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Abstract

Hierarchical reinforcement learning (HRL) addresses complex long-horizon tasks by
skillfully decomposing them into subgoals. Therefore, the effectiveness of HRL is
greatly influenced by subgoal reachability. Typical HRL methods only consider
subgoal reachability from the unilateral level, where a dominant level enforces com-
pliance to the subordinate level. However, we observe that when the dominant level
becomes trapped in local exploration or generates unattainable subgoals, the sub-
ordinate level is negatively affected and cannot follow the dominant level’s actions.
This can potentially make both levels stuck in local optima, ultimately hindering
subsequent subgoal reachability. Allowing real-time bilateral information sharing
and error correction would be a natural cure for this issue, which motivates us to
propose a mutual response mechanism. Based on this, we propose the Bidirectional-
reachable Hierarchical Policy Optimization (BrHPO)—a simple yet effective algo-
rithm that also enjoys computation efficiency. Experiment results on a variety of
long-horizon tasks showcase that BrHPO outperforms other state-of-the-art HRL
baselines, coupled with a significantly higher exploration efficiency and robustness1.

1 Introduction

Reinforcement learning (RL) has demonstrated impressive capabilities in decision-making scenarios,
ranging from achieving superhuman performance in games (Mnih et al., 2015; Lample & Chaplot,
2017; Silver et al., 2018), developing complex skills in robotics (Levine et al., 2016; Schulman et al.,
2015) and enabling smart policies in autonomous driving (Jaritz et al., 2018; Kiran et al., 2021;
Cao et al., 2023). Most of these accomplishments are attributed to single-level methods (Sutton
& Barto, 2018), which learn a flat policy by trial and error without extra task decomposition or
subgoal guidance. While single-level methods excel at short-horizon tasks involving inherently atomic
behaviors (Levy et al., 2018; Nachum et al., 2018b; Pateria et al., 2021b), they often struggle to
optimize effectively in long-horizon complex tasks that require multi-stage reasoning or sparse reward
signals. To address this challenge, hierarchical reinforcement learning (HRL) has been proposed,
aiming to decompose complex tasks into a hierarchy of subtasks or skills (Kulkarni et al., 2016;
Bacon et al., 2017; Vezhnevets et al., 2017). By exploiting subtask structure and acquiring reusable
skills, HRL empowers agents to solve long-horizon tasks efficiently.

1We have released our code here: https://github.com/Roythuly/BrHPO

https://github.com/Roythuly/BrHPO
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Figure 1: A motivating example of our proposed
BrHPO. The earth, brain, and robot symbols
stand for the environment, high-level policy, and
low-level policy, respectively. We illustrate the
behaviors of hierarchical policies before and after
updated for each case. Left: Updated subgoal is
limited by low-level exploration. Middle: Low-
level policy struggles to approach the fixed sub-
goal. Right: hierarchical policies are mutually
responsive for subgoal reachability.
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Figure 2: The state-subgoal trajectory compar-
ison of baselines HIRO (a), RIS (b) and our
BrHPO (c). We visualize the state trajectories
(represented by the red-to-blue gradient lines)
and the guided subgoals (represented by trian-
gles). Note that lines and triangles of the same
colour indicate that they belong to the same sub-
task. The results demonstrate that BrHPO can
improve the alignment between states and sub-
goals, thus benefitting overall performance.

Subgoal-based HRL methods, a prominent paradigm in HRL, partition complex tasks into simpler
subtasks by strategically selecting subgoals to guide exploration (Vezhnevets et al., 2017; Nachum
et al., 2018b). Subgoal reachability, which is utilized as an intrinsic reward for exploration in
different subtasks (Sukhbaatar et al., 2018), is crucial in evaluating how effectively the low-level
policies’ exploration trajectory aligns with the high-level policy’s subgoal, ultimately determining
task performance (Vezhnevets et al., 2017; Zhang et al., 2020). However, existing approaches for
improving subgoal reachability predominantly focus on one level of the hierarchical policy, imposing
dominance on the other level. This can be categorized as either low-level dominance or high-level
dominance (Nachum et al., 2018b; Zhang et al., 2020; Andrychowicz et al., 2017; Chane-Sane et al.,
2021; Eysenbach et al., 2019; Jurgenson et al., 2020). Low-level dominance (Figure 1a) refers to
the accommodation of low-level passive exploratory behaviour by the high-level policy, causing the
agent to get stuck near the starting position. On the other hand, high-level dominance (Figure 1b)
may result in unattainable subgoals, causing repeated failure and sparse learning signals for the
low-level policy. To assess these methods, we applied them to two HRL benchmarks, AntMaze
and AntPush, and generated state-subgoal trajectories for visualization. The results reveal that the
former methods exhibit lower exploration efficiency as the high level must generate distant subgoals
to guide the low level (Figure 2a), while the latter methods may create unattainable subgoals,
resulting in the low-level policy’s inability to track them (Figure 2b).

Enforcing subgoal reachability through unidirectional communication between the two levels has
limitations in overall performance improvement. A bidirectional reachability approach, illustrated
in Figure 1c, holds the potential to be more effective in HRL. From an optimization perspective,
bidirectional reachability provides two key benefits: 1) the high-level policy can generate subgoals
that strike a balance between incentive and accessibility, and 2) the low-level policy can take more
effective actions that drive subtask trajectories closer to the subgoal. Despite its potential advantages,
bidirectional subgoal reachability has not been extensively studied in previous research, and its ef-
fectiveness in enhancing HRL performance requires further investigation. We explore the theoretical
benefits of bidirectional insights, and empirically demonstrate its effectiveness through visualizing
the alignment between states and subgoals in Figure 2 and our ablation studies.
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This paper aims to investigate the potential of bidirectional subgoal reachability in improving
subgoal-based HRL performance, both theoretically and empirically. Specially, we propose a joint
value function and then derive a performance difference bound for hierarchical policy optimization.
The analysis suggests that enhancing subgoal reachability, from the mutual response of both-level
policies, can effectively benefit overall performance. Motivated by these, our main contribution is
a simple yet effective algorithm, Bidirectional-reachable Hierarchical Policy Optimization (BrHPO)
which incorporates a mutual response mechanism to efficiently compute subgoal reachability and in-
tegrate it into hierarchical policy optimization. Through empirical evaluation, we demonstrate that
BrHPO achieves promising asymptotic performance and exhibits superior training efficiency com-
pared to state-of-the-art HRL methods. Additionally, we investigate different variants of BrHPO to
showcase the effectiveness and robustness of the proposed mechanism.

2 Preliminaries

We consider an infinite-horizon discounted Markov Decision Process (MDP) with state space S,
action space A, goal/subgoal space G, unknown transition probability P a

s,s′ : S × A × S → [0, 1],
reward function r : S ×A× G → R, and discounted factor γ ∈ (0, 1). The objective of RL is to find
a policy π : S → ∆(A) to maxmize the discounted cumulative reward from the environment, which
can be formed as π∗ = arg maxπ E(st,at)∼P,π [

∑∞
t=0 γ

tr(st, at)].

Subgoal-based HRL, also called Feudal HRL (Dayan & Hinton, 1992; Vezhnevets et al., 2017),
comprises two hierarchies: a high-level policy generating subgoals, and a low-level policy pursuing
subgoals in each subtask. Assume that each subtask contains a fixed length of k timesteps, allowing
us to split the original task into multiple subtasks. Given the task goal ĝ, at the beginning of the
i-th subtask where i ∈ N, the high-level policy πh observes state sik and then outputs a subgoal
g(i+1)k ∼ πh(·|sik, ĝ) ∈ G. Then, in each subtask, the low-level policy πl performs actions conditioned
on the subgoal and the current state, aik+j ∼ πl(·|sik+j , g(i+1)k) ∈ A, where j ∈ [0, k − 1] is a
pedometer in one single subtask. With the guidance from the subgoal, the state-subgoal-action
trajectory in the i-th subtask comes out to be

τπh,πl

i ≜
{

(sik+j)|sik, g(i+1)k ∼ πh(·|sik, ĝ), aik+j ∼ πl(·|sik+j , g(i+1)k)
}k−1

j=0 , (1)

and the whole task trajectory forms by stitching all subtask trajectories as τ = ∪∞
i=0 (τπh,πl

i ).

Following prior methods (Andrychowicz et al., 2017; Nachum et al., 2018b; Zhang et al., 2020),
we optimize πh based on the high-level reward rh, defined as the environment reward feedback
summated over a subtask

rh(τπh,πl

i ) = rh(sik, g(i+1)k) =
k−1∑
j=0

r(sik+j , aik+j), (2)

and the intrinsic reward for the low-level policy πl is

rl(sik+j , aik+j , g(i+1)k) = −D(ψ(sik+j+1), g(i+1)k). (3)

where ψ : S 7→ G is a pre-defined state-to-goal mapping function and D : G × G → R≥0 is a chosen
binary or continuous distance measurement (Zhang et al., 2022).

3 Bidirectional Subgoal Reachability in HRL

In this section, we introduce the concept of bidirectional subgoal reachability and highlight its
differences from the previously studied unidirectional reachability. Specifically, bidirectional subgoal
reachability considers the capacities of both high-level guidance and low-level exploration, allowing
for more flexibility in HRL. We then discuss how this bidirectional reachability is integrated into the
optimization objective of hierarchical policies, resulting in a mutual response mechanism. Finally, we
present performance difference bounds associated with bi-directional reachability, providing valuable
theoretical insights for subgoal-based HRL.
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3.1 Bidirectional Subgoal Reachability

In contrast to previous unilateral subgoal reachability, termed as the high- or low-level dominance,
our work aims to propose a bidirectional subgoal reachability metric that simultaneously considers
the cooperation capacities of high-level guidance and low-level exploration within a single subtask.
Definition 3.1. The bidirectional subgoal reachability Rπh,πl

i at the i-th subtask is defined by

Rπh,πl

i = Eg(i+1)k∼πh,s(i+1)k∼τ
πh,πl
i

[
D(ψ(s(i+1)k), g(i+1)k)/D(ψ(sik), g(i+1)k)

]
. (4)

In this definition, subgoal reachability is equal to the ratio of the final distance (the final reached state
s(i+1)k to the subgoal g(i+1)k) to the initial distance (the initial state sik to the subgoal g(i+1)k).
Note that the smaller Rπh,πl

i means the better subgoal reachability and we define Rπh,πl

i = 0 if
D(ψ(sik), g(i+1)k) = 0. Although conceptually simple, this form has two benefits:

• When given the initial state sik of the sub-task, the subgoal reachability depends only on the
final distance, and is independent of the intermediate exploration process, aligning with the
properties of hierarchical abstraction. Besides, this is conducive to decoupling the guidance
of the high-level policy and the exploration of the low-level policy, avoiding the issues of
high- or low-level dominances;

• Using initial distance D(ψ(sik), g(i+1)k) as the regularization can eliminate the difference
caused by the initial conditions of different sub-tasks. Thus, it can comprehensively measure
whether the subgoal is easily reachable and whether the sub-task is easy to complete. For
instance, a subgoal with an initial distance of 10 and a final distance of 3, although the final
distance is larger, has a better subgoal reachability than a subgoal with an initial distance
of 5 but a final distance 2.

In contrast to previous methods, such as using environmental dynamics (Zhang et al., 2020) or
policy behavior (Nachum et al., 2018b; Kreidieh et al., 2019) for measuring subgoal reachability,
our method is a continuous metric and can assess the cooperative effects of hierarchical policies
rather than one of them. Therefore, improving subgoal reachability during policy optimization can
be effective in enhancing the performance of hierarchical policies. Further, by recognizing that the
low-level intrinsic reward shares the same form as the distance computation, we can replace the
distance computation with the low-level reward. Thus, we can calculate the subgoal reachability by

Rπh,πl

i = Eg(i+1)k∼πh,s(i+1)k∼τ
πh,πl
i

[D(ψ(s(i+1)k), g(i+1)k)
D(ψ(sik), g(i+1)k)

]
= Erl∼τ

πh,πl
i

rl,(i+1)k

rl,ik
. (5)

Specifically, we use a temporary replay buffer for storing subtask trajectory τπh,πl

i upon subtask
completion. Then, we can sample the first low-level reward rl,ik = rl(sik, aik, g(i+1)k) and the last
one rl,(i+1)k = rl(s(i+1)k, a(i+1)k, g(i+1)k) from the temporary buffer to calculate the reachability.
Notably, such a design is quite lightweight, incurring O(1) computational complexity, without intro-
ducing additional training costs.

3.2 Bidirectional Reachability Hierarchical Policy Optimization

With the bidirectional subgoal reachability in hand, we turn to design the core mutual response
mechanism, which aims at enhancing the reachability with the help of hierarchical policies.

High-level policy optimization. In our approach, we opt to use Rπh,πl

i as a regularization for
optimizing πh. During the high-level policy evaluation phase, we exclusively rely on rewards from
the environment to iteratively compute Q-values, which ensures the accuracy of guidance perfor-
mance evaluation. Furthermore, in the policy improvement phase, using Rπh,πl

i as the regularization
explicitly constrains the high-level policy’s subgoal generation. This focus allows it to concern the
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subgoal-reaching performance of the low-level policy within a subtask. Let Dh = Dh ∪ {τπh,πl

i } be
the high-level replay buffer, we evaluate the high-level policy by,

Qπh(s, g) = arg min
Q

1
2Es,g∼Dh

[rh(s, g) + γEs′∼Dh,g′∼πh
Qπh(s′, g′)−Qπh(s, g)]2 , (6)

and update the high-level policy by minimizing the expected KL-divergence with the reachability
term as,

πh = arg min
πh

Es∼Dh
[DKL(πh(·|s)∥ exp(Qπh(s, g)− V πh(s))) + λ1Rπh,πl

i ] , (7)

where V πh(s) = Eg∼πh(·|s) [Qπh(s, g)− log πh(·|s)] is the high-level soft state value function and λ1
is a weight factor. Thus, we can adjust the response of the high level through tuning λ1.

Low-level policy optimization. In contrast to high-level policy, we utilize Rπh,πl

i as a reward
bonus for low-level policy. This approach is designed to enable πl to simultaneously focus on both
low-level rewards and subgoal reachability during subgoal exploration. To ensure the improvement
of bidirectional subgoal reachability by low-level policy, we introduce subgoal reachability as well as
the low-level reward, which is formulated as

r̂l(sik+j , aik+j , g(i+1)k) = rl(sik+j , aik+j , g(i+1)k)− λ2Rπh,πl

i . (8)

Let Dl = Dl ∪ {(s, g, a, r̂l, s
′, g)} be the low-level replay buffer. With the surrogate low-level reward

established, the evaluation and optimization of low-level policy can be performed by

Qπl(s, a) = arg min
Q

1
2Es,g,a∼Dl

[r̂l(s, a, g) + γEs′,g∼Dl,a′∼πl
Qπl(s′, a′)−Qπl(s, a)]2 , (9)

πl = arg min
πl

Es,g∼Dl
[DKL(πl(·|s, g)∥ exp(Qπl(s, a)− V πl(s)))] . (10)

3.3 Theoretical Insights

The previous subsection proposes an optimization algorithm for high- and low-level policies based
on bidirectional subgoal reachability, and we investigate how this algorithm works in this section.
First, to evaluate the overall performance of HRL, we construct a joint value function by calculating
the discounted summation of step-wise rewards accumulated along the trajectory generated by both
the high- and low-level policies, as presented below:
Definition 3.2 (Joint Value Function of Hierarchical Policies). The long-term cumulative return
V πh,πl(s0) of the subgoal-based HRL in the real environment can be defined as,

V πh,πl(s0) =
∞∑
t

γtEs,a∼Pπl,g

t (·,·|s0),g∼πh(·|s) [r(st, at, ĝ)]

=
∞∑

i=0
Eg∼πh(·|s)

γik

k−1∑
j=0

γjEs,a∼Pπl,g

ik+j
(·,·|s0)r(sik+j , aik+j , ĝ)

 . (11)

To investigate the optimality of the policies, we derive a performance difference bound between an
induced optimal hierarchical policy Π∗ = {π∗

h, π
∗
l } and a learned one Π = {πh, πl}, which can be

formulated as V Π∗(s)− V Π(s) ≤ C.
Theorem 3.3 (Sub-optimal performance difference bound of HRL). The performance difference
bound C between the induced optimal hierarchical policies Π∗ and the learned one Π can be

C(πh, πl) = 2rmax

(1− γ)2

[
(1 + γ)Eg∼πh

(
1 + π∗

h

πh

)
ϵgπ∗

l
,πl︸ ︷︷ ︸

(i) hierarchical policies’ inconsistency

+ 2
(
Rπh,πl

max + 2γk
)︸ ︷︷ ︸

(ii) subgoal reachability penalty

]
, (12)
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(a) AntMaze (b) AntBigMaze (c) AntPush (d) AntFall (e) Reacher3D (f) Pusher

Figure 3: Environments used in our experiments. In maze tasks, the red square indicates the start
point and the blue square represents the target point. In manipulation tasks, a robotic arm aims to
make its end-effector and (puck-shaped) grey object reach the target position, which is marked as a
red ball, respectively.

where ϵgπ∗
l

,πl
is the distribution shift between π∗

l and πl, and Rπh,πl
max is the maximum subgoal reacha-

bility penalty from the learned one Π, both of which are formulated as,

ϵgπ∗
l

,πl
= max

s∈S,g∼πh

DT V (π∗
l (·|s, g)∥πl(·|s, g)) and Rπh,πl

max = max
i∈N
Rπh,πl

i .

Please refer to Appendix A.1 for the detailed proof. As shown in Equation (12), the performance
difference bound consists of two parts: (i) hierarchical policies’ inconsistency and (ii) subgoal reacha-
bility penalty. Of these, the former indicates the difference between the currently learned hierarchical
policies πh and πl and the optimal hierarchical policies π∗

h and π∗
l . Since (1 + π∗

h/πh) and ϵgπ∗
l

,πl

are decoupled from each other, this inspires us to optimize the high and low hierarchical policies
separately to reduce the policies’ inconsistency and improve the performance of the policies. More
importantly, the core difference from previous work is that the subgoal reachability penalty mat-
ters, which requires reduction from both high- and low-level policies, thus we integrate it into the
optimization procedures of the two levels.

4 Experiment

Our experimental evaluation aims to investigate the following questions: 1) How does BrHPO’s
performance on long-term goal-conditioned benchmark tasks compare to that of state-of-the-art
counterparts in terms of sample efficiency and asymptotic performance? 2) How effective is the
mutual response mechanism in enhancing subgoal reachability and improving performance?

Experimental setup We evaluate BrHPO on two categories of challenging long-horizon con-
tinuous control tasks, which feature both dense and sparse environmental reward, as illustrated
in Figure 3. In the maze navigation environments, the reward is determined by the negative L2
distance between the current state and the target position within the goal space. In the robotics
manipulation environments with sparse rewards, the reward is set to 0 when the distance is below a
predefined threshold; otherwise, it’s set to −1. Task success is defined as achieving a final distance
to the target point of d ≤ 5 for the maze tasks and d ≤ 0.25 for the manipulation tasks. To ensure
a fair comparison, all agents are initialized at the same position, eliminating extra environmental
information introduction from random initialization (Lee et al., 2022). Detailed settings can be
found in Appendix B.

4.1 Comparative evaluation

We compared BrHPO with the following baselines. 1) HIRO (Nachum et al., 2018b): designed an
off-policy correction mechanism which required high-level experience to obey the current low-level
policy; 2) HIGL (Kim et al., 2021): relied on the off-policy correction mechanism and introduced
a k-step adjacent constraint (Zhang et al., 2020) and the novelty to discover appropriate subgoals;
3) RIS (Chane-Sane et al., 2021): utilized the hindsight method to generate the least-cost middle
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Figure 4: The average success rate in various continuous control tasks of BrHPO and baselines. The
solid lines are the average success rate, while the shades indicate the standard error of the average
performance. All algorithms are evaluated with 5 random seeds.

points as subgoals, forcing the low-level policy to follow the given subgoals; 4) CHER (Kreidieh et al.,
2019): considered the cooperation of hierarchical policies, and the high-level policy needs to care
about the low-level behaviour per step; 5) SAC (Haarnoja et al., 2018b): served as a benchmark of
flat off-policy model-free algorithm and was applied as the backbone of BrHPO. Simply put, HIRO
and HIGL focused on low-level domination, and RIS focused on high-level domination. CHER also
considers the cooperation of different level policies while it requires step-by-step consideration.

The learning curves of BrHPO and the baselines across all tasks are plotted in Figure 4. Overall,
the results demonstrate that BrHPO outperforms all baselines both in exploration efficiency and
asymptotic performance. In particular, when dealing with large-scale (AntBigMaze) and partially-
observed environments (AntPush and AntFall), BrHPO achieves better exploration and training
stability, benefitting from the mutual response mechanism with information sharing and error cor-
rection for both levels. In contrast, acceptable baselines like HIRO, HIGL and CHER exhibit
performance fluctuations and low success rates. It’s worth noting that BrHPO can handle sparse
reward environments without any reward shaping or hindsight relabeling modifications, indicating
that our proposed mechanism can capture serendipitous success and provide intrinsic guidance. Be-
sides, we report the training wall-time in Appendix C.1, indicating that our method can achieve
efficient computational performance, with training times comparable to a flat SAC policy. Notably,
compared to previous approaches that utilize adjacency matrices (HRAC) or graphs to model sub-
goal reachability (HIGL), our method achieves at least a 2x improvement in training efficiency with
performance guarantee.

4.2 Ablation study

Next, we make ablations and modifications to our method to validate the effectiveness and robustness
of the mechanism we devised.

Ablation on design choices. To investigate the effectiveness of each component, we compared
BrHPO with several variants through AntMaze and AntPush tasks. The BrHPO variants include,
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(c) State-subgoal trajectory visualization

Figure 5: The performance and state-subgoal trajectory visualization from different BrHPO variants.
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(b) Ablation on λ2

Figure 6: The learning curves with different
weight factors λ1 and λ2 by AntMaze task.
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Figure 7: The learning curves from different D
and k to verify the robustness of the mechanism.

1) Vanilla, which removes the mutual response mechanism in both-level policies, resulting in πh and
πl being trained solely by conventional SAC; 2) NoReg, which keeps the low-level reward bonus but
disables the regularization term in high-level policy training; 3) NoBonus, where only the high-level
policy concerns subgoal reachability but the low-level reward bonus is removed.

The learning curves and state-subgoal trajectory visualizations from different variants are presented
in Figure 5. BrHPO outperforms all three variants by a significant margin, highlighting the impor-
tance of the mutual response mechanism at both levels. Interestingly, the NoBonus variant achieves
better performance than the NoReg variant, suggesting that the subgoal reachability addressed by
the high-level policy has a greater impact on overall performance. This observation is further sup-
ported by the trajectory visualization results.

Hyperparameters. We empirically studied the sensitivity of weight factors λ1 and λ2 in Fig-
ure 6. The results show that λ1 and λ2 within a certain range are acceptable. Upon closer analysis,
we observed that when λ1 is too small, the regularization term in high-level policy optimization
has minimal influence. Consequently, the high-level policy tends to disregard the performance of
the low-level policy during tuning, resembling a high-level dominance scenario. Conversely, when
λ1 is too large, the high-level policy overly prioritizes subgoal reachability, diminishing its explo-
ration capability and resembling a low-level dominance scenario. These observations validate the
effectiveness of the mutual response mechanism in maintaining a balanced interaction between the
high- and low-level policies. Additionally, the results for λ2 suggest that a larger value can generally
improve subgoal reachability from the perspective of the low-level policy, leading to performance
improvements and enhanced stability.

Robustness of mutual response mechanism. We conducted additional experiments on the
AntMaze task to verify the robustness of the proposed mechanism. The computation of subgoal
reachability, a key factor in the mutual response mechanism, depends on the choice of the distance
measurement D and the subtask horizon k. To test the distance measurement D, we compared
three distance functions: L2 norm, L∞ norm, and L1 norm. Figure 7a shows that our method
performs well regardless of the distance function used, highlighting the adaptability of the proposed
mechanism. Additionally, we varied the subtask horizon by setting k = 5, 10, 20, 50 (Figure 7b).
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Figure 8: Learning curves of all methods. Mean
and std by 4 runs.

(a) Visualization of BrHPO.

(b) Visualization of HIRO.

Figure 9: The behavior comparison between
BrHPO and HIRO by HumanoidMaze.

Surprisingly, we achieved success rates of around 0.9 with different subtask horizons, indicating
that the performance is robust to variations in the subtask horizon, only with a slight effect on the
convergence speed during training. This flexibility of BrHPO in decoupling the high- and low-level
horizons without the need for extra graphs, as required in DHRL (Lee et al., 2022), is noteworthy.
More ablations by Reacher3D task are provided in Figure 12 of Apppendix C.

In addition to evaluating parametric robustness, we subjected BrHPO to testing in stochastic envi-
ronments to further evaluate its robustness. As depicted in Figure 13 of Apppendix C, we introduce
varying levels of Gaussian noise into the state space. The results demonstrate our BrHPO can
effectively mitigate the impact of noise and ensure consistent final performance.

Mutual response mechanism in complex tasks. Except for the main results, we consider a
more complex robot in a maze, HumanoidMaze, to further evaluate the mutual response mechanism.
In this task, the simulated humanoid, where the state space contains 274 dimensions and the action
space is 17, needs to maintain body balance while being guided by the subgoal from the high-level
policy. Consequently, the low-level policy necessitates extensive training to facilitate the humanoid’s
ability to learn how to walk proficiently. This training process requires the high-level policy to
exhibit “patience”, gradually adjusting the subgoals to guide the humanoid’s progress effectively.
Figure 8 demonstrates the performance comparison, which showcases the superior advantage of
BrHPO over HIRO. We additionally visualize the trajectory in Figure 9. We find that, our mutual
response mechanism can encourage cooperation between the high- and the low-level policies, while
the erroneous guidance from HIRO makes it difficult for humanoid to maintain balance and easily
fall, thus failing the task.

5 Related Works

Hierarchical Reinforcement Learning (HRL) methods have emerged as promising solutions for ad-
dressing long-horizon complex tasks, primarily due to the synergistic collaboration between high-level
task division and low-level exploration (Jong et al., 2008; Haarnoja et al., 2018a; Nachum et al., 2019;
Pateria et al., 2021b; Eppe et al., 2022). Generally, HRL methods can be broadly categorized into
two groups, option-based HRL (Sutton et al., 1999; Precup et al., 1998; Zhang et al., 2021; Mannor
et al., 2004) and subgoal-based HRL (Dayan & Hinton, 1992; Nachum et al., 2019; Campos et al.,
2020; Li et al., 2021b; Islam et al., 2022), that highlights the scope of guidance provided by the high-
level policy. The first avenue involves the use of options to model the policy-switching mechanism in
long-term tasks, which provides guidance to the low-level policy on when to terminate the current
subtask and transition to a new one (Machado et al., 2017; Zhang & Whiteson, 2019). In contrast,
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the subgoal-based HRL avenue (Vezhnevets et al., 2017; Nachum et al., 2018a; Gürtler et al., 2021;
Czechowski et al., 2021; Li et al., 2021a) focuses on generating subgoals in fixed horizon subtasks
rather than terminal signals, and our work falls under this category. Notably, subgoal-based HRL
approaches prioritize subgoal reachability as a means of achieving high performance (Stein et al.,
2018; Paul et al., 2019; Li et al., 2020; Czechowski et al., 2021; Pateria et al., 2021a).

Various methods have been proposed to enhance subgoal reachability, from either the high-level
or low-level perspectives. When the low level is considered to be dominant, several works have
proposed relabeling or correcting subgoals based on the exploration capacity of the low-level policy.
Examples include off-policy correction in HIRO (Nachum et al., 2018b) and hindsight relabeling in
HER (Andrychowicz et al., 2017), RIS (Chane-Sane et al., 2021) and HAC (Levy et al., 2019). On
the other hand, when the high-level dominates, subgoals are solved from given prior experience or
knowledge, and the low-level policy is trained merely to track the given subgoals (Savinov et al.,
2018; Huang et al., 2019; Eysenbach et al., 2019; Jurgenson et al., 2020). In contrast to the listed
prior works, BrHPO proposes a mutual response mechanism for ensuring bidirectional reachability.
SoRB (Eysenbach et al., 2019), for instance, constructs an environmental graph from the given replay
buffer for high-level planning and uses the waypoints as subgoals. SGT (Jurgenson et al., 2020)
adopts a divide-and-conquer mechanism to search intermediate subgoals from given trajectories.

Meanwhile, our method relates to previous research that encourages cooperation between the high-
level policy and the low-level one, where they explored various techniques for modelling subgoal
reachability, including k-step adjacency matrix (Ferns et al., 2004; Castro, 2020; Zhang et al., 2020)
or state-subgoal graph (Zhang et al., 2018; Kim et al., 2021; Lee et al., 2022). However, these
methods can be computationally intensive and conservative. Our proposed method provides a more
computationally efficient and flexible approach to gain subgoal reachability. By avoiding an explicit
representation of the state-subgoal adjacency, our method can be more easily deployed and applied
to a variety of different environments.

6 Conclusion

In this work, we identify that bilateral information sharing and error correction have been long
neglected in previous HRL works. This will potentially cause local exploration and unattainable
subgoal generation, which hinders overall performance and sample efficiency. To address this issue,
we delve into the mutual response of hierarchical policies, both theoretically and empirically, re-
vealing the crucial role of the mutual response mechanism. Based on these findings, we proposed
the Bidirectional-reachable Hierarchical Policy Optimization (BrHPO) algorithm. BrHPO not only
matches the best HRL algorithms in asymptotic performance, but it also shines in low computa-
tional load. Although BrHPO offers many advantages, a main challenge is to design an appropriate
low-level reward to compute the subgoal reachability, thus limiting the application in sparse low-level
reward settings (Lee et al., 2022). Future work that merits investigation are integrating up-to-date
reachability measurement for bidirectional subgoal reachability and policy optimization backbone to
develop a strong HRL algorithm.
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A Theoretical Analysis

A.1 Omitted Proofs

Theorem A.1 (Sub-optimal performance difference bound of HRL). The performance difference
bound C between the induced optimal hierarchical policies Π∗ and the learned one Π can be

C(πh, πl) = 2rmax

(1− γ)2

[
(1 + γ)Eg∼πh

(
1 + π∗

h

πh

)
ϵgπ∗

l
,πl︸ ︷︷ ︸

(i) hierarchical policies’ inconsistency

+ 2
(
Rπh,πl

max + 2γk
)︸ ︷︷ ︸

(ii) subgoal reachability penalty

]
, (13)

where ϵgπ∗
l

,πl
is the distribution shift between π∗

l and πl, and Rπh,πl
max is the maximum subgoal reacha-

bility penalty from the learned one Π, both of which are formulated as,

ϵgπ∗
l

,πl
= max

s∈S,g∼πh

DT V (π∗
l (·|s, g)∥πl(·|s, g)) and Rπh,πl

max = max
i∈N
Rπh,πl

i .

Summary of proof. We first divide the bound into three parts, V Π∗(s) − V Π(s) =
V π∗

h,π∗
l (s0)− V π∗

h,πl(s0)︸ ︷︷ ︸
L1

+V π∗
h,πl(s0)− V πh,π∗

l (s0)︸ ︷︷ ︸
L2

+V πh,π∗
l (s0)− V πh,πl(s0)︸ ︷︷ ︸

L3

. Then, we find the

similarity of L1 and L3, both of which denote that under the same high-level policy (π∗
h in L1

while πh in L3). By Performance Difference Lemma (Kakade & Langford, 2002), we have

L1 + L3 ≤
2rmax

(1− γ)2Eg∼πh

(
1 + π∗

h

πh

)
ϵgπ∗

l
,πl
. (14)

For L2, we follow Zhang et al. (2022) and substitute equation (4). Then we have

L2 ≤
rmax

(1− γ)2 (Rπh,πl
max + 2γk). (15)

Thus, we take the results of Equations (14) and (15) and achieve the final bound.

Proof. To derive the performance difference bound between Π∗ and Π, we first divide the bound
into three terms,

V Π∗
(s0)− V Π(s0) = V π∗

h,π∗
l (s0)− V πh,πl(s0)

= V π∗
h,π∗

l (s0)− V π∗
h,πl(s0)︸ ︷︷ ︸

L1

+V π∗
h,πl(s0)− V πh,π∗

l (s0)︸ ︷︷ ︸
L2

+V πh,π∗
l (s0)− V πh,πl(s0)︸ ︷︷ ︸

L3

.

(16)

Then, our proof can be obtained to by tackling L1, L2 and L3, respectively.

• Derivation of L1
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By adding and subtracting the same term in L1, we obtain

L1 = V π∗
h,π∗

l (s0)−
[
Ṽ

π∗
h,π∗

l
0 (s0) + γkE

g∼π∗
h

,s∼P
π∗

l
,g

k
(·|s0)

V π∗
h,πl(sk)

]
+

[
Ṽ

π∗
h,π∗

l
0 (s0) + γkE

g∼π∗
h

,s∼P
π∗

l
,g

k
(·|s0)

V π∗
h,πl(sk)

]
− V π∗

h,πl(s0)

=
[
Ṽ

π∗
h,π∗

l
0 (s0) + γkE

g∼π∗
h

,s∼P
π∗

l
,g

k
(·|s0)

V π∗
h,π∗

l (sk)
]
← By Lemma A.3

−
[
Ṽ

π∗
h,π∗

l
0 (s0) + γkE

g∼π∗
h

,s∼P
π∗

l
,g

k
(·|s0)

V π∗
h,πl(sk)

]
+

[
Ṽ

π∗
h,π∗

l
0 (s0) + γkE

g∼π∗
h

,s∼P
π∗

l
,g

k
(·|s0)

V π∗
h,πl(sk)

]
−

[
Ṽ

π∗
h,πl

0 (s0) + γkEg∼π∗
h

,s∼Pπl,g

k
(·|s0)V

π∗
h,πl(sk)

]
= γkE

g∼π∗
h

,s∼P
π∗

l
,g

k
(·|s0)

[
V π∗

h,π∗
l (sk)− V π∗

h,πl(sk)
]

︸ ︷︷ ︸
part a

+
[
Ṽ

π∗
h,π∗

l
0 (s0)− Ṽ π∗

h,πl

0 (s0)
]

︸ ︷︷ ︸
part b

+ γk

[
E

g∼π∗
h

,s∼P
π∗

l
,g

k
(·|s0)

V π∗
h,πl(sk)− Eg∼π∗

h
,s∼Pπl,g

k
(·|s0)V

π∗
h,πl(sk)

]
︸ ︷︷ ︸

part c

. (17)

Then, we can deal with the three parts one by one to obtain the derivation of L1. Note that, part
b represents the performance discrepancy in the first subtask, caused by different low-level policies
π∗

l and πl. Thus, consider the policy shift of the low-level policies, we suppose

ϵgπ∗
l

,πl
= max

s∈S,g∼πh

DT V (π∗
l (·|s, g)∥πl(·|s, g)) . (18)

Then, recall rmax to be the maximum environmental reward, i.e., r ≤ rmax, we have

part b = Ṽ
π∗

h,π∗
l

0 (s0)− Ṽ π∗
h,πl

0 (s0)

=
k−1∑
j=0

E
gk∼π∗

h
,s,a∼P

π∗
l

,g

j
(·,·|s0)

[
γjr(sj , aj , ĝ)

]
−

k−1∑
j=0
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h

,s,a∼Pπl,g

j
(·,·|s0)

[
γjr(sj , aj , ĝ)

]
≤

k−1∑
j=0

Egk∼π∗
h
2

[
γjr(sj , aj , ĝ)
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DT V
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Pπ∗

l ,g
j (·, ·|s0)

∥∥∥Pπl,g
j (·, ·|s0)

)

≤ 2rmax

k−1∑
j=0

Egk∼π∗
h
γjjϵgπ∗

l
,πl
. ← By Lemma A.4 (19)

For part c, note that the joint value function can be bounded as V πh,πl(s0) ≤ rmax/(1− γ). We can
apply Lemma A.4 to bound the discrepancy of the low-level policies, and have

part c = γk

[
E

g∼π∗
h

,s∼P
π∗

l
,g

k
(·|s0)

V π∗
h,πl(sk)− Eg∼π∗

h
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π∗
h,πl(sk)

]
= γk

∫
g∈G

∫
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h(g|sk)
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Pπ∗
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V π∗

h,πl(s)dsdg

≤ 2γkrmax

1− γ Eg∼π∗
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[
DT V

(
Pπ∗

l ,g
k (·|s0)∥Pπl,g

k (·|s0)
)]

≤ 2γkrmax

1− γ Eg∼π∗
h
kϵgπ∗

l
,πl
, (20)
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At last, for part a, we can apply the same recursion every k step,

part a = γkE
g∼π∗

h
,s∼P

π∗
l

,g

k
(·|s0)

[
V π∗

h,π∗
l (sk)− V π∗

h,πl(sk)
]

≤ γ2kE
g∼π∗

h
,s∼P

π∗
l

,g

2k
(·|s0)

[
V π∗

h,π∗
l (s2k)− V π∗

h,πl(s2k)
]

+ 2rmax

2k−1∑
j=k

Eg∼π∗
h
γjjϵgπ∗

l
,πl

+ 2γ2krmax

1− γ Eg∼π∗
h
2kϵgπ∗

l
,πl
. (21)

Now, with the derivation of part a, part b and part c, we can combine these and repeat the recursion
step for infinitely many times

L1 = part a + part b + part c

≤ 2rmax

k−1∑
j=0

Egk∼π∗
h
γjjϵgπ∗

l
,πl

+ 2γkrmax

1− γ Eg∼π∗
h
kϵgπ∗

l
,πl

+ 2rmax

2k−1∑
j=k

Eg2k∼π∗
h
γjjϵgπ∗

l
,πl

+ 2γ2krmax

1− γ Eg∼π∗
h
2kϵgπ∗

l
,πl

+ γ2kE
g∼π∗

h
,s∼P

π∗
l

,g

2k
(·|s0)

[
V π∗

h,π∗
l (s2k)− V π∗

h,πl(s2k)
]

...

≤ 2rmax

∞∑
i=0

k−1∑
j=0

Eg∼π∗
h
γ(ik+j)(ik + j)ϵgπ∗

l
,πl

+ γ(i+1)k

1− γ Eg∼π∗
h
(i+ 1)kϵgπ∗

l
,πl

≤ 2rmax
1 + γ

(1− γ)2Eg∼π∗
h
ϵgπ∗

l
,πl
. (22)

Thus, we complete the derivation of L1.

• Derivation of L3

Compared with L1, the term L3 replaces the high-level policy from π∗
h to πh. Thus, we directly can

get L3 from the results of L1 as

L3 ≤ 2rmax
1 + γ

(1− γ)2Eg∼πh
ϵgπ∗

l
,πl
. (23)

• Derivation of L2
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Similar to the derivation of L1, by adding and subtracting the same term in L2, we have

L2 = V π∗
h,πl(s0)−

[
Ṽ

π∗
h,πl

0 (s0) + γkEg∼π∗
h

,s∼Pπl,g

k
(·|s0)V

πh,π∗
l (sk)

]
+

[
Ṽ

π∗
h,πl

0 (s0) + γkEg∼π∗
h

,s∼Pπl,g

k
(·|s0)V

πh,π∗
l (sk)

]
− V πh,π∗

l (s0)

=
[
Ṽ

π∗
h,πl

0 (s0) + γkEg∼π∗
h

,s∼Pπl,g

k
(·|s0)V

π∗
h,πl(sk)

]
−

[
Ṽ

π∗
h,πl

0 (s0) + γkEg∼π∗
h

,s∼Pπl,g

k
(·|s0)V

πh,π∗
l (sk)

]
+

[
Ṽ

π∗
h,πl

0 (s0) + γkEg∼π∗
h

,s∼Pπl,g

k
(·|s0)V

πh,π∗
l (sk)

]
−

[
Ṽ

πh,π∗
l

0 (s0) + γkE
g∼πh,s∼P

π∗
l

,g

k
(·|s0)

V πh,π∗
l (sk)

]
= γkEg∼π∗

h
,s∼Pπl,g

k
(·|s0)

[
V π∗

h,πl(sk)− V πh,π∗
l (sk)

]
︸ ︷︷ ︸

part d

+
[
Ṽ

π∗
h,πl

0 (s0)− Ṽ πh,π∗
l

0 (s0)
]

︸ ︷︷ ︸
part e

+ γk

[
Eg∼π∗

h
,s∼Pπl,g

k
(·|s0)V

πh,π∗
l (sk)− E

g∼πh,s∼P
π∗

l
,g

k
(·|s0)

V πh,π∗
l (sk)

]
︸ ︷︷ ︸

part f

. (24)

According to Assumption A.5, we suppose r(st, at, ĝ) = Eg∼πh,s,a∼Pπl,g

t
rl(st, at, g)/D(g, ĝ), thus we

summate the k-step reward in the first subtask in part e as

k−1∑
j=0

Eg∼πh,s,a∼Pπl,g

j
(·,·|s0)

[
γjr(sj , aj , ĝ)

]

= r(s0, a0, ĝ)
k−1∑
j=0

Eg∼πh,s,a∼Pπl,g

j
(·,·|s0)

[
γj r(sj , aj , ĝ)
r(s0, a0, ĝ)

]

= r(s0, a0, ĝ)
k−1∑
j=0

Eg∼πh,s,a∼Pπl,g

j
(·,·|s0)

[
γj rl(sj , aj , g)
D(g, ĝ)

D(g, ĝ)
rl(s0, a0, g)

]

= r(s0, a0, ĝ)
k−1∑
j=0

Eg∼πh,s,a∼Pπl,g

j
(·,·|s0)

[
γj rl(sj , aj , g)
rl(s0, a0, g)

]
. (25)

Since the low-level policy is trained as a goal-conditioned policy, we have rl(sj , aj , g) ≤ rl(sk, ak, g).
And the summation in the first subtask can be

k−1∑
j=0

Eg∼πh,s,a∼Pπl,g

j
(·,·|s0)

[
γjr(sj , aj , ĝ)

]

≤ r(s0, a0, ĝ)
k−1∑
j=0

Eg∼πh,s,a∼Pπl,g

j
(·,·|s0)

[
γj rl(sk, ak, g)
rl(s0, a0, g)

]

= r(s0, a0, ĝ)1− γk

1− γ
rl(sk, ak, g)
rl(s0, a0, g)

. (26)
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Thus, we let the fraction Rπh,πl

i = rl(sk, ak, g)/rl(s0, a0, g) be the subgoal reachability definition,
and the part e in L2 can be

part e = Ṽ
π∗

h,πl

0 (s0)− Ṽ πh,π∗
l

0 (s0)

=
k−1∑
j=0

Eg∼π∗
h

,s,a∼Pπl,g

j
(·,·|s0)

[
γjr(sj , aj , ĝ)

]
−

k−1∑
j=0

E
g∼πh,s,a∼P

π∗
l

,g

j
(·,·|s0)

[
γjr(sj , aj , ĝ)

]
≤ r(s0, a0, ĝ)1− γk

1− γ R
π∗

h,πl

0 −
k−1∑
j=0

E
g∼πh,s,a∼P

π∗
l

,g

j
(·,·|s0)

[
γjr(sj , aj , ĝ)

]
≤ rmax

1− γk

1− γ

(
Rπh,πl

0 −Rπ∗
h,π∗

l
0

)
← Π∗ can achieve best subgoal reachability

≤ rmax
1− γk

1− γ R
πh,πl

0 . (27)

The penultimate inequality is based on the property of the induced optimal hierarchical policies.
Compared with the learned πh, Figure 3 shows that π∗

h can balance the subgoal reachability and the
guidance, thus Rπh,πl

0 ≥ Rπ∗
h,πl

0 (note that the smaller R implies the better subgoal reachability).
And, the optimal policies Π∗ can achieve the optimal subgoal reachability, i.e. Rπ∗

h,π∗
l

0 ≤ Rπh,π∗
l

0 .
Thus, we have

(
Rπ∗

h,πl

0 −Rπh,π∗
l

0

)
≤

(
Rπh,πl

0 −Rπ∗
h,π∗

l
0

)
.

Then, we turn to part f in L2. Considering the upper bound of the joint value function, we have

part f = γk

[
Eg∼π∗

h
,s∼Pπl,g

k
(·|s0)V

πh,π∗
l (sk)− E

g∼πh,s∼P
π∗

l
,g

k
(·|s0)

V πh,π∗
l (sk)

]
≤ γk

∫
g∈G

∫
s∈S

[π∗
h(g|s)− πh(g|s)]

[
Pπl,g

k (s|s0)− Pπ∗
l ,g

k (s|s0)
] rmax

1− γ dsdg

≤ 2γk

∫
g∈G

∫
s∈S

rmax

1− γ dsdg

= 2γkrmax

1− γ . (28)

With the derivation of part e and part f, we deal with part d by the recursion each k-steps as

part d = γkEg∼π∗
h

,s∼Pπl,g

k
(·|s0)

[
V π∗

h,πl(sk)− V πh,π∗
l (sk)

]
≤ γ2kEg∼π∗

h
,s∼Pπl,g

2k
(·|s0)

[
V π∗

h,πl(s2k)− V πh,π∗
l (s2k)

]
+ rmax

γk − γ2k

1− γ Rπh,πl

1 + 2γ2krmax

1− γ . (29)

Thus, we combine the result of part d, part e and part f to obtain the results of L2 as
L2 = part d + part e + part f

≤ rmax
1− γk

1− γ R
πh,πl

0 + rmax
γk − γ2k

1− γ Rπh,πl

1 + 2γkrmax

1− γ + 2γ2krmax

1− γ
+ γ2kEg∼π∗

h
,s∼Pπl,g

2k
(·|s0)

[
V π∗

h,πl(s2k)− V πh,π∗
l (s2k)

]
...

≤ rmax

∞∑
i=0

(1− γk)γik

1− γ Rπh,πl

i + 2γ(i+1)k

1− γ

≤ rmax

(1− γ)2 (Rπh,πl
max + 2γk). (30)
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In the last inequality, we define
Rπh,πl

max = max
i∈N
Rπh,πl

i . (31)

Now, we have the results of L1, L2 and L3. The performance difference bound between Π∗ and Π
can be obtained as

V Π∗
(s0)− V Π(s0) = L1 + L2 + L3

≤ 2rmax
1 + γ

(1− γ)2Eg∼π∗
h
ϵgπ∗

l
,πl

+ rmax

(1− γ)2 (Rπh,πl
max + 2γk)

+ 2rmax
1 + γ

(1− γ)2Eg∼πh
ϵgπ∗

l
,πl

= 2rmax

(1− γ)2

[
(1 + γ)Eg∼πh

(
1 + π∗

h

πh

)
ϵgπ∗

l
,πl

+ 2
(
Rπh,πl

max + 2γk
)]
. (32)

And the proof is complete.

Proposition A.2 (Equivalence between π∗ and Π∗). With the k-step trajectory slicing and the
alignment method, the performance of Π∗ and π∗ is equivalent, i.e., V π∗(s) = V Π∗(s).

Proof. According to the k-step trajectory slicing and the alignment method, the induced optimal
hierarchical policies Π∗ can be generated by aligning with the k-step trajectory slice derived by π∗,
thus we have

g(i+1)k ∼ π∗
h(·|sik) = Pπ∗

k (s(i+1)k|sik)

= p(sik)
k−1∏
j=0

P (sik+j+1|sik+j , aik+j)π∗(aik+j |sik+j), (33)

aik+j ∼ π∗
l (·|sik+j , g(i+1)k) = π∗(aik+j |sik+j). (34)

Thus, the value function for π∗ and the joint value function for Π∗ can be

V π∗
(s0) =

∞∑
t

γtEs∼p(s′|s,a),a∼π∗ [r(st, at, ĝ)]

=
∞∑

i=0

k−1∑
j=0

Es∼p(s′|s,a),a∼π∗γik+j [r(sik+j , aik+j , ĝ)]

=
∞∑

i=0
Eg∼π∗

h

γik
k−1∑
j=0

Es∼p(s′|s,a),a∼π∗
l
γj [r(sik+j , aik+j , ĝ)]


=

∞∑
i=0

Eg∼π∗
h

(·|s)

γik

k−1∑
j=0

γjE
s,a∼P

π∗
l

,g

ik+j
(·,·|s0)

r(sik+j , aik+j , ĝ)


= V Π∗

(s0) (35)

Thus, through the k-step trajectory slicing and the alignment method, the performance of Π∗ and
π∗ is equivalent. And the proof is complete.

A.2 Useful Lemma and Assumption

Lemma A.3 (Bellman Backup in HRL). Consider that the joint value function can be decomposed
by the summation of subtasks. Given the initial state sik at the i-th subtask, the Bellman Backup of
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HRL defined in each subtask can be

V πh,πl(sik) = Ṽ πh,πl

i (sik) + γkEg∼πh,s∼Pπl,g

(i+1)k
(·|sik)

[
V πh,πl(s(i+1)k)

]
, (36)

where Ṽ πh,πl

i (sik) is the the environment return of Π with the i-th subtask, formulated as

Ṽ πh,πl

i (sik) =
k−1∑
j=0

Eg∼πh,s,a∼Pπl,g

ik+j
(·,·|sik)

[
γjr(sik+j , aik+j , ĝ)

]
. (37)

Proof. According to the decomposition of the joint value function V πh,πl(s), we have

V πh,πl(s0) =
∞∑

i=0
Eg∼πh

γik

k−1∑
j=0

γjEs,a∼Pπl,g

ik+j
(·,·|s0)r(sik+j , aik+j , ĝ)


=

k−1∑
j=0

Eg∼πh,s,a∼Pπl,g

j
(·,·|s0)

[
γjr(sj , aj , ĝ)

]

+
∞∑

i=1
Eg∼πh

γik

k−1∑
j=0

γjEs,a∼Pπl,g

ik+j
(·,·|s0)r(sik+j , aik+j , ĝ)


= Ṽ πh,πl

0 (s0) + γkEg∼πh,s∼Pπl,g

k
(·|sk) [V πh,πl(sk)] . (38)

Thus, we can conclude that

V πh,πl(sik) = Ṽ πh,πl

i (sik) + γkEg∼πh,s∼Pπl,g

(i+1)k
(·|sik)

[
V πh,πl(s(i+1))

]
. (39)

And the proof is complete.

Lemma A.4 (Markov chain TVD bound, time-varying). Suppose the expected KL-divergence be-
tween two policy distributions is bounded as ϵgπ∗

l
,πl

= maxs∈S,g∼πh
DT V (π∗

l (·|s, g)∥πl(·|s, g)), and the
initial state distributions are the same. Then, the distance in the state-action marginal is bounded
as,

DT V

(
Pπ∗

l ,g
t (·, ·|s0)

∥∥∥Pπl,g
t (·, ·|s0)

)
≤ tϵgπ∗

l
,πl

(40)

Proof. Let p(s′|s) as the adjacent state transition probability, which can be defined as

p(s′|s) = p(s)P (s′|s, a)π(a|s). (41)

Replacing the policy as the low-level policy πl, we can derive the Markov chain TVD bound caused
by the different low-level policy,

max
t

Es∼pt
1(s)DKL(p1(s′|s)∥p2(s′|s))

= max
t

Es∼pt
1(s)p(s)P a

s,s′(s′|s, a)DKL(π∗
l (a|s, g)||πl(a|s, g))

≤ max
t

Es∼pt
1(s)DKL(π∗

l (a|s, g)||πl(a|s, g))

≤ max
s∈S,g∼πh

DT V (π∗
l (·|s, g)∥πl(·|s, g))

= ϵgπ∗
l

,πl
(42)

Thus, follow the Lemma B.2 in Janner et al. (2019), the distance in the state-action marginal is
bounded as,

DT V

(
Pπ∗

l ,g
t (·, ·|s0)

∥∥∥Pπl,g
t (·, ·|s0)

)
≤ tϵgπ∗

l
,πl
. (43)

And the proof is complete.
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Assumption A.5 (Refer to Assumption 1 in Zhang et al. (2022)). For all s ∈ S and g ∈ G, the
environmental reward can be written as

r(s, a, ĝ) =
∑

s′

P a
s,s′(s′|s, a)πl(a|s, g)r̃(s, s′) = Eg∼πh,s,a∼Pπl,g

t
rl(st, at, g)/D(g, ĝ). (44)

where r̃ : S × G → [0, rmax] is a state-reachability reward function.

In this assumption, the subgoal g generated by the high-level policy represents the desired state to
be reached, while the intermediate low-level state and action details are controlled by the low-level
policy. Therefore, considering that the subgoals are generated towards the environmental goal ĝ,
when given a low-level optimal/learned policy, it is natural to assume that the k-step stage reward
only depends on the state where the agent starts and the state where the agent arrives.
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B Experimental Details

B.1 Implementation Details

Our method BrHPO and all baselines are implemented based on PyTorch.

BrHPO. We employ the soft actor-critic (SAC) algorithm Haarnoja et al. (2018b) as the back-
bone framework for both high- and low-level policies. For the high-level policy, considering that
the subtask trajectory τπh,πl

i in each subtask would be abstracted as one transition in high level,
we convert the trajectory (sik:(i+1)k−1, aik:(i+1)k−1, g(i+1)k, rh,ik, s(i+1)k) into a high-level transition
tuple (sik, g(i+1)k, rh,ik, s(i+1)k). Then, when a subtask ends, we compute the subgoal reachability
by

Rπh,πl

i = Erl∼τ
πh,πl
i

rl,(i+1)k

rl,ik
.

Then, we can optimize the high-level policy by

Qπh(s, g) = arg min
Q

1
2Es,g∼Dh

[rh(s, g) + γEs′∼Dh,g′∼πh
Qπh(s′, g′)−Qπh(s, g)]2 ,

πh = arg min
πh

Es∼Dh
[DKL(πh(·|s)∥ exp(Qπh(s, g)− V πh(s))) + λ1Rπh,πl

i ] .

For the low-level policy which can be trained as a goal-conditioned one, we design the reachability-
aware low-level policy as

r̂l(sik+j , aik+j , g(i+1)k) = rl(sik+j , aik+j , g(i+1)k)− λ2Rπh,πl

i .

The training tuples for the low-level policy are formed as the per-step state-action transitions
(sik+j , g(i+1)k, aik+j , rl,ik+j , sik+j+1, g(i+1)k)1, which then are stored in the low-level bufferDl. Thus,
with the training tuples, we can optimize the low-level policy as,

Qπl(s, a) = arg min
Q

1
2Es,g,a∼Dl

[r̂l(s, a, g) + γEs′,g∼Dl,a′∼πl
Qπl(s′, a′)−Qπl(s, a)]2 ,

πl = arg min
πl

Es,g∼Dl
[DKL(πl(·|s, g)∥ exp(Qπl(s, a)− V πl(s)))] .

Algorithm framework. We briefly give an overview of our proposed BrHPO in algorithm 1.
Notably, the mutual response mechanism effectively calculates the subgoal reachability for bilateral
information and then incorporates it into hierarchical policy optimization for mutual error correction,
promoting performance and reducing computation load.

HIRO. In this work Nachum et al. (2018b), to deal with the non-stationarity, where old off-policy
experience may exhibit different transitions conditioned on the same goals, they heuristically relabel
the subgoal g̃ as

logµlo(at:t+c+1|st:t+c+1, g̃t:t+c+1) ∝ −1
2

t+c−1∑
i=t

∥ai − µlo(si, g̃i)∥2
2 + const.

To solve this problem efficiently, they calculated the quantity on eight candidate goals sampled
randomly from a Gaussian centred at st+c − st. Then, with the correcting high-level experience,
the high-level policy can be optimized by off-policy methods. Compared with our methods, the off-
correction can be regarded as a low-level domination method, which requires the high-level experience
to be modified by the subgoal reachability demonstrated at a low level.

1We use the absolute subgoal in this paper, that is, g(i+1)k = sik + πh(·|sik).
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Algorithm 1 Bidirectional-reachable Hierarchical Policy Optimization (BrHPO)
initialize: policy networks πh, πl, Q-networks Qπh , Qπl , replay buffers for high-level Dh and
low-level Dl

for each training episode do
while not done do

sample subgoals g ∼ πh(·|s)
for each step in a subtask do

Sample actions a ∼ πl(·|s, g)
Store (s, g, a, rl, s

′, g) into a temp buffer
Update πl by (9) and (10) from Dl ▷ low-level policy optimization

end for
Calculate Rπh,πl

i by (5) ▷ subgoal reachability computation
Compute r̂l by (8) and push the tuples in Dl ▷ reachability-aware low-level reward
Store (s, g, rh, s

′, R̂πh,πl

i ) into Dh

Update πh by (6) and (7) from Dl ▷ high-level policy optimization
end while

end for

HIGL. In this work Kim et al. (2021), to restrict the high-level action space from the whole goal
space to a k-step adjacent region, they introduced the shortest transition distance as a constraint
in high-level policy optimization. Besides, they utilized farthest point sampling and priority queue
Q to improve the subgoal coverage and novelty. To enhance the subgoal reachability, they made
pseudo landmark be placed between the selected landmark and the current state in the goal space
as follows:

gpseudo
t := gcur

t + δpseudo ·
gsel

t − gcur
t

∥gsel
t − gcur

t ∥2 .

To establish the adjacency constraint by the shortest transition distance, they refer to HRAC Zhang
et al. (2020) and adopt an adjacent matrix to model it. Specifically, we note that the performance
of HIGL in the AntMaze task is different from the original report in their paper, mainly due to the
different scales. Thus, we set the same scale for all tasks for fairness. To ensure that HIGL performs
well in these tasks, we adjusted hyper-parameters such as "landmark coverage" and "n landmark
novelty".

BrHPO HIGL

Figure 10: Comparison of the scales in the maze tasks between BrHPO and HIGL.

CHER. This work Kreidieh et al. (2019) proposed a cooperation framework for HRL. In this work,
the HRL problem can similarly be framed as a constrained optimization problem,

max
πm

[
Jm + min

λ≤0

(
λδ − λmin

πw

Jw

)]
.
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To deal with this problem, they update the high- (πm) and low-level (πw) policies by

θw ← θw + α∇θwJw, and, θm ← θm + α∇θw (Jw + λJw).

Compared to CHER, our BrHPO method distinguishes itself in several key aspects. In CHER,
hierarchical cooperation is achieved solely through high-level policy optimization, while the low-level
policy is trained as a generally goal-conditioned policy without further improvement. Moreover, the
high-level optimization in CHER introduces Jw as (Jw +λJw), necessitating a focus on the step-by-
step behaviour of the low-level policy.

In contrast, our BrHPO method incorporates the concept of subgoal reachability, which considers the
initial and final states of the subtasks. This design choice empowers the high-level policy to relax the
exploration burden on the low-level policy. By leveraging subgoal reachability, our approach enables
more efficient exploration of the low-level policy and facilitates effective hierarchical cooperation
between the high-level and low-level policies.

RIS. In this work Chane-Sane et al. (2021), based on the hindsight method, they collected feasible
state trajectories and predicted an appropriate distribution of imagined subgoals. They first defined
subgoals sg as midpoints on the path from the current state s to the goal g, and further minimized
the length of the paths from s to sg and sg to g. Thus, the high-level policy can be updated as

πH
k+1 = arg min

πH
E(s,g)∼D,sg∼πH (·|s,g)[Cπ(sg|s, g)].

Then, with the imagined subgoals, the low-level policy can be trained by

πθk+1 = arg max
θ

E(s,g)∼DEa∼πθ(·|s,g)

[
Qπ(s, a, g)− αDKL

(
πθ∥πprior

k

)]
.

B.2 Network Architecture

For the hierarchical policy network, we employ SAC Haarnoja et al. (2018b) as both the high-level
and the low-level policies. Each actor and critic network for both high level and low level consists of
3 fully connected layers with ReLU nonlinearities. The size of each hidden layer is (256, 256). The
output of the high- and low-level actors is activated using the linear function and is scaled to the
range of corresponding action space.

We use Adam optimizer Kingma & Ba (2014) for all networks in BrHPO.

B.3 Environmental Setup

We adopt six challenging long-term tasks to evaluate BrHPO, which can be categorized into the
dense case and the sparse case. For the maze navigation tasks, a simulated ant starts at (0, 0)
and the environment reward is defined as r = −

√
(x− gx)2 + (y − gy)2 (except for AntFall, r =

−
√

(x− gx)2 + (y − gy)2 + (z − gz)2). While in the robotics manipulation tasks, a manipulator is
initialized with a horizontal stretch posture. The environmental reward is defined as a binary one,
determined by the distance between the end-effector (or the object in Pusher) and the target point

r =
{
−1, d > 0.25,
0, d ≤ 0.25.

(45)

And, the success indicator is defined as whether the final distance is less than a pre-defined threshold,
where the maze navigation tasks require d < 5 and the robotics manipulation tasks require d < 0.25.

AntMaze. A simulated eight-DOF ant starts from the left bottom (0, 0) and needs to approach
the left top corner (0, 16). At each training episode, a target position is sampled uniformly at random
from gx ∼ [−4, 20], gy ∼ [−4, 20]. At the test episode, the target points are fixed at (gx, gy) = (0, 16).
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AntBigMaze. Similar to the AntMaze task, we design a big maze to evaluate the exploration
capability of BrHPO. In particular, the target position is chosen randomly from one of (gx, gy) =
(32, 8) and (gx, gy) = (66, 0), which makes it harder to find a feasible path.

AntPush. A movable block at (0, 8) is added to this task. The ant needs to move to the left side
of the block and push it into the right side of the room, for a chance to reach the target point above,
which requires the agent to avoid training a greedy algorithm. At each episode, the target position
is fixed to (gx, gy) = (0, 19).

AntFall. In this task, the agent is initialized on a platform of height 4. Like the AntPush envi-
ronment, the ant has to push a movable block at (8, 8) into a chasm to create a feasible road to
the target, which is on the opposite side of the chasm, while a greedy policy would cause the ant
to walk towards the target and fall into the chasm. At each episode, the target position is fixed to
(gx, gy, gz) = (0, 27, 4.5).

Reacher3D. A simulated 7-DOF robot manipulator needs to move its end-effector to a desired
position. The initial position of the end-effector is at (0, 0, 0) while the target is sampled from a
Normal distribution with zero mean and 0.1 standard deviation.

Pusher. Pusher additionally includes a puck-shaped object based on the Reacher3D task, and the
end-effector needs to find the object and push it to a desired position. At the initialization, the
object is placed randomly and the target is fixed at (gx, gy, gz) = (0.45,−0.05,−0.323).

We summarise these six tasks in Table 1.

Table 1: Overview on Environment settings.

Environment state action environment reward episode step success indicator
AntMaze 32 8 negative x-y distance 500 rfinal ≥ −5

AntBigMaze 32 8 negative x-y distance 1000 rfinal ≥ −5
AntPush 32 8 negative x-y distance 500 rfinal ≥ −5
AntFall 33 8 negative x-y-z distance 500 rfinal ≥ −5

Reacher3D 20 7 negative x-y-z distance 100 dfinal ≤ 0.25
Pusher 23 7 negative x-y-z distance 100 dfinal ≤ 0.25
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B.4 Hyper-parameters

Table 2 lists the hyper-parameters used in training BrHPO over all tasks.

C Additional experiments

Additional Metrics. We report additional (aggregate) performance metrics of BrHPO and other
baselines on the six tasks using the rliable toolkit Agarwal et al. (2021). As show in Figure 11,
BrHPO outperforms other baselines in terms of Median, interquantile mean (IQM), Mean and
Optimality Gap results.

0.0 0.5

BrHPO

SAC

HIGL

CHER

HIRO

RIS

Median

0.0 0.5

IQM

0.25 0.50 0.75

Mean

0.5 1.0

Optimality Gap

Normalized ScoreFigure 11: Median, IQM, Mean (higher values are better) and Optimality Gap (lower values are
better) performance of BrHPO and all baselines on six tasks.

Subgoal reachability report. We report the average subgoal reachabilityRπh,πl

i of each environ-
ment by Table 3. Note that, the value Rπh,πl

i → 0 means the final distance D(ψ(s(i+1)k), g(i+1)k)→
0, thus implying the better subgoal reachability. From the results, our implementation is simple yet
effective, which can improve subgoal reachability significantly. Besides, the results show that when
there are contact dynamics in the environment, such as AntPush, AntFall and Pusher, the subgoal
reachability may be decreased, which inspires us to further develop investigation in these cases.

Ablation by the sparse environment. Additionally, we provide ablation studies conducted on
the Reacher3D task (sparse) instead of the AntMaze task (dense). We investigate the effectiveness
of the mutual response mechanism by 1) the three variants of BrHPO, containing Vanilla, NoReg
and NoBonus, and 2) the weighted factors λ1 and λ2. We show the results in Figure 12. Overall,
we find that the tendency from the Reacher3D task is similar to the AntMaze task, which verifies
the effectiveness of our BrHPO in the sparse reward case.
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Figure 12: The ablation of mutual response mechanism by Reacher3D task. Mean and std by 4
runs.

Empirical study in stochastic environments. To empirically verify the stochasticity robust-
ness of BrHPO, we utilize it the a set of stochastic tasks, including stochastic AntMaze, AntPush
and Reacher3D, which are modified from the original tasks. Referring to HRAC Zhang et al. (2020),
we interfere with the position of the ant (x,y) and the position of the end-effector (x,y,z) with Gaus-
sian noise of different standard deviations, including σ = 0.01, σ = 0.05 and σ = 0.1, to verify
the robustness against the increasing environmental stochasticity. As shown in Figure 13, BrHPO
can achieve similar asymptotic performance with different noise magnitudes in stochastic AntMaze,
AntPush and Reacher3D, which shows the robustness to stochastic environments.
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(a) Stochastic AntMaze
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(b) Stochastic AntPush
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Figure 13: The empirical evaluation of BrHPO by stochastic environments. Mean and std by 4 runs.

C.1 Computing Infrastructure and Training Time

For completeness, we list the computing infrastructure and benchmark training times for BrHPO
and all baselines by Table 4. As discussed in section 4.2, the training complexity of BrHPO is much
less than other HRL methods, which can be comparable to the flat policy.
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Table 2: The hyper-parameters settings for BrHPO.

AntMaze AntBigMaze AntPush AntFall Reacher3D Pusher
Q-value

network (both
high and low)

MLP with hidden size 256

policy network
(both high
and low)

Gaussian MLP with hidden size 256

discounted
factor γ 0.99

soft update
factor τ 0.005

Q-network
learning rate 0.001

policy network
learning rate 0.0001

automatic
entropy tuning

(high-level)
False True False

automatic
entropy tuning

(low-level)
False

batch size 128
update per

step 1

target update
interval 2

high-level
replay buffer 1e5

low-level
replay buffer 1e6

start steps 5e3
subtask
horizon 20 10

reward scale 1
high-level
responsive
factor λ1

2 0.5 2

low-level
responsive
factor λ2

10 5
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Table 3: The average subgoal reachability of BrHPO.

Environment AntMaze AntBigMaze AntPush AntFall Reacher3D Pusher
subgoal

reachability 0.22 0.29 0.33 0.32 0.13 0.18

Table 4: Computing infrastructure and training time on each task (in hours).

AntMaze AntBigMaze AntPush AntFall Reacher3D Pusher
CPU AMD EPYC™ 7763
GPU NVIDIA GeForce RTX 3090
HIRO 16.66 23.14 18.29 25.43 3.42 4.25
HIGL 31.59 48.45 30.95 49.60 5.96 7.05
CHER 15.38 20.53 16.71 21.37 2.96 3.16

RIS 40.83 53.49 38.46 57.05 8.63 9.88
SAC 10.57 11.36 11.75 15.64 2.35 2.68

BrHPO 12.75 18.74 13.43 19.17 2.73 3.53
comparison

(Ours -
SAC)

2.18 7.38 1.68 3.53 0.38 0.85


