crucial building block of many reinforcement learning algorithms, such as Sarsa(λ) (Rummery &
Niranjan, 1994), Q-learning (Watkins & Dayan, 1992), PPO (Schulman et al., 2017), Actor-Critic
(Konda & Tsitsiklis, 2000), etc. Improving TD learning can directly improve the performance of
existing reinforcement learning algorithms.

The key idea behind TD learning is to learn from the difference between the agent’s subjective
values of different situations—bootstrapping—instead of waiting for delayed outcomes. This allows
TD algorithms to learn online and incrementally without storing experience.

RLJ | RLC 2024

Relative
lifetime
squared

return error

True Online TD(λ)

Fr
e

ew
ay

P
o

n
g

P
o

oy
an

Ka
n

g
ar

o
o

Ku
n

g
Fu

M
as

te
r

P
ri

va
te

Ey
e

Fi
sh

in
g

D
e

rb
y

At
la

nt
is

S
ea

q
u

es
t

R
iv

e
rr

ai
d

B
o

w
lin

g
Kr

ul
l

Ja
m

es
b

o
n

d
Tu

ta
n

kh
am

A
m

id
ar

A
st

e
ri

x
C

e
nt

ip
e

d
e

S
p

ac
e

In
va

d
e

rs
En

d
u

ro
A

lie
n

Ya
rs

R
e

ve
n

g
e

M
sP

ac
m

an
Q

b
e

rt
N

am
eT

hi
sG

am
e

B
re

am
R

id
e

r
C

ar
ni

va
l

H
e

ro
B

at
tl

e
Zo

n
e

C
h

o
p

p
e

rC
o

m
m

an
d

A
st

e
ro

id
s

B
ox

in
g

A
ir

R
ai

d
S

ol
ar

is
C

ra
zy

C
lim

b
e

r
R

o
b

o
ta

n
k

Ti
m

e
P

ilo
t

Ic
e

H
o

ck
ey

Za
xx

o
n

U
p

N
D

o
w

n
P

h
o

e
ni

x
B

e
rz

e
rk

D
e

m
o

n
At

ta
ck

S
ta

rG
u

n
n

e
r

P
it

fa
ll

V
id

e
o

P
in

b
al

l
W

iz
ar

d
O

fW
o

r
Jo

u
rn

ey
Es

ca
p

e
G

ra
vi

ta
r

D
o

u
b

le
D

u
n

k
B

re
ak

o
u

t
Fr

p
st

b
it

e
B

an
kH

ei
st

G
o

p
h

e
r

1.0

0.0

0.2

0.4

0.6

0.8

SwiftTD

Figure 1: Relative lifetime error of SwiftTD to True Online TD(λ) on the Atari Prediction Bench-
mark. SwiftTD achieved lower error than True Online TD(λ) in all games.

Bootstrapping is not always desirable. Excessive bootstrapping can introduces bias and make learn-
ing difficult. For many real world problems, the best algorithms are those that incorporate feedback
from multiple steps before bootstrapping. They use n-step or λ-returns (Sutton & Barto, 2018).
TD(λ) (Sutton, 1988) provides a computationally efficient mechanism to learn from λ-returns. It
was used by Tesauro (1995) with neural networks to develop TD-Gammon, a program that learned
to play backgammon at a world-class level.

An important unsolved issue with TD learning is that, like all online learning, it can be unstable if
done too quickly. If the step-size parameter is too large, it can lead to overcorrection and divergence.
If it is too small, learning can be painfully slow.

Deep-RL algorithms succeed by learning from the same data multiple times (Mnih et al., 2015;
Schulman et al., 2017). Doing hundreds of small updates for every data point allows them to
learn efficiently without using a large step-size parameter. This has two disadvantages. First, doing
multiple updates is computationally expensive. Second, learning over multiple updates makes agents
less reactive—feedback is not incorporated in values and behaviors immediately.

An algorithm that can effectively learn from large step-size parameters has the potential to remove
the need for replay buffers and learn in real-time. In this paper, we propose such an algorithm. We
build our algorithm on top of True Online TD(λ) (van seijen et al., 2016) by combining it with three
ideas.

First, we augment it with step-size optimization (Sutton, 1992; Degris et al., 2024). Second, we
introduce a bound on the rate of learning to prevent overcorrections. Third, we decay the step-size
parameters if the rate of learning exceeds the bound. We call the resulting algorithm SwiftTD and
provide the pseudocode in Algorithm 1. The three components are shown in red, blue, and brown,
respectively.

We show that SwiftTD significantly outperforms True Online TD(λ) on non-trivial prediction prob-
lems. More specifically, even with linear function approximation, SwiftTD can learn accurate pre-
dictions by modulating the step-size parameters of different features. It can optimize the step-size
parameters such that features correlated with TD errors get more credit. Figure 1 shows the perfor-
mance of SwiftTD relative to True Online TD(λ) on the Atari Prediction Benchmark (Javed et al.,
2023).

2 Formulating the Problem of Temporal Predictions

A prediction problem constitute of observations and predictions. The agent sees a feature vector
ϕt ∈ Rn at time step t and makes a scalar prediction Vt. The target for evaluating the predictions
is given by summing the future values of a scalar called the cumulant. The cumulant is the ith

RLJ | RLC 2024

component of the observation vector—ϕ[i]—and the performance of the agent is measured as:

L(T) = 1
T

T∑
t=1

Vt −
∞∑

j=t+1
γj−t−1ϕj [i]

2

, (1)

where T is lifetime of the agent. Optimal predictions match the discounted sum of future values of
the cumulant.

Minimizing Equation 1 can represent various online temporal-prediction and supervised-learning
problems. For example, treating reward as the cumulant turns the problem formulation into policy
evaluation (Sutton & Barto, 2018). Setting γ = 0 turns it into online supervised regression.

Intuitively, we can expect the first prediction, V1, to be inaccurate because the agent has not seen
any feedback to learn. Over time, we can expect the predictions to improve. In this online prediction
setting, an algorithm that learns faster—using fewer samples—has advantage over algorithms that
delay learning.

A common practice in machine learning is to split the data into disjoint train set and test set. The
train set is used for learning and the test set is used for evaluation. Splitting the data is important
in offline learning settings where the learner has access to the complete data set. It is unnecessary
in our problem setting because the agent is always evaluated on future unseen data points.

3 Background

SwiftTD builds on two existing algorithms—True Online TD(λ) (van seijen et al., 2016) and Incre-
mental Delta-bar Delta (IDBD) (Sutton, 1992). Here we provide a brief refresher of these algorithms.

3.1 True Online TD(λ)

True Online TD(λ) is a computationally efficient algorithm that performs the same updates as the
Online λ-return algorithm (Sutton & Barto, 2018). Both algorithms optimize the predictions to
match the λ-return defined as:

Gλ
t = (1− λ)

∞∑
n=1

λn−1Gt:t+1, (2)

where :
Gt:t+n = ϕt+1[i] + γϕt+2[i] + · · ·+ γn−1ϕt+n[i] + γnVt+n. (3)

The key difference between TD(λ) and True Online TD(λ) is that TD(λ) only approximates the
Online λ-return algorithm. The error introduced by its approximation is negligible when learning
from small step-size parameters. It is significant when step-size parameters are large (van seijen et al.,
2016). Since our goal is to enable learning with large updates, True Online TD(λ) is the natural
choice.

3.2 Incremental Delta-bar Delta

IDBD (Sutton, 1992) is an algorithm for meta-learning the step-size parameters for linear regression.
It uses gradient-based meta learning and incrementally approximates the gradients using forward-
view differentiation. Intuitively, IDBD increases the step-size parameters of features that generalize
well to future examples and reduces them for features that generalize poorly.

IDBD is fundamentally different from step-size normalization algorithms, such as RMSProp (Tiele-
man & Hinton, 2012) and Adam (Kingma & Ba, 2014). Degris et al. (2023) compared IDBD to
Adam on non-stationary linear regression problems and showed that gradient normalization done by
Adam was insufficient for assigning credit to the correct features. IDBD, on the other hand, learned
to assign credit to features that made correct predictions.

RLJ | RLC 2024

Algorithm 1: SwiftTD
Parameters: ϵ = 0.90, η = 0.5, αinit = 10−7, λ, γ, θ

Initialize: w, hold, htemp, zδ, p, h, z, z̄ ← 0 ∈ Rn; (Vδ, Vold) = (0, 0); β ← ln(αinit) ∈ Rn

while alive do
obtain feature vector ϕ, γ, and reward R
V ←

∑
i wiϕi

δ ← R + γV − Vold

for zi ̸= 0 do
δwi
← δzi − zδ

i Vδ

wi ← wi + δwi
// Update weights

βi ← βi + θ
eβi +10−8 δpi // Update the step-size parameters

βi ← min(βi, ln(η))
hold

i ← hi

hi ← htemp
i

htemp
i ← hi + δz̄i − zδ

i Vδ

zδ
i = 0

(zi, pi, z̄i)← (γλzi, γλpi, γλz̄i) // Decay traces
end
Vδ ← 0
E ← max(η,

∑n
i=0 eβiϕi

2) // Compute the rate of learning
T ←

∑n
i=0 ziϕi

for ϕi ̸= 0 do
Vδ ← Vδ + δwi

ϕi

zδ
i ←

η
E eβiϕi

zi ← zi + zδ
i (1− T) // Update eligibility of the weights

pi ← pi + ϕihi // Update eligibility of the step-size parameters
z̄i ← z̄i + zδ

i [1− T − ϕiz̄i]
htemp

i ← htemp
i − hold

i ϕi

[
zi − zδ

i

]
− hiz

δ
i ϕi

if E > η then
βi = βi + |ϕi|ln(ϵ) // Conditionally decay the step-size parameters
(htemp

i , hi, z̄i) = (0, 0, 0)
end

end
Vold ← V

end

Two prior works have attempted to extend IDBD to TD learning (Thill, 2015; Kearney et al.,
2018). Thill (2015) made a mistake when deriving the update rule for the meta-gradient. Kearney
et al. (2018) derived the meta-gradient correctly, but used the TD(0) objective for the meta-gradient
even when learning using TD(λ) for λ > 0. The discrepancy is problematic and can fail to increase
step-size parameters of features correctly (Javed, 2024).

4 SwiftTD: A Fast and Robust Linear Prediction Learner

The goal of SwiftTD is to enable robust learning using large step-size parameters. It builds on True
Online TD(λ)—the current best algorithm for learning from large step-size parameters—in three
ways. First, it uses step-size optimization using meta-gradients to tune the step-size parameters.
Second, it uses a bound on the weighted sum of the step-size parameters to prevent overcorrection.
Third, it decays the step-size parameters when they are too large and would lead to overcorrection.
We explain each of these ideas in the following subsections.

RLJ | RLC 2024

120 84

255 44

140

230

179 0 201

Channel 1
0 to 63

Channel 2
 64 to 127

Channel 3
 128 to 191

Channel 4
 192 to 255

Image

Figure 2: A simplified example of the binning step when preprocessing the atari frame. We transform
the grayscale image into a binary valued tensor by binning the value of the pixel into different
channels. The above figure shows the process of binning a 3 x 3 image into 4 channels. Pixel values
from 0 to 63 are binned into the first channel, 64 to 127 into the second channel, and so on. The
empty cells are zero and the cells with lines are one.

4.1 Step-size Optimization for Credit-Assignment

SwiftTD continually updates the values of the step-size parameters using their meta-gradient. The
meta-gradient is computed with respect to the prediction error. It uses a learnable parameter vector
β to parameterize the step-size parameters. The step-size parameter of the ith feature is αi = eβi .
SwiftTD minimizes the error w.r.t the λ-return (Sutton & Barto, 2018). The update rule for βi

approximates:

βi,t+1 = βi,t −
1
2θ

∂(Vt −Gλ
t)2

∂βi
, (4)

where θ is the meta-step-size parameter.

Estimating ∂(Vt−Gλ
t)2

∂βi
is challenging because β is used in the weight update of True Online TD(λ).

Fortunately, Sutton (1992) presented an efficient and incremental approximation of the gradient for
linear regression. We derive a similar approximation for True Online TD(λ).

The main challenge in extending IDBD to True Online TD(λ) is that, unlike linear regression, the
target Gλ

t is not available at the time of prediction. One way to get around this is to postpone
learning until Gλ

t is available. This requires storing old gradients and scales poorly. Instead, we
employ a similar trick to TD(λ) and use an additional eligibility trace, pi, for updating βi. The
trace allows us to update the step-size parameters at every step without storing past activations or
gradients.

The complete derivation of the update rule is in Appendix A, the pseudocode for True Online TD(λ)
is Algorithm 2, and the pseudocode for step-size optimization is shown in red in Algorithm 1.

4.2 Bound on the Rate of Learning for Stability

We define the rate of learning of an update as the fraction of the error reduced after the update.
For instance, if the agent predicted zero at time t, and Gλ

t was 20, then a rate of learning of 0.5 will
change the prediction after the update to ten. This will reduce the error to half—from 20 to 10. A
rate of 3.0, on the other hand, will change the prediction to 60 increasing the error by making the
prediction too large.

The goal of the second idea behind SwiftTD is to bound the update to prevent overcorrection. The
bound is essential because updating the step-size parameter using gradients can occasionally make
them too large. Depending on how large the overcorrection is, the learner might never be able to

RLJ | RLC 2024

Hero

SwiftTD

True Online TD(λ)

MsPacman

True Online TD(λ)

SpaceInvaders

True Online TD(λ)

Pong

SwiftTD

True Online TD(λ)

Seaquest

SwiftTD

True Online TD(λ)

Atlantis

SwiftTD

True Online TD(λ)

Freeway

SwiftTD

True Online TD(λ)

Pooyan

0 200100 0 200100 0 200100 0 200100

Time step (in thousands)

20

60

40

0.6

1.0

0.8

0.2

0.3

0.4

0.05

0.03

0.01

0.07

0.0

0.1

0.2

0.1

0.0

0.1

0.2

0.3

0.2

Averaged
Lifetime
Squared
Return
Error

SwiftTD

SwiftTD

True Online TD(λ)

SwiftTD

Figure 3: Learning curves for eight games. The y-axis is L(time step). In all games, SwiftTD
reduced error faster than True Online TD(λ). Note that because we are plotting the return error,
the minimum achievable error would not be zero in stochastic environments such as Atari. The
minimum error cannot be estimated from experience. Consequently, the y-axis should only be used
to compare algorithms and not to measure absolute performance.

recover and may diverge. Additionally, a change in the data distribution can activate features in
unseen ways which can again lead to overcorrections and instability.

Mahmood et al. (2011) showed that for linear function approximation, the rate of learning can be
computed as:

E
def=
∑

i

eβiϕ2
i . (5)

A similar bound cannot be exactly applied to TD(λ) due to the approximations made it, but it can
be applied to True Online TD(λ).

We want to cap the rate of learning of the system to a number less than or equal to one. We define
a parameter η ∈ (0, 1] and use the scaled value of step-size parameters whenever the rate of learning
exceeds η. More concretely, we use min(1, η

E)× eβ as the step size for the update. This is shown in
blue in Algorithm 1. The scaling guarantees that the rate of learning never exceeds η. A sensible
default value of η is 0.5.

4.3 Step-size Decay for Recovering from a Large Rate of Learning

The third idea used by SwiftTD is to decay the step-size parameters if the bound on the rate of
learning is exceeded. In other words, if the unscaled rate of learning exceeds η we decay all step-size
parameters proportional to their activation times ϵ. Here ϵ is a hyperparameter with a reasonable
default value of 0.9.

Additionally, whenever the bound is hit, we reset the meta-gradient of the step-size parameters. We
found resetting the gradient to be important empirically. The step-size decay is shown in brown in
Algorithm 1. The bound being hit is an indication that the step-size parameters are too large.

5 Evaluating SwiftTD on the Atari Prediction Benchmark

We benchmark SwiftTD on the Atari Prediction Benchmark (APB) (Javed et al., 2023). APB is
built on the Arcade Learning Environment (Bellemare et al., 2013). It uses pre-trained Rainbow-
DQN (Hessel et al., 2018) policies (Fujita et al., 2021) for generating behavior.

RLJ | RLC 2024

Pooyan

SpaceInvaders

Pong

Atlantis

Time step

SwiftTD True Online TD(λ)

Prediction

Prediction 0.0

0.4

0.8

2.0

0.0

1.0

2.0

0.0

1.0

1.0

0.2

0.6

-0.2
t t + 3000

Prediction

Time step
t t + 3000

Ground truth

Ground truth

Figure 4: Visualizing predictions made by True Online TD(λ) and SwiftTD in the final 3,000 steps
of the experiment. The gray dotted lines show the actual discounted return. SwiftTD learned
significantly more accurate predictions than True Online TD(λ). In some games—Pong, Pooyan—
the predictions were near perfect. Even in more difficult games, like SpaceInvaders, the predictions
anticipated the onset of the reward.

To convert ABP into a set of temporal prediction problems as defined in Section 2, we have to
specify the observation vector and the cumulant for every step. We construct the observation by
preprocessing the game frame and the cumulant by using the reward generated by the Arcade
Learning Environment clipped to be in the range [−1, 1].

5.1 Baseline and hyperparameter tuning

We compare SwiftTD to True Online TD(λ). For both SwiftTD and True Online TD(λ), we sweep
over all the hyperparameters. Because SwiftTD has more hyperparameters than True Online TD(λ),
we do a coarser search over its hyperparameters for fairness. The details of the hyperparameter
sweeps are in Table 1.

We tune all hyperparameters individually for each Atari game and report the results with the best
hyperparameter configuration for each game. An alternative choice would have been to tune the
hyperparameters on a subset of the games and use the same parameters for all games. Both choices
have their advantages and disadvantages. We verified that the results do not change qualitatively
with either choice.

5.2 Experiments with Linear Function Approximation

We parameterize SwiftTD and True Online TD(λ) with the same number of weights as the size of
the observation vector. SwiftTD also has a step-size parameter for each weight.

5.2.1 Preprocessing for constructing the observation

The Atari game frame is a tensor of dimensions 210 x 160 x 3. In the preprocessing steps, we first
resize the frame to 84 × 84 x 3 and convert it to grayscale. Each pixel in the resulting 84 x 84 frame
ranges from 0 to 255. We then convert the frame to a tensor of dimensions 84 × 84 × 16 by binning
the value of each pixel to one of the 16 channels. Pixel values from 0 to 15 set the first channel to
one and the rest to zero, values from 16 to 31 set the second channel to one and rest to zero, and so
on. Figure 2 illustrates the binning process with a simple example.

RLJ | RLC 2024

MsPacman SpaceInvaders

Pong Seaquest

Atlantis

FreewayPooyan

Hero
5

3

1

-1

4

0

2

Figure 5: Visualizing the amount of credit assigned to each pixel by SwiftTD over the lifetime of the
agent. The color map is in log space. We see that SwiftTD assigned credit to meaningful aspects
of the game. For example, in Pong, it assigned credit to trajectories of the ball. In MsPacman, it
assigned credit to the dots and the enemies. In SpaceInvaders, it assigned credit to the locations of
enemies, bullets, and the UFO that passes at the top.

Each feature, once activated, stays active for 8 time steps. Staying active for multiple steps reduces
partial observability and allows a feedforward learner to make reasonable predictions on Atari.
The exact form of preprocessing is not crucial for our results. We verified that other types of
preprocessing, such as frame stacking (Mnih et al., 2015), gave qualitatively similar results.

Finally, we flatten the 84 x 84 x 16 tensor to get a vector of length 112,896. We then append the
previous action (one-hot coded) and the reward to the vector to get the observation with 112,916
components.

5.2.2 Results

We run all experiments for 216,000 time steps—two hours of gameplay at 30 frames per second—and
plot individual learning curves for eight games in Figure 3. In each plot the y-axis is L(t), defined
by Equation 1, and the x-axis is the time step. In each of the eight games in Figure 3, SwiftTD had
smaller prediction error throughout the lifetime of the agent.

We visualize the predictions, V , made by both methods in the final 3,000 steps of the agent’s lifetime
in Figure 4. The gray dotted lines show the return from each time step. We see that predictions
learned by SwiftTD were significantly more accurate. In some games—Altantis, Pooyan—True
Online TD(λ) completely failed for all hyperparameter settings whereas SwiftTD successfully learned
to predict the onset of rewards.

We also compare the performance of SwiftTD and True Online TD(λ) on all games by comparing
the error at the end of lifetime—L(T). For better visualization, we divide the L(T) of both methods
by L(T) achieved by True Online TD(λ). After division, True Online TD(λ) would have L(T) of
one on all games. We visualize all errors in Figure 1. SwiftTD performed as well or better on all
games. In some games, the error achieved by SwiftTD was an order of magnitude lower.

We further visualize how much credit SwiftTD assigned to different pixel locations in different games.
To do so, we define a quantity that captures lifetime credit received by the ith feature as:

CreditT
i =

T∑
t=1

eβt[i]ϕt[i]2, (6)

RLJ | RLC 2024

Fr
e

ew
ay

P
o

n
g

P
o

oy
an

Ka
n

g
ar

o
o

Ku
n

g
Fu

M
as

te
r

P
ri

va
te

Ey
e

Fi
sh

in
g

D
e

rb
y

At
la

nt
is

S
ea

q
u

es
t

R
iv

e
rr

ai
d

B
o

w
lin

g

Kr
ul

l

Ja
m

es
b

o
n

d

Tu
ta

n
kh

am

A
m

id
ar

A
st

e
ri

x

C
e

nt
ip

e
d

e

S
p

ac
e

In
va

d
e

rs

En
d

u
ro

A
lie

n

Ya
rs

R
e

ve
n

g
e

M
sP

ac
m

an

Q
b

e
rt

N
am

eT
hi

sG
am

e

B
re

am
R

id
e

r

C
ar

ni
va

l

H
e

ro

B
at

tl
e

Zo
n

e

C
h

o
p

p
e

rC
o

m
m

an
d

A
st

e
ro

id
s

B
ox

in
g

A
ir

R
ai

d

S
ol

ar
is

C
ra

zy
C

lim
b

e
r

R
o

b
o

ta
n

k

Ti
m

e
P

ilo
t

Ic
e

H
o

ck
ey

Za
xx

o
n

U
p

N
D

o
w

n

P
h

o
e

ni
x

B
e

rz
e

rk

D
e

m
o

n
At

ta
ck

S
ta

rG
u

n
n

e
r

V
id

e
o

P
in

b
al

l

W
iz

ar
d

O
fW

o
r

Jo
u

rn
ey

Es
ca

p
e

G
ra

vi
ta

r

D
o

u
b

le
D

u
n

k

B
re

ak
o

u
t

Fr
p

st
b

it
e

B
an

kH
ei

st

G
o

p
h

e
r

Relative
lifetime
squared

return error

1.0

0.0

0.2

0.4

0.6

0.8
Conv net + SwiftTD

Conv net + True Online TD(λ)

Figure 6: Comparing performance of convolutional networks on the Atari Prediction Benchmark.
SwiftTD significantly outperformed True Online TD(λ) even when combined with neural networks.
The confidence intervals are +− two standard error around the mean computed over fifteen runs.

where ϕt[i] and βt[i] are the ith feature and step-size parameter at time step t, respectively. CreditT
i

measures how much the ith feature contributed to reducing the error during T steps of learning.

We remove the components of the CreditT vector associated with previous action and reward to get
a vector with 112,896 components. We then reshape this vector to an 84 x 84 x 16 tensor and sum
over the third channel to get an 84 x 84 matrix. Finally, we visualize this matrix in Figure 5. We
see that SwiftTD assigned credit to meaningful aspects of the game that are predictive of rewards
and returns. For example, in Pong, it assigned credit to trajectories of the ball. In MsPacman, it
assigned credit to the dots and the enemies.

5.3 Experiments with Convolutional Neural Networks

We use SwiftTD with one layer convolutional networks to test if it can be useful for deep-RL. We
apply a convolutional network on the 84 x 84 x 16 tensor we get after binning in the preprocessing
stage. The convolutional layer has 25 kernels of size 3 x 3 x 16 each. The weights of the kernels are
initialized by sampling from U(−1, 1).

We apply all the kernels to the input tensor with a stride of 2. The output of the convolutional layer
is a 41 x 41 x 25 tensor. We pass the output through the ReLU activation function (Fukushima,
1969), and flatten the tensor to get 42,025 features. We then combine them with a weight vector of
the same length to make a scalar prediction. One challenge in applying SwiftTD to neural networks
is that True Online TD(λ) and our derivation of the meta-gradient is limited to the linear case. We
get past this limitation by applying SwiftTD and True Online TD(λ) to only the last layer of the
network. We update the weights of the kernels using TD(λ), similar to Tesauro (1995). For both
methods we tune the step-size parameter of weights in the kernels independently of the step-size
parameters of the weights in the last layer.

We report the results of convolutional networks with SwiftTD and True Online TD(λ) in Figure 6.
Similar to the linear case, we see that SwiftTD helped in almost all games. Our results with
convolutional networks indicate that simply replacing the last layer of prediction learners in existing
Deep-RL systems with SwiftTD can improve performance.

5.4 Ablation Studies: The Importance of Step-size Optimization and the Bound

In this section, we verify the importance of the first two ideas behind SwiftTD. We defer the impact
of step-size decay to Appendix C.

RLJ | RLC 2024

H
e

ro

Kr
ul

l

Fr
e

ew
ay

P
o

n
g

P
o

oy
an

Ka
n

g
ar

o
o

Ku
n

g
Fu

M
as

te
r

P
ri

va
te

Ey
e

Fi
sh

in
g

D
e

rb
y

At
la

nt
is

S
ea

q
u

es
t

R
iv

e
rr

ai
d

B
o

w
lin

g

Ja
m

es
b

o
n

d
Tu

ta
n

kh
am

A
m

id
ar

A
st

e
ri

x

C
e

nt
ip

e
d

e

S
p

ac
e

In
va

d
e

rs

En
d

u
ro

Ya
rs

R
e

ve
n

g
e

M
sP

ac
m

an

Q
b

e
rt

N
am

eT
hi

sG
am

e

B
re

am
R

id
e

r

C
ar

ni
va

l

B
at

tl
e

Zo
n

e
C

h
o

p
p

e
rC

o
m

A
st

e
ro

id
s

B
ox

in
g

A
ir

R
ai

d
S

ol
ar

is

C
ra

zy
C

lim
b

e
r

R
o

b
o

ta
n

k

Ti
m

e
P

ilo
t

Ic
e

H
o

ck
ey

Za
xx

o
n

U
p

N
D

o
w

n

P
h

o
e

ni
x

B
e

rz
e

rk

D
e

m
o

n
At

ta
ck

S
ta

rG
u

n
n

e
r

V
id

e
o

P
in

b
al

l

W
iz

ar
d

O
fW

o
r

Jo
u

rn
ey

Es
ca

p
e

G
ra

vi
ta

r

D
o

u
b

le
D

u
n

k

B
re

ak
o

u
t

Fr
p

st
b

it
e

B
an

kH
ei

st

G
o

p
h

e
r

Relative
lifetime
squared

return error

1.0

0.0

1.0

0.0

P
ri

va
te

Ey
e

A
lie

n

Fr
e

ew
ay

P
o

n
g

P
o

oy
an

Ka
n

g
ar

o
o

Ku
n

g
Fu

M
as

te
r

Fi
sh

in
g

D
e

rb
y

At
la

nt
is

S
ea

q
u

es
t

R
iv

e
rr

ai
d

B
o

w
lin

g

Kr
ul

l

Ja
m

es
b

o
n

d

Tu
ta

n
kh

am
A

m
id

ar

A
st

e
ri

x

C
e

nt
ip

e
d

e

S
p

ac
e

In
va

d
e

rs

En
d

u
ro

A
lie

n

M
sP

ac
m

an

Q
b

e
rt

N
am

eT
hi

sG
am

e

B
re

am
R

id
e

r

C
ar

ni
va

l

B
at

tl
e

Zo
n

e

C
h

o
p

p
e

rC
o

m

A
st

e
ro

id
s

B
ox

in
g

A
ir

R
ai

d

S
ol

ar
is

R
o

b
o

ta
n

k

Ti
m

e
P

ilo
t

Ic
e

H
o

ck
ey

Za
xx

o
n

U
p

N
D

o
w

n

P
h

o
e

ni
x

B
e

rz
e

rk

D
e

m
o

n
At

ta
ck

S
ta

rG
u

n
n

e
r

V
id

e
o

P
in

b
al

l

W
iz

ar
d

O
fW

o
r

Jo
u

rn
ey

Es
ca

p
e

G
ra

vi
ta

r

D
o

u
b

le
D

u
n

k

B
re

ak
o

u
t

B
an

kH
ei

st

G
o

p
h

e
r

C
ra

zy
C

lim
b

e
r

Ya
rs

R
e

ve
n

g
e

SwiftTD without step-size optimization

SwiftTD without the learning rate bound
SwiftTD

SwiftTD

Figure 7: Ablation studies of SwiftTD. We ran two variants of SwiftTD—one without step-size
optimization (top figure), and one without the bound on the rate of learning (bottom figure). Re-
moving either of the two components hindered the performance of SwiftTD. The bottom figure does
not include results on Frostbite and Hero because the algorithm without the bound diverged for all
hyperparameter settings.

We compare SwiftTD to two variants—SwiftTD without step-size optimization and SwiftTD without
the bound on the rate of learning. We report the results in Figure 7. Both components improved
performance in nearly all games. SwiftTD without step-size optimization performed worse in all but
one game. SwiftTD without a bound, on the other hand, performed worse in the majority of the
games. It diverged for all hyperparameter settings for Frostbite and Hero.

6 Conclusions and Future Work

The need for SwiftTD emerged while developing real-time learning systems that can learn immedi-
ately from a data point. Our goal was to develop algorithms that can do meaningful learning in a
single update. We noticed that simply increasing the step-size parameter led to unstable behavior.
Overtime, we discovered three key ideas that allowed us to achieve our goal; we combined them to
form SwiftTD.

Our exploration of SwiftTD with neural networks has been limited in this paper. We only tested it
with single layered convolutional neural networks. This is not because SwiftTD does not work with
deeper and more sophisticated networks but because we wanted to do sufficient hyperparameter
sweeps for accurate comparisons on many environments. Using deeper networks was outside the
scope of our computational resources. That said, in preliminary experiments with deeper neural
networks we found SwiftTD to be effective. Running SwiftTD with deeper networks is an important
direction for future work.

SwiftTD has the potential to be the go-to algorithm for learning predictions from online streams of
data; it unlocks the possibility of computationally efficient few-shot learning. The combination of
SwiftTD with recursive gradient estimation algorithms for RNNs (Menick etal, 2021; Javed et al.,
2023) is a particularly promising direction for replay-free state construction for prediction from an
online stream of data.

Acknowledgements

We are grateful to the Alberta Machine Intelligence Institute (Amii) for funding this research and
to The Digital Research Alliance of Canada for providing computational resources. We are also
thankful to the anonymous reviewers for improving the paper with their useful feedback.

RLJ | RLC 2024

A Deriving the Meta-gradient of the Step-size Parameters for True
Online TD(λ)

In this section, we derive the semi-gradient algorithm for step-size optimization for True Online
TD(λ). By semi-gradient we mean we ignore the influence of weights on the targets when deriving
the gradient. This is a common assumption made by Temporal Difference learning algorithms
(Sutton & Barto, 2018). We discuss the difference between semi-gradient, and full-gradient step-size
optimization in Appendix B.

The λ-return at time step t is given as:

Gλ
t = (1− λ)

∞∑
n=1

λn−1Gt:t+1. (7)

We define V (t1, t2) as
V (t1, t2) def=

∑
i

wi,t1ϕi,t2 . (8)

True Online TD(λ) objective is to minimize the sum of squared error between the prediction and
the λ-return, i.e.,

δL(t)
βi

= δ

βi

(Gλ
t − V (t− 1, t))2

2 = (Gλ
t − V (t− 1, t))δV (t− 1, t)

δβi
(9)

= (Gλ
t − V (t− 1, t)) δ

δβi

n∑
j=0

wj(t− 1)ϕj(t) (10)

= (Gλ
t − V (t− 1, t))

n∑
j=0

ϕj(t)δwj(t− 1)
δβi

. (1) (11)

(12)

Similar to IDBD (Sutton, 1992), we assume that the indirect impact of βi on wj for j ̸= i is negligible.
Intuitively, this approximation makes sense as changing eβi will mostly impact the weight that it
updates—wi. For a more detailed discussion on this approximation, see Javed et al. (2021). Applying
the approximation we get:

(Gλ
t − V (t− 1, t))

n∑
j=0

ϕj(t)δwj(t− 1)
δβi

≈ (Gλ
t − V (t− 1, t))ϕi(t)

δwi(t− 1)
δβi

. (13)

We define δ(t) as
δ(t) def= R(t) + γV (t− 1, t)− V (t− 2, t− 1). (14)

The weight update for True Online TD(λ) (van seijen et al., 2016) is given as:

wi(t) = wi(t− 1) + δ(t)ei(t− 1)− eβi(t− 1)(V (t− 1, t− 1)− V (t− 2, t− 1))ϕi(t− 1), (15)

where ei(t− 2) is updated as:

ei(t) = γλei(t− 1) + eβi(t)ϕi(t)− eβi(t)ϕi(t)T (t). (16)

The term T(t) is defined as:

T(t) def= γλ

n∑
i=1

e(t− 1)ϕ(t). (17)

RLJ | RLC 2024

We define δwi(t)
δβi

as hi(t). Then, we can expand hi(t) recursively as:

hi(t)
def= δwi(t)

δβi

= δwi(t− 1)
δβi

+ δ(δ(t)ei(t− 1))
δβi

− ϕi(t− 1)
δ
(
eβi(t− 1)(V (t− 1, t− 1)− V (t− 2, t− 1)

)
δβi

= hi(t− 1) + ei(t− 1)δδ(t)
δβi

+ δ(t)δei(t− 1)
δβi

− ϕi(t− 1)eβi(t− 1)δ(V (t− 1, t− 1)− V (t− 2, t− 1))
δβi

− ϕi(t− 1)(V (t− 1, t− 1)− V (t− 2, t− 1))eβi(t− 1).
(18)

Using the IDBD (Sutton, 1992) approximation again, we can simplify the gradient as:

hi(t) ≈ hi(t− 1) + ei(t− 1)δ(δ(t))
δβi

+ δ(t)δei(t− 1)
δβi

− ϕi(t− 1)eβi(t− 1)(hi(t− 1)ϕi(t− 1)− hi(t− 2)ϕi(t− 1))

− ϕi(t− 1)(V (t− 1, t− 1)− V (t− 2, t− 1))eβi(t− 1).
(19)

The gradient δδ(t)
δβi

can be computed using the same approximation as IDBD as:

δδ(t)
δβi

=
δ(R(t) + γ

∑n
j=0 wj(t− 1)ϕj(t)−

∑n
j=0 wj(t− 2)ϕj(t− 1))

δβi

≈ −hi(t− 2)ϕi(t− 1).
(20)

Finally, let us define ēi(t) as δei(t)
δβi

. Then:

ēi(t) = δ

δβi

(
γλe(t− 1) + eβi(t)ϕi(t)− eβi(t)ϕi(t)T(t)

)
= γλēi(t− 1) + eβi(t)ϕi(t)− eβi(t)ϕi(t)T(t)− eβi(t)ϕi(t)

δT (t)
δβi

≈ γλēi(t− 1) + eβi(t)ϕi(t)− eβi(t)ϕi(t)T(t)− γλeβi(t)ϕi(t)2ēi(t− 1)
≈ γλēi(t− 1) + eβi(t)ϕi(t) (1− T(t)− γλϕi(t)ēi(t− 1)) .

(21)

The final hi(t) update is:

hi(t) ≈ hi(t− 1)− ei(t− 1)hi(t− 2)ϕi(t− 1)
+ δ(t)ēi(t− 1)− ϕi(t− 1)eβi(t− 1)(hi(t− 1)ϕi(t− 1)− hi(t− 2)ϕi(t− 1))
− ϕi(t− 1)(V (t− 1, t− 1)− V (t− 2, t− 1))eβi(t− 1).

(22)

hi(t) ≈ hi(t− 1)− hi(t− 2)ϕi(t− 1)
(
ei(t− 1)− eβi(t− 1)ϕi(t− 1)

)
+ δ(t)ēi(t− 1)− ϕi(t− 1)eβi(t− 1)hi(t− 1)ϕi(t− 1)
− ϕi(t− 1)(V (t− 1, t− 1)− V (t− 2, t− 1))eβi(t− 1).

(23)

From Equation. 1, we see that we still need to compute (Gλ
t −V (t− 1, t)). This is not a problem as

we can write it as sum of td errors as:

Gλ
t − V (t− 1, t) =

∞∑
i=t+1

(γλ)i−t−1δ(i), (24)

and do the update overtime using a trace (Sutton & Barto, 2018).

We simplify the update equations of hi, ēi by rearranging and merging terms to get the red updates
in Algorithm 1. We make one additional modification. We normalize the meta-step-size, θ, by the
step-size of the parameter eβi to make the update scale invariant. Similar normalization is done by
RMSProp (Tieleman & Hinton, 2012) and Adam (Kingma & Ba, 2014).

RLJ | RLC 2024

References

Bellemare, M. G., Naddaf, Y., Veness, J., & Bowling, M. (2013). The arcade learning environment:
An evaluation platform for general agents. The journal of artificial intelligence research.

Degris, T., Javed, K., Sharifnassab, A., Liu, Y., & Sutton, R. (2024). Step-size Optimization for
Continual Learning. arXiv preprint arXiv:2401.17401.

Fukushima, K. (1969). Visual feature extraction by a multilayered network of analog threshold
elements. IEEE Transactions on Systems Science and Cybernetics.

Fujita, Y., Nagarajan, P., Kataoka, T., & Ishikawa, T. (2021). Chainerrl: A deep reinforcement
learning library. The journal of machine learning research.

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., ... & Silver, D.
(2018). Rainbow: Combining improvements in deep reinforcement learning. In Proceedings of
the AAAI conference on artificial intelligence.

Javed, K., White, M., & Sutton, R. (2021). Scalable online recurrent learning using columnar neural
networks. arXiv preprint arXiv:2103.05787.

Javed, K., Shah, H., Sutton, R. S., & White, M. (2023). Scalable real-time recurrent learning using
columnar-constructive networks. Journal of Machine Learning Research.

Javed, K. (2024). Real-time Reinforcement Learning for Achieving Goals in Big Worlds. PhD thesis,
University of Alberta.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Kearney, A., Veeriah, V., Travnik, J. B., Sutton, R. S., & Pilarski, P. M. (2018). Tidbd: Adapting
temporal-difference step-sizes through stochastic meta-descent. arXiv preprint arXiv:1804.03334.

Konda, V., & Tsitsiklis, J. (1999). Actor-critic algorithms. Advances in neural information process-
ing systems.

Li, Z., Zhou, F., Chen, F., & Li, H. (2017). Meta-sgd: Learning to learn quickly for few-shot
learning. arXiv preprint arXiv:1707.09835.

Mahmood, A. R., Sutton, R. S., Degris, T., & Pilarski, P. M. (2012). Tuning-free step-size adapta-
tion. In 2012 IEEE international conference on acoustics, speech and signal processing. IEEE.

Menick, J., Elsen, E., Evci, U., Osindero, S., Simonyan, K., & Graves, A. (2021). A practical sparse
approximation for real time recurrent learning. International conference on learning representa-
tions.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., ... & Hassabis,
D. (2015). Human-level control through deep reinforcement learning. nature.

Rummery, Gavin A., & Mahesan Niranjan. On-line Q-learning using connectionist systems (1994).
Vol. 37. Cambridge, UK: University of Cambridge, Department of Engineering.

RLJ | RLC 2024

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal policy opti-
mization algorithms. arXiv preprint arXiv:1707.06347.

Sutton, R. S. (1984). Temporal credit assignment in reinforcement learning. University of Mas-
sachusetts Amherst.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine learning.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Sutton, R. S. (1992). Adapting bias by gradient descent: An incremental version of delta-bar-delta.
In AAAI.

Sutton, R. S., Modayil, J., Delp, M., Degris, T., Pilarski, P. M., White, A., & Precup, D. (2011).
Horde: A scalable real-time architecture for learning knowledge from unsupervised sensorimo-
tor interaction. In The 10th International Conference on Autonomous Agents and Multiagent
Systems.

Tange, O. (2018). GNU parallel 2018. Lulu. com.

Tesauro, G. (1995). Temporal difference learning and TD-Gammon. Communications of the ACM.

Thill, M. (2015). Temporal difference learning methods with automatic step-size adaption for strate-
gic board games: Connect-4 and Dots-and-Boxes. Cologne University of Applied Sciences Masters
thesis.

Tieleman, T., & Hinton, G. (2012). Lecture 6.5-rmsprop, coursera: Neural networks for machine
learning. University of Toronto, Technical Report, 6.

Van Seijen, H., Mahmood, A. R., Pilarski, P. M., Machado, M. C., & Sutton, R. S. (2016). True
online temporal-difference learning. The Journal of Machine Learning Research.

Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine learning.

RLJ | RLC 2024

Algorithm 2: True Online TD(λ) (van seijen et al., 2016)
Parameters: αinit, λ, γ, θ

Initialize: w, zδ, z,← 0 ∈ Rn, Vδ = 0; β ← ln(αinit) ∈ Rn

while alive do
obtain feature vector ϕ, γ, and reward R
V ←

∑
i wiϕi

δ ← R + γV − Vold

for zi ̸= 0 do
δwi
← δzi − zδ

i Vδ

wi ← wi + δwi
// Update weights

zδ
i = 0

zi ← γλzi // Decay traces
end
Vδ ← 0
T ←

∑n
i=0 ziϕi

for ϕi ̸= 0 do
Vδ ← Vδ + δwi

ϕi

zδ
i ← eβiϕi

zi ← zi + zδ
i (1− T) // Update eligibility of the weights

end
Vold ← V

end

A Hyperparameter Sweeps

For both SwiftTD and True Online TD(λ), we swept over the hyperparameters as shown in Table 1.
We use the same hyperparameters for both the linear function approximation and the neural network
experiments. The experiments with LFA are completely deterministic and do not require multiple
runs. The experiments with convolutional networks do have stochasticity due to the random initial-
ization of the weights. For statistical significance, we do a hyperparameter sweep with 5 runs for
each configuration. We then find the best configuration, and do an additional 15 runs to report the
results.

Symbol Description Algorithm Values
eβ Step-size vector SwiftTD 0.0001, 0.00001
eβ Step-size scalar True Online TD(λ) 3e−1, 1e−1, 3e−2, 1e−2,

3e−3, 1e−3, 3e−4, 1e−4

3e−5, 1e−5, 3e−6, 1e−6

αnn Scalar step-size of the Kernels Both 1e−1, 1e−2, 1e−3, 1e−4,
λ Compound return parameter SwiftTD 0.95, 0.90, 0.80, 0.50, 0.0
λ Compound return parameter True Online TD(λ) 0.95, 0.90, 0.80, 0.50, 0.0
θ Meta step-size SwiftTD 1e−2, 1e−3, 1e−4

η Max rate of learning SwiftTD 1.0, 0.5
ϵ Decay factor SwiftTD 0.9, 0.8

Table 1: Hyper-parameters used in the experiments. Note that the number of configurations for
SwiftTD and True Online TD(λ) are the same. This is achieved by doing a much more fine-grained
search for the step-size parameter of True Online TD(λ).

RLJ | RLC 2024

Full gradient step-size adaptation

Semi-gradient
Relative
lifetime
squared

return error

Figure 8: We compared TD(λ) with semi-gradient step-size optimization and TD(λ) with full-
gradient step-size optimization. On average, semi-gradient performed better. In some environments,
semi-gradient achieved less than half the error of full-gradient whereas even in the worst case of
Atlantis, full gradient was only 20% better than semi-gradient.

B Deriving the Meta-Gradient for True Online TD(λ) and TD(λ) for
both Semi-Gradient and Gradient Version

Here we derive the meta-graidient for both TD(λ) and True Online TD(λ) for both the semi-gradient
and gradient version. While this section is not necessary to use and implement SwiftTD, it answers
an important question—should we use the semi-gradient or the full-gradient when optimizing the
step-size.

Intuitively, the semi-gradient version of the algorithm makes sense to us. That way, both the step-
size and the parameters are being optimized towards the same objective. However, one can argue
that while semi-gradient makes sense for updating the parameters, it’s better to optimize the step-
size using the full-gradient. Conveniently, both versions can be implemented using traces. We derive
the updates for both methods, and compare their performance in Figure 8. The results show that
semi-gradient does indeed, on average, out-perform full-gradient step-size optimization.

B.1 Derivation of Meta Update of Step Sizes for TD(λ)

Consider the n × n matrix Ht
def= d wt/d β. In the derivation of Ht+1, we consider two possible

approximations, in which we may or may not propagate the gradient of wt+1 through Vst+1 , treating
Vst+1 as a delayed target, as in the TD method. In the following set of formulas, we use gray color

RLJ | RLC 2024

Algorithm 3: TD(λ) and True Online TD(λ) with step-size optimization – Vectorized algorithm
Parameters:

η: meta step-size for the step-size update

Initialize:

zt = ht = h̄t = pt = yt = ut = et = xt = 0 for t = 0.

for t = 1, 2, . . . do
αt = exp(βt)
δt = Rt + γϕ⊤

st+1
wt − ϕ⊤

st
wt

Base update:

TD(λ):

zt = γλ zt−1 + ϕst

wt+1 = wt + δtαtzt

Corresponding h update:
ht+1 =

(
1−αtztϕst + αtztϕst+1

)+
ht + δtαtzt

True online TD(λ):

Vold = ϕ⊤
st

wt−1 (Vold = 0 if a new episode starts at t)
V = ϕ⊤

st
wt

δ′
t = δt + V − Vold

et = γλ et−1 + αtϕst
− γλ

(
e⊤

t−1ϕst

)
αtϕst

wt+1 = wt + δ′
tet − (V − Vold)αtϕst

Corresponding h update:
xt = γλ

(
1−αtϕ

2
st

)
xt−1 +

(
1− γλe⊤

t−1ϕst

)
αtϕst

ht+1 =
(
1−αtϕ

2
st

+ γetϕst+1

)
ht +

(
αtϕ

2
st
− etϕst

)
ht−1 +δ′

t xt−(V −Vold)αtϕst

Meta update:

Semi-gradient:

pt = γλ pt−1 + htϕst

βt+1 = βt + ηδtpt

Full-gradient:

δ′
t

def= ∇wt
δt = γϕst+1 − ϕst

h̄t = (γλ)2 h̄t−1 + ht

yt = γλ yt−1 + δth̄t

βt+1 = βt − η
(
ytδ

′
t + γλ ut−1δt

)
ut = γλ ut−1 + h̄tδ

′
t

Reset zt = 0 if episode ends at t .

to identify the terms corresponding to the gradient of Vst+1 . Then,

Ht+1 = d wt+1

d β

= d

d β

(
wt + δtαtzt

)
= d wt

d β
+ αtzt

(
γϕst+1 − ϕst

)⊤ d wt

d β
+ δt diag(αtzt)

= Ht + αtzt

(
γϕst+1 − ϕst

)⊤
Ht + δt diag(αtzt)

=
(

I −αtzt

(
ϕst
−γϕst+1

)⊤
)

Ht + δt diag(αtzt)

IDBD approximation→ ≈
(

I + diag
(
αtzt(ϕst

−γϕst+1)⊤))Ht + δt diag(αtzt),

RLJ | RLC 2024

Algorithm 4: IDBD + TD(λ) with Full Meta-Gradient
Parameters:

η: meta step-size for the step-size update

Initialize:

zt = ht = h̄t = ut = yt = 0 for t = 0.

for t = 1, 2, . . . do
αt = exp(βt)

Base update (TD(λ)):

δt = Rt + γVst+1(wt)− Vst
(wt) = Rt + γϕ⊤

st+1
wt − ϕ⊤

st
wt

zt = γλ zt−1 + ϕst

wt+1 = wt + δtαtzt

Meta update (full gradient):

δ′
t

def= ∇wt
δt = γϕst+1 − ϕst

h̄t = (γλ)2 h̄t−1 + ht

yt = γλ yt−1 + δth̄t

βt+1 = βt − η
(
ytδ

′
t + γλ ut−1δt

)
ut = γλ ut−1 + h̄tδ

′
t

ht+1 =
(
1−αtztϕst + αtztϕst+1

)+
ht + δtαtzt

Reset zt = 0 if episode ends at t .

where the approximation in the last line is a diagonal approximation as in the IDBD paper. In this
case, Ht will always remain a diagonal matrix. Let ht be a vector containing the diagonal entries of
Ht. Then,

ht+1 =
(
1−αtztϕst

+ αtztϕst+1

)
ht + δtαtzt.

We empirically observed that we obtain a better performance if the gray terms are removed from
the above update, which corresponds to the derivation that does not propagate gradient through
Vst+1 . This is because zt is a trace of past feature vectors ϕsτ

, and therefore its product with ϕst

is typically positive. Thus, after removing the gray term, ht will be multiplied by 1 − αtztϕst ,
which is usually entry-wise smaller than 1, resulting in stability of h. However, under the update
with the gray term present, ht will be multiplied by 1−αtzt(ϕst

−ϕst+1), which is not necessarily
entry-wise smaller than 1, resulting in possibly exponential expansion of h and therefore relatively
poor stability behavior.

It follows from the definition of Ht that for any times t and τ ,

d

d β
δτ (wt) =

(
d wt

d β

)⊤

δ′
τ = H⊤

t δ′
τ ≈ htδ

′
τ . (25)

We now proceed to derive the update for β to minimize the TD(λ) loss function,

Lt(wt)
def= 1

2
(
Gλ

t (wt)− Vst
(wt)

)2 = 1
2

∑
τ≥0

(γλ)τ δt+τ (wt)

2

. (26)

The goal is to update β in a descent direction of Lt. There are two legitimate choices for this descent
direction: gradient and semi-gradient of Lt.

RLJ | RLC 2024

Algorithm 5: IDBD + TD(λ) with Meta Semi-Gradient
Parameters:

η: meta step-size for the step-size update

Initialize:

zt = ht = pt = 0 for t = 0.

for t = 1, 2, . . . do
αt = exp(βt)

Base update (TD(λ)):

δt = Rt + γVst+1(wt)− Vst
(wt) = Rt + γϕ⊤

st+1
wt − ϕ⊤

st
wt

zt = γλ zt−1 + ϕst

wt+1 = wt + δtαtzt

Meta update (full gradient):

pt = γλ pt−1 + htϕst

βt+1 = βt + ηδtpt

ht+1 =
(
1−αtztϕst + αtztϕst+1

)+
ht + δtαtzt

Reset zt = 0 if episode ends at t .

B.1.1 Derivation of Full-gradient Update of β

The full-gradient meta-update would ideally update β as follows:

βt+1 ← βt − η
dLt(wt)

d β
. (27)

Unfortunately, the update in (27) is non-causal. To see why, note that

dLt(wt)
d β

= 1
2

d

d β

(∑
τ≥0

(γλ)τ δt+τ (wt)
)2

=
(∑

τ1≥0
(γλ)τ1δt+τ1(wt)

)(∑
τ2≥0

(γλ)τ2
d

d β
δt+τ2(wt)

)

≈

(∑
τ1≥0

(γλ)τ1δt+τ1(wt)
)(∑

τ2≥0
(γλ)τ2 δ′

t+τ2

)
ht,

where the approximation in the last line is due to (25). The above gradient depends on future
information, δt+τ and δ′

t+τ , which are unavailable at time t. In order to obtain a causal update, we
consider an update of the form

βt+1 ← βt − η∆βt, (28)

such that ∆βt can be causally computed at time t, and satisfies the following property:∑
t

∆βt =
∑

t

dLt(wt)
d β

. (29)

The above condition certifies that the updates in (28) and (27) result in almost the same aggregate
update of β over time. This is the idea also behind the eligibility traces (Sutton 2018). In the sequel,
we show that such ∆βt can be obtained by reordering the terms in dLt(wt)/d β.

RLJ | RLC 2024

By further decomposition of dLt(wt)/d β we obtain

∑
t

dLt(wt)
d β

≈
∑

t

(∑
τ1≥0

(γλ)τ1δt+τ1(wt)
)(∑

τ2≥0
(γλ)τ2 δ′

t+τ2

)
ht

=
∑

t

∑
τ1,τ2≥0

(γλ)τ1+τ2δt+τ1(wt) δ′
t+τ2

ht

=
∑

t

∑
τ1,τ2≥0
τ1≤τ2

(γλ)τ1+τ2δt+τ1(wt) δ′
t+τ2

ht +
∑

t

∑
τ1,τ2≥0
τ1>τ2

(γλ)τ1+τ2δt+τ1(wt) δ′
t+τ2

ht

(30)

For any time t, we define the following traces:

h̄t
def=
∑
τ≥0

(γλ)2τ ht−τ ,

yt
def=
∑
τ≥0

(γλ)τ δt−τ h̄t−τ ,

ut
def=
∑
τ≥0

(γλ)τ δ′
t−τ h̄t−τ .

For the first term in the right hand side of (30), we have∑
t

∑
τ1,τ2≥0
τ1≤τ2

(γλ)τ1+τ2ht δt+τ1(wt) δ′
t+τ2

=
∑

t

∑
τ1≥0

∑
τ3≥0

(γλ)2τ1+τ3ht δt+τ1(wt) δ′
t+τ1+τ3

=
∑

t

∑
τ1≥0

∑
τ3≥0

(γλ)2τ1+τ3ht−τ1−τ3δt−τ3(wt) δ′
t

=
∑

t

∑
τ3≥0

(γλ)τ3
∑
τ1≥0

(γλ)2τ1ht−τ3−τ1δt−τ3(wt) δ′
t

=
∑

t

∑
τ3≥0

(γλ)τ3h̄t−τ3δt−τ3(wt) δ′
t

=
∑

t

yt δ′
t

In the same vein, for the second term in the right-hand side of (30),∑
t

∑
τ1,τ2≥0
τ1>τ2

(γλ)τ1+τ2htδ
′
t+τ2

δt+τ1(wt) =
∑

t

∑
τ2≥0

∑
τ3≥0

(γλ)τ2+τ3+1ht δ′
t+τ2

δt+τ2+τ3+1(wt)

=
∑

t

∑
τ2≥0

∑
τ3≥0

(γλ)2τ2+τ3+1ht−τ2−τ3−1 δ′
t−τ3−1 δt(wt)

= γλ
∑

t

∑
τ3≥0

(γλ)τ3
∑
τ2≥0

(γλ)2τ2ht−1−τ3−τ2 δ′
t−1−τ3

δt(wt)

= γλ
∑

t

∑
τ3≥0

(γλ)τ3h̄t−1−τ3 δ′
t−1−τ3

δt(wt)

= γλ
∑

t

ut−1 δt(wt).

Plugging the last two sets of equations into (30), we obtain∑
t

dLt(wt)
d β

≈
∑

t

(
ytδ

′
t + γλ ut−1δt(wt)

)
. (31)

RLJ | RLC 2024

Therefore, letting ∆βt = ytδ
′
t + γλ ut−1δt(wt) would imply (29). Thus, the resulting causal meta-

update is as follows
βt+1 = βt − η

(
ytδ

′
t + γλ ut−1δt

)
. (32)

B.1.2 Derivation of Semi-gradient Update of β

Consider the TD(λ) loss function Lt(wt) = 0.5
(
Gλ

t (wt) − Vst
(wt)

)2 in (26). A semi-gradient is
obtained by taking the gradient of Lt(wt) while ignoring the dependence of Gλ

t on wt. More
specifically, we define the semi-gradient of Lt(wt) as

semi

∇ wtLt(wt) = 1
2

semi

∇ wt

(
Gλ

t (wt)− Vst(wt)
)2 def= 1

2∇wt

(
Gλ

t (w)− Vst(wt)
)2
∣∣∣
w=wt

(33)

The TD(λ) algorithm updates the weight wt along the semi-gradient direction. It is well-known that
moving along semi-gradient direction often results in faster learning compared to the full-gradient
direction (Sutton 2018). Therefore, it makes sense to update β (along some ∆β direction) such that
the resulting change of wt (i.e.,

(
d wt

d β

)
∆β) be aligned with the semi-gradient direction, in the sense

that the projection of the change in wt on the semi-gradient direction, −(∆β)⊤(d wt

d β

)⊤ semi

∇ wt
Lt(wt),

is maximized. More specifically, we aim to update β along

−
semi

∇ βLt(wt)
def= −

(
d wt

d β

)⊤ semi

∇ wt
Lt(wt) = −H⊤

t

semi

∇ wt
Lt(wt) ≈ −ht

semi

∇ wt
Lt(wt). (34)

Unfortunately, as in the full-gradient case, this
semi

∇ βLt(wt) direction would depend on future infor-
mation and cannot be causally computed, because

semi

∇ βLt(wt) ≈ ht

semi

∇ wtLt(wt)

= 1
2ht∇wt

(
Gλ

t (w)− Vst
(wt)

)2
∣∣∣
w=wt

= −ht
d Vst

(wt)
d wt

(
Gλ

t (wt)− Vst
(wt)

)
= −htϕst

(
Gλ

t (wt)− Vst(wt)
)

= −htϕst

∑
τ≥0

(γλ)τ δt+τ (wt).

(35)

We employ the same eligibility trace idea as in the previous subsection to resolve the above non-
causality problem. Let

pt
def=
∑
τ≥0

(γλ)τ ht−τ ϕst−τ . (36)

Then, by summing the semi-gradients over all times t, we obtain

∑
t

semi

∇ βLt(wt) ≈ −
∑

t

htϕst

∑
τ≥0

(γλ)τ δt+τ (wt) = −
∑

t

δt(wt)
∑
τ≥0

(γλ)τ ht−τ ϕst−τ = −
∑

t

δtpt.

(37)
The backward view of the semi-gradient update of βt will then be of the following form

βt+1 = βt + ηδtpt. (38)

RLJ | RLC 2024

Algorithm 6: IDBD + True Online TD(λ) with Full Meta-Gradient
Parameters:

η: meta step-size for the step-size update

Initialize:

zt = ht = pt = 0 for t = 0.

for t = 1, 2, . . . do
αt = exp(βt)
Base update (true online TD(λ)):

Vold = ϕ⊤
st

wt−1
V = ϕ⊤

st
wt

V ′ = ϕ⊤
st+1

wt

δ′
t = Rt + γV ′ − Vold

et = γλ et−1 + αtϕst
− γλ

(
e⊤

t−1ϕst

)
αtϕst

wt+1 = wt + δ′
tet − (V − Vold)αtϕst

Meta update (full gradient):

δ′
t

def= ∇wt
δt = γϕst+1 − ϕst

h̄t = (γλ)2 h̄t−1 + ht

yt = γλ yt−1 + δth̄t

βt+1 = βt − η
(
ytδ

′
t + γλ ut−1δt

)
ut = γλ ut−1 + h̄tδ

′
t

xt = γλ
(
1−αtϕ

2
st

)
xt−1 +

(
1− γλe⊤

t−1ϕst

)
αtϕst

ht+1 =
(
1−αtϕ

2
st

+ γetϕst+1

)
ht +

(
αtϕ

2
st
− etϕst

)
ht−1 + δ′

t xt − (V − Vold)αtϕst

Reset et = 0 if episode ends at t .

RLJ | RLC 2024

B.2 Derivation of Meta Update of Step Sizes for True Online TD(λ)

Algorithm 7: IDBD + True Online TD(λ) with Meta Semi-Gradient
Parameters:

η: meta step-size for the step-size update

Initialize:

zt = ht = pt = 0 for t = 0.

for t = 1, 2, . . . do
αt = exp(βt)
Base update (true online TD(λ)):

Vold = ϕ⊤
st

wt−1
V = ϕ⊤

st
wt

V ′ = ϕ⊤
st+1

wt

δ′
t = Rt + γV ′ − Vold

et = γλ et−1 + αtϕst − γλ
(
e⊤

t−1ϕst

)
αtϕst

wt+1 = wt + δ′
tet − (V − Vold)αtϕst

Meta update (full gradient):

pt = γλ pt−1 + htϕst

βt+1 = βt + ηδtpt

xt = γλ
(
1−αtϕ

2
st

)
xt−1 +

(
1− γλe⊤

t−1ϕst

)
αtϕst

ht+1 =
(
1−αtϕ

2
st

+ γetϕst+1

)
ht +

(
αtϕ

2
st
− etϕst

)
ht−1 + δ′

t xt − (V − Vold)αtϕst

Reset et = 0 if episode ends at t .

Consider n× n matrices Ht
def= d wt/d β and Xt

def= d et/d β. In the derivation of Ht+1, we consider
two possible approximations, in which we may or may not propagate the gradient of wt+1 through
Vst+1 , treating Vst+1 as a delayed target, as in the TD method. In the following set of formulas, we
use gray color to identify the terms corresponding to the gradient of Vst+1 . Then,

Ht+1 = d wt+1

d β

= d

d β

(
wt + δ′

tet − (V − Vold)αtϕst

)
= d

d β

(
wt +

(
Rt + γϕ⊤

st+1
wt − ϕ⊤

st
wt−1

)
et −

(
ϕ⊤

st
wt − ϕ⊤

st
wt−1

)
αtϕst

)
= d wt

d β
+ et

(
γϕ⊤

st+1

d wt

d β
− ϕ⊤

st

d wt−1

d β

)
+ δ′

t

d et

d β

−αtϕst
ϕ⊤

st

(
d wt

d β
− d wt−1

d β

)
− (V − Vold) diag(αtϕst

)

= Ht + et

(
γϕ⊤

st+1
Ht − ϕ⊤

st
Ht−1

)
+ δ′

t Xt

−αtϕst
ϕ⊤

st
(Ht −Ht−1)− (V − Vold) diag(αtϕst

)

=
(

I −αtϕst
ϕ⊤

st
+ γetϕ

⊤
st+1

)
Ht +

(
αtϕst

ϕ⊤
st
− etϕ

⊤
st

)
Ht−1

+ δ′
t Xt − (V − Vold) diag(αtϕst

)

IDBD approximation→ ≈
(

I − diag
(
αtϕst

ϕ⊤
st

)
+ diag

(
γetϕ

⊤
st+1

))
Ht + diag

(
αtϕst

ϕ⊤
st
− etϕ

⊤
st

)
Ht−1

+ δ′
t Xt − (V − Vold) diag(αtϕst

),

RLJ | RLC 2024

and

Xt = d et

d β

= d

d β

(
γλ et−1 + αtϕst

− γλ
(
e⊤

t−1ϕst

)
αtϕst

)
= γλ

d et−1

d β
− γλ (αtϕst

)ϕ⊤
st

d et−1

d β
+
(
1− γλe⊤

t−1ϕst

)
diag(αtϕst

)

= γλ
(
I − (αtϕst

)ϕ⊤
st

)
Xt−1 +

(
1− γλe⊤

t−1ϕst

)
diag(αtϕst

)

Diagonal approximation→ ≈ γλ
(

I − diag
(
(αtϕst)ϕ⊤

st

))
Xt−1 +

(
1− γλe⊤

t−1ϕst

)
diag(αtϕst),

(39)

Where the diagonal approximations are akin to the approximation in the IDBD algorithm and also
in Appendix B.1. It follows from these diagonal approximations that Ht and Xt remain diagonal
matrices, for all times t. Let ht and xt be vectors containing the diagonal entries of Ht and Xt

respectively. Then, the above updates simplify to

ht+1 =
(
1−αtϕ

2
st

+ γetϕst+1

)
ht +

(
αtϕ

2
st
− etϕst

)
ht−1 + δ′

t xt − (V − Vold)αtϕst , (40)

and
xt = γλ

(
1−αtϕ

2
st

)
xt−1 +

(
1− γλe⊤

t−1ϕst

)
αtϕst

, (41)

Similar to the Appendix B.1, here we empirically observed that we obtain a better performance if
remove the gray terms are removed from the above update, which corresponds to the derivation that
does not propagate gradient through V ′.

Similar to Appendix B.1, the update for β to minimize the TD(λ) loss function, Lt, in (26), can
be obtained via gradient or semi-gradient of Lt. The rest of the derivation is exactly the same as
Appendix B.1. More specifically, gradient of Lt(wt) with respect to β satisfies (31), and therefore
(32) can be used for full-gradient update of β. In the same vein, the semi-gradient update of β is
given by (38).

C Role of Step-size Decay on Performance

We ran SwiftTD with decay rate, ϵ, set to 0.9 and 1.0 and report the results in Figure 9. We observed
that the decay rate often did not have a significant impact on the performance of SwiftTD, but when
it did, it was always positive. One reason why decay rate did not have a large impact is because
the initial step-size in our experiments are very small and the bound on the rate of learning is not
reached often. If we were to start with initial step-size parameters that were too large, we speculate
that the decay rate would play a larger role. Nonetheless, decaying step-size parameters when they
are too large is essential to keep step-size parameters in range where they can be optimized.

RLJ | RLC 2024

Relative
lifetime
squared

return error

Decay: 1.0

0.9

Figure 9: The impact of decay rate of 1.0 and 0.9 on performance of SwiftTD. We see that while
decay rate does not have a significant impact on the performance of SwiftTD, when it does have an
impact, it improves performance.

