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Abstract

We investigate the challenge of multi-agent deep reinforcement learning in partially
competitive environments, where traditional methods struggle to foster reciprocity-
based cooperation. LOLA and POLA agents learn reciprocity-based cooperative
policies by differentiation through a few look-ahead optimization steps of their
opponent. However, there is a key limitation in these techniques. Because they
consider a few optimization steps, a learning opponent that takes many steps to
optimize its return may exploit them. In response, we introduce a novel approach,
Best Response Shaping (BRS), which differentiates through an opponent approxi-
mating the best response, termed the "detective." To condition the detective on the
agent’s policy for complex games we propose a state-aware differentiable condition-
ing mechanism, facilitated by a question answering (QA) method that extracts a
representation of the agent based on its behaviour on specific environment states.
To empirically validate our method, we showcase its enhanced performance against
a Monte Carlo Tree Search (MCTS) opponent, which serves as an approximation
to the best response in the Coin Game. This work expands the applicability of
multi-agent RL in partially competitive environments and provides a new pathway
towards achieving improved social welfare in general sum games.

1 Introduction

Reinforcement Learning (RL) algorithms have enabled agents to perform well in complex high-
dimensional games like Go (Silver et al., 2016) and StarCraft (Vinyals et al., 2019). The end goal
of RL is to train agents that can help humans solve challenging problems. Inevitably, these agents
will need to integrate in real-life scenarios that require interacting with humans and other learning
agents. While multi-agent RL training shines in fully cooperative or fully competitive environments,
it often fails to find reciprocity-based cooperation in partially competitive environments. One such
example is the failure of multi-agent RL (MARL) agents to learn policies like tit-for-tat (TFT) in
the Iterated Prisoner’s Dilemma (IPD) (Foerster et al., 2018).

Despite the toy-ish character of common general-sum games such as IPD, these sorts of problems
are ubiquitous in both society and nature. Consider a scenario where two countries (agents), strive
to maximize their industrial output while also ensuring a suitable climate for production by limiting
carbon emissions. On the one hand, each country (agent) would like to see the other country fulfill
it’s obligations to limit carbon emissions. Yet on the other hand, each one is motivated to emit more
carbon themselves to achieve higher industrial yields. An effective climate treaty would compel each
country – likely through the threat of penalties – to abide by the agreed limits to carbon emissions. If
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these agents fail to develop such tit-for-tat-like strategies they will likely converge to an unfortunate
mutual escalation of consumption and carbon emission.

Foerster et al. (2018) proposed Learning with Opponent-Learning Awareness (LOLA), an algorithm
that successfully learns TFT behavior in the IPD setting by differentiating through an assumed
single naive gradient step taken by the opponent. Building upon this, Zhao et al. (2022) introduced
proximal LOLA (POLA), which further enhances LOLA by assuming a proximal policy update for
the opponent. This improvement allows for the training of Neural Network (NN) policies in more
complex games, such as the Coin Game (Foerster et al., 2018). To the best of our knowledge, POLA
is the only method that reliably trains reciprocity-based cooperative agents in the Coin Game.

Despite its success on the Coin Game, POLA has its limitations. While POLA is learning with
opponent-learning awareness, its modeling of opponent learning is limited to a few look-ahead opti-
mization steps. This renders POLA vulnerable to exploitation by opponents engaging in additional
optimization. In particular, our analysis of POLA agents trained on the Coin Game demonstrates
that POLA is susceptible to exploitation by the best response opponent. When the opponent is
specifically trained to maximize its own return against a fixed policy trained by POLA, the first ex-
ploits the former. Also, this limitation can hinder POLA’s scalability; it can’t differentiate through
all opponent optimization steps. This is particularly problematic if the opponent is a complex neural
network, as many optimization steps are needed to approximate its learning.

In this paper, we present a novel approach called Best Response Shaping (BRS). Our method is
based on the construction of an opponent that approximates the best response policy against a
given agent. We refer to this opponent as the "detective." The overall concept is depicted in Figure
1: the detective undergoes training against agents sampled from a diverse distribution. To train
the agent, we differentiate through the detective opponent. Unlike approaches such as LOLA and
POLA, which assume few look-ahead optimization steps, our method relies on the detective issuing
the best response to the current agent through policy conditioning.

We empirically validate our method on Iterated Prisoner’s Dilemma (IPD) and the Coin Game.
Given the dependency on the opponent’s policy for an agent’s outcomes, it is not always straight-
forward to evaluate and compare policies of different agents in games. This is especially true in
non-zero-sum games that exhibit both cooperative and competitive aspects. In this paper, we ad-
vocate that a reasonable point of comparison is the agent’s outcome when facing a best response
opponent, which we approximate by Monte Carlo Tree Search (MCTS). We show that while the
MCTS does not fully cooperate with POLA agents, they fully cooperate with our BRS agent.

Main Contributions: We summarize our main contributions below:

• We identify that the best response opponent, as approximated by Monte Carlo Tree Search
(MCTS), does not cooperate with POLA agents. MCTS exploits the POLA agents achieving
a higher return than it would through complete cooperation.

• To address this vulnerability, we introduce the BRS method, which trains an agent by
differentiating through an opponent approximating the best response (referred to as the
’detective opponent’). We empirically validate our method and demonstrate that the best
response to BRS agents is indeed full cooperation as shown in Figure 3.

• Additionally, we propose a state-aware differentiable conditioning mechanism for the detec-
tive opponent, enabling it to condition on the agent’s policy.

2 Background

2.1 Multi Agent Reinforcement Learning

An N -agent Markov Games is denoted by a tuple (((N,S,{Ai}N
i=1 ,P,{ri}N

i=1 , γ))). Here, N represents
the number of agents, S the state space of the environment, and A ∶= A1 × ⋯ × AN the set of
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actions for each agent. Transition probabilities are denoted by P ∶ S ×A → ∆(S) and the reward
function by ri ∶ S ×A → R. Lastly, γ ∈ [0, 1] is the discount factor. In a multi-agent reinforcement
learning problem each agent attempts to maximize their return Ri = ∑∞t=0 γtrit. The policy of agent
i is denoted by πiθi

where θi are policy parameters. In Deep RL these policies are neural networks.
These policies will be trained via gradient estimators such as REINFORCE (Sutton et al., 1999).

2.2 Social Dilemmas and the Iterated Prisoner’s Dilemma

In the context of general sum games, social dilemmas emerge when individual agents striving to
optimize their personal rewards inadvertently undermine the collective outcome or social welfare.
This phenomenon is most distinct when the collective result is inferior to the outcome that could
have been achieved through full cooperation. Theoretical studies, such as the Prisoner’s Dilemma,
illustrate scenarios where each participant, though individually better off confessing, collectively
achieves a lower reward compared to remaining silent.

However, in the Iterated Prisoner’s Dilemma (IPD), unconditional defection ceases to be the dom-
inant strategy. For instance, against an opponent following a tit-for-tat (TFT) strategy, perpetual
cooperation results in a higher return for the agent. It might be expected that MARL, designed
to maximize each agent’s return, would discover the TFT strategy, as it enhances both collective
and individual returns, and provides no incentive for policy change, embodying a Nash Equilibrium.
Yet, empirical observations reveal that standard RL agents, trained to maximize their own return,
typically converge to unconditional defection.

This exemplifies one of the key challenges of multi-agent RL in general sum games: during training,
agents often neglect the fact that other agents are also in the process of learning. To address
this issue, and if social welfare is the primary consideration, one could share the rewards among
the agents during training. For instance, training both agents in an IPD setup to maximize the
collective return would lead to a constant cooperation. However, this approach is inadequate if the
goal is to foster reciprocation-based cooperation. A policy is sought that incites the opponent to
cooperate in order to maximize their own return. While TFT is one such policy, manually designing
a similar TFT policies in other domains is neither desirable nor feasible, underscoring the necessity
to develop novel training algorithms that can discover these policies.

3 Related Work

LOLA Foerster et al. (2018) attempts to shape the opponent by taking the gradient of the value with
respect to a one-step look ahead of the opponent’s parameters. Instead of considering the expected
return under the current policy parameter pair, V 1(θ1

i , θ2
i ), LOLA optimizes V 1(θ1

i , θ2
i + ∆θ2

i )
where ∆θ2

i denotes a naive learning step of the opponent. To make a gradient calculation of the
update ∆θ2

i , LOLA considers the surrogate value given by the first order Taylor approximation of
V 1(θ1

i , θ2
i +∆θ2

i ). Since for most games the exact value cannot be calculated analytically, the authors
introduce a policy gradient formulation that relies on environment roll-outs to approximate it. This
method is able to find tit-for-tat strategies on the Iterated Prisoner’s Dilemma.

POLA Zhao et al. (2022) introduces an idealized version of LOLA that is invariant to policy param-
eterization. To do so, each player attempts to increase the probability of actions that lead to higher
returns while penalizing the Kullback-Leibler divergence in policy space relative to their policies at
the previous time step. Similar to the proximal point method, each step of POLA constitutes an
optimization problem that is solved approximately through gradient descent. Like LOLA, POLA
uses trajectory roll-outs to estimate the value of each player and applies the reinforce estimator to
compute gradients. POLA effectively achieves non exploitable cooperation on the IPD and the Coin
Game improving on the shortcomings of its predecessor.

Lu et al. (2022) considers a meta-game where at each meta-step a full game is played and the meta-
reward is the return of that game. The agent is then a meta-policy that learns to influence the
opponent’s behaviour over these rollouts. M-FOS changes the game and is not comparable to our
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Figure 1: The detective is trained using agents sampled from a replay buffer, which contains agents
encountered during training. Additional noise is incorporated to broaden the range of policies.

method which considers learning a single policy. Baker (2020) changes the structure of the game
where each agent is sharing reward with other agents. The agents are aware of this grouping of
rewards via a noisy version of the reward sharing matrix. In the test time, the representation matrix
is set to no reward sharing and no noise is added to this matrix.

Stackelberg Games Colman & Stirk (1998) revolve around a leader’s initial action selection followed
by a follower’s subsequent move. The Bi-Level Actor-Critic(Bi-AC) Zhang et al. (2020) framework
introduces an innovative approach for training both leader and follower simultaneously during the
training period while maintaining independent executability, making it well-suited for addressing
coordination challenges in MARL. In contrast to our setup, where the detective functions as a
training harness discarded post-training, the Bi-AC varies by deploying both leader and follower
jointly during test time (as the main concern is coordination between the leader and the follower).
The interactions between the agent and the detective mirror the foundational Stackelberg setup,
casting the agent as the leader and the detective as the follower.

Good Shepherd Balaguer et al. (2022) trains a best response to a learning agent, mirroring the
best response to the best response idea. The authors offer two methods for training against this
optimal response. First, by creating an expansive computational graph for the agent’s optimization.
Second, employing evolutionary strategies. Neither of these methods is scalable. Constructing a full
optimization computational graph for every agent’s optimization step is very inefficient. Moreover,
evolutionary strategies require training the opponent against new data points each time. Our ap-
proach circumvents this problem by using a neural network to amortize the optimization process.
PSRO Lanctot et al. (2017) unifies many MARL training frameworks like Independent RL, Iterated
Best Response, and Fictitious Self-Play. PSRO-family methods iteratively extend a set of past poli-
cies, by adding the best response to a mixture of those past policies. In contrast to BRS, PSRO
does not differentiate through the best response.

4 Best Response Shaping

Our Best Response Shaping (BRS) algorithm trains an agent by differentiating through an approx-
imation to the best response opponent (as described in Section 4.1). This opponent, called the
detective, conditions on the agent’s policy via a question answering mechanism to select its actions
(Section 4.2). Subsequently, we train the agent by differentiating through the detective using the
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REINFORCE gradient estimator (Sutton et al., 1999) (Section 4.2.2). Also, to encourage coopera-
tive behaviour, we propose Self-Play as a regularization method, encouraging the agent to explore
cooperative policies. We further prove that this self-play is equivalent to self-play with reward
sharing. The pseudo-code for BRS is provided in Algorithm 1.

4.1 Best Response Agent to the Best Response Opponent

Our notation and definitions follow from Agarwal et al. (2021), we denote τ as a trajectory whose
distribution, Prθ1,θ2

µ (τ), with initial state distribution µ, is given by

Prθ1,θ2
µ (τ) = µ(s0)πθ1(a0∣s0)πθ2(b0∣πθ1 , s0)P (s1∣s0, a0, b0)⋯

Here a denotes the action taken by the agent and b the action taken by the opponent. The best
response opponent is the policy that gets the highest expected return against a given agent. Formally,
given θ1, the best response opponent policy θ∗2 solves for the following:

θ∗2 = arg max
θ2

E
τ∼Prθ1,θ2

µ
[R2(τ)]

Subsequently, we train the agent’s policy to get the highest expected return against the best response
agent. This training of the agent’s policy is solving for the following:

θ∗∗1 = arg max
θ1

E
τ∼Pr

θ1,θ∗2
µ

[R1(τ)]

Note that this is a bi-level optimization problem. We hypothesize that the agent π∗∗θ1
exhibits

characteristics of a non-exploitable agent, as it learns retaliatory strategies in response to a defecting
opponent, thereby creating incentives for a rational opponent to cooperate.

4.2 Detective Opponent Training

In deep reinforcement learning, the training of agents relies on the utilization of gradient-based
optimization. Consequently, we need a differentiable opponent approximating a best response op-
ponent. We call this opponent the detective. The detective’s policy conditions on the agent’s policy
in addition to the state of the environment, which we denote πθ2(a∣πθ1 , s). We train the detective to
maximize its own return against various agents. Formally, the detective is trained by the following
gradient step:

∇θ2 E
θ1∼B

E
τ∼Prθ1,θ2

µ

[R2(τ)]

where B represents a distribution of diverse policies for agent 1.It should be noted that the detective
is trained online and the replay buffer, B, is being updated with the current agent parameters.

4.2.1 Conditioning on Agent’s Policy

The detective queries the behaviour of the agent on various states of the game. To do so, it evaluates
the agent’s action probabilities (answers) on a state of the game (questions). Formally, let Qψ(θ1, s)
be the function used by the detective to extract a state-aware representation of the agent. We call
Q a question answering (QA) function if Q can be expressed as only having access to the policy
function, i.e. Qψ(πθ1 , s). There are many possible ways to architect a QA function. Next, we outline
a method that has shown success in the Coin Game.

4.2.2 Simulation Based Question Answering

The behavior of the agent in possible continuations of the game starting from state s holds valuable
information. More specifically, we can assess the behavior of the agent against a random agent
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starting from game state s. Formally Let δA be defined as the following where τ is a trajectory
starting from state s at time t:

δA ∶= E
τ∼Prθ1,θr

µ

[Rr(τ)∣st = s]

where πθr is an opponent that chooses action A at time t and afterwards samples from a uniform
distribution over all possible actions:

πθr(ai = A∣si) =
⎧⎪⎪⎨⎪⎪⎩

1
∣A∣ if i > t

1{ai=A} if i = t

Detective estimates δA by monte-carlo rollouts of the game to a certain length between the agent
and the random opponent, πθr . We denote the estimate of δA by δ̂A. Then we define Qsimulation =
[δ̂A1 , δ̂A2 ,⋯, δ̂A∣A∣]. The number of samples used to estimate the returns of the game and the length
of the simulated games are considered hyperparameters of Qsimulation QA. Note that the Qsimulation

can be differentiated with respect to agent’s policy parameters via REINFORCE (Sutton et al.,
1999) term. Specifically, we use the DICE operator (Foerster et al., 2018).

4.2.3 Differentiating Through the Detective

The agent’s policy is trained to maximize its return against the detective opponent via REINFORCE
gradient estimator. However, because the detective’s policy is taking the agent’s policy as input,
the REINFORCE term will include an additional detective-backpropagation term over the usual
REINFORCE term:

E
τ∼Prθ1,θ2

µ

⎡⎢⎢⎢⎢⎢⎢⎣

R1(τ)
T

∑
t=1

⎡⎢⎢⎢⎢⎢⎢⎣

∇θ1 log(πθ1(at∣st)) + ∇θ1 log(πθ2(bt∣πθ1 , st))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

detective-backpropagation term

⎤⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎦

This extra term can be thought of as the direction in policy space in which changing the agent’s
parameters encourages the detective to take actions that increase the agent’s own return.

4.2.4 Cooperation Regularization via Self-Play with Reward Sharing

Agents that are trained against rational opponents tend to rely on the assumption that the opposing
agent is lenient towards their non-cooperative actions. This reliance on rational behavior allows them
to exploit the opponent to some extent. Consequently, they may not effectively learn to cooperate
with their own selves. In scenarios where the objective is to foster more cooperative behavior,
particularly encouraging the agent to cooperate with itself, a straightforward approach is to train
the agent in a self-play setting, assuming that the opponent’s policy mirrors the agent’s policy.
Formally, we update the agent using the following update rule:

∇θ1 E
τ∼Prθ1,θ1

µ

[R1(τ)]

We prove that in symmetric games like IPD and Coin Game, this is equivalent to training an agent
with self-play with reward sharing (see proof in §D). This training brings out the cooperative element
of general-sum games. In zero-sum games, this update will have no effect as the gradient would be
zero (see proof in §D). We refer to this regularization loss term as Self-Play with reward sharing
throughout the paper. We also ablate BRS-NOSP where we skip the self-play loss to study its effect.
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Algorithm 1 BRS pseudo code: a single iteration
Input: Replay Buffer of Agent Parameters B, Agent parameters θ1, Detective parameters θ2,
learning rates α1, α2, α3, Standard Error of Noise σ
Train Detective vs. Sampled Agent:
Sample agent parameter θ1′ from B
θ1′← θ1′ + z, where z ∼ N (0, σ)
Rollout trajectory τ2 using policies (πθ1′, πθ2)
θ2 ← θ2 + α2R2(τ2)∑Tt=1∇θ2 log(πθ2(at∣πθ1′, st))
Train Agent vs. Detective:
Rollout trajectory τ1 using policies (πθ1 , πθ2)
θ1 ← θ1 + α1R1(τ)∑Tt=1∇θ1 log(πθ1(at∣st)) +∇θ1 log(πθ2(bt∣πθ1 , st))
Train Agent in Self Play:
Rollout trajectory τ3 using policies (πθ1 , πθ1)
θ1 ← θ1 + α3R1(τ3)∑Tt=1∇θ1 [log(πθ1(at∣st)) + log(πθ1(bt∣st))]
Update Replay Buffer:
Push θ1 to B
Output: θ1, θ2

5 Experiments

5.1 Iterated Prisoner’s Dilemma

Following Foerster et al. (2018), we study Iterated Prisoner’s Dilemma (IPD) game where the agents
observe the last actions taken by the agents. Therefore, all possible agent observations are S =
{C, CC, CD, DC, DD}, where C is the initial state, and each agent’s policy can be described by the
probability of cooperation for each s ∈ S. We consider the IPD game that is six steps long. As
shown by Foerster et al. (2018) and Zhao et al. (2022), training two naïve-learning agents leads to
strategies that always defect. Although this is a Nash Equilibrium, both agents receive negative
returns.

We test our method by training the agent against a tree search detective. The tree search detective
constructs a tree, commencing from the current state. During this process, the agent’s actions
are sampled from the agent’s policy, while the tree branches explore all possible choices for the
detective’s actions. The detective selects the actions that maximize its return, i.e. the actions that
construct the best response path within the tree. The agent receives the return that corresponds to
this particular path (see §F for details). Our agent is a two-layer MLP that receives the five possible
states and outputs the probability of cooperation. We choose an MLP to showcase the possibility
of training neural networks via BRS. We update our agent policy via policy gradient. As shown in
Figure 2 the BRS agent learns tit-for-tat(TFT) policy.

5.2 The Coin Game

We follow Zhao et al. (2022) in training a GRU (Cho et al., 2014) agent on a 3× 3 sized Coin Game
with a game length of 50 and a discount factor of 0.96. The detective opponent is also a GRU agent
with an MLP that conditions on the result of the QA (for more details see §A). We evaluate BRS
and POLA agents against four policies: an opponent that always takes the shortest path towards
the coin regardless of the coin’s color (Always Defect), an opponent that takes the shortest path
towards its associated coin but never picks up the agent’s associated coin (Always Cooperate), a
Monte Carlo Tree Search opponent that evaluates multiple rollouts of the game against the agent
in order to take an action (MCTS), and itself (Self). Note that the MCTS will approximate the
best response opponent. Figure 3 visually presents the evaluation metrics for the BRS and POLA
agents. In the subsequent paragraphs, we present a comprehensive analysis and interpretation of
these results.
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Figure 2: Illustration of the policies of agents trained with BRS and BRS-NOSP in a finite Iterated
Prisoner’s Dilemma game of length 6. The agents are trained against a tree search detective max-
imizing its own return. BRS agents learn tit-for-tat, a policy that cooperates initially and mirrors
the opponent’s behavior thereafter. BRS-NOSP agents learn cynic-tit-for-tat (CTFT), they defect
initially but mirror the opponent’s behavior thereafter.
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Figure 3: Comparison of BRS and POLA on Coin Game. We evaluate the agent’s returns versus
different opponents: Always Defect opponent (AD); Always Cooperate opponent (AC), A Monte
Carlo Tree Search opponent (MCTS) and agent’s performance against itself (Self).
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Figure 4: BRS-NORB is equivalent to BRS, with no replay buffer and no added noise. Its perfor-
mance is close to BRS with more variance. BRS-NOSP is equivalent to BRS but with no self-play.

Does a best response opponent cooperate with the agent? For a given environment, the
opponents will learn the best response to our agent. We want those opponents to figure out that
they cannot do better than Always Cooperate against. In other words, defecting against our agent
would decrease their return. The MCTS approximates the best response opponent. As shown in
Figure 3, the MCTS and BRS are always cooperating with each other1. In contrast, the MCTS does
not fully cooperate with POLA. The MCTS secured a higher return than Always Cooperate against
POLA via defecting.

Does the agent retaliate against Always Defect? If an agent never retaliates against Always
Defect, its maximum return would be close to Always Cooperate against Always Defect which is
-0.31, shown in Figure 5. BRS gets an average return of -0.11 against Always Defect indicating
it retaliates v.s. defects. However, POLA gets -0.03 against Always Defect indicating stronger
retaliation.

Does the agent cooperate with itself? As shown in Figure 3 BRS agents get a return of 0.33
against themselves which is very close to Always Cooperate vs Alwayas Cooperate return of 0.34.
POLA agents get a retun of 0.23 against themselves indicating less cooperation. In summary, BRS
agents are more suitable as a retaliatory cooperative policy. While the best response to them is
always cooperation, they also fully cooperate with themselves. In contrast, the best response to
POLA agents is not full cooperation, and also they do not fully cooperate with themselves.

5.3 Replay Buffer Ablation

As shown in Algorithm 1 we train the detective against agents sampled from a replay buffer. Also,
we add a small noise to the sampled agent parameters. In Figure 4 we show BRS-NORB which has
the same training setup as BRS with no replay buffer and no noise. While BRS-NORB has higher
variance in performance than BRS, its performance is close to BRS.

5.4 Self-Play Ablation

We find that BRS with no self-play (BRS-NOSP) learns policies resembling ZD-Extortion Press &
Dyson (2012), which exploit opponent’s rationality to increase their return and don’t cooperate with
themselves(details in §E) rendering them suboptimal for scenarios where social-welfare is important.

1Note that the return of both agents is very close to Always Cooperate vs Always Cooperate.
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6 Limitations

This paper focuses on the implementation of our proposed idea in two-player games. Extending this
approach to more than two players is non-trivial2. Additionally, the detective agent approximates
the best response opponent by training against a diverse set of agents. In this study, we introduce
a replay buffer that contains previous agents encountered during training as a proxy for a diverse
agent set. In 5.3 we showed BRS works even with no replay buffer on the Coin Game. Nevertheless,
for more complex settings, this level of diversity may be insufficient.

7 Conclusion

Motivated by learning with learning awareness as a framework to learn reciprocity-based cooperative
policies, we introduced BRS. BRS differentiates through an opponent that approximates the best
response. To enable the opponent to condition on agent’s policy, we introduced a novel differentiable
state-aware conditioning mechanism. Additionally, self-play was incorporated to constrain the search
space to self-cooperative policies. We evaluated BRS agents in detail on the Coin game. The BRS
agent reaches a policy where always cooperate is the best response. We hope this work helps
improving the scalability and non-exploitability of agents in Multi Agent Reinforcement Learning
enabling agents that learn reciprocation-based cooperation in complex games.

8 Acknowledgment

The authors would like to thank Mila and Compute Canada for providing the computational re-
sources used for this paper. We would like to thank Olexa Bilaniuk for his invaluable technical
support throughout the project. We acknowledge the financial support of Hitachi Ltd, Aaron’s CI-
FAR Canadian AI chair and Canada Research Chair in Learning Representations that Generalize
Systematically. We would like to thank the JAX ecosystem Bradbury et al. (2018).

References
Alekh Agarwal, Nan Jiang, Sham Kakade, and Wen Sun. Reinforcement Learning: Theory and

Algorithms. 2021.

Bowen Baker. Emergent reciprocity and team formation from randomized uncertain social prefer-
ences, 2020.

Jan Balaguer, Raphael Koster, Christopher Summerfield, and Andrea Tacchetti. The good shepherd:
An oracle agent for mechanism design. arXiv preprint arXiv:2202.10135, 2022.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/google/jax.

Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties
of neural machine translation: Encoder–decoder approaches. In Proceedings of SSST-8, Eighth
Workshop on Syntax, Semantics and Structure in Statistical Translation, pp. 103–111, Doha,
Qatar, October 2014. Association for Computational Linguistics. doi: 10.3115/v1/W14-4012.

Andrew M Colman and Jonathan A Stirk. Stackelberg reasoning in mixed-motive games: An
experimental investigation. Journal of Economic Psychology, 19(2):279–293, 1998.

Jakob N. Foerster, Richard Y. Chen, Maruan Al-Shedivat, Shimon Whiteson, Pieter Abbeel, and
Igor Mordatch. Learning with opponent-learning awareness, 2018.
2One idea to extend BRS to more than two players is to assume all the opponents as a single combined "detective"

opponent. However, we have not studied the effect of such an assumption and we leave that to future work.

http://github.com/google/jax
http://github.com/google/jax


RLJ ∣ RLC 2024

Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl Tuyls, Julien Pérolat,
David Silver, and Thore Graepel. A unified game-theoretic approach to multiagent reinforcement
learning. Advances in neural information processing systems, 30, 2017.

Chris Lu, Timon Willi, Christian Schroeder de Witt, and Jakob Foerster. Model-free opponent
shaping, 2022.

William H Press and Freeman J Dyson. Iterated prisoner’s dilemma contains strategies that dominate
any evolutionary opponent. Proceedings of the National Academy of Sciences, 109(26):10409–
10413, 2012.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation, 2018.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods
for reinforcement learning with function approximation. Advances in neural information processing
systems, 12, 1999.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung
Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level
in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

Haifeng Zhang, Weizhe Chen, Zeren Huang, Minne Li, Yaodong Yang, Weinan Zhang, and Jun
Wang. Bi-level actor-critic for multi-agent coordination. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pp. 7325–7332, 2020.

Stephen Zhao, Chris Lu, Roger Baker Grosse, and Jakob Nicolaus Foerster. Proximal learn-
ing with opponent-learning awareness. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=PrkarCHiUsg.

A Experimental Details

A.1 IPD

In IPD experiments, we are experimenting on IPD with 6 steps and discount factor of 1., i.e. no
discount factor. The payoff matrix of the IPD game is shown in 1.

Player 2
Player 1 Cooperate Defect

Cooperate −1
−1

−3
0

Defect 0
−3

−2
−2

Table 1: Payoff matrix for the prisoner’s dilemma game

Our agent’s policy is parameterized by a two-layer MLP (Multi-Layer Perceptron) with a tanh non-
linearity. The choice of tanh non-linearity is motivated by its smoothing effect and its ability to
prevent large gradient updates.

During training, the agent is trained against the Tree Search Detective (TSD) (see Appendix F)
using a policy gradient estimator. We employ a learning rate of 3e − 4 with the SGD (Stochastic

https://openreview.net/forum?id=PrkarCHiUsg
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Gradient Descent) optimizer. In the BRS experiments, the Self-Play with reward sharing loss is
optimized using SGD with the same learning rate of 3e−4. To reduce variance, the policy gradients
incorporate a baseline.

For replicating the exact results presented in the paper, we provide the code in Appendix B. Running
the code on an A100 GPU is expected to take approximately an hour. The plots and error bars are
averaged over 10 seeds for both BRS and BRS-NOSP. The hyperparameter search was conducted by
iterating over various learning rates including (1e−4, 3e−4, 1e−3), and the optimizers were explored
between SGD and Adam.

A.2 Coin Game

The game Our coin game implementation exactly follows the POLA implementation Zhao et al.
(2022). Similar to POLA, we also experiment with the game length of 50 and a discount factor of
0.96.

Agent’s architecture In the coin game, we have an actor-critic setup. The policy of our agent
is parameterized by a GRU (Gated Recurrent Unit) architecture, following the approach outlined
in the POLA repository (source). However, we introduce a modification compared to POLA by
including a two-layer MLP on top of the observations before they are fed into the GRU instead of a
single-layer MLP. Additionally, we utilize two linear heads to facilitate separate learning for policy
and value estimation.

Detective’s architecture The architecture of the detective is as follows: The sequence of observa-
tions is fed into a GRU (Gated Recurrent Unit), which is the same architecture used by the agent.
At each time step, the agent’s representation is extracted using the QA (Question-Answering) mod-
ule of the detective. In our experiments, we employed 16 samples of continuing the game for the
next 4 steps from the current state. Subsequently, the output of the QA module and the GRU are
concatenated and passed through a two-layer MLP with ReLU non-linearities. The resulting output
from this MLP is then fed into a linear layer for estimating the value (critic), and a linear layer for
determining the policy (actor).

Separate optimizers for the two terms The agent uses separate optimizers for the two terms
in the policy gradient. That is, it uses two separate optimizers for the two terms indicated in A.2.

E
τ∼Prθ1,θ2

µ

⎡⎢⎢⎢⎢⎢⎢⎣

R1(τ)
T

∑
t=1

⎡⎢⎢⎢⎢⎢⎢⎣

∇θ1 log(πθ1(at∣st))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Term 1

+∇θ1 log(πθ2(bt∣πθ1 , st))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Term 2

⎤⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎦

Losses and optimizers The value functions in our setup are trained using the Huber loss. On
the other hand, the policies are trained using the standard policy gradient loss with Generalized
Advantage Estimation (GAE) (Schulman et al., 2018). However, it is important to note that our
hyperparameter search led us to set the GAE parameter, λ, to 1, which results in an equivalent
estimation of the advantage using the Monte-Carlo estimate. This choice is similar to the hyperpa-
rameters reported by POLA (source).

In the BRS-NOSP experiments, the agent’s policy is trained using a learning rate of 1e − 3, while
in the BRS experiments, an Adam optimizer with a learning rate of 3e − 4 is utilized. The value
functions of both the agent and the detective in all experiments are trained using Adam with a
learning rate of 3e − 4. Similarly, the detective’s policy is trained using Adam with a learning rate
of 3e − 4 in all experiments.

Replay buffer of previous agents During the training, we keep a replay buffer of previous agents
seen during the training. In BRS-NOSP experiments we keep 2048 previous agents and in BRS
experiments we keep the last 512 agents. For training the detective, we sample a batch from this
replay buffers uniformly. We add a normal noise with variance of 0.01 to the parameters of these
agents to ensure the detective is trained against a diverse set of agents.

https://github.com/silent-zebra/pola
https://github.com/silent-zebra/pola
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Hyperparameter search We conducted a hyperparameter search using random search over the
configurations explained Table 2. the entropy coefficient β, which is multiplied by the entropy of
the log probabilities associated with the actions of the corresponding player, is added to the policy
gradient loss of the corresponding player for controlling the exploration-exploitation trade-off.

Plots and error bars The results on the paper are computed over three seeds for the BRS, BRS-
NOSP, BRS-NOSP-NORB, and BRS-NOSP-NORB and six seeds for POLA. It is worth noting that
the error bars are calculate over seeds, i.e. checkpoints. The result of games between each pair of
agents is averaged over 32 independent games between those two agents.

Hyperparameter Values
inner game length in QA 4, 8, 12, 16
samples in QA 16, 64, 256, 1024
replay buffer of agent’s size 10, 512, 4096, 16384
value learning algorithm TD-0, Monte-Carlo
GAE λ 0.9, 0.96, 0.99, 0.999, 1.0
agent policy gradient learning rate 0.001, 0.0003
agent entropy β 0.0, 1.0, 2.0, 5.0, 10.0
detective entropy β 0.0, 1.0, 2.0, 5.0, 10.0

Table 2: Hyperparameter search options

Compute Our runs are run for 48 hours on a single A100 GPU with 40 Gigabytes of RAM3.

Batch size We use a batch size of 128.

POLA agent’s training To evaluate the POLA agents, we trained them by executing the POLA
repository here (Zhao et al., 2022).

B Reproducing Results

B.1 IPD

To replicate the results on IPD (Iterated Prisoner’s Dilemma), please refer to the instructions avail-
able at here. By running the provided Colab notebook, you will obtain the IPD plot that is included
in the paper.

B.2 Coin Game

To replicate the outcomes of the coin game, please refer to the instructions available at here. In
essence, the provided guidelines encompass training scripts designed for the purpose of training agent
checkpoints. Subsequently, there is an exporting phase in which these checkpoints are transformed
into their lightweight counterparts. Finally, a script is provided to facilitate the execution of a league
involving multiple agents.

C League Results

In order to visualize the results of our training in complete detail, in Figure 5 we visualize a matrix,
in the format of a heatmap, of the returns of various agents against each other. All the results are

3A single A100 gpu is 80 Gigabyte, but it can be split into two equivalent 40 Gigabyte equivalents and we train
on one of these splits

https://github.com/silent-zebra/pola
https://colab.research.google.com/drive/1YRmkQdXNvMElEq2vowcdmPxqnpZ8Mill?usp=sharing
https://anonymous.4open.science/r/extramodels-411D/README.md
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Figure 5: Illustrates the outcomes of 1-vs-1 Coin games lasting 50 rounds, involving a range of
agents. The return achieved by each agent is documented within the corresponding cell. The
reported returns are an average across 32 independent games. It is important to note that there are
no games recorded between the MTCS agent and itself as it is not possible.
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averaged over 32 independent games between the corresponding agents. The game is the Coin game
of length 50. 4

D Self-Play

Lemma D.1. Denote o ∈ S to be the state s ∈ S from the perspective of the opponent. For a
symmetric game, if it holds that µ(s0) = µ(o0) for all s0, o0 ∈ S, then

E
τ∼Prθ1,θ1

µ

[R1(τ)] = E
τ∼Prθ1,θ1

µ

[R2(τ)]

where R2 ∶= ∑∞t=0 γtr2(ot, bt, at) and r2 denotes r1 from the perspective of the opponent.

Proof. Denote τ̄ = o0, b0, a0, o1,⋯, then notice that

µ(s0)π1
θ1
(a0∣s0)π1

θ1
(b0∣o0)P (s1∣s0, a0, b0)⋯ = µ(o0)π1

θ1
(b0∣o0)π1

θ1
(a0∣s0)P (o1∣o0, b0, a0)⋯

⇐⇒ Prθ1,θ1
µ (τ) = Prθ1,θ1

µ (τ̄)

now by symmetry we have that r1(st, at, bt) = r2(ot, bt, at), therefore

E
τ∼Prθ1,θ1

µ
[R1(τ)] = E

τ∼Prθ1,θ1
µ
[
∞
∑
t=0

γtr1(st, at, bt)]

=∑
τ

Prθ1,θ1
µ (τ)

∞
∑
t=0

γtr1(st, at, bt)

=∑
τ̄

Prθ1,θ1
µ (τ̄)

∞
∑
t=0

γtr2(ot, bt, at)

= E
τ∼Prθ1,θ1

µ
[R2(τ)]

where we just rename τ̄ in the last equality. ∎
Proposition D.2 states that the gradient in Equation 4.2.4 is equivalent to that of self-play with
reward-sharing.

Proposition D.2. For a symmetric game,

∇θ1 E
τ∼Prθ1,θ1

µ

[R1(τ)]∝
⎡⎢⎢⎢⎢⎣
∇θ1 E

τ∼Prθ1,θ2
µ

[R1(τ) +R2(τ)] +∇θ2 E
τ∼Prθ1,θ2

µ

[R1(τ) +R2(τ)]
⎤⎥⎥⎥⎥⎦θ2=θ1

.

Proof. We write the gradient as follows:

∇θ1 E
τ∼Prθ1,θ1

µ

[R1(τ)] = ∑
τ

R1(τ)∇θ1Prθ1,θ1
µ (τ)

= ∑
τ

R1(τ)Prθ1,θ1
µ (τ)∇θ1 log Prθ1,θ1

µ (τ)

= ∑
τ

R1(τ)Prθ1,θ1
µ (τ)∇θ1 log µ(p0)π1

θ1
(a0∣s0)π1

θ1
(b0∣o0)⋯

= ∑
τ

R1(τ)Prθ1,θ1
µ (τ)

∞
∑
t=0
∇θ1 log π1

θ1
(at∣st) +∇θ1 log π1

θ1
(bt∣ot)

= E
τ∼Prθ1,θ1

µ

[R1(τ)
∞
∑
t=0
∇θ1 log π1

θ1
(at∣st) +∇θ1 log π1

θ1
(bt∣ot)] .

4Note that there is no meaning to train MCTS against MCTS because the MCTS needs to roll-out the agent’s
policy to choose an action. However, MCTS against MCTS implies an infinite loop of rolling out the other agent’s
policy
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Now by symmetry and Lemma D.1. we have

E
τ∼Prθ1,θ1

µ

[R1(τ)] = E
τ∼Prθ1,θ1

µ

[R2(τ)] ,

and by linearity of expectation,

E
τ∼Prθ1,θ1

µ

[R1(τ)]∝ E
τ∼Prθ1,θ1

µ

[R1(τ) +R2(τ)] .

Hence

∇θ1 E
τ∼Prθ1,θ1

µ

[R1(τ)] ∝ E
τ∼Prθ1,θ1

µ

[(R1(τ) +R2(τ))
∞
∑
t=0
∇θ1 log π1

θ1
(at∣st) +∇θ1 log π1

θ1
(bt∣ot)]

=
⎡⎢⎢⎢⎢⎣

E
τ∼Prθ1,θ2

µ

[(R1(τ) +R2(τ))
∞
∑
t=0
∇θ1 log π1

θ1
(at∣st) +∇θ2 log π2

θ2
(bt∣ot)]

⎤⎥⎥⎥⎥⎦θ2=θ1

=
⎡⎢⎢⎢⎢⎣

E
τ∼Prθ1,θ2

µ

[(R1(τ) +R2(τ)) (∇θ1 log Prθ1,θ2
µ (τ) +∇θ2 log Prθ1,θ2

µ (τ))]
⎤⎥⎥⎥⎥⎦θ2=θ1

=
⎡⎢⎢⎢⎢⎣
∇θ1 E

τ∼Prθ1,θ2
µ

[R1(τ) +R2(τ)] +∇θ2 E
τ∼Prθ1,θ2

µ

[R1(τ) +R2(τ)]
⎤⎥⎥⎥⎥⎦θ2=θ1

,

which was to be shown. ∎

Corollary D.3. For a symmetric, zero-sum game it holds that

∇θ1 E
τ∼Prθ1,θ1

µ

[R1(τ)] = 0

Proof. By definition of zero-sum game, we have that

r1(st, at, bt) + r2(st, bt, at) = 0

Ô⇒
∞
∑
t=0

γt (r1(st, at, bt) + r2(st, bt, at)) = 0

⇐⇒ R1(τ) = −R2(τ) for all τ

From proposition D.2. we get

∇θ1 E
τ∼Prθ1,θ1

µ

[R1(τ)] ∝

⎡⎢⎢⎢⎢⎢⎢⎣

∇θ1 E
τ∼Prθ1,θ2

µ

[R1(τ) +R2(τ)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

+∇θ2 E
τ∼Prθ1,θ2

µ

[R1(τ) +R2(τ)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

⎤⎥⎥⎥⎥⎥⎥⎦θ2=θ1

= [∇θ10 +∇θ20]θ2=θ1

= 0

completing the proof. ∎

E Self-Play Ablation

E.0.1 IPD

In IPD, as shown in Figure 2 the BRS-NOSP agents learn a variant of tit-for-tat that defects initially
but has the same probability of cooperation as tit-for-tat in {CC, CD, DC, DD}. We name this policy
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cynic-tit-for-tat (CTFT). The best response to a cynic-tit-for-tat in an infinite IPD game is always
cooperating because if the opponent defects initially, the agent will defect in the next turn. Also,
CTFT does not cooperate with itself.

Furthermore, if we use the analytical differentiable returns in IPD, BRS-NOSP learns a ZD-extortion
policy Press & Dyson (2012) similar to Lu et al. (2022) as shown in Figure 7. ZD-Extortion policy
gains advantage by defecting to the extent that best response of the opponent is still cooperation.

E.0.2 Coin Game

In the Coin Game, as shown in Figure 4, the BRS-NOSP agents get a high return against the MCTS.
However, the MCTS opponent gets considerably less return against BRS-NOSP than against BRS.
This indicates BRS exploited the MCTS’s rationality. While MCTS does better than Always Defect
against the BRS-NOSP, it trades a high amount of cooperation to elicit a slight cooperation from the
BRS-NOSP. In other words, teh BRS-NOSP exploites the rationality of the MCTS. Also, BRS-NOSP
agents do not cooperate with themselves and they exploit Always Cooperate.

F Tree Search Detective

In this section, we describe the Tree Search Detective (TSD) used in the IPD experiments.The
intuition behind TSD is that by simulating all possible trajectories based on the agent’s policy, the
opponent can select the path that maximizes its own returns. Consequently, the agent achieves the
return associated with that specific path.

TSD implements this idea. TSD builds a tree structure in which the agent’s actions are directly
sampled from its policy. When it comes to TSD’s action, a branch is formed for each action to
explore the potential outcomes of that specific action.

The agent will treat TSD as a black-box algorithm that queries the agent’s policy on a set of states
and returns a single return, i.e. the return that corresponds to the agent’s return in the path that
yielded the highest return for the TSD. This black-box can be differentiated through via policy
gradient estimators. It is worth noting that when calculating the policy gradient loss, the sum of
all log probabilities should be considered, not just the ones present in the chosen path. This is
crucial because the agent’s actions in states outside of the selected path are significant in TSD’s
decision-making process for selecting that particular path. This idea has been depicted in Figure 6.

G Detailed results of games between agents

In Figure ?? we visualized the average result of 32 games between different agents. Note that for
BRS agents we used three seeds per agent type and for POLA we used six seeds. Indeed, the POLA
agents have more variance in their performance therefore we used more seeds to compute the error
bars for them.

H ZD-Extortion

Figure 7 shows that BRS without self-play learns a ZD-extortion policy as expected.

I Training curves of BRS and BRS-NOSP

Figure 8 shows the training curves of BRS and BRS-NOSP seeds.
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Figure 6: Illustrates the training of the IPD agent against the TSD. TSD samples from the agent’s
policy, represented by red arrows in the plot, while exploring all possible actions when considering
its own actions, represented by black arrows in the plot. The agent treats the TSD as a black-box
algorithm and differentiates through it via REINFORCE. Note that the summation is over all log
probabilities and not only over the log probabilities presnet in the path.
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Figure 7: Visualization of BRS-NOSP’s policy. Similar to Lu et al. (2022) our agent when trained
to find the best response to the best response discovers a ZD-extortion policy.
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Figure 8: Training curves of BRS and BRS-NOSP during training and their evaluation against
Always Defect(AD) and Always Cooperate(AC) opponent

J BRS vs POLA: Head to Head Results

In this section, we delve into the details of POLA vs. BRS. We sampled 32 trajectories between each
POLA seed and each BRS seeds. In summary, we observe: 1) POLA seeds have higher variance in
behaviour. 2) POLA seeds break the cooperation loop much more often than BRS agents. 3) POLA
agents retaliate weakly when BRS breaks the cooperation by defecting. In overall, that indicates
that BRS agents are more suitable than POLA agents as reciprocation-based cooperative agents.

J.1 Reciprocation-based Cooperation Comparison

Agent Start Opponent
Cooperates

Opponent Defects Opponent Defects and
Agent Cooperates

POLA 0.5614 0.8705 0.1350 0.6944
BRS 0.9957 0.9894 0.2599 0.1600

Table 3: This table indicates the empirically estimated probability that each agent cooperates after
a specific condition is met. For example, POLA cooperated with 0.6944 probability in trajectories
in which BRS defected while POLA’s last action was cooperation.

We now consider empirical statistics of the observed trajectories between POLA and BRS agents
in the Coin Game. Here we define cooperation as a turn in which the opponent does not take the
agent’s coin (and vice versa for the agent). We define for both opponent and agent defection as a
turn in which they take the other’s coin.

A shown in Table 3 in contrast to BRS which almost always starts with cooperation, POLA starts
cooperation 0.56 of times deviating from a TFT policy. Both POLA and BRS cooperate with high
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probability in case of observing that the opponent cooperated. However, BRS’s policy cooperates
with higher probability. Both POLA and BRS cooperate with little probability after they observe the
opponent defected. While POLA cooperates with less probability than BRS which seems desirable,
it should be noted that POLA seeds defect more compared to BRS seeds in general. The next column
sheds lights on this. A cooperation reciprocation-based policy should defect after its cooperation
is faced with opponent defection. POLA will cooperate 0.70 times in those situations indicating
lack of strong retaliation. BRS seeds cooperate 0.16 times indicating strong retaliation. Note that
these are conditional probabilities. As shown in Table 4 in these 32 trajectories we observe only 72
situations in which POLA cooperated first and BRS defected. In 22 out of those POLA defected
next and the other 50 POLA cooperated. This is a sign of weak retaliation. In contrast, we observe
950 situations in which BRS cooperated and POLA defected. In 798 out of those, BRS defected
next indicating strong retaliation. In summary, these results show that POLA agents are inclined
towards defecting and also they weakly retaliate while BRS agents show strong inclination towards
cooperation while showing strong signs of retaliation when the opponent defects.

Table 4: Retaliation Behaviors of POLA and BRS Agents

POLA Cooperates & BRS Defects: 72 times BRS Cooperates & POLA Defects: 950 times

POLA Defects Next POLA Cooperates Next BRS Defects Next BRS Cooperates Next

22 times, 0.31 probability 50 times, 0.69 probability 798 times, 0.84 probability 152 times, 0.16 probability

Table 5: Shows the empirical frequency of various retaliations behaviours of POLA and BRS seeds
in 32 rollouts of length 50 in the Coin Game. In 72 times BRS defected after POLA cooperated.
Only 22 times out of those, POLA retaliates. In 950 times POLA defected after BRS cooperated.
BRS retaliated on 798 of those.

J.2 League Results and Analysis

Figure 9 shows the head to head results of BRS and POLA seeds. We observe that while BRS
agents robustly cooperate with themselves, MCTS, and Always Cooperate the behaviour of POLA
agents varies. We observe two main patterns in POLA seeds. POLA-3 and POLA-4 are exploitative,
exploiting other POLA seeds and Always Cooperate. But, they cannot cooperate with themselves.
While they are not exploited by MCTS in the sense of getting lower return than MCTS, their return
against MCTS indicates non-cooperative rollouts. POLA-1, POLA-2, POLA-5, and POLA-6 are
more cooperative - even cooperating with themselves - at the expense of being exploited by other
POLA seeds and MCTS. It should be noted that for all POLA seeds the best response, approximated
by the MCTS agent, is never to always cooperate. This is in contrast with BRS which not only
always cooperates with itself, but also convinces the MCTS agent to always cooperate with them.
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Figure 9: Head to head results of BRS and POLA seeds. Each entry is averaged over 32 independent
rollouts.


