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A Related Works

There is a vast literature for provably efficient algorithms for FH-MDP. Osband & Van Roy (2016)
proves the lower bound for the regret in the FH-MDP setting, Ω(

√
HSAT ). Then, many works pro-

pose algorithms with guarantees that nearly close the problem, i.e., with upper bounds of the same
order as the lower bound (Zanette & Brunskill, 2018). Azar et al. (2017) definitively close the prob-
lem by proposing an innovative analysis of an algorithm for which the upper bound, O(

√
HSAT ),

matches the lower bound in all terms.

Nevertheless, only some works focused on theoretically understanding the benefits of hierarchical
reinforcement learning approaches, and most of them consider a known set of pre-trained policies.
In Fruit & Lazaric (2017), the authors propose an adaptation of UCRL2 (Auer et al., 2008) for
SMDPs. This work was the first to theoretically compare options instead of primitive actions to
learn in SMDPs. It provides both an upper bound for the regret suffered by their algorithm and a
lower bound for the general problem. However, it focuses on the average reward setting to study how
to possibly induce a more efficient exploration when using a set of fixed options. Differently, we aim
to analyze the advantages of using options to reduce the sample complexity of the problem, resorting
to the intuition that temporally extended actions can intrinsically reduce the planning horizon in FH-
SMDPs, and characterize problems likely to benefit from using HRL even when no prior information
about the problem is known, up to its structure. Fruit et al. (2017) is an extension of this work,
where the need for prior knowledge of the distribution of cumulative reward and duration of each
option is relaxed. However, the setting is identical. Furthermore, Mann et al. (2015) studies the
convergence property of Fitted Value Iteration (FVI) using temporally extended actions, showing
that a longer options duration and pessimistic value function estimates lead to faster convergence.
Wen et al. (2020) demonstrate how patterns and substructures in the MDP provide benefits in
terms of planning speed and statistical efficiency. They present a Bayesian approach that exploits
this information, analyzing how sub-structure similarities and sub-problems’ complexity contribute
to the regret of their algorithm. A very recent approach proposed by Robert et al. (2024) studies
the sample complexity of a particular sub-class of HRL approaches: the Goal-conditioned one, in
which a goal-based problem is structured into a hierarchy of sub-tasks, each with its own sub-goal.
They analyzed the best possible performance achievable by the best algorithm in the worst possible
problem by adapting to this framework the lower bound on the sample complexity presented by
Dann & Brunskill (2015). Nevertheless, this work is not completely related to our framework, which
is more general than the goal-conditioned one.

The closest approach in the literature is Drappo et al. (2023). They propose to relax the assumption
of having a set of pre-trained options by implementing an Explore-Then-Commit approach (Latti-
more & Szepesvári, 2020), which first learns each options’ policy and then exploits an adaptation of
UCRL2 to FH-SMDPs (Auer et al., 2008) to find the optimal policy over options. Nevertheless, they
sacrifice optimality to relax this assumption. Indeed, their approach suffer from the standard sub-
optimality of Explore-Then-Commit approaches, having a regret scaling with K2/3, and additionally
is suboptimal in

√
HS being the high-level algorithm used in the second phase based on UCRL2.

Therefore, our approach is the first in the literature able to relax the aforementioned assumption
maintaining optimal guarantees.

B Proof of the regret of Options-UCBVI

In this section, we will present the analysis of the upper bound on the regret paid by Options-
UCBVI. The analysis will adapt the one of UCBVI Azar et al. (2017) to the FH-SMDP for non-
stationary transition models. For simplicity, we will write o = µk(s, h), and P µk (s′, h′|s, h) =
P (s′, h′|s, µk(s), h).
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Theorem 3.1. Let SM be an FH-SMDP with S states and O temporally extended actions (op-
tions), known reward,6 bounded primitive reward rL(s, a, h) ∈ [0, 1]. The regret suffered by algorithm
Options-UCBVI in K episodes of horizon H is bounded, with probability 1 − δ, by:

Regret(O-UCBVI, K) ≤ Õ
(

H
√

SOKd + H3S2Od + H
√

Kd
)

,

where d is the average per-episode number of options played during the execution of the algorithm.

Proof. The Proof follows the same ideas as the proofs of UCBVI for the Bernstein-Freedman explo-
ration bonus. We can write the regret as:

Regret(K) ≤ R̃egret(K) ≤
K∑

Ṽ µk (s, 1) − V µk (s, 1)

Where Ṽ µk (s, 1) is the optimistic value function, and V µk (s, 1), is the real value function considering
the policy learned at the kth step. Following the analysis of the original paper we can write the
regret in terms of the per step regret ∆̃hk(shk). Thus,

R̃egret(K) ≤
K∑

i=1

H∑
j=1

∆̃ij(sij)

where the summation over H is composed of d terms, for the temporally extended transitions, where
d is a random variable describing the expected number of options played in one episode, refer to the
main paper for a more detailed explanation (Section 3).
Now let’s define properly the per step regret:

∆̃hk(sij) = Ṽ µk (shk, h) − V µk (shk, h)
a= [P̂ µk

hk Ṽ µk (s′, h′)](shk) + bhk − [P µk

h V µk (s′, h′)](shk) ± [P µk Ṽ µk (s′, h′)](shk)
= [(P̂ µk

hk − P µk

h )Ṽ µk (s′, h′)](shk) + bhk + [P µk

h (Ṽ µk (s′, h′) − V µk (s′, h′))](shk)
± [∆pV ∗(s′, h′)](shk)

= [(P̂ µk

hk − P µk

h )(Ṽ µk (s′, h′) − V ∗(s′, h′)](shk) + bhk + P µk

h ∆̃h′,k(shk)
+ [(P̂ µk

hk − P µk

h )V ∗(s′, h′)](shk) ± ∆̃h′,k(s′)
b= chk + bhk + ehk + ϵhk + ∆̃h′,k(s′)

(a) By applying the bellman operator considering known reward that simplifies, and where
P µk

h = p(·, ·|sh, µk(sh), h), and P̂ µk

hk = p̂(·, ·|shk, µk(shk), h), the estimated transition model
at episode k. By applying the bellman operator on the optimistic value function, the bonus
term bhk is added to the reward.

(b) By defining chk = [(P̂ µk

hk − P µk

h )(Ṽ µk (s′, h′) − V ∗(s′, h′)](shk), the correction term, ehk =
[(P̂ µk

hk − P µk

h )V ∗(s′, h′)](shk) the estimation error of the optimal value function, and ϵhk a
martingale difference, defined as ϵhk = Mt∆̃h′,k(s) = P µk

h ∆̃h′,k(s) − ∆̃h′,k(s′), where Mt is
defined as a martingale operator (refer to appendix B.3 of Azar et al. (2017)).

Let us now bound each of these terms separately.

B.1 Bound of the correction term chk

In this subsection, we bound the correction term
chk = [(P̂ µk

hk − P µk

h )(Ṽ µk (s′, h′) − V ∗(s′, h′)](shk)
a=
∑
s′∈S

∑
h′∈H

(P̂ µk

k (s′, h′|shk, h) − P µk (s′, h′|shk, h))(Ṽ µk (s′, h′) − V ∗(s′, h′))

6The choice of assuming a known reward is for compliance with Azar et al. (2017). Nevertheless, learning the
reward function is known to be a negligible task compared to learning the transition model of the environment and,
consequently, will not alter the regret order.
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b
≤
∑
s′∈S

∑
h′∈H

(
2

√
phk(s′)(1 − phk(s′))L

nk(s, o, h) + 4L

3nk(s, o, h)

)
∆̃h′k(s′)

c
≤ 2

√
L
∑
s′∈S

∑
h′∈H

√
phk(s′)

nk(s, o, h)∆̃h′k(s′) + 4SH2L

3nk(s, o, h)

d= 2
√

L

( ∑
(s′,h′)∈[(s′,h′)]typ

√
phk(s′)

nk(s, o, h)∆̃h′k(s′)

+
∑

(s′,h′)/∈[(s′,h′)]typ

√
phk(s′)

nk(s, o, h)∆̃h′k(s′)
)

+ 4SH2L

3nk(s, o, h)

e= 2
√

L

( ∑
(s′,h′)∈[(s′,h′)]typ

P µk (s′, h′|shk, h′)

√
1

phk(s′)nk(s, o, h)∆̃h′k(s′)

+
∑

(s′,h′)/∈[(s′,h′)]typ

√
phk(s′)nk(s, o, h)

nk(s, o, h)2 ∆̃h′k(s′)
)

+ 4SH2L

3nk(s, o, h)

f= 2
√

L

(
ϵ̄hk +

√
1

phk(s′)nk(s, o, h) I((s
′, h′) ∈ [(s′h′)]typ)∆̃h′k(s′)

+
∑

(s′,h′)/∈[(s′,h′)]typ

√
phk(s′)nk(s, o, h)

nk(s, o, h)2 ∆̃h′k(s′)
)

+ 4SH2L

3nk(s, o, h)

g
≤ 2

√
L

(
ϵ̄hk +

√
1

4LH2 ∆̃h′k(s′) + SH2
√

4LH2

nk(s, o, h)

)
+ 4SH2L

3nk(s, o, h)

≤ 2
√

Lϵ̄hk + 1
H

∆̃h′k(s′) + 4SH3L

nk(s, o, h) + 4SH2L

3nk(s, o, h)

(a) By considering, for brevity, P µ(s′, h′|s, h) = P (s′, h′|s, µ(s), h), and summing over all the
possible next states and next stages.

(b) Where for the first term we substitute the difference of transition probabilities with
the relative confidence interval (refer to section B.4 on the appendix of Azar et al.
(2017)),

∣∣P̂ µk

k (s′, h′|shk, h) − P µk (s′, h′|shk, h)
∣∣ ≤ 2

√
phk(s′)(1−phk(s′))L

nk(s,o,h) + 4L
3nk(s,o,h) , where

phk(s′) = P µk (s′, h′|s, h). Then we can bound Ṽ µk (s′, h′) − V ∗(s′, h′) with ∆̃h′k(s′) because
V ∗(s′, h′) ≥ V µk (s′, h′) (the true value function of the policy µk) by definition.

(c) Because (1 − phk(s′)) ≤ 1 and ∆̃h′k(s′) ≤ H

(d) We divide the summation over all the possible next state-stage, in the summation over the
pairs contained in the typical pairs and the ones outside the set (the typical episodes are
the episodes in which we have smaller regret; refer to the appendix of Azar et al. (2017)).

(e) We multiply the first term by phk(s′)
phk(s′) , and the second by nk(s,o,h)

nk(s,o,h) .

(f) We sum and subtract
√

I((s′,h′)∈[(s′h′)]typ)
phk(s′)nk(s,o,h) ∆̃h′k(s′) and apply the martingale opera-

tor M (see (b) in the previous proof). ϵ̄hk = P µk

h

√
I((s′,h′)∈[(s′h′)]typ)

phk(s′)nk(s,o,h) ∆̃h′k(s′) +√
I((s′,h′)∈[(s′h′)]typ)

phk(s′)nk(s,o,h) ∆̃h′k(s′).
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(g) For typical next state-stage pairs nk(s, o, h)P (s′, h′|s, o, h) ≥ 2H2L, where L is a logarithmic
term (We kept the same lower bound of Azar et al. (2017)).

Now, before bounding the estimation error and the exploration bonus, let’s rewrite the regret as

R̃egret(K) =
K∑

i=1
∆̃1i(s1) =

K∑
i=1

H∑
j=1

∆̃ij(sij)

≤
(

1 + 1
H

)d

︸ ︷︷ ︸
≤e

K∑
i=1

H∑
j=1

(
bhk + ehk + ϵhk + 2

√
Lϵ̄hk + 4SH3L

nk(s, o, h) + 4SH2L

3nk(s, o, h)

)

or otherwise omitting the last term which is dominated

R̃egret(K) ≤
K∑

i=1

H∑
j=1

(
bhk + ehk + ϵhk + 2

√
Lϵ̄hk + 4SH3L

nk(s, o, h)

)
(7)

B.2 Bound of the estimation error ehk

Let’s consider just the typical episodes, the episodes for which the number of visits of state-option-
stage pairs is larger than the rest of the episodes.

K∑
k=1

H∑
h=1

ehk =
K∑

k=1

H∑
h=1

I(k ∈ [k]typ)([(P̂ µk

hk − P µk

h )V ∗(s′, h′)](shk))

a
≤

K∑
k=1

H∑
h=1

I(k ∈ [k]typ)
(

2

√
V∗

hkL

nk(shk, o, h) + 4HL

3nk(s, o, h)

)
b
≤ 2

√
L

√√√√ K∑
k=1

H∑
h=1

V∗
hk

√√√√ K∑
k=1

H∑
h=1

I(k ∈ [k]typ) 1
nk(s, o, h)

+
K∑

k=1

H∑
h=1

I(k ∈ [k]typ) 4HL

3nk(s, o, h)
c
≤ 2

√
L
(√

KH2 + HdUK,1 + □
√

H5KL + 4/3H3L
)(√

2SOdL
)

+ 4/3HSOdL2

d
≤ □LH

√
KSOd + □Ld

√
HSOUK,1

(a) Using Bernstein Inequality. V∗
hk = Var(s′,h′)∼P µk (·|s,h)(V ∗(s′, h′)) (Remember the meaning

of P µk )

(b) Using Cauchy-Schwartz inequality

(c) Summing and subtracting Vµk

hk = Var(s′,h′)∼P µk (·|s,h)(V µk (s′, h′)) the variance of the next
state-stage pair value function, inside the first square root, and then using Lemma D.2 and
D.3. For the second square root and the additional term, we just use a pigeon-hole argument
(Lemma D.1). We ignore the numerical constant represented as □.

(d) Because for typical episodes K ≥ H2L2S2Od and thus we consider only the dominant terms.

B.3 Bound of the martingale differences ϵhk and ϵ̄hk

K∑
k=1

H∑
h=1

ϵhk ≤ H
√

dKL
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K∑
k=1

H∑
h=1

ϵ̄hk ≤
√

dK

These results follow the same proofs of the original paper, thus considering the same event E to hold.
The only difference is that the summation over H is a summation of d elements, and thus, (H − h)
is at most d in this case for the effect of the temporally extended actions.

B.4 Second-order term

Let’s now see the upper bound on the second-order term, which will be useful for the upper bound
on the exploration bonus.
By applying the pigeon-hole principle (Lemma D.1).

K∑
k=1

H∑
h=1

4SH3L

nk(s, o, h) ≤ □H3S2OL2d

B.5 Bound of the exploration bonus bhk

Before bounding the sum, we need to define the exploration bonus. We will consider an adaptation
to temporally extended actions and non-stationary transitions of the same bonus presented in the
original paper of UCBVI Azar et al. (2017). However, to make the definition clearer, let us motivate
the need for this term.
Given that the optimistic value function Ṽ µk is an upper bound of the true value function V ∗, we
can not guarantee the same for the relative empirical variance. Hence, if the empirical variance of
Ṽ µk is an upper bound on the empirical variance of V ∗. Nonetheless, it is possible to prove that
when the two value functions are sufficiently close to each other, the same applies to their empirical
variance.
Let’s resort to Lemma 2 of Azar et al. (2017),

V̂∗
hk ≤ 2V̂hk + 2 Var

(s′,h′)∼P̂ µk

(Ṽ (s′, h′) − V ∗(s′, h′)) ≤ 2V̂hk + 2P̂ µk (Ṽ (s′, h′) − V ∗(s′, h′))2

where V̂∗
hk = Var(s′,h′)∼P µk (·|s,h)(V ∗(s′, h′)) and V̂hk = Var(s′,h′)∼P̂

µk
k

(Ṽ µk (s, h)).
We need this term to be of the same order as the estimation error ehk, and thus we can say that

bhk ∼ [(P̂ µk

hk − P µk

h )V ∗(s′, h′)](shk)
This time, however, we use the Empirical-Bernstein inequality Maurer & Pontil (2009) because we
need the empirical variance to appear.

bhk ≤
(

2

√
V̂∗

hkL

nk(s, o, h) + 14HL

3nk(s, o, h)

)
By applying Lemma 2 to this equation and substituting V̂∗

hk we get the same form of bonus of Azar
et al. (2017).

bhk =

√
8LVar(s′,h′)∼P̂

µk
k

(·|s,h)(Ṽ µk (s′, h′)
nk(s, o, h) + 14HL

3nk(s, o, h) +

√
8
∑

s′,h′ P̂ µk

k (s′, h′|s, h)
[

min (b′
h′k, H2)

]
nk(s, o, h)

in which b′
hk stands for the upper bound on the square root of the difference between the optimistic

value function in the next state-stage pair, and the optimal value function in the same next state-
stage.

The last thing to do to properly define the bonus is express b′
hk in our scenario. Let’s write

Ṽ (s′, h′) − V ∗(s′, h′) ≤
√

b′
hk

and consider that b′
hk has to be appropriate to guarantee an adaptation of Lemma 16 of Azar et al.

(2017), in which the second inequality applies if
√

N ′
hk(s) ≥ 2500H2S2AL2, which is the second

order term for standard UCBVI, given that N ′
hk(s) ≥ H2S2AL2 for good episodes. Therefore, in
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our scenario, we need that√
b′

hk

(∑
o

nk(s, o, h)
)

≥ □H4S2OL2 ≥ □H3S2OL2d

where the r.h.s of the equation above is the second-order term in our case. Thus, considering that∑
o nk(s, o, h) ≤ K, and K ≥ H3L2S2O ≥ H2L2S2Od for typical episodes, we have:

b′
hk = 1002H5S2L2O∑

o nk(s, o, h)
When considering the bound for the next state-stage pair b′

h′k, we simply refer to the visit count of
the next state and next stage nk(s′, o, h′). The numerical constant 1002 is derived analogously to
Azar et al. (2017).

Let’s now analyze the summation of this term, considering, as for ehk, just the typical episodes.
K∑

k=1

H∑
h=1

bhk =
K∑

k=1

H∑
h=1

I(k ∈ [k]typ)
(√

8LVar(s′,h′)∼P̂
µk
k

(·|s,h)(Ṽ µk (s′, h′))
nk(s, o, h) + 14HL

3nk(s, o, h)

)
︸ ︷︷ ︸

(ft)

+
K∑

k=1

H∑
h=1

I(k ∈ [k]typ)

√
8
∑

s′,h′ P̂ µk

k (s′, h′|s, h)
[

min (b′
h′k, H2)

]
nk(s, o, h)︸ ︷︷ ︸

(st)

We separately analyze the first two terms and then the last.
The analysis of (ft) follows the same concept as the analysis conducted for the estimation error ehk

where instead of using Lemma D.3 we use Lemma D.4

(ft)
a
≤

√
8L

(√
KH2 + □HdUK,1 + □H2Sd

√
KLO + 4/3H3L

)
(
√

SOdL) + 14/3HSOdL2

b
≤

√
8L

(√
KH2 + □HdUK,1

)
(
√

SOdL) + 14/3HSOdL2

≤ □LH
√

KSOd + □Ld
√

HSOUK,1

(a) As we said above, we follow the same concept of point (c) of the proof of the upper bound
of ehk. In this case, we use Lemma D.4 instead of Lemma D.3.

(b) Because for typical episodes K ≥ H2L2S2Od and thus we consider only the dominant terms.

Regarding the second term (st) adapting the proofs of Azar et al. (2017), we will focus only on
the last term (k)(h), which results in a term of the same order of the second-order term already
analyzed, the other two terms are upper bounded by the main terms.

(st)
a
≤

√√√√ K∑
k=1

H∑
h=1

I(k ∈ [k]typ)b′
h′k

√√√√ K∑
k=1

H∑
h=1

I(k ∈ [k]typ) 1
nk(s, o, h)

b
≤

√
H5S2L2O

√√√√ K∑
k=1

H∑
h=1

I(k ∈ [k]typ) 1
nk(s′, o, h′)

√√√√ K∑
k=1

H∑
h=1

I(k ∈ [k]typ) 1
nk(s, o, h)

c
≤

√
H5S2L2O(

√
SOdL)2

= H2S2L2
√

O3Hd2

d
≤ H3S2L2Od

(a) Considering only the (k)(h) of the original proof and applying Cauchy-Schwartz inequality.
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(b) By substituting b′
hk in the equation.

(c) By applying two times Lemma D.1.

(d) If O ≤ H.

To conclude the summation of exploration bonuses
K∑

k=1

H∑
h=1

bhk ≤ □LH
√

KSOd + □Ld
√

HSOUK,1 + H3S2L2Od

neglecting smaller order terms.

B.6 Summing all the terms

Finally, we can combine all the terms analyzed separately back into Equation (7), and we will get:

R̃egret(K) ≤ □LH
√

KSOd + □Ld
√

HSOUK,1 + □H3S2L2Od + H
√

dKL
a
≤ □LH

√
KSOd + □HSL2Od2 + □H3S2L2Od + H

√
dKL

≤ □LH
√

KSOd + □H3S2L2Od + H
√

dKL

where (a) results by solving for UK,1, and this completes the proof, ignoring the numeric constants
replaced by □.

Remark: The term d is a random variable, being the duration of each option a random variable
itself. However, as shown in Drappo et al. (2023), it is possible to bound this value when we have
options with duration τmin ≤ τo ≤ τmax, resorting to renewal processes theory (Pinelis, 2019) with

d ≤

√
32H(τmax − τmin) log(2/δ)

mino∈O E[τo]3 + H

mino∈O E[τo] .

holding with probability at least 1 − δ.
This term is bounded by the ratio between the horizon H and the expected duration of the shorter
option composing the set, plus a confidence interval accounting for the stochasticity of the duration.

C Proof of Theorem 4.3

In this section, we will provide a detailed proof of Theorem 4.3.

As described in the main paper, the meta-algorithm alternates between two regret minimizers,
UCBVI and Options-UCBVI, for N stages at two levels of temporal abstraction of the problem.
While learning on one level, the policies of the second are kept fixed for all episodes on the stage.

Initially, we will keep the analysis general for any pair of regret minimizers, AL,AH - where the
former is the regret minimizer used for the low-level and the latter the one used for the high-level.

Before proceeding, we introduce Lemma 4.2, which relates the regret paid by the regret minimizer
of one level to the bias introduced in the learning of the other level.
Lemma 4.2. Let us define the concentrability coefficients:

CH := max
n∈[N ]

inf
µ∗ optimal

max
(s,h)∈S×[H]

dµ∗

s1,1(s, h)
dµn

s1,1(s, h) ,

CL := max
n∈[N ]

max
o∈O

inf
π∗

o optimal
max

(s,h)∈Io
max

(s′,h′)∈So×[Ho]

d
π∗

o

s,h(s′, h′)

d
πo

n−1
s,h (s′, h′)

.

Then, it holds that:
V ∗

∗ (s1, 1) − V ∗
πn−1

(s1, 1)︸ ︷︷ ︸
Bias of not playing π∗

≤ CH
(

V µn
∗ (s1, 1) − V µn

πn−1
(s1, 1)︸ ︷︷ ︸

Regret of low-level algorithm

)
,
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V ∗
∗ (s1, 1) − V µn

∗ (s1, 1)︸ ︷︷ ︸
Bias of not playing µ∗

≤ CL
(

V ∗
πn−1

(s1, 1) − V µn
πn−1

(s1, 1)︸ ︷︷ ︸
Regret of high-level algorithm

)
.

where µ∗ is the optimal high-level policy (SMDP), and π∗
o is the optimal policy of a single option o

(low-level optimal policy).

Proof. Let us write the bias of a level for the stage n ∈ [N ] as βn, respectively specialized as βH
n for

the high-level bias and βL
n for the low-level bias.

βH
n = V ∗

∗ (s1, 1) − V ∗
πn−1

(s1, 1)
a= E

(s,h)∼dµ∗
s1,1

[
Rπ∗(s, h) − Rπn−1(s, h)

]
b= E

(s,h)∼dµn
s1,1

[
dµ∗

s1,1(s, h)
dµn

s1,1(s, h)
(
Rπ∗(s, h) − Rπn−1(s, h)

)]
c
≤ max

n∈[N ]
inf

µ∗ optimal
max

(s,h)∈S×[H]

dµ∗

s1,1(s, h)
dµn

s1,1(s, h)

(
V µn

∗ (s1, 1) − V µn
πn−1

(s1, 1))
)

d
≤ CH

(
V µn

∗ (s1, 1) − V µn
πn−1

(s1, 1)
)

(a) We can write the difference in value as the difference in return of the two option policies,
where Rπ∗ and Rπn−1 are respectively the return obtained by playing the optimal options
policies, and the return obtained by playing the options policies learned up to the previous
step, and the state-stage pairs (s, h) are sampled from the distribution of visit induced by
the policy µ∗.

(b) Using an importance-sampling argument, we can change the exploration policy by adding

the importance weighting term dµ∗
s1,1(s,h)

dµn
s1,1(s,h)

(c) Substituting the expectation with the sup over the states and stages, the inf over the possible
optimal exploration policies, and maximizing for all possible n stages.

(d) Substituting the first term with the constant CH , defined above.

We will not consider the proof of the second inequality because it follows the same passages.

Given this Lemma, we can provide a general result for any choice of AL,AH , and any choice of
scheduling.
Lemma C.1. Let AH and AL be two regret minimizers that suffer regret bounded RH(K) and
RL(K) when run for K episodes. Then, under Assumption 4.1, Algorithm 2 when run with the
episode schedule (KH

n , KL
n )N

n=1 such that
∑N

n=1 KL
n + KH

n = K, suffers regret bounded by:

R(HLML, K) ≤
N∑

n=1

(
(CH + 1)RL(KL

n ) + (CL + 1)RH(KH
n )
)

.

Proof. We can write the regret of the two-phase algorithm as a summation of the regret of the
high-level and the regret of the low-level as expressed by Equation (3) in the main paper.

Regret(HLML, K) =
N∑

n=1

( KH
n∑

k=1

(
V ∗

∗ (s1, 1) − V
µn,k

πn−1(s1, 1)
)

+
KL

n∑
k=1

(
V ∗

∗ (s1, 1) − V µn
πn,k

(s1, 1)
))

a=
N∑

n=1

(
βH

n + RH(KH
n ) + βL

n + RL(KL
n )
)
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b
≤

N∑
n=1

(
CHRL(KL

n−1) + RH(KH
n ) + CLRH(KH

n−1) + RL(KL
n )
)

c
≤

N∑
n=1

(CH + 1)RL(KL
n ) + (CL + 1)RH(KH

n ).

(a) We can decompose the two terms of the summation as shown in Equations (4) and (5), and
then for shortness, use βn to express the bias of the two levels at the nth stage, and R(Kn)
for the regret of the two regret minimizers, AL,AH , at the nth stage.

(b) By applying Lemma 4.2 for the two general regret minimizers.

(c) Clearly the sum of n − 1 is smaller than the sum of n terms, thus we can upper bound
RL(KL

n−1) with RL(KL
n ), and the same for RH(KH

n−1).

And with the last step, we conclude the proof.

Now we can specialize Lemma C.1 for UCBVI for the options learning and Options-UCBVI for the
high-level, and we get:
Theorem 4.3. Let M = (S, A, p, r, H) be an FH-MDP and let O be a set of options to be learned
inducing the FH-MDPs Mo = (So, Ao, p, ro, Ho) for o ∈ O. The regret suffered by Algorithm 2 under
Assumption 4.1, episode schedule as in Equation (2), and where HO = maxo∈O Ho, is bounded with
probability at least 1 − δ by:

R(HLML, K) ≤ Õ

(
CL H

√
SOKd︸ ︷︷ ︸

High-Level Regret

+CH HO

√
OSAKHO︸ ︷︷ ︸

Low-Level Regret

)
.

Proof. For the option learning procedure, we instantiate a UCBVI algorithm for each sub-MDP Mo,
and for the n − th phase, we paid a regret proportional to:

KL
n∑

k=1
Rokk

=
∑

o

Ko∑
j=1

Roj

a=
∑

o

Ho

√
SoAoKoHo

b
≤ HO

√
SAHO

∑
o

√
Ko

c
≤ HO

√
SAHO

√
O
∑

o

Ko

= HO

√
OSAHOKL

n

where Rokk
is the regret paid for running the option ok in the k − th episode and Ko are the episodes

given to that option o. With (a), we just write the regret of running UCBVI on Ko episodes. In
the passage (b), we upper bound to the worst possible sub-MDP, Mo, where for the state space and
the action space, we have the cardinalities of the primitive MDP, and we have an episode duration
HO = maxo Ho. In the next inequality (c), we use the Cauchy-Schwartz inequality, and being∑

o Ko = KL
n the last equality holds. Therefore, by considering just the dominant term of the two

upper bounds of regret, we can write

RL
KL

n
= Regret-UCBVI ≤ Õ

(
HO

√
OSAKL

n HO

)
RH

KH
n

= Regret-O-UCBVI ≤ Õ

(
H
√

SOKH
n d

)
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Now by directly substituting these results in Lemma C.1 and considering the scheduling proposed
in Equation (2), we can rewrite the regret of the meta-algorithm as:

Regret(HLML, K) ≤ Õ

(
N∑

n=1

(
(CH + 1)HO

√
OSAHO2n + (CL + 1)H

√
SOd2n

))

= Õ

((
(CH + 1)HO

√
OSAHO + (CL + 1)H

√
SOd

) N∑
n=1

√
2n

)

= Õ

((CH + 1)HO

√
OSAHO + (CL + 1)H

√
SOd

)
2
√

2
N/2∑
n=0

2n


= Õ

((
(CH + 1)HO

√
OSAHO + (CL + 1)H

√
SOd

)(
2
√

2(2N/2+1 − 1)
))

a∝ Õ
((

CHHO

√
OSAHO + CLH

√
SOd

)
2(log2(K))/2

)
≤ Õ

((
CHHO

√
OSAHO + CLH

√
SOd

)√
K
)

Where all the passages follow algebraic operations, except for (a) in which we neglect all the numer-
ical constants and we consider that K = 2

∑N
n=1 2n−1 = 2N+1 − 1 and thus, N = log2(K). The last

passage concludes the proof.

D Useful Lemmas

Lemma D.1. Considering nk(s, o, h) the number of visits of the triple (s, o, h) up to episode k, and
[k]typ the typical episodes for which nk(s, o, h) is sufficiently large, the following holds true:

K∑
k=1

I(k ∈ [k]typ)
H∑

h=1

1
nk(s, o, h) ≤ dSO ln(Kd)

Proof.
K∑

k=1
I(k ∈ [k]typ)

H∑
h=1

1
nk(s, o, h)

a
≤

∑
(s,o)∈S×O

∑
h∈[d]

nK(s,o,h)∑
n=1

1
n

b
≤ dSO

Kd∑
n=1

1
n

c
≤ dSO ln(3Kd)

(a) Considering nk(s, o, h) for the whole state space and options space, and considering the
summation over H bounded by d elements, for the temporal extension of the actions.

(b) Considering that the maximum number of (s, o, h) visited until episode K is bounded by
Kd

(c) Considering the rate of divergence of the harmonic series
∑n

i=1
1
i ∼ ln(n)

The following lemmas are adaptations to SMDPs of Lemma 8, 9, and 10 of the paper of the UCBVI
paper Azar et al. (2017). We consider to have the same good event E and Ωk,h.
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Lemma D.2. Let k ∈ [K] and h ∈ [H]. Then under the event E and Ωk,h of the original paper, the
following hold

k∑
i=1

H∑
j=h

Vµ
i,j′ ≤ KH2 + 2

√
H5KL + 4d3/3L

Proof. The proof follows the same passages of the proof of Lemma 8 in Azar et al. (2017), where j′

is the next stage after a temporally extended transition.

Lemma D.3. Let k ∈ [K] and h ∈ [H]. Then under the event E and Ωk,h of the original paper, the
following hold

k∑
i=1

H∑
j=h

(
V∗

i,j′ −Vµ
i,j′

)
≤ 2HdUk + 4H2

√
HKL + 4d3/3L

Proof. The proof follows the same passages of the proof of Lemma 9 in Azar et al. (2017), where j′

is the next stage after a temporally extended transition.

Lemma D.4. Let k ∈ [K] and h ∈ [H]. Then under the event E and Ωk,h of the original paper, the
following hold

k∑
i=1

H∑
j=h

(
V̂i,j′ − Vµ

i,j′

)
≤ □HdUk,1 + □H2S□d2KLO

Proof. The proof follows the same passages of the proof of Lemma 10 in Azar et al. (2017), where
j′ is the next stage after a temporally extended transition. More precisely, what changes is the
application of the pigeon hole principle (Lemma D.1).
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