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Abstract

We present a bound for value-prediction error with respect to model misspecification
that is tight, including constant factors. This is a direct improvement of the “sim-
ulation lemma,” a foundational result in reinforcement learning. We demonstrate
that existing bounds are quite loose, becoming vacuous for large discount factors,
due to the suboptimal treatment of compounding probability errors. By carefully
considering this quantity on its own, instead of as a subcomponent of value error,
we derive a bound that is sub-linear with respect to transition function misspecifi-
cation. We then demonstrate broader applicability of this technique, improving a
similar bound in the related subfield of hierarchical abstraction.

1 Introduction

In reinforcement learning, an agent is frequently tasked with making decisions in an environment that
it cannot model perfectly. This may occur because the environment is learned about through sampled
data, or because the agent’s environment model is simplified through some abstraction. In such cases
it is natural to ask, how might the quality of this approximation impact an agent’s decision making?
This is the subject of the “simulation lemma,” a foundational result in reinforcement learning that
bounds the error in value estimation when the transition and reward function are known only with
some specified degree of precision.

The simulation lemma was introduced in the context of exploration and finds use in a variety of
domains that utilize imperfect models, such as hierarchical abstraction (Abel et al., 2016) and offline
policy evaluation (Yin et al., 2021). Frequently, results of this kind rely on developing a recursive
relationship between the value error at subsequent timesteps. We show that this approach implicitly
overestimates how probability errors compound over time. By more directly approximating this
quantity, we produce a bound on value-estimation error that is demonstrably tight. We then show
that existing bounds can be derived as a linearization of our result, and finally apply our result to
a hierarchical setting to demonstrate broader applicability.

2 Background and Related Work

We develop our results in the framework of Markov Decision Processes (MDPs): M = (S, A, R, T, γ),
where S is the state space, A is the action space, and γ ∈ [0, 1] is the discount factor. The next-
state transition probabilities are given by T (s′|s, a), and the reward function by R(s, a) ∈ [0, 1]. A
policy π(a|s) gives the probability of taking an action from a given state. The objective in the MDP
framework is generally either to construct a policy π that maximizes the expected γ-discounted sum
of reward, or to evaluate a given policy on this same measure.

When a model of the environment is given, these quantities can be computed exactly, for example
through policy iteration or dynamic programming (Howard, 1960). In reinforcement learning, how-
ever, the agent generally is not given this model, and instead must learn about the environment
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through interaction. A common approach to this is model-based reinforcement learning (Moerland
et al., 2023; Auer & Ortner, 2006), which aims to estimate the environment’s transitions and rewards
from gathered data. However, when using finite data, the learned model is generally imperfect. This
work concerns itself with developing optimal bounds on policy evaluation error in the setting of
misspecified models. Here we detail a variety of areas in which such a bound is useful, along with
related lines of study.

Exploration The original simulation lemma was introduced in the context of efficient exploration
(Kearns & Singh, 2002), to quantify policy evaluation error as a function of state-action visitation
counts. Understanding the effect of imperfect modelling is central to efficient exploration (Auer
& Ortner, 2006; Auer et al., 2008; Brafman & Tennenholtz, 2002). Methods that use these mea-
sures include count-based exploration (Strehl & Littman, 2008) and its pseudocount approximations
(Bellemare et al., 2016; Lobel et al., 2023).

Abstraction Model approximation frequently appears in the field of abstraction, where a full
model of an MDP is replaced by one that is simpler in some respect. As we show later, our
methodology can be used to improve the value error bounds when performing this replacement
with state-action abstracted options (Sutton et al., 1999). A simple form of state abstraction is
discretization, where sets of states are grouped by some measure of similarity. A common example
of this occurs in the partially observable MDP framework (Lee et al., 2007; Grover & Dimitrakakis,
2021), where the continuous belief-state space can be discretized into an approximate, finite MDP.

Offline Policy Evaluation The goal of offline policy evaluation (OPE) is to estimate the value
of a policy using a fixed dataset of transitions, often generated by a different policy. Model-based
OPE involves fitting an empirical model of transitions and rewards from this dataset, and using this
to estimate value (Gottesman et al., 2019). In this setting, the simulation lemma often is a key step
in constructing accuracy bounds of the estimated value (Yin & Wang, 2020; Yin et al., 2021).

We also note that a variety of results in the literature bound the value error using different measures
of similarity than the original simulation lemma. Perhaps most closely related to our contribution is
work that bounds multi-step transition error of imperfectly-modelled Lipschitz transition functions
(Asadi et al., 2018). This results in a similar sum of compounding errors to ours, albiet in a different
setting. Bisimulation metrics (Ferns et al., 2004) unify transition and reward error into a single
quantity that can be used to measure the similarity of MDPs with entirely different state spaces.

3 Main Result

We begin by stating the conditions of the original simulation lemma. We consider two MDPs:
M = (S, A, R, T, γ), and M̂ = (S, A, R̂, T̂ , γ), which share a state-action space, but have (bound-
edly) different transition and reward functions. We are interested in the effect of running the same
policy π on these two related MDPs. Let P π be a matrix that contains the policy-conditioned
state-state transition probabilities, and Rπ be a vector that contains the per-state expected reward:

P π
s,s′ = Ea∼π(s)[T (s′|s, a)] =

∑
a∈A

T (s′|s, a)π(a|s)

Rπ
s = Ea∼π(s)[R(s, a)] =

∑
a∈A

R(s, a)π(a|s).
(1)

We define P̂ π and R̂π analogously for MDP M̂. Throughout this work, a single index on a matrix (or
vector) extracts the specified row vector (or scalar). Furthermore, P a and Ra refer to the transition
probabilities, and expected reward, of executing action a from each state. Using this notation, we
can quantify the difference between two transition or reward functions with the following:
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∀s, π : ∥P π
s − P̂ π

s ∥1 ≤ ϵT (2)
∀π : ∥Rπ − R̂π∥∞ ≤ ϵR. (3)

We are interested in the value difference between running π on each MDP. The value of a state for
a given policy and MDP is defined as the expected discounted sum of rewards:

vπ(s) = Eai∼π(si)
[ ∞∑

t=0
γtR(st, at) | s0 = s, M

]
,

where st is a random variable representing the state at timestep t. Noting that
Pr(st = s′|s0 = s, π) = (P π)t

s,s′ , we can concisely represent value in vectorized notation as follows:

V π =
∞∑

t=0
γt(P π)tRπ , V π

s =
∞∑

t=0
γt⟨(P π)t

s, Rπ⟩,

where ⟨ · , · ⟩ denotes the inner product between two vectors. We define V̂ π analogously for M̂.

3.1 Original Simulation Lemma

We are interested in quantifying the maximum value difference between running the same policy on
two different MDPs. The original simulation lemma bounds this quantity as follows:

∀s, π : |V π
s − V̂ π

s | ≤ ϵR

1 − γ
+ γϵT

2(1 − γ)2 . (4)

Existing proofs of the simulation lemma frequently take advantage of a recursive representation of
value (the Bellman Equation) (Howard, 1960):

V π = Rπ + γP π
∞∑

t=0
γt(P π)tRπ = Rπ + γP πV π.

For a complete proof, please refer to Jiang (2018) or see Appendix A. The key mathematical idea is
to establish the following recursive relationship:

∀s, π : |V π
s − V̂ π

s | ≤ ϵR + γϵT

2(1 − γ) + γ∥V π − V̂ π∥∞, (5)

which can then be easily transformed into the simulation lemma’s bound. Analyzing the recursive
relationship above, the first term (ϵR) represents a one-step reward-prediction error. The second
term ( γϵT

2(1−γ) ) represents the maximum value error that results from misspecifying ϵT of the next-
state distribution’s probability mass. However, by defining the recursive relationship as such, this
bound implicitly assumes that the process can continually misspecify ϵT of its probability at each
timestep. This quickly amounts to misspecifying more than the entire probability mass, leading to
a vast overestimate of the value error, in particular when ϵT > 1 − γ. In contrast, we carefully track
the probability drift at each timestep to avoid this issue.

3.2 Bounding Probability Distance

We seek to bound the probability distance tightly at any timestep t. To do so effectively, it is useful
to frame distances between probability vectors in terms of their overlap, instead of their L1 distance.
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Figure 1: Visualization of relation between L1 distance and overlap of two probability distributions
(Equation 7). The blue and orange shaded regions together comprise the L1 distance. The brown
region represents overlap. Overlap plus either the blue or orange sections constitutes a probability
distribution, and therefore has total area 1. Thus the blue and orange regions both individually
have area ∥p − p̂∥1/2, and so ∥p̄∥1 = 1 − ∥p − p̂∥1/2.

We note that Jiang et al. (2016) uses similar machinery to bound compounding probability error
(Lemma 1), though applies this insight in a different context. For two probability vectors p, p̂, we
define their overlap as p̄, such that for each index i:

p̄i = min(pi, p̂i).

Usefully, because each element of p − p̄ (and likewise p̂ − p̄) is non-negative, the L1 norm of the
difference between these two vectors is equal to the difference between the L1 norms:

∥p − p̄∥1 =
∑

i

|pi − p̄i| =
∑

i

pi −
∑

i

p̄i = ∥p∥1 − ∥p̄∥1 (6)

We use this to derive an equivalence between overlap and L1 distance, related to the concept of total
variation distance (Levin & Peres, 2017). Below, we use the notation [p]+ to indicate a thresholded
version of p that retains only the non-negative parts, [p]+i = max(pi, 0):

∥p − p̂∥1 = ∥[p − p̄]+∥1 + ∥[p̂ − p̄]+∥1

= ∥p − p̄∥1 + ∥p̂ − p̄∥1

= ∥p∥1 − ∥p̄∥1 + ∥p̂∥1 − ∥p̄∥1

= 1 + 1 − 2∥p̄∥1

=⇒ ∥p̄∥1 = 1 − ∥p − p̂∥1

2 . (7)

See Figure 1 for a demonstration and explanation of this equivalence. This relationship allows for a
simple rewriting of the transition-error condition of the simulation lemma (Equation 2):

∀s, π : ∥P̄ π
s ∥1 ≥ 1 − ϵT

2 . (8)

Using this framing, we can now lower-bound the overlap of state-distributions at timestep t when
starting from s0, by demonstrating that at every timestep, at least 1 − ϵT /2 fraction of the prior
timestep’s distributional overlap is retained. For notational convenience, P t

s0,s = (P π)t
s0,s, and
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M̄ t
s0,s = min(P t

s0,s, P̂ t
s0,s). Thus,

∥M̄ t+1
s0

∥1 =
∑

s′

min(P t+1
s0,s′ , P̂ t+1

s0,s′)

=
∑

s′

min(
∑

s

P t
s0,s · P π

s,s′ ,
∑

s

P̂ t
s0,s · P̂ π

s,s′)

≥
∑

s′

∑
s

min(P t
s0,s · P π

s,s′ , P̂ t
s0,s · P̂ π

s,s′)

≥
∑

s′

∑
s

min
(

min(P t
s0,s , P̂ t

s0,s) · P π
s,s′) , min(P t

s0,s , P̂ t
s0,s) · P̂ π

s,s′

)
=

∑
s

∑
s′

min(P t
s0,s , P̂ t

s0,s) min(P π
s,s′ , P̂ π

s,s′)

=
∑

s

min(P t
s0,s , P̂ t

s0,s)
∑

s′

min(P π
s,s′ , P̂ π

s,s′)

≥ ∥M̄ t
s0

∥1 · max
s

∥P̄ π
s ∥1

=⇒ ∥M̄ t+1
s0

∥1 ≥ ∥M̄ t
s0

∥1 · (1 − ϵT /2).

The third line can be understood as providing the minimum operator more options to choose from,
in that after bringing the minimum inside of the sum, the two elements in the second line are both
still possible choices and so the inequality holds. The fourth line can be understood similarly for
multiplication.

With M̄0 = I as the base case, applying recursion yields

∥M̄ t
s0

∥1 ≥ (1 − ϵT /2)t. (9)

We contrast this with the equivalent recursive proof of distributional drift using the L1 formulation
of transition misspecification, akin to the recursion employed by the original simulation lemma
(Equation 5):

∥P t+1
s0

− P̂ t+1
s0

∥1 = ∥P t
s0

P π − P̂ t
s0

P̂ π∥1

= 1
2∥(P t

s0
− P̂ t

s0
)(P π + P̂ π) + (P t

s0
+ P̂ t

s0
)(P π − P̂ π)∥1

≤ 1
2∥P t

s0
− P̂ t

s0
∥1∥(P π + P̂ π)T ∥1 + 1

2∥P t
s0

+ P̂ t
s0

∥1∥(P π − P̂ π)T ∥1

= ∥P t
s0

− P̂ t
s0

∥1 + ∥P π − P̂ π∥1

≤ ∥P t
s0

− P̂ t
s0

∥1 + ϵT

=⇒ ∥P t+1
s0

− P̂ t+1
s0

∥1 ≤ (t + 1) ϵT ,

where ∥ · ∥1 above refers to both the matrix and vector 1-norm, and on the third line we use the
identity ∥Ax∥1 ≤ ∥A∥1∥x∥1. This result makes clear the contrast between the two methods for
computing distributional drift: Naïvely using the L1 formulation leads to unbounded accumulation
of drift as horizon approaches infinity, while the overlap formulation smoothly decays from 1 to 0.
This difference is crucial to generating the tighter bound in the next section.

3.3 A Tight Bound on Value Error

We are now ready to prove our main result, a tight bound on the value error.
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Theorem 1 For two MDPs M and M̂ related as described in Equations 2 and 3, the following
inequality holds:

∀s, π : |V π
s − V̂ π

s | ≤ 1
1 − γ

− 1 − ϵR

1 − γ(1 − ϵT /2) . (10)

Furthermore, this bound is tight.

Proof: Since the conditions of the simulation lemma (Equations 2,3) are symmetric with respect
to M and M̂, without loss of generality we assume V π

s0
≥ V̂ π

s0
, and thus |V π

s0
− V̂ π

s0
| = V π

s0
− V̂ π

s0
. We

now add and subtract the same quantity in a way that allows for discarding a strictly non-positive
term:

|V π
s0

− V̂ π
s0

| = V π
s0

− V̂ π
s0

=
∞∑

t=0
γt⟨P t

s0
, Rπ⟩ − γt⟨P̂ t

s0
, R̂π⟩

=
∞∑

t=0
γt

(
⟨P t

s0
, Rπ⟩ − ⟨M̄ t

s0
, Rπ⟩ + ⟨M̄ t

s0
, Rπ⟩ − ⟨M̄ t

s0
, R̂π⟩ + ⟨M̄ t

s0
, R̂π⟩ − ⟨P̂ t

s0
, R̂π⟩

)
=

∞∑
t=0

γt⟨P t
s0

− M̄ t
s0

, Rπ⟩ + γt⟨M̄ t
s0

, Rπ − R̂π⟩ + γt⟨M̄ t
s0

− P̂ t
s0

, R̂π⟩.

By construction, M̄ t
s0

is the overlap between P t
s0

and P̂ t
s0

, and thus and entries of M̄ t
s0

− P̂ t
s0

are
strictly non-positive. Since rewards are likewise non-negative, the third inner product in the above
sum is always non-positive. Thus, we can drop this term to significantly tighten our bound.

V π
s0

− V̂ π
s0

≤
∞∑

t=0
γt⟨P t

s0
− M̄ t

s0
, Rπ⟩ + γt⟨M̄ t

s0
, Rπ − R̂π⟩

≤
∞∑

t=0
γt∥P t

s0
− M̄ t

s0
∥1 · ∥Rπ∥∞ + γt∥M̄ t

s0
∥1 · ∥Rπ − R̂π∥∞

≤
∞∑

t=0
γt∥P t

s0
− M̄ t

s0
∥1 + γt∥M̄ t

s0
∥1ϵR

=
∞∑

t=0
γt∥P t

s0
∥1 − γt∥M̄ t

s0
∥1 + γt∥M̄ t

s0
∥1ϵR

=
∞∑

t=0
γt + γt(ϵR − 1)∥M̄ t

s0
∥1

≤
∞∑

t=0
γt + γt(ϵR − 1)(1 − ϵT /2)t

= 1
1 − γ

+ (ϵR − 1)
∞∑

t=0
(γ − γϵT

2 )t

=⇒ |V π
s0

− V̂ π
s0

| ≤ 1
1 − γ

− 1 − ϵR

1 − γ(1 − ϵT /2) . ■

This proof makes use of Hölder’s inequality to bound inner products with L1 and L∞ norms, as well
as the identity in Equation 6 to split ∥P t

s0
− M̄ t

s0
∥1 into ∥P t

s0
∥1 − ∥M̄ t

s0
∥1. We provide a parallel
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Figure 2: Bounds on value error given by original simulation lemma as well as our tighter bounds,
normalized by VMAX . (Left) Bound on value error with increasing gamma shows the original lemma’s
suboptimality with respect to discount. (Right) Bound on value error with increasing misspecifica-
tion shows looseness of linear approximation compared to the tight bound.

proof for the finite-horizon undiscounted setting in Appendix B. We briefly remark that this bound
matches intuition:

• When γ = 0, then |V π
s − V̂ π

s | ≤ ϵR since only the first step contributes to value.

• When ϵR = 1, the MDPs can have completely different reward functions and thus
|V π

s − V̂ π
s | ≤ 1

1−γ = VMAX .

• When ϵR = ϵT = 0, the MDPs are identical and thus |V π
s − V̂ π

s | = 0.

Additionally we note the the original simulation lemma can be reproduced as a Taylor expansion
of our bound around ϵR = 0 and ϵT = 0, proving that the original bound is the tightest possible
linear approximation to the maximal error as model misspecification approaches 0. Figure 2 presents
a comparison of our bound with the original simulation lemma, demonstrating superiority in the
large-misspecification and large-discount limits.

3.4 Proof of Tightness

We now demonstrate that this is the tightest possible bound, including constant factors, by con-
structing a pair of MDPs with exactly this value error. M consists of two states, both of which
transition to themselves, with R(s1) = 1 and R(s2) = 0. We construct M̂ so that V̂ (s1) is as small
as possible given ϵR, ϵT , by setting R̂(s1) = 1 − ϵR, and transitioning from s1 to s2 with probability
ϵT /2 (and thus self-transitions with ϵT /2 less probability, so ∥P π

s1
−P̂ π

s1
∥1 = ϵT ). Hence, V (s0) = 1

1−γ

and V̂ (s0) = 1−ϵR

1−γ(1−ϵT /2) .

Intuitively, this result makes clear the role of ϵT as modifying the discount factor of M̂. A discount
can be interpreted as entering an absorbing state with probability 1 − γ at each timestep (Sutton &
Barto, 2018). In M̂, this instead occurs more frequently, with probability 1 − γ(1 − ϵT /2).

3.5 Value Loss of Optimal Policy

The simulation lemma directly applies to bounding the value difference of executing the same policy
on two related MDPs. However, in reinforcement learning the task is frequently to learn an optimal
policy π∗, that has the following property:

∀π, s : V π∗

s ≥ V π
s .

7



It is natural to ask, if one learns the optimal policy π̂∗ by training on an approximate MDP M̂, how
much worse will this policy do than π∗ when executed on the actual MDP M? In contrast to the
simulation lemma, we are comparing the value loss of different policies on the same MDP. Noting
that V̂ π̂∗

s ≥ V̂ π∗

s :

V π∗

s − V π̂∗

s = V π∗

s + (V̂ π∗

s − V̂ π∗

s ) + (V̂ π̂∗

s − V̂ π̂∗

s ) − V π̂∗

s

= (V π∗

s − V̂ π∗

s ) + (V̂ π∗

s − V̂ π̂∗

s ) + (V̂ π̂∗

s − V π̂∗

s )
≤ (V π∗

s − V̂ π∗

s ) + 0 + (V̂ π̂∗

s − V π̂∗

s )
≤ |V π∗

s − V̂ π∗

s | + |V̂ π̂∗

s − V π̂∗

s |.

This is simply twice the value error of executing the same policy on different MDPs. Thus, by
improving the simulation lemma bound, we similarly tighten the estimated value loss when training
on an approximate MDP. Similar results are common in inverse RL, e.g., Burchfiel et al. (2016), and
have been noted in the context of the simulation lemma as well (Jiang, 2018).

3.6 Application to Hierarchy

Analogs to the simulation lemma exist throughout the reinforcement learning literature; here, we
present an extension of our proof to one such instance in the field of hierarchical reinforcement
learning. We use the formalism of ϕ-relative options (Abel et al., 2020), a form of approximately
value preserving state and action abstractions.

Let O∗
ϕ be a set of options o∗ over abstract states sϕ ∈ Sϕ, that can be composed to form a policy

that is optimal in the base MDP. Let Ôϕ be a set of options that approximates O∗
ϕ in that

∀o∗ ∈ O∗
ϕ ∃ô ∈ Ôϕ :

∀s, s′ |P o∗

s,s′ − P ô
s,s′ | ≤ ϵT and |Ro∗

s − Rô
s| ≤ ϵR,

where Ro
s and P o

s,s′ represent the reward and multi-time models of Sutton et al. (1999). We define
V πo∗ as the value of executing the best policy over O∗

ϕ, and V πô as the value of executing an
approximately equivalent policy using options from Ôϕ. By bounding probability distances we
arrive at the following relation:

|V πo∗
s − V πô

s | ≤ RMAX

1 − γ
− RMAX − ϵR

1 − γ + (|S| − 1)ϵT
.

This improves on the existing bound (Abel et al., 2020):

|V πo∗
s − V πô

s | ≤ ϵR + |S|ϵT RMAX

(1 − γ)2 ,

in much the same way as our original result improves upon the simulation lemma. A proof, more
complete definitions, and an example demonstrating tightness are deferred to Appendix C. The main
difference in applying our technique to this domain is careful treatment of the multi-time transition
function, where

∑
s′ P o

s,s′ ̸= 1.

4 Conclusion

The simulation lemma is a widely used result in reinforcement learning that quantifies the effect of
model misspecification on value. We demonstrate that the originally provided bound is quite loose,
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becoming vacuous when applied to large discount factors frequently used in reinforcement learning.
In this work we present a version of this lemma that is optimally tight, along with an example
application of this method to hierarchical reinforcement learning. We expect that our bound can be
applied to a variety of results throughout the literature, and that the general proof technique can
be useful in other domains.
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A Full proof of Simulation Lemma

For completeness, we include the proof of the simulation lemma found in Jiang (2018). We adopt
notation from Section 3.

|V π
s − V̂ π

s | = |Rπ
s + γ⟨P π

s , V π⟩ − R̂π
s − γ⟨P̂ π

s , V̂ π⟩|
≤ ϵR + γ|⟨P π

s , V π⟩ − ⟨P̂ π
s , V π⟩ + ⟨P̂ π

s , V π⟩ − ⟨P̂ π
s , V̂ π⟩|

= ϵR + γ|⟨P π
s , V π − 1

2(1 − γ) ⟩ − ⟨P̂ π
s , V π − 1

2(1 − γ) ⟩ + ⟨P̂ π
s , V π⟩ − ⟨P̂ π

s , V̂ π⟩|

≤ ϵR + γ∥P π
s − P̂ π

s ∥1 · ∥V π − 1
2(1 − γ)∥∞ + γ∥P̂ π

s ∥1 · ∥V π − V̂ π∥∞

≤ ϵR + γϵT

2(1 − γ) + γ∥V π − V̂ π∥∞

=⇒ |V π
s − V̂ π

s | ≤ ϵR

1 − γ
+ γϵT

2(1 − γ)2 .

This proof makes use of Hölder’s inequality to bound inner products with L1 and L∞ norms, as well
as centers the value 0 ≤ V π

s ≤ 1
1−γ through subtracting the midpoint for improved bounds.
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B Application to the Finite-Horizon Setting

We now extend our improved bound to the finite-horizon, undiscounted setting, where an agent
interacts with an environment for H steps. One difference in this setting is that policies are con-
ditioned on timestep as well as state; hence we define π = [π0, . . . , πH−1]. Existing bounds in the
finite-horizon setting establish a relationship between values at subsequent timesteps. Noting that
0 ≤ V π

h,s ≤ H − h (and defining V π
H,s = 0), Then,

|V π
h,s − V̂ π

h,s| = |Rπh
s + ⟨P πh

s , V π
h+1⟩ − R̂πh

s − ⟨P̂ πh
s , V̂ π

h+1⟩|

≤ ϵR + |⟨P πh
s , V π

h+1⟩ − ⟨P̂ πh , V π
h+1⟩ + ⟨P̂ πh , V π

h+1⟩ − ⟨P̂ πh
s , V̂ π

h+1⟩|

= ϵR + |⟨P πh
s , V π

h+1 − H − h − 1
2 · 1⟩ − ⟨P̂ πh , V π

h+1 − H − h − 1
2 · 1⟩

+ ⟨P̂ πh , V π
h+1⟩ − ⟨P̂ πh

s , V̂ π
h+1⟩|

≤ ϵR + ∥P πh
s − P̂ πh

s ∥1 · ∥V π
h+1 − H − h − 1

2 · 1∥∞ + ∥V π
h+1 − V̂ π

h+1∥∞

≤ ϵR + ϵT
H − h − 1

2 + ∥V π
h+1 − V̂ π

h+1∥∞

=⇒ |V π
h,s − V̂ π

h,s| ≤
H−1∑
i=h

ϵR + ϵT
H − i − 1

2

=⇒ |V π
0,s − V̂ π

0,s| ≤ ϵRH + ϵT
H(H − 1)

4

For our bound, the only change from the discounted setting is replacing the discounted infinite sums
of Section 3.3 with finite undiscounted ones. Redefining P t =

∏
0≤i<t P πi , and WLOG assuming

that V π
0,s0

≥ V̂ π
0,s0

we can show:

|V π
0,s0

− V̂ π
0,s0

| = V π
0,s0

− V̂ π
0,s0

=
H−1∑
t=0

⟨P t
s0

, Rπt⟩ − ⟨P̂ t
s0

, R̂πt⟩

=
H−1∑
t=0

⟨P t
s0

− M̄ t
s0

, Rπt⟩ + ⟨M̄ t
s0

, Rπt − R̂πt⟩ + ⟨M̄ t
s0

− P̂ t
s0

, R̂πt⟩

≤
H−1∑
t=0

⟨P t
s0

− M̄ t
s0

, Rπt⟩ + ⟨M̄ t
s0

, Rπt − R̂πt⟩

≤
H−1∑
t=0

∥P t
s0

− M̄ t
s0

∥1 · ∥Rπt∥∞ + ∥M̄ t
s0

∥1 · ∥Rπt − R̂πt∥∞

≤
H−1∑
t=0

∥P t
s0

− M̄ t
s0

∥1 + ∥M̄ t
s0

∥1ϵR

=
H−1∑
t=0

∥P t
s0

∥1 − ∥M̄ t
s0

∥1 + ∥M̄ t
s0

∥1ϵR

≤
H−1∑
t=0

1 + (ϵR − 1)(1 − ϵT /2)t

=⇒ |V π
0,s0

− V̂ π
0,s0

| ≤ H − (1 − ϵR) 2
ϵT

(1 − (1 − ϵT /2)H)
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Again, we note that Taylor expanding this relation at ϵR = 0 and ϵT = 0 recovers the original bound.

C Proof of Hierarchy Bound

This proof exactly mirrors the one in the main body, with additional care taken to handle multi-time
models. We first describe the ϕ-relative options framework (definitions largely taken from Abel et al.
(2020)), and then provide a tighter bound on value loss.

An option o ∈ O is an abstract action defined by the tuple (Io, βo, πo), where Io ⊆ S is the subset
of the state space the option can initiate in, β0 ⊆ S is the subset the option terminates in, and πo is
a policy. For a given state abstraction ϕ : S → Sϕ, an option oϕ is said to be ϕ-relative if and only
if ∃sϕ ∈ Sϕ such that

s ∈ sϕ =⇒ s ∈ Ioϕ
s /∈ sϕ =⇒ s ∈ βoϕ

∀s ∈ sϕ, πoϕ
(s) → ∆(A)

In words, a ϕ-relative option is one that executes from anywhere in one abstract state, and terminates
upon leaving that abstract state. Furthermore, Oϕ denotes a set of only ϕ-relative options, with at
least one option that executes at each abstract state.

Let O∗
ϕ be a set of ϕ-relative options o∗ that can be composed to form an optimal policy in the base

MDP. Let Ôϕ be a set of options that approximates O∗
ϕ in that

∀o∗ ∈ O∗
ϕ ∃ô ∈ Ôϕ :

∀s, s′ |P o∗

s,s′ − P ô
s,s′ | ≤ ϵT and |Ro∗

s − Rô
s| ≤ ϵR

(11)

where Ro
s and P o

s,s′ represent the multi-time reward and transition functions described in Sutton
et al. (1999):

Ro
s = Ea∼o[

∞∑
t=0

γtrt] P o
s,s′ =

∞∑
t=1

γt Pr(st = s′, tβ = t).

In words, Ro
s is the expected discounted reward accumulated over the course of an option execution,

and P o
s,s′ is the total discounted probability that an option terminates in s′ when starting from s.

Crucially,
∑

s′∈S P o
s,s′ ≤ γ < 1. We also note that the ϵT bound is per-entry, not per-vector. This

was the form of the conditions in the original simulation lemma (Kearns & Singh, 2002), which was
replaced with a vectorized version in subsequent work (Kakade et al., 2003).

Since ∥P o
s ∥1 may take on different values for different options and starting states, we can no longer

directly use a relation similar to Equation 7. However, we can augment the MDP by adding an
absorbing state sx, and modify each option such that

Ro
sx

= 0 , P o
s,sx

= γ −
∑

s′ ̸=sx

P o
s,s′ .

By doing this, ∥P o
s ∥1 = γ without modifying the behavior of the given option in the base MDP. This

allows our proof to proceed treating options in roughly the same way as we do actions in the main
body. Noting that since P o

s,s ≡ 0 by construction, for two options o∗, ô∗ satisfying the relations of
Equation 11 we have that:

|P o∗

s,sx
− P ô

s,sx
| ≤

∑
s′ ̸=sx,s

|P o∗

s,s′ − P ô
s,s′ | ≤ (|S| − 1)ϵT .

Thus we can recover a condition similar to that of Equation 2:

∥P o∗

s − P ô
s ∥1 =

∑
s′∈S+sx

|P o∗

s,s′ − P ô
s,s′ | ≤ 2(|S| − 1)ϵT .
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Due to the addition of sx, we can now describe the above bound in terms of overlap. Defining
P̄ o∗,ô

s,s′ = min(P o∗

s,s′ , P ô
s,s′), we can produce a similar relation to Equation 8:

∥P̄ o∗,ô
s ∥1 ≥ γ − (|S| − 1)ϵT .

Let ΠOϕ
be the set of abstract policies representable by Oϕ. Let πo∗ be a policy within ΠO∗

ϕ
that is

optimal in the base MDP. Let πô be a policy in ΠÔϕ
produced by replacing each o∗ chosen by πo∗

with an option ô satisfying the relations of Equation 11. Then, we can follow the same algebraic
steps as in the main body to produce the following bound:

|V πo∗
s − V πô

s | ≤ RMAX

1 − γ
− RMAX − ϵR

1 − γ + (|S| − 1)ϵT
.

C.1 Proof of Tightness

We can generate an abstract MDP that achieves this bound using a similar recipe as in Section 3.4.
We construct an abstract MDP where each option o∗ transitions uniformly to each other state with
discounted probability γ

|S|−1 , receiving a reward of RMAX . We then construct a new set of options
that uniformly transition with discounted probability γ

|S|−1 − ϵT , receiving reward RMAX − ϵR. This
exactly reproduces the provided bound.
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