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Preface
We, the organizers of the first Reinforcement Learning Conference (RLC), are excited
to present the inaugural issue of the Reinforcement Learning Journal (RLJ), a publi-
cation dedicated to the latest advancements and research in the field of reinforcement
learning. The papers contained within this issue were all presented at the inaugural
meeting of RLC in Amherst Massachusetts from August 9–12, 2024.

This publication (RLJ), and the corresponding meeting (RLC), were made
possible by a large team of volunteers. We would particularly like to thank the
following chairs (in alphabetical order by last name):

RLJ | RLC 2024 Chairs

Feryal Behbahani (Program)
Daniel Brown (Workshop)
Pablo S. Castro (Inclusion)
Bruno Castro da Silva (Local)
Audrey Durand (Industry)
Jesse Farebrother (Communication)
Josiah Hanna (Workshop)
Scott M. Jordan (Program)
Khimya Khetarpal (Industry)

W. Bradley Knox (Program)
Marlos C. Machado (Award)
Andrew Patterson (Program)
Roberta Raileanu (Award)
Gokul Swamy (Communication)
Adam White (Program)
Martha White (Program)

While RLJ and RLC would not have been possible without the enormous effort of
all of these chairs, we would particularly like to highlight the contributions of those
in charge of the peer review process, Dr. Feryal Behbahani, Dr. Scott M. Jordan,
Dr. Andrew Patterson, Prof. Adam White, and Prof. Martha White. Together,
this team created and implemented a pioneering peer review process for RLC that
emphasizes the review of technical correctness over subjective assessments of impact,
while also creating a system that fosters high-quality reviews and mentorship within
the reviewing process. This review process played a critical role in shaping RLJ,
RLC, and the future of peer review in reinforcement learning research, and required
countless volunteered hours of service.

We extend our deepest gratitude to the Manning College of Information and Com-
puter Sciences at the University of Massachusetts Amherst for their invaluable support
in hosting the RLC meeting and publishing the inaugural issue of RLJ. Special thanks
are due to Dean Laura Haas and Associate Dean Ian Raphael for their foresight and
confidence in the significance of this conference. Their willingness to underwrite the
event at its inception underscored a profound commitment to advancing the field of
reinforcement learning, a field with deep roots at the University of Massachusetts.
We are profoundly thankful for their trust and support, which were instrumental in
the creation of this conference and journal.

We would also like to thank the members of the advisory committee, who
provided feedback that shaped, and re-shaped, RLC and RLJ from the beginning:
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Advisory Committee

Andrew Barto
Michael Bowling
Emma Brunskill
Marc Deisenroth
Sham Kakade
Sergey Levine
Michael Littman

Shie Mannor
Balaraman Ravindran
Benjamin Rosman
Satinder Singh
Peter Stone
Benjamin Van Roy

We extend our deepest gratitude to our industry sponsors: Sony AI, Amazon,
Google Research, Google DeepMind, Boston Dynamics, Valence Labs, and Electric
Sheep Robotics. Their generous support has made the inaugural issue of RLJ and
the first RLC meeting in 2024 possible, and their initial contributions also provide a
foundation for the second issue and corresponding 2025 meeting.

We would also like to thank the many expert volunteers who participated in the
peer review process. Without these volunteers, whose names and roles are listed on
the subsequent pages, RLC and RLJ could not exist, and without their dedication to
providing high-quality, insightful, and constructive reviews, RLC and RLJ would not
have been such a success.

We conclude this preface by expressing our profound satisfaction with the inau-
gural RLJ/RLC 2024 meeting. Its success not only marks a significant milestone in
the field of reinforcement learning, but also sets a promising precedent for the future
of reinforcement learning gatherings. We look forward to RLJ and RLC evolving
into an annual venue where reinforcement learning researchers from around the world
continue to convene and publish the latest groundbreaking research.

Sincerely,

The Reinforcement Learning Conference Organizing Committee
Glen Berseth
Scott Niekum
Philip S. Thomas
Eugene Vinitsky
Amy Zhang
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Program Committee1

Feryal Behbahani
Glen Berseth
Scott M. Jordan

Andrew Patterson
Philip S. Thomas
Adam White

Martha White

Senior Area Chairs

Christopher Amato
Pierre-Luc Bacon
Diana L Borsa
Roberto Calandra
Pablo Samuel Castro
Carlo D’Eramo
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Ashley Edwards
Amir-massoud Farahmand
Matthieu Geist
Hado van Hasselt
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Jens Kober
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Lihong Li
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Tom Schaul
Harm van Seijen
Bruno Castro da Silva
Jivko Sinapov
Peter Stone
Richard S. Sutton
Csaba Szepesvari
Steffen Udluft
Martha White
Tom Zahavy
Shangtong Zhang

1The Program Chairs were responsible for various aspects or running RLJ and RLC. The Program
Committee listed here was a group of organizers and Program Chairs that served within the review
process, working with and normalizing across Senior Area Chairs, and taking responsibility for all
final acceptance and rejection decisions.
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Abstract

Game-based decision-making involves reasoning over both world dynamics and
strategic interactions among the agents. Typically, models capturing these respective
aspects are learned and used separately. We investigate the potential gain from
co-learning these elements: a world model for dynamics and an empirical game
for strategic interactions. Empirical games drive world models toward a broader
consideration of possible game dynamics induced by a diversity of strategy profiles.
Conversely, world models guide empirical games to efficiently discover new strategies
through planning. We demonstrate these benefits first independently, then in
combination as a new algorithm, Dyna-PSRO, that co-learns an empirical game
and a world model. When compared to PSRO—a baseline empirical-game building
algorithm, Dyna-PSRO is found to compute lower regret solutions on partially
observable general-sum games. In our experiments, Dyna-PSRO also requires
substantially fewer experiences than PSRO to compute at least equivalent quality
solutions, a key algorithmic advantage for settings where collecting player-game
interaction data is a cost-limiting factor.

1 Introduction

Even seemingly simple games can actually embody a level of complexity rendering them intractable
to direct reasoning. This complexity stems from the interplay of two sources: dynamics of the
game environment, and strategic interactions among the game’s players. As an alternative to direct
reasoning, models have been developed to facilitate reasoning over these distinct aspects of the
game. Empirical games capture strategic interactions in the form of payoff estimates for joint
policies (Wellman, 2006). World models represent a game’s transition dynamics and reward signal
directly (Sutton & Barto, 2018; Ha & Schmidhuber, 2018b). Whereas each of these forms of model
have been found useful for game reasoning, typical use in prior work has focused on one or the other,
learned and employed independent of its natural counterpart.

Co-learning both models presents an opportunity to leverage their complementary strengths as a
means to improve each other. World models predict successor states and rewards given a game’s
current state and action(s). However, their performance depends on coverage of their training data,
which is limited by the space of strategies considered during learning. Empirical games can inform
training of world models by suggesting a diverse set of salient strategies, based on game-theoretic
reasoning (Wellman, 2006). These strategies can expose the world model to a broader range of
relevant dynamics. Moreover, as empirical games are estimated through simulation of strategy
profiles, this same simulation data can be reused as training data for the world model.

Strategic diversity through empirical games, however, comes at a cost. In the popular framework of
Policy-Space Response Oracles (PSRO) (Lanctot et al., 2017), empirical normal-form game models
are built iteratively, at each step expanding a restricted strategy set by computing best-response
policies to the current game’s solution. As computing an exact best-response is generally intractable,
PSRO uses Deep Reinforcement Learning (DRL) to compute approximate response policies. However,
each application of DRL can be considerably resource-intensive, necessitating the generation of
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a vast amount of gameplays for learning. Whether gameplays, or experiences, are generated via
simulation (Obando-Ceron & Castro, 2021) or from real-world interactions (Hester & Stone, 2012),
their collection poses a major limiting factor in DRL and by extension PSRO. World models can
reduce this cost by transferring previously learned game dynamics across response computations.

We investigate the mutual benefits of co-learning a world model and an empirical game by first
verifying the potential contributions of each component independently. We then show how to realize
the combined effects in a new algorithm, Dyna-PSRO, that co-learns a world model and an empirical
game (illustrated in Figure 1). Dyna-PSRO extends PSRO to learn a world model concurrently
with empirical game expansion, and applies this world model to reduce the computational cost of
computing new policies.

World
Model

Empirical
Game

Dyna-PSRO

Strategic Diversity

Planning

Figure 1: Dyna-PSRO co-learns a world model
and empirical game. Empirical games offer world
models strategically diverse game dynamics. World
models offer empirical games more efficient strategy
discovery through planning.

This is implemented by a Dyna-based reinforce-
ment learner (Sutton, 1990; 1991) that integrates
planning, acting, and learning in parallel. Dyna-
PSRO is evaluated against PSRO on a collection
of partially observable general-sum games. In
our experiments, Dyna-PSRO found lower-regret
solutions while requiring substantially fewer cu-
mulative experiences.

The main points of novelty of this paper are as
follows: (1) empirically demonstrate that world
models benefit from the strategic diversity in-
duced by an empirical game; (2) empirically
demonstrate that a world model can be effec-
tively transferred and used in planning with new
other-players. The major contribution of this
work is a new algorithm, Dyna-PSRO, that co-
learns an empirical game and world model find-
ing a stronger solution at less experiential cost
than the baseline, PSRO.

2 Related Work

Empirical Game Theoretic Analysis (EGTA). The core idea of EGTA (Wellman, 2006) is to
reason over approximate game models (empirical games) estimated by simulation over a restricted
strategy set. This basic approach was first demonstrated by Walsh et al. (2002), in a study of
pricing and bidding games. Phelps et al. (2006) introduced the idea of extending a strategy set
automatically through optimization, employing genetic search over a policy space. Schvartzman &
Wellman (2009a) proposed using RL to derive new strategies that are approximate best responses
(BRs) to the current empirical game’s Nash equilibrium (NE). The general question of which strategies
to add to an empirical game has been termed the strategy exploration problem (Jordan et al., 2010).
PSRO (Lanctot et al., 2017) generalized the target for BR beyond NE, and introduced DRL for BR
computation in empirical games. Many further variants and extensions of EGTA have been proposed,
for example those using structured game representations such as extensive-form (McAleer et al., 2021;
Konicki et al., 2022). Some prior work has considered transfer learning across BR computations in
EGTA, specifically by reusing elements of policies and value functions (Smith et al., 2023a;b; 2021).

Model-Based Reinforcement Learning (MBRL). Model-Based RL algorithms construct or
use a model of the environment (henceforth, world model) in the process of learning a policy or value
function (Sutton & Barto, 2018). World models may either predict successor observations directly
(e.g., at pixel level (Wahlström et al., 2015; Watter et al., 2015)), or in a learned latent space (Ha &
Schmidhuber, 2018a; Gelada et al., 2019). World models can be either used for background planning
by rolling out model-predicted trajectories to train a policy, or for decision-time planning where
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the world model is used to evaluate the current state by planning into the future. Talvitie (2014)
demonstrated that even in small Markov decision processes (Puterman, 1994), model-prediction
errors tend to compound—rendering long-term planning at the abstraction of observations ineffective.
A follow-up study demonstrated that for imperfect models, short-term planning was no better than
repeatedly training on previously collected real experiences; however, medium-term planning offered
advantages even with an imperfect model (Holland et al., 2018). Parallel studies hypothesized that
these errors are a result of insufficient data for that transition to be learned (Kurutach et al., 2018;
Buckman et al., 2018). To remedy the data insufficiency, ensembles of world models were proposed
to account for world model uncertainty (Buckman et al., 2018; Kurutach et al., 2018; Yu et al.,
2020), and another line of inquiry used world model uncertainty to guide exploration in state-action
space (Ball et al., 2020; Sekar et al., 2020). This study extends this problem into the multiagent
setting, where now other-agents may preclude transitions from occurring. The proposed remedy is to
leverage the strategy exploration process of building an empirical game to guide data generation.

Multiagent Reinforcement Learning (MARL). Previous research intersecting MARL and
MBRL has primarily focused on modeling the opponent, particularly in scenarios where the opponent
is fixed and well-defined. Within specific game sub-classes, like cooperative games and two-player zero-
sum games, it has been theoretically shown that opponent modeling reduces the sample complexity of
RL (Tian et al., 2019; Zhang et al., 2020). Opponent models can either explicitly (Mealing & Shapiro,
2017; Foerster et al., 2018) or implicitly (Bard et al., 2013; Indarjo, 2019) model the behavior of the
opponent. Additionally, these models can either construct a single model of opponent behavior, or
learn a set of models (Collins, 2007; He et al., 2016). While opponent modeling details are beyond
the scope of this study, readers can refer to Albrecht & Stone’s survey (Albrecht & Stone, 2018) for
a comprehensive review on this subject. Instead, we consider the case where the learner has explicit
access to the opponent’s policy during training, as is the case in empirical-game building. A natural
example is that of Self-Play, where all agents play the same policy; therefore, a world model can be
learned used to evaluate the quality of actions with Monte-Carlo Tree Search (Silver et al., 2016; 2017;
Tesauro, 1995; Schrittwieser et al., 2020). Li et al. (2023) expands on this by building a population of
candidate opponent policies through PSRO to augment the search procedure. Krupnik et al. (2020)
demonstrated that a generative world model could be useful in multi-step opponent-action prediction.
Sun et al. (2019) examined modeling stateful game dynamics from observations when the agents’
policies are stationary. Chockingam et al. (2018) explored learning world models for homogeneous
agents with a centralized controller in a cooperative game. World models may also be shared by
independent reinforcement learners in cooperative games (Willemsen et al., 2021; Zhang et al., 2022).

3 Co-Learning Benefits

We begin by specifying exactly what we mean by world model and empirical game. Let t ∈ T
denote time in the real game, with st ∈ S the information state and ht ∈ H the game state at
time t. The information state st ≡ (mπ,t, ot) is composed of the agent’s memory mπ ∈Mπ , or
recurrent state, and the current observation o ∈ O. Subscripts denote a player-specific component
si, negative subscripts denote all but the player s−i, and boldface denote the joint of all players s.
The transition dynamics p : H×A→ ∆(H)×∆(R) define the game state update and reward
signal, where R is the space of rewards r and A is the space of actions a. The agent experiences
transitions, or experiences, (st, at, rt+1, st+1) of the game; where, sequences of transitions are
called trajectories τ and trajectories ending in a terminal game state are episodes.

At the start of an episode, all players sample their current policy π from their strategy1 σ : Π→ [0, 1],
where Π is the policy space and Σ is the corresponding strategy space. A utility function
U : Π→ Rn defines the payoffs/returns (i.e., cumulative reward) for each of n players. The tuple
Γ ≡ (Π, U, n) defines a normal-form game (NFG) based on these elements. We represent empirical
games in normal form. An empirical normal-form game (ENFG) Γ̂ ≡ (Π̂, Û , n) models a game
with a restricted strategy set Π̂ and an estimated payoff function Û . An empirical game is typically

1This is equivalent to the meta-strategy defined in PSRO (Lanctot et al., 2017).
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built by alternating between game reasoning and strategy exploration. During the game reasoning
phase, the empirical game is solved based on a solution concept predefined by the modeler. The
strategy exploration step uses this solution to generate new policies to add to the empirical game.
One common heuristic is to generate new policies that best-respond to the current solution (McMahan
et al., 2003; Schvartzman & Wellman, 2009b). As exact best-responses typically cannot be computed,
RL or DRL are employed to derive approximate best-responses (Lanctot et al., 2017).

An agent world model w represents dynamics in terms of information available to the agent.
Specifically, w maps observations and actions to observations and rewards for all agents, w :
O ×A×Mw → O ×R, where mw ∈Mw is the world model’s memory, or recurrent state. For
simplicity, in this work, we assume the agents learn and use a shared deterministic world model,
irrespective of stochasticity that may be present in the true game. Implementation details for the
world models used throughout this work are are provided in Appendix C.2. These implementations
are intended to be representative of world models in general, an active area of ongoing research with
many design decisions that will affect their requirements and performance.

Until now, we have implicitly assumed the need for distinct models. However, if a single model could
serve both functions, co-learning two separate models would not be needed. Empirical games, in
general, cannot replace a world model as they entirely abstract away any concept of game dynamics.
Conversely, world models have the potential to substitute for the payoff estimations in empirical
games by estimating payoffs as rollouts with the world model. We explore this possibility in an
auxiliary experiment included in Appendix E.4, but our findings indicate that this substitution is
impractical. Due to compounding of model-prediction errors, the payoff estimates and entailed game
solutions were quite inaccurate. Despite this, it is plausible that a world model can substitute as a
high-fidelity empirical game. This suggests a future complementary yet tangential line of research.

Having defined the models and established the need for their separate instantiations, we can proceed
to evaluate the claims of beneficial co-learning. Our first experiment explores the claim that the
strategic diversity embodied in an empirical game yields diverse game dynamics, resulting in the
training of a more performant world model. The second set of experiments investigates the claim that
a world model can help reduce the computational cost of policy construction in an empirical game.

3.1 Strategic Diversity

In this section, we discuss our first point of novelty: that an empirical game can benefit a world model
by introducing strategic diversity to its training data. A world model is trained to predict successor
observations and rewards, from the current observations and actions, using a supervised learning
signal. Ideally, the training data would cover all possible transitions. This is not generally feasible, so
instead draws are conventionally taken from a dataset generated from play of a behavioral [joint]
strategy. Performance of the world model is then measured against a target [joint] strategy
defined at test time. Differences between the behavioral and target strategies present a challenge in
learning an effective world model. This approach examines the potential of an empirical game to
mitigate this challenge by enhancing strategic diversity.

We call the probability of drawing a state-action pair under some joint strategy its reach probability.
From this, we define a joint strategy’s strategic diversity as the distribution induced from reach
probabilities across the full state-action space. These terms allow us to observe two challenges for
learning world models. First, the diversity of the behavioral joint strategy ought to cover the target
joint strategy’s diversity. Otherwise, transitions will be absent from the training data. It is possible to
supplement coverage of the absent transitions if they can be generalized from covered data; however,
this cannot be generally guaranteed. Second, the closer the diversities are, the more accurate the
learning objective will be. An extended description these challenges is provided in Appendix C.3.

If the target joint strategy were known, we could readily construct the ideal training data for the
world model. However the target is generally not known at the outset; indeed determining this target
is the ultimate purpose of empirical-game reasoning. The evolving empirical game essentially reflects
a search for the target. Serendipitously, construction of this empirical game entails generation of data
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that captures elements of likely targets. This data can be reused for world model training without
incurring any additional data collection cost.

Game. We evaluate the claims of independent co-learning benefits within the context of a commons
game called “Harvest”. In Harvest, players move around an orchard picking apples. The challenging
commons element is that the apple regrowth rate is proportional to number of nearby apples, so
that socially optimum behavior would entail managed harvesting. Self-interested agents capture
only part of the benefit of optimal growth, thus non-cooperative equilibria tend to exhibit collective
over-harvesting. The game has established roots in human-behavioral studies (Janssen et al., 2010)
and in agent-based modeling of emergent behavior (Pérolat et al., 2017; Leibo et al., 2017; 2021). For
our initial experiments, we use a symmetric two-player version of the game, where in-game entities
are represented categorically (HumanCompatibleAI, 2019). Each player has a 10× 10 viewbox within
their field of vision. The possible actions include moving in the four cardinal directions, rotating
either way, tagging, or remaining idle. A successful tag temporarily removes the other player from
the game, but can only be done to other nearby players. Players receive a reward of 1 for each apple
picked. More detailed information and visualizations are available in Appendix D.1.

Experiment. To test the effects of strategic diversity, we train a suite of world models that differ
in the diversity of their training data. The datasets are constructed from the play of three policies:
a random baseline policy, and two PSRO-generated policies. The PSRO policies were arbitrarily
sampled from an approximate solution produced by independent runs of PSRO. We sampled an
additional policy from PSRO for evaluating the generalization capacity of the world models. The
diversity of these policies was verified through their action agreement (Appendix E.1). These policies
are then subsampled and used to train seven world models. The world models are referred to by icons

that depict the symmetric strategy profiles used to train them in the normal-form. Strategy
profiles included in the training data of the world models are shaded black. For instance, the first
(random) policy , or the first and third policies . Each world model’s dataset contains 1
million total transitions, collected uniformly from each distinct strategy profile (symmetric profiles
are not re-sampled). The world models are optimized with a weighted-average cross-entropy objective.
Additional details are in Appendix C.2.
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Figure 2: World model cross-entropy loss across strategy profiles. Each heatmap portrays a world
model’s accuracy over 16 strategy profiles, with average above. The meta x-axis corresponds to the
profiles used to train the world model (as black cells). (5 seeds, with 95 % bootstrapped CI).
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Results. Figure 2 presents each world model’s cross-entropy loss, as well as its average over all
profiles with 95 % bootstrapped confidence intervals (CI). Inclusion of the random policy corresponds
to decreases in observation loss (left), and corresponds to no measurable change in reward loss (right):

5.33± 0.89 → 1.99± 0.23 1.55± 0.72 → 1.45± 0.72
4.25± 0.74 → 1.83± 0.24 1.52± 0.74 → 1.78± 0.97
3.76± 0.67 → 1.45± 0.20 1.16± 0.57 → 1.62± 0.77.

Figure 14 and 15 contain the accuracy and recall of the world models respectively (Appendix E.1).

Discussion. The world model , trained on all policies, obtains the lowest observation loss.
While loss provides a strong summary statistic for the training effectiveness of world models, it
does not necessarily reflect their applicability. To better understand this, we further examine the
accuracy and recall of these world models. World model yields the highest observation accuracy
at 0.83± 0.02. Training this world model exclusively on PSRO policies provided it with the most
strategically salient view of the game’s dynamics. While including the random policy, world model

, reduces both the observation loss and accuracy (0.68± 0.04). The significant class imbalance in
the world model’s training data explains this seemingly counterintuitive result. The random policy
does not behave meaningfully, thereby creating irrelevant observational data. While this proves
harmful to observation accuracy, it is helpful in balancing the reward classes. The random policy
presents no competition for a non-random policy, allowing it to generate more examples of rewarding
states. As a result, inclusion of the random policy trends with improvements to reward recall with
world model having the highest reward recall at 0.37± 0.11. Given the importance of accurately
predicting both observations and rewards for effective planning, appears to be the most promising
option. However, the strong performance of suggests future work on algorithms that can benefit
solely from observation predictions. Overall, these results provide evidence supporting the claim that
strategic diversity tends to enhance world model training.

3.2 Response Calculations

This section discusses our second point of novelty: that world models can be effectively transferred
and used in planning with new coplayers. Thus establishing world models to be an effective means
of transfer learning to reduce the cost of empirical games. Empirical games are built by iteratively
calculating and incorporating responses to the current solution. However, direct computation
of these responses is often infeasible, so RL or DRL is used to approximate the response. This
process of approximating a single response policy using RL is computationally intensive, posing a
significant constraint in empirical game modeling when executed repeatedly. World models present
an opportunity to address this issue. A world model can serve as a medium for transferring previously
learned knowledge about the game’s dynamics. Therefore, the dynamics need not be relearned,
reducing the computational cost associated with response calculation.

Exercising a world model for transfer is achieved through planning. Planning is any procedure
that takes a world model and produces or improves a policy (Sutton & Barto, 2018). In the context
of games, planning can optionally take into account the existence of coplayers. This consideration
can reduce experiential variance caused by unobserved confounders (i.e., the coplayers). However,
coplayer modeling errors may introduce further errors in the planning procedure (He et al., 2016).

Planning alongside empirical-game construction allows us to side-step this issue as we have direct
access to the policies of all players during training. This allows us to circumvent the challenge of
building accurate coplayer models. Instead, the policies of coplayers can be directly queried and
used alongside a world model, leading to more accurate planning. In this section, we empirically
demonstrate the effectiveness of two methods that decrease the cost of response calculation by
integrating planning with a world model and coplayer policies.

6



RLJ | RLC 2024

3.2.1 Background Planning

The first type of planning that is investigated is background planning, popularized by the Dyna
architecture (Sutton, 1990). In background planning, agents interact with the world model to produce
planned experiences2. The planned experiences are then used by a model-free reinforcement
learning algorithm as if they were real experiences (experiences generated from the real game).
Background planning enables learners to generate experiences of states they are not currently in.

Experiment. To assess whether planned experiences are effective for training a policy in the actual
game, we compute two response policies. The first response policy, our baseline, learns exclusively
from real experiences. The second response policy, referred to as the planner, is trained using a
two-step procedure. Initially, the planner is exclusively trained on planned experiences. After 10 000
updates, it then transitions to learning solely from real experiences. Policies are trained using
IMPALA (Espeholt et al., 2018), with further details in Appendix C.1. The planner employs the

world model from Section 3.1, and the opponent plays the previously held-out policy. In this
and subsequent experiments, the cost of methods is measured by the number of experiences they
require with the actual game. Throughout the remainder of this work, each experience represents a
trajectory of 20 transitions, facilitating the training of recurrent policies.
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Figure 3: Effects of background planning on response learning. Left: Return curves measured by the
number of real experiences used, the key performance metric. Right: Return curves measured by
usage of both real and planned experiences. The planner’s return is measured against the real game
(Plan: Real) and the world model (Plan: Model). (5 seeds, with 95 % bootstrapped CI).

Results. Figure 3 presents the results of the background planning experiment. The methods are
compared based on their final return, utilizing an equivalent amount of real experiences. The baseline
yields a return of 23.00± 4.01, whereas the planner yields a return of 31.17± 0.25.

Discussion. In this experiment, the planner converges to a stronger policy, and makes earlier gains
in performance than the baseline. Despite this, there is a significant gap in the planner’s learning
curves, which are reported with respect to both the world model and real game. This gap arises due
to accumulated model-prediction errors, causing the trajectories to deviate from the true state space.
Nevertheless, the planner effectively learns to interact with the world model during planning, and this
behavior shows positive transfer into the real game, as evidenced by the planner’s rapid learning. The
exact magnitude and significance of the benefit will vary across coplayers’ policies, games, and world
models. In Figure 16 (Appendix E.2), we repeat the same experiment with the poorly performing
world model, and observe a marginal benefit (26.05± 1.32). The key take-away is that background
planning tends to lead towards learning benefits, and not generally hamper learning.

2Other names include “imaginary”, “simulated”, or “hallucinated” experiences.
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3.2.2 Decision-Time Planning

The second main way that a world model is used is to inform action selection at decision time
[planning] (DT). In this case, the agent evaluates the quality of actions by comparing the value
of the model’s predicted successor state for all candidate actions. Action evaluation can also occur
recursively, allowing the agent to consider successor states further into the future. Overall, this process
should enable the learner to select better actions earlier in training, thereby reducing the amount of
experiences needed to compute a response. A potential flaw with decision-time planning is that the
agent’s learned value function may not be well-defined on model-predicted successor states (Talvitie,
2014). To remedy this issue, the value function should also be trained on model-predicted states, as
is done in background planning. Therefore, we study the impact of combining decision-time planning
with different methods for background planning to evaluate their combined efficacy.

Experiment. To evaluate the impact the decision-time planning, we perform an experiment similar
to the background planning experiment (Section 3.2.1). However, in this experiment, we evaluate the
quality of four types of decision-time planners that perform one-step three-action search. The planners
differ in the their ablations of background planning types: (1) warm-start background planning
(BG: W) learning from planned experiences before any real experiences, and (2) concurrent
background planning (BG: C) where after BG: W, learning proceeds simultaneously on both
planned and real experiences. The intuition behind BG: C is that the agent can complement its
learning process by incorporating planned experiences that align with its current behavior, offsetting
the reliance on costly real experiences. Extended experimental details are provided in Appendix C.
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Figure 4: Effects of decision-time planning on response learning. Four planners using decision-time
planning (DT) are shown in combinations with warm-start background planning (BG: W) and
concurrent background planning (BG: C). Left compares methods by the key performance metric,
and right includes planning experience. (5 seeds, with 95 % bootstrapped CI).

Results. The results for this experiment are shown in Figure 4. The baseline policy receives a final
return of 23.00± 4.01. The planners that do not include BG: W, perform worse, with final returns of
9.98± 7.60 (DT) and 12.42± 3.97 (DT & BG: C). The planners that perform BG: W outperform the
baseline, with final returns of 44.11± 2.81 (DT & BG: W) and 44.31± 2.56 (DT, BG: W, & BG: C).

Discussion. Our results suggest that the addition of BG: W provides sizable benefits:

9.98± 7.60 (DT) → 44.11± 2.81 (DT & BG:W), and
12.42± 3.97 (DT & BG: C) → 44.31± 2.56 (DT, BG: W, & BG: C).

We postulate that this is because it informs the policy’s value function on model-predictive states
early into training. This allows that the learner is able to more effectively search earlier into training.
BG: C appears to offer minor stability and variance improvements throughout the training procedure;
however, it does not have a measurable difference in final performance.
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However, we caution against focusing on the magnitude of improvement found within this experiment.
As the margin of benefit depends on many factors including the world model quality, the coplayers’
policies, and the game. To exemplify, similar to the background planning section, we repeat the same
experiment with the poorly performing world model. The results of this ancillary experiment
are in Figure 18 (Appendix E.3). The trend of BG: W providing benefits was reinforced:

6.29± 5.12 (DT) → 20.98± 9.76 (DT & BG: W), and
3.64± 0.26 (DT & BG: C) → 33.07± 7.67 (DT, BG: W, & BG: C).

However, the addition of BG: C now measurably improved performance

20.98± 9.76 (DT & BG: W) → 33.07± 7.67 (DT, BG: W, & BG: C).

The main observation of these experiments is that when multi-faceted planning is applied effectively,
it is unlikely to harm response calculation. This affords us confidence that we can apply world models
as a means for transfer learning during empirical-game solving. Moreover, in some cases, this transfer
can have a potentially large benefit to the quality of response calculation when applied effectively.

4 Dyna-PSRO

In this section we introduce the main contribution of this work: Dyna-PSRO, Dyna-Policy-Space
Response Oracles, an algorithm for approximate game-solving that extends the PSRO (Lanctot et al.,
2017) framework. Dyna-PSRO employs co-learning to combine the benefits of world models and
empirical games.

Dyna-PSRO is defined by two significant alterations to the original PSRO algorithm. First, it trains
a world model in parallel with all the typical PSRO routines (i.e., game reasoning and response
calculation). We collect training data for the world model from both the episodes used to estimate
the empirical game’s payoffs, and the episodes that are generated during response learning and
evaluation. This approach ensures that the world model is informed by a diversity of data from a
salient set of strategy profiles. By reusing data from empirical game development, training the world
model incurs no additional cost for data collection.

The second modification introduced by Dyna-PSRO pertains to the way response policies are learned.
Dyna-PSRO adopts a Dyna-based reinforcement learner (Sutton, 1990; 1991; Sutton et al., 2012)
that integrates simultaneous planning, learning, and acting. Consequently, the learner concurrently
processes experiences generated from decision-time planning, background planning, and direct
game interaction. These experiences, regardless of their origin, are then learned from using the
IMPALA (Espeholt et al., 2018) update rule. For all accounts of planning, the learner uses the single
world model that is trained within Dyna-PSRO. This allows game knowledge accrued from previous
response calculations to be transferred and used to reduce the cost of the current and future response
calculations. Pseudocode and additional details are provided in Appendix C.4.

Games. Dyna-PSRO is evaluated on three games. The first is the harvest commons game used in
the experiments described above, denoted “Harvest: Categorical”. The other two games come from
the MeltingPot (Leibo et al., 2021) evaluation suite and feature image-based observations. “Harvest:
RGB” is their version of the same commons harvest game (details in Appendix D.2). “Running With
Scissors” is a temporally extended version of rock-paper-scissors (details in Appendix D.3). World
model details for each game are in Appendix C.2, likewise, policies in Appendix C.1.

Experiment. Dyna-PSRO’s performance is measured by the quality of the Nash equilibrium
solution it produces when compared against the world-model-free baseline PSRO. The two methods
are evaluated on SumRegret (sometimes called Nash convergence), which measures the regret across all
players SumRegret(σ, Π) =

∑
i∈n maxπi∈Πi

Ûi(πi, σ−i)−Ûi(σi, σ−i), where σ is the method’s solution
and Π ⊆ Π denotes the deviation set. We define deviation sets based on policies generated across
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methods: Π ≡ ⋃
method Π̂method (i.e., regret is with respect to the combined game—a union of each

method’s empirical game), for all methods for a particular seed (detailed in Appendix C.5) (Balduzzi
et al., 2018). We measure SumRegret for intermediate solutions, and report it as a function of the
cumulative number of real experiences employed in the respective methods.
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Figure 5: PSRO compared against Dyna-PSRO. (5 seeds, with 95 % bootstrapped CI).

Results. Figure 5 presents the results for this experiment. For Harvest: Categorical, Dyna-PSRO
found a no regret solution within the combined-game in 3.2e6 experiences. Whereas, PSRO achieves
a solution of at best 5.45± 1.62 within 2e7 experiences. In Harvest: RGB, Dyna-PSRO reaches a
solution with 0.89± 0.74 regret at 5.12e6 experiences. At the same time, PSRO had found a solution
with 6.42± 4.73 regret, and at the end of its run had 2.50± 2.24 regret. In the final game, RWS,
Dyna-PSRO has 2e−3± 5e−4 regret at 1.06e7 experiences, and at a similar point (9.6e6 experiences),
PSRO has 6.68e−3± 2.51e−3. At the end of the run, PSRO achieves a regret 3.50e−3± 7.36e−4.

Discussion. The results indicate that across all games, Dyna-PSRO consistently outperforms
PSRO by computing a more performant solution. Furthermore, this improved performance is realized
while consuming fewer real-game experiences. For instance, in the case of Harvest: Categorical, the
application of the world model for decision-time planning enables the computation of an effective
policy after only a few iterations. On the other hand, we observe a trend of accruing marginal gains
in other games, suggesting that the benefits are likely attributed to the transfer of knowledge about
the game dynamics. In all three games, Dyna-PSRO exhibited at least an order of magnitude lower
variance than PSRO.

5 Conclusion & Limitations

This study showed the mutual benefit of co-learning a world model and empirical game. First, we
demonstrated that empirical games provide strategically diverse training data that could inform
a more robust world model. We then showed that world models can reduce the computational
cost, measured in experiences, of response calculations through planning. These two benefits were
combined and realized in a new algorithm, Dyna-PSRO. In our experiments, Dyna-PSRO computed
lower-regret solutions than PSRO on several partially observable general-sum games. Dyna-PSRO
also required substantially fewer experiences than PSRO, a key algorithmic advantage for settings
where collecting experiences is a cost-limiting factor.

Although our experiments demonstrate benefits for co-learning world models and empirical games,
there are several areas for potential improvement. The world models used in this study necessitated
observational data from all players for training, and assumed a simultaneous-action game. Future
research could consider relaxing these assumptions to accommodate different interaction protocols,
a larger number of players, and incomplete data perspectives. Furthermore, our world models
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functioned directly on agent observations, which made them computationally costly to query. If the
generation of experiences is the major limiting factor, as assumed in this study, this approach is
acceptable. Nevertheless, reducing computational demands through methods like latent world models
presents a promising avenue for future research. Lastly, the evaluation of solution concepts could
also be improved. While combined-game regret employs all available estimates in approximating
regret, its inherent inaccuracies may lead to misinterpretations of relative performance.
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Abstract

We consider a Bayesian budgeted multi-armed bandit problem, in which each arm
consumes a different amount of resources when selected and there is a budget con-
straint on the total amount of resources that can be used. Budgeted Thompson
Sampling (BTS) offers a very effective heuristic to this problem, but its arm-selection
rule does not take into account the remaining budget information. We adopt In-
formation Relaxation Sampling framework that generalizes Thompson Sampling for
classical K-armed bandit problems, and propose a series of algorithms that are ran-
domized like BTS but more carefully optimize their decisions with respect to the
budget constraint. In a one-to-one correspondence with these algorithms, a series
of performance benchmarks that improve the conventional benchmark are also sug-
gested. Our theoretical analysis and simulation results show that our algorithms
(and our benchmarks) make incremental improvements over BTS (respectively, the
conventional benchmark) across various settings including a real-world example.

1 Introduction

As an intuitive and efficient heuristic algorithm for sequential decision-making tasks in unknown
environments, Thompson Sampling (TS) (Thompson, 1933) has been enjoying a huge success in
practice and adopted in recommendation systems (Chapelle & Li, 2011), A/B testing (Graepel
et al., 2010), the online advertisement (Graepel et al., 2010; Agarwal, 2013), reinforcement learning
(Osband et al., 2013), etc. Built upon online Bayesian inference framework, TS takes an action
optimized to model parameters randomly drawn from the posterior distribution at each decision
epoch. This simple procedure, called posterior sampling, finds a surprisingly proper balance between
exploitation and exploration, and is proven to achieve optimality (Agrawal & Goyal, 2012; Russo &
Van Roy, 2014).

However, the posterior sampling procedure only considers the current level of model uncertainty,
not considering the future consequences of individual actions. This often critically affects the per-
formance of TS, particularly when the value of exploration needs to be taken into account carefully
– for example, when there are an excessive number of arms (Russo & Van Roy, 2022) when the arms
have different noise variances (Kirschner & Krause, 2018; Min et al., 2020), or when the exploration
is restricted due to a budget constraint, the situation formulated as a budgeted multi-armed bandit
(MAB) (Ding et al., 2013; Xia et al., 2015).

In the budgeted MAB, playing an arm yields a random reward and incurs a deterministic/random
cost at the same time, and no more play can be made once the playe runs out of budget. This setting
has been introduced to model online bidding optimization in sponsored search (Amin et al., 2012;
Tran-Thanh et al., 2014), and on-spot instance bidding in cloud computing (Agmon Ben-Yehuda
et al., 2013). The algorithms such as KUBE (Tran-Thanh et al., 2012), UCB-BV1/BV2 (Ding et al.,
2013), PD-BwK (Badanidiyuru et al., 2013), i/c/m-UCB, b-Greedy (Xia et al., 2017), and BTS
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(Xia et al., 2015) have been proposed and analyzed. Budgeted Thompson Sampling (BTS), as an
immediate extension of TS for budgeted MAB, is considered as a baseline algorithm to be fixed in
this work. Although it significantly outperforms the other algorithms, it still does not consider the
remaining budget information when making a decision, and hence suffers from the aforementioned
issue.

To overcome this shortcoming, we adopt the Information Relaxation Sampling (IRS) framework,
recently suggested by Min et al. (2019) for classical Bayesian K-armed bandit problems. Generalizing
the concept of posterior sampling, the IRS framework suggests a class of algorithms which optimize
their actions to a randomly generated future scenario (not just model parameters) in a careful
consideration of the belief dynamics of Bayesian learners.

Our contributions are threefold: First, by applying the IRS framework to the budgeted MAB setting,
we develope a series of algorithms that can exploit the specific details of the problem instance such
as budget information. Without introducing any auxiliary parameter, they easily achieve the state-
of-the-art performance. In our numerical experiment, the improvement over BTS can be as large as
75% in terms of reduction in regret.

Second, we obtain as byproducts a series of upper bounds on the maximal performance that can be
achieved in the given problem instance. This series of upper bounds also improve the conventional
one commonly used in the definition of Bayesian regret, and turn out to be useful to see how much
additional improvement can be made.

Finally, we extend IRS to random cost settings by making two levels of extensions. As a relatively
simpler extension, we allow IRS policies to sample the mean cost values from their posterior dis-
tributions and then solve inner problems as if these sampled values are the ground truth, i.e., the
idea of IRS is applied only to rewards but not to costs. As a more complicated extension, we can
make IRS policies to sample all future cost realizations and then solve more complex inner problems
that additionally consider how much the decision maker will learn about the cost distributions, i.e.,
the idea of IRS is applied to both rewards and costs. Our numerical experiment shows that these
extensions of IRS policies indeed offer sequential improvements over BTS as expected. And it show
that the more complicated extension outperforms the simple extension.

Throughout this paper, we will focus on explaining two specific algorithms, namely, IRS.FH and
IRS.V-Zero, instead of describing the general framework.

2 Problem Formulation and Preliminaries

We consider a Bayesian budgeted MAB problem with K arms and a resource budget B. A problem
instance can be specified by a tuple

(
K, B, (ca,Ra, Θa,Pa,Ya, ya,0)a∈[K]

)
which will be described in

a greater detail below.

Rewards and costs. Let A = [K] be the set of arms, among which the decision maker (DM) can
play one in each time period. The stochastic reward that the DM earns from the nth pull of arm
a is represented with a nonnegative random variable Ra,n, and we assume that its distribution is
given by Ra(θa):

Ra,n ∼ Ra(θa), ∀n = 1, 2, . . . ,

where θa ∈ Θa is the unknown parameter that the DM aims to learn. Given θa, the rewards
Ra,1, Ra,2, . . . are independent.

Whenever arm a is played, it also incurs a deterministic cost,1 denoted by ca ∈ N (i.e., consumes ca

units of resources deterministically). The total amount of resources that the DM can use is limited
by B ∈ N, and the DM’s goal is to maximize the expected total reward within this budget constraint.

1In development and analyses of our suggested algorithms, we primarily focus on the deterministic cost setting.
The main ideas naturally extend to random cost setting. See § 4.
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Bayesian framework. In the Bayesian framework, the unknown parameter θa is treated as a
random variable and we assume that its prior distribution is given by Pa(ya,0), i.e.,

θa ∼ Pa(ya,0),

where the hyperparameter ya,0 ∈ Ya, which we call (initial) belief, specifies the prior distribution.

As a Bayesian learner, the DM’s belief about θa will be updated according to the Bayes’ rule whenever
a new reward realization from the arm a is observed. To describe the belief dynamics explicitly, we
introduce a Bayesian update function Ua : Ya × R+ → Ya. That is, after playing the arm a for the
first time, the belief is updated from ya,0 to ya,1 ≜ Ua(ya,0, Ra,1) and then the posterior distribution
of θa can be written as Pa(ya,1). We accordingly define ya,n be the belief that the DM will have
after playing the arm n times, i.e., ya,n ≜ Ua(ya,n−1, Ra,n) for n = 1, 2, . . ..

Mean reward estimates. We denote the unknown mean reward of arm a by µa(θa) as a real-
valued function of parameter θa:

µa(θa) ≜ E[Ra,n|θa].
Let us denote its n-sample (Bayesian) estimate by µ̂a,n(·) as a real-valued function of first n reward
realizations: abbreviating (Ra,1, . . . , Ra,n) as Ra,1:n, we define

µ̂a,n(Ra,1:n ; ya,0) ≜ Eθa∼Pa(ya,0)[µa(θa)|Ra,1:n],

which represents the expected performance of arm a inferred from its first n reward realizations, or
equivalently, the predictive mean reward of arm a that the DM would believe after playing the arm
n times.

These mean-reward metrics µa and µ̂a,n will be repeatedly used throughout the paper. The reason
why we define µa and µ̂a,n as functions is to clarify their dependencies on the random variables and
to utilize their functional form when developing algorithms later. To help understanding, we make
the following remark.

Remark 1 By Strong Law of Large Numbers, we have

lim
n→∞

µ̂a,n(Ra,1:n ; ya,0) = µa(θa), a.s.,

which says that, in terms of mean-reward estimation, knowing the parameter is equivalent to having
an infinite number of observations. Also, for any n and k, it holds that

µ̂a,n+k(Ra,1:n+k ; ya,0) = µ̂a,k(Ra,n+1:n+k ; ya,n),

which says that making an inference using n+k samples given an initial belief is equivalent to making
an inference using the later k samples after updating the belief using the former n samples.

Policy and performance. Let π be the DM’s policy, and At be the arm played by π at time t.
The reward that the DM earns at time t can be written as

rt ≜ RAt,nAt,t
where na,t ≜

t∑

s=1
1{As = a}.

Here, na,t counts the number of times that arm a has been played up to time t. An admissible policy
π should decide At based only on the information revealed prior to time t, (As, rs)t−1

s=1.

Besides, playing the arm At consumes cAt
units of resources. To describe the budget constraint

explicitly, we introduce a stopping time τ representing the first time that the cumulative cost exceeds
the given budget, i.e.,

τ ≜ min
{

t :
t∑

s=1
cAs > B

}
.
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Only the rewards realized before time τ are counted, so the total reward collected by the DM can
be written as

∑τ−1
t=1 rt. As a trivial upper bound on τ , we introduce Tmax ≜ maxa∈A {⌊B/ca⌋+ 1}.

We denote by V (π) the expected performance of policy π in a given MAB instance:

V (π) ≜ Eπ

[
τ−1∑

t=1
rt

]
= Eπ

[
τ−1∑

t=1
µAt

(θAt
)
]

.

Here, the expectation operator takes into account the randomness of the policy (if randomized
like BTS), the reward realizations R1:K,1:Tmax , and the parameter realizations θ1:K . Note that
V (π) can be alternatively represented as Eπ

[∑τ−1
t=1 µAt(θAt)

]
by the law of total expectation, since

E[rt|At, θ1:K ] = µAt(θAt).

Performance bound and regret. A quantity W is said to be a performance bound if W ≥ V (π)
for any policy π.

As a performance bound commonly used in the MAB literature, W BTS is defined as2

W BTS ≜ E
[
B ×max

a∈A
µa(θa)

ca

]
. (1)

This quantity represents the expected performance of the clairvoyant fractional solution: when the
player knows the parameters θ1:K in advance, it is optimal for him to play the arm a⋆ with the
largest reward-to-cost ratio µa(θa)/ca, (fractionally) B/ca⋆ times in a row, which will yield the total
reward of E [µa⋆(θa⋆)×B/ca⋆ ] (= W BTS) in average. Clearly, no policy can perform better than this
clairvoyant player, and therefore, W BTS is an upper bound on the maximal achievable performance
for the given MAB instance.

A performance bound W is said to be tighter than the other W ′ if W ≤ W ′. A tighter bound
provides a more precise quantification of the hardness of a particular MAB instance, and can better
serve as a performance benchmark.

On the other hand, we will later utilize the Bayesian regret to visualize and compare the performance
of policies, which is defined as

Regret(π) ≜ W BTS − V (π).
The regret quantifies the suboptimality of a policy, and is non-negative since W BTS is a performance
bound. Once we have a performance bound W tighter than W BTS, the gap W BTS−W will provide
a lower bound on the minimal achievable regret (i.e., Regret(π) ≥W BTS −W for any π).

Bayesian optimal policy. In the Bayesian setting, there exists a policy that achieves the maximal
performance V ⋆:

V ⋆ ≜ sup
π

V (π).

Such a Bayes-optimal policy and its performance V ⋆, in theory, can be obtained by solving the
Bellman equation (corresponding to an MDP with a state space Y1 × . . .×YK and an action space
A. See Appendix A for the detail), but they are intractable in most cases.

As motivated in the introduction, our primary goal is to improve the BTS policy in terms of per-
formance, where the Bayes-optimal policy will be our ideal target. Another goal is to improve the
performance bound W BTS in terms of tightness, where V ⋆ will be our ideal target.

3 Algorithms

In this section, we propose a series of policies that improve Budgeted Thompson Sampling (BTS) to-
ward the Bayes-optimal policy by leveraging the idea of information relaxation sampling. In parallel,

2The naming W BTS is not common in the literature. The motivation for this choice is explained in §3.1.
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we argue that there is a performance bound embedded in each of these policies, and accordingly, the
performance bounds paired with our proposed policies also improve the performance bound paired
with BTS, which is the conventional benchmark W BTS.

3.1 Budgeted Thompson Sampling

As an immediate extension of Thompson Sampling to the budgeted MAB setting, BTS (Xia et al.,
2015) utilizes the posterior sampling of the parameters. As described in Algorithm 1, the policy
πBTS at each time t draws a random sample of the parameters from the posterior distribution (i.e.,
θ̃

(t)
a ∼ Pa(ya,na,t−1) in line 4), and plays the arm with the largest reward-to-cost ratio given the

sampled parameters (i.e., arg maxa µa(θ̃(t)
a )/ca in line 6). After observing the result of the play, it

updates the belief about the arm according to the Bayes’ rule (line 11), and repeats this procedure
until the budget is exhausted.

Algorithm 1 BTS
Input: K, B, (ca,Ra, Θa,Pa,Ya, ya,0)a∈[K]
Procedure:

1: Initialize t← 1, B1 ← B, na,0 ← 0 for each a ∈ A
2: while Bt > 0 do
3: for each arm a ∈ A do
4: Sample θ̃

(t)
a ∼ Pa(ya,na,t−1)

5: end for
6: At ← arg maxa∈A{µa(θ̃(t)

a )/ca}
7: if Bt < cAt then
8: break
9: else

10: Play At, receive rt, pay cAt
(Bt+1 ← Bt − cAt

)

11: Update ya,na,t−1+1 ← Ua(ya,na,t−1 , rt), and na,t ←
{

na,t−1 + 1 for a = At

na,t−1 for a ̸= At

12: end if
13: t← t + 1.
14: end while

One can immediately relate this arm-selection rule with the performance bound W BTS, defined
in (1). As motivated earlier, the arm a⋆ = arg maxa∈A{µa(θa)/ca} is the optimal one to play if
the parameters are known and the fractional solution is allowed. The policy πBTS mimics such a
clairvoyant player’s decision by replacing the unknown components µa(θa)’s with their randomly
generated counterparts µa(θ̃(t)

a )’s. Note that the randomness in this sampling procedure enforces
πBTS to deviate from the myopic decision, resulting in explorations.

Although BTS is simple and computationally efficient (O(K) computations per decision), its arm-
selection rule does not incorporate the remaining budget information. As an extreme example, if
the remaining budget is so small that each arm can be play at most once, it is Bayes-optimal to
make the myopic decision, i.e., At ← arg maxa∈A{Eθa∼Pa(ya,na,t−1 )[µa(θa)]/ca}. For this reason,
BTS often performs unnecessary explorations, particularly near the end of horizon, which motivates
next algorithm IRS.FH.

3.2 IRS.FH

Our first proposed algorithm IRS.FH3 is very similar to BTS but additionally incorporates how
many times each arm can be played in the future within the remaining budget. While the belief

3IRS stands for Information Relaxation Sampling, and FH stands for Finite Horizon.
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updating procedure remains unchanged, IRS.FH implements a slightly different arm-selection rule,
which is described in Algorithm 2 (lines 3–7).

Algorithm 2 IRS.FH
Input: K, B, (ca,Ra, Θa,Pa,Ya, ya,0)a∈[K]
Procedure:

1: Initialize t← 1, B1 ← B, na,0 ← 0 for each a ∈ A
2: while Bt > 0 do
3: for each arm a ∈ A do
4: Sample θ̃

(t)
a ∼ Pa(ya,na,t−1) and R̃

(t)
a,i ∼ Ra(θ̃(t)

a ) for i = 1, . . . , ⌊Bt/ca⌋
5: ˜̂µ(t)

a,⌊Bt/ca⌋ ← µ̂a,⌊Bt/ca⌋(R̃(t)
a,1:⌊Bt/ca⌋; ya,na,t−1)

6: end for
7: At ← arg maxa∈A{ ˜̂µ(t)

a,⌊Bt/ca⌋/ca}
8: Play At and update variables (Algorithm 1 lines 7–13)
9: end while

Policy πIRS.FH. More specifically, the policy πIRS.FH at each time samples not only the parameters
θ̃

(t)
a ’s but also all future rewards R̃

(t)
a,i’s (line 4). Here, R̃

(t)
a,i represents the sampled reward realization

associated with the future ith play of arm a, where i ≤ ⌊Bt/ca⌋ − 1 since the arm a can be updated
at most ⌊Bt/ca⌋− 1 times when the remaining budget is Bt. Given these sampled future rewards, it
computes the future (⌊Bt/ca⌋−1)-sample mean-reward estimate ˜̂µ(t)

a,⌊Bt/ca⌋−1, i.e., the belief that we
would have if we allocate all remaining budget to the arm a and the sampled future rewards indeed
realize. Finally, the arm with the largest reward-to-cost ˜̂µ(t)

a,⌊Bt/ca⌋−1/ca is selected: this is almost
identical to the arm-selection rule of BTS except that ˜̂µ(t)

a,⌊B/ca⌋−1 is used instead of µa(θ̃(t)
a ).

In other words, πIRS.FH finds the best arm given a finite-number of randomly synthesized future
observations. By simulating the future belief changes using the sampled future rewards, it naturally
takes into account how much we can learn in the future: when a smaller amount of budget is
remaining, fewer future rewards will be sampled, and thus the future belief will less deviate from
the current belief, which makes πIRS.FH more myopic, desirably.

Let us examine the Beta-Bernoulli case for example: when the current belief is ya = (αa, βa) and
the remaining budget is B, ˜̂µa,⌊B/ca⌋−1 can be expressed as

˜̂µa,⌊B/ca⌋ = αa +
∑⌊B/ca⌋−1

i=1 R̃a,i

αa + βa + ⌊B/ca⌋ − 1 .

Note that, when B is small, ˜̂µa,⌊B/ca⌋−1 ≈ αa

αa+βa
= Eθa∼Beta(αa,βa)[µa(θa)] which leads to the myopic

decision (i.e., exploitation), and when B is large, ˜̂µa,⌊B/ca⌋−1 ≈ 1
⌊B/ca⌋−1

∑⌊B/ca⌋−1
i=1 R̃a,i ≈ µa(θ̃t

a)
which leads to the BTS’s decision. Like this, the degree of exploration is naturally adjusted depending
on the amount of remaining budget, mitigating the over-exploration issue that BTS suffers from.

We also remark that IRS.FH can be computationally efficient as much as BTS. Observe that in the
above example

∑⌊B/ca⌋−1
i=1 R̃a,i is distributed with Binomial(⌊B/ca⌋−1, θ̃a), and therefore ˜̂µa,⌊B/ca⌋−1

can be computed via a single random number generation without sampling R̃a,i’s one by one. Such
a trick is applicable to more general situations where the reward distribution belongs to natural
exponential family, and both IRS.FH and BTS requires O(K) computations per decision.

Bound W IRS.FH. We can motivate a new performance bound W IRS.FH that is associated with
πIRS.FH. Analogously to the way that we relate πBTS with W BTS, we define

W IRS.FH ≜ E
[
B ×max

a∈A

µ̂a,⌊B/ca⌋−1(Ra,1:⌊B/ca⌋−1 ; ya,0)
ca

]
.
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Compared to W BTS, this bound implicitly postulates another type of clairvoyant player who knows
µ̂a,⌊B/ca⌋ instead of µa(θa). In the task of identifying the best arm, the finite-sample mean-reward
estimate µ̂a,⌊B/ca⌋ is less informative than the true mean-reward µa(θa) (recall Remark 1). Therefore,
the clairvoyant player informed with µ̂a,⌊B/ca⌋−1 cannot perform better than the one informed with
µa(θa), which implies that W IRS.FH is tighter than W TS. We show in Theorem 1 that W IRS.FH

is indeed a valid performance bound and improves W BTS in terms of tightness (i.e., W BTS ≥
W IRS.FH ≥ V ⋆).

On the other hand, the value of W IRS.FH can be computed via sample averaging scheme, i.e., by
repeatedly computing the term inside the expectation with respect to randomly generated µ̂a,⌊B/ca⌋−
1’s. This procedure can be simply implemented by reusing the code of πIRS.FH (lines 3–7).

3.3 IRS.V-Zero

We consequently propose our next algorithm, IRS.V-Zero4, that further improves IRS.FH by solving
a more complicated optimization problem in each time period. It takes into account not only how
many times each arm can be played, but also how the belief changes over the course of future plays.

Algorithm 3 IRS.V-Zero
Input: K, B, (ca,Ra, Θa,Pa,Ya, ya,0)a∈[K]
Procedure:

1: Initialize t← 1, B1 ← B, na,0 ← 0 for each a ∈ A
2:
3: while Bt > 0 do
4: for each arm a ∈ A do
5: Sample θ̃

(t)
a ∼ Pa(ya,na,t−1) and R̃

(t)
a,i ∼ Ra(θ̃(t)

a ) for i = 1, . . . , ⌊Bt/ca⌋
6: for i = 1, . . . , ⌊Bt/ca⌋ do
7: ˜̂µ(t)

a,i ← µ̂a,i(R̃(t)
a,1:i; ya,na,t−1)

8: end for
9: end for

10:

Solve ñ⋆
1:K ← arg max

ñ1:K∈N (Bt)

K∑

a=1

ña∑

i=1

˜̂µ(t)
a,i−1, where N (Bt) ≜ {(ñ1, . . . , ñK);

K∑

a=1
caña ≤ Bt}

11: At ← arg maxa∈A ñ⋆
a

12: Play At and update variables (Algorithm 1 lines 7–13)
13: end while

Policy πIRS.V-Zero. The pseudo-code is given in Algorithm 3. The policy πIRS.V-Zero samples
the entire future reward realizations just like πIRS.FH does, and computes all future finite-sample
estimates ˜̂µ(t)

a,i for i = 1, 2, . . . , ⌊Bt/ca⌋ sequentially. And then it solves a knapsack-like optimization
problem (line 10) so as to determine how many times each arm should be played in the sampled
future: with the nonnegative decision variables ñ1, . . . , ñK , it solves

maximize
K∑

a=1

ña∑

i=1

˜̂µ(t)
a,i−1 subject to

K∑

a=1
ñaca ≤ Bt. (2)

Given the optimal solution (ñ⋆
1, . . . , ñ⋆

K) ∈ NK , it actually plays the arm with the largest ñ⋆
a (line

11) with an arbitrary tie-breaking rule.

The optimization problem (2) is to find the “optimal allocation of the remaining budget across the
arms”. In its objective, the term ˜̂µa,i−1 represents the predictive mean reward of the future ith play

4V-zero stands for the penalty associated with setting the prior of the information relaxation penalty discussed in
§3.4 to 0.
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(predicted with the future belief right after the (i− 1)th play), and the term
∑ña

i=1
˜̂µa,i−1 represents

the expected cumulative reward that can be obtained from the next ña plays of arm a.

Compared to the optimization problem that IRS.FH solves (B×maxa{ ˜̂µa,⌊B/ca⌋/ca}), it additionally
takes into account how the belief will change over the course of the future plays, not just what the
final belief will be. This also reflects the fact that the player has to allocate i plays in order to obtain
the estimate µ̂a,i. By considering more carefully this future belief dynamics, πIRS.V-Zero achieves a
better balance between exploitation and exploration than πIRS.FH does. However, the optimization
problem (2) requires O(KBTmax) computations to solve, which is considerably slower than IRS.FH.

Bound W IRS.V-Zero. Focusing on the optimization problem (2), we immediately obtain the fol-
lowing performance bound:

W IRS.V-Zero ≜ E

[
max

n1:K∈NB

K∑

a=1

na∑

i=1
µ̂a,i−1

]
,

where NB ≜ {(n1, . . . , nK);
∑K

a=1 cana ≤ B}, and µ̂a,i−1 hides its dependency on Ra,1:i−1 and ya,0
for better presentation. In Theorem 1, we show that W IRS.V-Zero further improves W IRS.FH.

3.4 Generalization

Note that all of three policies, πBTS, πIRS.FH, and πIRS.V-Zero, share the following structure in com-
mon: they in each time period (i) randomly generate future information via posterior sampling, (ii)
optimize their decision to this randomly generated future via solving a deterministic optimization
problem (referred to as inner problem), (iii) play an arm according to the optimized decision, and up-
date the belief according to Bayes’ rule. Their corresponding performance bounds, W BTS, W IRS.FH,
and W IRS.V-Zero, can be obtained by solving the same inner problems, not with the sampled future
realizations, but with the true future realizations.

The information relaxation sampling (IRS) framework formally generalizes this structure with the
notion of information relaxation penalties. Deferring its detailed description to Appendix A, we
briefly remark that IRS unifies BTS and the Bayesian optimal policy (OPT) into a single framework,
and also includes IRS.FH, IRS.V-Zero, and IRS.V-EMax as special cases that interpolate between
BTS and OPT.

Each policy-bound pair is characterized by inner optimization problem: from BTS to OPT, they
introduce increasingly complicated optimization problems, becoming more considerate but more
computationally costly. We indeed observe and (partly) prove that these policies achieve increasingly
better performance and these performance bounds achieve increasingly better tightness.

In addition, we also implement and evaluate IRS.INDEX policy, which, strictly speaking, does not
belong to IRS framework (it does not have a corresponding performance bound). It internally
utilizes IRS.V-EMax to obtain a random approximation of the Gittins index. See Appendix A for
the detail.

4 Extension to Random Cost

We have so far developed our framework for deterministic cost setting. In this section, we extend
IRS framework to random cost setting, in which each arm consumes a random amount of resource
whenever played and this random cost is drawn from an unknown distribution that we also aim
to learn. More specifically, the stochastic cost that the DM pays for the nth pull of arm a is
represented with a nonnegative random variable Ca,n. Every notation is analogously defined for
costs, while we use superscript c (or r) to represent the parameters/variables related to costs (or
rewards, respectively): e.g., the distribution of Ca,n is given by Ca(θc

a), where θc
a is the unknown

parameter for which we have a prior Pc
a(yc

a,0).
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IRS algorithms can be extended to random cost in multiples ways. We here explore two ideas — a
simple extension that uses the sampled mean cost, and a bit more complicated extension that uses
the sampled future cost realizations and introduces additional penalties.

Simple extension As described in Xia et al. (2015), BTS applied to the random cost setting
draws the parameters θc

a’s from the posterior, and selects the arm with the largest mean-reward-to-
mean-cost ratio: i.e., arg maxa µr

a(θ̃r
a)/µc

a(θ̃c
a). Analogously, we motivate simple extensions of IRS

policies that solve the same inner problems to the deterministic cost setting but use µc
a(θ̃c

a) instead
of ca.

Extension with additional penalties In the deterministic cost setting, we have motivated IRS
polices by relaxing the information constraint imposed on reward realizations. Similarly, we can
consider to relax the information constraint imposed on cost realizations. That is, we can let a
policy to sample the future cost realizations in addition to the future reward realizations and solve
some deterministic optimization problem with respect to this sampled future but in the presence
of penalties for letting the DM exploit the future information. A penalty function suitable for
IRS.V-Zero can be designed as follows.5

The penalty function of IRS.V-Zero is given by

zIRS.V-Zero
t (a1:t, ω) ≜ rt(a1:t, ω)− Ey[rt(a1:t, ω)|Ht−1(a1:t−1, ω)].

This penalizes the DM for knowing the future reward realizations, and similarly, we can add an
extra term that penalizes the DM for knowing the future cost realizations:

zIRS.V-Zero
t (a1:t, ω) ≜ rt(a1:t, ω)−Eyr [rt(a1:t, ω)|Ht−1(a1:t−1, ω)]

− λ
(

ct(a1:t, ω)− Eyc [ct(a1:t, ω)|Ht−1(a1:t−1, ω)]
)

.

Here, λ ∈ R supposedly captures the additional benefit that the DM can earn by knowing the
actual cost realization at time t instead of its expected value. A natural choice of λ will be the dual
variable associated with the budget constraint of the inner problem that IRS.V-Zero solves, i.e.,
λ = maxa µ(θr

a)/µ(θc
a), the quantity reflects the additional benefit that the DM can earn when one

unit of resource is additionally given. We consider an extended version of IRS.V-Zero policy that
uses its sampled value, i.e., λ̃ = maxa µ(θ̃r

a)/µ(θ̃c
a), resulting in the following inner problem:

max
n1,...,nK

K∑

a=1

na∑

i=1

{
µ̂r

a,i−1 + λ̃(C̃a,i − µ̂c
a,i−1)

}
s.t.

K∑

a=1

na∑

i=1
C̃a,i ≤ B.

5 Analysis

We first provide a theoretical result showing that the performance bounds W BTS and W IRS.FH

proposed in §3 are valid upper bounds on the maximal achievable performance and incrementally
tighter than the conventional benchmark.

Theorem 1 (Monotonicity of performance bounds) For any Bayesian budgeted MAB, we
have

W BTS ≥W IRS.FH ≥W IRS.V-Zero ≥ V ⋆.

The formal proof of Theorem 1 is given in Appendix C. We briefly sketch the main idea as follows.
Recall that each of these bounds represents the maximal performance that can be achieved by a
clairvoyant player who has an access to some additional information that is supposed to be unknown,
and therefore, it should be greater than V ⋆, the maximal performance of the non-clairvoyant player.

5We extended the penalty functions not only for IRS.V-Zero but also to IRS.V-EMax and IRS.INDEX policy. The
detailed procedure of two extensions is implemented in Appendix B.
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In this line of thought, the gap W − V ⋆ can be understood as a quantity that measures how
much additional benefit can be extracted by exploiting the additional information, which should
decrease when less useful information is additionally given. This explains the monotonicity W BTS ≥
W IRS.FH ≥W IRS.V-Zero, which is formally proven via Jensen’s inequality.

On the other hand, the improvements in the performance bounds (W BTS →W IRS.FH →W IRS.V-Zero)
naturally imply the improvements in their corresponding policies (πBTS → πIRS.FH → πIRS.V-Zero).
Recall that each of these policies mimics the behavior of the clairvoyant player using the self-
generated future information, i.e., it plays an arm that would have been selected by the one who
optimistically believes that the sampled future information is the ground truth. The gap W − V ⋆

now can be translated as a quantity that measures how overly optimistic the corresponding policy
will behave. Hence, the policy associated with a tighter performance bound is less likely to make
a decision that is overly optimized to a particular realization of future information, and avoids
over-explorations more effectively.

We indeed observe in all our numerical experiments that the suggested policies monotonically im-
prove BTS in terms of performance, i.e., V (πBTS) ≤ V (πIRS.FH) ≤ V (πIRS.V-Zero). However, proving
this monotonicity is very challenging, so we instead investigate the gaps between the performance
of these policies and their corresponding performance bounds, and establish upper bounds on these
gaps.

Theorem 2 (Suboptimality gap) Consider a Bayesian budgeted MAB such that Ra is a natural
exponential family distribution specified by a log-partition function Aa(θa) and Pa is given by its
conjugate prior whose density function is of the form exp(ξaθa − νaAa(θ)). Suppose that all the
log-partition functions are L-smooth, i.e., d2

dθ2
a
Aa(θa) ≤ L, ∀θa ∈ Θa, and νa = ν, ∀a ∈ A. Then,

for any B ≥ 2 max{c1, . . . , cK}, we have

W BTS − V (πBTS) ≤ 2
√

L

[
1√
ν

+
√

2 log Tmax

(
K√

ν
+ 2
√

KTmax

)]
,

W IRS.FH − V (πIRS.FH) ≤ 2
√

L

[
1√
ν

+
√

2 log Tmax

(
K√

ν
+ 2
√

KTmax −
1
3

√
Tmax

K

)]
,

W IRS.V-Zero − V (πIRS.V-Zero) ≤
√

L

[
1√
ν

+
√

2 log Tmax

(
K√

ν
+ 2
√

KTmax −
1
3

√
Tmax

K

)]
,

where Tmax ≜ maxa∈A {⌊B/ca⌋+ 1}.

Theorem 2 considers Bayesian budgeted MABs with natural exponential family distributions, which
include the Beta-Bernoulli case (L = 1/2, ν = α+β) and the Beta-Binomial case (L = m/2, ν = (α+
β)/m). While all these suboptimality gaps have the same asymptotic order of O(

√
KTmax log Tmax),

this result shows that IRS.FH and IRS.V-Zero make incremental improvements over BTS in the
additional term and in the leading coefficient. The proof is given in Appendix D.

Note that our analysis aligns closely with the regret lower bound analysis and the algorithm’s regret
upper bound analysis typically conducted in the MAB literature. Theorem 1 provides a tighter lower
bound V ⋆ compared to the lower bound W BTS presented in other budgeted MAB-related studies.
Theorem 2 highlights improvements in the suboptimality gap, distinct from the regret upper bound
W BTS−V (π) noted in other budgeted MAB literature. The observed reduction in the suboptimality
gap may be due to enhancements in V (π), although it remains somewhat ambiguous whether these
improvements are predominantly due to W π or V (π). This ambiguity makes direct comparisons
of V (π) values challenging and renders the result less robust. Nevertheless, experimental evidence
substantiates that notable improvements are also achieved in V (π).

25



RLJ | RLC 2024

0 5010
0
15

0
20

0
25

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
12

00
14

00
16

00
18

00
20

00

 Budget B

0

1

2

3

4

Ba
ye

sia
n 

re
gr

et

UCB-BV1 (3 ms)
m-UCB (3 ms)
c-UCB (3 ms)
i-UCB (3 ms)
PD-BWK (7 ms)
BTS (12 ms)
IRS.FH (25 ms)
IRS.V-ZERO (856 ms)
IRS.INDEX (916 ms)
KUBE (3.5 sec)
IRS.V-EMAX (12.4 sec)

0 5010
0
15

0
20

0
25

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
12

00
14

00
16

00
18

00
20

00

 Budget B

0

2

4

6

8

Ba
ye

sia
n 

re
gr

et

BTS (57 ms)
UCB-BV1 (57 ms)
PD-BWK (62 ms)
IRS.FH (205 ms)
IRS.V-ZERO (13.4 sec)
IRS.INDEX (14.3 sec)

0
37

50
75

00
11

25
0
15

00
0
18

75
0
22

50
0
26

25
0
30

00
0
33

75
0
37

50
0
41

25
0
45

00
0
48

75
0
52

50
0
56

25
0
60

00
0
63

75
0
67

50
0
71

25
0
75

00
0

 Budget ($)

0

20

40

60

80

100

120

av
er

ag
e 

# 
of

 lo
st

 c
lic

ks

BTS (4 ms)
IRS.FH (18 ms)
IRS.V-ZERO (410 ms)
IRS.INDEX (1.9 sec)

Figure 1: From left to right, simulation results in (a) the Beta-Bernoulli MAB with two arms, (b)
the Beta-Bernoulli MAB with five arms, and (c) the Beta-Binomial MAB as a real-world example
arising in online advertisement business.

6 Numerical Experiments

We demonstrate the effectiveness of our proposed policies and performance bounds through nu-
merical simulations. We consider deterministic cost setting with three MAB instances6 – (a) the
Beta-Bernuolli MAB with two arms, (b) the Beta-Bernuolli MAB with five arms, and (c) the Beta-
Binomial MAB with six arms as a real-world example arising in the online advertisement business.
In each setting, we evaluate the empirical performance of IRS policies as well as their correspond-
ing performance bounds, and also provide a comparison with KUBE (Tran-Thanh et al., 2012),
UCB-BV1 (Ding et al., 2013), i/c/m-UCB (Xia et al., 2017), and a modified version of PD-BwK
(Badanidiyuru et al., 2013) as competing benchmarks.

Figure 1 visualizes the simulation results in these three settings where the x-axes represent the
budget B. The solid-line curves report the regret of the policies (W BTS − V (π)), and the dashed-
line curves report the regret lower bounds obtained with the performance bounds (W BTS−W ). The
run time of each policy is reported in the legend, representing the average time to complete a single
run of simulation.

Beta-Bernoulli MABs. We first examine a Beta-Bernoulli MAB instance with K = 2, (c1, c2) =
(10, 20), and αa = βa = 1,∀a ∈ A, and report the result of 50,000 runs of simulation in Figure 1(a).
When B = 2, 000, BTS outperform all competing benchmarks by a large margin, from 32% (BTS’s
regret vs. PD-BwK’s regret) up to 228% (BTS’s regret vs. i/c/m-UCB & UCB-BV1’s regret). Our
proposed policies even further improve BTS: IRS.FH, IRS.V-Zero, IRS.V-EMax, and IRS.INDEX
policies, respectively, achieve 8%, 18%, 44%, and 51% improvement over BTS in terms of reduction
in regret. Furthermore, we can infer from the regret lower bound W BTS − W IRS.V-EMax (brown
dashed-line curve) that no policy can achieve an improvement more than 74%, highlighting that
IRS.INDEX policy is near optimal.

We next examine a Beta-Bernoulli MAB instance with K = 5, c1:5 = (2, 3, 10, 19, 20), and αa =
βa = 1,∀a ∈ A, and report the result of 20,000 runs of simulation in Figure 1(b). IRS.V-EMax is
excluded due to its computational inefficiency. The gaps between BTS and other benchmarks are
even larger, and IRS.FH, IRS.V-Zero, and IRS.INDEX policies, respectively, achieve 6%, 15%, and
48% improvement over BTS.

Application to online advertisement budget allocation. We examine a Beta-Binomial MAB
instance that represents a bandit task encountered by a company who wants to optimally allocate his
marketing budget across a number of ad campaigns with unknown click-through-rates (CTRs). More
specifically, the arms represent the campaigns available to this company, and playing an arm a means
that the company decides to spend ca dollars on the campaign a on the next day which will create

6We also show that IRS algorithms are sufficiently scalable for random cost setting through numerical simulation.
See Appendix E for the detail.
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ma impressions. The company’s goal is to maximize the total number of clicks using a marketing
budget B dollars where the prior distribution of CTR can be approximated by Beta(αa, βa).

The problem constants (ca, ma, αa, βa)’s were chosen based on iPinYou dataset (Liao et al.,
2014), a publicly available real-world dataset containing logs of ad auctions, bids, impres-
sions, clicks, and final conversions. Imagining a region-based marketing strategy, we have
empirically estimated average cost-per-impression, average number of daily impressions,
and CTRs in six different regions separately, and obtained the values (ca, ma, αa, βa) =
($3750, 30204, 12, 14153), ($7200, 55965, 22, 22950), ($15000, 120485, 25, 28968), ($12750, 105148, 34,
44244), ($2700, 22952, 17, 20977), ($3300, 29847, 20, 22559) for a = 1, . . . , 6, respectively. We simulate
the algorithms while varying the budget B from $3,750 to $75,000.

As shown in Figure 1(c), IRS.FH, IRS.V-Zero, and IRS.INDEX policies, respectively, achieve 16%,
50%, and 75% improvement over BTS, when the budget is $75,000. Converted into dollars, the
improvement made by IRS.INDEX is valuable as much as $10,000 approximately. Given that it
is impossible to reduce BTS’s regret more than 89% (as implied by W BTS −W IRS.V-Zero), we can
conclude that IRS.INDEX is near-optimal.

7 Conclusion

We have proposed a series of algorithms for budgeted MAB that improve Thompson sampling uti-
lizing the information relaxation. In their arm-selection procedure, they simulate Bayesian learner’s
belief dynamics with respect to the sampled future realizations, and by doing so they can take
into account how much the decision maker can learn within the remaining budget constraint. As
a byproduct, our framework produces performance bounds that provide better quantifications of
possible improvement. While the main ideas are mostly adopted from Min et al. (2019), this paper
highlights that the information relaxation technique is particularly effective for budgeted bandit
tasks, in which finding an optimal balance between exploration and exploitation is critical.

Our contribution may seem obvious, but it is far from trivial. Existing literature on Budgeted MAB
did not consider the use of the remaining budget information at all, and its extension in the context
of the IRS framework presented its application in more realistic and appropriate settings. Unlike
classic MAB problems, the termination time (the total number of pulls, denoted by stopping time τ
in our proof) depends on the sequence of actions, which introduces additional challenges requiring
careful theoretical analysis and complicates algorithm implementation.

We further extend the framework to the random cost setting. The adoption of the IRS framework
naturally necessitates the inclusion of cost sampling. However, a challenge arises regarding the
imposition of an information relaxation penalty on cost in this context. address this challenge,
we propose introducing a dual variable for the budget constraint, algorithmically simplifying it to
the posterior mean reward-cost ratio. This dual variable concept holds promise for extending the
imposition of additional penalties beyond budget constraints, potentially encompassing scenarios
such as bandit problems with multiple constraints.
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Abstract

We consider an online decision-making problem with a reward function defined
over graph-structured data. We formally formulate the problem as an instance of
graph action bandit. We then propose GNN-TS, a Graph Neural Network (GNN)
powered Thompson Sampling (TS) algorithm which employs a GNN approximator
for estimating the mean reward function and the graph neural tangent features
for uncertainty estimation. We prove that, under certain boundness assumptions
on the reward function, GNN-TS achieves a state-of-the-art regret bound which
is (1) sub-linear of order Õ((d̃T )1/2) in the number of interaction rounds, T , and
a notion of effective dimension d̃, and (2) independent of the number of graph
nodes. Empirical results validate that our proposed GNN-TS exhibits competitive
performance and scales well on graph action bandit problems.

1 Introduction
Thompson Sampling (Thompson, 1933) is a widely adopted and effective technique in sequential
decision-making problems, known for its ease of implementation and practical success (Chapelle
and Li, 2011; Kawale et al., 2015; Russo et al., 2018; Riquelme et al., 2018). The fundamental
concept behind Thompson Sampling (TS) is to compute the posterior probability of each action being
optimal for the present context, followed by the selection of an action from this distribution. Previous
research has extended TS or developed variants of it to incorporate increasingly complex models
of the reward function, such as Linear TS (Agrawal and Goyal, 2013; Abeille and Lazaric, 2017),
Kernelized TS (Chowdhury and Gopalan, 2017), and Neural TS (Zhang et al., 2020). However, these
efforts have mainly focused on conventional data types. In contrast, the application of sequential
learning to graph-structured data, such as molecular or biological graph representations, introduces
unique challenges that merit further investigation.

Recently, there has been a growing interest in studying bandit optimization over graphs. Several
researchers have initiated this line of work by addressing the challenge of encoding graph structures
in bandit problems (Gómez-Bombarelli et al., 2018; Jin et al., 2018; Griffiths and Hernández-Lobato,
2020; Korovina et al., 2020). More recently, Graph Neural Network (GNN) bandits have been
proposed, which leverage expressive GNNs to approximate reward functions on graphs (Kassraie
et al., 2022). Despite these advancements, the GNN bandits remain relatively unexplored compared
to the extensive research on Neural bandits. Firstly, a formal formulation of this sequential graph
selection problem is yet to be proposed. More importantly, there is a significant lack of comprehensive
theoretical and empirical investigations regarding the use of TS in sequential graph selection.

Contribution. In this work, we address the online decision-making problem over graph-structured
data by contributing a novel algorithm called GNN-TS. We begin by formulating the sequential graph
selection as graph action bandit. We then propose Graph Neural Thompson Sampling, GNN-TS, to
incorporate TS exploration with graph neural networks. We establish a regret bound for the proposed
algorithm with sub-linear growth of order Õ((d̃T )1/2) with respect to the effective dimension d̃ and
the number of interaction round T , and independent of the number of graph nodes. Finally, we
corroborate the analysis with an empirical evaluation of the algorithm in simulations. Experiments
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show that GNN-TS yields competitive performance and scalability, compared to the state-of-the-art
baselines, underscoring its practical value in addition to its strong theoretical guarantees.

Notations. Let [n] = {1, 2, ..., n}. For a set or event E , we denote its complement as Ē . In ∈ Rn×n

is the identity matrix. For a matrix A, Ai∗ and A∗j denote its i-th row and j-th column, respectively.
λmax(A) and λmin(A) represents the maximum and minimum eigenvalues of the matrix A. For any
vector x and square matrix A, ∥x∥A =

√
x⊤Ax. We denote the history of randomness up to (but

not including) round t as Ft and write Pt(·) := P( · | Ft) and Et(·) := E[ · | Ft] for the conditional
probability and expectation given Ft. We use ≲ and big-O, to denote “less than”, up to a constant
factor. We further use Õ(·) for big-O up to logarithmic factor.

2 Related Works
Graph Bandit. Multiple works have studied graph bandit problems, which can be classified into two
categories: graph as structure across arms and graph as data. Most research focuses on the former
category, starting from spectral bandit (Kocák et al., 2014; 2020) to graphical bandit (Liu et al., 2018;
Yu et al., 2020; Gou et al., 2023; Toni and Frossard, 2023). Within this field, bandit problems with
graph feedback have garnered significant attention (Tossou et al., 2017; Dann et al., 2020; Chen et al.,
2021; Kong et al., 2022), where learners observe rewards from selected nodes and their neighborhoods.
The primary focus of these works have been improving sample efficiency (Bellemare et al., 2019;
Waradpande et al., 2020; Idé et al., 2022), with some assuming that payoffs are shared according
to the graph Laplacian (Esposito et al., 2022; Lee et al., 2020; Lykouris et al., 2020; Thaker et al.,
2022; Yang et al., 2020). While the existing literature primarily aims to optimize over geometrical
signal domains, our work focuses on optimization within graph domains. Specifically, we investigate
the online graph selection problem, aligning with the second category of research that considers
the entire graph as input data. A related recent work (Kassraie et al., 2022) proposed a GNN
bandit approach with regret bound based on information gain and an elimination-based algorithm.
In contrast, our work explores regret bound based on the effective dimension and builds upon the
foundation of Thompson Sampling. This second category of research also encompasses empirical
works (Upadhyay et al., 2020; Qi et al., 2022; 2023), particularly those centered around molecule
optimization (Wang-Henderson et al., 2023a;b).

Neural Bandit. Our work contributes to the research on neural bandits, where deep neural networks
are utilized to estimate the reward function. The work of Zahavy and Mannor (2019); Xu et al.
(2020) investigated the Neural Linear bandit, while Zhou et al. (2020) developed Neural Upper
Confidence Bound (UCB), an extension of Linear UCB. Zhang et al. (2020) adapted TS with deep
neural networks, proposing Neural TS. Dai et al. (2022) makes improvements to neural bandit
algorithms to overcome practical limitations. Nguyen-Tang et al. (2021) explores neural bandit in an
offline contextual bandit setting and (Gu et al., 2024) examines batched learning for neural bandit.
Our work can be seen as an extension of Neural TS (Zhang et al., 2020), incorporating significant
improvements such as the utilization of graph neural tangent kernel and a distinct definition of
effective dimension.

3 Problem Formulation and Methodology
3.1 Graph Action Bandit Problem

We consider an online decision-making problem in which the learner aims to optimize an unknown
reward function by sequentially interacting with a stochastic environment. We identify the actions
with graphs from an action space G and assume that the size of this action space, denoted as |G|, is
finite. At time t ∈ [T ], the learner selects a graph Gt from the action space Gt ⊂ G. The learner then
observes a noisy reward yt = µ(Gt) + εt where µ : G → R is the true (unknown) reward function and
{εt}t∈[T ] are i.i.d zero-mean sub-gaussian noise with variance proxy σ2

ε . The goal of the learner is to
maximize the expected cumulative reward in T rounds, which equivalently entails minimizing the
expected (pseudo-)regret denoted as RT =

∑T
t=1 E[µ(G∗

t ) − µ(Gt)] where G∗
t = argmaxG∈Gt µ(G)

represents the optimal graph at time t.
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The graph space G is a finite set of undirected graphs with at most N nodes. Note that the graphs
with less than N nodes can be treated by adding auxiliary isolated nodes with no features. We
denote an undirected attributed graph with N nodes as G = (X,A), where X ∈ RN×d represents the
feature matrix with d features, and A ∈ {0, 1}N×N is the unweighted adjacency matrix. The rows of
X correspond to node features. The size of the node set of a graph G is denoted as |V(G)| ≤ N .

Graph action bandit has several applications such as chemical molecules optimization. Consider the
graph structures representing the molecules (Weininger, 1988) and rewards are molecular properties.
The goal is to sequentially recommend the optimal molecules for experimental testing.

3.2 Graph Neural Network Model

We propose to learn the unknown reward function µ(·) by fitting a Graph Neural Network (GNN).
We consider a relatively simple GNN architecture where the output of a single graph convolution
layer is normalized (to unit ℓ2 norm) and passed through a multilayer perceptron (MLP). A single-
layer graph convolution can be compactly stated as AX using the adjacency matrix A of the
network. Additionally, we normalize each row of the resulting matrix to have a unit ℓ2 norm. Letting
u(x) = x/∥x∥2 denote the normalization operator, the aggregated feature of node i in a graph G is
hGi = u((AX)i∗) = u(

∑
j∈Ni

Xj∗) where Nj is the neighborhood of node j. Our GNN also consists
of an L-layer m-width MLP neural network fMLP which is defined recursively as follows

f (1)(hGi ) = W (1)hGi , i ∈ [N ],

f (l)(hGi ) = 1√
m
W (l)ReLU(f (l−1)(hGi )), 2 ≤ l ≤ L,

fMLP(hGi ;θ) = f (L)(hGi ).

(1)

Here, ReLU(·) = max(·, 0), W (1) ∈ Rm×d, W (L) ∈ R1×m, W (l) ∈ Rm×m for any 1 < l < L are
weight matrices of the MLP and θ := (W (1), . . . ,W (L)) ∈ Rp is the collection of parameters of the
neural network where p = dm+ (L− 2)m2 +m. Our GNN model to estimate the reward function is

fGNN(G;θ) := 1
N

N∑

i=1
fMLP(hGi ;θ). (2)

The gradient of θ 7→ fGNN(G;θ) denoted as g(G;θ) := ∇θfGNN(G;θ) will play a key role in
uncertainty quantification, which will be discussed in Section 3.3. The GNN model (2) is trained by
minimizing the mean-squared loss with ℓ2 penalty, described concretely in (6). A hyperparameter λ
is used to tune the strength of ℓ2 regularization. For the simplicity of exposition, in the theoretical
analysis, we solve the optimization via gradient descent with learning rate η, total number of iterations
J and initialize parameters θ0 such that fGNN(G;θ0) = 0 for all G ∈ G, which can be fulfilled based
on the work of Zhou et al. (2020); Kassraie and Krause (2022).

3.3 Graph Neural Thompson Sampling

We adapt Thompson Sampling (TS) for graph exploration, due to its robust performance in balancing
exploration against exploitation. Algorithm 1 outlines our proposed GNN Thompson sampling,
following the idea of NeuralTS in Zhang et al. (2020). The key step is the sampling of an estimated
reward mean r̂t(G) for each graph G in the action space at time t, from a normal distribution as in
equation (4). The mean of the normal distribution in (4) is our current estimate, fGNN(G;θt−1), of
the true mean reward for graph G (i.e., µ(G)). This estimate is obtained by fitting the GNN to all
the past data as in (6). The variance of the normal distribution ν2σ2

t (G) is our current measure of
uncertainty about the true reward of graph G. Note that

σ2
t (G) = 1

m
∥g(G;θt−1)∥2

U−1
t−1

where U t−1 = λIp + 1
m

t−1∑

i=1
g(Gi;θi−1)g(Gi;θi−1)⊤. (3)
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Algorithm 1 Graph Neural Thompson Sampling (GNN-TS)
1: Input: T , λ, ν
2: Initialization: θ0, U0 = λIp.
3: for t = 1, ..., T do
4: Compute σ2

t (G) := 1
m∥g(G;θt−1)∥2

U−1
t−1

and sample

r̂t(G) ∼ N
(
fGNN(G;θt−1), ν2σ2

t (G)
)
, for all G ∈ Gt. (4)

5: Select graph Gt = argmaxG∈Gt r̂t(G), and collect reward yt := µ(Gt) + εt.
6: Update uncertainty estimate as

U t = U t−1 + g(Gt;θt−1)g(Gt;θt−1)⊤/m. (5)

7: Update the parameter estimate as

θt = argmin
θ

1
2t

t∑

i=1

(
fGNN(Gi;θ) − yi

)2 + mλ

2 ∥θ∥2
2. (6)

8: end for

The rationale behind σ2
t (G) comes from a linear approximation to fGNN(G;θ). In particular, the idea is

that (6) approximately looks like a linear ridge regression problem, with features {g(Gi;θi)/
√
m}i∈[t].

The expression (3) is then the familiar estimated covariance matrix from linear bandits after we
make this identification. This approximation can be made rigorous via the neural tangent kernel
idea, as discussed in Section 4.

The sampled reward mean r̂t(G) is the index for decision-making. The learner selects the graph with
the highest index, i.e., Gt = argmaxG∈G r̂t(G). The randomness in r̂t(G), due to the positive variance
of the sampling distribution, is what allows TS to efficiently explore the action space. We want the
uncertainty, as captured by σ2

t (G) not to be too small early on, to allow for effective exploration, but
not too large either to miss out on the optimal choice too often. Lemma 5.2 in Section 5 captures
the two sides of this trade-off in our theory.

It is worth noting that our proposed Algorithm 1 is not exact TS. In our approach, (4) serves as an
approximation to a posterior for mean reward function, rather than a true posterior. The difference
between our proposed method and an exact Bayesian method will be smaller if the GNN model is
better approximated by a linear model.

Lastly, we note that r̂t(G) is also referred to as the perturbed mean reward, as it can be expressed
as: r̂t(G) = fGNN(G;θt−1) + νσt(G)z where z ∼ N (0, 1). This perturbed reward includes both
the estimated part (fgnn(G;θt−1)) and the random perturbation part (νσt(G) · z). The use of
perturbations for exploration has been shown to be a strong strategy in previous works (Kim and
Tewari, 2019; Kveton et al., 2019a). Algorithm 1 can be summarized as greedily selecting the graph
with the highest perturbed mean reward.

4 Regret Bound for GNN-TS

Graph Neural Tangent Kernel. Let us briefly review the idea of graph neural tangent kernel
(GNTK) (Kassraie et al., 2022) which is based on the neural tangent kernel (NTK) of (Jacot et al.,
2018). The tangent kernel on graph space G, induced by initialization θ0, is defined as the inner
product of the gradient at initialization, i.e k̃(G,G′) := g(G;θ0)⊤g(G′;θ0) for any G,G′ ∈ G. The
GNTK is the limiting kernel of k̃(G,G′)/m. We define the finite-width (empirical) and infinite-width
GNTK as

k̂(G,G′) := 1
m

⟨g(G;θ0), g(G′;θ0)⟩, k(G,G′) := lim
m→∞

1
m

⟨g(G;θ0), g(G′;θ0)⟩. (7)

We assume the reward function falls within the RKHS corresponding to the GNTK k defined
in (7). Define K ∈ R|G|×|G| as the GNTK matrix with entries k(G,G′) for all G,G′ ∈ G and
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µ = (µ(G))G∈G ∈ R|G| as the reward function vector. The kernel matrix K is positive definite with
maximum eigenvalue ρmax := λmax(K) and minimum eigenvalue ρmin := λmin(K). We also define
the finite-width GNTK matrix K̂ ∈ R|G|×|G| with entries k̂(G,G′) for all G,G′ ∈ G and maximum
eigenvalues ρ̂max = λmax(K̂). Note that K̂ → K as m → ∞.

Effective Dimension. We define the effective dimension d̃ of the GNTK matrix K with regulariza-
tion λ as

d̃ :=
log det(I |G| + TK/λ)

log(1 + Tρmax/λ) . (8)

This quantity, which appears in our regret bound, measures the actual underlying dimension of the
reward function space as seen by the bandit problem (Valko et al., 2013; Bietti and Mairal, 2019).
Our definition is adapted from (Yang and Wang, 2020). The key difference is that our d̃ does not
directly depend on |G|, which is replaced by ρmax, compared to the definition in (Zhang et al., 2020).
Our definition is the ratio of the sum over the maximum of the sequence of log-eigenvalues of matrix
I |G| + TK/λ. As such, it is a robust measure of matrix rank. In particular, we always have d̃ ≤ |G|.
Moreover, previous work on GNN bandit (Kassraie et al., 2022) utilized the notion of information
gain which we replace with the related, but different, notion of effective dimension d̃.

We will make the following assumptions:
Assumption 1 (Bounded RKHS norm for Reward). The reward function µ has R-bounded RKHS
norm with respect to a positive definite kernel k: ∥µ∥k =

√
µ⊤K−1µ ≤ R.

Assumption 2 (Bounded Reward Differences). Reward differences between any graph in action
space are bounded. Formally, ∀G,G′ ∈ G: |µ(G) − µ(G′)| ≤ B, for some B ≥ 1.
Assumption 3 (Subgaussian Noise). Noise process {ϵt}t∈[T ] satisfies Et−1[eηϵt ] ≤ eσ

2
ϵη

2/2,∀η > 0.

Assumption 1 aligns with the regularity assumption commonly found in the kernelized and neural
bandit literature (Srinivas et al., 2009; Chowdhury and Gopalan, 2017; Kassraie and Krause, 2022).
Assumption 2 implies that instantaneous regret is bounded: |µ(G∗

t ) − µ(Gt)| ≤ B for all t ∈ [T ] and
Assumption 3 is the conditional subgaussian assumption for stochastic process {ϵt}t∈[T ].

We are now ready to state our main result. Recall that N is the maximum number of (graph) nodes
and L the depth of MLP and m its width.
Theorem 4.1. Suppose Assumption 1,2 and 3 hold. For a fixed horizon T ∈ N, let

m ≥ poly
(
T, L, |G|, λ−1, R, σε, ρ

−1
min, log(TLN |G|)

)

ν ≳ 1 + σε

√
d̃ log T +

√
λR, λ ≳ (σ2

ε +R2)3 + ρmax

and learning rate η ≤ (C̃mL + mλ)−1, for some constant C̃. Then, the regret of Algorithm 1 is
bounded as

RT ≤ C B

√
d̃ T log(T |G|) · log(2 + Tρmax/λ)

for some universal constant C > 0.

The order of regret upper bound in Theorem 4.1, Õ((d̃T )1/2) matches the state-of-the-art regret
bounds in the literature of Thompson Sampling (Agrawal and Goyal, 2013; Chowdhury and Gopalan,
2017; Kveton et al., 2020; Zhang et al., 2020). As in (Kassraie et al., 2022), our regret bound is
independent of N , indicating that GNN-TS is valid for large graphs. Moreover, for low complexity
reward functions of effective dimension d̃ = O(1), the regret scales as

√
log |G| in the size of the

action space, showing the robust scalability of GNN-TS.

5 Proof of the Regret Bound
Similar to the previous literature, the key is to to obtain probabilistic control on the ‘discrepancy’ of
the policy in GNN-TS Consider the following events
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Eµt :=
{∣∣fGNN(G;θt−1) − µ(G)

∣∣ ≤ cµt (G), for all G ∈ Gt
}

Eσt :=
{∣∣r̂t(G) − fGNN(G;θt−1)

∣∣ ≤ cσt (G), for all G ∈ Gt
}

Eat :=
{
r̂t(G∗

t ) − fGNN(G∗
t ;θt−1) > νσt(G∗

t )
}

where cµt (G) := νσt(G) + ε(t,m) and cσt (G) := νσt(G)
√

2 log(t2|Gt|) as well as ε(t,m) =
(C0νL

9/2)m−1/6√
logm · t and C0 is some universal constant. Events Eµt and Eσt control the discrep-

ancies with constants cµt (G) and cσt (G) respectively: cµt (G) is bounding the estimation discrepancy
while cσt (G) is bounding the exploration discrepancy. Note that event Eat is only for G∗

t , the optimal
graph at round t.

5.1 Estimation Bound (Eµt )

The following lemma ensures that event Eµt happens with high probability.
Lemma 5.1. Fix δ ∈ (0, 1). For m ≥ poly(R, σε, L, |G|, λ−1, ρ−1

min, log(TLN |G|/δ)) and (ν, λ, η)
satisfying conditions of Theorem 4.1, we have P(Eµt ) ≥ 1 − δ/T .

In other words, given a large enough width of the GNN (m) and a small enough learning rate
(η), there is a high probability upper bound for the estimation error |fGNN(G;θt−1) − µ(G)|. This
Lemma 5.1 also gives an approximate upper confidence bound similar to GNN-UCB in (Kassraie
et al., 2022): µ(G) ≤ fGNN(G;θt−1) + νσt(G) + ε(t,m). Since ε(t,m) is negligible for large m, the
approximate upper confidence bound, fGNN(G;θt−1) + νσt(G) is used as the index for GNN-UCB.
Note that this lemma controls the estimation error produced by GNNs, hence applicable to all GNN
bandit algorithms using model (2). Our cµt (G) = νσt(G) + ε(t,m) is similar in form to that of Zhang
et al. (2020) which is different from the earlier analysis of TS in Agrawal and Goyal (2013).

5.2 Exploration Bound (Eσt , Eat )

We also need event Eσt to quantify the level of exploration achieved by the algorithm. Intuitively, Eσt
ensures our exploration is moderate. On the other hand, indicated by the regret analysis in (Kveton
et al., 2019b), instead of controlling the exploration independently, the relation between two sources
of explorations needs to be considered because this relation is critical for finding the optimal action.
To meet such observation, we define an extra "good" event for anti-concentration on the optimal
actions, which is Eat . Under event Eat , the policy index r̂t(G∗

t ) of the optimal graph has the higher
future positive exploration, which guides the learner to have higher chance to pick the optimal graph.
A formal lemma for exploration discrepancy using TS is given as below:
Lemma 5.2. For GNN-TS, for all t ∈ [T ], we have Pt(Ēσt ) ≤ t−2 and P(Eat ) ≥ (4e

√
π)−1.

Lemma 5.2 shows that GNN-TS has a positive probability of moderate exploration of the optimal arm,
which is beneficial to regret reduction.

5.3 Proof of Theorem 4.1

Let ∆t := µ(G∗
t ) − µ(Gt) be the instantaneous regret. We will need two additional lemmas:

Lemma 5.3 (One Step Regret Bound). Assume the same as Theorem 4.1. Suppose Pt(Eat )−Pt(Ēσt ) >
0. Then for any t ∈ [T ], almost surely,

Et[∆tIEµt ] ≤ IEµt ·
{( 2

Pt(Eat ) − Pt(Ēσt )
+ 1

)
Et[γt(Gt)] − ε(t,m) +B · Pt(Ēσt )

}

where γt(G) = cµt (G) + cσt (G).
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Lemma 5.4 (Cumulative Uncertainty Bound). Assume the same as Theorem 4.1. Then with
probability at least 1 − δ/T ,

1
2

T∑

t=1
min{1, σ2

t (Gt)} ≤ d̃ log(1 + λ−1Tρmax) + 3Cψ|G|3/2√
Tλ−1/2εm

where εm = o(1) as m → ∞ and Cψ is some constant. We always have d̃ ≤ |G|.

Main Proof. The expected cumulative regret is

RT =
T∑

t=1
E[∆t] =

T∑

t=1
E[∆tIEµt ] +

T∑

t=1
E[∆tIĒµt ].

By Lemma 5.1, letting P(Ēµt ) ≤ δ/T and ∆t ≤ B, we have the upper bound for the second term
T∑

t=1
E[∆tIĒµt ] ≤ BT (δ/T ) = Bδ.

Now our focus is controlling the first summation term. By Lemma 5.3, almost surely, we have

Et[∆tIEµt ] ≤ IEµt ·
{( 2

Pt(Eat ) − Pt(Ēσt )
+ 1

)
Et[γt(Gt)] − ε(t,m) +B · Pt(Ēσt )

}

where γt(G) = cµt (G) + cσt (G). Assuming that t ≥ 5, we have t2 ≥ 5e
√
π. By Lemma 5.2,

Pt(Eat ) − P(Ēσt ) ≥ 1
4e

√
π

− 1
t2 ≥ 1

20e
√
π
. Then, for t ≥ 5, dropping ε(t,m) from the bound,

Et[∆tIEµt ] ≤ 194Et[γt(Gt)] +Bt−2 ≤
(
194Et[min{1, γt(Gt)}] + t−2)

B

using 40e
√
π + 1 ≤ 194, ∆t ≤ B and B ≥ 1. Therefore, we have

T∑

t=1
E[Et[∆tIEµt ]] ≤ 194B

T∑

t=5
E[Et[min{1, γt(Gt)}]] + 4B +B(π2/6) (9)

using
∑∞
t=1 t

−2 = π2/6. Note that γt(Gt) ≤ σt(Gt)
√

8 log(T 2|G|) + ε(T,m) for all t ∈ [T ]. Then by
Cauchy-Schwarz inequality,

T∑

t=5
min{1, γt(Gt)} ≤

√
8T log(T 2|G|)

( T∑

t=5
min{1, σ2

t (Gt)}
)1/2

+ Tε(T,m).

By Lemma 5.4 and take m sufficiently large such that 3Cψ|G|3/2√
Tλ−1/2εm ≤ d̃ log(1 + λ−1Tρmax),

we have
T∑

t=1
E[min{1, σ2

t (Gt)}] ≤ 4d̃ log(1 + Tρmax/λ) + T (δ/T ).

Recall that the ε(T,m) = C1 T m
−1/6√

logm. Take m large enough we have Tε(T,m) ≤
√
T . Then

put the above results back into (9), we have:
T∑

t=1
E[Et[∆tIEµt ]] ≤ 194B

(√
16T log(T |G|) ·

√
4d̃ log(1 + Tρmax/λ) + δ +

√
T

)
+ 4B +B(π2/6)

by using log(T 2|G|) ≤ 2 log(T |G|). Therefore, we have our regret bound:

RT ≤ CB
√
d̃T log(T |G|) ·

(
1 + log(1 + Tρmax/λ)

)

for some universal constant C. We have used d̃ ≥ 1 and B ≥ 1, to simplify the bound. Finally, note
that 1 + log(1 + x) ≤ 2 log(2 + x) for all x ≥ 0.
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Figure 1: Regret over horizon T = 1000 for Erdös–Rényi random graphs with p = 0.4 and N = 50
in the first row and random dot product graphs with N = 50. Three columns are three types of
reward function generation: linear model, Gaussian process with GNTK, Gaussian process with
representation kernel. GNN-TS is competitive and robust to different environment settings.

6 Experiments

We create synthetic graph data and generate the rewards through three different mechanisms. For
the graph structures, we use random graph models including Erdös–Rényi and random dot product
graph models. The features are generated i.i.d. from the N (0, 1). The noisy reward is assumed
to have σε = 0.01. Our experiments investigate GNN-UCB, GNN-PE, NN-UCB, NN-PE, and NN-TS as
baselines from Kassraie et al. (2022). All performance curves in our empirical studies show an average
of over 10 repetitions with a standard deviation of the corresponding bandit algorithm with horizon
T = 1000. We assume the graph domain is fully observable, Gt = G for all t ∈ [T ]. Below is a brief
overview of the simulation elements. For more details, see Appendix D.

Random Graph. We use two types of random graphs including Erdös–Rényi (ER) random graphs
and random dot product graphs (RDPG). ER graphs are generated with edge probability p and
number of nodes N . RDPGs are generated by modeling the expected edge probabilities as the
function of the inner product of features. In the first row of Figure 1, the graphs in G are from the
ER model with p = 0.4 and in the second row from an RDPG, both of size N = 50.

Reward Function. To generate the rewards, we use models of three different types: linear model,
Gaussian Process (GP) with GNTK, Gaussian process with the representation kernel. For the linear
model, we have µ(G) = ⟨θ∗, h̄

G⟩ with true parameter θ∗ ∼ N (0, Id) and h̄G =
∑N
i=1 h

G
i /N . For the

GP with GNTK, we fit a GP regression model with empirical GNTK matrix K̂ ∈ R|G|×|G| as the
covariance matrix of the prior, trained on {(G, yG)}G∈G where {yG}G∈G are i.i.d. from N (0, 1). For
the GP with the representation kernel, we trained a GNN for a graph property prediction task and
used the mean pooling over all the nodes of the last layer representations as the graph representation,
denoted as h̄Grep. We then define the representation kernel as krep(G,G′) := ⟨h̄Grep, h̄

G′

rep⟩ and draw
µ(·) from a zero-mean GP with this covariance function (over G).

Algorithms. We investigate two baselines GNN-UCB and GNN-PE along with our proposed GNN-TS.
GNN-PE is the proposed state-of-the-art algorithm that selects the graph with the highest uncertainty
and eliminates the graph candidates by the upper confidence bounds. All the algorithms in our work
use the loss function (6) which is different from previous work. All gradients used for our experiments
are g(G;θt), not g(G;θ0), unless otherwise specified. In addition, in order to show the benefit of
considering the graph structure, we include NN-UCB, NN-TS, and NN-PE as our baselines. For these
NN-based algorithms, we ignore the adjacency matrix of a graph (setting A = IN ), and pass through
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the model in (1) and (2) with hGi = Xi∗. The MLPs in our experiments have L = 2 layers and
width m = 512. We use SGD as the optimizer, with mini-batch size 5, and train for 30 epochs. For
the tuning of the hyperparameters (η, λ) and other algorithmic setup, see Appendix D. The matrix
inversion in the algorithms is approximated by diagonal inversion across all policy algorithms.

Regret Experiments. In Figure 1, we show the performance of all the algorithms for the six
possible environments: ER or RDPG model coupled with either of the three reward models. We
set the size of the graph domain to |G| = 100 in Figure 1 and we experiment across different |G| in
Appendix D. Figure 1 demonstrates that GNN-TS consistently outperforms the baseline algorithms
and is robust to all types of random graph models and reward function generations in our experiment.
In addition, GNN-based algorithms are clearly better than NN-based algorithms in graph action
bandit settings.
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A Proof for Lemmas in Regret Analysis

A.1 Notations

In the following parts, we further define the some notations to represent the linear and kernelized
models:

Gt = [g(G1;θ0), ..., g(Gt;θt−1))] ∈ Rp×t

Ḡt = [g(G1;θ0), ..., g(Gt;θ0)] ∈ Rp×t

µt = [µ(G1), ..., µ(Gt)]⊤ ∈ Rt×1

yt = [y1, ..., yt]⊤ ∈ Rt×1

ϵt = [ε1, ..., εt]⊤ ∈ Rt×1.

Then we define the uncertainty estimate with initial gradient θ0:

σ̄2
t (G) = 1

m
∥g(G;θ0)∥2

Ū
−1
t−1

and Ū t = λIp +
t∑

i=1
g(Gi;θ0)g(Gi;θ0)⊤/m.

A.2 Proof of Lemma 5.1

Let us write
θ̃t−1 := Ū

−1
t−1Ḡt−1yt−1/m

for the ridge regression solution. We will need the following auxiliary lemmas:
Lemma A.1 (Taylor Approximation of a GNN). Suppose learning rate η ≤ (C̃mL + mλ)−1 for
some constant C̃, then for any fixed t ∈ [T ] and G ∈ G, with probability at least 1 − δ

|fGNN(G;θ(J)
t ) − fGNN(G;θ0) − ⟨g(G;θ0),θ(J)

t − θ0⟩| ≤ CL3
(R2 + σ2

ε

mλ

)2/3√
m log(m)

where C is some constant independent of m and t.
Lemma A.2. Suppose m ≥ poly(R, σε, L, λ−1, |G|, ρ−1

min, log(LN |G|/δ)) given a fixed δ ∈ (0, 1) and
learning rate η ≤ (C̃mL+mλ)−1 for some constant C̃. For G ∈ Gt and t > 1, with probability at
lease 1 − δ,

|⟨g(G;θ0),θt−1 − θ0 − θ̃t−1⟩| ≤ Cσ̄t(G)

where C = (C1(2 − ηmλ)J + C2)
√

σ2
ε+R2

λ (1 + 3ρmax
2λ ) with C1 = O(1) and C2 = O(λ1/3).

Lemma A.3. Fix δ ∈ (0, 1) and let m = Ω(L10T 4|G|6ρ−4
min log(LN2|G|2/δ)). Then, there exists

θ∗ ∈ Rp with
√
m∥θ∗∥2 ≤

√
2R such that with probability at least 1 − δ,

µ(G) = ⟨g(G;θ0),θ∗⟩, for all G ∈ G
log det(λ−1Ū t) ≤ log det(I |G| + λ−1tK) + 1.

Lemma A.4. With probability at least 1 − δ, we have

|σ̄t(G) − σt(G)| ≤ Ctλ−1/6L9/2(R2 + σ2
ε)1/6m−1/6√

log(m).

We choose an arbitrary small δ ∈ (0, 1) and set δi = δ/(5T ) for i = 1, . . . , 5. For all ∀G ∈ Gt, we have

|fGNN(G;θt−1) − µ(G)| ≤ |fGNN(G;θt−1) − ⟨g(G;θ0), θ̃t−1⟩|︸ ︷︷ ︸
:=I1

+ |µ(G) − ⟨g(G;θ0), θ̃t−1⟩|︸ ︷︷ ︸
:=I2

.

We then turn to bounding I1 and I2. Throughout the proof, let

γm := m−1/6√
logm
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Bounding I1: By Lemma A.1 and Lemma A.2, with probability at least 1 − δ1 − δ2,

I1 = |fGNN(G;θt−1) − ⟨g(G;θ0), θ̃t−1⟩|
≤ |fGNN(G;θt−1) − ⟨g(G;θ0),θt−1 − θ0⟩| + |⟨g(G;θ0),θt−1 − θ0 − θ̃t−1⟩|
≤ C0L

3γm + C̃2 σ̄t(G).

where C0 := C̃1

(
R2+σ2

ε

λ

)2/3
and C̃2 := (C̄1(2−ηmλ)J+C̄2λ

1/3)
√

σ2
ε+R2

λ (1 + 3ρmax
2λ ) for some constant

C̄1, C̄2. For λ ≳ (σ2
ε +R2)3 + ρmax, we have C0, C̃2 ≲ 1 subject to the constraint in η in Lemma A.2.

Thus, we obtain
I1 ≲ L3γm + σ̄t(G).

Bounding I2: By Lemma B.5, with at least probability 1 − δ3, for all G ∈ G, we have

I2 = |⟨g(G;θ0),θ∗ − θ̃t−1⟩|.

Recall that yt−1 = µt−1 + ϵt−1 and by Lemma A.3, we have µt−1 = Ḡ
⊤
t−1θ

∗. Then,

θ̃t−1 = Ū
−1
t−1Ḡt−1Ḡ

⊤
t−1θ

∗/m+ Ū−1
t−1Ḡt−1ϵt−1/m

We have Ū t = λIp + ḠtḠ
⊤
t /m. Hence, Ū−1

t ḠtḠ
⊤
t /m = Ū

−1
t (Ū t − λIp) = Ip − λŪ

−1
t . This gives

θ̃t−1 = θ∗ − λŪ
−1
t−1θ

∗ + 1√
m
Ū

−1
t−1St−1

where we have defined St−1 := 1√
m
Ḡt−1ϵt−1. Thus, we have

I2 ≤ λ|⟨g(G;θ0), Ū−1
t θ

∗⟩| + 1√
m

|⟨g(G;θ0), Ū−1
t−1St−1⟩| (10)

Recall that
√
mσ̄t(G) = ∥g(G;θ0)∥

Ū
−1
t−1

. Since Ū−1
t−1 ≼ 1

λIp, for any vector v, we have ∥v∥
Ū

−1
t−1

≤
1√
λ

∥v∥. Then, for the first term in (10), we have

λ|g(G;θ0)⊤Ū
−1
t−1θ

∗| ≤ λ∥g(G;θ0)∥
Ū

−1
t−1

· ∥θ∗∥
Ū

−1
t−1

≤ √
mσ̄t(G) ·

√
λ∥θ∗∥2 ≤ σ̄t(G)

√
2λR

where we have used Cauchy-Schwarz inequality for ⟨·, ·⟩U−1
t−1

and Lemma A.3. For the second term
in (10), we have

1√
m

|g(G;θ0)⊤Ū
−1
t−1St−1| ≤ 1√

m
∥g(G;θ0)∥

Ū
−1
t−1

∥St−1∥
Ū

−1
t−1

= σ̄t(G) · ∥St−1∥
Ū

−1
t−1

By Theorem 20.4 of Lattimore and Szepesvári (2020), with probability at least 1 − δ4, we have

1
σ2
ε

∥St∥2
Ū

−1
t

≤ 2 log(1/δ4) + log deg(λ−1Ū t), for all t ∈ N.

By Lemma A.3, with high probability,

log det(λ−1Ū t) ≤ log det(I |G| + TK/λ) + 1 ≤ 2d̃ log(1 + Tρmax/λ).

Using λ ≳ ρmax, we have log det(λ−1Ū t) ≲ d̃ log(T ) + 1 ≲ d̃ log(T ). We also have log(1/δ4) =
log(5T ) ≲ log(T ) ≲ d̃ log(T ).
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Putting the pieces together, we have

1√
m

|g(G;θ0)⊤Ū
−1
t−1St−1| ≲ σε

√
d̃ log T · σ̄t(G).

Combining with the first term, we obtain

I2 ≲
(
σε

√
d̃ log T +

√
λR

)
σ̄t(G).

Combining with the bound on I1, we have

|fGNN(G;θt−1) − µ(G)| ≲ L3γm +
(
1 + σε

√
d̃ log T +

√
λR

)
σ̄t(G)

=: L3γm + α σ̄t(G)

where we have set α := 1 + σε
√
d̃ log T +

√
λR for simplificty.

By Lemma A.4, with probability at least 1 − δ5,

σ̄t(G) − σt(G) ≤ CtL9/2
(R2 + σ2

ε

λ

)1/6
γm ≲ t · L9/2γm

using the assumption λ ≳ R2 + σ2
ε . We obtain

|fGNN(G;θt−1) − µ(G)| ≲ L3γm + t · αL9/2γm + ασt(G)
≤ 2t · αL9/2γm + ασt(G)

since t ≥ 1 and α ≥ 1. Taking ν ≥ α finishes the proof.

A.3 Proof of Lemma 5.2

Proof of Lemma 5.2. Conditioned on Ft, we have

r̂t(G) | Ft ∼ N (fGNN(G;θt−1), ν2σ2
t (G)).

Using standard Gaussian tail bound, followed by a union bound gives

Pt(|r̂t(G) − fGNN(G;θt−1)| ≥ νσt(G) · u) ≤ |Gt|e−u2/2

which shows the first assertion by letting u =
√

2 log(t2|Gt|).
For the second assertion, it is enough to note that P(Z ≥ 1) ≥ (4e

√
π)−1 for Z ∼ N (0, 1).

A.4 Proof of Lemma 5.3

Proof of Lemma 5.3. Our proof is inspired from the proof in Wu et al. (2022). Recall that cµt (G) =
νσt(G) + ε(t,m) and cσt (G) := νσt(G)

√
2 log(t2|Gt|) and

Eµt = {∀G ∈ Gt, |fGNN(G;θt−1) − µ(G)| ≤ cµt (G)}
Eσt = {∀G ∈ Gt, |r̂t(G) − fGNN(G;θt−1)| ≤ cσt (G)}

Let γt(G) = cµt (G) + cσt (G) and ct(G) = γt(G) + ε(t,m). Then, on Eµt ∩ Eσt , by triangle inequality,

|r̂t(G) − µ(G)| ≤ γt(G). (11)

We also recall that Eat := {r̂t(G∗
t ) − fGNN(G∗

t ;θt−1) > νσt(G∗
t )}. Then, on Eµt ∩ Eat , we have

r̂t(G∗
t ) > fGNN(G∗

t ;θt−1) + νσt(G∗
t )

≥ µ(G∗
t ) − cµt (G∗

t ) + νσt(G∗
t )

= µ(G∗
t ) − ε(t,m) (12)
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Recall that ∆t := µ(G∗
t ) − µ(Gt) for convenience. Consider the set of unsaturated actions

Ut =
{
G ∈ Gt : µ(G∗

t ) < µ(G) + ct(G)
}

and let Ḡt be the least uncertain unsaturated action at time t:

Ḡt := argmin
G∈Ut

ct(G).

By Ḡt ∈ Ut, we have ∆t ≤ ct(Ḡt) + µ(Ḡt) − µ(Gt). Applying (11), twice, on Eµt ∩ Eσt , we have

∆t ≤ ct(Ḡt) + γt(Ḡt) + γt(Gt) + r̂t(Ḡt) − r̂t(Gt)
≤ ct(Ḡ) + γt(Ḡt) + γt(Gt)

for all G ∈ Gt where the second inequality follows since Gt maximizes r̂t(·) over Gt, by design.

Recall that Et[·] = E[· | Ft], where Ft is the history up to (but not including) time t. Given Ft,
the event Eµt is deterministic while Eσt is only random due to the independent randomness in the
sampling step (4). Next, we have

Et[∆tIEµt ] = IEµt · Et[∆t]
= IEµt ·

(
Et[∆tIEσt ] + Et[∆tIĒσt ]

)

≤ IEµt ·
(
Et[∆tIEσt ] +B Pt(Ēσt )

)
(13)

using the boundedness Assumption 2. Here, we are using the fact that Eµt is measurable w.r.t. Ft,
hence it is deterministic conditioned on Ft. Due to factor IEµt in the above, the bound is trivial when
Eµt fails, so for the rest of the proof we assume that Eµt holds (conditioned on Ft).
We have

Et[∆tIEσt ] ≤ ct(Ḡt) + γt(Ḡt) + Et[γt(Gt)IEσt ]
≤ 2ct(Ḡt) − ε(t,m) + Et[γt(Gt)]

where we have used the definition of ct(·) and dropped the indicator IEσt to get a further upper bound.
It remains to bound ct(Ḡt) in terms of γt(Gt).

Since Ḡt is the least uncertain unsaturated action, we have

ct(Ḡt)I{Gt ∈ Ut} ≤ ct(Gt).

Multiplying both sides by IEtσ , taking Et[·], and rearranging

ct(Ḡt) ≤ Et[ct(Gt)IEtσ ]
Pt({Gt ∈ Ut} ∩ Eσt ) ≤ Et[γt(Gt)]

Pt({Gt ∈ Ut} ∩ Eσt ) .

It remains to bound the denominator.

Recall that Gt maximizes r̂t(·) over the entire Gt. Thus, if

r̂t(G∗
t ) > max

G∈ Ūt
r̂t(G) (14)

then Gt cannot belong to Ūt, hence Gt ∈ Ut. On Eµt ∩ Eσt , for any G ∈ Ūt, we have

r̂t(G) ≤ µ(G) + γt(G) ≤ µ(G∗
t ) − ct(G) + γt(G)

≤ µ(G∗
t ) − ε(t,m)
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where the second inequality is by the definition of Ūt. Then for (14) to hold on Eµt ∩ Eσt , it is enough
to have r̂t(G∗

t ) > µ(G∗
t ) − ε(t,m). But this holds on Eµt ∩ Eat by (12). That is,

Eat ∩ Eµt ∩ Eσt ⊂ {r̂t(G∗
t ) > µ(G∗

t ) − ε(t,m)} ∩ Eµt ∩ Eσt
⊂ {r̂t(G∗

t ) > max
G∈ Ūt

r̂t(G)} ∩ Eµt ∩ Eσt

⊂ {Gt ∈ Ut} ∩ Eµt ∩ Eσt .

Assuming as before that Eµt holds, we have

Pt(Eat ∩ Eσt ) ≤ Pt({Gt ∈ Ut} ∩ Eσt ).

We have Pt(Eat ∩ Eσt ) ≥ Pt(Eat ) − Pt(Ēσt ). Putting the pieces together

ct(Ḡt) ≤ Et[γt(Gt)]
Pt(Eat ) − Pt(Ēσt )

and we obtain
Et[∆tIEσt ] ≤

( 2
Pt(Eat ) − Pt(Ēσt )

+ 1
)
Et[γt(Gt)] − ε(t,m)

Combining with (13) the result follows.

A.5 Proof of Lemma 5.4

Proof of Lemma 5.4. For simplicity, we define

gt := 1√
m

g(Gt;θt−1), ḡt := 1√
m

g(Gt;θ0).

Then, recall that

σ2
t (Gt) = ∥gt∥2

U−1
t−1
, U t−1 = λIp +

t−1∑

i=1
gtg⊤

t .

Note that U t = U t−1 + gtg⊤
t .

Then we introduce following Lemmas:

Lemma A.5 (Elliptical Potential). Assume that U t = U t−1 + gtg⊤
t for all t ∈ [T ]. Then,

T∑

t=1
min{1, ∥gt∥2

U−1
t−1

} ≤ 2 log
(detUT

detU0

)
.

Lemma A.6. Let A = [a1 a2 · · · an] and Ā = [ā1 ā2 · · · ān] be p×n matrices, with columns {ai}
and {āi}, respectively. Assume that for ε ≤ C, we have

∥ai − āi∥ ≤ ε, ∥ai∥ ≤ C

for all i. Then,

log det(Ip +AA⊤) ≤ log det(Ip + ĀĀ⊤) + p log(1 + 3Cnε)

log det(Ip +AA⊤) ≤ log det(In + Ā⊤
Ā) + 3Cn3/2ε.

By Lemma A.5, we have

1
2

T∑

t=1
min{1, σ2

t (Gt)} ≤ log
(detUT

detU0

)
= log det(λ−1UT ) =: log det(V T )
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using det(U0) = det(λIp) = λp, and defining V t := λ−1U t.

Let G = {Gj : j ∈ [|G|]} be the collection of all the graphs and nj(t) be the number of graphs which
are equal to Gj ∈ G in our selection of graphs up to and including time t, i.e nj(t) :=

∑t
t=1 IGi=Gj .

Let

ψj := 1√
m

g(Gj ;θt−1), ψ̄j := 1√
m

g(Gj ;θ0)

and let Ψ and Ψ̄ be the corresponding p× |G| matrices with the above columns. Then, we have

T∑

i=1
gig⊤

i =
|G|∑

j=1
nj(T )ψjψ⊤

j = ΨDΨ⊤ ⪯ T · ΨΨ⊤

where D ∈ R|G|×|G| is the diagonal matrix with diagonal elements {nj(T )}|G|
j=1 and the last inequality

due to nj(T ) ≤ T for all j ∈ [|G|].

Note that V T = Ip + λ−1 ∑T
i=1 gig⊤

i , hence

log det(V T ) ≤ log det(Ip + λ−1T · ΨΨ⊤).

By Lemma C.7, fix a δ1 ∈ (0, 1), we have the following bound for ∥ψj∥2 and ∥ψj − ψ̄j∥2, with
probability at least 1 − δ1,

∥ψj∥2 ≤ 1
N

∑

i∈V(Gj)

∥gMLP(hG
j

i ;θt−1)/
√
m∥2 ≤ Cψ

∥ψj − ψ̄j∥2 ≤ 1
N

∑

i∈V(Gj)

∥gMLP(hG
j

i ;θt−1)/
√
m− gMLP(hG

j

i ;θ0)/
√
m∥2 ≤ εm

where εm = o(1) as m → ∞ and Cψ is C7
√
L in Lemma C.7.

Then, applying Lemma A.6 with n = |G|, A =
√
λ−1TΨ, Ā =

√
λ−1T Ψ̄ and ε replaced with√

λ−1Tεm, we obtain

log det(V T ) ≤ log det(I |G| + λ−1T · Ψ̄⊤Ψ̄) + 3Cψ|G|3/2√
Tλ−1/2εm

Recall K̂ = Ψ̄⊤Ψ̄ and ρ̂max = λmax(K̂) and note that K̂ is the finite-width GNTK matrix. By
Lemma B.6, with high probability, ρ̂max ≤ ρmax + ερ,m and note that ερ,m = Ω(m−1/4). Dropping
ερ,m by large enough m, we have

log det(I |G| + λ−1T · Ψ̄⊤Ψ̄) ≤ |G| log(1 + Tρmax/λ).

Putting the pieces together with the definition of effective dimension d̃ in (8) finishes the proof.

A.6 Proof of Lemma A.5

Proof of Lemma A.5. Since min{1, x} ≤ 2 log(1 + x) for x ≥ 0, we have
T∑

t=1
min{1, ∥gt∥2

U−1
t−1

} ≤ 2
∑

t

log(1 + ∥gt∥2
U−1
t−1

)

= 2
T∑

t=1
log

( detU t

detU t−1

)
= 2 log

(detUT

detU0

)

where the first equality follows from det(A+vv⊤) = det(A)(1+v⊤A−1v), obtained by an application
of Sylvester’s determinant identity: det(I +AB) = det(I +BA).
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A.7 Proof of Lemma A.6

Proof of Lemma A.6. Note that

∥aia⊤
i − āiā⊤

i ∥op = ∥ai(ai − āi)⊤ − (āi − ai)ā⊤
i ∥op

≤ (∥ai∥ + ∥āi∥)∥ai − ai∥ ≤ (2C + ε)ε ≤ 3Cε

Let V = Ip +AA⊤ and V̄ = Ip + ĀĀ⊤. We have

∥V − V̄ ∥op ≤
n∑

i=1
∥aia⊤

i − āiā⊤
i ∥op ≤ n · 3Cε

Write λi(V ) for the ith eigenvalue of matrix V . By Weyl’s inequality |λi(V ) − λi(V̄ )| ≤ 3Cnε.
Then,

log det(V ) =
p∑

i=1
log λi(V ) ≤

∑

i

log
(
λi(V̄ ) + 3Cnε

)

=
∑

i

log(λi(V̄ )) +
∑

i

log
(

1 + 3Cnε
λi(V̄ )

)

≤ log det(V̄ ) + p log(1 + 3Cnε)

using λi(V̄ ) ≥ 1. This proves one of the bounds.

For the second bound, let W = In +A⊤A and W̄ = In + Ā⊤
Ā. Then, then by concavity of the

X 7→ log det(X) and the fact that its derivative is X−1 over symmetric matrices, we have

log det(X + ∆) − log deg(X) ≤ tr(X−1∆) ≤ ∥X−1∥F ∥∆∥F .
Let ∆ = W − W̄ . We have |∆ij | = |⟨ai,aj⟩ − ⟨āi, āj⟩| ≤ 3Cε, hence ∥∆∥F ≤ 3Cnε Then,

log det(V ) − log det(W̄ ) (a)= log det(W ) − log det(W̄ )

≤ tr(W̄−1∆)

≤ √
n∥W̄−1∥op∥∆∥F

(b)
≤ √

n · 3Cnε.

where (a) is by Sylvester’s identity and (b) uses the fact that W̄ ⪰ In, hence W̄−1 ⪯ In giving
∥W̄−1∥op ≤ 1.

B Technical Lemmas

In this Section, we provides the Proof for Lemmas in Appendix A and other Technical Lemmas
supporting the proofs. Most technical Lemmas are related to NTK and optimization in depp learning
theory, mainly modified from the GNN helper Lemmas in (Kassraie et al., 2022) and technical
Lemmas in Zhou et al. (2020); Vakili et al. (2021).

B.1 Notations for MLP

Recall our GNN with one layer of linear graph convolution and a MLP:

f (1)(hGi ) = W (1)hGi , i ∈ [N ],

f (l)(hGi ) = 1√
m
W (l)ReLU(f (l−1)(hGi )), 2 ≤ l ≤ L,

fMLP(hGi ;θ) = f (L)(hGi )

fGNN(G;θ) = 1
N

N∑

i=1
fMLP(hGi ;θ).

47



RLJ | RLC 2024

We denote the gradients for GNN and associated MLP as

g(G;θ) := ∇θfGNN(G;θ)
gMLP(·;θ) := ∇θfMLP(·;θ)

and the connection between gradients for the MLP and the gradient for the whole GNN is

g(G;θ) = 1
N

N∑

i=1
gMLP(hGi ;θ)

Similarly, we define a tangent kernel for the a MLP as

k̃MLP (x,x′) := gMLP (G;θ0)⊤gMLP (G′;θ0)

for any MLP inputs x, x′ and the associated neural tangent kernel kMLP (x,x′) is defined as limiting
kernel of k̃MLP (x,x′)/m:

kMLP (x,x′) := lim
m→∞

k̃MLP (x,x′)/m.

By the connection between fGNN and fMLP, we have

k(G,G′) = 1
N2

∑

i∈V(G)

∑

j∈V(G′)

kMLP(hGi ,hG
′

j ).

B.2 Proof for Lemmas in Appendix A

Proof of Lemma A.1. By Lemma C.7, with probability at least 1 − δ ∈ (0, 1)

|fGNN(G;θ(J)
t ) − fGNN(G;θ0) − ⟨g(G;θ0),θ(J)

t − θ0⟩|

≤ 1
N

∑

j∈V(G)

|fMLP(hGj ;θ(J)
t ) − fMLP(hGj ;θ0) − ⟨gMLP(hGj ;θ0),θ(J)

t − θ0⟩|

≤ C1τ
4/3L3√

m log(m)
≤ C1(C̃

√
(R2 + σ2

ε)/mλ)4/3L3√
m log(m)

where the last inequality is from the choice of τ = C̃
√

(R2 + σ2
ε)/mλ such that ∥θ(J)

t − θ0∥2 ≤ τ .
Since τ ∝ 1/

√
m, it can be verified that technical condition (23) in Lemma C.7 is satisfied when m is

large. Therefore, set C2 = C1C̃
4/3,

|fGNN(G;θ(J)
t ) − fGNN(G;θ0) − ⟨g(G;θ0),θ(J)

t − θ0⟩| ≤ C2L
3(R

2 + σ2
ε

mλ
)2/3√

m log(m).

Proof of Lemma A.2. In this proof, set δ1 = δ2 = δ/2 where δ ∈ (0, 1) is an arbitrary small real
value. We introduce {θ̃(j)

t }Jj=1 be the gradient descent update sequence of the following proximal
optimization (Kassraie et al., 2022):

min
θ

1
2t

t∑

i=1
(⟨g(Gi;θ0),θ − θ0⟩ − yi)2 + mλ

2 ∥θ∥2
2

and {θ(j)
t }Jj=1 be the gradient descent update sequence of parameters of our primary optimization

(6). In GNN training step in algorithms, we let θt := θ
(J)
t . Recall that Ū t = λI + ḠtḠ

⊤
t /m. By

48



RLJ | RLC 2024

Lemma B.5, with probability at least 1 − δ1 ∈ (0, 1), Ū t ≼ (λ+ 3
2ρmax)I. Therefore,

|⟨g(G;θ0),θt − θ0 − Ū−1
t Ḡtyt/m⟩| ≤ ∥g(G;θ0)∥

Ū
−1
t

∥θt − θ0 − Ū−1
t Ḡtyt/m∥Ūt

≤
√
λ+ 3ρmax/2∥g(G;θ0)∥

Ū
−1
t

∥θt − θ0 − Ū−1
t Ḡtyt/m∥2

≤
√
λ+ 3ρmax/2∥g(G;θ0)∥

Ū
−1
t

(∥θ̃(J)
t − θ0 − Ū−1

t Ḡtyt/m∥2

+ ∥θ̃(J)
t − θt∥2

By Lemma B.3 and Lemma B.1, with probability at least 1 − δ2 ∈ (0, 1), for some constants C1 and
C2, we have

|⟨g(G;θ0),θt − θ0 − Ū−1
t Ḡtyt/m⟩|

≤
√
λ+ 3ρmax/2∥g(G;θ0)∥

Ū
−1
t

(
C1(2 − ηmλ)J

√
σ2
ε +R2

mλ
+ ∥θ̃(J)

t − θt∥2

)
(by Lemma B.3)

≤
√
λ+ 3ρmax/2∥g(G;θ0)∥

Ū
−1
t

×
(
C1(2 − ηmλ)J

√
σ2
ε +R2

mλ
+ C2

√
σ2
ε +R2

mλ

)
(by Lemma B.1)

=
√
m(1 + 3ρmax

2λ )(C1(2 − ηmλ)J + C2)
√
σ2
ε +R2

mλ
σ̄t+1(G)

The last equality is obtained from the definition of σ̄2
t+1(G), which is σ̄2

t+1(G) =
λg⊤(G;θ0)Ū−1

t g(G;θ0)/m = λ
m∥g(G;θ0)∥2

Ū
−1
t

. Now we let C̃ =
√
m(1 + 3ρmax

2λ )(C1(2 − ηmλ)J +

C2)
√

σ2
ε+R2

mλ . Note that this constant C̃ = O(1) with respect to m since η = O(m−1). Then we have
the desired result:

|⟨g(G;θ0),θt − θ0 − Ū−1
t Ḡtyt/m⟩| ≤ C̃σ̄t+1(G)

where C̃ = (C1(2 − ηmλ)J + C2)
√

σ2
ε+R2

λ (1 + 3ρmax
2λ ) with C1 = O(1) and C2 = O(λ1/3).

Proof of Lemma A.3. See Appendix B.4.

Proof of Lemma A.4. Define function ψλ for vectors {v,a1, ...,at−1} as followed:

ψλ(v,a1, ...,at−1) :=

√√√√v⊤(λI +
t−1∑

i=1
aia⊤

i )−1v,

and denote the gradients for ψλ as
∇0ψλ := ∇vψλ(v,a1, ...,at−1)
∇iψλ := ∇aiψλ(v,a1, ...,at−1),∀i ∈ [t− 1].

By setting A = (λI +
∑t−1
i=1 aia

⊤
i )−1 ≼ 1

λI with eigendecomposition A = V DV ⊤. The gradients
are bounded as followed

∥∇0ψλ∥2 = ∥Av∥2√
v⊤Av

=

√
v⊤A2v

v⊤Av
≤

√
λmax(A) ≤ 1/

√
λ

∥∇iψλ∥2 = ∥Avv⊤Aai∥2√
v⊤Av

≤ ∥ai∥2
v⊤A2v√
v⊤Av

≤ ∥ai∥2∥v∥2/λ

(15)

We can express σ̄t(G) and σt(G) by ψλ:

σ̄t(G) = ψλ(g(G;θt−1)√
m

,
g(G1;θ1)√

m
, ...,

g(Gt−1;θt−1)√
m

)

σt(G) = ψλ(g(G;θ0)√
m

,
g(G1;θ0)√

m
, ...,

g(Gt−1;θ0)√
m

).
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From Lemma C.7, there exists positive constants such that the gradients and gradient differences are
bounded with high probability, which indicates for some constant C1 with probability greater than
1 − δ,

∥g(G;θ)∥2 = ∥ 1
N

∑

j∈V(G)

gMLP(hGj ;θ)∥2 ≤ C1
√
mL (16)

Note that ψλ is Lipschitz continuous, then with high probability, we have

|σ̄t(G) − σt(G)| = |ψλ(g(G;θt−1)√
m

,
g(G1;θ1)√

m
, ...,

g(Gt−1;θt−1)√
m

) − ψλ(g(G;θ0)√
m

,
g(G1;θ0)√

m
, ...,

g(Gt−1;θ0)√
m

)|

≤ sup{∥∇0ψλ∥2}∥g(G;θt−1)√
m

− g(G;θ0)√
m

∥2 +
t−1∑

i=1
sup{∥∇iψλ∥2}∥g(Gi;θi)√

m
− g(Gi;θ0)√

m
∥2

≤ 1√
λ

∥g(G;θt−1)√
m

− g(G;θ0)√
m

∥2 + C2
1L

λ

t−1∑

i=1
∥g(Gi;θi)√

m
− g(Gi;θ0)√

m
∥2( by (15) and (16))

≤ C2
√

log(m)τ1/3L3∥g(G;θ0)∥2/
√
m( 1√

λ
+ C2

1Lt

λ
) (by Lemma C.7)

≤ C1C2
√

log(m)τ1/3L7/2( 1√
λ

+ C2
1Lt

λ
) (by (16))

Therefore, if λ ≤ C4
1L

2t2 and let τ = C̃
√

R2+σ2
ε

mλ , C3 = 2C̃C2C
3
1 ,

|σ̄t(G) − σt(G)| ≤ C3tλ
−7/6L9/2(R2 + σ2

ε)1/6m−1/6√
log(m)

B.3 Lemmas for GNN training

Lemma B.1 (Parameter Bound for Primary Optimization). Let {θ(j)
t }Jj=1 be the gradient descent

update sequence of parameters of the optimization (6) which is,

min
θ

1
2t

t∑

i=1
(fGNN(Gi;θ) − yi)2 + mλ

2 ∥θ∥2
2

then if m ≥ poly(R, σε, L, λ−1, log(Nδ )) and learning rate η ≤ (C̃mL+mλ)−1 for some constant C̃.
Then for a constant C = O(λ1/3) which is independent of m and t, with probability at least 1 − δ

∥θ(j)
t − θ̃(j)

t ∥2 ≤ C

√
R2 + σ2

ε

mλ

where {θ̃(j)
t }Jj=1 be the gradient descent update sequence of parameters of the proximal optimization

with loss function 1
2t

∑t
i=1(⟨g(Gi;θ0),θ − θ0⟩ − yi)2 + mλ

2 ∥θ∥2
2. Both optimization have the same

initialization at θ̃(0)
t = θ

(0)
t = θ0 and same learning rate η.

Proof. In this proof, set δ1 = δ2 = δ/2 where δ ∈ (0, 1) is an arbitrary small real value. Define
G

(j)
t := [g(G1;θ(j)

t ), ..., g(Gt;θ(j)
t ))] ∈ Rp×t as the j-th updates in our primary optimzation with

loss (6) at round t. Also define f (j)
gnn,t := [fGNN(G1;θ(j)

t ), ..., fGNN(Gt;θ(j)
t )]⊤ ∈ Rt×1. The gradient

descent updates for sequences {θ(j)
t }Jj=1 and {θ̃(j)

t }Jj=1 are

θ
(j+1)
t = θ

(j)
t − η

(
1
t
[G(j)

t ]⊤(f (j)
gnn,t − yt) +mλθ

(j)
t

)

θ̃
(j+1)
t = θ̃

(j)
t − η

(
1
t
Ḡ

⊤
t (Ḡt(θ̃

(j)
t − θ0) − yt) +mλθ̃

(j)
t

)
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Therefore,

∥θ(j+1)
t − θ̃(j+1)

t ∥2

=∥(1 − ηmλ)(θ(j)
t − θ̃(j)

t ) − η

t
[G(j)

t ]⊤(f (j)
gnn,t − yt) + η

t
Ḡ

⊤
t (Ḡt(θ̃

(j)
t − θ0) − yt)∥2

=∥(1 − ηmλ)(θ(j)
t − θ̃(j)

t ) − η

t
(G(j)

t − Ḡt)⊤(f (j)
gnn,t − yt) − η

t
Ḡ

⊤
t (f (j)

gnn,t − Ḡt(θ̃
(j)
t − θ0))∥2

=∥(1 − ηmλ)(θ(j)
t − θ̃(j)

t ) − η

t
(G(j)

t − Ḡt)⊤(f (j)
gnn,t − yt) − η

t
Ḡ

⊤
t (f (j)

gnn,t − Ḡt(θ(j)
t − θ0) + Ḡt(θ(j)

t − θ̃(j)
t ))∥2

=∥(I − η(mλI + Ḡ⊤
t Ḡt/t))(θ(j)

t − θ̃(j)
t ) − η

t
(G(j)

t − Ḡt)⊤(f (j)
gnn,t − yt) − η

t
Ḡ

⊤
t (f (j)

gnn,t − Ḡt(θ(j)
t − θ0))∥2

≤ ∥(I − η(mλI + Ḡ⊤
t Ḡt/t))∥2∥θ(j)

t − θ̃(j)
t ∥2︸ ︷︷ ︸

I1

+ η

t
∥Ḡt∥2∥f (j)

gnn,t − Ḡt(θ(j)
t − θ0)∥2

︸ ︷︷ ︸
I2

+ η

t
∥G(j)

t − Ḡt∥2∥f (j)
gnn,t − yt∥2

︸ ︷︷ ︸
I3

For I1, due to Ḡ⊤
t Ḡt/t ≽ 0, we have

I1 = ∥(I − η(mλI + Ḡ⊤
t Ḡt/t))∥2∥θ(j)

t − θ̃(j)
t ∥2 ≤ (1 − ηmλ)∥θ(j)

t − θ̃(j)
t ∥2

For I2, by Lemma B.4, set τ = C̃
√

(R2 + σ2
ε)/mλ. Since τ ∝ 1/

√
m, it can be verified that technical

condition (23) in Lemma C.7 is satisfied when m is large. Then with probability at least 1−δ1 ∈ (0, 1),

I2 = η

t
∥Ḡt∥2∥f (j)

gnn,t − Ḡt(θ(j)
t − θ0)∥2 ≤ ηC1(C̃ R

2 + σ2
ε

mλ
)2/3L7/2m

√
log(m)

For I3, by Lemma B.2 and Lemma B.4, and Lemma C.7, with probability at least 1 − δ2 ∈ (0, 1),

I3 = η

t
∥G(j)

t − Ḡt∥2∥f (j)
gnn,t − yt∥2 ≤ ηC2(C̃ R

2 + σ2
ε

mλ
)1/6L7/2√

m log(m)
√
R2 + σ2

ε

Put the upper bound for I1, I2., I3 together and set C3 = (λ1/3C1 + C2)C̃ = O(λ1/3), then we get,

∥θ(j+1)
t − θ̃(j+1)

t ∥2 ≤ (1 − ηmλ)∥θ(j)
t − θ̃(j)

t ∥2 + C3η(R2 + σ2
ε)2/3L7/2m1/3λ−1/6√

log(m)

Therefore, there exists m = poly(R, σε, λ, L) satisfies that (R2 + σ2
ε)1/6L7/2λ1/3√

log(m) ≤ m1/6,
which indicates

∥θ(j)
t − θ̃(j)

t ∥2 ≤ C3(R2 + σ2
ε)2/3L7/2m−2/3λ−1/6√

log(m) ≤ C3

√
R2 + σ2

ε

mλ

Lemma B.2 (Prediction Error Bound in Gradient Descent). Let {θ(j)
t }Jj=1 be the gra-

dient descent update sequence of parameters of the optimization (6). Define f
(j)
gnn,t :=

[fGNN(G1;θ(j)
t ), ..., fGNN(Gt;θ(j)

t )]⊤ ∈ Rt×1. Assume τ is set such that ∥θ(j)
t −θ0∥2 ≤ τ for all t and

∀j ≤ J . Suppose m ≥ poly(L, λ−1, log(N/δ)) where δ ∈ (0, 1) and learning rate η ≤ (C̃mL+mλ)−1

for some constant C̃, then with probability at least 1 − δ,

∥f (j)
gnn,t − yt∥2 ≤ C

√
t(R2 + σ2

ε)

where C is some constant which does not depend on m and t.

Proof. Define f t(θ) and Gt(θ) as follow

f t(θ) = [fGNN(G1;θ), ..., fGNN(Gt;θ)]⊤ ∈ Rt×1

Gt(θ) = [g(G1;θ), ..., g(Gt;θ)] ∈ Rp×t
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Also define Lt(θ) := 1
2t

∑t
i=1(fGNN(Gi;θ)−yi)2+mλ

2 ∥θ∥2
2 as the loss function in primary optimization.

Note that Lt(θ) := 1
2t∥f t(θ) − yt∥2

2 + mλ
2 ∥θ∥2

2 First notice that loss function Lt(θ) is convex due to
the strongly convexity of ∥ · ∥2

2/2. We are going to use the following two-sided bound from strongly
convexity in this proof:

∥y∥2
2/2 − ∥x∥2

2/2 = x⊤(y − x) + 1
2∥y − x∥2

2

By 1-strongly convexity of ∥ · ∥2
2/2, we have

Lt(θ′) − Lt(θ) = 1
2t

(
∥f t(θ′) − yt∥2

2 − ∥f t(θ) − yt∥2
2

)
+ mλ

2

(
∥θ′∥2

2 − ∥θ∥2
2

)

≤1
t

(
(f t(θ) − yt)⊤(f t(θ′) − f t(θ)) + 1

2∥f t(θ) − f t(θ′)∥2
2

)
+mλ

(
θ⊤(θ′ − θ) + 1

2∥θ − θ′∥2
2

)
.

Define et := f t(θ′) −f t(θ) −G⊤
t (θ)(θ′ −θ). By Lemma B.4, with probability at least 1 − δ1 ∈ (0, 1)

Lt(θ′) − Lt(θ)

≤1
t
(f t(θ) − yt)⊤(G⊤

t (θ)(θ′ − θ) + et) + 1
2t∥G

⊤
t (θ)(θ′ − θ) + et∥2

2 +mλ

(
θ⊤(θ − θ) + 1

2∥θ − θ′∥2
2

)

=1
t
[Gt(θ)(f t(θ) − yt) +mλθ]⊤(θ′ − θ) + 1

t
(f t(θ) − yt)⊤et + 1

2t∥G
⊤
t (θ)(θ′ − θ) + et∥2

2 + mλ

2 ∥θ − θ′∥2
2

=∇Lt(θ)⊤(θ′ − θ) + 1
t
(f t(θ) − yt)⊤et + 1

2t∥G
⊤
t (θ)(θ′ − θ) + et∥2

2 + mλ

2 ∥θ − θ′∥2
2

≤∇Lt(θ)⊤(θ′ − θ) + 1
t
∥f t(θ) − yt∥2∥et∥2 + 1

t
∥Gt(θ)∥2

2∥θ′ − θ∥2
2 + 1

t
∥et∥2

2 + mλ

2 ∥θ − θ′∥2
2

≤∇Lt(θ)⊤(θ′ − θ) + 1
t
∥f t(θ) − yt∥2∥et∥2 + 1

t
∥et∥2

2 + (C2
1mL+mλ/2)∥θ′ − θ∥2

2 (by Lemma B.4)
(17)

Similarly by 1-strongly convexity of ∥ · ∥2
2/2 , we also investigate the lower bound:

Lt(θ′)−Lt(θ) ≥ 1
t

(
(f t(θ)−yt)⊤(f t(θ′)−f t(θ))+1

2∥f t(θ′)−f t(θ)∥2
2

)
+mλ

(
θ⊤(θ′−θ)+1

2∥θ′−θ∥2
2

)

Using et := f t(θ′) − f t(θ) −G⊤
t (θ)(θ′ − θ), we obtain

Lt(θ′) − Lt(θ) ≥1
t
(f t(θ) − yt)⊤(G⊤

t (θ)(θ′ − θ) + et) +mλθ⊤(θ′ − θ) + mλ

2 ∥θ − θ′∥2
2

=1
t
[Gt(θ)(f t(θ) − yt) +mλθ]⊤(θ′ − θ) + 1

t
(f t(θ) − yt)⊤et + mλ

2 ∥θ − θ′∥2
2

Then using ∇Lt(θ) = Gt(θ)(f t(θ) − yt) +mλθ, we have

Lt(θ′) − Lt(θ) ≥∇Lt(θ)⊤(θ′ − θ) + 1
t
(f t(θ) − yt)⊤et + mλ

2 ∥θ − θ′∥2
2

≥∇Lt(θ)⊤(θ′ − θ) + mλ

2 ∥θ − θ′∥2
2 − 1

t
∥f t(θ) − yt∥2∥et∥2

≥ − ∥∇Lt(θ)∥2
2

2mλ − 1
t
∥f t(θ) − yt∥2∥et∥2 (by Lemma C.1)

(18)
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Now recall the update step θ(j+1)
t = θ

(j)
t − η∇Lt(θ(j)

t ) and combine the above upper and lower
bounds,

Lt(θ − η∇Lt(θ)) − Lt(θ)

≤ − η∥∇Lt(θ)∥2
2 + 1

t
∥f t(θ) − yt∥2∥et∥2 + 1

t
∥et∥2

2 + η2(C2
1mL+mλ/2)∥∇Lt(θ)∥2

2 (by update step and (17))

= − η

(
1 − η

2 (2C2
1mL+mλ)

)
∥∇Lt(θ)∥2

2 + 1
t
∥f t(θ) − yt∥2∥et∥2 + 1

t
∥et∥2

2

≤ − η

2∥∇Lt(θ)∥2
2 + 1

t
∥f t(θ) − yt∥2∥et∥2 + 1

t
∥et∥2

2 (by choice of η)

≤ηmλ
(

Lt(θ′) − Lt(θ) + 1
t
∥f t(θ) − yt∥2∥et∥2

)
+ 1
t
∥f t(θ) − yt∥2∥et∥2 + 1

t
∥et∥2

2 (by (18))

≤ηmλ
(

Lt(θ′) − Lt(θ) + ∥f t(θ) − yt∥2
2/8t+ 2∥et∥2

2/t

)
+ 1
t
(ηmλ∥f t(θ) − yt∥2

2/8 + 2∥et∥2
2/ηmλ) + 1

t
∥et∥2

2

=ηmλ(Lt(θ′) − Lt(θ)) + ηmλ

4t ∥f t(θ) − yt∥2
2 + (2ηmλ

t
+ 2
ηmλt

+ 1
t
)∥et∥2

2

≤ηmλ(Lt(θ′) − Lt(θ)) + ηmλLt(θ)/2 + (2ηmλ
t

+ 2
ηmλt

+ 1
t
)∥et∥2

2 (by ∥f t(θ) − yt∥2
2 ≤ 2tL(θ))

=ηmλ(Lt(θ′) − Lt(θ)/2) + (2ηmλ
t

+ 2
ηmλt

+ 1
t
)∥et∥2

2

(19)
For ∥et∥2

2, by Lemma C.7, with probability at least 1 − δ2 ∈ (0, 1) for some constant C2, we have

∥et∥2 = ∥f t(θ′) − f t(θ) −G⊤
t (θ)(θ′ − θ)∥2

≤
√
tmax
i∈[t]

|fGNN(Gi;θ′) − fGNN(Gi;θ) + g⊤(Gi;θ)(θ′ − θ)|

≤
√
t

N
max
i∈[t]

∑

j∈V(Gi)

|fMLP(hj ;θ′) − fMLP(hj ;θ) + gMLP(hj ;θ)⊤(θ′ − θ)|

≤ C2τ
4/3L3√

tm log(m)

(20)

where V(G) as vertice set of a graph G. Moreove, by Lemma C.4, we have the high probability upper
bound for 1

t ∥yt∥2
2: with probability at least 1 − δ3 ∈ (0, 1) and some constant C3 depends on δ3,

1
t
∥yt∥2

2 ≤ 1
t
(tR2 + ∥ϵt∥2

2 + 2
√
tR∥ϵt∥2) ≤ C3(σ2

ε +R2) (21)

Then let θ′ = θ0 and plug in θ(j+1)
t and θ(j)

t in (19), by Lemma B.3, with probability at least 1 − δ4,

Lt(θ(j+1)
t ) − Lt(θ0) ≤ (1 − ηmλ/2)(Lt(θ(j)

t ) − Lt(θ0)) + ηmλ

2 Lt(θ0) + (2ηmλ
t

+ 2
ηmλt

+ 1
t
)∥et∥2

2

≤ (1 − ηmλ/2)(Lt(θ(j)
t ) − Lt(θ0)) + ηmλ

2 (1
t
∥yt∥2

2 +mλ∥θ0∥2
2)

+ (2ηmλ+ 2/ηmλ+ 1)C2
2τ

8/3L6m log(m) (by (21))

≤ (1 − ηmλ/2)(Lt(θ(j)
t ) − Lt(θ0)) + ηmλ

2 (C3(σ2
ε +R2) +mλ∥θ0∥2

2)

+ 5
ηmλ

C2
2τ

8/3L6m log(m) (by (20) and ηmλ ≤ 1)

≤ (1 − ηmλ/2)(Lt(θ(j)
t ) − Lt(θ0)) + C4ηmλ(σ2

ε +R2) + 5
ηmλ

C2
2τ

8/3L6m log(m)

(by Lemma B.3)
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Now we further set τ = C̃
√

σ2
ε+R2

mλ and the upper bound for Lt(θ(j+1)
t ) − Lt(θ0) is

Lt(θ(j+1)
t ) − Lt(θ0) ≤ (1 − ηmλ/2)(Lt(θ(j)

t ) − Lt(θ0)) + C4ηmλ(σ2
ε +R2) + 5

ηmλ
C̃2C2

2 (σ2
ε +R2)τ2/3λ−1L6 log(m)

(by τ = C̃

√
σ2
ε +R2

mλ
)

≤ (1 − ηmλ/2)(Lt(θ(j)
t ) − Lt(θ0)) + C4ηmλ(σ2

ε +R2) + C5ηmλ(σ2
ε +R2)

(by choice of τ in Lemma C.7)
where C4 is a constant depends on δ3 and δ4 and C5 depends on δ2, δ3 and δ4. Then by recursion,

Lt(θ(j+1)
t ) − Lt(θ0) ≤ C6ηmλ(σ2

ε +R2)
ηmλ/2 = C̃6(σ2

ε +R2)

where C6 = C4 + C5 and C̃6 = 2C6. Recall that ∥f t(θ) − yt∥2
2 = 2tLt(θ) − mλ

2 ∥θ∥2
2 ≤ 2tLt(θ), with

some constant C7 derived from C6 and C4, then we have

∥f (j)
gnn,t − yt∥2

2 ≤ 2tLt(θ(j)
t ) ≤ 2tC̃6(σ2

ε +R2) + 2tLt(θ0)

= 2tC̃6(σ2
ε +R2) + 2t(1

t
∥yt∥2

2 + mλ

2 ∥θ0∥2
2)

≤ C7t(σ2
ε +R2) (by Lemma B.3)

which implies our result by setting δ1 = δ2 = δ3 = δ4 = δ/4 where δ ∈ (0, 1) is arbitrary small.

Lemma B.3 (Parameter Bound for Proximal Optimization). Let {θ̃(j)
t }Jj=1 be the gradient descent

update sequence of parameters of the following optimization,

min
θ

1
2t

t∑

i=1
(⟨g(Gi;θ0),θ − θ0⟩ − yi)2 + mλ

2 ∥θ∥2
2

Then if m ≥ poly(L, λ−1, log(N/δ)) and learning rate η ≤ (C̃mL + mλ)−1 for some constant C̃.
Then for some constant C and for any ∀t ∈ [T ] and ∀j ∈ [J ], with probability at least 1 − δ ∈ (0, 1),

∥θ̃(j)
t ∥2 ≤ C

√
σ2
ε +R2

mλ

∥θ̃(j)
t − θ0∥2 ≤ C

√
σ2
ε +R2

mλ

∥θ̃(j)
t − θ0 − Ū−1

t Ḡtyt/m∥2 ≤ C(2 − ηmλ)j
√
σ2
ε +R2

mλ

for some constant C which is independent of m and t.

Proof. Denote Lt(θ) := 1
2t

∑t
i=1(⟨g(Gi;θ0),θ − θ0⟩ − yi)2 + mλ

2 ∥θ∥2
2 as the loss function in our

proximal optimization. By Lemma B.4, with probability at least 1 − δ1 ∈ (0, 1) the Hessian of Lt(θ)
satisfies:

0 ≺ ∇2Lt = ḠtḠ
⊤
t /t+mλI ≼ (∥Ḡt∥2

F /t+mλ)I ≼ (C2
1mL+mλ)I

which reveals that Lt is strongly convex and (C2
1mL+mλ)-smooth. Thus if η ≤ (C2

1mL+mλ)−1,
Lt is a monotonically decreasing function:

1
2t∥Ḡ

⊤
t (θ̃(j)

t − θ0) − yt∥2
2 + mλ

2 ∥θ̃(j)
t ∥2

2 ≤ 1
2t∥yt∥

2
2 + mλ

2 ∥θ0∥2
2
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which indicates
∥θ̃(j)

t ∥2
2 ≤ 1

tmλ
∥yt∥2

2 + ∥θ0∥2
2

≤ 1
tmλ

(∥µt∥2
2 + ∥ϵt∥2

2 + 2∥µt∥2∥ϵt∥2) + ∥θ0∥2
2

Note that the proximal optimization is optimization for ridge regression which has the closed form
solution:

θ∗ = θ0 + Ū−1
t Ḡtyt/m

and θ̃(j)
t converges to θ∗ with the following rate:

∥θ̃(j+1)
t − θ∗∥2

2 = ∥θ̃(j)
t − η∇L(θ̃(j)

t ) − θ∗∥2
2

= ∥θ̃(j)
t − θ∗∥2

2 + η2∥∇L(θ̃(j)
t )∥2

2 − 2η(θ̃(j)
t − θ∗)⊤∇L(θ̃(j)

t )

≤ ∥θ̃(j)
t − θ∗∥2

2 + η2(C2
1mL+mλ)2∥θ̃(j)

t − θ∗∥2
2 − 2η(θ̃(j)

t − θ∗)⊤∇L(θ̃(j)
t ) (by smoothness)

≤ ∥θ̃(j)
t − θ∗∥2

2 + η2(C2
1mL+mλ)2∥θ̃(j)

t − θ∗∥2
2 + 2η(L(θ∗) − L(θ̃(j)

t )) (by convexity)

≤ 2∥θ̃(j)
t − θ∗∥2

2 + 2η(L(θ∗) − L(θ̃(j)
t )) (by η ≤ (C2

1mL+mλ)−1)

≤ 2∥θ̃(j)
t − θ∗∥2

2 − ηmλ∥θ̃(j)
t − θ∗∥2

2 (by mλ-strongly convexity)

= (2 − ηmλ)∥θ̃(j)
t − θ∗∥2

2

Therefore,

∥θ̃(j+1)
t − θ∗∥2

2 ≤ (2 − ηmλ)j∥θ0 − θ∗∥2
2

≤ (2 − ηmλ)j 2
mλ

(L(θ0)) − L(θ∗)) (by mλ-strongly convexity)

≤ (2 − ηmλ)j 2
mλ

L(θ0)

= (2 − ηmλ)j
(

1
tmλ

∥yt∥2
2 + ∥θ0∥2

2

)

Then combine with Lemma C.4 and ∥µt∥2 ≤
√
t∥µ∥H ≤

√
tR, we have that with probability at least

1 − δ2 ∈ (0, 1),

1
tmλ

∥yt∥2
2 ≤ 1

tmλ
(tR2 + ∥ϵt∥2

2 + 2
√
tR∥ϵt∥2) ≤ C̃1(σ2

ε +R2)/mλ

where C̃1 is some constant depends on δ2. Therefore, for any δ ∈ (0, 1), set δ1 = δ2 = δ/2, with
probability at least 1 − δ2,

∥θ̃(j)
t ∥2 ≤ C̃2

√
σ2
ε +R2

mλ

∥θ̃(j)
t − θ0∥2 ≤ C̃2

√
σ2
ε +R2

mλ

and

∥θ̃(j)
t − θ0 − Ū−1

t Ḡtyt/m∥2 ≤ (2 − ηmλ)jC̃2

√
σ2
ε +R2

mλ

where C̃2 is some constant depends on δ2 and ∥θ0∥2.

Lemma B.4 (Gradient Descent Norm Bound). Define G(j)
t := [g(G1;θ(j)

t ), ..., g(Gt;θ(j)
t ))] ∈ Rp×t

for the gradients in the j-th updates in GNN training (optimization of (6)) at round t. Also define
f

(j)
gnn,t := [fGNN(G1;θ(j)

t ), ..., fGNN(Gt;θ(j)
t )]⊤ ∈ Rt×1. Assume τ is set such that ∥θ(j)

t − θ0∥2 ≤ τ
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for all t and ∀j ≤ J . Suppose m ≥ poly(L, λ−1, log(N/δ)) where δ ∈ (0, 1), then with probability at
least 1 − δ,

∥Ḡt∥F ≤ C1
√
tmL

∥G(j)
t ∥F ≤ C1

√
tmL

∥Ḡt −G(j)
t ∥F ≤ C2τ

1/3L7/2√
tm log(m)

∥f (j)
gnn,t − (θ(j)

t − θ0)⊤Ḡt∥2 ≤ C3τ
4/3L3√

tm log(m)
for some constant C1, C2, C3 which does not depend on m and t.

Proof. From Lemma C.7, we can bounding the ∥g(G;θ0)∥2 with probability at least 1 − δ ∈ (0, 1),
which provides the high probability upper bound for the Frobenius norm of Ḡt:

∥Ḡt∥F ≤
√
tmax
i∈[t]

∥g(Gi;θ0)∥2 ≤
√
t

N
max
i∈[t]

∑

j∈V(Gi)

∥gMLP(hj ;θ0)∥2 ≤ C1
√
tmL

and the high probability upper bound for the Frobenius norm of G(j)
t :

∥G(j)
t ∥F ≤

√
tmax
i∈[t]

∥g(Gi;θ(j)
t )∥2 ≤

√
t

N
max
i∈[t]

∑

j∈V(Gi)

∥gMLP(hj ;θ(j)
t )∥2 ≤ C1

√
tmL

For the gradients difference, by Lemma C.7, with probability at least 1 − δ,

∥Ḡt −G(j)
t ∥F ≤

√
tmax
i∈[t]

∥g(Gi;θ0) − g(Gi;θ(j)
t )∥2

≤
√
t

N
max
i∈[t]

∑

j∈V(Gi)

∥gMLP(hj ;θ0) − gMLP(hj ;θ(j)
t )∥2

≤ C2τ
1/3L7/2√

tm log(m)

The last norm for difference between the GNN prediction and linearized prediction is bounded due
to Lemma C.7, with probability at least 1 − δ,

∥f (j)
gnn,t − (θ(j)

t − θ0)⊤G(j)
t ∥2 ≤

√
tmax
i∈[t]

|fGNN(Gi;θ(j)
t ) − (θ(j)

t − θ0)⊤g(Gi;θ0)|

≤
√
t

N
max
i∈[t]

∑

j∈V(Gi)

|fMLP(hj ;θ(j)
t ) − (θ(j)

t − θ0)⊤gMLP(hj ;θ0)|

≤ C3τ
4/3L3√

tm log(m)

B.4 Lemmas for GNTK

Lemma B.5 (Approximation from GNTK). Set δ ∈ (0, 1) and

m = Ω(L10T 4|G|6ρ−4
min log(LN2|G|2/δ)).

Then with probability at least 1 − δ,
(i) (Approximate Linearized Nerual Network) ∃θ∗ such that, for ∀G ∈ G

µ(G) = ⟨g(G;θ0),θ∗⟩
√
m∥θ∗∥2 ≤

√
2R

(ii) (Spectral Bound for Uncertainty Matrix Ū t by GNTK)

λmax(Ū t) ≤ λ+ 3
2ρmax

log det(λ−1Ū t) ≤ log det(I |G| + λ−1tK) + 1
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Proof. In this proof, set δ1 = δ2 = δ/2 where δ ∈ (0, 1) is an arbitrary real value. Recall the definition
of the true reward function µ : G → R and the GNTK matrix K ∈ R|G|×|G|. We further define the
vector of function values µ ∈ R|G|×1 as well as the gradient matrix Ḡ ∈ Rp×|G| on initialization θ0.

[K]ij = k(Gi, Gj) ∀Gi, Gj ∈ G
[µ]i = µ(Gi) ∀Gi ∈ G
Ḡ∗i = g(Gi;θ0)

Proof for (i): By the connection between GNTK and NTK,

∥K − Ḡ⊤
Ḡ/m∥F =

√√√√
|G|∑

i=1

|G|∑

j=1
(k(Gi, Gj) − g⊤(Gi;θ0)g(Gj ;θ0)/m)2

=

√√√√√
|G|∑

i=1

|G|∑

j=1

(
1
N2

∑

u∈V(Gi)

∑

v∈VGj
(kMLP(hGiu ,hG

j

v ) − g⊤
MLP(hGiu ;θ0)gMLP(hGjv ;θ0)/m)

)2

≤

√√√√√
|G|∑

i=1

|G|∑

j=1

∑

u∈V(Gi)

∑

v∈V(Gj)

(kMLP(hGiu ,hG
j

v ) − g⊤
MLP(hGiu ;θ0)gMLP(hGjv ;θ0)/m)2

where VG denotes the vertice set of a graph G. By Lemma C.6, when m =
Ω(L10N4|G|4ρ−4

min log(LN2|G|2/δ1), then with probability at least 1−δ1/(N2|G|2), |kMLP(hG
i

u ,hG
j

v )−
g⊤

MLP(hG
i

u ;θ0)gMLP(hG
j

v ;θ0)/m| ≤ ρmin
2N |G| . Then apply union bound over all pairs (hG

i

u ,hG
j

v ), the
following holds with probability at least 1 − δ1,

∥K − Ḡ⊤
Ḡ/m∥F ≤ ρmin/2

which shows that

Ḡ
⊤
Ḡ/m ≽K − ∥K − Ḡ⊤

Ḡ/m∥2I |G|

≽K − ∥K − Ḡ⊤
Ḡ/m∥F I |G|

≽K − ρmin
2 I |G|

≽K/2 ≻ 0

(22)

Suppose Ḡ = PΛQ⊤ is the decomposition of Ḡ where P ∈ Rp×|G|, Q ∈ R|G|×|G| are unitary and
Λ ∈ R|G|×|G|. By (22), we know Λ ≻ 0 with probability at least 1 − δ1. Now denote θ∗ = PΛ−1Q⊤µ
and it satisfies

Ḡ
⊤
θ∗ = QΛP⊤PΛ−1Q⊤µ = µ

⇒µ(G) = ⟨g(G;θ0),θ∗⟩ ∀G ∈ G

Moreover, the norm of θ∗ is also bounded:

∥θ∗∥2
2 = µ⊤QΛ−2Q⊤µ = µ⊤(Ḡ⊤

Ḡ)−1µ ≤ 2
m
µ⊤K−1µ ≤ 2R2

m

which completes our proof for (i).
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Proof for (ii): From the definition of Ḡt, we have

log det(I |G| + λ−1Ḡ
⊤
t Ḡt/m) = log det

(
I |G| +

t∑

i=1
g(Gi;θ0)g⊤(Gi;θ0)/(mλ)

)

≤ log det
(
I |G| + t

∑

G∈∪t
i=1Gi

g(G;θ0)g⊤(G;θ0)/(mλ)
)

≤ log det
(
I |G| + t

∑

G∈G
g(G;θ0)g⊤(G;θ0)/(mλ)

)
(by Gt ∈ G for ∀t ∈ [T ])

= log det(I |G| + tḠ
⊤
Ḡ/(mλ))

= log det(I |G| + tK/λ+ t(Ḡ⊤
Ḡ/m−K)/λ)

(by concavity of log det(·)) ≤ log det(I |G| + tK/λ) + ⟨(I + tK/λ)−1, t(Ḡ⊤
Ḡ/m−K)/λ⟩F

≤ log det(I |G| + tK/λ) + ∥(I |G| + tK/λ)−1∥F ∥t(Ḡ⊤
Ḡ/m−K)/λ∥F

≤ log det(I |G| + tK/λ) + t
√

|G|∥(I |G| + tK/λ)−1∥2∥Ḡ⊤
Ḡ/m−K∥F /λ

= log det(I |G| + tK/λ) +
√

|G|(λ/t+ ρmin)−1∥Ḡ⊤
Ḡ/m−K∥F

By Lemma C.6, when m = Ω(L10N4|G|6ρ−4
min log(LN2|G|2/δ2), then with probability at least 1 −

δ2/(N2|G|2), |kMLP(hG
i

u ,hG
j

v ) − g⊤
MLP(hG

i

u ;θ0)gMLP(hG
j

v ;θ0)/m| ≤ ρmin
N |G|3/2 . Then apply union

bound over all pairs (hG
i

u ,hG
j

v ), with probability at least 1 − δ2, ∥Ḡ⊤
Ḡ/m−K∥F ≤ ρmin√

|G|
, which

indicates that

log det(I |G| + λ−1Ḡ
⊤
t Ḡt/m) ≤ log det(I |G| + tK/λ) +

√
|G|(λ/t+ ρmin)−1∥Ḡ⊤

Ḡ/m−K∥F
≤ log det(I |G| + tK/λ) + 1

Finally, with probability at least 1 − δ1,

Ḡ
⊤
Ḡ/m ≼K + ∥K − Ḡ⊤

Ḡ/m∥2I |G| ≼K + ρmax
2 I |G| ≼

3
2ρmaxI |G|

which indicates that λmax(Ū t) ≤ λ+ 3
2ρmax.

Lemma B.6. Fix δ ∈ (0, 1). Then, for m = Ω(L10|G|4ε−4 log(L/δ)), with probability at least 1 − δ,

|ρmax − ρ̂max| ≤ ε.

Proof. Let m be as in Lemma C.6. Recall that ∥hGu ∥ = 1 for all u ∈ V(G) and G ∈ G, by construction.
Let Ni := |V(Gi)|. Then, we have, with probability at least 1 − δ,

|k(Gi, Gj) − k̂(Gi, Gj)|

≤ 1
NiNj

∑

u∈V(Gi)
v∈V(Gj)

∣∣kMLP(hG
i

u ,hG
j

v ) − gMLP(hG
i

u ;θ0)⊤gMLP(hG
j

v ;θ0)/m
∣∣ ≤ ε

by Lemma C.6. Then
∥K − K̂∥op ≤ ∥K − K̂∥F ≤ |G|ε.

Then, from Weyl’s inequality, |ρmax − ρ̂max| ≤ |G|ε. Replacing ε with ε/|G| the result follows.

C Supporting Lemmas

Lemma C.1. Suppose a, b are vectors and A is a matrix. c is assumed to be positive scalar. Then
we have the following results: (i) |a⊤Ab| ≤

√
a⊤Aa

√
b⊤Ab. (ii) a⊤b+ c∥a∥2

2 ≥ −∥b∥2
2/4c.
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Lemma C.2. Suppose X ∼ N (µ, σ2) and β > 0, then

P(|X − µ| ≤ βσ) ≥ 1 − e−β2/2

Lemma C.3. Suppose X ∼ N (µ, σ2) and β > 0, then

P(X − µ > βσ) ≥ e−β2

4β
√
π

Lemma C.4. Suppose ϵ ∈ Rt is a subgaussian random vector with subgaussian constant σ2, then

E[∥ϵ∥2] ≤ 4σ
√
t

and with probability at least 1 − δ for δ ∈ (0, 1),

∥ϵ∥2 ≤ Cσ
√
t.

where C is some constant depending on δ.
Lemma C.5. (Theorem 1 (Chowdhury and Gopalan, 2017)) Let {xt}∞

t=1 be an Rd-valued discrete
time stochastic process that is predictable with respect to the filtration {Ft}∞

t=1. Let {εt}∞
t=1 be a

real-valued stochastic process and for any ∀t, εt is Ft-measurable and subgaussian with constant R
conditionally on Ft−1. Let k : Rd × Rd → R be a symmetric positive-definite kernel. Then for any
η > 0, δ ∈ (0, 1), with probability at least 1 − δ,

∥ϵt∥2
((Kt+ηIt)−1+It)−1 ≤ R2 log det((1 + η)It +Kt) + 2R2 log(1/δ)

where ϵt := (ε1, ..., εt)⊤ ∈ Rt and Kt ∈ Rt×t is a matrix with [Kt]ij = k(xi,xj), 1 ≤ i, j ≤ t.
Lemma C.6 (Theorem 3.1 (Arora et al., 2019)). Fix ε > 0 and δ ∈ (0, 1). Suppose a MLP fMLP(·;θ)
with ReLU activation has L layers and width m = Ω(L10ε−4 log(L/δ)). Then for any input x, x′

such that ∥x∥2 ≤ 1, ∥x′∥2 ≤ 1, with probability at least 1 − δ,

|kMLP(x,x′) − gMLP(x;θ0)⊤gMLP(x′;θ0)/m| ≤ ε

where kMLP is the neural tangent kernel associated with fMLP and gMLP( · ;θ0) = ∇fMLP( · ;θ0) .
Lemma C.7 (Lemma B.4/Lemma B.5/Lemma B.6 (Zhou et al., 2020) / Lemma C.4 (Zhang et al.,
2020)). Suppose θ is parameters for a MLP fMLP(·;θ) with L layers and width m and this neural
network fMLP(·;θ) is trained via gradient descent with initialization θ0, learning rate η and ℓ2
regularization constant λ in a mean squared loss. The input feature set is denoted as X = {xi}i∈[T ].
Then there are positive constants {Ci}7

i=1 such that for ∀δ ∈ (0, 1), if τ satisfies

τ ≥ C1m
−3/2L−3/2max((log(TL2/δ))3/2, (log(m))−3/2)

τ ≤ min(C2L
−6(log(m))−3/2, C3L

−9/2(log(m))−3, C4m
3λ9/2η3L−9(log(m))−3/2)

(23)

then with probability at least 1 − δ, for ∥θ − θ0∥2 ≤ τ and ∥θ′ − θ0∥2 ≤ τ , for ∀x ∈ X , we have

∥gMLP(x;θ) − gMLP(x;θ0)∥2 ≤ C5
√

log(m)τ1/3L3∥gMLP(x;θ0)∥2

and
|fMLP(x;θ) − fMLP(x;θ′) − ⟨gMLP(x,θ′),θ − θ′⟩| ≤ C6τ

4/3L3√
m log(m)

and
∥gMLP(x;θ)∥2 ≤ C7

√
mL.
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D Supplement to Experiments
D.1 Data Generation
We use synthetic data environments for our experiments. The datasets are generated from two
different random graph models and three different reward function generating models. The random
graph models are Erdös–Rényi random graph model and random dot product graph model. We
use a linear model, Gaussian process with GNTK model, Gaussian process with representation
kernel to generate our reward function. In all data environments, the feature dimension is set as
d = 10. For any synthetic graph, all entries of the associated feature matrix {Xji}j∈[N ],i∈[d] are i.i.d
from a standard Gaussian distribution. The noisy reward is assumed to have standard deviation
σε = 0.01. All performance curves in our empirical studies show an average of over 10 repetitions with
a standard deviation of the corresponding bandit problem with horizon T = 1000. Our experiment
assumes the graph domain is fully observable, Gt = G for all t ∈ [T ]. We experiment four graph size
|G| ∈ {10, 50, 100, 200} in the random dot product graphs with N = 100 and representation kernel.

D.1.1 Random Graph
Erdös–Rényi Random Graphs. Erdös–Rényi random graphs are generated by edge probability p
and number of nodes N . Set the graph has N nodes and for any node pair (i, j) ∈ [N ]2, there is an edge
linking i and j with probability p. We investigate p ∈ {0.2, 0.4, 0.6, 0.8} and N ∈ {10, 50, 100, 500} in
our experiment. Including 3 types of reward function generating and 4 sizes of graph space G, there
are 192 combinations of datasets of Erdös–Rényi random graph environments.

Random Dot Product Graphs. Random dot product graphs are generated by modeling the
expected edge probabilities as the function of the inner product of features. In our experiment, we
set the latent embeddings observed as features, i.e. Xi∗ is the latent embedding of node i. Formally,
the edge probability for node i and j is generated by pij = sigmoid(X⊤

i∗Xj∗). We also investigate
N ∈ {10, 50, 100, 500}. Including 3 types of reward function generating and 4 sizes of graph space G,
there are 48 combinations of datasets of random dot product graph environments.

D.1.2 Reward Function Generation
Linear Model. We generate a true parameter θ∗ ∈ Rd whose elements are i.i.d standard Gaussian.
Then the true reward mean is

µ(G) = ⟨θ∗, h̄
G⟩

where h̄G =
∑N
i=1 h

G
i /N .

Gaussian Process with GNTK. We also use Gaussian process and Graph Neural Tangent
Kernel(GNTK) as introduced from experiment in (Kassraie et al., 2022). We approximately construct
the GNTK matrix K by the empirical GNTK matrix K̂ ∈ R|G|×|G| whose entries are K̂ij =
1
m ⟨g(Gi;θ0), g(Gj ;θ0)⟩ for any Gi, Gj ∈ G. We use this empirical GNTK matrix K̂ as the covariance
matrix of prior, i.e, N (0,Kgntk) and use {(G, yG)}G∈G where {yG}G∈G are i.i.d from N (0, 1) as our
training data. To train this Gaussian process model, we use negative log-likelihood loss with Adam
optimizer with learning rate 0.01 and 30 epochs. The true reward means are sampled from the
posterior in this Gaussian process.

Gaussian Process with Representation Kernel. For the Gaussian process with representation
kernel, we trained a GNN for a graph property prediction task and used the mean pooling over all nodes
of the last layer representations as the graph representation. In our experiment, we utilize the average
degree prediction as our task. That is, suppose outcome is dG = 1

N

∑N
j=1 deg(j) and train GNN in

(2) to predict this outcome. Then denote the last layer representation as h̄Grep = 1
N

∑N
j=1 f

(L−1)(hGj ).
Then we define the representation kernel as the inner product of the graph representations

krep(G,G′) := ⟨h̄Grep, h̄
G′

rep⟩.

The associated kernel matrix is denoted as Krep ∈ R|G|×|G| with entries {krep(G,G′)}G,G′∈mG. In
this Gaussian process, we sample the true reward means by {µ(G)}G∈G ∼ N (0,Krep). To train this
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Gaussian process model, we use MSE loss with Adam optimizer with learning rate 0.01 mini-batch
size 2 and 30 epochs.

D.2 Algorithms Set Up
We provide the practical details and set up on our proposed algorithms and baseline algorithms.

Algorithms. We investigate 3 GNN-based bandit algorithms (GNN-TS, GNN-UCB and GNN-PE)
and 3 corresponding NN-based bandit algorithms (NN-TS, NN-UCB and NN-PE). All algorithms in
our work use the loss function (6) which is different from previous work. All gradients used for in
our experiments are g(G;θt) not g(G;θ0) unless special stated. In addition, in order to show the
benefit of considering the graph structure, we include NN-UCB, NN-TS, NN-PE as our baselines. For
this NN-based algorithm, we ignore the adjacency matrix for a graph (assume A = I), and pass
through the model in (1) and (2) by hGi = Xi∗. For GNN-TS, we tuned the exploration scale with
grid search on ν ∈ {0.01, 0.1, 1.0, 10.0} and NN-TS follows the same value. For GNN-UCB, we tuned
the hyperparameter with grid search on β ∈ {0.01, 0.1, 1.0, 10.0} and NN-UCB follows the same value.
For GNN-PE, we tuned the hyperparameter with grid search on β ∈ {0.01, 0.1, 1.0, 10.0} and NN-PE
follows the same value. All the hyperparameter tuning is performed in Erdös–Rényi random graphs
with p = 0.4, N = 50, |G| = 100 and Gaussian process with GNTK for all the Erdös–Rényi random
graphs settings and random dot product graphs with 50 nodes and |G| = 100 and Gaussian process
with GNTK for all the random dot product graphs settings.

Neural Networks. The MLPs in our experiments have 2 layers (L = 2) and width m = 512. We
use SGD optimizer with mini-batch size 5 and 30 epochs. Learning rates (η) we tuned from and
the regularization hyperparameters λ we tuned from {10−1, 10−2, 10−3, 10−4}. Initialization for the
trainable GNN parameter θ satisfies the condition fGNN(G;θ0) = 0 for all G ∈ G, which is handle by
the treatment in Kassraie and Krause (2022). Suppose the initialization is θ0. The matrix inversion
in the algorithms is approximated by diagonal inversion across all policy algorithms.

D.3 Experiments on Scalability (|G|)
We set the size of the graph domain to |G| = 100 in Figure 1 and we experiment across different sizes
|G| ∈ {10, 50, 100, 200} to check the scalability of the algorithms. Figure 2 shows that given a fixed
horizon length, larger |G| leads to a harder bandit problem. It also shows that GNN-TS can achieve top
performance across all algorithms in all scales of the graph space. This empirical observation shows
that GNN-TS is robust to the scalability of the action space, supporting our theoretical justification in
Section 4.

Figure 2: Competitive performance of GNN-TS is consistent across different sizes of graph space.

D.4 Effect of m and Initial Gradients
Our regret analysis depends on the assumption that the width of the neural network m must be
large enough. We conduct an experiment to observe the effect from the width which is chosen from
{32, 128, 512, 2048}. As some previous works on Neural bandit use the gradients at initialization
(g(Gt;θ0)) for uncertainty calculation (Zhou et al., 2020; Kassraie et al., 2022) while some works
use g(Gt;θt−1) which aligns with ours (Zhang et al., 2020). Formally, instead of the update of
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Figure 3: Increasing m can improve the performance of GNN-TS and no improvement of using
g(Gt;θ0).

uncertainty estimate in (5), using initial gradient means performing the following

σ̄2
t (G) = 1

m
∥g(G;θ0)∥2

Ū
−1
t

, Ū t = Ū t−1 + g(Gt;θ0)g(Gt;θ0)⊤/m.

Part (a) of Figure 3 reflects that the wider MLP has better performance which matches our expectation.
Moreover, part (b) of Figure 3 reflects that there are no benefits from setting gradients used in
algorithms to be the initial gradients for all t ∈ [T ]. One small final observation is that the effects of
m and initialization are not strong.

D.5 Additional Figures and Tables
D.5.1 Results for Erdös–Rényi Random Graphs.

For better visualization of the 192 synthetic data environments using Erdös–Rényi random graphs,
we summarised the result in Table 1. The metrics are relative regret and top rate, which are defined
based on regret as follow. The relative regret of one algorithm in one data environment is defined as

Relative Regret:R̃alg, env = Ralg, env
T

maxalg R
alg, env
T

where Ralg, env
T is the cumulative regret of algorithm alg, and data environment env.

We define the top rate for the policy in algorithm as the number of times such that the policy achieve
the least two cumulative regret RT . The denomnator is the number of total trails, which is the 1920,
the 10 repetition and 192 combinations of ER environments. The top rate of one algorithm is defined
as

Top Rate:αalg = # times alg achieves "Top 2"
# trails .

NN-UCB NN-PE NN-TS GNN-UCB GNN-PE GNN-TS
Top Rate (αalg) 0.0% 1.6% 0.0% 9.4% 90.6% 98.4 %
Relative Regret (R̃alg, env) 0.994(0.02) 0.891(0.06) 0.943(0.05) 0.762(0.15) 0.690(0.14) 0.595(0.16)

Table 1: Results on Erdös–Rényi random graphs. 192 data environments with 10 repetitions.

D.5.2 Results for Random Dot Product Graphs
We provide the experiment results for regret on all random dot product graph settings. In thee plots,
different rows represents different sizes of the graph space (|G|) and columns represents the choices of
the number of nodes in the graph (N).
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Figure 4: Random Dot Product Graphs with linear reward.

Figure 5: Random Dot Product Graphs with GP and GNTK for reward.

Figure 6: Random Dot Product Graphs with GP and representation kernel for reward.
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Abstract

Join order selection (JOS), the ordering of join operations to minimize query execution
cost, is a core NP-hard combinatorial optimization problem in database query
optimization. We present JoinGym, a lightweight and easy-to-use reinforcement
learning (RL) environment that captures both left-deep and bushy variants of the
JOS problem. Compared to prior works that execute queries online, JoinGym has
much higher throughput and efficiently simulates the cost of joins offline by looking
up the intermediate table’s cardinality from a pre-computed dataset. We provide
such a cardinality dataset for 3300 queries based on real IMDb workloads, which
is the largest suite its kind and may be of independent interest. We extensively
benchmark several RL algorithms and find that the best policies are competitive
with or better than Postgres, a strong non-learning baseline. However, the learned
policies can still catastrophically fail on a small fraction of queries which motivates
future research using JoinGym to improve generalization and safety in long-tailed,
partially observed, combinatorial optimization problems.

1 Introduction

Reinforcement learning (RL) has demonstrated impressive successes in video games (Bellemare et al.,
2013), robotics simulators (Tassa et al., 2018), and real-world tasks such as inventory management
(Madeka et al., 2022). In this work, we focus on the database query optimization task of ordering
join operations to minimize query execution cost, a problem called join order selection (JOS) which
is also known as join order optimization or access path selection. JOS is an NP-hard combinatorial
optimization problem (Ibaraki & Kameda, 1984) and RL is a promising modern approach (Krishnan
et al., 2018; Marcus et al., 2019; Yang et al., 2022). Unfortunately, there do not exist realistic and
efficient simulators for JOS which makes research quite expensive and time-consuming; in particular,
cost models, i.e., estimators for query cost, can be inaccurate and take seconds per evaluation,
while live query execution can take hours to days on large queries. To fill this gap, we provide
JoinGym, the first lightweight and easy-to-use JOS simulator that can efficiently simulate query
costs in real-world databases. Our goal is to make JOS accessible to the machine learning (ML)
community and to accelerate methodological research in learning-based data systems.

The key advantages of JoinGym are the following. First, JoinGym can simulate thousands of
queries per second on a commodity laptop and can be easily parallelized via multi-processing. In
contrast, prior query optimization environments used cost models (Mao et al., 2019) or executed live
queries (Lim et al., 2023), which can be much more expensive in time, compute and setup. Second,
JoinGym also adheres to the Gymnasium API (Farama Foundation, 2023) and is as easy-to-use
and setup as CartPole or Mountain Car. Third, we furnish JoinGym with a large suite of 3300
queries derived from real workloads in the Internet Movie Database (IMDb). Our query suite is 30×
larger than the standard Join Order Benchmark (JOB) (Leis et al., 2015) used by prior works (Mao

*Equal contribution.
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et al., 2019; Marcus et al., 2019). We note that JOB queries are also included in JoinGym but we
recommend our larger query set as it is more diverse and representative.

The main idea behind JoinGym’s efficiency is to simulate the cost of individual joins completely
offline by replaying from a pre-computed dataset. To model the cost of a join, we use the cardinality
of the intermediate table produced by the join. We made this design choice for two main reasons: (1)
cardinalities can be pre-computed while runtime metrics cannot be; and (2) minimizing cardinality
has arguably the largest impact on runtime metrics, e.g., latency and resource consumption (Lohman,
2014; Leis et al., 2015; Neumann & Radke, 2018; Kipf et al., 2019). For (1), cardinalities are
deterministic and agnostic to the hardware or database system, which means they can indeed be
pre-computed for efficient offline replay. As part of JoinGym, we provide a cardinalities dataset for
3300 IMDb queries that took weeks of total CPU time. We note our novel cardinality dataset may
be of independent interest, e.g., for cardinality estimation research, which is beyond the scope of
this paper. For (2), numerous works have observed that large join result cardinalities are often the
main culprit of bad runtime metrics, which we detail in Appendix E. For example, Lohman (2014)
observed that inaccurate cost models can account for ≤ 30% degradation in runtime metrics, while
large cardinalities can cause runtime metrics to blow up by many orders of magnitude. Thus, by
reducing JOS to its core, we provide a lightweight simulator that is practically useful for RL research.

We now outline the paper. In Section 2, we rigorously describe JOS and 2 × 2 popular problem
variants which are all included in JoinGym. Namely, JoinGym supports both left-deep and bushy
plans as well as toggling on and off Cartesian products, which trade-off the search space size for
a slight bias in optimality (Leis et al., 2015). Then, in Section 3, we model JOS as a Partially
Observable Contextual Markov Decision Process (POCMDP) and describe the state, action and
reward representations in JoinGym. Finally, in Section 4, we extensively benchmark standard RL
algorithms on JoinGym and show that the best RL policies are competitive with or better than
Postgres, a strong non-learning baseline. However, we still observe that RL algorithms in JOS face
three key challenges: (1) long-tailed return distributions, (2) generalization in discrete combinatorial
problems, (3) partial observability. Not typically captured by video game or robotic simulators,
these challenges are understudied which motivates future research with JoinGym to develop better
algorithms for systems applications. To summarize, our main contributions1 are:

1. We provide a lightweight JOS simulator that is faster and cheaper than cost models or executing
real queries. JoinGym supports left-deep and bushy plans, as well as toggling Cartesian products.

2. We release a cardinalities dataset of 3300 queries on IMDb, which is 30× larger than the Join
Order Benchmark. This dataset may be useful beyond JoinGym, e.g., for cardinality estimation.

3. We extensively benchmark RL algorithms and find that the learned policies can attain lower
cardinality than Postgres. However, they can still fail to generalize on 10% of queries, motivating
future research with JoinGym to address safety in long-tailed combinatorial problems.

1.1 Related Works

There is a rich literature on applying ML and RL to database query optimization that can be divided
into two types. First, numerous works show that learning-based approaches can be more effective than
traditional non-learning approaches in query optimization (Yang, 2022; Marcus et al., 2019; Krishnan
et al., 2018; Yang et al., 2022; Marcus et al., 2021; Gunasekaran et al., 2023; Trummer et al., 2021;
Wang et al., 2023a;b) and general system optimization (Wang et al., 2021a;b; 2022). This first category
aims to directly improve the state-of-the-art query optimizers. Second, there are “environment and
benchmark” contributions that aim to provide a Gym-like interface for query optimization (Mao
et al., 2019; Lim et al., 2023). This second category aims to make query optimization a useful test-bed
for RL researchers, which provides unique challenges that are not captured by existing environments.
Then, the new insights and algorithms can hopefully lead to real improvements in query optimizers

1Code is available at https://github.com/kaiwenw/JoinGym.
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(first category). Our main contribution is a lightweight simulator for JOS and hence falls into the
second category.

RL Environments for Query Optimization (Second Category). Park (Mao et al., 2019) and
DB-Gym (Lim et al., 2023) are Gym-like interfaces for an RL agent to act as the query optimizer in a
database management system (DBMS). In these environments, the reward signal can be derived from
either the DBMS’s cost model, which estimates runtime metrics, or the real physical runtime from an
online execution of the join. Unfortunately, both require setting up a DBMS, e.g., Postgres or Calcite,
and may be slow and computationally expensive: cost models can take seconds per evaluation and can
have estimation errors, while true physical runtime can take hours or days on a commercial database
for large queries (e.g., q29_44, q29_80 in our query suite). The key difference in JoinGym is how
our reward signal is defined and computed: JoinGym’s reward is derived from the true intermediate
result cardinality which is a good proxy for true runtime (see Lohman (2014) and Appendix E) and
has the advantage of being system-agnostic, deterministic, and hence pre-computable. Moreover,
there is no estimation error from cost models as we use true cardinalities. Since we have pre-computed
all the cardinalities already, JoinGym is very lightweight and efficient as it computes rewards by
replaying cardinalities offline. JoinGym can simulate thousands of trajectories per second on a
standard laptop, which is several orders of magnitude faster than prior environments.

RL for Query Optimization (First Category). DQ (Krishnan et al., 2018) applies Deep
Q-learning with data collected by a cost model to learn a competitive policy that is faster to execute
than the native optimizer. Neo (Marcus et al., 2019) first imitates an expert optimizer and then
learns from real query executions with a tree-search algorithm. While DQ assumes an expert cost
model and Neo assumes an expert optimizer, Balsa (Yang et al., 2022) bootstraps from a minimal
cost model and learns on-policy with safe exploration, leading to faster convergence than Neo. Rather
than replacing the query optimizer entirely, there have been works Marcus et al. (2021); Gunasekaran
et al. (2023) that proposed a hybrid approach: use RL to tune the hyper-parameters of a native query
optimizer. All these works rely on access to cost models or real query runtime as the reward signal,
which as mentioned before can have estimation errors and are prohibitively slow and expensive. Thus,
JoinGym provides an efficient simulator to enable rapid prototyping of algorithms whose insights
can hopefully transfer over to real query optimizers.

2 Join Order Selection Background

A database consists of Ntables tables, DB = {T1, T2, . . . , TNtables}, where each table Ti has a set of
Ncols(Ti) columns, Cols(Ti) = {Ci,1, Ci,2, . . . , Ci,Ncols(Ti)}. A SQL query is described by a triple
q = (I, U, J). First, I = {i1, . . . , i|I|} ⊂ [Ntables] specifies the relevant tables for this query. Second,
U = {ui}i∈I specifies unary filter predicates such that for each i ∈ I, a filtered table T̃i = ui(Ti) is
produced from keeping the rows of Ti that satisfy the predicate ui. The fraction of rows that pass
the filter is defined as the selectivity, Seli = |T̃i|/|Ti|. Third, J = {Pi1i2}i1 ̸=i2∈I specifies binary join
predicates that denote which columns should have matching values between two tables. Given two
tables R and S and join predicates P ⊂ [Ncols(R)] × [Ncols(S)], define their binary join as

R ⋊⋉P S = {r ∪ s | r ∈ R, s ∈ S, ra = sb ∀(a, b) ∈ P}, (1)

where r ∪ s means concatenating rows r and s, and ra = sb stipulates that the a-th column of r
matches the b-th column of s in value. Letting P = {(b, a) : (a, b) ∈ P}, we restrict Pi1i2 = Pi2i1 .

There are a combinatorial number of join orderings to compute q. For example, if I = {1, 2, 3, 4}, U =
{u1, u2, u3, u4}, J = {P1,2, P1,3, . . . }, two possible plans would be T̃1 ⋊⋉P1,2∪P1,3∪P1,4 (T̃2 ⋊⋉P2,3∪P2,4

(T̃3 ⋊⋉P3,4 T̃4)) and (T̃1 ⋊⋉P1,3 T̃3) ⋊⋉P1,2∪P1,4∪P3,2∪P3,4 (T̃2 ⋊⋉P2,4 T̃4). The former involves the in-
termediate results (IRs) IR1 = T̃3 ⋊⋉P3,4 T̃4 and IR2 = T̃2 ⋊⋉P2,3∪P2,4 IR1, while the latter involves
IR1 = T̃1 ⋊⋉P1,3 T̃3 and IR2 = T̃2 ⋊⋉P2,4 T̃4. The IRs in each plan can have drastically different cardi-
nalities, resulting in drastically different runtime metrics and resource consumption (Ramakrishnan
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& Gehrke, 2003). The IR cardinality depends on the selectivity of base tables and the correlation of
joined columns, which is not fully observed in general. To summarize, JOS is the problem of selecting
the join order with the minimum cumulative IR cardinalities.

Left-Deep and Bushy Plans. Any join order is expressible as a binary tree where the leaves
are the filtered base tables T̃i and each internal node represents the IR from joining its two children.
If no further restrictions are made on the binary tree structure, the join order is called bushy. To
reduce the search space of join orders, one common restriction is to only allow left-deep trees, which
corresponds to plans that iteratively join new tables with the IR of cumulative joins so far. In
particular, joining two non-base-table IRs is allowed in bushy plans but disallowed in left-deep plans.
Left-deep plans can often maintain reasonable fast query execution while reducing the search space
(compared to bushy plans) by an exponential factor (Leis et al., 2015).

Toggling Cartesian Products. Given two tables R and S, the most expensive join is the Cartesian
Product (CP), where no constraints are placed on the column values, i.e., the CP between R and
S is R ⋊⋉∅ S = {r ∪ s | r ∈ R, s ∈ S}, which always has cardinality equal to |R||S|. Disabling (i.e.,
avoiding) CPs is a heuristic to rule out these expensive joins (Ramakrishnan & Gehrke, 2003) at a
possible loss of optimality. In some rare queries, the optimal plan may indeed contain CPs since it
may be beneficial to CP two small tables before joining a large table (Vance & Maier, 1996).

3 JoinGym: An RL Environment for Join Order Selection

We now formulate JOS as a Partially Observable Contextual Markov Decision Process (POCMDP)
which is efficiently simulated by JoinGym. Abstractly, a POCMDP consists of context space X ,
state space S, finite action space A, horizon H, transition kernel P (s′ | s, a), and contextual rewards
r(s, a; x), where s, s′ ∈ S, a ∈ A, x ∈ X . JOS can be viewed as playing a sequence of joins (actions)
to maximize cumulative rewards (inverse IR cardinalities); the trajectory is generated as follows.
First, a query q is sampled and encoded as context x ∈ X , which is fixed for this trajectory. Then, for
h = 1, 2, . . . , the state sh encodes the partial join order that has been executed so far and the action
ah specifies the next join to perform. For general bushy plans, ah can be any pair of unjoined tables
(i.e., any edge in the join graph); while for left-deep plans, ah is a single unjoined table (the next table
to join with the left-deep tree). Next, the join specified by ah results in an IR with cardinality ch.
We define the reward as rh ∝ C⋆

plan_type/H − ch, where C⋆
method is the minimum cumulative cardinality,

for plan_type ∈ {bushy, left-deep}. For numerical stability, we clip each ch by 100C⋆
plan_type. The

cumulative reward is non-positive with zero being optimal. This procedure iterates until all tables
are joined. For bushy plans, the horizon is H = |J | = |I| − 1. For left-deep plans, the horizon is one
larger since the a1 stages the first table; since staging does not perform any joins, we set r1 = 0 for
left-deep plans. The POCMDP is summarized in Table 1 and example trajectories are in Fig. 4.

Remarks. First, the set of legal actions shrinks throughout the trajectory since completed joins
cannot be re-selected. That is, if Ah represents the valid actions at time h, we have A = A1 ⊃ A2 ⊃
· · · ⊃ AH . We handle this by action masking (Huang & Ontañón, 2022), where we constrain the
policy’s actions and update rules to consider only legal actions at each step.2 Second, the transition
and rewards are deterministic, and the only stochasticity of the environment comes from sampling of
the queries, i.e., sampling of context. Third, the reward is contextual but the transition kernel is not.
Our POCMDP formulation can be interpreted as a latent MDP (Kwon et al., 2021): each query is
an MDP but we only see a partially observable context that cannot fully recover the query.

Partial Observability. As made precise in Section 3.1, the context x is a lossy encoding of the
query q. That is, the information in x is not fully predictive of the IR cardinalities for query q, which
creates partial observability in the contextual reward function. This is unavoidable since the contents

2Alternatively, we could penalize illegal actions with a very negative reward, but then the policy would need to
learn to avoid such actions.
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of the data tables are needed to fully determine the cardinality, but it is prohibitively expensive
to use the entire table as the context. Hence, how to best compress tables into a feature vector is
still an active area of research (Ortiz et al., 2018; Marcus et al., 2019; Yang, 2022). We describe our
encoding scheme in Section 3.1. JoinGym can be easily updated to handle other encodings.

Left-deep JoinGym Bushy JoinGym

Context x Query encoding described in Section 3.1.

State sh Partial plan encoding described in Section 3.1.

Action ah Table to join, from Discrete(Ntables) Edge to join, from Discrete(
(

Ntables
2

)
)

Reward rh Negative step-wise regret: rh ∝ C⋆
plan_type/H − ch for plan_type ∈ {left-deep, bushy}

Transition P Deterministic transition of dynamic state features, described in Section 3.1.

Horizon H |I| |I| − 1

Table 1: POCMDP components for query q = (I, U, J). The key difference between left-deep and
bushy is their action.

3.1 Context and State Encoding

We encode each query q as a context x = (vSel(q), vgoal(q)) with two main components. First, the
selectivity encoding is a vector vSel(q) ∈ [0, 1]Ntables where the t-th entry is the selectivity of ut if
t ∈ I, and 0 otherwise. Second, the query encoding is a binary vector vgoal(q) ∈ {0, 1}Ncols (where
Ncols =

∑
T Ncols(T )) that represents which columns need to be joined for this query; the c-th entry

is 1 if column c appeared in any join predicate, and 0 otherwise. Formally:

∀t ∈ [Ntables], vSel(q)[t] := Selt · I [t ∈ I] ,

∀c ∈ [Ncols], vgoal(q)[c] := I [∃(R, S, P ) ∈ J, ∃p ∈ P : c = p[0] ∨ c = p[1]] ,

where I [·] is 1 if · is True and 0 otherwise.

While the context x encodes the query and stays constant through the trajectory, the state sh encodes
the partial join order and evolves through the trajectory. In particular, the state sh at step h ∈ [H] is
the partial plan vector vpp

h ∈ {−1, 0, 1, 2, . . .}Ncols which represents the joins specified by prior actions
a1:h−1. The c-th entry of vpp

h is (i) positive if column c has already been joined, (ii) −1 if the table
of column c has been joined or selected but column c has not been joined yet, and (iii) 0 otherwise.
We now explain each case in order.

Case (i) marks joined columns c, where the c-th entry is the index of its join-tree in the graph
representing the join plan. In left-deep plans, there is only one join-tree so this value will always be
1. In bushy plans, there may be more than one tree in the graph, so the value is the tree index which
can be larger than 1. Case (i) is important since the policy should know which columns have been
joined to choose the next valid join.

Case (ii) marks unjoined columns belonging to joined or selected tables, and we use the special value
−1. For example, in left-deep plans, we must be able to tell which table was selected by a1 at h = 2,
even though said table has only been “staged” but not joined. Beyond this special case, another
important use-case of the −1 marking is that marked columns have potentially small IR; perhaps the
rows of the table has been filtered from a prior join and so it is better to join with this table rather
than an unjoined base table.

Case (iii) marks the remaining columns of unjoined tables with the special value 0. In sum, our
partial plan vector vpp contains enough information to recover the current IRs and is a sufficient
statistic for deducing the future cardinalities. We note that vpp does not contain the join graph itself,
which would be enough to deduce how the current IRs were formed and was used in prior works
(Marcus et al., 2019). This additional structure is not necessary for predicting future cardinalities and
hence we omit it from the state vector. We provide example context and state vectors in Fig. 4(d).
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Figure 1: On the left are three SQL queries. The middle are their query graphs where each edge
represents a join between two tables. Filtered tables are denoted by blue nodes and CPs are denoted
by dashed lines. On the right, we show tree representations of the query plan, where each leaf is a
table and each node is a join of its two children tables. Queries (a) and (b) are derived from the
same template and so share an identical query graph but their optimal query plans are different due
to different filters on the base tables. Query (c) is from a different template, but it contains (b) as a
subgraph and their optimal query plans share a common sub-tree (highlighted in red).

3.2 The Query Suite and Cardinality Dataset

We furnish JoinGym with a suite of 3300 queries simulating real workloads on the Internet Movie
Database (IMDb). Each query has a query_id of the form qN_M with N ∈ [33], N ∈ [100] signifying
that it is the M -th query from the N -th template, where the 33 templates are from the Join
Order Benchmark (JOB; Leis et al., 2015). We selected the queries to be representative of user
searches on IMDb; we simulated user searches by generating popular search terms with ChatGPT,
manually inspecting them to be sensible, and ensuring they have non-empty search results. Please
see Appendix G for more details and examples of our query selection process. The 113 JOB queries
are also included in JoinGym, although we recommend our new query suite since it is 30× larger
and more diverse than the JOB.

We then computed a dataset of all IR cardinalities for the query suite. That is, for each query, we
computed the cardinalities of all possible intermediate tables from valid join orders using MonetDB.
The exhaustive cardinality computation was a computationally heavy task that require online query
execution and took weeks to complete on hundreds of CPUs. However, once this dataset is collected
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(each join plan only needs to be executed once to observe the cardinality), JoinGym can use it to
efficiently simulate costs of join plans entirely offline.

3.3 Query Templates and Generalization in Query Optimization

When interacting with a database for a real-world task (e.g., searching a movie), users typically
specify their searches with drop down menus and natural language rather than writing SQL. The
drop down menus and natural language are copied into query templates, which can automatically
construct a SQL query reflecting the user’s interest. A query’s template determines its final query
graph and different query templates may often share common subgraphs. Using the query graph
structure, deep RL models can generalize to improve future query execution planning. For example in
Fig. 1, the optimal join plan for (b) is a sub-tree of the optimal plan for (c). However, while queries
with the same template have a common query graph, optimal join orders can vary significantly due
to different filter conditions that are applied, e.g., Fig. 1 (a) & (b) are instances of the same template
(and hence share the same graph) but have different optimal join orders. Thus, the key challenge
in data-driven query optimization is to learn which correct query instances to mimic based on the
context (i.e., filter predicates, query graph).

3.4 JoinGym API

We now describe the JoinGym API, which adheres to Gymnasium (Farama Foundation, 2023).
The left-deep and bushy variants are registered under the environment-ids ‘joinopt_left-v0’ and
‘joinopt_bushy-v0’. JoinGym can be instantiated with env = gym.make(env_id, disable_cp,
query_ids), where disable_cp is a Boolean for Cartesian products (described in Section 2), and
query_ids specifies the queries to load. JoinGym implements the POCMDP in Section 3 with two
functions:

(i) state, info = env.reset(options={query_id=x}): reset the env to represent the query with
id x, and observe the initial state. If no query_id is specified, then a random query is picked
from the query set.

(ii) next_state, reward, done, _, info = env.step(act): perform the join specified by act.
done is True when all tables of the current query have been joined. There is no truncation.

state is the concatenation of the context x and sh (defined in Section 3.1) and next_state is
the concatenation of x and sh+1. Also, info[‘action_mask’] is a multi-hot encoding of the valid
actions Ah, which the algorithm should into account, e.g., mask out Q-values, so only valid actions
are considered.

4 Benchmark Results on JoinGym

Experiment Setup. Recall that our new dataset contains 100 queries for each of the 33 templates
from the JOB (Leis et al., 2015). For each template, we randomly selected 60, 20, 20 queries for training
(1980 queries), validation (660 queries) and testing (660 queries) respectively. We benchmarked
four different RL algorithms: (i) an off-policy Q-learning algorithm Deep Q-Network (DQN) (Mnih
et al., 2015); (ii-iii) two off-policy actor-critic algorithms, Twin Delayed Deep Deterministic policy
gradient (TD3) (Fujimoto et al., 2018) and Soft Actor-Critic (SAC) (Haarnoja et al., 2018); and (iv)
an on-policy actor-critic algorithm Proximal Policy Optimization (PPO) (Schulman et al., 2017). For
DQN, we conducted an ablation with the Double Q-learning (Van Hasselt et al., 2016). For (i-iii),
we conducted ablations with standard replay buffer (RB) vs. prioritized experience replay (PER)
(Schaul et al., 2015).

Train and Eval. All algorithms were trained for one million steps on the training queries. Define
cumulative cost multiple (CCM) as the cumulative IR cardinality of the join plan divided by the
smallest possible cumulative IR cardinality for this query. This can be interpreted as a multiplicative
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regret and lower is better. For each algorithm, we sweeped over multiple learning rates and selected the
best hyperparameter according to average CCM on the validation queries. For the best hyperparameter
of each algorithm, we evaluate its CCM distribution over the test queries in Table 3. Our results are
averaged over 10 seeds and we report additional CCM statistics (mean, p95 & p99) with standard
errors in Appendix I. The numerical tables and Fig. 2 show that the CCM distributions are long-tailed,
which can be challenging for RL algorithms.

Figure 2: Left: learning curve of TD3 for ‘left-deep, disable CP’; the y-axis is mean CCM, x-axis is no.
update steps and shaded region is stderr over 10 seeds. Right: CCM distributions over train/val/test
queries (viewed as complementary CDF) of the final policy for a seed.
Discussion. 1) Algorithms uniformly perform much better in left-deep JoinGym than bushy
JoinGym because the search space is exponentially smaller. For the same reason, algorithms
uniformly perform better when CPs are disallowed. The hardest setting is bushy with CPs, where
most algorithms diverge and those that converge have CCMs orders of magnitude worse than the
other settings. 2) Regarding generalization, the gap between the validation and test performance is
only 2× for p90 and it increases to 10× for p95. For p99, both the validation and test performance
are significantly worse than training. This exponential widening of the generalization gap is likely
explained by the fact that the long tail is exactly where partial observability is more pronounced,
causing catastrophic failure in planning of the policy. 3) Off-policy actor critic methods (TD3 &
SAC) achieve the best results for the mean and are also near-optimal for the quantiles. They are
more sample efficient than PPO due to their sample reuse and more stable than DQN for the query
optimization task. We also find that prioritized replay does not always improve performance.

Data Mean p90 p95 p99
trn 1.7e+06 2.6e+03 4.9e+04 4.5e+06
val 5.8e+05 4.5e+03 1.0e+05 7.1e+06
tst 6.1e+04 5.0e+03 3.4e+04 2.3e+06

Table 2: CCM statistics of Postgres across train,
validation and test queries of JoinGym.

Comparison with Postgres. We ran Post-
gres, a strong non-learning baseline, on the Jo-
inGym query suite and show its CCM statistics
in Table 2. As shown in Table 3 (and Tables 6
and 7), RL policies in the ‘left-deep, disable CP’
setup often yields lower cardinalities than Post-
gres. For example, PPO is consistently better for
train, validation and test queries. This suggests
that the learned policies are indeed proposing
high-quality joins competitive with Postgres.

5 Conclusion

We provide JoinGym, an extremely lightweight yet realistic RL environment for join order selection
that is many orders of magnitude faster than calling cost models or real query execution. We
accomplish this via offline replay of true intermediate cardinalities using of a novel cardinality dataset
of 3300 queries, which is 30× larger than the JOB and may be of independent interest. With
JoinGym, we observed that standard RL algorithms can outperform Postgres in certain cases, but
their generalization sharply declines for a small fraction of queries (∼ 10%). Thus, we hope that
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90% Quantile DQN DDQN TD3 SAC PPO
RB PER RB PER RB PER RB PER

di
sa

bl
e

C
P

bu
sh

y trn 7.3 4.4 5.2 5.6 5.3 7.3 13 9.5 6
val 16 13 14 15 15 18 18 13 23
tst 46 25 30 30 26 40 55 33 42

le
ft

trn 5.5 5.6 7 6.5 6.9 5.2 11 8.6 5.2
val 12 15 13 14 13 9.5 20 14 11
tst 28 30 34 34 22 20 39 32 19

en
ab

le
C

P

bu
sh

y trn 6.4e+04 2.4e+05 4.6e+04 3.2e+04 1.8e+02 42 7.7e+18 3e+14 35
val 2e+05 1.1e+06 5.8e+04 6e+04 3.1e+02 1.4e+02 4e+18 2.8e+14 1e+02
tst 1.6e+05 1.2e+05 2.1e+05 6.9e+04 2e+03 4.9e+02 2.2e+17 2.1e+17 2.8e+02

le
ft

trn 17 6.3 17 9.9 3.6e+02 17 7.7 6.8 9.9
val 25 15 27 22 2e+02 24 13 12 27
tst 64 36 66 59 1.7e+03 1e+02 28 30 92

Table 3: The 90% quantile CCM (lower is better) over train (trn), validation (val) and test (tst) queries
of JoinGym. RB stands for “replay buffer”; PER stands for “prioritized experience replay”. The
best performing algorithm is highlighted in each row. We report confidence intervals in Appendix I.

JoinGym can be a useful environment for developing new RL algorithms for combinatorial query
optimization problems, particularly those with long-tailed returns and partial observability.
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Appendices
A List of Abbreviations and Notations

Table 4: List of Abbreviations

JOS Join Order Selection
DB Database
IR Intermediate result table
CP Cartesian product join
JOB Join Order Benchmark (Leis et al., 2015)
CCM Cumulative Cost Multiple

Table 5: List of Notations

Ntables Number of tables in the DB
Ncols(T ) Number of columns in table T

Ncols Total number of columns amongst all tables in DB
A ⋊⋉P B Binary join operator, defined in Eq. (1)

B Statistics about JoinGym

Figure 3: Left: distribution of the number of tables in JoinGym. Middle: size of search space in
JoinGym. Right: cumulative cost (IRs) of different join orders for query q23_33.

Search space of Left-deep vs. Bushy plans. Recall that left-deep plans only allow for left-deep
join trees, while bushy plans allow for arbitrary binary trees. We can compute the size of the search
space for both types of plans, which is a simple exercise in combinatorics. With |I| tables, there are
|I|! possible left-deep plans and |I|!C|I|−1 bushy plans, where the k-th Catalan number Ck is the
number of unlabeled binary trees with k + 1 leafs. By Stirling’s approximation, n! ≈ Θ(

√
n(n

e )n)
and n!Cn−1 ≈ Θ(n−1( 4n

e )n). The middle of Fig. 3 illustrates the exponential growth of two different
search spaces (i.e., left-deep search space and bushy search space) as the number of join tables
increases. The bushy search space exhibits even faster growth compared to the left-deep plans. In
our most challenging query template, search space exceeds 1015 for left-deep plans and surpasses
1023 for bushy plans. While left-deep plans usually suffice for fast query execution, bushy plans can
sometimes yield join plans with smaller IR cardinalities and faster runtime (Leis et al., 2015).

Statistics of queries in JoinGym. The left of Fig. 3 shows the distribution of the number of
join tables in JoinGym. More than half of the queries join at least nine tables. The right figure
shows the sorted cumulative IR sizes of different join orders for the same representative query. The
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left-most point is the optimal plan. The sharp jump in cardinalities from the optimal illustrates the
key challenge of query optimization.

C Illustration of POCMDP and State Encodings

Figure 4: (a) query 110 from the JOB. (b) is its optimal bushy join plan and (c) is its optimal
left-deep join plan. ch denotes the cardinality of the IR incurred at time h. (d) shows the context
(query encoding) for the query in (a) and also shows two state vectors (partial plan encoding) for
left-deep and bushy states, as described in Section 3.1.

D Further Comparison to Related Works

Join Order Selection. Search engines and online transactions crucially hinge on the ability to
execute queries efficiently and at massive scale (Selinger et al., 1979; Chaudhuri, 1998). There
are several research areas in query optimization including selecting join order, selecting indices,
materialized views. Among these, optimizing the join order is arguably the most important to get right
since it has the largest impact on execution time (Leis et al., 2015; Marcus et al., 2021; Gunasekaran
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et al., 2023). However, classical approaches that make strict data correlation assumptions to estimate
the IR cardinality can often be quite sub-optimal (Lohman, 2014). Towards a more data-driven
approach, Yang et al. (2022); Marcus et al. (2019); Krishnan et al. (2018) showed that RL is a
promising tool for optimizing the join order, capable of learning policies with improved inference
time and quality of join plans. These prior works are often benchmarked on the JOB, which consists
of 33 query templates and 113 total queries. In JOB, queries from the same template have similar
optimal query plans which does not require much generalization. In JoinGym, we provide a more
diverse dataset of 3300 total queries, comprised of 100 queries per query template.

Cost Models and Cardinality Estimation. There are many ML-for-database works that aim
to enhance cardinality estimation such as NeuroCard (Yang et al., 2020) and (Kipf et al., 2018;
2019; Sun & Li, 2020; Han et al., 2021). Instead of using estimated cardinalities, JoinGym uses
the true cardinalities from our novel cardinality dataset. Hence, it does not make sense to use
these cardinality estimation models in JoinGym since it would only introduce estimation error and
slow-down simulation throughput. We note that our cardinality dataset, the largest of its kind,
can be useful for research in cardinality estimation research and representation learning for table
embeddings (Ortiz et al., 2018), which is beyond the scope of this paper.

State and context embeddings. We use the same selectivity encoding as Balsa (Yang et al.,
2022) and Neo (Marcus et al., 2019). However, their query encoding is an adjacency matrix (at the
table level) that preserves the tree structure, while we encode queries with a multi-hot vector (at
the column level) marking which columns should be joined, similar to DP (Krishnan et al., 2018)
and ReJoin (Marcus & Papaemmanouil, 2018). To the best of our knowledge, marking the tree’s
component index in the partial plan encoding is novel and allows us to handle bushy plans without
keeping track of the whole tree; except DP, the aforementioned works only consider left-deep trees.
Note that since the graph structure does not influence future IR sizes but column information does,
our encoding is more compact than prior encoding schemes of Balsa and Neo. JoinGym is designed
so that one can easily change the state and context encoding schemes without needing to collect any
more data, which is the costly step of building JoinGym that we have already finished.

E Cardinality as a good proxy for query cost

In JoinGym, one design choice was to use the cumulative IR cardinality as cost which is a difference
from prior works that optimized a DBMS’s cost model or real runtime metrics. In this section, we
answer the question: why is cumulative IR cardinality a good proxy for the cost of a query plan?

1. Lohman (2014) puts it eloquently: “The root of all evil, the Achilles Heel of query optimization,
is the estimation of the size of intermediate results, known as cardinalities. In my experience, the
cost model may introduce errors of at most 30% for a given cardinality, but the cardinality model
can quite easily introduce errors of many orders of magnitude! Let’s attack problems that really
matter, those that account for optimizer disasters, and stop polishing the round ball.” In short,
minimizing the cardinality well is one of the most significant factors for finding the optimal join
order.

2. Neumann & Radke (2018) adopts IR cardinalities as the key metric for benchmarking query
optimization algorithms.

3. Numerous database papers focus on enhancing cardinality estimation with sketching/statistical
methods (Kipf et al., 2019) and neural models (Kipf et al., 2018). Also, many database theory
works (Atserias et al., 2013; Ngo et al., 2018) focus on designing new algorithms to minimize the
size of the intermediate result.

4. Furthermore, the IR cardinality metric provides computational advantages: (i) IR cardinality
does not depend on specific system configurations (e.g., IO and CPU); (ii) IR cardinality is
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deterministic so we can pre-compute it for all our queries; (iii) with our pre-computed dataset,
users can simulate thousands of large joins per second.

In sum, cardinality is the most common and important metric for query optimization algorithms. At
the same time, its system-independent and deterministic nature allows us to design a realistic environ-
ment that is lightweight, enabling ML & RL researchers from diverse communities to collaboratively
tackle the core problem in query optimization.

F Implementation Details of JoinGym

We now describe the specific implementation details of JoinGym. This section is intended for
advanced users who want to change how we encode state, actions or rewards. We appreciate any
questions or feedback and welcome pull requests.

Our code registers two gymnasium.Env classes that implement bushy and left-deep join plans:

1. JoinOptEnvBushy (in file join_optimization/envs/join_opt_env_bushy.py),

2. JoinOptEnvLeft (in file join_optimization/envs/join_opt_env_left.py).

As mentioned in Table 1, the main difference between these two environments lies in their action space;
a bushy plan’s actions are pairs of tables, while a left-deep plan’s actions are single tables. Since their
state representations are nearly identical, both JoinOptEnvBushy and JoinOptEnvLeft subclass
a base class called JoinOptEnvBase (in file join_optimization/envs/join_opt_env_base.py),
which we describe first.

JoinOptEnvBase This base class handles most of the __init__ initialization work of loading in
the database schema, loading in the IR cardinality dataset, as well as constructing the selectivity
encoding vSel(q) and goal encodings vgoal(q) (defined in Section 3.1) for all the queries q in our
dataset. Recall that vSel(q) and vgoal(q) are static during the trajectory, so we can pre-compute them
when initializing the environment.

JoinOptEnvBase also contains a helper function log_cardinality_to_reward that
converts log IR cardinality at step h, i.e., log ch, to this step’s reward rh =

1
Cmax(q) (Cmin(q) − exp(min{log ch, log Cmax(q)})), where Cmax(q) = 100 · C⋆(q), C⋆(q) is the optimal
(minimum-possible) cumulative IR cardinality for query q, and Cmin(q) = C⋆(q)/num tables to join in q.
To interpret this expression, note that exp(min{log ch, log Cmax(q)}) = min{ch, Cmax(q)}. We
perform the clipping since IR cardinalities can get large, especially with Cartesian products enabled;
this is also why we perform clipping inside the exp and work in log-space. Next, we can interpret∑

h ch − Cmin(q) as essentially the regret of this trajectory, as Cmin(q) · H = C⋆(q). Finally, the
scaling by 1/Cmax(q) is for normalization. In essence, our reward is the per-step negative regret.

JoinOptEnvLeft and JoinOptEnvBushy Each class has three main jobs: 1) maintaining the
left-deep join tree, 2) a function to compute the partial plan encoding, 3) a function for computing
the valid action masks. As for (1), since left-deep and bushy trees have different structures, we
maintain them in different ways, though they both use the TreeNode data structure to do so. For (2),
the partial plan encoding can be computed by examining the TreeNode so far, and only retaining the
useful information. Finally, since the action spaces are different, each class has different functions for
the valid action mask (3). It is worth highlighting that each class has two functions for computing
the valid action mask: self.valid_action_mask() is used when Cartesian products are allowed,
and self.valid_action_mask_with_heurstic() is used otherwise.
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G Mechanism for generating queries

We use the 33 predefined query templates of the Join Order Benchmark (JOB) (Leis et al.,
2015) and introduce variations in unary predicates, i.e., filter statements, to generate new
queries. To randomly generate realistic unary predicates, we begin by conducting a manual
examination of all columns within each table to select a subset of columns that are typically used
in real user queries. The columns we identified were aka_name(name), aka_title(title),
char_name(name), comp_cast_type(kind), company_name(name, country_code),
company_type(kind), info_type(info), keyword(keyword), kind_type(kind),
link_type(link), movie_companies(note), movie_info(info), movie_info_idx(info),
name(name), person_info(note), role_type(role), title(title, production_year). To
simulate searches by real IMDb users, we compiled the top 100 most common values for each column
using ChatGPT. If any column has less than 100 unique values, we do not need to use ChatGPT
and simply used all the possible values.

For example, consider the SQL template q1, reproduced below.
SELECT MIN(mc . note ) AS production_note ,

MIN( t . t i t l e ) AS movie_tit le ,
MIN( t . production_year ) AS movie_year

FROM company_type AS ct ,
info_type AS i t ,
movie_companies AS mc,
movie_info_idx AS mi_idx ,
t i t l e AS t

WHERE ct . id = mc . company_type_id
AND t . id = mc . movie_id
AND t . id = mi_idx . movie_id
AND mc. movie_id = mi_idx . movie_id
AND i t . id = mi_idx . info_type_id

We consider unary predicates from those candidate columns company_type(kind),
info_type(info), movie_companies(note), movie_info_idx(info), title(title,
production_year). For each candidate column, we flip a coin and decide to add a unary
predicate with probability 50%. Suppose that the coin flips for each column were respectively 1, 0, 0, 0,
so we only choose the company_type(kind) column to create a unary predicate. Subsequently, we
pick random number n ∼ Unif({1, 2, 3, 4, 5}) and take n random elements from the ‘top-100 list’
described above. Suppose that n = 2 and we randomly sampled ‘production companies’ and ‘special
effects companies’ from the ‘top-100 list’ for the company_type(kind) column. This process leads
us to the resulting query q1_0.
SELECT MIN(mc . note ) AS production_note ,

MIN( t . t i t l e ) AS movie_tit le ,
MIN( t . production_year ) AS movie_year

FROM company_type AS ct ,
info_type AS i t ,
movie_companies AS mc,
movie_info_idx AS mi_idx ,
t i t l e AS t

WHERE ct . id = mc . company_type_id
AND t . id = mc . movie_id
AND t . id = mi_idx . movie_id
AND mc. movie_id = mi_idx . movie_id
AND i t . id = mi_idx . info_type_id
AND ct . kind in ( ’ product ion ␣companies ’ ,

’ s p e c i a l ␣ e f f e c t s ␣ companies ’ )
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Note the key addition is the last filter statement, AND ct.kind in (‘production companies’,
‘special effects companies’). We repeat this procedure 99 more times to produce q1_0, . . . ,
q1_99. We repeat the above for the 32 remaining templates q2, . . . , q33, which yields the 100 × 33 =
3300 random queries that make up our new dataset.

H Limitations

Multiple base tables in a query. Our current solution is to introduce duplicate tables and treat
tables from the same basetables differently. Given query templates, our encoding has n positions
for a basetable, where n is the maximum number of times this basetable appears among all query
templates. We assume that query templates are fixed. We acknowledge that this solution may not
be elegant and can be improved in future work.

Dynamic workload. In this benchmark, we assume the RL agent is trained and evaluated on the
same database, i.e., we assume the DB content is kept static as in prior works Yang et al. (2022).
However, in real applications, the database may dynamically change over time. It is possible to add
more queries and databases to JoinGym by simply running our data collection script to collect more
cardinality data.

I Additional Results for Online RL

The following tables show the mean, p90, p95, p99 results with standard error confidence intervals
computed over 10 seeds.
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Mean DQN DDQN TD3 SAC PPO
RB PER RB PER RB PER RB PER

di
sa

bl
e

C
P

bu
sh

y trn 8.9e+06
(8.8e+06)

2.7e+04
(2.6e+04)

3.6e+06
(3.6e+06)

4.1e+04
(3.7e+04) 1.9e+04

(1.1e+04)
1e+05
(5.7e+04)

8e+04
(3.2e+04)

4.9e+04
(1.3e+04)

1.8e+06
(1.7e+06)

val 3.4e+04
(1e+04)

1.8e+04
(2.5e+03)

1.9e+04
(3.3e+03)

2.4e+04
(2.8e+03)

1.9e+04
(3.1e+03) 1.7e+04

(3.7e+03)
4.1e+04
(4.1e+03)

3e+04
(7.5e+03)

2.8e+04
(2.5e+03)

tst 2.6e+05
(1.4e+05)

1.4e+05
(3.3e+04)

4.1e+05
(1.4e+05)

8.3e+04
(2.5e+04)

1.5e+05
(9.2e+04) 3.4e+04

(6e+03)
3.8e+04
(1e+04)

3.5e+04
(9.8e+03)

1.3e+05
(4.6e+04)

le
ft

trn 4e+03
(7.7e+02)

1.3e+04
(6.9e+03)

2.2e+04
(1.1e+04)

8.3e+03
(5.8e+03)

1.3e+06
(1.3e+06)

4.4e+03
(2.7e+02)

4e+06
(1.7e+06)

2.8e+05
(2.7e+05)

2.1e+04
(1e+04)

val 1.5e+04
(1.5e+03)

1.2e+04
(1.3e+03)

1.4e+04
(2.6e+03) 9.2e+03

(1.2e+03)
1.6e+04
(3.7e+03)

1.3e+04
(1.4e+03)

2e+04
(2.4e+03)

1.2e+04
(1.4e+03)

1.1e+04
(1e+03)

tst 2.9e+05
(2.3e+05)

1.7e+05
(8.8e+04)

1.1e+05
(6.2e+04)

4.5e+05
(2e+05)

1.9e+04
(3.7e+03) 1.8e+04

(4e+03)
4.7e+05
(1.9e+05)

2.5e+05
(1.1e+05)

4.6e+04
(2.6e+04)

en
ab

le
C

P

bu
sh

y trn 2e+45
(2e+45)

1.5e+50
(1.5e+50)

3e+37
(2.9e+37)

5.8e+33
(5.7e+33)

7.8e+26
(7.8e+26)

1.1e+24
(1.1e+24)

1.7e+47
(1.7e+47)

2.1e+53
(2.1e+53) 1.1e+15

(1.1e+15)
val 1.4e+30

(1.4e+30)
1.6e+29
(1.6e+29)

8.1e+25
(5.4e+25)

5.3e+21
(5.3e+21)

2.1e+05
(6.8e+04) 1.8e+05

(4.2e+04)
1.6e+42
(8.8e+41)

3.5e+42
(2.2e+42)

3.8e+05
(1.1e+05)

tst 2.4e+46
(2.4e+46)

1.7e+45
(1.7e+45)

2.2e+41
(2.2e+41)

8.5e+30
(7.5e+30)

3.2e+25
(3.2e+25) 3.6e+19

(3.6e+19)
4e+49
(4e+49)

4.1e+51
(3.4e+51)

1.3e+28
(1.3e+28)

le
ft

trn 3.3e+24
(3.3e+24)

9.3e+08
(9.3e+08)

1.9e+08
(1.4e+08)

1.5e+14
(1.5e+14)

1.5e+14
(1.5e+14)

1.6e+05
(7.1e+04) 1.3e+04

(7.3e+03)
1.8e+04
(1.1e+04)

7.9e+10
(5.6e+10)

val 2.4e+04
(5e+03)

1.8e+04
(2.9e+03)

2.6e+04
(3.1e+03)

2.2e+04
(2.1e+03)

1.6e+05
(5.7e+04)

2.3e+04
(4.1e+03) 1.2e+04

(1.3e+03)
1.2e+04
(8e+02)

4.8e+04
(1.2e+04)

tst 7.7e+14
(5.5e+14)

1.9e+11
(1.5e+11)

8.1e+17
(7.5e+17)

1.4e+27
(1.4e+27)

2.1e+10
(2.1e+10)

1.7e+25
(1.7e+25) 5.6e+05

(1.9e+05)
1.1e+06
(7.5e+05)

5.2e+23
(5.2e+23)

90% Quantile DQN DDQN TD3 SAC PPO
RB PER RB PER RB PER RB PER

di
sa

bl
e

C
P

bu
sh

y trn 7.3
(2.3) 4.4

(0.11)
5.2
(0.17)

5.6
(0.52)

5.3
(0.32)

7.3
(0.74)

13 (1.3) 9.5
(0.73)

6 (0.32)

val 16 (2.7) 13
(0.71)

14
(0.85)

15
(0.75)

15 (1.5) 18 (1.9) 18 (1.8) 13
(0.8)

23 (2)

tst 46 (15) 25
(2.5)

30 (5.4) 30 (2.9) 26 (3.6) 40 (7.7) 55 (11) 33 (3.1) 42 (4)

le
ft

trn 5.5
(0.51)

5.6
(0.37)

7 (1.1) 6.5
(1.4)

6.9
(0.98) 5.2

(0.43)
11
(0.99)

8.6
(0.69) 5.2

(0.92)
val 12

(0.73)
15 (1.7) 13

(0.79)
14 (2) 13 (1.7) 9.5

(0.41)
20 (1.5) 14 (1.1) 11 (1.5)

tst 28 (3.1) 30 (2.6) 34 (3.7) 34 (3.2) 22 (3.1) 20 (2) 39 (3.1) 32 (4) 19
(4.6)

en
ab

le
C

P

bu
sh

y trn 6.4e+04
(5.8e+04)

2.4e+05
(2.4e+05)

4.6e+04
(4.5e+04)

3.2e+04
(2.9e+04)

1.8e+02
(1.5e+02)

42 (21) 7.7e+18
(7.6e+18)

3e+14
(3e+14) 35

(5.5)
val 2e+05

(1.9e+05)
1.1e+06
(1.1e+06)

5.8e+04
(4.2e+04)

6e+04
(4.7e+04)

3.1e+02
(2.3e+02)

1.4e+02
(78)

4e+18
(3.9e+18)

2.8e+14
(2.8e+14) 1e+02

(26)
tst 1.6e+05

(6.9e+04)
1.2e+05
(1.1e+05)

2.1e+05
(1.5e+05)

6.9e+04
(4.4e+04)

2e+03
(1.8e+03)

4.9e+02
(2.6e+02)

2.2e+17
(2.2e+17)

2.1e+17
(2.1e+17) 2.8e+02

(43)

le
ft

trn 17 (8.5) 6.3
(0.38)

17 (6.2) 9.9
(3.2)

3.6e+02
(2.9e+02)

17 (1.4) 7.7
(0.32)

6.8
(0.31)

9.9
(0.62)

val 25 (8.9) 15 (2.2) 27 (7.7) 22 (4.2) 2e+02
(99)

24 (2.1) 13
(0.64) 12

(0.57)
27 (2.4)

tst 64 (21) 36 (2.7) 66 (16) 59 (16) 1.7e+03
(1.1e+03)

1e+02
(8.7) 28

(2.5)
30 (3.3) 92 (14)

Table 6: The results of Table 3 with standard error computed over 10 seeds.
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95% Quantile DQN DDQN TD3 SAC PPO
RB PER RB PER RB PER RB PER

di
sa

bl
e

C
P

bu
sh

y trn 80 (67) 9.4
(0.29)

13
(0.68)

14 (1.9) 16 (1.3) 25 (3.7) 85 (14) 48 (7.9) 37 (3.5)

val 2.6e+02
(1.1e+02)

2.2e+02
(39)

1.8e+02
(27)

2e+02
(19)

2.5e+02
(43) 1.5e+02

(20)
2.3e+02
(25)

1.8e+02
(23)

4.1e+02
(63)

tst 1.5e+03
(4e+02)

1.1e+03
(2.5e+02)

2e+03
(6.5e+02)

1.3e+03
(3.1e+02) 1e+03

(2.4e+02)
1.3e+03
(2.5e+02)

2.4e+03
(3.5e+02)

1.2e+03
(2.9e+02)

3.7e+03
(1.3e+03)

le
ft

trn 19 (3.8) 18
(2.7)

28 (7.8) 24 (8.4) 32 (8) 19 (2.3) 47 (7.1) 34 (5.3) 38 (14)

val 1.3e+02
(17)

1.6e+02
(21)

1.2e+02
(11)

1.5e+02
(39)

1.1e+02
(21) 67

(7.8)
1.5e+02
(30)

79 (8.6) 1.2e+02
(34)

tst 7e+02
(1.8e+02)

6.2e+02
(79)

8.3e+02
(1.4e+02)

1.3e+03
(3.1e+02) 5.2e+02

(72)
5.4e+02
(1.1e+02)

1.7e+03
(2.6e+02)

1e+03
(1.8e+02)

5.5e+02
(1.3e+02)

en
ab

le
C

P

bu
sh

y trn 3.7e+08
(3.4e+08)

3.8e+09
(3.8e+09)

2.8e+07
(2.7e+07)

2.9e+06
(1.9e+06)

1.2e+04
(1.2e+04)

4.2e+03
(3.8e+03)

4.7e+22
(3.2e+22)

7.6e+20
(7.3e+20) 1.4e+03

(4.3e+02)
val 8.9e+07

(5.3e+07)
5.8e+11
(5.8e+11)

6.6e+08
(6.5e+08)

2.6e+06
(1.2e+06)

3e+04
(2.7e+04)

3.6e+04
(3.3e+04)

2.5e+24
(2.5e+24)

5.1e+21
(3.1e+21) 7.1e+03

(1.9e+03)
tst 1.9e+09

(1.8e+09)
1.3e+08
(1.3e+08)

1.3e+08
(1.1e+08)

7.9e+06
(4.6e+06)

6.1e+04
(4.7e+04)

3e+04
(1.6e+04)

3.6e+22
(3.5e+22)

1.8e+24
(1.6e+24) 2.1e+04

(4e+03)

le
ft

trn 1.4e+02
(1.1e+02) 22

(2.2)
1.1e+02
(52)

54 (30) 5.9e+03
(4.3e+03)

83 (17) 28 (1.4) 23 (1.9) 1.6e+02
(30)

val 2e+02
(56)

1.9e+02
(45)

3.9e+02
(1.5e+02)

2.5e+02
(68)

1.1e+04
(7.5e+03)

2.7e+02
(20) 76 (7)

82 (8.8) 5.9e+02
(66)

tst 2.4e+03
(7.7e+02)

1.6e+03
(3.9e+02)

3.8e+03
(1.3e+03)

1.8e+03
(3.9e+02)

4.7e+04
(2.2e+04)

5.8e+03
(1.3e+03) 1.1e+03

(2.4e+02)
1.3e+03
(2.5e+02)

7.5e+03
(9.5e+02)

99% Quantile DQN DDQN TD3 SAC PPO
RB PER RB PER RB PER RB PER

di
sa

bl
e

C
P

bu
sh

y trn 1.8e+04
(1.6e+04) 55

(3.8)
7e+02
(4.6e+02)

4.2e+02
(2.2e+02)

2.4e+03
(1.4e+03)

3e+03
(1.5e+03)

3.9e+04
(9e+03)

2.2e+04
(1e+04)

4e+04
(1e+04)

val 5.1e+05
(2e+05)

3.1e+05
(7.1e+04)

2.7e+05
(7.2e+04)

3.3e+05
(9e+04)

2.7e+05
(7.3e+04) 1.9e+05

(5.2e+04)
4.3e+05
(5.2e+04)

4.7e+05
(6e+04)

5.7e+05
(6.5e+04)

tst 3.3e+05
(3.3e+04)

7.5e+05
(4.1e+05)

6e+05
(1.6e+05)

5.4e+05
(1.3e+05)

4.5e+05
(9e+04)

4.6e+05
(3.3e+04)

6.2e+05
(1.1e+05)

4e+05
(8.6e+04)

6e+05
(5e+04)

le
ft

trn 2e+03
(9.1e+02) 1.5e+03

(8.3e+02)
7e+03
(3.6e+03)

3.3e+03
(2.2e+03)

9.6e+03
(4.1e+03)

2e+03
(7.6e+02)

9.9e+03
(3.7e+03)

4.6e+03
(2.3e+03)

2.8e+04
(1.6e+04)

val 3e+05
(3.9e+04)

2.5e+05
(2.8e+04)

2.2e+05
(4.4e+04)

1.4e+05
(2.4e+04)

2e+05
(3.8e+04)

1.5e+05
(2.6e+04)

2.4e+05
(3.1e+04) 1.2e+05

(2.1e+04)
2.1e+05
(3.3e+04)

tst 3.1e+05
(3.2e+04)

4.6e+05
(6.5e+04)

4.5e+05
(5.9e+04)

5.7e+05
(1.1e+05) 3e+05

(3.2e+04)
3.3e+05
(2.4e+04)

4.3e+05
(4.3e+04)

3.7e+05
(3.3e+04)

3.1e+05
(4e+04)

en
ab

le
C

P

bu
sh

y trn 4.3e+26
(3.7e+26)

5.7e+23
(5.7e+23)

1.3e+17
(1e+17)

7.9e+14
(7.7e+14) 4.2e+05

(1.6e+05)
2.5e+06
(1.6e+06)

1.8e+37
(1.1e+37)

3.6e+42
(3.6e+42)

1.6e+06
(4.2e+05)

val 1.2e+22
(1.2e+22)

5.7e+24
(5.7e+24)

2.8e+23
(2.1e+23)

1.7e+14
(9.8e+13) 2e+06

(4.4e+05)
3.1e+06
(1.8e+06)

3.7e+38
(2.9e+38)

4.2e+40
(2.8e+40)

5.6e+06
(1.5e+06)

tst 2.5e+29
(2.5e+29)

5.7e+25
(5.7e+25)

1e+23
(1e+23)

6.5e+18
(6.4e+18) 2.6e+06

(5.9e+05)
4.1e+06
(1.6e+06)

9.2e+39
(9.2e+39)

1.3e+41
(1.3e+41)

7.6e+06
(2.3e+06)

le
ft

trn 7.1e+04
(5.5e+04)

3.5e+03
(1.2e+03)

3.7e+04
(1.9e+04)

1.9e+04
(1.3e+04)

1e+06
(5.1e+05)

7.6e+04
(2.3e+04)

5.1e+03
(1.8e+03) 1.9e+03

(6.9e+02)
4.3e+05
(1.1e+05)

val 2.3e+05
(7.9e+04)

2.4e+05
(4.6e+04)

3.1e+05
(5.6e+04)

3.6e+05
(8.6e+04)

1.6e+06
(3.1e+05)

2.6e+05
(4.1e+04) 1.3e+05

(4.5e+04)
1.4e+05
(2.5e+04)

6.3e+05
(1.6e+05)

tst 1.8e+06
(7.1e+05)

7.6e+05
(1.6e+05)

7.9e+05
(1e+05)

1.4e+06
(3.6e+05)

4.8e+06
(7.6e+05)

7.6e+06
(6.1e+06) 3.8e+05

(4.1e+04)
4.4e+05
(3.6e+04)

3.3e+06
(1.9e+06)

Table 7: The 95% and 99% quantile of CMMs with standard error computed over 10 seeds.
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I.1 Additional Learning Curves

In this section, we plot the learning curves of the best performing algorithm in each of the four
possible settings in {disable CP, enable CP} ×{left,bushy}. Performance is measured by mean CCM
(from Table 3) and we plot the average performance over 10 runs (shaded region is stderr over said
runs). For each setting, we also show the CCM distribution over the training, validation and testing
query sets in a complementary CDF (CCDF) plot. The CCDF shows that these distributions are
long-tailed.

I.1.1 Bushy plans with disable CPs heuristic

Figure 5: The best algorithm (in terms of CCM mean) for bushy plans with disable CP heuristic is
TD3 with prioritized replay with policy learning rate 0.0003 and critic learning rate 0.0001. Shaded
region is stderr over 10 runs.
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I.1.2 Left-deep plans with disable CP heuristic

Figure 6: The best algorithm (in terms of CCM mean) for left-deep plans with disable CP heuristic is
TD3 with prioritized replay with policy learning rate 0.0001 and critic learning rate 0.0003. Shaded
region is stderr over 10 runs.
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I.1.3 Bushy plans with CPs

Figure 7: The best algorithm (in terms of CCM mean) for bushy plans with CPs enabled is TD3
with prioritized replay with policy learning rate 0.0003 and critic learning rate 0.0003. Shaded region
is stderr over 10 runs.
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I.1.4 Left-deep plans with CPs

Figure 8: The best algorithm (in terms of CCM mean) for left-deep plans with CPs enabled is TD3
with policy learning rate 0.0001 and critic learning rate 0.0003. Shaded region is stderr over 10 runs.
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I.1.5 Heuristic Method

We also plot results for a heuristic ikkbzbushy which builds join selectivity estimates based on the
training data and uses dynamic programming (DP) to compute the best bushy plan according to the
estimated IR cardinalities (based on the join selectivity estimates). Similar with RL agents which
learns in training queries, we build selectivity estimation of join predicates using training queries.
We follow the most classic approach (Ramakrishnan & Gehrke, 2003) for estimating selectivities of
each join pair R ⋊⋉P S using Seli(R ⋊⋉P S) = |R⋊⋉P S|

|R||S| and take the average among all queries as the
final selectivities. And in the validate and test, we estimate the IR size using Seli(R ⋊⋉P S)|R||S|.
ikkbzbushy can guarantee that the final plan has the smallest estimation cost.

So amongst all heuristics that use the same estimated IR cardinalities, this approach is the best
possible heuristic since it uses the plan with the smallest estimated cost. However, since the selectivity
estimation step is biased, the final performance is very poor, and worse than the RL-based approaches.
It’s worth mentioning that DP-based approaches can take hours on med-large size queries since the
problem space grows exponentially. In contrast, RL methods are much faster to run.

Figure 9: Distribution of cost multiples for the heuristic. The mean performance is train 7.8e + 49,
val 1.1e + 50 and test 2.5e + 45. Notice that these are many orders of magnitude worse than the RL
policy’s performance.
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J Benchmarking Offline RL

We also benchmark offline RL algorithms on optimizing left-deep plans with CPs disallowed. In this
section, we focus on the 113 queries from the JOB (Leis et al., 2015) which is a smaller and easier
setting than our main dataset of 3300 queries. We focus on the JOB for offline RL because Leis
et al. (2015) provided behavior policy traces for all 113 queries, based on popular search heuristics
(described below).

JOB Data DQN DDQN BC BCQ CQL
Median STD Median STD Median STD Median STD Median STD

d
is

ab
le

C
P

le
ft

trn 3.22 1.9e6 1471 3.4e10 1.6e5 7.6e+11 3.1e3 2.7e13 79 4.1e12
tst 3.19 1.9e6 1470 3.3e10 8.0e4 7.3e12 9908 2.6e13 76 3.9e12
val 3.21 2.0e6 1.0e3 3.4e10 6.4e5 7.5e12 1.5e5 2.9e13 81 4.1e12

Table 8: CCM (lower is better) averaged over the training (trn), validation (val) or testing (tst)
query sets.

Experimental Setup Our offline dataset is comprised of trajectories from the following behavior
policies provided by the JOB (Leis et al., 2015): adaptive, dphyp, genetic, goo, goodp, goodp2,
gooikkbz, ikkbz, ikkbzbushy, minsel, quickpick, simplification (Neumann & Radke, 2018). We
highlight that these behavior policies are search heuristics, which operate given a cost model, e.g.,
estimated IR cardinalities, to plan over. To generate behavior trajectories, we provided these heuristics
access to the ground-truth IR cardinalities. Alternatively, one could take traces from existing DBMS
such as Postgres. For each heuristic, we collected 1000 trajectories across different queries. We
partition the dataset for training, evaluation and testing similarly as in our online experiments.

Discussions Table 8 summarizes our offline results. We find that DQN has the best performance
in terms of median and the validation/testing results are even better than online. CQL also obtains
reasonable performance, but all other methods seem to have relatively poor median performance
even on the training set. It’s worth noting that all methods seem to have a heavy tail performance
distribution (over queries), as shown by the large standard deviations. In later sections of the
appendix, we see this is the case for online RL as well. This heavy-tail distribution of returns
motivates applying risk-sensitive RL methods to JoinGym for future work.

We also tested on some other offline algorithms, such as SAC, and it is hard to converge hence we
didn’t report the results. We observe that the TD error is increasing, although the Q value functions,
actors and critics are learning. Making too many TD updates to the Q-function in offline deep RL is
known to sometimes lead to performance degradation and unlearning, we can use regularization to
address the issue (Kumar et al., 2021).

J.1 Hyperparameters for Offline RL Algorithms

We performed hyperparameter search with grid search and Bayesian optimization. The final parame-
ters we used for evaluation is shown below in Tables 10-13.
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J.1.1 Batch-Constrained Q-learning

Table 9: Hyperparameter of Batch-Constrained Q-learning algorithm (BCQ).
Hyperparameter Value
Learning rate 6.25 × 10−5

Optimizer Adam (β = (0.95, 0.999))
Batch size 32
Number of critics 6
Discount factor 0.99
Target network synchronization coefficiency 0.005
Action flexibility 0.3
Gamma 0.99

J.1.2 Behavior Cloning

Table 10: Hyperparameter of Behavior Cloning (BC).
Hyperparameter Value
Learning rate 0.001
Optimizer Adam (β = (0.9, 0.999))
Batch size 100
Beta 0.5

J.1.3 Conservative Q-Learning

Table 11: Hyperparameter of Conservative Q-Learning (CQL).
Hyperparameter Value
Actor learning rate 3 × 10−4

Critic learning rate 3 × 10−4

Learning rate for temperature parameter of SAC 1 × 10−4

Learning rate for alpha 1 × 10−4

Batch size 256
N-step TD calculation 1
Discount factor 0.99
Target network synchronization coefficiency 0.005
The number of Q functions for ensemble 2
Initial temperature value 1.0
Initial alpha value 1.0
Threshold value 10.0
Constant weight to scale conservative loss 5.0
The number of sampled actions to compute 10
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J.1.4 DQN

Table 12: Hyperparameter of DQN.
Hyperparameter Value
Learning rate 6.25e-4
Batch size 32
target_update_interval 8000

J.1.5 Double DQN

Table 13: Hyperparameter of DDQN.
Hyperparameter Value
Learning rate 6.25e-4
Batch size 32
target_update_interval 8000
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Abstract

In search of a simple baseline for Deep Reinforcement Learning in locomotion tasks,
we propose a model-free open-loop strategy. By leveraging prior knowledge and
the elegance of simple oscillators to generate periodic joint motions, it achieves re-
spectable performance in five different locomotion environments, with a number of
tunable parameters that is a tiny fraction of the thousands typically required by
DRL algorithms. We conduct two additional experiments using open-loop oscilla-
tors to identify current shortcomings of these algorithms. Our results show that,
compared to the baseline, DRL is more prone to performance degradation when
exposed to sensor noise or failure. Furthermore, we demonstrate a successful trans-
fer from simulation to reality using an elastic quadruped, where RL fails without
randomization or reward engineering. Overall, the proposed baseline and associ-
ated experiments highlight the existing limitations of DRL for robotic applications,
provide insights on how to address them, and encourage reflection on the costs of
complexity and generality.

1 Introduction

The field of deep reinforcement learning (DRL) has witnessed remarkable strides in recent years,
pushing the boundaries of robotic control to new frontiers (Song et al., 2021; Hwangbo et al., 2019).
However, a dominant trend in the field is the steady escalation of algorithmic complexity. As a
result, the latest algorithms require a multitude of implementation details to achieve satisfactory
performance levels (Huang et al., 2022), leading to a concerning reproducibility crisis (Henderson
et al., 2018). Moreover, even state-of-the-art DRL models struggle with seemingly simple problems,
such as the Mountain Car environment (Colas et al., 2018) or the Swimmer task (Franceschetti
et al., 2022; Huang et al., 2023).

Fortunately, several works have gone against the prevailing direction and tried to find simpler base-
lines, scalable alternatives for RL tasks (Rajeswaran et al., 2017; Salimans et al., 2017; Mania et al.,
2018). These efforts have not only raised questions about the evaluation and trends in RL (Agarwal
et al., 2021), but also emphasized the need for simplicity in the field. The generality of complex
RL algorithms also comes at the price of specificity in task design, in the form of tedious reward
engineering (Lee et al., 2020). We advocate leveraging prior knowledge to reduce complexity, both
in the algorithm and in the task formulation, when tackling specific problem categories such as
locomotion tasks.
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In this paper, we introduce an open-loop model-free strategy to serve as a baseline for locomotion
challenges. By studying and comparing the baseline to DRL algorithms in different scenarios, our
goal is not to replace them, but to highlight their existing limitations, provide insights, and encourage
reflection on the costs of complexity and generality.

1.1 Contributions

In summary, the main contributions of our paper are:

• an open-loop model-free baseline for learning locomotion that can handle sparse rewards and
high sensory noise and that requires very few parameters (on the order of tens, Section 2),

• showing the importance of prior knowledge and choosing the right policy structure (Sec-
tion 4.2),

• a study of the robustness of RL algorithms to noise and sensor failure (Section 4.3),

• showing successful simulation to reality transfer, without any randomization or reward en-
gineering, where deep RL algorithms fail (Section 4.4).

2 Open-Loop Oscillators for Locomotion

We draw inspiration from nature and specifically from central pattern generators, as explored
by Righetti et al. (2006); Raffin et al. (2022); Bellegarda & Ijspeert (2022). Our approach lever-
ages nonlinear oscillators with phase-dependent frequencies to produce the desired motions for each
actuator. The equation of one oscillator is:

qdes
i (t) = ai · sin(θi(t) + φi) + bi

θ̇i(t) =
{

ωswing if sin(θi(t) + φi) > 0
ωstance otherwise

(1)

where qdes
i is the desired position for the i-th joint, ai, θi, φi and bi are the amplitude, phase, phase

shift and offset of oscillator i. ωswing and ωstance are the frequencies of oscillations in rad/s for the
swing and stance phases. To keep the search space small, we use the same frequencies ωswing and
ωstance for all actuators.

This formulation is both simple and fast to compute; in fact, since we do not integrate any feedback
term, all the desired positions can be computed in advance. The phase shift φi plays the role of the
coupling term found in previous work: joints that share the same phase shift oscillate synchronously.
However, compared to previous studies, the phase shift is not pre-defined but learned.

Optimizing the parameters of the oscillators is achieved using black-box optimization (BBO), specif-
ically the CMA-ES algorithm (Hansen et al., 2003; Hansen, 2009) implemented within the Optuna li-
brary (Akiba et al., 2019). This choice stems from its performance in our initial studies and its ability
to escape local minima. In addition, because BBO uses only episodic returns rather than immediate
rewards, it makes the baseline robust to sparse or delayed rewards. Finally, a proportional-derivative
(PD) controller converts the desired joint positions generated by the oscillators into desired torques.

3 Related Work

The quest for simpler RL baselines. Despite the prevailing trend towards increasing complexity,
some research has been dedicated to developing simple yet effective baselines for solving robotic
tasks using RL. In this vein, Rajeswaran et al. (2017) proposed the use of policies with simple
parametrization, such as linear or radial basis functions (RBF), and highlighted the brittleness of RL
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agents. Concurrently, Salimans et al. (2017) explored the use of evolution strategies as an alternative
to RL, exploiting their fast runtime to scale up the search process. More recently, Mania et al. (2018)
introduced Augmented Random Search (ARS), a straightforward population-based algorithm that
trains linear policies. Building on these efforts, we seek to further simplify the solution by proposing
an open-loop baseline that generates desired joint trajectories independently of the robot state.

Periodic policies for locomotion. Rhythmic movements being a fundamental component of
locomotion (Delcomyn, 1980; Cohen & Wallén, 1980; Ijspeert, 2008), oscillators have been integrated
into robotic control to solve locomotion tasks (Crespi & Ijspeert, 2008; Iscen et al., 2013), with recent
work focusing on quadruped robots (Kohl & Stone, 2004; Tan et al., 2018; Iscen et al., 2018; Yang
et al., 2022; Bellegarda & Ijspeert, 2022; Raffin et al., 2022). However, surprisingly, and to the
best of our knowledge, no previous studies have explored the use of open-loop oscillators in RL
locomotion benchmarks. This may be due to the belief that open-loop control is insufficient for
stable locomotion (Iscen et al., 2018). Our work aims to address this gap by evaluating open-loop
oscillators in RL locomotion tasks and on a real hardware, directly in joint space, eliminating the
need for inverse kinematics and pre-defined gaits.

4 Results

We study and compare DRL algorithms to our baseline through experiments on locomotion tasks,
including simulated tasks and transfer to a real elastic quadruped.

Our goal is to address three key questions:

• How do open-loop oscillators fare against deep reinforcement learning methods in terms of
performance, runtime and parameter efficiency?

• How resilient are RL policies to sensor noise, failures and external perturbations when
compared to the open-loop baseline?

• How do learned policies transfer to a real robot when training without randomization or
reward engineering?

By investigating these questions, we aim to provide a comprehensive understanding of the strengths
and limitations of our proposed approach and shed light on the potential benefits of leveraging prior
knowledge in robotic control.

4.1 Implementation Details

For the RL baselines, we utilize JAX implementations from Stable-Baselines3 (Bradbury et al., 2018;
Raffin et al., 2021a) and the RL Zoo (Raffin, 2020) training framework. The search space used to
optimize the parameters of the oscillators is shown in Table 3 of Appendix A.2.

4.2 Results on the MuJoCo locomotion tasks

We evaluate the effectiveness of our method on the MuJoCo v4 locomotion tasks (Ant, HalfChee-
tah, Hopper, Walker2d, Swimmer) included in the Gymnasium v0.29.1 library (Towers et al.,
2023). We compare our approach against three established deep RL algorithms: Proximal Policy Op-
timization (PPO), Deep Deterministic Policy Gradients (DDPG), and Soft Actor-Critic (SAC). To
ensure a fair comparison, we adopt the hyperparameter settings from the original papers, except for
the swimmer task, where we fine-tuned the discount factor (γ = 0.9999) according to Franceschetti
et al. (2022). Additionally, we also benchmark Augmented Random Search (ARS) which is a popu-
lation based algorithm that uses linear policies. Our choice of baselines includes one representative
example per algorithm category: PPO for on-policy, SAC for off-policy, ARS for population-based
methods and simple model-free baselines, and DDPG as a historical algorithm (many state-of-the-
art algorithms are based on it). We choose SAC (Haarnoja et al., 2019) because it performs well in
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continuous control tasks (Huang et al., 2023), and it shares many components (including the policy
structure) with its newer and more complex variants. SAC and its variants, such as TQC (Kuznetsov
et al., 2020), REDQ (Chen et al., 2021) or DroQ (Hiraoka et al., 2022) are also the ones used in
the robotics community (Raffin et al., 2022; Smith et al., 2023). We use standard reward functions
provided by Gymnasium, except for ARS where we remove the alive bonus to match the results
from the original paper.

The RL agents are trained during one million steps. To have quantitative results, we replicate
each experiment 10 times with distinct random seeds. We follow the recommendations by Agarwal
et al. (2021) and report performances profiles, probability of improvements in Fig. 1 and aggregated
metrics with 95% confidence intervals in Fig. 2. We normalize the score over all environments using
a random policy for the minimum and the maximum performance of the open-loop oscillators.
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Figure 1: Performance profiles on the MuJoCo locomotion tasks (left) and probability of improve-
ments of the open-loop approach over baselines, with a 95% confidence interval.
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Figure 2: Metrics results on MuJoCo locomotion tasks using median and interquartile mean (IQM),
with a 95% confidence interval.

Performance. As seen in Figs. 1 and 2, the open-loop oscillators achieves respectable performance
across all five tasks, despite its minimalist design. In particular, it performs favorably against ARS
and DDPG, a simple baseline and a classic deep RL algorithm, and exhibits comparable performance
to PPO. Remarkably, this is accomplished with merely a dozen parameters, in contrast to the
thousands typically required by deep RL algorithms. Our results suggest that simple oscillators
can effectively compete with sophisticated RL methods for locomotion, and do so in an open-loop
fashion. It also shows the limits of the open-loop approach: the baseline does not reach the maximum
performance of SAC.
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Table 1: Runtime comparison to train a policy on HalfCheetah, one million steps using a single
environment, no parallelization.

SAC PPO DDPG ARS Open-Loop
CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU

Runtime (in min.) 80 30 10 14 60 25 5 N/A 2 N/A

Runtime. Comparing the runtime of the different algorithms1, as presented in Table 1, underscores
the benefits of choosing simplicity over complexity. Notably, ARS requires only five minutes of CPU
time to train on a single environment for one million steps, while open-loop oscillators are twice
as fast. This efficiency is particularly advantageous when deploying policies on embedded systems
with limited computing resources. Moreover, both methods can be easily scaled using asynchronous
parallelization to further reduce training time. In contrast, more complex methods like SAC demand
a GPU to achieve reasonable runtimes (15 times slower than open-loop oscillators), even with the
aid of JIT compilation2.
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Figure 3: Parameter efficiency of the different algorithms. Results are presented with a 95% confi-
dence interval and score are normalized with respect to the open-loop baseline.

Parameter efficiency. As seen in Fig. 3, the open-loop oscillators really stand out for their
simplicity and performance with respect to the number of optimized parameters. On average, our
approach has 7x fewer parameters than ARS, 800x fewer than PPO and 27000x fewer than SAC.
This comparison highlights the importance of choosing an appropriate policy structure that delivers
satisfactory performance while minimizing complexity.

4.3 Robustness to sensor noise and failures

In this section, we assess the resilience of the trained agents from the previous section against sensor
noise, malfunctions and external perturbations (Dulac-Arnold et al., 2020; Seyde et al., 2021). To
study the impact of noisy sensors, we introduce Gaussian noise with varying intensities into one
sensor signal (specifically, the first index in the observation vector, the one that gives the position
of the end-effector). To investigate the robustness against sensor faults, we simulate two types of

1We display the runtime for HalfCheetah only, the computation time for the other tasks is similar.
2The JAX implementation of SAC used in this study is four times faster than its PyTorch counterpart.
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Figure 4: Robustness to sensor noise (with varying intensities), failures of Type I (all zeros) and II
(constant large value) and external disturbances. All results are presented with a 95% confidence
interval and score are normalized with respect to the open-loop baseline.

sensor failures: Type I failure involves outputting zero values for one sensor, while Type II failure
generates a constant value with a larger magnitude (we set this value to five in our experiments).
Finally, we evaluate the robustness to external disturbances by applying perturbations with a force
of 5N in randomly chosen directions with a probability of 5% (around 50 impulses per episode). By
examining how the agents perform under these scenarios, we can evaluate their ability to adapt to
imperfect sensory input and react to disturbances. We study the effect of randomization by also
training SAC with a Gaussian noise with intensity σ = 0.2 on the first sensor (SAC NOISE in the
figure).

In absence of noise or failures, SAC excels over simple oscillators on most tasks, except for the
Swimmer environment. However, as depicted in Fig. 4, SAC performance deteriorates rapidly when
exposed to noise or sensor malfunction. This is the case for the other RL algorithms, where ARS
and PPO are the most robust ones but still exhibit degraded performances. In contrast, open-loop
oscillators remain unaffected, except when exposed to external perturbations because they do not
rely on sensors. This highlights one of the primary advantages and limitations of open-loop control.

As shown by the performance of SAC trained with noise on the first sensor (SAC NOISE), it is
possible to mitigate the impact of sensor noise. This finding, together with the performance of the
open-loop controller, suggests that the first sensor is not essential for achieving good results in the
MuJoCo locomotion tasks. SAC with randomization on the first sensor has learned to disregard its
input, while SAC without randomization exhibits a high sensitivity to the value of this uninformative
sensor. This illustrates a vulnerability of DRL algorithms, which can be sensitive to useless inputs.

4.4 Simulation to Reality Transfer on an Elastic Quadruped

The open-loop approach offers a promising baseline for locomotion control on real robots, due
to its computational efficiency, robustness to sensor noise, and adequate performance. To assess
its potential for real-world applications, we investigate whether the results in simulation can be
transferred to a real quadruped robot equipped with serial elastic actuators3.

The experimental platform is a cat-sized quadruped robot with eight joints, similar to the Ant task in
MuJoCo, where motors are connected to the links via a linear torsional spring with constant stiffness
k ≈ 2.75Nm/rad. To conduct our evaluation, we use a simulation of the robot in PyBullet (Coumans

3The results can also be seen in the video in the supplementary material.
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Figure 5: Robotic quadruped with elastic actuators in simulation (left) and real hardware (right)

& Bai, 2016–2021), which includes a model of the elastic joints but excludes motor dynamics. The
task is to reach maximum forward speed: we define the reward as displacement along the desired axis
and limit each episode to five seconds of interaction. The agent receives the current joint positions
q and velocities q̇ as observation and commands desired joint positions qdes at a rate of 60Hz.

In this evaluation, we compare the open-loop approach against the top-performing algorithm from
Section 4.2, namely SAC. Both algorithms are allotted a budget of one million steps for training.
Importantly, we do not apply any randomization or task-specific techniques during the training
process. Our goal is to understand the strengths and weaknesses of RL with respect to the open-
loop baseline in a simulation-to-reality setting. We evaluate the learned policy from simulation on
the real robot for ten episodes.

Table 2: Results of simulation-to-reality transfer for the elastic quadruped locomotion task. We
report mean speed and standard error over ten test episodes. SAC performs well in simulation, but
fails to transfer to the real world.

SAC Open-Loop
Sim Real Sim Real

Mean speed (m/s) 0.81 +/ 0.02 0.04 +/ 0.01 0.55 +/ 0.03 0.36 +/ 0.01

As shown in Table 2, SAC exhibits superior performance in simulation compared to the open-loop
oscillators (like in Section 4.2), with a mean speed of 0.81 m/s versus 0.55 m/s over ten runs.
However, upon closer examination, the policy learned by SAC outputs high-frequency commands
making it unlikely to transfer to the real robot – a common issue faced by RL algorithms (Raffin
et al., 2021b; Bellegarda & Ijspeert, 2022). When deployed on the real robot, the jerky motion
patterns translate into suboptimal performance (0.04 m/s), commands that can damage the motors,
and increased wear-and-tear.

In contrast, our open-loop oscillators, with fewer than 25 adjustable parameters, produce smooth out-
puts by design and demonstrate good performance on the real robot. The open-loop policy achieves
a mean speed of 0.36 m/s, the fastest walking gait recorded for this elastic quadruped (Lakatos
et al., 2018). While there is still a disparity between simulation and reality, the gap is significantly
narrower compared to the RL algorithm.

5 Discussion

An open-loop model-free baseline. We propose a simple, open-loop model-free baseline that
achieves satisfactory performance on standard locomotion tasks without requiring complex models
or extensive computational resources. While it does not outperform RL algorithms in simulation,
this approach has several advantages for real-world applications, including fast computation, ease of
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deployment on embedded systems, smooth control outputs, and robustness to sensor noise. These
features help narrow the simulation-to-reality gap and avoid common issues associated with deep
RL algorithms, such as jerky motion patterns (Raffin et al., 2021b) or converging to a bang-bang
controller (Seyde et al., 2021). Our approach is specifically tailored to address locomotion tasks,
yet its simplicity does not limit its versatility. It can successfully tackle a wide array of locomotion
challenges and transfer to a real robot, with just a few tunable parameters, while remaining model-
free.

The cost of generality. Deep RL algorithms for continuous control often strive for generality by
employing a versatile neural network architecture as the policy. However, this pursuit of generality
comes at a price of specificity in the task design. Indeed, the reward function and action space must
be carefully crafted to solve the locomotion task and avoid solutions that hack the simulator but do
not transfer to the real hardware. Our study and other recent work (Iscen et al., 2018; Bellegarda &
Ijspeert, 2022; Raffin et al., 2022) suggest incorporating domain knowledge into the policy design.
Even minimal knowledge like simple oscillators, reduces the search space and the need for complex
algorithms or reward design.

RL for more complex locomotion scenarios. The locomotion tasks presented in this paper
may seem relatively simple compared to the more complex challenges that RL has tackled (Miki
et al., 2022). However, the MuJoCo environments have served as a benchmark for the continuous
control algorithms deployed on robots and are still widely used in both online and offline RL. It
is important to note that even SAC, which performs well in simulation, can perform sub-optimally
with simple environments like the swimmer task (Franceschetti et al., 2022) or the elastic quadruped
simulation-to-reality transfer, and be sensitive to uninformative sensors. We believe that understand-
ing the failures and limitations by providing an open-loop model-free baseline is more valuable than
marginally improving performance by adding new tricks to an already complex algorithm (Patterson
et al., 2023).

Unexpected results. While the success of the open-loop oscillators in the Swimmer environment
is anticipated, their effectiveness in the Walker, Hopper or elastic quadruped environments is more
unexpected, as one might assume that feedback control or inverse kinematics would be necessary to
balance the robots or to learn a meaningful open-loop policy. While it is true that previous studies
have shown that periodic control is at the heart of locomotion (Ijspeert, 2008), we argue that the
required periodic motion can be surprisingly simple. Mania et al. (2018) have shown that simple
linear policies can be used for locomotion tasks. The present work goes a step further by reducing
the number of parameters by a factor of ten and removing the state as an input.

Exploiting robot natural dynamics. Our open-loop baseline reveals an intriguing insight: a sin-
gle frequency per phase (swing or stance) can be used across all joints for all considered tasks. This
observation resonates with recent research focused on exploiting the natural dynamics of robots, par-
ticularly using nonlinear modes that enable periodic motions with minimal actuation (Della Santina
et al., 2020; Albu-Schäffer & Della Santina, 2020; Albu-Schäffer & Sachtler, 2022). Our approach
could potentially identify periodic motions for locomotion while minimizing control effort, thus har-
nessing the inherent dynamics of the hardware.

Limitations Naturally, open-loop control alone is not a complete solution for locomotion challenges.
Indeed, by design, open-loop control is vulnerable to disturbances and cannot recover from potential
falls. In such cases, closing the loop with reinforcement learning becomes essential to adapt to
changing conditions, maintain stability or follow a desired goal. A hybrid approach that integrates
the strengths of feedforward (open-loop) and feedback (closed-loop) control offers a middle ground,
as seen in various engineering domains (Goodwin et al., 2000; Astrom & Murray, 2008; Della Santina
et al., 2017). By combining the speed and noise resilience of open-loop control with the adaptability
of closed-loop control, it enables reactive and goal-oriented locomotion. Prior studies have explored
this combination (Iscen et al., 2018; Bellegarda & Ijspeert, 2022; Raffin et al., 2022), but our research
simplifies the feedforward formulation and eliminates the need for inverse kinematics or predefined
gaits.
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Future work. While our approach generates desired joint positions using oscillators without relying
on the robot state, a PD controller is still required in simulation to convert these positions into torque
commands. We consider this requirement as part of the environment, since a position interface is
usually provided when considering real robotic applications. Furthermore, the generated torques
appear to be periodic, suggesting that the PD controller could be replaced by additional oscillators
(additional harmonic terms). While this possibility is worth exploring, we focus on simplicity in our
current work, using a minimal number of parameters, and defer this endeavor to future research.

Reproducibility Statement

We provide a minimal standalone code (35 lines of Python code) in the Appendix (Fig. 6) that
allows to solve the Swimmer task using open-loop oscillators. The code to reproduce the main
experiments is provided in the supplementary material. The search space and details for optimizing
the oscillators parameters are given in Appendix A.2.
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A Appendix

A.1 Standalone Code for the Swimmer Task

import gymnasium as gym

import numpy as np

from gymnasium.envs.mujoco.mujoco_env import MujocoEnv

# Env initialization

env = gym.make("Swimmer-v4", render_mode="human")

# Wrap to have reward statistics

env = gym.wrappers.RecordEpisodeStatistics(env)

mujoco_env = env.unwrapped

n_joints = 2

assert isinstance(mujoco_env, MujocoEnv)

# PD Controller gains

kp, kd = 10, 0.5

# Reset the environment

t, _ = 0.0, env.reset(seed=0)

# Oscillators parameters

omega = 2 * np.pi * 0.62 * np.ones(n_joints)

phase = 2 * np.pi * np.array([0.00, 0.95])

while True:

env.render()

# Open-Loop Control using oscillators

desired_qpos = np.sin(omega * t + phase)

# PD Control: convert to torque, desired qvel is zero

desired_torques = (

kp * (desired_qpos - mujoco_env.data.qpos[-n_joints:])

- kd * mujoco_env.data.qvel[-n_joints:]

)

desired_torques = np.clip(desired_torques, -1.0, 1.0) # clip to action bounds

_, reward, terminated, truncated, info = env.step(desired_torques)

t += mujoco_env.dt

if terminated or truncated:

print(f"Episode return: {float(info['episode']['r']):.2f}")

t, _ = 0.0, env.reset()

Figure 6: Minimal code to solve the Swimmer environment using open-loop oscillators (highlighted
in black). Code was tested with Gymnasium v0.29.1, MuJoCo v2.3.7 and Python 3.9.
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A.2 Open-Loop Oscillators search space

Table 3: Search space for the oscillators parameters. We set φ0 = 0 by convention, use a step-
size dt = 0.001 for the integration of the oscillators equations and have a population size of 30 for
CMAES. U(−1, 1) means that the value is sampled from a uniform distribution between −1 and 1.
For the Swimmer task, a constant amplitude and offset are used.

Amplitude ai Offset bi Phase Shift φi Frequencies ωswing/stance

Ant-v4 U(−1, 1) U(−1, 1) 2π · U(0, 1) 2π · U(0.4, 2)
HalfCheetah-v4 U(−2, 2) U(−1, 1) 2π · U(0, 1) 2π · U(0.4, 5)
Hopper-v4 U(−1, 1) 0.0 2π · U(0, 1) 2π · U(0.4, 5)
Swimmer-v4 1.0 0.0 2π · U(0, 1) 2π · U(0.4, 2)
Walker2d-v4 U(−1, 1) U(−1, 1) 2π · U(0, 1) 2π · U(0.4, 6)
Quadruped U(−1, 1) U(−1, 1) 2π · U(0, 1) 2π · U(0.4, 2)

Table 4: Proportional (kp) and derivative (kd) gains of the PD controller for each environment.
kp kd

Ant-v4 1.0 0.05
HalfCheetah-v4 1.0 0.05
Hopper-v4 10.0 0.5
Swimmer-v4 7.0 0.7
Walker2d-v4 10.0 0.5

A.3 Ablation Study

In this section, we examine the impact of design choices of Eq. (1) on performance. In particular,
we investigate the influence of having phase-dependent frequencies (we set ωswing = ωstance = ω)
and the importance of having phase shifts φi between oscillators (we set φi = 0). The results are
shown in Figs. 7 and 8 and table 5.

The equations of the different variants of Eq. (1) are:

qdes
i (t) = ai · sin(ω · t + φi) + bi No ωswing

qdes
i (t) = ai · sin(θi(t)) + bi No φi

qdes
i (t) = ai · sin(ω · t) + bi No φi No ωswing

(2)

where θi(t) is the same as in Eq. (1).

For the HalfCheetah, Swimmer and Ant tasks, having a single frequency ω is sufficient, while
it is critical to have phase-dependent frequencies for the Hopper environment. The phase shifts φi

are needed when all joints cannot be synchronous (as in the Swimmer task). For the quadruped,
these phase shifts φi represent the gait and encode symmetries between the legs.
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Figure 7: Performance profiles on the MuJoCo locomotion tasks using different variants of the open-
loop approach, with a 95% confidence interval.
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Figure 8: Metrics results on MuJoCo locomotion tasks for the different variants using median and
interquartile mean (IQM), with a 95% confidence interval.

Table 5: Results on MuJoCo locomotion tasks (mean and standard error are displayed) with
different variant of the approach.

Open-Loop

No φi No ωswing No φi No ωswing Full

Ant-v4 1167 +/- 3 1173 +/- 3 1239 +/- 8 1235 +/- 6
HalfCheetah-v4 2221 +/- 27 2245 +/- 30 2532 +/- 42 2400 +/- 31
Hopper-v4 929 +/- 9 785 +/- 28 986 +/- 7 1241 +/- 30
Swimmer-v4 -119 +/- 8 -82 +/- 6 356 +/- 0 356 +/- 0
Walker2d-v4 1484 +/- 36 1482 +/- 34 1140 +/- 32 1508 +/- 27
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A.4 Raw results on MuJoCo

Table 6: Results on MuJoCo locomotion tasks (mean and standard error are displayed).
Environments SAC PPO DDPG ARS Open-Loop

1 x budget 3 x budget

Ant-v4 4514 +/- 352 796 +/- 116 265 +/- 210 1241 +/- 25 1235 +/- 6 2130 +/- 120
HalfCheetah-v4 10538 +/- 286 1770 +/- 254 11267 +/- 317 2195 +/- 272 2400 +/- 31 4003 +/- 100
Hopper-v4 4039 +/- 118 1817 +/- 312 1240 +/- 124 2538 +/- 253 1241 +/- 30 2056 +/- 121
Swimmer-v4 240 +/- 39 334 +/- 18 25 +/- 4 267 +/- 31 356 +/- 0 357 +/- 1
Walker-v4 3192 +/- 184 1817 +/- 312 563 +/- 64 444 +/- 10 1508 +/- 261 2500 +/- 461
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Abstract

In key real-world problems, full state information is sometimes available but only
at a high cost, like activating precise yet energy-intensive sensors or consulting hu-
mans, thereby compelling the agent to operate under partial observability. For this
scenario, we propose AEMS-SR (Anytime Error Minimization Search with State
Requests), a principled online planning algorithm tailored for POMDPs with state
requests. By representing the search space as a graph instead of a tree, AEMS-SR
avoids the exponential growth of the search space originating from state requests.
Theoretical analysis demonstrates AEMS-SR’s ε-optimality, ensuring solution qual-
ity, while empirical evaluations illustrate its effectiveness compared with AEMS
and POMCP, two SOTA online planning algorithms. AEMS-SR enables efficient
planning in domains characterized by partial observability and costly state requests
offering practical benefits across various applications.

1 Introduction

The Partially Observable Markov Decision Process (POMDP) is a powerful framework that models
sequential decision-making in scenarios where the environment’s true state is inaccessible. Often,
this partial observability is an inherent characteristic of the environment, perhaps due to noise or
the unavailability of suitable sensors. However, in numerous instances, determining the true state of
the system is feasible but entails a considerable cost. For example, consider a scenario involving a
battery-powered robot that lacks the necessary power to employ highly accurate sensors continuously,
and thus, is also equipped with power-efficient yet less precise sensors. Additionally, the concept
of requesting state information can extend to scenarios with privacy implications, such as the use
of surveillance cameras in public spaces for crowd control. In these cases, the decision to activate
cameras involves weighing the benefits of state access against potential privacy costs.

We can think of these settings as situations where the agent has the option to consult an oracle (like
a precise sensor or a human expert) at every step to obtain the state against a cost. In the context
of our battery-powered robot, the cost could represent the electricity cost of activating the accurate
sensor. We refer to this setting as POMDPs with State Requests (POMDP-SR), where the agent,
for a cost, can eliminate all uncertainty regarding its current state before selecting each action.

A naive approach to handling POMDP-SRs is converting them to equivalent POMDPs, as detailed in
Section 3. However, such a method overlooks the unique characteristics of POMDP-SRs, potentially
leading to suboptimal performance of conventional POMDP planning techniques. This is largely
because in the conversion to an equivalent POMDP, the number of time-steps effectively doubles,
and the observation space expands considerably. For methods relying on tree search, such as POMCP
(Silver & Veness, 2010) and AEMS (Ross & Chaib-Draa, 2007), the transformation into an equivalent
POMDP introduces an exponential increase in the search tree, significantly impeding their efficiency.
Extensions that build on sparse samplings, such as DESPOT (Somani et al., 2013), theoretically

˚Work done during a research visit at TU Delft.
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can visit only a small part of the tree, but to obtain good results, this small part is in practice still
large.

In this paper, we introduce a novel online planning algorithm, AEMS-SR (Anytime Error Mini-
mization Search with State Requests), tailored for POMDPs with state requests. While traditional
approaches use trees, AEMS-SR can leverage a cyclic graph, significantly reducing the search space
by avoiding redundant expansions and improving computational efficiency.

Our contributions are threefold: 1) We formalize the request the state framework; 2) We introduce
a new algorithm, AEMS-SR, and theoretically demonstrate its ε-optimality; 3) We conduct ex-
periments on RobotDelivery, our newly developed benchmark, and Tag demonstrating AEMS-SR’s
superiority over AEMS and POMCP. Our results highlight AEMS-SR’s efficiency in circumventing
the exponential growth of the search tree, highlighting its potential in this challenging setting.

2 Background

POMDPs Partially Observable Markov Decision Processes (Åström, 1965) are defined as a tuple
P “ xS, Ω, A, P, O, R, γy where S is the set of states, Ω is the sets of observations, A is the set
of actions, P : S ˆ A Ñ ∆S is probability transition function with ∆S being the simplex over the
state space, O : S ˆ A Ñ ∆Ω is the probability observation function, R : S ˆ A Ñ R is the reward
function, and γ P r0, 1q is the discount factor. At each time step the agent selects an action based
on its observation-action history h P pA ¨ Ωq˚. Due to the exponential growth of the history space
in the number of time-steps dealing with histories might not be practical. Beliefs, defined as the
probability distribution over current states b P B ” ∆S , are sufficient statistics of the history for
control (Åström, 1965) and a more compact alternative. Beliefs are computed recursively: after
taking an action a in belief b and receiving an observation o the next belief is defined for any next
state s1 P S as follows, with η being the normalizing factor.

b1ps1q “ η E
s„b

P
`
s1 | s, a

˘ ¨ O
`
o | s1, a

˘

A policy π : B Ñ A is a mapping from beliefs to actions and is associated with a Value V πpbq. We
denote as π˚ and V ˚ the optimal policy and its value. For finite horizon, V is a piece-wise linear
and convex (PWLC) function of the belief (Sondik, 1971), and can therefore be represented as a set
Γ of α-vectors which corresponds to the slopes of the PWLC function.

We refer to beliefs as corner beliefs when the probability of being in a state s is 1 and 0 for the
other states. In clear contexts, we directly use the state s to reference such beliefs. The support of a
belief, supppbq, is the set of states with non-zero probability. POMDP planning methods generally
fall into two categories: offline and online approaches. Offline methods precompute comprehensive
plans for all scenarios but suffer from computational demands and scalability issues. In contrast,
online methods provide real-time computational capabilities for determining optimal actions within
time constraints.

AEMS Anytime Error Minimization Search (AEMS) (Ross & Chaib-Draa, 2007) is an online al-
gorithm that, following the stochastic shortest path approach of AO* (Nilsson, 1982), builds a tree
T from the current belief b0. The algorithm maintains an upper bound UT pbq and a lower bound
LT pbq of the value V ˚pbq. At each step, AEMS expands the node that is believed to have the highest
reduction potential for the error at the root. Let FpT q be the set of fringe nodes (nodes without
children) in T , êpbq “ Upbq ´ Lpbq be the gap between the upper and lower bounds of the value,
dT pb, b0q be the number of actions that separate b and b0 in the tree T , hb

b0
be the history from b0

to b, and P phb
b0

| b0, π̂T q be the probability of reaching b from b0 by following the policy π̂T that
selects the action maximizing the upper bound. AEMS expands the fringe node that maximizes the
heuristic of Eq. 1.

b̃pT q “ arg max
bPFpT q

γdT pb,b0qP phb
b0 | b0, π̂T qêpbq (1)
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Figure 1: Tree and Graph representation after three successive expansions (the expanded beliefs
are in green). Beliefs before selecting state request depicted by upward triangles, beliefs before
environmental action by downward triangles, (not-)request state actions by diamonds, environmental
actions by circles, and corner beliefs by rectangles. Some nodes are hidden for readability.

POMCP (Silver & Veness, 2010) extends MCTS to POMDPs. The algorithm relies on rollouts and
removes the need to compute belief updates allowing it to scale to large state spaces.

3 Framework

POMDP-SR We define the POMDP with State Request as a tuple PSR “ xP, cy where P is a
POMDP and c ą 0 is the associated cost to request the state. At each timestep, the agent first
decides whether to request the state, which is immediately revealed if requested and then selects an
action. The decision is binary: ι to request and ῑ to not request the state.

A property of POMDP-SR that may not be immediately apparent is that even in cases where the
optimal actions in an MDP and a POMDP align, the POMDP-SR’s optimal action might differ. This
arises from the fact that the agent operates under the anticipation of potential future state requests.
In such contexts, a suboptimal action in the MDP and the POMDP can become the optimal one
in the POMDP-SR when combined with a future request the state, achieving a return that is sub-
optimal for the MDP but significantly better than the one of a POMDP. An illustrative example
demonstrating this aspect of POMDP-SR is elaborated in the Appendix. This highlights how the
integration of state requests fundamentally shifts the dynamics of decision-making in POMDPs.

Equivalent POMDP A POMDP-SR PSR “ xP, cy can be transformed into an equivalent POMDP
P 1 “ xS 1, Ω1, A1, A1, P1, O1, R1, γ1y with variable action space and with P1, O1, R1 only defined over
legal actions. While the comprehensive technicalities of this transformation are detailed in the
Appendix, the core concept is to separate the state request action from the environmental action
doubling the number of timesteps. Additionally, the state space is expanded by integrating a binary
indicator, which functions to signal the phase in which the agent is operating. 1 For any state
s P S, s0 indicates the request the state phase, and s1 is the environment action phase. We denote
similarly the beliefs containing only states of one type (i.e. b0, b1q.
Equivalent POMDP Complexity Transforming a POMDP-SR into its equivalent POMDP en-
ables the use of classic POMDP planning algorithms, but this approach may prove inefficient. One
inefficiency arises from the lack of support for variable action spaces in classic implementations,

1Including the state request action ι as an additional action at every step avoids doubling timesteps and state
space, but does not yield an equivalent model to a POMDP-SR due to the discounting factor.
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necessitating the use of deterrent penalties for illegal action which impacts the algorithm’s complex-
ity. For offline methods like PBVI, doubling the state space and augmenting the observation space
to include the state space lead to a steep increase in complexity. Heuristic search algorithms like
AEMS face an even more challenging situation as doubling the horizon in POMDP-SR and requiring
a new sub-tree for every state in the support of the belief result in an exponential expansion of the
search tree (Fig. 1a). This growth underscores the fundamental issue: current planning algorithms
are ill-suited to effectively handle the unique complexities introduced by POMDP-SR scenarios.

4 Online planning: AEMS-SR

In this section, we present our new method Anytime Error Minimization Search for POMDP-SRs
(AEMS-SR) which adapts AEMS to our framework. As outlined in section 3, the introduction of
state requests leads to an exponential increase in the size of the search tree. This growth is primarily
due to two factors: the doubling of timesteps and the generation of a new subtree for each state in
the belief’s support. Consequently, each expansion of belief in a POMDP-SR, illustrated by the red
box in Fig. 1a, adds p1 ` |supppbq|q ¨ |A| ¨ |Ω| nodes. This is in stark contrast to classic POMDPs,
where only |A| ¨ |Ω| nodes are added per expansion, as illustrated by the blue box in Fig. 1a.

Upon examining the search tree in POMDP-SR scenarios, illustrated in Figure 1a, we observe that
many nodes are similar. This redundancy is particularly pronounced in cases involving position
uncertainty and potential action failure, leading to a significant overlap in subsequent beliefs. As a
result, the tree often contains identical subtrees that are redundantly expanded, impairing search
efficiency. The challenge of repetitive subtree expansions is not unique to POMDP-SR; it is a known
issue in both POMDPs and MDPs. Techniques like transposition tables (Childs et al., 2008) have
been used to address this problem, offering computational trade-offs that can be beneficial in certain
environments but are less practical for continuous spaces such as beliefs. To deal with these, AEMS-
SR employs a rooted cyclic graph, denoted as G, with the current belief b0 as its root, for the search
replacing the conventional tree structure. A rooted cyclic graph is defined as a regular cyclic graph
where every node can be reached from its root, and where the root does not have any parents. This
shift to a cyclic graph necessitates the development of novel heuristic and algorithmic solutions to
adeptly manage the added complexities of cyclicity.

4.1 AEMS-Loop

We first introduce AEMS-Loop, the extension of AEMS to cyclic graphs, and theoretically prove its
completeness and ε´optimiality, meaning that the algorithm will always return a solution that is
ε´close to the optimal solution given enough time. Similar to other online tree search algorithms, we
rely on upper and lower bounds, denoted as Upbq and Lpbq, of the optimal value function V ˚pbq that
are computed offline. These values are propagated in the graph G to the parents using the following
equations, allowing expansions to reduce the error gap at the root: eGpb0q “ UGpb0q ´ LGpb0q.

UGpb, aq “ Rpb, aq ` γ
ÿ

oPΩ
P po | b, aqUGpτpb, a, oqq UGpbq “

#
Upbq if b P FpGq
maxaPA UGpb, aq otherwise

(2)

LGpb, aq “ Rpb, aq ` γ
ÿ

oPΩ
P po | b, aqLGpτpb, a, oqq LGpbq “

#
Lpbq if b P FpGq
maxaPA LGpb, aq otherwise

(3)

Working with a cyclic graph introduces the possibility of multiple paths, and potentially an infinite
number, between the root b0 and any fringe node b P FpGq. We define as ΦGpb0, bq the set of
paths in G that start on b0 and end up on b. A path h P ΦGpb0, bq is a sequence of beliefs, action
and observation pbi, ai, oi`1qiăT . Based on a policy π, each path has an associated probability
P ph|b0, πq “ ΠT ´1

i“0 P poi`1|bi, aiqπpai|biq corresponding to the probability of observing the path h
while starting from b0 and following π. Additionally, we define ΨG

πpb0, bq as the sum over all possible
paths between the root b0 and a fringe b P FpGq of the probability of observing the path discounted
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by the length of the path dphq. We drop the subscript G when the dependency is clear.

ΨG
πpb0, bq “

ÿ

hPΦGpb0,bq
γdphqPph|b0, πq (4)

Theorem 1. In any rooted graph G with root b0 where values are computed according to Eq. 3 using
a lower bound value function L with error epbq “ V ˚pbq ´ Lpbq, the error on the root belief state is
bounded by: eGpb0q “ V ˚pb0q ´ LGpb0q ď ř

bPFpGq Ψπ˚ pb0, bqepbq where epbq “ V ˚pbq ´ Lpbq.

Proof sketch. We use a similar proof as AEMS on an enrolling of the tree of size n to obtain an
upper bound composed of two elements: (i) the discounted probabilities of observing a path of a size
at most n from the root to one of the replicas of an element in FpGq; (ii) the discounted probabilities
of other paths which are of size n. By making n Ñ `8, the first part of the upper-bound converges
to the term in the theorem and the second to 0.

Theorem 1 gives an upper bound on the contribution of each fringe node to the error at the root, ex-
tending AEMS’s Theorem 1 (Ross & Chaib-Draa, 2007) to cyclic graphs. Assuming a tree structure,
which implies |Φpb0, bq| “ 1 for any fringe belief b P FpT q, recovers the original theorem.

Similar to AEMS, this theorem provides a robust method for choosing the next belief to expand
to rapidly minimize root error: prioritize expanding the belief with the greatest estimated
contribution arg maxbPFpGq Ψπ˚ pb0, bqepbq. However, as the optimal policy π˚ and value function
V ˚ are unknown, we need to approximate them to compute Ψπ˚ pb0, bq and epbq. We denote the
approximation of π˚ as π̂G . As in AEMS, we employ the following two approximations:

π̂Gpb, aq “ 1ta “ arg max
a1 UGpb, aqu (5) êpbq “ Upbq ´ Lpbq ě epbq (6)

While other approximations π̂G are possible, we selected the one presented in Equation 5 because
of its empirical performance in AEMS and its simplicity. Using those two approximations, we can
leverage Theorem 1 to define the following heuristic for selecting the next belief to expand b̃pGq:

b̃pGq “ arg max
bPFpGq

Ψπ̂G pb0, bqêpbq (7)

Theorem 2. Given U bounded above, L bounded below such as @b P B, Upbq ě V ˚pbq ě Lpbq, and
êpbq “ Upbq ´ Lpbq , if γ P r0, 1q and infb,G|êGpbqąε π̂G

`
b, âG

b

˘ ą 0 for âG
b “ arg maxaPA UGpb, aq, then

the AEMS-Loop algorithm using heuristic b̃pGq is complete and ε´optimal.

Theorem 2 establishes the completeness and ε´optimality of AEMS-Loop for any policy π̂G assigning
non-zero probability to the upper-bound maximizing action, such as the one defined in Eq.5.

4.2 Algorithm

This subsection explains how AEMS-SR (Alg. 1), a practical implementation of AEMS-Loop adapted
to POMDP-SR, works in practice. While the graph structure enables consolidating identical belief
nodes to prevent redundant work, fully implementing this strategy would require comparing each
new belief against all existing beliefs in the current graph. Such an approach would lead to scalability
issues similar to those that render graphs less practical in general MDPs and POMDPs. To maintain
tractability while still achieving our main goal of mitigating the exponential growth in the search
tree, we restrict the capacity for multiple parents to corner beliefs.

AEMS-SR starts with a graph G containing only the root belief b0. The algorithm then iterates
through the following steps until the time limit is reached: a) find the fringe belief b̃pGq P FpGq that
maximizes Eq. 7, this corresponds to Alg. 2; b) update the graph G by expanding the belief b̃pGq, for
the request the state action ι we reuse the existing corner beliefs creating a graph similar to Fig. 1b;
c) update the upper and lower bound value to match Eq.2-3.
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For all fringe beliefs b P FpGq, we define the origin function ξGpbq, which returns the first ancestor
among the corner beliefs, or b0 if such an ancestor does not exist. Additionally, we define hξ

b as the
unique path between the origin ξpbq and the belief b which does not contain a state request action
ι. The fact that b P FpGq ensures the existence of the path, while the uniqueness is guaranteed by
construction as only the corner beliefs can have multiple parents.

Computing Ψ Our heuristic (Eq. 7) requires to compute Ψpb0, bq (Eq. 4) for all fringe beliefs
b P FpGq. While straightforward in a tree structure, it becomes complex in a graph due to poten-
tially infinite paths between b0 and b. We address this challenge by leveraging the fact that only
corner beliefs can have multiple parents to obtain Eq. 8. As the second part of the equation is
straightforward to compute, our focus shifts to calculating Ψpb0, sq for all corner beliefs s.

Ψpb0, bq “ Ψpb0, ξpbqqP
´

hξ
b |ξpbq, π̂G

¯
(8)

We start by reducing the graph G, such as the one in Figure 1b, to Ḡ containing only the root belief
and corner beliefs. The set of nodes of Ḡ is defined as N 1 “ tb0uYS. An edge connects a node b P N 1
to a corner belief s P S if there is at least one direct path h between the two nodes in the original
graph G, with a direct path defined as a path where only the last action is a request the state ι.
This edge is weighted by the sum of the discounted cumulative probabilities over direct paths:

edgepb, sq “
ÿ

hPΦpb,sq
h is direct

γdphqPph|b, πGq

For nodes n, n1 P N 1, we define Ψ̄pn, n1q as 0 if there is no edge between n and n1, and as the weight
of the edge otherwise. As the paths starting in b0 and ending in a corner belief s are either direct
or pass through another corner belief s1, we can write for all corner beliefs s:

Ψpb0, sq “
ÿ

s1PS
Ψ

`
b0, s1˘Ψ̄

`
s1, s

˘ ` Ψ̄pb0, sq (9)

We can rewrite Eq. 9 more compactly into Eq.10 using matrix notations by defining Ψ̄s,s1 “ Ψ̄ps, s1q,
Ψ̄b0 as the vector with components equal to Ψ̄pb0, sq, and Ψb0 the vector with components equal to
Ψpb0, sq. From which we obtain the solution given in Eq. 11.

Ψb0 “ Ψ̄Ψb0 ` Ψ̄b0 (10) Ψb0 “ pI ´ Ψ̄q´1Ψ̄b0 (11)
We note that this solution could be seen as constructing the Markov chain corresponding to the
corner beliefs and finding the stationary distribution of the policy π̂G . We can now compute Ψpb0, bq
for all fringes b P FpGq (Eq. 8), and expand b̃pGq (Eq. 7).

Algorithm 2 includes the pseudo-code, where line 3 calls Algorithm 3 (see Appendix) to obtain Ψ̄
and Ψ̄b0 . This computation enables the calculation of Ψb0 (line 4) and returns b̃pGq for expansion.

Update ancestors consists of leveraging the knowledge gained through a belief expansion to update
the lower and upper bound in the graph LG and UG by enforcing Equations 2 and 3. As explained
in LAO* (Hansen & Zilberstein, 2001), this requires running dynamic programming. When working
with stochastic trees, such as AEMS, the dynamic programming results in updating the parents
sequentially until reaching the root, guaranteeing convergence in a number of steps equal to the
depth of the tree. In contrast, when dealing with cyclic graphs, a full dynamic programming update
is needed, which can be computationally expensive. To address this challenge, LAO* proposes a
method to limit the number of nodes to update by focusing on a subset of nodes. In our imple-
mentation, instead of traversing the graph to determine the set of nodes to consider for dynamic
programming, we update the parents recursively until the updates become smaller than a threshold
(10´6 in our experiments), and we maintain a queue to deal with the cyclic structure.

The cycle of identifying the next belief to expand, expanding it, and backtracking the lower
and upper bounds continues until the predefined time limit is reached or the error gap at the
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root, êGpb0q, becomes less than ε. Subsequently, the agent determines whether to request the
state and selects an environmental action, by maximizing the lower bound LG . Then the agent
obtains a new observation, triggering the reinitialization of the graph with the updated belief.

Algorithm 1: AEMS-SR: Anytime Error Mini-
mization Search with State Requests
input: t: Maximum time, ε: Error threshold

1 while not EnvironmentTerminated() do
2 Initialize G with initial belief state b0

0 as root
3 t0 Ð Time()
4 while Time() - t0 ď t and not Solved(b0

0, ε) do
// Calls Algorithm 2

5 b˚ Ð GetBeliefToExpandpGq
6 Expand(b˚)
7 UpdateAncestors(b˚)
8 â0 Ð arg maxaPtῑ,ιu LGpb0

0, aq
9 if â0 “ ι then

10 s Ð GetStatepq
11 â1 Ð arg maxaPA LGps, aq
12 else
13 â1 Ð arg maxaPA LGpb1

0, aq
14 DoAction(â1); o Ð GetObservation()
15 b0

0 Ð τps, â1, oq if â0 “ ι else τ
`
b0

0, ῑ, â1, o
˘

// Potentially improve the bounds

Algorithm 2:
getBeliefNodeToExpand
input: Graph G, root belief b0

1 if b0 P FpGq then
2 return b0

/* Call to Algorithm 3
(Appendix) that traverse
the graph to compute
Ψ̄, Ψ̄b0 , FpGq */

3 V, Ψ̄, Ψ̄b0 , FpGq Ð
GWalk(b0, tu, 0|S|ˆ|S|, 0|S|, tu)

4 Ψb0 “ pI|S| ´ Ψ̄q´1Ψ̄b0 (Eq. 11)
5 bestE = ´8
6 for b P F̂ do
7 E = pUpbq ´ Lpbqq ¨ Ψpb0, bq (Eq.

8)
8 if E ą bestE then
9 bestE = E

10 bbest “ b

11 return bbest

5 Bounds

AEMS-SR requires a lower and upper bound L, U for Eq. 2, 3 and 6. Those bounds, computed
offline, are represented as a set Γ of |A| α-vectors, one for each action a and denoted as αa. Evaluation
of the bounds on a belief b is given by maxαPΓ xb, αy. Typically, the lower bound is derived from
Blind policies (Hauskrecht, 1997) that consistently select the same action. For the upper bound,
the two main algorithms are QMDP (Cassandra et al., 1997) and FIB (Hauskrecht, 2000). As the
agent retains the option not to request the state, the ability to request the state cannot reduce the
expected return but it may potentially increase it. Therefore, ensuring the validity of the upper
bounds in POMDP-SRs is crucial.

Q-MDP is constructed by assuming that the uncertainty about the state will disappear after one
step and corresponds to solving the underlying MDP. The α´vector αa is the fixed point of Eq. 12,
and αapsq corresponds to the Q-Value Qps, aq of the underlying MDP.

αapsq “ Rps, aq ` γ
ÿ

s1PS
P

`
s1 | s, a

˘
max
αa1 PΓ

αa1
`
s1˘ (12)

Lemma 3. The Q-MDP upper bound of a standard POMDP P is an upper bound for the equivalent
POMDP P 1 of PSR.

Proof. In the underlying MDP M1 of the Equivalent POMDP, the optimal policy will avoid state
requests due to the penalty and the full observability. Consequently, the optimal policies of both
MDPs only differ by the inclusion of non-request actions, which carry zero reward and thus do not
affect the expected return. Hence, for any s P S, the value of the optimal policy in M at s matches
the one in M1 at s0. Therefore QMDP is an upper bound for the values of PSR.
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Fast Informed Bound (FIB) considers the partial observability at the next step which provides a
tighter upper bound compared to Q-MDP. The associated α-vectors are constructed by iteratively
applying the operator associated to Eq. 13.

αapsq “ Rps, aq ` γ
ÿ

oPΩ
max
αa1 PΓ

ÿ

s1PS
P

`
s1, o | s, a

˘
αa1

`
s1˘ (13)

Lemma 4. The Fast Informed Bound upper bound of a standard POMDP P is not guaranteed to
be an upper bound for PSR’s equivalent POMDP P 1.

Proof. Consider a POMDP P with two states, a uniform probability transition function, a unique
observation, and two actions such that Rps1, a1q “ Rps2, a2q “ 1, Rps1, a2q “ Rps2, a1q “ ´1.
Q-MDP returns p γ

1´γ ` 1, γ
1´γ ´ 1q and p γ

1´γ ´ 1, γ
1´γ ` 1q as α-vectors, which correspond to the

uncertainty of the initial state ˘1 and observing to the following states. Conversely, FIB returns
p1, ´1q and p´1, 1q as α-vectors corresponding to the first reward followed by an expected future
return of 0. Let us now consider the POMDP-SR PSR “ xP, cy and the policy that always request
the state to then select the optimal action. This policy has an expected discounted return equal to
1´c
1´γ . Setting the cost c to 0.1 proves that FIB is not an upper bound for POMDP-SR.

FIB-SR Adapting FIB to POMDP-SR involves introducing an additional α-vector, αc, corre-
sponding to the action of requesting the state. FIB-SR alternates between updating α-vectors for
environmental actions using Eq. 13 with Γ “ tαa, @a P Au Y αc and updating αc using Eq. 14. This
process reflects paying the cost c to observe the state and then selecting the environmental action.

αcpsq “ ´c ` max
aPA

αapsq (14)

Improving the bounds during learning

In traditional POMDPs, maintaining offline-computed bounds unchanged during online phases is
standard practice. While updating these bounds could enhance the algorithm’s efficiency over suc-
cessive time steps and episodes, this approach is generally not feasible. The primary obstacle is the
need to store additional alpha vectors, which would diminish the efficiency of computing bounds
for new beliefs and increase memory demands. Conversely, in POMDP-SRs, corner beliefs present
an opportunity to update bounds efficiently. For every corner belief s in the graph G and action a,
UGps, aq provides a tighter bound than αapsq computed offline. Therefore, by replacing αapsq with
the value of UGps, aq, we can update the upper bound without requiring additional memory. The
same approach applies to lower bounds, resulting in a practical and efficient solution.

6 Experiments

Many existing POMDP benchmarks, like RockSample (Smith & Simmons, 2004), feature partial
observability that can be permanently eliminated with a single state request, thereby rendering the
problem trivial. We evaluate AEMS-SR on Tag, where partial observability is restored at the next
timestep, and on RobotDelivery, a new benchmark tailored to POMDP-SR.

RobotDelivery is a grid-world environment (Fig. 2) featuring a main room (width 3, length 2n`1)
with, at the top, n corridors, each two units long and leading to a package pickup point. At the
beginning of each episode, the agent starts at (A) and a package is in one of the pickup-points, with
equal probability. Its mission is to collect the package and deliver it to point (D), receiving a reward
of 1 for each successful delivery. After each delivery, there is a probability e that no new packages
will spawn. Package spawning occurs with probability 1 ´ t into the waiting area (W) and with
probability t in one of the pickup points. If a package is in the waiting area, it has a probability t
of being transferred to a pickup point. The waiting area forces the agent to time its state request as
requesting the state when the package is in (W) would force the agent to request it again. The agent
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Table 1: Experiment results comparing POMCP, AEMS and AEMS-SR with a time limit of 0.1s,
0.5s and 1s on Robot Delivery (with 3, 5 and 7 corridors and cost c “ 0.1) and Tag (cost c “ 1).
AEMS and AEMS-SR use the FIB-SR upper bound and do not improve the offline bounds
during planning. We report the mean and standard error for the return and the Error Reduction
(ER), and the mean for the Number of Expansions (NE).

Return Number of Expansions Error Reduction (%)
T POMCP AEMS AEMS-SR AEMS AEMS-SR AEMS AEMS-SR

RobotDelivery 3
0.1 0.97˘0.00 0.98˘0.00 1.38˘0.01 55 2525 3.8˘0.0 24.1˘0.4
0.5 0.97˘0.00 0.98˘0.00 2.49˘0.03 111 11150 4.4˘0.0 42.4˘0.1
1.0 0.97˘0.00 0.98˘0.00 2.50˘0.03 152 20035 4.6˘0.0 43.7˘0.1

RobotDelivery 5
0.1 0.95˘0.00 0.96˘0.00 1.00˘0.01 29 1292 3.2˘0.0 7.6˘0.2
0.5 0.95˘0.00 0.96˘0.00 1.01˘0.01 59 6668 3.7˘0.0 8.6˘0.2
1.0 0.95˘0.00 0.96˘0.00 1.45˘0.01 80 13347 4.0˘0.0 32.3˘0.3

RobotDelivery 7
0.1 0.93˘0.00 0.93˘0.00 0.93˘0.00 17 696 2.5˘0.0 6.2˘0.0
0.5 0.93˘0.00 0.94˘0.00 0.94˘0.00 37 4024 3.4˘0.0 6.9˘0.0
1.0 0.93˘0.00 0.94˘0.00 0.94˘0.00 51 8071 3.6˘0.0 7.1˘0.0
0.1 -17.43˘0.06 -6.30˘0.06 -4.66˘0.06 20 67 54.7˘0.1 58.8˘0.1

Tag 0.5 -17.45˘0.06 -5.35˘0.08 -4.56˘0.09 56 566 67.8˘0.1 64.2˘0.1
1.0 -17.47˘0.06 -5.35˘0.09 -4.50˘0.09 79 1124 69.6˘0.1 64.9˘0.1

has four possible actions (up, down, left, right). Except when moving into a package location or
delivery location, actions have a failure probability f causing the agent to remain stationary. There
are 5 observations, the first four indicate the number of walls surrounding the agent (0-3), and the
fifth occurs when going up to a pickup point with a package or going down into the delivery zone.

Tag is a grid-world environment (|S| “ 842, |Ω| “ 30) where the agent chases a moving prey (Pineau
et al., 2003). The agent observes its own position if not in the same tile as the prey and a special
observation otherwise. There are 5 actions, 4 corresponding to cardinal directions, each resulting
in a reward of ´1, and one action to tag the prey yielding ´10 if not in the same tile and `10
otherwise. Successfully tagging the prey terminates the episode. The prey observes both positions,
staying in place with a 0.2 probability, and only moves to increase its distance from the agent.

A

P

E

D

W

Figure 2: RobotDelivery (n “ 3), A is the
agent, P the package, D (green) the delivery
location, W (grey) the package waiting area,
E (violet) the exit, and the blue tiles are pos-
sible package locations.

Setup We evaluate AEMS-SR on RobotDelivery en-
vironments with 3, 5, and 7 corridors, resulting in
state spaces of 133, 305, and 541, respectively, along
with Tag. For RobotDelivery, we set γ “ 0.99,
f “ 0.1, t “ 0.8, and e “ 1{3 to achieve an ex-
pected total number of packages as 3. For Tag, we
use γ “ 0.95. We tested 0.1s, 0.5s, and 1s as the
time per action T . We compare against AEMS and
POMCP, both running on the Equivalent POMDP,
and modified to ensure a fair evaluation by consider-
ing the structure of the Equivalent POMDP. AEMS
and AEMS-SR both utilize the FIB-SR upper bound.
Additional implementation details and experiments,
including the Q-MDP upper bound, can be found
in the Appendix. We use R-n and R-n-T to refer
to RobotDelivery with n corridors and T seconds of
compute time, and T-T for Tag.

Metrics For AEMS and AEMS-SR, in addition of the discounted return, we report the following
metrics: (NE): Number of Expansions; (ER): Error Reduction 1´pUGpb0q ´ LGpb0qq{pUpb0q ´ Lpb0qq.
We note that the return is not necessarily correlated with the error reduction.
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Table 2: Experiment results comparing AEMS and AEMS-SR with a time limit of 0.1s, 0.5s and 1s
on Robot Delivery (with 3, 5 and 7 corridors and cost c “ 0.1) and Tag (cost c “ 1). AEMS and
AEMS-SR use the FIB-SR upper bound and improve the offline bounds during planning. We
report the mean and standard error for the return and the Error Reduction (ER), and the mean for
the Number of Expansions (NE).

Return Number of Expansions Error Reduction (%)
T AEMS AEMS-SR AEMS AEMS-SR AEMS AEMS-SR

RobotDelivery 3
0.1 0.98˘0.00 2.33˘0.02 54 2170 3.8˘0.0 72.6˘0.5
0.5 0.98˘0.00 2.11˘0.01 111 8106 4.4˘0.0 77.2˘0.5
1.0 0.98˘0.00 2.03˘0.01 151 13279 5.7˘0.2 79.2˘0.5

RobotDelivery 5
0.1 0.96˘0.00 2.17˘0.02 29 1252 3.2˘0.0 52.2˘0.4
0.5 0.96˘0.00 2.25˘0.02 59 5853 3.7˘0.0 64.8˘0.6
1.0 0.96˘0.00 2.21˘0.02 80 10581 4.0˘0.0 67.4˘0.6

RobotDelivery 7
0.1 0.94˘0.00 1.84˘0.02 17 713 2.5˘0.0 41.1˘0.5
0.5 0.94˘0.00 2.14˘0.02 37 3729 3.4˘0.0 53.2˘0.5
1.0 0.94˘0.00 2.16˘0.02 52 7227 3.6˘0.0 56.5˘0.5
0.1 -6.11˘0.06 -4.83˘0.07 20 68 60.8˘0.1 70.6˘0.1

Tag 0.5 -5.41˘0.09 -4.26˘0.09 55 571 73.7˘0.1 80.8˘0.1
1.0 -5.23˘0.09 -4.53˘0.09 78 1144 74.6˘0.1 82.2˘0.1

Table 1 reports the results for POMCP, and for AEMS and AEMS-SR without the improvement of
bounds. Table 2 reports the results for AEMS and AEMS-SR with the improvement of the bounds
during planning.

In RobotDelivery, POMCP consistently yields an average return below 1, opting to exit the room
immediately without delivering any packages or making state requests. This poor performance is
attributed to the sparse rewards. In Tag, POMCP generally fails to tag the prey and obtains an
average return inferior to ´17.

Results without Improving the Bounds In RobotDelivery, AEMS exhibits a strategy similar
to POMCP’s. In contrast, AEMS-SR achieves an average return of at least 1 in R-3 and R-5
environments, indicating successful package delivery before exiting. Notably, in R-3, with a minimum
of 0.5s per step, AEMS-SR’s return increases to 2.49, reflecting multiple deliveries. However, in the
more complex R-7 scenario, AEMS-SR reverts to an exit-immediately strategy, suggesting potential
areas for further enhancement. In Tag, AEMS performs better than POMCP, as the agent manages
to tag the prey, but it is still outperformed by AEMS-SR.

The ER metric, which improves as T grows, aligns with the strategy of expanding the belief deemed
to have the greatest impact on reducing the error gap at the root. Interestingly, in Tag, AEMS
exhibits a higher ER than AEMS-SR. This is attributed to AEMS episodes being longer, and the
initial steps having a very low ER.

To understand the superior performance of AEMS-SR, we can compare its NE against AEMS.
AEMS-SR conducts up to two orders of magnitude more updates. The reason of this difference
is that AEMS’s belief expansion spawns a new sub-tree for each state in the support (Fig. 1a).
This requires computing many belief updates which is time-consuming. AEMS-SR by leveraging
the graph structure reuses the already expanded corner beliefs, avoiding unnecessary computations.
This empirically proves the advantage of representing the search space as a graph instead of a tree.

Results with Improving the Bounds As detailed in Section 5, the offline bounds can be easily
improved by using the corner beliefs. For AEMS, however, such refinement has minimal impact
on the average return due to the limited number of update steps available for substantial bound
improvement. In contrast, AEMS-SR displays notable performance gains in RobotDelivery. Par-
ticularly in the R-7 environment, moving beyond the exit-immediately strategy it delivers packages
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and obtains an average return over 2 if given at least 0.5s and 1.84 otherwise. This improvement
highlights the efficacy of AEMS-SR combined with online bounds enhancement. In some instances of
AEMS-SR, we observe a significant decrease in NE compared to the non-bounds-improving variant,
suggesting that AEMS-SR reaches an ε solution before the allocated time ends. Additionally, the
ER metric, based on the original offline bounds, is higher in scenarios with bounds improvement.
Both observations are positive indicators of the algorithm’s efficiency.

Overall, the experiments demonstrate AEMS-SR’s superior performance over AEMS and POMCP
in POMDP-SRs, emphasizing the potential for bounds improvement during the learning phase.

7 Related Work

Heuristic search Other heuristic search algorithms are notable in the realm of online planning for
POMDPs. The approach by Satia & Lave (1973) employs a branch and bound strategy and utilizes
a heuristic similar to AEMS, wherein fringe beliefs are weighted by their likelihood of observation.
A key distinction, however, is that all non-dominated actions are deemed equally probable. The
BI-POMDP algorithm (Washington, 1997) aligns more closely with AO*, and therefore AEMS(-
SR), focusing only on fringe nodes accessible with a greedy policy which selects the action that
maximizes the upper bound, akin to our Equation 5. Unlike AEMS, BI-POMDP does not impose
additional weighting on the probability of reaching a particular fringe node and instead prioritizes
node expansion based on maximizing the error gap. In this work, we decided to extend over AEMS
because it was shown to be more efficient (Ross et al., 2008). However, our approach is not limited
to AEMS and could be applied to other heuristic search algorithms.

State requests in POMDPs have seen growing research interest. Bellinger et al. (2021) developed
the AMRL framework, where agents incur a cost to request the next state. This framework, unlike
our POMDP-SR, delays state access and doubles the action space instead of separating the two
decision steps. Their AMRL-Q algorithm, based on Q-learning (Watkins & Dayan, 1992), focuses
on state-conditioned policies rather than histories or beliefs, making it sub-optimal. ACNO-MDPs
(Nam et al., 2021) differ from AMRL by not providing observations without state requests, thus
simplifying belief updates. They propose two RL methods: ‘observe-before-planning’, combining
initial MDP learning with subsequent POMCP application, and ‘observe-while-planning’, where
POMCP or DVRL (Igl et al., 2018) in its deep learning variant, make decisions on state requests
and environmental actions. Krale et al. (2023) further investigate ACNO-MDPs, focusing on timing
state requests through heuristics. While these approaches offer valuable insights, they contrast with
our methodology of planning with a pre-known model and striving for an ε-optimal solution.

8 Conclusion

To address environments where the agent can obtain full state information before each action at
a cost, we introduce the POMDP with State Requests framework. Within this framework, we
present AEMS-SR, a principled algorithm that effectively tackles the exponential growth challenge
in POMDP-SR tree-based search by employing a cyclic graph structure. Our theoretical analysis
proved that AEMS-SR is complete and ε-optimal. Empirical evaluation in RobotDelivery — a novel
benchmark designed for POMDP-SR — and Tag demonstrates AEMS-SR’s superior performance
compared to established algorithms, AEMS and POMCP, in POMDP-SR settings. In future work,
we aim to develop policies π̂G tuned to the specificity of POMDP-SR, and we plan to investigate
the potential application of AEMS-Loop to other subclasses of POMDPs.
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A Equivalent POMDP

In this section, we explain the technicalities of the transformation of a POMDP-SR PSR “ xP, cy
into an equivalent POMDP P 1 “ xS 1, Ω1, A1, A1, P1, O1, R1, γ1y with variable action space and with
P1, O1, R1 defined only over legal actions.

• The state space S 1 ” t0, 1u ˆ S augments the original state space with a binary indicator i,
which equals 0 when the agent needs to decide whether to request the state and 1 for selecting
the environmental action. To ease notations, we add the binary indicator in sup-script si.

• The observations space Ω1 “ Ω Y S Y to˚u; o˚ is a special observation associated with not
requesting the state.

• The action space A1 ” tῑ, ιu Y A includes additional actions: ι for requesting the state, and
ῑ not to request it. The set of legal actions is returned by A which is defined as follows
A

`
s0˘ “ tῑ, ιu, A

`
s1˘ “ A. We note that, since at each time step the states in the support

of the belief have always the same binary indicator i, A can be extended to beliefs.

• The transition function P1 is defined for all s, s1 P S as follows, P1`s10|s1, a
˘ “ Pps1|s, aq

and P1`s11|s0, a
˘ “ 1sps1q, P1`s1i|si, a

˘ “ 0, with 1 the indicator function,

• The observation function O1 : S ˆA Ñ ∆o is defined for legal actions as follows, O1`s10, a
˘ “

Ops1, aq, O1`s11, ι
˘

is a dirac distribution centered in s1, and O1`s11, ῑ
˘
is a dirac distribution

centered in o˚

• The reward function R1 is defined for legal actions as follows: R1`s0, a
˘ “ ´1ιpaqc{?

γ,
R1`s1, a

˘ “ Rps, aq
• γ1 “ ?

γ

B Example of Optimal Action Divergence between MDP, POMDP and
POMDP-SR

10 −10 −10 −100 −100 −10 −10 5

9 9−10 −10

10 10 10

−100

MDP optimal policy

POMDP optimal policy

POMDP-SR optimal policy

Similar observation

with c ∈ [1, 4]

Figure 3: Tree representing an environment where the MDP and POMDP optimal action are the
same but if the agent can request the state for a cost 1 ď c ď 4 the optimal action changes. Circles
represent states, actions are left a1 and right a2,

As discussed in the Framework section, the optimal action in a POMDP-SR scenario may deviate
from that in an MDP or POMDP, even when their optimal actions are aligned. This divergence
is attributed to the capability of requesting state information in future steps. To illustrate this
concept, we present a toy environment, depicted in Figure 3, where such a divergence occurs.

In our example environment, states producing the same observations are enclosed within dashed
boxes. Initially, at state s0, both MDP and POMDP strategies suggest executing action 1, which
leads to expected returns of 10 and 5, respectively. However, in the POMDP-SR, the calculation
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of Q-values yields maxp5, 10 ´ 2cq for action 1 and 9 ´ c for action 2. Consequently, action 2
emerges as the optimal choice when the cost values c lie within the range of r1, 4s. This example
demonstrates how POMDP-SR compels the agent to operate with a forward-looking approach,
considering potential future state requests. This adds a layer of complexity to the decision-making
process, differing significantly from situations in classic POMDPs where state requests are either
limited to the current timestep or entirely absent.

C Notations

We starts by restating some definitions and notations.

• We denote trees as T and graphs as G.

• FpGq is the set of nodes in graph G that does not have any children. We use the same
notation for trees FpT q.

• Corner beliefs corresponds to beliefs where one of the state has probability 1. We use the
notation s to refer both to the state and the associated corner belief.

• ΦGpb0, bq is the set of paths in the graph G that starts on b0 and finishes on b.

• Paths h are sequences of beliefs, action and observations pbi, ai, oi`1qiăT with T “ dphq
being its length. We write paths that start in b1 and ends in b2 as hb2

b1
.

• P ph|b0, πq “ ΠT ´1
i“0 P poi`1|bi, aiqπpai|biq corresponds to the probability of observing the path

h while starting at the root belief b0 and following the policy π.

• ΨG
πpb0, bq “ ř

hPΦGpb0,bq γdphqP ph|b0, πq corresponds to the sum over all possible paths be-
tween the root belief b0 and a belief b of the probability of observing the path discounted
by its length.

• For any belief b P B and lower bound L, we defined the error gap as epbq “ V ˚pbq ´ Lpbq
• For any belief b P B, lower bound L and upper bound U , we defined the approximate error

gap as êpbq “ Upbq ´ Lpbq ě epbq

D Proofs

Theorem 5. In any rooted graph G with root b0 where values are computed according to Equation
3 using a lower bound value function L, bounded bellow, with error epbq “ V ˚pbq ´ Lpbq, the error
on the root belief state is bounded by: eGpb0q “ V ˚pb0q ´ LGpb0q ď ř

bPFpGq Ψπ˚ pb0, bqepbq. where
epbq “ V ˚pbq ´ Lpbq.

Proof. Consider an arbitrary node b P GzFpGq in a graph G that is not a fringe, and a˚
b “

arg maxa Q˚pb, aq the optimal action. By definition γ P r0, 1q. If γ “ 0, then Lpbq “ V ˚pbq “ rpb, a˚
b q

and eGpbq “ 0 which conclude the proof. Therefore let us focus on γ P p0, 1q. By definition of LG we
have LGpb, a˚

b q ď LGpbq.

eGpbq “ V ˚pb0q ´ LGpb0q
ď V ˚pb0q ´ LGpb0, a˚

b q

ď rpb, a˚
b q ` γ

ÿ

oPΩ
P po|b, a˚

b qV ˚pτpb, a˚
b , oqq ´

˜
rpb, a˚

b q ` γ
ÿ

oPΩ
P po|b, a˚

b qLGpτpb, a˚
b , oqq

¸

ď γ
ÿ

oPΩ
P po|b, a˚

b qeGpτpb, a˚
b , oqq
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This result in the following inequality:

eGpbq ď
#

epbq if b P FpGq
γ

ř
oPΩ P po|b, a˚

b qeGpτpb, a˚
b , oqq otherwise

(15)

Let us now consider n P N˚, and unroll the rooted graph G into a tree Tn with root b0 and with
maximum depth n. We define the following elements:

• Similar to our definition of Φ, we define, for all b1 P G, Φnpb0, b1q the set of paths starting
from b0 and finishing in any of the replicas of b1 in Tn. It is important to note that the
length of the paths in Φn are bounded by n. We have limnÑ`8 Φnpb0, b1q “ Φpb0, bq the
(possibly infinite) set of paths between b0 and b1 in G.

• For any b1 P G and any policy π, Ψn
πpb0, b1q “ ř

hPΦnpb0,b1q γdphqPph|b0, πq
• Fn as the fringes nodes of Tn

• FG
n is the set of nodes of Fn that are replicas of a node in FpGq

• F̄G
n “ FnzFG

n

• en “ eTn

We note that Equation 15 hold for any graph including Tn. Therefore, by solving the recurrence in
Tn for b0 we obtain (as in the proof of Theorem 1 of AEMS):

enpb0q ď
ÿ

bPFn

γdpb0,bqP
`
hb

b0 |b0, π˚˘
epbq

ď
ÿ

bPFG
n

γdpb0,bqP
`
hb

b0 |b0, π˚˘
epbq `

ÿ

bPF̄G
n

γdpb0,bqP
`
hb

b0 |b0, π˚˘
epbq

ď
ÿ

bPFpGq
Ψn

π˚ pb0, bqepbq `
ÿ

bPF̄G
n

γdpb0,bqP
`
hb

b0 |b0, π˚˘
epbq

We note that for all b P F̄G
n the associated history h in Tn is of length n. Indeed, if the history size

was shorter than n, b would also be a fringe in G which is impossible by definition of F̄G
n . It follows

that:

enpb0q ď
ÿ

bPFpGq
Ψn

π˚ pb0, bqepbq ` γn
ÿ

bPF̄G
n

P
`
hb

b0 |b0, π˚˘
epbq

ď
ÿ

bPFpGq
Ψn

π˚ pb0, bqepbq ` γn sup
b1

e
`
b1˘

(the sup exists because V ˚ is bounded above and L bellow)

In the limit, when n Ñ `8 we have en Ñ eG , Ψn Ñ Ψ, and γn Ñ 0 as γ P p0, 1q, leading to

eGpb0q ď
ÿ

bPFpGq
Ψπ˚ pb0, bqepbq

Definition 6. We define the approximate error contribution of a fringe node b P FpGq on the value
at the root b0 as

Epb, b0, Gq “ Ψπ̂G pb0, bqêpbq

123



RLJ | RLC 2024

Lemma 7. In any graph G, the approximate error contribution Epb, b0, Gq of a belief node b is
bounded by Epb, b0, Gq ď γdb supb1 êpb1q with db “ minhPΦGpb0,bq dphq.

Proof.

Epb, b0, Gq “ Ψπ̂G pb0, bqêpbq
“

ÿ

hPΦpb0,bq
γdphqPph|b0, π̂Gqêpbq

ď γdb

ÿ

hPΦpb0,bq
Pph|b0, π̂Gqêpbq

ď γdb sup
b1

ê
`
b1˘ ÿ

hPΦpb0,bq
Pph|b0, π̂Gq

ď γdb sup
b1

ê
`
b1˘

Definition 8. We define the set of accessible fringe nodes of a graph G under π̂G as β̂pGq “
tb|b P FpGq and Dh P ΦGpb0, bq, P ph|b0, π̂Gq ą 0u. And the set of possible histories ζ̂pb0, Gq “
th|P ph|b0, π̂Gq ą 0u. We define, for any b P G, the set of possible histories between the root belief b0
and b as Φp

Gpb0, bq “ thb
b0

|hb
b0

P ΦGpb0, bq Ş
ζ̂pb0, Gqu

Definition 9. For all histories h “ pbi, ai, oi`1qiăT , where T “ dphq is the length of the history, we
define the observation probability P ph|b0q “ ΠT ´1

i“0 P poi`1|bi, aiq
Lemma 10. Given U bounded above and L bounded bellow such as Upbq ě V ˚pbq ě Lpbq, and
êpbq “ Upbq ´ Lpbq for all b P B, then for any graph G, ε ą 0 and D P N˚ such that γD supb êpbq ď ε,
if for all b P β̂pGq and for all h P Φp

Gpb0, bq, either dphq ą D or there exists an ancestor b1 P h such
that êGpb1q ď ε, then êGpb0q ď ε.

Proof. For any graph G, and any belief b that is not a fringe belief node b P GzFpGq. We define as
âG

b “ arg maxaPA UGpb, aq.

êGpbq “ UGpbq ´ LGpbq
ď UG

`
b, âG

b

˘ ´ LG
`
b, âG

b

˘

ď r
`
b, âG

b

˘ ` γ
ÿ

oPΩ
P

`
o|b, âG

b

˘
UG

`
τ

`
b, âG

b , o
˘˘ ´

˜
r
`
b, âG

b

˘ ` γ
ÿ

oPΩ
P

`
o|b, âG

b

˘
LG

`
τ

`
b, âG

b , o
˘˘q

¸

ď γ
ÿ

oPΩ
P

`
o|b, âG

b

˘
êG

`
τ

`
b, âG

b , o
˘˘

We obtain the following upper bound for b P G on êGpbq:

êGpbq ď

$
’&
’%

êpbq if b P FpGq
ε if êGpbq ď ε

γ
ř

oPΩ P po|b, a˚
b qêG

`
τ

`
b, âG

b , o
˘˘

otherwise
(16)

We define :

• êG
`
hb

b0

˘ “ êGpbq
• ApGq is the set of possible histories hb

b0
P ζ̂pb0, Gq of length d

`
hb

b0

˘ ă D such that êGpbq ď ε.
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• BpGq is the set of possible histories hb
b0

P ζ̂pb0, Gq of length d
`
hb

b0

˘ ă D such that b P FpGq,
and that for all intermediary b1 P hb

b0
, the partial history hb1

b0
R ApGq.

• CpGq is the set of all possible histories hb
b0

P ζ̂pb0, Gq of size at least D, that do not belong
to BpGq and for all intermediary b1 P hb

b0
, the partial history hb1

b0
R ApGq.

As for all b P β̂pGq and for all h P Φp
Gpb0, bq either dphq ą D or there exists an ancestor b1 P h such

that êGpb1q ď ε, BpGq is empty.

By unfolding the recurrence above we obtain:

êGpb0q “
ÿ

hb
b0

PApGq
γdphb

b0 qP
`
hb

b0 |b0
˘
êGpbq `

ÿ

hb
b0

PCpGq
γdphb

b0 qP
`
hb

b0 |b0
˘
êGpbq

ď ε
ÿ

hb
b0

PApGq
P

`
hb

b0 |b0
˘ `

ÿ

hb
b0

PCpGq
γdphb

b0 qP
`
hb

b0 |b0
˘
êGpbq

ď ε
ÿ

hb
b0

PApGq
P

`
hb

b0 |b0
˘ ` γD sup

b
êpbq

ÿ

hb
b0

PCpGq
P

`
hb

b0 |b0
˘

ď ε
ÿ

hb
b0

PApGq
P

`
hb

b0 |b0
˘ ` ε

ÿ

hb
b0

PCpGq
P

`
hb

b0 |b0
˘

ď ε
ÿ

hb
b0

PApGqYCpGq
P

`
hb

b0 |b0
˘

ď ε

Theorem 11. Given U bounded above and L bounded bellow such as Upbq ě V ˚pbq ě Lpbq,
and êpbq “ Upbq ´ Lpbq for all b P B, if γ P r0, 1q and infb,G|êGpbqąε π̂G

`
b, âG

b

˘ ą 0 for âG
b “

arg maxaPA UGpb, aq, then the AEMS-Loop algorithm using heuristic b̃pGq is complete and ε´ opti-
mal.

Proof. Consider an arbitrary ε ą 0 and the current root belief b0. If γ “ 0, then after one expansion
êGpb0q “ 0 since UGpb0q “ LGpb0q “ maxaPA rpb0, aq. And therefore AEMS-Loop is complete and
ε´optimal.

Lets focus on γ P p0, 1q. Because U is bounded above and L bellow, supb êpbq exists and there exists
D P N such that γD supb êpbq ă ε. We define the following elements:

• AG`
hb

b0

˘
the set of ancestors beliefs of b in the history hb

b0

• AGpbq “ Ť
hb

b0
PΦp

Gpb0,bq AG`
hb

b0

˘
the set of ancestors beliefs of b across possible histories.

• êmin
G pAq “ minbPA êGpbq for any finite set of beliefs A.

• Gb “ tG|G is finite, b P β̂pb0, Gq, maxhPΦp
Gpb0,bq êmin

G
`
AGphq˘ ą εu Intuitively, Gb is the set of

finite graphs G1 with root b0 for which b is an accessible fringe node, i.e. that can be attained
with non zero probability under the policy π̂G1 , and for which there exist an history hb

b0
such

that all the ancestors beliefs b1 in that history have an approximate error gap êG1 pb1q ą ε.
The existence of the max relies on the graph being finite.

• B “ tb|êpbq infGPGb

ř
hPΦGpb0,bq|dphqďD P

`
hb

b0
|b0, π̂G

˘ ą 0u
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The assumption infb,G|êGpbqąε π̂G
`
b, âG

b

˘ ą 0 ensures that B contains all the beliefs states b within
depth D such that (i) êpbq ą 0, (ii) there exists a finite graph G where b P β̂pb0, Gq and for which
there exists an history hb

b0
P Φp

Gpb0, bq such that all ancestors b1 P A
`
hb

b0

˘
have êGpb1q ą ε.

As there are only a finite number of beliefs for which there exists an history of size smaller than D,
B is finite. This allows us to define Emin “ minbPB êpbq infGPGb

ř
hb

b0
PΦGpb0,bq γdphb

b0 qP
`
hb

b0
|b0, π̂G

˘
.

By construction Emin ą 0. We also know that for any graph G, all beliefs b P B X β̂pb0, Gq have an
approximate error contribution Epb, b0, Gq ě Emin

Epb, b0, Gq “ Ψπ̂G pb0, bqêpbq “
ÿ

hb
b0

PΦpb0,bq
γdphb

b0 qP
`
hb

b0 |b0, π̂G
˘
êpbq ě Emin

As γ P p0, 1q and Emin ą 0, there exist D1 P N` such that γD1 supb êpbq ă Emin. Therefore, we know
from Lemma 7 that AEMS-Loop cannot expand any node of depth D1 or more before expanding a
graph G where B X β̂pb0, Gq “ H.

As there exist a finite number of belief nodes for which an history starting from b0 of length at most
D1 exists, it is clear that AEMS-Loop will reach such a graph G after a finite number of expansions.

Since, for this graph G, B X β̂pb0, Gq “ H we have that for all beliefs b P β̂pb0, Gq the possible
histories hb

b0
P Φp

Gpb0, bq with length d
`
hb

b0

˘ ď D have êmin
G

`
AG`

hb
b0

˘˘ ă ε. Therefore, Lemma 10
ensures that êGpb0q ă ε and consequently AEMS-Loop will terminate with an ε-optimal solution in
a finite number of expansions as êG is an upper bound of eG .

E Algorithm to compute Ψ̄ and Ψ̄b0

Algorithm 3 presents the pseudo code to compute Ψ̄ and Ψ̄b0 . The algorithm recursively traverse
the graph by following π̂G and by maintaining two sets, one for the visited corner beliefs and one for
the fringe beliefs.

Algorithm 3: GWalk: computing Ψ̄ and Ψ̄b0

input: belief b, visitedStates V, stateMatrix M , p̄, fringeNodes F̂ , Graph G, root belief b0
1 if b P FpGq then
2 F̂ “ F̂ Y tbu
3 else if πpbq “ ι then
4 for s P supppbq do
5 if ξpbq “ b0 then
6 p̄[s] += brss ˚ Ψ̄pξpbq, b)
7 else
8 Mξpbq,s` “ brss ˚ Ψ̄pξpbq, b)
9 if s R V then

10 V “ V Y tsu
11 for o P Ops, πpsqq do
12 V, M, p̄, F̂ Ð GWalk(τps, πpsq, oq, V, M, p̄, F̂)

13 else
14 for o P Opb, πpbqq do
15 V, M, p̄, F̂ Ð GWalk(τpb, πpbq, oq, V, M, p̄, F̂)

16 return V, M, p̄, F̂
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Table 3: Results for RobotDelivery for POMCP, AEMS and AEMS-SR with 3, 5 and 7 corridors, a
time limit of 0.1s, 0.5 and 1s, a cost c “ 0.1, probability of failure of movement f “ 0.1, probability
transfer from the waiting area t “ 0.8, expected number of packages e “ 3. POMCP results are
averaged on 400 runs. AEMS and AEMS-SR use the Q-MDP upper bound and their results are
averaged over 800 runs. We report the mean and standard error to the mean.

Not Improve Bounds Improve Bounds
Return Return NU ER (%) Return NU ER (%)
POMCP AEMS AEMS-SR AEMS AEMS-SR AEMS AEMS-SR AEMS AEMS-SR AEMS AEMS-SR AEMS AEMS-SR

T ˘0.00 ˘0.00 ˘0 ˘0.0 ˘0

R-3
0.1 0.97 0.98 1.37˘0.01 56 2473˘3 3.9 22.6˘0.4 0.98˘0.00 2.33˘0.02 56 2209˘7 4.0˘0.0 71.6˘0.5
0.5 0.97 0.98 2.48˘0.03 113 10624˘26 4.5 42.1˘0.1 0.98˘0.00 2.12˘0.02 113 7994˘86 4.5˘0.0 78.1˘0.5
1.0 0.97 0.98 2.47˘0.03 156 19142˘49 4.8 41.7˘0.1 1.04˘0.01 2.00˘0.01 152 13671˘188 15.8˘0.7 79.7˘0.5

R-5
0.1 0.95 0.96 1.00˘0.01 28 1287˘2 3.2 7.7˘0.2 0.96˘0.00 2.21˘0.02 29 1251˘4 3.3˘0.0 53.0˘0.4
0.5 0.95 0.96 1.01˘0.01 58 6637˘8 3.8 8.7˘0.2 0.96˘0.00 2.26˘0.02 59 5918˘28 3.8˘0.0 65.9˘0.6
1.0 0.95 0.96 1.54˘0.01 79 13348˘14 4.0 35.7˘0.2 0.96˘0.00 2.21˘0.02 80 10652˘72 4.1˘0.0 67.4˘0.6

R-7
0.1 0.93 0.94 0.94˘0.00 17 704˘1 2.5 6.3˘0.0 0.94˘0.00 1.98˘0.02 17 713˘2 2.6˘0.0 46.3˘0.4
0.5 0.93 0.94 0.94˘0.00 37 4029˘4 3.4 7.0˘0.0 0.93˘0.00 2.17˘0.02 37 3785˘13 3.4˘0.0 53.9˘0.5
1.0 0.93 0.94 0.94˘0.00 51 8042˘8 3.7 7.2˘0.0 0.94˘0.00 2.16˘0.02 51 7313˘32 3.7˘0.0 57.2˘0.5

F Experiment Supplementary Details

POMCP Our implementation of POMCP is an adaptation of the one provided by https://github.
com/Svalorzen/AI-Toolbox to handle the variable action space of the extended POMDP. This
allows us to avoid resorting to deterrent penalties for illegal actions, which can hinder learning.

AEMS Our implementation of AEMS is also tailored for the POMDP-SR structure. This prevents
the need to double the state space, as done in the extended POMDP formulation, ensuring a fair
evaluation as doubling the state space would slow the belief update computation.

Tag The original Tag environment has 870 states, while our implementation has 842. The difference
arises from the number of terminal states; in the original implementation, they differentiate based on
which tile the prey was successfully tagged, while we reduced them to a unique state. The evaluation
is conducted by performing 400 runs on 10 initial states (for a total of 4000 runs). The initial states
are kept identical for all algorithms.

G Additional experiments

Table 3 shows results for the same RobotDelivery instances as in the main paper, but using the
Q-MDP upper bound. Generally, both upper bounds yield similar average results. A notable
exception is observed in R-3-1, where AEMS with improved bounds achieves an average return
of 1.04, suggesting a shift away from the exit-directly strategy in certain instances. This further
underscores the benefit of improving bounds during the online phase.

Table 4 presents the results for a modified RobotDelivery version with a movement failure probability
f “ 0.2, also using the Q-MDP upper bound for ease of comparison. AEMS’s performance remains
unaffected by this change, with variations in return due to the longer expected exit time. AEMS-SR
shows lower returns compared to the f “ 0.1 scenario. This outcome was expected given that the
increasing f results in expending the support of the beliefs and on increasing the necessary time to
pickup and deliver packages. Nonetheless, AEMS-SR still outperforms AEMS and POMCP, both
consistently adopting the exit-immediately strategy.

Table 5 details results for the RobotDelivery environment with a state request cost of c “ 0.25,
maintaining other parameters as in the main paper. Given our use of a greedy policy to approximate
π˚, increasing the cost requires a more significant reduction in the no-request action’s upper bound
for AEMS-SR to consider state requests. This makes the problem more difficult. In contrast to
POMCP and AEMS, which consistently opt for immediate exits, AEMS-SR still manages to deliver
packages in R-3-1 without bounds improvement and in all R-3 instances if updating the offline
bounds.
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Table 4: Results for RobotDelivery for POMCP, AEMS and AEMS-SR with 3, 5 and 7 corridors, a
time limit of 0.1s, 0.5 and 1s, a cost c “ 0.1, probability of failure of movement f “ 0.2, probability
transfer from the waiting area t “ 0.8, expected number of packages e “ 3. POMCP results are
averaged on 400 runs. AEMS and AEMS-SR use the Q-MDP upper bound and their results are
averaged over 800 runs. We report the mean and standard error to the mean.

Not Improve Bounds Improve Bounds
Return Return NU ER (%) Return NU ER (%)
POMCP AEMS AEMS-SR AEMS AEMS-SR AEMS AEMS-SR AEMS AEMS-SR AEMS AEMS-SR AEMS AEMS-SR

T ˘0.00 ˘0.00 ˘0 ˘0.0 ˘0.00 ˘0 ˘0.0

R-3
0.1 0.97 0.98 1.15˘0.01 55 2289˘5 3.6 13.6˘0.4 0.98 2.43˘0.03 55 2240˘7 3.6 59.6˘0.5
0.5 0.97 0.98 2.45˘0.03 111 10410˘29 4.1 39.5˘0.1 0.97 2.33˘0.02 112 8627˘66 4.1 70.4˘0.5
1.0 0.97 0.98 2.48˘0.03 151 18972˘63 4.3 41.8˘0.1 0.97 2.23˘0.02 152 14465˘149 4.3 73.0˘0.5

R-5
0.1 0.94 0.95 0.95˘0.00 28 1302˘2 3.0 6.3˘0.0 0.95 0.99˘0.01 28 1337˘2 3.1 38.5˘0.7
0.5 0.95 0.95 0.97˘0.00 57 6121˘8 3.6 7.7˘0.1 0.95 2.10˘0.03 58 6105˘22 3.7 50.4˘0.6
1.0 0.95 0.95 1.04˘0.01 78 11433˘27 3.8 11.0˘0.3 0.95 2.19˘0.02 79 11608˘50 3.9 58.9˘0.5

R-7
0.1 0.92 0.93 0.93˘0.00 16 725˘1 2.4 6.0˘0.0 0.93 0.93˘0.00 16 732˘1 2.5 6.3˘0.0
0.5 0.92 0.93 0.93˘0.00 35 4025˘4 3.2 7.3˘0.0 0.93 1.55˘0.02 36 4023˘11 3.3 39.3˘0.7
1.0 0.92 0.93 0.93˘0.00 49 7711˘7 3.4 7.7˘0.0 0.93 1.89˘0.02 50 7553˘27 3.5 43.4˘0.6

Table 5: Results for RobotDelivery for POMCP, AEMS and AEMS-SR with 3, 5 and 7 corridors, a
time limit of 0.1s, 0.5 and 1s, a cost c “ 0.25, probability of failure of movement f “ 0.2, probability
transfer from the waiting area t “ 0.8, expected number of packages e “ 3. POMCP results are
averaged on 400 runs. AEMS and AEMS-SR use the Q-MDP upper bound and their results are
averaged over 800 runs. We report the mean and standard error to the mean.

Not Improve Bounds Improve Bounds
Return Return NU ER (%) Return NU ER (%)
POMCP AEMS AEMS-SR AEMS AEMS-SR AEMS AEMS-SR AEMS AEMS-SR AEMS AEMS-SR AEMS AEMS-SR

T ˘0.00 ˘0.00 ˘0.00 ˘0 ˘0.0 ˘0.00 ˘0 ˘0.0

R-3
0.1 0.93 0.98 0.98 54 2416˘3 3.9 6.9˘0.0 0.98 2.38˘0.03 55 2308˘5 3.9 75.7˘0.2
0.5 0.94 0.98 0.98 110 12043˘14 4.5 7.9˘0.0 0.98 2.31˘0.03 111 11220˘29 4.5 78.7˘0.2
1.0 0.94 0.98 1.65 150 24867˘27 4.8 37.6˘0.1 0.98 2.42˘0.03 151 22689˘52 4.8 80.8˘0.2

R-5
0.1 0.93 0.96 0.96 28 1317˘2 3.2 6.7˘0.0 0.96 0.96˘0.00 28 1331˘2 3.2 6.7˘0.0
0.5 0.93 0.96 0.96 57 6973˘8 3.8 7.8˘0.0 0.96 0.96˘0.00 59 7051˘7 3.8 7.9˘0.0
1.0 0.93 0.96 0.96 79 14020˘15 4.0 8.3˘0.0 0.96 0.96˘0.00 80 14185˘13 4.1 8.3˘0.0

R-7
0.1 0.92 0.93 0.93 17 721˘1 2.5 6.3˘0.0 0.94 0.93˘0.00 17 726˘1 2.6 6.4˘0.0
0.5 0.92 0.94 0.93 37 4198˘4 3.4 7.7˘0.0 0.94 0.94˘0.00 37 4231˘4 3.4 7.7˘0.0
1.0 0.92 0.94 0.94 50 8567˘7 3.7 8.2˘0.0 0.94 0.94˘0.00 51 8638˘8 3.7 8.2˘0.0
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We note that EMS-SR’s performance does not uniformly improve with increased compute time per
step. Upon examining the results, we identified instances where AEMS-SR, while carrying a package
in the corridor, consistently chooses the right action over the down action, resulting in the agent
staying in place. This behavior occurs because both actions yield nearly identical optimal values,
differing only by a factor of γ, and that the dynamic programming approach used in backtracking
converges to an ε-solution, potentially introducing minor errors that can persist over time due to
bound updates.
Remark 1. All AEMS-SR and AEMS experiments were conducted on an Intel Xeon Gold CPU,
utilizing a single core and less than 300Mb of RAM.
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Abstract

Q-learning algorithms are appealing for real-world applications due to their
data-efficiency, but they are very prone to overfitting and training instabilities
when trained from visual observations. Prior work, namely SVEA, finds that
selective application of data augmentation can improve the visual generalization
of RL agents without destabilizing training. We revisit its recipe for data aug-
mentation, and find an assumption that limits its effectiveness to augmentations
of a photometric nature. Addressing these limitations, we propose a generalized
recipe, SADA, that works with wider varieties of augmentations. We benchmark
its effectiveness on DMC-GB2 – our proposed extension of the popular DMControl
Generalization Benchmark – as well as tasks from Meta-World and the Distracting
Control Suite, and find that our method, SADA, greatly improves training stability
and generalization of RL agents across a diverse set of augmentations.

Visualizations, code and benchmark: https://aalmuzairee.github.io/SADA

1 Introduction

Visual Reinforcement Learning (RL) has a myriad of real-world applications (Mnih et al., 2013;
Levine et al., 2016; Pinto & Gupta, 2016; Kalashnikov et al., 2018; Berner et al., 2019; Vinyals
et al., 2019), and visual Q-learning algorithms are especially enticing because of their potential for
high data-efficiency. However, they are very prone to overfitting on their training distribution due
to the combination of flexible representation, high-dimensional data, and limited visual diversity in
training environments (Peng et al., 2018; Cobbe et al., 2019; Julian et al., 2020).

Data augmentation is a widely used technique for learning visual invariances in supervised learning
(Noroozi & Favaro, 2016; Tian et al., 2019; Chen et al., 2020), but has been found to cause training
instabilities when applied to visual RL (Lee et al., 2019; Laskin et al., 2020; Hansen & Wang,
2021). Prior work, SVEA (Hansen et al., 2021b), found that a more selective application of data
augmentation in the critic update of actor-critic algorithms (Lillicrap et al., 2016; Haarnoja et al.,
2018) improved training stability significantly. The actor (policy) – which shares its visual backbone
with the critic (Q-function) – is then optimized solely from unaugmented observations. By sharing
their visual backbone, the actor indirectly benefits from the learned invariances.

In this work, we revisit the data augmentation recipe proposed in SVEA, and discover an assumption
that limits its practicality to augmentations of a photometric (color or light altering) nature. SVEA
assumes that an encoder’s output embedding can become fully invariant to input augmentations.
If an encoder’s output is fully invariant to input augmentations, then an actor, only trained on
unaugmented observations, can become robust to input augmentations indirectly through a shared
actor-critic encoder. However, this leads to two key failure cases: (i) the output of a convolutional
neural network (CNN) encoder can not become invariant to input geometric augmentations e.g.,

∗Sponsored by an institutional fellowship from Kuwait University. The support is gratefully acknowledged.
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Figure 1. Augmentation Effect on CNN Output. We illustrate how the output embedding of a
trained CNN changes wrt. image augmentations. The output of unaugmented and photometrically
augmented images are identical due to the ability of a CNN to learn color invariances. However, the
output of a CNN is generally not invariant to geometric augmentations (e.g., rotation).

rotation or translation; (see Figure 1) and (ii) the encoder and critic are trained end-to-end, thus,
part of the invariance may be off-loaded to the critic regardless of the type of augmentation.

To address these limitations, we propose SADA: Stabilized Actor-Critic under Data Augmentation,
a generalized data augmentation recipe that supports a wide variety of augmentations. Instead of
only augmenting critic inputs, SADA augments both actor and critic inputs, but does so carefully
to avoid training instabilities: (1) in actor updates, only the policy input is augmented while the
Q-function input is left unaugmented, (2) in critic updates, only the online Q-function input is aug-
mented while the target Q-function input is unaugmented, and (3) we jointly optimize components
on both augmented and unaugmented data. Importantly, SADA requires no additional forward
passes, losses, or parameters.

To stress-test our method, we propose DMC-GB2, an extension of the DeepMind Control Suite
Generalization Benchmark (Hansen & Wang, 2021) that encompasses a wider and more challenging
collection of test environments than existing benchmarks. We benchmark methods across DMC-
GB2, tasks from Meta-World (Yu et al., 2020), and the Distracting Control Suite (Stone et al.,
2021), and find that SADA greatly improves training stability and generalization of RL agents
under a diverse set of augmentations.

2 Prior Work on Data Augmentation for Visual RL

The practice of learning visual invariances by augmenting data is ubiquitous in machine learning
literature, and has been studied extensively in the context of supervised and self-supervised learning
algorithms for computer vision problems (Noroozi & Favaro, 2016; Wu et al., 2018; van den Oord
et al., 2018; Tian et al., 2019; Chen et al., 2020; He et al., 2022). More recently, use of augmentation
has also been popularized in the context of visual RL. However, there is mounting evidence that
much of the wisdom and practices developed in other areas (e.g. computer vision) do not translate
to RL problems, presumably due to differences in learning objectives, datasets, and network archi-
tectures used. For example, while machine learning literature commonly considers a fixed dataset,
RL algorithms are often trained on a non-stationary data distribution (replay buffer) that changes
throughout training, and incoming data is typically a function of the current (behavioral) policy. As
a result, RL datasets are often small and have limited diversity. This section provides an overview
of prior work that leverages data augmentation to improve data-efficiency and generalization.

Improving data-efficiency with data augmentation. Much of the existing literature on visual
RL leverages weak data augmentation (e.g. random crop or image shift) as a regularizer when data
is limited, i.e., when data-efficiency is critical (Srinivas et al., 2020; Laskin et al., 2020; Kostrikov
et al., 2020; Stooke et al., 2020; Yarats et al., 2021; Hansen et al., 2023), without particular em-
phasis on generalization or robustness to changes in the environment. For example, seminal works
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RAD (Laskin et al., 2020) and DrQ (Kostrikov et al., 2020) demonstrate that randomly cropping or
shifting images, respectively, by a few pixels greatly improves data-efficiency and training stability
of Q-learning algorithms – even when agents are trained and tested in the same environment. How-
ever, Laskin et al. (2020) simultaneously find that other types of augmentation (rotation, random
convolution, masking) lead to training instabilities and a substantial decrease in data-efficiency.

Improving generalization with data augmentation. Visual generalization is a challenging but
increasingly important problem in RL due to its limited data diversity. Multiple prior works aim
to improve the training stability and generalization of RL algorithms by, e.g., proposing new types
of augmentation (Lee et al., 2019; Wang et al., 2020; Hansen & Wang, 2021; Hansen et al., 2021b;
Zhang & Guo, 2021; Wang et al., 2023), or introducing new (auxiliary) objectives (Raileanu et al.,
2020; Hansen et al., 2021a; Wang et al., 2021; Fan et al., 2021; Yuan et al., 2022; Yang et al., 2024).
For example, Lee et al. (2019) augment high-frequency content in observations using random convo-
lution, Hansen & Wang (2021) randomly overlay observations with out-of-domain images, and Yang
et al. (2024) adapt to camera changes at test-time using an auxiliary self-supervised objective and
augmented data. Perhaps most importantly, SVEA (Hansen et al., 2021b) investigate why strong
augmentations (such as those used in the aforementioned works) often destabilize training in an RL
context, and propose an alternative method of applying augmentations that mitigate these instabil-
ities. Our work builds upon SVEA and demonstrates that – while SVEA is robust to photometric
augmentations – it largely fails when applied to (equally important) geometric augmentations.

We recommend the survey by Kirk et al. (2023) for a more comprehensive overview of prior work.

3 Background & Definitions

Visual Reinforcement Learning (RL) formulates interaction between an agent and its environ-
ment as a Partially Observable Markov Decision Process (POMDP) (Kaelbling et al., 1998). A
POMDP can be formalized as a tuple (S,O,A, T , R, γ), where S is an unobservable state space,
o ∈ O are observations from the environment (e.g., RGB images), a ∈ A are actions, T : S ×A 7→ S
is a transition function, r is a task reward from a reward function R : S × A 7→ R, and γ is a
discount factor. Throughout this work, we approximate the unobservable states s ∈ S by defining
observations as a stack of the three most recent RGB frames ot

.= {xt, xt−1, xt−2} for frames xt:t−2
at time t (Mnih et al., 2013). The goal is then to learn a policy π : O 7→ A such that the discounted
sum of rewards Eπ [

∑∞
t=0 γtrt] is maximized (in expectation) when following the policy π.

Q-Learning algorithms developed for visual RL generally estimate the optimal state-action value
function Q∗ : O × A 7→ R with a neural network (denoted the critic). This is achieved by dy-
namic programming using the single-step Bellman error Q(ot, at) − yt where yt is the temporal
difference (TD) target yt

.= rt + γQ(ot+1, at+1), at+1 ∼ π(·|ot+1). In practice, the Q-network
used to compute yt is usually chosen to be an exponential moving average of the Q-function being
learned (Lillicrap et al., 2016; Haarnoja et al., 2018). The policy π is obtained by taking the action
at ≈ arg maxat

Q(ot, at) ∀ot in the current dataset (replay buffer), which is typically estimated by
training a separate actor network when A is continuous. These two components – the actor and
the critic – are iteratively updated by collecting data in the environment, appending it to a replay
buffer D, and optimizing Q, π with the following objectives using stochastic gradient descent:

LQ(D) = E(ot,at,rt,ot+1)∼D [∥Q(ot, at)− yt∥2] (critic) (1)
Lπ(D) = Eot∼D [−Q(ot, π(ot)] (actor) (2)

where gradients of the first objective are computed wrt. Q only, and gradients of the second objective
are computed wrt. π only. When learning from images, observations are commonly encoded using
a shared convolutional encoder f such that Q, π are redefined as Q(f(ot), a) and π(f(ot)), with f
only being updated by the critic objective LQ. Due to the recurrent and self-referential nature of
Equations 1-2, Q-learning algorithms are often more data-efficient than other algorithm classes, but
are very prone to training instabilities – especially when data augmentation is applied to observations.
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Figure 2. Our approach. Overview of SADA applied to a generic actor-critic algorithm. We
highlight our algorithmic contributions in yellow. SADA selectively applies augmentations to the
actor and critic inputs, and modifies the learning objectives accordingly.

Image transformations. Throughout this work, we classify image transformations into two types:
photometric and geometric transformations. Photometric transformations alter image color and
lighting properties while preserving the spatial arrangement of pixels (e.g. random convolution,
image overlay). Geometric transformations alter the spatial arrangement of pixels while keeping
image color and lighting properties intact (e.g. rotation, shift). We visualize examples of photometric
and geometric transformations in Figure 1.

4 Stabilized Actor-Critic Learning under Data Augmentation

We revisit common wisdom and practices when applying data augmentation in Q-learning algo-
rithms, and discover that prior work makes an assumption that only holds for augmentations
that are photometric in nature. We propose SADA: Stabilized Actor-Critic Learning under Data
Augmentation, a generalized recipe for data augmentation that significantly improves the perfor-
mance of a wider variety of augmentations. We start by outlining the assumptions of prior work, its
implications, and then present our proposed solution.

4.1 Shortcomings of Prior Work

Naive augmentation, where all inputs are indiscriminately augmented, has been shown to lead poli-
cies to suboptimal convergence (Raileanu et al., 2020; Hansen et al., 2021b). Unlike supervised
learning, the application of augmentation in RL can lead to a conflict of task objective, conflict of
learning objective, or increased variance that exacerbates instabilities within actor-critic frameworks.

To stabilize actor-critic learning under strong applications of data augmentation, SVEA (Hansen
et al., 2021b) selectively applies augmentations in the critic updates, without any application of
augmentation in the actor updates. The actor – optimized purely from unaugmented observations
– becomes robust to augmentations indirectly, through the use of a shared actor-critic encoder. By
using this formulation, SVEA assumes that the encoder can output embeddings that are invariant
to input augmentations, such that an actor can indirectly become robust to input augmentations.
This assumption leads to two key failure cases: (i) the output embedding of a CNN encoder can
not become invariant to input geometric augmentations, (ii) even with photometric augmentations,
part of the robustness could be off-loaded to the critic.

We provide a motivating example for key failure case (i) in Figure 1 and show that geometric
transformations will always induce changes in a CNN’s output embedding. Therefore, an actor
not directly trained on these changed output embeddings will not become robust to these geometric
transformations. As for key failure case (ii), a CNN can learn to output embeddings that are invariant
to input photometric augmentations. However, the objective is formulated such that the output of
the critic is robust to input image augmentations, indicating that if either the encoder or the critic
is robust, the objective will be satisfied. Therefore, some of the photometric resistance might be
contained within the critic, rendering the actor weaker against photometric transformations.
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4.2 Our Proposed Recipe

To mitigate shortcomings of previous works, the actor needs to directly train on the augmented
stream. However, naively training the actor on the augmented stream exacerbates training insta-
bilities. Each image augmentation applied adds a more complex distribution for the agent to learn
compared to the original training distribution. To overcome this complexity, we introduce SADA, a
general framework for stabilizing actor-critic agents under strong applications of data augmentation.

In the actor’s update, we elect to use asymmetric observation inputs to the policy and Q-function
(Pinto et al., 2017). Specifically, we allow the policy to observe both the augmented and unaugmented
streams, while the Q-function estimates the Q-value observing only the unaugmented stream. Since
the Q-value estimates of both the augmented and unaugmented streams should be identical, we allow
the Q-function to exploit only the unaugmented stream (easier distribution) in making accurate Q-
value estimates. Given an observation ot, replay buffer D, and an encoder fξ, the actor objective
for a generic actor critic thus becomes:

LSADA
πϕ

(D) = Eot∼D [−Qθ(mt, πϕ(pt))] (actor) (3)

where pt = fξ([ot, oaug
t ]N ), mt = fξ([ot, ot]N ) and oaug

t = aug(ot, vt), vt ∼ V. We use [·]N to denote
concatenation for batch size of dimensionality N where ot, oaug

t ∈ RN×C×H×W . We use aug() as the
augmentation operator where we stochastically sample from the augmentation distribution V and
apply it to the input observation.

In the critic update, we apply a similar asymmetric observation setup with the Q-value and Q-
target estimates. We allow the online Q-function, Qθ, to estimate the Q-value observing both the
augmented and unaugmented streams, while the target Q-function, Qθ, estimates the Q-targets
observing only the unaugmented stream. Since the Q-target estimates of both the augmented and
unaugmented streams should be identical, this reduces the variance in Q-target estimates and allows
the target Q-function to exploit the unaugmented stream (easier distribution) in making accurate
Q-target estimates. The Q-target estimate, qtgt

t , is unaltered while the critic objective, LSADA
Qθ

, is
changed such that:

qtgt
t = r(ot, at) + γmaxa′

t
Qθ(fξ(ot+1), a′) (4)

LSADA
Qθ

(D) = E(ot,at,rt,ot+1)∼D [∥Qθ(pt, at)− yt∥2] (critic) (5)

where pt = fξ([ot, oaug
t ]N ), and yt =

[
qtgt

t , qtgt
t

]
N

. An overview of our algorithm is provided
in Figure 2. A detailed SAC-based formulation is provided in Appendix A.3, and pseudocode is
provided in Appendix A.4.

5 Experiments

We evaluate our method and baselines across 11 visual RL tasks from the DMControl (Tassa et al.,
2018) and Meta-World-v2 (Yu et al., 2020) benchmarks and 12 test distributions from our proposed
DMControl - Generalization Benchmark 2 (DMC-GB2). We additionally evaluate on the Distracting
Control Suite (Stone et al., 2021) and provide the results in Appendix B.2. All methods are trained
under strong augmentations in the training environments and evaluated in a zero-shot manner on
their respective test distributions. See Figure 3 for a visualization of DMC-GB2 test environments.
The full DMControl and Meta-World task lists are provided in Appendix A.2. Concretely, we aim
to answer the following questions through experimentation:

- Robustness. How does SADA compare to baselines in terms of overall augmentation robust-
ness? In terms of geometric vs photometric robustness?

- Analysis. Why do baselines fail to display geometric robustness, and how does SADA solve
the problem? How do each of the SADA design choices affect results?

- Generality. Can SADA be readily applied to other RL backbones and benchmarks?
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Figure 3. Overall Robustness. (Top) Samples from the DMC-GB2 test distributions, divided into
geometric and photometric test sets. (Bottom) Episode reward on DMC-GB2 when trained under
all (geometric and photometric) augmentations, averaged across all DMControl tasks. Mean and
95% CI over 5 seeds.

Setup. We build on DrQ (Laskin et al., 2020) as our backbone algorithm, and use a fixed set of
hyperparameters across all tasks and environments. All agents are trained for one million environ-
ments steps and use stacks of the three most recent RGB frames (3× R(3×84×84)) as observations.
A full list of hyperparameters and training details is provided in Appendix A.

Test environments. As our experiments will reveal, previous methods largely fail to generalize
to geometric changes, which has gone unnoticed due to existing benchmarks predominantly evalu-
ating photometric robustness. Therefore, we propose the Deepmind Control Suite Generalization
Benchmark 2 (DMC-GB2), an extension of DMC-GB (Hansen & Wang, 2021) to encompass a wider
collection of photometric and geometric test distributions. In DMC-GB2, we provide geometric
and photometric test sets. The geometric test set considers two types of geometric distributions –
rotations and shifts – both individually and jointly, and at varying intensities categorized as easy
and hard environments. The photometric test set considers a complementary setup for two types
of photometric distributions – colors and videos. Detailed visualizations of all 12 DMC-GB2 test
distributions is provided in Appendix C.2.

Data augmentation. We apply a weak augmentation of random shifting to all our inputs as
conducted in our DrQ baseline, and consider it unaugmented. We further employ a set of strong
augmentations, taking into account both geometric and photometric transformations. For geometric
augmentations, we use random shift (Laskin et al., 2020), random rotation, and a combination
consisting of random rotation followed by random shift. For photometric augmentations we use
random convolution (Lee et al., 2019), random overlay (Hansen & Wang, 2021), and a combination
consisting of random convolution followed by random overlay. We sample an augmentation from this
set of six strong augmentations for each input sample in all our experiments unless stated otherwise.
Detailed visualizations of all augmentations is provided in Appendix C.1.

Baselines. We benchmark our method against the following well-established baselines. 1) DrQ
Laskin et al. (2020), a visual based Soft Actor Critic baseline that uses random shifts as the default
augmentation for all inputs. 2) DrQ + Aug, a variant of DrQ implemented with a naive application
of strong augmentations. 3) SVEA Hansen et al. (2021b), which builds on DrQ with a selective
application of augmentation in the Q-function to increase robustness under strong augmentations.

5.1 Results & Discussion

Robustness. For measuring the overall robustness, we train all methods under all augmentations
(geometric and photometric augmentations) and evaluate them on all DMC-GB2 test sets (geometric
and photometric test sets). As our empirical results indicate in Figure 3, SADA’s overall robustness
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Figure 4. Geometric vs Photometric Robustness. Episode reward averaged over all DMControl
tasks. (Top) Trained under geometric augmentations and evaluated on DMC-GB2 geometric test
set. (Bottom) Trained under photometric augmentations and evaluated on DMC-GB2 photometric
test set. All hard levels visualized. Mean and 95% CI over 5 random seeds.

surpasses the baselines in all DMC-GB2 test sets by a large margin (77%), all while attaining a
similar sample efficiency to its unaugmented DrQ baseline on the training environment.

To analyze the geometric vs photometric robustness of each method, we conduct another experiment
where we train under each set of augmentations separately. We train under strong geometric aug-
mentations and evaluate on the geometric test set, and follow a complementary setup under strong
photometric augmentations with the photometric test set. We visualize the results in Figure 4 along
with all the individual hard level intensities in our test suite. SADA consistently shows superior
robustness, outperforming baselines in all separate test sets and individual levels while achieving
similar training sample efficiency to its unaugmented DrQ baseline. Extended results and per-task
breakdowns are provided in Appendix D.

Analysis. While baselines show varying degrees of photometric robustness, they fail to display
geometric robustness in Figures 3 and 4. For the DrQ baseline, geometric transformations are out
of its training distribution. With naive application of data augmentation, DrQ + Aug achieves
poor training sample efficiency. To achieve high training sample efficiency, SVEA selectively applies
augmentation in the critic update. Nevertheless, this performance does not translate to the geometric
test distributions due to key failure case (i), the output embedding of a CNN can not become invariant
to input geometric transformations. This failure case can only be resolved with an actor directly
trained on the input augmentations. When the actor is directly trained on the input augmentations
using SADA’s objective, the agent is able to achieve high training sample efficiency that effectively
translates to the geometric test distributions.
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Even in terms of photometric robustness, SADA surpasses all baselines,
including SVEA. This is mainly due to failure case (ii) of SVEA’s assump-
tion, where some of the augmentation robustness is contained within the
critic and not the encoder. This can also be resolved by training the actor
directly on the input augmentations using SADA’s objective.

To quantitatively assess the augmentation robustness of converged SADA
and SVEA agents, we measure the variance of actions predicted on the
augmented observations with respect to the unaugmented observations in
Figure 5. Despite being trained on all augmentations, SVEA’s action pre-
dictions have high variance when observing geometric augmentations as
opposed to photometric augmentations, confirming SVEA’s shortcomings.
For a qualitative assessment, we utilize T-SNE to visualize the encoder’s
output embedding before being fed into the actor and the critic in Ap-
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Figure 6. Ablations. Episode reward on DMC-GB2 when trained under all augmentations, av-
eraged across all DMControl tasks. SADA (Naive Actor Aug) and SADA (Naive Critic Aug) cor-
respond to naive application of augmentation to the actor and the critic respectively. SADA (No
Critic Aug) corresponds to applying augmentation only to the actor without any application of aug-
mentation to the critic. More details in Appendix B.1. Mean and 95% CI over 5 random seeds.

pendix B.3. Our findings reveal that photometric distributions can share the same space in the
latent embedding as the original training distribution, while geometric distributions are distant in
the latent space and seem to have little overlap with the training distribution, necessitating the need
to directly train the actor on them.

We ablate each of our design choices, evaluating methods under all augmentations on all DMC-
GB2 test sets, and show results in Figure 6. Naively applying augmentation to the actor or the
critic, as displayed in SADA (Naive Actor Aug) and SADA (Naive Critic Aug) respectively, leads
to deteriorated performance. As for SADA (No Critic Aug), we only apply augmentation to the
actor using SADA’s objective without any application of augmentation to the critic. SADA (No
Critic Aug) displays impressive geometric robustness and training sample efficiency, but lacks in
photometric robustness. If a user is only interested in geometric robustness, SADA (No Critic Aug)
provides commendable geometric robustness. Overall, each of our design choices play a key role in
establishing the superiority of SADA in all applications of data augmentation.

Generality. To demonstrate the generality of our approach, we swap our DrQ backbone with
TD-MPC2 (Hansen et al., 2022; 2024), a state-of-the-art model-based RL algorithm; results are
shown in Figure 7. We observe that SADA similarly improves training stability and generalization
of TD-MPC2 on DMC-GB2.

We further evaluate our DrQ-based SADA on our Meta-World setup (see Appendix C.3), and show-
case the results in Figure 8. Even on Meta-World, SADA surpasses all other baselines in terms of
success rate, all while achieving similar training sample efficiency to its unaugmented DrQ baseline.
This asserts that SADA can be readily applied to diverse tasks, environments, and backbones, and
can be used a generic data augmentation strategy for modern visual based reinforcement learning.

0 0.1M 0.2M
0

250

500

750

1000

Al
l A

ug
s

Train

0

250

500

750

1000

368 273

Avg All

DMControl
TD-MPC2 Baseline

TD-MPC2 + SADA TD-MPC2 + Aug

Figure 7. TD-MPC2 Baseline. Episode re-
ward on DMC-GB2 when trained under all aug-
mentations with a TD-MPC2 backbone, aver-
aged across all DMControl tasks. Mean and
95% CI over 5 seeds.

0 0.5M 1M
0

25

50

75

100

Sh
ift

 A
ug

Train

0

25

50

75

100
68

30
50

2

Shift Hard

Meta − World
5 tasks

SADA SVEA DrQ + Aug DrQ

Figure 8. Meta-World. Success rate (%)
on Shift Hard (Meta-World) distribution when
trained under strong shift augmentation only,
averaged across all Meta-World tasks. Mean
and 95% CI for 5 random seeds.

137



RLJ | RLC 2024

6 Summary

Throughout this work, we give an overview of data augmentation within visual RL, highlighting the
shortcomings of previous work, its implications, and presenting SADA, a generic data augmentation
recipe for modern visual based reinforcement learning. We empirically prove SADA’s superiority
to previous methods and provide a deep analysis of its effectiveness. Concurrently, we curated a
comprehensive visual generalization benchmark, DMC-GB2, which we make publicly available at
https://aalmuzairee.github.io/SADA, with the aim of furthering research efforts within visual RL.

138



RLJ | RLC 2024

References
Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw Debiak, Christy

Dennison, David Farhi, Quirin Fischer, et al. Dota 2 with large scale deep reinforcement learning.
ArXiv, abs/1912.06680, 2019.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations, 2020.

K. Cobbe, Oleg Klimov, Christopher Hesse, Taehoon Kim, and John Schulman. Quantifying gener-
alization in reinforcement learning. In Icml, 2019.

Linxi Fan, Guanzhi Wang, De-An Huang, Zhiding Yu, Li Fei-Fei, Yuke Zhu, and Animashree Anand-
kumar. Secant: Self-expert cloning for zero-shot generalization of visual policies. In Marina Meila
and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning,
volume 139 of Proceedings of Machine Learning Research, pp. 3088–3099. PMLR, 18–24 Jul 2021.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. arXiv preprint
arXiv:1801.01290, 2018.

Nicklas Hansen and Xiaolong Wang. Generalization in reinforcement learning by soft data augmen-
tation. In International Conference on Robotics and Automation, 2021.

Nicklas Hansen, Rishabh Jangir, Yu Sun, Guillem Alenyà, Pieter Abbeel, Alexei A. Efros, Lerrel
Pinto, and Xiaolong Wang. Self-supervised policy adaptation during deployment. In International
Conference on Learning Representations, 2021a.

Nicklas Hansen, Hao Su, and Xiaolong Wang. Stabilizing deep q-learning with convnets and vision
transformers under data augmentation. In Annual Conference on Neural Information Processing
Systems (NeurIPS), 2021b.

Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal difference learning for model predictive
control. In International Conference on Machine Learning (ICML), 2022.

Nicklas Hansen, Zhecheng Yuan, Yanjie Ze, Tongzhou Mu, Aravind Rajeswaran, Hao Su, Huazhe Xu,
and Xiaolong Wang. On pre-training for visuo-motor control: Revisiting a learning-from-scratch
baseline. In International Conference on Machine Learning (ICML), 2023.

Nicklas Hansen, Hao Su, and Xiaolong Wang. TD-MPC2: Scalable, robust world models for con-
tinuous control, 2024.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000–16009, 2022.

Ryan C. Julian, Benjamin Swanson, Gaurav S. Sukhatme, Sergey Levine, Chelsea Finn, and
Karol Hausman. Efficient adaptation for end-to-end vision-based robotic manipulation. ArXiv,
abs/2004.10190, 2020.

Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and acting in
partially observable stochastic domains. Artificial Intelligence, 1998.

D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, Eric Jang, Deirdre Quillen, Ethan Holly,
et al. Qt-opt: Scalable deep reinforcement learning for vision-based robotic manipulation. ArXiv,
abs/1806.10293, 2018.

Robert Kirk, Amy Zhang, Edward Grefenstette, and Tim Rocktäschel. A survey of zero-shot gener-
alisation in deep reinforcement learning. Journal of Artificial Intelligence Research, 76:201–264,
2023.

139



RLJ | RLC 2024

Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. International Conference on Learning Representations,
2020.

Michael Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas. Rein-
forcement learning with augmented data. arXiv preprint arXiv:2004.14990, 2020.

Kimin Lee, Kibok Lee, Jinwoo Shin, and Honglak Lee. A simple randomization technique for
generalization in deep reinforcement learning. ArXiv, abs/1910.05396, 2019.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep visuo-
motor policies. The Journal of Machine Learning Research, 17(1):1334–1373, 2016.

T. Lillicrap, J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and Daan Wierstra. Con-
tinuous control with deep reinforcement learning. CoRR, abs/1509.02971, 2016.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representations by solving jigsaw
puzzles. In European Conference on Computer Vision, pp. 69–84. Springer, 2016.

Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-real transfer of
robotic control with dynamics randomization. 2018 IEEE International Conference on Robotics
and Automation (ICRA), May 2018.

Lerrel Pinto and Abhinav Gupta. Supersizing self-supervision: Learning to grasp from 50k tries and
700 robot hours. In 2016 IEEE international conference on robotics and automation (ICRA), pp.
3406–3413. Ieee, 2016.

Lerrel Pinto, Marcin Andrychowicz, Peter Welinder, Wojciech Zaremba, and Pieter Abbeel. Asym-
metric actor critic for image-based robot learning. arXiv preprint arXiv:1710.06542, 2017.

Roberta Raileanu, M. Goldstein, Denis Yarats, Ilya Kostrikov, and R. Fergus. Automatic data
augmentation for generalization in deep reinforcement learning. ArXiv, abs/2006.12862, 2020.

Younggyo Seo, Danijar Hafner, Hao Liu, Fangchen Liu, Stephen James, Kimin Lee, and Pieter
Abbeel. Masked world models for visual control, 2023.

Aravind Srinivas, Michael Laskin, and Pieter Abbeel. Curl: Contrastive unsupervised representa-
tions for reinforcement learning. arXiv preprint arXiv:2004.04136, 2020.

Austin Stone, Oscar Ramirez, Kurt Konolige, and Rico Jonschkowski. The distracting control suite–
a challenging benchmark for reinforcement learning from pixels. arXiv preprint arXiv:2101.02722,
2021.

Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael Laskin. Decoupling representation learning
from reinforcement learning. ArXiv, abs/2004.1499, 2020.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. arXiv preprint
arXiv:1906.05849, 2019.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding, 2018.

140



RLJ | RLC 2024

Oriol Vinyals, I. Babuschkin, Wojciech Czarnecki, Michaël Mathieu, Andrew Dudzik, J. Chung,
D. Choi, Richard Powell, et al. Grandmaster level in starcraft ii using multi-agent reinforcement
learning. Nature, pp. 1–5, 2019.

K. Wang, Bingyi Kang, Jie Shao, and Jiashi Feng. Improving generalization in reinforcement learning
with mixture regularization. ArXiv, abs/2010.10814, 2020.

Xudong Wang, Long Lian, and Stella X. Yu. Unsupervised visual attention and invariance for
reinforcement learning. ArXiv, abs/2104.02921, 2021.

Ziyu Wang, Yanjie Ze, Yifei Sun, Zhecheng Yuan, and Huazhe Xu. Generalizable visual reinforcement
learning with segment anything model. arXiv preprint arXiv:2312.17116, 2023.

Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature learning via non-
parametric instance discrimination. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 3733–3742, 2018.

Sizhe Yang, Yanjie Ze, and Huazhe Xu. Movie: Visual model-based policy adaptation for view
generalization. Advances in Neural Information Processing Systems, 36, 2024.

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Reinforcement learning with pro-
totypical representations. arXiv preprint arXiv:2102.11271, 2021.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on robot learning, pp. 1094–1100. PMLR, 2020.

Zhecheng Yuan, Guozheng Ma, Yao Mu, Bo Xia, Bo Yuan, Xueqian Wang, Ping Luo, and Huazhe
Xu. Don’t touch what matters: Task-aware lipschitz data augmentation for visual reinforcement
learning. arXiv preprint arXiv:2202.09982, 2022.

Hanping Zhang and Yuhong Guo. Generalization of reinforcement learning with policy-aware ad-
versarial data augmentation. arXiv preprint arXiv:2106.15587, 2021.

141



RLJ | RLC 2024

A Setup and Implementation

A.1 Hyper-parameters

Parameter Setting
Replay buffer capacity 106

Action repeat 2
Frame stack 3
Seed frames 4000
Exploration steps 2000
Mini-batch size 256
Discount γ 0.99
Optimizer Adam
Learning rate 5× 10−4

Agent update frequency 2
Critic Q-function soft-update rate τ 0.01
Features dim. 50
Hidden dim. 1024
Actor log stddev bounds [−10, 2]
Init temperature 0.1

Strong Augmentations
Max Random Shift Pixels: 16× 16

Max Random Rotation Degrees: 180◦

Random Overlay Alpha: 0.5

Table 1. The default set of hyper-parameters used in our experiments.

A.2 Training and Evaluation Setup

DMControl. Each episode length is set to 1000 environment steps. We train all models for 1M
environment steps, evaluating on the training environment every 20,000 environment steps for 10
episodes. Post training, we evaluate trained agents on each level of our test suite for 100 episodes
and report our mean episode reward. We consider six tasks defined below:

Table 2. DMControl. Task observations are rgb frames of dimensionality R(3×84×84). We use frame
stacking of the three most recent rgb frames such that the observation dimensionality becomes R(9×84×84).
Task difficulty is based on the difficulty classification defined in Yarats et al. (2021).

Tasks Action Dim Difficulty
Walker Walk 6 Easy
Walker Stand 6 Easy
Cheetah Run 6 Medium
Finger Spin 2 Easy

Cartpole Swingup 1 Easy
Cup Catch 2 Easy

Meta-World. Each episode length is set to 200 environment steps. We train all models for 1M
environment steps. Every 20,000 environment steps, we evaluate for 50 episodes and report the
mean success rate. At the end of training we evaluate on the test environments for 50 episodes as
well, and report the mean success rate. We use the same camera setup as Seo et al. (2023) and
consider five tasks defined below:
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Table 3. Meta-World. Task observations are rgb frames of dimensionality R(3×84×84). We use frame
stacking of the three most recent rgb frames such that the observation dimensionality becomes R(9×84×84).
Task difficulty is based on the difficulty classification defined in Seo et al. (2023).

Tasks Action Dim Difficulty
Door Open 4 Easy

Peg Unplug Side 4 Easy
Sweep Into 4 Medium
Basketball 4 Medium

Push 4 Hard

A.3 SAC Based Formulation

In the following section, we formulate our objective in the context of our base algorithm, Soft Actor
Critic (Haarnoja et al., 2018), but we stress that these changes are applicable to any actor critic
framework. The actor update objective for SAC with a learned temperature α thus becomes:

LSADA
πϕ

(D) = Eot∼D[DKL(πϕ(·|pt))|| exp{ 1
α

Qθ(mt, ·)})]. (6)

LSADA
α (D) = E ot∼D

at∼πϕ(·|pt)
[−α log πϕ(at|pt)− αH̄], (7)

where pt = fξ([ot, oaug
t ]N), mt = fξ([ot, ot]N), and oaug

t = aug(ot, vt), vt ∼ V . We use fξ to
denote the CNN encoder, and [·]N to denote concatenation for batch size of dimensionality N where
ot, oaug

t ∈ RN×C×H×W. We use aug() as the augmentation operator where we stochastically sample
from the augmentation distribution V and apply it to the input.

On the critic’s side, the critic’s target prediction is unaltered:

qtgt
t = r(ot, at) + γmaxa′

t
Qθ(fξ(ot+1), a′) (8)

while the critic’s objective is changed to become:

LSADA
Qθ

(D) = Eot,at,rt,ot+1∼D
[∥∥Qθ(pt, at)− yt

∥∥
2

]
(9)

where pt = fξ([ot, oaug
t ]N), and yt =

[
qtgt

t , qtgt
t

]
N.
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A.4 Pseudocode

Algorithm 1 Generic SADA Visual Actor Critic Algorithm
(▶ naïve augmentation, ▶ our modifications)

fξ, πϕ, Qθ: encoder, policy, and Q-function respectively
T , η, D, τ : training steps, learning rate, data replay buffer, target update rate
aug,V: choice of strong image augmentation, augmentation distribution

1: for each timestep t = 1..T do
2: at ∼ π(·|ot)
3: ot+1 ∼ p(·|ot, at)
4: D ← D ∪ (ot, at, r(ot, at), ot+1)
5: UpdateCritic(D)
6: UpdateActor(D)
7: procedure UpdateCritic(D)
8: {oi, ai, r(oi, ai), oi+1 | i = 1...N} ∼ D ▷ Sample batch of transitions
9: oi, oi+1 = aug(oi, νi), aug(oi+1, νi′) νi, νi′ ∼ V

10: qtgt
i = r(oi, ai) + γmaxa′

i
Qθ(fξ(oi+1), a′) ▷ Compute Q-target

11: oaug
i = aug(oi, νi), νi ∼ V ▶ Apply stochastic data augmentation

12: pi = [oi, oaug
i ]N , yi =

[
qtgt

i , qtgt
i

]
N ▶ Pack data streams

13: θ ←− θ − η∇θLSADA
Qθ

(pi, yi) ▶ Update Q-function and encoder
14: θ ←− (1− τ)θ + τθ ▷ Update target Q-function weights
15: end procedure
16: procedure UpdateActor(D)
17: {oi, ai, r(oi, ai), oi+1 | i = 1...N} ∼ D ▷ Sample batch of transitions
18: oi = aug(oi, νi), νi ∼ V
19: oaug

i = aug(oi, νi), νi ∼ V ▶ Apply stochastic data augmentation
20: pi = [oi, oaug

i ]N , mi = [oi, oi]N ▶ Pack data streams
21: ϕ←− ϕ− η∇ϕLSADA

πϕ
(pi, mi) ▶ Update policy

22: end procedure
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B Extended Analysis

B.1 Ablations

We ablate all our design choices and show the specific modifications in Figure 9. We refer to SADA’s
application of augmentation as selective, where not all inputs are augmented. We use ’naive’ to refer
to a naive application of augmentation, where all inputs are augmented. We use - to denote no
application of augmentation.

Method Actor Aug Critic Aug Avg Geometric Avg Photometric Avg All
SADA Selective Selective 690 658 674

SADA (Naive Actor Aug) Naive Selective 410 581 496
SADA (Naive Critic Aug) Selective Naive 358 312 335

SADA (No Critic Aug) Selective - 655 432 543
SVEA - Selective 232 527 380

DrQ + Aug Naive Naive 217 246 231
DrQ - - 184 322 253

Figure 9. Ablations. Episode reward on DMC-GB2. Methods trained under all augmentations
and averaged across all DMControl tasks. Mean and 95% CI for 5 random seeds.

B.2 Distracting Control Suite Results

We train all methods in the DMControl training environments under all strong augmentations, and
evaluate them in a zero-shot manner on the Distracting Control Suite. The results are shown below
in Figure 10, where SADA outperforms all baselines using the current augmentations.
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Figure 10. Distracting Control Suite. Episode reward on Distracting Control Suite. Methods
trained under all augmentations and averaged across all DMControl tasks. Mean and 95% CI for 5
random seeds.
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B.3 T-SNE Visualization

We visualize the T-SNE projection of converged SADA and SVEA agents in Figure 11. Analyzing the
graph, we notice a general trend where photometric distributions largely overlap with the training
distribution, while geometric distributions seem distant and have little overlap with the training
distribution. This asserts the fact presented in Figure 1, that the CNN encoder can align the
photometric augmentations with the training distribution, such that their latent space is similar.
On the other hand, geometric augmentations induce changes in the encoder’s output embedding
that force it to be placed in seperate latent space.
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Figure 11. T-SNE Embeddings. We use T-SNE to visualize the projections of converged SADA
and SVEA agents trained under all augmentations in the Walker Walk task.
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C Visuals

C.1 Augmentations

(a) No augmentation (cheetah) (b) No augmentation (cartpole)

(c) Random convolution (cheetah) (d) Random convolution (cartpole)

(e) Random overlay (cheetah) (f) Random overlay (cartpole)

(g) Random convolution and overlay (cheetah) (h) Random convolution and overlay (cartpole)

(i) Random rotate (cheetah) (j) Random rotate (cartpole)

(k) Random shift (cheetah) (l) Random shift (cartpole)

(m) Random rotate and shift (cheetah) (n) Random rotate and shift (cartpole)

Figure 12. Data augmentation. Visualizations of data augmentations applied in this study.
Left column contains samples from the Cheetah Run task, and right column contains samples from
the Cartpole Swingup task. Sets (c)-(h) constitute of photometric augmentations while sets (i)-(n)
constitute of geometric augmentations.
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C.2 DeepMind Control Suite

(a) Training environment (cheetah) (b) Training environment (cartpole)

Figure 13. DMControl Train environment. (Left) Cheetah Run task. (Right) Cartpole Swingup
task.

(a) color_easy environment (cheetah) (b) color_easy environment (cartpole)

(c) color_hard environment (cheetah) (d) color_hard environment (cartpole)

(e) video_easy environment (cheetah) (f) video_easy environment (cartpole)

(g) video_hard environment (cheetah) (h) video_hard environment (cartpole)

(i) color_video_easy environment (cheetah) (j) color_video_easy environment (cartpole)

(k) color_video_hard environment (cheetah) (l) color_video_hard environment (cartpole)

Figure 14. DMC-GB2 Photometric Test Set. Visualizations from the 6 photometric test
distributions in DMC-GB2.
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(a) rotate_easy environment (cheetah) (b) rotate_easy environment (cartpole)

(c) rotate_hard environment (cheetah) (d) rotate_hard environment (cartpole)

(e) shift_easy environment (cheetah) (f) shift_easy environment (cartpole)

(g) shift_hard environment (cheetah) (h) shift_hard environment (cartpole)

(i) rotate_shift_easy environment (cheetah) (j) rotate_shift_easy environment (cartpole)

(k) rotate_shift_hard environment (cheetah) (l) rotate_shift_easy environment (cartpole).

Figure 15. DMC-GB2 Geometric Test Set. Visualizations from the 6 geometric test distribu-
tions in DMC-GB2.

C.3 Meta-World

(a) Training environment (door-open) (b) Training environment (basketball)

Figure 16. Meta-World Train environment. (Left) Door Open task. (Right) Basketball task.

(a) shift_hard environment (door-open) (b) shift_hard environment (basketball)

Figure 17. Meta-World Test environment. Geometric test distribution in Meta-World.
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D Extended Results

D.1 DeepMind Control Suite Results

a) Rotate Easy
DrQ DrQ + Aug SVEA SADA

Walker Walk 232±23 166±33 278±21 808±90 *
Walker Stand 408±24 329±113 505±24 958±6 *
Cheetah Run 89±10 84±44 127±26 302±57 *
Finger Spin 116±39 618±80 148±15 870±152 *

Cartpole Swingup 228±29 219±17 295±23 743±56 *
Cup Catch 409±45 111±40 408±150 909±30 *

b) Rotate Hard
DrQ DrQ + Aug SVEA SADA

Walker Walk 133±11 147±22 154±7 799±89 *
Walker Stand 268±11 288±79 330±20 960±9 *
Cheetah Run 46±3 86±48 72±16 290±80 *
Finger Spin 59±20 603±116 75±7 862±149 *

Cartpole Swingup 178±15 211±19 219±9 746±57 *
Cup Catch 277±38 107±46 241±76 908±39 *

c) Shift Easy
DrQ DrQ + Aug SVEA SADA

Walker Walk 63±8 153±32 288±36 824±95 *
Walker Stand 299±73 307±89 656±53 962±5 *
Cheetah Run 35±7 104±45 90±28 348±27 *
Finger Spin 287±84 772±23 386±47 903±152

Cartpole Swingup 274±43 212±20 421±80 798±33 *
Cup Catch 884±77 128±60 771±353 947±15

d) Shift Hard
DrQ DrQ + Aug SVEA SADA

Walker Walk 36±2 93±25 58±8 641±139 *
Walker Stand 161±12 251±59 228±30 870±38 *
Cheetah Run 11±4 54±30 23±15 284±26 *
Finger Spin 3±2 573±38 13±15 802±112 *

Cartpole Swingup 206±31 189±29 284±53 719±59 *
Cup Catch 676±91 131±50 674±284 871±62

e) Rotate Shift Easy
DrQ DrQ + Aug SVEA SADA

Walker Walk 43±5 107±32 102±13 663±140 *
Walker Stand 196±27 280±83 327±19 897±30 *
Cheetah Run 12±6 50±24 25±9 231±44 *
Finger Spin 2±2 381±83 3±2 732±93 *

Cartpole Swingup 139±28 189±12 195±14 644±71 *
Cup Catch 353±93 131±64 369±147 815±70 *

f) Rotate Shift Hard
DrQ DrQ + Aug SVEA SADA

Walker Walk 34±3 57±11 38±4 307±70 *
Walker Stand 147±10 191±35 180±19 652±78 *
Cheetah Run 6±2 19±13 13±6 131±18 *
Finger Spin 1±0 155±61 0±0 476±46 *

Cartpole Swingup 111±16 172±12 149±12 497±33 *
Cup Catch 189±52 144±80 204±72 668±102 *

a) Color Easy
DrQ DrQ + Aug SVEA SADA

Walker Walk 582±47 228±48 755±55 837±70 *
Walker Stand 826±39 333±103 900±47 965±10 *
Cheetah Run 341±42 * 88±39 203±89 252±69
Finger Spin 795±61 693±74 924±33 895±162

Cartpole Swingup 696±54 230±28 542±104 704±33
Cup Catch 833±37 139±62 821±322 969±5

b) Color Hard
DrQ DrQ + Aug SVEA SADA

Walker Walk 265±41 238±44 667±51 825±72 *
Walker Stand 527±65 355±121 861±60 963±7 *
Cheetah Run 178±25 87±35 133±73 239±75
Finger Spin 466±73 661±76 802±108 868±150

Cartpole Swingup 441±43 240±22 478±101 716±34 *
Cup Catch 520±68 157±66 779±320 961±11

c) Video Easy
DrQ DrQ + Aug SVEA SADA

Walker Walk 390±56 132±33 788±103 791±56
Walker Stand 603±41 279±63 945±13 923±45
Cheetah Run 75±52 49±9 102±56 121±59
Finger Spin 441±39 654±88 774±137 875±157

Cartpole Swingup 375±54 204±34 427±85 524±49 *
Cup Catch 523±21 150±45 736±303 934±23

d) Video Hard
DrQ DrQ + Aug SVEA SADA

Walker Walk 36±5 166±29 264±57 270±31
Walker Stand 154±17 225±47 429±95 702±65 *
Cheetah Run 25±16 75±20 28±8 82±20
Finger Spin 7±4 234±29 263±123 566±118 *

Cartpole Swingup 98±21 154±26 259±32 363±31 *
Cup Catch 111±31 152±55 416±252 662±43 *

e) Color Video Easy
DrQ DrQ + Aug SVEA SADA

Walker Walk 208±49 219±36 681±44 791±59 *
Walker Stand 487±28 330±105 852±36 945±15 *
Cheetah Run 60±36 64±16 100±58 153±64
Finger Spin 310±30 653±74 705±147 850±150

Cartpole Swingup 327±43 217±23 427±86 570±38 *
Cup Catch 447±61 160±54 716±318 931±36

f) Color Video Hard
DrQ DrQ + Aug SVEA SADA

Walker Walk 42±10 215±37 421±67 686±61 *
Walker Stand 170±17 288±84 659±69 906±30 *
Cheetah Run 26±17 82±23 44±24 99±43
Finger Spin 2±2 365±52 307±139 633±106 *

Cartpole Swingup 94±17 166±30 294±45 426±39 *
Cup Catch 122±48 163±77 484±291 697±37

Figure 18. DMC-GB2 Overall Robustness Results. Episode Reward. Methods trained under
all (geometric and photometric) augmentations and evaluated on the all DMC-GB2 Test Sets. Mean
and Stddev over 5 random seeds. Highest scores in bold. Asterisk (*) indicates that the method is
statistically significantly greater than all compared methods with 95% confidence.
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Figure 19. DMC-GB2 Overall Robustness Graphs. Episode Reward. Methods trained under
all (geometric and photometric) augmentations and evaluated on all DMC-GB2 Test Sets. Hard
levels visualized. Mean and 95% CI over 5 random seeds.
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a) Rotate Easy
DrQ DrQ + Aug SVEA SADA

Walker Walk 232±23 431±41 426±37 728±369
Walker Stand 408±24 809±159 629±60 968±5 *
Cheetah Run 89±10 180±33 147±31 420±76 *
Finger Spin 116±39 829±26 257±58 885±150

Cartpole Swingup 228±29 304±77 422±23 801±54 *
Cup Catch 409±45 600±167 618±86 803±350

b) Rotate Hard
DrQ DrQ + Aug SVEA SADA

Walker Walk 133±11 416±45 228±25 729±367
Walker Stand 268±11 777±167 406±46 961±9 *
Cheetah Run 46±3 168±42 86±26 415±76 *
Finger Spin 59±20 820±28 128±25 862±158

Cartpole Swingup 178±15 289±63 280±11 798±62 *
Cup Catch 277±38 569±173 397±94 797±352

c) Shift Easy
DrQ DrQ + Aug SVEA SADA

Walker Walk 63±8 415±61 692±67 740±374
Walker Stand 299±73 822±166 765±98 946±15
Cheetah Run 35±7 179±22 133±18 413±72 *
Finger Spin 287±84 678±142 460±85 899±136 *

Cartpole Swingup 274±43 288±29 564±89 767±57 *
Cup Catch 884±77 695±137 940±43 811±343

d) Shift Hard
DrQ DrQ + Aug SVEA SADA

Walker Walk 36±2 304±83 154±46 636±324 *
Walker Stand 161±12 671±167 387±70 897±31 *
Cheetah Run 11±4 129±14 52±18 344±43 *
Finger Spin 3±2 588±204 90±48 781±147

Cartpole Swingup 206±31 216±23 318±33 634±104 *
Cup Catch 676±91 604±188 859±77 790±348

e) Rotate Shift Easy
DrQ DrQ + Aug SVEA SADA

Walker Walk 43±5 316±72 228±17 678±345 *
Walker Stand 196±27 705±196 489±92 934±22 *
Cheetah Run 12±6 146±14 56±16 331±28 *
Finger Spin 2±2 683±169 52±39 802±147

Cartpole Swingup 139±28 257±51 269±37 742±58 *
Cup Catch 353±93 586±156 589±61 788±347

f) Rotate Shift Hard
DrQ DrQ + Aug SVEA SADA

Walker Walk 34±3 166±75 62±12 356±183 *
Walker Stand 147±10 484±189 222±33 791±41 *
Cheetah Run 6±2 78±13 20±6 180±57 *
Finger Spin 1±0 513±201 1±1 663±193

Cartpole Swingup 111±16 183±28 162±14 553±94 *
Cup Catch 189±52 512±159 327±49 749±333

Figure 20. DMC-GB2 Geometric Test Set Results. Episode Reward. Methods trained under
geometric augmentations and evaluated on DMC-GB2 Geometric Test Set. Mean and Stddev over
5 random seeds. Highest scores in bold. Asterisk (*) indicates that the method is statistically
significantly greater than all compared methods with 95% confidence.

a) Color Easy
DrQ DrQ + Aug SVEA SADA

Walker Walk 582±47 911±34 841±126 947±26
Walker Stand 826±39 964±7 815±341 975±4
Cheetah Run 341±42 274±34 348±71 368±54
Finger Spin 795±61 948±51 910±142 983±2

Cartpole Swingup 696±54 626±152 843±16 842±19
Cup Catch 833±37 713±353 976±2 973±3

b) Color Hard
DrQ DrQ + Aug SVEA SADA

Walker Walk 265±41 907±31 834±127 946±23
Walker Stand 527±65 963±10 813±343 974±2
Cheetah Run 178±25 273±37 333±60 362±48
Finger Spin 466±73 944±53 882±132 980±3

Cartpole Swingup 441±43 627±149 833±15 843±17
Cup Catch 520±68 722±339 974±2 972±4

c) Video Easy
DrQ DrQ + Aug SVEA SADA

Walker Walk 390±56 885±41 824±143 936±24
Walker Stand 603±41 964±5 813±339 972±2
Cheetah Run 75±52 264±41 298±40 340±50
Finger Spin 441±39 923±41 879±140 972±4

Cartpole Swingup 375±54 533±157 770±44 749±74
Cup Catch 523±21 690±355 947±16 961±5

d) Video Hard
DrQ DrQ + Aug SVEA SADA

Walker Walk 36±5 255±49 243±91 329±20
Walker Stand 154±17 669±79 533±203 692±40
Cheetah Run 25±16 151±38 105±54 91±27
Finger Spin 7±4 600±100 436±106 735±44 *

Cartpole Swingup 98±21 257±41 387±51 407±81
Cup Catch 111±31 518±256 664±48 816±70 *

e) Color Video Easy
DrQ DrQ + Aug SVEA SADA

Walker Walk 208±49 879±42 817±140 935±24
Walker Stand 487±28 963±6 811±341 970±4
Cheetah Run 60±36 263±48 294±27 331±57
Finger Spin 310±30 920±42 866±137 972±4

Cartpole Swingup 327±43 528±154 761±44 748±64
Cup Catch 447±61 697±353 944±17 959±8

f) Color Video Hard
DrQ DrQ + Aug SVEA SADA

Walker Walk 42±10 639±69 600±150 736±68
Walker Stand 170±17 889±48 730±315 920±22
Cheetah Run 26±17 216±53 153±66 187±63
Finger Spin 2±2 684±82 500±151 815±25 *

Cartpole Swingup 94±17 300±57 464±63 469±80
Cup Catch 122±48 570±300 792±63 873±43 *

Figure 21. DMC-GB2 Photometric Test Set Results. Episode Reward. Methods trained
under photometric augmentations and evaluated on DMC-GB2 Photometric Test Set. Mean and
Stddev over 5 random seeds. Highest scores in bold. Asterisk (*) indicates that the method is
statistically significantly greater than all compared methods with 95% confidence.
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Figure 22. DMC-GB2 Geometric Test Set Graphs. Episode Reward. Methods trained under
geometric augmentations and evaluated on DMC-GB2 Geometric Test Set. Hard levels visualized.
Mean and 95% CI over 5 random seeds.
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Figure 23. DMC-GB2 Photometric Test Set Graphs. Episode Reward. Methods trained
under photometric augmentations and evaluated on DMC-GB2 Photometric Test Set. Hard levels
visualized. Mean and 95% CI over 5 random seeds.
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D.2 Meta-World Results

Shift Hard (Meta-World)
DrQ DrQ + Aug SVEA SADA

Door Open 2±2 51±12 28±7 59±9
Peg Unplug Side 2±1 33±27 32±13 70±18 *

Sweep Into 3±2 76±9 42±8 74±8
Basketball 0±0 48±31 18±16 75±16

Push 2±2 43±23 28±4 61±16

Figure 24. Meta-World Results. Success rate (%). Trained under strong shift augmentation
only. Evaluated on Meta-World Shift Hard. Mean and Stddev of 5 random seeds. Highest scores in
bold. Asterisk (*) indicates that the method is statistically significantly greater than all compared
methods with 95% confidence.
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Figure 25. Meta-World Graphs. Success rate (%). Trained under Shift Augmentation, Evaluated
on Meta-World Shift Hard. Mean and 95% CI of 5 random seeds.
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E Statistical Significance Testing

We conduct statistical significance testing for all our experiments and provide it below. Given two
methods A and B, we use a one tailed Welch t-test to determine the statistical significance and
formulate the following hypotheses:

Null Hypothesis Ho: A ≤ B (10)
Alternative Hypothesis Ha: A > B (11)

Using an alpha value of 0.05 (95% confidence), all p-values greater than 0.05 indicate that the null
hypothesis cannot be rejected and that the expected mean of A is statistically significantly less
than or equal to the expected mean of B. On the other hand, all p-values less than 0.05 indicate
that we should reject the null hypothesis in favor of the alternative hypothesis, indicating that the
expected mean of A is statistically significantly greater than the expected mean of B. To control
for multiple pairwise comparisons, we apply the Holm-Bonferroni method, where we sort the p-
values in ascending order, and compare them with their adjusted alpha values (0.0167, 0.025, 0.05)
respectively. Using the Holm-Bonferroni method, there is only a 5% chance of rejecting at least one
true null hypothesis (i.e., making a Type I error) from the three hypotheses in every comparison.

We provide per-task statistical significance testing results in the tables in Appendix D. We also
provide the overall category statistical significance testing results below.

E.1 Overall Category Results:

For all the overall category results of the experiments conducted throughout this paper,
there is sufficient evidence (with 95% confidence) that the mean performance of SADA
is statistically significantly greater than all of the baselines.

In the overall category statistical significance testing, we provide both the p and t values for the
Welch t-test results. p denotes the p-value which represents the probability of observing the data
or more extreme data under the assumption that the null hypothesis is true. t denotes the test
statistic which is a standardized measure of the difference between two group means, adjusted for
the variability within the groups, used to assess the significance of the observed difference.

Overall Robustness

Method A Method B
SVEA DrQ + Aug DrQ

SADA
Avg Geometric p=4.0×10−9, t=27.21 p=8.1×10−10, t=30.62 p=4.0×10−8, t=45.78

Avg Photometric p=1.2×10−3, t=5.77 p=1.4×10−10, t=47.60 p=2.9×10−10, t=36.17
Avg All p=3.4×10−6, t=15.42 p=1.1×10−10, t=38.84 p=1.9×10−9, t=44.27

Figure 26. Overall Robustness. Statistical Significance Measurement using Welch t-test on the
episode reward on DMC-GB2. Methods trained under all augmentations and averaged across all
DMControl tasks. Mean over 5 random seeds.
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Geometric vs Photometric Robustness

Method A Method B
SVEA DrQ + Aug DrQ

SADA Avg Geometric p=6.2×10−5, t=12.96 p=8.8×10−5, t=7.53 p=2.0×10−5, t=18.28
Avg Photometric p=7.3×10−3, t=3.80 p=1.4×10−2, t=3.29 p=1.3×10−11, t=50.40

Figure 27. Geometric vs Photometric Robustness. Statistical Significance Measurement using
Welch t-test on the episode reward on DMC-GB2. Methods were trained under geometric augmen-
tations and evaluated on the geometric test set, and trained under photometric augmentations and
evaluated on the photometric test set, averaged across all DMControl tasks. Mean over 5 random
seeds.

Ablations

Method A Method B
SADA (Naive

Actor Aug)
SADA (Naive

Critic Aug)
SADA (No Critic
Aug)

SADA
Avg Geometric p=1.3×10−7, t=16.88 p=6.3×10−9, t=23.43 p=1.6×10−2, t=2.61

Avg Photometric p=3.2×10−3, t=4.30 p=2.0×10−7, t=22.86 p=2.3×10−8, t=20.58
Avg All p=1.1×10−5, t=10.89 p=1.6×10−8, t=24.05 p=1.3×10−6, t=12.01

Figure 28. Ablations. Statistical Significance Measurement using Welch t-test on the episode
reward on DMC-GB2. Methods trained under all augmentations and averaged across all DMControl
tasks. Mean over 5 random seeds.

TD-MPC2 Baseline

Method A Method B
TD-MPC2 + Aug

TD-MPC2 + SADA Avg All p=8.1×10−5, t=7.90

Figure 29. TD-MPC2 Baseline. Statistical Significance Measurement using Welch t-test on
the episode reward on DMC-GB2. Trained under all augmentations with a TD-MPC2 backbone,
averaged across all DMControl tasks. Mean over 5 random seeds.

Meta-World

Method A Method B
SVEA DrQ + Aug DrQ

SADA Shift Hard p=1.5×10−5, t=10.26 p=2.2×10−3, t=3.90 p=1.4×10−5, t=20.45

Figure 30. Meta-World. Statistical Significance Measurement using Welch t-test on the success
rate (%) on Shift Hard (Meta-World) distribution. Trained under strong shift augmentation only,
averaged across all Meta-World tasks. Mean over 5 random seeds.
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BetaZero: Belief-State Planning for Long-Horizon
POMDPs using Learned Approximations

Robert J. Moss, Anthony Corso, Jef Caers, Mykel J. Kochenderfer
Stanford University, {mossr, acorso, caers, mykel}@stanford.edu

Abstract

Real-world planning problems, including autonomous driving and sustainable en-
ergy applications like carbon storage and resource exploration, have recently been
modeled as partially observable Markov decision processes (POMDPs) and solved
using approximate methods. To solve high-dimensional POMDPs in practice, state-
of-the-art methods use online planning with problem-specific heuristics to reduce
planning horizons and make the problems tractable. Algorithms that learn ap-
proximations to replace heuristics have recently found success in large-scale fully
observable domains. The key insight is the combination of online Monte Carlo tree
search with offline neural network approximations of the optimal policy and value
function. In this work, we bring this insight to partially observable domains and
propose BetaZero, a belief-state planning algorithm for high-dimensional POMDPs.
BetaZero learns offline approximations that replace heuristics to enable online de-
cision making in long-horizon problems. We address several challenges inherent
in large-scale partially observable domains; namely challenges of transitioning in
stochastic environments, prioritizing action branching with a limited search bud-
get, and representing beliefs as input to the network. To formalize the use of all
limited search information, we train against a novel Q-weighted visit counts policy.
We test BetaZero on various well-established POMDP benchmarks found in the lit-
erature and a real-world problem of critical mineral exploration. Experiments show
that BetaZero outperforms state-of-the-art POMDP solvers on a variety of tasks.1

1 Introduction

Optimizing sequential decisions in real-world settings is challenging due to uncertainties about the
true state of the environment. Modeling such problems as partially observable Markov decision
processes (POMDPs) has shown recent success in autonomous driving (Wray et al., 2021), robotics
(Lauri et al., 2022), and aircraft collision avoidance (Kochenderfer et al., 2012). Solving large or
continuous POMDPs require approximations in the form of state-space discretizations or modeling
assumptions, e.g., assuming full observability. Although these approximations are useful when mak-
ing decisions in a short time horizon, scaling these solutions to long-horizon problems is challenging
(Shani et al., 2013). Recently, POMDPs have been used to model large-scale information gather-
ing problems such as carbon capture and storage (CCS) (Corso et al., 2022; Wang et al., 2023),
remediation for groundwater contamination (Wang et al., 2022), and critical mineral exploration
for battery metals (Mern & Caers, 2023), and are solved using online tree search methods such as
DESPOT (Ye et al., 2017) and POMCPOW (Sunberg & Kochenderfer, 2018). The performance of
these online methods rely on heuristics for action selection (to reduce search tree expansion) and
heuristics to estimate the value function (to avoid expensive rollouts and reduce tree search depth).
Without heuristics, online methods have difficulty planning for long-term information acquisition to
reason about uncertain future events. Thus, algorithms to solve high-dimensional POMDPs need to
be designed to learn heuristic approximations to enable decision making in long-horizon problems.

1Code: https://github.com/sisl/BetaZero.jl

158



RLJ | RLC 2024

b

SELECTION

(
where b̃← ϕ(b)

)
a ∼ Pθ(b̃)

b

EXPANSION

a

b′

b′ ← UPDATE(b, a, o)

s ∼ b

s′ ∼ T (s, a)

o ∼ O(a, s′)

b

SIMULATION

a

b′

r + γVθ(b̃
′)

b

BACKPROPAGATION

a

b′

Q-value

policy evaluation

n parallel MCTS simulations

f ′
θ = TRAIN(fθ,D)

policy improvement

(p, v) = fθ(b̃)

(
b̃ = ϕ(b)

belief representation

)

initial network

D =
{{

(bt,πt, gt)
}T

t=1

}n

i=1

collected data
fθ = f ′

θ

Figure 1: The BetaZero POMDP policy iteration algorithm.

Contributions. This work aims
to address the problem of high-
dimensional, long-horizon POMDPs
by using the insight of combining
online MCTS planning with learned
offline neural network approxima-
tions that replace heuristics. Our
main contribution is the BetaZero
belief-state planning algorithm for
POMDPs (fig. 1), addressing the chal-
lenges of partial observability in large discrete action spaces and continuous state and observation
spaces. To handle stochastic belief-state transitions, BetaZero uses progressive widening (Couëtoux
et al., 2011) to limit belief-state expansion. When planning in belief space, expensive belief updates
limit the search budget in practice (e.g., O(n) for particle filters (Thrun et al., 2005) or O(n3) for
Kalman filters (Welch & Bishop, 1995)). Therefore, we sample from the policy network to prioritize
branching on promising actions, and we introduce a novel Q-weighted visit count policy target that
formalizes the use of all information seen during the limited search for policy imitation. While
planning occurs over the full belief, we use a parametric belief representation b̃ = ϕ(b) to capture
state uncertainty as input to the network. BetaZero uses the learned policy network Pθ(b̃) to reduce
search breadth and the learned value estimate Vθ(b̃) to reduce search depth to enable long-horizon
online planning (shown in red in fig. 2).

2 Problem Formulation

A partially observable Markov decision process (POMDP) is a model for sequential decision making
problems where the true state is unobservable. Defined by the tuple ⟨S,A,O, T,R,O, γ⟩, POMDPs
are an extension to the Markov decision process (MDP) used in reinforcement learning and planning
with the addition of an observation space O (where o ∈ O) and observation model O(o | a, s′).
Given a current state s ∈ S and taking an action a ∈ A, the agent transitions to a new state s′ using
the transition model s′ ∼ T (· | s, a). Without access to the true state, an observation is received
o ∼ O(· | a, s′) and used to update the belief b over the possible next states s′ to get the posterior

b′(s′) ∝ O(o | a, s′)
∫

s∈S
T (s′ | s, a)b(s) ds. (1)

An example of a type of belief is the non-parametric particle set that can represent a broad range
of distributions (Thrun et al., 2005), and Lim et al. (2023) show that optimality guarantees exist
in finite-sample particle-based POMDP approximations. Despite choosing to study particle-based
beliefs, our work generalizes well to problems with parametric beliefs.

A stochastic POMDP policy π(a | b) is defined as the distribution over actions given the current
belief b. After taking an action a ∼ π(· | b), the agent receives a reward r from the environment
according to the reward function R : S ×A → R or R : S ×A× S → R using the next state.

Belief-state MDPs. In belief-state MDPs, the POMDP is converted to an MDP by treating
the belief as a state (Kaelbling et al., 1998; Kochenderfer et al., 2022). The reward function then
becomes a weighted sum of the state-based reward:

Rb(b, a) =
∫

s∈S
b(s)R(s, a) ds ≈

∑

s∈b
b(s)R(s, a) (2)

The belief-state MDP shares the same action space as the POMDP and operates over a belief space
B that is the simplex over the state space S. The belief-MDP defines a new belief-state transition
function b′ ∼ Tb(· | b, a) as:

s ∼ b(·) s′ ∼ T (· | s, a) o ∼ O(· | a, s′) b′ ← Update(b, a, o) (3)
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where the belief update can be done using a particle filter (Gordon et al., 1993). Therefore, the
belief-state MDP is defined by the tuple ⟨B,A, Tb, Rb, γ⟩ with the finite-horizon discount factor
γ ∈ [0, 1) that controls the effect that future rewards have on the current action.

The objective to solve belief-MDPs is to find a policy π that maximizes the value function

V π(b0) = Eπ

[
T∑

t=0
γtRb(bt, at)

∣∣ bt ∼ Tb, at ∼ π
]

(4)

from an initial belief b0. Instead of explicitly constructing a policy over all beliefs, online planning
algorithms estimate the next best action through a planning procedure, often a best-first tree search.

2.1 Monte Carlo tree search (MCTS)

Monte Carlo tree search (Coulom, 2007; Browne et al., 2012) is an online, recursive, best-first tree
search algorithm to determine the approximately optimal action to take from a given root state of
an MDP. Extensions to MCTS have been applied to POMDPs through several algorithms: partially
observable Monte Carlo planning (POMCP) treats the state nodes as histories h of action-observation
trajectories (Silver & Veness, 2010), POMCP with observation widening (POMCPOW) constructs
weighted particle sets at the observation nodes and extends POMCP to fully continuous domains
(Sunberg & Kochenderfer, 2018), and particle filter trees (PFT) and information PFT (IPFT) treat
the POMDP as a belief-state MDP and plan directly over the belief-state nodes using a particle
filter (Fischer & Tas, 2020). All variants of MCTS execute the following four steps. In this section
we use s to represent the state, the history h, and the belief state b and refer to them as “the state”.

1. Selection. During selection, an action is selected from the children of a state node based
on criteria that balances exploration and exploitation. The upper-confidence tree algo-
rithm (UCT) (Kocsis & Szepesvári, 2006) is a common criterion that selects an action that
maximizes the upper-confidence bound Q(s, a) + c

√
logN(s)/N(s, a) where Q(s, a) is the

Q-value estimate for state-action pair (s, a) with a visit count of N(s, a), the total visit
count of N(s) =

∑
aN(s, a) for the children a ∈ A(s), and c is an exploration constant.

Rosin (2011) introduced the UCT with predictor algorithm (PUCT), modified by Silver
et al. (2017), where a predictor P (s, a) guides the exploration towards promising branches
and selects an action according to the following:

argmax
a∈A(s)

Q(s, a) + c

(
P (s, a)

√
N(s)

1 +N(s, a)

)
(5)

2. Expansion. In the expansion step, the selected action is taken in simulation and the tran-
sition model T (s′ | s, a) is sampled to determine the next state s′. When the transitions are
deterministic, the child node is always a single state. If the transition dynamics are stochas-
tic, techniques to balance the branching factor such as progressive widening (Couëtoux et al.,
2011) and state abstraction refinement (Sokota et al., 2021) have been proposed.

3. Rollout/Simulation. In the rollout step, also called the simulation step due to recur-
sively simulating the MCTS tree expansion, the value is estimated through the execution of
a rollout policy until termination or using heuristics to approximate the value function from
the given state s′. Expensive rollouts done by AlphaGo were replaced with a value network
lookup in AlphaGo Zero and AlphaZero (Silver et al., 2016; 2017; 2018).

4. Backpropagation. Finally, during the backpropagation step, the Q-value estimate from
the rollout is propagated up the path in the tree as a running average.
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Figure 2: The four stages of MCTS belief-state planning in BetaZero using the value Vθ and policy
Pθ network heads (the policy evaluation step in fig. 1).

Root node action selection. After repeating the four steps of MCTS, the final action is selected
from the children a ∈ A(s) of the root state s and executed in the environment. One way to select
the best root node action, referred to as the robust child (Schadd, 2009; Browne et al., 2012), selects
the action with the highest visit count as argmaxaN(s, a). Sampling from the normalized counts,
exponentiated by an exploratory temperature τ , is also common (Silver et al., 2017). Another
method uses the highest estimated Q-value as argmaxaQ(s, a). Both criteria have been shown to
have problem-based trade-offs (Browne et al., 2012).

Double progressive widening. To handle stochastic state transitions and large or continuous
state and action spaces, double progressive widening (DPW) balances between sampling new nodes
to expand on or selecting from existing nodes already in the tree (Couëtoux et al., 2011). Two
hyperparameters α ∈ [0, 1] and k ≥ 0 control the branching factor. If the number of actions tried
from state s is less than kN(s)α, then a new action is sampled from the action space and added as a
child of node s. Likewise, if the number of expanded states from node (s, a) is less than kN(s, a)α,
then a new state is sampled from the transition function s′ ∼ T (· | s, a) and added as a child. If the
state widening condition is not met, then a next state is sampled from the existing children.

Note, in the following sections we will refer to the belief state as b and the true (hidden) state as s.

3 Proposed Algorithm: BetaZero

We introduce the BetaZero POMDP planning algorithm that replaces heuristics with learned ap-
proximations of the optimal policy and value function. BetaZero is a belief-space policy iteration
algorithm with two offline steps that learn a network used online:

1. Policy evaluation: Evaluate the current value and policy network through n parallel
episodes of MCTS (fig. 2) and collect training data: D =

{
{(bt,πt, gt)}Tt=1

}n
i=1

2. Policy improvement: Improve the estimated value function and policy by retraining the
neural network parameters θ with data from the nbuffer most recent MCTS simulations.

The policy vector over actions p = Pθ(b̃, ·) and the value v = Vθ(b̃) are combined into a single
network with two output heads (p, v) = fθ(b̃); we refer to Pθ and Vθ separately for convenience.
During policy evaluation, training data is collected from the outer POMDP loop. The belief bt
and the tree policy πt are collected for each time step t. At the end of each episode, the returns
gt =

∑T
i=t γ

(i−t)ri are computed from the set of observed rewards for all time steps up to a terminal
horizon T . Traditionally, MCTS algorithms use a tree policy πt that is proportional to the root
node visit counts of its children actions πt(bt, a) ∝ N(bt, a)1/τ . The counts are sampled after
exponentiating with a temperature τ to encourage exploration but evaluated online with τ → 0 to
return the maximizing action (Silver et al., 2017). In certain settings, relying solely on visit counts
may overlook crucial information (see fig. 3).
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Figure 3: An illustrative example of when collecting policy data based purely on visit counts (left)
or Q-values (middle) would perform worse than weighting the visit counts based on Q-values (right).
This is useful when using a small MCTS budget with high exploration. Using both the Q-values
and visit counts, we incorporate both what the tree search focused on and the values it found.

Policy vector as Q-weighted counts. When planning in belief space, expensive belief updates
occur in the tree search and thus may limit the MCTS budget. Therefore, the visit counts may not
converge towards an optimal strategy as the budget may be spent on exploration. Danihelka et al.
(2022) and Czech et al. (2021) suggest using knowledge of the Q-values from search in MCTS action
selection. Using only tree information, we incorporate Q-values and train against the policy

πt(bt, a) ∝
((

expQ(bt, a)∑
a′ expQ(bt, a′)

)zq( N(bt, a)∑
a′ N(bt, a′)

)zn)1/τ

(6)

which is then normalized to get a valid probability distribution. Equation (6) simply weights the
visit counts by the softmax Q-value distribution with parameters zq ∈ [0, 1] and zn ∈ [0, 1] defining
the influence of the values and the visit counts, respectively. If zq = zn = 1, then the influence is
equal and if zq = zn = 0, then the policy becomes uniform. Once the tree search finishes, the root
node action is selected from a ∼ πt(bt, ·) and returns the argmax when the temperature τ → 0.

Loss function. Using the latest collected data, the policy improvement step retrains the policy
network head using the cross-entropy loss LPθ (πt,pt) = −π⊤

t log pt. The value network head is
simultaneously trained to fit the returns gt using mean-squared error (MSE) or mean-absolute error
(MAE) to predict the value of the belief bt. Note that we use either MSE or MAE value losses LVθ
for different problems depending on the characteristics of the return distribution. In sparse reward
problems, MAE is a better choice as the distribution is closer to Laplacian (Hodson, 2022). When
the reward is distributed closer to Gaussian, then MSE is more suitable (Chai & Draxler, 2014).
The final loss function combines the value and policy losses with L2-regularization scaled by λ:

ℓβ0 = LVθ (gt, vt) + LPθ (πt,pt) + λ∥θ∥2 (7)

Prioritized action widening. Planning in belief space explicitly handles state uncertainty but
may incur computational overhead when performing belief updates, therefore we avoid trying all
actions at every belief node. We apply action progressive widening (Couëtoux et al., 2011) to limit
action expansion, which has been used in the context of continuous action spaces (Moerland et al.,
2018) and large discrete action spaces (Yee et al., 2016). Browne et al. (2012) found action progressive
widening to be effective in cases where favorable actions were tried first and Mern et al. (2021) show
that prioritizing actions can improve MCTS performance in large discrete action spaces. Therefore,
BetaZero selects actions through progressive widening and uses information from the learned policy
network to sample new actions a ∼ Pθ(b̃, ·), line 4, alg. 1. This way, we first focus the expansion
on promising actions, then make the final selection based on PUCT.2 In section 5, we perform an
ablation to measure the effect of using the policy Pθ to prioritize actions when widening the tree.

2PUCT uses normalized Q-values from 0 to 1 (Q̄) so c can be problem independent (Schrittwieser et al., 2020).
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Algorithm 1: BetaZero action progressive widening.
1 function ActionSelection(fθ, b)
2 b̃← ϕ(b) ▷ belief representation
3 if |A(b)| ≤ kaN(b)αa ▷ action progressive widening
4 a ∼ Pθ(b̃, ·) ▷ prioritized from network
5 N(b, a)← N0(b, a)
6 Q(b, a)← Q0(b, a) ▷ bootstrap initial Q-value
7 A(b)← A(b) ∪ {a} ▷ add to visited actions A(b)
8 return argmax

a∈A(b)
Q̄(b, a) + c

(
Pθ(b̃, a)

√
N(b)

1+N(b,a)

)

Algorithm 2: BetaZero belief-state progressive widening.
1 function BeliefStateExpansion(b, a)
2 if |B(b, a)| ≤ kbN(b, a)αb ▷ belief progressive widening
3 b′ ∼ Tb(· | b, a) ▷ eq. (3)
4 B(b, a)← B(b, a) ∪ {b′} ▷ add to visited beliefs
5 else
6 b′ ∼ B(b, a) ▷ sample from belief-states in the tree
7 r ← R(b, a) or r ← R(b, a, b′)
8 return b′, r

Stochastic belief-state transitions. A challenge with partially observable domains is handling
non-deterministic belief-state transitions in the tree search. The belief-state transition function Tb
consists of several stochastic components and the belief is continuous (being a probability distribution
over states). To address this, we use progressive widening from Couëtoux et al. (2011) (algorithm 2).
Other methods for state expansion, like state abstraction refinement from Sokota et al. (2021), rely on
problem-specific distance metrics between states to perform a nearest neighbor search. Progressive
widening avoids problem-specific heuristics by using information only available in the search tree
to provide artificially limited belief-state branching. Limited branching is important as the belief
updates can be computationally expensive, thus limiting the MCTS search budget in practice.

Parametric belief representation. Inputting state histories into the network has been done in
the literature, in both the context of MDPs (Silver et al., 2018) and POMDPs (Cai & Hsu, 2022)
Using only state information does not generalize to complex POMDPs (seen in fig. 8), therefore,
a representation of the belief is required. Although a particle belief is not parametrically defined,
approximating the belief as summary statistics (e.g., mean and std) may capture enough information
for value and policy estimation to be used during planning (Coquelin et al., 2008). Approximating
the particle set parametrically is easy to implement and computationally inexpensive. We show that
the approximation works well across various problems and, unsurprisingly, using only the mean state
is inadequate (see section 5). We represent the particle set b parametrically as ϕ(b) = [µ(b), σ(b)].
BetaZero plans over the full belief b in the tree and only converts to the belief representation b̃ = ϕ(b)
for network evaluations. We do not depend on the exact way in which the belief is represented, so
long as it captures state uncertainty. Coquelin et al. (2008) consider how to represent a particle filter
belief as a finite set of features for policy gradient and suggest the approximation that consists of
the mean and covariance, but only consider the class of policies depending on a single feature of the
mean. Their work suggests that other features, such as entropy, could also be used. Other algorithms
(e.g., FORBES from Chen et al. (2022)) could instead be used to learn this belief representation.
Another example approach could use principle component analysis (PCA) to learn lower-dimensional
features for belief representation (Roy et al., 2005).

Bootstrapping initial Q-values. The value network Vθ is used during the simulation step to
replace rollouts with a network lookup (line 7, alg. 3). When a new state-action node is added to
the tree, initial Q-values can also use the value network to bootstrap the estimate:

Q0(b, a) def= Rb(b, a) + γVθ(ϕ(b′)) where b′ ∼ Tb(· | b, a) (8)

Bootstrapping occurs in algorithm 1 (line 6) and incurs an additional belief update through the
belief-state transition Tb and may be opted only during online execution. The bootstrapped esti-
mate is more robust (Kumar et al., 2019) and can be useful to initialize online search. Note that
bootstrapping is also used in the model-free MuZero algorithm (Schrittwieser et al., 2020).

Complexity analysis. The runtime complexity of MCTS is M = O(ndm) for the n number of
MCTS iterations (denoted nonline in algorithm 3), for the search depth d, and with a belief up-
date over m particles at each belief-state node. The full complexity of BetaZero is O(pmTM/c)
for p parallel runs (denoted ndata in algorithm 5), an episode horizon of T (each step updat-
ing the belief over m particles), the MCTS complexity of M , and the number of CPU cores c.
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Algorithm 3: BetaZero MCTS simulation.
1 function Simulate(fθ, b, d)
2 if d = 0 return 0
3 if b ̸∈ T
4 T ← T ∪ {b}
5 N(b)← N0(b)
6 b̃← ϕ(b) ▷ belief representation
7 return Vθ(b̃) ▷ value lookup
8 N(b)← N(b) + 1
9 a← ActionSelection(fθ, b)

10 (b′, r)← BeliefStateExpansion(b, a)
11 q ← r + γSimulate(fθ, b′, d− 1)
12 N(b, a)← N(b, a) + 1
13 Q(b, a)← Q(b, a) + q−Q(b,a)

N(b,a)
14 return q

The memory complexity for MCTS is E = O(kd) for
k = |A(b)||B(b, a)| where |B(b, a)| is the number of belief-
action nodes and |A(b)| is the number of children, which
depend on progressive widening parameters. The mem-
ory complexity for BetaZero is O(TPE|θ|) for the col-
lected data sizes of the belief and returns T (same as the
horizon), the policy vector size of P = |A| (i.e., action
space size), the MCTS memory complexity of E, and the
network size of |θ|. Compared to standard MCTS applica-
tions to belief-state MDPs, BetaZero requires additional
memory for data collection and neural network storage.

Algorithm 3 details MCTS for BetaZero with extensions
for belief-state planning with learned approximations.
The full BetaZero algorithm is shown in algorithms 4 to 6.

4 Related Work

Algorithms to solve high-dimensional, fully observable Markov decision processes (MDPs) have been
proposed to learn approximations that replace problem-specific heuristics. Silver et al. (2018) intro-
duced the AlphaZero algorithm for large, deterministic MDPs and showed considerable success in
games such as Go, chess, shogi, and Atari (Silver et al., 2018; Schrittwieser et al., 2020). The success
is attributed to the combination of online Monte Carlo tree search (MCTS) and a neural network
that approximates the optimal value function and the offline policy. Extensions of AlphaZero and
the model-free variant MuZero (Schrittwieser et al., 2020) have already addressed several challenges
when applying to broad classes of MDPs. For large or continuous action spaces, Hubert et al. (2021)
introduced a policy improvement algorithm called Sampled MuZero that samples an action set of an
a priori fixed size every time a node is expanded. Antonoglou et al. (2021) introduced Stochastic
MuZero that extends MuZero to games with stochastic transitions but assumes a finite set of pos-
sible next states so that each transition can be associated with a chance outcome. Applying these
algorithms to large or continuous spaces with partially observability remains challenging.

To handle partial observability in stochastic games, Ozair et al. (2021) combine VQ-VAEs with
MuZero to encode future discrete observations into latent variables. Other approaches handle partial
observability by inputting action-observation histories directly into the network (Kimura et al., 2020;
Vinyals et al., 2019). Similarly, Igl et al. (2018) introduce a method to learn a belief representation
within the network when the agent is only given access to histories. Their work focuses on the
reinforcement learning (RL) domain and they show that a belief distribution can be represented as
a latent state in the learned model. The FORBES algorithm (Chen et al., 2022) builds a normalizing
flow-based belief and learns a policy through an actor-critic RL algorithm. Methods to learn the
belief are necessary when a prior belief model is not available. When such models do exist, as is the
case with many POMDPs that we study, using the models can be valuable for long-term planning.
Hoel et al. (2019) apply AlphaGo Zero (Silver et al., 2017) to an autonomous driving POMDP using
the most-likely state as the network input but overlook significant belief uncertainty information.

Planning vs. reinforcement learning. In POMDP planning, models of the transitions, rewards,
and observations are known. In contrast, in the model-based partially observable reinforcement
learning (PORL) domain, these models are learned along with a policy or value function (Sutton &
Barto, 2018; Subramanian et al., 2022). A difference between these settings is that PORL algorithms
reset the agent and learn through experience, while planning algorithms, like MCTS, must consider
future trajectories from any state. When RL problems have deterministic state transitions, they
can be cast as a planning problem by replaying the full state trajectory along a tree path, which
may be prohibitively expensive for long-horizon problems. Both settings are closely related and
pose interesting research challenges. Specifically, sequential planning over given models in high-
dimensional, long-horizon POMDPs remains challenging (Lauri et al., 2022).
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Online POMDP planning. Sunberg & Kochenderfer (2018) introduced the POMCPOW plan-
ning algorithm that iteratively builds a particle set belief within the tree, designed for fully continuous
spaces. In practice, POMCPOW relies on heuristics for value function estimation and action selec-
tion (e.g., work from Mern & Caers (2023)). Wu et al. (2021b) introduced AdaOPS that adaptively
approximates the belief through particle filtering and maintains value function bounds that are ini-
tialized with heuristics (e.g., solving the MDP or using expert policies). The major limitation of
existing solvers is the reliance on heuristics to make long-horizon POMDPs tractable, which may not
scale to high-dimensional problems. Cai & Hsu (2022) proposed LeTS-Drive applied to autonomous
driving that combines planning and learning similar to BetaZero, and uses HyP-DESPOT with
PUCT exploration (Cai et al., 2021) as the planning algorithm, instead of MCTS. It uses a state-
history window as input to the network, which may not adequately capture the state uncertainty.
LeTS-Drive expands on all actions during planning, which we show may lead to suboptimal planning
under limited search budgets (shown in figs. 14 and 16). To handle long-horizon POMDPs, Mazzi
et al. (2023) propose learning logic-based rules as policy guidance in POMCP, yet domain-specific
knowledge is required to define the set of features for the rules, which may not be easily generalized
to complex POMDPs we study in this work. Therefore, we identified the need for a general POMDP
planning algorithm that does not rely on problem-specific heuristics for good performance.

5 Experiments

|S| |A| |O|
LightDark(5 and 10) |R| 3 |R|
RockSample(15, 15) 7,372,800 20 3
RockSample(20, 20) 419,430,400 25 3
Mineral Exploration |R32×32| 38 |R≥0|

Figure 4: POMDP space dimensions.

Three benchmark problems were chosen to evaluate the
performance of BetaZero. Figure 4 details the POMDP
sizes and appendices further describe the POMDPs, net-
work architectures, and experimental design.

In LightDark(y) from Platt Jr. et al. (2010), the goal of
the agent is to execute a stop action at the origin while
receiving noisy observations of its true location. The noise
is minimized in the “light” region y = 5. We also bench-
mark against a more challenging version with the light
region at y = 10 from Sunberg & Kochenderfer (2018), and restrict the agent to only three actions:
move up or down by one, or stop. The modified problem requires information gathering over longer
horizons. Next is the RockSample(n, k) POMDP (Smith & Simmons, 2004), which is a scalable
information gathering problem where an agent moves in an n × n grid to observe k rocks with an
objective to sample only the “good” rocks. Well-established POMDP benchmarks go up to n = 15
and k = 15; we also test a harder version with n = 20 and k = 20 to show the scalability of BetaZero,
noting that this case has been evaluated in the multi-agent setting (Cai et al., 2021). Finally, in the
real-world Mineral Exploration problem (Mern & Caers, 2023), the agent drills over a 32× 32
region to determine if a subsurface ore body should be mined or abandoned and the continuous ore
quality is observed at the drill locations to build a belief. Drilling incurs a penalty, and if chosen to
mine, then the agent is rewarded or penalized based on an economic threshold of the extracted ore
mass. The problem is challenging due to reasoning over limited observations with sparse rewards.

We baseline BetaZero against several online POMDP algorithms, namely AdaOPS, POMCPOW,
DESPOT, and LeTS-Drive (HyP-DESPOT with a learned network). In LightDark, we solve for
an approximately optimal policy using local approximation value iteration (LAVI) (Kochenderfer,
2015) over a discretized parametric belief space, and for mineral exploration, the value estimates
come from privileged information described in the appendix. For a fair comparison, parameters were
set to roughly match the total number of simulations of about one million per algorithm.

5.1 Empirical results and discussion

Table 1 shows that BetaZero outperforms state-of-the-art algorithms in most cases, with larger
improvements when baseline algorithms do not rely on heuristics. While BetaZero has a large offline
timing component, similar to LeTS-Drive, it is significantly less than solving for the approximately
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LightDark(5) LightDark(10) RockSample(15, 15) RockSample(20, 20) Mineral Exploration
returns time [off,on] s returns time [off,on] s returns time [off,on] s returns time [off,on] s returns time [off,on] s

BetaZero 4.47± 0.28 [2274, 0.014] 16.77± 1.28 [2740, 0.331] 20.15± 0.71 [5701, 0.477] 13.09± 0.55 [7081, 1.109] 10.67± 2.25 [22505, 5.126]
Raw Policy Pθ 4.44± 0.28 [2274, 0.004] 13.74± 1.33 [2740, 0.004] 10.96± 0.98 [5701, 0.018] 2.03± 0.34 [7081, 0.084] 8.67± 2.52 [22505, 0.533]
Raw Value Vθ* 3.16± 0.40 [2274, 0.008] 12.70± 1.46 [2740, 0.009] 9.96± 0.65 [5701, 0.158] 3.57± 0.40 [7081, 0.204] 9.75± 2.42 [22505, 1.420]

AdaOPS 3.78± 0.27 [68, 0.089] 5.22± 1.77 [81, 0.510] 20.67± 0.72 [7, 2.768] — — 3.33± 1.95 [5, 0.112](3.79± 0.07) (17.16± 0.21)
AdaOPS (fixed bounds) 3.70± 0.25 [0, 0.039] 4.98± 2.01 [0, 0.573] 13.37± 0.71 [0, 1.349] 11.66± 0.49 [1, 1.458] ” ”

POMCPOW 3.21± 0.38 [59, 0.189] 0.68± 0.41 [70, 1.261] 11.14± 0.59 [0, 0.929] 10.22± 0.47 [0, 1.480] 9.43± 2.19 [0, 6.728](3.23± 0.11) (10.40± 0.18)
POMCPOW (no heuristics) 1.96± 0.58 [0, 0.099] −5.90± 5.78 [0, 0.742] 10.17± 0.61 [0, 1.485] 4.03± 0.44 [0, 5.173] 5.38± 2.15 [0, 5.915]

DESPOT 2.37± 0.37 [0, 0.008] 0.43± 0.36 [0, 0.046] 18.44± 0.69 [7, 3.822] — — 5.29± 2.17 [5, 0.283](2.50± 0.10) (15.67± 0.20)
DESPOT (fixed bounds) 2.70± 0.50 [0, 0.008] 0.49± 0.30 [0, 0.025] 4.29± 0.45 [0, 5.091] 0.00 [0, 5.179] ” ”

LeTS-Drive (HyP-DESPOT + fθ) 3.05± 0.25 [1260, 0.019] 4.08± 5.48 [1529, 0.058] 11.22± 0.27 [48064, 1.576] 9.68± 0.25 [63850, 2.018] 3.17± 2.04 [11738, 4.613]

Approx. Optimal 4.06± 0.31 [18359, 0.094] 15.04± 1.27 [19548, 0.024] — — — — 11.90± 0.18 N/A
* One-step look-ahead over all actions using only the value network with 5 observations per action.

Entries with “—” failed to run, ” are the same as the ones above, and entries in (parentheses) are from the literature.

Table 1: Results comparing BetaZero to various state-of-the-art POMDP solvers. Reporting return
mean and standard error over 100 seeds, and [offline, online] timing in seconds.

optimal policy. Figure 5 compares the raw BetaZero value and policy network with value iteration
for LightDark(10). Qualitatively, BetaZero learns an accurate optimal policy and value function in
areas where training data was collected. Areas where BetaZero and the approximately optimal policy
diverge may be a result of a lack of training data in those regions (top right corners). Despite this,
BetaZero remains nearly optimal as those beliefs do not occur during execution. Out-of-distribution
methods could quantify this uncertainty, e.g., an ensemble of networks (Salehi et al., 2022).

In RockSample(15, 15), BetaZero is comparable to AdaOPS yet scales better to higher dimensional
problems such as the RockSample(20, 20) POMDP. AdaOPS computes an upper bound using
QMDP (Littman et al., 1995) to find the optimal utility of the fully observable MDP over all
k − 1 rock combinations, which scales exponentially in n. In problems with higher state space
dimensions, like RockSample(20, 20), the QMDP solution is intractable. Thus, fixed bounds are
used in AdaOPS assuming an optimistic Vmax (Wu et al., 2021a). The appendix further details the
heuristics used by the baseline algorithms. Indicated in table 1, the raw networks alone perform well
but outperform when combined with online planning, enabling reasoning with current information.

If online algorithms ran for a large number of iterations, one might expect to see convergence to
the optimal policy. In practice, this may be an intractable number as fig. 6 shows POMCPOW has
not reached the required number of iterations for RockSample. The advantage of BetaZero is that
it can generalize from a more diverse set of experiences. The inability of existing online algorithms
to plan over long horizons is also evident in the mineral exploration POMDP (fig. 7). POMCPOW
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Figure 5: LightDark(10) value and policy plots over belief mean and std. High uncertainty
(horizontal axis) makes the agent localize up near y = 10, then moves down and stops at the origin.
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Figure 6: Performance of POMCPOW with heuristics up to 10 million online iterations plateaus,
indicating that extending online searches alone misses valuable offline experience.

ran for one million online iterations without a value estimator heuristic and BetaZero ran online for
100 iterations (using about 850,000 offline simulations). In the figure, the probability of selecting a
drilling location is shown as vertical bars for each action, overlaid on the initial belief uncertainty
(i.e., the std of the belief in subsurface ore quality). BetaZero learned to take actions in areas of
the belief space with high uncertainty and high value (which matches the domain-specific heuristics
developed for the mineral exploration problem from Mern & Caers (2023)), while POMCPOW fails
to distinguish between the actions and resembles a uniform policy.

The most closely related algorithm, LeTS-Drive (Cai & Hsu, 2022), which also includes an offline
learning component with online tree search planning, performs better than its DESPOT counterpart
without the use of offline heuristics. This is observed in all studied POMDPs except for the mineral
exploration problem where the DESPOT bounds use privileged information from the approximately
optimal bounds on the value function. Table 1 highlights that LeTS-Drive is able to scale DESPOT
to the RockSample(20, 20) problem, with overall similar timing results as BetaZero but worse
performance. This could be attributed to the HyP-DESPOT online tree search used in LeTS-Drive
that plans over observation space (similar to POMCPOW) and implicitly constructs beliefs from
a set of K scenarios in the tree. Therefore, the beliefs are dependent on the number of in-tree
scenarios executed, hence the comparable timing results, and not on the actual root node belief that
is updated along the tree paths (where belief-state planning incurs different computational expense
but with the benefit of planning over reachable beliefs into the future). Instead of the state history
as network input, we use the in-tree belief for a better comparison. The HyP-DESPOT planner
expands the tree over all actions instead of using progressive widening with prioritization, and, as
we observe in the ablation studies in the next section, expanding on all actions may limit the effective
use of the tree search budget, thus potentially missing promising areas of the reachable futures.

Ablation studies. To test the effect of each contribution, we run several ablation studies. The
influence of value and visit count information when selecting an action is shown in fig. 9. Each cell
is the mean return for the RockSample(20, 20) problem over 100 online trials, selecting root-node
actions via the argmax of eq. (6) given zq and zn. The cell at (0, 0) corresponds to a uniform policy
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Figure 7: Mineral exploration policies: BetaZero prioritizes uncertainty, matching heuristics from
Mern & Caers (2023) (i.e., select action with high uncertainty, shown in yellow).
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Figure 8: LightDark(10) ablation study. (Left) Learning is faster
when the network is trained using Q-weighted visit counts. (Middle)
Incorporating belief uncertainty is crucial for learning. (Right) Ac-
tion widening from the policy network shows significant improvement.
The same red curves are shown with varying horizontal axes, and one
std is shaded from three seeds using 0.6 exponential smoothing.

Figure 9: Ablation study in
RockSample(20, 20). Com-
bining value and count infor-
mation leads to the highest re-
turn. The diagonal is identical
due to the argmax of eq. (6).

and thus samples actions instead. Using only the visit counts (bottom cells) or only the values (left
cells) to make decisions is worse than using a combination of the two. The effect of the Q-weighting
is also shown in the leftmost fig. 8, which suggests that it helps learn faster in LightDark(10).

Unsurprisingly, using the state uncertainty encoded in the belief is crucial for learning as indicated in
the middle of fig. 8. Future work could directly input the particle set into the network, first passing
through an order invariant layer (Zaheer et al., 2017), to offload the belief approximation to the
network itself. Finally, the rightmost plot in fig. 8 suggests that when branching on actions using
progressive widening, it is important to first prioritize the actions suggested by the policy network.
Offline learning fails if instead we sample uniformly from the action space (even in the LightDark
case with only three actions).

6 Conclusions

We propose the BetaZero belief-state planning algorithm for POMDPs; designed to learn from offline
experience to inform online decisions. Planning in belief space explicitly handles state uncertainty
and learning offline approximations to replace heuristics enables effective online planning in long-
horizon POMDPs. Although belief-space planning incurs expensive belief updates in the tree search,
we address the limited search budget used in practice by incorporating all information available in
the search tree to (a) train the policy vector target (using the Q-weighted visit counts), and (b)
sample from the policy network during action progressive widening to prioritize promising actions.
Stochastic belief-state transitions in MCTS are addressed using progressive widening and we test a
belief representation of summary statistics to allow beliefs as input to the value and policy network.
Results indicate that BetaZero scales to larger problems where certain heuristics break down and,
as a result, can solve large-scale POMDPs by learning to plan in belief space using zero heuristics.

Limitations. It is standard for POMDP planning algorithms to assume known models but this
may limit the applicability to certain problems where reinforcement learning may be better suited.
We chose a simplified belief representation to allow for further research innovations in using other
parametric and non-parametric representations. Other limitations include compute resource require-
ments for training neural networks and parallelizing MCTS simulations. We designed BetaZero to
use a single GPU for training and to scale based on available CPUs. Certain POMDPs may not
require this training burden, especially when known heuristics perform well. BetaZero is useful for
long-horizon, high-dimensional POMDPs but may be unnecessary when offline training is compu-
tationally limited. BetaZero is designed for problems where the simulation cost is the dominating
factor compared to offline training time.
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Timothy Yee, Viliam Lisỳ, Michael H. Bowling, and S. Kambhampati. Monte Carlo Tree Search
in Continuous Action Spaces with Execution Uncertainty. In International Joint Conference on
Artificial Intelligence (IJCAI), pp. 690–697, 2016.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, et al. Deep Sets. Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2017.

172



RLJ | RLC 2024

Appendix

This section contains material detailing the POMDP environments and experiments, the ablation
studies, additional analysis of bootstrapping and double progressive widening, the network archi-
tectures, hyperparameters and tuning, computational resources, information regarding open-source
code for reproducibility, and the full BetaZero algorithm pseudocode.

A POMDP Environments

This section describes the benchmark POMDPs in detail, including the heuristics used by the baseline
POMDP algorithms and information regarding the particle filter belief used by BetaZero.

Light dark. The LightDark(y) POMDP is a one-dimensional localization problem (Platt Jr.
et al., 2010). The objective is for the agent to execute the stop action at the goal, which is at ±1
of the origin. The agent is awarded 100 for stopping at the goal and −100 for stopping anywhere
else; using a discount of γ = 0.9. The agent receives noisy observations of their position, where
the noise is minimized in the “light” region defined by y. In the LightDark(5) problem used by
Wu et al. (2021b), the noise is a zero-mean Gaussian with standard deviation of |y− 5|/

√
2 + 10−2.

For the LightDark(10) problem used by Sunberg & Kochenderfer (2018), the noise is a zero-mean
Gaussian with standard deviation of |y − 10| + 10−4. In both problems, we use a restricted action
space of A = [−1, 0, 1] where 0 is the stop action. The expected behavior of the optimal policy is
first to localize in the light region, then travel down to the goal. The BetaZero policy exhibits this
behavior which can be seen in fig. 10 (where circles indicate the final location).

The approximately optimal solution to the light dark problems used local approximation value iter-
ation (LAVI) (Kochenderfer, 2015) over the discretized belief-state space (i.e., mean and std). The
belief mean was discretized between the range [−12, 12] and the belief std was discretized between
the range [0, 5]; each of length 100. The LAVI solver used 100 generative samples per belief state
and ran for 100 value iterations with a Bellman residual of 1× 10−3.

Rock sample. In the RockSample(n, k) POMDP introduced by Smith & Simmons (2004), an
agent has full observability of its position on an n×n grid but has to sense the k rocks to determine
if they are “good” or “bad”. The agent knows a priori the true locations of the rocks (i.e., the rock
locations xrock are a part of the problem, not the state). The observation noise is a function of the
distance to the rock:

1
2

(
1 + exp

(
−∥xrock − xagent∥2 log(2)

c

))
(9)

where c = 20 is the sensor efficiency. The agent can move in the four cardinal directions, sense the
k rocks, or take the action to sample a rock when it is located under the agent. The agent receives
a reward of 10 for sampling a “good” rock and a penalty of −10 for sampling a “bad” rock. The
terminal state is the exit at the right edge of the map, where the agent gets a reward of 10 for
exiting.

Mineral exploration. The Mineral Exploration POMDP introduced by Mern & Caers (2023)
is an information gather problem with the goal of deciding whether a subsurface ore body is econom-
ical to mine or should be abandoned (calibrated so that 50% of cases are economical). The agent can
drill every fifth cell of a 32×32 plot of land to determine the ore quality at that location. Therefore,
the action space consists of the 36 drill locations and the final decisions to either mine or abandon.
The agent receives a small cost for each drill action, a reward proportional to the extracted ore if
chosen to mine (which is negative if uneconomical), and a reward of zero if chosen to abandon:

R(s, a) =





−cdrill if a = drill∑
1(sore ≥ hmassive)− cextract if a = mine

0 otherwise
(10)
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Figure 10: LightDark(10) trajectories from 50 episodes. BetaZero (dark blue) learned to first
localize in the light region at y = 10 before heading to the goal (origin).

where cdrill = 0.1, hmassive = 0.7, and cextract = 71. The term
∑

1(sore ≥ hmassive) indicates the
cells that have an ore quality value above some massive ore threshold hmassive (which are deemed
valuable). Figure 11 and fig. 12 show an example of four steps of the mineral exploration POMDP.

A.1 Experiment details

Experiment parameters for each problem can be seen in tables 3 to 5 under the “online” column.
For the baseline algorithms, the heuristics follow Wu et al. (2021b). Problems that failed to run due
to memory limits followed suggestions from Wu et al. (2021a) to first use the MDP solution and
then use a fixed upper bound of rcorrect = 100 for the light dark problems and the following for the
rock sample problems:

Vmax = rexit +
2k−n∑

t=1+n−k
γt−1rgood (11)

where rgood = rexit = 10 and the sum computes an optimistic value assuming the rocks are directly
lined between the agent and the goal and assuming n ≥ k for simplicity.

For problems not studied by Wu et al. (2021b), we use the same heuristics as their easier
counterpart (i.e., LightDark(10) uses LightDark(5) heuristics and RockSample(20, 20) uses
RockSample(15, 15) heuristics). For mineral exploration, the baselines used the following heuris-
tics. POMCPOW used a value estimator of max(0, R(s, a = mine)) and when using “no heuristic”
used a random rollout policy to estimate the value. Both AdaOPS and DESPOT used a lower bound
computed as the returns if fully drilled all locations, then made the decision to abandon:

Vmin = −
T−1∑

t=1
γt−1cdrill (12)

The upper bound comes from an oracle πtruth taking the correct final action without drilling, com-
puted over 10,000 states. Note that there is no state transition in this problem.

Vmax = E
s∈S

[
max

(
0, R

(
s, πtruth(s)

))]
(13)

≈ 1
n

n∑

i=1
max

(
0, R

(
s(i), πtruth(s)

))
(14)

Particle filtering. Both BetaZero and the baseline algorithms update their belief with a bootstrap
particle filter using a low-variance resampler (Gordon et al., 1993), with nparticles ∈ [500, 1000, 1000]
for the light dark, rock sample, and mineral exploration problems, respectively. The particle fil-
ter follows an update procedure of first reweighting then resampling. In mineral exploration, the
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Figure 11: The BetaZero policy shown over belief mean for four
steps. BetaZero first prioritizes the edges of the belief mean,
corresponding to the belief uncertainty (right-most plots), then
explores the outer regions of the subsurface; ultimately gather-
ing information from actions with high mean and std, matching
heuristics. At the initial step, abandoning and mining have near-
equal probability (bottom left graphs) but by the fourth action,
abandoning is much more likely.

Figure 12: The selected
drill actions over belief un-
certainty, showing that uncer-
tainty collapses after drilling.
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observations are noiseless which could quickly result in particle depletion. Therefore, approximate
Bayesian computation (ABC) is used to reweight each particle using a Gaussian distribution centered
at the observation with a standard deviation of σabc = 0.1 (Csilléry et al., 2010).

The belief representation takes the mean and standard deviation across the nparticles. In the light
dark problems, this is computed across the 500 sampled y-state values that make up the belief. The
initial y-value state distribution—which makes up the initial belief—follows a Gaussian distribution
and thus the parametric representation is a good approximation of the belief.

For the rock sample problem, the belief is represented as the mean and standard deviation of the
good rocks from the 1000 sampled states (appending the true position as it is deterministic). The
rock qualities are sampled uniformly in {0, 1} indicating if they are “good”, which makes the problem
non-Gaussian, but the parametric belief approximation can model a uniform distribution by placing
the mean at the center of the uniform range and stretching the variance to match the uniform.

Lastly, the mineral exploration problem flattens the 1000 subsurface 32 × 32 maps that each have
associated ore quality per-pixel between [0, 1] into two images: a mean and standard deviation image
of the ore quality that is stacked and used as input to a CNN. The initial state distribution for the
massive ore quantity closely follows a Gaussian, making the parametric belief approximation well
suited.

For problems where Gaussian approximations do not capture the belief, the parameters of other
distributions could be used as a belief representation or the particles themselves could be input
into a network—first passing through an order-invariant layer (Igl et al., 2018). Scaling to larger
observation spaces will not be an issue as BetaZero plans over belief states instead of observations.

B Additional Analysis

This section briefly describes additional analyses omitted from the main body of the paper. This
includes analysis of bootstrapping the initial Q-values using a one-step lookahead with the value
network and sensitivity analysis of double progressive widening on belief-states and actions.

B.1 Bootstrapping analysis

When adding a belief-action pair (b, a) to the MCTS tree, initializing the Q-values via bootstrapping
with the value network may improve performance when using a small MCTS budget. Table 2 shows
the results of an analysis comparing BetaZero with bootstrapping Q0(b, a) = Rb(b, a) + γVθ(b̃′)
where b̃′ = ϕ(b′) and without bootstrapping Q0(b, a) = 0. Each domain used the online parameters
described in tables 3 to 5. Results indicate that bootstrapping was only helpful in the rock sample
problems and incurs additional compute time due to the belief update done in b′ ∼ Tb(b, a). Note
that bootstrapping was not used during offline training. In problems with high stochasticity in the
belief-state transitions, bootstrapping may be noisy during the initial search due to the transition
Tb sampling a single state from the belief. Further analysis could investigate the use of multiple
belief transitions to better estimate the value, at the expense of additional computation. The value
estimate of b could instead be used as the bootstrap but we would expect similar results to the
one-step bootstrap as many problems we study have sparse rewards.

LightDark(5) LightDark(10) RockSample(15, 15) RockSample(20, 20) Mineral Exploration
returns time [s] returns time [s] returns time [s] returns time [s] returns time [s]

BetaZero (bootstrap) 4.22± 0.31 0.014 14.45± 1.15 0.34 20.15± 0.71 0.48 13.09± 0.55 1.11 10.32± 2.38 6.27
BetaZero (no bootstrap) 4.47± 0.28 0.014 16.77± 1.28 0.33 19.50± 0.71 0.42 11.00± 0.54 0.57 10.67± 2.25 4.46

Reporting mean ± standard error over 100 seeds (i.e., episodes); timing is average per episode.

Table 2: Effect of Q-value bootstrapping in online BetaZero performance (returns and online timing).
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Figure 13: Sensitivity
analysis of belief-state
progressive widening in
LightDark(10).

Figure 14: Sensitiv-
ity analysis of action
progressive widening in
LightDark(10).

Figure 15: Sensitivity
analysis of belief-state
progressive widening in
RockSample(20, 20).

Figure 16: Sensitiv-
ity analysis of action
progressive widening in
RockSample(20, 20).

B.2 Limitations of double progressive widening

Double progressive widening (DPW) is a straightforward approach to handle large or continuous state
and action spaces in Monte Carlo tree search. It is easy to implement and only requires information
available in the tree search, i.e., number of children nodes and number of node visits. It is known that
MCTS performance can be sensitive to DPW hyperparameter tuning and Sokota et al. (2021) show
that DPW ignores information about the relation between states that could provide more intelligent
branching. Sokota et al. (2021) introduce state abstraction refinement that uses a distance metric
between states to determine if a similar state should be added to the tree; requiring a state transition
every time a state-action node is visited. For our work, we want to reduce the number of expensive
belief-state transitions in the tree and avoid the use of problem-specific heuristics required when
defining distance metrics. Using DPW in BetaZero was motivated by simplicity and allows future
work to innovate on the components of belief-state and action branching.

To analyze the sensitivity of DPW, figs. 13 and 14 show a sweep over the α and k parameters for
DPW in LightDark(10). Figure 13 shows that the light dark problem is sensitive to belief-state
widening and fig. 14 indicates that this problem may not require widening on all actions—noting
that when k = 0, the only action expanded on is the one prioritized from the policy head a ∼ Pθ(b̃, ·).
The light dark problems have a small action space of |A| = 3, therefore this prioritization leads to
good performance when only a single action is evaluated (left cells in fig. 14 when k = 0).

In RockSample(20, 20), figs. 15 and 16 indicates that this problem benefits from a higher widening
factor (top right of the figures) as the action space |A| = 25 is larger and the belief-state transitions
operate over a much larger state space. DPW uses a single branching factor throughout the tree
search and research into methods that adapt the branching based on learned information would be
a valuable direction to explore.

Lim et al. (2023) introduce a class of POMDP planning algorithms that use a fixed number of
samples to branch on instead of progressive widening. The bottom row of figs. 13 to 16 (where
α = 0) can be interpreted as a fixed branching factor compared to progressive widening in the other
cells. The analysis in the figures shows that there are cases where BetaZero has better performance
when using progressive widening (show in the lighter colors).

C Network Architectures

Figures 17 to 19 specify the neural network architectures for the three problem domains. The net-
works were designed to be simple so that future work could focus on incorporating more complicated
architectures such as residual networks. Mineral exploration does not normalize the inputs and is
the only problem where the input is treated as an image, thus we use a convolutional neural network
(CNN). Training occurs on normalized returns and an output denormalization layer is added to the
value head to ensure proper magnitude of the predicted values.
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Figure 17: Light dark
neural network archi-
tecture.

Figure 18: Rock sample
neural network architecture.

Figure 19: Mineral explo-
ration CNN architecture.

C.1 Return scaling for output normalization

For general POMDPs, the return can be an unbounded real-value and not conveniently in [0, 1] or
[−1, 1]; as is often the case with two player games. Schrittwieser et al. (2020) use a categorical
representation of the value split into a discrete support to make learning more robust (Schrittwieser,
2020). We instead simply normalize the target before training as

ḡt = gt − E[Gtrain]√
Var[Gtrain]

(15)

where Gtrain is the set of returns used during training; keeping running statistics of all training data.
Intuitively, this ensures that the target values have zero mean and unit variance which is known
to stabilize training (LeCun et al., 2002). After training, a denormalization layer is added to the
normalized output v̄ of the value network as

vt = v̄
√

Var[Gtrain] + E[Gtrain] (16)

to properly scale value predictions when the network is evaluated (which is done entirely internal to
the network).

D Hyperparameters and Tuning

The hyperparameters used during offline training and online execution are described in tables 3
to 5. Offline training refers to the BetaZero policy iteration steps that collect parallel MCTS data
(policy evaluation) and then retrain the network (policy improvement). The online execution refers
to using the BetaZero policy after offline training to evaluate its performance through online tree
search. The main difference between these two settings is the final criteria used to select the root
node action in MCTS. During offline training of problems with large action spaces (e.g., rock sample
and mineral exploration), sampling root node actions according to the Q-weighted visit counts with
a temperature τ ensures exploration. To evaluate the performance online, root node action selection
takes the maximizing action of the Q-weighted visit counts. During training, we also evaluate a
holdout set that uses the argmax criteria to monitor the true performance of the learned policy.

The MCTS parameters for the mineral exploration problem were tuned using Latin hypercube
sampling based on the lower-confidence bound of the returns. During training, the rock sample
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Parameter* LightDark(5) LightDark(10) Description
Offline Online Offline Online

BetaZero policy
iteration parameters

niterations 30 — 30 — Number of offline BetaZero policy iterations.
ndata 500 — 500 — Number of parallel MCTS data gen. episodes per policy iteration.
bootstrap Q0 false false false false Use bootstrap estimate for initial Q-value in MCTS.

Neural network
parameters

nepochs 50 — 50 — Number of training epochs.
α 1× 10−4 — 1× 10−4 — Learning rate.
λ 1× 10−5 — 1× 10−5 — L2-regularization parameter.

MCTS
parameters

nonline 100 1300 100 1000 Number of tree search iterations of MCTS.
c 1 1 1 1 PUCT exploration constant.
ka 2.0 2.0 2.0 2.0 Multiplicative action progressive widening value.
αa 0.25 0.25 0.25 0.25 Exponential action progressive widening value.
kb 2.0 2.0 2.0 2.0 Multiplicative belief-state progressive widening value.
αb 0.1 0.1 0.1 0.1 Exponential belief-state progressive widening value.
d 10 10 10 10 Maximum tree depth.
τ 0 0 0 0 Exploration temperature for final root node action selection.
zq 1 1 1 1 Influence of Q-values in final criteria.
zn 1 1 1 1 Influence of visit counts in final criteria.

* Entries with “—” denote non-applicability and “·” denotes they are disabled.

Table 3: BetaZero parameters for the LightDark problems.

Parameter RockSample(15, 15) RockSample(20, 20) Description
Offline Online Offline Online

BetaZero policy
iteration parameters

niterations 50 — 50 — Number of offline BetaZero policy iterations.
ndata 500 — 500 — Number of parallel MCTS data gen. episodes per policy iteration.
bootstrap Q0 false true false true Use bootstrap estimate for initial Q-value in MCTS.

Neural network
parameters

nepochs 10 — 10 — Number of training epochs.
α 1× 10−3 — 1× 10−3 — Learning rate.
λ 1× 10−5 — 1× 10−5 — L2-regularization parameter.

MCTS
parameters

nonline 100 100 100 100 Number of tree search iterations of MCTS.
c 50 50 50 50 PUCT exploration constant.
ka · 5.0 · · Multiplicative action progressive widening value.
αa · 0.9 · · Exponential action progressive widening value.
kb · 1.0 1.0 1.0 Multiplicative belief-state progressive widening value.
αb · 0.0 0.0 0.0 Exponential belief-state progressive widening value.
d 15 15 4 4 Maximum tree depth.
τ 1.0 0 1.5 0 Exploration temperature for final root node action selection.
zq 1 0.4 1 0.5 Influence of Q-values in final criteria.
zn 1 0.9 1 0.8 Influence of visit counts in final criteria.

Table 4: BetaZero parameters for the RockSample problems.

Parameter Offline Online Description

BetaZero policy
iteration parameters

niterations 20 — Number of offline BetaZero policy iterations.
ndata 100 — Number of parallel MCTS data gen. episodes per policy iteration.
bootstrap Q0 false false Use bootstrap estimate for initial Q-value in MCTS.

Neural network
parameters

nepochs 10 — Number of training epochs.
α 1× 10−6 — Learning rate.
λ 1× 10−4 — L2-regularization parameter.

MCTS
parameters

nonline 50 50 Number of tree search iterations of MCTS.
c 57 57 PUCT exploration constant.
ka 41.09 41.09 Multiplicative action progressive widening value.
αa 0.57 0.57 Exponential action progressive widening value.
kb 37.13 37.13 Multiplicative belief-state progressive widening value.
αb 0.94 0.94 Exponential belief-state progressive widening value.
d 5 5 Maximum tree depth.
τ 1.0 0 Exploration temperature for final root node action selection.
zq 1 1 Influence of Q-values in final criteria.
zn 1 1 Influence of visit counts in final criteria.

Table 5: BetaZero parameters for the Mineral Exploration problem.
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problems disabled progressive widening to expand on all actions and transition to a single belief
state. Then for online execution, we tuned the DPW parameters as shown in figs. 13 to 16. The
problems train with a batch size of 1024 over 80% of 100,000 samples from one round of data
collection (nbuffer = 1) using pdropout of 0.2, 0.5, 0.7, respectively. The neural network optimizer
Adam (Kingma & Ba, 2014) was used in LightDark(y) while RMSProp (Hinton et al., 2014) was
used in the others. A value function loss of MAE was used in mineral exploration (MSE otherwise),
each using nsamples = 100,000 during training.

E Compute Resources

BetaZero was designed to use a single GPU to train the network and parallelize MCTS evaluations
across available CPUs. Evaluating the networks on the CPU is computationally inexpensive due to
the size of the networks (see figs. 17 to 19). This design was chosen to enable future research without
a computational bottleneck. For network training, a single NVIDIA A100 was used with 80GB of
memory on an Ubuntu 22.04 machine with 500 GB of RAM. Parallel data collection processes were
run on 50 processes split evenly over two separate Ubuntu 22.04 machines: (1) with 40 Intel Xeon
2.3 GHz CPUs, and (2) with 56 Intel Xeon 2.6 GHz CPUs. Algorithm 5 (line 3) shows where CPU
parallelization occurs. In practice, the MCTS data generation simulations are the bottleneck of the
offline component of BetaZero and not the network training—thus, parallelization is useful.

F Open-Sourced Code and Experiments

The BetaZero algorithm has been open sourced and incorporated into the Julia programming lan-
guage POMDPs.jl ecosystem (Egorov et al., 2017). Fitting into this ecosystem allows BetaZero
to access existing POMDP models and can easily be compared to various POMDP solvers. The
user constructs a BetaZeroSolver that takes parameters for policy iteration and data generation,
parameters for neural network architecture and training, and parameters for MCTS (described in
the tables above). The user may choose to define a method that inputs the belief b and outputs the
belief representation b̃ used by the neural network (the default computes the belief mean and std).
Given a pomdp::POMDP structure, a solver::BetaZeroSolver is constructed and solved using:

policy = solve(solver, pomdp)

which runs offline policy iteration (algorithm 4). Once you have a trained neural network, an action
can then be generated online from the policy given a belief b using the following (algorithm 6):

a = action(policy, b)

All experiments, including the experiment setup for the baseline algorithms with their heuristics,
are included for reproducibility. Code to run MCTS data collection across parallel processes is also
included. The code and experiments presented in this work are available online.3

G BetaZero Algorithm

The following algorithms 4 to 6 detail the full BetaZero policy iteration algorithm that iterates
between policy evaluation and policy improvement for a total of niterations. The offline policy evalu-
ation stage, or data collection process (algorithm 5), runs ndata parallel MCTS simulations over the
original POMDP and collects a dataset D of beliefs bt, policy vectors πt, and returns gt (computed
after each episode terminates). The top-level Q-weighted MCTS algorithm is shown in algorithm 6,
which iteratively runs MCTS simulations for nonline iterations to a specified depth d. The final root
node action selection policy follows the Q-weighted visit counts from eq. (6). The descriptions of
parameters ψ used in offline training and online tree search are listed in tables 3 to 5.

3https://github.com/sisl/BetaZero.jl

180



RLJ | RLC 2024

Algorithm 4: BetaZero offline policy iteration.

Require: P def= ⟨S,A,O, T,R,O, γ⟩: POMDP
Require: ψ: Parameters (includes niterations, ndata, nonline, and d)

1 function BetaZero(P, ψ)
2 fθ ← InitializeNetwork(ψ)
3 Pθ, Vθ ← fθ ▷ where (p, v)←

(
Pθ(b̃), Vθ(b̃)

)
4 for i← 1 to niterations
5 D ← CollectData(P, fθ, ψ) ▷ policy evaluation
6 fθ ← Train(fθ,D) ▷ policy improvement
7 return βπ0 (P, fθ) ▷ BetaZero online policy (uses alg. 6)

Algorithm 5: Collect MCTS data offline for policy evaluation.
1 function CollectData(P, fθ, ψ)
2 D = ∅
3 parallel for i← 1 to ndata ▷ parallelize MCTS runs across available CPUs
4 for t← 1 to T
5 at ←MonteCarloTreeSearch(P, fθ, bt, ψ) ▷ select next action through online planning
6 D(t)

i ← D
(t)
i ∪

{
(bt,π(t)

tree, gt)
}

▷ collect belief and policy data (placeholder for returns)
7 st+1 ∼ T (· | st, at)
8 ot ∼ O(· | at, st+1)
9 bt+1 ← Update(bt, at, ot)





transition the original POMDP

10 rt ← R(st, at) or R(st, at, st+1)
11 gt ←

∑T

k=t γ
(k−t)rk for t← 1 to T ▷ compute returns from observed rewards

12 return D

Algorithm 6: Monte Carlo tree search algorithm using Q-weighed visit counts.
1 function MonteCarloTreeSearch(P, fθ, b, ψ)
2 M← ⟨B,A, Tb, Rb, γ⟩ converted from the POMDP P ▷ plan using the belief-state MDP
3 for i← 1 to nonline
4 Simulate(fθ, b, d) ▷ MCTS simulated planning to a depth d (algorithm 3)

5 πtree(b, a) ∝
((

expQ(b,a)∑
a′ expQ(b,a′)

)zq(
N(b,a)∑
a′ N(b,a′)

)zn)1/τ
▷ Q-weighted visit counts eq. (6)

6 πtree(b, ai)← πtree(b, ai)/
∑

j
πtree(b, aj) ▷ normalize to get a valid probability distribution

7 return a ∼ πtree(b, ·) ▷ sample root node action (let τ → 0 to get argmax)
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Abstract

Offline reinforcement learning (RL) has emerged as an important framework for
applying RL to real-life applications. However, the complete lack of online interac-
tions causes technical difficulties. The online finetuning setting which incorporates a
limited form of online interactions, often available in practice, has been developed to
address these challenges. Unfortunately, existing theoretical frameworks for online
finetuning either assume high online sample complexity or require deploying fully
adaptive algorithms (i.e., unlimited policy changes), which restrict their application
to real-world settings where online interactions and policy updates are expensive
and limited. In this paper, we develop a new theoretical framework for online
finetuning. Instead of competing with the optimal policy (which inherits the high
sample complexity and adaptivity requirements of online RL), we aim to learn a
policy that improves as much as possible over an existing reference policy using
a pre-specified number of online samples and a non-adaptive data-collection strat-
egy. Our formulation reveals surprising nuances and suggests novel principles that
distinguish finetuning from purely online and offline RL.

1 Introduction

Reinforcement Learning (RL) is a form of learning via trial and error in which the agent interacts with
the environment and improves its decision-making strategy (or policy) on the fly. Despite numerous
successes in simulated domains, such an online and adaptive protocol has seen difficulties in real-world
applications, such as healthcare, finance, and recommendation systems, where deploying unverified
and/or ever-changing policies can have undesirable consequences. As a response to this challenge,
offline RL, in which learning is solely from a pre-collected dataset without online interactions, has
received significant attention as a promising framework for deploying RL in real-world tasks (Levine
et al., 2020). However, its purely offline nature also gives rise to a host of new challenges, such
as difficulties in policy selection (Paine et al., 2020; Zhang & Jiang, 2021) and high sensitivity to
hyperparameters (Fujimoto & Gu, 2021; Cheng et al., 2022).

To tackle learning from a pre-collected dataset, researchers have started investigating a more hybrid
approach that combines offline and online RL, noting that many applications of interest do allow a
limited amount of online interaction in addition to the offline dataset. For example, in recommendation
systems, it is often possible to run a fixed policy (upon approval) on a small portion of user traffic to
collect more data for validation and further improvement; or in certain medical applications, one can
recruit a small group of patients to perform clinical trials. In these cases, the online interactions are
often limited in sample size and/or adaptivity (e.g., each new policy needs approval before being
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deployed and one cannot change it on the fly (Koenecke et al., 2020)). The hope is that we can use
these limited online interactions as a scarce resource to mitigate the caveats of offline RL and to
improve upon (or to finetune (Xie et al., 2021b)) it.

Unfortunately, attempts at establishing a theoretical framework for this online finetuning setting
have mostly yielded results that violate the aforementioned practical limitations (Xie et al., 2021b;
Song et al., 2022; Wagenmaker et al., 2022; Wagenmaker & Pacchiano, 2023; Li et al., 2023; Zhang
& Zanette, 2023):

Adaptivity: Many works run (variants of) standard online RL algorithms in the finetuning phase,
requiring full adaptivity, which is undesirable in practical applications where policy changes are costly
to implement.

High sample complexity & structural assumptions: Most existing works require a high
sample complexity in the online phase that scales with certain structural quantities, such as the
number of states/actions in the tabular setting or certain rank/dimension parameter in the function-
approximation setting. In the latter case, the low-rankness itself is often an assumption on the
environment dynamics which restricts the application scope of the methods.1

The above violations are clear signs that the existing theoretical frameworks do not adequately
capture the essence of the practical settings. More concretely, all existing works inherit the standard
goal of online RL, namely, competing with the optimal policy (in either PAC or regret formulation),
and this ambitious goal (optimality seeking) comes at the cost of impractical assumptions (adaptivity
and/or high complexity). Consequently, the results and methodologies in these works are much closer
to those in the online RL literature than in offline RL.

In this paper, we take a different approach to the hybrid offline-online RL problem by removing
the impractical assumptions and pursuing a more humble and reachable goal of improvement
maximization (instead of competing with the optimal). More concretely, we consider the non-
adaptive setting,2 where the online policy is decided based on the offline data and is not allowed to
be updated during the online phase. Then, with a given online budget, we ask the following question:

How to design an online data-collection strategy from the offline data, such that the policy learned
from all the data (offline and online) improves as much as possible over the one learned purely from

offline data?

Contributions:

1. We begin by defining a concrete and representative problem setting (Section 2). We then propose
a model-based information-theoretic objective for choosing the online data-collection strategy
(Eq. (4)), which hallucinates online data from plausible models and simulates the offline algorithm
after data collection. Since we do not know the true model that would generate the data, worst-case
reasoning (i.e., pessimism (Jin et al., 2020; Xie et al., 2021a)) is employed to guarantee that the
objective value is a valid lower-bound of the improvement of interest (Theorem 2).

2. Perhaps surprisingly, we show that in certain cases the objective value—which represents the guar-
anteed amount of improvement—can be approximately zero across all online policies (Theorem 3),
implying that positive improvement may not be obtainable in the worst-case scenario, leading to
degenerate behaviors. To address this issue, we show that pessimism plays two different roles in
our formulation: in data hallucination and when running the offline algorithm on the combined
dataset. By choosing the offline algorithm to provide guard against degenerate policies (Bhardwaj
et al., 2022), pessimism in data hallucination can be relaxed to strike a trade-off between the
1In contrast, offline RL can enjoy strong guarantees in general settings without making structural assumptions on

the environment dynamics (Xie et al., 2021a).
2This is also called the single-deployment setting. In some practical scenarios, this process can iterate for a small

number of times (Matsushima et al., 2020; Huang et al., 2021). While we would eventually like to understand such a
multiple-deployment setting, we consider the single-deployment one as a building block which has already proven to be
a challenging problem on its own.
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magnitude of improvement and the chance that improvement occurs (Eq. (7)), a new principle we
refer to as opportunistic pessimism.

3. Throughout the development we use multi-armed bandits (MABs) as a running example to provide
further intuitions. We report preliminary empirical investigations in MABs in Section 4.

2 Setup

Markov Decision Process Our problem considers decision-making in finite-horizon Markov
Decision Processes (MDPs). An MDP is specified by the tuple M = {S, A, P, R, H}, where S is the
state space, A is the action space, H is the horizon, P = {P0, . . . , PH−1} with Ph : S × A → ∆(S) is
the transition dynamics, and R = {R0, . . . , RH−1} is a (possibly stochastic) reward function with
Er∼Rh(s,a)[r] ∈ [0, 1] for all h and s ∈ S, a ∈ A. A policy π maps states or histories to a distribution
over actions. For a given MDP model M , let JM (π) = EM [

∑H−1
h=0 rh|π] denote the expected return

of a policy π in M . We denote the true model underlying the environment as M∗.

Offline learning and (non-adaptive) online finetuning In our learning setting, we are given a
policy class Π, a model class M, an offline dataset Doff drawn from the environment M∗ ∈ M (we
assume realizability) following certain behavior policies, and a policy πref ∈ Π computed using Doff ,
Π, and M, before the online data is collected. Our framework is flexible and agnostic to the choice
of the algorithm that computes πref . Our task is to 1) choose a policy µon ∈ Π 3 to collect an online
dataset of size non, and 2) run an offline algorithm Aoff over the combined offline and online dataset
to produce a final policy π̂, with the goal of maximizing the improvement over πref . The protocol is
summarized below:

Non-adaptive Online Finetuning (NOF) Problem
Input: policy class Π, model class M, offline dataset Doff , reference policy πref ∈ Π.

1. Pick online data-collection policy µon ∈ Π.
2. Execute µon in M∗ to collect non samples, denoted by Don.
3. Run Aoff over Doff ∪ Don and compute π̂ ∈ Π.

Goal: maximize JM∗(π̂) − JM∗(πref).

Multi-armed bandits While Section 3 will discuss our problem formulation for the general
RL setting, to improve intuition we will interweave examples in the setting of multi-armed bandits
(MABs). MABs are a simplified and special case of MDPs that consist of a single state and a
set of actions (arms) A. In an MAB model M , each arm a ∈ A has a reward distribution RM (a)
with average reward rM (a), thus JM (π) =

∑
a∈A π(a)rM (a). An MAB dataset D consists of tuples

{(a, r)}, where a is drawn from a policy over A and r ∼ RM∗(a). Given a dataset D, nD(a)
denotes the number of times a ∈ A was pulled in D, and r̂D(a) denotes the empirical estimate
of rM∗(a), i.e., r̂D(a) = 1

nD(a)
∑

(a′,r)∈D r1[a′ = a]. For simplicity, our examples throughout the
paper will utilize Bernoulli bandits, for which the reward distribution of each arm a is given by
RM∗(a) = Bernoulli(rM (a)), and can be modeled by a single parameter rM∗(a), namely, its expected
reward. These examples are designed to elucidate the core challenges of NOF.

3 An Information-Theoretic Objective for NOF

We provide a mathematical formulation and theoretically sound algorithm for the NOF problem
described in Section 2, with its core being an information-theoretic objective that guides the choice
of µon. Note that to specify the algorithm we also need to specify Aoff, which we start with.

3For simplicity we assume that πref , µon, and π̂ are all chosen from the same policy class Π; it is straightforward to
allow for separate policy classes.
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3.1 Choosing the Offline Algorithm Aoff

Once Don was collected, what we face in Step 3 of NOF (i.e., computing π̂) is a standard offline RL
problem. While we could employ any offline RL algorithm, there are a number of desirable properties:

1. While our goal is to improve over πref , a careless choice of Aoff may result in worse performance
than πref , i.e., negative improvement. It is desired to have safety assurance that π̂ is guaranteed
to be no worse than πref under mild conditions.

2. The offline algorithm Aoff should also enjoy the state-of-the-art offline RL guarantees that the
improvement is positive under favorable conditions (otherwise we can satisfy the point above by
trivially setting π̂ = πref , which will never improve over πref).

The ARMOR algorithm (Bhardwaj et al., 2022) satisfies both the above considerations. It is based
on the concept of version space, which will also be of vital importance for our later discussions.
Definition 1 (Version space). Given a model class M, a dataset D, and a confidence parameter
δ, the construction of a version space is a procedure that outputs Mδ(D) ⊆ M, satisfying the
following: if D is drawn from M∗ ∈ M, possibly in an adaptive (or non-i.i.d.) manner, then
PD[M∗ ∈ Mδ(D)] ≥ 1 − δ.

Roughly speaking, a version space uses data in D to rule out unlikely models. There are many ways
to implement it depending on the setting: for example, in “Bernoulli” multi-armed bandits (MABs),
the version space can be defined using the confidence intervals of the arms (see Example 1). A more
general approach is to filter out models with poor data likelihood compared to the MLE (Bhardwaj
et al., 2022).4 Our algorithm design does not depend on the specific form of version space, and we
will keep it abstract except for the standard condition of monotonicity in δ, i.e.,
Assumption 1. We assume that Mδ2(D) ⊆ Mδ1(D) for any fixed D and 0 < δ1 ≤ δ2 ≤ 1.

Assumption 1 implies that smaller δ’s result in larger version spaces, as they indicate higher probability
of retaining M∗. With the concept of version space, we can now state the ARMOR algorithm as

π̂ = argmax
π∈Π

min
M∈Mδ(Doff∪Don)

JM (π) − JM (πref) (1)

Intuitively, if we replace the minimum over M with M = M∗ in (1), the algorithm exactly maximizes
the improvement over πref , which is our goal. Of course, M∗ is unknown in practice, and generally
cannot be identified especially if the given dataset (Doff ∪ Don) does not provide full coverage over
the environment. However, we can still make the best effort in eliminating unlikely models and
reducing the uncertainty of M∗ by forming the version space Mδ(Doff ∪ Don), and then performing
worst-case reasoning over the version space. Such a design immediately yields the desired safety
guarantee, that π̂ is no worse than πref with high probability.
Proposition 1 (Theorem 2 of Bhardwaj et al. (2022)). We have JM∗(π̂) ≥ JM∗(πref) w.p. 1 − δ.

As for the second consideration listed above, Bhardwaj et al. (2022) show that ARMOR also has
strong optimality guarantees and competes with the best policy covered by the data. The MAB
example below provides more intuition on ARMOR and its version space.
Example 1 (ARMOR in MABs). The version space in Bernoulli MABs can be defined as the set
of Bernoulli distributions whose parameters lie within the rectangular set of the arms’ confidence
intervals,

Mδ(D) =
{

M ∈ M : RM (a) = Bernoulli(rM (a)), rM (a) ∈ [LCBD(a), UCBD(a)], ∀a ∈ A
}

,

4Although most offline analyses of version spaces assume i.i.d. data, they can often be straightforwardly extended
to handle adaptively generated data via martingale concentration inequalities (Jin et al., 2021).
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where UCBD(a) = r̂D(a) + b(a) and LCBD(a) = r̂D(a) − b(a) are the upper and lower confidence
bounds for arm a ∈ A. For an i.i.d. dataset5 D and any δ ∈ [0, 1), the confidence radius b(a) can be
defined using, e.g., Hoeffding’s inequality as b(a) :=

√
log(2|A|/δ)/2nD(a).

If πref is deterministic, i.e., πref(a) = 1[a = aref ], ∀a ∈ A with aref ∈ A being a fixed arm, which is
the case when it is learned using a typical offline RL algorithm such as LCB (Lattimore & Szepesvári,
2020), ARMOR (Eq. (1)) will also output a deterministic policy π̂(a) = 1[a = â], where

â =
{

aref , if LCBD(a) < UCBD(aref), ∀a ̸= aref ,

argmaxa̸=aref
{

LCBD(a) − UCBD(aref)
}

, otherwise.
(2)

In other words, ARMOR switches from aref to another arm a, only if Doff ∪ Don is such that the
UCB of aref is smaller than the LCB of a.

3.2 Information-theoretic Objective for µon

Now that Aoff is fixed, we turn to the design of the online data-collection policy µon. As a starting
point, suppose that we had access to M∗ when choosing µon, but once it is selected we have to run
ARMOR on the combined dataset without access to M∗. In this case, we compute µon by solving

µon = argmax
µ∈Π

EDµ

M∗ [JM∗(π̂Dµ

M∗ ) − JM∗(πref)],

where π̂Dµ

M∗ = argmax
π∈Π

min
M∈Mδ(Doff∪Dµ

M∗ )
JM (π) − JM (πref). (3)

Here Dµ
M∗ is the set of non samples collected by executing µon in M∗ and EDµ

M∗ is the expectation
w.r.t. the random draws of Dµ

M∗ . The subscript in π̂Dµ

M∗ is to distinguish it from the final output
policy π̂ in Eq. (1). These policies are the outputs of ARMOR with different version spaces. For
π̂Dµ

M∗ , the version space is defined on the union of Doff and the dataset Dµ
M∗ “hallucinated” in the

process of optimizing µon, while for π̂ it is defined on the union of Doff and the actual Don. Since
Dµ

M∗ is identically distributed as Don when we choose µon = µ, the objective is exactly the expected
improvement we can obtain in M∗ by selecting µon = µ to collect the online data.6

In reality when we do not have access to M∗, we follow a design choice similar to ARMOR and
construct a version space to quantify the uncertainty over M∗, and then employ worst-case reasoning
(pessimism) to form our objective as

µon ∈ argmax
µ∈Π

OBJ(µ, M′) := min
M ′∈M′

EDµ

M′

[
JM ′(π̂Dµ

M′
) − JM ′(πref)

]
, (4)

where M′ is a version space that we hope can capture M∗. We will consider different design choices for
M′ in the rest of this section. For starters, we can set M′ = Mδ′(Doff), the version space constructed
on Doff with confidence δ′. We also abuse notation and write OBJ(µ, δ′) := OBJ(µ, Mδ′(Doff)).

Thanks to the worst-case reasoning (pessimism), if M∗ ∈ M′, the objective value on the RHS of
Eq. (4) will give us a lower-bound on the improvement obtained in the real environment M∗ by
deploying the learned policy µon. Such a lower-bounding property makes the optimization problem
“what you see is what you get”, i.e., if we see a large objective value in Eq. (4), it is guaranteed that
the real improvement can only be higher (all proofs can be found in Appendix B):
Proposition 2. Let Don be the dataset collected using µon in Eq. (4). Then, if M∗ ∈ M′, we have

EDon
[
JM∗(π̂Don) − JM∗(πref)

]
≥ OBJ(µon, M′) = max

µ
OBJ(µ, M′).

Moreover, for M′ = Mδ′(Doff), the above equation holds w.p. ≥ 1 − δ′. In addition, OBJ(µ, δ′) is
monotonically non-decreasing in δ′.

5One can handle an adaptive dataset by union bounding over time and paying an additional log |D| factor.
6One design choice we make here is to use the expectation EDµ

M∗
to convert the distribution of improvement into a

scalar metric. Alternatively, we can consider other functionals such as risk-sensitive measures.
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Trade-off in the choice of δ′ The hyperparameter δ′ defines a trade off between how greedy we
would like to be with maximizing our objective and the probability of the improvement being realized
when we deploy µon in the true environment M∗. More precisely, for δ′

1 ≥ δ′
2 we have M′

δ′
1

⊆ M′
δ′

2
,

and thus, maxµ OBJ(µ, δ′
1) ≥ maxµ OBJ(µ, δ′

2). This is because for δ′
1, the minM ′ in Eq. (4) searches

over a smaller set of models and as a result is less adversarial/conservative. This means that as δ′

increases in magnitude, we will see a larger objective value and hence more significant guaranteed
improvement, but the chance that the improvement actually occurs (1 − δ′) will become smaller.

An Alternative Objective We conclude by discussing an alternative objective that is a relaxed
version of Eq. (4). Instead of using the improvement JM ′(π̂) − JM ′(πref) in the expectation of Eq. (4),
one alternative design choice is to directly use the ARMOR objective from Eq. (1), i.e.,

µon = argmax
µ

OBJ′(µ, δ′) := min
M ′∈M′

EDµ

M′

[
max
π∈Π

min
M∈Mδ(Doff∪Dµ

M′ )
JM (π) − JM (πref)

]
. (5)

This is a relaxation of Eq. (4), as the ARMOR objective itself lower bounds the improvement in M ′:

JM ′(π̂) − JM ′(πref) ≥ max
π∈Π

min
M∈Mδ(Doff∪Dµ

M′ )
JM (π) − JM (πref),

under the event that M ′ ∈ Mδ(Doff ∪ Dµ
M ′).7 While being looser than Eq. (4), Eq. (5) is also

simpler and avoids a few nested computations in Eq. (4) (e.g., computing the argmax policy from
the ARMOR objective and plugging it back to M ′ for evaluation). Another notable difference is
that Eq. (5) is monotone in δ, i.e., it is no smaller for larger δ, which is not necessarily the case for
Eq. (4) since it incorporates the tradeoff that δ induces (Assumption 1). We empirically investigate
the performance of Eq. (4) vs. Eq. (5) in Section 4.

3.3 Degeneracy in Optimization and Opportunistic Pessimism

In Section 3.2, we showed that the optimization objective in Eq. (4) has “what you see is what you
get” property, and a good improvement is guaranteed as long as the value of maxµ OBJ(µ, δ′) is
large. Here we first show that unfortunately, under fairly reasonable assumptions, the objective value
maxµ OBJ(µ, δ′) is guaranteed to be close to 0. This leads to a degenerate behavior for the algorithm
and implies that our formulation is overly conservative.
Proposition 3 (OBJ(µ, δ′) ≈ 0 under mild assumptions). If there exists a model M ′

0 ∈ Mδ′(Doff)
such that πref ∈ argmaxπ∈Π JM ′

0
(π), then

|OBJ(µ, δ′)| ≤ PDµ

M′
0
[M ′

0 /∈ Mδ(Doff ∪ Dµ
M ′

0
)], ∀µ ∈ Π.

Two remarks are in order: First, the proposition holds under the condition that πref is optimal for
one of the models in Mδ′(Doff), which is not a very strong assumption. For example, in Bernoulli
MABs, if πref is computed using the LCB algorithm (Lattimore & Szepesvári, 2020; Rashidinejad
et al., 2021) based on Doff with confidence parameter δ′, the condition is always satisfied as πref is
optimal for the model in which the mean rewards of the arms are equal to their lower confidence
bounds. Second, the RHS of the bound should be treated as a small quantity close to δ for reasons
discussed in Footnote 7. This non-zero residual corresponds to the low-probability event that the
version space fails to capture the model M ′

0 used to hallucinate data, and is a technical artifact due
to the mismatch between the expectation in EDµ

M′
and the high-probability guarantee of ARMOR.8

7The slight complication here is that Doff comes from M∗ but Dµ
M′ comes from M ′, so it is difficult to quantify

the likelihood of M ′ ∈ Doff ∪ Dµ
M′ using Definition Definition 1 which is stated very abstractly. However, note that

M ′ ∈ Mδ′ (Doff), meaning that M ′ is a model consistent with Doff . Therefore, it is very natural to assume that when
Doff is augmented with data sampled from M ′, then M ′ should not be eliminated (at least with high probability),
since the new observations from Dµ

M′ should favor M ′ even more.
8We refer the readers to Eq. (3) and Footnote 6 for a discussion on the choice of the distribution functional. If we

replace the expected improvement with the (1 − δ)-quantile, we would obtain an exact 0 on the RHS.
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In summary, we show that under reasonable assumptions OBJ(µ, δ′) ≈ 0 for all µ, which makes the
optimization meaningless: the objective implies that we can only gain an improvement of ≈ 0, but we
can achieve that by simply outputting πref as the final policy! Moreover, since OBJ(µ, δ′) is roughly
the same for all µ, the optimization over µ becomes arbitrary tie-breaking, which is the last
thing we want as doing anything else would not be any worse.

Opportunistic pessimism We first note that the above issue is not due to our objective being
loose: if M∗ = M ′

0—which is completely possible given the information we have in Doff—then the
possible improvement is in fact 0, so OBJ(µ, δ′) is a tight lower-bound on the worst-case possible
improvement. That said, M∗ = M ′

0 is an uninteresting case as πref is already optimal, so we should
exclude it from consideration when selecting µon, and a smaller M′ implies less pessimism and an
increase in the objective value in general. This leads to the following definition, where ∆ ∈ [0, 1] is a
user-specified hyperparameter,

Mδ′(Doff , ∆) :=
{

M ′ ∈ Mδ′(Doff) : ∆(M ′) ≥ ∆
}

, where ∆(M ′) := max
π∈Π

JM ′(π) − JM ′(πref), (6)

which filters out models for which πref is already near-optimal (up to a gap of ∆). Plugging this into
Eq. (4) (i.e., letting M′ = Mδ′(Doff , ∆)), our final objective for selecting µon is:

µon = argmax
µ∈Π

OBJ(µ, δ′; ∆) := min
M ′∈Mδ′ (Doff ,∆)

EDµ

M′

[
JM ′(π̂Dµ

M′
) − JM ′(πref)

]
. (7)

Crucially, we only filter out the uninteresting models in the version space for M ′. It is important to
note that both the ARMOR in Eq. (7) (i.e., π̂Dµ

M′
) and the final ARMOR (i.e., π̂ which uses the real

online data Don) must still use the unfiltered version spaces Mδ(Doff ∪ Don) and Mδ(Doff ∪ Dµ
M∗),

respectively, in order to retain the guarantee that π̂ is never worse than πref (from Theorem 1).

This reveals a more general principle, which we call opportunistic pessimism: our original
objective in Eq. (4) employs pessimism in two places: (i) Mδ′(Doff) (for data hallucination), and (ii)
Mδ(Doff ∪ Dµ

M ′) and Mδ(Doff ∪ Don) (for ARMOR). Theorem 1 shows that as long as ARMOR is
used as the offline algorithm, π̂ will always be competitive with πref regardless of the choice of
µon, and hence the choice of M′, the version space for data hallucination. This provides
a strong guardrail for the optimization of µon, allowing for great flexibility in the design of M′ to
trade-off between the objective value and the scope within which the improvement is guaranteed.

Tradeoff in ∆ In Eq. (7), the hyperparameter ∆ plays a crucial role in designing M′ and exhibits
the aforementioned tradeoff. Similar to the monotonicity in δ′ discussed earlier, for ∆1 ≥ ∆2 we have
Mδ′(Doff , ∆1) ⊆ Mδ′(Doff , ∆2), thus for larger choices of ∆ the objective will search over a smaller
set of models and act less conservatively.9 In fact, an extreme value of ∆ would imply optimism
in data hallucination, where µon is selected according to the best-case model in the version space.
More concretely, setting ∆ = ∆max = max{∆ : |Mδ′(Doff , ∆)| > 0}, i.e., the largest possible gap, is
approximately equivalent to choosing µon according to maxM ′∈Mδ′ (Doff), instead of the worst case.10

When ∆ is too large relative to ∆(M∗), however, it will exclude M∗ from Mδ′(Doff , ∆), which means
the RHS of Eq. (7) will no longer lower bound the true improvement in M∗. This is formalized in
the following guarantee for Eq. (7):
Theorem 4. For Don collected using µon in Eq. (7) and any ∆ ∈ [0, 1], we have

(1) w.p. ≥ 1 − δ (w.r.t. the randomness of Doff ∪ Don), if ∆(M∗) < ∆, then

JM∗(π̂) ≥ max
π∈Π

JM∗(π) − ∆.

9If ∆ is chosen poorly and large enough such that Mδ′ (Doff , ∆) = ∅, then implemention-wise, one may simply
reduce it until Mδ′ (Doff , ∆) is nonempty.

10One caveat is that ∆max is a random variable (depending on πref), and we also need |Mδ′ (Doff , ∆max)| = 1 for
this equivalence to hold, otherwise non will be diluted over multiple policies.
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Figure 1: The magnitude-scope trade-off in choosing the (top) ∆ and (bottom) δ′. Y-axis shows
the value of Eq. (7) (solid lines) and the actual improvement (dashed lines). Top-left corner is desired
as it implies a high objective value and more scenarios where improvement occurs. Shaded region
represents 90% quantile over 100 random approximations of EDµ

M′
.

(2) w.p. ≥ 1 − δ′ (w.r.t. the randomness of Doff), if ∆(M∗) ≥ ∆, then

EDon
[
JM∗(π̂) − JM∗(πref)

]
≥ OBJ(µon, δ′; ∆) = max

µ
OBJ(µ, δ′; ∆).

Moreover, OBJ(µ, δ′; ∆) is monotonically non-decreasing in both δ′ and ∆, and OBJ(µ, δ′) =
OBJ(µ, δ′; 0).

The guarantee reflects the trade-off in the choice of ∆, the hyperparameter that we choose: if there
is room for improvement at least ∆ in M∗, then claim (2) is active and we are guaranteed an
improvement of OBJ(µ, δ′; ∆), which increases with ∆. On the other hand, if there is not enough
room for improvement of at least ∆ in M∗, then M∗ will be excluded from Mδ′(Doff , ∆), nullifying
all the guarantees for the optimization of µon. Fortunately, Proposition 1 is still valid since we still
keep M∗ in the version space used by ARMOR (Eq. (1)), leading to a π̂ that is no worse than πref

with high probability, and hence inherits the ∆-optimality of πref , as per claim (1) in Theorem 4.
We remark that claim (2) holds for any choice of offline algorithm used to learn π̂ in Eq. (5), but
claim (1) only holds for ARMOR.

Theorem 4 claim (2) is a “what you see is what you get” type of guarantee, where the improvement
lower-bound is computed by the value of the objective itself. Speaking generally, this lower-bound is
non-decreasing in non (more samples means higher probability of improvement), and non-increasing
with model complexity (e.g., a bandit with more arms dilutes available exploration samples). We
leave for future work the problem of deriving a more “conventional” sample complexity bound for
policy improvement, i.e., one that depends on a small number of interpretable parameters, such as
the sample size. The missing key is a “complexity” parameter that summarizes the difficulty of the
problem instance. One key challenge of NOF is the non-adaptive nature of the online samples, which
prohibits full exploration of the environment and application of online complexity parameters. Instead,
the NOF parameter must express “difficulty of finding a better policy with limited interactions”. As
a result, even novel uses of the standard frameworks and complexities from offline RL, e.g., data
coverage (Chen & Jiang, 2019; Xie et al., 2021a), and online RL, e.g., structural quantities such as
the size/rank of state-action spaces (Jiang et al., 2016; Jin et al., 2018), do not apply. It is unclear
what this parameter is, or if it exists at all; identifying it will require significant further work, for
which our careful formulation provides a solid foundation.

Example: Bernoulli MAB Lastly, to improve intuition, we instantiate the behavior of Eq. (7)
and its guarantee in Bernoulli bandits.
Example 2 (Mechanism of Eq. (7) in Bernoulli MABs). Let A′ = {a ∈ A : ∃M ∈
Mδ′(Doff , ∆) s.t. rM (a) ≥ rM (aref) − ∆} denote the set of “candidate arms” for improvement,
i.e., arms that have not been eliminated by offline data and have potential for at least ∆ improvement
in M∗. Because Eq. (7) takes the minimum over all models, it must then strive to separate all
candidate arms in A′ equally (i.e., increase LCBDoff∪Dµ

M′
(a′) over UCBDoff∪Dµ

M′
(aref) for all a′ ∈ A′,

per Eq. (2)), at a gap of ∆. Thus for a single deployment, the objective in Eq. (7) cannot “simply
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improve by ∆” in one arm, without trying to improve in all candidate arms by ∆. This represents a
fundamental difficulty of single-deployment NOF: because we receive no feedback, in order to guarantee
we cover a single better policy we actually need to cover all candidates. However, as we explore
further in Fig. 4 of Appendix C, “simply improving” is possible in a case-by-case basis given favorable
conditions (e.g., if pulling any candidate arm results in improvement, see Instance 3 in Fig. 2).

The theoretical insights of Theorem 4 are validated in Fig. 1 (top), that displays the performance of
Eq. (7) on Doff as depicted in Instance 1 of Fig. 2, which is a Bernoulli bandit with ∆(M∗) = 0.3
also used in our later experiments (Section 4). The actual improvement (dashed line) is close to the
maximum possible ∆(M∗) for a large range of ∆ ∈ [0.1, 0.4], and is always non-negative, echoing
the opportunistic pessimism principle that π̂ will not decay compared to πref regardless of the
choice of the version space. It is also larger than the objective value with high probability when
∆ ≤ ∆(M∗) (Theorem 4, claim (2)), but can be lower when the version space excludes the true
model (∆ > ∆(M∗), e.g., when ∆ > 0.3 in Fig. 1 (top)).

This simulation also displays the dependence of Eq. (7) on the choice of the hyper-parameter ∆.
The improvement lower-bound in claim (2) of Theorem 4 is maximized by setting ∆ = ∆(M∗), but
since this is an unknown quantity (and may not necessarily be optimal for a given problem instance),
the choice of ∆ in general represents a trade-off that might be refined with pre-existing knowledge.
When ∆ is too small, it is more difficult for any µ to cause the inner ARMOR to switch arms, while
∆ too large excludes M∗ from the version space, and any simulated improvement may not transfer
to the true model. Besides ∆, a similar trade-off can be made by tuning δ′ as a hyperparameter:11

the greater δ′, the higher OBJ(µon, δ′; ∆), but the probability that the actual improvement will be at
least OBJ(µon, δ′; ∆) (Theorem 4, claim (2)) will be smaller than (1 − δ′). See Fig. 1 (bottom) for
a visualization of such trade-off curves in the same MAB instance. More generally, one can imagine
striking similar trade-offs in other ways, such as defining domain-specific subsets of models that
reflect situations where improvement is more important.

4 Simulation Studies

We use simulations in three different instances of 3-armed Bernoulli bandits to corroborate our
theoretical intuitions from the preceding sections, and compare the behavior of our method (Eq. (7))
against other baselines of interest in Fig. 3. We emphasize that the experiments are not intended to
demonstrate the superiority of our algorithm, but rather to examine how different methods succeed or
fail in three representative instances, that each highlights the advantages or potential disadvantages
of using pessimistic reasoning over M′, as in Eq. (7), in NOF. Representative draws of offline data
from each scenario are displayed in Fig. 2. Due to space constraints, comprehensive experiment
details and results are included in Appendix C.

Baselines In Fig. 3, we first plot the improvement when M′ = {M∗} from Eq. (3), that represents
an improvement “ceiling” when the underlying model is known, which we do not expect to outperform.
We also plot our method’s improvement Eq. (7) against that of the alternative objective in Eq. (5)
using the same version space M′ = Mδ′(Doff , ∆). We compare their behavior against other candidate
algorithms for NOF: A) the UCB policy, that deterministically plays the arm argmaxa∈A UCBDoff (a);
B) setting M′ = {M̂} where rM̂ (a) = r̂Doff (a) for all a ∈ A, that simply explores according to the
point estimate of rewards, which is common in empirical offline-online papers such as in Matsushima
et al. (2020); C) continuing to collect data from the offline distribution, i.e., µon = µoff ; and D)
setting µon = unif(A) to uniformly sample actions.

Discussion Both Eq. (7) and its alternative version from Eq. (5) obtain significantly more improve-
ment than either continuing to collect data via µoff for different values of non (pink), or uniformly
collecting online data (brown); we expect this difference to grow as the MDP complexity (e.g., number

11Since δ′ is often used in the concentration inequalities for constructing the version spaces, we cannot directly
tune δ′ based on OBJ(µon, δ′; ∆): the latter depends on the randomness in Doff , which invalidates the concentration
guarantees. To circumvent the issue one can consider techniques such as sample splitting.
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Figure 2: Representative draws of Doff in our three Bernoulli MAB case studies, with parameters in
Table 1. The dashed lines display the rectangular version space Mδ′(Doff) with δ′ = 0.05.

Figure 3: Comparison of methods in Eq. (7) and Eq. (5) against baselines, with fixed ∆ = 0.3 and
δ = δ′ = 0.05. Shaded region shows ±1 standard error over 100 random draws of Doff . Dashed black
line is maximum possible improvement (averaged over draws of Doff).

of arms in MABs) increases. They also reach the “ceilings” of M = {M∗} (blue) and the maximum
possible improvement (black dashed) as the available non increases. While UCB (red) can perform
competitively when the arm it pulls happens to be better than πref (e.g., Instance 3), it can just as
easily underperform significantly when that arm is worse than πref , which is the case in Instance 2.
The version space pessimism in Eq. (5) is crucial for ensuring that any policy improvement predicted
from Doff translates to real improvement in M∗ when samples are collected from µon. This can
lead to conservative behavior in specific problem instances, but it also ensures improvement in the
worst-case problem instance; by this metric our method outperforms UCB.

Another case in point can be in seen Instance 1 and Instance 3, where µon chosen according to M̂
(purple) is highly suboptimal. Because µoff rarely pulls the arms that are better than aref , their
estimated means in M̂ can deviate significantly from in M∗, which is a pitfall that Eq. (7) is robust
to since it considers the worst-case over the version space. Conversely, Instance 2 shows that there are
scenarios where using pessimism can be disadvantageous. Our method has slightly worse improvement
than choosing µon via M̂ because the worst arm a3 is never pulled in offline data (and by design
choice rM̂ (a3) = 0 as default). Thus, exploring via M̂ will just use online samples to differentiate a1
from a2, while Eq. (7) uses them to explore all arms.

In summary, our method may have small reductions in improvement for some instances where less
conservative methods may opportunistically do better. However, these less conservative methods
perform highly suboptimally in other scenarios, where both Eq. (7) and Eq. (5)’s use of pessimism
guarantees they will improve over πref with high probability. This guarantee will in fact hold for any
instance (see Theorem 4 Claim (2)).

Conclusion & Future work We have defined a concrete and representative problem setup for
non-adaptive online finetuning (NOF), whose goal is to output a policy that improves as much as
possible over a (purely offline) reference policy given a single online deployment. We designed and
analyzed an information-theoretic algorithm (Eq. (7)) for improvement maximization. As the current
implementation of Eq. (7) iterates over all candidate online distributions and models, one important
direction of future work involves developing a computationally efficient algorithm. Another involves
deriving lower-bounds on Eq. (7)’s expected improvement, which will require novel proof techniques
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as the direction of the bound (improvement ≥ . . .) is reversed from the typical RL learning guarantee
(suboptimality ≤ . . .). Lastly, we plan to extend our results to the multiple-deployment setting, for
which our single-deployment results form an important building block.

Broader Impact Statement

As this work is largely theoretical in nature, the potential negative impacts are limited. Rather, our
paper aims to direct attention of the RL community towards developing guarantees and analysis for
offline-online RL within a practically relevant framework.
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A Related Work

Xie et al. (2021b); Song et al. (2022); Wagenmaker & Pacchiano (2023); Li et al. (2023); Zhang
& Zanette (2023) all consider with variants of the offline-online RL setting, where offline data is
available as well as online interaction.

Of these papers, all but Zhang & Zanette (2023) allow unlimited deployments, which separates them
from our problem setting. Specifically, Song et al. (2022) assumes a bilinear MDP, and that π∗ is
covered by offline data. The online phase of their algorithm learns policies via Fitted Q iteration,
which is warm-started with the offline dataset. They demonstrate the learned policy is near-optimal,
and their main contribution is a computationally efficient algorithm. Wagenmaker et al. (2022)
works with linear MDPs, and develops a notion of offline-online complexity for learning π∗ when
warm-starting with offline data. In contrast, Xie et al. (2021b) and Li et al. (2023) work with tabular
MDPs, but only assume that the offline dataset satisfies a notion of partial π∗ coverage. The former
considers the finite-horizon MDP setting where π∗ is covered up until a specific timestep, whereas
the latter defines partial coverage on a per-state-action basis. They propose algorithms that compete
with the optimal policy, with Zhang & Zanette (2023) obtaining better sample complexity than either
offline or online RL alone.

Zhang & Zanette (2023) also consider the single-deployment setting, but they require a large number
of online samples and seek to learn π∗ via reward-free exploration. In contrast, our setting focuses
on a fixed number of online samples, and we seek only to find a better policy, not the optimal one.
This is the other major difference between our setting, and previous related works (beyond the issue
of deployments).

Lastly, we note that the single-deployment offline-online RL problem is also related to deployment-
efficient RL (Huang et al., 2021) as well as batched bandits (Perchet et al., 2016) (in MABs, our
problem setting corresponds to a single batch, but with additional information from logged data).

B Proofs

Proof of Theorem 2. The inequality in the proposition statement follows directly from the inclusion
of M∗ ∈ M′ and the definition of OBJ in Eq. (4):
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[
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]
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[
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]
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The equality is from the definition of µon ∈ argmaxµ∈Π OBJ(µ, M′) from Eq. (4).
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where the last inequality is because πref ∈ Π. Then since M ′
0 ∈ Mδ′(Doff) and using the law of total

expectation,
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Proof of Theorem 4. First, we prove the statement in (1). Since π̂ is learned from Doff ∪ Don, from
the ARMOR guarantee in Theorem 1 we have that JM∗(π̂) ≥ JM∗(πref) with probability ≥ 1 − δ
with respect to the randomness of Doff ∪ Don. Then if ∆(M∗) = maxπ∈Π JM∗(π) − JM∗(πref) < ∆,
we have

JM∗(π̂) ≥ JM∗(πref) > max
π∈Π

JM∗(π) − ∆.

Next, we prove (2). Fix Doff . When M∗ ∈ Mδ′(Doff , ∆),

EDon [JM∗(π̂) − JM∗(πref)] = EDon
M∗ [JM∗(π̂Don

M∗ ) − JM∗(πref)]
≥ min

M ′∈Mδ′ (Doff ,∆)
EDon

M′ [JM ′(π̂Don
M′ ) − JM ′(πref)]

= OBJ(µon, δ′; ∆).

The theorem statement follows from the fact that M∗ ∈ Mδ′(Doff , ∆) with probability ≥ 1 − δ′ (with
respect to the randomness of Doff) from Definition 1 and (6) if ∆(M∗) ≥ ∆.

C Implementation Details and Additional Results for Section 4

M∗ noff µoff

Instance 1 (0.6, 0.3, 0.2) 200 [0.01, 0.495, 0.495]
Instance 2 (0.6, 0.3, 0.1) 100 [0.1, 0.9, 0.0]
Instance 3 (0.6, 0.5, 0.2) 200 [0.01, 0.01, 0.98]

Table 1: Parameters for Bernoulli MAB case study instances.

MAB Instances We analyze the behavior of our method in three Bernoulli MAB case studies, with
parameters displayed in Table 1. Representative draws of the offline dataset and the corresponding
version spaces Mδ′(Doff) are shown in Fig. 2. Briefly, Instance 1 is the easiest problem instance
because µoff eliminates the worse arm, and the goal of NOF is to explore the remaining arm (that is
optimal).

Instance 2 and Instance 3 are designed to express the tradeoff between conservatism/pessimism
and the potential for improvement in M∗. Instance 2 is an instance where pessimism is crucial for
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Figure 4: Improvement in in MAB instances for different values of ∆, with δ = δ′ = 0.05 and
non = 0.25noff fixed. As before, confidence bands show ±1 standard error.

improvement, and an algorithm must explore all candidate arms (recall Example 2) in order to
guarantee improvement in M∗. The offline data primarily covers the middle arm, but the UCB for
the worst arm tends to be larger than the UCB for the better arm. As a result, a less-conservative
algorithm (e.g., larger ∆) runs the risk of exploring only the worst arm, which will lead to no
improvement. Finally, we note that, as can be seen in Fig. 3 (middle), Instance 2 has larger
confidence bands over draws of Doff because πref chooses the optimal arm a larger portion of the
time from Doff . This is a consequence of the bandit instance design and not our algorithm quality
(in fact Instance 2 has the highest probability out of all three-armed bandit instances to exhibit the
desired quality of having UCB(a1) > UCB(a3) and aref = a2).

In comparison, the offline data in Instance 3 largely pulls the worst arm, leaving the two better
arms as candidates, and the optimal arm generally has the largest UCB. An algorithm for NOF
can improve by pulling either of the two better arms. Here, an extreme choice of ∆ can expect to
do well, while acting conservatively may be empirically less effective because it will unnecessarily
explore both arms.

Implementation Details We build the version spaces as specified in Example 1, except that for
tighter practical confidence bounds for a given dataset D and δ we set LCBD(a) = Φ−1(1−δ/2)·SED(a)
and UCBD(a) = Φ−1(δ/2) · SED(a), where Φ−1 is the inverse CDF of the standard Guassian, and
SED(a) is the standard error of the rewards observed for a given a. For a fixed Doff , πref is a
deterministic policy learned via LCB, i.e., πref(a) = 1[a = a′] where a′ = argmaxa∈A LCBDoff (a).
We set Π to be the set of all valid distributions over the arms A, and M = [0, 1]A to be the set of
all models with rewards bounded on the unit interval. Because both Π and M classes with infinite
cardinality, in our implementation we discretize the sets to a grid of 0.05 and search over the resulting
set, which results in negligible approximation error as realizability is still satisfied. We approximate
EDµ

M′
in the inner loop of Eq. (7) using 200 random draws of data. All simulations were run on

a personal laptop. Generating the results for Fig. 1 took roughly 1-2 hours, while generating the
results for Fig. 3, Fig. 4, and Fig. 5 took roughly 1-2 days combined. Results, code, and instructions
for running are included in the supplementary material.

Additional Results We also discuss additional results related to the effect of ∆ and δ′ on
performance, in a similar vein to Fig. 3. Aligned with our predictions regarding pessimism from
the design of the MAB problem instances, Fig. 4 demonstrates that Instance 1 and Instance 3
do not degrade in performance and even improve slightly with larger ∆ (that excludes M∗ from
Mδ′(Doff , ∆)), but Instance 2 does. Thus, while a less conservative choice of ∆ may lead to good
practical performance on a case-by-case basis, a value of ∆ that preserves realizability is required in
order to guarantee improvement in any given instance.

196



RLJ | RLC 2024

Figure 5: Improvement in in MAB instances for different values of δ′, with δ = 0.05, ∆ = 0.3, and
non = 0.5noff fixed. As before, confidence bands show ±1 standard error.

Fig. 5 displays the sensitivity of improvement to choice of δ′. While Instance 1 and especially Instance
3 are relatively robust to different values of δ′, the algorithm degrades significantly in performance
for Instance 2 as δ′ increases (and the probability of M∗ ∈ Mδ′(Doff , ∆) being satisfied decreases).
The reason for this is related to the above; that Instance 1 and Instance 3 are problems where
less conservative behavior can be rewarding, but Instance 2 is an instance where it is extremely
punishing.
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Abstract

In offline reinforcement learning (RL), RL agents learn to solve a task using only a
fixed dataset of previously collected data. While offline RL has proven to be a vi-
able method for learning real-world robot control policies, it typically requires large
amounts of expert-quality data to learn effective policies that generalize to out-
of-distribution states. Unfortunately, such data is often difficult and expensive to
acquire in real-world tasks. Several recent works have leveraged data augmentation
(DA) to inexpensively generate additional data, but most DA works apply augmen-
tations in a random fashion and ultimately produce highly suboptimal augmented
data. In this work, we propose Guided Data Augmentation (GuDA), a human-
guided DA framework that generates expert-quality augmented data. The key in-
sight behind GuDA is that while it may be difficult to demonstrate the sequence of
actions required to produce expert data, a user can often easily characterize when an
augmented trajectory segment represents progress toward task completion. Thus, a
user can restrict the space of possible augmentations to automatically reject subop-
timal augmented data. To extract a policy from GuDA, we use off-the-shelf offline
reinforcement learning and behavior cloning algorithms. We evaluate GuDA on a
physical robot soccer task as well as simulated D4RL navigation tasks, a simulated
autonomous driving task, and a simulated soccer task. Empirically, GuDA enables
learning given a small initial dataset of potentially suboptimal experience and out-
performs a random DA strategy as well as a model-based DA strategy. We include
videos and code at https://nicholascorrado.github.io/projects/GuDA/.

1 Introduction

Offline reinforcement learning (RL) is a learning paradigm in which RL agents learn to solve a task
using only a static dataset of previously collected data. While offline RL algorithms can produce
effective real-world robot control policies without the expense or danger of active task interac-
tion (Levine et al., 2020), their performance and generalization capabilities depend greatly on the
size and quality of the provided dataset. Ideally, we would provide large amounts of high-coverage,
near expert-quality trajectories, but acquiring such data in real-world tasks is often challenging: the
expense of data collection often limits us to just a few trajectories, and their quality depends on
the performance of the data collection policy. Although prior works have shown that offline RL
algorithms can perform well even with highly suboptimal data (Kumar et al., 2019; Fujimoto et al.,
2019; Kumar et al., 2020; Fujimoto & Gu, 2021), these same works show that these algorithm learn
far more effective policies with expert-quality data. As such, we focus on developing methods that
produce expert-quality data without requiring a human to demonstrate expert behavior.

To improve performance and generalization of RL agents, a number of works have leveraged data
augmentation (Laskin et al., 2020) (DA), a technique in which agents generate additional synthetic
experience without the expense of task interaction by applying transformations to previously col-
lected experience. These transformations – or data augmentation functions (DAFs) – often leverage
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Figure 1: An overview of GuDA applied to a parking task given DAFs that translate and rotate a
trajectory segment τ . A user first defines a sampling procedure describing how to translate and rotate
τ to produce expert-quality data: translate τ so that the agent’s final position is at the parking spot,
and then rotate τ such that the agent is aligned with the parking spot. We augment our dataset
using this sampling procedure and then learn a policy with offline RL or imitation learning.

task-specific invariances and symmetries inherent to many real-world tasks (e.g. translational in-
variance (Pitis et al., 2020; 2022), gait symmetry (Abdolhosseini et al., 2019; Mikhail Pavlov & Plis,
2018)). Viewing DA as a means to improve dataset coverage, most prior works generate highly
diverse augmented data by sampling data uniformly at random from a DAF (Sinha et al., 2022a;
Pitis et al., 2020; Joo et al., 2022; Cho et al., 2022; Lu et al., 2020) or from a learned dynamics
model (Hepburn & Montana, 2022; Wang et al., 2022; Han & Kim, 2022). However, these ran-
dom DA strategies generally produce highly suboptimal experience. Thus, we aim to develop a DA
strategy that produces both high-coverage and high-quality augmented data.

We propose Guided Data Augmentation (GuDA), a human-guided DA framework that generates
large amounts of expert-quality data from a limited set of potentially suboptimal data. The key
insight behind GuDA is that a human can often determine if an augmented trajectory segment
resembles expert data by simply checking if its sequence of states brings the agent closer to solving
the task. Thus, a user can restrict the space of DAF transformations to only generate augmented
data that represents progress toward task completion. To make this concept more concrete, imag-
ine training an autonomous vehicle to park in a parking lot given a single suboptimal trajectory
(Fig. 1). Since a parking lot has a relatively uniform surface, we can generate augmented experience
by translating and rotating the agent. Sampling augmented data uniformly at random will most
often produce data in which the agent drives away from the parking spot or approaches it at an
unfavorable angle. However, we can generate expert-quality augmented data by translating and
rotating trajectory segments such that the agent successfully parks.

GuDA enables practitioners to generate expert data from potentially suboptimal experience without
the expense of task interaction. Additionally, instead of requiring that an expert provide an optimal
sequence of actions solving a task, GuDA simply requires the user to characterize when an augmented
trajectory segment represents progress toward task completion. We evaluate GuDA with off-the-shelf
offline RL algorithms on simulated navigation, autonomous driving, and soccer tasks as well as a
physical robot soccer task. Since GuDA is also compatible with imitation learning algorithms (which
require expert data), we also evaluate GuDA with behavior cloning. Empirically, GuDA produces
effective policies given a small amount of data – even highly suboptimal data – while a model-
based DA strategy often fails due to poor model generalization. Moreover, polices trained under
GuDA achieve larger returns than policies trained under a DA strategy that samples augmented
data uniformly at random, emphasizing the importance of generating high-quality augmented data.
In summary, our core contributions are

1. We demonstrate how a human can guide data augmentation to inexpensively produce expert-
quality data from potentially suboptimal experience.

2. We show that GuDA yields effective policies even when provided a small initial dataset.

3. We show that GuDA outperforms the most widely used DA strategy of sampling augmented
data randomly, highlighting the benefits of generating expert-quality augmented data.
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2 Related Work

2.1 Data Augmentation

Data augmentation (DA) refers to techniques that generate synthetic data by transforming pre-
viously collected experience and has been applied a variety of tasks, including algorithm discov-
ery (Fawzi et al., 2022), locomotion (Mikhail Pavlov & Plis, 2018; Abdolhosseini et al., 2019), and
physical robot manipulation (George et al., 2023; Mitrano & Berenson, 2022).

DA is often used to generate perturbed data with the same semantic meaning as the original data.
Many vision-based RL works have trained agents to be robust to visual augmentations (Laskin et al.,
2020; Guan et al., 2021; Wang et al., 2020; Yarats et al., 2021; Raileanu et al., 2021; Hansen & Wang,
2021; Hansen et al., 2021), and similar approaches have been applied to non-visual tasks (Sinha et al.,
2022b; Weissenbacher et al., 2022; Qiao et al., 2021). These approaches are orthogonal to GuDA;
they use DA to improve policy robustness, while GuDA uses DA to improve dataset coverage and
quality. Perturbation-based DA methods more closely relate to domain randomization (Sadeghi &
Levine, 2016; Tobin et al., 2017; Peng et al., 2018) which also aims for policy robustness.

Other works exploit invariances and symmetries in a task’s dynamics to generate data that is seman-
tically different from the original data. Hindsight experience replay (HER) (Andrychowicz et al.,
2017; Fang et al., 2018) counter-factually relabels a trajectory’s goal. Counterfactual Data Augmen-
tation (CoDA) (Pitis et al., 2020) and Model-based CoDA (MoCoDA) (Pitis et al., 2022) exploit
local causal independence in a task’s dynamics to generate additional data. Several works use a
learned model to generate augmented data (Lu et al., 2020; Wang et al., 2022; Hepburn & Montana,
2022; Sutton, 1990; Gu et al., 2016; Venkatraman et al., 2016; Racanière et al., 2017). Most of
these works focus on developing new DAFs and simply generate augmented experience in a random
fashion. In contrast, GuDA focuses on the importance of sampling expert-quality augmentations.

Two prior works closely relate to GuDA in that they aim to sample task-relevant augmented data:
EXPAND (Guan et al., 2020), which applies visual augmentations to image regions identified by
human feedback, and MoCoDA (Pitis et al., 2022), which generates augmented data by sampling
(s, a) pairs from a user-defined parent distribution P (s, a) and then computes s′ from a learned
dynamics model. GuDA differs from EXPAND in that GuDA focuses on non-visual tasks with
DAFs more relevant to robotics. While MoCoDA can in principle generate expert data using an
appropriately defined parent distribution, the user must specify the distribution over expert actions.
In contrast, GuDA requires no knowledge of the expert actions and simply requires the user to
characterize data that represent task progress. Moreover, GuDA is a model-free DA framework and
can be used when data is too scarce to model the task’s dynamics, as is common in physical tasks.

2.2 Offline Reinforcement Learning

Offline RL (Levine et al., 2020) methods learn a reward-maximizing policy from reward labels
provided with a fixed dataset of task interactions. These methods are designed such that, in principle,
they can learn even with suboptimal data, though they are generally far more successful with expert
data (Kumar et al., 2019; Fujimoto et al., 2019; Kumar et al., 2020; Fujimoto & Gu, 2021).

One core challenge with offline RL is extrapolation error: state-action pairs outside of the dataset’s
support can attain arbitrarily inaccurate state-action values during training, causing learning in-
stabilities and poor generalization during deployment (Gulcehre et al., 2020). This challenge is
especially problematic for real-world robotics tasks in which offline data is scarce. Offline RL al-
gorithms typically mitigate extrapolation error with policy parameterizations that only consider
state-action pairs within the dataset (Fujimoto et al., 2019; Ghasemipour et al., 2021; Zhou et al.,
2021) or with behavioral cloning regularization (Nair et al., 2020; Fujimoto & Gu, 2021; Xu et al.,
2021). GuDA, like other DA strategies, can be viewed as a technique to mitigate extrapolation
error by simply generating more data to improve dataset coverage without further task interaction.
However, GuDA also improves dataset quality by generating expert-quality augmented data.

200



RLJ | RLC 2024

3 Preliminaries

3.1 Offline Reinforcement Learning

We consider finite-horizon Markov decision processes (MDPs) (Puterman, 2014) defined by
(S,A, p, r, d0, γ) where S and A denote the state and action space, respectively; p(s′ | s, a) de-
notes the probability density of the next state s′ after taking action a in state s; and r(s, a) denotes
the reward for taking action a in state s.1 We write d0 as the initial state distribution, γ ∈ [0, 1) as
the discount factor, and H the episode length. We consider stochastic policies πθ : S × A → [0, 1]
parameterized by θ. The RL objective is to find a policy that maximizes the expected sum of dis-
counted rewards J(θ) = E

[∑H−1
t=0 γtr(st, at)

]
. In the offline RL paradigm, the agent cannot collect

data through environment interaction and must instead learn from a static dataset D of transitions
collected by a different policy.

3.2 Data Augmentation Functions

In this section, we introduce a general notion of a data augmentation function (DAF). At a high
level, a DAF generates augmented data by applying transformations to an input trajectory segment.
More formally, let T denote the set of all possible trajectory segments and let ∆(T ) denote the set of
distributions over T . A DAF is a stochastic function f : T → ∆(T ) mapping a trajectory segment
((si, ai, ri, s′

i))k
i=1 of length k to an augmented trajectory segment ((s̃i, ãi, r̃i, s̃′

i))k
i=1. In this work,

we focus on dynamics invariant DAFs which produce realistic data that respect the task’s dynamics
and reward function, i.e. p(s̃′ | s̃, ã) > 0, and r̃ = r(s̃, ã) (Corrado & Hanna, 2024). As in most
prior works, we assume a user can specify a DAF f for a given domain (Pitis et al., 2020).

4 Guided Data Augmentation

Figure 2: GuDA translates trajectory seg-
ments τup, τright to demonstrate the agent
walking to the goal. A random translation
(bottom right) may be highly suboptimal.

In this section, we introduce Guided Data Augmenta-
tion (GuDA), a DA framework that automatically gen-
erates expert-quality augmented data. We provide a
high-level overview of GuDA in Section 4.1, and then
describe how we implement GuDA in Section 4.2.

4.1 Method Overview

We assume access to a dataset D of task interactions
and DAFs f1, . . . , fm. Prior to offline training, GuDA
generates an augmented dataset D̃ consisting of the orig-
inal dataset plus n augmented samples generated from
the composition of DAFs f = f1 ◦ · · · ◦ fm. Afterwards,
an agent learns from D̃ using an off-the-shelf offline RL
or imitation learning algorithm. The core difference be-
tween GuDA and previous DA works lies in how GuDA
samples augmented data from f . Prior works typically
sample augmented data uniformly at random, but most
transformations under f produce highly suboptimal ex-
perience. However, a user can often easily character-
ize when an augmented trajectory segment represents
progress toward task completion. Thus, to generate aug-
mented data that closely resembles expert data, GuDA
has the user define a sampling procedure that describes how to sample augmentations from f to
produce data in which the agent makes task progress.

1If a reward function is unavailable, GuDA can be used with imitation learning methods such as behavior cloning
which only assume access to expert data and do not require access to a reward function.
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To illustrate how a user might identify a sampling procedure, consider a maze navigation task in
which a legged robot must reach a fixed goal state from a fixed initial position (Fig. 2). We assume
access to a DAF that translates the agent to a new position. While it is difficult to demonstrate the
precise sequence of leg movements required to optimally solve the maze, we can easily identify when
a trajectory segment progresses the agent toward its goal. A randomly sampled augmentation from
our DAF will most likely have the agent visit maze regions that an expert would never visit and may
even show the agent moving away from the goal rather than toward it. To ensure we generate expert
augmented data, we can simply restrict our DAF to only sample new positions near the shortest
path to the goal (green region) for which the agent’s displacement is closely aligned with the shortest
path (orange arrows). This approach shifts the burden from the user having to demonstrate optimal
actions to the user simply having to understand when augmented data represent progress toward
task completion. In the next section, we describe the DAFs we use and the sampling procedures we
define to generate augmented data that shows task progress.

4.2 Implementation

GuDA’s sampling procedures are domain-specific and depend on which DAFs are available as well as
what task progress looks like in a given domain. In this work, we consider four DAFs that transform
an input trajectory segment τ using invariances and symmetries common to many physical tasks:

1. Translate(τ ;P): Since the dynamics of agents and objects are often independent of their
position, we can translate them to a new position (x, y) sampled from a distribution P.

2. Rotate(τ ; Θ): Since the dynamics of agents and objects are often independent of their
orientation, we can rotate the direction the agent and/or object faces by an angle θ sampled
from a distribution Θ to produce motion in a different direction.

3. Reflect(τ ;R): An agent that moves to the left often produces a mirror image of an agent
moving to the right, so we can reflect the agent’s left-right motion with probability R(τ).

4. RelabelGoal(τ ;G): In goal-conditioned tasks, dynamics are generally independent of the
desired goal state (Andrychowicz et al., 2017). Thus, we can replace the true goal with a
new goal g sampled from the task’s goal distribution G.

Algorithm 1: Guided Data Augmentation
G ← distribution over task-relevant goals.
P(x, y|τ)← distribution over task-relevant
positions for trajectory segment τ .

Θ(θ|τ)← distribution over task-relevant
rotation angles for trajectory segment τ .
R(τ)← probability of reflecting τ .
function GuidedDAF(τ0)

τ ← copy(τ0)
τ ← RelabelGoal(τ ;G)
τ ← Translate(τ ;P(x, y|τ))
τ ← Reflect(τ ;R(τ))
τ ← Rotate(τ ; Θ(θ|τ))
for (s, a, r, s′) ∈ τ do

r ← r(s, a) // Recompute rewards
return τ

We focus on navigation and manipulation tasks
which have intuitive notions of task progress: an
agent makes progress if it moves closer to a goal
position (navigation) or if it moves an object closer
to a goal position (manipulation). Given these no-
tions of task progress, the user must specify how to
apply these DAFs to generate expert-quality aug-
mented data. Formally, the user specifies distribu-
tions over translations P(x, y|τ), rotations Θ(θ|τ),
and/or reflections R(τ) that produce data showing
task progress. To provide a concrete example of
one such distribution, we return to the quadruped
maze example in Fig. 2. A human can easily iden-
tify task-relevant maze positions (x, y) (green re-
gion) and a near-optimal displacement directions
θ∗(x, y) for these positions (orange arrows). Thus,
to generate expert-quality augmented data using
only the Translate DAF, we can sample new po-
sitions from P(x, y|τ) = Unif({(x, y) : |θ(τ) − θ∗(x, y)| ≤ π

4 and (x, y) is within the green region}),
a uniform distribution over task-relevant maze positions for which the agent’s original displacement
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Initial GuDA Sampling Procedures
Task Name Dataset Size (τ = input trajectory segment)

maze2d-umaze
maze2d-medium
maze2d-large

5 trajectories
5 trajectories
5 trajectories

Translate a partial trajectory τ to a random maze
position, and then Rotate τ such that the agent moves
along the shortest path to the goal. See Fig. 4a.

antmaze-umaze
antmaze-medium
antmaze-large

1 trajectory
2 trajectories
5 trajectories

Translate a partial trajectory τ to a random maze
position such that the agent moves along the shortest
path to the goal. See Fig. 2.

parking 10 trajectories

Here, τ is a full trajectory. First, use RelabelGoal to
change τ ’s goal to randomly sampled goal (parking
spot). Then, Translate τ such that the agent’s final
position is at the goal, and Rotate τ such that the car
is within the parking spot. See Fig. 1.

soccer-sim 3 trajectories
Here, τ is a full trajectory. Reflect τ with probability
0.5, Translate τ such that the ball’s final position is at
the goal, and then Rotate τ randomly. See Fig. 4b.

soccer-physical 1 trajectory See Section 5.2.

Table 1: GuDA sampling procedures for tasks in our empirical analysis. We provide task descriptions
in Appendix A and describe how we implement these sampling procedures in Appendix B.

direction θ(τ) is closely aligned with θ∗(x, y). If P(x, y|τ), Θ(θ|τ), and R(τ) are uniform distribu-
tions independent of τ over all valid position, rotations, and reflections, then GuDA reduces to the
standard DA strategy that samples augmented data uniformly at random.

Algorithm 1 provides pseudocode for our implementation of GuDA assuming access to all four DAFs.2
Table 1 describes high-level sampling procedures for tasks in our empirical analysis: D4RL maze2d
and antmaze navigation tasks (Fu et al., 2020), a parking task (Leurent, 2018), a simulated robot
soccer task, and a physical robot soccer task. Assuming access to all DAFs, the sampling procedures
generally proceed as follows. First, we randomly sample a new goal. If τ is a full trajectory, we
Translate τ such that the agent or object’s final position is at the goal, and then Reflect and/or
Rotate τ randomly about the goal. If τ is a partial trajectory, we Translate τ to a new position
that would likely be observed by an expert policy, and then Reflect and/or Rotate τ so that the
agent or object moves as close as possible to the goal. We provide task descriptions in Appendix A
and a more formal description of our sampling procedures in Appendix B.

5 Experiments

We design an empirical study to evaluate two core hypotheses:

H1: GuDA enables learning from a small dataset of potentially suboptimal data.

H2: GuDA yields larger returns than a random DA strategy.

H1 implies that GuDA is well-suited to offline learning for real-world tasks where expert data is
often scarce, and H2 emphasizes the importance of sampling expert-quality augmented data. We
note that support for H2 implicitly provides support for H1.

5.1 Simulated Experiments

We first evaluate GuDA on simulated tasks described in Table 1. In all tasks, we start with a small
initial dataset containing at least one successful – though not necessarily expert-level – trajectory

2GuDA can be implemented in many different ways and can be adapted depending on which DAFs are available.
For instance, it is possible to guide DA by applying a subset of these four DAFs in a different order.
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Figure 3: IQM normalized returns over 10 independent runs with 95% stratified bootstrap confidence
intervals for different DA strategies and algorithms. We compute normalized returns computed as
= 100 · R−Rrandom

Rexpert−Rrandom
where Rexpert and Rrandom denote the average return of the demonstrator and

a policy that chooses actions uniformly at random, respectively, computed over 100 trajectories.

(Table 1). These datasets contain failures and suboptimal behaviors as well: maze2d datasets contain
data in which the agent moves away from the goal, soccer datasets contain trajectories where the
agent kicks the ball out of bounds, and parking datasets contain trajectories where the car fails to
park. For maze2d and antmaze tasks, we hand-pick a small number of trajectory segments from the
original ‘-v1’ and ‘-diverse-v1’ D4RL datasets, respectively. For the remaining tasks, we use pre-
trained policies to generate datasets. Dataset visualizations can be found in Fig. 7 of Appendix A.

(a) maze2d (b) soccer-sim

Figure 4: Example augmentations under
GuDA. The original trajectory segment
is shown in yellow.

We consider three baselines: the model-based DA strat-
egy MoCoDA (Pitis et al., 2022), a DA strategy that ran-
domly samples augmented data (Random DA), and no
augmentation (No DA). MoCoDA is a well-suited model-
based baseline for our experiments; it exploits causal in-
dependence in the task’s dynamics to efficiently learn a
dynamics model that generalizes outside of the support
of the dataset, which is particularly important when data
is scarce. To improve the quality of MoCoDA data, we
sample augmented states from a parent distribution that
closely matches the distribution of augmented states un-
der GuDA.3 We provide further details on how we ap-
ply MoCoDA to each task in Appendix C. With each DA
strategy, we generate 1 million augmented transitions and
then perform offline learning with BC, TD3+BC (Fujimoto & Gu, 2021), and AWAC (Nair et al.,
2020) for 1 million policy updates. We tune hyperparameters for each algorithm and DA strategy
separately using a hyperparameter sweep described in Appendix D. We report the inter-quartile
mean (IQM) return with 95% bootstrap confidence intervals over 10 independent runs.4

Fig. 3 shows IQM normalized returns for each algorithm in each task. GuDA almost always outper-
forms all baselines – and often by a large margin (supporting H1). For instance, in antmaze-medium,
GuDA yields returns 3x larger than the next best strategy for all algorithms. GuDA with TD3+BC
is also the only strategy that can solve antmaze-large with significance. Moreover, we emphasize
that BC often achieves much larger returns with GuDA than with Random DA or MoCoDA, in-
dicating that GuDA indeed generates expert data. MoCoDA is unable to solve the more complex
antmaze, parking, and soccer-sim tasks because it does not have enough data to learn an accurate,
generalizable dynamics model, emphasizing the utility of GuDA in data-scarce settings.

3Since we cannot identify expert state-action pairs, we only specify a parent distribution over task-relevant states.
4We choose to report the IQM because it is less biased and more statistically efficient than the median, and it is

more robust to outliers than the mean (Agarwal et al., 2021).
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(a) Easy initialization (b) Hard initialization (c) Initial dataset (d) Example GuDA data

Figure 5: (5a, 5b) Task initializations. (5c) Initial data with relevant segments τ1 and τ2. (5d) An
illustration of GuDA data generated by translating, rotating, and/or reflecting τ1 and τ2.

While Random DA is often beneficial in maze2d and soccer-sim tasks, it often performs worse than
No DA in other tasks. For instance, Random DA harms performance with all algorithms in antmaze-
umaze, with BC and AWAC in antmaze-medium, and with BC and TD3+BC in parking. Since BC
mimics the provided data, it is understandable that Random DA may harm performance with BC.
However, since offline RL algorithms can learn from suboptimal data, these findings emphasize the
importance of generating expert augmented data even for offline RL (supporting H2).

5.2 Physical Experiments

Method Easy Hard
GuDA 8/10 7/10

MoCoDA 0/10 0/10
Random DA 4/10 0/10

No DA 4/10 0/10
Demonstrator 9/10 2/10

Table 2: Success rates for our phys-
ical robot soccer experiments.

We further evaluate GuDA in a physical robot soccer task in
which a NAO V6 robot must dribble a ball to the goal from
the Easy and Hard initializations shown in Fig. 5a and 5b.
The agent observes its position and orientation as well as the
ball’s position using vision-based state estimation. The ball’s
dynamics depend on how the robot’s feet contact the ball, and
since foot positions are not observed, the ball’s dynamics ap-
pear highly stochastic to the agent. This stochasticity coupled
with noisy state estimation makes this task notably difficult.
We collect data using a policy pre-trained in a low-fidelity soc-
cer simulator with simplified dynamics and perfect state esti-
mation (soccer-sim, Fig. 4b). Our dataset contains a single physical trajectory of the agent dribbling
the ball from the center of the field to the goal (Fig. 5c). This data is highly suboptimal for two
reasons: (1) we trained the demonstrator in a low-fidelity simulator, and (2) the robot fumbled the
ball and had to take an indirect route to the goal.

To apply GuDA, we first identify two task-relevant behaviors in our initial dataset (Fig. 5c): the
robot executing a tight turn to the ball (τ1), and the robot scoring with the ball away from the
sideline (τ2). We then define a sampling procedure to generate augmented trajectories that trace
out the path an expert might take to successfully score (Fig. 5d): we Translate and Rotate τ1 to
demonstrate the agent approaching the ball at a favorable angle, and then we Translate, Rotate,
and Reflect τ2 to demonstrate the agent scoring with the ball away from the sideline.

We generate 1 million augmented samples using GuDA, MoCoDA, and Random DA, and we train
agents using IQL (Kostrikov et al., 2021) for 1 million policy updates. We also compare agents to
the demonstrator we used to collect our physical trajectory. Table 2 and Fig. 6 show the success
rate and IQM time to score for each agent over 10 attempts at each initialization. With the Easy
initialization, GuDA scores faster and more frequently than MoCoDA, Random DA, and No DA.
GuDA and the demonstrator policy have similar success rates, but GuDA scores significantly faster
than the demonstrator as well. We attribute this speedup to how the GuDA policy trained on
augmented data that matches the physical world’s dynamics (since our DAFs are dynamics-invariant)
whereas our demonstrator policy trained in a low-fidelity simulator. With the Hard initialization,
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only the GuDA agent can consistently score; MoCoDA, Random DA, No DA policies always kick
the ball out of bounds. Even the demonstrator policy almost always fails. Our results show that
GuDA not only outperforms MoCoDA and Random DA (H2) but also enables an agent to surpass
its demonstrator in a difficult physical task with just a single suboptimal trajectory (H1).

6 Conclusion

Figure 6: IQM time to score over 10 attempts
with 95% stratified bootstrap confidence intervals.
Lower times are better. GuDA’s confidence inter-
val in Hard is wide because of a single trial in
which the agent scored after an unusually hard
kick moved the ball to the opposite end of the
field. Since MoCoDA failed to score in both tasks,
we exclude it from this figure.

In this work, we introduced Guided Data
Augmentation (GuDA), a human-guided data
augmentation (DA) framework that generates
expert-quality augmented data without the ex-
pense of real-world task interaction. In GuDA,
a user imposes a series of simple rules on
the DA process to automatically generate aug-
mented samples that approximate expert be-
havior. GuDA serves as a intuitive way to
integrate human expertise into offline RL; in-
stead of requiring that an expert demonstrate a
near-optimal sequence of actions to solve a task,
GuDA simply requires the user to understand
what augmented data represents progress to-
ward task completion. Empirically, we demon-
strate that GuDA outperforms a widely-applied
random DA strategy as well as a model-based
DA strategy and enables offline learning from a
limited set of potentially suboptimal data. Furthermore, we show how GuDA yields an effective
policy in a physical robot soccer task when given a single highly suboptimal trajectory. Our findings
emphasize how a more intentional approach to DA can yield substantial performance gains.

The core limitation of GuDA is that it requires domain knowledge to specify sampling procedures.
Since the sampling procedures required to generate expert augmented data are task dependent,
GuDA must be implemented separately for each task. In many navigation and object manipulation
tasks, these rules can be derived from basic intuitions on what task progress looks like and are
simple to implement. However, GuDA is less applicable to tasks in which it is difficult to assess
the quality of a trajectory segment (e.g. chess). While our empirical analysis focuses on offline RL
and behavior cloning, GuDA can in principle be applied to other learning methods – both offline
and online. Future work should study how GuDA interacts with other learning methods such as
inverse RL and online RL. Furthermore, a broader analysis investigating the the most effective way
to integrate augmented data into offline RL – similar to the analysis of Corrado & Hanna (2024) for
online RL – would further strengthen the effectiveness of GuDA as well as other DA techniques.

Broader Impact Statement

Our work focuses on fundamental RL research, and we thus see no direct negative societal conse-
quences. In this work, we propose a data augmentation framework (GuDA) that generates expert-
quality augmented data and improves the performance of offline RL and behavior cloning methods.
Since GuDA outperforms existing data augmentation methods on both simulated and physical tasks
and yields effective policies even when given a small amount of suboptimal data, it can be applied
to real-world tasks (where expert data is often scarce) and positively impact society.
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(a) maze2d-umaze (b) maze2d-medium (c) maze2d-large

(d) antmaze-umaze (e) antmaze-medium (f) antmaze-large

(g) parking (h) soccer-sim (i) soccer-physical

Figure 7: Visualizations of initial datasets. In maze2d and antmaze tasks, gold indicate data points
for which the agent receives a nonzero reward. In soccer-sim and soccer-physical tasks, red denotes
the agent and black denotes the ball.

A Task Descriptions

In this section, we describe each task in our empirical analysis. Fig. 7 visualizes the initial datasets
used in each task.

A.1 Maze2d

A force-actuated point-mass must navigate to a fixed goal from a random initial position. The agent
observes its position (x, y) and velocity (vx, vy), and the agent’s actions take the form a = (fx, fy)
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where fx and fy are linear forces applied to the agent in the x and y directions, respectively. The
agent receives +1 reward for being in positions within a disk of radius 0.5 centered at the the goal
and 0 reward otherwise.

A.2 Antmaze

This task is essentially the same as the maze2d task except the agent is replaced with a quadruped
“ant”. The agent must navigate to a fixed goal from a fixed initial maze position. The agent observes
its position (x, y), its height above the ground z, its orientation expressed as a quaternion, as well
as the angle and angular velocities or all eight of its joints. The agent’s action consists of torques
to apply to each of the agent’s joint. The agent receives +1 reward for being in positions within a
disk of radius 0.5 centered at the the goal and 0 reward otherwise.

A.3 Parking

An autonomous vehicle must park front-first into a designated parking spot. The agent observes it’s
current position (x, y), velocity (vx, vy), as well as the sin and cos of its heading θ (i.e. the direction
the front of the car is facing). The agent’s state is thus

sagent = (x, y, vx, vy, sin θ, cos θ).

The agent also observes a goal g consisting of the (xg, yg) position of the parking spot, the desired
velocity (vg,x, vg,y) at the parking spot (which is always set to (0, 0)), as well as the sine and cosine
of car’s desired heading θg at the parking spot (which is either θg = +π/2 or θg = −π/2) :

g = (xg, yg, 0, 0, sin θg, cos θg).

The full state is s = (sagent, g). The agent selects actions a = (aacc, asteer) where aacc is the agent’s
acceleration in direction θ and asteer controls the agent’s change in direction.

The agent receives a dense reward based on its distance to the parking spot and how closely the
car aligns with the spot. If the agent crashes into one of the walls surrounding the parking lot, it
receives a −5 reward penalty:

r = −
√
|s− g| − 5 · 1crash (1)

A.4 Soccer-sim

A robot (agent) must kick a ball to a fixed goal location. Robot and ball positions are initialized
uniformly at random across the entire field. The observation contains the the following features:

• (xrobot to ball, yrobot to ball) = (xrobot − xball, yrobot − yball), the vector difference between the
robot and ball positions.

• (xball to goal, yball to goal) = (xball− xgoal, yball− ygoal), the vector difference between the ball
and goal positions.

• (sin(θrobot to ball), cos(θrobot to ball)), where θrobot to ball denotes the angle between the direc-
tion the robot is facing and the ball.

• (sin(θball to goal), cos(θball to goal)), where θball to goal denotes the angle between the ball and
the goal.

The action a = (aθ, ax, ay) has three components: aθ rotates the direction the robot is facing,
and (ax, ay) controls the robot’s change in (x, y) position. The agent receives reward based on its
distance to the ball and the ball’s distance to the goal:
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(a) An illustration of the near-optimal displacement
directions θ∗(x) in the maze2d-umaze-v1 task. Near
the goal, (red ball), we sample rotation angles uni-
formly at random.

(b) An illustration of the near-optimal displacement
directions θ∗(x) in the maze2d-umaze-v1 task. Near
the goal, (red ball), we sample rotation angles uni-
formly at random.

r =
{

0.9
dagent to ball

+ 0.1
dball to goal

+ 1ball at goal, if the agent is facing the ball
1ball at goal, if the agent is not facing the ball

(2)

where dagent to ball is the Euclidean distance between the agent and the ball, dball to goal is the Eu-
clidean distance between the ball and the goal, and 1ball at goal is an indicator function that returns
1 when ball is at the goal and 0 otherwise. We say the agent is facing the ball if |θrobot to ball| < 30◦

A.5 Soccer-physical

An agent must kick a ball to a fixed goal location. Agent and ball positions are initialized as shown
in Fig. 5a and Fig. 5b. The agent receives reward based on its distance to the ball and the ball’s
distance to the goal. This task uses the same observation space, action space, and reward function
used in the soccer-sim task.

B Sampling Procedures

In this appendix, we provide a formal description of the sampling procedures we use to guide DA in
our empirical analysis. More concretely, we define distributions over translations P(x, y|τ), rotations
Θ(θ|τ), and reflections R(τ) for each task. We refer the reader to Table 1 for a high-level description
of guided data augmentations for each task. In all descriptions, we let τ denote an input trajectory
to be augmented.

B.1 Maze2d

In this task, we use the Translate and Rotate DAFs. Since the agent is initialized to a random
position in the maze, an expert policy will visit all maze position. Thus, we let P(x, y|τ) be a
uniform distribution over all valid maze positions for all τ . We note that this distribution over maze
positions is identical to the distribution used in a random DA strategy.
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Before describing how we sample rotation angles, we introduce a few relevant quantities. Let
(∆x, ∆y) denote τ ’s displacement (the difference between τ ’s final and initial positions), and let
θ(τ) = arctan ∆y

∆x be the displacement angle of the original trajectory segment. A user can easily
compute θ(τ) given τ . Additionally, let θ∗(x, y) be a function returning a near-optimal displacement
direction at position (x, y). Fig. 8a illustrates how we define θ∗(τ) in the maze2d-umaze-v1 task.
We divide the maze into cells (indicated by white dashed lines) and then label each cell with a de-
sired displacement direction (arrows). Note that for the cell containing the goal, have no preferred
displacement direction.

After translating the agent, we sample rotation angles for Rotate from Θ(θ|τ) = (θ∗(x, y)+ε)−θ(τ)
where (x, y) is the agents initial position in τ , and ε is a noise parameter distributed according to
Unif([−π/6, +π/6]). We add noise to the rotation angle because offline RL methods learn to follow
expert trajectories more effectively when expert data is noisy (Kumar et al., 2022). Intuitively,
(θ∗(x, y) + ε)− θ(τ) is the rotation angle required to rotate the agent’s displacement direction from
θ(τ) to (θ∗(x, y) + ε). A visualization of this sampling procedure can be found in Fig. 8b.

B.2 Antmaze

Figure 9: Visualization of the sampling
procedure we use in soccer-sim.

In this task, we use the Translate DAF. Since the
agent is initialized to a fixed position in the maze,
an expert policy will only visit a subset of maze po-
sition near the optimal path toward the goal. Thus,
using the same notation established in the previ-
ous section for maze2d, we sample new positions
from P(x, y|τ) = Unif({(x, y) : |θ(τ) − θ∗(x, y)| <
π
4 , (x, y) is near the optimal path to the goal}), a uni-
form distribution of task-relevant maze positions for which
the agent’s original displacement angle is within π/4 of the
optimal displacement angle. Similar to maze2d, we define
θ∗(x, y) by dividing the maze into cells and then labeling
each cell with a desired displacement angle. We then fetch
all cells whose optimal displacement angle closely aligns
with the agent’s original displacement, and then randomly
sample a new position from one of these cells.

B.3 Parking

In this task, we use the Translate and Rotate DAFs. We first sample a new goal g uniformly at
random from G, and then translate τ such that its final position is a g = (xg, yg), i.e., P(x, y|τ)
places probability 1 on the goal’s position (xg, yg).

After translating, we rotate the agent such that the car’s heading at the final step in τ is closely
aligned with the parking spot’s heading θg. We sample rotation angles from Θ(θ|τ) = (θg +ε)−θ(τ),
where ε is a noise parameter distributed according to Unif([−π/6, +π/6]), and θτ is heading angle of
the last transitions in τ . Intuitively, (θg + ε)− θ(τ) is the rotation angle required to rotate agent’s
heading from θ(τ) to (θg + ε).

B.4 Soccer-sim

In this task, we first reflect τ with probability R(τ) = 0.5. Then, we translate the τ so the ball’s
final position is at the goal. Thus, we sample a new position from P(x, y|τ) = Unif({(x, y) :
(x, y) is inside the goal}). Last, we rotate τ by a rotation angle sampled uniformly at random
from while making sure the rotate trajectory remains in-bounds. A visualization of this sampling
procedure can be found in Fig. 9.
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Algorithm Hyperparameter Values

BC MLP network hidden layers (64, 64), (256, 256)
learning rate 10−3, 10−4, 10−5, 10−6

TD3+BC (Fujimoto & Gu, 2021)
MLP network hidden layers (64, 64), (256, 256)
actor/critic learning rates 10−3, 10−4, 10−5

α 2.5, 5, 7.5, 10

AWAC (Nair et al., 2020)
MLP network hidden layers (64, 64), (256, 256)
actor/critic learning rates 10−3, 10−4, 10−5

inverse advantage weight λ 0.5, 1, 2 (and 0.1 for antmaze)

IQL (Kostrikov et al., 2021)
MLP network hidden layers (64, 64)
actor/critic learning rates 10−4, 10−5, 10−6

inverse temperature β 1, 5, 10
expectile τ 0.5, 0.7, 0.9

Table 3: Hyperparameter values we considered for each algorithm.

C MoCoDA Baseline

In this section, we provide additional details regarding MoCoDA experiments. We use the author’s
original implementation pitis2022mocoda.

MoCoDA can in principle generate expert-quality augmented data if we specify a parent distribution
P (s, a) that is distributed according to the (s, a) distribution an expert might observe, but doing
so requires us to explicitly describe the distribution of expert actions. We do not have access to
this information. However, it is nevertheless fairly simple to specify a distribution P (s, ·) over task-
relevant states. In all tasks, we choose a parent distribution that is uniform over task-relevant agent
positions, corresponding to MoCoDA-U in the original paper (Pitis et al., 2022). At the implemen-
tation level, MoCoDA-U fits a Gaussian mixture model Pθ(s, a) parameterized by θ to the provided
dataset (while exploiting causal independence to generalize beyond the dataset’s support). Then,
this Pθ(s, a) is reweighed to be uniform over agent positions and used as the parent distribution. We
note that this choice of parent distribution closely aligns with our sampling procedures detailed in
Appendix B, which sample transformations uniformly at random over a small subset of task-relevant
positions.

D Hyperparameter Tuning

We tune all algorithms and DA strategies separately using a hyperparameter sweep over values listed
in Table 3. In the main paper, we report the hyperparameters yielding the largest IQM return over
10 seeds.

Since it would be time-consuming and costly to evaluate all IQL hyperperameter settings in the
physical robot soccer tasks, we first evaluate IQL hyperparameter settings in soccer-sim. We identify
four IQL policies with the largest IQM return in soccer-sim, and then evaluate each of these four
policies in the physical task. We report results for the IQL policy yielding the largest success rate
in both the Easy and Hard initializations.
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Abstract

We consider (stochastic) softmax policy gradient (PG) methods for bandits and
tabular Markov decision processes (MDPs). While the PG objective is non-concave,
recent research has used the objective’s smoothness and gradient domination proper-
ties to achieve convergence to an optimal policy. However, these theoretical results
require setting the algorithm parameters according to unknown problem-dependent
quantities (e.g. the optimal action or the true reward vector in a bandit problem).
To address this issue, we borrow ideas from the optimization literature to design
practical, principled PG methods in both the exact and stochastic settings. In the
exact setting, we employ an Armijo line-search to set the step-size for softmax PG
and demonstrate a linear convergence rate. In the stochastic setting, we utilize
exponentially decreasing step-sizes, and characterize the convergence rate of the
resulting algorithm. We show that the proposed algorithm offers similar theoretical
guarantees as the state-of-the art results, but does not require the knowledge of
oracle-like quantities. For the multi-armed bandit setting, our techniques result in
a theoretically-principled PG algorithm that does not require explicit exploration,
the knowledge of the reward gap, the reward distributions, or the noise. Finally, we
empirically compare the proposed methods to PG approaches that require oracle
knowledge, and demonstrate competitive performance.

1 Introduction

Policy gradient (PG) methods have played a vital role in the achievements of deep reinforcement
learning (RL) (Sutton et al., 1999a; Schulman et al., 2017). Recent theoretical research (Agarwal
et al., 2021; Mei et al., 2020; 2021a; Bhandari & Russo, 2021; Lan, 2023; Shani et al., 2020) have
analyzed PG methods in simplified settings, exploiting the objective’s properties to guarantee global
convergence to an optimal policy. We focus on softmax policy gradient methods that parameterize the
policy using the softmax function, and consider the tabular parameterization for which the number
of parameters scales with the number of states and actions. For this class of methods, recent studies
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have established global convergence rates in both the exact (Mei et al., 2020; 2021a; Agarwal et al.,
2021) and stochastic (inexact) settings (Mei et al., 2021a; 2022; 2023; Yuan et al., 2022).

Specifically, in the exact setting where the rewards and transition probabilities are known, Agarwal
et al. (2021) proved that softmax PG can attain asymptotic convergence to an optimal policy despite
the non-concave nature of the PG objective. Mei et al. (2020) improve this result and quantify the
rate of convergence, proving that softmax PG requires O(1/ϵ) iterations to converge to an ϵ-optimal
policy. On the other hand, when using the tabular parameterization in the exact setting, natural
policy gradient (NPG) (Kakade, 2001) and geometry-aware normalized policy gradient (GNPG) (Mei
et al., 2021b) have been shown to achieve a linear convergence (Bhandari & Russo, 2021; Cen et al.,
2022; Lan, 2023; Xiao, 2022) matching policy iteration.

In the stochastic setting where the rewards and transition probabilities are unknown and algorithms
require sampling from the environment, (Zhang et al., 2020b) first proved that REINFORCE (Williams,
1992; Sutton et al., 1999b) converges to a first-order stationary point at an Õ(1/ϵ2) rate. Mei et al.
(2021a; 2022) analyzed the convergence of stochastic softmax PG, proving that it requires O(1/ϵ2)
iterations to converge to an ϵ-optimal policy. However, the resulting algorithm requires the full
gradient (which in turn requires the knowledge of the environment) to set algorithm parameters,
making it impractical in the stochastic setting. Similarly, Yuan et al. (2022) proved that stochastic
softmax PG converges to an optimal policy at a slower Õ(1/ϵ3) rate. However, this result requires
knowledge of the optimal action making it vacuous. More recently, Mei et al. (2023) analyzed
stochastic softmax PG in the multi-armed bandit setting and proved that it converges to the optimal
arm at an O(1/ϵ) rate. Unfortunately, the algorithm requires knowledge of the reward gap which is
typically unknown for bandit problems.

Consequently, while the above convergence results are notable, the methods that stem from them
are impractical. The impracticality arises from the methods’ dependence on oracle-like knowledge
of the environment, which includes factors such as the optimal action (Yuan et al., 2022), reward
gap (Mei et al., 2023) and even access to the full gradient (Mei et al., 2021a) in stochastic settings.
The need for this oracle-like knowledge renders these methods ineffective because they assume access
to information sufficient to derive an optimal policy. In this paper, our objective is to design practical
softmax PG methods while retaining theoretical convergence guarantees to the optimal policy. We
believe that this is an important first step towards developing practical but theoretically-principled
PG methods in the general function approximation setting. To this end, we make the following
contributions.

Contribution 1: In Section 3, we first consider the exact setting as a test bed for analyzing softmax
PG. In this setting, theoretical step-sizes that enable convergence to the optimal policy are often too
conservative in practice. We present a practical approach by employing an Armijo line-search (Armijo,
1966) to set the step-size for softmax PG. Armijo line-search enables adaptation to the objective’s
local smoothness which results in larger step-sizes and improved empirical performance. Furthermore,
we design an alternative line-search condition that takes advantage of the objective’s non-uniform
smoothness and enables softmax PG to use larger step-sizes. The resulting algorithm achieves linear
convergence matching GNPG (Mei et al., 2021b).

Contribution 2: In Section 4, we consider the stochastic setting where the policy gradient is
estimated using finitely many interactions with an environment. To design a practical softmax PG
algorithm that can adapt to the stochasticity, we utilize exponentially decreasing step-sizes (Li et al.,
2021; Vaswani et al., 2022). The resulting algorithm matches the Õ(1/ϵ3) rate of Yuan et al. (2022)
without the knowledge of oracle-like information. In order to attain faster convergence, we use
the strong growth condition (SGC) (Schmidt & Roux, 2013; Vaswani et al., 2019) satisfied by the
PG objective (Mei et al., 2023). We prove that the same algorithm with exponentially decreasing
step-sizes is robust to unknown problem-dependent constants and can effectively interpolate between
the fast Õ(1/ϵ) and slow Õ(1/ϵ3) rate.
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Contribution 3: Finally, in Section 5, we experimentally benchmark the proposed algorithms in
the bandit setting. Our empirical results indicate that the proposed algorithms have comparable
performance as baselines that require oracle-like knowledge.

Contribution 4: In Appendix D, we study the use of entropy regularization for PG methods in both
the exact and stochastic settings. Entropy regularization has been successfully used in RL (Haarnoja
et al., 2018; Hiraoka et al., 2022). It helps smooth the objective function, enabling PG methods to
escape flat regions and allowing the use of larger step-sizes (Ahmed et al., 2019). Although entropy
regularization allows for faster convergence, it results in convergence to a biased policy.

We introduce a practical multi-stage algorithm that iteratively reduces the entropy regularization and
ensures convergence to the optimal policy. The resulting algorithm does not require the knowledge
of any problem dependent constants such as the reward gap (as in prior work (Mei et al., 2020)).
Under additional assumptions, we prove that softmax PG with entropy regularization converges to
the optimal policy at an Õ(1/ϵ) rate in the exact setting and at an Õ(1/ϵ3) rate in the stochastic
setting. Although we do not prove a theoretical advantage of entropy regularization; in practice, we
find that adding entropy enables the resulting algorithms to be more robust to “bad” initializations.

2 Problem Setup & Background

An infinite-horizon discounted Markov decision process (MDP) (Puterman, 2014) is defined by
tuple (S,A,P, r, ρ, γ), where S is the set of states, A is the set of actions, P : S × A → ∆S is the
transition probability function, ρ ∈ ∆S is the initial state distribution, r : S×A → [0, 1] is the reward
function, and γ ∈ [0, 1) is the discount factor. We will only consider tabular MDPs, assuming that
the state and action spaces are finite and define S := |S| and A := |A|. For policy π, the action-value
function Qπ : S × A → R is defined as: Qπ(s, a) := E[

∑∞
t=0 γtr(st, at)], with s0 = s, a0 = a and

for t ≥ 1, st+1 ∼ p(·|st, at) and at+1 ∼ π(·|st). The corresponding value function V π : S → R
is defined as V π(s) := Ea∼π(·|s)[Qπ(s, a)]. The advantage function Aπ : S × A → R is defined as
Aπ(s, a) := Qπ(s, a) − V π(s). For state s ∈ S, we define Prπ[st = s |s0] to be the probability of
visiting state s at time t under policy π when starting at state s0. The discounted state visitation
distribution is denoted by dπ

s0 ∈ ∆S and defined as dπ
s0 := (1− γ)

∑∞
t=0 γt Prπ[st = s |s0].

Given a class of feasible policies Π, the policy optimization objective is: maxπ∈Π J(π) := Es∼ρ[V π(s)].
For brevity, we define V π(ρ) := Es∼ρ[V π(s)]. We denote the optimal policy as π∗ = arg maxπ∈Π J(π).
Throughout this paper, we will consider both the general MDP setting and the bandits setting.
For the bandit setting, S = 1 and γ = 1, and the corresponding objective is to find a policy that
maximizes E[⟨π, r⟩] where the expectation is over the stochastic rewards.

In this work, we consider policies with a softmax tabular parameterization, i.e. for parameters
θ ∈ RS×A, the set Π consists of policies πθ : S → ∆A parameterized using the softmax function
such that πθ(a|s) = exp(θ(s,a))/

∑
a′∈A exp(θ(s,a′)). Such a tabular parameterization has been recently

used to study the theoretical properties of policy gradient methods (Agarwal et al., 2021; Mei et al.,
2020). Throughout, we will present our results considering f(θ) as an abstract objective with specific
properties, and when required, instantiate it in the general MDP or bandits setting. In the general
MDP setting, f(θ) := V πθ (ρ), while in the bandits setting, f(θ) := ⟨πθ, r⟩. With this abstraction, we
hope that our results can be easily generalized to other settings such as constrained MDPs (Altman,
2021) or convex MDPs (Zahavy et al., 2021; Zhang et al., 2020a). Next, we specify the properties of
f that will be used to analyze the convergence of PG methods.

First, we note that f is a non-concave function for both bandits and general MDPs (Mei et al., 2020,
Proposition 1). However, in both cases, it is twice-differentiable and L-smooth, i.e. for all θ, there
exists a constant L ∈ (0,∞), ∇2f(θ) ⪯ LISA. Since this property holds for all θ and L is a constant
independent of θ, we refer to this as uniform smoothness. For both bandits and general MDPs,
f also satisfies a notion of non-uniform smoothness, i.e. for all θ, there exists a L1 ∈ (0,∞) such
that ∇2f(θ) ⪯ L1 ∥∇f(θ)∥ISA. Intuitively, non-uniform smoothness states that the landscape is
flatter closer to a stationary point θ̃, meaning that as θ → θ̃, ∇2f(θ)→ 0, i.e. the Hessian becomes
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Setting f(θ) [∇f(θ)]s,a L L1 ν C(θ)
Bandits ⟨πθ, r⟩ πθ(a) [r(a)− ⟨πθ, r⟩] 5/2 3

√
2

∆∗ πθ(a∗)
MDP V πθ (ρ) dπθ (s) πθ(a|s) Aπθ (s,a)

1−γ
8

(1−γ)3

[
3 + 2 C∞−(1−γ)

(1−γ)γ

]√
S

√
2

(1−γ) ∆∗
mins πθ(a∗(s)|s)

√
S

∥∥∥ dπ∗
ρ

d
πθ
ρ

∥∥∥
∞

Table 1: Function and gradient expressions, (non)-uniform smoothness, non-uniform and reversed
Łojasiewciz properties for bandits and general tabular MDPs with ξ = 0 (Mei et al., 2020). Here, a∗

is index of the optimal arm in the bandit problem , C∞ := maxπ

∥∥∥dπ
ρ

ρ

∥∥∥
∞

is the distribution mismatch
ratio (Agarwal et al., 2021), and ∆∗ := mins Q∗(s, a∗(s))−maxa(s)̸=a∗(s) Q∗(s, a(s)) is the reward
gap corresponding to the optimal policy.

degenerate. Together, the uniform and non-uniform smoothness properties are related to the (L0, L1)
smoothness recently used to study the optimization of transformer models (Zhang et al., 2019).

Since the rewards are bounded, f(θ) is upper-bounded by a value f∗ := maxθ f(θ). Furthermore,
f satisfies a non-uniform Łojasiewciz condition, i.e. for all θ, there exists a C(θ) ∈ (0,∞) and
ξ ∈ [0, 1] such that ∥∇f(θ)∥2 ≥ C(θ) |f∗ − f(θ)|1−ξ (Mei et al., 2020). For the special case where
C(θ) is an absolute constant and ξ = 1/2, this condition matches the well studied Polyak Łojasiewciz
(PŁ) condition (Polyak, 1963; Karimi et al., 2016). The Łojasiewciz condition states that every
stationary point θ̃ (s.t. ∇f(θ̃) = 0) is also a global maximum s.t. f(θ̃) = f∗. This condition enables
the convergence of local ascent methods such as PG to an optimal solution θ∗ := arg maxθ f(θ)
despite the problem’s non-concavity (Karimi et al., 2016; Mei et al., 2020; Agarwal et al., 2021).
Finally, f satisfies a reversed Łojasiewciz condition, i.e. for all θ, there exists a ν > 0 such that
∥∇f(θt)∥ ≤ ν (f∗ − f(θ)) (Mei et al., 2020). This condition bounds how quickly the gradient norm
vanishes near the optimal solution. Table 1 summarizes both the uniform and non-uniform smoothness
and Łojasiewciz properties for bandits and general MDPs.

Similar to Mei et al. (2020), we assume a uniform starting state distribution, i.e. ∀s ∈ S, ρ(s) = 1/S

and hence C∞ ≤ 1
mins ρ(s) < ∞. This is a common assumption in the policy gradient literature

that obviates the need for exploration in the general MDP setting and allows us to exclusively
focus on the optimization aspects. We note that for both these settings, the optimal policy is
deterministic (Puterman, 2014) i.e. in the general MDP setting, for each state s ∈ S, there is an
action a∗(s) ∈ A such that π∗(a∗(s)|s) = 1 and for all a ̸= a∗(s), π∗(a|s) = 0. This implies that when
using the softmax tabular parameterization, θ∗(s, a∗(s))→∞ and for all a ̸= a∗(s), θ∗(s, a)→ −∞.
This property is similar to that for logistic regression for classification on linearly separable data (Ji
& Telgarsky, 2018).

In the next section, we will use the above properties of f and study the convergence of PG methods
in the exact setting.

3 Policy Gradient in the Exact Setting

We first consider the exact setting that assumes complete knowledge of the rewards and transition
probabilities, and consequently enables the exact calculation of the policy gradient. This setting has
been used as a test bed to study the convergence properties of PG methods (Bhandari & Russo,
2021; Agarwal et al., 2021; Mei et al., 2020).

Softmax policy gradient (softmax PG) uses gradient ascent to iteratively maximize f(θ). In particular,
at iteration t ∈ [T ], softmax PG uses a step-size of ηt and has the following update:
Update 1. (Softmax PG, True Gradient) θt+1 = θt + ηt∇f(θt).

Refer to Table 1 for the gradient expressions of the policy gradient ∇f(θ) in both the bandits and
general MDP cases.
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In this setting, Mei et al. (2020) prove that softmax PG converges to an optimal solution at an O(1/T)
rate, implying that the algorithm requires O(1/ϵ) iterations to guarantee that f∗ − f(θT +1) ≤ ϵ.
From a policy optimization perspective, this implies that softmax PG can return a stochastic policy
whose value function is ϵ close to the optimal policy’s value function. In order to achieve this
convergence, Mei et al. (2020) requires using a constant step-size ηt = η = 1/L. Furthermore, for any
ηt ∈ (0, 1], Mei et al. (2020, Theorem 9) proves an Ω(1/ϵ) lower-bound showing that this rate is tight.

In most scenarios, we can only obtain a loose upper-bound on the smoothness L. This over-estimation
of L implies that the resulting step-size is typically smaller than necessary, often resulting in worse
empirical performance. In practice, when doing gradient ascent with access to the exact gradient,
it is standard to employ a line-search (Armijo, 1966; Nocedal & Wright) to adaptively set the
step-size in each iteration. This results in faster empirical convergence while requiring minimal
tuning, and preserving the rate of convergence. Hence, we propose to use a backtracking Armijo
line-search (Armijo, 1966) to adaptively set the step-size for softmax PG.

At every iteration t, backtracking Armijo line-search starts from an initial guess for the step-size
(ηmax) and backtracks until the Armijo condition is satisfied. In particular, the procedure thus
returns the largest step-size ηt such that following condition is satisfied:

f(θt + ηt∇f(θt)) ≥ f(θt) + hηt∥∇f(θt)∥2
2 , (Armijo condition) (1)

where h ∈ (0, 1) is a hyper-parameter. For smooth functions, the backtracking procedure is guaranteed
to terminate and return a step-size ηt that satisfies ηt ≥ min{2(1−h)/L, ηmax}. Hence, Armijo line-
search guarantees improvement in the function value (ensuring monotonic policy improvement at
each iteration t), while selecting a step-size larger than the 1/L step-size used in Mei et al. (2020).

The following theorem shows that using the Armijo line-search preserves the theoretical O(1/T)
convergence rate.

Theorem 1. Assuming f is (i) L-smooth, (ii) satisfies the non-uniform Łojasiewciz condition with
ξ = 0, and (iii) µ := inft≥1[C(θt)]2 > 0, using Update 1 and Armijo line-search to set the step-size
results in the following convergence:

f∗ − f(θT +1) ≤ max
{

L

2 h (1− h) ,
1

h ηmax

}
1

µ T
(2)

where h ∈ (0, 1) and ηmax is the upper-bound on the step-size.

While assumptions (i) and (ii) are satisfied for both the general MDP and bandit settings, we need to
ensure that assumption (iii) also holds. We first note that this property holds for a constant step-size
ηt = η = 1/L (Mei et al., 2020, Lemma 5, Lemma 9). However, the proof can be extended to any
varying step-size sequence that guarantees ascent (f(θt+1) ≥ f(θt)) in every iteration. When using
the Armijo line-search to set the step-size, this condition is satisfied by definition, thus guaranteeing
that µ := inft≥1[C(θt)]2 > 0.

The Armijo condition in Equation (1) takes advantage of the objective’s uniform smoothness in order
to attain an O(1/T) convergence. In our initial experiments, we observed that for most iterations,
the maximum step-size ηmax satisfies the Armijo condition, and is hence returned by the line-search
procedure. By using a sufficiently large ηmax or by progressively increasing the maximum step-size
as a function of t, the resulting algorithm converges at a linear rate. This is because the objective
satisfies a non-uniform smoothness property and the optimization landscape becomes flatter as the
gradient norm decreases closer to the solution. This enables the use of larger step-sizes than those
returned by the Armijo line-search when using a fixed ηmax. In order to take advantage of the
non-uniform smoothness more explicitly, we design an alternative line-search on the logarithm of the
suboptimality. Formally, we use the following condition:

ln(f∗ − f(θt + ηt∇f(θt))) ≤ ln(f∗ − f(θt))− h ηt
∥∇f(θt)∥2

2
f∗ − f(θt)

(Armijo condition for log-loss). (3)
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When using the above condition, Lemma 2 guarantees that the backtracking line-search procedure
terminates and returns ηt ≥ min

{
ηmax, 2(1−h)

L1 ν [f∗−f(θt)]

}
(refer to Table 1 for the values of L1 and

ν). Hence, the resulting line-search accepts step-sizes proportional to 1
f∗−f(θt) , meaning that as the

optimization progresses and f(θt)→ f∗, larger step-sizes can be used.

The following theorem (proved in Appendix B.2) characterizes the rate of convergence of softmax
PG when using the Armijo condition for the log-loss in Equation (3).

Theorem 2. For a given ϵ ∈ (0, 1), assuming f is (i) L1 non-uniform smooth, (ii) satisfies the
non-uniform Łojasiewciz condition with ξ = 0, (iii) µ := inft≥1[C(θt)]2 > 0, (iv) f satisfies a reversed
Łojasiewciz condition with ν > 0, using Update 1 with backtracking line-search using the Armijo
condition in Equation (3) and setting ηmax = C/ϵ results in the following convergence:
If f∗ − f(θt) > ϵ for all t ∈ [1, T ], then,

f∗ − f(θT +1) ≤ [f∗ − f(θ1)] exp
(
−min

{
C h,

2 h (1− h)
L1 ν

}
µ T

)
(4)

where C > 0 and h ∈ (0, 1) are hyper-parameters. Otherwise mint∈[1,T ] f∗ − f(θt) ≤ ϵ.

For a target ϵ, setting T = O (log (1/ϵ)) iterations results in a linear convergence rate. In comparison
to Theorem 1, using the Armijo condition in Equation (4) enables the use of larger step-sizes resulting
in a faster (O(1/ϵ) vs O (log (1/ϵ))) rate. However, the Armijo condition in Equation (4) requires
the knowledge of f∗, making the resulting method less practical. This requirement is similar to the
Polyak step-size (Polyak, 1987) used for gradient descent. For future work, we hope to remove this
dependence of f∗. In comparison, the geometry-aware normalized policy gradient (GNPG) approach
introduced in Mei et al. (2021a) also explicitly exploits this non-uniform smoothness and exhibits a
convergence rate of O (log (1/ϵ)). However, in the general MDP setting, GNPG requires the knowledge
of unknown constants such as the concentrability coefficient C∞ := maxπ

∥∥dπ
ρ /ρ
∥∥

∞ to determine
the step-size, making it impractical. In concurrent work, Liu et al. (2024) show that softmax PG
with any constant step-size can attain an Θ(1/ϵ) convergence to the optimal policy. Moreover, they
prove that softmax PG with a specific adaptive step-size scheme that only depends on the advantage
function and the policy (PG-A) can attain a fast O (log (1/ϵ)) convergence.

Figure 1: Comparing softmax PG that (i) uses a step-size that satisfies the Armijo condition in Equa-
tion (1) (denoted as PG-LS), (ii) uses a step-size that satisfies the Armijo condition in Equation (3)
(PG-Log-LS) to GNPG (GNPG), PG-A (PG-A) and PG with a fixed step-size (PG) in the tabular MDP
setting.
In Figure 1, we compare the presented line-search methods with the Armijo condition in Equation (1)
and the Armijo condition on the log-loss in Equation (3) to GNPG, PG-A and PG with a constant
step-size on three tabular MDP environments (see Appendix G for details). For the methods that use
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backtracking line-search, we set ηmax = 1
ϵ with ϵ = 10−4 and h = 0.5. For GNPG, we use the step-size

of ηt = (1−γ) γ
6 (1−γ)+4 (S−1−(1−γ)) . Since C∞ is unknown, we upper-bound it as: C∞ ≤ mins

1
ρ(s) = 1

S . For
PG-A, we use the theoretical step-size ηt = 1

mins∈Ŝt
maxa|Ât(s,a)| where Ât(s, a) := πθt

(a|s) Aπθt (s, a)

and Ŝt := {s ∈ S | Ât(s, a) > 0}. Finally for PG we use a constant step-size of ηt = 1
L = (1−γ)3

8 .
We observe that PG-LS is comparable to GNPG and PG-A while PG-Log-LS can better exploit the
non-uniform smoothness, enabling larger step-sizes as the algorithm approaches the optimal policy.
The performance of PG is negligible due to the loose upper-bound of L, resulting in a conservative
step-size. In Appendix G, we plot the wall-clock time to justify the performance gains of the proposed
methods.

In the next section, we study the more realistic stochastic setting where the rewards and transition
probabilities are unknown, and the policy gradients need to be estimated via interactions with the
environment. Although GNPG and NPG can obtain faster convergence rates in the exact setting,
they are not guaranteed to converge to the optimal policy in the stochastic setting (Mei et al., 2021a).
This is because these methods are too aggressive and can quickly commit to sub-optimal actions.
Consequently, we restrict ourselves to softmax PG in the stochastic setting.

4 Policy Gradient in the Stochastic Setting

In this section, we analyze softmax PG with an estimated (stochastic) policy gradient. In Section 4.1,
we construct PG estimators that are unbiased and have bounded variance. We design a PG algorithm
that uses the stochastic policy gradient along with exponentially decreasing step-sizes (Li et al., 2021;
Vaswani et al., 2022). In Section 4.2, we prove that the resulting algorithm can obtain convergence
rates comparable to the state-of-the-art, but do not require oracle-like knowledge of the environment.
Finally, in Section 4.2.1, we exploit the fact that the variance in the stochastic gradients decreases
as the algorithm approaches a stationary point, and prove that the same stochastic softmax PG
algorithm can obtain a faster convergence rate.

4.1 Stochastic Softmax Policy Gradient

For illustrative purposes, we mainly focus on the bandit setting in the main paper. In the stochastic
multi-armed bandit setting (Lattimore & Szepesvári, 2020), each action (arm) has an underlying
unknown reward distribution. In every iteration t, the algorithm chooses an action to pull and
receives a stochastic reward sampled from the distribution of the corresponding arm. The stochastic
softmax PG algorithm maintains a distribution πθt ∈ ∆A over the actions. In each iteration t ∈ [1, T ],
the algorithm samples an action at ∼ πθt and receives reward Rt ∼ Pat where Pat is the reward
distribution of arm at. The reward Rt is used to construct the on-policy importance sampling (IS)
reward estimate r̂t(a) = 1{at=a}

πθt (a) Rt for each a ∈ A. The IS reward estimate is then used to form the
stochastic gradient ∇f̃(θt) such that ∇f̃(θt)(a) = πθt

(a)[r̂t(a)− ⟨πθt
, r̂t⟩]. Mei et al. (2021a, Lemma

5) showed that the resulting stochastic gradients are (i) unbiased i.e. E[∇f̃(θ)] = ∇f(θ) and have
(ii) bounded variance i.e. E

∥∥∥∇f̃(θ)−∇f(θ)
∥∥∥

2

2
≤ σ2. Similarly, we can construct gradient estimators

that are unbiased and have bounded variance for general MDPs (refer to Appendix C.4). Given these
estimators, the resulting stochastic softmax PG algorithm has the following update:
Update 2. (Stochastic Softmax PG, Importance Sampling) θt+1 = θt + ηt∇f̃(θt).

We note that this update has also been used in Yuan et al. (2022); Mei et al. (2021a) that attain global
convergence to the optimal solution in both the bandit and general MDP settings. In order to prove
theoretical convergence, Yuan et al. (2022) used the knowledge of µ := inft≥1[C(θt)]2 when setting
the step-size. However, in both the bandit and general MDP settings (see Table 1 for details) C(θ)
and consequently µ depends on the optimal action. This makes the resulting algorithm impractical.
On the other hand, Mei et al. (2021a) require the full gradient to set the step-size and obtain global
convergence. Since the full gradient is not available in the stochastic setting, it is not practical to use

7222



RLJ | RLC 2024

Convergence Rate Knowledge required to set η
Mei et al. (2021a) O(1/ϵ2) ∥∇f(θ)∥
Yuan et al. (2022) O(1/ϵ3) π∗

Mei et al. (2023) O(1/ϵ) mean reward vector r

This work Interpolates between Õ(1/ϵ) & Õ(1/ϵ3) T

Table 2: Global convergence rates and knowledge required to set the step-size η for each method in the
bandits setting. Our proposed method achieves comparable convergence rates to prior state-of-the-art
results without any oracle-like knowledge.

their algorithm. Table 2 summarizes the global convergence rates for stochastic softmax PG and the
method’s step-size dependencies.

We make use of exponentially decaying step-sizes (Li et al., 2021; Vaswani et al., 2022) that have
been previously used for stochastic gradient descent when minimizing smooth non-convex functions
satisfying the PŁ-inequality (Polyak, 1963; Karimi et al., 2016). In this setting, the benefit of
exponentially decaying step-sizes is that they can achieve (up to poly-logarithmic terms) the best
known convergence rates without the knowledge of σ2 or µ. Given the knowledge of T , the step-size

in iteration t is set as: ηt = η0 αt where η0 is the initial step-size, α =
(

β
T

) 1
T and β ≥ 1. Although β

is a hyper-parameter, we emphasize that it does not depend on any problem-dependent constants.
We leverage these step-sizes for designing a stochastic softmax PG algorithm and characterize its
convergence in the next section.

4.2 Theoretical Convergence

By using the proof techniques from Yuan et al. (2022) and Li et al. (2021), we prove the following
theorem in Appendix C.1.

Theorem 3. For a given ϵ ∈ (0, 1), assuming f is (i) L-smooth, (ii) satisfies the non-uniform
Łojasiewciz condition with ξ = 0, (iii) µ :=

[
E
[
inft≥1[C(θt)]−2]]−1

> 0, using Update 2 with (a)
unbiased stochastic gradients whose variance is bounded by σ2 and (b) exponentially decreasing

step-sizes ηt = η0 αt where η0 = 1
L and α =

(
β
T

) 1
T , β ≥ 1 results in the following convergence:

If E[f∗ − f(θt)] > ϵ for all t ∈ [1, T ], then,

E[f∗ − f(θT +1)] ≤ E[f∗ − f(θ1)] C1 exp
(
− α ϵ T

κ ln(T/β)

)
+ C1 C2

2 L

ln2
(

T
β

)
σ2

ϵ2 T
(5)

where κ := 2 L
µ , C1 := exp

(
2 β

κ ln(T/β)

)
and C2 := 4 κ2

e2 α2 . Otherwise mint∈[1,T ] E[f∗ − f(θt)] ≤ ϵ.

In order to ensure that assumption (iii) holds, let us consider the bandit setting where C(θ) = πθ(a∗).
To guarantee that µ :=

[
E
[
inft≥1[C(θt)]−2]]−1

> 0, we must ensure that πθ0(a∗) > 0. Since T is
finite and θ0, ηt and the stochastic gradients are bounded (refer to Lemmas 10 and 11 in Appendix C),
no parameter including θ(a∗) can diverge to −∞, guaranteeing that πθ(a∗) > 0.

To determine the resulting convergence rate, let us first analyze the case when σ2 = 0. In this case,
given a target ϵ, we set T = O(1/ϵ log(1/ϵ)) iterations to make the first term O(ϵ). On the other hand,
when σ2 > 0 and the second term of Õ

(
σ2

/ϵ2T
)

dominates, we set T = Õ(1/ϵ3) iterations to make the
second term O(ϵ). Putting both cases together, in order to make the sub-optimality O(ϵ), we can set
T = max{Õ

(
1/ϵ, σ2

/ϵ3
)
}. This convergence rate matches that in Yuan et al. (2022) without requiring

the knowledge of µ. We emphasize that the above convergence rate holds without the knowledge of
any oracle-like information.
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The previous result assumes that the variance σ2 is constant w.r.t. θ. However, it has been observed
that the noise depends on θ, and decreases as the algorithm gets closer to a stationary point since
the policy become more deterministic. Next, we leverage this property to prove faster rates.

4.2.1 Faster Rates

In the bandit setting, Mei et al. (2023) formalized the above intuition, and proved that the stochastic
gradient ∇f̃(θ) satisfies the strong growth condition (SGC) (Schmidt & Roux, 2013; Vaswani et al.,
2019) implying that E

∥∥∥∇f̃(θ)
∥∥∥

2

2
≤ ϱ ∥∇f(θ)∥ for a problem-dependent ϱ > 1. This implies that the

variance decreases as the algorithm approaches a stationary point and ∥∇f(θ)∥ → 0. For the bandit
setting, using Update 2 and the knowledge of ϱ to set the step-size, Mei et al. (2023) can attain
a faster O(1/ϵ) convergence rate. We generalize the above SGC result to the general MDP setting
in Theorem 6 (proved in Appendix C.4).

Theorem 4. Using Update 2, we have for all θ, E
∥∥∥∇f̃(θ)

∥∥∥
2

2
≤ ϱ ∥∇f(θ)∥2, where ϱ := 8 A3/2

∆2 in the

bandit setting with ∆ := mina̸=a′ |r(a)− r(a′)| and ϱ = 4 A3/2 S1/2

(1−γ)4 ∆2 in the tabular MDP setting with
∆ := mins mina̸=a′ |Qπθ (s, a)−Qπθ (s, a′)|.

However, in the bandit setting, ϱ depends on the unknown reward gap ∆ := mina ̸=a′ |r(a)− r(a′)| and
we prove that this dependence is necessary (Proposition 1 in Appendix C). This makes the resulting
algorithm ineffective in most practical cases. Hence, we aim to develop a practical algorithm that can
automatically adapt to ϱ and result in a faster convergence. In Theorem 5, proved in Appendix C.2,
we show that the same stochastic softmax PG algorithm (with exponentially decreasing step-sizes)
can attain such fast convergence. In addition to the properties in Theorem 3, we exploit the function’s
non-uniform smoothness, the SGC and the boundedness of stochastic gradients to prove this result.

Theorem 5. For a given ϵ ∈ (0, 1), assuming f is (i) L1 non-uniform smooth, (ii) satisfies the
non-uniform Łojasiewciz condition with ξ = 0, (iii) µ :=

[
E
[
inft≥1[C(θt)]−2]]−1

> 0, using Update 2
with unbiased stochastic gradients that are (a) bounded, i.e. ∥∇f̃(θ)∥ ≤ B and satisfy the strong
growth condition with ϱ and (b) exponentially decreasing step-sizes ηt = η0 αt where η0 < 1

L2
1B

and

α =
(

β
T

) 1
T , β ≥ 1, results in the following convergence:

If E[f∗ − f(θt)] > ϵ for all t ∈ [1, T ], then,

E[f∗ − f(θT +1)] ≤ E[f∗ − f(θ1)] C1 exp
(
− α ϵ T

κ ln(T )

)
+ C2

∑T0−1
t=1 E[f∗ − f(θt)]

ϵ2 T 2 (6)

where κ := 2
µ η0

, C1 := exp
(

2 β
κ ln(T/β)

)
, C2 := exp

(
2 β

κ ln(T/β)

)
16 ϱ L κ2

e2 α2 ln2(T/β),

T0 := T max
{

ln(ϱ η0)
ln(T/β) , 0

}
. Otherwise mint∈[1,T ] E[f∗ − f(θt)] ≤ ϵ.

Similar to Theorem 3, assumption (iii) is true when πθ0(a∗) > 0 and T is finite. In Lemmas 10
and 11 (proved in Appendix C), we prove that the stochastic gradients are bounded in both the
bandit and MDP settings. In the above result, T0 represents the iteration when the step-size is small
enough to take advantage of the SGC. Given the knowledge of ϱ, we can set set η0 ≤ 1/ϱ in which
case T0 = 0. In this case, setting T = Õ(1/ϵ) iterations enables us to obtain a “fast” O(1/ϵ) rate.
Since ϱ is unknown in general, setting η0 to be large can result in T0 = O(T ) in the worst case. In
this case, the second term of order Õ(1/ϵ2T) dominates. In this case, setting T = O(1/ϵ3) iterations
results in a “slow” Õ(1/ϵ3) rate. Hence, the resulting algorithm is robust to ϱ and depending on how
η0 is set, it can interpolate between the “slow” and “fast” rates.

Below, we instantiate Theorem 5 in the bandit setting.
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Corollary 1. In the bandit setting, for a given ϵ ∈ (0, 1), using Update 2 with exponentially

decreasing step-sizes ηt = η0 αt where η0 ≤ 1
18 , α =

(
β
T

) 1
T , β ≥ 1 results in the following

convergence:
If E[(π∗ − πθt

)⊤r] ≥ ϵ for all t ∈ [1, T ], then,

E[(π∗ − πθT +1)⊤r] ≤ E[(π∗ − πθ1)⊤r] C1 exp
(
− α ϵ T

κ ln(T/β)

)
+ C2

∑T0−1
t=1 E[(π∗ − πθt

)⊤r]
ϵ2 T 2 (7)

where κ := 2
µ η0

, C1 := exp
(

2 β
κ ln(T/β)

)
, C2 := exp

(
2β

κ ln(T/β)

)
32 ϱ κ2

5 e2 α2 ln2(T/β), T0 :=

T max
{

ln(4 ϱ η0)
ln(T/β) , 0

}
, ρ = 8 A3/2

∆2 and µ :=
[
E
[
mint∈[1,T ][πθt

(a∗)]−2]]−1 > 0. Otherwise
mint∈[1,T ] E[(π∗ − πθt)⊤r] ≤ ϵ.

In the multi-armed bandit setting, using stochastic softmax PG with exponentially decreasing
step-sizes allows for implicit automatic exploration without requiring the knowledge of any problem-
dependent constants such as the reward gap. Unlike Mei et al. (2023), we note that the above result
does not imply asymptotic convergence to the optimal arm. This difference stems from the fact
that Mei et al. (2023) uses a constant step-size, while the above result requires a decreasing step-size
that asymptotically goes to zero. Compared to the standard algorithms for multi-armed bandits
such as upper confidence bound (UCB) (Auer et al., 2002) which requires the knowledge of the
noise magnitude to design confidence intervals or Thompson sampling (TS) (Agrawal & Goyal, 2012)
which requires knowledge of the reward distribution, stochastic softmax PG does not require such
information.

In the next section, we empirically validate our theoretical results and compare the proposed methods
to prior algorithms in the bandits setting.

5 Experimental Evaluation 1

We evaluate the methods in multi-armed bandit environments with A = 10. For each environment,
we compare the various algorithms on the basis of their expected sub-optimality gap E[(π∗ − πθt

)⊤r].
For each instance of an environment, we run an algorithm 5 times to account for the stochasicity
of each algorithm. We plot the average and 95% confidence interval of the expected sub-optimality
gap across 25 instances over T = 106 iterations. For each run, the initial policy is uniform, i.e.
πθ0(a) = 1/A for all a ∈ A.

Environment Details: Each environment’s underlying reward distribution is either a Bernoulli,
Gaussian, or Beta distribution with a fixed mean reward vector r ∈ RA and support [0, 1]. The
difficulty of the environment is determined by the maximum reward gap ∆̄ := mina∗ ̸=a r(a∗)− r(a).
In easy environments ∆̄ = 0.5 and in the hard environments ∆̄ = 0.1. For each environment, r is
randomly generated for each run.

Methods: We compare stochastic softmax PG with exponentially decreasing step-size (SPG-ESS) to
prior work that uses the full gradient (SPG-O-G) (Mei et al., 2021a) and the reward gap (SPG-O-R) (Mei
et al., 2023) when setting the step-size. For SPG-ESS, we select β = 1 and η0 = 1

18 for all experiments.
For SPG-O-R and SPG-O-G, we use the corresponding theoretical step-size of ηt = ∆2

(40) 103/2 and

ηt = 1
12

∥∥∥∥
d⟨πθt ,r⟩

dθt

∥∥∥∥ respectively. We emphasize that both these step-sizes depend on the unknown
mean reward vector, making the resulting methods impractical.

In our experiments, we observed that SPG-ESS slows down and stops making progress because of
overly conservative step-sizes. To counteract this, we additionally try a “doubling trick” (SPG-ESS
[D]). This is a common trick when adapting algorithms that depend on a fixed number of iterations

1The code to reproduce results is available here
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Figure 2: Expected sub-optimality gap across various environments. SPG-ESS and SPG-ESS [D] is
comparable to SPG-O-G and SPG-O-R without using any oracle-like knowledge of the environment.

(Auer et al., 1995; Hazan & Kale, 2014). For this “doubling trick”, we first start with a smaller time

horizon T0 << T when setting the step-size, i.e. for t ≤ T0, ηt = η0

(
β
T0

) t
T0 . After T0 iterations, we

restart the step-size schedule, double the length of the next time horizon i.e. T1 = 2 T0 and set ηt

with the time horizon equal to T1. This process repeats until the desired number of iterations is
reached. For SPG-ESS [D] we select β = 1, η0 = 1

18 and T0 = 5000 for all environments.

Results: From Figure 2, we conclude that SPG-ESS and SPG-ESS [D] are consistently comparable
to SPG-O-G and SPG-O-R without access to any oracle-like knowledge. While SPG-O-R has the best
theoretical convergence rate, its step-size is proportional to the reward gap. When the reward gap is
small, so is the resulting step-size which results in its poor empirical performance.

6 Discussion

We designed (stochastic) softmax policy gradient (PG) methods for bandits and tabular Markov
decision processes (MDPs). Throughout, we demonstrated that the proposed methods offer similar
theoretical guarantees as the state-of-the art results, but do not require the knowledge of oracle-like
quantities. Concretely, in the exact setting, we empirically demonstrated that using softmax PG
with Armijo line-search to set the step-size is competitive to GNPG without requiring knowledge of
the concentrability coefficient to set the step-size. In the stochastic setting, we used exponentially
decreasing step-sizes and showed that the resulting algorithm is robust to problem-dependent constants
and can interpolate between slow and fast rates. For future work, we hope to analyze the convergence
rate when using the “doubling trick” with exponentially decreasing step-sizes. Finally, we aim to
generalize our results to support complex (non)-linear policy parameterization.
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G Additional Experiments

H Extra Lemmas

A Definitions

A function f is L-smooth if for all θ and θ′

|f(θ)− f(θ′)− ⟨∇f(θ′), θ − θ′⟩| ≤ L

2 ∥θ − θ′∥2
2. (8)

A function f is L1-non-uniform smooth if for all θ and θ′

|f(θ)− f(θ′)− ⟨∇f(θ′), θ − θ′⟩| ≤ L1∥∇f(θ′)∥
2 ∥θ − θ′∥2

2. (9)

A function f satisfies the non-uniform Łojasiewciz condition of degree ξ for ξ ∈ [0, 1] is defined as

∥∇f(θ)∥ ≥ C(θ)|f∗ − f(θ)|1−ξ (f∗ := supθ f(θ))

where C : θ → R > 0.

A function f satisfies the reversed Łojasiewciz condition if for all θ

∥∇f(θ)∥ ≤ ν [f∗ − f(θ)] (10)

where ν > 0.
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B Proofs in Section 3

B.1 Proof Of Theorem 1
Theorem 1. Assuming f is (i) L-smooth, (ii) satisfies the non-uniform Łojasiewciz condition with
ξ = 0, and (iii) µ := inft≥1[C(θt)]2 > 0, using Update 1 and Armijo line-search to set the step-size
results in the following convergence:

f∗ − f(θT +1) ≤ max
{

L

2 h (1− h) ,
1

h ηmax

}
1

µ T
(2)

where h ∈ (0, 1) and ηmax is the upper-bound on the step-size.

Proof. From Equation (1), Armijo line-search selects a step-size that satisfies the following condition
where h ∈ (0, 1) is a hyper-parameter

f(θt + ηt∇f(θt)) ≥ f(θt) + h ηt ∥∇f(θt)∥2
2. (11)

For any L-smooth function the step-size ηt returned by the Armijo line-search is guaranteed to satisfy
ηmax ≥ ηt ≥ min

{
2 (1−h)

L , ηmax

}
(Armijo, 1966) which implies that

f(θt+1) ≥ f(θt) + min
{

2 h (1− h)
L

, h ηmax

}
∥∇f(θt)∥2

2 (12)

Adding f∗ to both sides and multiplying by −1

f∗ − f(θt+1) ≤ f∗ − f(θt)−min
{

2 h (1− h)
L

, h ηmax

}
∥∇f(θt)∥2

2 (13)

Let δ(θt) := f∗ − f(θt)

δ(θt+1) ≤ δ(θt)−min
{

2 h (1− h)
L

, h ηmax

}
∥∇f(θt)∥2

2 (14)

Since f satisfies the non-uniform Łojasiewciz condition with ξ = 0

≤ δ(θt)−min
{

2 h (1− h)
L

, h ηmax

}
[C(θt)]2 [δ(θt)]2 (15)

Assuming µ := inft≥1[C(θt)]2 > 0

≤ δ(θt)− µ min
{

2 h(1− h)
L

, h ηmax

}

︸ ︷︷ ︸
:= 1

C

[δ(θt)]2 (16)

Dividing by δ(θt) δ(θt+1)

=⇒ 1
δ(θt)

≤ 1
δ(θt+1) −

1
C

δ(θt)
δ(θt+1) (17)

Using Equation (17) and recursing from t = 1 to T

1
δ(θ1) ≤

1
δ(θT +1) −

1
C

T∑

t=1

δ(θt)
δ(θt+1) (18)

≤ 1
δ(θT +1) −

T

C
( δ(θt)

δ(θt+1) ≥ 1)

=⇒ T

C
≤ 1

δ(θT +1) . (19)
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Therefore
f∗ − f(θT +1) ≤ max

{
L

2 h (1− h)
1

h ηmax

}
1
µ

. (20)

Corollary 2. In the bandit setting, using Update 1 with Armijo line-search to set the step-size
results in the following convergence:

(π∗ − πθT +1)⊤r ≤ max
{

5
4 h (1− h) ,

1
h ηmax

}
1

µ T
(21)

where h ∈ (0, 1), ηmax is the upper-bound on the step-size, and µ := inft≥1[πθt(a∗)]2 > 0.

Proof. We can extend Theorem 1 to the bandit setting since:

• by Lemma 24, f is 5
2 -smooth

• by Lemma 31, f is non-uniform Łojsiewciz with ξ = 0 and C(θ) = πθ(a∗)
• we observe that (Mei et al., 2020, Lemma 5) works for any step-size sequence guaranteeing

monotonic improvement µ := inft≥1[C(θt)]2 > 0

Corollary 3. Assuming mins∈S ρ(s) > 0, in the tabular MDP setting, using Update 1 with Armijo
line-search to set the step-size results in the following convergence:

V ∗(ρ)− V πθT +1 (ρ) ≤ max
{

8
2 h (1− h) (1− γ)3

1
ηmax h

}
1

µ T
(22)

where h ∈ (0, 1), ηmax is the upper-bound on the step-size, and µ := inft≥1

(
mins πθt (a∗(s)|s)√

S
∥∥dπ∗

ρ /d
πθt
ρ

∥∥
∞

)2
> 0.

Proof. We can extend Theorem 1 to the tabular MDP setting since:

• by Lemma 27, f is 8
(1−γ)3 -smooth,

• by Lemma 32, f is non-uniform Łojsiewciz with ξ = 0 and C(θ) = mins πθ(a∗(s)|s)√
S
∥∥dπ∗

ρ /d
πθ
ρ

∥∥
∞

• we observe that (Mei et al., 2020, Lemma 9) works for any step-size sequence guaranteeing
monotonic improvement µ := inft≥1[C(θt)]2 > 0

B.2 Proof Of Theorem 2
Theorem 2. For a given ϵ ∈ (0, 1), assuming f is (i) L1 non-uniform smooth, (ii) satisfies the
non-uniform Łojasiewciz condition with ξ = 0, (iii) µ := inft≥1[C(θt)]2 > 0, (iv) f satisfies a reversed
Łojasiewciz condition with ν > 0, using Update 1 with backtracking line-search using the Armijo
condition in Equation (3) and setting ηmax = C/ϵ results in the following convergence:
If f∗ − f(θt) > ϵ for all t ∈ [1, T ], then,

f∗ − f(θT +1) ≤ [f∗ − f(θ1)] exp
(
−min

{
C h,

2 h (1− h)
L1 ν

}
µ T

)
(4)

where C > 0 and h ∈ (0, 1) are hyper-parameters. Otherwise mint∈[1,T ] f∗ − f(θt) ≤ ϵ.

Proof. Since the rewards are bounded, we will overload the notation and let f∗ − f(θt) denote the
normalized sub-optimality gap. This implies that f∗ − f(θt) ≤ 1. Using backtracking line-search
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using Armijo condition in Equation (3) selects a step-size that satisfies the following condition where
h ∈ (0, 1) is a hyper-parameter:

ln(f∗ − f(θt + ηt∇f(θt))) ≤ ln(f∗ − f(θt))− h ηt
∥∇f(θt)∥2

2
f∗ − f(θt)

(23)

Applying exp(·) to both sides

f∗ − f(θt + ηt∇f(θt)) ≤ [f∗ − f(θt)] exp
(
−h ηt

∥∇f(θt)∥2
2

f∗ − f(θt)

)
(24)

By Lemma 2, we can guarantee that the backtracking line-search is guaranteed to satisfy ηt ≥
min

{
ηmax, 2(1−h)

L1 ν [f∗−f(θt)]

}
which implies that

f∗ − f(θt+1) ≤ [f∗ − f(θt)] exp
(
−min

{
ηmax h,

2 h (1− h)
L1 ν [f∗ − f(θt)]

} ∥∇f(θt)∥2
2

f∗ − f(θt)

)

(25)

Assuming that for a target ϵ ∈ (0, 1), ϵ < f∗ − f(θt) for t ∈ [1, T ], selecting ηmax = C
ϵ for C > 0

implies ηmax > C
f∗−f(θt)

≤ [f∗ − f(θt)] exp
(
−min

{
C h,

2 h (1− h)
L1 ν

} ∥∇f(θt)∥2
2

(f∗ − f(θt))2

)
(26)

Since f satisfies the non-uniform Łojasieciz condition with ξ = 0

≤ [f∗ − f(θt)] exp
(
−min

{
C h,

2 h (1− h)
L1 ν

}
[C(θt)]2

)
(27)

Assuming µ := inft≥1[C(θt)]2 > 0

=⇒ f∗ − f(θt+1) ≤ [f∗ − f(θt)] exp
(
−min

{
C h,

2 h (1− h)
L1 ν

}
µ

)
. (28)

Using Equation (28) and recursing from t = 1 to T we have

f∗ − f(θT +1) ≤ [f∗ − f(θ1)] exp
(
−min

{
C h,

2 h (1− h)
L1 ν

}
µ T

)
. (29)

Corollary 4. In the bandit setting, for a given ϵ ∈ (0, 1), using Update 1 with backtracking
line-search using the Armijo condition in Equation (3) and setting ηmax = C/ϵ results in the following
convergence:
If (π∗ − πθt)⊤r > ϵ for all t ∈ [1, T ], then,

(π∗ − πθT +1)⊤r ≤ (π∗ − πθ1)⊤r exp
(
−min

{
C h,

2 h (1− h) ∆∗

3
√

2

}
µ T

)
(30)

where C > 0 and h ∈ (0, 1) are hyper-parameters, ∆∗ := r(a∗) − maxa ̸=a∗ r(a), and µ :=
inft≥1[πθt(a∗)]2 > 0. Otherwise mint∈[1,T ](π∗ − πθt)⊤r ≤ ϵ.

Proof. We can extend Theorem 2 to the bandit setting since:

• by Lemma 29, f is 3-non-uniform smooth
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• by Lemma 31, f is non-uniform Łojsiewciz with ξ = 0 and C(θ) = πθ(a∗)
• by Lemma 3, f satisfies the reverse Łojasiewciz condition with ν =

√
2

∆∗

• since we observe that Lemma 5 in (Mei et al., 2020) works for any step-size sequence
guaranteeing monotonic improvement, µ := inft≥1[C(θt)]2 > 0

Corollary 5. Assuming mins∈S ρ(s) > 0, in the tabular MDP setting, for a given ϵ ∈ (0, 1), using
Update 1 with backtracking line-search using the Armijo condition in Equation (3) and setting
ηmax = C/ϵ results in the following convergence:
If V ∗(ρ)− V πθt (ρ) > ϵ for all t ∈ [1, T ], then,

V ∗(ρ)− V πθT +1 (ρ) ≤ [V ∗(ρ)− V πθ1 (ρ)] exp
(
−min

{
C h,

2 h (1− h) (1− γ) ∆∗

D
√

2

}
µ T

)
(31)

where C > 0 and h ∈ (0, 1) are hyper-parameters, D :=
[
3 + 2 C∞−(1−γ)

(1−γ) γ

]√
S, C∞ :=

maxπ

∥∥∥dπ
ρ

ρ

∥∥∥
∞
≤ 1

mins ρ(s) < ∞, ∆∗ := mins∈S
{

Q∗(s, a∗(s))−maxa(s) ̸=a∗(s) Q∗(s, a)
}

, and µ :=

inft≥1

(
mins πθt (a∗(s)|s)√

S
∥∥dπ∗

ρ /d
πθt
ρ

∥∥
∞

)2
> 0. Otherwise mint∈[1,T ] V ∗(ρ)− V πθt (ρ) ≤ ϵ.

Proof. We can extend Theorem 2 to the tabular MDP setting since:

• by Lemma 30, f is D-non-uniform smooth where D :=
[
3 + 2 C∞−(1−γ)

(1−γ) γ

]√
S and C∞ :=

maxπ

∥∥∥dπ
ρ

ρ

∥∥∥
∞
≤ 1

mins ρ(s) <∞
• by Lemma 32, f is non-uniform Łojsiewciz with ξ = 0 and C(θ) = mins πθ(a∗(s)|s)√

S
∥∥dπ∗

ρ /d
πθ
ρ

∥∥
∞

• by Lemma 4 f satisfies the reverse Łojsiewciz condition with ν =
√

2
(1−γ) ∆∗ and ∆∗ :=

mins∈S
{

Q∗(s, a∗(s))−maxa(s)̸=a∗(s) Q∗(s, a)
}

• since we observe that Lemma 9 in (Mei et al., 2020) works for any step-size sequence
guaranteeing monotonic improvement µ := inft≥1[C(θt)]2 > 0

B.3 Additional Lemmas
Lemma 1. Suppose that (i) f is L1-non-uniform smooth and (ii) satisfies a reversed Łojasiewciz
inequality then θ → ln(f∗ − f(θ)) is L1 ν-smooth.

Proof. Let g(θ) := ln(f∗− f(θ)). By Taylor’s theorem it suffices to show that the Hessian is bounded
by L1 ν

∇2g(θ) = −∇
2f(θ) (f∗ − f(θ))− [∇f(θ)] [∇f(θ)]⊤

(f∗ − f(θ))2 (32)

Since for any x ∈ RSA x x⊤ ⪰ 0

⪯ ∇2f(θ)
f∗ − f(θ) (33)

Since f is L1-non-uniform smooth,

⪯ L1∥∇f(θ)∥
f∗ − f(θ) (34)
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Since f satisfies the reverse Łojsaiewciz inequality

⪯ L1 ν ISA. (35)

Lemma 2. The (exact) backtracking procedure with the following Armijo condition on the log-loss:

ln(f∗ − f(θt + ηt∇f(θt))) ≤ ln(f∗ − f(θt))− h ηt
∥∇f(θt)∥2

2
f∗ − f(θt)

(36)

terminates and returns

ηt ≥ min
{

ηmax,
2(1− h)

L1 ν [f∗ − f(θt)]

}
(37)

where h ∈ (0, 1) is a hyper-parameter.

Proof. Let g(θ) = ln(f∗ − f(θ)). By Lemma 1, g is L1 ν-smooth. Starting with the quadratic bound
using the smoothness of g:

g(θt+1) ≤ g(θt)− ηt

〈 ∇f(θt)
f∗ − f(θt)

,∇f(θt)
〉

+ L1 ν ηt
2

2 ∥∇f(θt)∥2
2 (38)

≤ g(θt)− ∥∇f(θt)∥2
2

(
ηt

f∗ − f(θt)
− L1 ν ηt

2

2

)

︸ ︷︷ ︸
:=h1(ηt)

(39)

From Equation (3)

g(θt + ηt∇f(θt)) ≤ g(θt)− h ηt
∥∇f(θt)∥2

2
f∗ − f(θt)︸ ︷︷ ︸

:=h2(ηt)

(40)

If Equation (3) is satisfied, the backtracking line-search procedure terminates. If ηmax ≤ 2(1−h)
L1 ν [f∗−f(θt)]

then g(θt+1) ≤ h1(ηmax) ≤ h2(ηmax) implying the line-search terminates and ηt = ηmax. Otherwise,
if ηmax > 2(1−h)

L1 ν [f∗−f(θt)] and Equation (3) is satisfied for step-size ηt then

ln(θt + ηt∇f(θt)) ≤ h2(ηt) ≤ h1(ηt) (41)

=⇒ hηt

f∗ − f(θt)
≥ ηt

f∗ − f(θt)
− L1 νηt

2

2 (42)

=⇒ ηt ≥
2(1− h)

L1 ν [f∗ − f(θt)]
(43)

Putting the above conditions together, we have:

ηt ≥ min
{

ηmax,
2(1− h)

L1 ν [f∗ − f(θt)]

}
. (44)

Lemma 3 (Lemma 17 in (Mei et al., 2020)). For any r ∈ [0, 1]A. Denote ∆∗ := r(a∗) −
maxa̸=a∗ r(a). Then, ∥∥∥∥

d⟨πθ, r⟩
dθ

∥∥∥∥ ≤
√

2
∆∗ ⟨π

∗ − πθ, r⟩. (45)
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Lemma 4 (Lemma 28 in (Mei et al., 2020)). Denote ∆∗(s) := Q∗(s, a∗(s))−maxa̸=a∗(s) Q∗(s, a)
as the optimal value gap of state s, where a∗(s) is the action that the optimal policy selects under
state s, and ∆∗ := mins∈S ∆∗(s) > 0 as the optimal value gap of the MDP. Then we have

∥∥∥∥
∂V πθ (ρ)

∂θ

∥∥∥∥ ≤
1

1− γ

√
2

∆∗ [V ∗(ρ)− V πθ (ρ)]. (46)
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C Proofs in Section 4

C.1 Proof Of Theorem 3
Theorem 3. For a given ϵ ∈ (0, 1), assuming f is (i) L-smooth, (ii) satisfies the non-uniform
Łojasiewciz condition with ξ = 0, (iii) µ :=

[
E
[
inft≥1[C(θt)]−2]]−1

> 0, using Update 2 with (a)
unbiased stochastic gradients whose variance is bounded by σ2 and (b) exponentially decreasing

step-sizes ηt = η0 αt where η0 = 1
L and α =

(
β
T

) 1
T , β ≥ 1 results in the following convergence:

If E[f∗ − f(θt)] > ϵ for all t ∈ [1, T ], then,

E[f∗ − f(θT +1)] ≤ E[f∗ − f(θ1)] C1 exp
(
− α ϵ T

κ ln(T/β)

)
+ C1 C2

2 L

ln2
(

T
β

)
σ2

ϵ2 T
(5)

where κ := 2 L
µ , C1 := exp

(
2 β

κ ln(T/β)

)
and C2 := 4 κ2

e2 α2 . Otherwise mint∈[1,T ] E[f∗ − f(θt)] ≤ ϵ.

Proof.

Starting with the smoothness of f

|f(θt+1)− f(θt)− ⟨∇f(θt), θt+1 − θt⟩| ≤
L

2 ∥θt − θt∥2
2 (47)

f(θt+1)− f(θt)− ⟨∇f(θt), θt+1 − θt⟩ ≥ −
L

2 ∥θt − θt∥2
2 (48)

Using Update 2, θt+1 = θt + ηt∇f̃(θt)

f(θt+1)− f(θt)− ηt

〈
∇f(θt),∇f̃(θt)

〉
≥ −L

2 ηt
2
∥∥∥∇f̃(θt)

∥∥∥
2

2
(49)

=⇒ f(θt+1) ≥ f(θt) + ηt

〈
∇f(θt),∇f̃(θt)

〉
− L

2 ηt
2
∥∥∥∇f̃(θt)

∥∥∥
2

2
(50)

Multiplying both sides by −1 and adding f∗

f∗ − f(θt+1) ≤ f∗ − f(θt)− ηt

〈
∇f(θt),∇f̃(θt)

〉
+ L

2 ηt
2
∥∥∥∇f̃(θt)

∥∥∥
2

2
(51)

Taking expectation with respect to the randomness in iteration t on both sides

E[f∗ − f(θt+1)]︸ ︷︷ ︸
:=δ(θt+1)

≤ E[f∗ − f(θt)]︸ ︷︷ ︸
:=δ(θt)

−ηt

〈
∇f(θt),E

[
∇f̃(θt)

]〉
+ L ηt

2

2 E
[∥∥∥∇f̃(θt)

∥∥∥
2

2

]
(52)

Assuming that the gradient is unbiased

=⇒ δ(θt+1) = δ(θt)− ηt ∥∇f(θt)∥2
2 + L ηt

2

2 E
[∥∥∥∇f̃(θt)

∥∥∥
2

2

]
(53)

≤ δ(θt)− ηt ∥∇f(θt)∥2
2 + L ηt

2

2 E
[∥∥∥∇f̃(θt)−∇f(θt) +∇f(θt)

∥∥∥
2

2

]
(54)

Expanding the square and since E
[〈
∇f(θt),∇f̃(θt)−∇f(θt)

〉]
= 0

≤ δ(θt)− ηt ∥∇f(θt)∥2
2 + L ηt

2

2 E
[∥∥∥∇f̃(θt)−∇f(θt)

∥∥∥
2

2

]
+ L ηt

2

2 E
[
∥∇f(θt)∥2

2

]

(55)
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Assuming that the variance is bounded by σ2

≤ δ(θt)− ηt ∥∇f(θt)∥2
2 + L ηt

2

2

(
σ2 + E

[
∥∇f(θt)∥2

2

])
(56)

≤ δ(θt)−
ηt

2 ∥∇f(θt)∥2
2 + L ηt

2

2 σ2 (ηt ≤ 1
L )

Since f satisfies the non-uniform Łojsaiewciz condition with ξ = 0

≤ δ(θt)−
ηt

2 [δ(θt)]2 [C(θt)]2 + L ηt
2

2 σ2 (57)

Assuming m := inft≥1[C(θt)]2 > 0

≤ δ(θt)
(

1− ηt m

2 δ(θt)
)

+ L ηt
2

2 σ2. (58)

Taking expectation with respect to all previous iterations t ≥ 1 on both sides

=⇒ E[δ(θt+1)] ≤ E[δ(θt)]−
ηt

2 E[m [δ(θt)]2] + L ηt
2

2 σ2 (59)

To lower-bound E[m [δ(θt)]2]

E[δ(θt)] = E
[

1√
m

√
m δ(θt)

]
(60)

Using Cauchy-Schwarz since m > 0 and δ(θt) > 0

≤
√
E
[

1
m

]√
E [m [δ(θt)]2] (61)

=⇒
[
E
[

1
m

]]−1

︸ ︷︷ ︸
:=µ

E[δ(θt)]2 ≤ E
[
m [δ(θt)]2

]
(62)

Hence

E[δ(θt+1)] ≤ E[δ(θt)]
(

1− ηt µ

2 E[δ(θt)]
)

+ L ηt
2

2 σ2 (63)

If for some t ∈ [1, T ] we have E[δ(θt)] < ϵ then we are done and have converged to a ϵ-neighbourhood
within T iterations and have achieved

min
t∈[1,T ]

E[f∗ − f(θt)] ≤ ϵ. (64)

Otherwise, we have E[δ(θt)] ≥ ϵ and thus

E[δ(θt+1)] ≤ E[δ(θt)]
(

1− ηt µ ϵ

2 ηt

)
+ L σ2

2 ηt
2 (65)

= E[δ(θt)]
(

1− η0 µ ϵ

2 αt
)

+ α2t L η2
0 σ2

2 (ηt = η0 αt)

Define 1
κ := η0 µ ϵ

2 and since η0 = 1
L

≤ E[δ(θt)]
(

1− 1
κ

αt

)
+ α2t σ2

2 L
. (66)
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Using Equation (66) and recursing from t = 1 to T we have

E[δ(θT +1)] ≤ E[δ(θ1)]
T∏

t=1

(
1− 1

κ
αt

)
+ σ2

2 L

T∑

t=1
α2t

T∏

i=t+1

(
1− 1

κ
αi

)
(67)

Using 1− x ≤ exp(−x) and by summing up the geometric series

≤ E[δ(θ1)] exp
(
− 1

κ

α− αT +1

1− α

)
+ σ2

2 L

T∑

t=1
α2t exp

(
− 1

κ

αt+1 − αT +1

1− α

)
. (68)

Let us now bound the second term on the RHS

σ2

2 L

T∑

t=1
α2t exp

(
− 1

κ

αt+1 − αT +1

1− α

)
= σ2

2 L
exp

(
αT +1

κ (1− α)

) T∑

t=1
α2t exp

(
− αt+1

κ (1− α)

)
(69)

By Lemma 8, exp(−x) ≤
( 2

e x

)2

≤ σ2

2 L
exp

(
αT +1

κ (1− α)

) T∑

t=1
α2t

(
2 (1− α) κ

e αt+1

)2
(70)

= σ2

2 L
exp

(
αT +1

κ (1− α)

)
4 (1− α)2 κ2

e2 α2 T (71)

Since 1− x ≤ ln
( 1

x

)
and using it to bound (1− α)2 where α =

(
β
T

) 1
T

≤ σ2

2 L
exp

(
αT +1

κ (1− α)

)
4 κ2

e2 α2

ln2
(

T
β

)

T
. (72)

Putting everything together

E[δ(θT +1)] ≤ E[δ(θ1)] exp
(
− 1

κ

α− αT +1

1− α

)
+ σ2

2 L
exp

(
αT +1

κ (1− α)

)
4 κ2

e2 α2

ln2
(

T
β

)

T
(73)

= E[δ(θ1)] exp
(

αT +1

κ (1− α)

)
exp
(
− α

κ (1− α)

)
+ σ2

2 L
exp

(
αT +1

κ (1− α)

)
4 κ2

e2 α2

ln2
(

T
β

)

T
(74)

By Lemma 6, αT +1

1−α ≤
2β

ln(T/β)

≤ E[δ(θ1)] exp
(

2 β

κ ln(T/β)

)
exp
(
− α

κ (1− α)

)
+ σ2

2 L
exp
(

2 β

κ ln(T/β)

)
4 κ2

e2 α2

ln2
(

T
β

)

T
(75)

Since 1− x ≤ ln
( 1

x

)
, α

(1−α) ≥ α T
ln(T/β)

≤ E[δ(θ1)] exp
(

2 β

κ ln(T/β)

)
exp
(
− α T

κ ln(T/β)

)
+ σ2

2 L
exp
(

2 β

κ ln(T/β)

)
4 κ2

e2 α2

ln2
(

T
β

)

T
.

(76)

Making the dependence on the constants explicit

=⇒ E[f∗ − f(θT +1)]

≤ E[f∗ − f(θ1)] exp
(

2 β

κ ln(T/β)

)
exp
(
− α T

κ ln(T/β)

)
+ σ2

2 L
exp
(

2 β

κ ln(T/β)

)
4 κ2

e2 α2

ln2
(

T
β

)

T
(77)
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Since ϵ < 1

= E[f∗ − f(θ1)] exp
(

µ β

L ln(T/β)

)
exp
(
− µ ϵ α T

2 L ln(T/β)

)
+ exp

(
µ β

L ln(T/β)

) 32 L σ2 ln2
(

T
β

)

e2 α2 µ2 ϵ2 T
.

(78)

Corollary 6. In the bandit setting, for a given ϵ ∈ (0, 1), using Update 2 with exponentially

decreasing step-sizes ηt = η0 αt where η0 = 5
2 and α =

(
β
T

) 1
T , β ≥ 1 results in the following

convergence:
If E[(π∗ − πθt

)⊤r] ≥ ϵ for all t ∈ [1, T ], then,

E[(π∗ − πθT +1)⊤r] ≤ E[(π∗ − πθ1)⊤r] C1 exp
(
− α ϵ T

κ ln(T/β)

)
+

C1 C2 ln2
(

T
β

)

ϵ2 T
(79)

where µ :=
[
E
[
mint∈[1,T ][πθt

(a∗)]
]−2
]−1

> 0, κ := 5
µ , C1 := exp

(
2 β

κ ln(T/β)

)
and C2 := 4κ2

5 e2α2 .
Otherwise, mint∈[1,T ] E[f∗ − f(θt)] ≤ ϵ.

Proof. We can extend Theorem 3 to the bandit setting since:

• by Lemma 24, f is 5
2 -smooth

• by Lemma 31, f is non-uniform Łojsiewciz with ξ = 0 and C(θ) = πθ(a∗)
• since T is finite and the updates are bounded, µ :=

[
E
[
mint∈[1,T ][πθt

(a∗)]−2]]−1
> 0

• by Lemma 35, the stochastic gradient is unbiased and σ2 ≤ 2

Corollary 7. In the tabular MDP setting, for a given ϵ ∈ (0, 1), using Update 2 with exponentially

decreasing step-sizes ηt = η0 αt where η0 = (1−γ)3

8 and α =
(

β
T

) 1
T , β ≥ 1 results in the following

convergence:
If E[V ∗(ρ)− V πθt (ρ)] ≥ ϵ for all t ∈ [1, T ], then,

E[V ∗(ρ)− V πθT +1 (ρ)] ≤ E[V ∗(ρ)− V πθ1 (ρ)] C1 exp
(
− α ϵ T

κ ln(T/β)

)
+

C1 C2 ln2
(

T
β

)

ϵ2 T
(80)

where µ :=
[
E
[
mint∈[1,T ]

(
mins πθ(a∗(s)|s)√

S
∥∥dπ∗

ρ /d
πθ
ρ

∥∥
∞

)]−2
]−1

> 0, κ := 16
µ (1−γ)3 , C1 := exp

(
2 β

κ ln(T/β)

)
and

C2 := A κ2

4 (1−γ) e2 α2 . Otherwise, mint∈[1,T ] E[V ∗(ρ)− V πθt (ρ)] ≤ ϵ.

Proof. We can extend Theorem 3 to the tabular MDP setting since:

• by Lemma 27, f is 8
(1−γ)3 -smooth

• by Lemma 32, f is non-uniform Łojsiewciz with ξ = 0 and C(θ) = mins πθ(a∗(s)|s)
√

S

∥∥∥ dπ∗
ρ

d
πθ
ρ

∥∥∥
∞

• since T is finite and the updates are bounded, µ :=
[
E

[
mint∈[1,T ]

(
mins πθ(a∗(s)|s)√

S
∥∥dπ∗

ρ /d
πθ
ρ

∥∥
∞

)−2
]]−1

>

0
• by Lemma 36, the stochastic gradient is unbiased and σ2 ≤ 2 S

(1−γ)4
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C.2 Proof of Theorem 5
Theorem 5. For a given ϵ ∈ (0, 1), assuming f is (i) L1 non-uniform smooth, (ii) satisfies the
non-uniform Łojasiewciz condition with ξ = 0, (iii) µ :=

[
E
[
inft≥1[C(θt)]−2]]−1

> 0, using Update 2
with unbiased stochastic gradients that are (a) bounded, i.e. ∥∇f̃(θ)∥ ≤ B and satisfy the strong
growth condition with ϱ and (b) exponentially decreasing step-sizes ηt = η0 αt where η0 < 1

L2
1B

and

α =
(

β
T

) 1
T , β ≥ 1, results in the following convergence:

If E[f∗ − f(θt)] > ϵ for all t ∈ [1, T ], then,

E[f∗ − f(θT +1)] ≤ E[f∗ − f(θ1)] C1 exp
(
− α ϵ T

κ ln(T )

)
+ C2

∑T0−1
t=1 E[f∗ − f(θt)]

ϵ2 T 2 (6)

where κ := 2
µ η0

, C1 := exp
(

2 β
κ ln(T/β)

)
, C2 := exp

(
2 β

κ ln(T/β)

)
16 ϱ L κ2

e2 α2 ln2(T/β),

T0 := T max
{

ln(ϱ η0)
ln(T/β) , 0

}
. Otherwise mint∈[1,T ] E[f∗ − f(θt)] ≤ ϵ.

Proof. Assuming f is L1 ∥∇f(θ)∥ non-uniform smooth and the stochastic gradients are bounded, i.e.
∥∇f̃(θ)∥ ≤ B, by Lemma 5, using Update 2 with ηt ∈

(
0, 1

L1B

)

|f(θt+1)− f(θt)− ⟨∇f(θt), θt+1 − θt⟩| ≤
1
2

L1 ∥∇f(θt)∥
1− L1 B ηt

∥θt+1 − θt∥2
2 (81)

Then following the initial proof of Theorem 3 we obtain

E[f∗ − f(θt+1)]︸ ︷︷ ︸
:=δ(θt+1)

≤ E[f∗ − f(θt)]︸ ︷︷ ︸
:=δ(θt)

−ηt ∥∇f(θt)∥2
2 + ηt

2

2
L1 ∥∇f(θt)∥
1− L1 B ηt

E
[∥∥∥∇f̃(θt)

∥∥∥
2

2

]
(82)

Assuming f satisfies the strong growth condition, E
∥∥∥∇f̃(θt)

∥∥∥
2

2
≤ ϱ ∥∇f(θt)∥

≤ δ(θt)− ηt ∥∇f(θt)∥2
2 + ϱ ηt

2

2
L1

1− L1 B ηt
∥∇f(θt)∥2

2 (83)

Since for all t ≥ 1, ηt ≤ η0, 1
1−L1 B ηt

≤ 1
1−L1 B η0

≤ δ(θt)− ηt ∥∇f(θt)∥2
2 + ϱ ηt

2

2
L1

1− L1 B η0
∥∇f(θt)∥2

2 (84)

Picking η0 such that L1
1−L1 Bη0

< 1 =⇒ η0 < 1
L2

1 B

=⇒ δ(θt+1) ≤ δ(θt)− ηt ∥∇f(θt)∥2
2 + ϱ ηt

2

2 ∥∇f(θt)∥2
2. (85)

Since ηt is decreasing, we will now consider the following phases:

Phase 1 : When ηt is “large”, i.e. ηt > 1
ϱ

Phase 2 : When ηt is “small”, i.e. ηt ≤ 1
ϱ .

For ηt ≤ 1
ϱ we require that

η0

(
β

T

) t
T

≤ 1
ϱ

=⇒ t ≥ T0 := T
ln(ϱ η0)
ln
(

T
β

) . (86)
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Hence, when t ≥ T0, the step-size is small enough to be in Phase 2. Let us first analyze Phase 1.

Phase 1: In Phase 1 we have ηt > 1
ϱ . Starting with Equation (85),

δ(θt+1) ≤ δ(θt)− ηt ∥∇f(θt)∥2
2 + ϱ ηt

2

2 ∥∇f(θt)∥2
2. (87)

To simplify ∥∇f(θt)∥2
2, since f is L-smooth for any θ and θ′

f(θ′) ≥ f(θ) + ⟨∇f(θ), θ′ − θ⟩ − L

2 ∥θ
′ − θ∥2

2 (88)

Setting θ′ = θ + 1
L ∇f(θ)

≥ f(θ) + 1
L
∥∇f(θ)∥2

2 (89)

=⇒ ∥∇f(θ)∥2
2 ≤ 2L [f(θ′)− f(θ)] ≤ 2L [f∗ − f(θ)] (90)

=⇒ ϱ

2∥∇f(θt)∥2
2 ≤ ϱ L [f∗ − f(θ)] = ϱ L δ(θt). (91)

Hence,

δ(θt+1) ≤ δ(θt)−
ηt

2 ∥∇f(θt)∥2
2 + L ϱ ηt

2 δ(θt) (92)

Since f satisfies the non-uniform Łojsaiewciz condition with ξ = 0

≤ δ(θt)−
ηt [C(θt)]2

2 [δ(θt)]2 + L ϱ ηt
2 δ(θt) (93)

Since m := inft≥1[C(θt)]2 > 0

≤ δ(θt)−
ηt m

2 [δ(θt)]2 + ηt
2 L ϱ δ(θt)︸ ︷︷ ︸

:=Γt

(94)

Taking expectation with respect to all previous iterations t ≥ 1 on both sides

=⇒ E[δ(θt+1)] ≤ E[δ(θt)]−
ηt

2 E[m δ(θt)]2] + ηt
2 L ϱE[δ(θt)]︸ ︷︷ ︸

:=Γt

(95)

Using Cauchy-Schwarz to lower-bound E[m [δ(θt)]2]

≤ E[δ(θt)]−
ηt

2E[m−1] E[δ(θt)] + ηt
2 Γt (96)

Define µ := 1
E[m−1]

≤ E[δ(θt)]−
ηt µ

2 E[δ(θt)] + ηt
2 Γt (97)

If E[δ(θt)] ≤ ϵ for some t ∈ {1, . . . , T}, then we are done. Else for all t ∈ {1, . . . , T}, E[δ(θt)] > ϵ.
Hence,

E[δ(θt+1)] ≤ E[δ(θt)]
(

1− ηt µ ϵ

2

)
+ ηt

2 Γt (98)

= E[δ(θt)]
(

1− η0 µ ϵ

2 αt
)

+ η2
0 α2t Γt (99)

Define 1
κ := η0 µ ϵ

2

=⇒ E[δ(θt+1)] = E[δ(θt)]
(

1− 1
κ

αt

)
+ η2

0 α2t Γt. (100)
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Recall we are in Phase 1 when t < T0. Using Equation (100) and recursing from t = 1 to T0 − 1

E[δ(θT0)] ≤ E[δ(θ1)]
T0−1∏

t=1

(
1− 1

κ
αt

)
+ η2

0

T0−1∑

t=1
α2t Γt

T0−1∏

i=t+1

(
1− 1

κ
αi

)
(101)

Using 1− x ≤ exp(−x) and by summing up the geometric series

=⇒ E[δ(θT0)] ≤ E[δ(θ1)] exp
(
− 1

κ

α− αT0

1− α

)
+ η2

0

T0−1∑

t=1
α2t Γt exp

(
− 1

κ

αt+1 − αT0

1− α

)
. (102)

Let us now bound the second term on the RHS

η2
0

T0−1∑

t=1
α2t Γt exp

(
− 1

κ

αt+1 − αT0

1− α

)
= η2

0 exp
(

αT0

κ (1− α)

) T0−1∑

t=1
α2t Γt exp

(
− αt+1

κ (1− α)

)
(103)

By Lemma 8, exp(−x) ≤
( 2

ex

)2

≤ η2
0 exp

(
αT0

κ (1− α)

) T0−1∑

t=1
α2t Γt

(
2 (1− α) κ

e αt+1

)2
(104)

= exp
(

αT0

κ (1− α)

)
4 η2

0 (1− α)2 κ2

e2 α2

T0−1∑

t=1
Γt (105)

Since 1− x ≤ ln
( 1

x

)
and using it to bound (1− α)2 where α =

(
β
T

) 1
T

≤ exp
(

αT0

κ (1− α)

)
4 η2

0 κ2

e2 α2

ln2
(

T
β

) ∑T0−1
t=1 Γt

T 2 . (106)

Putting everything together,

=⇒ E[δ(θT0)] ≤ E[δ(θ1)] exp
(
− 1

κ

α− αT0

1− α

)
+ exp

(
αT0

κ (1− α)

)
4 η2

0 κ2

e2 α2

ln2
(

T
β

) ∑T0−1
t=1 Γt

T 2 .

(107)

Now let us consider Phase 2.
Phase 2: We are in Phase 2 when ηt ≤ 1

ϱ . Starting with Equation (85),

δ(θt+1) ≤ δ(θt)− ηt ∥∇f(θt)∥2
2 + ϱ ηt

2

2 ∥∇f(θt)∥2
2 (108)

Since f satisfies the non-uniform Łojsaiewciz condition with ξ = 0

≤ δ(θt)−
ηt [C(θt)]2

2 [δ(θt)]2 (109)

Since m := inft≥1[C(θt)]2 > 0

≤ δ(θt)−
ηt m

2 [δ(θt)]2 (110)

Taking expectation with respect to all previous iterations t ≥ 1 on both sides

E[δ(θt+1)] ≤ E[δ(θt)]−
ηt

2 E[m[δ(θt)]2] (111)
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Using Cauchy-Schwarz to lower-bound E[m [δ(θt)]2]

E[δ(θt+1)] ≤ E[δ(θt)]−
ηt

2E[m−1] E[δ(θt)] (112)

Define µ := 1
E[m−1]

E[δ(θt+1)] ≤ E[δ(θt)]−
ηt µ

2 E[δ(θt)] (113)

If E[δ(θt)] ≤ ϵ for some t ∈ {1, . . . , T}, then we are done. Else for all t ∈ {1, . . . , T}, E[δ(θt)] > ϵ.
Hence,

E[δ(θt+1)] ≤ E[δ(θt)]
(

1− ηt µ ϵ

2

)
. (114)

Recall we are in Phase 2 when t ≥ T0. Using Equation (114) and recursing from t = T0 to T

E[δ(θT +1)] ≤
T∏

t=T0

(
1− ηt µ ϵ

2

)
E[δ(θT0)] (115)

Using 1− x ≤ exp(−x)

E[δ(θT +1)] ≤ exp
(
−µ ϵ

2

T∑

t=T0

ηt

)
E[δ(θT0)] (116)

Since ηt = η0 αt and summing up the geometric series

=⇒ E[δ(θT +1)] ≤ exp
(
−η0 µ ϵ

2
αT0 − αT +1

1− α

)
E[δ(θT0)] (117)

Since 1
κ = η0 µ ϵ

2

= exp
(
− 1

κ

αT0 − αT +1

1− α

)
E[δ(θT0)]. (118)

(119)

Combining the results of Phase 1 (Equation (107)) and Phase 2 (Equation (118))

E[δ(θT +1)] ≤ exp
(
− 1

κ

αT0 − αT +1

1− α

)


E[δ(θ1)] exp

(
− 1

κ

α− αT0

1− α

)
+ exp

(
αT0

κ (1− α)

)
4 η2

0 κ2

e2 α2

ln2
(

T
β

) ∑T0−1
t=1 Γt

T 2




(120)

= E[δ(θ1)] exp
(
− 1

κ

α− αT +1

1− α

)
+ exp

(
αT +1

κ (1− α)

)
4 η2

0 κ2

e2 α2

ln2
(

T
β

) ∑T0−1
t=1 Γt

T 2

(121)

= E[δ(θ1)] exp
(

αT +1

κ (1− α)

)
exp

(
− α

κ (1− α)

)

+ exp
(

αT +1

κ (1− α)

)
4 η2

0 κ2

e2 α2

ln2
(

T
β

) ∑T0−1
t=1 Γt

T 2 (122)
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By Lemma 6, αT +1

(1−α) ≤
2β

ln(T/β)

≤ E[δ(θ1)] exp
(

2β

κ ln(T/β)

)
exp

(
− α

κ (1− α)

)

+ exp
(

2 β

κ ln(T/β)

)
4 η2

0 κ2

e2 α2

ln2
(

T
β

) ∑T0−1
t=1 Γt

T 2 (123)

Since 1− x ≤ ln
( 1

x

)
, α

1−α ≥ αT
ln(T/β)

≤ E[δ(θ1)] exp
(

2 β

κ ln(T/β)

)

︸ ︷︷ ︸
:=C1

exp
(
− α T

κ ln(T/β)

)

+ exp
(

2 β

κ ln(T/β)

)
4 η2

0 κ2

e2 α2 ln2
(

T

β

)

︸ ︷︷ ︸
:=C2

∑T0−1
t=1 Γt

T 2 (124)

=⇒ E[δ(θT +1)] ≤ C1 E[δ(θ1)] exp
(
− αT

κ ln(T/β)

)
+ C2

∑T0−1
t=1 Γt

T 2 . (125)

Making the dependence on the constants explicit

=⇒ E[δ(θT +1)]

≤ E[δ(θ1)] exp
(

µ ϵ η0 β

ln(T/β)

)
exp

(−µ ϵ η0 α T

2 ln(T/β)

)
+ exp

(
µ ϵ η0 β

ln(T/β)

)
16 L ϱ ln2(T/β)

e2 α2 µ2 ϵ2

∑T0−1
t=1 E[δ(θt)]

T 2

(126)

Since ϵ < 1

≤ E[δ(θ1)] exp
(

µ η0 β

ln(T/β)

)
exp

(−µ ϵ η0 α T

2 ln(T/β)

)
+ exp

(
µ η0 β

ln(T/β)

)
16 L ϱ ln2(T/β)

e2 α2 µ2 ϵ2

∑T0−1
t=1 E[δ(θt)]

T 2

(127)

Corollary 1. In the bandit setting, for a given ϵ ∈ (0, 1), using Update 2 with exponentially

decreasing step-sizes ηt = η0 αt where η0 ≤ 1
18 , α =

(
β
T

) 1
T , β ≥ 1 results in the following

convergence:
If E[(π∗ − πθt

)⊤r] ≥ ϵ for all t ∈ [1, T ], then,

E[(π∗ − πθT +1)⊤r] ≤ E[(π∗ − πθ1)⊤r] C1 exp
(
− α ϵ T

κ ln(T/β)

)
+ C2

∑T0−1
t=1 E[(π∗ − πθt)⊤r]

ϵ2 T 2 (7)

where κ := 2
µ η0

, C1 := exp
(

2 β
κ ln(T/β)

)
, C2 := exp

(
2β

κ ln(T/β)

)
32 ϱ κ2

5 e2 α2 ln2(T/β), T0 :=

T max
{

ln(4 ϱ η0)
ln(T/β) , 0

}
, ρ = 8 A3/2

∆2 and µ :=
[
E
[
mint∈[1,T ][πθt(a∗)]−2]]−1 > 0. Otherwise

mint∈[1,T ] E[(π∗ − πθt
)⊤r] ≤ ϵ.

Proof. We can extend Theorem 5 to the bandit setting since:

• by Lemma 24, f is 5
2 -smooth

• by Lemma 29, f is 3-non-uniform smooth
• by Lemma 31, f is non-uniform Łojsiewciz with ξ = 0 and C(θ) = πθ(a∗)
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• since T is finite and the updates are bounded, µ :=
[
E
[
mint∈[1,T ] πθt

(a∗)−2]]−1
> 0

• by Lemma 35, the stochastic gradient is unbiased
• by Lemma 7, the stochastic gradient satisfies the strong growth condition with ϱ = 8 A3/2

∆2

where ∆ := mina̸=a′ |r(a)− r(a′)|
• by Mei et al. (2023, Equation 52) ∥d⟨πθ,r⟩

dθ ∥ ≤
√

2 and η0 := 1
18 < 1

L2
1B

= 1
9

√
2 .

Corollary 8. Assuming mins∈S ρ(s) > 0, in the tabular MDP setting, for a given ϵ ∈ (0, 1), using

Update 2 with exponentially decreasing step-sizes ηt = η0 αt where η0 < 1
C2B and α =

(
β
T

) 1
T , β ≥ 1

results in the following convergence:
If E[V π∗(ρ)− V πθt (ρ)] ≥ ϵ for all t ∈ [1, T ], then,

E[V π∗
(ρ)−V πθT +1 (ρ)] ≤ E[V π∗

(ρ)−V πθ1 (ρ)] C1 exp
(
− α ϵ T

κ ln(T/β)

)
+C2

∑T0−1
t=1 E[V π∗(ρ)− V πθt (ρ)]

ϵ2 T 2

(128)
where C :=

[
3 + 2 C∞−(1−γ)

(1−γ) γ

]√
S, C∞ := maxπ

∥∥∥dπ
ρ

ρ

∥∥∥
∞
≤ 1

mins ρ(s) < ∞, B :=
√

2 S
(1−γ)4 , κ := 2

µ η0
,

C1 := exp
(

2 β
κ ln(T/β)

)
, C2 := exp

(
2 β

κ ln(T/β)

)
128 ϱ κ2

(1−γ)3 e2 α2 ln2(T/β), T0 := T max
{

ln(ϱ η0)
ln(T/β) , 0

}
and µ :=

[
E

[
mint∈[1,T ]

(
mins πθ(a∗(s)|s)√

S
∥∥dπ∗

ρ /d
πθ
ρ

∥∥
∞

)−2
]]−1

> 0. Otherwise, mint∈[1,T ] E[V π∗(ρ)− V πθt (ρ)] ≤ ϵ.

Proof. We can extend Theorem 5 to the tabular MDP setting since:

• by Lemma 27, f is 8
(1−γ)3 -smooth

• by Lemma 30, f is C-non-uniform smooth where C :=
[
3 + 2 C∞−(1−γ)

(1−γ)γ

]√
S and C∞ :=

maxπ

∥∥∥dπ
ρ

ρ

∥∥∥
∞
≤ 1

mins ρ(s) <∞,

• by Lemma 32, f is non-uniform Łojsiewciz with ξ = 0 and C(θ) = mins πθ(a∗(s)|s)√
S
∥∥dπ∗

ρ /d
πθ
ρ

∥∥
∞

• since T is finite and the update is bounded, µ :=
[
E

[
mint∈[1,T ]

(
mins πθ(a∗(s)|s)√

S
∥∥dπ∗

ρ /d
πθ
ρ

∥∥
∞

)−2
]]−1

> 0

• by Lemma 36, the stochastic gradient is unbiased
• by Theorem 6, the stochastic gradient satisfies the strong growth condition with ϱ = 4 A3/2 S1/2

(1−γ)4 ∆2

where ∆ := mins mina̸=a′ |Qπθ (s, a)−Qπθ (s, a′)|
• by Equation (153), ∥∇f̃(θt)∥ ≤ B :=

√
2 S

(1−γ)2
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Corollary 9. Assuming ρ(s) = 1
S for all s ∈ S, in the tabular MDP setting, for a given ϵ ∈ (0, 1),

using Update 2 with exponentially decreasing step-sizes ηt = η0 αt where η0 < 1
C2B and α =

(
β
T

) 1
T ,

β ≥ 1 results in the following convergence:
If E[V π∗(ρ)− V πθt (ρ)] ≥ ϵ for all t ∈ [1, T ], then,

E[V π∗
(ρ)−V πθT +1 (ρ)] ≤ E[V π∗

(ρ)−V πθ1 (ρ)] C1 exp
(
− α ϵ T

κ ln(T/β)

)
+C2

∑T0−1
t=1 E[V π∗(ρ)− V πθt (ρ)]

ϵ2 T 2

(129)
where C :=

[
3 + 2 A−1−(1−γ)

(1−γ) γ

]√
S, B :=

√
2 S

(1−γ)2 , κ := 2
µ η0

, C1 := exp
(

2 β
κ ln(T/β)

)
,

C2 := exp
(

2 ,β
κ ln(T/β)

)
128 ϱ κ2

(1−γ)3 e2 α2 ln2(T/β), T0 := T max
{

ln(ϱ η0)
ln(T/β) , 0

}
and µ :=

[
E

[
mint∈[1,T ]

(
mins πθ(a∗(s)|s)√

S
∥∥dπ∗

ρ /d
πθ
ρ

∥∥
∞

)−2
]]−1

> 0. Otherwise, mint∈[1,T ] E[V π∗(ρ)− V πθt (ρ)] ≤ ϵ.

Proof. Follows from Corollary 8.

C.3 Strong Growth Condition - Dependence of Reward Gap

We first show that the dependence of the reward gap ∆ in the SGC constant ϱ cannot be re-
moved.
Proposition 1. The dependence of ∆ in the strong growth condition in Lemma 7 is necessary.

Proof. Consider a 2-arm bandit problem with deterministic rewards: r1 := r(1) and r2 := r(2).
Assume that ∆ := r1 − r2 > 0, and hence arm 1 is the optimal arm. We will show that in SGC in
Lemma 7, the dependence of ∆ in the SGC constant ϱ is necessary. Let r̂(a) := 1{at=a}

πθt (a) r(a) for all
a ∈ A. The stochastic gradient estimate satisfies the following SGC:

Et

[∥∥∥∥
d[⟨πθt

, r̂t⟩]
dθt

∥∥∥∥
2

2

]
≤ ϱ

∥∥∥∥
d[⟨πθt

, r⟩]
dθt

∥∥∥∥. (130)

Calculating the LHS

d⟨πθt , r̂t⟩
dθt(a) = [1 {at = a} − πθt

(a)] r(at) (131)

=⇒
∥∥∥∥

d⟨πθt
, r̂t⟩

dθt

∥∥∥∥
2

2
=
∑

a

[[1 {at = a} − πθt
(a)] r(at)]2 (132)

Let p := πθt
(a1) as the probability of pulling the optimal arm

= [[1 {at = a1} − p] r(at)]2 + [[1 {at = a2} − (1− p)] r(at)]2 . (133)

Et

[∥∥∥∥
d⟨πθt , r̂t⟩

dθt

∥∥∥∥
2

2

]
= Et

[∥∥∥∥
d⟨πθt , r̂t⟩

dθt

∥∥∥∥
2

2
| at = a1

]
Pr[at = a1]

+ Et

[∥∥∥∥
d⟨πθt

, r̂t⟩
dθt

∥∥∥∥
2

2
| at ̸= a1

]
Pr[at ̸= a1] (134)

=
(
(1− p)2 r2

1 + (1− p)2 r2
1
)

p +
(
p2 r2

2 + p2 r2
2
)

(1− p) (135)
=⇒ LHS = 2p (1− p)2 r2

1 + 2(1− p) p2 r2
2 = 2p (1− p)

[
(1− p) r2

1 + p r2
2
]

. (136)
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Calculating the RHS

d⟨πθt
, r⟩

dθt(a) = πθt
(a) [ra − ⟨πθt

, r⟩] (137)

=⇒
∥∥∥∥

d⟨πθt
, r⟩

dθt

∥∥∥∥
2

2
=
∑

a

πθt
(a)2 [ra − ⟨πθt

, r⟩]2 (138)

= p2 [r1 − ⟨πθt , r⟩]2 + (1− p)2 [r2 − ⟨πθt , r⟩]2 (139)

Since ⟨πθt
, r⟩ = p r1 + (1− p) r2

= p2 [r1 − [p r1 + (1− p) r2]]2 + (1− p)2 [r2 − [p r1 + (1− p) r2]]2 (140)
= p2 (1− p)2 ∆2 + (1− p)2 p2 ∆2 = 2 p2 (1− p)2 ∆2 (141)

=⇒ RHS =
∥∥∥∥

d⟨πθt
, r⟩

dθt

∥∥∥∥ =
√

2 p (1− p) ∆. (142)

Hence,

LHS =
√

2
[
(1− p) r2

1 + p r2
2
]

∆ RHS =⇒ ϱ =
√

2
[
(1− p) r2

1 + p r2
2
]

∆ .

For rewards r1 > r2 > 0, the numerator depends on the magnitude of the rewards, while the
denominator depends on their gap. Since we have derived an equality, the dependence on 1

∆ in ϱ is
necessary.

C.4 Strong Growth Condition - Tabular MDP Setting, IS Parallel Estimator

Following (Mei et al., 2021a, Definition 3), we first consider stochastic gradients using the on-policy
parallel IS estimator.
Definition 1 (On-policy parallel IS estimator). In the tabular MDP setting, at iteration t, under
each state s ∈ S sample one action at(s) ∼ πθt

(·|s). The IS state-action value estimator Q̂πθt is
constructed as Q̂πθt (s, a) = 1{at(s)=a}

πθt (a|s) Qπθt (s, a) for all (s, a) ∈ S ×A.

Using this parallel IS parallel estimator, the following PG estimator constructed in Algorithm 1
satisfies the SGC.

Algorithm 1: Softmax PG, on-policy stochastic gradient
Input: Learning rate η > 0.
Output: Policy πθt

= softmax(θt).
Initialize parameters θ1(s, a) for all (s, a) ∈ S ×A
while t ≥ 1 do

Sample at(s) ∼ πθt
(·|s) for all s ∈ S

Q̂πθt (s, a)← I{at(s)=a}
πθt (a|s) Qπθt (s, a)

ĝt(s, ·)← 1
1−γ d

πθt
ρ (s)

[∑
a

∂πθt (a|s)
∂θt(s,·) Q̂πθt (s, a)

]

θt+1 ← θt + η ĝt

end

Recall in the tabular MDP setting, the PG theorem (Sutton et al., 1999b) states

∂V πθt (ρ)
∂θ

= 1
1− γ

Es′∼d
πθ
ρ

[∑

a′∈A

∂πθ(a′|s′)
∂θ

Qπθ (s′, a′)
]

. (143)
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For tabular softmax policy for any s′ ̸= s and any a ∈ A, ∂πθ(a|s′)
∂θ(s,·) = 0. Hence,

V πθ (ρ)
∂θ(s, a) = 1

1− γ
dπθ

ρ (s) πθ(a|s) (Qπθ (s, a)− ⟨πθ(·), Qπθ (s, ·)⟩). (144)

In contrast, in Algorithm 1 the stochastic gradient is

ĝ(s, a) = 1
1− γ

dπθ
ρ (s) πθ(a|s)

(
Q̂πθ (s, a)−

〈
πθ(·), Q̂πθ (s, ·)

〉)
. (145)

Theorem 6. In the tabular MDP setting, using Update 2 with the on-policy parallel IS estimator,
we have for any θ,

E

[∑

s∈S

∑

a∈A

dπθ
ρ (s)2

(1− γ)2 πθ(a | s)2
(

Q̂πθ (s, a)−
〈

πθ(· | s), Q̂πθ (s, ·)
〉)2

]
≤ 4 A3/2 S1/2

(1− γ)4 ∆2

∥∥∥∥
∂V πθ (ρ)

∂θ

∥∥∥∥
2

(146)
where ∆ := mins mina̸=a′ |Qπθ (s, a)−Qπθ (s, a′)|.

Proof. In the tabular MDP setting we have
∥∥∥∇f̃(θ)

∥∥∥
2

2
=
∑

s∈S

∑

a∈A

dπθ
ρ (s)2

(1− γ)2 πθ(a | s)2
(

Q̂πθ (s, a)−
〈

πθ(·|s), Q̂πθ (s, ·)
〉)2

. (147)

Let us first bound the RHS. For a fixed s ∈ S.
∑

a∈A
πθ(a | s)2

(
Q̂πθ (s, a)−

〈
πθ(· | s), Q̂πθ (s, ·)

〉)2
(148)

=
∑

a∈A
πθ(a | s)2

[
1 {a(s) = a}

πθ(a | s)2 Qπθ (s, a)2 − 2 1 {a(s) = a}
πθt

(a | s) Qπθ (s, a)
〈

πθ(·|s), Q̂πθ (s, ·)
〉

+
(〈

πθ(·|s), Q̂πθ (s, ·)
〉)2

]
(149)

= Qπθ (s, a(s))2 − 2 πθ(a(s)|s) Qπθ (s, a(s))2 + Qπθ (s, a(s))2
∑

a∈A
πθ(a|s)2 (150)

= (1− πθ(a(s)|s))2 Qπθ (s, a(s))2 + Qπθ (s, a(s))2
∑

a ̸=a(s)

πθ(a|s)2 (151)

= 1
(1− γ)2 (1− πθ(a(s)|s))2 +

∑

a̸=a(s)

πθ(a|s)2 (Qπθ (s, a) ≤ 1
1−γ )

≤ 1
(1− γ)2


(1− πθ(a(s)|s))2 +


 ∑

a ̸=a(s)

πθ(a|s)




2

 (∥x∥2 ≤ ∥x∥1)

= 2
(1− γ)2 (1− πθ(a(s)|s))2 (152)

Accounting for every s ∈ S,

=⇒
∥∥∥∇f̃(θ)

∥∥∥
2

2
≤ 2

(1− γ)4

∑

s∈S

[
dπθ

ρ (s)
]2(1− πθ(a(s)|s))2 (153)

In Algorithm 1, the only source of stochasticy is from sampling a(s) ∼ πθ(·|s) for each s ∈ S.
Therefore

E
[∥∥∥∇f̃(θ)

∥∥∥
2

]
= Ea1∼πθ(·|s1)

[
Ea2∼πθ(·|s2)

[
. . .EaS∼πθ(·|sS)

[∥∥∥∇f̃(θ)
∥∥∥

2

2

]]]
. (154)
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Let us first consider Ea1∼πθ(·|s1)

[∥∥∥∇f̃(θ)
∥∥∥

2

2

]
. By Equation (153)

Ea1∼πθ(·|s1)

[∥∥∥∇f̃(θt)
∥∥∥

2

2

]
(155)

≤ 2
(1− γ)4

∑

a1∈A
πθ(a1|s1)


[dπθ

ρ (s1)
]2 (1− πθ(a1|s1))2 +

∑

s̸=s1

[
dπθ

ρ (s)
]2 (1− πθ(a(s)|s))2




(156)

= 2
(1− γ)4 (157)




[
dπθ

ρ (s1)
]2 ∑

a1∈A
πθ(a1|s1) (1− πθ(a1|s1))2

︸ ︷︷ ︸
:=Cs1

+
∑

a1∈A
πθ(a1|s1)

︸ ︷︷ ︸
=1

∑

s̸=s1

[
dπθ

ρ (s)
]2 (1− πθ(a(s)|s))2




(158)

= 2
(1− γ)4


Cs1 +

∑

s̸=s1

[
dπθ

ρ (s)
]2 (1− πθ(a(s)|s))2


. (159)

Next let us consider Ea2∼πθ(·|s2)Ea1∼πθ(·|s1)

[∥∥∥∇f̃(θ)
∥∥∥

2

2

]
and by the same argument

Ea2∼πθ(·|s2)Ea1∼πθ(·|s1)

[∥∥∥∇f̃(θ)
∥∥∥

2

2

]
≤ 2

(1− γ)4


Cs1 + Cs2 +

∑

s̸=s1
s̸=s2

[
dπθ

ρ (s)
]2 (1− πθ(a(s)|s))2


 (160)

Continuing in the same way for the remaining s ∈ S we have

E
[∥∥∥∇f̃(θ)

∥∥∥
2

2

]
≤ 2

(1− γ)4

∑

s∈S
Cs (161)

= 2
(1− γ)4

∑

s∈S

[
dπθ

ρ (s)
]2 ∑

a∈A
πθ(a|s) (1− πθ(a|s))2 (162)

Denote k(s) := arg maxa∈A πθ(a|s) as the action with the largest probability at state s

= 2
(1− γ)4

∑

s∈S

[
dπθ

ρ (s)
]2

πθ(k(s)|s) (1− πθ(k(s)|s))2 +

∑

a̸=k(s)

πθ(a|s) (1− πθ(a|s))2




(163)

≤ 2
(1− γ)4

∑

s∈S

[
dπθ

ρ (s)
]2

(1− πθ(k(s)|s)) +

∑

a̸=kt(s)

πθ(a(s|s)


 (164)

= 4
(1− γ)4

∑

s∈S

[
dπθ

ρ (s)
]2 (1− πθ(k(s)|s)) (πθ(a|s) ∈ [0, 1])

Since dπθ
ρ (s) ≤ 1 for all s ∈ S

≤ 4
(1− γ)4

∑

s∈S
dπθ

ρ (s) (1− πθ(k(s)|s)) (165)

35250



RLJ | RLC 2024

=⇒ E
[∥∥∥∇f̃(θ)

∥∥∥
2

2

]
≤ 4

(1− γ)4

∑

s∈S
dπθ

ρ (s) (1− πθt(k(s)|s)). (166)

Now we lower bound
∥∥∥V πθ (ρ)

∂θ

∥∥∥
2

2
∥∥∥∥

V πθ (ρ)
∂θ

∥∥∥∥
2

2
(167)

= 1
(1− γ)2

(∑

s∈S

∑

a∈A
dπθ

ρ (s)2 πθ(a|s)2 Aπθ (s, a)2

)
(168)

Multiplying and dividing by
∑

(s′,a′) Aπθ (s, a)2

= 1
(1− γ)2




∑

s′∈S

∑

a′∈A
Aπθ (s′, a′)2

∑

s∈S

∑

a∈A


dπθ

ρ (s) πθ(a|s)
︸ ︷︷ ︸

:=w(s,a)




2

(Aπθ (s, a))2
∑

(s′,a′)∈S×A Aπθ (s′, a′)2
︸ ︷︷ ︸

:=p(s,a)




(169)

Since p(s, a) ≥ 0 and
∑

s,a p(s, a) = 1, using Jensen’s inequality,∑
s,a w(s, a)2 p(s, a) ≥ (

∑
s,a w(s, a) p(s, a))2

≥ 1
(1− γ)2


∑

s′∈S

∑

a′∈A
Aπθ (s′, a′)2

[∑

s∈S

∑

a∈A
dπθ

ρ (s) πθt
(a|s) Aπθ (s, a)2

∑
(s′,a′)∈S×A Aπθ (s′, a′)2

]2

 (170)

= 1
(1− γ)2


 1∑

(s′,a′)∈S×A Aπθ (s′, a′)2

[∑

s∈S

∑

a∈A
dπθ

ρ (s) πθ(a|s) Aπθ (s, a)2

]2

 (171)

Since Aπθ (s, a) ≤ 1
1−γ , 1∑

(s′,a′)
Aπθ (s′,a′)2 ≥ (1−γ)2

S A

=⇒
∥∥∥∥

∂V πθt (ρ)
∂θ

∥∥∥∥
2

2
≥ 1

S A

[∑

s∈S

∑

a∈A
dπθ

ρ (s) πθ(a|s)Aπθ (s, a)2

]2

(172)

=⇒
∑

s∈S

∑

a∈A
dπθ

ρ (s) πθ(a|s) Aπθ (s, a)2 ≤
√

S A

∥∥∥∥
∂V πθ (ρ)

∂θ

∥∥∥∥
2
. (173)

To connect Equation (166) and Equation (173) for a fixed s ∈ S
∑

a∈A
πθ(a|s) Aπθ (s, a)2

=
∑

a∈A
πθ(a|s) (Qπθ (s, a)− V πθ (s))2 (174)

=
∑

a∈A
πθ(a|s)

[
Qπθ (s, a)2 − 2 V πθ (s) Qπθ (s, a) + V πθ (s)2] (175)

=
∑

a∈A
πθ(a|s) Qπθ (s, a)2 − 2 V πθ (s)

∑

a∈A
πθ(a|s) Qπθ (s, a)

︸ ︷︷ ︸
=V πθ (s)

+V πθ (s)2
∑

a∈A
πθ(a|s)

︸ ︷︷ ︸
=1

(176)

=
∑

a∈A
πθ(a|s)Qπθ (s, a)2 −

[∑

a∈A
πθ(a|s) Qπθ (s, a)

]2

(177)
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Recall k(s) := arg maxa∈A πθ(a|s), by Lemma 9,

≥ πθ(k(s)|s)
∑

a ̸=k(s)

πθ(k(s)|s) (Qπθ (s, k(s))−Qπθ (s, a))2 (178)

Let ∆s := mina̸=a′ |Qπθ (s, a)−Qπθ (s, a′)| and since πθ(k(s)|s) ≥ 1
A ,

≥ (1− πθ(k(s)|s) ∆2
s

A
(179)

Let ∆ := mins ∆s

≥ (1− πθ(k(s)|s) ∆2

A
(180)

=⇒ (1− πθ(k(s)|s) ≤ A

∆2

∑

a∈A
πθ(a|s) Aπθ (s, a)2 (181)

Putting everything together, by Equation (166)

E
[∥∥∥∇f̃(θ)

∥∥∥
2

2

]
≤ 4

(1− γ)4

∑

s

dπθ
ρ (s) (1− πθ(k(s) | s)) (182)

By Equation (181)

≤ 4 A

(1− γ)4 ∆2

∑

s∈S

∑

a∈A
dπθ

ρ (s) πθ(a | s) Aπθ (s, a)2 (183)

By Equation (173)

≤ 4 A3/2 S1/2

(1− γ)4 ∆2

∥∥∥∥
∂V πθ (ρ)

∂θ

∥∥∥∥
2
. (184)

C.5 Additional Lemmas
Lemma 5. Assuming that f is L1-non-uniform smooth and the stochastic gradient is bounded, i.e.
∥∇f̃(θt)∥ ≤ B, using Update 2 with ηt ∈ (0, 1

L1 B ) we have,

|f(θt+1)− f(θt)− ⟨∇f(θt), θt+1 − θt⟩| ≤
1
2

L1 ∥∇f(θt)∥
1− L1 B ηt

∥θt+1 − θt∥. (185)

Proof. Following (Mei et al., 2023, Lemma 4.2), denote θζ := θt + ζ (θt+1 − θt) for some ζ ∈ [0, 1].
According to Taylor’s theorem, we have

|f(θt+1)− f(θt)− ⟨∇f(θt), θt+1 − θt⟩| =
1
2
∣∣(θt+1 − θt)⊤∇2f(θζ) (θt+1 − θt)

∣∣ (186)

Assuming f is L1 non-uniform smooth

≤ L1 ∥∇f(θζ)∥
2 ∥θt+1 − θt∥2

2. (187)

Denote θζ1 := θt + ζ1 (θζ − θt) for some ζ1 ∈ [0, 1]. By the fundamental theorem of calculus,

∥∇f(θζ)−∇f(θt)∥ =
∥∥∥∥
∫ 1

0

〈
∇2f(θζ1), θζ − θt

〉
dζ1

∥∥∥∥ (188)
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Using Cauchy-Schwarz

≤
∫ 1

0

∥∥∇2f(θζ1)
∥∥ ∥θζ − θt∥dζ1 (189)

Since f is L1-non-uniform smooth

≤
∫ 1

0
L1 ∥∇f(θζ1)∥ ∥θζ − θt∥dζ1 (190)

=
∫ 1

0
L1 ∥∇f(θζ1)∥ ζ ∥θt+1 − θt∥dζ1 (θζ := θt + ζ (θt+1 − θt))

Since ζ ∈ [0, 1] and using Update 2, θt+1 = θt + ηt∇f̃(θt)

=⇒ ∥∇f(θζ)−∇f(θt)∥ ≤ L1ηt ∥∇f̃(θt)∥
∫ 1

0
∥∇f(θζ1)∥ dζ1 (191)

Therefore, we have

∥∇f(θζ)∥ = ∥∇f(θ) +∇f(θζ)−∇f(θ)∥ (192)

Using triangle inequality

≤ ∥∇f(θt)∥+ ∥∇f(θζ)−∇f(θt)∥ (193)

By Equation (191)

=⇒ ∥∇f(θζ)∥ ≤ ∥∇f(θt)∥+ L1 ηt ∥∇f̃(θt)∥
∫ 1

0
∥∇f(θζ1)∥ dζ1 (194)

Denote θζ1 := θt + ζ2 (θζ1 − θt) with θζ2 ∈ [0, 1]. Using similar calculations when deriving Equa-
tion (191),

∥∇f(θζ1)∥ ≤ ∥∇f(θt)∥+ L1 ηt ∥∇f̃(θt)∥
∫ 1

0
∥∇f(θζ)∥ dζ2 (195)

Putting Equation (194) and Equation (194) together,

∥∇f(θζ)∥ ≤
(

1 + L1 ηt ∥∇f̃(θt)∥
)
∥∇f(θt)∥+

(
L1 ηt ∥∇f̃(θt)∥

)2 ∫ 1

0

∫ 1

0
∥∇f(θζ2)∥dζ2 dζ1 (196)

Using Equation (196) and continuing in the same way for ζi as i→∞

∥∇f(θζ)∥ ≤
∞∑

i=0

(
L1 ηt ∥∇f̃(θt)∥

)i

︸ ︷︷ ︸
♡

∥∇f(θt)∥. (197)

To ensure that ♡ is finite, we require that L1 ηt ∥∇f̃(θt)∥ < 1. Assuming ∥∇f̃(θt)∥ ≤ B for all t

L1 ηt ∥∇f(θt)∥ ≤ L1 B ηt < 1 =⇒ ηt <
1

L1 B
(198)

For ηt ∈
(

0, 1
L1 B

)
, summing the geometric series

∥∇f(θζ)∥ ≤ ∥∇f(θt)∥
1− L1 B ηt

. (199)

Putting Equation (187) and Equation (199) together, for ηt ∈
(

0, 1
L1,B

)
we have

|f(θt+1)− f(θt)− ⟨∇f(θt), θt+1 − θt⟩| ≤
1
2

L1 ∥∇f(θt)∥
1− L1 B ηt

∥θt+1 − θt∥. (200)
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Lemma 6 (Lemma 5 in (Vaswani et al., 2022)).

αT +1

1− α
≤ 2β

ln(T/β) (201)
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Lemma 7 (Lemma 4.3 in (Mei et al., 2023)). Using Update 2, we have for all t ≥ 1,

Et

[∥∥∥∥
d⟨πθt

, r̂t⟩
dθt

∥∥∥∥
2

2

]
≤ 8 A3/2

∆2

∥∥∥∥
d⟨πθt

, r̂t⟩
dθt

∥∥∥∥
2

(202)

where ∆ := mina̸=a′ |r(a)− r(a′)|.

Lemma 8 (Lemma 17 in (Vaswani et al., 2022)). For all x, γ > 0,

exp(−x) ≤
( γ

ex

)γ

(203)

Lemma 9. Let p, b ∈ RK such that p1 ≥ p2 ≥ · · · ≥ pK ≥ 0,
∑K

i=1 pi = 1 and bi ≥ 0 for all i then

K∑

i=1
pi b2

i −
[

K∑

i=1
pi bi

]2

≥ p1

K∑

j=2
pj [bi − bj ]2 (204)

Proof.

K∑

i=1
pi b2

i −
[

K∑

i=1
pi bi

]2

=
K∑

i=1
pi b2

i −
K∑

i=1
p2

i b2
i − 2

K−1∑

i=1
pi ri

K∑

j=i+1
pj rj (205)

=
K∑

i=1
(pi b2

i − p2
i b2

i )− 2
K−1∑

i=1
pi ri

K∑

j=i+1
pj rj (206)

=
K∑

i=1
pi b2

i (1− pi)− 2
K−1∑

i=1
pi ri

K∑

j=i+1
pj rj (207)

=
K∑

i=1
pi︸︷︷︸
xi

b2
i︸︷︷︸

yi

K∑

i=1,j ̸=i

pj︸︷︷︸
xj

−2
K−1∑

i=1
pi ri

K∑

j=i+1
pj rj (pi = 1−∑j ̸=1 pj)

For any xi, yi,
∑K

i=1 xi yi

∑K
j=1,j ̸=i xj =

∑K−1
i=1 xi

∑K
j=i+1 xj [yi + yj ]

=
K−1∑

i=1
pi

K∑

j=i+1
pj [b2

i + b2
j ]− 2

K−1∑

i=1
pi bi

K∑

j=i+1
pj bj (208)

=
K−1∑

i=1
pi

K∑

j=i+1
pj

[
b2

i − 2bi bj + b2
j

]
(209)

=
K−1∑

i=1
pi

K∑

j=i+1
pj [bi − bj ]2 (210)

Discarding extra terms since p2 ≥ · · · ≥ pK−1 ≥ 0,

≥ p1

K∑

j=2
pj [bi − bj ]2. (211)
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Lemma 10. In the bandit setting, ∥∥∥∥
d⟨πθ, r̂⟩

dθ

∥∥∥∥ ≤
√

2. (212)

Proof. Follows from Mei et al. (2023, Equation 55).

Lemma 11. In the tabular MDP setting,
∥∥∥∥∥
∑

s∈S

∑

a∈A

dπθ
ρ (s)2

(1− γ)2 πθ(a|s)2
(

Q̂πθ (s, a)−
〈

πθ(·|s), Q̂πθ (s, ·)
〉)2

∥∥∥∥∥ ≤
√

2 S

(1− γ)2 . (213)

Proof. Follows from Equation (153).

D Policy Gradient with Entropy Regularization

We will next consider adding entropy regularization to the objective in the exact and stochastic
settings. Entropy regularization RL, also known as maximum entropy RL, uses entropy regularization
to promote action diversity and prevent premature convergence to a deterministic policy (Williams,
1992; Haarnoja et al., 2018). While it is widely believed to help with exploration, the addition of
entropy regularization results in a smoother optimization landscape, enabling PG methods to escape
flat regions within the optimization landscape (Ahmed et al., 2019). For example in the bandits
setting, flat regions occur when a policy commits to an arm. Mei et al. (2020) showed entropy
regularization helps escaping these regions when starting from a “bad” initialization, i.e. the initial
policy selects an sub-optimal arm with high probability.

In the exact setting, where the full gradient can be computed, Mei et al. (2020) showed softmax PG
with entropy regularization obtains a fast O(log(1/ϵ)) rate to a biased ϵ-optimal policy. The resulting
optimal policy is biased since the presence of entropy prevents convergence to a deterministic policy.
Additionally, in the same setting, Cen et al. (2022) showed NPG with entropy regularization achieves
the same O(log(1/ϵ)) convergence rate to a biased ϵ-optimal policy. To ensure that the resulting
optimal policy is unbiased, the strength of the entropy regularization term must be decayed or
removed. Mei et al. (2020) introduced a two-stage approach to obtain the optimal policy when
using softmax PG with entropy regularization. In the first stage, entropy regularization is used to
obtain fast convergence close to the optimal policy. In the second stage, the regularizer is removed
to guarantee convergence to the optimal policy. Unfortunately, the final convergence rate is O(1/ϵ)
which matches the same rate as softmax PG. Additionally, in order to transition from the first to the
second stage, the reward gap is needed making the resulting algorithm impractical.

In the stochastic setting, where the value function must be approximated, Ding et al. introduced a
two-stage approach for stochastic softmax PG with entropy regularization. Instead of modifying the
strength of the entropy regularizer across stages, the batch size is modified. The resulting algorithm
requires O(1/ϵ) iterations at the second stage and Õ(1/ϵ2) samples to converge to an biased ϵ-optimal
policy. The method allows for global convergence with arbitrary initiation. However, the strength of
the entropy regularizer is not decayed, preventing convergence to the optimal policy. Additionally,
the biased optimal policy to set the algorithm hyper-parameters making the resulting algorithm
redundant. Moreover, in the stochastic setting with access to a generative model, using NPG with
entropy regularization, Cen et al. (2022) achieved a linear rate of convergence to a biased optimal
policy with a Õ(1/ϵ2) sample complexity.

In the following sections, we will present a multi-stage algorithm that iteratively reduces the strength
of the entropy regularization term. This method obtains convergence to the optimal policy while
eliminating the reliance on unknown quantities compared to prior work. In Appendix D.1 we
first state how the objective’s functional property changes when entropy regularization is added.
In Appendix D.2 we present the multi-stage algorithm in the exact setting and the algorithm
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achieves an O(1/ϵp) rate. Here, p relies on the estimation of the lower bound of the non-uniform
Łojsiewciz condition of the entropy regularized objective. Next in Appendix D.3, we extend the same
multi-stage algorithm in the stochastic setting with exponentially decreasing step-sizes to obtain
an also O(1/ϵ2p+1) rate to the optimal policy. Finally, in Appendix D.3.1 we compare the proposed
our multi-stage algorithm to prior PG methods without entropy regularization and show that the
multi-stage algorithm helps escape flat regions within the optimization landscape.

D.1 Problem Setup

Following Section 2, for a policy π, the entropy regularized action-value function is defined as
Q̃π

τ (s, a) := E[
∑∞

t=0 γt(r(s, a) − τ log π)] and the entropy regularized value function is defined as
Ṽ π

τ (s) := Ea∼π[Q̃π
τ (s, a)](s) . The entropy regularized advantage function is defined as Ãπ

τ (s, a) :=
Q̃π

τ (s, a)− τ log π(a|s)− Ṽ π
τ (s).

Additionally, let fτ (θ) := f(θ) + τ Λ(πθ) denote the entropy regularized objective, where Λ(πθ) is
the “discounted entropy” for a policy πθ and τ ≥ 0 is the “temperature” or strength of the entropy
regularization. For a fixed τ , fτ is Lτ -uniform smooth and note that the smoothness now depends on
τ . Furthermore, fτ satisfies a non-uniform Łojasiewciz condition with Cτ (θ) and ξ = 1/2. Compared
to f , whose non-uniform Łojasiewciz degree is ξ = 0 (refer to Table 1), the increase to ξ = 1/2
allows for faster convergence. Table 3 summarizes the entropy regularizer, uniform smoothness
and non-uniform Łojsaiewciz properties for the bandit and general MDP settings with entropy
regularization. Finally, we will denote the maximum value of the regularized objective function as
f∗τ := fτ (θ∗

τ ), where θ∗
τ := arg maxθ fτ (θ).

Setting Λ(πθ) [∇fτ (θ)]s,a Lτ Cτ (θ)
Bandits −⟨πθ, log πθ⟩ πθ(a) [r(a)− ⟨πθ, r − τ log πθ⟩] 5/2 + 5 τ (1 + log A)

√
2τ mina πθ(a)

MDP H(πθ) dπθ (s) πθ(a|s) Ãπθ (s,a)
1−γ

8+τ (4+8 log A)
(1−γ)3

√
τ mins

√
ρ(s) mins,a πθ(a|s)

S

∥∥∥ dπ∗τ
ρ

d
πθ
ρ

∥∥∥
1/2

∞

Table 3: Entropy regularizer, uniform smoothness and non-uniform Łojasiewciz condition with
ξ = 1/2 for bandits and general tabular MDPs setting with entropy regularization. Here, H(πθ) :=
E[
∑∞

t=0−γt log πθ(at|st)].

With the above properties of fτ , we next present how to principally decay τ for softmax PG with
entropy regularization to obtain convergence to the optimal policy.

D.2 Exact Setting

We first consider the exact setting as a test bed to analyze how to decay τ to obtain convergence
to the optimal policy. Recall that for a constant τ > 0, softmax PG with entropy regularization is
unable to converge to the optimal policy since the regularizer prevents the final policy from becoming
deterministic. Softmax PG with entropy regularization has the following update:
Update 3. (Softmax PG with Entropy Regularization, True Gradient) θt+1 = θt + ηt∇fτ (θt).

Refer to Table 3 for the entropy regularized policy gradient ∇fτ (θ) in both the bandits and the general
MDP cases. In this setting, Mei et al. (2020) prove that softmax PG with entropy regularization
converges to a biased optimal policy at an O(log 1/ϵ) rate when using a fixed step-size of ηt = η = 1

Lτ .
The optimal policy is biased since τ > 0 is fixed. In order for entropy regularized objective to
converge to the globally optimal policy, τ → 0 is required. In the bandits setting, Mei et al. (2020)
proposed a two-stage approach to decay τ to obtain global convergence. A fixed τ > 0 is used in
the first stage but is then set to be 0 in the second stage. However, the resulting algorithm requires
knowledge of the reward gap ∆ := maxa∗ ̸=a r(a∗)− r(a) in order to transition from the first stage to
the second stage, rendering the method to be impractical. Additionally, Mei et al. (2020) proposed
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an additional approach by allowing τ be a function of t and slowly decreasing τt over time. This
approach also obtain convergence to the global optimal policy. However, it required τt ∝ ∆ and
knowledge of the reward gap were again needed. Moreover, the final convergence rate to the optimal
policy could not be established since it could not be proved that inft≥1 Cτ (θt) > 0.

For example, in the bandits setting (refer to Table 3) Cτ (θt) :=
√

2τ mina πθt(a). In order for
πθt → π∗, we must have mina πθt(a)→ 0. However, in order to guarantee convergence when τ > 0,
we also require inft≥0 mina πθt

(a) > 0. We conjecture that the non-uniform Łojasiewciz condition
bound is loose which results in a pessimistic bound involving mina πθ(a). We will make the benign
assumption that fτ satisfies the following non-uniform Łojasiewciz condition with ξ = 1/2 such that
µ := inft≥0[Cτ (θt)]2 = τp B1 for constants p ≥ 1 and B1 > 0.
Assumption 1. fτ satisfies the non-uniform Łojasiewciz condition for some Cτ (θ) and ξ = 1

2 such
that µ := inft≥1[Cτ (θt)]2 = τp B1 for constants p ≥ 1 and B1 > 0.

Here we will assume the next worst dependence, which is having a polynomial dependence of τ
for µ = τp B1. Recall that f has a non-uniform Łojasiewciz condition with degree ξ = 0 and in
the bandit setting C(θ) = πθ(a∗). We conjecture that as τ → 0, we switch from the non-uniform
Łojasiewciz condition with degree ξ = 1/2 to degree ξ = 0. We leave the investigate of how these two
conditions interpolate as future work.

Under Assumption 1, we propose a multi-stage algorithm (Algorithm 2) to decay τ that can obtain
ϵ-convergence to the globally optimal policy without knowledge of the reward gap or any other
problem-dependent parameters. Algorithm 2 consists of multiple stages, where the temperature is
decreased in each stage. Specifically, in stage i uses τi for Ti iterations and is halved i.e. τi+1 = τi

2 in
the following stage. To prove the method achieves global convergence, we first make the following
assumptions to relate the entropy regularization objective fτ to the unregularized objective f :
Assumption 2. fτ is Lτ -smooth and Lτ ≤ Lmax, where Lmax = maxτ∈[0,1] Lτ is a constant.
Furthermore, Lτ ≥ Lmin, where Lmin = minτ∈[0,1] Lτ > 0 is a constant.
Assumption 3. f∗ − f(θ∗

τ ) ≤ τB2, for a constant B2 > 0.
Assumption 4. For a constant B3 > 0, f(θ∗

τ )− f(θ) ≤ f∗τ − fτ (θ) + τB3.
Assumption 5. For τ2 < τ1 and a constant B4 > 0, f∗τ2 − fτ2(θ) ≤ f∗τ1 − fτ1(θ) + τ1B4.

The Assumptions 2 to 5 hold for both the bandits and tabular MPD setting and are proved in
Appendix E.2 and Appendix E.3 respectively.

The following theorem (proved in Appendix E) shows that Algorithm 2 converges to the unbiased
optimal policy at an O(1/ϵp) rate.
Theorem 7. Assuming fτ and f satisfy Assumptions 1 to 5, for a given ϵ ∈ (0, 1), Algorithm 2
achieves ϵ-suboptimality to the globally optimal after Ttotal = 4 Lmax Cp

1
ϵp B1

log (2 (1 + B4)) iterations,
where C1 = max

(
1, f∗τ0 −fτ0 (θ0)

τ0

)
+ B2 + B3.

The resulting O(1/ϵp) rate depends on the constant p in Assumption 1. In the best case, when p = 1,
we recover an O(1/ϵ) convergence rate. Otherwise, if p is large, we obtain a slower rate similar to the
pessimistic analysis using Cτ (θ) ∝ mina πθ(a|s). Compared to Mei et al. (2020), when using entropy
regularization, our method is able to obtain ϵ-convergence without requiring the knowledge of the
reward gap.

We compare Algorithm 2 (PG-E-MS) assuming p = 1 and B1 = 0.01 to softmax PG (PG) with a fixed
step-size of ηt = 1

L = 2
5 and softmax PG with entropy regularization (PG-E) with fixed τ = 0.1 and

ηt = η = 1
Lτ = 2

5+10 τ(1+log A) in the bandits setting with A = 10. For PG-E-MS, p and B1 were
selected by using grid-search on separate set of bandit instances. We test the algorithms on bandit
settings of varying difficulty based on their minimum reward gap ∆̄ := mina∗ ̸=a r(a∗)− r(a). The
easy, medium and hard environments correspond to ∆̄ = 0.2, 0.1, 0.05 respectively. The figure plots
the average and 95% confidence interval of 50 random mean reward vectors.
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Figure 3: Sub-optimality gap across various environments and initializations. Top Row: the initial
policy’s parameters is uniform, i.e. θ0(a) = 0 ∀a. Bottom Row: the initial policy’s parameters is
“bad”, i.e. θ0(a′) = 12 where a′ = arg mina r(a)

In Figure 3, PG-E-MS is able to converge to the optimal policy unlike PG-E since the temperature τ is
decreasing. Furthermore, under “bad” initialization, PG-E-MS outpreforms PG since the addition of
entropy enables the method to able to escape the initial flat region. On the other hand, PG-E is able
to escape the initial region quickly, but is unable to converge to the optimal policy since τ is fixed.

Additionally, from our experiments, we observe that the multi-stage algorithm with p = 1 has a similar
performance compared to softmax PG using uniform initialization. This confirms our theoretical
observation that p = 1 results in a O(1/ϵ) convergence rate. We additionally investigated how entropy
regularization can help when starting with a “bad” initialization. In this case, the worst arm has a
high probability of getting chosen, which results in a flat optimization landscape.

In most realistic scenarios it is difficult to calculate the exact gradient of the objective function. In
the next section, we investigate how to extend the presented multi-stage algorithm to the stochastic
setting.
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D.3 Stochastic Setting

Following Section 4.1, we can construct an stochastic policy gradient using on-policy importance
sampling (IS) reward estimates for the entropy regularized objective. Let ∇f̃τ (θt) denote the
stochastic gradient with entropy regularization. By Lemma 37, the gradient estimators ∇f̃τ (θ) are (i)
unbiased i.e. E[∇f̃τ (θ)] = ∇fτ (θ) and have (ii) bounded variance i.e. E

∥∥∥∇f̃τ (θ)−∇fτ (θ)
∥∥∥

2

2
≤ σ2.

The bound of the variance is differs compared to ∇f̃(θ) since σ2 depends on the regularization
strength τ . In this setting, we will consider the following update,
Update 4. (Stochastic Softmax PG with Entropy, Importance Sampling) θt+1 = θt + ηt∇f̃τ (θt).

Under the same setting when using on-policy IS reward estimates, prior work (Ding et al.) proposes
a two-stage approach that converges to a biased optimal policy by modifying the batch size to
counteract the variance. However, the method requires a Õ(1/ϵ2) sample complexity and knowledge of
the biased optimal policy to set the algorithm hyper-parameters. Additionally, even with knowledge
of the biased optimal policy, Ding et al. is unable to converge to the optimal policy.

To extend Algorithm 2 to the stochastic setting we first require an additional assumption since
inft≥1[Cτ (θt)]2 is a now random variable in the stochastic setting.
Assumption 6. fτ satisfies the non-uniform Łojasiewciz condition for some Cτ (θ) and ξ = 1

2 such
that µ := E

[
inft≥1[Cτ (θt)]2

]
= τp B1 for constants p ≥ 1 and B1 > 0.

Under Assumption 6 and motivated by Section 4.1, we will utilize exponentially decaying step-sizes
(Li et al., 2021; Vaswani et al., 2022) for each stage. At stage i, the resulting step-size at iteration t is

set as: ηi,t−1 = 1
Lτi

α
t−lasti−1
i where αi =

(
β
Ti

) 1
Ti , β ≥ 1, and Ti is the length of stage i. Additionally,

τi is the “temperature” of stage i. All together, this results in Algorithm 3.

The following theorem (proved in Appendix F.1) shows that Algorithm 3 converges to the globally
optimal policy at an Õ

(
1/ϵp + σ2

/ϵ2p+1
)

rate.

Theorem 8. Assuming fτ and f satisfy Assumptions 2 to 6, for a given ϵ ∈ (0, 1), using Algorithm 3
with (a) unbiased stochastic gradients whose variance is bounded by σ2 and (b) exponentially

decreasing step-sizes ηi,t = ηi,lasti−1 α
t−lasti−1+1
i where ηi,lasti−1 = 1

Lτi
and αi =

(
β
Ti

) 1
Ti , β = 1,

achieves ϵ-sub-optimality to the globally optimal policy after Õ
(

1
ϵp + σ2

ϵ2p+1

)
iterations.

If p = 1, then convergence rate matches the Õ(σ2
/ϵ3) rate in Theorem 3. We remark that this the first

stochastic softmax PG algorithm to obtain ϵ-convergece to the optimal policy while using entropy
regularization. Unlike in prior work (Ding et al.), oracle-like knowledge of the environment is not
necessary to obtain convergence while using entropy regularization in the stochastic setting.

In the next section, we will compare the multi-stage method with baseline methods in the bandits
setting. To investigate if entropy regularization is indeed useufl, we will consider both uniform and
“bad” initialization.
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D.3.1 Experimental Evaluation

We evaluate the methods in multi-armed bandit environments with A = 10 in stochastic settings.
For each environment, we compare the various algorithms based on their expected sub-optimality
gap E[(π∗ − πθt

)⊤r]. We plot the average and 95% confidence interval of the expected sub-optimality
gap across 25 independent bandit instances over T = 106 iterations. To counteract the randomness of
each algorithm, for each bandit instance we additionally run each algorithm 5 times. In total, for each
algorithm, the corresponding plot is comprised of 125 runs. To investigate if entropy regularization is
helpful in escaping flat regions, we consider uniform and “bad” initialization. For experiments with
uniform initialization, the initial policy is uniform, i.e. πθ0(a) = 1/A for all a ∈ A. For experiments
with bad initialization, the initial policy favours the worst arm, i.e. θ0(a′) = 9 (πθ0(a′) ≈ 0.999),
where a′ := arg mina r(a).

Environment Details: Each environment’s underlying reward distribution is either a Bernoulli,
Gaussian, or Beta distribution with a fixed mean reward vector r ∈ RA and support [0, 1]. The
difficulty of the environment is determined by the maximum reward gap ∆̄ := mina∗ ̸=a r(a∗)− r(a).
In easy environments ∆̄ = 0.5 and in the hard environments ∆̄ = 0.1. For each environment, r is
randomly generated for each run.

Methods: We compare the presented stochastic softmax PG multi-stage algorithm (Algorithm 3)
(SPG-E-MS) to stochastic softmax PG (SPG-ESS) and stochastic softmax PG with entropy regular-
ization (SPG-E-ESS) with exponentially decreasing step-sizes and when using the “doubling” trick
(SPG-ESS [D]). We also compare with prior work that uses the full gradient (SPG-O-G) (Mei et al.,
2021a) and the reward gap (SPG-O-R) (Mei et al., 2023) when setting the step-size. For SPG-ESS and
SPG-ESS [D], we select β = 1 and η0 = 1

18 . For SPG-E-ESS we fix τ = 0.1, and similarly select β = 1
and η0 = 1

Lτ = 2
5+10 τ (1+log A) . Finally, for SPG-E-MS, we observed that the number of iterations

Ti at each stage derived by Lemma 21 for the stochastic multistage algorithm are loose due to the
exponentially-decreasing step-size analysis. Furthermore, we observed in the deterministic setting
that when p = 1, the number of iterations doubles after each stage. Therefore, instead of using the
theoretical number of iterations at each stage, we use the “doubling trick” (refer to Section 5). For
SPG-E-ESS set the hyper-parameters T1 = 5000, τ0 = 0.5, B1 = 1 by employing a grid-search on a
separate validation set of bandit instances. To fairly compare against SPG-ESS and SPG-ESS [D] we
also select β = 1.
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Figure 4: Expected sub-optimality gap across various environments with uniform initialization

Figure 5: Expected sub-optimality gap across various environments with “bad” initialization
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Results: From Figure 4, with uniform initialization, the performance of SPG-E-MS is comparable to
SPG-ESS, SPG-ESS [D] and SPG-O-G. However, in the “bad” initialization settings (Figure 5), due to
the presence of entropy, SPG-E-MS out preforms all other methods. Here we also find that entropy
regularization helps escaping from flat regions in the stochastic setting. Since SPG-E-ESS uses a fixed
entropy regularization term it is unable to converge to the optimal policy.

D.4 Discussion

We proposed a systematic method for (stochastic) softmax policy gradient (PG) to utilize the benefits
of entropy regularization while guaranteeing convergence to the optimal policy. Under Assumption 1,
our proposed multi-stage algorithm achieves convergence the optimal policy without any oracle-like
knowledge when compared to prior methods. We empirically demonstrate that our multi-stage
algorithm can escape flat regions in the exact and stochastic settings, due to entropy regularization.
For future work, we aim to bridge the non-uniform Łojasiewciz conditions of f and fτ as τ → 0.
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E Proofs of Appendix D.2

Algorithm 2: Multi-Stage Softmax PG with Entropy Regularization
Output: Policy πθt = softmax(θt)
Initialize parameters θ0, τ0, Nstages
t← 0
last0 ← t
i← 1
while i ≤ Nstages do

τi ← τi−1/2
ηi ← 1/Lτi

Ti ← 2
ηi µi

log
(

τi−1
τi

(1 + B4)
)

while t− lasti−1 < Ti do
θt+1 ← θt + ηi∇fτi(θt)
t← t + 1

end
lasti ← t
i← i + 1

end

E.1 Proof of Theorem 7
Theorem 7. Assuming fτ and f satisfy Assumptions 1 to 5, for a given ϵ ∈ (0, 1), Algorithm 2
achieves ϵ-suboptimality to the globally optimal after Ttotal = 4 Lmax Cp

1
ϵp B1

log (2 (1 + B4)) iterations,
where C1 = max

(
1, f∗τ0 −fτ0 (θ0)

τ0

)
+ B2 + B3.

Proof. Observe that in Algorithm 2, we use τi and ηi at stage i ≥ 1, which starts at iteration
lasti−1 + 1, runs for Ti = 2

ηi µi
log
(

τi−1
τi

(1 + B4)
)

iterations, and ends at iteration lasti. Now, we

prove by induction that f∗τi − fτi(θlasti
) ≤ τi max

(
1, f∗τ0 −fτ0 (θ0)

τ0

)
for all i ≥ 0:

Base Case: For i = 0, we have

f∗τ0 − fτ0(θ0) ≤ max(τ0, f∗τ0 − fτ0(θ0)) = τ0 max
(

1,
f∗τ0 − fτ0(θ0)

τ0

)
. (214)

Induction Step: Suppose f∗τi−1 − fτi−1(θlasti−1) ≤ τi−1 max
(

1, f∗τ0 −fτ0 (θ0)
τ0

)
holds.

Since fτi(θ) is Lτi -smooth and satisfies the non-uniform Łojasiewciz condition with µi := inft≥1 C2
τ (θt),

we use Lemma 12 for stage i:

f∗τi − fτi(θlasti
) ≤ exp(−ηi µi

2 Ti)[f∗τi − fτi(θlasti−1)] (215)

If Ti ≥ 2
ηi µi

log
(

τi−1
τi

(1 + B4)
)

, we have

=
f∗τi − fτi(θlasti−1)

exp
(

log
(

τi−1
τi

(1 + B4)
)) (216)

Under Assumption 5

≤ f∗τi−1 − fτi−1(θlasti−1) + τi−1B4
τi−1

τi
(1 + B4) (217)
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Using the inductive hypothesis

≤
τi τi−1

(
max

(
1, f∗τ0 −fτ0 (θ0)

τ0

)
+ B4

)

τi−1 (1 + B4) (218)

≤
τi max

(
1, f∗τ0 −fτ0 (θ0)

τ0

)
(1 + B4)

1 + B4
(219)

= τi max
(

1,
f∗τ0 − fτ0(θ0)

τ0

)
. (220)

Therefore, for all i ≥ 0

f∗τi − fτi(θlasti) ≤ τi max
(

1,
f∗τ0 − fτ0(θ0)

τ0

)
. (221)

Define ϵi := f∗ − f(θlasti
) as the sub-optimality at the end of stage i. We have

ϵi = f∗ − f(θlasti
) (222)

=
[
f∗ − f(θ∗

τi
)
]

+
[
f(θ∗

τi
)− f(θlasti

)
]

(223)

Under Assumption 4

≤
[
f∗ − f(θ∗

τi
)
]

+ f∗τi − fτi(θlasti
) + τiB3 (224)

By Equation (221),

≤
[
f∗ − f(θ∗

τi
)
]

+ τi

(
max

(
1,

f∗τ0 − fτ0(θ0)
τ0

)
+ B3

)
(225)

Using Assumption 3,

≤ τi B2 + τi

(
max

(
1,

f∗τ0 − fτ0(θ0)
τ0

)
+ B3

)
(226)

= τi

(
max

(
1,

f∗τ0 − fτ0(θ0)
τ0

)
+ B2 + B3

)

︸ ︷︷ ︸
:=C1

(227)

= 2−i τ0 C1. (τi = 2−i τ0)

Therefore, the number of stages Nstages required to obtain an ϵ sub-optimality is given as:

2Nstages ≥ τ0 C1
ϵ

=⇒ Nstages ≥ log2

(
τ0 C1

ϵ

)
. (228)

On the other hand, the sufficient number of iterations at stage i is:

Ti ≥
2

ηi µi
log
(

τi−1
τi

(1 + B4)
)

(229)

Since ηi = 1
Lτi

= 2 Lτi

µi
log
(

τi−1
τi

(1 + B4)
)

, (230)

Since Lτi ≤ Lmax, it is sufficient to set Ti as:

Ti = 2 Lmax

µi
log
(

τi−1
τi

(1 + B4)
)

(231)
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Under Assumption 1, µi = τp
i B1

= 2 Lmax

τp
i B1

log
(

τi−1
τi

(1 + B4)
)

(232)

Since τi = 2−i τ0, we have

= 2 Lmax 2ip

τp
0 B1

log (2 (1 + B4)) (233)

Consequently, we can calculate the sufficient total number of iterations TTotal in terms of ϵ:

TTotal ≥
Nstages∑

i=1
Ti =

Nstages∑

i=1

[
2 Lmax 2ip

τp
0 B1

log (2 (1 + B4))
]

(234)

= 2 Lmax ∑Nstages
i=1 (2p)i

τp
0 B1

log (2 (1 + B4)) (235)

Since for all x > 1, n ≥ 0,
∑n

i=0 xi = xn+1−1
x−1

=
2 Lmax

[
(2p)Nstages+1−1

2p−1 − 1
]

τp
0 B1

log (2 (1 + B4)) (236)

Therefore, it is sufficient that

TTotal ≥
2 Lmax (2p)Nstages+1

2p−1
τp

0 B1
log (2 (1 + B4)) (237)

=
2 Lmax 2p (2p)Nstages

2p−1
τp

0 B1
log (2 (1 + B4)) (238)

Since p ≥ 1, we have 2p

2p−1 ≤ 2. Hence, it is sufficient to use

TTotal =4 Lmax (2p)Nstages

τp
0 B1

log (2 (1 + B4)) (239)

= 4 Lmax (2Nstages)p

τp
0 B1

log (2 (1 + B4)) (240)

Using Equation (228),

≥ 4 Lmax Cp
1

ϵp B1
log (2 (1 + B4)) (241)

in order to guarantee f∗ − f(θTtotal) ≤ ϵ.

Corollary 10. In the bandit setting, assuming for each stage i, µi = τp
i B1 for constants p ≥ 1 and

B1 > 0, for a given ϵ ∈ (0, 1), using Algorithm 2 with ηi = 2
5+10 τi (1+log A) achieves ϵ-sub-optimality

after Ttotal = 4 Lmax Cp
1

ϵp B1
log
(
2
(
1 + W

(
A−1

e

)
+ log A

))
iterations, where Lmax = 5

2 + 5 (1 + log A) and
C1 = max

(
1, f∗τ0 −fτ0 (θ0)

τ0

)
+ W

(
A−1

e

)
+ log A.

Proof. Set f(θ) = πθ
⊤r and fτ (θ) = πθ

⊤(r − τ log πθ). We can extend Theorem 7 to the bandit
setting since:
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• by Lemma 26, fτ is Lτ -smooth and since τ ∈ [0, 1]

5
2 = Lmin ≤ Lτ = 5

2 + τ 5 (1 + log A) ≤ 5
2 + 5 (1 + log A) = Lmax (242)

• by Lemma 14, we have f∗ − f(θ∗
τ ) ≤ τW

(
A−1

e

)

• by Lemma 15, we have for all θ, f(θ∗
τ )− f(θ) ≤ f∗τ − fτ (θ) + τ log A

• by Lemma 16, we have for all θ, f∗τ2 − fτ2(θ) ≤ f∗τ1 − fτ1(θ) + τ1W
(

A−1
e

)
+ log A

Corollary 11. In the tabular MDP setting, assuming for each stage i, µi = τp
i B1 for constants

p ≥ 1 and B1 > 0, for a given ϵ ∈ (0, 1), using Algorithm 2 with ηi = (1−γ)3

8+τi (4+8 log A) achieves
ϵ-sub-optimality after Ttotal = 4 Lmax Cp

1
ϵp B1

log
(

2
(

1 + 2 log A
1−γ

))
iterations, where Lmax = 12+8 log A

(1−γ)3

and C1 = max
(

1, f∗τ0 −fτ0 (θ0)
τ0

)
+ 2 log A

1−γ .

Proof. Set f(θ) = V πθ (ρ) and fτ (θ) = Ṽ πθ
τ (ρ). We can extend Theorem 7 to the tabular MDP

setting since:

• by Lemma 28, fτ (θ) is Lτ -smooth and since τ ∈ [0, 1]

Lmin = 8
(1− γ)3 ≤ Lτ = 8 + τ(4 + 8 log A)

(1− γ)3 ≤ 12 + 8 log A

(1− γ)3 = Lmax (243)

• by Lemma 17, we have f∗ − f(θ∗
τ ) ≤ τ log A

1−γ

• by Lemma 19, we have for all θ, f(θ∗
τ )− f(θ) ≤ f∗τ − fτ (θ) + τ log A

1−γ

• by Lemma 20, we have for all θ, f∗τ2 − fτ2(θ) ≤ f∗τ1 − fτ1(θ) + τ1
2 log A

1−γ

E.1.1 Additional Lemmas
Lemma 12. Assuming fτ satisfies Assumptions 1 and 2, using Update 3 with ηt = 1

Lτ , we have

f∗τ − fτ (θt2) ≤ exp
(
−ηt µ

2 (t2 − t1)
)

[f∗τ − fτ (θt1)] (244)

where t1 < t2.

Proof.

Since fτ is Lτ -smooth

fτ (θt+1) ≥ fτ (θt) + ⟨∇fτ (θt), θt+1 − θt⟩ −
Lτ

2 ∥θt+1 − θt∥2
2 (245)

Using Update 3, θt+1 = θt + ηt∇fτ (θt)

= fτ (θt) + η∥∇fτ (θt)∥2
2 −

Lτ ηt
2

2 ||∇fτ (θt)||22 (246)

Using ηt = 1
Lτ

= fτ (θt) + ηt

2 ∥∇fτ (θt)∥2
2 (247)
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Assuming Assumption 1 is satisfied, ∥∇fτ (θ)∥2
2 ≥ µ |f∗τ − fτ (θ)|

≥ fτ (θt) + η µ

2 [f∗τ − fτ (θt)] (248)

Multiplying both sides by −1 and adding f∗

=⇒ f∗τ − fτ (θt+1) ≤
(

1− ηt µ

2

)
[f∗τ − fτ (θt)] (249)

Using 1− x ≤ exp(−x)

≤ exp
(
−ηt µ

2

)
[f∗τ − fτ (θt)]. (250)

Therefore,

f∗τ − fτ (θt2) ≤ exp
(
−ηt µ

2 (t2 − t1)
)

[f∗τ − fτ (θt1)]. (251)

E.2 Lemmas for the Bandit Setting

E.2.1 Verifying assumption 3
Lemma 13. if ∇r

[
(π∗ − π∗

τ )⊤r
]

= 0, then all suboptimal rewards must be equal.

Proof. Setting gradient of the bias of softmax optimal policy (π∗ − π∗
τ )⊤r with respect to the reward

vector r equal to a zero vector, the derivative of the bias with respect to an arbitrary suboptimal
reward r(â), where â is a suboptimal action, should be 0:

d

dr(â) (π∗ − π∗
τ )⊤r = 0 =⇒ d

dr(â)

∑
a ̸=a∗ e

r(a)
τ ∆(a)

∑
a′ e

r(a′)
τ

= 0 (252)

=⇒

(
e

r(â)
τ

τ [r(a∗)− r(â)]− e
r(â)

τ

)(∑
a e

r(a)
τ

)
− e

r(â)
τ

τ

(∑
a e

r(a)
τ [r(a∗)− r(a)]

)

(∑
a′ e

r(a′)
τ

)2 = 0 (253)

=⇒
e

r(â)
τ

τ

(∑
a e

r(a)
τ [r(a)− r(â)− τ ]

)

(∑
a′ e

r(a′)
τ

)2 = 0 =⇒
∑

a

e
r(a)

τ [r(a)− r(â)− τ ] = 0 (254)

Now, for any two suboptimal actions âi and âj , we have

=⇒
∑

a

e
r(a)

τ [r(a)− r(âi)− τ ]−
∑

a

e
r(a)

τ [r(a)− r(âj)− τ ] = 0− 0 (255)

=⇒
∑

a

e
r(a)

τ [r(âj))− r(âi)] = 0 =⇒ r(âj) = r(âi). (256)

Therefore, all suboptimal rewards must be equal.

Lemma 14. We have (π∗ − π∗
τ )⊤r ≤ τW

(
A−1

e

)
, where W : R+ 7→ R+ is the principal branch of

the Lambert W function, which is defined by W (x)eW (x) = x ∀x ≥ 0.
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Proof. We want to find an upper bound on the difference between the expected reward achieved by the
optimal policy π∗ and the softmax optimal policy π∗

τ = softmax(r/τ). Denoting ∆(a) = r(a∗)− r(a),
∆ = mina ̸=a∗ ∆(a), and a∗ is the optimal action, we have

(π∗ − π∗
τ )⊤r =

∑

a

π∗
τ (a) r(a∗)−

∑

a

π∗
τ (a) r(a) =

∑

a ̸=a∗

π∗
τ (a) ∆(a) =

∑
a̸=a∗ e

r(a)
τ ∆(a)

∑
a′ e

r(a′)
τ

. (257)

To find the upper bound, it is enough to find a reward vector r ∈ RA that maximizes the bias. To do
so, we find a unique stationary point and then prove that it is the reward vector with the maximum
bias. First, we show that decreasing all rewards by a constant value c does not change the bias:

(π∗ − π∗
τ )⊤(r − c1) =

∑
a̸=a∗ e

r(a)−c
τ ∆(a)

∑
a′ e

r(a′)−c
τ

=
e− c

τ

∑
a̸=a∗ e

r(a)
τ ∆(a)

e− c
τ

∑
a′ e

r(a′)
τ

(258)

=
∑

a̸=a∗ e
r(a)

τ ∆(a)
∑

a′ e
r(a′)

τ

= (π∗ − π∗
τ )⊤r (259)

Therefore, without loss of generality, we assume that the smallest reward value equals 0. Furthermore,
according to Lemma 13, stationary reward vectors must have equal values for all non-optimal actions.
Therefore, we assume that the reward vector has a value of ra∗ = ∆ for the optimal action and 0
values for all other actions. In this case,

(π∗ − π∗
τ )⊤r =

∑
a ̸=a∗ e

r(a)
τ ∆(a)

∑
a′ e

r(a′)
τ

= (A− 1)∆
e

∆
τ + A− 1

. (260)

Now, we find the reward gap ∆ that makes the first derivative of the bias with respect to ∆ equal to
0:

d

d∆
(A− 1)∆

e
∆
τ + A− 1

= 0 =⇒
(A− 1)

(
e

∆
τ + A− 1

)
− (A−1)∆e

∆
τ

τ
(

e
∆
τ + A− 1

)2 = 0 (261)

=⇒ (A− 1)
(

e
∆
τ + A− 1

)
− (A− 1)∆e

∆
τ

τ
= 0 =⇒ τ

(
e

∆
τ + A− 1

)
= ∆e

∆
τ (262)

=⇒ τ(A− 1) = (∆− τ)e ∆
τ =⇒ ∆− τ

τ
e

∆
τ = A− 1 =⇒ ∆− τ

τ
e

∆−τ
τ = A− 1

e
(263)

=⇒W

(
A− 1

e

)
= ∆− τ

τ
=⇒ ∆ = τ

(
W

(
A− 1

e

)
+ 1
)

, (264)

where W : R 7→ R is the principal branch of the Lambert W function. Since this value is the only
stationary point of the bias with respect to the rewards vector, ∆ = τ

(
W
(

A−1
e

)
+ 1
)

is either the
global maximum or the global minimum point. Since π∗ is the optimal policy, the bias (π∗ − π∗

τ )⊤r
is always non-negative. For ∆ = 0, the bias is equal to 0, so the unique stationary point must yield
the global maximum. Substituting it in Equation (260), we get

(π∗ − π∗
τ )⊤r ≤ (A− 1)τ

(
W
(

A−1
e

)
+ 1
)

eW( A−1
e )+1 + A− 1

. (265)

Now, since eW (x) = x
W (x) ,

=
(A− 1)τ

(
W
(

A−1
e

)
+ 1
)

A−1
W( A−1

e ) + A− 1
(266)

=τW

(
A− 1

e

)
. (267)

54 269



RLJ | RLC 2024

E.2.2 Verifying assumption 4
Lemma 15. For a fixed θ and τ , we have

(π∗
τ − πθ)⊤r ≤ π∗

τ
⊤(r − τ log π∗

τ )− πθ
⊤(r − τ log πθ) + τ log A. (268)

Proof.

(π∗
τ − πθ)⊤r = π∗

τ
⊤(r − τ log π∗

τ )− πθ
⊤(r − τ log πθ) + τ(π∗

τ log π∗
τ − πθ log πθ) (269)

For all θ, log 1
A ≤ πθ

⊤ log πθ ≤ 0

≤ π∗
τ

⊤(r − τ log π∗
τ )− πθ

⊤(r − τ log πθ) + τ

(
0− log 1

A

)
(270)

= π∗
τ

⊤(r − τ log π∗
τ )− πθ

⊤(r − τ log πθ) + τ log A. (271)

E.2.3 Verifying assumption 5
Lemma 16. Set fτ (θ) = πθ

⊤(r − τ log πθ). For a fixed θ, if τ2 < τ1, then

f∗τ2 − fτ2(θ) ≤ f∗τ1 − fτ1(θ) + τ1W

(
A− 1

e

)
+ τ1 log A. (272)

Proof. Assuming τ2 < τ1, we have

[f∗τ2 − fτ2(θ)]− [f∗τ1 − fτ1(θ)] = [f∗τ2 − f∗τ1 ]− [fτ2(θ)− fτ1(θ)] (273)

=
[
π∗

τ2
⊤(r − τ2 log π∗

τ2)− π∗
τ1

⊤(r − τ1 log π∗
τ1)
]
− [πθ

⊤(r − τ2 log πθ)− πθ
⊤(r − τ1 log πθ)] (274)

=(π∗
τ2 − π∗

τ1)⊤r −
[
τ2 π∗

τ2
⊤ log π∗

τ2 − τ1 π∗
τ1

⊤ log π∗
τ1

]
+ (τ2 − τ1) πθ

⊤ log πθ (275)

For all θ, log 1
A ≤ πθ

⊤ log πθ ≤ 0

≤(π∗
τ2 − π∗

τ1)⊤r −
[
τ2 log 1

A
− τ1 0

]
+ (τ2 − τ1) log 1

A
≤ (π∗ − π∗

τ1)⊤r + τ1 log A. (276)

By Lemma 14

=⇒ f∗τ2 − fτ2(θ) ≤ f∗τ1 − fτ1(θ) + τ1W

(
A− 1

e

)
+ τ1 log A. (277)
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E.3 Lemmas for Tabular MDP Setting

E.3.1 Verifying assumption 3
Lemma 17 (Equation (12) in (Cen et al., 2022)). V ∗(ρ)− V π∗

τ (ρ) ≤ τ log A
1−γ .

E.3.2 Verifying assumption 4
Lemma 18. For any π and ρ, we have

H(π) ≤ log A

1− γ
, (278)

where

H(π) := E
s0∼ρ,at∼π(·|st),
st+1∼P(·|st,at)

[ ∞∑

t=0
−γt log π(at|st)

]
. (279)

Proof.

H(π) = E
s0∼ρ,at∼π(·|st),
st+1∼P(·|st,at)

[ ∞∑

t=0
−γt log π(at|st)

]
(280)

= 1
1− γ

∑

s,a

dπ
ρ (s) π(a|s) [− log π(a|s)] (281)

= 1
1− γ

∑

s

dπ
ρ (s)

[
−
∑

a

π(a|s) log π(a|s)
]

(282)

Since for all π, log 1
A ≤

∑
a π(a|s) log π(a|s) ≤ 0

≤ 1
1− γ

∑

s

dπ
ρ (s)

[
− log 1

A

]
(283)

= 1
1− γ

∑

s

dπ
ρ (s) log A (284)

= log A

1− γ
(285)

Lemma 19. For a fixed θ and τ , we have

V π∗
τ (ρ)− V πθ (ρ) ≤ Ṽ ∗

τ (ρ)− Ṽ πθ
τ (ρ) + τ log A

1− γ
. (286)

Proof.

V π∗
τ (ρ)− V πθ (ρ) =(V π∗

τ (ρ) + τH(ρ, π∗
τ ))− (V πθ (ρ) + τH(πθ)) + τ(H(πθ)−H(π∗

τ )) (287)
=Ṽ ∗

τ (ρ)− Ṽ πθ
τ (ρ) + τ(H(πθ)−H(π∗

τ )) (288)

Since for all π, H(π) ≥ 0

≤Ṽ ∗
τ (ρ)− Ṽ πθ

τ (ρ) + τH(πθ) (289)

By Lemma 18

≤Ṽ ∗
τ (ρ)− Ṽ πθ

τ (ρ) + τ log A

1− γ
(290)
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E.3.3 Verifying assumption 5
Lemma 20. For a fixed θ, if τ2 < τ1, then

Ṽ ∗
τ2(ρ)− Ṽ πθ

τ2 (ρ) ≤ Ṽ ∗
τ1(ρ)− Ṽ πθ

τ1 (ρ) + 2 τ1 log A

1− γ
. (291)

Proof. Assuming τ2 < τ1, we have

Ṽ ∗
τ2(ρ)− Ṽ πθ

τ2 (ρ)− Ṽ ∗
τ1(ρ)− Ṽ πθ

τ1 (ρ) = [Ṽ ∗
τ2(ρ)− Ṽ ∗

τ1(ρ)]− [Ṽ πθ
τ2 (ρ)− Ṽ πθ

τ1 (ρ)] (292)

=
[(

V π∗
τ2 (ρ) + τ2 H(π∗

τ2)
)
−
(

V π∗
τ1 (ρ) + τ1 H(π∗

τ1)
)]

− [(V πθ (ρ) + τ2 H(πθ))− (V πθ (ρ) + τ1 H(πθ))] (293)

=
[
V π∗

τ2 (ρ)− V π∗
τ1 (ρ)

]
+
[
τ2 H(π∗

τ2)− τ1 H(π∗
τ1)
]

+ (τ1 − τ2)H(ρ, πθ). (294)

By Lemma 18, 0 ≤ H(π) ≤ log A
1−γ

≤
[
V π∗

τ2 (ρ)− V π∗
τ1 (ρ)

]
+
[
τ2

log A

1− γ
− τ1 0

]
+ (τ1 − τ2) log A

1− γ
(295)

≤ V ∗(ρ)− V π∗
τ1 (ρ) + τ1

log A

1− γ
. (296)

By Lemma 17,
=⇒ Ṽ ∗

τ2(ρ)− Ṽ πθ
τ2 (ρ) ≤ Ṽ ∗

τ1(ρ)− Ṽ πθ
τ1 (ρ) + 2τ1 log A

1− γ
. (297)
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F Proofs of Appendix D.3

Algorithm 3: Stochastic Multi-Stage Softmax PG with Entropy Regularization
Output: Policy πθt = softmax(θt)
Initialize parameters θ0, τ0, Nstages, β = 1
t← 0
last0 ← t
i← 1
while i ≤ Nstages do

τi ← τi−1
2

X1 ← exp
(

µi β
Lτ log(T/β)

)

X2 ← 0.69
Lτ

X3 ← 5 Lτ X1
e2

T
′
i ← 2

X2 µi
log
(

2 X1 τi−1
τi

(1 + B4)
)

T
′′
i ← 2 X3 σ2

τi µ2
i

Ti ← max(5583, 2 T
′
i log T

′
i , 4 T

′′
i log2 T

′′
i )

αi ←
(

β
Ti

) 1
Ti

ηi,t ← αi

Lτi

while t− lasti−1 < Ti do
θt+1 ← θt + ηi,t∇f̃τ (θt)
ηi,t+1 ← ηi,t αi

t← t + 1
end
lasti ← t
i← i + 1

end

F.1 Proof of Theorem 8
Theorem 8. Assuming fτ and f satisfy Assumptions 2 to 6, for a given ϵ ∈ (0, 1), using Algorithm 3
with (a) unbiased stochastic gradients whose variance is bounded by σ2 and (b) exponentially

decreasing step-sizes ηi,t = ηi,lasti−1 α
t−lasti−1+1
i where ηi,lasti−1 = 1

Lτi
and αi =

(
β
Ti

) 1
Ti , β = 1,

achieves ϵ-sub-optimality to the globally optimal policy after Õ
(

1
ϵp + σ2

ϵ2p+1

)
iterations.

Proof. Observe that in Algorithm 3, we use τi at stage i ≥ 1, which starts at iteration lasti−1 + 1,
ends at iteration lasti, and runs for Ti = max(5583, 2 T

′
i log T

′
i , 4 T

′′
i log2 T

′′
i ) iterations, where

T
′
i =

2 log
(

2 X1 τi−1(1+B4)
τi

)

X2 µi
, T

′′
i = 2 X3 σ2

τi µ2
i

, (298)

where X1 = exp
(

µi β
Lτi log(T/β)

)
, X2 = 0.69

Lτi
, and X3 = 5 Lτi X1

e2 . Now, we will prove by induction that

E[f∗τi − fτi(θlasti
)] ≤ τi max

(
1, f∗τ0 −fτ0 (θ0)

τ0

)
for all i ≥ 0:

Base Case: For i = 0, we have

f∗τ0 − fτ0(θ0) ≤ max(τ0, f∗τ0 − fτ0(θ0)) = τ0 max
(

1,
f∗τ0 − fτ0(θ0)

τ0

)
. (299)
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Induction Step: Suppose E[f∗τi−1 − fτi−1(θlasti−1)] ≤ τi−1 max
(

1, f∗τ0 −fτ0 (θ0)
τ0

)
holds. At stage i,

by Lemma 21, using exponentially decreasing step-size ηi,t = ηi,lasti−1 α
t−lasti−1+1
i , where ηi,lasti−1 =

1
Lτi

, αi =
(

β
Ti

) 1
Ti with β = 1, for E[f∗τi − fτi(θlasti)] ≤ τi max

(
1, f∗τ0 −fτ0 (θ0)

τ0

)
to hold, it suffices

that Ti ≥ max(5583, 2 Yi log Yi, 4 Y
′

i log2 Y
′

i ), where

Yi =

2 log


 2 X1 E[f∗τi −fτi (θlasti−1 )]

τi max
(

1,
f

∗τ0 −fτ0 (θ0)
τ0

)



X2 µi
, Y

′
i = 2 X3 σ2

τi µ2
i max

(
1, f∗τ0 −fτ0 (θ0)

τ0

) . (300)

Under Assumption 5,

Yi ≤

2 log


 2 X1 (E[f∗τi−1 −fτi−1 (θlasti−1 )]+τi−1B4)

τi max
(

1,
f

∗τ0 −fτ0 (θ0)
τ0

)



X2 µi
(301)

Using the inductive hypothesis

≤

2 log




2 X1

(
τi−1 max

(
1,

f
∗τ0 −fτ0 (θ0)

τ0

)
+τi−1B4

)

τi max
(

1,
f

∗τ0 −fτ0 (θ0)
τ0

)



X2 µi
(302)

≤

2 log




2 X1 τi−1 max
(

1,
f

∗τ0 −fτ0 (θ0)
τ0

)
(1+B4)

τi max
(

1,
f

∗τ0 −fτ0 (θ0)
τ0

)



X2 µi
(303)

=
2 log

(
2 X1 τi−1(1+B4)

τi

)

X2 µi
= T

′
i . (304)

On the other hand, we have

Y
′

i ≤
2 X3 σ2

τi µ2
i

= T
′′
i . (305)

Therefore, Ti = max(5583, 2 T
′
i log T

′
i , 4 T

′′
i log2 T

′′
i ) ≥ max(5583, 2 Yi log Yi, 4 Y

′
i log2 Y

′
i ). This

implies E[f∗τi − fτi(θlasti)] ≤ τi max
(

1, f∗τ0 −fτ0 (θ0)
τ0

)
holds for all i ≥ 0. As a result, under

Assumption 4, we have

E[f(θ∗
τi

)− f(θlasti
)] ≤E[f∗τi − fτi(θlasti

)] + τi B3 (306)

≤ τi

(
max

(
1,

f∗τ0 − fτ0(θ0)
τ0

)
+ B3

)
(307)

Denote ϵi := E[f∗ − f(θlasti
)] as the suboptimality at the end of stage i. We have

ϵi =E[f∗ − f(θlasti)] (308)
= f∗ − f(θ∗

τi
) + E[f(θ∗

τi
)− f(θlasti)] (309)

Under Assumption 3

≤ τi C1 (310)
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where C1 = max
(

1, f∗τ0 −fτ0 (θ0)
τ0

)
+ B2 + B3. Therefore, ϵi has an upper bound that is proportional

to τi. Now, since τi = 2−i τ0, the sub-optimality ϵi has an exponential rate in terms of the number of
executed stages:

= 2−i τ0 C1 (311)

Therefore, the required number of stages Nstages in terms of the final sub-optimality ϵ := ϵNstages is

2Nstages ≥ τ0 C1
ϵ

=⇒ Nstages ≥ log2

(
τ0 C1

ϵ

)
. (312)

On the other hand, we have the sufficient number of iterations at stage i:

Ti ≥ max


5583,

4 log
(

2 X1 τi−1(1+B4)
τi

)

X2 µi
log




log
(

2 X1 τi−1(1+B4)
τi

)

X2 µi


 ,

8 X3 σ2

τi µ2
i

log2
(

2 X3 σ2

τi µ2
i

)


(313)

Since τi ≤ 1, under Assumption 6, we have µi = τp
i B1 ≤ B1. Furthermore, log

(
Ti

β

)
≥ 1, and under

Assumption 2, we have 0 < Lmin ≤ Lτi ≤ Lmax. Therefore,

X1 ≤ A1 = exp
(

B1 β

Lmin

)
, (314)

X2 ≥ A2 = 0.69
Lmax , (315)

X3 ≤ A3 = 5 Lmax A1
e2 . (316)

Hence, we can safely substitute variables X1, X2, X3 with their corresponding constants A1, A2, A3.
Therefore, it is sufficient to set Ti as

Ti ≥ max


5583,

4 log
(

2 A1 τi−1(1+B4)
τi

)

A2 µi
log




log
(

2 A1 τi−1(1+B4)
τi

)

A2 µi


 ,

8 A3 σ2

τi µ2
i

log2
(

2 A3 σ2

τi µ2
i

)


(317)

Under Assumption 6, µi = τp
i B1

= max


5583,

4 log
(

2 A1 τi−1(1+B4)
τi

)

A2 τp
i B1

log




log
(

2 A1 τi−1(1+B4)
τi

)

A2 τp
i B1


 ,

8 A3 σ2

τ2p+1
i B2

1
log2

(
2 A3 σ2

τ2p+1
i B2

1

)


(318)

Since τi = 2−i τ0

= max
(

5583,
4 log(4 A1 (1 + B4)) 2ip

A2 τp
0 B1

log
(

log(4 A1 (1 + B4)) 2ip

A2 τp
0 B1

)
,

8 A3 σ2 2i(2p+1)

τ2p+1
0 B2

1
log2

(
2 A3 σ2 2i(2p+1)

τ2p+1
0 B2

1

))
(319)

Since i ≤ Nstages, it is sufficient that

Ti = max
(

5583,
4 log(4 A1 (1 + B4)) 2ip

A2 τp
0 B1

Y1,
8 A3 σ2 2i(2p+1)

τ2p+1
0 B2

1
Y2

)
(320)
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where Y1 = log
(

log(4 A1 (1+B4)) (2Nstages )p

A2 τp
0 B1

)
and Y2 = log2

(
2 A3 σ2 (2Nstages )2p+1

τ2p+1
0 B2

1

)
. Consequently, we

can calculate the sufficient total number of iterations TTotal in terms of ϵ:

TTotal ≥
Nstages∑

i=1
Ti (321)

=
Nstages∑

i=1
max

(
5583,

4 log(4 A1 (1 + B4)) 2ip

A2 τp
0 B1

Y1,
8 A3 σ2 2i(2p+1)

τ2p+1
0 B2

1
Y2

)
(322)

= max
(

5583 Nstages,
4 log(4 A1 (1 + B4))

∑Nstages
i=1 (2p)i

A2 τp
0 B1

Y1,
8 A3 σ2 ∑Nstages

i=1 (22p+1)i

τ2p+1
0 B2

1
Y2

)

(323)

Since ∀x > 1, n ≥ 0,
∑n

i=0 xi = xn+1−1
x−1

= max


5583 Nstages,

4 log(4 A1 (1 + B4))
[

(2p)Nstages+1−1
2p−1 − 1

]

A2 τp
0 B1

Y1,

8 A3 σ2
[

(22p+1)Nstages+1−1
22p+1−1 − 1

]

τ2p+1
0 B2

1
Y2


 (324)

Therefore, it is sufficient that

TTotal ≥max


5583 Nstages,

4 log(4 A1 (1 + B4)) (2p)Nstages+1

2p−1
A2 τp

0 B1
Y1,

8 A3 σ2 (22p+1)Nstages+1

22p+1−1

τ2p+1
0 B2

1
Y2


 (325)

= max


5583 Nstages,

4 log(4 A1 (1 + B4)) 2p (2p)Nstages

2p−1
A2 τp

0 B1
Y1,

8 A3 σ2 22p+1 (22p+1)Nstages

22p+1−1

τ2p+1
0 B2

1
Y2




(326)

Since p ≥ 1, we have 2p

2p−1 ≤ 2 and 22p+1

22p+1−1 ≤ 8
7 . Hence, it is sufficient to use

TTotal = max
(

5583 Nstages,
8 log(4 A1 (1 + B4)) (2p)Nstages

A2 τp
0 B1

Y1,
64 A3 σ2 (22p+1)Nstages

7 τ2p+1
0 B2

1
Y2

)
(327)

= max
(

5583 Nstages,
8 log(4 A1 (1 + B4)) (2Nstages)p

A2 τp
0 B1

Y1,
64 A3 σ2 (2Nstages)2p+1

7 τ2p+1
0 B2

1
Y2

)
(328)

Using Equation (312)

≥ max


5583 log2

(
τ0 C1

ϵ

)
,

8 log(4 A1 (1 + B4)) Cp
1 log

(
log(4 A1 (1+B4)) Cp

1
A2 B1 ϵp

)

A2 B1 ϵp
,

64 A3 C2p+1
1 log2

(
2 A3 C2p+1

1 σ2

B2
1 ϵ2p+1

)
σ2

7 B2
1 ϵ2p+1


 (329)

=⇒ TTotal ∈ Õ
(

1
ϵp

+ σ2

ϵ2p+1

)
. (330)
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Corollary 12. In the bandit setting, assuming for each stage i, µi = τp
i B1 for constants p ≥

1, B1 > 0, for a given ϵ ∈ (0, 1), using Algorithm 3 with exponentially decreasing step-sizes

ηi,t = ηi,lasti−1 α
t−lasti−1+1
i where ηi,lasti−1 = 2

5+10 τi (1+log A) and αi =
(

β
Ti

) 1
Ti , β = 1, achieves

ϵ-suboptimality after TTotal ∈ Õ
(

1
ϵp + σ2

ϵ2p+1

)
iterations.

Proof. Set f(θ) = πθ
⊤r and fτ (θ) = πθ

⊤(r − τ log πθ). We can extend Theorem 8 to the bandit
setting since:

• by Lemma 26, fτ is Lτ -smooth and τ ∈ [0, 1]

5
2 = Lmin ≤ Lτ = 5

2 + τ 5 (1 + log A) ≤ 5
2 + 5 (1 + log A) = Lmax (331)

• by Lemma 14, we have f∗ − f(θ∗
τ ) ≤ τW

(
A−1

e

)

• by Lemma 15, we have for all θ, f(θ∗
τ )− f(θ) ≤ f∗τ − fτ (θ) + τ log A

• by Lemma 16, we have for all θ, f∗τ2 − fτ2(θ) ≤ f∗τ1 − fτ1(θ) + τ1W
(

A−1
e

)
+ log A

• by Lemma 38, the gradient estimator is unbiased and have bounded variance where σ2 =
8 (1 + (τ log A)2).

Corollary 13. In the tabular MDP setting, assuming for each stage i , µi = τp
i B1 for constants

p ≥ 1, B1 > 0, for a given ϵ ∈ (0, 1), using Algorithm 3 with exponentially decreasing step-sizes

ηi,t = ηi,lasti−1 α
t−lasti−1+1
i , where ηi,lasti−1 = (1−γ)3

8+τi(4+8 log A) and αi =
(

β
Ti

) 1
Ti , β = 1, achieves

ϵ-sub-optimality after TTotal ∈ Õ
(

1
ϵp + σ2

ϵ2p+1

)
iterations.

Proof. Set f(θ) = V πθ (ρ) and fτ (θ) = Ṽ πθ
τ (ρ). We can extend Theorem 8 to the MDP setting since:

• by Lemma 28, fτ is Lτ -smooth and since τ ∈ [0, 1]

Lmin = 8
(1− γ)3 ≤ Lτ = 8 + τ(4 + 8 log A)

(1− γ)3 ≤ 12 + 8 log A

(1− γ)3 = Lmax (332)

• by Lemma 17, we have f∗ − f(θ∗
τ ) ≤ τ log A

1−γ

• by Lemma 19, we have for all θ, f(θ∗
τ )− f(θ) ≤ f∗τ − fτ (θ) + τ log A

1−γ

• by Lemma 20, we have for all θ, f∗τ2 − fτ2(θ) ≤ f∗τ1 − fτ1(θ) + τ1
2 log A

1−γ
• by Lemma 37, the gradient estimators are unbiased and have bounded variance where

σ2 = 8
(1−γ)2

(
1+(τ log A)2

(1−γ1/2)2

)
.
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F.1.1 Additional Lemmas
Lemma 21. Assuming fτ satisfies Assumptions 2 and 6 and the gradient estimators ∇f̃τ (θt)
are unbiased and have bounded variance σ2, for a given ϵ ∈ (0, 1), using Update 4 from iteration
t1 + 1 to t2 with exponentially decreasing step-sizes ηt = η0 αt−t1+1, where ηt = 1

Lτ and α =
( β

T ) 1
T , β ≥ 1, and T = t2 − t1 > 0, is achieved in ϵ-sub-optimality is achieved in max(β +

1, 5583, 2 Y1 log Y1, 4 Y2 log2 Y2) iterations, where Y1 =
2 log

(
2 X1 E[f∗τ −fτ (θt1 )]

ϵ

)

X2 µ , Y2 = 2 X3 σ2

µ2 ϵ ,X1 =
exp
(

µ β
Lτ log(T/β)

)
, X2 = 0.69

Lτ , and X3 = 5 Lτ X1
e2 .

Proof. From (Li et al., 2021, Theorem 1), using Update 4 with exponentially decreasing step-sizes
results from iterations t1 + 1 to t2 results in the following convergence

E[f∗τ − fτ (θt2)] ≤ X1 exp
(
−X2 µ

2
T

log T
β

)
E[f∗τ − fτ (θt1)] + X3 σ2

µ2 T
log2 T

β

, (333)

where

X1 = exp
(

µ β

Lτ log T
β

)
, X2 = 0.69

Lτ
, X3 = 5 Lτ X1

e2 (334)

and µ := inft≥1 Cτ (θ) with T = t2 − t1. We show that if the inequalities T
log T

β

≥ Y1 and T
log2 T

β

≥ Y2

are satisfied, where

Y1 =
2 log

(
2 X1 E[f∗τ −fτ (θt1 )]

ϵ

)

X2 µ
, Y2 = 2 X3 σ2

µ2 ϵ
, (335)

then E[f∗τ − fτ (θt2)] ≤ ϵ holds since

E[f∗τ − fτ (θt2)] (336)

≤ X1 exp
(
−X2 µ

2
2

X2 µ
log
(

2 X1 [f∗τ − fτ (θt1)]
ϵ

))
E[f∗τ − fτ (θt1)] + X3 σ2

µ2 2 X3 σ2

µ2 ϵ

(337)

= ϵ

2 + ϵ

2 (338)

= ϵ. (339)

By Lemma 22 and since 1 ≤ β < T , for T
log(T/β) ≥ T

log T ≥ Y1 to hold, it suffices that T ≥
max(2, 2 Y1 log Y1). Furthermore, according to Lemma 23 and since 1 ≤ β < T , for T

log2(T/β) ≥
T

log2 T
≥ Y2 to hold, it suffices that T ≥ max(5583, 4 Y2 log2 Y2). Therefore, the required number of

iterations to achieve ϵ-sub-optimality is max(5583, 2 Y1 log Y1, 4 Y2 log2 Y2).

Lemma 22. For all C > 0, if T ≥ max(2, 2 C log C), then T
log T ≥ C.

Proof. If C < 2, knowing that T ≥ 2, we have

T

log T
> 2 > C (340)

Otherwise, if C ≥ 2,

2 C log C = C(log C + log C) (341)
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Since ∀C > 0, C ≥ 2 log C,
≥ C(log C + log(2 log C)) (342)
= C log(2 C log C) (343)

=⇒ 2 C log C

log(2 C log C) ≥ C. (344)

Therefore, knowing that T ≥ 2 C log C, since 2 C log C ≥ 4 log 2 > 2.72, we have
T

log T
≥ 2 C log C

log(2 C log C) ≥ C. (345)

Lemma 23. For all C > 0, if T ≥ max(5583, 4 C log2 C), then T
log2 T

≥ C.

Proof. If C < 75, knowing that T ≥ 5583, we have
T

log2 T
> 75 > C. (346)

Otherwise, if C ≥ 75,
4 C log2 C =C(log C + log C)2 (347)

Since C ≥ 4 log2 C ∀C ≥ 75,
≥C(log C + log(4 log2 C))2 = C log2(4 C log2 C) (348)

=⇒ 4 C log2 C

log2(4 C log2 C)
≥ C. (349)

Therefore, knowing that T ≥ 4 C log2 C, since 4 C log2 C ≥ 300 log2 75 > 8, we have
T

log2 T
≥ 4 C log2 C

log2(4 C log2 C)
≥ C. (350)

G Additional Experiments

G.1 Environmental Details

In each of the following environments, we set the inital state distribution to be uniform, i.e. for all
s ∈ S, ρ(s) = 1

S .

Cliff World (Sutton & Barto, 2018, Example 6.6): The environment consists of 21 states and
4 actions. The objective is for an agent to each the goal state while avoiding a cliff. If the agent falls
into the chasm, the agent receives a reward of −100. If the agent reaches the goal, the agent receives
a reward of +1. All other rewards are 0. In this environment γ = 0.9.

Deep Sea Treasure (Osband et al., 2019): The environment consists 25 states and 2 actions.
The agent begin from the top-left corner of the grid and descends one row per each time it takes an
action. The goal of the agent is to stay left in order to reach the treasure. If the agent transitions to
the right, it receives a reward of −0.02. Otherwise if the agent reaches the treasure, it receives a
reward of +1. In this environment γ = 0.9.

Flat Grad (Agarwal et al., 2021): The environment consists 22 states and 4 actions. The agent
begin from the left and the objective is for the agent to reach the goal on the far right. For each
state, only one action moves the agent to the right while all other actions causes the agent to remain
in the same state. The agent only receives a sparse reward of +1 when it reaches the goal. In this
environment γ = 22

23 .
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G.2 Average Run-time Experiments

We additionally show the average runtime of the compared methods in Figure 1.

Figure 6: We compare softmax PG that (i) uses a step-size that satisfies the Armijo condition
in Equation (1) (denoted as PG-LS), (ii) uses a step-sizes that satisfies the Armijo condition on the
log-loss in Equation (3) (PG-Log-LS) to GNPG (GNPG) and PG-A (PG-A). The figure plots the average
runtime (in seconds per run) over 50 runs for each optimization method for across all environments.
Although the run time PG-LS and PG-Log-LS are longer, the methods are able to converge faster
than GNPG. This justifies the use of line-search despite the marginal increase of runtime.

H Extra Lemmas

For completeness, we append external lemmas here.

H.1 Smoothness
Lemma 24 (Lemma 2 in Mei et al. (2020)). ∀r ∈ [0, 1]A θ 7→ ⟨πθ, r⟩ is 5

2 -smooth.

Lemma 25 (Lemma 14 in (Mei et al., 2020)). θ → −⟨πθ, log πθ⟩ is 5 (1 + log K)-smooth.

Lemma 26. θ → ⟨πθ, r − τ log πθ⟩ is 5
2 + τ 5 (1 + log K)-smooth.

Proof. By Lemma 24 and Lemma 25.

Lemma 27 (Lemma 7 in Mei et al. (2020)). θ → V πθ (ρ) is 8
(1−γ)3 -smooth.

Lemma 28 (Lemmas 7 and 14 in (Mei et al., 2020)). θ → V πθ (ρ) + τ H(πθ) is 8+τ (4+8 log A)
(1−γ)3 -

smooth.

Lemma 29 (Lemma 2 in (Mei et al., 2021b)). In the bandits setting, for any r ∈ [0, 1]A, θ → ⟨πθ, r⟩
is 3-non-uniform smooth.
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Lemma 30 (Lemma 6 in (Mei et al., 2021b)). In the tabular MDP setting, assuming mins∈S ρ(s) >

0, θ → V πθ (ρ) is C-non-uniform smooth with where C :=
[
3 + 2 C∞−(1−γ)

(1−γ) γ

]√
S and C∞ :=

maxπ

∥∥∥dπ
ρ

ρ

∥∥∥
∞
≤ 1

mins ρ(s) <∞.

H.1.1 Non-uniform Łojasiewicz condition
Lemma 31 (Lemma 3 in Mei et al. (2020)). Let π∗ := maxπ∈Π ⟨π, r⟩. Then

∥∥∥∥
d⟨πθ, r⟩

dθ

∥∥∥∥
2
≥ C(θ) ⟨π∗ − πθ, r⟩ (351)

where C(θ) := πθ(a∗).

Lemma 32 (Lemma 8 in Mei et al. (2020)). Let V ∗(ρ) := maxπ∈Π V π(ρ). Then
∥∥∥∥

∂V πθ (ρ)
∂θ

∥∥∥∥
2
≥ C(θ) (V ∗(ρ)− V πθ (ρ)) (352)

where C(θ) := mins πθ(a∗(s) | s)
√

S

∥∥∥ dπ∗
ρ

d
πθ
ρ

∥∥∥
∞

.

Lemma 33 (Proposition 5 in (Mei et al., 2020)). In the bandits setting, the non-uniform Łojasiewicz
condition is

∥∥∥∥
d⟨πθ, (r − τ log πθ)⟩

dθ

∥∥∥∥
2
≥ Cτ (θ)

(
Ea∼π∗

τ
[r(a)− τ log π∗

τ ]− Ea∼πθ
[r(a)− τ log πθ]

) 1
2 (353)

with
Cτ (θ) :=

√
2τ min

a
πθ(a). (354)

Lemma 34 (Lemma 15 in (Mei et al., 2020)). In the tabular MDP setting, supposing ρ(s) > 0 for
all states s ∈ S, the non-uniform Łojasiewicz condition is

∥∥∥∥
∂Ṽ πθ

τ (ρ)
∂θ

∥∥∥∥
2
≥ Cτ (θ)

[
Ṽ ∗

τ (ρ)− Ṽ πθ
τ (ρ)

] 1
2 (355)

with

Cτ (θ) :=
√

2τ√
S

min
s

√
ρ(s) min

s,a
πθ(a|s)

∥∥∥∥∥
d

π∗
τ

ρ

dπθ
ρ

∥∥∥∥∥

− 1
2

∞
. (356)

H.2 Stochastic Policy Gradients
Lemma 35 (Lemma 5 from (Mei et al., 2021a)). Let r̂ be the IS estimator using on-policy sampling
a ∼ πθ(·). Then stochastic softmax PG estimator is:
Unbiased: Ea∼πθ

[
∇f̃(θ)

]
= ∇f(θ)

Bounded Variance: Ea∼πθ

∥∥∥∇f̃(θ)
∥∥∥

2

2
≤ 2⇒ σ2 := Ea∼πθ

[
∇f̃(θ)−∇f(θ)

]
= Ea∼πθ

∥∥∥∇f̃(θ)
∥∥∥

2

2
−

Ea∼πθ
∥∇f(θ)∥2

2 ≤ 2.
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Lemma 36 (Lemma 11 from (Mei et al., 2021a)). Let Q̂πθ be the IS estimator using on-policy
sampling a(s) ∼ πθ(·|s). Then stochastic softmax PG estimator is:
Unbiased: E

[
∇f̃τ (θ)

]
= ∇fτ (θ).

Bounded Variance: E
∥∥∥∇f̃(θ)

∥∥∥
2

2
≤ 2 S

(1−γ)4 ⇒ σ2 := E
[
∇f̃(θ)−∇f(θ)

]
≤ 2 S

(1−γ)4 .

Lemma 37 (Lemma 3 and Lemma 4 from (Ding et al.)). Let Q̂πθ
τ be the entropy regularized IS

estimator using on-policy sampling a(s) ∼ πθ(·|s). Then stochastic softmax PG estimator using
entropy regularization is:
Unbiased: E

[
∇f̃τ (θ)

]
= ∇fτ (θ).

Bounded Variance: E
∥∥∥∇f̃τ (θ)− E[∇f̃τ (θ)]

∥∥∥
2

2
≤ σ2, where σ2 = 8

(1−γ)2

(
1+(τ log A)2

(1−γ1/2)2

)
.

Lemma 38 (Instantiation of Lemma 37 in the bandits setting). Let r̂ be the entropy regularized
IS estimator using on-policy sampling a ∼ πθ(·). Then stochastic softmax PG estimator using
entropy regularization is:
Unbiased: E

[
∇f̃τ (θ)

]
= ∇fτ (θ).

Bounded Variance: E
∥∥∥∇f̃τ (θ)− E[∇f̃τ (θ)]

∥∥∥
2

2
≤ σ2, where σ2 = 8 (1 + (τ log A)2).
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Abstract

Model-based and model-free reinforcement learning (RL) each possess relative
strengths that prevent either algorithm from strictly outperforming the other.
Model-based RL often offers greater data efficiency, as it can use models to evaluate
many possible behaviors before choosing one to enact. However, because models
cannot perfectly represent complex environments, agents that rely too heavily on
models may suffer from poor asymptotic performance. Model-free RL, on the other
hand, avoids this problem at the expense of data efficiency. In this work, we seek a
unified approach to RL that combines the strengths of both approaches. To this end,
we introduce the concept of equivalent policy sets (EPS), which quantify the limi-
tations of models for the purposes of decision-making, i.e., action selection. Based
on this concept, we propose Unified RL, a novel RL algorithm that uses models
to constrain model-free RL to the set of policies that are not provably suboptimal,
according to model-based bounds on policy performance. We demonstrate across a
range of benchmarks that Unified RL effectively combines the relative strengths of
both model-based and model-free RL, in that it achieves comparable data efficiency
to model-based RL, while achieving asymptotic performance similar or superior to
that of model-free RL. Additionally, we show that Unified RL often outperforms a
number of existing state-of-the-art model-based and model-free RL algorithms, and
can learn effective policies in situations where either model-based or model-free RL
alone fail.

1 Introduction

Recent successes in model-based reinforcement learning (MBRL) have demonstrated the enormous
value that learned representations of environmental dynamics (i.e., models) can confer to au-
tonomous decision-making. For example, models allow agents to evaluate many possible future
behaviors, without requiring additional expensive and potentially dangerous environmental interac-
tions. This process is referred to as planning, and is a cornerstone of autonomous decision-making.

Models also hold the potential to facilitate cross-task knowledge transfer (Killian et al., 2017) and
intelligent exploration (Lowrey et al., 2018; Sekar et al., 2020; Mehta et al., 2021; 2022). In practice,
MBRL algorithms often achieve higher data efficiency than model-free algorithms (Deisenroth &
Rasmussen, 2011; Heess et al., 2015; Gal et al., 2016a; Chua et al., 2018; Janner et al., 2019; Hafner
et al., 2019; 2020; Lin et al., 2023). That being said, models come with their own set of limitations.
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Due to their limited representational capacity, models will typically fall short of capturing the full
complexity of the real environmental dynamics, which may help explain why MBRL often fails to
match the asymptotic performance of model-free RL (MFRL) (Wang et al., 2019).

This limitation of models is exacerbated by the objective mismatch problem (Wei et al., 2023):
model-learning objectives typically used in MBRL, which are based on some generic measure of
accuracy, are often misaligned with the overall goal of increasing reward. Objective mismatch has
been shown to negatively impact MBRL performance in practice (Lambert et al., 2020). Several
recent approaches have attempted to address objective mismatch by deriving model-learning objec-
tives that are more aligned with the overall RL objective, to enable learned models to be more useful
for policy improvement (Joseph et al., 2013; Luo et al., 2018; Rajeswaran et al., 2020; Chow et al.,
2020; Grimm et al., 2020; D’Oro et al., 2020; Eysenbach et al., 2022; Ghugare et al., 2022; Wei et al.,
2023).

Since practical models will always differ from the true dynamics by some degree, we argue that over-
reliance on models will invariably result in some degree of suboptimality. For this reason, we take
an alternative approach to addressing the objective mismatch problem. We seek to develop agents
that understand the limitations of their models, allowing them to switch to an alternative (e.g., a
model-free) learning paradigm in situations where models are not useful for policy improvement. We
believe that such an agent would enjoy the benefits of both model-based and model-free learning.
To this end, we propose equivalent policy sets (EPS), a novel concept for quantifying the limitations
of a model for estimating optimal behaviors. We define the EPS as the set of policies that are
not provably suboptimal, using bounds on the performance of candidate policies, computed using a
model. Intuitively, the EPS captures the usefulness of a particular model class for discerning optimal
from suboptimal policies.

Based on the concept of the EPS, we propose Unified RL, a principled approach to combining
MBRL and MFRL that takes advantage of their relative strengths. Unified RL constrains the policy
found by MFRL (e.g., soft actor-critic) to lie within the set of non-provably suboptimal policies (the
EPS). Here, models are used as a sort of “pre-filtering” step that eliminates provably suboptimal
policies from consideration by MFRL. Unified RL leverages the ability of models to rapidly rule-out
suboptimal candidate behaviors, while avoiding limitations on asymptotic performance that they
introduce.

Unified RL takes a principled approach to dealing with modeling error, because in situations where
modeling error is large (e.g., when the environmental dynamics are too complex to be represented
accurately, or model learning fails to converge), the lower bounds used to construct the EPS will
be loose. As a result, the EPS will be large, and Unified RL will mostly resemble model-free RL.
In other words, Unified RL avoids overreliance on its model by avoiding the elimination of policies
that the model cannot accurately evaluate due to modeling error.

We show empirically that Unified RL is able to combine the benefits of both model-based and
model-free RL on a range of challenging continuous control benchmarks. Furthermore, we show that
Unified RL outperforms a wide range of state-of-the-art model-based and model-free RL algorithms.
Finally, we show that Unified RL is robust to failure of either its model-based or model-free compo-
nents. Specifically, when distractors are introduced that prevent the agent from learning well-aligned
models, Unified RL continues to make learning progress using model-free policy updates. On the
other hand, when poorly selected model-free hyperparameters are used that cause MFRL to fail,
Unified RL resorts to MBRL.

2 Background

We represent the environment with which the agent interacts as a Markov decision process (MDP)
with initial state distribution s0 ∼ p0(s0), state transition dynamics st+1 ∼ T (st+1|st, at), reward
function rt ∼ R(rt|st, at) for t ∈ {0, ..., T}, and discount factor γ ∈ [0, 1]. For simplicity, we assume
γ = 1 and hence ignore it in future exposition. We consider continuous control problems, wherein
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the agent learns a policy π ∈ Π where π : S × A → [0,∞) is a state-dependent probability density
function over a real-valued action space.

In this work, we formulate the RL problem in Bayesian terms, although the approach is not re-
stricted to Bayesian algorithms. We are concerned with the Bayesian posterior over state transition
and reward functions, given by p(w|D) = p(D|w)p(w)/p(D), where D is all data observed thus far
in the environment, w denotes a parameter vector that parameterizes both the state transition
and reward functions, and p(w) is our prior. The prior represents our belief about the dynam-
ics before observing data D, and can be informed by domain-specific knowledge or from previous
tasks. Here, we do not assume that we possess any prior knowledge, and therefore choose a generic
prior (a Gaussian over w, see Sec. 3.2). We denote our models of the state transition function
and reward function, conditioned on a certain parameter vector w, as p(s′|s, a, w) and p(r|s, a, w),
respectively. The distribution of trajectories τ given a particular policy π and parameters w is
given by p(τ |π, w) = p(s0)π(a0|s0)p(r0|s0, a0, w)

∏T
t=1 p(st|st−1, at−1, w)π(at|st)p(rt|st, at, w). Our

inferred posterior distribution over trajectories given the available data D and a policy π is given
by p(τ |D) = Ep(w|D)p(τ |π, w). We denote the expected return of π given a particular parameter
vector w as J(π|w) = Ep(τ |π,w)

[∑T
t=0 rt

∣∣∣π, w
]
. Finally, we define the Bayesian return of a policy

π to be the expected sum of rewards achieved by π, in expectation over our Bayesian posterior
over trajectories This is the quantity that our approach to Bayesian RL attempts to maximize. We
refer to a policy that maximizes the Bayesian return π∗ ∈ arg maxπ∈Π J(π|D) as the Bayes-optimal
policy. Note that, by this definition, the Bayes-optimal policy does not depend explicitly on history
outside the current episode, as is the case for some definitions Duff (2002). Similarly, we refer to
any policy π /∈ arg maxπ∈Π J(π|D) as Bayes-suboptimal.

For many interesting model classes, exact Bayesian posteriors are intractable, and must therefore
be approximated with some tractable distribution family. We denote approximate posteriors with
q(w; θ) ∈ Q, where θ denotes the parameters of the distribution. For example, if q is a multivariate
normal distribution, θ may contain the mean vector and variance matrix. We henceforth refer to q
as our model, because it encodes our learned representation of (our posterior over) the environmental
dynamics. In practice, we use a dropout Bayesian neural network (Gal & Ghahramani, 2016b) to
represent q, as these have been shown to work well in MBRL (Gal et al., 2016a; Depeweg et al.,
2017; Gamboa Higuera et al., 2018).

3 Unifying Model-Based and Model-Free Reinforcement Learning

Here, we introduce the concept of equivalent policy sets (EPS) as a tool for quantifying the limitations
of models for the purposes of approximating optimal policies. Subsequently, we describe Unified
Reinforcement Learning, which builds on the concept of the EPS to combine the strengths of model-
based and model-free RL.

3.1 Equivalent Policy Sets

To achieve our ultimate goal of developing agents that can flexibly switch between model-based and
model-free learning, agents must understand the limitations of models for evaluating and improving
policies. To this end, we propose equivalent policy sets (EPS) as a tool for quantifying the usefulness
of a model for discerning optimal from suboptimal policies. More precisely, we define the EPS
ΠE(θ, D) ⊆ Π to be the set of all policies that are not provably Bayes-suboptimal, using a model
with parameters θ and available data D. To prove the suboptimality of a particular policy π, we
use our model to compute a lower bound on (a function f of) the improvement in Bayesian return
of a new policy π′ over π,

L(π, π′, θ, D) ≤ f((J(π′|D)− J(π|D))) , (1)
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where f is a monotonically increasing function. Although one could use any such L, in this work we
take L to be of the form

L(π, π′, θ, D) = Eq

[
f

(
p(D|w)p(w)

q(w; θ) (J(π′|w)− J(π|w))
) ]

, (2)

MBRL

MFRL

Data

Unified RL Agent Environment

Figure 1: Unified RL combines model-based
and model-free RL using the equivalent pol-
icy set (EPS). At each iteration, data from a
shared buffer are used to update a model-
based policy and a model-free policy. We
then check whether the model-free policy is
contained within the EPS, that is, the set
of policies that cannot be proven to be sub-
optimal, according to bounds on policy per-
formance computed using the model. If the
model-free policy is within the EPS, it is used
to collect another episode of data in the en-
vironment, which is added to the data buffer.
Otherwise, the model-based policy is used to
collect more data.

which we derive in the Sec. A.1 of the Appendix using
Jensen’s inequality. This particular form of L is a
variational lower bound and requires f to be concave.
It is closely related to f -divergences, a generalization
of the widely used KL and Rényi divergences (Li &
Turner, 2016; Wan et al., 2020). In the closely-related
field of variational inference, the effect of the choice
of f is an active area of research, and gives rise to
various divergence metrics (Kingma & Welling, 2013;
Burda et al., 2015; Li & Turner, 2016; Dieng et al.,
2017; Chen et al., 2018; Wan et al., 2020). In this
work, we consider f = log, as this is the most well-
studied choice of f (Blei et al., 2017). L is tight
(i.e., inequality 1 holds with equality) when q(w; θ) ∝
p(D|w)p(w)(J(π′|w)− J(π|w)). Note that, although
L depends on the parameters θ of the approximate
posterior q, inequality 1 bounds the exact difference
in Bayesian return between π′ and π.

Inequality 1 allows us to prove the suboptimality
of any policy π for which there exists a new policy
π′ ∈ Π such that L(π, π′, θ, D) > f(0), because this
condition implies that π′ achieves higher Bayesian
return than π, and therefore π is not Bayes-optimal.
We can therefore use L to construct the EPS, which
we define to be the set of policies π for which there
does not exist a provably better π′ ∈ Π, using model
parameters θ and data D,

ΠE(θ, D) = {π : max
π′∈Π

L(π, π′, θ, D) ≤ f(0)}.

Given the choice f = log, note that L(π, π′, θ, D) ≤ −∞ if and only if there exists some w ∈ supp(q)
such that J(π′|w)− J(π|w) ≤ 0. Therefore, the equivalent set definition can be simplified to

ΠE(θ, D) = {π : ∃w ∈ supp(q) s.t. J(π′|w)− J(π|w) ≤ 0},

which is convenient because it allows the data-dependent term in L to be ignored.

Equivalent Policy Sets for Understanding the Limitations of Models The EPS provides
a principled approach to dealing with modeling error, by avoiding the elimination of policies that
the model cannot accurately evaluate. In the case where model error can be driven to zero (that
is, the approximate posterior matches the ideal posterior, as would be the case with an infinitely
expressive posterior class), L is tight, i.e., inequality (1) holds with equality (see Sec. A.1 for more
details). This causes the EPS to reduce to a singleton set containing only the Bayes-optimal policy.
In this situation, the agent should fully trust its model because it can correctly identify the optimal
policy, which is reflected by the fact that the EPS contains only this policy. However, limitations
in modeling resources make this practically infeasible, and in general the model will always contain
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some inaccuracies. Existing approaches to MBRL largely have not dealt with this problem, and
instead treat the model’s approximation of the optimal policy as ground-truth. This can result in
highly suboptimal policies, especially when the model is misaligned (Wei et al., 2023; Agarwal et al.,
2021). The EPS addresses this problem by quantifying how inaccuracies in our imperfect model
translate into uncertainty about the optimal policy, where this uncertainty is represented as a set
of policies that our model cannot prove are suboptimal. Limitations in model class prevent q from
matching the ideal posterior, causing L to be loose and thereby increasing the size of the EPS. The
EPS is guaranteed to contain the Bayes-optimal policy, but will also include other policies that the
model is not accurate enough to rule out as suboptimal. This leaves open the possibility of using
an alternative learning paradigm such as MFRL to choose a policy from within the EPS to deploy.
We therefore argue that the EPS helps fundamentally address problems in MBRL caused by model
inaccuracies. This intuition provides the basis for Unified RL, which we describe in the next section.

3.2 Unified Reinforcement Learning

Algorithm 1 Unified RL
1: Given: initial dataset D
2: for each iteration do
3: πMB , θ =MBRL(D)
4: πMF =SAC(D)
5: Estimate L̂(πMF , πMB , θ, D)
6: if L̂ > −∞ then
7: π = πMB

8: else
9: π = πMF

10: end if
11: for time step t=0,...,T do
12: at ∼ π(at|st)
13: st+1, rt = env.step(at)
14: D ← D ∪ {st, at, rt, st+1}
15: end for
16: end for

Unified RL builds on the concept of the EPS introduced
in the previous section, and is summarized in Alg. 1 and
Fig. 1. Unified RL can be thought of as a model-free RL
algorithm, where the policy is constrained to lie within
the EPS. Through this constraint, Unified RL is able to
eliminate many provably suboptimal policies from con-
sideration, thus retaining the data-efficiency benefits of
MBRL. However, because Unified RL uses the model only
to identify the set of policies that may be optimal rather
than to estimate a single optimal policy, it avoids over-
reliance on the model, and thus avoids the objective mis-
match problem associated with typical MBRL approaches.
Constraining the model-free policy to lie within the EPS
does not in principle prevent MFRL from discovering the
Bayes-optimal policy, as the Bayes-optimal policy will al-
ways lie within the EPS regardless of the model used to
compute the EPS.

We take a simple approach to combining model-based and
model-free RL using the EPS, and leave more complex variants to future work. Before each episode,
an MBRL and an off-policy MFRL algorithm use the available data D to compute what we refer
to as the model-based policy πMB and the model-free policy πMF , respectively. Subsequently, the
agent checks whether the model-free policy is within the EPS; that is, it checks whether a lower
bound can be constructed using the model that proves that the model-based policy achieves higher
Bayesian return than the model-free policy. If the model-free policy is within the EPS, the agent
executes it in the real environment to collect one episode of new data. If not, the agent instead
executes the model-based policy, which is guaranteed to be within the EPS. The new data are then
added to the shared data buffer, and the entire process repeats. Note that this approach does not
require the EPS to be represented explicitly. Instead, the EPS is maintained implicitly, in the sense
that the lower bound in (1) provides a condition that allows one to check whether a given policy is
within the EPS. We describe the individual components of our approach in more detail below, with
additional details in Sec. A.2 of the Appendix.

Model-Based RL The MBRL component of our algorithm proceeds in two distinct steps: model
training and policy training. During the model training step, we estimate the posterior parameters θ
by fitting a Bayesian LSTM dynamics model to our environmental data D, by maximizing an
evidence lower bound on data log likelihood (Kingma et al., 2015; Gal & Ghahramani, 2016b;a),
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Lmodel(θ, D) = Ew∼q(w;θ)




|D|∑

i=1

T∑
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(i)
t |s(i)
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(i)
≤t, w)


−DKL

(
q(w; θ)||p(w)

)
.

Specifically, we use the binary dropout formulation of Bayesian LSTMs (Gal & Ghahramani, 2016a),
wherein sampling a weight from the posterior w ∼ q(w; θ) is accomplished by sampling a binary
dropout mask from a fixed Bernoulli distribution (Gal & Ghahramani, 2016b). In this formulation,
the prior p(w) is approximately a Normal distribution, while the posterior is a Bernoulli (Gal et al.,
2016b). Our dynamics model p(s(i)

t+1, r
(i)
t |s(i)

≤t, a≤t, w) is a Gaussian distribution over the next state
s

(i)
t+1 and reward r

(i)
t with a diagonal covariance matrix, given the states s

(i)
≤t and actions a

(i)
≤t at all

previous timesteps. The choice to represent state transition dynamics as a Gaussian with a diagonal
covariance matrix is similar to past work (Gal et al., 2016a; Chua et al., 2018; Gamboa Higuera et al.,
2018; Chow et al., 2020; Eysenbach et al., 2022; Freed et al., 2023), with the primary difference being
that our dynamics model is recurrent. Specifically, we use an LSMT dynamics model, as we found
this to yield more stable gradient-based policy optimization compared to a simple feed-forward MLP.

During the policy training step, we train a Tanh-Gaussian policy (Haarnoja et al., 2018) to maximize
the expected cumulative reward predicted by our model. Depending on the environment, we found
that one of two methods yielded the best results. In both methods, we start by sampling a set of
weights from our approximate posterior (which corresponds to sampling a set of dropout masks). In
the first method, for each weight, we sample a set of initial states from the initial state distribution,
which we assume to be known. Subsequently, we sample a full T -length trajectory, starting from
each initial state, by iteratively sampling actions from the policy, followed by a reward and state
transition from the model. Given a batch of sampled trajectories, we compute the policy loss as
the negative total reward along the trajectory averaged across sampled trajectories, plus a policy
entropy bonus. Similar to Gamboa Higuera et al. (2018), we found that gradient clipping stabilized
policy optimization and improved results. We refer to this method as full-trajectory policy training,
because full-length trajectories are rolled out.

The second method of policy training that we employ is identical to that used by Hafner et al.
(2019), with the slight modification that trajectories are sampled using various dropout masks, and
trajectories are sampled in raw state space as opposed to latent space. In summary, states are
sampled uniformly from the data buffer, and trajectory segments of length H = 16 are sampled
starting from those states. Value estimates are then computed using a critic network and the
predicted trajectory rewards. The critic is then updated to produce more accurate value estimates,
and the policy is updated to produce higher value estimates. In either case, the dropout mask that
we use to sample a particular trajectory is held constant during the entire trajectory; this is to reflect
the fact that even though there is uncertainty in the dynamics model parameters w, the parameters
do not change during a single trajectory (Gal & Ghahramani, 2016a).

Model-Free RL We use Soft Actor-Critic (Haarnoja et al., 2018) as the off-policy MFRL com-
ponent of our algorithm. We found that standard SAC performed poorly when run off-policy;
therefore, we incorporate two modifications suggested by Ball et al. (2023) that we found yielded
superior off-policy performance while preserving SAC’s on-policy performance. Specifically, we used
layer normalization in our Q networks, and omit the entropy term from the Q network loss.

Lower Bound Estimation Using the posterior parameters θ obtained during the model learning
process and f = log, it is possible to compute a Monte-Carlo estimate of L as

L̂(πMF , πMB , θ, D) =
K∑

i=1

(
log p(D|wi)p(wi)

q(wi; θ) + log
(

Ĵ(πMB |wi)− Ĵ(πMF |wi)
) )

, (3)

for w1, ..., wK ∼ q(w; θ). Here, p(D|wi) is the probability of all state transitions and rewards in the
dataset given parameters wi, and Ĵ(πMB |w)i and Ĵ(πMF |wi) are themselves Monte-Carlo estimates
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of the expected return for the model-based and model-free policies respectively, computed by rolling
out a batch of M trajectories from the model using parameters wi and policies πMB and πMF ,
respectively. More details on the estimation of this bound are provided in Sec. A.2 of the Appendix.

We review some useful properties of L̂. As K → ∞ and M → ∞, by the law of large numbers,
L̂ → L. However, for K →∞ and finite M , by Jensen’s inequality, L̂ ≤ L. This property does not
change our algorithm in principle, because L̂ for finite M is still a lower bound on log(J(πMB |D)−
J(πMF |D)). The only practical implication in using L̂ in place of L is that the algorithm becomes
more conservative, preferring model-free RL more often, as it becomes more difficult to prove that
the model-based policy achieves a higher Bayesian return. When K is also finite, L̂ is stochastic,
and we can no longer say it is strictly a lower bound on log(J(πMB |D) − J(πMF |D)), though on
average it is. Practically, the stochasticity of L̂ injects some randomness into policy selection. We
did not find this to be an issue as long as a large enough value of K and M were used.

To check if the model-free policy is in the EPS, we must check whether L̂(πMB , πMF , θ, D) > log(0) =
−∞. Note that in (3), all terms except log

(
Ĵ(πMB |wi)− Ĵ(πMF |wi)

) )
will be defined and finite.

However, as Ĵ(πMB |wi) − Ĵ(πMF |wi) → 0 from the right, log
(
J(πMB |wi)− J(πMF |wi)

)
→ −∞.

Therefore, this term dominates L̂ when the model-free policy is on or near the boundary of the
relevant set, allowing us to simply check whether Ĵ(πMB |wi) − Ĵ(πMF |wi) > 0, ∀i = 1, ..., K.
This property is particularly convenient because it allows us to ignore the log p(D|wi) term, which
would normally require calling the model on the entire dataset.

4 Experiments

Our experiments seek to answer two questions:

1. Can Unified RL successfully combine the strengths of model-based and model-free RL? If
so, can Unified RL perform favorably compared to state-of-the-art prior work?

2. Is Unified RL effective in situations where either MBRL or MFRL alone fail?

We address question 1 in Sec. 4.1, and question 2 in Sec. 4.2. In our experiments, we consider
a range of challenging continuous control tasks from the OpenAI gym benchmark suite (Brock-
man et al., 2016), Deepmind Control Suite (DMC) (Tassa et al., 2018), and the ROBEL robotics
benchmark suite (Ahn et al., 2020). Specifically, we consider OpenAI gym Hopper, Walker, Ant,
and Half-Cheetah, as well as DMC Cartpole Swingup and ROBEL DClawTurnFixed. We make
two modifications to the standard environments for the sake of simplicity. First, we disabled early
episode termination in the OpenAI gym tasks, as early termination has been shown to cause issues
for MBRL (Wang et al., 2019). Second, because we are not focused on long time-horizon planning in
this work, we consider short time horizon tasks; specifically, we consider episode lengths of T = 100
for all OpenAI gym and DMC tasks, except for Hopper and Cartpole, which we considered episode
lengths of T = 200. We use the default episode lengths of T = 40 for DClawTurnFixed. We found
that these episodes were sufficiently long to allow agents to learn the desired behaviors.

4.1 Data Efficiency and Asymptotic Performance

To empirically evaluate the effectiveness of Unified RL at combining the strengths of model-based and
model-free RL, we compare Unified RL to its constituent model-based and model-free components
alone. For the fairest possible comparison, our SAC baseline includes the modifications discussed
in Sec. 3.2, though we found these to make little difference in SAC’s on-policy performance. We
also compare to several prior state-of-the-art approaches: Aligned Latent Models (ALM) (Ghugare
et al., 2022), Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2015), Twin Delayed
DDPG (TD3) (Fujimoto et al., 2018), Proximal Policy Optimization (PPO) (Schulman et al., 2017),
Stochastic Value Gradient (SVG) (Heess et al., 2015), and Hybrid Learning (HL) (Pinosky et al.,
2023). DDPG, TD3, and PPO are state-of-the-art model-free methods. ALM, SVG and HL are
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high-performing algorithms that combine aspects of model-based and model-free RL. For each al-
gorithm and each environment, hyperparameters were manually tuned, using the recommended
hyperparameters for that algorithm and environment as a starting point.
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Figure 2: Training curves on benchmark tasks. Solid lines indicate the average return per episode
across 5 runs, while shaded regions denote 95% confidence intervals. We find that Unified RL
successfully combines the strengths of both model-based and model-free RL. In environments where
either MBRL or SAC strictly dominates the other, Unified RL at least matches the better of these
two algorithms. In situations where MBRL learns faster initially but is eventually surpassed by
SAC, Unified RL achieves higher performance than either algorithm alone. Additionally, Unified RL
also performs favorably compared to the other baselines, and is the only algorithm we tested that
consistently performs well across all tasks.

We report our results in two ways. First, we show mean episode return vs. the number of environ-
mental steps in Fig. 2. Here, solid lines indicate average episode return averaged across 5 independent
random seeds, while shaded regions denote 95% confidence intervals. Second, we report the average
episode return across the entire training process for each algorithm, which is equivalent to area under
the learning curve divided by number of training steps, in Table 1. This statistic is relevant because
it blends both data efficiency and asymptotic performance into a single scalar performance metric.
Here again, we report the average return across 5 random seeds, with 95% confidence intervals.
We add an additional row to Table 1, labeled Max(SAC,MBRL), where we report the maximum
average episode return achieved between either SAC and MBRL. This row corresponds to a naive
strategy wherein both SAC and MBRL are run concurrently, with the best policy taken at the end
of training.

To determine the statistical significance of the results in Table 1, we performed a student t-test,
comparing each algorithm to the best-performing algorithm in each environment. Bold numbers in-
dicate algorithms that either achieved the highest average return in each environment, or algorithms
that were not significantly worse than the best-performing algorithm, according to our t-test. We
additionally performed a t-test to determine in which environments Unified RL significantly out-
performs Max(SAC,MBRL), and marked these results with asterisks. The final column in Table 1
is averaged normalized episode return, which is computed by normalizing all mean episode returns
for each environment to the interval between 0 and 1 to arrive at a value that is comparable across
environments, and averaging across all environments for each algorithm.
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Table 1: Mean episode return and 95% confidence intervals on benchmark tasks. Episodes return
was averaged across the entire training process to provide a quantitative performance metric that
balances data efficiency and asymptotic performance. Bold numbers indicate the highest-performing
algorithm for each environment, or any result that was not significantly worse than the best algo-
rithm. Asterisks (∗) denote environments in which Unified RL significantly outperformed both SAC
and MBRL. The final column denotes average normalized return across all environments. We find
that in 4 of the 6 environments tested (Ant, Hopper, Walker, and Half Cheetah), Unified RL achieves
significantly higher mean episode return compared to either MBRL or SAC, indicating that Unified
RL enables a synergy between both algorithms. Additionally, Unified RL is the only algorithm we
tested that performed consistently well across all tasks, and achieves the highest average normalized
return.

Ant Hopper Walker Half-
Cheetah Cartpole

DClaw-
Turn-
Fixed

Avg.
norm.
return

Unified RL (ours) 493.1 ± 9.9∗ 750.3 ± 2.4∗ 267.2 ± 5.9∗ 571.4 ± 3.5∗ 66.7 ± 0.3 940.5 ± 9.7 0.9211
SAC 457.3 ± 7.9 632.8 ± 13.6 229.4 ± 2.1 540.3 ± 11.5 67.5 ± 0.9 949.2 ± 10.7 0.7786
MBRL 310.8 ± 10.4 704.9 ± 16.0 253.2 ± 0.8 263.3 ± 48.3 64.6 ± 0.2 944.0 ± 22.6 0.6868
max(MBRL,SAC) 457.3 ± 7.9 704.9 ± 16.0 253.2 ± 0.8 540.3 ± 11.5 67.5 ± 0.9 949.2 ± 10.7 0.8535
ALM 187.7 ± 76.6 562.8 ± 6.2 127.2 ± 7.6 520.4 ± 26.6 31.5 ± 2.9 −252.1 ± 97.5 0.2760
DDPG 76.2 ± 6.4 541.6 ± 42.2 293.0 ± 21.2 421.9 ± 34.0 25.3 ± 3.7 855.9 ± 18.9 0.3888
SVG 443.8 ± 15.3 683.7 ± 13.8 163.4 ± 6.6 581.8 ± 21.4 65.0 ± 0.3 −704.5 ± 15.9 0.6041
TD3 203.8 ± 3.8 631.8 ± 27.4 249.8 ± 4.2 411.9 ± 22.5 32.6 ± 7.8 882.4 ± 26.5 0.5073
HL 318.6 ± 11.7 616.4 ± 4.5 280.1 ± 18.5 568.9 ± 8.2 66.6 ± 1.8 914.3 ± 40.4 0.7500
PPO 84.5 ± 1.6 582.2 ± 17.9 356.4 ± 11.9 103.7 ± 16.2 69.2 ± 0.1 −403.6 ± 56.2 0.3936

Our first observation is that Unified RL succeeds at combining the strengths of its two constituent
algorithms. Unified RL significantly outperforms both SAC and MBRL in 4 of the 6 environments
we tested, and achieves a higher average normalized return than SAC and MBRL. Furthermore,
Unified RL achieves a higher average normalized return than Max(SAC,MBRL), indicating that
Unified RL is a better strategy than simply running both SAC and MBRL concurrently, even
ignoring the fact that running both algorithms requires twice as many environmental interactions.
We find that in environments such as Ant and Half-Cheetah, where MBRL learns rapidly initially
but is eventually surpassed by SAC, Unified RL is able to learn as rapidly as MBRL and achieve
an asymptotic performance that is at least equivalent to SAC, indicating that Unified RL enables a
synergy between MBRL and MFRL. Finally, observe that of all the algorithms we tested, Unified RL
was unique in that it performed well across all tasks, and achieves the highest average normalized
return. Interestingly, in our experiments, ALM suffered from instability, which we found to be
caused by the shorter episode lengths (see Sec. A.2.7).

To gain a deeper insight into the policy-switching behavior of Unified RL, we visualize the fraction
of episodes that the agent chooses its model-free policy as training progresses in Fig. 3. We find
that in environments where MBRL offers high data efficiency, but MFRL offers higher asymptotic
performance, such as Ant, Half Cheetah, and Cartpole, Unified RL uses MBRL for a significant
fraction of episodes early in training, but switches almost exclusively to MFRL in later episodes.
In Walker, where MBRL outperforms MFRL, Unified RL very briefly uses MFRL, switching to
predominantly MBRL for the majority of training. Interestingly, in the Hopper environment, the
Unified RL uses a mixture of MFRL and MBRL throughout training. This may explain how Unified
RL is capable of outperforming both MFRL and MBRL alone.

4.2 Robustness to Failures of Model-Based and Model-Free RL

One of our central claims is that Unified RL helps avoid the objective mismatch problem by allowing
the agent to switch to MFRL when the model is misaligned (that is, ill-suited to helping the agent
improve its policy). To test this claim, we evaluate Unified RL on a task that we designed to induce
model misalignment in MBRL. Recall that distractors are components of the observation that are
predictable but task-irrelevant. Distractors exacerbate model misalignment, because typical model-
learning objectives do not prioritize the modeling of task-relevant observation components over
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Figure 3: Fraction of model-free episodes vs. training steps.

the task-irrelevant distractors. This results in models that do not accurately represent the task-
relevant components. In our experiments, we appended time-dependent sinusoids of fixed frequency
to the observations. Sinusoids were grouped together into groups of 10, where all 10 sinusoids in
a group had the same phase. Each group was assigned a random phase, preventing the model
from simply memorizing the distractors. Five such groups were appended to the observations. The
hyperparameters used for SAC, MBRL, and Unified RL for this experiment were identical to those
used in the original Ant environment.

The reward curves for this experiment are shown in Fig. 4. We observe that MBRL utterly fails
to make learning progress in the presence of distractors, while MFRL is much less affected. In
this experiment, Unified RL performed slightly better than MFRL (although not significantly so),
indicating that it is able to effectively fall back on MFRL when its model is misaligned.

We do not expect MFRL to always achieve higher asymptotic performance than MBRL in all en-
vironments; for example, MFRL may fail to escape a poor local minimum or have poorly tuned
hyperparameters. Unified RL has the advantage over other approaches such as MBRL with Model-
Free Fine Tuning (Nagabandi et al., 2018), which runs MBRL for a manually specified number of
episodes before switching to MFRL, in that Unified RL only switches to MFRL when the model-
based policy isn’t provably superior. Therefore, in situations where MFRL fails to learn effectively,
we expect Unified RL to utilize model-based learning exclusively. To test this claim, we compare the
performance of Unified RL to MBRL and SAC in the Ant environment, where the entropy penalty
for both SAC and the SAC component of Unified RL was set far higher than its ideal value. As
expected, this prevented SAC from learning effectively, both alone and within Unified RL. Indeed,
we found that Unified RL recognized that SAC was ineffective at solving the task, instead relied
exclusively on MBRL.

5 Related Work

Similar to Duff (2002); Deisenroth & Rasmussen (2011); Gal et al. (2016a); Chua et al. (2018);
Gamboa Higuera et al. (2018); Mehta et al. (2021; 2022), we consider a Bayesian formulation of
MBRL. The characteristic feature of these approaches is an explicit representation of uncertainty
in their estimate of the environmental dynamics. (Gal et al., 2016a), (Depeweg et al., 2017), and
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(Gamboa Higuera et al., 2018) are most similar to our approach, in that they use Bayesian neural
networks (BNNs) to represent beliefs over dynamics, and learn policies by backpropagating gradients
through model rollouts.
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Figure 4: Unified RL is robust to both failures in model-based
and model-free RL. (Left) We induce model misalignment by in-
troducing distractors into the observations of the Ant environ-
ment, which prevents model-based RL from learning effectively.
We find that, in this situation, Unified RL matches the perfor-
mance of model-free RL, indicating that Unified RL is robust to
failure of model-based RL. (Right) We induce failure of model-free
RL (SAC) by increasing the entropy bonus to a suboptimal value.
In this situation, we find that Unified RL matches the performance
of model-based RL, indicating that Unified RL is robust to failure
of model-free RL.

Several recent approaches have
been proposed for combin-
ing model-based and model-
free RL. For example, Hy-
brid Learning (Pinosky et al.,
2023) used a learned dynam-
ics model to determine an
optimal time to switch be-
tween a planned action se-
quence and a policy learned
using MFRL. Stochastic Value
Gradients (Heess et al., 2015)
proposed a spectrum of policy
gradient algorithms that range
from model-free methods with
value functions to model-based
methods without value func-
tions. Finally, Model-Based RL
with Model-Free Fine-Tuning
initialized MFRL with a pol-
icy trained for a fixed number
of episodes using MBRL. The
primary drawback to these ap-
proaches that is addressed in
our work is that they use hard-coded or heuristic methods for selecting which learning modality
to use in a given situation, rather than switching based on a measure of the model’s ability to
contribute to policy improvement.

Recent approaches for improving model alignment in MBRL optimized policies with respect to lower
bounds similar to L. For example, Luo et al. (2018) considered iteratively constructing lower bounds
that hold locally in policy space, which are then optimized jointly with respect to both the model
and policy. Eysenbach et al. (2022) and Ghugare et al. (2022) considered jointly optimizing a global
lower bound on policy performance with respect to both the model and policy parameters. Chow
et al. (2020) proposed an EM algorithm to jointly improve the model and the policy with respect to a
variational lower bound. One fundamental limitation of these approaches is that they do not address
the suboptimalities introduced by the fact that models have limited representational capacity. In
environments with complex dynamics that the model class is ill-suited to represent, a lower bound
on policy performance may differ significantly from the true objective we wish to optimize (i.e., L
will be a loose bound for the true objective J), resulting in a poorly aligned policy-learning objective
and suboptimal policies. Our approach builds on these ideas, but takes a fundamentally different
approach: rather than using the model to approximate a single optimal policy, we maintain a set of
policies that may be optimal, which is then refined by model-free RL, thereby avoiding over-reliance
on potentially inaccurate models.

6 Discussion and Limitations

Our approach has a few limitations that are worth noting. First, Unified RL introduces additional
computational overhead over either MBRL or MFRL alone, as it must perform both model-based
and model-free learning updates in each iteration. However, we argue that the data efficiency
improvements from Unified RL more than outweigh the additional computational cost, particularly
in real-world environments where most of the learning time is spent gathering data. For instance,
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in the Ant environment, Unified RL requires only 57% of the data of SAC to achieve 80% of its
maximum reward. SAC learning updates require only 0.008 s for every 10s of real-world data
(assuming an interaction rate of 10 Hz). Therefore, Unified RL will still require less wall-clock time
even if it increases the computational overhead by a factor of 945, ignoring the fact that model-based
and model-free updates can be parallelized. The details of this calculation are included in Sec. A.2.6
of the appendix.

Second, our approach does not incorporate intelligent exploration, and simply assume that the
best policy at any given iteration is the ideal policy to collect new data, be it model-based or
model-free. This assumption is potentially disadvantageous in environments that require extensive
exploration, where short-term reward should be sacrificed for the purposes of information gain. This
limitation could potentially be circumvented with a slight modification to the bound in (2) to include
an exploration bonus corresponding to an approximation of the amount of information gained by
executing a particular policy, similar to that used by Houthooft et al. (2016).

Finally, because Unified RL maintains separate model-based and model-free policies, but only collects
data from one in a given episode, at least one of the two policies will be performing some amount
of off-policy learning. This restricts our choice of model-free RL algorithm to off-policy algorithms,
such as SAC or Q-learning. Even though SAC is in principle an off-policy algorithm, we found
standard SAC to perform poorly when learning off-policy, requiring modifications to the Q learning
process (Sec. 3.2) (Ball et al., 2023). This limitation could potentially be avoided by modifying the
Unified RL algorithm to maintain one policy, that is updated with model-free RL, but constrained
to lie within the equivalent policy set. This could be accomplished by incorporating a constraint
into the model-free policy updates, similar to trust regions used in TRPO (Schulman et al., 2015)
and PPO (Schulman et al., 2017).

7 Conclusions and Future Work

In this work, we propose equivalent policy sets (EPS), which we define as the set of policies that
are not provably Bayes-suboptimal, according to bounds on policy performance constructed using
a model. The EPS provides a valuable tool for quantifying how inaccuracies in the model translate
into uncertainty in their estimate of the optimal policy. Using this tool, agents can better understand
in what situations models are useful, and when models should be abandoned in favor of model-free
learning updates. Based on this concept, we proposed Unified RL, a novel RL algorithm that com-
bines the relative strengths of model-based and model-free RL. Unified RL can be thought of as
a model-free RL algorithm, where the enacted policy is constrained to lie within the EPS. Unified
RL retains the data-efficiency benefits of model-based approaches by leveraging models to rule out
provably suboptimal policies. However, Unified RL avoids over-reliance on models and leverages the
asymptotic performance benefits of MFRL by using the MFRL whenever it is not provably subop-
timal. We show empirically on a wide range of challenging continuous control RL benchmarks that
Unified RL successfully combines the strengths of both MBRL and MFRL, significantly exceeding
the performance of either algorithm alone in 4 out of the 6 environments that we tested. We also
find that Unified RL outperforms a number of state-of-the-art model-based and model-free prior
approaches. Finally, we show that Unified RL learns effective policies in situations where either
model-based or model-free RL alone fail.

In future work, we plan to explore using latent dynamics models, similar to those used in Dreamer,
for Unified RL, as they have been shown to scale well to high-dimensional observation spaces and
complex dynamics (Hafner et al., 2019; 2020; Lin et al., 2023). Additionally, we plan to explore vari-
ants of Unified RL that combine more than two RL algorithms. For example, we may simultaneously
consider multiple MFRL algorithms, and select the best one for the situation, thereby combining
the strengths of a wider array of algorithms. This may allow Unified RL to more thoroughly explore
the entire set of policies contained within the EPS, rather than choosing between only two policies.
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A Appendix

A.1 Derivation of Lower Bound in eq. (2)

The difference in Bayesian return between policies π′ and π is given by

J(π′|D)− J(π|D) =
∫

W

p(D|w)p(w)
p(D) (J(π′|w)− J(π|w)) dw.

By introducing an approximate posterior q(w; θ), we can write the above expression as an expectation
over q,

J(π′|D)− J(π|D) = Eq

[
p(D|w)p(w)
q(w; θ)p(D) (J(π′|w)− J(π|w))

]
.

Let f̃ be a concave, monotonically increasing function. Taking f̃ of both sides and applying Jensen’s
inequality, we arrive at a lower bound on f̃(J(π′|D)− J(π|D)),

f̃(J(π′|D)− J(π|D)) = f̃

(
Eq

[
p(D|w)p(w)
q(w; θ)p(D) (J(π′|w)− J(π|w))

])

≥ Eq

[
f̃

(
p(D|w)p(w)
q(w; θ)p(D) (J(π′|w)− J(π|w))

)]
.

Finally, to arrive at L, we define a new concave monotonically increasing function f(x) = f̃(p(D)x)
and substitute this into the above expression to eliminate the constant p(D) term,
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f̃(J(π′|D)− J(π|D)) ≥ Eq

[
f

(
p(D|w)p(w)

q(w; θ) (J(π′|w)− J(π|w))
)]

= L(π, π′, θ, D).

To prove that π′ achieves higher Bayesian return than π, it is sufficient to show that L(π, π′, θ, D) >
f̃(0) = f(0), thus the data likelihood term p(D) is irrelevant in constructing the EPS.

A.2 Implementation Details

A.2.1 Model Architecture and Training

The dynamics model we used for all tasks consisted of a single linear input layer, followed by a
single-directional, single-layer LSTM cell (Hochreiter & Schmidhuber, 1997), followed by two linear
layers, and an output layer. The output layer consisted of four separate output heads, one each for
state mean, reward mean, state standard deviation, and reward standard deviation. The standard
deviation output heads used softplus activations to ensure their output was positive, while the mean
layers did not an activation function. ReLU activations were used for all other layers other than
the LSTM cell. State means were represented as learned deltas from previous states. That is, the
state mean output predicts the mean in the difference between the current and last state. All inputs
(states and actions) and outputs (state deltas and rewards) of the dynamics model were normalized
before each period of model training to be of mean zero and unit variance.

Before each layer other than the initial input layer, including each internal layer within the LSTM
cell, a binary dropout mask (Srivastava et al., 2014) was applied, which was used by Gal & Ghahra-
mani (2016a) and Gal & Ghahramani (2016b) to represent uncertainty in neural network parameters.
Crucially, both in training and when sampling rollouts, the dropout mask is held fixed across all
timesteps in a trajectory (Gal & Ghahramani, 2016b), while different dropout masks are sampled
across trajectories. The dynamics model was trained with the following loss computed on a batch
of trajectories sampled from the data buffer:

Lmodel = 1
B

B∑

i=1

T∑

t=0
(log p(st+1|st, at, wi) + log p(rt|st, at, wi)) + η

N
||W ||22

where B = 100 is the batch size, T is the episode length, wi is the dropout mask corresponding to
the ith trajectory, η is a factor that determines the length-scale of the prior (Gal & Ghahramani,
2016b), N is the number of trajectories in the training dataset, and W is the set of all learnable
parameters in the network.

A.2.2 Policy Architecture

Both model-based RL and SAC use a Tanh-Gaussian MLP policy with three layers, with Tanh
activations between layers. Policies used in MBRL have 1024 units in their hidden layers, while
policies used for SAC have 256. The policies have two output heads, one for mean and one for
standard deviation. The mean output head uses no activation function, while the standard deviation
head uses either a softplus activation to ensure that the standard deviation is positive, or a sigmoid
activation to force the standard deviation to be bounded. To force samples from the policy to fall
within the specified action range of the environment, samples are passed through a tanh function.

A.2.3 Critic Architecture

The critic network used for SAC was a state-action value function, while the critic used for MBRL
was a state value function. In either case, critics consisted of 3 layers with ReLU activations between
layers, with 256 units in each hidden layer.
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A.2.4 Lower Bound Estimation

As discussed in Sec. A.2.4, to check whether the model-free policy πMF is within the EPS, we need
only check whether Ĵ(πMB |wi) − Ĵ(πMF |wi) > 0, ∀i = 1, ..., K, where Ĵ(π|wi) is a Monte-Carlo
estimate of J(π|wi), the expected return for policy π given dynamics model parameters wi. In the
dropout formulation of BNNs, sampling wi corresponds to sampling a dropout mask, so we use wi

to denote a particular dropout mask. Therefore, to compute Ĵ(π|wi), we sample one dropout mask,
and sample M state-action-reward trajectories from our dynamics model and policy, from timesteps
t = 0 to T using that dropout mask, and average the return across those trajectories:

Ĵ(π|wi) = 1
M

T∑

t=0
rt,

for at ∼ π(at|st), rt ∼ p(rt|st, at, wi), and st+1 ∼ p(st+1|st, at, wi). Note that the dropout mask wi

is held constant across timesteps.

A.2.5 Hyperparameters

Table 2 contains the hyperparameters used for Unified RL for each task.

• K=Number of dropout masks sampled when computing L̂ ((3))

• M=Number of trajectories sampled when computing L̂ ((3))

• Policy training: whether the model-based policy is trained using full-trajectory policy train-
ing or Dreamer-style policy training, as described in Sec. 3.

• σmax: In some cases, we found it useful to bound the maximum value that the policy
standard deviation could take, by placing a sigmoid activation on the standard deviation
output of the policy and multiplying by a constant. We refer to this upper bound as σmax

• αMB : entropy bonus used for the model-based policy training

• αMF : entropy bonus used for SAC

• Automatic Entropy Tuning (MB policy): whether automatic entropy tuning is used for the
model-based policy (makes αMB irrelevant)

• Automatic Entropy Tuning (MF policy): whether automatic entropy tuning is used for the
SAC policy (makes αMF irrelevant)

• T: episode length

We additionally found it necessary to provide SAC with enough on-policy data by enforcing that at
least one out of every 10 episodes was run using the MFRL policy.

Table 2: Hyperparameters used in Unified RL

Environment K M Policy Training σmax αMB αMF Auto
Ent
Tuning
(πMB)

Auto
Ent
Tuning
(πMF )

T η

Ant 50 5 Dreamer None 0.2 - False True 100 200
Hopper 50 100 Full trajectory None 0.2 0.2 False False 200 100
Walker 50 100 Full trajectory 0.1 0.2 0.2 False False 100 100

Half Cheetah 50 5 Dreamer None 0.1 - False True 100 100
Cartpole 50 default Dreamer None 0.2 - False True 200 100

DClaw-TurnFixed 50 10 Full Trajectory None 0.2 0.2 False False 40 200
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A.2.6 Overhead Calculation

Here, we calculate the maximum permissible computational overhead increase of Unified RL over
SAC that would result in both algorithms reaching a particular threshold of performance in the same
amount of wall-clock time. We consider a threshold of 80% of the maximum performance of SAC,
and that Unified RL and SAC follow the same respective learning curves as the Ant environment.
Finally, we assume a realistic “real-world” interaction speed of 10 Hz, and an episode length of 100
timesteps, meaning that episodes last 10 seconds. We assume no parallelization, i.e., SAC updates,
model-based updates, and data collection all occur sequentially.

Tx = wall-clock time to reach performance threshold for algorithm x,

ex = number of learning episodes required to reach performance threshold for algorithm x
(eURL = 0.57eSAC because Unified RL requires 57% of the data of SAC),

c = factor of computational overhead increase from SAC to Unified RL,

ux = update time for algorithm x (uSAC = 0.008, uURL = cuSAC).

Setting the wall-clock times for each algorithm equal:
TSAC = TURL,

(10 + uSAC)eSAC = (10 + uURL)eURL.

Substituting in expressions from above and solving for c,

(10 + 0.008)eSAC = (10 + c(0.008))(0.57)eSAC .

c = 944.7.

This indicates that Unified RL updates can be up to 944.7x slower than SAC updates and still
require less wall-clock time to achieve the performance threshold.

A.2.7 ALM Results on Full-Length Trajectories

To determine the cause of the differences in results on Half-Cheetah and Ant reported by Ghugare
et al. (2022) and our ALM results, reported in Sec. 4, we ran ALM experiments in Half-Cheetah
and Ant with full, 1000-length episodes. We found that in Half-Cheetah, ALM performed better
than the results reported by Ghugare et al. (2022) (Fig. 5, left). In Ant, we found the results to
be comparable, although less stable, than those reported by Ghugare et al. (2022) (Fig. 5, left).
Because the only difference between these experiments and the ones we report in 4 is episode length,
we can conclude that this is the cause of the discrepancy in the results.
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Figure 5: Reward Curves for ALM in Half-Cheetah (left) and Ant (Right), with Full-Length
Episodes.
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Abstract

In this paper, we study the offline RL problem with linear function approximation.
Our main structural assumption is that the MDP has low inherent Bellman error,
which stipulates that linear value functions have linear Bellman backups with re-
spect to the greedy policy. This assumption is natural in that it is essentially the
minimal assumption required for value iteration to succeed. We give a computa-
tionally efficient algorithm which succeeds under a single-policy coverage condition
on the dataset, namely which outputs a policy whose value is at least that of any
policy which is well-covered by the dataset. Even in the setting when the inherent
Bellman error is 0 (termed linear Bellman completeness), our algorithm yields the
first known guarantee under single-policy coverage. In the setting of positive inher-
ent Bellman error εBE > 0, we show that the suboptimality error of our algorithm
scales with √εBE. Furthermore, we prove that the scaling of the suboptimality with√
εBE cannot be improved for any algorithm. Our lower bound stands in contrast

to many other settings in reinforcement learning with misspecification, where one
can typically obtain performance that degrades linearly with the misspecification
error.

1 Introduction

The study of reinforcement learning (RL) focuses on the problem of sequential decision making in
a stateful and stochastic environment, typically modeled as a Markov Decision Process (MDP). An
agent aims to maximize its expected reward over a finite time horizon H, also known as its value,
by choosing a policy, or a mapping from states to actions. In the offline (or batch) RL problem, an
agent’s only knowledge of its environment comes from a dataset D consisting of samples drawn from
the state transition distributions and reward functions of the MDP. Given D, the learning algorithm
aims to compute a policy π̂ whose value is at least as good as that of some reference policy π?.

A key challenge in offline RL is understanding how to choose the policy π̂ when the dataset D
exhibits incomplete coverage of the environment, meaning that the transitions from many states
are not represented in D. The naive approach to this problem would proceed via some variant
of value iteration. At each step h = H,H − 1, . . . , 1 of the time horizon, given a policy acting
at steps h′ > h, value iteration uses D to compute estimates of the value function of the policy,
which maps each state-action pair to the policy’s expected reward starting at that state-ation pair.
Value iteration then greedily chooses a policy at step h which maximizes this estimated value, and
proceeds to step h−1. Unfortunately, this approach suffers from the fact that state-action pairs which
are undercovered by the dataset D may have, due to random fluctuations in D, overly optimistic
estimates of their value. The chosen policy π̂ will then aim to visit such state-action pairs, which
could in fact be very suboptimal.
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A common approach to correcting the above issue is the principle of pessimism (e.g., Fujimoto et al.
(2019); Xie et al. (2021a); Liu et al. (2020); Yu et al. (2020); Jin et al. (2021)), which chooses π̂ so as to
maximize an underestimate of its value, where the underestimate is chosen according to constraints
that force it to be consistent with the dataset. By ensuring that π̂ takes actions whose value is
robust to random fluctuations in the dataset, pessimistic algorithms typically ensure a guarantee of
the following form: for any policy π? whose state-action pairs are well-covered by D, the value of
π̂ is guaranteed to be at least that of π?. The assumption made on π? here is typically known as
a single-policy coverage condition (formalized in Definition 2.2); along with several variants, it has
come to represent a gold standard for obtaining offline RL guarantees.

Function approximation & misspecification in offline RL. As the state and action spaces
encountered in practice tend to be large or infinite, much of the theoretical work on offline RL makes
function approximation assumptions, which introduce function classes Qh for steps h ∈ [H], whose
elements can be used to approximate the value function for a policy. Due to the complexity of the
offline RL problem, our understanding of the optimal guarantees attainable remains limited even
for the fundamental special case in which the classes Qh are linear, which is the focus of this paper.
Concretely, letting the state and action spaces be denoted by X and A, respectively, we assume
the following: for some known feature mappings φh : X × A → Rd, Qh is the class of functions
(x, a) 7→ 〈φh(x, a), w〉, where w ∈ Rd belongs to some bounded set. As an added benefit of focusing
on the linear setting, we will be able to obtain end-to-end computationally efficient algorithms,
without reliance on a regression oracle for Qh.
It is unreasonable to expect that elements of the classes Qh coincide exactly with the actual value
functions for the underlying MDP. Therefore, it is essential to understand the price paid by having
misspecification error in Qh. To quantify this misspecification error we use the inherent Bellman
error (Munos & Szepesvári, 2008; Munos, 2005), denoted εBE, which describes the maximum distance
between the Bellman backup of any function in Qh+1 with respect to the greedy policy and a best-
approximating function in Qh. The inherent Bellman error is particularly natural since it is exactly
what quantifies the degree to which value iteration succeeds: in particular, the regression problems
solved by value iteration are εBE-approximatly well-specified. As a result, it can be shown that, if D
covers the entire state space in an appropriate sense and the inherent Bellman error is bounded by
εBE, then value iteration produces a policy whose suboptimality may be bounded by poly(d,H) · εBE
(Munos & Szepesvári, 2008). Moreover, the linear growth of suboptimality error with respect to εBE
cannot be improved in general (Tsitsiklis & van Roy, 1996).

The results of Munos & Szepesvári (2008); Munos (2005) discussed above serve as a useful sanity
check on the reasonableness of low inherent Bellman error, but do little to address the problems
encountered in typical offline RL situations as a result of their stringent assumption that D covers
the full state space. In most such settings, ranging from autonomous driving to healthcare, one
should expect the offline data to be gathered in regions of the state space that result from executing
reasonably good policies. (For instance, one should not expect much offline data involving states
corresponding to driving a car off a cliff.) Thus, positive results under only single-policy coverage
conditions are much more desirable. Our main goal is to address the following question: is bound-
edness of the inherent Bellman error sufficient for computationally efficient offline RL under only
a single-policy coverage condition? Prior to our work, this question was open even for the special
case of 0 inherent Bellman error, which is typically known as linear Bellman completeness.

1.1 Main results

Our first result is a positive answer to our main question; to state it, we need the following notation
(introduced formally in Section 2). An offline RL algorithm takes as input a dataset D of size n,
consisting of n tuples (h, x, a, r, x′), denoting a sample of the transition at step h ∈ [H]: namely,
at state x, action a was taken, reward r was received, and the next state observed was x′. For
each h ∈ [H], let Σh denote the unnormalized covariance matrix of feature vectors in D at step h.
Moreover, for a policy π, let CD,π :=

∑H
h=1 ‖Eπ[φh(xh, ah)]‖nΣ−1

h
denote the coverage parameter for
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π with respect to D, which measures to what degree vectors in D extend in the direction of a typical
feature vector drawn from π. We denote the inherent Bellman error of the MDP by εBE ≥ 0.
Theorem 1.1 (Informal version of Theorem 3.1). There is an algorithm (namely, Algorithm 1)
which given the dataset D as input, outputs a policy π̂ at random so that for any policy π?, we have

E
[
V π

?

1 (x1)− V π̂1 (x1)
]
≤CD,π? · poly(d,H) ·

(√
εBE + 1√

n

)
.

Moreover, Algorithm 1 runs in time poly(d,H, n).

A notable feature of Theorem 1.1 is the fact that the suboptimality of π̂ scales with √εBE, which
contrasts with the linear scaling in εBE seen in classic works on offline RL (Munos & Szepesvári, 2008;
Munos, 2005) and recent works studying online RL under low inherent Bellman error (Zanette et al.,
2020a;b), as well as linear dependence on the misspecification error for other types of misspecification
in both online and offline RL settings (Xie et al., 2021a; Zanette et al., 2021; Nguyen-Tang & Arora,
2023; Jin et al., 2020b; Wei & Luo, 2021).1 We show below that, perhaps surprisingly, the square-root
dependence on εBE cannot be improved, even in a statistical sense:
Theorem 1.2 (Informal version of Theorem 4.1). Fix εBE ∈ (0, 1), n ∈ N, and set d = H = 2. There
are feature mappings φh : X ×A → Rd, h ∈ [H], where |A| = 4, so that for any (randomized) offline
RL algorithm A, the following holds. There is some MDP with inherent Bellman error bounded by
εBE, together with some policy π? so that CD,π? = O(1) yet the output policy π̂ of A satisfies

E
[
V π

?

1 (x1)− V π̂1 (x1)
]
≥ Ω

(√
εBE + 1√

n

)
.

We emphasize that Theorem 1.2 establishes a surprising separation between offline and online RL:
whereas in the online setting, as mentioned above, one can learn a policy whose suboptimality scales
linearly with εBE, the optimal scaling in the offline setting is linear in √εBE. Thus, misspecification
is more expensive in the offline setting, i.e., when one is not allowed to adaptively gather data.

Relation to prior work. Wang et al. (2021); Zanette (2021) showed exponential lower bounds for
offline RL under the assumption of all-policy realizability, which stipulates that the Q-value function
of all policies is linear (i.e., belongs to Qh). This lower bound is incomparable to that of Theorem 1.2:
whereas the inherent Bellman error of the instances in Wang et al. (2021); Zanette (2021) satisfies
εBE = Ω(1) (so that lower bounds of √εBE and εBE are indistinguishable), the instance used to prove
Theorem 1.2 does not satisfy all-policy realizability. Moreover, the lower bounds are unrelated on a
technical level.

A recent line of work has investigated a strengthening of all-policy realizability under which offline RL
can be achieved, known as Bellman restricted closedness (or often simply as (policy) completeness).
Under this condition, there are statistically efficient algorithms for offline RL with only single-policy
coverage, for general function classes Qh (Zanette et al., 2021; Xie et al., 2021a; Cheng et al., 2022;
Nguyen-Tang & Arora, 2023). Moreover, given a regression oracle for the class Qh which implements
a variant of regularized least-squares, many of these works (Xie et al., 2021a; Cheng et al., 2022;
Nguyen-Tang & Arora, 2023) show that the same offline RL guarantee can be obtained in an oracle-
efficient manner. Since regularized least-squares is computationally efficient when Qh is linear, it
follows that, under Bellman restricted closedness computationally efficient offline RL algorithms are
known (Xie et al., 2021a; Cheng et al., 2022; Nguyen-Tang & Arora, 2023; Zanette et al., 2021).

For a class Π of policies, an MDP satisfies Π-Bellman restricted closedness if the Bellman backup of
any function in Qh+1, with respect to any policy in Π, belongs to Qh (see Definition F.2). Generally

1Note that, in Xie et al. (2021a), the realizability error εF and policy completeness error εF,F appear in a square
root (see Theorem 3.1 of Xie et al. (2021a)), since the quantities εF , εF,F actually represent the mean squared errors.
Moreover, the cube-root dependence on εF , εF,F in Xie et al. (2021a) is suboptimal and is improved in Nguyen-Tang
& Arora (2023, Theorem 2).
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speaking, the above papers achieving the strongest bounds assume Π-Bellman restricted closedness
for the class Πsoft of softmax policies (Definition F.1) (Zanette et al., 2021; Nguyen-Tang & Arora,
2023). While technically speaking such an assumption is incomparable with linear Bellman com-
pleteness (i.e., 0 inherent Bellman error), the latter has the advantage of being universal in the sense
that it is defined so as to allow the fundamental approach of value iteration to succeed. In contrast,
Π-Bellman restricted closedness only enjoys a similar “universality” property when one takes Π to be
the class of all Markov policies, in which case Π-Bellman restricted closedness allows policy iteration
to succeed (Du et al., 2020, Theorem D.1). However, as we discuss further in Appendix A, in this
case Π-Bellman restricted closendess becomes significantly stronger than linear Bellman complete-
ness: in fact, if each state has two distinct feature vectors, then it becomes equivalent to the linear
MDP assumption (Jin et al., 2020a, Proposition 5.1).
Remark 1.1 (Confluence of terminology). Due to an unfortunate confluence of terminology, some
prior works in the literature (e.g., Uehara & Sun (2022)) refer to the setting of Π-Bellman restricted
closedness when the classes Qh are linear as “linear Bellman completeness”. We do not use this
convention, and use “linear Bellman completeness” to refer to the setting when the inherent Bellman
error is 0.

Finally, we remark that in the construction used to prove Theorem 1.2, the comparator policy π? is
not the optimal policy in the MDP. This observation suggests the following intriguing open problem:
if one further assumes that π? is the optimal policy, then can one improve the √εBE upper bound
in Theorem 1.1 to be linear in εBE, or does an analogue of Theorem 1.2 continue to hold?

Organization of the paper. In Section 2, we introduce preliminaries. In Section 3 we state and
discuss our upper bound, Theorem 3.1 (the formal version of Theorem 1.1), and in Section 4 we
state and discuss our lower bound, Theorem 4.1 (the formal version of Theorem 1.2). Appendix A
contains a detailed discussion of related work. The full proof of our upper bound is provided in
Appendices B and C, and the full proof of our lower bound is provided in Appendix D. Finally,
Appendices E and F contain additional useful lemmas.

2 Preliminaries

We consider the standard setting of a finite-horizon Markov decision process, which consists of a
tuple M = (H,X ,A, (PM

h )Hh=1, (rMh )Hh=1, x1), where H ∈ N denotes the horizon, X denotes the state
set, A denotes the action set, PM

h (· | x, a) ∈ ∆(X ) denote the transition kernels (for h ∈ [H]),
rMh : X ×A → [0, 1] denote the reward functions (for h ∈ [H]), and x1 ∈ X denotes the initial state.
We omit the superscript M from these notations when its value is clear.

A Markov policy (or simply policy) π is a tuple π = (π1, . . . , πH), where πh : X → ∆(A) for each
h ∈ [H]. We let ΠM denote the set of Markov policies. A policy π ∈ ΠM defines a distribution
over trajectories (x1, a1, r1, . . . , xH , aH , rH) ∈ (X × A × [0, 1])H , in the following manner: for each
h ∈ [H], given the state xh, an action ah is drawn according to ah ∼ πh(xh), a reward rh(xh, ah) is
received, and the subsequent state xh+1 is generated according to xh ∼ PM

h (· | xh, ah). We use the
notation EM,π[·] to denote expectaton under the draw of a trajectory from policy π in the MDP M ,
and we write Eπ[·] if the value of M is clear.

Fix an MDP M . The Q-value function and V -value function associated to a policy π ∈ ΠM in MDP
M are defined as follows: for h ∈ [H], x ∈ X , a ∈ A,

Qπh(x, a) := rh(x, a) + Eπ



H∑

g=h+1
rg(xg, ag) | (xh, ah) = (x, a)


 , V πh (x) := Qπh(x, πh(x)),

where for a function Q : X × A → R, we write Q(x, πh(x)) := Ea∼πh(x)[Q(x, a)]. We use the
convention that all rewards and value functions evaluate to 0 at step H + 1.
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Given h ∈ [H], a function Qh+1 : X × A → R, and a policy π ∈ ΠM, the Bellman backup
of Qh+1 with respect to π is the function Qh : X × A → R defined by Qh(x, a) := rh(x, a) +
Ex′∼Ph(x,a)[Qh+1(x′, πh+1(x′))]. It is straightforward to see that, for any π ∈ ΠM, Qπh is the Bellman
backup of Qπh+1 with respect to π, for each h ∈ [H].

The optimal policy πopt ∈ ΠM is defined as πopt := arg maxπ∈ΠM V π1 (x1).

2.1 Inherent Bellman Error

MDPs encountered in practical scenarios tend to have enormous state and action spaces. To address
this challenge, it is common to use function approximation assumptions, which consider function
classes Qh ⊂ RX×A and posit that the value functions for the optimal policy belong to Qh, i.e.,
Qπ

opt

h ∈ Qh for h ∈ [H]. As our goal is to obtain provable end-to-end computationally efficient
algorithms for offline RL, without reliance on intractable regression oracles, we focus on the setting
when the classes Qh are linear. In particular, for some dimension d ∈ N together with known feature
mappings φh : X × A → Rd, we take Qh := {(x, a) 7→ 〈φh(x, a), w〉 : w ∈ Rd}. For simplicity of
notation, we use the convention that φH+1(x, a) is the all-zeros vector for each x, a.

Generally speaking, prior work on offline RL in the linear setting (Zanette et al., 2021; Xie et al.,
2021a; Cheng et al., 2022; Gabbianelli et al., 2023; Nguyen-Tang & Arora, 2023) interprets elements
of the classes Qh as approximations of the Q-value functions Qπh, for all π belonging to some subset
Π ⊆ ΠM consisting of policies whose values the learning algorithm wishes to compete with. Accord-
ingly, these works make the assumption of Π-realizability, which posits that for all π ∈ Π and h ∈ [H],
Qπh ∈ Qh. This assumption is natural in that it is sufficient for correctness of the Least-Squares Policy
Iteration (LSPI) algorithm (Lagoudakis & Parr, 2003) (which assumes knowledge of the transitions
and rewards of M) for finding an optimal policy (Du et al., 2020, Theorem D.1). However, as
shown in Wang et al. (2021); Amortila et al. (2020); Zanette (2021), Π-realizability alone is insuf-
ficient for offline RL to succeed with polynomial sample complexity under our desired single-policy
coverage condition.2 Thus, it is typical to make the stronger assumption of Π-Bellman restricted
closedness (Zanette et al., 2021) (also known as policy completeness), namely that for all π ∈ Π and
Qh+1 ∈ Qh+1, there is some Qh ∈ Qh so that Qh(x, a) = Ex′∼Ph(x,a)[rh(x, a) +Qh+1(x′, πh+1(x′))].

Inherent Bellman error. Bellman-restricted closedness is an unwieldy assumption in that it
requires quantifying over both a policy and a value function at step h + 1. In this work, we study
offline RL under the alternative assumption of low inherent Bellman error (Zanette et al., 2020a), as
defined in Assumption 2.1 below. For h ∈ [H], write Bh := {w ∈ Rd : |〈φh(x, a), w〉| ≤ 1 ∀(x, a) ∈
X ×A}.
Assumption 2.1 (Low Inherent Bellman Error; Zanette et al. (2020a)). We say that a MDP M
has inherent Bellman error εBE if for each h ∈ [H], there is a mapping Th : Bh+1 → Bh so that

sup
θ∈Bh+1

sup
(x,a)∈X×A

∣∣∣∣〈φh(x, a), Thθ〉 − Ex′∼Ph(x,a)

[
rh(x, a) + max

a′∈A
〈φh+1(x′, a′), θ〉

]∣∣∣∣ ≤
εBE
2 . (1)

If M has inherent Bellman error εBE = 0, then we say that M is linear Bellman complete.

The assumption of linear Bellman completeness is sufficient for correctness of the Least-Squares Value
Iteration (LSVI) algorithm (Munos & Szepesvári, 2008; Munos, 2005), which assumes knowledge
of the transitions and rewards of M . This fact has made it a popular assumption under which to
study online RL, for which algorithms typically proceed via approximate variants of LSVI (Zanette
et al., 2020a;b). In contrast, as recent offline RL algorithms typically bear more resemblance to LSPI
(Zanette et al., 2021; Xie et al., 2021a; Cheng et al., 2022; Gabbianelli et al., 2023; Nguyen-Tang
& Arora, 2023), offline RL has not previously been studied under linear Bellman completeness as
opposed to Bellman restricted closedness. As discused in Section 3, one of the contributions of this
work is to draw connections between these two types of assumptions.

2In fact, these results rule out offline RL even under a stronger all-policy coverage condition.
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It is convenient to separate the components of Th capturing the rewards at step h and the transitions
at step h, as follows: an immediate consequence of Assumption 2.1 (see Zanette et al. (2021, Propo-
sition 2)) is that there are mappings T ◦h : Bh+1 → Bh for each h ∈ [H − 1] and a vector θr

h ∈ Bh for
each h ∈ [H] so that the below inequalities hold:

sup
θ∈Bh+1

sup
(x,a)∈X×A

∣∣∣∣〈φh(x, a), T ◦h θ〉 − Ex′∼Ph(x,a)

[
max
a′∈A
〈φh+1(x′, a′), θ〉

]∣∣∣∣ ≤εBE (2)

sup
(x,a)∈X×A

|rh(x, a)− 〈φh(x, a), θr
h〉| ≤εBE. (3)

It was observed in Zanette et al. (2020a, Proposition 5) that, in general, the assumptions of linear
Bellman completeness and ΠM-realizability are incomparable, in that neither one implies the other.
Moreover, it is straightforward to see that linear Bellman completeness is a strictly weaker condition
than ΠM-Bellman restricted closedness. For an arbitrary subset of policies Π ⊂ ΠM, linear Bellman
completeness may be incomparable to the assumption of Π-Bellman restricted closedness.

Finally, we make the following standard boundedness assumptions.
Assumption 2.2 (Boundedness). We assume the following:

1. For all h ∈ [H], x ∈ X , a ∈ A, we have ‖φh(x, a)‖2 ≤ 1.

2. For some parameter B ∈ R+: for all wh ∈ Bh, it holds that ‖wh‖2 ≤ B.

3. For all h ∈ [H], ‖θr
h‖2 ≤ 1 (and hence supx,a,h |rh(x, a)| ≤ 1).

The assumption that ‖φh(x, a)‖2 ≤ 1 together with the definition of Bh ensures that Bh contains a
ball of radius 1 centered at the origin.

2.2 Perturbed linear policies

Given w ∈ Rd, h ∈ [H], x ∈ X , define Ah,w(x) := arg maxa∈A〈w, φh(x, a)〉 ⊂ A, where arg max is
interpreted as the set of all actions maximizing 〈w, φh(x, a)〉.
Definition 2.1 (Perturbed linear policies). For σ > 0, h ∈ [H] and w ∈ Rd, define πh,w,σ : X →
∆(A) by

πh,w,σ(x)(a) = Prθ∼N (w,σ2·Id) (a ∈ Ah,θ(x)) .

In words, to draw an action a ∼ πh,w,σ(x), we draw θ ∼ N (w, σ2 · Id) and then play
arg maxa′∈A〈φh(x, a′), θ〉. We extend to the case that σ = 0 by taking a limit, i.e., define
πh,w,0(x)(x)(a) := limσ↓0 πh,w,σ(x)(a) (it is straightforward to see that this limit is well-defined).
Given σ ≥ 0, we denote the set of all πh,w,σ′ , where w ∈ Rd, σ′ ≥ 0 satisfy σ′/‖w‖2 ≥ σ,
by ΠPlin,σ

h , and ΠPlin,σ :=
∏H
h=1 ΠPlin,σ

h . Moreover, we write ΠPlin
h := ΠPlin,0

h =
⋃
σ≥0 ΠPlin,σ

h and
ΠPlin := ΠPlin,0 =

⋃
σ≥0 ΠPlin,σ.

Note that, for any c > 0, πh,cw,σ = πh,w,σ/c. We refer to the policies in ΠPlin as perturbed linear poli-
cies. Given a (possibly randomzied) policy πh : X → ∆(A), we use the convention that φh(x, πh(x))
refers to Ea∼πh(x)[φh(x, a)].

Gaussian smoothing. For θ ∈ Rd and σ > 0, we write

Nσ(θ) := N (0, σ2 · Id)(θ) = 1
(2π)d/2σd · exp

(
− 1

2σ2 ‖θ‖
2
2

)
.

Furthermore, for f : Rd → R, we write Sσf(θ) to denote the convolution of f with Nσ, namely

Sσf(θ) :=
∫

Rd
f(z)Nσ(θ − z)dz =

∫

Rd
f(θ − z)Nσ(z)dz = Ez∼N (0,σ2·Id)[f(θ − z)]. (4)

307



RLJ | RLC 2024

2.3 The offline learning problem

In the offline learning model, the algorithm is not allowed to interact with the environment. Rather,
it is given a dataset D consisting of tuples (h, x, a, r, x′), where r = rh(x, a) and x′ ∼ Ph(·|x, a).
We allow the values of h, x, a in the dataset D to be chosen in an arbitrary adaptive manner, as
formalized by the following assumption:
Assumption 2.3. We assume the dataset D = {(hi, xi, ai, ri, x′i)}ni=1 is drawn from a distribu-
tion satisfying the following conditions. For i ∈ [n], let Fi denote the sigma-algebra generated by
{(hj , xj , aj , rj , x′j)}i−1

j=1 ∪ {(hi, xi, ai)}. We assume that, for each i ∈ [n], conditioned on Fi, the
reward ri is equal to rhi(xi, ai) = 〈φhi(xi, ai), θr

hi
〉, and x′i ∼ Phi(xi, ai).

We remark that Assumption 2.3 is essentially the same as Assumption 1 of Zanette et al. (2021).
Based on the dataset D, the algorithm must output a policy π̂ whose value, V π̂1 (x1) is as large as
possible. Of course, it may be impossible to make V π̂1 (x1) very large if the dataset D does not
include states (hi, xi, ai) which explore certain directions of the feature space Rd. A large number
of conditions have been proposed in the offline RL literature which capture the degree to which D
exhibits good “coverage” properties of the state space. Our bounds depend on one of the weakest
such conditions, namely the following variant of single-policy coverage, which is identical to that in
Zanette et al. (2021).
Definition 2.2 (Coverage parameter). Given a dataset D as in Assumption 2.3, we define Σh :=∑
i:hi=h φhi(xi, ai)φhi(xi, ai)

>. For a policy π ∈ ΠM, its coverage parameter for the dataset D is

CD,π :=
H∑

h=1
‖Eπ[φh(xh, ah)]‖nΣ−1

h
.

In words, CD,π measures the degree to which an average feature vector drawn from π at each step h
lines up with directions spanned by feature vectors in D. We refer to Gabbianelli et al. (2023, Section
6), Nguyen-Tang & Arora (2023, Section 4), and Jiang (2023) for a detailed comparison between CD,π
and other coverage parameters considered in prior work. As discussed there, assuming boundedness
of CD,π is essentially the weakest coverage assumption in the literature, as many previous works
(e.g., Jin et al. (2021)) require instead boundedness of Eπ[‖φh(xh, ah)‖nΣ−1

h
], where the norm is

inside the expectation.

3 The offline actor-critic algorithm

In this section, we discuss our main upper bound, Theorem 3.1, which shows a performance guarantee
for the output policy π̂ of the Actor algorithm (Algorithm 1).
Theorem 3.1. Consider any dataset D with n examples drawn according to Assumption 2.3, as well
as parameters εfinal, δ ∈ (0, 1). Suppose εBE ≤ c0(BH)−2d−3 for some sufficiently small constant c0.
Then, for η set as prescribed in Definition C.1, Actor(D, εfinal, δ, η) (Algorithm 1) returns a policy
π̂ so that, with probability 1− δ the following holds: for any π? ∈ Π,

V π
?

1 (x1)− V π̂1 (x1)

≤O
(
d3/2BH · ε1/2

BE log(1/εBE) + BHd log1/2(dnBH/(εfinalδ))√
n

)
· (H + CD,π?) + εfinal.

The overall computational cost of Algorithm 1 is bounded above by poly(d,H, n, log(B/δ), 1/εfinal).

3.1 High-level proof overview

A key ingredient in the proof of Theorem 3.1 is a new structural condition (Theorem 3.2 below)
proving that MDPs with low inherent Bellman error satisfy Π-Bellman restricted closedness for the
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class of perturbed linear policies. To understand this result, we first consider the special case of
linear Bellman completeness, i.e., εBE = 0. In this case, we show (as a special case of Theorem 3.2)
that Πlin-Bellman restricted closedness holds, where Πlin denotes the class of linear policies, namely
those of the form x 7→ arg maxa∈A〈φh(x, a), θ〉, for some θ ∈ Rd. Unfortunately, when εBE is positive
but small, Πlin-Bellman restricted closedness may no longer hold even in an approximate sense. We
correct for this deficiency by modifying the policy class Πlin to instead consist of perturbed linear
policies (Definition 2.1).
Theorem 3.2 (ΠPlin,σ-Bellman restricted closedness; informal version of Corollary B.2). Suppose
that π ∈ ΠPlin,σ and h ∈ [H − 1]. Then there is a matrix T πh : Rd×d so that, for all w ∈ Rd and
(x, a) ∈ X ×A,

∣∣∣∣∣∣∣
〈φh(x, a), T πh w〉 − E

x′∼Ph(x,a)
a′∼πh+1(x′)

[〈φh+1(x′, a′), w〉]

∣∣∣∣∣∣∣
≤ Õ

(
‖w‖2d3/2 ·

(√
d+ 1

σ

))
· εBE. (5)

The proof of Theorem 3.2 proceeds by considering, for a pair (x, a) ∈ X × A, the function w 7→
Qh(w;x, a) := Ex′∼Ph(x,a)[maxa′∈A〈φh+1(x′, a′), w〉]. The key observation is that if πh+1 = πh+1,w,σ
is the perturbed linear policy specified by w ∈ Rd, σ > 0 (see Definition 2.1), then the second term
on the left-hand side of (5) may be expressed as follows in terms of the gradient with respect to w
of the Gaussian smoothing of Q:

∇wSσQ(x, a, w) = Ex′∼Ph(x,a)[φh+1(x′, πh+1,w,σ(x′))]. (6)

The existence of the desired matrix T πh as claimed by Theorem 3.2 then follows by using the fact
that |Qh(w;x, a)− 〈φh(x, a), T ◦h w〉| ≤ εBE (see (2)) as well as the fact that differentiating is a linear
operation. This argument must overcome a few challenges in the setting that εBE, σ > 0 due to the
fact that SσQ(x, a, w) is different from Q(x, a, w); full details are given in Appendix B.

We proceed to discuss the remainder of the proof of Theorem 3.1. Previous work (Zanette et al., 2021)
shows that, under Bellman restricted closedness with respect to a softmax policy class, an actor-
critic method suffices to obtain offline RL guarantees under single-policy coverage. While Bellman
restricted closedness does not hold in general for the softmax policy class under the assumption of
linear Bellman completeness (see Lemma F.1), we prove Theorem 3.1 by adapting the actor-critic
method in Zanette et al. (2021) to work instead with the set of perturbed linear policies. To explain
the requisite modifications, we briefly overview the actor-critic method: roughly speaking, the overall
goal is to solve the problem maxπ minM∈MD(π) V

M,π(x1), where MD(π) indicates a set of MDPs
which, under trajectories drawn from π, are statistically consistent with the dataset D. Moreover,
V M,π(x1) denotes the value of policy π in MDP M . Minimization over M ∈MD(π) corresponds to
the pessimism principle, and standard arguments (Xie et al., 2021a; Zanette et al., 2021) show that
an exact solution to this max-min problem would solve the offline RL task.

To solve this max-min problem in a computationally efficient manner, the actor-critic method uses
the “no-regret learning vs. best response” approach: a sequence of policies π(t) and MDPs M (t) ∈
MD(π(t)) is generated in the following manner. At each step t, a no-regret learning algorithm,
called the Actor, generates a policy π(t); in response, an optimization algorithm, called the Critic,
chooses M (t) ∈ MD(π(t)) so as to minimize V M(t),π(t)(x1). If T is chosen sufficiently large, then, as
shown in Zanette et al. (2021), a policy drawn uniformly from {π(t) : t ∈ [T ]} will have sufficiently
large value in the true MDP.

3.2 Algorithm description

In our setting, the Actor algorithm and its associated Critic (Algorithm 2) function similarly to
the Actor and Critic algorithms in Zanette et al. (2021). For an appropriate choice of the number
of iterations T , Actor repeats the following steps T times: at each iteration t ∈ [T ], Actor lets
θ

(t)
h be the sum of vectors w(s)

h for iterations s < t, and lets π(t)
h be a perturbed linear policy with
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Algorithm 1 Actor(D, εfinal, δ, η)
Require: Dataset D = {(hi, xi, ai, ri, x′i)}ni=1; parameters εfinal, δ ∈ (0, 1) and η > 0.
1: Define T, εapx, α, β as a function of n, εfinal, δ per Definition C.1.
2: for 1 ≤ t ≤ T + 1 do
3: for 1 ≤ h ≤ H do
4: Set θ(t)

h =
∑t−1
s=1 w

(s)
h .

5: Define π(t)
h := π

h,θ
(t)
h
,η
. . (See Definition 2.1)

6: Set (w(t)
1 , . . . , w

(t)
H ) = Critic(D, π(t), εapx, α, β, δ/(2T )), where π(t) = (π(t)

1 , . . . , π
(t)
H ). .

Algorithm 2
7: return a policy π̂ drawn as π̂ ∼ Unif({π(1), . . . , π(T )}).

Algorithm 2 Critic(D, π, εapx, α, β, δ)
Require: Dataset D = {(hi, xi, ai, ri, x′i)}ni=1; policy π ∈ ΠPlin; parameters εapx, α, β > 0.
1: For each h ∈ [H], let Ih ⊂ [n] denote the set of i so that hi = h.
2: For h ∈ [H], define Σh = Id +

∑
i∈Ih φh(xi, ai)φh(xi, ai)>.

3: For i ∈ [n], set φ̂πi ← EstFeature(x′i, π, hi + 1, εapx, δ/n). . Algorithm 3
4: Solve the following convex program with variables w, ξ ∈ RdH :

min〈w1, φ1(x1, π1(x1))〉 (7a)

s.t. wh = ξh + Σ−1
h

∑

i∈Ih
φh(xi, ai) ·

(
ri + 〈φ̂πi , wh+1〉

)
∀h ∈ [H] (7b)

‖ξh‖2Σh ≤ α2 ∀h ∈ [H] (7c)

‖wh‖22 ≤ β2 ∀h ∈ [H]. (7d)

5: return the solution w = (w1, . . . , wH) ∈ RdH of the convex program.

Algorithm 3 EstFeature(x, π, h, εapx, δ)
Require: State x ∈ X , policy π ∈ ΠPlin, step h ∈ [H], error εapx ∈ (0, 1), failure probability

δ ∈ (0, 1).
1: Choose w ∈ Rd, σ > 0 so that πh = πh,w,σ . (This is possible by definition of ΠPlin).
2: Choose N ← 2ε−2

apx log(2d/δ).
3: Draw N samples θ1, . . . , θN ∼ N (w, σ2 · Id).
4: return φ̂ := 1

N

∑N
i=1 φh(x, πh,θi(x)).

mean vector θ(t)
h . The vector θ(t)

h represents an aggregation of the pessimistic estimates of the
value function produced by the Critic at previous iterations. In turn, at time step t, the Critic
(Algorithm 2), given π(t) = (π(t)

1 , . . . , π
(t)
H ) as input, then produces vectors w(t)

h ∈ Rd for h ∈ [H],
which constitute a solution to the optimization problem (7). The program (7) has as its objective to
minimize the value at the initial state (namely, (7a)), subject to constraints that force w(t)

h to have
Bellman backups with respect to π(t) which are consistent with D (Eqs. (7b) to (7d)).

The main difference between Algorithms 1 and 2 and the approach in Zanette et al. (2021) is the
choice of the policies π(t)

h in the Actor (Algorithm 1). While we take π(t)
h to be a perturbed linear

policy corresponding to θ(t)
h and an appropriate choice of the noise parameter η, in Zanette et al.
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(2021), π(t)
h was taken to be a softmax policy corresponding to θ

(t)
h , with an appropriate choice

of temperature. As we discuss further in Appendix C.2, our choice of π(t)
h implicitly leads π(t)

h (x)
to implement the no-regret follow-the-perturbed-leader algorithm at each state x. In contrast, the
softmax policy from Zanette et al. (2021) corresponds to the exponential weights algorithm. This
difference is crucial to allow us to use Theorem 3.2 to ensure that the program (7) is feasible and
outputs a pessimistic estimate of the value function V π(t)

1 (x1), for each t ∈ [T ]. The settings of the
parameters in our algorithms are given in Definition C.1 in the appendix. We remark here that the
optimal choice of the size η of the perturbation turns out to scale proportionally to √εBE, which leads
to the scaling of the error with √εBE in Theorem 3.1. The full details of the proof of Theorem 3.1
may be found in Appendix C.
Remark 3.1 (Relation to prior work: Bellman restricted closedness). We point out that many
works on offline RL consider similar actor-critic methods to ours in the setting of general function
approximation (Zanette et al., 2021; Xie et al., 2021a; Cheng et al., 2022; Nguyen-Tang & Arora,
2023), generally under the assumption of Π-Bellman restricted closedness for various policy classes
Π. While some of these results are sufficiently general to be instantiated in our setting (of low inher-
ent Bellman error) using Theorem 3.2, which establishes (approximate) ΠPlin,σ-Bellman restricted
closedness when εBE is small, none of the resulting implications will be as strong as Theorem 3.1,
either suffering from suboptimal statistical rates or computational intractability. We defer detailed
discussion to Appendix A.

4 Lower bounds

In this section we state Theorem 1.2 formally below as Theorem 4.1, and sketch its proof (which is
provided in full in the appendix).
Theorem 4.1. Let εBE ∈ (0, 1) and n ∈ N be given, and set d = H = 2. Then there are state and
action spaces X ,A with |A| = 4 as well as feature mappings φh : X ×A → Rd (h ∈ [H]), so that the
following holds, for any offline RL algorithm A. There is some MDP M which has inherent Bellman
error with respect to the feature mappings φh bounded by 2εBE and which satisfies Assumption 2.2,
some distribution over datasets D satisfying Assumption 2.3, and some policy π? ∈ ΠPlin so that:
CD,π? = O(1) with probability 1 over the draw of D yet the output policy π̂ of A satisfies

E
[
V π

?

1 (x1)− V π̂1 (x1)
]
≥ Ω

(√
εBE + 1√

n

)
, (8)

where the expectation is over the draw of D and the randomness in A.

Proof overview for Theorem 4.1. To explain the idea behind Theorem 4.1, we first consider the
following “toy setup”: suppose that H = d = 2, A = {0, 1}, that rewards at step h = 1 are known to
be 0, and rewards at step h = 2 are known to be induced by a coefficient vector θr

2 ∈ {(1, 1), (−1, 1)}.
Concretely, this type of uncertainty in θr

2 may be implemented by having a dataset D for which all
feature vectors at step 2 are parallel to (0, 1); thus, the first coordinate of θr

2 may remain unknown.

Consider an MDP with states x2, x
′
2 ∈ X so that, for each a ∈ A, (x1, a) transitions to either x2 or

x′2, but which one is unknown. Moreover suppose that feature vectors at x2, x
′
2 are given as follows:

for a ∈ {0, 1},

φ2(x2, a) = (1− 2a, 1− (1− 2a) · εBE/2), φ2(x′2, a) = (1− 2a, 1 + (1− 2a) · εBE/2). (9)

We may ensure that the transitions described above are consistent with the requirement that the
inherent Bellman error be bounded by εBE, since the feature vector φ2(x2, a) is within distance εBE
from φ2(x′2, a) for each a.

At a high level, our lower bound results from the following consideration: suppose the policy we wish
to compete with at step 2, namely π?2 , takes a uniformly random action at step 2 (so that its expected
feature vector at step 2 is (0, 1)). Not knowing any information about the first coordinate of θr

2, a
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natural choice for π̂2 is the “naive” policy that maximizes the reward in the one “known” direction
(0, 1), i.e., let π̂naive

2 be the linear policy which, at state x, chooses arg maxa∈A〈φh(x, a), (0, 1)〉.
However, this choice suffers from the issue that, due to the εBE perturbation between φ2(x2, a) and
φ2(x′2, a), π̂naive

2 will choose an action a at step 2, whose feature vector is either (1, 1 + εBE/2) (if x1
transitions to x′2) or (−1, 1 + εBE/2) (if x1 transitions to x2). By choosing θr

2 = (−1, 1) in the former
case and θr

2 = (1, 1) in the latter case, we can thus force this naive choice π̂naive
2 to have suboptimality

−Ω(1) compared to π?2 . This issue stems from the fact that the policy π̂naive
2 is extremely brittle

to small perturbations of φ2(x2, a): a change of size εBE in each of the feature vectors leads to a
Ω(1)-size change in the actual feature vector chosen by π̂naive

2 .

Of course, in this specific example, one can simply instead set π̂2 to be the policy which chooses each
action at step 2 with probability 1/2, which will lead to a policy π̂ whose value is within O(εBE) of
π?. Roughly speaking, doing so corresponds to considering a perturbed linear policy, in the vein of
Theorem 3.2. We can show, however, that such a perturbation must hurt the value of π̂, for some
alternative choice of MDP. Formally, we add transitions to states x(`)

2 at step 2 with state-action
feature vectors φ2(x(`)

2 , a) = (1−2a, 1±(1−2a) ·` ·εBE), for each value of ` ∈ {1, 2, . . . , b1/√εBEc}. A
suboptimality of Ω(√εBE), with respect to some reference policy π?, arises because avoiding it would
require π̂2 to act in a way consistent with the naive policy π̂naive

2 (i.e., without perturbation) at states
with features φ`, for ` = Ω(1/√εBE). (At such states, the second component of the feature vectors
deviates from 1 by enough that it cannot be “ignored”.) But because the MDP has inherent Bellman
error of εBE, similar reasoning to the previous paragraph shows that the algorithm’s output policy
π̂ cannot act significantly differently at states with feature vectors φ2(x(`)

2 , a), φ2(x(`−1)
2 , a), for each

value of ` and a. Since, per the previous paragraph, the algorithm must add large perturbations to
π̂2 for ` = O(1), we will ultimately reach a contradiction. There are many details we have omitted
from this high-level description, such as ensuring that D satisfies the requisite coverage property
with respect to π?, and the fact that we wish to allow the algorithm to output arbitrary choices of
π̂, and not just perturbed linear policies – the full details are in Appendix D.
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A Detailed comparison to related work

In this section, we discuss prior work on offline RL with function approximation and compare existing
provable guarantees to our own.

Actor-critic methods. As mentioned above, the most closely related work is Zanette et al. (2021),
which proves an analogous upper bound to ours for the special case of linear MDPs. More generally,
the results of Zanette et al. (2021) apply to the broader class of MDPs satisfying Bellman restricted
closedness, which requires that the Bellman backup of any linear function under any policy is (ap-
proximately) linear in the features. In contrast, the weaker condition of low inherent Bellman error
(Assumption 2.1) requires that the Bellman backup of any linear function under the single policy
induced by that linear function is approximately linear. Intuitively, the fact that Bellman restricted
closedness requires that Bellman backups under all poicies be linear places it much “closer” to the
assumption of linear (i.e., low-rank) MDPs than to low inherent Bellman error. This intuition is
formalized in Jin et al. (2020a, Proposition 5.1), which shows that under the mild additional as-
sumption that each state has at least two distinct feature vectors, then Bellman restricted closedness
implies that the MDP is a linear MDP.

Several works have studied actor-critic methods in the setting of general function approximation,
beginning with Xie et al. (2021a). In particular, Xie et al. (2021a) considers the setting of a gen-
eral function class F ⊂ [0, 1]X×A and policy class Π ⊂ ∆(A)X , and assumes that (F ,Π) satisfy
approximate realizability and completeness.3 Their first result, namely Xie et al. (2021a, Theorem
3.1), establishes a computationally inefficient algorithm for offline RL based on the principle of
Bellman-consistent pessimism. One may use Corollary B.2 together with an appropriate choice of
σ to instantiate their result with Π = ΠPlin,σ and F = {(x, a) 7→ 〈φh(x, a), w〉 : h ∈ [H], w ∈ Rd}

3Formally, to satisfy the realizability and completeness assumptions of Xie et al. (2021a), it suffices that for all
h ∈ [H], supπ∈Π,fh+1∈F inffh∈F ‖fh − T πh fh+1‖∞ ≤ ε.
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to obtain a computationally inefficient version of Theorem 3.1.4 Finally, Xie et al. (2021a) establish
an algorithm, PSPI, which is oracle-efficient given an oracle for F which can solve a certain regu-
larized least-squares problem. However, this result requires taking Π to be a softmax policy class,
for which approximate Bellman completeness does not in general hold under Assumption 2.1 (see
Lemma F.1). Thus, PSPI cannot be combined with Corollary B.2 to achieve an efficient algorithm
under the assumption of low inherent Bellman error. (Moreover, their rate of O(n−1/3) (Xie et al.,
2021a, Corollary 5) is suboptimal.)

Subsequently, Cheng et al. (2022) considered a similar setting, with general function and policy
classes (F ,Π) satisfying approximate realizability and completeness. Their algorithm, ATAC, imple-
ments the actor using a generic no-regret learning algorithm, and implements the critic by solving a
Lagrange relaxation of a least-squares regression problem. When combined with our main structural
result, Corollary B.2, it is possible to use ATAC to obtain an end-to-end computationally efficient
learning algorithm for offline RL under Assumption 2.1. In particular, one may take Π to be the
class of perturbed linear policies, the no-regret learning algorithm to be expected FTPL (i.e., Al-
gorithm 4), and one may implement the critic, which a priori appears to require minimizing a
nonconvex quadratic function, using the approach in Xie et al. (2021a, Appendix D) (see also Antos
et al. (2006)). However, due to the Lagrangian term in the critic’s optimization problem, the result-
ing rate (see Cheng et al. (2022, Theorem 5)) is worse than ours, scaling with O(n−1/3). We remark
that Cheng et al. (2022) also considers the problem of robust policy improvement, which shows that if
the data is drawn from a behavior policy, then the algorithm’s output performs nearly as well as the
behavior policy, with no assumptions on the hyperparameters, no dependence on any concentrability
coefficient, and no assumption of Bellman completeness. Recently, Nguyen-Tang & Arora (2023)
has given a refined analysis of ATAC which obtains the optimal O(n−1/2) statistical rate, though only
in the case when the policy class is the softmax policy class and Bellman completeness holds with
respect to this class (which is not the case under Assumption 2.1).

Finally, Zhu et al. (2023) introduces an algorithm, A-Crab, which is similar to ATAC but incorporates
the idea of marginalized importance sampling. As we discuss in the following paragraph, this ap-
proach cannot be instantiated in the setting of low inherent Bellman error to yield computationally
or statistically efficient guarantees for offline RL in full generality.

Approaches via marginalized importance weighting. In addition to A-Crab, many other
works, starting with Xie et al. (2019) have considered the approach of marginalized importance
sampling (MIS), which introduces an additional bounded function class W consisting of importance
weights. Elements ofW may be interpreted as possible values for the density ratio between the state-
action visitation distribution of the policy π? one wishes to compete with and the data distribution.
A line of work, including CORAL (Rashidinejad et al., 2023), PRO-RL (Zhan et al., 2022), PABC (Chen &
Jiang, 2022), MLB-PO (Jiang & Huang, 2020) and that of Ozdaglar et al. (2023), makes the assumption
that W contains the density ratio for π?, amongst other assumptions. Generally speaking, these
algorithms implement pessimism for offline RL using primal-dual methods applied to the linear
programming formulation of policy optimization. The introduction of W allows many of them to
establish upper bounds even in the absence of Bellman completeness.

Several factors prevent such approaches from implying bounds similar to our own for the setting of
MDPs satisfying linear Bellman completeness. First, all of the above works assume the existence
of an oracle for optimizing over the class W, which would translate into an intractable nonlinear
optimization problem in the setting of linear Bellman completeness. More fundamentally, it can
be impossible to satisfy the assumption of realizability with respect to W: even if we only wish to
compete with a single policy π?, there is a classM of linear Bellman complete MDPs so that there

4The resulting single-policy coverage parameter is somewhat larger than our own, though a subsequent observation
by the authors of Xie et al. (2021a) (see Jiang (2023)) leads to a tightening of their analysis which results in a matching
coverage parameter.
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is no distribution µh for which supM∈M
∥∥∥∥
dπ
?,M
h

(x,a)
µh(x,a)

∥∥∥∥
∞

is bounded.5 Since the above results require

that dπ
?,M
h

(x,a)
µh(x,a) belongs to W for any M ∈M, a bounded class W of importance weights, satisfying

realizability for the model classM, does not exist.

Uehara et al. (2023) analyses a primal-dual approach of a slightly different nature, but with the
common goal of relaxing Bellman completeness at the cost of assuming realizability of a suitable
class of Lagrange multipliers. Finally, Gabbianelli et al. (2023) uses a similar primal-dual method
applied to the LP formulation of policy optimization as many of the above approaches, but only
treats the special case of linear MDPs. Due to this additional structure, Gabbianelli et al. (2023)
does not need to explicitly make any assumptions regarding a class W.

Linear MDPs: pessimistic value iteration. In contrast to the above approaches, which phrase
the problem of finding a pessimistic value function as a global optimization problem, a line of
work, including PEVI (Jin et al., 2021), VAPVI (Yin et al., 2022), R-LSVI (Zhang et al., 2022), and
LinPEVI-ADV (Xiong et al., 2023) has considered a local approach to implementing pessimism. In
particular, these algorithms perform value iteration but subtract “penalties” at each state which are
inversely proportional to how well the state is visited in the given dataset. Since the penalties do
not necessarily have Bellman backups which are linear functions, these approaches do not directly
generalize to the setting of linear Bellman complete MDPs.6 The approach of pessimistic value
iteration has also been extended to settings with nonlinear function approximation (Di et al., 2023).

Additional approaches for offline RL with function approximation. An older line of work
(Munos & Szepesvári, 2008; Chen & Jiang, 2019) has studied offline RL under the stronger as-
sumption of all policy concentrability, meaning that the data distribution covers the state-action
distribution of any policy. These approaches proceed via variants of fitted Q-iteration, and therefore
require approximate realizability and Bellman completeness in the setting of general function ap-
proximation. Xie & Jiang (2021) show that the assumption of Bellman completeness can be avoided
under an even stronger concentrability assumption. Liu et al. (2020) analyzes pessimistic variants
of value and policy iteration with only single-policy concentrability, under somewhat non-standard
assumptions regarding completeness with respect to truncated Bellman backups. In the special case
of tabular MDPs, Rashidinejad et al. (2021); Shi et al. (2022); Xie et al. (2021b) have focused on ob-
taining the optimal polynomial dependence on the various problem parameters, under single-policy
concentrability. Finally, several works have considered model-based offline RL (Ross & Bagnell,
2012; Chang et al., 2021; Uehara & Sun, 2022; Bhardwaj et al., 2023), which construct an estimate
of all of the MDP’s transitions and rewards (perhaps pessimistically) as opposed to estimating the
value functions.

Finally, we mention that in a distinct setting to ours (namely, that of nonlinear dynamical systems),
Block et al. (2023) use the idea of injecting Gaussian noise into the learned policy to establish guar-
antees (see Definition 5.3 therein). This technique is analogous to our technique of using perturbed
linear policies.

Lower bounds. Wang et al. (2021); Amortila et al. (2020) show an exponential lower bound
for offline RL even when the value function for any policy is assumed to be linear in some known
features, and when the distribution of the data has good coverage of all feature directions. Zanette
(2021) shows a similar exponential lower bound, but which is stronger in that it holds no matter
how the distribution of offline data is chosen. Finally, Foster et al. (2021) shows a lower bound for
offline RL in a nonlinear setting when the stronger assumption of concentrability is made. Taken
together, these results may be seen as motivating the assumption of Bellman completeness: when

5For instance, consider a class of MDPs for which an initial state-action pair (x1, a1) transitions deterministically
to any of infinitely many copies of some state, denoted x1

2, x
2
2, . . ., each of which is equivalent in the sense that

φ2(xi2, a) = φ2(xj2, a) for all a ∈ A, i 6= j.
6Moreover, a necessary truncation step in pessimistic value iteration presents another obstacle to extending this

approach to our setting.
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only realizability (as well as an appropriate coverage or concentrability notion) is assumed, little is
possible.

B Low Inherent Bellman Error: Structural Properties

In this section, we prove Theorem 3.2 (restated below formally as Corollary B.2), which shows that
the Bellman backup of any linear function at step h+ 1, with respect to any perturbed linear policy,
is an approximately linear function at step h. The main ingredient in the proof of Corollary B.2 is
Lemma B.1 below, which shows that the expected feature vector induced by a perturbed linear policy
at step h+ 1 is a linear transformation of the state-action feature vector at step h. Lemma B.1 is a
generalization of Lemma 4.3 of Golowich & Moitra (2024), which treats the special case of εBE = 0
and used the result to develop an efficient algorithm for the related setting of online RL under linear
Bellman completeness.
Lemma B.1. Suppose that the MDP M has inherent bellman error bounded by εBE, and fix σ > 0.
Then for each h ∈ [H] and w ∈ Rd, there is a linear map Lh,w,σ : Rd → Rd so that for all
(x, a) ∈ X ×A,

∥∥L>h,w,σ · φh(x, a)− Ex′∼Ph(x,a)[φh+1(x′, πh+1,w,σ(x′))]
∥∥

2

≤CB.1εBEd
3/2 ·

(√
d log(d/(εBEσ)) + 1

σ

)
,

for some constant CB.1. Moreover, for any w,w′, σ, σ′ for which πh+1,w,σ(x′) = πh+1,w′,σ′ for all
x′ ∈ X , we have Lh,w,σ = Lh,w′,σ′ .

Given a perturbed linear policy πh+1 ∈ ΠPlin
h+1, so that πh+1 = πh+1,θ,σ for some θ ∈ Rd, σ > 0, we

define T πh+1
h w := θr

h + Lh,θ,σ · w, where Lh,θ,σ is the map of Lemma B.1 and where θr
h was defined

in Assumption 2.1. Note that T πh+1
h is well-defined in the sense that it only depends on πh+1 (and

not on the particular choice of θ, σ), since for any θ, σ, θ′, σ′ satisfying πh+1,θ,σ = πh+1,θ′,σ, we have
by Lemma B.1 that Lh,θ,σ = Lh,θ′,σ′ . We will at times abuse notation by writing T πh := T πh+1

h for
a policy π ∈ ΠPlin. Given Lemma B.1, the proof of Corollary B.2, stated below, is straightforward.
Corollary B.2. Suppose that π ∈ ΠPlin,σ. Then for all h ∈ [H − 1], w ∈ Rd, and (x, a) ∈ X ×A,

∣∣〈φh(x, a), T πh w〉 −
(
rh(x, a) + Ex′∼Ph(x,a)[〈φh+1(x′, πh+1(x′)), w〉]

)∣∣ ≤ ‖w‖2 · ζσ, (10)

where ζσ = CB.2εBEd3/2 ·
(√

d log(d/(εBEσ)) + 1
σ

)
, for some constant CB.2. Moreover, if ζσ ≤ 1,

then T πh w ∈ (1 + 2‖w‖2) · Bh.

Proof. The inequality (10) follows directly from Lemma B.1 and the definition of T πh , as well as (3).
To see that T πh w ∈ (1 + 2‖w‖2) · Bh, we note that, by (10), for all (x, a) ∈ X ×A,

|〈φh(x, a), T πh w〉| ≤ 1 + ‖w‖2 + ‖w‖2 · ζσ ≤ 1 + 2‖w‖2,

since ζσ ≤ 1.

As a further corollary of Corollary B.2, the Q-function for a perturbed linear policy is linear.
Corollary B.3. Suppose that M is linear Bellman complete, σ > 0, and that π ∈ ΠPlin,σ. Then for
each h ∈ [H], there is a vector wπh ∈ 2H · Bh ⊂ Rd so that for all (x, a) ∈ X ×A,

|Qπh(x, a)− 〈wπh , φh(x, a)〉| ≤ 3(H + 1− h)HB · ζσ,

where ζσ is as defined in Corollary B.2. Moreover, if 3HBζσ ≤ 1, then wπh ∈ 2H · Bh and ‖wπh‖2 ≤
2HB.
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Proof. We use reverse induction on h; the base case h = H is immediate, so suppose the statement
holds at step h+ 1. By Assumption 2.1 and Corollary B.2, we have that for all (x, a) ∈ X ×A,

∣∣rh(x, a) + Ex′∼Ph(x,a)[〈φh+1(x′, πh+1(x′)), wπh+1〉 − 〈φh(x, a), T πh wπh+1〉
∣∣

≤εBE + ζσ · ‖wπh+1‖2.

Let us write wπh := T πh wπh+1, Since Qπh(x, a) = rh(x, a)+Ex′∼Ph(x,a)[Qπh+1(x, πh+1(x))], the inductive
hypothesis then gives us that

|Qπh(x, a)− 〈wπh , φh(x, a)〉|
≤Ex′∼Ph(x,a)[|Qπh+1(x′, πh+1(x′))− 〈wπh+1, φh+1(x′, πh+1(x′))〉|]

+
∣∣rh(x, a) + Ex′∼Ph(x,a)[〈φh+1(x′, πh+1(x′)), wπh+1〉 − 〈φh(x, a), wπh〉

∣∣
≤3(H − h)HB · ζσ + (εBE + ζσ · ‖wπh+1‖2) ≤ 3(H + 1− h)HB · ζσ, (11)

where the final inequality uses that εBE ≤ ζσ. To see the upper bound on ‖wπh‖2, note that, by
definition of Qπh and (11), we have |〈wπh , φh(x, a)〉| ≤ H + 3(H + 1 − h)HBζσ ≤ 2H for all x, a, h,
where we have used that 3HBζσ ≤ 1. Then it follows that ‖wπh‖2 ≤ 2HB by Assumption 2.2.

Proof of Lemma B.1. We may assume without loss of generality that ‖w‖2 = 1, by increasing σ by a
factor of 1/‖w‖2. Fix h ∈ [H]. For x′ ∈ X and w ∈ Rd, define V (x′, w) := maxa′∈A〈φh+1(x′, a′), w〉.
For x ∈ X , a ∈ A, w ∈ Rd, define Q(x, a, w) = Ex′∼Ph(x,a)[V (x′, w)]. Since A,X are assumed to be
countable, the mapping w 7→ Q(x, a, w) is piecewise linear with countably many pieces (and is also
continuous). Next, Assumption 2.1 together with the fact that {w ∈ Rd : ‖w‖2 ≤ 1} ⊂ Bh+1 gives
us that

sup
‖w‖2≤1

sup
(x,a)∈X×A

|〈φh(x, a), T ◦h w〉 −Q(x, a, w)| ≤ εBE. (12)

Next, we may choose k ≤ d and (x1, a1), . . . , (xk, ak) ∈ X × A so that {(φh(xi, ai)}ki=1 forms a
barycentric spanner of {φh(x, a)}(x,a)∈X×A, and so that φh(xi, ai), 1 ≤ i ≤ k, are linearly indepen-
dent. By linear independence of φh(xi, ai), for each w ∈ Rd, there is a matrix Lh,w,σ ∈ Rd×d so
that, for all i ∈ [k],

L>h,w,σ · φh(xi, ai) = ∇SσQ(xi, ai, w). (13)

Next, for each (x, a) ∈ X ×A and w ∈ Rd, we have

∇wSσQ(x, a, w) =∇wEz∼N (0,σ2·Id)Ex′∼Ph(x,a)[Q(x′, w)]
=Ez∼N (0,σ2·Id)Ex′∼Ph(x,a)[∇wV (x′, w + z)]
=Ex′∼Ph(x,a)Ez∼N (0,σ2·Id)[φh+1(x′, πh+1,w+z(x′))]
=Ex′∼Ph(x,a)[φh+1(x′, πh+1,w,σ(x′))], (14)

where the second equality uses the dominated convergence theorem together with the fact that
for each x′ ∈ Z, z ∈ Rd, w 7→ V (x′, w + z) is piecewise linear with finitely many pieces, with
bounded derivative, i.e., ‖∇wV (x′, w + z)‖ ≤ maxa′∈A ‖φh+1(x′, a′)‖2 ≤ 1. (Note that SσQ(x, a, w)
is infinitely differentiable since we can write SσQ(x, a, w) =

∫
Rd Q(x, a, w)Nσ(w − z)dz and since

Nσ(w − z) is infinitely differentiable in w.) Using (14) with (x, a) = (xi, ai) (for each i ∈ [k]), we
see that Lh,w,σ = Lh,w′,σ′ for all w,w′, σ, σ′ satisfying πh+1,w,σ(x′)πh+1,w′,σ′(x′) for all x′ ∈ X .
Fix any (x, a) ∈ X × A. By the barycentric spanner property, there are coefficients α1, . . . , αk ∈
[−1, 1] (depending on x, a) so that φh(x, a) =

∑k
i=1 αi · φh(xi, ai). It therefore follows that, for all
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w ∈ Bh+1,
∣∣∣∣∣Q(x, a, w)−

k∑

i=1
αiQ(xi, ai, w)

∣∣∣∣∣

≤|Q(x, a, w)− 〈φh(x, a), T ◦h w〉|+
∣∣∣∣∣〈φh(x, a), T ◦h w〉 −

k∑

i=1
αi〈φh(xi, ai), T ◦h w〉

∣∣∣∣∣

+
∣∣∣∣∣
k∑

i=1
αi · (Q(xi, ai, w)− 〈φh(xi, ai), T ◦h w〉)

∣∣∣∣∣

≤|Q(x, a, w)− 〈φh(x, a), T ◦h w〉|+
k∑

i=1
|Q(xi, ai, w)− 〈φh(xi, ai), T ◦h w〉|

≤(d+ 1)εBE, (15)

where the second inequality uses that 〈φh(x, a), T ◦h w〉 =
∑k
i=1 αi〈φh(xi, ai), T ◦h w〉 and the final

equality uses (12) applied to each of the tuples (x, a), (x1, a1), . . . , (xk, ak).

Next we apply Lemma B.4 with

f(w) =Q(x, a, w)−
k∑

i=1
αiQ(xi, ai, w)

ε =(1 + 100σ
√
d log(2d/(εBEσ)))(d+ 1)εBE,

D = 2d, B = 1, and B = {w ∈ Rd : ‖w‖2 ≤ 1}. Since, for all x ∈ X , a ∈ A, w ∈ Rd, |Q(x, a, w)| ≤
‖w‖2, we have |f(w)| ≤ (d + 1) · ‖w‖2 ≤ 2d‖w‖2 for w ∈ Rd, verifying that the choice of D =
2d is admissible. Moreover, the set of z with dist(z,B) ≤ 100σ

√
d log(2d/(εσ)) is contained in

(1 + 100σ
√
d log(2d/εBEσ)) · B, since ε > εBE and B is a unit ball. Therefore, scaling (15) verifies

that for all w with dist(w,B) ≤ 100σ
√
d log(2d/(εσ)),

∣∣∣∣∣Q(x, a, w)−
k∑

i=1
αiQ(xi, ai, w)

∣∣∣∣∣ ≤(1 + 100σ
√
d log(2d/(εBEσ))) · (d+ 1) · εBE = ε.

Then the guarantee of Lemma B.4 gives that for some constant C > 0, for all w with ‖w‖2 ≤ 1,
∥∥∥∥∥∇SσQ(x, a, w)−

k∑

i=1
αi · ∇SσQ(xi, ai, w)

∥∥∥∥∥
2

≤Cε
√
d

σ
.

By our choice of αi and (13), for all w ∈ Rd,

k∑

i=1
αi · ∇SσQ(xi, ai, w) = L>h,w,σ ·

k∑

i=1
αi · φh(xi, ai) = L>h,w,σ · φh(x, a).

Combining the above with (14) and the definition of ε gives that, for some constants C,C ′, for
‖w‖2 ≤ 1,

∥∥Ex′∼Ph(x,a)[φh+1(x′, φh+1,w,σ(x′))]− L>h,w,σ · φh(x, a)
∥∥

2

≤εBE ·
C · (1 + 100σ

√
d log(2d/(εBEσ)))(d+ 1) ·

√
d

σ

≤C ′εBEd
3/2 ·

(√
d log(d/(εBEσ)) + 1

σ

)
,

as desired.
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Bounding the gradient of a Gaussian convolution. For a subset B ⊂ Rd and z ∈ Rd, we
write dist(z,B) := inf{‖w − z‖2 : w ∈ B}.
Lemma B.4. There is a constant C > 0 so that the following holds. Let σ, ε ∈ (0, 1/2) and B,D ≥ 1
be given, and suppose that B ⊂ Rd is a set with nonempty interior B◦, and for which maxθ∈B ‖θ‖ ≤
B. Suppose f : Rd → Rd satisfies |f(z)| ≤ ε for all z with dist(z,B) ≤ 100σ

√
d log(BD/(εσ)), as

well as |f(z)| ≤ D‖z‖2 for all z ∈ Rd, for some D > 0. Then for all z ∈ B◦,

‖∇Sσf(z)‖2 ≤
Cε
√
d

σ
.

Proof. Let us write ∆ := 100σ
√
d log(BD/(εσ)). Let B∆ := {z ∈ Rd : dist(z,B) ≤ ∆}, so that, by

assumption, |f(z)| ≤ ε for all z ∈ B∆. Then, for any θ ∈ B,

‖∇Sσf(θ)‖2 =
∥∥∥∥∇
∫

Rd
f(z)Nσ(θ − z)dz

∥∥∥∥
2

=
∥∥∥∥
∫

Rd
f(z) · ∇Nσ(θ − z)dz

∥∥∥∥
2

≤
∫

B∆

‖f(z) · ∇Nσ(θ − z)‖2 dz +
∫

Rd\B∆

‖f(z) · ∇Nσ(θ − z)‖2 dz. (16)

Note that ∇Nσ(θ) = − θ
σ2 · Nσ(θ). Then we have

∫

Rd\B∆

‖f(z) · ∇Nσ(θ − z)‖2 dz ≤
∫

Rd\B∆

D‖z‖2 · ‖θ − z‖2
σ2 · Nσ(θ − z)dz

≤D
∫

Rd\B∆

‖θ − z‖22 +B‖θ − z‖2
σ2 · Nσ(θ − z)dz, (17)

where the second inequality uses that ‖z‖ ≤ ‖θ − z‖2 +B since θ ∈ B.
Using the tail bound Prz∼N (0,σ2Id)(‖z‖22 > 2tdσ2) ≤ e−td/10 for t ≥ 1 (Laurent & Massart, 2000,
Lemma 1)7 it holds that
∫

‖z‖2≥∆
∆‖z‖2 · Nσ(z)dz ≤

∫

‖z‖2≥∆
‖z‖22 · Nσ(z)dz ≤∆2 · e−∆2/(20σ2) +

∫ ∞

∆2
e−y/(20σ2)dσ

=∆2 · e−∆2/(20σ2) + 1
20σ2 · e

−∆2/(20σ2)

≤
(

∆2 + 1
σ2

)
· e−5d log(BD/(εσ))

≤
(

104d logBD/(εσ) + 1
σ2

)
· (εσ/(BD))5d

≤104εσ3ε

BD
+ εσ3

BD
= 10001εσ3

BD
, (18)

where the second inequality uses the layer cake formula and the fact that ∆2/σ2 ≥ 2d, and the final
inequality uses that (εσ/(BD))5d · d log(BD/εσ) ≤ (εσ/BD)4d · d ≤ εσ3/(BD) (since ε, σ ≤ 1/2)
and that (εσ/(BD))5d/σ2 ≤ εσ3/(BD).

Note that for all z ∈ Rd\B∆, we have that ‖θ − z‖ ≥ ∆ since θ ∈ B. Thus, combining Eqs. (17)
and (18), we have, for some constant C,
∫

Rd\B∆

‖f(z) · ∇Nσ(θ − z)‖2dz ≤
D

σ2

∫

Rd\B∆

‖θ − z‖22 · Nσ(θ − z)dz + BD

σ2

∫

Rd\B∆

‖θ − z‖2 · Nσ(θ − z)dz

≤D
σ2 ·

Cεσ3

BD
+ BD

σ2 ·
Cεσ3

BD∆ ≤ 2Cε, (19)

7See also https://math.stackexchange.com/questions/2864188/chi-squared-distribution-tail-bound.
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where we have used in the second-to-last inequality that B ≥ 1 and σ/∆ ≤ 1.

Next, we compute
∫

B∆

‖f(z) · ∇Nσ(θ − z)‖2dz ≤
∫

B∆

|f(z)| · ‖θ − z‖2
σ2 Nσ(θ − z)dz

≤ ε

σ2

∫

B∆

‖θ − z‖2Nσ(θ − z)dz

≤ ε

σ2

∫

Rd
‖θ − z‖2Nσ(θ − z)dz ≤ ε

σ2 · σ
√
d = ε

√
d

σ
, (20)

where the final inequality uses the fact that EZ∼N (0,σ2·Id)[‖Z‖2] = σ
√
d.

Combining (16), (19), and (20), we obtain that, for some constant C ′ > 0,

‖∇Sσf(θ)‖2 ≤ 2Cε+ ε
√
d/σ ≤ C ′ε

√
d

σ
,

which is the desired bound.

C Proof of Theorem 3.1

In this section we prove Theorem 3.1. We begin by defining the values for the parameters used in
Algorithms 1 and 2.
Definition C.1 (Parameter settings for the algorithms). Given d,H,B > 0 specifying the dimen-
sion, horizon, and boundedness parameters for the unknown MDP M , as well as dataset size n and
error parameters εfinal, δ ∈ (0, 1), we define the following parameters to be used in Algorithms 1
and 2 and its analysis:

• β := 2BH.

• T := 16β2d1/2

ε2final
.

• εapx := 1/
√
n.

• η := β ·max
{
T 1/2d−1/4, T ε

1/2
BE

}
.

• σ := η
Tβ .

• ζ = CB.2εBEd3/2 ·
(√

d log(d/(εBEσ)) + 1
σ

)
, where CB.2 is the constant from Corollary B.2.

(Note that ζ = ζσ, where ζσ was defined in Corollary B.2.)

• α := 4βζ
√
n + CC.4βd log1/2(dnβ/(σδ)), where CC.4 is a constant chosen sufficiently large

so as to ensure Lemma C.4 holds.

C.1 Critic analysis

Consider a tuple f = (f1, . . . , fH), where fh : X ×A → R, and a policy π. We define an MDP Mf,π

(called the induced MDP, per Zanette et al. (2021)), whose transitions are identical to those of M ,
but whose rewards are given as follows: for h ∈ [H] and (x, a) ∈ X ×A,

rM
f,π

h (x, a) = fh(x, a)− Ex′∼Ph(x,a)[fh+1(x′, πh+1(x′))]. (21)
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Lemma C.1 (Lemma 1 of Zanette et al. (2021)). Fix any f = (f1, . . . , fH) with fh : X × A → R,
any π ∈ Π, and write M ′ := Mf,π. Then the Q-value function of M ′ for the policy π, denoted
QM′,π, satisfies the following:

∀h ∈ [H], (x, a) ∈ X ×A, QM′,π
h (x, a) = fh(x, a),

which implies in particular that V M′,π
h (x) = fh(x, πh(x)).

The proof of Lemma C.1 follows a simple telescoping argument and is provided in Zanette et al.
(2021). Next, we establish the following straightforward guarantee for EstFeature:
Lemma C.2. For any x ∈ X , π ∈ ΠPlin, h ∈ [H], εapx ∈ (0, 1) and δ ∈ (0, 1), EstFeature
(Algorithm 3) runs in time O(dε−2

apx log(d/δ)) and returns a vector φ̂ so that, with probability 1− δ,
‖φ̂− φh(x, πh,w(x))‖2 ≤ εapx.

Proof. By the definition of πh,w,σ, it holds that for each θi ∼ N (w, σ2 · Id) in Algorithm 3, we have
E[φh(x, πh,θi(x))] = φh(x, πh(x)). Then by Hoeffding’s inequality and a union bound, we have that,
with probability 1− δ,
∥∥∥∥∥

1
N

N∑

i=1
φh(x, πh,θi(x))− φh(x, πh(x))

∥∥∥∥∥
2

≤
√
d ·
∥∥∥∥∥

1
N

N∑

i=1
φh(x, πh,θi(x))− φh(x, πh(x))

∥∥∥∥∥
∞
≤ εapx.

Recall that Critic (Algorithm 2) computes a vector w = (w1, . . . , wH) ∈ RdH . Given such w, we
define a function fw = (fw1 , . . . , fwH), where fwh (x, a) := 〈φh(x, a), wh〉. We introduce the following
notation, in the context of Critic (Algorithm 2). Given a dataset D = {(hi, xi, ai, ri, x′i)}ni=1, at
step h ∈ [H], a policy π ∈ ΠPlin, a collection of feature vectors φ̂ = (φ̂1, . . . , φ̂n) (as produced in
Line 3), and a vector w ∈ Rd, we define

T̂ π
h,D,φ̂w := Σ−1

h

∑

i∈Ih
φh(xi, ai) · (ri + 〈φ̂i, w〉), (22)

where Σh = Id +
∑
i∈Ih φh(xi, ai)φh(xi, ai)> and Ih = {i : hi = h} are defined as in Algorithm 2.

Given parameters α, σ > 0, we define the following good event Eα,β,σ,εapx :

Eα,β,σ,εapx =





sup
‖wh+1‖2≤β

sup
πh+1∈ΠPlin,σ

h+1

sup
(φ̂i)i∈[n]∈(Rd)n: ∀i∈[n],

‖φ̂i−φh+1(x′i,πh+1(x′i))‖2≤εapx

∥∥∥T πh+1
h wh+1 − T̂ πh+1

h,D,φ̂wh+1

∥∥∥
Σh
≤ α




.

(23)

Lemma C.3 below establishes that under the good event Eα,β,σ,εapx , upon given a perturbed linear
policy π as input, Critic produces a vector w? ∈ RdH so that the value of π in the induced MDP
Mfw

?
,π lower bounds the value of π in the true MDP (Item 1). Moreover, for any policy π′ ∈ Π, the

value of π′ in Mfw
?
,π is close to the value of π′ in M , as controlled by a concentrability coefficient

depending on π′ (Item 2). Recall from Corollary B.2 that we have defined ζσ = CB.2εBEd3/2 ·(√
d log(d/(εBEσ)) + 1

σ

)
.

Lemma C.3. Consider any σ, α, εapx, δ > 0 for which 3BHζσ ≤ 1, suppose β = 2BH, and let
π ∈ ΠPlin,σ be given. Consider the execution of Critic(D, π, εapx, α, β, δ): there is some event Eπ
depending only on the randomness in the call to EstFeature in Line 3, with Pr(Eπ) > 1− δ, so that
the following holds. Under the event Eα,β,σ,εapx ∩Eπ, the output of Critic(D, π, εapx, α, β, δ) is a pair
of vectors w?, ξ? ∈ RdH satisfying the following conditions, for f := fw

? :
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1. V Mf,π

1 (x1) ≤ V M,π

1 (x1).

2. For any π′ ∈ Π,

∣∣∣V Mf,π,π′
1 (x1)− V M,π′

1 (x1)
∣∣∣ ≤ 3βHζσ + 2α

H∑

h=1
‖EM,π′ [φh(xh, ah)]‖Σ−1

h
.

Moreover, given an oracle which can solve the convex program (7), the computational cost
of Critic is poly(d, n,H, log(1/δ)/ε2

apx).

For simplicity, we assume in the statement and proof of Lemma C.3 that the convex program (7) may
be efficiently solved exactly (i.e., that an oracle provides the answer). While strictly speaking this
may not be the case, it is known that for any ε > 0, an ε-approximate solution to (7) may be found
in time poly(α, β, n, d,H, log(1/ε)). The guarantee of Lemma C.3 as well as those of subsequent
lemmas hold with only minor modifications if we can only solve the program (7) ε-approximately
in this manner. In particular, our main guarantee (Theorem 3.1) may be achieved computationally
efficiently, without assumption of any oracle; the necessary modifications to the proof are described
in Remark C.3.

Proof of Lemma C.3. By Lemma C.2 and a union bound over i ∈ Ih, there is some event Eπ with
Pr(Eπ) ≥ 1 − δ so that, under Eπ, the estimates φ̂πi produced on Line 3 of Algorithm 2 satisfy
maxi∈[n] ‖φ̂πi −φh+1(x′i, πh+1(x′i))‖2 ≤ εapx for all i ∈ Ih. We prove the two statements of the lemma
in turn:

Proof of Item 1. Let wπh ∈ 2H · Bh be defined per Corollary B.3: in particular, wπh = T πh wπh+1.

For each h ∈ [H], define ξπh := T πh wπh+1−T̂ πh,D,φ̂w
π
h+1. We claim that the vectors (wπh)h∈[H], (ξπh )h∈[H]

constitute a feasible solution to the program (7). By the definition of T̂ π
h,D,φ̂ in (22), note that (7b)

requires that wπh = ξπh + T̂ π
h,D,φ̂w

π
h+1. This equality holds by definition of ξπh and since wπh =

T πh wπh+1. Next, the fact that Eα,β,σ,εapx ∩ Eπ holds, πh+1 ∈ ΠPlin,σ
h+1 , and wπh ∈ 2H · Bh (and hence

‖wπh‖2 ≤ 2BH; here we use Corollary B.3 together with the fact that 3BHζσ ≤ 1) gives that
‖ξπh‖Σh = ‖T πh wπh+1 − T̂ πh,D,φ̂w

π
h+1‖Σh ≤ α; this verifies (7c). Finally, since β = 2BH we have that

(7d) holds. It follows that (7) is feasible under the event Eα,β,σ,εapx ∩ Eπ.
Let us denote the solution to (7) by w?, ξ?. Since wπh , ξπh are feasible to (7), we must have that
〈w?1 , φ1(x1, π1(x1))〉 ≤ 〈wπ1 , φ1(x1, π1(x1))〉 = V π1 (x1). But Lemma C.1 together with our choice of
f = fw

? (so that fh(x, a) = 〈φh(x, a), w?h〉) guarantees that 〈w?1 , φ1(x1, π1(x1))〉 = VM
f ,π

1 (x1), which
yields VM

f ,π
1 (x1) ≤ V π1 (x1).

Proof of Item 2. For each h ∈ [H] and (x, a) ∈ X ×A, we have, by the definition (21),

rM
f,π

h (x, a)− rh(x, a) =〈w?h, φh(x, a)〉 − rh(x, a)− Ex′∼Ph(x,a)[〈w?h+1, φh+1(x′, πh+1(x′))〉]
=εh(x, a) + 〈w?h − T πh w?h+1, φh(x, a)〉
=εh(x, a) + 〈ξ?h, φh(x, a)〉+ 〈T̂ π

h,D,φ̂w
?
h+1 − T πh w?h+1, φh(x, a)〉, (24)

where εh(x, a) satisfies |εh(x, a)| ≤ (1 + 2‖w?h+1‖2) · ζσ ≤ 3βζσ (for which such a choice is possible
by Corollary B.2).
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Since the MDP Mf,π has transitions identical to those of M , for any π′ ∈ Π,

∣∣∣V Mf,π,π′
1 (x1)− V M,π′

1 (x1)
∣∣∣ =
∣∣∣∣∣
H∑

h=1
EM,π′

[
rM

f,π

h (xh, ah)− rh(xh, ah)
]∣∣∣∣∣

≤3βHζσ +
H∑

h=1

∣∣EM,π′ [〈ξ?h, φh(xh, ah)〉]
∣∣+
∣∣∣EM,π′

[
〈T̂ π
h,D,φ̂w

?
h+1 − T πh w?h+1, φh(xh, ah)〉

]∣∣∣

≤3βHζσ +
H∑

h=1

∥∥EM,π′ [φh(xh, ah)]
∥∥

Σ−1
h

·
(
‖ξ?h‖Σh + ‖T̂ π

h,D,φ̂w
?
h+1 − T πh w?h+1‖Σh

)

≤3βHζσ + 2α
H∑

h=1

∥∥EM,π′ [φh(xh, ah)]
∥∥

Σ−1
h

, (25)

where the first inequality uses (24) and the triangle inequality, and the third inequality uses the fact
that (w?h, ξ?h) is feasible for (7) (in particular, (7c)) as well as the fact that Eα,β,σ,εapx ∩ Eπ holds and
‖w?h+1‖2 ≤ β = 2BH (using (7d)).

Finally, we analyze the computational cost of Algorithm 2. The call to EstFeature in Line 3 takes
time poly(N, d) ≤ poly(d, log(1/δ)/ε2

apx). The remaining steps take time poly(d,H).

Lemma C.4. There is a constant CC.4 so that the following holds. Suppose the dataset D is
drawn according to Assumption 2.3, and α, β, σ, εapx > 0 are given so that εapx ≤ 1/

√
n and α ≥

4βζσ
√
n + CC.4βd log1/2(dnβ/(σδ)). Then, Pr(Eα,β,σ,εapx ) ≥ 1 − δ/2, where the probability is over

the draw of D.

We remark that the only source of randomness in Critic is over the randomness of EstFeature in
Line 3.

Proof of Lemma C.4. Given h ∈ [H], wh+1 ∈ Rd, πh+1 ∈ ΠPlin,σ, and φ̂ = (φ̂i)i∈[n] ∈ (Rd)n, let us
write, for i ∈ Ih,

εi(wh+1, πh+1) :=ri + 〈φh+1(x′i, πh+1(x′i)), wh+1〉 − (rh(xi, ai) + Ex′∼Ph(xi,ai)[〈φh+1(x′, πh+1(x′)), wh+1〉])
ξi(wh+1, πh+1) :=rh(xi, ai) + Ex′∼Ph(xi,ai)[〈φh+1(x′, πh+1(x′)), wh+1〉]− 〈φh(xi, ai), T πh+1

h wh+1〉
ηi(wh+1, πh+1, φ̂i) :=〈φ̂i − φh+1(x′i, πh+1(x′i)), wh+1〉.
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Error decomposition. For any wh+1 ∈ Rd, πh+1 ∈ ΠPlin,σ
h+1 , and φ̂ = (φ̂i)i∈[n], we can decompose

T̂ πh+1

h,D,φ̂wh+1

=Σ−1
h

∑

i∈Ih
φh(xi, ai) · (ri + 〈φ̂i, wh+1〉)

=Σ−1
h

∑

i∈Ih
φh(xi, ai) · (ri + 〈φh+1(x′i, πh+1(x′i)), wh+1〉) + Σ−1

h

∑

i∈Ih
φh(xi, ai) · ηi(wh+1, πh+1, φ̂i)

=Σ−1
h

∑

i∈Ih
φh(xi, ai) · 〈φh(xi, ai), T πh+1

h wh+1〉

+ Σ−1
h

∑

i∈Ih
φh(xi, ai) ·

(
εi(wh+1, πh+1) + ξi(wh+1, πh+1) + ηi(wh+1, πh+1, φ̂i)

)

=− Σ−1
h · ·T πh wh+1 + Σ−1

h

(
+
∑

i∈Ih
φh(xi, ai)φh(xi, ai)>

)
· T πh+1
h wh+1

+ Σ−1
h

∑

i∈Ih
φh(xi, ai) · (εi(wh+1, πh+1) + ξi(wh+1, πh+1) + ηi(wh+1, πh+1, φ̂i))

=T πh+1
h wh+1 − Σ−1

h · T
πh+1
h wh+1+

+ Σ−1
h

∑

i∈Ih
φh(xi, ai) · (ηi(wh+1, πh+1, φ̂i) + ξi(wh+1, πh+1) + εi(wh+1, πh+1)), (26)

where the final equality uses the definition of Σh (in Line 2 of Algorithm 2).

Bounding the error terms. First, we note that for any wh+1 satisfying ‖wh+1‖2 ≤ β and any
πh+1 ∈ ΠPlin,σ

h+1 ,

‖Σ−1
h · T

πh+1
h wh+1‖Σh = ‖T πh+1

h wh+1‖Σ−1
h
≤ ‖T πh+1

h wh+1‖2 ≤ 3 · βB, (27)

where the first inequality uses that Σh � Id and the second inequality uses that, since ‖wh+1‖2 ≤ β,
we have T πh+1

h wh+1 ∈ 3β · Bh (Corollary B.2), and hence ‖T πh+1
h wh+1‖2 ≤ 3βB (Assumption 2.2).

Next, as long as ‖wh+1‖2 ≤ β and ‖φ̂i − φh+1(x′i, πh+1(x′i))‖2 ≤ εapx for all i ∈ [n], we have

|ηi(wh+1, πh+1, φ̂i)| ≤ ‖φ̂i − φh+1(x′i, πh+1(x′i))‖2 · ‖wh+1‖2 ≤ βεapx

for all i ∈ [n] and thus
∥∥∥∥∥Σ−1

h

∑

i∈Ih
φh(xi, ai) · ηi(wh+1, πh+1, φ̂i)

∥∥∥∥∥
Σh

=
∥∥∥∥∥
∑

i∈Ih
φh(xi, ai) · ηi(wh+1, πh+1, φ̂i)

∥∥∥∥∥
Σ−1
h

≤ βεapx
√
n,

(28)

where the inequality uses Lemma E.2.

Next, by Corollary B.2, for any wh+1 satisfying ‖wh+1‖2 ≤ β and any πh+1 ∈ ΠPlin
h+1, for each i ∈ Ih

we have
∣∣rh(xi, ai) + Ex′∼Ph(xi,ai)[〈φh+1(x′, πh+1(x′)), wh+1〉]− 〈φh(xi, ai), T πh+1

h wh+1〉
∣∣ ≤β · ζσ.

Thus, by Lemma E.2,
∥∥∥∥∥Σ−1

h

∑

i∈Ih
φh(xi, ai) · ξi(wh+1, πh+1)

∥∥∥∥∥
Σh

=
∥∥∥∥∥
∑

i∈Ih
φh(xi, ai) · ξi(wh+1, πh+1)

∥∥∥∥∥
Σ−1
h

≤ βζσ
√
n. (29)
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It remains to bound the final term in (26), namely the one involving εi(wh+1, πh+1). To do so, we
use a covering based argument. We define the following metric on ΠPlin,σ

h : for πh, π′h ∈ ΠPlin,σ
h , define

‖πh − π′h‖∞,1 := sup
x∈X

∑

a∈A
|πh(a|x)− π′h(a|x)|. (30)

For ε > 0, we let N∞,1(ΠPlin,σ
h , ε) denote the minimum size of an ε-cover of ΠPlin,σ

h with respect to
‖ · ‖∞,1. Similarly, let G := {w ∈ Rd : ‖w‖2 ≤ β}, and let N2(G, ε) denote the miniimum size of an
ε-cover of G with respect to ‖ · ‖2. We use the following lemma:

Lemma C.5 (Covering number bounds). There is a constant CC.5 so that for all h ∈ [H],

logN∞,1(ΠPlin,σ
h , ε) ≤d log(CC.5/(εσ))

logN2(G, ε) ≤d log(CC.5β/ε).

Let G̃ ⊂ G be an ε-cover of G with respect to ‖ · ‖2 with size bounded per Lemma C.5, and
Π̃Plin,σ
h+1 ⊂ ΠPlin,σ

h+1 be an ε-cover of ΠPlin,σ
h+1 with respect to ‖ · ‖∞,1 with size bounded per Lemma C.5.

For fixed w̃h+1 ∈ G̃ and π̃h+1 ∈ Π̃Plin,σ, for each i ∈ Ih, we have from the definition of εi(w̃h+1, π̃h+1)
that

|εi(w̃h+1, π̃h+1)| ≤ 2 + 2‖w̃h+1‖2 ≤ 2 + 2β ≤ 4β, (31)

where we have used Assumption 2.2 and the fact that β ≥ 1. Moreover, by Assumption 2.3,
if we let Fi denote the sigma-algebra generated by all tuples (hj , xj , aj , rj , x′j) for j ≤ i and by
(hi+1, xi+1, ai+1), we have E[εi(w̃h+1, π̃h+1)|Fi−1] = 0 and E[eλεi(w̃h+1,π̃h+1)|Fi−1] ≤ eλ

2·(4β)2/2,
where we have used (31). Moreover, φh(xi, ai) is measurable with respect to Fi−1. Let us write
N := |G̃| · |Π̃Plin,σ|, so that logN ≤ Cd log(β/εσ), for some constant C. By Lemma E.1, there is
some event E

w̃,π̃h+1
which occurs with probability at least 1− δ/N , so that under E

w̃,π̃h+1
, we have

∥∥∥∥∥
∑

i∈Ih
φh(xi, ai) · εi(w̃h+1, π̃h+1)

∥∥∥∥∥
Σ−1
h

≤ 32β2 log1/2
(

det(Σh)1/2

δ/N

)
≤ 8βd1/2 log1/2

(
N · d+ n

dδ

)
,

where the final inequality uses

det(Σh) ≤
(

1
d

Tr Σh
)d
≤
(

1
d
·
(
d+

∑

i∈Ih
‖φh(xi, ai)‖22

))d
≤
(
d+ n

d

)d
.

By a union bound, it follows that under some event E that occurs with probability at least 1 − δ,
we have

sup
w̃∈G̃

π̃h+1∈Π̃Plin,σ
h+1

∥∥∥∥∥
∑

i∈Ih
φh(xi, ai) · εi(w̃h+1, π̃h+1)

∥∥∥∥∥
Σ−1
h

≤ 8βd1/2 log1/2
(
N · d+ n

dδ

)
. (32)

Now consider any wh+1 ∈ G and πh+1 ∈ ΠPlin,σ
h+1 . Choose w̃h+1 ∈ G̃ and π̃h+1 ∈ Π̃Plin,σ

h+1 so that
‖wh+1 − w̃h+1‖2 ≤ ε and ‖πh+1 − π̃h+1‖∞,1 ≤ ε. We have

sup
πh+1∈ΠPlin,σ

h+1

|εi(wh+1, πh+1)− εi(w̃h+1, πh+1)| ≤2 · ‖wh+1 − w̃h+1‖2 ≤ 2ε (33)

sup
wh+1∈G

|εi(wh+1, πh+1)− εi(wh+1, π̃h+1)| ≤2β · sup
x′∈X

‖φh+1(x′, πh+1(x′))− φh+1(x′, π̃h+1(x′))‖2 ≤ 2βε,

(34)
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where (34) uses the definition of ‖ · ‖∞,1 in (30). Then, under the event E ,
∥∥∥∥∥
∑

i∈Ih
φh(xi, ai) · εi(wh+1, πh+1)

∥∥∥∥∥
Σ−1
h

≤
∥∥∥∥∥
∑

i∈Ih
φh(xi, ai) · εi(w̃h+1, π̃h+1)

∥∥∥∥∥
Σ−1
h

+
∥∥∥∥∥
∑

i∈Ih
φh(xi, ai) · (εi(w̃h+1, πh+1)− εi(wh+1, πh+1))

∥∥∥∥∥
Σ−1
h

+
∥∥∥∥∥
∑

i∈Ih
φh(xi, ai) · (εi(w̃h+1, π̃h+1)− εi(w̃h+1, πh+1))

∥∥∥∥∥
Σ−1
h

≤
∥∥∥∥∥
∑

i∈Ih
φh(xi, ai) · εi(w̃h+1, π̃h+1)

∥∥∥∥∥
Σ−1
h

+ 4βε
√
n

≤8βd1/2 log1/2
(
N · d+ n

dδ

)
+ 4βε

√
n, (35)

where the first inequality uses the triangle inequality, the second inequality uses Lemma E.2 together
with Eqs. (33) and (34), and the final inequality uses (32) together with the fact that E holds.

Combining Eqs. (26) to (29) and (35), we conclude that under the event E , for any wh+1 ∈ G,
πh+1 ∈ ΠPlin,σ

h+1 , and φ̂ ∈ (Rd)n so that maxi∈[n] ‖φ̂i − φh+1(x′i, πh+1(x′i))‖2 ≤ εapx,

‖T̂ πh+1

h,D,φ̂wh+1 − T πh+1
h wh+1‖Σh ≤3βB + βεapx

√
n+ βζσ

√
n+ 8βd1/2 log1/2

(
N · d+ n

dδ

)
+ 4βε

√
n

≤11Cβd log1/2
(
dnβ

εδσ

)
+ 4β(ε+ εapx + ζσ)

√
n,

where the second inequality uses the bound logN ≤ Cd log(β/εσ). Choosing ε = 1/
√
n, and as long

as εapx ≤ 1/
√
n, we see that E ⊂ Eα,β,σ,εapx , since we have chosen α ≥ 4βζσ

√
n+Cβd log1/2(dnβ/(σδ))

for a sufficiently large constant C. Thus Pr(Eα,β,σ,εapx ) ≥ Pr(E) ≥ 1 − δ. Rescaling δ to δ/2 yields
the result.

Proof of Lemma C.5. First, we note that logN2(G, ε) ≤ d · log(3β/(ε)) by Wainwright (2019, Ex-
ample 5.8). To bound the covering number of ΠPlin,σ

h , let C ⊂ {w ∈ Rd : ‖w‖2 ≤ 1} denote a
εσ-cover of the unit ball, so that Wainwright (2019, Example 5.8) ensures that we can choose C with
|C| ≤ d log(3/(εσ)). For any w ∈ Rd with ‖w‖2 ≤ 1, there is some w′ ∈ C with ‖w − w′‖2 ≤ εσ.
Then we have

DTV(N (w, σ2 · Id),N (w′, σ2 · Id)) ≤
√

1
2 ·KL(N (w, σ2 · Id)||N (w′, σ2 · Id)) = 1

2σ · ‖w − w
′‖2 ≤

ε

2 ,

where we have used Pinsker’s inequality and the formula for the KL divergence between two Gaus-
sians. Moreover, for any x ∈ X , we have

∑

a∈A
|πh,w,σ(a|x)− πh,w′,σ(a|x)| ≤DTV(N (w, σ2 · Id),N (w′, σ2 · Id))

by the data processing inequality for total variation distance (in particular, the deterministic function
W 7→ arg maxa∈A〈φh(x, a),W 〉 maps a random variable W ∼ N (w, σ2 · Id) to an action A ∼
πh,w,σ(·|x)). Combining the above displays gives that ‖πh,w,σ − πh,w′,σ‖∞,1 ≤ ε, as desired.

C.2 Actor analysis

Notice that the Actor algorithm (Algorithm 1) is a special case of the Follow-the-Perturbed-Leader
(FTPL) algorithm. This observation is central to our proof. Below we first review some basic facts
pertaining to the FTPL algorithm.
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Review of FTPL. For J, L > 0, a distribution µ on Rd is defined to be (J, L)-stable with respect
to the Euclidean norm ‖ · ‖2 if the following two conditions hold:

Eρ∼µ[‖ρ‖2] ≤J

∀v ∈ Rd,
∫

ρ∈Rd
|µ(ρ)− µ(ρ− v)|dρ ≤L · ‖v‖2.

We consider the setting of online linear optimization: the algorithm is given a set of actions Φ ⊂ Rd,
and operates over some number T ∈ N of rounds. At each round t ∈ [T ], an adversary chooses a
reward vector w(t), which may be random and depend arbitrarily on past choices of the algorithm
(i.e., we consider the case of an adaptive adversary). Simultaneously, the algorithm chooses a vector
φ(t) ∈ Φ, and then observes w(t) and receives a reward 〈w(t), φ(t)〉. The algorithm’s goal is to
minimize its regret with respect to the best-in-hindsight fixed choice of action in Φ. The expected
FTPL algorithm, presented in Algorithm 4, solves the online linear optimization problem. Its choice
of action at each round is given by the best action for the previous rounds, perturbed by a distribution
which satisfies (J, L)-stability.

Algorithm 4 Expected Follow-the-Perturbed-Leader: ExpFTPL(Φ, µ, T, η)
Require: Action set Φ ⊂ Rd, distribution µ ∈ ∆(Rd), parameters ω > 0, T ∈ N.
1: for 1 ≤ t ≤ T do
2: Choose

φ(t) := Eρ(t)∼µ

[
arg max
φ∈A

{
ω ·

t−1∑

s=1
〈w(s), φ〉+ 〈ρ(t), φ〉

}]
.

3: Receive reward vector w(t) ∈ Rd, earn reward 〈φ(t), w(t)〉.

Theorem C.6 (Hazan (2017), Theorem 5.8). Suppose that µ is (J, L)-stable, and write D :=
maxφ∈Φ ‖φ‖2. Then for any adaptive adversary choosing w(1), . . . , w(T ) satisfying ‖w(t)‖2 ≤ G for
all t, the iterates φ(t) produced by ExpFTPL(Φ, µ, T, ω) (Algorithm 4) satisfy

max
φ?∈Φ

{
T∑

t=1
〈φ?, w(t)〉 −

T∑

t=1
〈φ(t), w(t)〉

}
≤ ωLDG2T + JD

ω
.

We remark that since the iterates φ(t) of Algorithm 4 are deterministic, in the setting of no-regret
learning (i.e., that of Theorem C.6), adaptive and oblivious adversaries are equivalent.

Analysis of Actor. Recall that for w = (w1, . . . , wH) ∈ RdH , we have defined fw := (fw1 , . . . , fwH),
where fwh (x, a) := 〈φh(x, a), wh〉. To simplify notation, we write f (t) := fw

(t) , where w(t) =
(w(t)

1 , . . . , w
(t)
H ) is the vector returned by Critic on Line 6 of Actor (Algorithm 1).

Lemma C.7. For any D, εfinal, δ, the algorithm Actor(D, εfinal, δ, η) (Algorithm 1) satisfies the fol-
lowing: for any π? ∈ Π, h ∈ [H], and x ∈ X , we have

T∑

t=1
f

(t)
h (x, π?h(x))−

T∑

t=1
f

(t)
h (x, π(t)

h (x)) ≤ η−1(2BH)2T + η
√
d.

We emphasize that the policy π? in Lemma C.7 is not required to be a (perturbed) linear policy.

Proof of Lemma C.7. Fix π? ∈ Π and x ∈ X . Note that, by definition of f (t)
h ,

T∑

t=1
f

(t)
h (x, π?h(x)) =

T∑

t=1
〈w(t)

h , φh(x, π?h(x))〉,
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and
T∑

t=1
f

(t)
h (x, π(t)(x)) =

T∑

t=1
〈w(t)

h , φh(x, π(t)
h (x))〉.

Moreover, the definition of π(t)
h in Actor (Algorithm 1) ensures that

φh(x, π(t)
h (x)) =E

ρ
(t)
h
∼N (0,η2·Id)

[
arg max
a∈A

{〈
φh(x, a), θ(t)

h + ρ
(t)
h

〉}]

=E
ρ

(t)
h
∼N (0,η2·Id)

[
arg max
a∈A

{
t−1∑

s=1
〈φh(x, a), w(s)

h 〉+ 〈φh(x, a), ρ(t)
h 〉
}]

,

where we have written θ(t)
h =

∑t−1
s=1 w

(s)
h , as in Algorithm 1. In particular, φh(x, π(t)

h (x)) is exactly the
choice of ExpFTPL(Φ, µ, T, ω) (Algorithm 4) at round t with action set Φ = Φ̄h(x) = co({φh(x, a) :
a ∈ A}), distribution µ = N (0, η2 · Id), and ω = 1. It follows from Theorem C.6 that

T∑

t=1
f

(t)
h (x, π?h(x))−

T∑

t=1
f

(t)
h (x, π(t)

h (x)) =
T∑

t=1
〈w(t)

h , φh(x, π?h(x))〉 −
T∑

t=1
〈w(t)

h , φh(x, π(t)
h (x))〉

≤η−1(2BH)2T + η
√
d,

where we have used that ‖φh(x, a)‖ ≤ 1 for all x, a, h, that N (0, η2 · Id) is (η
√
d, η−1)-stable

(Lemma C.8), and that ‖w(t)
h ‖2 ≤ β = 2BH, using the constraint (7d) in Critic (and where

the value of β is set on Line 1 of Algorithm 1 per Definition C.1).

Lemma C.8. For any η > 0, N (0, η2 · Id) is (η
√
d, η−1)-stable.

Proof. We first note that EZ∼N (0,η2Id)[‖Z‖2] ≤ η
√

EZ∼N (0,Id)[Z2] = η
√
d.

Let µη : Rd → R denote the probability density function of N (0, η2Id). To verify the second
condition of stability, we compute, for any v ∈ Rd,

∫

ρ∈Rd
|µη(ρ)− µη(ρ− v)|dρ =2DTV(N (0, η2Id),N (v, η2Id))

≤
√

2 KL(N (0, η2Id)||N (v, η2Id)) = ‖v‖2/η,

where we have used Pinsker’s inequality and the formula for KL divergence between Gaussians.

Finally, we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let the parameters T, η, εapx, α, β, σ be chosen as in Definition C.1. Note that
these parameter settings ensure that 1/σ ≤ 1/√εBE, which in turn ensures that

3BHζ ≤ 3BH · CB.2εBEd
3/2 ·

(√
d log(d/ε2

BE) + 1/√εBE

)
≤ 1, (36)

by our assumption that εBE ≤ c0(BH)−2d−2 and as long as c0 is sufficiently small.

Fix an arbitrary policy π? ∈ Π. Recall that π(t) denotes the policy chosen by Actor (Algorithm 1) in
step t ∈ [T ], and f (t) = fw

(t) . Moreover, let us write M (t) := Mf(t),π(t) . The choices of α, β, εapx in
Definition C.1 ensure that, by Lemma C.4, we have that, over the draw of D, Pr(Eα,β,σ,εapx ) ≥ 1−δ/2.
We next wish to use Lemma C.3 with π = π(t), for each t ∈ [T ]. To do so, we need to check that
π(t) ∈ ΠPlin,σ: indeed, π(t)

h = π
h,θ

(t)
h
,η
, where θ(t)

h satisfies ‖θ(t)
h ‖2 ≤ t · maxs≤t ‖w(s)

h ‖2 ≤ Tβ (by
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Corollary B.3, which is applicable because of (36)). Then η

‖θ(t)
h
‖2
≥ η

Tβ = σ, where we have used the
definition of η, σ in Definition C.1.

If we let F (t) denote the sigma-algebra generated by D, w(1), . . . , w(t), then Lemma C.3 ensures that,
for each t, Pr(Eπ(t) |F (t−1)) ≥ 1 − δ/(2T ). (In particular, we use here that the randomness in the
call to EstFeature in Critic is chosen independently at each step t.) By a union bound, it follows
that Pr

(
Eα,σ,εapx ∩

⋂
t∈[T ] Eπ(t)

)
≥ 1− δ. We write E? := Eα,σ,εapx ∩

⋂
t∈[T ] Eπ(t) .

By Lemma C.3, under the event E?, for each t ∈ [T ], we have

V M,π?

1 (x1)− V M,π(t)

1 (x1) ≤V M(t),π?

1 (x1)− V M(t),π(t)

1 (x1) + 3βHζ + 2α
H∑

h=1
‖EM π? [φh(xh, ah)]‖Σ−1

h
.

(37)

Next, using the performance difference lemma applied (Lemma E.3) to the MDP M (t), we have
T∑

t=1
V M(t),π?

1 (x1)− V M(t),π(t)

1 (x1)

=
T∑

t=1

H∑

h=1
EM(t),π?

[
QM(t),π(t)

h (xh, π?h(xh))−QM(t),π(t)

h (xh, π(t)
h (xh))

]

=
T∑

t=1

H∑

h=1
EM(t),π?

[
f

(t)
h (xh, π?h(xh))− f (t)

h (xh, π(t)
h (xh))

]

=
T∑

t=1

H∑

h=1
EM,π?

[
f

(t)
h (xh, π?h(xh))− f (t)

h (xh, π(t)
h (xh))

]

=
H∑

h=1
EM,π?

[
T∑

t=1
f

(t)
h (xh, π?h(xh))− f (t)

h (xh, π(t)
h (xh))

]
, (38)

where the second equality uses Lemma C.1, the third equality uses the fact that the dynamics of
M (t) are the same as those of M , and the final equality rearranges. Next, Lemma C.7 guarantees
that for each possible choice of xh, we have

T∑

t=1
f

(t)
h (xh, π?h(xh))−

T∑

t=1
f

(t)
h (xh, π(t)

h (xh)) ≤ η−1(2BH)2T + η
√
d. (39)

Combining (38), (39), and (37) yields that, under E?,

1
T

T∑

t=1

(
V M,π?

1 − V M,π(t)

1 (x1)
)
≤2α

H∑

h=1
‖EM,π? [φh(xh, ah)]‖Σ−1

h
+ η−1(2BH)2 + η

√
d

T
+ 3βHζ. (40)

Note that the choices of η, σ, ζ in Definition C.1 gives that 1/σ ≤ ε−1/2
BE , meaning that

ζ ≤ CB.2εBEd
3/2 ·

(√
d log(d/(εBEσ)) + ε

−1/2
BE

)
≤ Cε1/2

BE d
3/2 log(1/εBE), (41)

for some constant C > 0; note that we have used that εBE ≤ d−1 and thus
√
d log d ≤

O(ε−1/2
BE log1/2(1/εBE)) in the above display. Combining Eqs. (40) and (41) gives

1
T

T∑

t=1

(
V M,π?

1 − V M,π(t)

1 (x1)
)

≤2α
H∑

h=1
‖EM,π? [φh(xh, ah)]‖Σ−1

h
+ 4BHd1/4

√
T

+ 2BH
√
dε

1/2
BE + 6CBH2d3/2 · ε1/2

BE log(1/εBE).
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Thus, by our choice of T = 16B2H2d1/2

ε2final
(Definition C.1), it follows that the policy π̂ := 1

T

∑T
t=1 π

(t)

satisfies

V M,π?

1 (x1)− V M,π̂

1 (x1)

≤2α
H∑

h=1
‖EM,π? [φh(xh, ah)]‖Σ−1

h
+ εfinal +O

(
BH2d3/2 · ε1/2

BE log(1/εBE)
)

≤O
(
d3/2BHε

1/2
BE log(1/εBE)

√
n+BHd log1/2(dnBH/(εfinalδ))

)
·
(
H√
n

+
H∑

h=1
‖EM,π? [φh(xh, ah)]‖Σ−1

h

)
+ εfinal,

which is equal to the desired bound.

Finally, we analyze the computational cost of Algorithm 1. The only nontrivial computation to be
performed is the call to Critic in Line 6, which is made T times. Thus, by Lemma C.3, given
an oracle which can solve the convex program (7), the overall computational cost of Algorithm 1
is poly(T, d, n,H, log(1/δ)/ε2

apx) ≤ poly(d,H, n, log(1/δ), 1/εfinal). The same guarantee holds with-
out existence of such an oracle; the necessary modifications to the proof are described below in
Remark C.3.

Remark C.2. Notice that in the case εBE = 0, the final steps of the proof above yield the (slightly
stronger) bound

V M,π?

1 (x1)− V M,π̂

1 (x1)

≤O
(
BHd log1/2(dnBH/(εfinalδ))√

n

)
·
H∑

h=1
‖EM,π? [φh(xh, ah)]‖nΣ−1

h
+ εfinal.

Remark C.3 (Solving the convex program). In this remark, we discuss the minor modifications
necessary to the proof of Theorem 3.1 to establish its guarantee without assumption of an oracle
which can solve the program (7).

Note that the program (7) is a convex program in O(dH) variables consisting of linear equal-
ities and `2 norm constraints, for which all coefficients of the variables can be specified with
log poly(α, β, d, n) ≤ log poly(n,B, d,H, log(1/δ)) bits. Thus, for any ε > 0, the ellipsoid algo-
rithm returns vectors w, ξ ∈ RdH which satisfy the constraints up to ε error and ε-approximately
minimize the objective (7a) in time poly(d,H, log(nB/(δε))). Then it is immediate that Item 1 of
Lemma C.3 gives only the weaker guarantee VMf,π

1 (x1) ≤ VM,π
1 (x1) + ε. Moreover, in the proof

of Item 2 of Lemma C.3, the right-hand side of (25) has an additional O(ε · αH) term (as (7c)
holds up to additive ε), which may be absorbed in the first term (namely, 3βHζσ) by increasing the
constants, as long as ε is sufficiently small. In turn, Lemma C.3 is used to establish (37): thus this
equation gains an additional term of ε on the right-hand side as well as additional constant factor.
This additional terms propagate to degrade the bound of Theorem 3.1 by a constant factor.

D Proof of Theorem 4.1

In this section we prove Theorem 4.1. First, in Appendix D.1 we introduce the family of MDP
instances used to prove the theorem, and in Appendix D.2 we analyze the performance of any
algorithm on this family.

D.1 Construction of the family MεBE .

Fix εBE > 0. For simplicity we assume that L := 1/√εBE is an even integer. Given bits brew, binit ∈
{0, 1} and (b`,e)`∈[L],e∈{0,1} ∈ {0, 1}2L, we write b = (brew, binit, (b`,e)`∈[L],e∈{0,1}) ∈ {0, 1}2L+2 to
denote the collection of all these bits. We construct a classMεBE = {Mb}b∈{0,1}2L+2 of MDPs Mb,
each of which has inherent Bellman error bounded above by εBE with respect to some fixed feature
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mappings. All MDPs M ∈ MεBE have horizon H = 2 and feature dimension d = 2. The state and
action spaces of each M ∈MεBE are given as follows:

X = {s1, t1, s2, s̄2, q2} ∪ {sζ2, tζ2,0, tζ2,1}ζ∈[0,1] A = {0, 1, 2, 3}, (42)

where ζ ranges over [0, 1]. (We remark that we will only need to use the states sζ2, t
ζ
2,0, t

ζ
2,1 for

values of ζ which are in {0, εBE, 2εBE, . . . ,
√
εBE}, but to simplify notation we opt to define states

corresponding to all ζ ≥ 0.)

Feature vectors. The feature vectors corresponding to X ,A are defined below. We use the
convention that if we specify fewer than 4 actions at a state, then all remaining actions at the state
have equal behavior (i.e., feature vectors and transition) to action 0 at that state. For normalizing
constant α := (

√
2)−1, we define, for each h ∈ [2]:

• φh(s1, 0) = α · (1, 0), φh(s1, 1) = α · (0, 1).

• φh(t1, 0) = α · (1, 1) and φh(t1, 1) = α · (1,−1).

• φh(s̄2, 0) = α · (0, 0).

• φh(s2, 0) = α · (0, 1), φh(s2, 1) = α · (0,−1).

• For each ζ ∈ [0, 1], φh(sζ2, 0) = α · (0, ζ), φh(sζ2, 1) = α · (1, 0), φh(sζ2, 2) = α · (0,−ζ),
φh(sζ2, 3) = α · (−1, 0).

• For each ζ ∈ [0, 1] and b ∈ {0, 1}, φh(tζ2,b, 0) = α·(1, (1−2b)ζ) and φh(tζ2,b, 1) = α·(−1,−(1−
2b)ζ). Via slight abuse of notation, we identify t02,0, t

0
2,1, i.e., t02,0 = t02,1.

Transitions and rewards. Consider any M := Mb ∈ MεBE , and write b =
(brew, binit, {b`,e}`∈[L],e∈{0,1}) ∈ {0, 1}2L+2. We proceed to define the initial state distribution, tran-
sitions and rewards of M . The initial state distribution has all its mass concentrated on t1. The
transitions are defined as follows:

• (s1, 1) transitions to s̄2 with probability 1.

• (s1, 0) and (t1, binit) each transition to the distribution that puts mass 1/L on each of the
states s`·εBE

2 , for ` ∈ [L].

• (t1, 1− binit) transitions to the distribution which:

– Puts mass 1/(2L) on t
(`−b`,0)·εBE
2,0 for each ` ∈ [L];

– Puts mass 1/(2L) on t
(`−b`,1)·εBE
2,1 for each ` ∈ [L].

The rewards are defined as follows:

• r1(x, a) = 0 for all x ∈ X , a ∈ A, i.e., rewards at step 1 are linear with θr
1 = (0, 0).

• The rewards at step 2 are linear with respect to the coefficient vector θr
2 = (1− 2brew, 1/R),

where R := 16.

Verifying low inherent bellman error. Next, we verify that each MDP Mb ∈ MεBE has low
inherent Bellman error and satisfies Assumption 2.2 with respect to the feature mappings φh defined
above.
Lemma D.1 (Low inherent Bellman error and boundedness). For any M = Mb ∈ MεBE , M has
inherent Bellman error 2εBE and satisfies Assumption 2.2 with B =

√
2.
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Proof. It is straightforward to see that

B1 = B2 =
{
w ∈ R2 : α|w1|+ α|w2| ≤ 1

}
,

meaning that the second item of Assumption 2.2 is satisfied with B = 1/α =
√

2. Moreover, by
choice of α the first item is immediate, and the third item holds since for all (x, a), |r2(x, a)| ≤
α · ‖θr

2‖1 = α · (1 + 1/R) ≤ 1.

We must verify (1) for h ∈ {1, 2}. We begin with the case h = 1. For θ ∈ R2, define

T1θ :=
(

1
L

L∑

`=1

(
max
a∈A
〈θ, φ2(s`·εBE

2 , a)〉
)
, 0
)
,

which belongs to B1 since its first coordinate is bounded above in absolute value by α ·
max{|θ1|, LεBE|θ2|} ≤ α · (|θ1|+ |θ2|) ≤ 1.

Since r1(x, a) = 0 for all x, a, we certainly have that, for each (x, a) ∈ ({s1} × A) ∪ (t1, binit),
(φ1(x, a))1 = 1 and thus

〈φh(x, a), T1θ〉 = Ex′∼PM
h

(x,a)

[
r1(x, a) + max

a′∈A
〈φ2(x′, a′), θ〉

]
, (43)

meaning that (1) holds for these (x, a). Now consider the state-action pair (x, a) = (t1, 1− binit). For
each ` ∈ [L] and θ ∈ R2, we have
∣∣∣∣max
a′∈A
〈φ2(s`εBE

2 , a′), θ〉 − 1
2 max
a′∈A
〈φ2(t(`−b`,0)εBE

2,0 , a′), θ〉 − 1
2 max
a′∈A
〈φ2(t(`−b`,1)εBE

2,1 , a′), θ〉
∣∣∣∣

≤α|θ2|εBE +
∣∣∣∣max
a′∈A
〈φ2(s`εBE

2 , a′), θ〉 − 1
2 max
a′∈A
〈φ2(t`εBE

2,0 , a
′), θ〉 − 1

2 max
a′∈A
〈φ2(t`εBE

2,1 , a
′), θ〉

∣∣∣∣ = α|θ2|εBE ≤ εBE.

It follows that
∣∣∣∣〈φh(t1, 1− binit), T1θ〉 − Ex′∼PM

h
(t1,binit)

[
r1(t1, binit) + max

a′∈A
〈φ2(x′, a′), θ〉

]∣∣∣∣ ≤ εBE,

verifying (1) holds for (x, a) = (t1, binit). Finally, the validity of (1) for (x, a) = (s1, 1) is immediate
since (T1θ)2 = 0.

Next we verify (1) for h = 2. Since all feature vectors are identically 0 at step h = H + 1 = 3
(by convention), we take T2θ = θr

2 (which is in B2 since α · (1 + 1/R) ≤ 1), and satisfies r2(x, a) =
〈φ2(x, a), θr

2〉 for all (x, a).

D.2 Proof of Theorem 4.1

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. First, note that if 1/
√
n ≥ √εBE, then the lower bound is straightforward and

well-known. In particular, consider X := {s1, s2},A := {0, 1} with φ1(x, 0) = (1, 0), φ1(x, 1) = (0, 1)
for each x ∈ X , and φ2(s1, a) = (1, 0), φ2(s2, a) = (0, 1) for each a ∈ A. We let the rewards be
linear with respect to some vectors θr

1, θ
r
2 ∈ R2 with θr

1 = (0, 0) some choice of θr
2 ∈ {(0, 1), (1, 0)}.

The initial state is s1; (s1, 0) transitions to s1 with probability 1/2 + (10
√
n)−1 (and to s2 with the

remaining probability), and (s1, 1) transitions to s1 with probability 1/2− (10
√
n)−1 (and to s2 with

the remaining probability). Finally, the dataset D consists of n/4 transitions from each of the tuples
(x, a) ∈ {(s1, 0), (s1, 1), (s2, 0), (s2, 0)}. It is straightforward to see that the inherent Bellman error
is 0 and that Assumptions 2.2 and 2.3 are satisfied. Moreover, it follows from well-known arguments
(Lattimore & Szepesvári, 2020, Chapter 15) that for any algorithm A, there is some choice of θr

2 as
above so that the optimal policy π? (i.e., defined by π?1(s1) = 0 if θr

2 = (1, 0), and π?1(s1) = 1 if
θr

2 = (0, 1)) and the output policy π̂ of A satisfy (8).
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For the remainder of the proof we may therefore assume that√εBE > 1/
√
n. Moreover, by decreasing

εBE by a constant factor, we may assume that L = 1/√εBE is an even integer. We use the state and
action spaces defined in (42) and the feature mappings φh defined in Appendix D.1 above. Fix some
randomized offline RL algorithm A. We will choose some MDP M ∈MεBE and define a distribution
over datasets D satisfying Assumption 2.3 so that (8) holds for some π?.

Consider some b = (brew, binit, (b`,e)`∈[L],e∈{0,1}) ∈ {0, 1}2L+2, to be specified below, and set M =
Mb. By Lemma D.1,M has inherent Bellman error 2εBE and satisfies Assumption 2.2 with B =

√
2.

The dataset D consists of tuples (hi, xi, ai, ri, x′i), i ∈ [n], drawn as follows:

• There are n/3 points of the form (1, s1, 1, 0, s̄2).

• There are n/3 points of the form (1, s1, 0, 0, xi), where xi ∼ PM1 (· | s1, 0) for i ∈ [n/3].

• There are n/3 points of the form (2, sLεBE
2 , 0, LεBEα/R,⊥).

It is immediate that the distribution of D satisfies Assumption 2.3.

Controlling the coverage coefficient. Note that we have

Σ1 =n

3 · φ1(s1, 1)φ1(s1, 1)> + n

3 · φ1(s1, 0)φ1(s1, 0)> = α2n

3 · I2

Σ2 =n

3 · φ2(s2, 0)φ2(s2, 0)> = n · (αLεBE)2

3 ·
(

0 0
0 1

)
.

Define w?1 := (1, 1−2binit), w?2 := (0, 1), and π?h := πh,w?
h
,0 for h ∈ [2], and write π? = (π?1 , π?2) ∈ ΠPlin.

Note that

EM,π? [φ1(x1, a1)] = α · (1, 1− 2binit), EM,π? [φ2(x2, a2)] = α · (0, LεBE),

so that

‖EM,π? [φ1(x1, a1)]‖nΣ−1
1

=
√

6, ‖EM,π? [φ2(x2, a2)]‖nΣ−1
2

=
√

3.

The value function of π? for M = Mb ∈ MεBE does not depend on the choice of b and may be
computed as follows: first, note that VM,π?

2 (sζ2) = 〈φ2(sζ2, 0), θr
2〉 = αζ/R, for each ζ ∈ [0, 1], which

implies that VM,π?

1 (t1) = QM,π?

1 (t1, b1) = VM,π?

2 (s2) = α
R ·

(1+···+L)εBE
L = α

R · (L+ 1)εBE/2.

Controlling the performance of A. Let π̂ denote the (random) output of the algorithm A, given
the random dataset D. Note that the distribution PM1 (· | s1, 0) does not depend on the choice of b.
Thus, the distribution of π̂, which we denote by D0 ∈ ∆(ΠM), is the same for all possible choices of
b. Lemma D.2 below, which is the main technical component of the proof, yields that there is some
b so that (8) holds (as we have assumed 1/

√
n <
√
εBE), which completes the proof of Theorem 4.1.

Lemma D.2. Let D0 ∈ ∆(ΠM) be an arbitrary distribution over Markov policies. Then there is
some choice of b so that, for M := Mb ∈MεBE , we have

Eπ∼D0

[
VM,π

1 (t1)
]
≤ VM,π?

1 (t1)− Ω (√εBE) . (44)

The proof of Lemma D.2 is provided below.

Proof of Lemma D.2. Let D0 ∈ ∆(ΠM) be given. Choose binit ∈ {0, 1} so that Z0 := Eπ∼D0 [π(1 −
binit | t1)] ≥ 1/2. For 0 ≤ ` ≤ L, define

η̄(`) :=Eπ∼D0

[
π(1− binit | t1) ·

(
π(0 | t`εBE

2,0 )− π(1 | t`εBE
2,1 )

)]

γ̄(`) :=Eπ∼D0

[
π(binit | t1) ·

(
π(1 | s`εBE

2 )− π(3 | s`εBE
2 )

)]
.
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Let D ∈ ∆(Π) be defined by

D(π) := D0(π) · π(1− binit | t1)
Eπ′∼D0 [π′(1− binit | t1)] = D0(π) · π(1− binit | t1)

Z0
.

For 0 ≤ ` ≤ L, define

ρ(`) := Eπ∼D
[
π(0 | t`εBE

2,0 ) + π(1 | t`εBE
2,1 )

]
.

Consider any choice of brew ∈ {0, 1} and b`,e ∈ {0, 1} for each ` ∈ [L], e ∈ {0, 1}, and write b =
(brew, binit, (b`,e)`∈[L],e∈{0,1}). Then for any policy π, ζ > 0, and b ∈ {0, 1}, we have

VM
b,π

2 (tζ2,b) =π(b | tζ2,b) · 〈φ2(tζ2,b, b), θ
r
2〉+ π(1− b | tζ2,b) · 〈φ2(tζ2,b, 1− b), θr

2〉
=α · π(b | tζ2,b) · 〈(1− 2b, ζ), (1− 2brew, 1/R)〉+ α · (1− π(b | tζ2,b)) · 〈(2b− 1,−ζ), (1− 2brew, 1/R)〉
=2α · π(b | tζ2,b) · ((1− 2b)(1− 2brew) + ζ/R)− α · ((1− 2b)(1− 2brew) + ζ/R). (45)

Hence

VM
b,π

2 (tζ2,0) + VM
b,π

2 (tζ2,1) =2α(1− 2brew) ·
(
π(0 | tζ2,0)− π(1 | tζ2,1)

)
+ 2ζαR−1

(
π(0 | tζ2,0) + π(1 | tζ2,1)− 1

)
.

(46)

Moreover,

VM
b,π

2 (sζ2) =α · (1− 2brew) ·
(
π(1 | sζ2)− π(3 | sζ2)

)
+ αR−1ζ ·

(
π(0 | sζ2)− π(2 | sζ2)

)

≤α · (1− 2brew) ·
(
π(1 | sζ2)− π(3 | sζ2)

)
+ αR−1ζ. (47)

Case 1:
∣∣∣ 1
L

∑L
`=1(η̄(`) + γ̄(`))

∣∣∣ >
√
εBE
10 . Recall our choice binit from above. Set brew = 0 if

∑`
`=1(η̄(`) + γ̄(`)) < 0, and otherwise brew = 1. Finally set b`,e = 0 for all ` ∈ [L], e ∈ {0, 1},

and write b = (brew, binit, (b`,e)`,e). Therefore,

Eπ∼D0

[
VM

b,π
1 (t1)

]

= 1
2L

L∑

`=1
Eπ∼D0

[
π(1− binit | t1) ·

(
VM

b,π
2 (t`εBE

2,0 ) + VM
b,π

2 (t`εBE
2,1 )

)
+ 2π(binit | t1) · VM

b,π
2 (s`εBE

2 )
]

(48)

≤ 1
2L

L∑

`=1
2α(1− 2brew) · Eπ∼D0

[
π(1− binit | t1) · (π(0 | t`εBE

2,0 )− π(1 | t`εBE
2,1 ))

]

+ 1
2L

L∑

`=1
2αR−1`εBEEπ∼D0

[
π(1− binit | t1) · (π(0 | t`εBE

2,0 ) + π(1 | t`εBE
2,1 )− 1)

]

+ 1
L

L∑

`=1

(
α(1− 2brew) · Eπ∼D0

[
π(binit | t1) · (π(1 | s`εBE

2 )− π(3 | s`εBE
2 ))

]
+ αR−1Eπ∼D0 [π(binit | t1) · `εBE]

)

=α(1− 2brew) 1
L

L∑

`=1
(η̄(`) + γ̄(`)) + 1

L

L∑

`=1
Z0 · αR−1`εBE · (ρ(`)− 1) + 1

L

L∑

`=1
αR−1(1− Z0) · `εBE

(49)

≤− α

L

∣∣∣∣∣
L∑

`=1
(η̄(`) + γ̄(`))

∣∣∣∣∣+ αR−1(L+ 1)εBE/2

=− α

L

∣∣∣∣∣
L∑

`=1
(η̄(`) + γ̄(`))

∣∣∣∣∣+ VM
b,π?

1 (t1) ≤ −α
√
εBE

10 + VM
b,π?

1 (t1),
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where the first inequality uses Eqs. (46) and (47), and the second inequality uses ρ(`) ≤ 2 for each
` ∈ [L] as well as our choice of brew. The above chain of inequalities thus verifies (44) in this case.

From here on, we assume that Case 1 does not hold. Since t02,0 = t02,1, we have ρ(0) − 1 = 0.
Therefore, either

∑L
`=L/2(ρ(`)−1) ≤ L

2 ·1/2 or 1
L

∑L
`=1[ρ(`)−ρ(`−1)]+ ≥ 1/(2L) = √εBE/2. Thus,

it suffices to consider the (exhaustive) Cases 2 and 3 below:

Case 2:
∑L
`=L/2(ρ(`) − 1) ≤ L

2 · 1/2. We make the same choice of b as in Case 1. Then using
(49), we have

Eπ∼D0

[
VM

b,π
1 (t1)

]
=α(1− 2brew) 1

L

L∑

`=1
(η̄(`) + γ̄(`)) + αZ0

RL

L∑

`=1
(ρ(`)− 1) · `εBE + α(1− Z0)

RL

L∑

`=1
`εBE

≤αZ0
RL

L∑

`=1
(ρ(`)− 1) · `εBE + αR−1(1− Z0) · (L+ 1)εBE/2

≤α(L+ 1)εBE
2R · (1− Z0) + αZ0

R
·
(

(L+ 1)εBE
2 − L

4 ·
LεBE/2
L

)

=α(L+ 1)εBE
2R − αZ0 · LεBE

8R
≤VM

b,π?

1 (t1)− αR−1LεBE/16 = VM
b,π?

1 (t1)− αR−1√εBE/16,

where the second inequality uses our assumption that
∑L
`=L/2(ρ(`) − 1) ≤ L/4, and the final in-

equality uses the fact that Z0 ≥ 1/2.

Case 3:
∑L
`=1[ρ(`) − ρ(` − 1)]+ ≥

√
εBE/2. For each ` ∈ [L] and b ∈ {0, 1}, define ρb(`) :=

Eπ∼D
[
π(b | t`εBE

2,b )
]
, so that ρ(`) = ρ0(`) + ρ1(`). We may choose some e? ∈ {0, 1} so that

∑L
`=1[ρe?(`)− ρe?(`− 1)]+ ≥

√
εBE/4. Choose brew = e? and define the values b`,e as follows:

b`,e :=
{

1 : ρe?(`)− ρe?(`− 1) ≥ 0, e = e?

0 : otherwise.
(50)

Write b = (binit, brew, (b`,e)`,e). Using (45), for each ` ∈ [L], we have

VM
b,π

2 (t(`−b`,0)εBE
2,0 ) + VM

b,π
2 (t(`−b`,1)εBE

2,1 )
=2απ(1− e? | t`εBE

2,1−e?) · ((2e? − 1)(1− 2brew) + `εBE/R)− α((2e? − 1)(1− 2brew) + `εBE/R)

+ 2απ(e? | t(`−b`,e? )εBE
2,e? ) · ((1− 2e?)(1− 2brew) + (`− b`,e?)εBE/R)− α((1− 2e?)(1− 2brew) + (`− b`,e?)εBE/R)

=2απ(1− e? | t`εBE
2,1−e?) · ((2e? − 1)(1− 2brew) + `εBE/R)− α(2`− b`,e?)εBE/R

− 2απ(e? | t(`−b`,e? )εBE
2,e? ) · ((2e? − 1)(1− 2brew)− (`− b`,e?)εBE/R)

≤2α(2e? − 1)(1− 2brew)
(
π(1− e? | t`εBE

2,1−e?)− π(e? | t(`−b`,e? )εBE
2,e? )

)
+ 2α` · εBE/R.

Combining the above display with (46), we obtain that

VM
b,π

2 (t(`−b`,0)εBE
2,0 ) + VM

b,π
2 (t(`−b`,1)εBE

2,1 )−
(
VM

b,π
2 (t`εBE

2,0 ) + VM
b,π

2 (t`εBE
2,1 )

)

≤
(

2α(2e? − 1)(1− 2brew)
(
π(1− e? | t`εBE

2,1−e?)− π(e? | t(`−b`,e? )εBE
2,e? )

)
+ 2αR−1` · εBE

)

−
(

2α(1− 2brew) ·
(
π(0 | t`εBE

2,0 )− π(1 | t`εBE
2,1 )

)
+ 2αR−1`εBE

(
π(0 | t`εBE

2,0 ) + π(1 | t`εBE
2,1 )− 1

))

≤2α(1− 2e?)(1− 2brew) · π(e? | t(`−b`,e? )εBE
2,e? )− 2α(1− 2brew)(1− 2e?) · π(e? | t`εBE

2,e?) + 4αR−1`εBE

=− 2α ·
(
π(e? | t`εBE

2,e?)− π(e? | t(`−b`,e? )εBE
2,e? )

)
+ 4αR−1`εBE, (51)
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where the final equality uses our choice of brew = e?. Define b′`,e = 0 for all ` ∈ [L], e ∈ {0, 1}, and
set b′ := (brew, binit, (b`,e)′`,e). Then, using (48) as well as the fact that VM

b,π
2 (sζ2) = VM

b′ ,π
2 (sζ2) for

all π and ζ,

1
Z0

Eπ∼D0

[
VM

b,π
1 (t1)− VM

b′ ,π
1 (t1)

]

= 1
2LZ0

L∑

`=1
Eπ∼D0

[
π(1− binit | t1) ·

(
VM

b,π
2 (t(`−b`,0)εBE

2,0 ) + VM
b,π

2 (t(`−b`,1)εBE
2,1 )−

(
VM

b,π
2 (t`εBE

2,0 ) + VM
b,π

2 (t`εBE
2,1 )

))]

= 1
2L

L∑

`=1
Eπ∼D

[
VM

b,π
2 (t(`−b`,0)εBE

2,0 ) + VM
b,π

2 (t(`−b`,1)εBE
2,1 )−

(
VM

b,π
2 (t`εBE

2,0 ) + VM
b,π

2 (t`εBE
2,1 )

)]

≤2αR−1(L+ 1)εBE − α
L∑

`=1
Eπ∼D

[
π(e? | t`εBE

2,e?)− π(e? | t(`−b`,e? )εBE
2,e? )

]

=2αR−1(L+ 1)εBE − α
L∑

`=1
(ρe?(`)− ρe?(`− b`,e?))

=2αR−1(L+ 1)εBE − α
L∑

`=1
[ρe?(`)− ρe?(`− b`,e?)]+

≤2αR−1(L+ 1)εBE − α
√
εBE/2 ≤ −α

√
εBE/4, (52)

where the first inequality uses (51), the final equality uses the definition of b`,e? in (50), and the
final inequality uses the fact that R = 16. Also note that, from (49),

Eπ∼D0

[
VM

b′ ,π
1 (t1)

]
=α(1− 2brew) 1

L

L∑

`=1
(η̄(`) + γ̄(`)) + α

RL

L∑

`=1
Z0 · `εBE · (ρ(`)− 1) + α

RL

L∑

`=1
(1− Z0) · `εBE

≤α ·
√
εBE
10 + α(L+ 1)εBE

2R = VM
b,π?

1 (t1) + α · √εBE/10. (53)

Combining Eqs. (52) and (53) and using the fact that Z0 ≥ 1/2 gives that

Eπ∼D0

[
VM

b,π
1 (t1)

]
− VM

b,π?

1 (t1) ≤ α√εBE/10− α√εBE/8 = −α√εBE/40,

as desired.

E Useful lemmas

E.1 Concentration

Lemma E.1 (Concentration for self-normalized process; e.g., Theorem D.3 of Jin et al. (2020a)). Fix
n ∈ N and let ε1, . . . , εn be random variables which are adapted to a filtration (Fi)0≤i≤n. Suppose
that for each i ∈ [n], E[εi|Fi−1] = 0 and E[eλεi |Fi−1] ≤ eλ

2σ2/2. Suppose that φ1, . . . , φn is a
sequence which is predictable with respect to (Fi)0≤i≤n, i.e., φi is measurable with respect to Fi−1
for all i ∈ [n]. Suppose that Γ0 ∈ Rd×d is positive definite, and let Γi = Γ0 +

∑i
j=1 φjφ

>
j . Then for

any δ > 0, with probability at least 1− δ,
∥∥∥∥∥
n∑

i=1
φiεi

∥∥∥∥∥

2

Γ−1
i

≤ 2σ2 log
(

det(Γt)1/2 det(Γ0)−1/2

δ

)
.
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E.2 Projection bound

Lemma E.2. Consider any sequence of vectors φ1, . . . , φn ∈ Rd and a sequence of real numbers
b1, . . . , bn ∈ R, so that, for some ε > 0, |bi| ≤ ε for all i ∈ [n]. Then for any λ ≥ 0,

∥∥∥∥∥
n∑

i=1
biφi

∥∥∥∥∥

2

(λI+
∑n

i=1
φiφ>i )−1

≤ nε2.

E.3 Performance difference lemma

Lemma E.3 (Performance difference lemma; Kakade & Langford (2002)). For any MDPM , policies
π, π′ ∈ Π, it holds that

EM,π
[
H∑

h=1
rh(xh, ah)

]
− EM,π′

[
H∑

h=1
rh(xh, ah)

]
=

H∑

h=1
EM,π′ [V M,π

h (xh)−QM,π

h (xh, ah)] .

F Bellman restricted closedness

In this section, we show that linear Bellman completeness does not, in general, imply that Bellman
restricted closedness holds, even when the policy class is restricted to be softmax policies. We first
make the requisite definitions.
Definition F.1 (Softmax policy class). Given feature mappings (φh : X × A → Rd)h∈[H], the
associated softmax policy class Πsoft consists of the set of all policies π = (π1, . . . , πH), for which
there is some η > 0 and w1, . . . , wH ∈ Rd so that for all h ∈ [H] and x ∈ X ,

πh(a|x) = exp(η · 〈φh(x, a), wh〉)∑
a′∈A exp(η · 〈φh(x, a′), wh〉)

.

If πh satisfies the above display, we write πh = πsoft
h [wh, η].

Definition F.2 (Bellman restricted closedness). An MDP M is said to satisfy Bellman restricted
closendess with respect to d-dimensional feature mappings (φh)h∈[H] for a policy class Π′ if for each
π ∈ Π′, there are mappings T πh : Rd → Rd so that the following holds for each h ∈ [H]:

sup
w∈Rd

sup
(x,a)∈X×A

∣∣〈φh(x, a), T πh w〉 − Ex′∼Ph(x,a) [rh(x, a) + 〈φh+1(x′, πh+1(x′)), w〉]
∣∣ = 0.

Lemma F.1. There is an MDP with H = 2, A = 3 together with feature mappings in d = 1
dimension which satisfies linear Bellman completeness (i.e., Assumption 2.1 with εBE = 0) but not
Bellman restricted closedness (Definition F.2) with respect to the softmax policy class Πsoft.

Proof. Consider the MDP with H = 2,A = {1, 2, 3}, d = 1, X = {s1, s2}, and
φ1(x, a) = 1 ∀x ∈ X , a ∈ A

φ2(s1, 1) = 1, φ2(s1, 2) = 0, φ2(s1, 3) = −1
φ2(s2, 1) = 1, φ2(s2, 2) = 1, φ2(s2, 3) = −1.

All rewards are 0. The transitions are as follows: for any a ∈ A, x ∈ X , (x, a) transitions to x at
step 1. By defining T1w = |w|, we may ensure that linear Bellman completeness holds with respect
to the above feature mappings: indeed, for each x ∈ X , maxa∈A w ·φ2(x, a) = |w| = 〈φ1(x, a′), T1w〉
for all a′ ∈ X .
Now let π2 := πsoft

2 [1, 1] (see Definition F.1) and w = 1. Then

〈φ2(s1, π2(s1)), w〉 = e− e−1

e+ 1 + e−1

〈φ2(s2, π2(s2)), w〉 = 2e
2e+ e−1 .
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Since e−e−1

e+1+e−1 6= 2e
2e+e−1 , and φ1(s1, a) = φ1(s2, a) for all a, Bellman restricted closedness cannot

hold (even up to constant approximation error).
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Abstract

Robust reinforcement learning agents using high-dimensional observations must be
able to identify relevant state features amidst many exogeneous distractors. A repre-
sentation that captures controllability identifies these state elements by determining
what affects agent control. While methods such as inverse dynamics and mutual
information capture controllability for a limited number of timesteps, capturing long-
horizon elements remains a challenging problem. Myopic controllability can capture
the moment right before an agent crashes into a wall, but not the control-relevance
of the wall while the agent is still some distance away. To address this we intro-
duce action-bisimulation encoding, a method inspired by the bisimulation invariance
pseudometric, that extends single-step controllability with a recursive invariance
constraint. By doing this, action-bisimulation learns a multi-step controllability met-
ric that smoothly discounts distant state features that are relevant for control. We
demonstrate that action-bisimulation pretraining on reward-free, uniformly random
data improves sample efficiency in several environments, including a photorealistic
3D simulation domain, Habitat. Additionally, we provide theoretical analysis and
qualitative results demonstrating the information captured by action-bisimulation.
Code and video: https://maxrudolph1.github.io/action-bisimulation-site/

1 Introduction

Learning control for complex decision-making from high-dimensional observation spaces such as
video and depth is vital for real-world applications of reinforcement learning (RL). To do this, a
representation of the observation space allows agents to reason about the environment and take
intelligent actions. However, learning these representations is often sample inefficient. One reason for
this is that real-world scenarios often contain many irrelevant and distracting features embedded in a
high-dimensional space. Correlating reward with relevant state elements, and not causally confusing
distractors in this setting, is challenging—especially since reward signals are often sparse.

Representation learning has emerged as a promising approach to address this challenge by extracting a
compressed and informative representation of the observation space that is useful for learning (Bengio
et al., 2013). Representation learning removes irrelevant distractors from the state space used to learn
the policy, which improves sample efficiency and performance. In RL, task-specific representation
learning uses reward or expert behavioral similarity (Ferns et al., 2011; Agarwal et al., 2021) to
discover the compressed representation, only describing task-specific elements. This has the advantage
of capturing only information that is either useful for solving the task or relevant to the demonstrations
while being limited by requiring either expert behavior or task-achieving policies, both of which

* Authors contributed equally, corresponding author mrudolph@cs.utexas.edu
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Action-
Bisimulation


Control Irrelevant 

Changes

Control Relevant

ChangesBase State

(a)

ψ( ⋅ )

ϕ( ⋅ )

finv(a |ψθ(s), ψθ(s′ ))

(1 − c)∥ψ(si) − ψ(sj)∥1

s

s′ 

si

sj
c𝔼 [W1( f(ϕ(si), a), f(ϕ(sj), a))]

Base Case

Recursive Step

Single Step  
Encoder

Action-Bisim  
Encoder

Action Loss

Bisimulation Invariance

Multi-step Inputs: Single-step Inputs: State Encoder: Loss Function:

(b)

Figure 1: Left: mapping equivalent controllability together with action-bisimulation. Other
methods can be too aggressive (single-step inverse dynamics would map together (a) and (e),
reward-based methods would map together (a) and (d)), or permissive (autoregressive methods
would map (a) and (c) to the same value). Right: data flow of action-bisimulation training. The
single-step encoder is trained with inverse dynamics (Section 4.1). The multi-step encoder is trained
with bootstrapped single-step representation distance (Equation 6).

can be difficult to obtain prior to learning. On the other hand, task-free methods use unsupervised
signals like reconstruction (Lange & Riedmiller, 2010) and contrastive objectives (Laskin et al., 2020)
and can be pre-trained on any data, including random actions. However, these methods are trained
without action information. As a result they can capture exogenous distractors that are not useful
for improving RL policy performance.

One promising direction of task-agnostic methods utilizes controllability to learn a behavior-relevant
representation that is not task-specific (Lamb et al., 2022). These representations can avoid capturing
task-irrelevant information while not requiring expert or reward-achieving behavior. Recent work
in action-based representation learning for RL has shown promising results (Zhang et al., 2022) by
utilizing inverse dynamics models to extract representations (Islam et al., 2022). These representations
rely on a window of information by predicting the first action between two states separated by
k-steps. If k is small this representation is myopic, but when k is large the prediction problem is
underspecified. This underspecification restricts large k to offline datasets with correlated action
data—such as expert trajectories.

We investigate utilizing a novel invariant metric to learn a multi-step control-based representation
instead of directly applying k-step prediction. Our action-bisimulation metric offers a novel framework
for controllability metrics that takes a myopic dynamics encoding and extends it to multi-step
representations. This formulation is inspired by reward bisimulation (Zhang et al., 2020b), which
utilizes single-step reward information to learn multi-step return-capturing representations. Action-
bisimulation applies bootstrapping on the myopic k = 1 controllability representations to enforce
multi-step invariance in an action-bisimulation encoding. Since the base case uses single-step
prediction, the encoding can be trained with any offline data, even fully random. At the same time,
boostrapping extends the action-bisimulation encoding to capture long-term controllability. Figure 1
captures how action-bisimulation maps control-irrelevant states together, while not doing the same
for control-relevant states.

This work offers an empirical analysis and theoretical formulation of the novel control-based invariant
metric for representation learning. We demonstrate empirically that in scenarios where complex, long-
horizon, sparse-reward decision-making is required, the metric improves sample efficiency compared to
RL agents trained directly from pixels, or pre-trained with existing representation learning methods
in multiple domains. Next, we provide qualitative results demonstrating the robustness of the learned
representation to uncontrollable distractors, as well as sensitivity to control-relevant state features.
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2 Related Works
Representation Learning in RL. Learned representations have been widely applied to RL,
formalized (Li et al., 2006) through hierarchical symbolic representations (Konidaris et al., 2014;
Andre & Russell, 2002), skill abstractions (Dietterich, 2000), policy optimality (Auer et al., 2008;
Jong & Stone, 2005; Abel et al., 2016), selective attention (Jones & Canas, 2010) and contingency
awareness (Bellemare et al., 2012). One effective strategy is to use the representation to learn a model
that is effective for planning (Hafner et al., 2019; Koul et al., 2023). These methods learn world
models (Ha & Schmidhuber, 2018) and other representations that can be used for prediction (Singh
et al., 2012), data generation and planning. Alternatively, other methods apply representation
learning for filtering (Krishnan et al., 2015; Karl et al., 2016) or reduced complexity (Higgins
et al., 2016; Oord et al., 2018; Laskin et al., 2020) representations. Action-bisimulation is a novel
encoder that learns controllability-based representations to improve RL performance. Unlike other
representation learning methods, action-bisimulation uses a soft invariance pseudometric to capture
action information through time.

Action-based Representations. RL methods have directly leveraged action-relevant representa-
tions in several ways. This includes contingency awareness (Bellemare et al., 2012; Choi et al., 2018;
Chuck et al., 2020; 2023), which is closely related to action controllability (Zhong et al., 2020) and
control information measures like empowerment (channel capacity between actions and state) (Jung
et al., 2011; Mohamed & Jimenez Rezende, 2015; Levy et al., 2023) or affordances (Cruz et al.,
2016; Khetarpal et al., 2020; Nagarajan et al., 2020). Multi-step inverse models are most similar to
action-bisimulation, but common multi-step inverse methods (Lamb et al., 2022; Islam et al., 2022;
Koul et al., 2023) require selecting a specific k for the multi-step horizon, potentially leaving critical
control information on the table. Further, it has been shown that multi-step inverse models can be
insufficient when the dynamics are periodic (Levine et al., 2024). Action-bisimulation uses a soft
invariance metric to extend single-step models, which better preserves long-term controllability.

Bisimulation methods. Bisimulation describes future invariant state representations, originally
applied to stationary representations (Larsen & Skou, 1989; Dean et al., 1997; Ferns et al., 2004),
before being extended to continuous state MDPs (Ferns et al., 2011). Reward-based bisimulation
methods have gained popularity through learned deep representations (Zhang et al., 2020b). This
has been extended to non-optimal policies (Castro et al., 2021), with generalized value function
bounds (Kemertas & Aumentado-Armstrong, 2021) and augmented with state discretization (Ke-
mertas & Jepson, 2022) and clustering (Liu et al., 2023). Bisimulation-based methods have also
been applied in different contexts: expert policy similarity (Agarwal et al., 2021; Bertran et al.,
2022; Mazoure et al., 2021), goal-conditioned RL (Hansen-Estruch et al., 2022) and reward-action
policy equivalence (Liao et al., 2023; Castro, 2020). While this work draws on reward-bisimulation,
action-bisimulation is fundamentally offline and task-agnostic because it takes an expectation over
actions, removing its dependence on any policy.

3 Preliminaries

A Markov decision process is defined by the tuple M := (S,A, p, R), where S is the state space, A
is the action space and s ∈ S, a ∈ A are states and actions respectively. p(s′|s, a) is the transition
function that gives the probability of the next state s′ given the current state and action (s, a). The
reward function R(s, a) maps state and action to a scalar reward. A policy π(a|s) is the probability
of an action given the current state.

This work utilizes the following two-phase paradigm: in the first phase, the agent first takes actions
without access to the reward function R(s, a) to generate a dataset of ordered state action tuples
D := {(s(0), a(0)), . . . (s(|D|−1), a(|D|−1))}. Then, a representation ϕ : S → Z is learned from S. In
the second phase, the agent learns from extrinsic reward utilizing the learned representation.

The action-bisimulation representation method is inspired by reward bisimulation (Dean et al., 1997).
In RL, bisimulation is a state abstraction that groups reward-equivalent states:
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Definition 3.1 (Bisimulation Relations (Givan et al., 2003)). In MDP M, an equivalence relation
B between states is a bisimulation relation if: ∀si, sj ∈ S where the states are equivalent under B
(si ≡B sj), the following conditions hold:

R(si, a) = R(sj , a) ∀a ∈ A (1)
P (G|si, a) = P (G|sj , a) ∀a ∈ A,∀G ∈ SB (2)

where SB is the partition of S under the relation B (the set of all groups G of equivalent states), and
P (G|s, a) =

∑
s′∈G p(s′|s, a)

Bisimulation Metrics (Ferns et al., 2011; Castro, 2020) soften the notion of state partitions with a
pseudometric space (S, d), where distance function d : S × S → R≥0 measures the similarity between
two states.1 The on-policy bisimulation metric (Kemertas & Aumentado-Armstrong, 2021) is:

dr-bisim(si, sj) = max
a

(1 − c) · |R(si, a) −R(sj , a)|︸ ︷︷ ︸
base case

+ cW1(d)(p(·|si, a), p(·|sj , a))︸ ︷︷ ︸
recursive step

, (3)

where W1(d) is the 1-Wasserstein distance and c is a scalar hyperparameter that weights the multi-
step sensitivity of the distance. The 1-Wasserstein metric measures the distance between next-state
distributions in the latent bisimulation space. We propose a novel controllability-based relation,
which replaces reward equivalence with single-step control equivalence. By replacing rewards in the
equivalence, the relation is task-agnostic.
Definition 3.2 (Action-Bisimulation Relations). Let ψ : S → Zss be a single step controllability
encoder such that p(a|ψ(s), ψ(s′)) = p(a|s, s′) for all s, a, s′. In MDP M, an equivalence relation AB
between states is an action-bisimulation relation according to ψ if: ∀si, sj ∈ S where the states are
equivalent under AB (si ≡AB sj), the following conditions hold:

ψ(si) = ψ(sj) (4)
P (G|si, a) = P (G|sj , a) ∀a ∈ A,∀G ∈ SAB (5)

where SAB is the partition of S under the relation AB (the set of all groups G of equivalent states),
and P (G|s, a) =

∑
s′∈G p(s′|s, a)

This equivalence can be similarly relaxed into a pseudometric. However, in the off-policy setting,
we are not interested in a particular policy, but all policies. Thus, action-bisimulation uses the
expectation over uniform actions to encode all possible policies.

da-bisim(si, sj , ψ) = (1 − c) · ∥ψ(si) − ψ(sj)∥1︸ ︷︷ ︸
base case

+ c · Ea∼U(A) [W1(p(·|si, a), p(·|sj , a))]
︸ ︷︷ ︸

recursive step

(6)

In the next section, we describe how ψ(·) can be learned from data, and how to use da-bisim to learn
an action-bisimulation encoder.

4 Methods

This section describes the algorithm for training an action-bisimulation encoder. First, the single-step
encoder is learned, then the distance in single step space is used as the “base case” for the recursive
step. The training flow and inputs are visualized in Figure 1b.

4.1 Single-Step Controllability

Inverse dynamics describes the probability of an action given two sequential states (s, s′): P (a|s, s′).
To get a single-step encoding of the action-relevant state features we define the single step state

1This is a pseudometric, meaning that two different states can have 0 distance.
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encoder ψθ(s) : S → Zss, where Zss is the embedded single-step space (Lamb et al., 2022), and ψθ is
parameterized by θ. Then, for dataset D of (s, a, s′) tuples, the regularized single-step representation
is learned by optimizing the single-step (ss) inverse dynamics loss:

Lss(D, θ, ν) = −
∑

(s,a,s′)∼D
log fν,inverse(a|ψθ(s), ψθ(s′)) + β (∥ψθ(s)∥1 + ∥ψθ(s′)∥1) , (7)

where fν,inverse is a learned inverse dynamics model parameterized by ν. The regularization ensures
that the learned representation includes the minimum information necessary to capture the action-
dependent inverse dynamics.

This inverse model is optimized to predict a distribution over actions P (·|ψθ(s), ψθ(s′)) using the
single-step embeddings as inputs. In this work, we represent the parameters of the distribution
as a function of [ψθ(s), ψθ(s′)]. Intuitively, ψ(·) embeds control-relevant features by embedding
action-relevant components of the state. We use a relatively weak inverse model under the intuition
that the simpler the model used to capture inverse dynamics, the more information is forced into the
embedding rather than the inverse dynamics model.

4.2 Action-Bisimulation Metric

This section describes how the action-bisimulation metric (Equation 6) is used to learn an encoder
ϕη(s) : S → Z, where Z is the representation space and ϕη is parameterized by η. This definition
uses the single-step representation space Zss to define the multi-step representation space Z.

The recursive step E[cW1(d)(p(·|si, a), p(·|sj , a))] requires computing p(·|si, a) and p(·|sj , a). This can
be done by learning a forward model parameterized by υ: fυ(ϕη(si), a) : Z × A → P (·|ϕη(si), a) that
takes in the state embedding and action and outputs a probability distribution over the next embedded
state. We model this by outputting the parameters of a conditional Gaussian model N (µ,Σ) following
the practice of Zhang et al. (2020b). Using the notation f(ϕη(si), a)[s′] to denote the probability of
state s′ under the distribution fυ(ϕη(si), a), we train the forward model by minimizing the negative
log-likelihood of the observed data in D:

Lforward(D) = −
∑

s,a,s′∼D
log fυ(ϕη(s), a)[ϕη(s′)]. (8)

In deterministic dynamics, the 1-Wasserstein distance equals the l1 distance of the mean. fυ(·) is
a function of the encoded state ϕ(s) rather than the observation s because forward dynamics over
the observations is more costly due to the inherent reconstruction objectives they minimize; this
reconstruction could bring in uncontrollable elements and does not inherently include control centric
components.

In the off-policy setting, we propose using one of two expectations for the recursive step: over the
uniform distribution of actions Ea∼U(A) or over the behavior distribution: Ea∼πb(si). The use of
the behavioral distribution applies to settings where random actions might restrict the distribution
of observed states. In practice, these are computed using the empirical mean. Then, the action-
controllability bisimulation metric using learned models is:

da-bisim(si, sj , ψθ, ϕη) = (1 − c) · ∥ψθ(si) −ψθ(sj)∥1 + c ·Ea∼U(A) [W1(f(ϕη(si), a), f(ϕη(sj), a))] (9)

To train the encoder, we match the l1 distance between the embedded representations ϕ(si), ϕ(sj) to
the metric distance:

L(D) = 1
N

∑

si,sj∼D
|∥ϕη(si) − ϕη(sj)∥1 − da-bisim(si, sj , ψ, ϕ)| . (10)

In practice the parameters of ϕ used to calculate da-bisim are trailed behind ϕη with the exponential
moving average: ϕ = τϕη + (1 − τ)ϕ.
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Algorithm 1: Action-bisimulation Encoder Learning
Input: Dataset without reward (s, a, s′) ∼ D, initial encoder ϕθ̄(s)
Single-step Training Train ψ with D and Equation 7.
repeat

Forward Model Update: Update the forward model fυ(·) according to the current multi-step
encoder ϕ using Equation 8.
Multi-step Update: Sample si, sj ∼ D pairs and minimize the loss as defined by the metric in
Equation 9 and loss (Equation 10) to update the encoder parameters θ.
Momentum Update: Update the parameters: θ̄ = τθ + (1 − τ)θ̄

until θ̄ converge

(a) Nav2D (b) Pointmaze (c) Distractor Pointmaze (d) Habitat environments

Figure 2: Visual representation of the RL environments.

5 Experiments

In this section, we aim to answer the following questions: 1) Does pre-training with the action-
bisimulation objective learn representations useful for arbitrary downstream tasks? 2) How does this
pretraining compare with existing methods, especially single-step action controllability? (3) Are the
learned representations robust to background distractors? (4) How well does the action-bisimulation
procedure capture multi-step relationships between state elements?

We evaluate experiments in three domains illustrated in Figure 3. Nav2D is a 15x15 grid environment
where the agent navigates using cardinal directions to the center of the grid, avoiding randomly
generated 2x2 obstacles. Pointmaze (Fu et al., 2020) is a 2D Mujoco control environment where the
agent takes actions to reach a goal location while being impeded by obstacles. We also investigate
Distractor Pointmaze where the background in Pointmaze has been replaced with photorealistic
distractions in the form of video clips. Finally, Habitat (Savva et al., 2019b) is a complex 3D
environment where the agent must navigate through scans of human environments to reach a goal
location. Additional environment details are in Appendix H (number of obstacles, goal/grid size,
randomization, etc.) and all other relevant hyperparameters are in Appendix I.

5.1 Baselines

We compare the performance of our method against representation learning pretraining methods
used in prior RL works that utilize control-, contrastive- and reconstruction-based objectives.

Single-Step Inverse (SSI): This baseline uses the single-step objective learned using Equation 7
with k = 1 to learn a state representation. This demonstrates whether simply learning a myopic
action-centric inverse dynamics representation is sufficient for good performance. In general, this
representation performs surprisingly well.

Agent Centric Representations for Offline RL (ACRO) (Lamb et al., 2022): This method is
equivalent to SSI with k ̸= 1. When k > 1, this means that the model must learn to identify the first
action taken from a pair of states. While this allows the model to capture longer-term relationships,
it also limits how effective it can be when trained with random actions.
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Figure 3: Training Performance Curves for downstream RL learning in (a) 2D navigation, (b)
Pointmaze navigation, (c) Distractor Pointmaze and (d) Habitat. Mean and 95% confidence
interval are plotted over 5 trials with different random seeds for each domain.

β-Variational Autoencoder (bVAE) (Higgins et al., 2016): This method evaluates a classic
compressed state reconstruction method for representation learning. While popularized with video,
it has been applied to RL with marginal success. In general, reconstruction can struggle to pick up
fine-grained changes such as the movement of the agent.

Contrastive Unsupervised Representations for Reinforcement Learning (CURL) (Laskin
et al., 2020): This method uses data augmentation with a contrastive objective to learn a representa-
tion. In this work, we used random noise augmentations because of the importance of identifying
small features (the location of the agent).

Vanilla RL (Schulman et al., 2017; Mnih et al., 2013): Trains either Deep Q-networks (DQN) in
Gridworld, or Proximal Policy Optimization (PPO) in the remaining domains, from scratch.

5.2 Downstream Learning

To evaluate downstream learning we first gather an offline dataset of random action state transitions,
with sizes recorded in Table 2. State encoder ϕ(s) is trained with Equation 10, which is used to
initialize the policy πθ(·|ϕ(s)). This fine-tuning strategy proved to be the best performing empirically,
though future work could investigate freezing the encoder, the technique used in Lamb et al. (2022),
as we discuss in Appendix E. Figure 3 illustrates the comparison of the action-bisimulation encoder
to baseline encodings.

As we can see in Figure 3, learning with the action-bisimulation representation outperforms other
methods in terms of sample efficiency, even k-step controllability (ACRO), by a substantial margin.
This provides evidence for hypotheses 1 and 2, that action-bisimulation learns useful representations
which compare well with other methods. That reconstruction and data augmentation-based methods
bVAE and CURL perform poorly is not unexpected: in this domain, the agent is often small, so these
methods achieve low reconstruction loss even when they omit the most important element: the agent
position. On the other hand, SSI captures the agent position but is highly myopic, limiting transfer
to downstream tasks. We hypothesize ACRO struggles because it relies on predicting action from
two states separated by k timesteps, which is ill-posed, especially when using a dataset of random
actions. Additional details on baselines can be found in Appendix G.

5.3 Background Distractors

In this section we evaluate hypothesis 3: whether the action-bisimulation encoding is robust to
distractors. We assess this through a modified Pointmass environment with a photorealistic visual
background. The foreground, that is the agent, goal position, and obstacles, remain the same. We
visualize the distractor environments in Figure 4, where the agent has been exaggerated.
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(a) Action-bisimulation (b) Single-Step (c) ACRO (d) β-VAE

Figure 4: States close together in embedding space drawn from the Distractor Pointmaze
domain. Notice that action-bisimulation captures both the agent location and the local region of
obstacles, while other methods are distracted by the background (ACRO, bVAE) or only capture
one-step relations (single step). The agent is exaggerated in these images so it is easier to locate—in
reality, it is quite hard to detect because of the distractors.

Figure 3c shows that adding background distractors dramatically widens the gap between action-
bisimulation and other methods. These backgrounds make vanilla RL, reconstruction and data-
augmentation-based methods struggle wildly since these methods have no built-in robustness. They
also have a significant effect, even on the fixed-step models, ACRO, and SSI. For single-step models,
we hypothesize this is because pretraining causes the agent to mostly ignore obstacles since they
have a limited myopic effect. For ACRO, the correlated background images appear to confuse the
k-step prediction. For action-bisimulation, by contrast, there is only a marginal difference.

We also illustrate how a few representative methods map together states in Figure 4. In these plots,
two nearby states are sampled and visualized. As we can see, action-bisimulation and single-step
encodings encode the agent position, but action-bisimulation also maps regions of similar local
obstacles together. Beta-VAE (bVAE) encodings are trained with reconstruction; the encodings
largely ignore the agent in favor of matching similar backgrounds. Interestingly, ACRO also maps
similar backgrounds together. We think this is because of the correlation between subsequent frames
in the video, though this is worth further investigation.

5.4 Captured Representations

To investigate hypothesis 4: how well the action-bisimulation encodings capture multi-step rela-
tionships, we provide qualitative visualizations comparing the multi-step and single-step encodings.

(a) (b)

Figure 5: Perturbation map of single step vs
action-bisimulation shows encoder distance in 2D
Navigation when obstacles are toggled at all locations
around the agent (located at the center). Brightness at
a pixel indicates the size of the change of representation.
Left: The Single Step encoder myopically captures
only directly adjacent obstacles. Right: The Multi
Step encoder captures more distant obstacles.

Figures 5 is a perturbation map, which
visualizes how much the representation
changes when a single obstacle is placed
at a particular location, compared with the
base representation. Figure 5 illustrates the
contrast between the myopia of the single-
step encoder compared with the range of
the multi-step encoder.

In Appendix D, we provide several ad-
ditional qualitative results demonstrating
how the action-bisimulation representation
captures multi-step relations, including
perturbation plots of how the sensitivity
changes with c, the tradeoff parameter, and
the representation difference from near-vs-
far perturbations. Furthermore, sensitivity
to perturbations is environment-dependent:
if the environment has a fixed structure
such as a corridor or maze, unreachable obstacle perturbations will be mapped close together in the
action-bisimulation space.

349



RLJ | RLC 2024

6 Conclusion

Controllability-capturing encodings for reinforcement learning are a promising direction for rep-
resentation pretraining since they can be learned without reward but are still able to filter out
uncontrollable distractors. However, existing methods either only capture short-term controllability
or are dependent on demonstration data, which has implicit task bias. We introduce the action-
bisimulation encoding, which builds off of myopic representations by enforcing recursive invariance
to learn a supervision-free multi-step controllability representation. The empirical results in this
work demonstrate how these encodings can be used to improve the sample efficiency, especially in
domains with significant background distractors. The primary limitation of this method is the inverse
dynamics single-step model, which might not capture all controllable features, just a subset. This can
result in the representation being agnostic to important task elements. A more in-depth discussion of
limitations is included in Appendix F. Altogether, action-bisimulation is a novel invariance relation
for capturing controllability from offline data that removes expert performance requirements and
smoothly handles long-horizon controllability.
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A Convergence and Causal Properties

In this section, we extend some of the convergence properties that apply to reward-based bisimulation
metrics to the action-based bisimulation metrics. Then, we prove that an optimized representation
is agnostic to causally irrelevant components: elements that do not affect control and cannot be
affected by control.

A.1 Fixed point convergence

First, we demonstrate that our action bisimulation metric converges to a fixed point. This proof
follows a similar pattern to that found in Agarwal et al. (2021).
Theorem A.1. Let M be the space of bounded pseudometrics on S,A. Define operator F : M based
on the action-bisim distance metric in Theorem 6:

F(d)(si, sj) = dss(si, sj) + c · Ea∼U(A)[W1(d)(P (·|si, a), P (·|sj , a))].

Then F is a contraction mapping and has a unique fixed point for a bounded dist.

Proof : See Appendix B.1. ■

A.2 Agnostic to Behavior Irrelevant Components

Just because there is an optimal fixed point does not imply that this optimal fixed point is useful.
Even using a trivial single-step embedding ψ which maps all states to zero will still satisfy the
convergence. However, if we assume that ψ(s), the single-step representation, captures only action-
relevant information between S and S′, the myopic state information, then we can show that the
learned representation captures a subset of the control relevant state features only.

First, we assume a uniform behavior policy:
Assumption A.2. The distribution of π(a|s) is uniform (uniform distribution denoted U(A)), and
therefore not conditioned on S:

P (a|S) = 1
|A| ∀a

.

This is because otherwise, the behavior policy could introduce relationships between states and
actions that are not present as a result of control. Now we turn to the properties of the single-step
encoder. Using the abuse of notation where ψ(S) is the random variable representing state, we make
the following assumption about the single-step model:
Assumption A.3. ψ : S → Zss captures a minimum sufficient representation between S, S′ and A:

ψ := arg min
ψ

I (S;ψ(S))

s. t. dKL (P (A|[ψ(S), ψ(S′)]) ∥P (A|[S, S′])) = 0, (11)

where dKL(·∥·) is the KL divergence between two distributions. Then this question denotes that ψ(s)
captures as little information about the current state as possible (the first term), the conditional
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distribution over A from [ψ(S), ψ(S′)] is the same as that using [S, S′]. Notice that the terms in this
assumption are approximated in single step encoder training (Equation 7). The inverse dynamics
prediction approximates the KL constraint, and the encoding regularization ensures minimal remaining
information.

Before using this assumption, we first define what kind of information our representation should be
agnostic to. Suppose that there is a partitioning of the state features (analogous to causal feature
sets in (Zhang et al., 2020a)) where one set is controllable Sc, and any feature not part of that set
is Su. The sets can be imagined as sets of causal variables, where the concatenation of these sets
produces the complete state space S. These sets can be defined as follows:

Definition A.4. State S can be decomposed into controllable feature set Sc and uncontrollable
feature set Su that completely describe S (bidirectional entropy is 1). These partitions have the
property that the transition dynamics of Sc are independent of the transition dynamics of Su, and
the transition dynamics of Su are independent of Sc and A:

P (Su
′ |S,A) = P (Su

′ |Su)
P (Sc

′ |S,A) = P (Sc
′ |Sc, A)

H(S|Sc, Su) = H(Sc, Su|S) = 1. (12)

The encoder will compress action-irrelevant components (elements of Su), which are components
with no undirected path in the causal graph connected to actions. By compression, we mean that
states that vary only according to these elements will share the same encoding.

Theorem A.5. Action-Bisimulation Control Relevance: Suppose that ϕ : S → Z maps
observations to a latent action bisimulation representation where ∥ϕ(si)−ϕ(sj)∥1 = da-bisim(si, sj , ψ, ϕ)
using a ψ described in Definition A.3. Z, the distribution of encodings has no information about
action-irrelevant components: I(Z;Su) = 0.

Proof : See Appendix B.3. ■

B Proofs

B.1 Fixed point proof

Theorem (reproduced). Let M be the space of bounded pseudometrics on S,A. Define operator
F : M based on the action-bisim distance metric in Theorem 6:

F(d)(si, sj) = dss(si, sj) + c · Ea∼U(A)[W1(d)(P (·|si, a), P (·|sj , a))].

then F is a contraction mapping and has a unique fixed point for a bounded dist.

Proof :
First, we utilize a lemma that is proved in Agarwal et al. (2021), which allows us to apply a powerful
inequality to the bisimulation-esque pseudometric defined in Equation 6 in Appendix A.

Lemma B.1. Inequality for two pseudometrics d, d′ and probability distributions PX , PY :

W1(d)(PX , PY ) ≤ ∥d− d′∥ +W1(d′)(PX , PY ). (13)

See Lemma B.1 proof in Agarwal et al. (2021).
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Then, use Banach fixed point theorem:

F(d)(x, y) − F(d′)(x, y) =
= c · Ea∼U(A)[W1(d)(P (·|si, a), P (·|sj , a))] − Eb∼U(A)[W1(d′)(P (·|si, b), P (·|sj , b))]
= c · Ea∼U(A)[W1(d)(P (·|si, a), P (·|sj , a))] −W1(d′)(P (·|si, b), P (·|sj , b))]
≤ c · Ea∼U(A)[∥d− d′∥ +W1(d′)(P (·|si, a), P (·|sj , a))] −W1(d′)(P (·|si, b), P (·|sj , b))]

Applying Lemma 13
.

= c · Ea∼U(A)[∥d− d′∥]
= c · ∥d− d′∥

Since F(d)(x, y) − F(d′)(x, y) ≤ c · ∥d− d′∥, F is a contractive mapping for c < 1 and has unique
fixed point d∗. ■

B.2 Causal Parititon proof

Assumption B.2. ψ captures the information bottleneck representation between St, St+k and Ak:

arg minψI(St, St+k;ψ(S), ψ(St+k)) − βI(ψ(S), ψ(St+k);Ak) (14)

Then, the following theorem holds:
Theorem B.3. Action Bisimulation Partitions: If we partition observations using the action
bisimulation metric where the single-step representation optimizes Equation 14, then the action
bisimulation partitions correspond to a subset of the causal feature set for current and future actions.

Proof :
Suppose u is a feature along which action bisimulation partitions, but is not part of the causal feature
set for current and future actions.

First, consider the case of current actions: then by definition, this will increase
I(St, St+k;ψ(S), ψ(St+k)), because it will be a component of state encoded by the embedding.
However, since it is not part of the causal feature set, it will not increase βI(ψ(S), ψ(St+k);Ak).
Thus, it will not satisfy the optimal embedding specified in Equation 14 for the single step embedding,
which will increase the base-case loss in Equation 10, ∥ψ(si) − ψ(sj)∥.

Second, consider that in the case where u encodes information about future actions, suppose at
time horizon k. This will increase the loss in the second term for Equation 10. This can be seen by
unrolling the distance across k steps, where the l1 loss is used in the Wasserstein distance.

Thus, u cannot exist while also being an optimal solution, meaning it could not be a feature along
which the action bisimulation partitions. ■
This connection allows us to make statements about what information the encoder compresses. The
encoder will compress action-irrelevant components, which are components with no undirected path
in the causal graph connected to actions so that these states are encoded together.

B.3 Action-Bisimulation Control Relevance Proof

Theorem (reproduced). Action-Bisimulation Control Relevance: Suppose that ϕ : S → Z
maps observations to a latent action bisimulation representation where ∥ϕ(si) − ϕ(sj)∥1 =
da-bisim(si, sj). Z, the distribution of encodings has no information about action-irrelevant compo-
nents: I(Z;Su) = 0.

Proof :
si and sj are two states which only differ according to features in Su. We demonstrate for any
si, sj , S

u, ϕ(si) = ϕ(sj).
Lemma B.4. I(ψ(S);Su) = 0 for any ψ(·) that satisfies Assumption A.3
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Proof of Lemma B.4:
We start by demonstrating that a ψ(S) with zero mutual information with Su can still satisfy
dKL (P (A|[ψ(S), ψ(S′)]) ∥P (A|[S, S′])) = 0, the distribution matching property of Equation 14 by
demonstrating that the distributions have no dependence on Su:

P (A|S, S′) = P (S′|S,A)P (A|S)
P (S′|S)

= P (Su′ |S,A)P (Sc′ |S, Su′
, A)P (A|S)

P (Su′ |S)P (Sc′ |S, Su′)

= P (Su′ |Su)P (Sc′ |Sc, A))P (A|S)
P (Su′ |Su)P (Sc′ |Sc)
Applying Definition A.4

= P (Sc′ |Sc, A))U(A)
P (Sc′ |Sc)

Applying Assumption A.2

(15)

Where U(A) is the uniform distribution over actions. By removing the dependence of P (A|S, S′)
on Su, this means that dKL(P (A|S, S′)∥P (A|ψ(S), ψ(S′))) = 0 for all ϕ(S) where the distribution
differs only according to Su.

Now, consider any ψ̃(S) where I(ψ̃(S);Su) = α > 0. We have already shown that the ψ̃(S)
distributional dependence is unnecessary to satisfy the KL constraint. Thus, any dependence on
Su will increase the mutual information I(S; ψ̃(s)). This means that for any single step encoding
ψ̃(·), there exists a lower cost ψ(·) which has no dependence on Su, since any dependence on Su

is unnecessary to satisfy the KL constraint. Thus any ψ(·) that satisfies Assumption A.3 has the
property I(ψ(S);Su) = 0.
Lemma B.5. For any si, sj ∈ S which differ only according to features in Su,

∥ψ(si) − ψ(sj)∥ = 0

Proof of Lemma B.5:
The consequence of Lemma B.4 is that the zero mutual information indicates:

ψ(si) = ψ(sj) ∀si, sj s. t. si and sj differ only according to features in Su

This follows from the definition of mutual information, where I(X,Y ) = 0 implies that X is
independent of Y . If two variables are independent, then any change of one variable will not change
the other variable. As a result, ∥ψ(si) − ψ(sj)∥ = 0. ■
Finally, we can complete the proof by unrolling the multi-step objective for any two states si, sj
which differ only according to Su:

da-bisim(si, sj , ψ, ϕ) = (1 − c) · ∥ψ(si) − ψ(sj)∥1 + c · Ea∼U(A) [W1(p(ϕ(si), a), p(ϕ(sj), a))]
= c · Ea∼U(A) [W1(p(ϕ(si), a), p(ϕ(sj), a))]

= c · Ea∼U(A)

[∫

s′
i
∼p(ϕ(si),a),s′

j
∼p(ϕ(sj),a)

da-bisim(s′
i, s

′
j)δs′

iδs
′
j

]

Notice that unrolling da-bisim(s′
i, s

′
j) gives (1 − c) · ∥ψ(s

′
i) − ψ(s

′
j)∥1 + c ·

Ea∼U(A)
[
W1(p(ϕ(s′

i), a), p(ϕ(s′
j), a), d)

]
. Using Definition A.4 demonstrates that s′

i and s′
j

must also only differ according to features in Su. By induction, this difference holds for all
timesteps, which demonstrates that da-bisim(si, sj , ψ, ϕ) = 0. Since ϕ(·) is defined as matching
da-bisim(si, sj , ψ, ϕ), this implies that ϕ(si) = ϕ(sj) ∀si, sj ∈ S that differ only according to Su. ■

C Alternative Base Case Representations

This section introduces the single step contrastive alternative to the encoder introduced in Section 4.1,
as well as the k-step generalization, where the existing methods can be seen as k = 1.
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C.1 Contrastive Representations

Contrastive representations approximate the lower bound of the mutual information between two
signals, in this case the state transition (s, s′) and the action a. Mutual information is the degree
to which knowledge about (s, s′) encodes information about a, which is defined by: I((s, s′); a) =
H((s, s′)) −H((s, s′)|a), where H is the Shannon entropy. InfoNCE (Oord et al., 2018) is a popular
contrastive method for computing a lower bound of this statistic based on Noise Contrastive
Estimation (Gutmann & Hyvärinen, 2010). Like inverse dyanmics, define the learned state encoder
as ψθ(s) : S → Zss. Define action encoder to map to the concatenated space of state encodings
[Zss,Zss], where square brackets represent concatenation: ψη,A(a) : A → [Zss,Zss]. Finally, a
pairwise distance operator d(z1, z2) : Zss × Zss → R. In our experiments d(·, ·) was the l2 distance.
The InfoNCE objective is as follows:

LinfoNCE(D, θ, η) = E(s,a+,s′)∼D

[
ed([ψθ(s),ψθ(s′)],ψη,A(a+))

∑
ã∈{a−,a+} e

d([ψθ(s),ψθ(s′)],ψη,A(ã))

]
. (16)

a+ denotes the positive sample, which is the actual action taken in state s. a− represents the negative
samples, which are the alternative actions not taken in s. Optimizing the loss in Equation 16 will learn
a representation encoding action-relevant components. In practice, the contrastive representations
did not perform as well as the inverse dyanmics-based ones, and future work is investigating the
reason for this in detail.

C.2 K-step Base Cases for Action-Bisimulation

In this work, we primarily investigate a base encoder ψθ(·) trained using s, a, s′, where s and s′ are
subsequent states. Prior work (Lamb et al., 2022) has investigated training encoders two states k
steps apart and predicting the first action. While it may seem like longer-term controllability can be
captured by simply increasing k, choosing a fixed horizon introduces a clear limitation: Determining
the inverse dynamics between states when k is small is well-defined but myopic, but when k gets large,
there may no longer be enough information between the state at t and t+ k to provide meaningful
information about the action. For this to be well defined, there must be a meaningful correlation
between the current action and the state k steps into the future. This correlation does not exist if
the actions are random and the agent can return to states that it has been to before. As a result, in
practice k-step controllability is limited to the offline RL setting, where some meaningful trajectories
are provided to the agent (Islam et al., 2022). This means that in practice k-step methods are not
fully unsupervised.

Depending on the nature of the offline data, the k-step extension can be combined with Action-
bisimulation, where instead of choosing a large c (i.e. c > 0.9), the single-step encoders can be
replaced with k-step encoders. This has the potential to significantly increase the degree to which
the action-bisimulation encoder ϕη can capture long-term controllability.

Formally, instead of the tuple (s, a, s′), we use the tuple (s(t), a(t), s(t+k)). Then, we can represent
the k-step regularized inverse dynamics loss (adapting from Equation (7)) with:

Lssr(D, θ, η) = −
∑

(s(t),a(t),s(t+k))∼D
log fη,forward(a(t)|ψθ(s(t)), ψθ(s(t+k)))

+ β
(

∥ψθ(s(t))∥1 + ∥ψθ(s(t+k))∥1

)
.

Notice that if a large k is chosen, this can run into the same issues as other fixed-k methods, where
the distribution of actions can affect the features captured by the single step model.

Similarly, we can replace the InfoNCE representation by replacing a+ with a+, which is the actual
sequence of actions between s(t) and s(t+k), instead of just the first action. We can also replace
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a− with a−, which is a sequence of actions different from the actual one. This gives the k-step
representation of Equation (16):

LinfoNCE(D, θ, η) = E(ss(t),a+,s(t+k))∼D

[
ed([ψθ(s(t)),ψθ(s(t+k))],ψη,A(a+))

∑
ã∈{a−,a+} e

d([ψθ(s(t)),ψθ(s(t+k))],ψη,A(ã))

]
. (17)

C.3 Adaptive Regularization for Minimal Representation

To train an encoder with the loss described in Eq. 7, it is necessary to choose a regularizing constant
β beforehand. We found it was possible (and sometimes easier from a hyper-parameter search
perspective) to adapt the β parameter to the current performance of encoder ψθ. We changed β
throughout training according to the accuracy of the inverse dynamics predictions, lowering the
regularization constant when the accruacy was low and raising it when the accuracy was high. The
intuition is that if accuracy is low, then the representation needs to be less minimal and so we need to
regularize less heavily. We calculated the regularization constant βi where i is the training iteration
with:

βi = βmax(1 − exp(−4α2
i−1)),

where βmax is the maximum regularization constant and αi−1 is the action prediction accuracy
during the previous iteration. This trick did not significantly impact our results, but lessened the
hyper-parameter search.

D Additional Qualitative Results

This section describes several other qualitative results that demonstrate the properties of the encodings
learned using action-bisimulation as compared to other encoding methods. We first provide qualitative
results describing how the representation is sensitive not only to the agent’s location but also to
the local obstacles. This distinction is valuable since encoding agent position can often be sufficient
to already significantly improve downstream RL performance. To generate the plot, we randomly
generate obstacles either near the agent (left) or far from the agent (right), where near and distance
are described below. When the changes are near the agent, there is a large variation in representation
distance. On the other hand, distant perturbations make little difference to the representation of the
agent.

(a) (b)

Figure 6: Left: Violin Plot shows how the representation is sensitive to changes in obstacles near
and distant to the agent. Right: Sample observation illustrates the near and distant regions
with respect to the agent in the center.

Figure 7 shows how this dropoff varies as the value of c, the discount factor in Equation 6, changes.
The multi-step encoder gracefully increases in sensitivity with greater c, though a very large c can
make it unstable. Fundamentally, the possible sequences of actions grows exponentially, especially
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when trained with random actions, which is why selecting a value of c which ensures some dropoff
ensures that the action-bisimulation representation does not become too off-policy.

(a) (b) (c) (d)

Figure 7: We demonstrate the sensitivity of the Action Bisimulation encoder to changes in obstacles
around the agent as we change the value of c from left to right with 0.25, 0.75, 0.85, 0.99.

(a) (b)

Figure 8: Left: Nav2D Corridor shows how the action-bisimulation representation is sensitive
to changes only within the corridor and agnostic to those without. Sensitivity is denoted by
brighter pixels in the left subfigure. Right: Nav2D Maze demonstrates the action-bisimulation
representation’s sensitivity in a maze environment.

In Figure 8, we demonstrate how the action-bisimulation metric can learn reprsentations that ignore
control-irrelevant information. In the Corridor environment, the agent is never able to leave the
interior of the corridor but can always observe the obstacles on the exterior. We see that the
representation is sensitive only to changes within the corridor. These results are echoed in the more
complex Maze environment where the unreachable obstacles inside the maze’s walls have little to no
effect on the agent’s representation. In fact, we can see that the representation’s region of sensitivity
almost exactly matches the agent’s reachable locations.

E Additional RL Results

The Pointmaze environment which we evaluated with used a set of discrete actions. In general,
evaluating U(A), the uniform distribution over actions, is easier with continuous actions. Action-
bisimulation can be approximated in continuous contexts simply by sampling some representative
number of states. We demonstrate this in a continuous pointmaze environment, where the agent
takes continuous 2D directions.
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Figure 9: Continuous Pointmaze performance: because the action space is more challenging,
many of the baselines struggle, especially ACRO, where action ambiguity is heightened.

As we can see, Figure 9 provides evidence that action-bisimulation encodings are not limited to
discrete actions.

Environment 2D Navigation Point-Mass Habitat
Action-Bisimulation −14.266 ± 0.509 −30.8 ± 3.7 0.7754 ± 0.005049
Single-step −12.613 ± 1.992 −29.7 ± 3.9 0.7716 ± 0.1629
ACRO −49.436 ± 0.342 −127.9 ± 0.61 0.7374 ± 0.0065
β-VAE −13.880 ± 2.263 −128.4 ± 0.52 0.138 ± 0.0220
CURL −44.791 ± 7.472 −128.4 ± 0.45 0.7657 ± 0.0193
Vanilla −14.523 ± 1.560 −128.4 ± 0.052 0.728 ± 0.0294

Table 1: Final Performance Evaluation

F Limitations

The three primary limitations we observed in this work for implementing action-bisimulation are as
follows, and we go into further detail in the subsequent subsections:

1. The minimum controllable single-step representation, especially when using learned inverse
dynamics can omit controllable information if the action is overrepresented in the state

2. Uncontrollable, but reward-relevant elements must be incorporated into the representation
after it is learned.

3. Both the forward model for transitions and the action-bisimulation encoding representation
are bootstrapped over the expectation over all actions. This can result in unstable training.

4. When a task does not require much lookahead, action-bisimulation will only provide a
marginal benefit.

F.1 Limitations of Minimum Controllable Representation

While Appendix A demonstrates that at convergence the action-bisimulation encoding will capture
only action-relevant information, it does not guarantee that it will capture all action relevant
information. If using the regularized single step loss Equation 7, the method is regularized to capture
the minimal sufficient information to predict actions. In practice, this can be quite limiting.

For example, consider the scenario where in the top corner of the screen there is a small display
of the last action that the agent takes. In this scenario, the inverse dynamics model is likely to
learn to only pay attention to this part of the screen, ignoring other components such as the state
of the agent. This is because paying attention to this part is a sufficient representation of actions,
even though it does not capture all action-relevant information. Information-based methods such
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as Equation (16) or generative controllability representations are a possible solution for this, but we
have found empirically that they do not seem to learn representations useful for RL. As a result,
future work is for investigating action-controllable components that are not necessary for inverse
dynamics (action prediction).

F.2 Uncontrollable Reward-relevant components

Another possible limitation is relevant for all controllability pertaining: a representation that captures
controllable elements may fail to capture uncontrollable reward-relevant components. For example,
consider a goal-based task where the goal is part of the state. The goal itself is not controllable
and thus the representation of the goal will not be encoded in an action-bisimulation representation.
While the action-bisimulation method is task-agnostic, at least insofar as the initial offline dataset is
task-agnostic, it is not a sufficient representation in every task.

This issue can be mitigated by a variety of approaches. The simplest is to simply allow the
representation to be modified to be task-specific in the RL training, and we employ this strategy
in this work. However, more complex strategies might add an additional channel for task-relevant
information, or integrating classic reward-bisimulation to learn the task-relevant components on top
of the pre-trained action-bisimulation ones.

F.3 Training Instability of Bootsrapping

One of the challenges when learning an action-bisimulation representation is the inherent bootstrapping
where the forward model is trained with f(ϕ(s), a) → ϕ′(s), and the encodings themselves are being
updated with Equation 10. Since the action distribution in Equation 9 is over the uniform expectation
over actions, this can result in instability because of the combinatorial complexity of actions. One
way we mitigated this is through the adaptive learning rate of the forward model, but future work
should investigate stabilizing the convergence, especially if action-bisimulation is applied to online
data.

F.4 Tasks without Lookahead

Finally, while multi-step controllability is a powerful property, not all tasks require this kind of
lookahead, and it is not clear that multi-step pretraining would outperform single-step or other
baselines in these cases. For example, in the popular Mujoco locomotion domains (Todorov et al.,
2012), knowing about future control can often be distracting to the agent—all the relevant information
is captured by determining how the current action will affect future actions. Domains where long-term
control is useful, such as manipulation, can also be challenging for the current form of action-
bisimulation because of the minimal sufficient information property of the single-step losses. Future
work is aimed at investigating this in greater detail.

G Baseline Details

A detailed description of each of the baselines and the limitations of each. Also a mention of
reward-based bisimulation.

H Environment Details

Environment Pretrain dataset Evaluation Steps
2D Navigation 1M samples 2M steps
Point-Mass 0.25M samples 7M steps
Habitat 100k samples 2M steps

Table 2: Amount of data used for 2 phases. The pretrain dataset uses random actions and is used to
train the encoders, and the evaluation steps is the number of environment steps used to train RL.
362



RLJ | RLC 2024

H.1 2D Navigation with Obstacles

This environment is a 2D gridworld which consists of a 15 × 15 grid. The agent has 4 actions, up,
down, left and right [(0,−1), (0, 1), (−1, 0)(1, 0)]. If the agent moves into an obstacle, or the edge of
the screen, its location will not change, otherwise, the direction will be added to the current position.
and takes as observation a 3-channel 15 × 15 image. The first channel encodes the agent position
with 1 at the location of the agent, and −1 elsewhere. The second channel encodes obstacles as 1
where there is an obstacle and −1 otherwise, and the last channel encodes the goal. In this version,
the goal is always located at the center of the image (7, 7). This is because otherwise a task-agnostic
encoding would have to re-learn the goal location. The agent receives a reward of −1 everywhere
except the goal, where it receives reward of 0.

Initialization of the environment is as follows: the agent is initialized at a random location. Then
obstacles are generated as 20 2 × 2 obstacles, initialized at random locations. The obstacles can be
overlapping, but they cannot be initialized on top of the agent. Finally, the environment checks that
there exists a path from the agent to the goal. if there is not, the environment is reinitialized until
there is. Each episode is 50 timesteps, after which a new environment is initialized.

H.2 Pointmass

This environment is a modification of the Mujoco Pointmass environment, where a pointmass with
the dynamics of a damped linear x and y joint with damping coefficent 1 and friction coefficient 0.5
with navigates through the environment taking a set of four discrete actions, up, down, left, and
right. The original environment only included a small number of pre-defined mazes in a 15m × 15m
world. Additionally the original environment directly gives observations of the position of the goal
and agent, while this version gives pixel data from a fixed topdown camera. This environment lacked
the complexity of controllability in the dynamics we are interested in investigating in this work.
Instead, we modified the environment so that 20 2m × 2m obstacles are randomly arranged in the
environment, and added walls to prevent the point from leaving the field of view. The goal is always
located in the center of the image. In this environment, the extrinsic reward function is a sparse 0/1
reward for being within 1m of the goal, which is the distance traversed by the agent in 1 timestep.
The agent takes episodes of 128 time steps.

H.3 Habitat

Habitat (Savva et al., 2019a) is a photorealistic 3D simulator for training embodied agents. The
experiments in this paper use five scenes from the Tiny partition of the Gibson dataset (Xia et al.,
2018), Andover, Azusa, Anaheim, Ballou, and Spotswood. These scenes were chosen for their high
navigational complexity. The observation space is a visually rich RGB+Depth image. Unlike the
original Habitat environment, we choose to use an orthographic (as opposed to pinhole) camera
placed above the goal in each episode so that the goal location is always at the center of the image
observation; using a consistent goal location with respect to the camera is critical as we do not
include any other goal information in the observation (in contrast with the traditional PointNav task
in Habitat that includes a distance+compass heading sensor to the goal). In the RGB observation,
we place a yellow box on top of the agent to indicate its location because the default rendered agent
is sometimes the same color as the floor below it; the depth image remains unchanged. The agent
and goal are spawned in new locations every episode such that the agent is always in view of the
camera; this means that each episode looks at a different part of the scene.

I Hyperparameters

I.1 Nav2D

The network dimensions and architectures used for Nav2D.
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Inverse Dynamics Model
Layer Type Layer Size
Input 1152
Linear & ReLU 256
Linear 256

Action-Bisimulation Parameters
Parameter Value
Single Step L1 Penalty 0.0001
Multi Step c 0.99
Learning Rate 0.0001
Reinforcement Learning Parameters
Parameter Value
Algorithm DQN
Batch Size L1 Penalty 32
ϵend 0.2
ϵstart 0.9
γ 0.99
Learning Rate 0.0001

I.2 Pointmass

The network dimensions and architectures used for the environment.

Encoder parameters
Layer Type Layer Size Kernel Size
Input N/A 64x64x3
Conv2D & ReLU 3x3 32x32x8
Conv2D & ReLU 3x3 16x16x16
Conv2D 8x8 1x1x32

Inverse Dynamics Model
Layer Type Layer Size
Input 64
Linear & ReLU 256
Linear 32

Actor/Critic Models
Layer Type Layer Size
Input 32
Linear & ReLU 256
Linear 4/1

Action-Bisimulation Parameters
Parameter Value
Single Step L1 Penalty 1.0
Multi Step c 0.75
K Steps 5
Learning Rate 0.0001
Reinforcement Learning Parameters
Parameter Value
Algorithm PPO
Batch Size L1 Penalty 256
Steps Per Rollout 65536
Steps Per Eval 16384
Learning Rate 0.000025
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The L1 penalty is a particularly sensitive parameter, with this incorrectly set the single step model
fails to identify relevant features. To train this effectively an adaptive term was used to scale the L1
regularization term to the listed value as the encoder approached convergence.

I.3 Habitat

Encoder hyperparameters and PPO The network dimensions and architectures used for the
Habitat experiments are exact copies of the ResNet18 (He et al., 2015) networks used in the original
Habitat PointGoal navigation task (Savva et al., 2019a). For pretraining the encoders, we only
trained the visual features encoder of the ResNet18 policy used in Habitat. Further, we used the
vanilla implementation of PPO written in Habitat with all default parameters.

Inverse Dynamics Model
Layer Type Layer Size
Input 2048
Linear & ReLU 256
Linear 256

Action-Bisimulation Parameters
Parameter Value
Single Step L1 Penalty 0.0
Multi Step c 0.95
Learning Rate 0.0001

PPO Parameters
Parameter Value
clip_param 0.2
ppo_epoch 4
num_mini_batch 2
value_loss_coef 0.5
entropy_coef 0.01
lr 0.00025
eps .00001
max_grad_norm 0.5
num_steps 128
hidden_size 512
gamma 0.99
tau 0.95
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Abstract

In parallel with the rise of the successful value function factorization approach,
numerous recent studies on Cooperative Multi-Agent Reinforcement Learning
(MARL) have explored the application of Coordination Graphs (CG) to model
the communication requirements among the agent population. These coordination
problems often exhibit structural sparsity, which facilitates accurate joint value
function learning with CGs. Value-based methods necessitate the computation of
argmaxes over the exponentially large joint action space, leading to the adoption of
the max-sum method from the distributed constraint optimization (DCOP) litera-
ture. However, it has been empirically observed that the performance of max-sum
deteriorates with an increase in the number of agents, attributed to the increased
cyclicity of the graph. While previous works have tackled this issue by sparsifying
the graph based on a metric of edge importance, thereby demonstrating improved
performance, we argue that neglecting topological considerations during the sparsi-
fication procedure can adversely affect action selection. Consequently, we advocate
for the explicit consideration of graph cyclicity alongside edge importances. We
demonstrate that this approach results in superior performance across various chal-
lenging coordination problems.

1 Introduction

The ability for autonomous agents to collaborate is crucial, spanning applications from multi-robot
systems (Gautam & Mohan, 2012) to sensor networks (Farinelli et al., 2008; Muldoon et al., 2013;
Lesser et al., 2003). The quest for learning effective control policies with multi-agent reinforcement
learning (MARL) (Oroojlooy & Hajinezhad, 2023) mirrors the strategies employed in single-agent
environments, but presents unique challenges. While learning individual action-value functions (Tan,
1993) is scalable, it suffers from the issue of non-stationarity caused by the inability to predict other
agents’ behaviour. On the other hand, joint action-value learning (Claus & Boutilier, 1998) mitigates
non-stationarity but requires often unavailable global information, and becomes intractable with
the number of agents due to the exponentially large joint action space. Recently, there has been a
strong emphasis on value function factorization (VFF) methods that construct the joint action-value
function as a mixing of individual agent utilities (Sunehag et al., 2017; Rashid et al., 2018; 2020; Son
et al., 2019; Wang et al., 2020). However, lacking mechanisms to explicitly model coordination, VFF
methods are shown to suffer from the relative overgeneralization pathology (Böhmer et al., 2020).

Tackling these problems, the formalism of Coordination Graphs (CG) (Guestrin et al., 2001) has
experienced a recent renaissance. CGs constitute an interpretable graphical model representing the
state-dependent coordination structure and induce a factorization of the joint action-value function
as a sum of single-agent utility functions and payoff functions for agent pairs. Whilst incorporating

∗Correspondence to: oliver.jaernefelt@uni-wuerzburg.de
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Figure 1: KINGS constructs the sparse coordination graph by iteratively considering the best edge
to prune based on the mutual influence scores and the current graph topology.

pairwise payoffs into the learning process mitigates the non-stationarity issue, the use of max-
sum algorithm (Pearl, 1988) circumvents the scaling problems ailing joint learning by providing an
approximation for the greedy joint action selection. Deep Coordination Graphs (DCG) (Böhmer
et al., 2020) integrate CGs into the MARL framework and show the pairwise payoffs form crucial
mechanism to overcome relative overgeneralization.

While DCG assumes a fixed structure for the coordination graph, Wang et al. (2021b) argue that
in a wide variety of problems the communication requirements are dynamic and sparse in terms of
considering only a subset of pairwise agent relations. They introduce a CG sparsification method
that works by ranking the payoff functions by a measure quantifying the influence between the agents
belonging to the edge. In this work, we reconsider said metric by demonstrating that especially with
high sparsity levels, omitting topological information related to the graph, has a negative impact on
the max-sum quality arising from graph disconnectivity and excessive cyclicity. The latter has been
shown to be especially detrimental to the max-sum algorithm (Montanari et al., 2007; Cerquides
et al., 2021). Towards mitigating these issues, we propose a novel cyclicity aware sparsification metric
for sparse CGs and demonstrate its positive effect on sparse CG-based MARL with an evaluation
on the Multi-Agent Coordination Benchmark (MACO) (Wang et al., 2021b) and the StarCraft
Multi-Agent Challenge (SMAC) (Samvelyan et al., 2019).

2 Background

The cooperative problems we consider in this work fall under the framework of DEC-POMDPs
(Oliehoek et al., 2016). A DEC-POMDP is described via a tuple M := ⟨I, N,S,A, T, R, Ω, O, γ⟩,
where I is the set of N agents, S the state space, A the action space shared by all of the agents, T
the joint transition kernel, R the joint reward function, Ω the observation space, O the observation
function and γ the discount factor. For a given DEC-POMDP, our objective is to find a mutually
independent set of policies π∗ satisfying: π∗ = arg maxa∼π Q∗

jt(s, a), where Q∗
jt(s, a) denotes the

total expected future discounted returns or the optimal joint utility function.

2.1 Coordination Graphs and Max-Sum

The problem of learning the joint utility function scales very poorly in the number of agents belonging
to the task due to the exponential size of the joint action space. Luckily, most meaningful multi-
agent problems can be effectively represented by considering only pairwise interactions. To this end,
Guestrin et al. (2001) introduce the concept of Coordination Graphs. A Coordination Graph (CG)
G := ⟨V, E⟩ specifies the pairwise communication requirements between the agents V via its edges
E . It induces a factorization of the total utility function into

Qjt(τ , a) = 1
N

N∑

i=1
fi(ai|τi) + 1

|E|
∑

(i,j)∈E
fij(ai, aj |τi, τj).

Representing the total utility with CGs enables the use of the max-sum algorithm (Farinelli et al.,
2008) for the greedy action selection that becomes intractable to perform via exhaustive enumeration
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in multi-agent settings. Max-sum is known to converge only for acyclic graphs but has been applied
comprehensively in also problems exhibiting varying levels of cyclicity.

Böhmer et al. (2020) adapt the concept of CGs to Multi-Agent Deep Reinforcement Learning
(MARL), by parameterizing the set of utility and payoff functions fij with neural networks. Their
approach, known as Deep Coordination Graphs (DCG), trains each of the utility and payoff net-
works with temporal difference learning in the style of DQN (Mnih et al., 2013). Whereas DCG
proposes to train the joint utility by considering the full set of pairwise interactions in each state,
Kok & Vlassis (2004) argue that many practical coordination problems exhibit a certain level of
sparsity, meaning that one can instead focus on a sparse subset of pairwise factors, thus improving
learning speed. This concept is first explored in deep MARL by Wang et al. (2021b) who propose
a state-dependent mechanism to selectively filter out a relevant subset of edges for more efficient
message passing in max-sum. Their approach, CASEC, suggests identifying the best edges in terms
of their influence on the task at hand, which can be defined as: ζi→j = maxai

Varaj
fij(ai, aj |τi, τj).

Then, for an undirected edge e = (i, j), we write the undirected mutual influence of the agents as

ζij = max{ζi→j , ζj→i}. (1)

CASEC sparsification requires defining a sparsity coefficient λsp, which takes values in the interval
[0, 1] and determines the proportion of edges in the original fully connected coordination graph to
be pruned. CASEC then ranks the edges according to their ζ-value and retains (1−λsp)(N2−N)/2
top scoring edges to be used by max-sum. While this simple modification demonstrates promising
results in tasks exhibiting sparsity, we argue that ignoring the topological changes caused by the
sparsification have detrimental effects on the max-sum accuracy that in turn hinders learning.

3 Related Works

Max-sum has been studied in the distributed constraint optimization (DCOP) literature, and a
reasonable amount of attention has been given to the algorithm’s lack of convergence guarantees
with cyclic graphs and its practical implications (Cohen & Zivan, 2017). Various methods have been
proposed which either act by modifying either the graph max-sum takes in (Montanari et al., 2007;
Rollon & Larrosa, 2014) or modifying max-sum itself (Cerquides et al., 2021). Such considerations
have been considered also in the context of MARL. In addition to the work of sparsifying CGs with
mutual influence metrics (Wang et al., 2021b), Yang et al. (2022) have proposed limiting the joint
model’s representational capacity to only directed acyclic graphs. In this work, we instead want to
retain the possibility for cycles to exist and ask how to mitigate the negative effects of cyclicity.

In parallel to the advances made with CGs, there has been a recent surge of research activity around
value function factorization (VFF) (Wang et al., 2021a). VFF approaches train a centralized value
function, a parametric mixing of the individual agent utilities, to produce an estimate for the joint
utility. When the gradient signal originating from the environmental reward gets backpropagated,
said mixing acts as an implicit mechanism to distribute the credit amongst the population of agents.
Many previous works have focused on finding the most flexible way to parametrize the joint value
function while ensuring decomposability. The choice of the mixing function determines the rep-
resentational capacity of the joint utility model and has large implications on the performance.
Value-Decomposition Networks (VDN) (Sunehag et al., 2017) consider only additive mixing func-
tions, whereas QMIX (Rashid et al., 2018) extends to the whole family of monotonic functions. More
recently, a plethora of other VFF methods have been proposed and methods that cover the entire
Independent-Global-Max (IGM) space have been introduced (Son et al., 2019; Wang et al., 2020).

4 Cyclicity–Regularized Coordination Graphs

In the upcoming section, we present our contribution to the learning of cyclicity-regularized sparse
coordination graphs. Section 4.1 introduces and justifies our proposed method, and Section 4.2 offers
an illustrative demonstration to provide additional motivation.
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4.1 Kirchoff Index Guided Sparsification

While the ζ-metric, defined in Eq. (1) is appealing in that it ties the edge importance to the variation
in the payoff functions, we argue that such sparsification criterion can be problematic for two reasons.
First, it has been observed that the performance of max-sum deteriorates when increasing the number
of agents due to increased overall cyclicity of the graph (Montanari et al., 2007; Rollon & Larrosa,
2014; Cerquides et al., 2021), which is overlooked by ζ-sparsification. Secondly, when the sparsity
level is set high, many nodes can become disconnected from the rest of the coordination graph
impairing communication. This can be especially catastrophic in situations where all agents need to
have knowledge of others’ intentions to make a decision for themselves. Motivated by these issues, we
propose that one should instead search for sparse graphs that, in addition to valuing edges with high
mutual influence, 1) retain connectedness ensuring proper flow of information between all agents
and 2) are minimally cyclic. Towards these objectives, we propose to iteratively sparsify the graph
edges according to a modified mutual influence metric

ξij = ζij

Aij − Ωij
, (2)

where Aij is the adjacency matrix of the CG and Ωij is called the effective resistance matrix (Klein,
2002). The effective resistance is a quantity that describes the commute time of a random walk
between two nodes i and j in a resistor network whose topology is given by A and each edge is
replaced with a unit resistor. Let us denote the graph Laplacian as L and a full ones matrix of shape
N ×N as Φ. With these definitions we can compute the entries of Ω as

Ωij = Γii − Γjj − 2Γij where Γ =
(

L + 1
N

Φ
)−1

. (3)

When the effective resistance Ωij is compared to the nominal resistance given by Aij as in the
denominator of Eq. (2), one obtains a quantity called the resistance deficit which has been used in
graph theory to assess an edge’s contribution to the total cyclicity of a graph (Klein & Ivanciuc,
2001; Yang, 2014). Thus, resistance deficit penalization weights down the edge scores proportional
to how much they increase the total cyclicity of the graph. As Γ changes every time an edge is
pruned, computing the final sparse graph must be done by computing current ξij , dropping the edge
with the lowest ξ-value, repeating until target sparsity is reached. Such iterative procedure aims to
maximize the Kirchhoff Index (Lukovits et al., 1999) of the final graph. The following proposition,
whose proof is in Appendix B, establishes a theoretical justification for the proposed approach.
Proposition 1. CG sparsification with the ξ-metric is guaranteed to keep the graph connected for
λsp ∈ [0, 1−2/N ]. When λsp ∈ [1−2/N, 1], the final graph be a forest enabling max-sum to converge
to a fixed point in finite number of iterations.

Algorithm 1 KINGS
Input: N , fij , λsp, budget I, adjacency Aij

ζij ← mutual_influence(fij) # Eq. (1)
Mij ← 1N×N

C ← λsp
N2−N

2·I
if C > 1 then

M ← NOT(max_spanning_tree(ζij))
for i ∈ [0, . . . , I] do

Ωij ← eff_resistance(Aij) # Eq. (3)
ξij ← ζij/((Aij − Ωij)⊙M)
# Prune C worst scoring edges
e− ← topk(−ξij , k = C)
Aij ← remove(Aij , e−)

return Aij

Importantly, this result shows that ξ-sparsification
leads to desirable graphs – ones that are connected
when sparsity level allows, or ones that are optimal
from the perspective of max-sum. While the conver-
gence guarantees can be given when λsp > 1− 2/N ,
we also expect that simply reducing the amount of
cyclicity in the graph can be helpful for max-sum
based on the results of Cerquides et al. (2021). We
verify this supposition in the subsequent subsection
by examining the max-sum accuracy as a function of
the sparsity coefficient. Finally, by incorporating ζ in
the construction, ξ-graphs also aim to select graphs
that are maximally influential.

While modulating the original ζ-scores with struc-
tural information is beneficial, we acknowledge that

369



RLJ | RLC 2024

this procedure can become costly when graph sizes grow. This is because we are required to recom-
pute Γ at each iteration, which involves inverting the N × N graph Laplacian. In order to scale
the cyclicity minimizing sparsification to deep MARL, we instead sparsify the original coordination
graph in chunks of edges: instead of pruning the graph one edge at a time, we fix the sparsification
iteration budget I, and at each iteration prune as many edges are needed to reach the target sparsity
within the required number of iterations. This way we are trading off the accuracy of assessing the
graph cyclicity for computation speed. To ensure final graph connectedness, we require that the final
graph contains the edges that belong to the maximum spanning tree (MaxST) of edge weights ζij ,
which we expect to be an important path in terms of utility estimate communication carried out by
max-sum. For further discussion on the sparsification budget, we refer the reader to Appendix E. We
call this final version of the iterative sparsification procedure Kirchhoff Index Guided Sparsification
(KINGS). Pseudocode 1 summarizes the algorithm.

4.2 Motivating Example

Figure 2: Max-sum greedy action selec-
tion accuracy on random CGs sparsified
with either ζ- or ξ-metrics

To illustrate the effect of the modified sparsification met-
ric, we randomly generate 1000 fully connected coordina-
tion graphs. The exact generation process is described
in detail in Appendix A. Each graph features 11 agents,
all of which can take 3 distinct actions. We then heavily
sparsify all of the graphs by sliding λsp over the interval
[0.7, 1] using both ζ- and ξ-metrics. We will refer to the
graphs sparsified with ξ and ζ as ξ-graphs and ζ-graphs,
respectively. To measure the impact of sparsification on
max-sum, we exhaustively search for the maximum Q-
value and the corresponding optimal action for each of
the sparsified graphs. Then, we compare the result to the
action selected by running max-sum on the corresponding
graph for 100 iterations to compute the max-sum accu-
racy. Figure 2 shows that ξ-graphs enjoy a markable edge
in max-sum accuracy compared to ζ-graphs, hinting at the benefit of integrating topological infor-
mation into the pruning procedure. As expected from previous discussion, the accuracy for ξ-graphs
reaches 1 at λsp = 9/11 ≈ 0.82, which is also when the sparsified graph is a spanning tree for the 11
nodes, in contrast with ζ-graphs that still sustain over 5% error for the same level of sparsity.

5 Experiments

To understand the effectiveness of the our method, we evaluate KINGS in two cooperative multi-
agent task suites, Multi-Agent Coordination Benchmark (MACO) (Wang et al., 2021b) and Starcraft
Multi-Agent Challenge (SMAC) (Samvelyan et al., 2019). The key questions we aim to answer
are: (I) How does KINGS fare against the state-of-the-art cooperative MARL methods in difficult
coordination tasks? (II) Fixing communication bandwidth, does cyclicity-awareness improve sparse
CG learning? (III) What qualitative insights can we gain regarding the scenarios in which pruning
with topological information proves advantageous? For all of the results in this paper, we plot the
mean performance along with the standard error bounds computed over 5 random seeds.

5.1 Performance Evaluation

5.1.1 MACO

We begin the performance evaluation with a focus on the Multi-Agent Coordination Benchmark
(MACO) (Wang et al., 2021b), which consists of temporally extended versions of 6 classical coor-
dination games compiled in Castellini et al. (2019). The reward structure in each environment is
either factored or non-factored, depending on whether an explicit decomposition of global rewards is
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Figure 3: Performance evaluation of KINGS in the MACO benchmark against the baseline methods.

present. Crucially, MACO tasks test the algorithms’ ability to overcome the relative overgeneraliza-
tion pathology (Böhmer et al., 2020) and sustain cooperation that extends over multiple timesteps.
As relevant baselines, we demonstrate the results of VDN (Sunehag et al., 2017) and QMIX (Rashid
et al., 2018) for value function factorization methods and DCG (Böhmer et al., 2020) and CASEC
(Wang et al., 2021b) for coordination graph-based approaches.

Table 1 summarizes the sparsity coefficients as percentages for CASEC and KINGS in each envi-
ronment of MACO. For CASEC, we used the λsp values provided in the original paper, whereas for
KINGS we find the best sparsity coefficient that is greater or equal to the one of CASEC. However,
as we want to retain connectedness, we stop at 1 − 2/15 ≈ 0.867 in Sensor. The sparsification
budgets are chosen from the range [0, 3] ensuring that the computation times stay within reasonable
limits. The exact values used are provided in Table 2. The results for the MACO environments are
shown in Figure 3. Both QMIX and VDN perform very badly due to their inability to overcome the
relative overgeneralization pathology. In contrast, all the CG-based approaches provide much better
results in these environments. Second point to note is that in most of the environments enforcing
sparse inputs to max-sum seems beneficial as demonstrated by both KINGS and CASEC in relation
to DCG. Convincingly, there is a noticeable difference between the performances of KINGS and
CASEC, supporting our claim on the importance of topological information in sparsification. While
the results of CASEC and KINGS are rather similar on the Gather environment, it is crucial to
consider that CASEC is able to achieve such solution only when it is allowed to retain 70% of the
original graph edges. In contrast we achieve similar final performance with only 40% of the original
edges, hinting that KINGS enables the population to learn more effective patterns of communication.

Aloha Pursuit Hallway Sensor Gather Disperse
80% 70% 50% 87%|90% 60%|30% 60%

Table 1: Sparsity coefficients used on MACO. Blue for KINGS, Red for CASEC, Black for both.

5.1.2 SMAC

To get a more thorough understanding of the utility of integrating topological information to the
sparsification on learning as well as the scalability to very complex multi-agent problems, we test
KINGS against the same baselines on 2 SMAC maps: 1c3s5z and 10m_vs_11m. As observed by
Böhmer et al. (2020); Wang et al. (2021b); Yang et al. (2022), learning the payoff functions fij is
difficult due to the quadratic number of output heads in the output layer. Performing Q-learning
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Figure 4: Performance on SMAC. The sparsity coefficients for KINGS and CASEC are 0.65 and
0.75 for 10m_vs_11m and 1c3s5z, respectively.

style training with such networks can cause many of the output connections to remain unchanged
for long periods which causes inaccuracies in the Qjt-estimation. This problem is exacerbated by
the fact that ζ-metric used both by KINGS and CASEC relies on the accuracy of the learned payoff
functions. To circumvent this problem, we apply action representation learning (Wang et al., 2021b)
when training KINGS, CASEC and DCG. We employ λsp = 0.65 in 10m_vs_11m and λsp = 0.75 in
1c3s5z for both KINGS and CASEC. These were the highest values of sparsity for which either of the
sparse CG methods worked reasonably well in our tests. The sparsification budget for KINGS is set
to 2 in both of the SMAC environments. Figure 4 presents the results on the tested environments. In
contrast to MACO environments, fully decomposed methods VDN and QMIX demonstrate strong
performance on each of the tasks. Despite the apparent lack of performance enhancement due
to sparsity enforcement, a notable distinction emerges in the sparsity tolerance of KINGS when
compared to CASEC. KINGS maintains higher performance under a fixed sparsity level, implying
a more effective communication capability in these environments.

5.2 Tolerance to Sparsity

As demonstrated in earlier sections, KINGS consistently outperforms CASEC when the sparsity is
fixed. Here, we reinforce this observation with additional results, selecting Hallway and Gather as
illustrative examples of factored and non-factored MACO environments. For both, we study the
final performances of KINGS and CASEC in the range of sparsity coefficients [λlo

sp, λhi
sp], where λlo

sp
are optimal values for CASEC and λhi

sp are the values after which CG can’t be kept connected.
We discretize these ranges into 4 values and plot the results for each one. Figures 5 demonstrate
that KINGS is able to better withstand sparsity, especially in Gather where performance gradually
increases with λsp, giving support to the idea that reducing cyclicity can help learning in max-sum
based approaches. While KINGS remains unaffected by sparsity up to λsp = 0.7 in Hallway, Figure
6 reveals that both methods suffer from increased sparsity in their learning speeds to a similar extent.

Figure 5: The effect of λsp on KINGS and CASEC in Gather and Hallway environments. In most
cases, KINGS achieves a higher performance for a given level of sparsity.
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Figure 6: Performance for two sparsity levels for KINGS and CASEC in Hallway and Gather. The
advantage of KINGS is clear in Gather, where the CG connectedness is integral to solving the task.

5.3 Qualitative Analysis on Gather

To conclude the experiments, we emphasize the significance of topological information through a
specific case in Gather, where 5 agents collaborate to reach a goal known only to a subset of them.
Detailed in Appendix C, maintaining CG connectedness in this task is crucial as all agents must reach
their designated goal together to avoid penalties for the entire population. As shown in left of Figure
6, CASEC with λsp = 0.6 fails to achieve learn the task properly. We load the best seed of CASEC
with λsp = 0.6 and investigate what happens when it fails to solve the task. A typical failure case
is visualized in the left side of Figure 7, that shows a partial slice of the Gather environment’s map.
Agents 1 and 2 need to join the rest of the group at g1 to obtain the maximum reward of 10. In this
scenario, CASEC fails to make such a transition. As a diagnostic, we visualize the agents overlain
with the state-specific coordination graph and see that in this scenario the population indeed suffers
from disconnectedness of the communication. Agent 1 cannot know what the rest of the agents are
planning to do and thus it tries to achieve another goal by going to g2 which causes the failure.
When we manually force the sparsification to be done with ξ-metric as in KINGS, we observe that
agent 1 is able to take the right action leading to the highest reward of 10, as shown on the right
side of Figure 7 highlighting the core idea of our topologically informed sparsification.

Figure 7: A visual example showing the importance of keeping the CG connected. (Left) CASEC
disconnects agent 1 from the rest of the group, failing to obtain the optimal solution. (Right)
ξ-sparsification employed by KINGS ensures that the group stays connected and arrives at g1.

6 Conclusion

Our work enhances the mutual influence metric for deep Coordination Graph (CG) sparsification by
incorporating cyclicity regularization. The method removes edges iteratively based on their mutual
influence score while considering their significance for the entire graph’s information flow. Inte-
grating this metric into CG-based methods proves advantageous compared to topology-oblivious
sparsification in many difficult coordination tasks. A notable limitation in current sparse coordina-
tion methods is the assumption of a static sparsity coefficient. Dynamically adjusting the number of
active CG edges based on the state could offer a balanced solution, addressing max-sum constraints
and optimizing the representational capacity of the joint utility model. Further research could
explore more suitable distributed constraint optimization algorithms for CGs with high cyclicity.
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A Motivating Example Description

For the motivating example discussed in Section 4.2, we choose the number of agents to be 11 and
the action space to be of size 3. Then we take 1000 random seeds and for each one a fully connected
CG induces a random joint utility function. We set individual utilities fi to 0 and generate the
payoff matrices fij by sampling values uniformly for each action pair (ai, aj) from the set {−1, 0, 1}.
Finally we add noise to these sampled values from the standard normal distribution.

B Proof of Proposition 1

Proof. Assume input graph G := ⟨V, E⟩. When the final graph sparsity is λsp ∈
[
0, 1− 2

N

]
, the

graph is guaranteed to be connected. To see this, we analyze the graph topology at iteration t of
the iterative sparsification procedure. Let us divide the nodes in two sets: the ones with only 1 edge
connected to them and the ones that have more than 1 edge connected and mark the sets V− and V+,
respectively. For edge (i, j), i ∈ V−, j ∈ V−∪V+, we have that Aij−Ωij = 0 =⇒ ξij →∞. In words,
when an edge describes the only possible path between two nodes, the corresponding resistance deficit
for that edge is 0, leading to an unbounded ξ-value. As a result, only edges connected exclusively
to V+, will have bounded ξ-values. As also the lowest scoring edge is sparsified, V− will still remain
connected to the rest of the graph.

A direct consequence of the connectedness is that when λsp = 1 − 2
N the final sparse graph will

be a spanning tree for G. Even further increasing sparsity thus leads into a spanning forest for G.
Using the results from Pearl (1988), we can also note that max-sum on graphs with λsp ≥ 1− 2/N
is guaranteed to converge.

C Experiment Settings and Hyperparameters

The overall hyperparameters are as in the previous work (Sunehag et al., 2017; Rashid et al., 2018;
Böhmer et al., 2020; Wang et al., 2021b). All tasks employ a discount factor γ = 0.99. Each network
is trained using an RMSProp optimizer with a learning rate of 5× 10−3. A first-in-first-out (FIFO)
replay buffer stores the experiences of at most 5000 episodes, and a batch of 32 episodes are sampled
from the buffer during the training phase. The target network undergoes periodic updates every 200
episodes. We implement ϵ-greedy exploration, with ϵ linearly annealing from 1.0 to 0.05 over 50K
time-steps. To ensure a fair comparison, our method and all the baselines presented in this paper
are implemented using the open-sourced codebase PyMARL (Samvelyan et al., 2019). All the CG
based methods perform 5 iterations for max-sum.

A part of the evaluation is done on SMAC benchmark (Samvelyan et al., 2019) which is based
on the real time strategy game StarCraft II. As the results are not directly comparable across
different versions of StarCraft, we use the version 2.4.6.2.69232 specified in the original SMAC
paper. The sparsity coefficients we found by performing the following rough sweeps over the values
{0.3, 0.4, 0.5, 0.65, 0.75} for both maps 10m_vs_11m and 1c3s5z. The results shown in Figure 4 are
shown for highest value of λsp for which either of the sparsification methods KINGS or CASEC
achieved reasonable results – 0.65 for 10m_vs_11m and 0.75 for 1c3s5z, respectively.

Table 2 presents the choices for the sparsification budgets used in the MACO results. Appendix E
discusses these choices further.

Aloha Pursuit Hallway Sensor Gather Disperse
0 2 3 0 6 2

Table 2: Sparsification budgets used in the MACO evaluation.
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The qualitative analysis of the experimental section focuses on the Gather environment of MACO.
To help understanding the analysis, we provide the explanation for the environment here. Gather
is based on Climb Game (Wei & Luke, 2016) where agents have three actions: a0 yields a high
reward only if all choose it, while a1 and a2 offer sub-optimal rewards without requiring precise
coordination. Gather extends Climb Game by introducing temporal complexity and stochasticity,
requiring agents to learn cooperative policies instead of atomic actions. The map for the environment
is a 3 × 5 grid, where agents spawn randomly. In each episode, a target goal for the population is
randomly selected among three goal states: g1, g2 and g3. These three states are all placed on the
2nd row, at 1st, 3rd and 5th columns, respectively. Agents near the target goal are the only ones
aware of its optimality and thus need to communicate this knowledge to the others. The episode
ends either after 8 steps or when all agents have gathered to a single goal state. To earn a reward,
all agents must simultaneously be located at some goal state. Achieving the target goal results in
a high reward of 10, gathering at other goals yields 5, and a minimum reward of −5 is assigned if
only some agents gather at the optimal goal, increasing the difficulty.

D Further Results on Changing Sparsity Coefficient

Figure 8: The effect of sparsity coefficient λsp on KINGS and CASEC. KINGS is in most cases able
to achieve a higher performance for a fixed λsp.

As suggested originally by Wang et al. (2021b), Aloha and Sensor environments of the MACO
benchmark are learned with very high levels of sparsity as shown in Table 1. In this part, we
additionally test how the discussed sparsification methods behave with smaller values of λsp on
these tasks. For Aloha, we plot the distribution of final performances for λsp ∈ {0.5, 0.6, 0.7}. For
Sensor the corresponding set is {0.7, 0.75, 0.8}. The used sparsification budgets are 2 and 3 for
Aloha and Sensor, respectively. Figure 8 presents the results. Generally, the final performance
exhibits lower variance with KINGS, and especially in Sensor, it retains higher performance. The
denser the graphs become, the less pronounced the difference between CASEC and KINGS is.

E Effect of Sparsification Budget

We provide an additional analysis of the effect of the sparsification budget assumed by KINGS.
Algorithmically, increasing the budget means that one has more iterations to reach the target sparsity
λsp, which enables pruning the graph in a more fine-grained manner. Contrarily, decreasing the
budget means that in order to reach the target sparsity, one needs to sparsify more edges at once. As
mentioned, Table 2 shows the choices of the sparsification budgets in different MACO environments.
In Aloha and Sensor, we are sparsifying the fully connected graph down to a spanning tree, which
can be seen from their corresponding λsp, and thus we directly take the maximum spanning tree –
this is equivalent to running KINGS with sparsification budget 0. In Gather we afford to apply the
procedure edge by edge due to the small size of the fully connected graph, which has (52−5)/2 = 10
edges, thus 6 sparsification iterations. For Pursuit and Disperse we tested both budgets 2 and 3
observing little difference between them two choices.
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DCG CASEC KINGS, budget=1 KINGS, budget=2 KINGS, budget=3
2.2 2.5 2.9 3.1 3.4

Table 3: Time taken in seconds for 1000 action selections with DCG, CASEC and KINGS with
different sparsification budgets in Hallway and λsp = 0.5.

Figure 9: The effect of the sparsification bud-
get on Hallway.

The only environment, where we observed the cho-
sen budget to have a more noticeable impact was
Hallway, with λsp = 0.5. The chosen sparsity coeffi-
cient translates to pruning 33 edges from the original
fully connected CG. In this setting, we tested KINGS
with budgets 1, 2 and 3. This corresponds to sparsi-
fying the original graph in chunks of sizes 33, 16/17
or 11, respectively. The results are shown in Figure 9.
While the distribution of final performances is about
the same for all of the tested budgets, we see that
the learning speed is slightly affected as we make the
pruning coarser. Conversely, tightening the budget
from 1 to 2 translates to about 20% speedup in the total run time while retaining. Additionally,
Table 3 presents the comparisons for the speeds between CG-based methods over 1000 action se-
lections. This observation provides support for the supposed trade-off between the sparsification
accuracy and computational requirements for this environment. An interesting avenue for future
work would be to study formally the changes different sparsification budgets have on the final graph
cyclicity.

F Effect of ρ-formulation in MACO

Figure 10: The effect of ρ-formulation.

Following Wang et al. (2021b), we formulate the pay-
off functions as a sum of a residual term ρij and the
individual utilities: fij = fi+fj +ρij . In this setting,
we are learning individual utilities and the residual
term ρij instead of directly learning payoff functions
fij . While being a minor detail that is not discussed
in the work that presents this architectural choice,
it seems to have quite a strong effect on learning in
MACO environments. Figure 10 presents illustrative
results on this issue. The box plot demonstrates the
final performance in Sensor for two different spar-
sity coefficients 0.7 and 0.75 when learning fij or via the residual formulation. Similar behaviour is
observable for other MACO environments as well but we did not perform an extensive check on this.
For fair comparison all the CG based approaches are implemented with this modification. Finally,
due to computational constraints, we do not evaluate the significance of this choice on SMAC but
instead adopt the choice learning fij directly as done by Wang et al. (2021b).
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Abstract

Multi-agent proximal policy optimization (MAPPO) has recently demonstrated
state-of-the-art performance on challenging multi-agent reinforcement learning
tasks. However, MAPPO still struggles with the credit assignment problem, wherein
the sheer difficulty in ascribing credit to individual agents’ actions scales poorly with
team size. In this paper, we propose a multi-agent reinforcement learning algorithm
that adapts recent developments in credit assignment to improve upon MAPPO.
Our approach leverages partial reward decoupling (PRD), which uses a learned
attention mechanism to estimate which of a particular agent’s teammates are rele-
vant to its learning updates. We use this estimate to dynamically decompose large
groups of agents into smaller, more manageable subgroups. We empirically demon-
strate that our approach, PRD-MAPPO, decouples agents from teammates that do
not influence their expected future reward, thereby streamlining credit assignment.
We additionally show that PRD-MAPPO yields significantly higher data efficiency
and asymptotic performance compared to both MAPPO and other state-of-the-art
methods across several multi-agent tasks, including StarCraft II. Finally, we pro-
pose a version of PRD-MAPPO that is applicable to shared reward settings, where
PRD was previously not applicable, and empirically show that this also leads to
performance improvements over MAPPO.

1 Introduction

Multi-agent reinforcement learning (MARL) has achieved super-human performance on many com-
plex sequential decision-making problems, such as DOTA 2 (Berner et al., 2019), StarCraft II
(Vinyals et al., 2019), and capture the flag (Jaderberg et al., 2019). These impressive results,
however, come at an immense cost: often, they require millions, if not billions, of time-consuming
environmental interactions, and therefore can only be run on high-cost compute clusters.

The credit assignment problem contributes to the computational difficulties that plague large-scale
MARL algorithms; as the number of agents involved in learning increases, so too does the difficulty of
assessing any individual agent’s contribution to overall group success (Minsky, 1961; Sutton et al.,
1998). While credit assignment already challenges reinforcement learning (RL), it is particularly
prominent in large-scale cooperative MARL, because, unlike problems in which each agent can act
greedily to optimize its own reward, all agents must maximize the total reward earned by the entire
group. Therefore, agents must not only consider how their actions influence their own rewards, but
also the rewards of every other agent in the group.

380



RLJ | RLC 2024

A popular class of approaches to MARL are policy-gradient methods, which also suffer from the
credit assignment problem. Recent work in improving policy-gradient methods took the approach
of developing concepts which were then used to extend the original actor-critic algorithm. These
extensions include counterfactual multi-agent policy gradients (COMA) (Foerster et al., 2018), multi-
agent game abstraction via graph attention neural networks (G2ANet) (Liu et al., 2020), and partial
reward decoupling (PRD) (Freed et al., 2022). The primary contributions of this paper are
1) the machinery necessary for applying PRD to a state-of-the-art multi-agent policy-
gradient method (multi-agent PPO (MAPPO)), and 2) a version of PRD that does
not require the environment to provide individual rewards streams for each agent, and
instead utilizes a shared reward signal.

PRD simplifies credit assignment by decomposing large cooperative multi-agent problems into
smaller decoupled subproblems involving subsets of agents. PRD was applied to the actor-critic
algorithm (Freed et al., 2022; Konda & Tsitsiklis, 2000). Meanwhile, significant progress has been
made towards improving the data efficiency of policy-gradient algorithms. Most notably, trust-region
policy optimization (TRPO) and proximal policy optimization (PPO) improve the data efficiency
of actor-critic algorithms by enabling a given batch of on-policy data to be re-used for multiple
gradient updates. PPO, in particular, has demonstrated strong performance in multi-agent settings
(Yu et al., 2021). However, we argue that because PPO relies on stochastic advantage estimates,
it still suffers from the credit assignment problem, and can therefore be improved by incorporating
advanced credit assignment strategies.

In this paper, we demonstrate that PRD can be leveraged within the learning updates of PPO for
each individual agent, to eliminate the contributions from other irrelevant agents. We find that the
resulting algorithm, PRD multi-agent PPO (PRD-MAPPO), exceeds the performance of prior state-
of-the-art MARL algorithms such as QMix (Rashid et al., 2018), MAPPO (Yu et al., 2021), LICA
(Zhou et al., 2020a), G2ANet (Liu et al., 2020), HAPPO (Kuba et al., 2021) and COMA (Foerster
et al., 2018) on a range of multi-agent benchmarks, including StarCraft II. Beyond integrating PRD
with MAPPO, we make three key modifications to the original PRD approach proposed by Freed
et al. (2022). First, we introduce a “soft” variant that softly re-weights advantage terms in agents’
learning updates based on attention weights, rather than the strict decoupling used by Freed et al.
(2022). Second, we modify the advantage estimation strategy that allows learning updates to be
computed in time that is linear, rather than quadratic, in the number of agents. Finally, we propose
a version of PRD-MAPPO that is capable of using shared rewards, as opposed to individual agent
rewards, thus broadening the range of problems to which our algorithm can be applied.

To gain deeper insight to the source of PRD-MAPPO’s improved performance, we visualize the
relevant sets identified by PRD, and verify that PRD decomposes multi-agent teams into subsets of
agents that should cooperate with one another. Finally, we compare the gradient estimator variance
of PRD-MAPPO and MAPPO, and find that PRD-MAPPO indeed tends to avoid the spikes in
gradient variance present in MAPPO, helping explain its superior data efficiency and stability.

2 Background

Here we describe our problem formulation as a Markov game. Subsequently, we investigate mathe-
matically how imperfect credit assignment manifests itself in high policy-gradient variance in policy-
gradient RL algorithms. Finally, we review PPO and PRD.

2.1 Markov Games

We consider multi-agent sequential decision-making problems that can be modeled as a Markov
game. A Markov game is specified by (S,A,P,R, ρ0, γ), where S is the state space, A is the joint
action space, consisting of every possible combination of individual agents’ actions, P(st+1|st, at)
specifies the state transition probability distribution, R(rt|st, at) specifies the reward distribution,
ρ0(s0) denotes the initial state distribution, and γ ∈ (0, 1] denotes a discount factor (Littman,
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1994). At each timestep t ∈ {0, ..., T}, each agent i ∈ {1, ...,M} selects an action independently
according to its state-conditioned policy πi(a(i)

t |s(i)
t ; θi). Here, T specifies the episode length, M

denotes the number of agents, s(i)
t denotes the state information available to agent i, and θi de-

notes the parameters for agent i. Subsequently, individual agent rewards are sampled according to
r

(1)
t , ..., r

(M)
t ∼ R(·|st, at), and the state transitions according to st+1 ∼ P(·|st, at).

Although agents receive individual rewards, we are primarily interested in learning cooperative be-
haviors that maximize total group return, that is, the sum of all agents’ individual rewards across all
timesteps. More precisely, we wish to find the optimal agent policy parameters θ∗ = {θ∗

1 , ..., θ
∗
M} =

argmax
θ

J(θ), where

J(θ) = E
[ T∑

t=0

M∑

j=1
γtr

(j)
t

∣∣∣πθ
]
.

This problem formulation is distinct from the “greedy” case, where each agent maximizes its own
individual return. In this problem formulation, agents should learn to be altruistic in certain sit-
uations, by selecting actions that help maximizes group reward, possibly at the expense of some
individual reward.

2.2 Credit Assignment and Policy Gradient Variance

To understand the effects of scaling PPO to large numbers of agents, and how we expect PRD will
improve this scaling, we explore how imperfect credit assignment causes difficulties in learning. In
this paper, we argue that in policy-gradient algorithms (which includes many popular algorithms
such as PPO (Schulman et al., 2017), TRPO (Schulman et al., 2015a), D4PG (Barth-Maron et al.,
2018), MADDPG (Lowe et al., 2017), and A3C (Mnih et al., 2016)), the credit assignment problem
manifests itself in the form of high variance of advantage estimates. High variance in advantage
estimates in turn causes policy gradient estimates to be more noisy, resulting in slower learning.

We consider an actor-critic-style gradient estimate for a single-agent system in its most stripped-
down possible form, computed using a single state-action sample:

∇̂θJ(θ, s, a) = ∇θ log π(a|s)Â(s, a),

where state s is sampled from the state-visitation distribution induced by policy π, action a is
sampled from π conditioned on s, and Â(s, a) is a stochastic advantage estimate, which estimates
the true advantage of taking action at in state st, and following policy π. The advantage function
is typically defined as Aπ(s, a) = Qπ(s, a) − V π(s), where Qπ(s, a) and V π(s) are the state-action
value function and state-value function, respectively (Sutton et al., 1998). Intuitively, the advantage
function measures how much better it is to select a particular action a than a random action from the
policy, while in state s. There are many ways to compute Â, generally all involving some error, as the
true value functions are unknown (Sutton et al., 1998; Schulman et al., 2015b). If perfect advantage
estimation were possible, then so too would be perfect credit assignment, as the advantage function
directly measures how a particular action a impacted the total reward obtained by the group.

To gain an understanding of how the gradient variance is impacted by advantage estimator variance,
we note that the conditional variance of ∇̂θJ , given s and a, is proportional to the variance of Â:

Var(∇̂θJ |s, a) = (∇θ log π(a|s)) (∇θ log π(a|s))T Var(Â|s, a).

Moving to a cooperative multi-agent setting, Â(s, a) is replaced by a summation over individual
agents’ advantages in the gradient estimate for a particular agent i:
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∇̂θiJ(θ, s, a) = ∇θi log πi(ai|s)
M∑

j=1
Âij(s, a),

where Âij(s, a) now corresponds to our estimate of how agent i’s action influenced the expected
future reward of agent j. The summation results from the fact that in the cooperative setting,
agent i is no longer interested only in maximizing its own total reward, but is instead interested in
maximizing total group reward, as discussed in Sec. 2.1. The variance of ∇̂θiJ given s and a now
depends on the variance of each individual agent’s advantage estimates, as well as the covariance
between every pair of agents’ advantages. Using Bienaymé’s identity, and omitting the arguments
to πi for brevity, we can express this variance as

Var(∇̂θiJ |s, a) = (∇θi log πi) (∇θi log πi)T
(

M∑

j=1
Var(Âij |s, a) + 2

∑

k<j

Cov(Âij , Âik|s, a)
)
.

To simplify analysis, we consider an upper bound on gradient estimator variance, obtained using
the Cauchy–Schwarz inequality,

Var(∇̂θiJ |s, a) ≤ (∇θi log πi) (∇θi log πi)T
(

M∑

j=1
Var(Âij |s, a) + 2

∑

k<j

√
Var(Âij |s, a)Var(Âik|s, a)

)
,

(1)

which can be seen to scale roughly linearly with number of agents, assuming Var(Âij |s, a) is roughly
similar for all j. Therefore, to achieve a particular signal-to-noise ratio, more such gradient estimates
will need to be averaged together as team size increases, thus increasing the data requirements of
the algorithm. This analysis helps explain the mechanism by which improved credit assignment can
yield data-efficiency improvements for policy-gradient algorithms, such as A3C (Mnih et al., 2016),
TRPO (Schulman et al., 2015a) and PPO (Schulman et al., 2017) algorithms. In particular, our
approach aims to eliminate extraneous advantage terms that do not on average contribute to the
policy gradient, thereby reducing the number of terms in the summations in (1) and decreasing the
total variance. We discuss this further in Sec. 2.4 and 3.

2.3 Proximal Policy Optimization

Earlier policy gradient algorithms, such as actor-critic (AC), suffered from poor data efficiency in
part because they were purely on-policy, and therefore required a fresh batch of environmental data
to be collected each time a single gradient update was applied to the policy (Konda & Tsitsiklis, 2000;
Schulman et al., 2015a; 2017). PPO provides higher data efficiency than AC by enabling multiple
policy updates to be performed given a single batch of on-policy data, resulting in larger policy im-
provements for a fixed amount of data. Given a batch of data, PPO optimizes the policy with respect
to a “surrogate” objective that penalizes excessively large changes from the old policy, permitting
the agent to perform multiple gradient updates without becoming overly off-policy. Specifically,
during each policy optimization step, PPO optimizes the following objective with respect to policy
parameters θ,

LPPO(θ) = Ê
[
min

((
rt(θ)Ât

)
,
(
clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

))]
,

where r(θ) = πθ(at|st)
πθold (at|st) is the probability ratio, πold is the data collection policy, π is the updated

policy, Ât is the stochastic advantage estimate for time t, and Ê[·] denotes an empirical average over
a finite batch of samples (Schulman et al., 2017).
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PPO has been recently shown to offer strong performance on multi-agent problems (Yu et al., 2021).
However, PPO does not explicitly control the variance of its policy gradient updates, which as we
discuss in Sec. 2.2, tends to grow with multi-agent team size. This increased gradient estimate
variance means that larger batches of data become necessary to reach a satisfactory signal-to-noise
ratio in the learning updates; indeed, (Yu et al., 2021) found that much larger batch sizes were
necessary for PPO to perform well on multi-agent tasks. In this work, we seek to combine the
data efficiency benefits of PPO with the variance reduction benefits of PRD, to enable further
improvements in data efficiency and stability.

2.4 Partial Reward Decoupling

PRD is an approach that enables large multi-agent problems to be dynamically decomposed into
smaller subgroups such that cooperation among subgroups yields a fully cooperative group-level so-
lution. In practice, PRD was shown to improve the performance of an AC-style approach, compared
to a vanilla AC algorithm. The proposed PRD-AC algorithm was also shown to outperform COMA,
a popular method for improved multi-agent credit assignment.

PRD makes use of the fact that, considering two agents i and j at a particular timestep t, if the
action of agent i does not influence the expected future reward of agent j, then agent i need not take
agent j’s rewards into account when computing its advantage estimate for time t, thus streamlining
credit assignment. The set of agents whose expected future rewards are impacted by the action
of agent i at time t is referred to as the relevant set of agent i at time t, denoted Rπi (st, at). In
Freed et al. (2022), a learned value function with an attention mechanism was used to estimate the
relevant set for each agent.

There were significant drawbacks to the approach presented by Freed et al. (2022), which we address
in this paper. First, PRD was used in the context of the AC algorithm, which has been surpassed by
algorithms such as TRPO and PPO. Second, for a problem involving M agents, PRD required M
evaluations of the critic function to compute a single agent’s gradient update; thus the computational
burden for a learning update scaled quadratically with the number of agents. Finally, PRD assumed
that the environment provided per-agent reward streams (i.e., provided a scalar reward value to each
agent at each timestep). However, many multi-agent problems provide only a single scalar reward
for the entire group at each timestep.

3 Improving Proximal Policy Optimization with Partial Reward
Decoupling

In this paper, we tackle the credit assignment problem by developing PRD-MAPPO, which leverages
a PRD-style decomposition within a PPO learning update to improve credit assignment. More
specifically, PRD modifies the original PPO objective by eliminating advantage terms belonging to
“irrelevant” agents. As shown by Freed et al. (2022), these irrelevant advantage terms contribute
only noise to learning updates, making learning less efficient. PRD uses an attention-based value
function to identify when a particular agent’s action did not influence another agent’s future return,
allowing those agents to be decoupled.

To leverage the improved credit assignment capabilities of PRD in PPO, we make two modifications
to the standard PPO algorithm: first, we incorporate a learned critic with an attention mechanism.
Similar to Freed et al. (2022), the attention weights computed by the critic will be used to estimate
the relevant set of agents, as described in Sec. 3.1. Unlike Freed et al. (2022), we modify the critic
architecture to allow the relevant sets for each agent to be computed in linear, rather than quadratic
time. Second, we modify the surrogate objective of PPO to use the streamlined advantage estimation
strategy of PRD, which we describe in Sec. 3.2, using the relevant set estimated using the critic.
In this work, we test a novel “soft” relevant set estimation strategy that softly decouples agents,
which we find significantly improves performance over a manual thresholding approach as was used
by Freed et al. (2022).
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3.1 Learned Critics for Relevant Set and Advantage Estimation

Key/Query
Networks

Value Network

Attention

Embedding
Network

Output
Network

Figure 1: Q and Value Function Network Architecture.
Each agent uses states from all agents to compute at-
tention weights for every agent other than itself. These
attention weights are then used to aggregate attention
values from all agents other than itself. Finally, ag-
gregated attention values for agent i are concatenated
either with the embedded state-action vector for agent
i (if the network is functioning as a Q function) or the
embedded state vector for agent i, (if the network is
functioning as a value function). Finally, this is passed
through the output network to generate either Qϕi (s, a)
or V ψi (s, a̸=i).

Similar to Freed et al. (2022), we use a
learned critic function to perform relevant
set estimation, albeit with significant mod-
ifications. In our approach, each agent i
maintains a graph neural network Q func-
tionQϕi (st, at), which is trained to estimate
its expected future individual returns given
the current state and actions of all agents.
A diagram of our Q function is depicted in
Fig. 1. In practice, all agents share the
same Q function parameters. Qϕi takes as
input the state information and actions of
all agents to estimate a scalar Q value for
each agent i.

The Q function contains an attention
mechanism that allows it to “shut off”
dependence on particular agents’ actions.
More concretely, the Q network for each
agent i uses the states of all agents (includ-
ing itself) to compute attention weights for
all other agents (agents assign an attention
weight of 1 to themselves, i.e., wii(st) = 1). These attention weights are then used as coefficients
to compute a linear combination of attention values computed from agents’ states and actions. If a
particular attention weight wij is 0, then any information about agent j’s action will not be prop-
agated further through the network, meaning that agent j’s action will not influence the final Q
estimate for agent i. Once the aggregated value is computed, it is concatenated with an embedding
computed from agent i’s state and action and passed through a recurrent output network (Fig. 1).

If the learned Q function of agent i at a particular timestep t computes an attention weight of
exactly zero for another agent j (i.e., wij(st) = 0), then Qϕi does not depend on a(j)

t given the state
of all agents, and we can infer that agent i is outside the relevant set of agent j. As shown by Freed
et al. (2022), agents outside the relevant set of agent j do not, on average, contribute to its policy
gradient, and may therefore be removed from the policy gradient estimates without introducing bias.
In practice, when inferring the relevant sets for each agent, we infer that i /∈ Rj(st) if wij(st) < ϵ,
where ϵ > 0 is a small manually chosen constant. Using this soft attention mechanism, agents cannot
assign precisely zero attention weight to any other agent, and therefore cannot guarantee complete
independence of the Q function to any particular agent’s action. However, we found that in practice,
very small attention weights were assigned to irrelevant agents, making this a practical method for
relevant set estimation. We explore variants of this decoupling procedure, including a “soft” variant
that softly re-weights agents’ contributions to learning updates.

Our approach to computing advantage terms for learning updates reduces the computational com-
plexity over (Freed et al., 2022) from quadratic to linear in the number of agents M . To compute
the advantage terms required to update the policy of a particular agent i, the original algorithm
described by Freed et al. (2022) requires each agent i to estimate the expected future return of each
agent j, conditioned on the actions of all agents other than i, for each j ∈ Ri(st). This computation
requires (at worst) M calls to the critic for each of the M agents, resulting M2 total calls during
each learning update. Our approach, on the other hand, circumvents with quadratic scaling by
maintaining two separate critics; the first is the Q function used for relevant set estimation, de-
scribed above. The second critic is used solely to provide baseline estimates for advantage function
estimation (Schulman et al., 2015b; Konda & Tsitsiklis, 2000). It estimates the sum of expected
future returns for all agents within agent i’s relevant set, conditioned on the state of all agents,
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and the actions of all agents other than i. We refer to this critic as the value function, rather than
the Q function, because it does not depend on the actions of agent i. The value function uses an
architecture almost identical to the Q function (Fig. 1), with the one difference that the attention
values are concatenated with the embedded state of agent i, rather than state-action. Using this
value function, computing advantages for all agents requires only M calls (one per agent).

3.2 PRD-MAPPO Parameter Update Rule

We modify the original MAPPO (Yu et al., 2021) objective for each agent i by eliminating the
rewards from agents that are outside its relevant set from its advantage estimates. The original
MAPPO algorithm optimizes the following objective during each policy parameter update for agent
i:

L
(i)
MAPPO = Ê

[
min

((
r

(i)
t (θi)Ât

)
,
(

clip(r(i)
t (θi), 1− ϵ, 1 + ϵ)Ât

))]
, (2)

where r(i) is the ratio between the updated and old policy of agent i, and Ât is the advantage
estimate for timestep t. In (Yu et al., 2021), generalized advantage estiamtion was used to compute
Ât, which combines group agent rewards and value function estimates according to

Ât = δt + (γλ)δt+1 + ...+ (γλ)T−t+1δT−1,

where δt =




M∑

j=1
r

(j)
t


+ γV (st+1)− V (st).

We modify the objective in (2) by replacing advantage terms with individual agent advantage terms,
which ignore the rewards of irrelevant agents. The objective for agent i becomes

L
(i)
PRD = Ê

[
min

((
r

(i)
t (θi)Âi,t

)
,
(

clip(r(i)
t (θi), 1− ϵ, 1 + ϵ)Âi,t

))]
,

where

Âi,t = δi,t + (γλ)δi,t+1 + ...+ (γλ)T−t+1δi,T−1,

δi,t =


 ∑

j∈Ri(st)
r

(j)
t


+ γV ψi (st+1, a̸

=i
t+1)− V ψi (st, a̸=i

t ).

Note in the above equation that the reward terms for agents not in Ri(st) have been removed, and
V has been replaced by the value function V ψi described in Sec. 3.1., which is regressed against
the sum of returns of agents in Ri(st). Pseudocode for PRD-MAPPO is included in Sec. B of the
appendix.

We additionally propose a “soft” variant of PRD-MAPPO, which we refer to as PRD-MAPPO-
soft, that softly reweights agent rewards according to attention weights of the Q network, i.e.,
δi,t =

(∑M
j=1 wji(st)r

(j)
t

)
+ γV ψi (st+1, a̸

=i
t+1) − V ψi (st, a̸=i

t ). In this soft variant, V ψi is regressed

against the weighted sum of agent returns,
∑M
j=1 wji(st)R

(j)
t .
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3.3 Partial Reward Decoupling for environments with shared rewards

One drawback to our PRD approach is that it assumes individual reward streams for each agent are
available, i.e., at each timestep, the environment provides a separate scalar reward for each agent.
However, some multi-agent systems only provide a single scalar shared reward for the entire group
at each timestep. To deal with the shared reward setting, we propose strategy for decomposing
shared returns into individual agent returns, to which we can then apply PRD. We start by training
a shared Q function to predict the shared returns (i.e., the sum of future shared rewards). Here we
use a similar architecture as described in Sec. 3.1, with the one difference that our network has 1
output rather than M outputs. We denote the vector of attention weights assigned by all agents to
the action of agent j as W:j . There is one such vector for each timestep and each agent; we omit
the timestep subscripting for brevity. As a heuristic to measure the overall influence that each agent
j has on the future shared reward, we aggregate the attention weights for each agent j by taking
the mean of W:j , which we refer to as W̃j . The individual returns for each agent j at each timestep
are then set proportionally to W̃j , such that they sum to the original shared return. Subsequently,
we apply PRD-MAPPO to these individual returns as we would in the individual reward setting
described in Sec. 3.2. We refer to this approach as PRD-MAPPO-shared.

4 Experiments

We experimentally compare the performance of the following algorithms on several cooperative
MARL environments:

PRD-MAPPO (ours): MAPPO with PRD, as described in Sec. 3.1.

PRD-MAPPO-soft (ours) : the soft variant of PRD-MAPPO as described in Sec. 3.1.

PRD-MAPPO-shared (ours) : the soft variant of PRD-MAPPO in the shared reward setting,
as described in Sec. 3.3.

MAPPO: a multi-agent variant of PPO, proposed by Yu et al. (2021).

HAPPO: a recent state-of-the-art algorithm proposed by Kuba et al. (2021) that extends trust re-
gion learning to cooperative multi-agent reinforcement learning (MARL), enabling monotonic policy
improvement without the need for shared policy parameters.

G2ANet-MAPPO: MAPPO with a G2ANet-style critic. This baseline attempts to import the
credit assignment benefits of G2ANet (which was originally used in the Actor-Critic algorithm) to
the more state-of-the-art MAPPO.

Counterfactual Multi-Agent Policy Gradient (COMA): Proposed by Foerster et al. (2018),
COMA is a multi-agent actor-critic method. COMA addresses credit assignment by using a counter-
factual baseline that marginalizes out a single agent’s action, while keeping the other agents’ actions
fixed, allowing COMA to better isolate each agent’s contribution to group reward.

PRD-V-MAPPO: PRD-MAPPO, using the value-function-based method of relevant set estima-
tion, as described by Freed et al. (2022). This version uses a learned value function for both relevant
set and advantage estimation, and scales quadratically in time complexity with number of agents.
We include this as a baseline to assess the effect of critic choice.

Learning Implicit Credit Assignment (LICA): proposed by Zhou et al. (2020b), LICA is a
method for implicit credit assignment that is closely related to value gradient methods, which seek
to optimize policies in the direction of approximate value gradients. LICA extends the concept of
value mixing present for credit assignment found in QMix and Value-decomposition Networks by
introducing an additional latent state representation into the policy gradients. The authors claim
that this additional state information provides sufficient information for learning optimal cooperative
behaviors without explicit credit assignment.
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QMix: proposed by Rashid et al. (2018), QMix learns a joint state-action value function, repre-
sented as a complex non-linear combination of per-agent value functions. The joint value function
is structurally guaranteed to be monotonic in per-agent values, allowing agents to maximize the
joint value function by greedily selecting the best actions according to their own per-agent value
functions.

The policy network and critic used for advantage calculations for PRD-MAPPO, PRD-MAPPO-
soft, PRD-MAPPO-shared, MAPPO, HAPPO, G2ANet-MAPPO, COMA and PRD-V-MAPPO
have the same architecture and number of parameters. Because LICA and QMix depend on a
particular critic architecture, we used the original architectures as described by Zhou et al. (2020a)
and Rashid et al. (2018) respectively. For all environments and all algorithms, we performed a grid
search over hyperparameters as described in the appendix.

We consider the following environments, with detailed descriptions of each in the appendix: Collision
Avoidance, Pursuit, Pressure Plate, Level-Based Foraging, and StarCraft Multi-Agent Challenge Lite
(SMAClite), specifically the 5m_vs_6m, 10m_vs_11m, and 3s5z battle scenarios.
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Figure 2: Average reward vs. episode for PRD-MAPPO-soft, PRD-MAPPO, PRD-
V-MAPPO, COMA, LICA, QMix, MAPPO, MAPPO-G2ANet on A) team collision
avoidance, B) pursuit, C) pressure plate, D) Level-Based Foraging, E) StarCraft
5m_vs_6m, F) StarCraft 10m_vs_11m tasks, and G) StarCraft 3s5v. Solid lines indicate
the average over 5 random seeds, and shaded regions denote a 95% confidence interval. Approaches
that incorporate PRD (PRD-MAPPO and PRD-MAPPO-soft) tend to outperform all other ap-
proaches, indicating that PRD can be leveraged to improve PPO by improving credit assignment.

388



RLJ | RLC 2024

5 Results and Discussion

The reward curves for all tasks are shown in Fig. 2. We found that of the algorithms we tested, only
PRD-MAPPO-soft, PRD-MAPPO-shared, and PRD-MAPPO performed consistently well across
all environments, with PRD-MAPPO-soft tending to perform the best. PRD-MAPPO-soft was
outperformed only in one environment (pressure plate) by one algorithm (QMix), and in general
outperformed all other algorithms on all tasks.

5.1 Relevant Set Visualization

To gain more insight into the relevant set selection process, in Fig. 3 we visualized the attention
weights inferred by a trained group of agents in the Collision Avoidance task. In this task, agents
are rewarded for reaching an assigned goal location while avoiding collisions. Agents are divided into
three teams, consisting of agents 1-8, 9-16, and 17-24, and are only penalized for colliding with other
agents on their team. We therefore expect agents to assign large attention weights only to other
agents on their same team, because each agents’ reward is independent of the actions of agents on
other teams. Fig. 3 displays the average attention weights as an M x M grid, with the ith row and
jth column corresponding to the average attention weight that agent i assigns to agent j. Because
agents always assign an attention weight of 1 to themselves, we remove these elements from the
visualization as they are uninformative. We find that, as expected, agents assign considerably non-
zero attention weights only to other agents on their same team, while assigning near-zero attention
weights to all other agents. Attention weights were averaged over 5000 independent episodes.

5.2 Policy Gradient Estimator Variance Analysis
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Figure 3: Relevant set visualization in
Collision Avoidance environment. We
visualize the average attention weight that
each agent assigns to every other agent,
averaged across 5000 independent episodes.
Because agents always assign an attention
weight of 1 to themselves, we remove those
elements from the plot as they are uninforma-
tive. We notice that generally agents assign a
far higher attention weight to agents in their
team, compared to agents on other teams,
which is to be expected given that only an
agent’s teammates are capable of influencing
its rewards.

To empirically verify the claim that partial reward
decoupling decreases the variance of MAPPO pol-
icy gradient estimates, we estimate the variance of
MAPPO and PRD-MAPPO at various points during
training. For maximum comparability, we compute
the variance for both MAPPO and PRD-MAPPO
using data gathered from the same policy, taken at
1000-episode intervals during the training of PRD-
MAPPO. Using these policies, we collect 100 in-
dependent batches of data, and differentiate the
MAPPO or PRD-MAPPO surrogate objective eval-
uated on each batch, to obtain 100 independent gra-
dient estimates for both approaches for each policy.
Finally, we arrive at a scalar empirical variance es-
timate, by taking the trace of the covariance ma-
trix estimated using each batch of 100 gradient es-
timates, along with a 95% confidence interval. The
results are plotted in Fig. 4. In general, we find that
PRD-MAPPO tends to avoid the spikes in gradient
variance present in MAPPO, which may explain its
improved stability and asymptotic performance.

6 Related Work

Many recent approaches have been proposed to deal
with the credit assignment problem. G2ANet (Liu
et al., 2020), for instance, proposed a novel attention-
based game abstraction mechanism that enables the
critic to better isolate important interactions among
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agents, and ignore unimportant ones (although explicit decoupling is not done, as in PRD). Coun-
terfactual Multi-Agent Policy Gradient (COMA) (Foerster et al., 2018) proposed a novel counter-
factual baseline that allows each agent to more precisely determine the effect that its action had
on group reward by conditioning on the actions of all other agents. COMA builds on the idea
of difference rewards (Wolpert & Tumer, 2002), in which each agent uses a modified reward that
compares the shared reward to a counterfactual situation in which the agent took some default ac-
tion. Value-decomposition actor-critics (VDAC) (Su et al., 2021) uses value decomposition networks
(Sunehag et al., 2017; Rashid et al., 2018) as critics for credit assignment in the actor-critic frame-
work. Off-policy multi-agent decomposed policy gradients (Wang et al., 2020) is another multi-agent
policy-gradient algorithm that uses the idea of value decomposition, but applies it to a DDPG-style
off-policy policy gradient (Silver et al., 2014). Finally, Learning Implicit Credit Assignment for
Cooperative Multi-Agent Reinforcement Learning (LICA) (Zhou et al., 2020a) implicitly addressed
the credit assignment problem by representing a centralized critic as a hypernetwork, and finding an
end-to-end differentiable optimization setting where the policies simultaneously improve along the
joint action value gradients, thus serving as a proxy for finding optimal credit assignment strategies.

Figure 4: Gradient estimator variance vs. episode for team collision avoidance, pressure
plate, and LBF environments. Solid lines indicate the average over 5 random seeds, and shaded
regions denote a 95% confidence interval. PRD-MAPPO tends to avoid the dramatic spikes in
gradient variance demonstrated by MAPPO.

7 Limitations

The primary limitation of PRD-MAPPO is that PRD is not guaranteed to accelerate learning
in every environment, because some tasks cannot be decomposed (i.e., each agent’s relevant set
contains most or all other agents). For example, in the traffic junction experiment, it is possible
that learning is only somewhat improved by PRD because interactions among agents are too dense,
making decoupling less effective.

8 Conclusions

We addressed the shortcomings of MAPPO, a state-of-the-art multi-agent reinforcement learning
algorithm. Specifically, we hypothesized that the credit assignment problem manifests itself in
policy gradient estimator variance. Based on this hypothesis, we proposed integrating PRD into
MAPPO as a strategy to improve credit assignment, yielding a new multi-agent model-free RL
algorithm, PRD-MAPPO. We demonstrated that PRD-MAPPO provides significant improvements
both in learning efficiency and stability, across a diverse set of tasks, compared to both MAPPO and
several state-of-the-art MARL algorithms such as QMix, LICA, and COMA. We empirically verified
the hypothesis that PRD decreases the variance of the gradient estimates of MAPPO. Finally, we
visualized the relevant sets inferred by PRD, and found that it correctly grouped together agents
that should cooperate. The improvements in learning speed and stability, combined with decreased
gradient variance and sensible relevant set estimation, indicate that PRD, used in the context of
MAPPO, provides a useful credit assignment strategy for multi-agent problems.
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A Detail Task Descriptions

Collision Avoidance: 3 teams of 8 agents each exist in a square bounded 2D region. Agents receive
a reward for reaching their assigned goal location, and receive a penalty for colliding with other agents
belonging to the same team. Agents therefore need only cooperate with other agents on their team
to avoid collisions. Both the agents and goals are initialized in random locations. The observation
space consists of the agent’s position, velocity, team ID, and goal position. The agents can take 5
possible actions that allow them to move either north, south, east, west or remain stationary. The
reward function is the l2 distance between the agent position and the goal position multiplied by a
scalar value of 0.1. On collision, the participating agents receive a -1 reward each. The environment
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terminates if all agents reach their assigned goal location or 100 timesteps run out. While training
decentralized policies, relative positions of all other agents and their team ID are also included in
the observation space. Episodes last a maximum of 100 timesteps. This environment was modified
from the cooperative navigation environment first developed by Lowe et al. (2017). The code for
this environment can be found at https://github.com/openai/multiagent-particle-envs (MIT
License).

Pursuit: 8 agents exist in a 16 x 16 grid with an obstacle in the center. To receive a re-
ward, two agents must coordinate their actions to surround randomly moving “evader” agents on
two sides. There are 30 evaders in the environment. Each pursuer observes a 7 x 7 grid cen-
tered around itself with 3 channels, indicating the positions of walls, other agents, and evaders,
respectively. Once an evader is caught, it is removed from the environment. The environ-
ment terminates when every evader has been caught, or when 500 timesteps are completed.
The environment is available in the PettingZoo MARL benchmark suite (Terry et al., 2021)
at https://pettingzoo.farama.org/environments/sisl/pursuit/ (MIT License) and was first
proposed by Gupta et al. (2017).

Pressure plate: 6 agents exist in a grid, divided into 6 separate chambers by gates. In any given
chamber, a particular agent can open the gate by standing on a special grid cell known as the
pressure plate. To successfully solve the task, this agent must remain on the pressure plate until
the other agents have successfully moved into the next chamber. The goal is for one particular
agent to traverse all six chambers and arrive at a goal location in the final chamber. Each agent
observes a 5x5 square around its location, with a separate channel for each type of entity in the
environment (e.g., walls, pressure plates, doors, agents, and goals). The agent’s (x,y) coordinates
are concatenated to the end of the observation vector. The action space is discrete and has five
possibilities: up, down, left, right, and remain stationary. Each agent receives rewards independent
of other agents. If an agent is in the room that contains their assigned plate, their reward is the
negative normalized Manhattan distance between their current position and the plate. Otherwise,
their reward is the number of rooms between their current room and the room that contains their
assigned plate. Episodes last a maximum of 70 timesteps. The code for this environment is available
at https://github.com/uoe-agents/pressureplate (MIT License).

Level-Based Foraging (LBF): Agents navigate a grid world and collect food items by cooperating
with other agents. Each agent and food item is assigned a level and are randomly distributed
throughout the environment. Successfully collecting a food item of a particular level requires the sum
of the levels of the agents involved to be greater than or equal to the level of the food item. Agents
are rewarded based on the level of the food items they help collect, divided by their contribution
(their level). Reward discounting incentivizes agents to collect all food items as quickly as possible to
maximize returns. The observation space consists of the agent’s position in the grid, its level, relative
positions of all other agents and food items, and their levels. The agents can either move in one of the
four directions, collect a food item, or do nothing. Episodes last a maximum of 70 timesteps. The
code for this environment can be found at https://github.com/semitable/lb-foraging (MIT
License).

Lightweight StarCraft (SMAClite): SMAClite is a lightweight version of the StarCraft II game
engine. It is computationally less expensive relative to SC II and provides a simple “pythonic”
framework to add custom environments and make alterations to the environment logic. The obser-
vation space consists of the relative positions, unit type, health and shield strength of the agent’s
allies and enemies within the field of view of the agent and the health and shield strength of it-
self. The agents can move in any of the 4 cardinal directions, remain stationary, or attack any of
the enemy agent within its field of view. Each combat scenario is run for 100 timesteps, though
agents may die before this time. We consider three different battle scenarios, 1) 5m_vs_6m, where
5 agent-controlled marines battle 6 enemy marines, 2) 10m_vs_11m, where 10 agent-controlled
marines battle 11 enemy marines, and 3) 3s5z, where 3 agent-controlled stalkers and 5 agent-
controlled zealots battle 3 enemy stalkers and 5 enemy zealots. The code for SMAClite is available
at https://github.com/uoe-agents/smaclite (MIT License).
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B Pseudocode

Algorithm 1 PRD-MAPPO
1: Initialize θ, the parameters for policy π, ω, the parameters for state-action value critic Q and ϕ,

the parameters for state value critic V , using orthogonal initialization (Hu et al., 2020)
2: Set learning rate α
3: while step ≤ stepmax do
4: set data buffer D = {}
5: for i = 1 to batch_size do
6: τ = [] – empty list
7: initialize h(1)

0,π, . . . , h
(M)
0,π actor RNN states

8: initialize h(1)
0,V , . . . , h

(M)
0,V state value RNN states

9: initialize h(1)
0,Q, . . . , h

(M)
0,Q state-action value RNN states

10: for t = 1 to T do
11: for all agents a do
12: u

(a)
t , h

(a)
t,π = π(o(a)

t , h
(a)
t−1,π; θ)

13: end for
14: (q(1)

t , . . . q
(M)
t ), (h(1)

t,Q . . . h
(M)
t,Q ),Wprd,t = Q(s(1)

t . . . s
(M)
t , u

(1)
t . . . u

(M)
t , h

(1)
t−1,Q . . . h

(M)
t−1,Q;ω)

15: (v(1)
t , . . . v

(M)
t ), (h(1)

t,V . . . h
(M)
t,V ) = V (s(1)

t . . . s
(M)
t , u

(1)
t . . . u

(M)
t , h

(1)
t−1,V . . . h

(M)
t−1,V ;ϕ) – we

mask out the actions of agent a while calculating its state value v(a)

16: Execute actions ut, observe rt, st+1, ot+1
17: τ += [st, ot, ht,π, ht,V , ut, rt, st+1, ot+1]
18: end for
19: Compute relevant set R1, ..., RM using Wprd
20: Compute return Gi for each agent i = 1, ...,M , to learn the Q function and total relevant-set

return Ḡi =
∑
j∈Ri Gj for each agent i to learn V function on τ and normalize with PopArt

21: Compute advantage estimate Â1, ..., ÂM via GAE on state value estimates on τ , using
PopArt

22: Split trajectory τ into chunks of length L
23: for l = 0, 1, . . . , T//L do
24: D = D ∪ (τ [l : l + T ], Â[l : l + L], G[l : l + L], Ḡ[l : l + L])
25: end for
26: end for
27: for mini-batch k = 1, . . . ,K do
28: b← random mini-batch from D with all agent data
29: for each data chunk c in the mini-batch b do
30: update RNN hidden states for π, Q and V from first hidden state in data chunk
31: end for
32: end for
33: Adam update θ on L(θ) with data b
34: Adam update ω on L(ω) with data b
35: Adam update ϕ on L(ϕ) with data b
36: end while

C Additional Results

We experimented with various methods for selecting agent relevant sets, as described below. Reward
curves for each method in each of our four environments is shown in Fig. 5. PRD-MAPPO: As
described in Sec. 3.1 of the manuscript. The attention-weight threshold ϵ used to agent relevant
sets is held constant through training.
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PRD-MAPPO-soft: As described in Sec. 4 of the manuscript. A variant of PRD-MAPPO in
which advantage terms are not excluded from the PPO update according to hard thresholding, but
rather advantage terms for each agent i are softly re-weighted according to the attention weights
applied by other agents to the actions of agent i.

PRD-MAPPO-ascend: Attention-weight threshold ϵ is linearly increased from 0 to θ over the
first N policy updates and then held constant, where θ and N are hyperparameters. This method
transitions from including all agents in the relevant set to having only a subset of agents in the
relevant set.

PRD-MAPPO-decay: Attention-weight threshold ϵ is linearly decreased from theta to 0 over the
first N policy updates, and then held constant. In this case, agents aggressively prune relevant sets
early on, transitioning to standard MAPPO by the end of training.

PRD-MAPPO-G2ANet: A semi-hard attention mechanism based on G2ANet Liu et al. (2020)
is used to select relevant sets. Agents are excluded from the relevant set if their associated attention
weight is exactly 0. This approach has the advantage that it allows a manual threshold on attention
weights to be avoided.

PRD-MAPPO-top-k: The agents with the top k highest attention weights are included in the
relevant set (where k is a hyperparameter).

D Implementation Details

The code was run on Lambda Labs deep learning workstation with 2-4 Nvidia RTX 2080 Ti graphics
cards. Each training run was run on one single GPU, and required approximately 2 days. The
hyperparamers used for our experiments are reported in the tables below:

E Hyperparameters

Hyperparameters used for MAPPO variants, PRD variants, PRD_V_MAPPO, QMix, LICA and
COMA that are common to all tasks are shown in Tables 23, 4 5, and 6 respectively. The
task-specific hyperparameters considered in our grid search for MAPPO variants, PRD variants,
PRD_V_MAPPO QMix, LICA, and COMA are shown in Tables 7, 8, 9 10, 11, and 12, respec-
tively. Bold values indicate the optimal hyperparameters.

Table 1: Episodic Length of all environments

common
environment max timesteps

collision avoidance 100
pursuit 500

pressure plate 70
level-based foraging 70

5m_vs_6m 100
10m_vs_11m 100

3s5z 100
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Table 2: Common Hyperparameters for all algorithms in all domains

common
hyperparameters value

optimizer AdamW
gamma 0.99

gae lambda 0.95
weight decay 0.0
optim epsilon 1e-5

max grad norm 10.0
network initialization orthogonal

Table 3: Common Hyperparameters for MAPPO, HAPPO, MAPPO-G2ANet, PRD-V-MAPPO,
PRD-MAPPO-shared and PRD-MAPPO-soft algorithms in all domains

common
hyperparameters value

critic loss huber loss
huber delta 10.0

num mini-batch 1
gae lambda 0.95

actor network rnn
recurrent data chunk length 10

recurrent num layers 1
rnn hidden dim 64

value normalization PopArt

Table 4: Common Hyperparameters for QMix in all domains.

common
hyperparameters value

buffer size 5000
batch size 32

hypernet layers 2
hypernet hidden dim 32

target network update interval 200
td lambda 0.8

epsilon decay steps 2000 episodes
epsilon start 1.0
epsilon end 0.1
value loss huber loss

huber delta 10.0
q network rnn

rnn hidden dim 64
recurrent data chunk length 10

recurrent num layers 1
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Table 5: Common Hyperparameters for LICA.

common
hyperparameters value

hypernet layers 2
hypernet hidden dim 64

target network update interval 200
td lambda 0.8
critic loss huber loss

huber delta 10.0
actor network rnn

actor rnn hidden dim 64
actor recurrent data chunk length 10

actor recurrent num layers 1

Table 6: Common Hyperparameters for COMA.

common
hyperparameters value

target network update interval 200
td lambda 0.8
critic loss huber loss

huber delta 10.0
actor network rnn

rnn hidden dim 64
recurrent data chunk length 10

recurrent num layers 1

Table 7: MAPPO and MAPPO-G2ANet hyperparameter sweep. Bold values indicate the optimal
hyperparameters.

Environment
Name epochs num_episodes value_lr policy_lr clip entropy_pen

Collision
Avoidance [5, 10, 15] [5, 10] [1e-4, 5e-4, 1e-3] [1e-4, 5e-4, 1e-3] [0.05, 0.2] [1e-3, 8e-3, 1e-2]

Pursuit [5, 10, 15] [2, 5, 10] [1e-4, 5e-4, 1e-3] [1e-4, 5e-4, 1e-3] [0.05, 0.2] [1e-3, 8e-3, 1e-2]
Pressure

Plate [5, 10, 15] [5, 7, 10] [1e-4, 5e-4, 1e-3] [1e-4, 5e-4, 1e-3] [0.05, 0.1, 0.2] [1e-3, 1e-2, 5e-2, 1e-1]

Level-Based
Foraging [1, 5, 10] [1, 5, 10] [5e-4, 1e-3, 5e-3] [5e-4, 1e-3, 5e-3] [0.1, 0.2] [1e-3, 5e-3, 1e-2]

5m_vs_6m [1, 5, 10] [5, 10] [1e-4, 3e-4, 5e-4] [1e-4, 3e-4, 5e-4] [0.1, 0.2] [0.0, 5e-3, 1e-2]
10m_vs_11m [1, 5, 10] [5, 10] [1e-4, 3e-4, 5e-4] [1e-4, 3e-4, 5e-4] [0.1, 0.2] [0.0, 5e-3, 1e-2]

3s5z [1, 5, 10] [5, 10] [1e-4, 3e-4, 5e-4] [1e-4, 3e-4, 5e-4] [0.1, 0.2] [0.0, 5e-3, 1e-2]

Table 8: PRD-MAPPO-global and PRD-MAPPO-soft hyperparameter sweep. Bold values indicate
the optimal hyperparameters.

Environment
Name epochs num_episodes value_lr policy_lr clip entropy_pen

Collision
Avoidance [5, 10, 15] [5, 10] [1e-4, 5e-4, 1e-3] [1e-4, 5e-4, 1e-3] [0.05, 0.2] [0.0, 1e-3, 8e-3]

Pursuit [5, 10, 15] [2, 5] [1e-4, 5e-4, 1e-3] [1e-4, 5e-4, 1e-3] [0.05, 0.2] [1e-3, 8e-3, 1e-2]
Pressure

Plate [5, 10, 15] [5, 7, 10] [1e-4, 5e-4, 1e-3] [1e-4, 5e-4, 1e-3] [0.1, 0.2] [1e-3, 1e-2, 5e-2, 1e-1]

Level-Based
Foraging [1, 5, 10] [1, 5, 10] [5e-4, 1e-3, 5e-3] [5e-4, 1e-3, 5e-3] [0.1, 0.2] [0.0, 1e-3, 8e-3]

5m_vs_6m [1, 5, 10] [5, 10] [1e-4, 3e-4, 5e-4] [1e-4, 3e-4, 5e-4] [0.1, 0.2] [0.0, 1e-3, 1e-2]
10m_vs_11m [1, 5, 10] [5, 10] [1e-4, 3e-4, 5e-4] [1e-4, 3e-4, 5e-4] [0.1, 0.2] [0.0, 1e-3, 1e-2]

3s5z [1, 5, 10] [5, 10] [1e-4, 3e-4, 5e-4] [1e-4, 3e-4, 5e-4] [0.1, 0.2] [0.0, 1e-3, 1e-2]
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Table 9: PRD-V-MAPPO hyperparameter sweep. Bold values indicate the optimal hyperparameters.

Environment
Name epochs num_episodes value_lr policy_lr clip entropy_pen threshold

Collision
Avoidance [5, 10, 15] [5, 10] [1e-4, 5e-4, 1e-3] [1e-4, 5e-4, 1e-3] [0.05, 0.2] [0.0, 1e-3, 1e-2] [0.05, 0.12, 0.2]

Pursuit [5, 10, 15] [2, 5] [1e-4, 5e-4, 1e-3] [1e-4, 5e-4, 1e-3] [0.05, 0.2] [1e-3, 8e-3, 1e-2] [0.2, 0.3, 0.5]
Pressure

Plate [5, 10, 15] [5, 7, 10] [1e-4, 5e-4, 1e-3] [1e-4, 5e-4, 1e-3] [0.1, 0.2] [1e-3, 1e-2, 5e-2, 1e-1] [0.2, 0.4]

Level-Based
Foraging [1, 5, 10] [1, 5, 10] [5e-4, 1e-3, 5e-3] [5e-4, 1e-3, 5e-3] [0.1, 0.2] [0.0, 1e-3, 8e-3] [0.15, 0.2, 0.33]

5m_vs_6m [1, 5, 10] [5, 10] [1e-4, 3e-4, 5e-4] [1e-4, 3e-4, 5e-4] [0.1, 0.2] [0.0, 5e-3, 1e-2] [0.15, 0.2, 0.33]
10m_vs_11m [1, 5, 10] [5, 10] [1e-4, 3e-4, 5e-4] [1e-4, 3e-4, 5e-4] [0.1, 0.2] [0.0, 5e-3, 1e-2] [0.1, 0.2, 0.33]

3s5z [1, 5, 10] [5, 10] [1e-4, 3e-4, 5e-4] [1e-4, 3e-4, 5e-4] [0.1, 0.2] [0.0, 5e-3, 1e-2] [0.12, 0.2, 0.33]

Table 10: Hyperparameter sweep for QMix. Bold values were selected for training the agent.

Environment
Name learning rate update interval (episodes) hard interval

Collision
Avoidance [1e-4, 5e-4, 1e-3] [5, 10, 20] [100, 200, 500]

Pursuit [1e-4, 5e-4, 1e-3] [5, 10, 20] [100, 200, 500]
Pressure

Plate [1e-4, 5e-4, 1e-3] [5, 10, 20] [100, 200, 500]
LB-Foraging [1e-4, 5e-4, 1e-3] [5, 10, 20] [100, 200, 500]
5m_vs_6m [1e-4, 5e-4, 1e-3] [5, 10, 20] [100, 200, 500]

10m_vs_11m [1e-4, 5e-4, 1e-3] [5, 10, 20] [100, 200, 500]
3s5z [1e-4, 5e-4, 1e-3] [5, 10, 20] [100, 200, 500]

Table 11: Hyperparameter sweep for LICA. Bold values were selected for training the agent.

Environment
Name critic_lr actor_lr entropy_coeff

Collision
Avoidance [1e-4, 5e-4, 1e-3] [1e-4, 5e-4, 1e-3] [1e-2, 1e-1]

Pursuit [1e-4, 5e-4, 1e-3] [1e-4, 5e-4, 1e-3] [1e-2, 1e-1]
Pressure

Plate [1e-4, 5e-4, 1e-3] [1e-4, 5e-4, 1e-3] [1e-2, 1e-1]

LB-Foraging [1e-3, 5e-3, 1e-2] [1e-3, 5e-3, 1e-2] [1e-2, 1e-1]
5m_vs_6m [1e-4, 5e-4, 1e-2] [1e-4, 5e-4, 1e-3] [1e-2, 1e-1]

10m_vs_11m [1e-4, 5e-4, 1e-2] [1e-4, 5e-4, 1e-3] [1e-2, 1e-1]
3s5z [1e-4, 5e-4, 1e-2] [1e-4, 5e-4, 1e-3] [1e-2, 1e-1]

Table 12: Hyperparameter sweep for COMA. Bold values indicate the optimal hyperparameters.

Environment
Name value_lr policy_lr entropy_coeff

Collision
Avoidance [1e-4, 5e-4, 1e-3] [5e-4, 7e-4, 1e-3] [1e-3, 8e-3, 1e-2]

Pursuit [1e-4, 5e-4, 1e-3] [1e-4, 5e-4, 1e-3] [1e-3, 8e-3, 1e-2]
Pressure

Plate [1e-4, 5e-4, 1e-3] [1e-4, 5e-4, 1e-3] [1e-3, 8e-3, 1e-2]

LB-Foraging [1e-3, 5e-3, 1e-2] [1e-3, 5e-3, 1e-2] [1e-3, 8e-3, 1e-2]
5m_vs_6m [1e-4, 5e-4, 1e-3] [1e-4, 5e-4, 1e-3] [1e-3, 8e-3, 1e-2]

10m_vs_11m [1e-4, 5e-4, 1e-3] [1e-4, 5e-4, 1e-3] [1e-3, 8e-3, 1e-2]
3s5z [1e-4, 5e-4, 1e-3] [1e-4, 5e-4, 1e-3] [1e-3, 8e-3, 1e-2]
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E) 5 marines vs 6 marines

0 5000 10000 15000 20000

Episodes

0

5

10

15

20

M
e
a
n
 E

p
is

o
d
e
 R

e
tu

rn

F) 10 marines vs 11 marines

0 5000 10000 15000

Episodes

500

400

300

200

100

0

M
e
a
n
 E

p
is

o
d
e
 R

e
tu

rn

A) Team Collision Avoidance
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G) 3 Stalkers and 5 Zealots

Figure 5: Average reward vs. episode for PRD-MAPPO-soft, PRD-MAPPO-shared,
PRD-MAPPO-ascend, PRD-MAPPO-decay, PRD-MAPPO, PRD-MAPPO-top-K,
and PRD-MAPPO-G2ANet on A) team collision avoidance, B) pursuit, C) pressure
plate, D) Level-Based Foraging tasks, E) StarCraft 5 marines vs. 6 marines, F) Star-
Craft 10 marines vs. 11 marines, and G) StarCraft 3 Stalkers and 5 Zealots. Solid lines
indicate the average over 5 random seeds, and shaded regions denote a +/- 1 standard deviation
confidence interval. PRD-MAPPO-soft tended to perform the best across all tasks.
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Abstract

Cognitive science and psychology suggest that object-centric representations of
complex scenes are a promising step towards enabling efficient abstract reasoning
from low-level perceptual features. Yet, most deep reinforcement learning approaches
only rely on pixel-based representations that do not capture the compositional
properties of natural scenes. For this, we need environments and datasets that
allow us to work and evaluate object-centric approaches. In our work, we extend
the Atari Learning Environments, the most-used evaluation framework for deep RL
approaches, by introducing OCAtari, that performs resource-efficient extractions
of the object-centric states for these games. Our framework allows for object
discovery, object representation learning, as well as object-centric RL. We evaluate
OCAtari’s detection capabilities and resource efficiency. Our source code is available
at github.com/k4ntz/OC_Atari .

1 Introduction

Since the introduction of the Arcade Learning Environment (ALE) by Bellemare et al. (2013),
Atari 2600 games have become the most common environments to test and evaluate RL algorithms
(cf. Figure 1, left). As RL methods are challenging to evaluate, compare and reproduce, benchmarks
need to encompass a variety tasks and challenges to allow for balancing advantages and drawbacks of
the different approaches (Henderson et al., 2018; Pineau et al., 2021). ALE games incorporate many RL
challenges, such as difficult credit assignment (Skiing), sparse reward (Montezuma’s Revenge, Pitfall),
and allow for testing approaches with different focuses, such as partial observability (Hausknecht
& Stone, 2015), generalization (Farebrother et al., 2018), sample efficiency (Espeholt et al., 2018),
environment modeling (Hafner et al., 2021; Schrittwieser et al., 2020), ... etc.

In order to solve complex tasks, human use abstraction, i.e. they first extract object-centred rep-
resentations and abstract relational concepts, on which they base their reasoning (Grill-Spector &
Kanwisher, 2005; Tenenbaum et al., 2011; Lake et al., 2017). Deep reinforcement learning (RL)
agents do not incorporate explicit object-centric intermediate representations, necessary to check if
suboptimal behaviors are e.g. caused by misdetections, wrong object identifications, or a reasoning
failure. Numerous studies on RL highlight the importance of object-centricity (cf. Figure 1, right),
notably in understanding the agents’ reasoning, detect potential misalignment and potentially correct

∗Equal contribution

400



RLJ | RLC 2024

2014 2016 2018 2020 2022

0

50

100

150

       200

2500
3000
3500
4000
4500

2014 2016 2018 2020 2022
0

100
200
300
400

Atari + RL Object-Centric + RL OC + Atari

Year Year

Figure 1: RL research needs Object-Centric Atari environments. The Atari Learning Environ-
ments (ALE) is, by far, the most used RL benchmark among the ones listed on paperswithcode.com
(left). Publications using ALE are increasing, together with the number of papers concerned on
object-centric RL. As no Object-centric ALE is available yet, the amount of papers concerned with
object-centric approaches in Atari is however negligible. Data queried using dimensions.ai, based
on keyword occurrence in title and abstract (center) or in full text (right). These graphs show that
RL researchers would make use of object-centric atari environments, if they would be available.

it (di Langosco et al., 2022). Notably, Delfosse et al. (2024) show that deep agents, that do not make
use of interpretable object centric representations, can learn misaligned policies on games as simple
as Pong, that post-hoc explanation techniques cannot detect. They later propose to instead make
use of decision trees (Dalal et al., 2021; Yan et al., 2024; Fuhrer et al., 2024), convertible into python
code (Kohler et al., 2024). Object-centricity also permits to use logic to encode the policy, leading to
interpretable agents with better generalization capability (Delfosse et al., 2023b), and ease knowledge
transfer between humans and learning agents, or among different tasks (Dubey et al., 2018). Further
studies also underline that the extraction of object-centric states is a necessary step to obtain agent
that can make use of large language model together with contextual data (e.g. the games instruction
manuals) to improve the reward signals, notably allowing agents to learn in difficult credit assignment
environments (Zhong et al., 2021; Wu et al., 2023). This underscores the need to produce transparent
object-centric RL agents, that can ensure their proper alignment with the intended objectives.

Lake et al. (2017) illustrated that deep agents trained on ALE games lack the ability to create
multi-step sub-goals (such as acquiring certain objects while avoiding others) and introduced the
“Frostbite challenge” to assess that RL agents integrate such human-like capabilities. Badia et al.
(2020) also suggested to enhance the internal representations of suboptimal ALE trained agents.

As no benchmark to test object-centric methods exists yet, we introduce OCAtari, a set of object-
centric versions of the ALE environments. OCAtari runs the ALE games while maintaining object-
centric states (i.e. a list of the depicted objects and their properties). Our framework can be used to
train object-centric RL algorithms, making it a resource-efficient replacement for otherwise necessary
object discovery methods. For these, we also propose the Object-centric Dataset for Atari (ODA),
that uses OCAtari to generate a set of Atari frames, together with the properties of the objects
present in each game. Our contributions can be summarized as follows:

• We introduce OCAtari, an RL framework to train and evaluate object-detection and object-
centered RL methods on the widely-used Arcade Learning Environments.

• We evaluate OCAtari capability to detect the depicted game objects in a resource efficient way
and demonstrate that it allows for object-centric RL.

• To ease the comparison of object-discovery methods, we introduce ODA, a collection of frames
from Atari games together with their object-centric states.

We start off by introducing the Object-Centric Atari framework. We experimentally evaluate its
detection and speed performances. Before concluding, we touch upon related work.
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Figure 2: Qualitative evaluation of OCAtari’s REM. Frames from our OCAtari framework on
5 environments (Pong, Skiing, SpaceInvaders, MsPacman, FishingDerby). Bounding boxes surround
the detected objects. REM automatically detects blinking (MsPacman), occluded (FishingDerby)
objects, and ignore e.g. exploded objects (SpaceInvaders) that vision methods falsely can pick up.

2 The Object-Centric Atari Environments

In this section, we discuss the definition of objects and how they can be used in RL, then introduce
the OCAtari benchmark, and detail its two extraction methods.

2.1 Using Object-Centric Descriptions to Learn

According to Thiel (2011), objects are physical entities that possess properties, attributes, and
behaviors that can be observed, measured, and described. Rettler & Bailey (2017) define objects
as the fundamental building blocks that human reasoning relies on. Breaking down the world into
objects enables abstraction, generalization, cognitive efficiency, understanding of cause and effect,
clear communication, logical inference, and more (Spelke et al. (1992); Grill-Spector & Kanwisher
(2005); Tenenbaum et al. (2011); Lake et al. (2017), cf. Appendix B for further details).

Player at (25, 76), (4, 15)

Enemy at (145, 91), (4, 15)

Ball at (76, 78), (2, 4)

PlayerScore at (104, 1), (4, 20)

EnemyScore at (36, 1), (12, 20)

RAM

VEM REM

-49
-14

Figure 3: OCAtari extract object-
centric descriptions: using its
RAM Extraction method (REM) or
Vision Extraction method (VEM).

In artificial approaches, object-centric visual learning often
involves the extraction of objects withing bounding boxes that
contain them and distinguish them from the background (Lin
et al., 2020b; Delfosse et al., 2022). In these approaches, static
objects, such as the maze in MsPacman or the walls in Pong
(cf. Figure 2), are considered as part of the background. In our
work, we define objects as small elements (relative to the agent)
with which it can interact. Excluding "background objects"
when learning to play Pong with object-centric inputs is not
problematic. However, it can lead to problems when learning on
e.g. MsPacman. The learning agents can learn to incorporate
e.g. Pong’s boundaries when learning to play, but may have
difficulties to accurately encode the maze structures of Pacman
games. As it may be necessary to provide a background
representation to the agent, OCAtari provides both renderings
and object-centric descriptions of the states.

2.2 The OCAtari framework

In OCAtari, every object is defined by its category (e.g. “Pacman”), position (x and y), size (w and h),
and its RGB values. Objects may have additional characteristics such as orientation (e.g. the Player
in Skiing, cf. Figure 2) or value (e.g. oxygen bars or scores) if required. Objects that are vital for
gameplay are distinguished from those that are components of the Head-up-Display (HUD) elements
(e.g. score, number of lives). The role of HUD objects is to provide additional information about
the performance of the playing agent. Although learning agents should, in principle, be capable
of ignoring such elements, in our environments a boolean parameter is available to filter out HUD
objects. A list of the considered objects for each game can be found in Appendix G.
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To extract objects, OCAtari uses either its Vision Extraction Method (VEM) or its resource efficient
RAM Extraction Method (REM), that are depicted in Figure 3.

VEM: the Vision Extraction Method. The most straightforward method for extracting objects
from Atari frames involves using simple computer vision techniques. Considering the limited memory
available to Atari developers, most objects are defined by a restricted set of pre-established colors
(i.e., RGB values). At each stage, the Vision Extraction Method extracts objects using color-based
filtering and priors about the objects’ positions. For example, Pong consists of 3 moving objects and
2 HUD objects, each assigned fixed RGB values (cf. Figure 3). The enemy’s paddle and scores share
common RGB values (orange in Figure 3), but contrary to the scores, the paddles always appears
between the white threshold. The enemy’s paddle is always positioned within the red rectangle.
Using this technique, it is possible to accurately extract all present objects. This detection method
can only detect what is depicted in the frame, and not objects that are e.g. blinking, overlapping, etc.

REM: the RAM Extraction Method. ALE provides the state of the emulator’s RAM, which
contains information about the games’ objects. This has led Sygnowski & Michalewski (2016) to use
the raw RAM states for RL states to train agents. However, much of the non-relevant information is
present in the RAM (e.g. time counter, HUD element information). Moreover, several games, use
e.g. bitmaps or encode various information quantities such as object orientation, offset from the anchor,
and object category together within one byte. These noisy inputs and entangled representations
prevent obscure these agents decision process and remove any interpretation possibilities. To
address these problems, Anand et al. (2019) have proposed AtariARI, a wrapper around some Atari
environments, that provides some the RAM positions, describing where some specific information is
encoded. Nonetheless, raw RAM information is not enough. Take, for instance, in Kangaroo, the
player’s position corresponds to various RAM values, that also encode its heights using categorical
values. Simply providing some uninfluenced RAM positions does not reflect the object-centric state.
Similar to AtariARI, our Ram Extraction Method extracts the information from the RAM, but
processes it to provide an interpretable object-centric state, that matches VEM’s one (cf. Figure 3).
To determine how the game’s program processes the RAM information, we task human, random,
or DQN agents with playing the games while using VEM to track the depicted objects. We then
establish correlations between objects properties (e.g. positions) and each of the 128 bytes of the
Atari RAM representation. We can also modify each RAM byte and track the resulting changes in
the rendered frames. All these scripts are documented and released along with this manuscript.

REM, being based on semantic information, allows for tracking moving objects. Conversely, VEM
only furnishes consecutive object-centric descriptions, where the lists of objects are independently
extracted at each state. REM thus enables tracking of blinking objects and moving instances, as
proven useful for RL approaches using tracklets (Agnew & Domingos, 2020; Liu et al., 2021).

The OCAtari package. We provide an easy-to-use ocatari package, with its documentation1.
OCAtari includes wrappers for the Arcade Learning Environments (ALE) of Bellemare et al. (2013).
To allow an easy swap between ALE and OCAtari environments, we follow the logic and naming
system of ALE. We have reimplemented its methods for OCAtari (e.g. step, render, seed, . . . ),
and added new methods like get_ram and set_ram, to easily allow RAM lookup and manipulation.
OCAtari environments also maintain a list of the depicted objects and can provide a buffer of the
last 4 transformed (i.e. black and white, 84×84) frames of the game, as it has become a standard of
RL state representations (Mnih et al., 2015; van Hasselt et al., 2016; Hessel et al., 2018).

As shown in Table 3, our image processing method VEM covers 46 games, while REM covers 44
games at the time of writing. While these already constitute a diverse set of environments, we will
continue to add newly supported games in both REM and VEM and complete what we have started.
Along with this work, we release ODA, a dataset that contains frames with the object-centric states
obtained from REM and VEM, collected using Random and trained DQN agents (cf. Appendix A
for further details). ODA and OCAtari are openly accessible under the MIT license.

1https://oc-atari.readthedocs.io
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Table 1: REM reliably detects the objects within the frames of each developed games.
Measuring precision, Recall, F1-Score and IOU of REM (using VEM as baseline) in a diverse set of
Atari games using trained DQN agents. High values being displayed in blue going over green to red
for low values. A more detailed table, with Radom and C51 agents is provided in Appendix G.
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3 Evaluating OCAtari

In this section, we evaluate the detection and speed performances of OCAtari methods, then explain
how it can be used for object-centric RL agents training. Finally, we compare OCAtari to AtariARI.

Setup. To evaluate the detection capabilities of REM, we use a random agent (that represents
any untrained RL agent), as well as a DQN and, if available, a C51 agent (Bellemare et al., 2017),
both obtained from Gogianu et al. (2022)2. For reproducibility, every used agent is provided with
our along with our codebase. The RL experiments utilized the PPO implementation from stable-
baselines3 (Raffin et al., 2021) on a 40 GB DGX A100 server. In each seeded run, 1 critic and
8 actors are utilized per seed over 20M frames. Since these experiments do not involve visual
representation learning, we utilize the default 2 × 64 MLP architecture (with the hyperbolic tangent
as activation functions). As developing RL agents is not our focus, we did not conduct any fine-tuning
or hyperparameter search. Further details on these experiments can be found in Appendix E.

3.1 Evaluating OCAtari for Object Extraction

Correctness and Completeness of the Object Extraction. As explained previously, REM
needs to decode the game objects’ properties from RAM values. For example, objects’ position in
e.g. Riverraid either require adding an offset (for the agent) or being reconstructed from anchor and
offsets position in a grid. To assert that REM accurately reconstruct these values, we compare the
object-centric states of both extraction methods (VEM and REM). We let the Random, and trained
DQN and C51 agents play for 500 frames, and compute IOU (Rezatofighi et al., 2019) for each agent
on each game. As this metric’s relevance is debatable for small objects (e.g. the ball in Pong, Tennis,
or missiles in Atlantis, Space Invaders), we also calculate precision, recall, and F1-scores for each
object category in every game. For these metrics, an object is considered correctly detected if it is
within 5 pixels of the center for both detection methods.

In Table 1, we report these metrics for DQN agents averaged over every object category. Similar
results, obtained using Random and C51 agents are provided in Appendix G. Lower precisions
indicate that some objects detected using REM are not detected by VEM, and lower recalls imply
the opposite situation. In MsPacman, the ghost can blink and objects can overlap, which explains
why the precision is slightly lower. This can be observed in the per-category tables (cf. Appendix G).
We opted for allowing the RAM extraction method to monitor hidden or blinking objects, regardless
of its effects on the precision of our framework, as it can be used to train object tracking methods
that employ tracklets (e.g., Agnew & Domingos 2020) or Kalman filters (e.g., Welch et al. 1995). The
F1-score aggregates both previously mentioned metrics, using a harmonic mean, hastily punishing
both for false positives and false negatives. Perfect F1-scores means that every object-centered state
extracted using REM is identical to the VEM ones.

2https://github.com/floringogianu/atari-agents
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Game SPACE SPOC REM
Boxing 24.5 70.5 90.1
Carnival 48.6 90.6 93.7
MsPacm. 0.4 90.5 87.4
Pong 10.7 87.4 94.3
Riverraid 45.0 76.6 95.7
SpaceInv. 87.5 85.2 96.9
Tennis 3.6 40.2 99.3
Average 31.5 77.3 93.9

Table 2: Object detection is still
challenging in Atari. SPACE and
SPOC, SOTA in object discovery, are
inferior in terms of F1 scores.

Figure 4: OCAtari (REM) permits learning of object-
centric RL agents. The object-centric PPO agents per-
form at least on par with the pixel-based PPO (Deep)
agents’ and humans on 8 Atari games.

In general, the table results indicate that the games covered by REM have high detection performances.
Misdetection can be caused by overlap of other objects or the background (cf. Figure 2, FishingDerby).
Potential rendering instabilities cause slight differences in ball position and size, which decreases the
IOU in e.g. Pong and Tennis. In many games, the rendering freezes after specific events (e.g. when
the player dies) while the RAM is unaltered. Some objects are then not rendered for a few frames,
but our RAM extraction approach can keeps them in the list. Although this decreases the detection
scores, it does not affect gameplay since, for these frames, the environment is not interactive.

In Table 2, we compare the detection performances (F1-scores) of REM (94%) on the games used by
the 2 object-discovery methods used on ALE: SPACE (Lin et al. (2020a), 31%) and SPOC (Delfosse
et al. (2022), 77%). REM largely outperforms both. As highlighted by SPOC’s authors, the detection
of Atari games’ objects, composed of few pixels, remains a challenge for neural networks. OCAtari
does not extract encodings for objects, but directly provides their classes (from the deterministic
RAM information process), that can be used to train these objects discovery methods.

Comparing the RAM and Visual Extraction Method. As explained in the previous section,
REM relies on accurate information decoding, but allows for tracking blinking or overlapping objects.
Its most significant advantage over VEM is the computational efficiency of the RAM extraction
procedure. While VEM must perform colour filtering for each object category, REM needs few
simple operations to extract objects’ properties. Getting object-centric states using REM is on
average 50 times faster than with VEM (cf. Figure 7 in Appendix K). RL agents can use REM to
efficiently train the reasoning part of the policy, as shown bellow, and later be fine-tuned to work
with neural-based object extraction. To evaluate such extraction methods, on e.g. independently
drawn frames (without tracking), VEM can reliably extract only the visible objects. The (slower)
extraction is then performed only once, as such training is usually run using a dataset, such as ODA.

3.2 Using OCAtari to train Object-centric RL agents

To show that OCAtari allows training object-centric RL agents, we trained RL agents using our REM
with 3 seeded Proximal Policy Optimization (PPO) agents in 8 different environments. These agents
are provided with the positional information of each moving object. Specifically, these correspond to
the x and y positions of each object detected by REM in the last two frames at each timestep. Our
trained models are available in our public repository, as well as our the scripts used to generate our
data sets (cf. Appendix A). As depicted in Figure 4, OCAtari allows object-centric PPO agents to
learn to master Atari games, as they perform on par or better than their deep counterparts.

Overall, we have shown that OCAtari can be used to train or evaluate any part of an object-centric
RL agent, from object extractors (preferably with VEM) to object-centric policies. Since REM allows
object tracking, it can also be used on methods that track object through time, and can directly be
integrated for resource efficient object-centric policy training.
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Table 3: Games supported by AtariARI and OCAtari. ✓describes that all necessary information
about the objects are given. ∼ denotes that some necessary information to play the game is lacking.
We provide detailed explanation for each of these games in Appendix J. All games missing in this
table are neither supported by AtariARI nor OCAtari yet.
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3.3 OCAtari vs AtariARI

For their AtariARI framework, Anand et al. (2019) disassembled the source code of various games
to find the RAM location of the objects’ properties. AtariARI thus provides information of where
a specific information is encoded in the RAM. Providing only the RAM positions is however not
enough to get a directly human-interpretable, object-centric description of the state. As shown in
Figure 3, even when positions are encoded directly, offsets are applied to objects during the rendering
phase, which the raw RAM information does not provide. Some games the information provided
by AtariARI is thus incomplete or insufficient to play the game (cf. Table 3 and Appendix J). Our
OCAtari framework makes use of intricate computations, such as deriving the x and y positions from
grid anchors and offsets, looking up potential presence indicators (e.g. for objects that have been
destroyed). This ensures that RL agents genuinely acquire human understandable object-centric
state descriptions, on which they can base their policies. Finally, OCAtari is already covering (28)
more games than AtariARI, and we are continually adapting the rest of the game collection of ALE.

4 Related Work

Atari games to benchmark deep RL agents has a well-established history. Mnih et al. (2015) introduced
the direct use of frames with DQN, tested on 7 different games of ALE. In the following years, Atari
games was repeatedly used as a test bed for various approaches, well-known ones being Rainbow (Hessel
et al., 2018), Dreamer (Hafner et al., 2020), MuZero (Schrittwieser et al., 2020), Agent57 (Badia et al.,
2020) or GDI (Fan et al., 2021). Although deep RL agent already achieve superhuman performance
on Atari games, lots of challenges are left, like efficient exploration (Bellemare et al., 2016; Ecoffet
et al., 2019; 2021), efficiency (Kapturowski et al., 2022), planning with sparse (Hafner et al., 2020;
Schrittwieser et al., 2020), sample inefficiency, missgeneralization (Zambaldi et al., 2019; Mambelli
et al., 2022; Stanić et al., 2022), etc. As underlined by Toromanoff et al. (2019), these challenges can
greatly benefit or might even require human like reasoning, and thus, object-centricity.

Other work have highlighted the need for augmented Atari benchmarks. Toromanoff et al. (2019)
and Fan (2021) have both proposed to integrate many additional metrics to accurately measure
performance, and Machado et al. (2018) insisting on integrating the learning efficiency. This was
tackled by Kaiser et al. (2020), with their Atari 100k benchmark. Aitchison et al. (2023) have selected
representative subsets of 5 ALE environments, by looking at the performance variances of commonly
used agents. Shao et al. (2022) introduced a partial observable Atari benchmark, called Mask Atari,
designed to test specifically POMDPs. These extensions can easily integrate OCAtari environments,
as they can be swapped with ALE ones. Many other object-centic representations learning methods,
that tackle these challenges, have also been explored outside of RL (Eslami et al., 2016; Kosiorek
et al., 2018; Jiang & Luo, 2019; Greff et al., 2019; Engelcke et al., 2020; Locatello et al., 2020; Kipf
et al., 2022; Elsayed et al., 2022; Singh et al., 2022a;b). Dittadi et al. (2022); Yoon et al. (2023) look
at objects properties’ extractions, and generalization, required for downstream tasks, while Lin et al.
(2020b) and (Delfosse et al., 2022) already rely on ALE to evaluate representation learning.
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Finally, several object-centric RL environments have been developed, such as VirtualHome (Puig et al.,
2018), AI2-THOR (Kolve et al., 2017) or iGibson 2.0 (Li et al., 2021). While these benchmarks excel
in providing realistic 3D environments conducive to AI research, they introduce high-dimensional
observations and emphasizes physical interactions, particularly suitable for robotics-oriented studies.

5 Discussion

OCAtari environments are suitable for training object detection and tracking methods, as well as
developing new object-centric RL approaches. OCAtari offers an information bottleneck in the form
of a list of objects and their properties. While ALE is one of the most recognized benchmarks in RL,
these evaluations are not without flaws, as explained by Agarwal et al. (2021). The noisy scores do
not linearly reflect the agents’ learning ability. These games are also created to be played by humans
and offer many shortcut learning possibilities (Delfosse et al., 2024; Kohler et al., 2024). Directly
evaluating the representations performance helps to understand and measure the quality of the
learned internal representation and minimize other effects within the training, as proposed by Stooke
et al. (2021). The object-centricity offered by OCAtari also allows to provide extra information to the
algorithms, such as additional reward signal based on objects properties or relations, as done by Wu
et al. (2023). Integrating object-centric detection in interpretable decisions pipeline is emerging also
outside of RL (Wüst et al., 2024). Finally, our provided repository includes many scripts for locating
and analyzing RAM representation information, that can be extended to create novel modifications
on the Atari Learning Environments, as done in HackAtari (Delfosse et al.), that allow to find
misalignment and spurious correlations, also investigated by Busch et al. (2024).

Societal and environmental impact. This work introduces a set of RL games. Such environments
can be used for training object-tracking algorithms, which present potential ethical risks if misapplied.
However, its main impact lies in advancing transparent object-centric RL methods, which can
enhance the understanding of upcoming agents’ decision-making processes and reduce misalignment
issues (Friedrich et al., 2022). Improving transparency can also potentially help uncovering existing
biases in learning algorithms with possible negative societal consequences (Schramowski et al., 2020;
Steinmann et al., 2023). OCAtari can also save resources while training RL policies. We do not
incorporate and have not found any personal or offensive content in our framework.

Limitations. OCAtari extracts object-centric representations of ALE games. In most games, there
are hardcoded static elements, which we did not consider as objects. For instance, no information
about the mazes in Pacaman and MsPacman are encoded in the RAM. As such, we cannot extract
this information, or only partially. We could in the future decide to hardcode suitable representations
for it, but we have not found one yet. However, this information being static, it could be learned by
agents, but the integration of such information as input can help agents understand that e.g. they
cannot move through it. An interesting consideration here would be whether a combination of our two
modes, object-centric states and frames, can be used to extract not only objects but also important
information from the backgrounds. Using this additional information like the position of objects in
MsPacman to run A* or planning methods (Singh et al., 2024) can be an interesting way forward.

6 Conclusion

Representing scenes in terms of objects and their relations is a crucial human ability. While object-
centric reinforcement learning and unsupervised detection algorithms are increasingly successful,
we lack benchmarks and datasets to evaluate and compare such methods. OCAtari fills this gap
and provides an easy-to-use diverse set of environments to develop and test object-centric learning
methods on many games of ALE, by far the most commonly used RL benchmark. Overall, we
hope that our work inspires other researchers to create object-centric approaches, allowing for more
interpretable algorithms, for humans to interact with, and to maybe correct and learn from in the
future. OCAtari will also permit AI practitioners to create novel challenges among the existing Atari
games, usable on object-centric, deep or hybrid approaches.
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A ODA, an Object-centric Dataset for Atari.

OCAtari enables training policies using an object-centric approach to describe RL states for various
Atari games. It can serve as a fast and dependable alternative to methods that discover objects. To
compare object-centric agents to classic deep ones, it is necessary to train an object detection method
and integrate it into the object-centric playing agent, e.g. , as shown by Delfosse et al. (2022). To
train and compare the object detection methods, we introduce the Object-centric Dataset for Atari
(ODA), a preset selection of frames from the Atari games covered by OCAtari. For each game, ODAs
incorporates sequential states, where for each state, the 210×160 RGB frame is stored with the list
of objects found by both VEM and REM procedure (otherwise the game sequence is discarded). The
HUD elements are separated from the game objects. Every additional object information contained
from the RAM is also saved. As trained agents with varying capabilities can expose different parts of
the environment, especially in progressive games where agents must achieve a certain level of mastery
to reveal new parts of the game, it is necessary to fix the agents that are used to capture these
frames (Delfosse et al., 2023a). The frames are extracted using both a random and a trained DQN
agent to cover numerous possible states within each game, that should incorporate states encountered
by learning agents. In many games, e.g. , Montezuma’s Revenge or Kangaroo, such agents are not
good enough to access every level of the game. However, as the level part is also stored in RAM,
we let the agent start in different part of the game by manipulating the RAM. We choose to build
our dataset out of 30% of games from the random agent and 70% of the games based on the DQN
agent. All needed information, as well as the models used to generate ODA, are provided within the
OCAtari repository.

B Details on object perception and its advantages

As described in our manuscript, decomposing the world in terms of objects incorporates many
advantages, some of them are:

Abstraction and Generalization
Objects allow us to abstract and generalize information. By categorizing similar objects together,
we can create concepts and classifications that help us make sense of a wide variety of individual
instances.

Cognitive Efficiency
Our brains are more efficient at processing and remembering information when it’s organized into
meaningful chunks. Objects provide a natural way to group related information, making it easier for
us to reason about complex situations.

Predictive Reasoning
Objects have properties and behaviors that can be predicted based on their past interactions and
characteristics. This predictive reasoning is crucial for making informed decisions and anticipating
outcomes.

Cause and Effect
Objects play a key role in understanding cause-and-effect relationships. By observing how objects
interact and how changes in one object lead to changes in others, we can infer causal connections
and predict future outcomes.

Communication
Objects provide a shared vocabulary that facilitates communication and understanding. When we
refer to objects, we can convey complex ideas more efficiently than describing individual instances or
specific situations..

Logical Inference
Objects provide a basis for logical reasoning. By identifying relationships between objects, we can
deduce logical conclusions and make valid inferences.
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C Details on OCAtari

Bell at (93, 36), (6, 11),
Child at (121, 12), (8, 15),
Enemy at (152, 109), (6, 15),
Fruit at (119, 108), (7, 10),
Fruit at (39, 84), (7, 10),
Fruit at (59, 60), (7, 10),
Life at (16, 183), (4, 7),
Life at (24, 183), (4, 7),
Platform at (16, 124), (128, 4),
Platform at (16, 172), (128, 4),
Platform at (16, 76), (128, 4),
Player at (65, 141), (8, 24),
Projectile at (61, 65), (2, 3),
Scale at (132, 132), (8, 35),
Scale at (132, 37), (8, 35),
Scale at (20, 85), (8, 35),
Score at (129, 183), (15, 7),
Time at (80, 191), (15, 5)]

Figure 5: OCAtari: The object-centric Atari benchmark. OCAtari maintains a list of existing
objects via processing the information from the RAM. Our framework enables training and evaluating
object discovery methods and object-centric RL algorithms on the widely used Atari Learning
Environments benchmark.

D Reproducing our Results

To reproduce our results, we included the option to run the experiments deterministically. For this
purpose, a seed can be specified in the respective scripts. In our experiments, we used the seeds
0 and 42. All supported games can be found in Table 3. Since we are extending the environment
permanently, you can also find all supported games in the ReadMe of our repository. To test if a
game is supported, you can also use the scripts “test_game” or “test_game_both” depending on
if you want to test only one or both modes of OCAtari. Table 1 and all tables in section G are
generated by the script “get_metrics”. To reproduce and measure the time needed for evaluation,
see Figure 7, the script “test_speed” was used. For further information, we recommend checking the
documentation of OCAtari under https://oc-atari.readthedocs.io/ .

As mentioned before, we are using the models obtained from Gogianu et al. (2022)3. However for
the games recently added to gymnasium, i.e. Pacman and Donkeykong, we needed to train our own
agents. For this purpose we were using the cleanRL framework by Huang et al. (2022)4.

3https://github.com/floringogianu/atari-agents
4https://github.com/vwxyzjn/cleanrl
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E Experimental details

Actors N 8
Minibatch size 32 ∗ 8
Horizon T 128
Num. epochs K 3
Adam stepsize 2.5 ∗ 10−4 ∗ α
Discount γ 0.99
GAE parameter λ 0.95
Clipping parameter ϵ 0.1 ∗ α
VF coefficient c1 1
Entropy coefficient c2 0.01
MLP architecture 2 × 64
MLP activation fn. Tanh

Table 4: PPO Hyperparameter Values.
α linearly increases from 0 to 1 over the
course of training.

In our case, all experiments on object extraction and dataset
generation were run on a machine with an AMD Ryzen
7 processor, 64GB of RAM, and no dedicated GPU. The
dataset generation script takes approximately 3 minutes for
one game. We use the same hyperparameters as the Schul-
man et al. (2017) PPO agents that learned to master the
games. Hyperparameter values for Atari environments
are derived from the original PPO paper. The same ap-
plies to the definitions and values of VF coefficient c1 and
entropy coefficient c2. The PPO implementation used
and respective MLP hyperparameters are based on stable-
baselines3 (Raffin et al., 2021). Deep agents have the same
hyperparameter values as OCAtari agents but use ’Cn-
nPolicy’ in stable-baselines3 for the policy architecture and
frame stacking of 4. The Atari environment version used in
gymnasium is v4 & v5. This version defines a deterministic
skipping of 5 frames per action taken and sets the prob-
ability to repeat the last action taken to 0.25. This is aligned with recommended best practices
by Machado et al. (2018). We also used the Deterministic and NoFrameskip features of gymnasium
when necessary to make our experiments easier to reproduce. A list of all hyperparameter values
used is provided in Table 4.

F Generating Datasets

With OCAtari it is possible to create object-centric datasets for all supported games. The dataset
consists primarily of a csv file. In addition to a sequential index, based on the game number and
state number, this file contains the respective image as a list of pixels, called OBS. An image in
the form of a png file is also stored separately. Furthermore, the csv file contains a list of all HUD
elements that could be extracted from the RAM, called HUD, as well as a list of all objects that were
read from the RAM, called RAM. Finally, we provide a list of all elements that could be generated
using the vision mode, called VIS. An example is given in Table 5.

The generation of the dataset can also be made reproducible by setting a seed. For our tests, we used
the seeds 0 and 42. More information at https://github.com/k4ntz/OC_Atari/tree/master/
dataset_generation .

Table 5: An example how an object-centric dataset for Atari looks like after generation.

Index OBS HUD RAM VIS
00001_00001 [[0,0,0]...[255,255,255]] score at (x,y)(width, height),... ball at (x,y)(width, height),... ball at (x,y)(width, height),....
00001_00002 [[0,0,0]...[255,255,255]] score at (x,y)(width, height),... ball at (x,y)(width, height),... ball at (x,y)(width, height),....
00001_00003 [[0,0,0]...[255,255,255]] score at (x,y)(width, height),... ball at (x,y)(width, height),... ball at (x,y)(width, height),....

...
00008_00678 [[0,0,0]...[255,255,255]] score at (x,y)(width, height),... ball at (x,y)(width, height),... ball at (x,y)(width, height),....
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G Detailed Per Object Category results on each game.

In this section, we provide descriptions of each covered game (obtained from https://gymnasium.
farama.org/environments/atari/) with example frames. For a more detailed documentation, see
the game’s respective AtariAge manual page5. We also share detailed statistics on the object detection
capacities of OCAtari for every class of objects detected in each game.

Table 6: A more detailed version of Table 1. Precision, Recall, F1-scores of REM, and intersection
over union (IOU) metrics. Frames are obtained using random, DQN and C51 (if available) agents.

Random DQN C51
precision recall f-score iou precision recall f-score iou precision recall f-score iou

Alien 51.4 97.3 67.3 97.7 51.2 97.2 67.1 97.4 N/A N/A N/A N/A
Amidar 75.8 99.9 86.2 97.0 86.3 99.9 92.6 92.4 N/A N/A N/A N/A
Assault 95.4 94.2 94.8 95.3 97.1 93.6 95.3 93.8 N/A N/A N/A N/A
Asterix 93.1 99.8 96.3 96.0 95.0 99.6 97.2 96.1 94.8 99.8 97.2 96.2
Atlantis 96.3 94.6 95.5 95.8 96.6 94.7 95.7 95.0 N/A N/A N/A N/A
BankHeist 87.9 95.8 91.7 87.3 96.2 96.2 96.2 94.7 N/A N/A N/A N/A
BattleZone 81.1 55.7 66.0 95.1 81.8 51.8 63.4 93.5 N/A N/A N/A N/A
Berzerk 94.1 95.2 94.6 78.4 94.3 96.5 95.4 77.4 N/A N/A N/A N/A
Bowling 99.5 99.2 99.3 99.6 99.2 98.8 99.0 99.4 99.4 99.1 99.3 99.5
Boxing 96.5 84.5 90.1 93.5 96.1 84.5 89.9 93.4 96.8 85.6 90.9 94.1
Breakout 99.5 100 99.7 100 99.5 100 99.7 100 100 100 100 100
Carnival 93.2 94.2 93.7 90.7 94.6 96.4 95.5 91.5 N/A N/A N/A N/A
Centipede 95.7 97.0 96.3 95.1 95.9 97.2 96.6 96.0 N/A N/A N/A N/A
ChopperComma. 89.2 89.4 89.3 78.1 78.3 79.5 78.9 86.7 72.1 75.6 73.8 93.5
CrazyClimber 97.6 96.0 96.8 97.6 97.9 94.8 96.3 96.7 N/A N/A N/A N/A
DemonAttack 62.6 78.6 69.7 79.9 59.5 77.6 67.3 84.1 N/A N/A N/A N/A
DonkeyKong. 96.0 98.6 97.3 99.1 98.5 98.7 98.6 99.1 98.7 98.5 98.6 99.1
FishingDerby 89.2 85.6 87.3 75.2 88.8 84.6 86.6 73.6 83.2 77.9 80.5 75.7
Freeway 98.7 87.3 92.6 90.2 98.6 87.3 92.6 90.2 96.5 87.2 91.6 87.9
Frostbite 97.6 99.5 98.6 92.7 87.5 97.5 92.2 87.1 85.5 97.1 90.9 85.4
Gopher 98.3 48.2 64.7 78.4 98.3 47.6 64.1 84.0 N/A N/A N/A N/A
Hero 92.4 94.6 93.5 88.2 79.0 88.4 83.4 86.3 80.8 91.7 85.9 86.7
IceHockey 89.2 99.6 94.1 66.2 92.4 99.7 95.9 66.3 N/A N/A N/A N/A
Jamesbond 92.5 99.5 95.9 95.6 93.3 98.0 95.6 94.8 N/A N/A N/A N/A
Kangaroo 96.7 93.1 94.9 95.6 98.3 93.2 95.7 94.8 96.1 93.1 94.6 95.2
Krull 94.8 96.8 95.8 89.1 95.6 96.7 96.2 89.4 N/A N/A N/A N/A
MontezumaRev. 99.5 99.4 99.5 95.2 100 100 100 97.9 100 100 100 98.2
MsPacman 77.9 99.4 87.4 84.2 72.1 99.3 83.6 83.1 N/A N/A N/A N/A
Pacman 58.5 92.7 71.7 80.4 51.3 88.6 65.0 77.4 47.6 83.1 60.5 72.1
Pitfall 98.2 99.0 98.6 95.8 100 100 100 96.6 N/A N/A N/A N/A
Pong 90.0 99.1 94.3 81.7 94.3 98.8 96.5 83.2 93.8 97.4 95.6 84.7
PrivateEye 95.7 93.0 94.3 97.0 96.5 98.6 97.5 95.4 N/A N/A N/A N/A
Qbert 94.4 99.0 96.6 99.6 74.7 98.3 84.9 98.4 77.3 98.4 86.6 98.5
Riverraid 93.5 98.0 95.7 93.6 89.3 98.0 93.5 91.0 N/A N/A N/A N/A
RoadRunner 95.5 97.5 96.5 93.1 85.2 78.7 81.8 87.4 N/A N/A N/A N/A
Seaquest 94.1 87.9 90.9 90.3 91.5 81.3 86.1 91.4 92.1 82.6 87.1 90.6
Skiing 95.8 96.5 96.2 90.4 94.1 94.2 94.2 89.3 N/A N/A N/A N/A
SpaceInv. 95.2 98.7 96.9 97.1 90.6 95.9 93.1 97.3 N/A N/A N/A N/A
Tennis 98.7 99.9 99.3 85.7 93.9 98.7 96.2 83.9 N/A N/A N/A N/A
TimePilot 93.5 94.7 94.1 96.6 91.3 94.3 92.8 94.6 N/A N/A N/A N/A
UpNDown 96.8 99.1 97.9 97.4 93.0 97.7 95.3 93.1 95.0 98.3 96.6 95.9
Venture 63.1 99.9 77.4 92.1 57.6 100 73.1 91.3 N/A N/A N/A N/A
VideoPinball 98.3 94.6 96.4 94.4 99.5 95.3 97.3 95.3 N/A N/A N/A N/A
mean 90.5 93.5 91.3 91.0 88.9 92.3 89.7 90.7 88.8 92.1 90.0 91.4

5https://atariage.com/system_items.php?SystemID=2600&itemTypeID=MANUAL
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G.1 Alien details

You are stuck in a maze-like space ship with three aliens.
You goal is to destroy their eggs that are scattered all over
the ship while simultaneously avoiding the aliens (they are
trying to kill you). You have a flamethrower that can help
you turn them away in tricky situations. Moreover, you can
occasionally collect a power-up (pulsar) that gives you the
temporary ability to kill aliens.

Table 7: Per class IOU on Alien

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Score 100 93.8 96.8 97.6 98.0 85.4 91.2 94.7 nan nan nan nan
Egg 49.6 97.9 65.8 98.9 48.8 97.7 65.1 98.6 nan nan nan nan
Life 99.8 99.6 99.7 100 100 100 100 100 nan nan nan nan
Pulsar 67.2 82.0 73.8 80.6 66.4 82.4 73.5 79.1 nan nan nan nan
Player 83.2 99.8 90.7 58.1 80.8 99.8 89.3 58.8 nan nan nan nan
Alien 73.0 92.1 81.5 94.2 68.6 92.5 78.8 94.3 nan nan nan nan

G.2 Amidar details

This game is similar to Pac-Man: You are trying to visit all
places on a 2-dimensional grid while simultaneously avoiding
your enemies. You can turn the tables at one point in the
game: Your enemies turn into chickens and you can catch
them.
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Table 8: Per class IOU on Amidar

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Life 100 100 100 100 100 100 100 100 nan nan nan nan
Monster_green 60.9 99.9 75.7 95.4 75.7 99.8 86.1 87.4 nan nan nan nan
Score 100 100 100 100 100 100 100 95.4 nan nan nan nan
Player 97.4 100 98.7 95.5 95.6 100 97.8 92.9 nan nan nan nan

G.3 Assault details

You control a vehicle that can move sideways. A big mother
ship circles overhead and continually deploys smaller drones.
You must destroy these enemies and dodge their attacks.

Table 9: Per class statistics on Assault

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

PlayerScore 100 100 100 100 100 100 100 99.9 nan nan nan nan
MotherShip 99.8 99.8 99.8 88.7 100 100 100 88.6 nan nan nan nan
Lives 100 100 100 100 100 100 100 100 nan nan nan nan
Health 99.6 99.6 99.6 99.5 100 100 100 99.6 nan nan nan nan
Player 91.8 100 95.7 88.6 95.8 100 97.9 81.6 nan nan nan nan
Enemy 98.4 87.6 92.7 87.1 89.0 70.5 78.7 78.5 nan nan nan nan
PlayerMissileHorizontal 29.0 29.1 29.1 28.5 26.7 25.5 26.1 30.2 nan nan nan nan
PlayerMissileVertical 95.7 95.2 95.5 86.7 91.4 88.0 89.7 83.0 nan nan nan nan
EnemyMissile 20.0 21.7 20.8 69.6 44.4 38.1 41.0 67.9 nan nan nan nan

G.4 Asterix details

You are Asterix and can move horizontally (continuously)
and vertically (discretely). Objects move horizontally across
the screen: lyres and other (more useful) objects. Your goal is
to guide Asterix in such a way as to avoid lyres and collect as
many other objects as possible. You score points by collecting
objects and lose a life whenever you collect a lyre. You have
three lives available at the beginning. If you score sufficiently
many points, you will be awarded additional points.
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Table 10: Per class statistics on Asterix

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Lives 100 100 100 91.7 100 100 100 91.7 100 100 100 91.7
Player 98.4 98.4 98.4 97.6 99.6 99.6 99.6 98.8 98.6 98.6 98.6 98.5
Score 100 100 100 100 100 96.3 98.1 99.0 100 99.2 99.6 99.8
Cauldron 93.9 100 96.8 99.9 96.6 100 98.3 100 98.5 100 99.2 100
Reward50 90.7 100 95.1 100 98.2 100 99.1 100 90.6 100 95.1 99.6
Enemy 85.8 100 92.3 88.0 85.4 100 92.1 89.2 89.7 100 94.6 89.6

G.5 Asteroids details

This is a well-known arcade game: You control a spaceship
in an asteroid field and must break up asteroids by shooting
them. Once all asteroids are destroyed, you enter a new
level and new asteroids will appear. You will occasionally be
attacked by a flying saucer.

Table 11: Per class IOU on Asteroids

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Asteroid 42.5 86.7 57.1 90.5 39.5 88.8 54.7 89.3 nan nan nan nan
Player 44.3 100 61.4 75.1 50.5 97.3 66.5 73.1 nan nan nan nan
Lives 100 100 100 100 100 100 100 100 nan nan nan nan
PlayerScore 96.0 92.5 94.2 98.5 97.8 96.1 96.9 99.1 nan nan nan nan
PlayerMissile 44.7 97.8 61.4 98.7 52.7 92.8 67.2 100 nan nan nan nan
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G.6 Atlantis details

Your job is to defend the submerged city of Atlantis. Your
enemies slowly descend towards the city and you must destroy
them before they reach striking distance. To this end, you
control three defense posts. You lose if your enemies manage
to destroy all seven of Atlantis’ installations. You may rebuild
installations after you have fought of a wave of enemies and
scored a sufficient number of points.

Table 12: Per class statistics on Atlantis

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

BridgedBazaar 100 99.7 99.9 99.9 100 99.7 99.8 99.9 nan nan nan nan
AcropolisCommandPost 100 96.2 98.0 99.9 100 97.8 98.9 99.8 nan nan nan nan
Sentry 100 100 100 99.4 100 100 100 99.6 nan nan nan nan
AquaPlane 100 97.8 98.9 100 100 99.0 99.5 99.9 nan nan nan nan
Generator 100 99.7 99.9 87.9 99.8 99.5 99.7 85.7 nan nan nan nan
DomedPalace 100 99.5 99.8 100 100 99.8 99.9 99.9 nan nan nan nan
Projectile 85.1 77.4 81.1 99.9 86.7 76.2 81.1 99.2 nan nan nan nan
GorgonShip 88.6 83.0 85.7 93.1 85.7 76.0 80.6 89.9 nan nan nan nan
Score 100 100 100 99.8 100 100 100 100 nan nan nan nan
BanditBomber 81.0 78.2 79.5 88.2 76.3 85.3 80.6 79.4 nan nan nan nan

G.7 BankHeist details

You are a bank robber and (naturally) want to rob as many
banks as possible. You control your getaway car and must
navigate maze-like cities. The police chases you and will
appear whenever you rob a bank. You may destroy police
cars by dropping sticks of dynamite. You can fill up your gas
tank by entering a new city.At the beginning of the game you
have four lives. Lives are lost if you run out of gas, are caught
by the police,or run over the dynamite you have previously
dropped.
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Table 13: Per class IOU on BankHeist

Random DQN C51
Precision Recall F-score IOU Precision Recall F-score IOU Precision Recall F-score IOU

Bank 73.4 87.2 79.7 73.5 98.7 91.3 94.9 99.2 nan nan nan nan
Player 79.8 99.8 88.7 81.0 71.2 92.0 80.3 77.1 nan nan nan nan
Gas_Tank 100 100 100 92.6 100 100 100 76.9 nan nan nan nan
Score 100 100 100 100 100 100 100 100 nan nan nan nan
Life 100 100 100 100 100 100 100 100 nan nan nan nan
Police 100 100 100 82.5 89.2 89.2 89.2 71.5 nan nan nan nan

G.8 BattleZone details

You control a tank and must destroy enemy vehicles. This
game is played in a first-person perspective and creates a
3D illusion. A radar screen shows enemies around you. You
start with 5 lives and gain up to 2 extra lives if you reach a
sufficient score.

Table 14: Per class IOU on BattleZone

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Radar 92.0 100 95.8 100 92.8 94.5 93.6 99.6 nan nan nan nan
Player 92.0 100 95.8 100 92.8 100 96.3 100 nan nan nan nan
Crosshair 92.0 68.0 78.2 97.5 88.6 70.5 78.5 97.3 nan nan nan nan
Blue_Tank 27.1 50.8 35.4 57.6 27.3 47.6 34.7 54.9 nan nan nan nan

G.9 Berzerk details

You are stuck in a maze with evil robots. You must destroy
them and avoid touching the walls of the maze, as this will
kill you. You may be awarded extra lives after scoring a
sufficient number of points, depending on the game mode.
You may also be chased by an undefeatable enemy, Evil Otto,
that you must avoid. Evil Otto does not appear in the default
mode.
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Table 15: Per class statistics on Berzerk

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Logo 100 99.3 99.6 100 100 100 100 100 nan nan nan nan
PlayerMissile 75.0 98.4 85.1 74.5 79.2 88.1 83.4 81.1 nan nan nan nan
Enemy 97.3 98.7 98.0 77.0 98.4 100 99.2 77.3 nan nan nan nan
Player 90.4 98.7 94.4 66.1 97.4 99.2 98.3 54.5 nan nan nan nan
PlayerScore 95.0 73.2 82.7 85.1 98.8 91.9 95.2 96.6 nan nan nan nan
EnemyMissile 77.4 90.0 83.2 78.8 73.8 85.7 79.3 79.2 nan nan nan nan
RoomCleared 96.3 100 98.1 100 98.4 100 99.2 100 nan nan nan nan

G.10 Bowling details

Your goal is to score as many points as possible in the game
of Bowling. A game consists of 10 frames and you have two
tries per frame. Knocking down all pins on the first try is
called a “strike”. Knocking down all pins on the second roll
is called a “spar”. Otherwise, the frame is called “open”.

Table 16: Per class statistics on Bowling

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Pin 99.4 100 99.7 100 98.7 100 99.3 100 99.4 100 99.7 100
Player 98.6 97.6 98.1 98.3 99.6 99.2 99.4 99.2 98.2 96.8 97.5 98.0
PlayerScore 100 100 100 100 100 100 100 100 100 100 100 100
Player2Round 100 100 100 100 100 100 100 100 100 100 100 100
Ball 99.0 98.8 98.9 99.6 98.4 96.9 97.6 99.1 99.0 98.6 98.8 99.3
PlayerRound 100 92.4 96.1 96.7 100 89.6 94.5 95.4 100 92.1 95.9 96.6
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G.11 Boxing details

You fight an opponent in a boxing ring. You score points for
hitting the opponent. If you score 100 points, your opponent
is knocked out.

Table 17: Per class statistics on Boxing

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Enemy 83.4 81.1 82.2 78.4 79.8 74.6 77.1 73.3 88.6 85.5 87.0 79.5
PlayerScore 100 82.5 90.4 87.9 100 92.8 96.2 95.5 100 93.3 96.5 95.9
Player 81.6 81.6 81.6 79.3 80.8 80.8 80.8 78.4 79.6 79.1 79.4 76.7
EnemyScore 100 45.9 62.9 89.8 100 44.9 62.0 87.1 100 45.5 62.5 88.7
Logo 100 100 100 100 100 100 100 100 100 100 100 100
Clock 100 100 100 100 100 100 100 100 100 100 100 100

G.12 Breakout details

Another famous Atari game. The dynamics are similar to
pong: You move a paddle and hit the ball in a brick wall at
the top of the screen. Your goal is to destroy the brick wall.
You can try to break through the wall and let the ball wreak
havoc on the other side, all on its own! You have five lives.

Table 18: Per class statistics on Breakout

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Player 98.8 100 99.4 100 97.4 100 98.7 100 99.8 100 99.9 100
BlockRow 100 100 100 100 100 100 100 100 100 100 100 100
Live 100 100 100 99.9 100 100 100 99.9 100 100 100 100
PlayerScore 100 100 100 100 100 100 100 100 100 100 100 100
PlayerNumber 100 100 100 100 100 100 100 100 100 100 100 100
Ball 93.1 100 96.4 100 93.3 100 96.5 100 90.5 100 95.0 100
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G.13 Carnival details

This is a “shoot ‘em up” game. Targets move horizontally
across the screen and you must shoot them. You are in
control of a gun that can be moved horizontally. The supply
of ammunition is limited and chickens may steal some bullets
from you if you don’t hit them in time.

Table 19: Per class statistics on Carnival

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Duck 98.8 93.7 96.2 95.5 98.3 93.4 95.8 94.4 nan nan nan nan
PlayerScore 86.6 76.4 81.2 100 98.4 96.9 97.6 100 nan nan nan nan
Wheel 100 100 100 89.8 100 98.9 99.5 88.5 nan nan nan nan
FlyingDuck 40.4 91.3 56.0 82.2 42.9 82.9 56.5 82.9 nan nan nan nan
Owl 99.0 97.7 98.3 97.6 98.9 96.2 97.5 95.9 nan nan nan nan
ExtraBullets 98.1 84.9 91.0 97.8 98.1 90.2 94.0 96.6 nan nan nan nan
Player 100 100 100 100 100 100 100 100 nan nan nan nan
Rabbit 97.0 95.8 96.4 98.0 95.3 97.3 96.3 97.4 nan nan nan nan
AmmoBar 90.0 100 94.7 100 98.4 99.8 99.1 99.8 nan nan nan nan
PlayerMissile 95.3 97.5 96.4 10.2 93.9 98.9 96.3 10.4 nan nan nan nan
BonusValue 95.0 100 97.5 88.1 97.4 100 98.7 82.1 nan nan nan nan
BonusSign 66.3 100 79.7 65.6 53.1 100 69.4 100 nan nan nan nan

G.14 Centipede details

You are an elf and must use your magic wands to fend
off spiders, fleas and centipedes. Your goal is to protect
mushrooms in an enchanted forest. If you are bitten by a
spider, flea or centipede, you will be temporally paralyzed
and you will lose a magic wand. The game ends once you
have lost all wands. You may receive additional wands after
scoring a sufficient number of points.
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Table 20: Per class statistics on Centipede

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Score 99.6 100 99.8 97.0 98.8 100 99.4 97.7 nan nan nan nan
Projectile 84.9 99.7 91.7 88.9 84.8 97.5 90.7 88.6 nan nan nan nan
Life 100 100 100 100 100 100 100 100 nan nan nan nan
Ground 100 97.8 98.9 100 100 98.4 99.2 100 nan nan nan nan
Mushroom 99.6 99.7 99.6 99.8 99.3 99.7 99.5 99.6 nan nan nan nan
CentipedeSegment 72.2 78.8 75.4 57.1 69.0 75.2 72.0 55.3 nan nan nan nan
Player 96.4 91.8 94.1 87.4 94.4 90.8 92.6 84.8 nan nan nan nan
Spider 92.4 100 96.1 99.6 87.1 99.0 92.7 100 nan nan nan nan
Flea 50.0 100 66.7 100 50.0 100 66.7 100 nan nan nan nan
Scorpion nan nan nan nan 100 100 100 100 nan nan nan nan

G.15 ChopperCommand details

You control a helicopter and must protect truck convoys. To
that end, you need to shoot down enemy aircraft.A mini-map
is displayed at the bottom of the screen.

Table 21: Per class statistics on ChopperCommand

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Score 100 100 100 100 100 100 100 100 100 100 100 100
Life 100 100 100 100 100 100 100 100 100 100 100 100
MiniEnemy 88.9 78.0 83.1 48.5 66.8 62.3 64.5 51.1 47.4 39.4 43.0 56.2
MiniTruck 86.0 93.1 89.4 100 68.5 70.6 69.6 99.9 49.4 58.5 53.6 100
Truck 88.8 99.6 93.9 79.6 95.9 98.6 97.2 80.4 92.9 96.4 94.6 74.7
MiniPlayer 90.8 100 95.2 84.8 99.2 100 99.6 84.5 99.8 100 99.9 93.7
Player 95.2 98.8 96.9 79.0 91.4 89.4 90.4 75.8 99.0 98.8 98.9 86.5
Shot 76.9 74.9 75.9 88.0 58.8 58.8 58.8 87.3 81.8 81.8 81.8 90.2
EnemyHelicopter 79.9 94.3 86.5 71.4 45.6 85.4 59.5 73.7 61.8 95.5 75.0 71.1
Bomb 51.3 93.2 66.2 37.7 54.7 80.3 65.0 55.9 50.0 82.1 62.2 72.5
EnemyPlane 92.0 98.3 95.0 66.6 94.0 96.2 95.1 71.4 94.4 94.4 94.4 74.4
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G.16 CrazyClimber details

You are a climber trying to reach the top of four buildings,
while avoiding obstacles like closing windows and falling
objects. When you receive damage (windows closing or
objects) you will fall and lose one life; you have a total of
5 lives before the end games. At the top of each building,
there’s a helicopter which you need to catch to get to the
next building. The goal is to climb as fast as possible while
receiving the least amount of damage.

Table 22: Per class IOU on CrazyClimber

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Player 96.0 97.6 96.8 91.1 90.8 95.0 92.8 90.4 nan nan nan nan
Window 97.6 95.2 96.4 97.4 98.3 94.6 96.4 96.5 nan nan nan nan
Score 100 100 100 100 100 100 100 100 nan nan nan nan
Life 100 100 100 100 100 100 100 100 nan nan nan nan
Enemy_Red 75.0 81.8 78.3 55.3 19.1 78.8 30.8 57.2 nan nan nan nan
Purple_Projectile 66.7 66.7 66.7 45.0 56.2 69.2 62.1 52.8 nan nan nan nan
Yellow_Projectile 33.3 50.0 40.0 70.9 44.4 57.1 50.0 79.7 nan nan nan nan
Yellow_Ball 84.0 91.3 87.5 67.8 70.5 79.5 74.7 64.8 nan nan nan nan
Enemy_Bird 69.7 92.0 79.3 76.1 58.5 79.2 67.3 65.0 nan nan nan nan
Helicopter nan nan nan nan 14.3 14.3 14.3 42.7 nan nan nan nan
Blue_Projectile nan nan nan nan 100 100 100 53.6 nan nan nan nan

G.17 DemonAttack details

You are facing waves of demons in the ice planet of Krybor.
Points are accumulated by destroying demons. You begin
with 3 reserve bunkers, and can increase its number (up to
6) by avoiding enemy attacks. Each attack wave you survive
without any hits, grants you a new bunker. Every time an
enemy hits you, a bunker is destroyed. When the last bunker
falls, the next enemy hit will destroy you and the game ends.
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Table 23: Per class IOU on DemonAttack

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

ProjectileFriendly 94.8 100 97.3 83.8 97.2 99.4 98.3 85.1 nan nan nan nan
Score 100 98.6 99.3 97.8 98.6 91.1 94.7 95.8 nan nan nan nan
Player 92.6 100 96.2 100 97.2 100 98.6 100 nan nan nan nan
Live 99.1 100 99.5 100 97.5 100 98.8 100 nan nan nan nan
Enemy 99.3 97.9 98.6 73.7 75.1 56.6 64.5 66.3 nan nan nan nan
ProjectileHostile 80.2 98.7 88.5 55.4 59.9 98.3 74.4 37.2 nan nan nan nan

G.18 DonkeyKong details

You play as Mario trying to save your girlfriend who has
been kidnapped by Donkey Kong. Remove rivets and jump
over fireballs, with a score that starts high and counts down
throughout the game.

Table 24: Per class IOU on DonkeyKong

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Score 97.6 79.5 87.6 93.9 98.0 81.0 88.7 94.1 98.0 79.2 87.6 93.5
Player 28.8 99.3 44.7 93.0 74.8 100 85.6 97.7 78.0 99.7 87.5 97.0
Girlfriend 100 100 100 100 100 100 100 100 100 100 100 100
Ladder 100 100 100 100 100 100 100 100 100 100 100 100
Life 100 100 100 88.9 100 100 100 88.9 100 100 100 88.9
Hammer 99.8 99.6 99.7 100 100 100 100 100 100 100 100 100
DonkeyKong 100 100 100 100 100 100 100 100 100 100 100 100
Barrel 100 100 100 99.6 100 99.5 99.7 99.4 100 99.4 99.7 99.5
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G.19 FishingDerby details

Your objective is to catch more sunfish than your opponent.

Table 25: Per class statistics on FishingDerby

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

ScorePlayerTwo 100 53.1 69.4 100 100 52.5 68.9 100 100 52.5 68.9 100
Fish 94.5 98.2 96.3 68.7 90.6 98.5 94.4 69.2 87.1 99.3 92.8 68.8
PlayerTwoHook 62.6 66.2 64.3 29.4 62.8 67.7 65.1 26.5 62.0 65.1 63.5 30.9
ScorePlayerOne 100 96.3 98.1 100 100 73.5 84.7 100 100 52.5 68.8 100
PlayerOneHook 69.0 69.0 69.0 22.6 87.4 87.6 87.5 22.5 53.8 56.9 55.3 22.4
Shark 82.4 99.8 90.2 92.1 82.8 99.5 90.4 91.5 77.0 99.7 86.9 92.7

G.20 Freeway details

Your objective is to guide your chicken across lane after
lane of busy rush hour traffic. You receive a point for every
chicken that makes it to the top of the screen after crossing
all the lanes of traffic.

Table 26: Per class statistics on Freeway

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Chicken 100 100 100 97.1 99.8 99.9 99.8 96.9 97.0 98.5 97.7 96.4
Car 99.1 99.9 99.5 87.0 99.3 99.9 99.6 87.0 99.4 99.8 99.6 87.0
Score 95.0 48.8 64.5 100 93.4 48.4 63.7 100 85.0 52.3 64.8 86.1
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G.21 Frostbite details

In Frostbite, the player controls “Frostbite Bailey” who hops
back and forth across across an Arctic river, changing the
color of the ice blocks from white to blue. Each time he does
so, a block is added to his igloo.

Table 27: Per class statistics on Frostbite

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

WhitePlate 99.5 99.7 99.6 92.0 93.2 99.8 96.4 88.5 92.0 98.8 95.3 87.1
Degree 100 100 100 98.0 100 100 100 97.2 100 100 100 97.7
PlayerScore 100 100 100 96.0 100 100 100 89.7 100 100 100 89.8
Player 63.8 100 77.9 71.4 66.8 100 80.1 72.1 75.8 100 86.2 70.9
LifeCount 100 100 100 89.0 100 100 100 87.2 100 100 100 87.9
House 100 100 100 99.6 99.7 100 99.9 97.1 100 100 100 94.6
BluePlate 98.8 99.5 99.1 91.6 78.0 100 87.6 84.7 74.0 98.2 84.4 82.8
Bird 98.2 95.3 96.7 99.1 90.1 79.7 84.6 95.6 91.4 84.4 87.7 94.7
CompletedHouse nan nan nan nan 100 100 100 99.6 100 100 100 99.8
GreenFish nan nan nan nan 82.2 77.8 79.9 67.2 84.2 87.8 86.0 70.1
Crab nan nan nan nan 96.4 78.4 86.5 66.3 96.6 81.1 88.2 63.5
Bear nan nan nan nan 90.0 90.0 90.0 77.3 100 91.4 95.5 80.6
Clam nan nan nan nan 59.5 97.8 73.9 75.1 66.7 100 80.0 58.3

G.22 Gopher details

The player controls a shovel-wielding farmer who protects a
crop of three carrots from a gopher.
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Table 28: Per class IOU on Gopher

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Gopher 74.8 97.7 84.7 84.7 71.8 96.0 82.2 83.3 nan nan nan nan
Score 100 100 100 98.4 100 96.9 98.4 93.1 nan nan nan nan
Player 99.8 99.8 99.8 81.7 100 100 100 80.3 nan nan nan nan
Empty_Block 100 35.0 51.8 65.6 100 24.6 39.5 62.5 nan nan nan nan
Carrot 100 100 100 100 99.9 100 100 100 nan nan nan nan
Bird nan nan nan nan 33.8 98.0 50.3 84.8 nan nan nan nan

G.23 Hero details

You need to rescue miners that are stuck in a mine shaft. You
have access to various tools: A propeller backpack that allows
you to fly wherever you want, sticks of dynamite that can
be used to blast through walls, a laser beam to kill vermin,
and a raft to float across stretches of lava.You have a limited
amount of power. Once you run out, you lose a live.

Table 29: Per class IOU on Hero

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Life 65.0 100 78.8 71.1 84.8 100 91.8 75.6 81.4 100 89.7 78.7
Score 65.8 70.6 68.1 48.7 54.4 62.0 57.9 57.6 76.8 82.9 79.8 59.3
Player 96.0 99.8 97.9 96.7 91.0 99.8 95.2 99.4 94.0 100 96.9 99.5
PowerBar 100 100 100 99.8 100 100 100 99.8 100 100 100 99.9
BombStock 81.8 100 90.0 81.0 98.8 100 99.4 90.1 99.4 100 99.7 80.9
Wall 100 93.6 96.7 98.5 73.2 91.4 81.3 91.8 83.9 96.4 89.7 95.0
LaserBeam 36.8 84.2 51.2 35.9 19.8 81.4 31.8 34.2 15.0 81.8 25.3 33.0
Bomb 42.3 81.1 55.6 83.3 45.9 28.3 35.0 83.3 41.3 18.7 25.7 75.3
Enemy 94.1 100 97.0 33.2 37.0 71.8 48.8 43.0 39.9 64.9 49.4 39.0
EndNPC 100 100 100 69.2 100 83.8 91.2 69.2 100 77.5 87.3 69.2
Lamp nan nan nan nan 46.6 100 63.6 62.5 82.0 100 90.1 62.5
LavaWall nan nan nan nan 45.3 77.4 57.1 92.3 54.4 82.8 65.7 99.2
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G.24 IceHockey details

Your goal is to score as many points as possible in a standard
game of Ice Hockey over a 3-minute time period. The ball is
usually called “the puck”.There are 32 shot angles ranging
from the extreme left to the extreme right. The angles can
only aim towards the opponent’s goal.Just as in real hockey,
you can pass the puck by shooting it off the sides of the rink.
This can be really key when you’re in position to score a
goal.

Table 30: Per class IOU on IceHockey

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

EnemyScore 71.6 100 83.4 76.4 57.1 100 72.7 76.4 nan nan nan nan
Player 99.1 99.1 99.1 47.8 98.2 98.2 98.2 47.9 nan nan nan nan
Enemy 99.0 99.5 99.2 52.4 99.6 99.6 99.6 52.8 nan nan nan nan
PlayerScore 83.8 100 91.2 67.7 65.3 100 79.0 67.7 nan nan nan nan
Ball 85.2 98.6 91.4 80.2 83.4 98.8 90.5 84.1 nan nan nan nan
Timer 100 100 100 80.5 100 100 100 79.7 nan nan nan nan

G.25 Jamesbond details

Your mission is to control Mr. Bond’s specially designed
multipurpose craft to complete a variety of missions.The
craft moves forward with a right motion and slightly back
with a left motion.An up or down motion causes the craft to
jump or dive.You can also fire by either lobbing a bomb to
the bottom of the screen or firing a fixed angle shot to the
top of the screen.
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Table 31: Per class IOU on Jamesbond

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Player_Shot 78.0 100 87.6 82.2 88.6 100 94.0 79.7 nan nan nan nan
Fire_Hole 100 99.4 99.7 99.8 94.7 88.5 91.5 93.5 nan nan nan nan
Score 100 100 100 99.8 100 100 100 98.5 nan nan nan nan
Player 82.6 96.9 89.2 100 91.8 98.9 95.2 99.8 nan nan nan nan
Life 99.7 100 99.9 100 99.7 100 99.8 100 nan nan nan nan
Helicopter 98.8 100 99.4 86.7 97.0 99.7 98.3 84.9 nan nan nan nan
Hornet 73.7 100 84.8 90.6 76.1 99.6 86.3 95.6 nan nan nan nan
Enemy_Shot 80.5 99.0 88.8 70.6 71.5 100 83.4 74.7 nan nan nan nan
Ice 91.5 100 95.6 86.7 91.7 100 95.7 82.7 nan nan nan nan
Eruption nan nan nan nan 100 100 100 100 nan nan nan nan

G.26 Kangaroo details

The object of the game is to score as many points as you can
while controlling Mother Kangaroo to rescue her precious
baby. You start the game with three lives.During this rescue
mission, Mother Kangaroo encounters many obstacles. You
need to help her climb ladders, pick bonus fruit, and throw
punches at monkeys.

Table 32: Per class statistics on Kangaroo

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Bell 99.8 99.8 99.8 100 100 100 100 100 99.8 99.8 99.8 100
Platform 100 75.0 85.7 100 100 75.0 85.7 100 100 75.0 85.7 100
Scale 100 100 100 100 100 100 100 100 100 100 100 100
Fruit 99.8 99.9 99.9 90.7 99.2 100 99.6 90.9 97.4 99.8 98.6 90.7
Child 99.6 99.8 99.7 95.0 100 100 100 95.6 99.8 100 99.9 96.4
Life 99.7 100 99.8 100 100 100 100 100 99.6 100 99.8 100
Score 99.8 100 99.9 100 100 100 100 99.6 99.8 100 99.9 99.3
Time 99.8 100 99.9 100 100 100 100 89.7 99.8 100 99.9 96.5
Player 79.8 89.3 84.3 79.4 88.0 91.7 89.8 78.6 81.2 88.3 84.6 79.3
Projectile_top 81.6 84.7 83.1 81.0 98.9 99.5 99.2 87.6 92.9 88.3 90.5 85.5
Enemy 87.2 95.5 91.2 91.1 94.5 95.2 94.8 86.8 85.8 96.4 90.8 86.8
Projectile_enemy 66.7 93.3 77.8 33.3 50.0 100 66.7 33.3 14.1 86.7 24.2 33.3
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G.27 Krull details

Your mission is to find and enter the Beast’s Black Fortress,
rescue Princess Lyssa, and destroy the Beast.The task is not
an easy one, for the location of the Black Fortress changes
with each sunrise on Krull.

Table 33: Per class IOU on Krull

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Life 99.8 99.5 99.7 100 100 100 100 100 nan nan nan nan
Lyssa 84.1 98.6 90.8 84.3 95.5 98.4 96.9 81.7 nan nan nan nan
Player 88.6 99.3 93.7 74.1 90.0 100 94.7 75.3 nan nan nan nan
Score 100 100 100 98.3 99.8 100 99.9 99.1 nan nan nan nan
Sun 93.4 100 96.6 87.1 91.3 100 95.5 87.3 nan nan nan nan
Slayers 96.2 97.4 96.8 83.8 99.6 99.1 99.3 82.3 nan nan nan nan
Slayer_Shot 0.0 nan 0.0 nan 0.0 nan 0.0 nan nan nan nan nan
Weapon 100 91.7 95.7 96.0 82.4 93.3 87.5 96.8 nan nan nan nan
Fire_Mare 100 100 100 49.0 100 100 100 49.7 nan nan nan nan
Window 99.5 100 99.7 100 99.7 100 99.9 100 nan nan nan nan
Hour_Glass 99.5 83.2 90.6 82.6 99.7 82.6 90.4 82.0 nan nan nan nan
Spider 89.3 98.8 93.8 76.9 88.1 98.9 93.2 77.1 nan nan nan nan
Weapon_HUD 100 100 100 100 99.3 100 99.7 100 nan nan nan nan
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G.28 MontezumaRevenge details

Your goal is to acquire Montezuma’s treasure by making
your way through a maze of chambers within the emperor’s
fortress. You must avoid deadly creatures while collecting
valuables and tools which can help you escape with the
treasure.

Table 34: Per class statistics on MontezumaRevenge

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Skull 99.6 99.6 99.6 79.0 100 100 100 79.1 100 100 100 80.4
Life 100 100 100 100 100 100 100 100 100 100 100 100
Player 99.0 98.6 98.8 77.9 100 100 100 97.3 100 100 100 100
Rope 97.6 100 98.8 100 100 100 100 100 100 100 100 100
Barrier 100 100 100 100 100 100 100 100 100 100 100 100
Key 99.0 96.7 97.8 100 100 100 100 100 100 100 100 100
Score 100 100 100 100 100 100 100 100 100 100 100 100

G.29 MsPacman details

Your goal is to collect all of the pellets on the screen while
avoiding the ghosts.
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Table 35: Per class statistics on MsPacman

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Life 100 100 100 93.3 54.4 100 70.5 90.3 nan nan nan nan
Score 100 100 100 98.2 100 100 100 99.2 nan nan nan nan
Player 99.8 99.8 99.8 71.7 94.8 99.0 96.8 72.5 nan nan nan nan
Ghost 55.6 98.4 71.1 79.5 61.3 98.3 75.5 77.2 nan nan nan nan
Fruit 100 100 100 88.9 97.9 100 98.9 85.5 nan nan nan nan

G.30 Pacman details

A classic arcade game. Move Pac Man around a maze collect-
ing food and avoiding ghosts- unless you eat a Power Pellet,
then you can eat the ghosts too!

Table 36: Per class IOU on Pacman

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Score 100 98.2 99.1 35.5 100 100 100 34.1 93.4 86.0 89.5 35.6
Player 93.5 87.8 90.5 66.8 95.2 88.6 91.7 69.3 90.0 73.8 81.1 67.4
Ghost 40.2 82.3 54.0 84.8 31.2 79.7 44.9 87.9 21.0 72.3 32.6 86.5
Life 100 99.8 99.9 99.7 100 100 100 100 100 99.6 99.8 100
PowerPill 49.2 100 66.0 100 33.0 82.1 47.1 99.7 26.2 99.4 41.4 100
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G.31 Pitfall details

You control Pitfall Harry and are tasked with collecting all
the treasures in a jungle within 20 minutes. You have three
lives. The game is over if you collect all the treasures or if
you die or if the time runs out.

Table 37: Per class IOU on Pitfall

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Player 91.8 97.0 94.3 68.7 100 100 100 61.2 nan nan nan nan
Wall 100 100 100 99.8 100 100 100 76.5 nan nan nan nan
Logs 99.1 99.8 99.5 99.6 100 100 100 98.9 nan nan nan nan
LifeCount 100 100 100 100 100 100 100 100 nan nan nan nan
Timer 100 100 100 99.7 100 100 100 98.2 nan nan nan nan
StairPit 100 100 100 100 100 100 100 100 nan nan nan nan
PlayerScore 100 100 100 97.0 100 100 100 96.7 nan nan nan nan
Scorpion 100 100 100 94.7 100 100 100 100 nan nan nan nan
Waterhole 96.7 100 98.3 100 73.3 100 84.6 99.6 nan nan nan nan
Crocodile 100 100 100 100 nan nan nan nan nan nan nan nan
Rope 87.7 69.4 77.5 100 nan nan nan nan nan nan nan nan
Snake 100 100 100 97.6 100 100 100 96.9 nan nan nan nan
Tarpit 80.0 100 88.9 100 nan nan nan nan nan nan nan nan

G.32 Pong details

You control the right paddle, you compete against the left
paddle controlled by the computer. You each try to keep de-
flecting the ball away from your goal and into your opponent’s
goal.
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Table 38: Per class statistics on Pong

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Ball 60.2 100 75.2 74.8 76.0 100 86.4 75.2 74.0 100 85.1 74.9
Player 100 100 100 91.7 100 100 100 89.0 100 100 100 94.7
EnemyScore 100 96.9 98.4 78.0 100 95.9 97.9 79.0 100 94.7 97.3 79.2
Enemy 85.2 100 92.0 94.4 92.8 100 96.3 94.2 92.2 100 95.9 94.1
PlayerScore 100 100 100 74.3 100 100 100 84.1 100 95.1 97.5 86.5

G.33 PrivateEye details

You control the French Private Eye Pierre Touche. Navigate
the city streets, parks, secret passages, dead-ends and one-
ways in search of the ringleader, Henri Le Fiend and his gang.
You also need to find evidence and stolen goods that are
scattered about. There are five cases, complete each case
before its statute of limitations expires.

Table 39: Per class IOU on PrivateEye

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Car 96.8 100 98.4 97.3 100 100 100 94.4 nan nan nan nan
Clock 100 100 100 98.5 100 100 100 98.6 nan nan nan nan
Player 95.8 97.0 96.4 95.6 99.2 99.2 99.2 92.8 nan nan nan nan
Score 100 100 100 97.5 100 100 100 96.7 nan nan nan nan
Clue 57.5 100 73.0 77.6 50.0 100 66.7 78.6 nan nan nan nan
Mud 91.2 100 95.4 100 nan nan nan nan nan nan nan nan
Dove 100 100 100 100 nan nan nan nan nan nan nan nan

438



RLJ | RLC 2024

G.34 Qbert details

You are Q*bert. Your goal is to change the color of all the
cubes on the pyramid to the pyramid’s ‘destination’ color.
To do this, you must hop on each cube on the pyramid one
at a time while avoiding nasty creatures that lurk there.

Table 40: Per class statistics on Qbert

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Cube 100 99.6 99.8 100 74.6 99.5 85.3 99.9 77.6 99.5 87.2 99.9
Score 66.0 100 79.5 100 34.8 100 51.6 98.8 31.8 100 48.3 98.9
Lives 60.1 100 75.0 100 38.9 100 56.0 100 40.5 100 57.7 100
Disk 99.8 100 99.9 100 99.6 100 99.8 100 100 100 100 100
Player 47.3 81.9 60.0 79.2 93.7 82.1 87.5 78.2 98.3 84.1 90.6 79.9
Sam 34.5 82.9 48.7 93.8 100 80.0 88.9 94.7 100 93.8 96.8 95.1
PurpleBall 20.9 52.7 29.9 90.5 71.3 69.0 70.2 91.3 76.1 66.4 70.9 90.9
Coily 91.3 100 95.5 93.4 91.3 100 95.5 89.4 87.1 100 93.1 90.7
GreenBall nan nan nan nan 83.3 90.9 87.0 87.7 79.3 88.5 83.6 87.1

G.35 Riverraid details

You control a jet that flies over a river: you can move it
sideways and fire missiles to destroy enemy objects. Each
time an enemy object is destroyed you score points (i.e.
rewards). You lose a jet when you run out of fuel: fly over a
fuel depot when you begin to run low.You lose a jet even when
it collides with the river bank or one of the enemy objects
(except fuel depots). The game begins with a squadron of
three jets in reserve and you’re given an additional jet (up
to 9) for each 10,000 points you score.
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Table 41: Per class statistics on Riverraid

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

PlayerScore 100 2.4 4.7 100 100 1.0 2.0 100 nan nan nan nan
FuelDepot 97.7 98.3 98.0 100 94.7 96.5 95.6 100 nan nan nan nan
Tanker 97.0 98.2 97.6 96.9 94.1 95.8 95.0 94.3 nan nan nan nan
Lives 89.3 99.8 94.3 89.8 59.6 100 74.7 92.0 nan nan nan nan
Player 100 99.3 99.6 76.7 99.8 99.6 99.7 74.8 nan nan nan nan
Helicopter 96.4 97.0 96.7 97.6 97.4 96.8 97.1 96.5 nan nan nan nan
PlayerMissile 87.3 92.8 90.0 88.1 82.8 95.5 88.7 89.6 nan nan nan nan
Bridge 95.2 100 97.6 82.7 97.6 97.6 97.6 84.9 nan nan nan nan
Jet nan nan nan nan 95.9 100 97.9 83.6 nan nan nan nan

G.36 RoadRunner details

You control the Road Runner(TM) in a race; you can control
the direction to run in and times to jumps.The goal is to
outrun Wile E. Coyote(TM) while avoiding the hazards of
the desert.The game begins with three lives. You lose a life
when the coyote catches you, picks you up in a rocket, or
shoots you with a cannon. You also lose a life when a truck
hits you, you hit a land mine, you fall off a cliff,or you get
hit by a falling rock.You score points (i.e. rewards) by eating
seeds along the road, eating steel shot, and destroying the
coyote.

Table 42: Per class statistics on RoadRunner

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Enemy 99.3 88.6 93.7 77.1 83.3 85.3 84.3 71.7 nan nan nan nan
Sign 94.4 100 97.1 97.8 54.3 100 70.4 90.9 nan nan nan nan
Cactus 99.5 99.0 99.2 98.4 91.3 93.8 92.6 89.5 nan nan nan nan
Bird 100 100 100 100 97.4 97.2 97.3 100 nan nan nan nan
Player 95.4 96.8 96.1 79.4 93.4 98.7 96.0 91.4 nan nan nan nan
BirdSeeds 55.2 90.6 68.6 78.3 62.3 89.1 73.3 63.0 nan nan nan nan
Truck nan nan nan nan 77.4 100 87.3 72.0 nan nan nan nan
RoadCrack nan nan nan nan 87.5 8.2 15.1 72.5 nan nan nan nan
AcmeMine nan nan nan nan 16.7 41.7 23.8 69.0 nan nan nan nan
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G.37 Seaquest details

You control a sub able to move in all directions and fire
torpedoes. The goal is to retrieve as many divers as you can,
while dodging and blasting enemy subs and killer sharks;
points will be awarded accordingly. The game begins with
one sub and three waiting on the horizon. Each time you
increase your score by 10,000 points, an extra sub will be
delivered to your base. You can only have six reserve subs
on the screen at one time.Your sub will explode if it collides
with anything except your own divers.The sub has a limited
amount of oxygen that decreases at a constant rate during
the game. When the oxygen tank is almost empty, you need
to surface and if you don’t do it in time, your sub will blow
up and you’ll lose one diver. Each time you’re forced to
surface, with less than six divers, you lose one diver as well.

Table 43: Per class statistics on Seaquest

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

OxygenBarDepleted 92.1 100 95.9 99.8 98.6 100 99.3 100 98.4 100 99.2 99.9
Player 75.8 98.7 85.7 75.0 95.8 98.6 97.2 80.4 95.4 99.2 97.2 80.6
Logo 100 100 100 100 100 100 100 100 100 100 100 100
Lives 100 100 100 100 100 100 100 100 100 100 100 100
OxygenBarLogo 99.0 97.2 98.1 100 91.4 84.0 87.5 100 92.4 85.4 88.8 100
PlayerScore 100 84.0 91.3 92.9 94.0 79.4 86.1 93.6 84.8 60.1 70.4 79.9
OxygenBar 98.9 100 99.4 100 91.2 100 95.4 100 92.1 100 95.9 100
Diver 90.6 98.2 94.3 76.9 93.8 100 96.8 77.4 94.1 99.4 96.7 79.0
PlayerMissile 70.0 100 82.4 100 67.8 100 80.8 100 69.1 100 81.7 100
Enemy 97.8 98.9 98.3 55.8 57.8 90.6 70.6 51.5 75.6 87.5 81.1 52.7
EnemyMissile 94.3 44.0 60.0 71.7 88.9 85.1 87.0 70.9 93.2 71.4 80.9 70.9
CollectedDiver 100 100 100 100 100 100 100 100 91.8 100 95.7 100
EnemySubmarine 95.9 100 97.9 77.6 98.1 100 99.0 75.1 94.3 96.1 95.2 70.7

G.38 Skiing details

You control a skier who can move sideways. The goal is to
run through all gates (between the poles) in the fastest time.
You are penalized five seconds for each gate you miss. If you
hit a gate or a tree, your skier will jump back up and keep
going.
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Table 44: Per class statistics on Skiing

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Score 100 100 100 100 100 100 100 100 nan nan nan nan
Mogul 97.2 99.2 98.2 84.0 100 100 100 85.7 nan nan nan nan
Tree 81.0 83.5 82.2 75.0 51.1 51.3 51.2 48.3 nan nan nan nan
Logo 100 100 100 100 100 100 100 100 nan nan nan nan
Clock 100 100 100 100 100 100 100 100 nan nan nan nan
Player 99.2 96.7 97.9 64.0 100 100 100 63.9 nan nan nan nan
Flag 95.8 97.4 96.6 86.0 100 100 100 86.7 nan nan nan nan

G.39 SpaceInvaders details

Your objective is to destroy the space invaders by shooting
your laser cannon at them before they reach the Earth. The
game ends when all your lives are lost after taking enemy
fire, or when they reach the earth.

Table 45: Per class statistics on SpaceInvaders

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Shield 98.9 98.8 98.8 90.7 100 88.3 93.8 97.6 nan nan nan nan
Score 79.0 100 88.3 100 65.3 100 79.0 100 nan nan nan nan
Lives 76.8 79.1 77.9 100 73.3 70.2 71.7 100 nan nan nan nan
Player 93.4 100 96.6 91.6 94.4 100 97.1 91.9 nan nan nan nan
Alien 100 99.6 99.8 98.3 100 98.4 99.2 99.1 nan nan nan nan
Bullet 33.5 66.1 44.5 79.2 31.9 64.1 42.6 76.8 nan nan nan nan
Satellite 97.3 100 98.6 93.4 100 100 100 92.2 nan nan nan nan
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G.40 Tennis details

You control the orange player playing against a computer-
controlled blue player. The game follows the rules of tennis.
The first player to win at least 6 games with a margin of at
least two games wins the match. If the score is tied at 6-6,
the first player to go 2 games up wins the match.

Table 46: Per class statistics on Tennis

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Logo 100 100 100 100 100 100 100 100 nan nan nan nan
EnemyScore 100 100 100 98.7 100 100 100 100 nan nan nan nan
BallShadow 95.5 98.3 96.9 65.3 96.1 97.1 96.6 50.5 nan nan nan nan
Ball 95.2 100 97.6 70.9 95.0 100 97.4 70.3 nan nan nan nan
Enemy 99.0 100 99.5 73.1 87.6 100 93.4 72.1 nan nan nan nan
Player 97.8 100 98.9 71.7 83.0 100 90.7 69.9 nan nan nan nan
PlayerScore 100 100 100 100 97.0 94.2 95.6 97.4 nan nan nan nan

G.41 TimePilot details

You control an aircraft. Use it to destroy your enemies.
As you progress in the game, you encounter enemies with
technology that is increasingly from the future.
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Table 47: Per class IOU on TimePilot

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Player 95.4 99.3 97.3 95.8 88.5 99.0 93.5 94.6 nan nan nan nan
Player_Shot 91.8 95.6 93.7 98.8 83.9 94.6 88.9 99.1 nan nan nan nan
Enemy_Green 89.1 98.7 93.7 94.7 76.9 100 86.9 88.4 nan nan nan nan
Score 92.5 86.0 89.1 96.1 91.8 84.6 88.1 95.7 nan nan nan nan
Life 100 100 100 100 100 99.9 99.9 100 nan nan nan nan
Enemy_Green_Shot 61.5 34.3 44.0 63.1 55.6 26.3 35.7 73.3 nan nan nan nan
Enemy_Black 94.4 92.4 93.4 96.0 90.6 92.7 91.6 92.2 nan nan nan nan
Enemy_Black_Shot 73.3 45.8 56.4 69.7 80.0 57.1 66.7 83.3 nan nan nan nan
Enemy_Yellow nan nan nan nan 93.2 93.2 93.2 88.0 nan nan nan nan
Enemy_Yellow_Shot nan nan nan nan 80.0 63.2 70.6 40.3 nan nan nan nan
Enemy_Blue nan nan nan nan 95.8 91.3 93.5 92.3 nan nan nan nan
Enemy_Blue_Shot nan nan nan nan 0.0 0.0 0.0 60.0 nan nan nan nan

G.42 UpNDown details

Your goal is to steer your baja bugger to collect prizes and
eliminate opponents.

Table 48: Per class IOU on UpNDown

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Score 100 100 100 98.9 100 100 100 98.4 99.8 99.8 99.8 98.1
Life 100 99.8 99.9 100 99.9 99.8 99.9 100 100 100 100 100
HUD_Flag 100 100 100 100 100 100 100 100 100 100 100 100
Player 91.1 94.4 92.7 86.1 78.6 88.4 83.2 75.1 88.0 90.7 89.3 82.8
Truck 84.1 95.2 89.3 86.8 86.0 93.5 89.6 82.0 81.9 91.7 86.5 80.9
Flag 48.3 100 65.1 64.8 46.2 98.8 63.0 86.3 36.0 100 53.0 74.9
Collectable 100 100 100 50.7 70.4 100 82.6 79.2 62.5 90.9 74.1 59.1
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G.43 Venture details

Your goal is to capture the treasure in every chamber of the
dungeon while eliminating the monsters.

Table 49: Per class IOU on Venture

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Life 100 100 100 100 100 100 100 100 nan nan nan nan
Hallmonsters 46.2 99.6 63.2 84.1 26.7 98.3 42.0 84.6 nan nan nan nan
Player 93.0 99.6 96.2 99.3 54.0 99.6 70.0 98.4 nan nan nan nan
Score 100 100 100 100 100 100 100 100 nan nan nan nan
Goblin 50.0 100 66.7 100 nan nan nan nan nan nan nan nan
Shot 50.0 100 66.7 50.0 66.7 100 80.0 100 nan nan nan nan
Yellow_Collectable 50.0 100 66.7 100 nan nan nan nan nan nan nan nan
Skeleton nan nan nan nan 44.4 100 61.5 100 nan nan nan nan
Purple_Collectable nan nan nan nan 66.7 100 80.0 100 nan nan nan nan

G.44 VideoPinball details

Your goal is to keep the ball in play as long as possible and
to score as many points as possible.
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Table 50: Per class IOU on VideoPinball

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Score 84.8 75.8 80.1 91.1 97.2 95.3 96.2 99.0 nan nan nan nan
DropTarget 97.8 86.5 91.8 94.2 99.6 88.6 93.8 88.3 nan nan nan nan
LifeUsed 98.0 100 99.0 100 99.6 100 99.8 100 nan nan nan nan
DifficultyLevel 98.0 100 99.0 100 99.6 100 99.8 100 nan nan nan nan
Spinner 98.0 99.7 98.8 76.1 99.6 100 99.8 76.5 nan nan nan nan
Flipper 98.5 99.4 98.9 74.2 99.6 100 99.8 72.7 nan nan nan nan
Ball 90.0 100 94.7 99.9 98.6 100 99.3 100 nan nan nan nan
Bumper 98.0 100 99.0 99.6 99.6 100 99.8 99.9 nan nan nan nan

G.45 YarsRevenge details

The objective is to break a path through the shield and
destroy the Qotile with a blast from the Zorlon Cannon.

Table 51: Per class IOU on YarsRevenge

Random DQN C51
Pr Rec F-sc IOU Pr Rec F-sc IOU Pr Rec F-sc IOU

Player 89.1 96.5 92.7 88.2 50.0 100 66.7 46.7 nan nan nan nan
Barrier 40.9 94.1 57.1 100 50.0 100 66.7 100 nan nan nan nan
Shield_Block 45.5 94.3 61.4 82.0 21.8 100 35.8 77.8 nan nan nan nan
Enemy 98.2 88.7 93.2 98.6 100 100 100 100 nan nan nan nan
Enemy_Missile 34.8 99.4 51.5 93.3 0.0 nan 0.0 nan nan nan nan nan
Swirl 65.0 92.9 76.5 63.7 nan nan nan nan nan nan nan nan
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H Common Mistakes in Extracting and Detecting Objects

Figure 6: Animation and errors in the game of DemonAttack and YarsRevenge. We can see multiple
particle effects and invisible objects. In the left we see the spawn animation of an enemy, i n the
second image we see the death animation of the player and in the last we see the invisible shields in
YarsRevenge. In all cases the objects are already detected even if it is not yet or not anymore visible
to the player.

In this section, we will briefly discuss 2 common errors that can occur during detection and extraction
based on the games DemonAttack and YarsRevenge.

Case 1: Particle effects. As described in Section 2, we primarily use positional information and
the change of colors to identify objects in the visual detection of objects (VEM). It can happen that
particle effects are incorrectly identified as objects, see Figure 6. In our RAM extraction we have
defined the number and types of objects before extraction and concentrate on all game elements that
are relevant for the game. Since these particle effects have no effect on the game, we deliberately do
not detect them, which leads to a higher errors in F1 and IOU.

Case 2: Invisible objects. If objects disappear or appear in a game, there are various ways
to realize this. The most common and simplest method, which is also used in most games, is to
initialize objects only when they appear and to clear the memory when objects disappear. However,
some games, such as DemonAttack or YarsRevenge (Fig. 6) use a different method. Here the objects
are only set to invisible when they disappear or already exist before the objects appear. As such,
these objects are also found and tracked by our REM method at an early stage, even though they
have not yet appeared, which leads to an increased error. In many games we have therefore tried to
find binary information about which objects are active so that those that are not, are not detected.
This helps to minimize the error and increase the scores, as you can see in the updates scores in
DemonAttack.
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I Difference between AtariARI and OCAtari

Game Objects (AtariARI) Objects (OCAtari)
Asterix Enemies, Player, Lives, Score, Missiles Enemies, Player, Lives, Score, Missiles
Berzerk Player, Missiles, Lives, Killcount, Level,

Evil Otto, Enemies
Logo, Player, Missiles, Enemies, Score,
RoomCleared

Bowling Ball, Player, FrameNumber, Pins, Score Pins, Player, PlayerScore, PlayerRound,
Player2Round, Ball

Boxing Player, Enemy, Scores, Clock Enemy, Player, Scores, Clock, Logo
Breakout Ball, Player, Blocks, Score Player, Blocks, Live, Score, Ball
Freeway Player, Score, Cars Player, Score, Cars, Chicken
Frostbite Ice blocks, Lives, Igloo, Enemies, Player,

Score
Ice blocks Blue, Ice blocks White, Score, Player
Lives, Igloo, Enemies

Montezumas R. RoomNr, Player, Skull, Monster, Level,
Lives, ItemsInInventory, RoomState,
Score

Player, Lives, Skull, Barrier, Key, Score, Rope

MsPacman Enemies, Player, Fruits, GhostsCount,
DotsEaten, Score, Lives

Lives, Score, Player, Enemies, Fruits

Pong Player, Enemy, Ball, Scores Player, Enemy, Ball, Scores
PrivateEye Player, RoomNr, Clock, Score, Dove
Q*Bert Player, PlayerColumn, Red Enemy, Green

Enemy, Score, TileColors
Cubes/Tiles, Score, Lives, Disks, Player, Sam,
PurpleBall, Coily, GreenBall

Riverraid Player, Missile, FuelMeter Score, FuelMeter, Tanker, Lives, Player, He-
licopter, Missile, Bridge, Jet

Seaquest Enemy, Player, EnemyMissile, PlayerMis-
sile, Score, Lives, DiversCount

Player, Lives, OxygenBar, Score, Divers,
PlayerMissile, Enemy, EnemyMissile, Diver-
Count

SpaceInvaders InvadersCount, Score, Lives, Player, En-
emies, Missiles

Score, Lives, Player, Enemies, Missiles, Satel-
lite, Shield

Tennis Enemy, Scores, Ball, Player Enemy, Scores, Ball, BallShadow, Player,
Logo

Table 52: All games, supported by both AtariARI and OCAtari with their respective object lists.
Note that OCAtari returns a list of (x,y,w,h) per object and AtariARI provides the value written at
a specific RAM position (x and y positions or the direct value, e.g. , scores and so on)
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J Insufficent Information in AtariARI

Game Reason
Battlezone1 Unfinished
DemonAttack Not all Demons are spotted
Hero Missing Enemies
Q*Bert Some Enemies, like Coily (Snake) are missing
Skiing1 Unfinished
RiverRaid Important Elements (see above) are missing
Seaquest Oxygenbar, Divers are missing
SpaceInvaders Shields are missing

Table 53: In Table 3 some games are marked with a ∼ to show that the RAM information provided
by AtariARI are insufficient. This table gives a short reason while we marked each game.

K REM vs VEM: Speed performance

The following graph shows that we the RAM Extraction Method of OCAtari is, in average, 50×
computationally more efficient than the Vision Extraction method.

Figure 7: Using the RAM extraction procedures leads to 50× faster environments. The
average time needed to perform 104 steps in each OCAtari game, using RAM extraction (REM), and
our vision extraction (VEM).

1The games appear in the Github for AtariARI, but not in the associated publication (Anand et al., 2019). Also,
the information does not seem sufficient to play with them alone so we did not indicate these games in Table 3 at all.
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Abstract

A core ambition of reinforcement learning (RL) is the creation of agents capable of
rapid learning in novel tasks. Meta-RL aims to achieve this by directly learning such
agents. Black box methods do so by training off-the-shelf sequence models end-to-
end. By contrast, task inference methods explicitly infer a posterior distribution over
the unknown task, typically using distinct objectives and sequence models designed
to enable task inference. Recent work has shown that task inference methods are
not necessary for strong performance. However, it remains unclear whether task
inference sequence models are beneficial even when task inference objectives are not.
In this paper, we present evidence that task inference sequence models are indeed
still beneficial. In particular, we investigate sequence models with permutation
invariant aggregation, which exploit the fact that, due to the Markov property,
the task posterior does not depend on the order of data. We empirically confirm
the advantage of permutation invariant sequence models without the use of task
inference objectives. However, we also find, surprisingly, that there are multiple
conditions under which permutation variance remains useful. Therefore, we propose
SplAgger, which uses both permutation variant and invariant components to achieve
the best of both worlds, outperforming all baselines evaluated on continuous control
and memory environments. Code is provided at https://github.com/jacooba/
hyper.

1 Introduction

A prevalent method for creating agents that can quickly learn involves teaching them how to learn
quickly. This problem is well studied under the name of meta-reinforcement learning (Beck et al.,
2023a). In meta-RL, an agent learns a reinforcement learning algorithm over a distribution of
reinforcement learning problems, called tasks. In order to condition on data from new tasks, the
agent can use a generic sequence model, such as a recurrent neural network (RNN), trained end-
to-end (Duan et al., 2016; Wang et al., 2016). These methods are referred to as black-box methods
(Beck et al., 2023a).
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By contrast, a distinct category of research focuses on methods specialized for meta-RL. These
methods typically infer an explicit posterior over tasks, given data collected from a new task. To do
so, they generally use distinct objectives and distinct sequence models, designed to enable inference
of the unknown task. In particular, it is common to use sequence models that are invariant to the
order of their inputs, which we refer to as permutation invariant aggregation. Due to the Markov
property, the true posterior over tasks does not depend on this order. Collectively, these methods
are referred to as task-inference methods (Beck et al., 2023a).

While many task inference methods have been developed for meta-RL, recent work has shown black-
box methods to be more effective in practice (Ni et al., 2022; Beck et al., 2023b). However, these
results focus primarily on demonstrating the superiority of the end-to-end objective used in black-
box methods over the task-inference objective, and do not investigate the effect of the particular
sequence model. This leaves an open question: When using an end-to-end objective, is it still worth
using permutation invariant sequence models?

In this paper, we answer in the affirmative. We show that permutation invariant sequence models
still confer an advantage in a number of domains, even when trained end-to-end. However, we also
find, surprisingly, that there are domains where dependence on the permutation remains useful.
Specifically, we find sequence models with a permutation variant component to be less sensitive to
choices in the permutation invariant component, and we find permutation variance useful when there
exist permutation variant suboptimal policies. We extensively investigate the conditions under which
each type of sequence model is useful, conduct analysis to support our conclusions, and propose
a simple sequence model, called Split Aggregator, or SplAgger, adapted and simplified from the
literature on partial observability (Beck et al., 2020). SplAgger, depicted in Figure 1c, uses both
permutation invariant and permutation variant components to achieve the best of both worlds and
high returns in all domains evaluated.

2 Related Work

End-to-End Meta-RL The problem setting defined by meta-RL can be viewed as a particular
type of partially observable Markov decision process (POMDP) (Beck et al., 2023a). From the theory
of POMDPs, we know that the optimal policy for POMDPs, and thus meta-RL, can be represented
as an arbitrary function of history (Subramanian et al., 2022). Inspired by this, one category of
meta-RL methods, called black-box methods, train general purpose sequence models end-to-end on
the meta-RL objective (Duan et al., 2016; Wang et al., 2016; Ni et al., 2022; Team et al., 2023; Beck
et al., 2023b). Recently, it has been shown that these methods are a strong baseline in meta-RL (Ni
et al., 2022). Moreover, if hypernetworks (Ha et al., 2017) are used, these methods have superior
performance to task inference methods (Beck et al., 2023b). We build off of these results in our
paper, using end-to-end trained hypernetworks, following the methods in Beck et al. (2022; 2023b).
However, in contrast to these papers, we provide strong evidence that specialised sequence models,
still trained end-to-end, can provide a strong advantage.

Sequence Models in Meta-RL Task-inference methods explicitly attempt to infer a posterior
distribution over the identify of the task (Beck et al., 2023a). Following directly from the Markov
property, it can be shown that this posterior does not depend on the order of the data on which the
agent conditions. While generic sequence models, such as RNNs, may model permutation invariance,
they must learn to do so. In order to incorporate this inductive bias directly, methods generally
modify the sequence model to be permutation invariant (Rakelly et al., 2019; Galashov et al., 2019;
Raileanu et al., 2020; Wang & van Hoof, 2022; Imagawa et al., 2022). One popular method, called
probabilistic embeddings for actor-critic RL, or PEARL (Rakelly et al., 2019), incorporates permu-
tation invariance into the probability density function of a stochastic latent variable summarizing
history. Specifically, the density function, modelled as a product over individual transitions in the
data, is permutation invariant. We compare to this style of aggregation in our experiments. Another
approach uses commutative operators applied across the data (Imagawa et al., 2022; Wang & van
Hoof, 2022; Galashov et al., 2019). Generally, these can be viewed as (conditional) Neural Processes
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(CNP) (Garnelo et al., 2018b;a), and so we compare to this style of aggregation as well. Yet another
approach uses attention, self-attention, or transformers (Mishra et al., 2018; Fortunato et al., 2019;
Nguyen & Grover, 2022). Attention is inherently permutation invariant. Still, attention is com-
putationally expensive: whereas both commutative aggregation and recurrent networks use O(1)
memory and compute per timestep, attention generally requires O(t2) memory and compute per
timestep t, for autoregressive inference. While fast approximations of attention exist (Katharopou-
los et al., 2020), the computational requirements are significantly larger. Additionally, our limited
experimentation shows they have difficulty learning on our domains (see Appendix F for details).
Thus, we limit our solutions to constant memory and compute, in line with sequence models designed
to quickly handle long contexts (Garnelo et al., 2018b; Beck et al., 2020). Finally, we compare to
Aggregated Memory for RL, or AMRL (Beck et al., 2020). While AMRL was originally proposed
as a method for POMDPs, it was evaluated in meta-RL problem settings. Our method proposes a
simplification to AMRL that is vital in practice. Details of AMRL are covered in Section 4.

In-Context Learning The methods we investigate in this paper can be seen as performing in-
context learning. Learning that occurs after training and within the activations of a sequence model
is called in-context learning (Brown et al., 2020). Black box and task inference methods both
perform in-context learning. In part due to the popularity of large language models (Devlin et al.,
2019; Brown et al., 2020; Chowdhery et al., 2022), in-context learning has gained significant traction
recently, including in decision-making applications (Raparthy et al., 2023; Lee et al., 2024) and
reinforcement learning (RL) (Kirsch et al., 2022). While other meta-RL methods exist that do not
use sequence models for in-context learning, such as parameterized policy gradient methods, they
generally require more samples to adapt to novel tasks, including those used in our benchmarks
(Zintgraf et al., 2021; Beck et al., 2023a). In-context learning promises to address the sample
inefficiency still impeding progress in reinforcement learning. Learning to perform in-context RL is
the problem studied in meta-RL.

3 Background

3.1 Problem Setting

We formalize the learning problem as a Markov Decision Processes (MDP) represented by the tuple
(S, A, R, P, γ), where S denotes the state space, A the action space, R the reward function, P the
state transition probabilities, and γ the discount factor. During each time-step t, an agent finds itself
in a state st ∈ S, observes this state, and chooses an action at ∈ A. The MDP then transitions to a
new state st+1, following the probability distribution st+1 ∼ P(st+1|st, at) : S × A × S → R+, and
the agent receives a reward rt = R(st, at) : S × A → R. The agent acts to maximize the expected
future discounted reward, R(τ) =

∑
rt∈τ γtrt, where τ denotes the agent’s trajectory throughout an

episode in the MDP, and γ ∈ [0, 1) is a discount factor. The agent’s decisions are guided by a policy
π(a|s) : S × A → R+, a learned function mapping states to a probability distribution over actions.

Meta-RL algorithms learn an RL algorithm, f(τ), over a distribution of MDPs, or tasks. f(τ) maps
from the data, τ , sampled from a single MDP, M ∼ p(M), to policy parameters ϕ. As in a single
RL task, τ is a sequence up to time-step t forming a trajectory of states, actions, rewards, and
next states, τ ∈ (S × A × R × S)t. We can see τ as a trajectory of transitions, τ0, τ1, ..., τt, where
τt is shorthand for the transition, (st, at, rt, st+1). Here, τ may span multiple episodes within a
single MDP, since multiple episodes of interaction may be necessary for learning. Collectively, we
refer to these episodes as a meta-episode, and use the same symbol, τ , to refer to it. The policy,
π(a|s; ϕ = fθ(τ)), is parameterized by ϕ. f is represented as a sequence model, parameterized by θ,
which we refer to as the meta-parameters.
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The objective in meta-RL is to find meta-parameters θ that maximize the expected sum of the
returns in the meta-episode across a distribution of tasks (MDPs):

arg max
θ

EM∼p(M)

[
Eτ

[
R(τ)

∣∣∣∣π(·; ϕ = fθ(τ)), M
]]

.

3.2 Permutation Invariance

Task inference methods in meta-RL explicitly infer a posterior over tasks. In meta-RL, the optimal
policy can be computed from both the current state, st, and this posterior, P (M|τ) (Beck et al.,
2023a). Following Bayes’s rule and the Markov property, this posterior distribution, for a trajectory
of length T , can be written,

P (M|τ) ∝ P (τ |M)P (M) // Bayes’s rule

= P (M)
t=T∏

t=1
P (at, rt, st+1|st, M), // Markov property

with the full proof in Appendix A.

In this expression, the posterior, P (M|τ), does not depend on the order of the transitions, τ1, .., τt.
While it is possible to learn each factor, P (at, rt, st+1|st, M), as a function of each individual tran-
sition, τt, this form is not particularly amenable to inference, since it requires marginalizing over all
MDPs at test time. Still, it is possible to incorporate the permutation invariant structure into the
sequence model directly.

Generally this is done through the use of a permutation invariant binary operator,
⊕

, such as a
mean or a sum (Garnelo et al., 2018b;a; Galashov et al., 2019; Imagawa et al., 2022; Wang & van
Hoof, 2022), applied over the sequence of inputs. For a given sequence of encoded inputs, e1..., et,
we write the resulting aggregated representation, g(e1, ..., et):

g(e1, ..., et) = e1
⊕

e2
⊕

...
⊕

et.

The benefit of using these operators, in addition to permutation invariance, is that the sequence can
be computed recursively, since g(e1, ..., et) = g(e1, ..., et−1)

⊕
et. This means that the sequence at

all points in time can be compressed into O(1) memory and each new timestep can be computed
in O(1) time. Still, as we will demonstrate in practice, permutation invariance can be beneficial in
some environments and detrimental in others.

3.3 AMRL

AMRL, depicted in Figure 1, is a method for POMDPs that combines both permutation variant
and permutation invariant components (Beck et al., 2020). While AMRL uses permutation invariant
aggregators, the encoded inputs to the aggregators themselves are a function of history:

et = RNNθ(τ1, ..., τt).

Additionally, the neurons of each encoded input are split in half before aggregation, into et,1/2 and
et,2/2. The first half of the neurons are aggregated, while the second half skip the aggregation. The
complete sequence model is defined as

fθ(τ) = concatenate(et,1/2; gθ(e1,2/2, ..., et,2/2)).

Here, the RNN is able to handle short permutation variant sequence, which can then be integrated
without respect to order by the permutation invariant aggregation over longer periods of time. Since
we split the neurons before aggregation, we call this process split aggregation.
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(a) Hypernetwork (b) AMRL (c) SplAgger

Figure 1: The hypernetwork from Beck et al. (2023b) is depicted in 1a, the AMRL model from
Beck et al. (2020) is depicted in 1b, and SplAgger is depicted in 1c. The angled line indicates a split
connection that divides the neurons in half. The red arrow indicates a modified gradient computation
in the backward pass. A hypernetwork is indicated by h. SplAgger makes use of the hypernetwork
architecture combined with the AMRL sequence model. The hypernetwork architecture is necessary
for performant end-to-end training. Critically, SplAgger also removes the gradient modification from
AMRL which we show to be deleterious to performance.

Additionally, AMRL modfies each Jacobian, dg
dei,2/2

∀i, when computing the chain rule in the backward
pass. Specifically, it overwrites the true Jacobian with the identity matrix, I. This is called passing
the gradient straight through, or an ST gradient modification. Since the sum aggregator actually has
I as the true Jacobian, this can be seen as replacing the gradient with that of a sum. For the average
and max aggregators, the Jacobian is already similar to I. Specifically, the average has a Jacobian
that is I/t, and the max has an expected Jacobian that is I/t, under mild assumptions. Thus, the
modification can be seen as a rescaling of the gradient that does not diminish with time. Beck et al.
(2020) hypothesize that the ST modification has no negative impacts while also preventing gradient
decay.

4 SplAgger

Here we present our model, Split Aggregator, or SplAgger. As motivation, we first present a preview
of our experimental results. In Figure 2, we experiment with the permutation invariant model using
a point-wise maximum aggregator, as suggested in AMRL, and a permutation variant model, the
RNN. Permutation variance improves performance on the some domains (Figure 2a), but decreases
performance on others (Figure 2b). Moreover, when we add the ST gradient modification, perfor-
mance decreases severely. These result motivate the need for our model, SplAgger, which achieves
the highest returns in both domains.

SplAgger uses the same split aggregation as in AMRL, but without the ST gradient modification.
Simplifying AMRL by removing this gradient modification is key to its performance. While the
ST modification does prevent one type of gradient decay, permutation invariant aggregators already
address the relevant type of gradient decay. Moreover, the ST aggregator causes both the explosion
of other gradients and a severe decrease in performance. We show that this is the case in Sections
5 and 6, motivating the need for SplAgger. Additionally, SplAgger uses a different architecture for
the policy than in AMRL. Recent results show that the hypernetwork (Ha et al., 2017) architecture
is critical in unlocking the performance of end-to-end objectives and enabling black box methods
to outperform task inference methods (Beck et al., 2023b). Thus, the main idea behind SplAgger
is to add AMRL to hypernetworks trained end-to-end but remove the ST gradient modification.
SplAgger is the combination of these components and is depicted in Figure 1c.
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(a) MC-LS (b) Planning Game

Figure 2: A preview of later results. The permutation invariance of the max aggregator improves
returns relative the RNN on the MC-LS environment (Beck et al., 2020), but decreases returns on
the Planning Game (Ritter et al., 2021). Additionally, the ST gradient decreases the returns of the
max aggregation. These results motivate SplAgger, which achieves the highest returns. (Results
are reported with a 68% confidence interval, computed through bootstrapping with 1,000 iterations
across three seeds, consistent with all plots presented.)

5 Experiments

In this section we evaluate SplAgger on several domains. First, we evaluate on two standard meta-RL
benchmarks in Section 5.1, to make sure that the aggregation method does not harm performance
on environments without large demands on the sequence models. Second, we evaluate on two prior
meta-RL benchmarks designed to test sequence models in mazes in Section 5.2. We additionally
evaluate on three environments design to systematically test different components of SplAgger in
Section 5.3.

On the four primary benchmark environments, we compare to four baselines. Hyperparamter tuning
is detailed in Appendix B. Since prior results demonstrate the need for hypernetworks when train-
ing end-to-end (Beck et al., 2023b), all baselines have been evaluated using hypernetworks, with
design choices detailed in Appendix B. We additionally present negative results on a novel initializa-
tion method in Appendix E. The baselines evaluated primarily differ in their choice of aggregation
function, g, and encoding of inputs, et. The baselines are described below.

RNN. The RNN baseline can be written f(τ) = et = RNN(τ1, ..., τt). Here there is no aggregation
function, g, and the baseline uses a standard gated recurrent unit (Cho et al., 2014), as in Zintgraf
et al. (2021) and Beck et al. (2023b).

CNP. The conditional neural process (CNP) consists of permutation invariant aggregation without
any additional components (Garnelo et al., 2018a). Specifically, f(τ) = g(e1, ..., et). Here, et is a
linear encoding of τt. We use the mean operator for g, as suggested by Garnelo et al. (2018a).

AMRL. AMRL (Beck et al., 2020) uses an RNN to encode et in addition to permutation invariant
aggregation, and is described in Section 3. For AMRL, we use the pointwise maximum aggregator
in our experiments, both to match the aggregator used in SplAgger, and because that aggregator
was found to be strongest by Beck et al. (2020).

PEARL. The PEARL baseline uses the aggregation method from the PEARL algorithm (Rakelly
et al., 2019), which incorporates permutation invariance into the probability density function of a
stochastic latent variable summarizing history. The density function is modelled as a product over
individual transitions in the data. We can write this as f(τ) = g(e1, ..., et) = z ∼ α

∏t=T
t=1 N (z; µt =

et,1/2, σ2
t = diag(et,2/2)), where et is a linear encoding of τt and α is a normalizing constant. To
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Figure 3: Depictions of the Planning Game, T-LS, T-Maze Agreement, and T-Maze Latent environ-
ments used in Sections 5.2 and 5.3.

compare the effects of aggregation in isolation, our PEARL baseline only implements the aggregation
method used in PEARL, and leaves the rest of the algorithmic choices the same as in SplAgger.
Additional design choices and hyperparameters for PEARL are presented in Appendices B and C.

5.1 MuJoCo Benchmarks

The first two environments for benchmarking are variants of MuJoCo proposed by Zintgraf et al.
(2021), and both involve legged locomotion. While these environments have no great demands on
memory, they are common meta-RL benchmarks (Humplik et al., 2019; Rakelly et al., 2019; Zintgraf
et al., 2021; Beck et al., 2022; 2023b) that enable us to evaluate what effect SplAgger has on standard
RL tasks. See Appendix H for details on the environments.

Results are shown in Figure 4. SplAgger achieves the greatest return, though the improvement is
modest. Training the PEARL baseline on this domain is unstable and PEARL receives significantly
lower returns. On Walker, we see similar performance across all methods. Overall, SplAgger achieves
similar or greater returns compared to other baselines. This demonstrates that our method, designed
to improve environments with difficult demands on memory, also does not decrease performance on
domains with limited memory requirements.

5.2 Memory Benchmarks

We additionally conduct tests on two environments, T-LS and MC-LS, proposed by Beck et al.
(2020). Both of these environments were designed to test long-term memory, and the latter has
been used previously in meta-RL (Beck et al., 2023b). The T-LS environment is depicted in Figure
3b. The MC-LS environment is designed to challenge an agent’s long-term memory based on visual
cues from Minecraft. Environment details can be found in Appendix H.

Results in Figure 5 show that SplAgger achieves the highest sample efficiency on both environments.
The RNN and PEARL are not able to learn the optimal policy within the allotted number of frames.
The reasons for the failure of the RNN are discussed in Section 6, while potential reasons for the
failure of PEARL are analyzed in Appendix D. While CNP is able to learn optimally, it requires
significantly more frames on T-LS. AMRL achieves similar performance. Both AMRL and CNP are
similar to our method, SplAgger. However, AMRL differs in its gradient estimation and CNP differs
in its use of mean aggregator, instead of max, and its lack of an RNN. To fully understand the
contribution of each, we systematically modify these components in isolation, in the next section.
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(a) Cheetah-Dir (b) Walker

Figure 4: Results on MuJoCo benchmarks. SplAgger achieves the same or better results on both
domains. PEARL achieves significantly lower return on Cheetah-Dir.

5.3 Alternative Aggregation

In this section we introduce modifications of SplAgger, and three new environments designed to
test these modifications. Since the existing baselines differ in their choice of aggregation function,
g, encoding of inputs, et, and use of the ST gradient modification, we systematically test these
differences here. The most relevant additional baselines are described below, with the rest detailed
in Appendix I.

SplAgger-noSplit removes the split aggregation from SplAgger, but still uses max aggregation and
an RNN to encode et. Comparing to this method allows us to validate the use of the split aggregation
in SplAgger. SplAgger-noRNN removes the RNN from SplAgger in order to test the effects of
removing permutation variant components. Since this obviates the need for the split connection,
that component is removed as well. Without these components, this method is equivalent to just
computing a maximum over linear encodings of each transition, τt. AMRL-noRNN removes
the RNN and split connection from AMRL. Without these components, this method is equivalent
computing a maximum over linear encodings of each transition, τt, along with the ST gradient
modification. SplAgger-avg replaces the max operator in SplAgger with an average, in order
to test the effects of alternative permutation invariant operators. SplAgger with other operators
(avgmax, softmax, wsoftmax) that interpolate between the average and max are evaluated as well,
with details in Appendix I.

Planning Game. First, we evaluate on the Planning Game Ritter et al. (2021), in order to evaluate
the need for permutation variant components and how to combine them with permutation invariant
components. This environment tests an agents ability to discover and remember multiple pieces
of information required for subsequent navigation. The Planning Game is useful for evaluation
here due to the existence of both a permutation invariant optimal policy and permutation invariant
suboptimal policy. The environment is depicted in Figure 3a and detailed in Appendix H.

On this domain, we evaluate methods that modify how the RNN is combined with the permutation
invariant aggregation. Results in Figure 6a show that SplAgger and RNN learn the fastest in this
domain. Both AMRL and SplAgger without the split connection learn a suboptimal policy. This
demonstrates the detrimental effects of the AMRL gradient modification and the benefit of the
split aggregation, which motivates SplAgger. We also see that AMRL without an RNN fails to
learn any reasonable policy, achieving near zero reward. Since the only difference between this and
SplAgger without an RNN is the use of the ST gradient modification, this shows strong evidence
of the detrimental effects of the gradient modification in AMRL. We analyze the causes in Section
6. While both SplAgger with an RNN and SplAgger without an RNN outperform the sub-optimal
exploration policy eventually, and achieve similar returns ultimately, SplAgger with an RNN learns
faster initially. We discuss this further in Section 6.
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(a) T-LS (b) MC-LS

Figure 5: Results on memory benchmarks. SplAgger achieves the highest returns on both domains,
indicating the fastest learning. The standard RNN is not able to learn on either domain within the
allotted number of frames.

T-Maze Agreement. Second, we evaluate on T-Maze Agreement in order to investigate the
specific permutation invariant operator,

⊕
. In this environment, the agent receives two binary

signals: one at the beginning of the maze and one in the middle. The agent must open a door
depending on whether the signals agree or disagree. This environment is depicted in Figure 3c.
While the max aggregation can easily identify the support of the state distribution in the data
(Beck et al., 2020), and thus easily identify which signals have been seen in each state, the average
aggregation must learn to adjust the representation of all states to interpret the average. Thus, we
hypothesize that this environment is easier for max aggregation and harder for mean aggregation.

On this domain, we evaluate methods that modify the specific permutation invariant operators.
Results in Figure 6b show that SplAgger achieves the highest returns, demonstrating the superiority
of max aggregation in this environment. While the RNN and average variant of SplAgger are able to
learn, they require more frames, as expected. The avgmax, softmax, and wsoftmax all learn almost
as quickly as SplAgger. Thus, we see that SplAgger is fairly robust to the choice of operator in this
domain, as long as it computes some information about the maximum.

T-Maze Latent. Finally, we evaluate on T-Maze Latent, which also modifies the T-Maze envi-
ronment in order to investigate the specific permutation invariant operator. In this environment, the
agent receives an indicator at every timestep. This indicator is either drawn from {0, 1} with a 50%
chance of 1 or a 70% chance of 1, depending on the task. This environment is depicted in Figure
3d. The average aggregator should quickly reveal the latent variable, as the variance of the mean
decreases, whereas the max aggregator should have a more difficult time counting the occurrence of
indicators in different states. Thus, we hypothesize that this environment should be harder for max
aggregation methods and easier for average aggregation.

On this domain, as on T-Maze Agreement, we evaluate methods that modify the specific permutation
invariant operators. Results in Figure 6c show that, surprisingly, all operators used with SplAgger
learn at approximately the same rate. We hypothesize that here, SplAgger is able to fall back upon
leveraging the RNN. Since the environment was designed to be more difficult for the max operator,
we predict that there may be a difference between the operators when the RNN and skip connection
of SplAgger are not used. To test this hypothesis, we conduct two additional experiments. We test
both SplAgger without an RNN, but still with the default max operator (SplAgger-noRNN), and
SplAgger without an RNN but with the average operator (SplAgger-noRNN-avg). Since the removal
of the RNN obviates the need for the split aggregation, the split aggregation is removed as well.
We see that, as predicted, the method with the average operator performs better than the method
with the max operator, when the RNN and split connection are removed. This demonstrates that

458



RLJ | RLC 2024

(a) Planning Game (b) T-Maze Agreement (c) T-Maze Latent

Figure 6: SplAgger achieves returns that are equal to or higher than other methods. The Planning
Game shows the importance of incorporating RNNs, either in isolation or with split aggregation, and
the failure of gradient modification as in AMRL. Combining the RNN and permutation invariant
aggregation, without the split connection (SplAgger-noSplit), decreases performance of each. The T-
Maze Agreement domain shows the max operator to be beneficial, enabling performance even greater
than the RNN when used with SplAgger. The T-Maze Latent environment shows that SplAgger
is able to make the max aggregator performant, even in environments where the computing the
average alone is superior. Note that each legend shows the additional methods introduced for that
experiment, while the legend at the top shows methods from prior experiments.

the combination of the RNN and split aggregation make SplAgger remarkably robust to different
environments, and justifies both our aggregation method and the max operator.

6 Analysis

In this section we analyze different sequential models to gain insights into their performance. We
investigate why RNNs remain useful in some cases, even when permutation invariance should be
sufficient, and why AMRL performs poorly in our experiments. Specifically, we find permutation
variance to be useful when there exist permutation variant suboptimal policies that form a useful
stepping stone for learning optimal policies later. Additionally, we find that both AMRL and
SplAgger prevent certain types of gradient decay, but AMRL also causes other gradients to explode.

6.1 Learning Suboptimal Policies

While sensitivity to permutation is not required to learn optimal policies in meta-RL, we find that
the RNN surprisingly improves sample efficiency on the Planning Game. As discussed in Section
5, the Planning Game has a permutation variant suboptimal policy. This policy re-explores all
states after every goal is reached. To do this, the agent must remember where it is in a sequence of
exploratory actions, and then restart the sequence when a new goal is found. We examine rollouts
to confirm that SplAgger first learns this suboptimal policy. While SplAgger without an RNN can
surpass the suboptimal policy eventually, it also achieves achieves lower returns throughout training
compared to an RNN, since the RNN learns the suboptimal policy faster. Thus, RNNs can achieve
higher returns sooner, when there is a permutation variant suboptimal policy that can act as a
stepping stone for learning the optimal policy. We hypothesize that the reason SplAgger without
an RNN cannot learn the suboptimal policy is that the max aggregation can record that a goal has
been reached, but cannot identify when that goal was reached, or that it was just reached.

To confirm this, we perform an additional experiment, in which the agent receives no observation
of the state, creating partial observability. All it observes is whether it is currently at the goal
state. Hence, there is no way for it to distinguish which MDP it is in, and the problem can no
longer be modelled as a distribution of MDPs. In this case, the observations are not Markov and
permutation invariant aggregation no longer suffices for decision making. Still, the optimal policy
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Figure 7: Here we show results on a modified Planning Game. If no observation is given to the
agent, an RNN is required to learn the proper exploration strategy. This is the same exploration as
required by the easier sub-optimal policy in the original Planning Game.

in this environment requires the same strategy as the suboptimal policy in the Planning Game:
explore every state until the goal is reached. When the agent reaches a goal, the goal location is
reset, and the agent must restart exploration. Figure 7 shows that the RNN is able to learn this
policy, while SplAgger without an RNN is not. This shows how, even in a distribution of MDPs,
where the Markov property holds in each MDP, permutation variance can improve sample efficiency,
due to the presence of non-Markov policies that are suboptimal but faster to learn.

6.2 Gradient Decay

Finally, we investigate the gradients of our sequence models to explain why, in some domains,
SplAgger works, while AMRL (Beck et al., 2020) does not. AMRL demonstrates the benefit of
its gradient modification by measuring the average gradient of the memory with respect to the
encoding of the initial transition, || dft

dτ0
||2. AMRL shows that this quantity decays over time for

normal sequence models, but not for AMRL, due to the gradient modification. AMRL methods
overwrite this gradient to set it equal to the identity.1 We depict these gradients at initialization in
Figure 8a, evaluating over three model initializations.

While AMRL prevents gradient decay, it also causes gradient explosion, with respect to the model
parameters, || dft

dθ ||2. Since the number of inputs grows over time, and the norm of the gradients
for each input does not shrink, the gradients with respect to the parameters grows. We depict this
phenomenon in Figure 8b. For an input, we sample noise uniformly over [−1, 1], and replicate this
sample for every dimension in the input to the sequence model.

From these two gradients, it is not clear why SplAgger performs better than an RNN, so we propose
two alternative metrics for evaluation. In Figure 8c, we plot the gradient of the inputs, over time
(t), holding the output time (T) fixed: || dfT

dτt
||2. This value is roughly constant for all models,

except for the RNN. For an RNN, it grows as t approaches T , implying that, for a fixed output,
the inputs become less sensitive backward in time. In other words, by privileging recent transitions,
the gradients are not permutation invariant. The gradients are not equal for all inputs, for a
given output. In addition to this metric, we can measure the permutation variance directly. In
Figure 8d, we compute the mean difference between encodings of different permutations of inputs at
initialization. We also normalize the encodings, to have unit magnitude first. We see that the RNN
is the most permutation variant, and sequence models without any RNN, such as SplAgger without
an RNN, are the least. Critically, models like SplAgger that perform best are not the most or least
permutation variant, but rather have some components of each.

1Beck et al. (2020) also note that the signal-to-noise ratio can also affect performance. However we can only
recreate this result by setting the bias in all models to zero, and find it less predictive than the gradients regardless.
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(a) Gradient w.r.t. Initial Transition Over Time (b) Gradient w.r.t. Parameters

(c) Final Gradient w.r.t. All Transitions (d) Encoding Permutation Difference

Figure 8: An empirical analysis of gradients in SplAgger, AMRL, and RNNs. In 8a we see that the
gradient of the output of the sequence model with respect to the initial input decreases over time.
AMRL modifies the gradients to prevent this, but at the cost of exploding gradients with respect to
the parameters, depicted in 8b. We find that poor performance of the RNN is rather due to earlier
inputs having a smaller gradient, when considering the final output of the sequence model. depicted
in 8c. Finally, models that are the least permutation variant do not necessarily perform better; the
highest performing model, SplAgger, has an intermediate difference, but has components that are
both permutation variant and permutation invariant. This is shown in 8d.

7 Conclusion

In this paper we have shown how permutation invariance can be critical when learning to reinforce-
ment learn. We have, for the first time, confirmed this advantage even without the use of task
inference objectives. Surprisingly, we also demonstrate that permutation variance can still be useful,
both to learn sub-optimal non-Markovian policies early on, and to make the sequence model more
robust to the choice of specific aggregation function. Using these insights, we presented SplAgger,
making use of split aggregation to achieve the best of both methods. Moreover, we have shown that
in several domains, popular existing methods fail, and discussed reasons for the failure of each. We
analyzed how the gradient modification in AMRL causes gradients with respect to the parameters
to explode, and measure different types of gradient decay and permutation variance in RNNs.
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Appendix

A Posterior Factorization

Below we include a proof of the factorization of the task posterior, as claimed in the main body.

P (M|τ)

= P (τ |M)P (M)
P (τ) // Bayes’s Rule

∝ P (τ |M)P (M)
= P (τ1, τ2, ..., τT |M)P (M)

= P (M)
t=T∏

t=1
P (τt|τ1, τ2, ..., τt−1, M)

= P (M)
t=T∏

t=1
P (τt|st, M) // Markov Property

= P (M)
t=T∏

t=1
P (st, at, rt, st+1|st, M)

= P (M)
t=T∏

t=1
P (at, rt, st+1|st, M)

B Hyperparameter Tuning

(a) T-LS (b) Walker (c) T-LS

Figure 9: Tuning the KL-divergence weight on PEARL, in 9a and 9b, and tuning the softmax
temperatures in Figure 9c. For PEARL, the chosen weight, 1−6, achieved the highest returns. Using
a weight of 0 achieved a similar final returns, suggesting the stochastic latent was not particularly
useful in our experiments. We chose 1−6 as it achieved the greatest average return throughout
training, on both environments. For the softmax aggregators, 0.1 was the best initialization for the
temperature.
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We tune each baseline over five learning rates for the policy, [3e-3, 1e-3, 3e-4, 1e-4, 3e-5], for three
seeds. (Results are reported with a 68% confidence interval, computed through bootstrapping with
1,000 iterations across three seeds, consistent with all plots presented.) Of the models evaluated,
PEARL, and aggregators with the softmax aggregation, each require an additional hyperparameter.
PEARL require a weight on objective penalizing the KL-divergence to the prior. We tune this
weight on the T-LS and Walker environments, with a weight of 1−6 performing the best. In Figures
9a and 9b, we display these results. Additionally, for softmax aggregators, we tuned the initial
temperature of the softmax function. The temperature is learnable, however changes very slowly,
and so is sensitive to initialization. This temperature was tuned between 1.0 and 0.1 on T-LS, with
0.1 performing the best. Note that we tuned the aggregators without using an RNN or SplAgger.
This is depicted in Figure 9c.

For all other hyperparameters, we default to those in Beck et al. (2023b), with two exceptions. First,
on the Planning Game, we it necessary to set the exploration bonus in the objective to zero in order
to learn any systematic exploration. Second, Beck et al. (2023b) projected the output of the RNN
down to size 10 or 32, and then to size 10 or 25, depending on the environment, using a linear layer,
before being passed to the hypernetwork. For consistency, we leave this size as 24 and 25 for all
models and all experiments.

C PEARL Design Choices and Additional Experiments

(a) T-LS (b) Cheetah-Dir (c) Walker

Figure 10: PEARL using the VariBad-stlye supervized reconstruction from Zintgraf et al. (2021)
to train the sequence model (PEARL-vari). PEARL-vari, increases returns slightly on T-LS and
Cheetah-Dir, but remains lower than SplAgger.

In addition to the experiments with PEARL in the main body, we present a preliminary findings
here. Out of all baselines, PEARL is the only method that requires a stochastic latent variable. In
the original paper, the stochastic latent variable is sampled once per episode. However, this type
of exploration requires multiple episodes for exploration, and will necessarily fail on multiple of our
benchmarks. Instead, we consider two alternatives. In the experiments presented in the main body of
the paper, we sample the stochastic latent at every state, and here, and here we additionally present
experiments that use the self-supervision provided by reconstructing rewards and transitions to train
the stochastic latent, as in Zintgraf et al. (2021). We use the default hyperparameters presented by
Zintgraf et al. (2021). While the results here are incomplete, and the model is still far inferior to
SplAgger, we did find some improvement, as shown in Figure 10.

D Analysis of PEARL Aggregation Failure

Here, we investigate why PEARL’s aggregation performs worse than SplAgger, and hypothesize that
the poor performance has due to with modelling assumptions regarding the variance of its latent
variable. Unlike other methods, PEARL’s aggregation method requires the use of a stochastic latent
variable. We observe that the variance of the aggregator decreases rapidly over time. In Figure 11a
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(a) PEARL Latent Variance
(Initialization)

(b) PEARL Latent Variance
(Trained)

Figure 11: In 11a, we see that the variance of PEARL decreases rapidly to zero at initialization. In
11b, we see the same phenomenon, but when PEARL is fully trained.

and Figure 11b, we can see that both at initialization and after training, the variance decreases
rapidly to zero. Looking at the probability density function (PDF), we can see why.

Specifically, PEARL uses a product of Gaussians,

qθ(z|τ) ∝
t=T∏

t=1
N (z; µt(τt), diag(σ2

t (τt))),

which has a closed form for the joint mean and covariance. From Bayesian conjugate analysis, we
know that the product of Gaussian PDFs is itself a Gaussian (Murphy, 2007). The new Gaussian,
qθ(z|τ) = N (z; µ′, diag(σ′)), has a new mean, µ′, which itself is a weighted average of each individual
µt. The respective weights are 1/σ2

t , and the variance is 1
1/σ2

0+...+1/σ2
T

. Since the denominator in the
variance of PEARL grows monotonically, the variance must drop monotonically. In fact, assuming
the variances are approximately equivalent at initialization, then the variance should decrease like
1/t.

The fact that the variances decreases over time could create problems for learning. For example,
if the agent were to collect contradictory evidence about the latent, then the variance of the true
posterior would increase. Well our domains do not present contradictory evidence, many transitions
in our domains are uninformative, and so the sequence model would still need to learn to counteract
the decreasing variance, which may hinder learning. Future work could experiment with removing
the latent variable from PEARL, which would be equivalent to the weighted average aggregator
presented in Section G, or producing the variance of the latent variable using a different permutation
invariant function. Note that this pathology only applies to the aggregation method used in PEARL,
and may not be the most important factor to consider in the off-policy setting in which the PEARL
method originally evaluates (Rakelly et al., 2019).

E LSTM Invariant Initialization

Finally, we experiment with using a sequence model that is initialized to be permutation invariant,
but that can easily learn to be permutation variant. In order to do this, we use a long short-term
memory unit (LSTM) (Hochreiter & Schmidhuber, 1997), and adjust the initialization of the gates.
Specifically, we adjust the gates to compute a summation, before being normalized for the output.
First, we set the weights of the input and forget gates to zero. Then, we adjust the bias of the input
and forget gates to gate outputs of 1 − ϵ, for ϵ = 0.0001. This forces all inputs to be fully added to
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(a) Planning Game (b) T-Maze Agreement

Figure 12: Here we evaluate an LSTM model initialized to be permutation invariant. The returns
are far lower than SplAgger.

the running sum and not forgotten. We additionally we set any weight connected emanating from
the recurrent state, in the cell and output gates, to zero. This forces there to be do dependence
on past states. We use an LSTM instead of a GRU so that the input gate is not forced to be the
compliment of the forget gate. Results were not encouraging, and are depicted in Figure 12.

F Transformer Results

Figure 13: The transformer model fails to learn and is significantly outperformed by SplAgger on
the T-LS domain.

As discussed in the main body, attention is inherently permutation invariant. Thus, transformers
without positional encodings are an obvious fit for this problem setting. However, Attention is
computationally expensive: whereas both commutative aggregation and recurrent networks use O(1)
memory and compute per timestep, attention generally requires O(t2) memory and compute per
timestep t. We therefore consider it appropriate to limit our solutions to constant memory and
compute, in line with sequence models designed to quickly handle long contexts (Garnelo et al.,
2018b; Beck et al., 2020). Still, the runtime was not entirely prohibitive on one experiment: T-LS.
Thus, we did run a Transformer model on T-LS, with results depicted in Figure 13. The results
show that the transformer did not learn in the allotted number of frames, and was significantly
outperformed by SplAgger.
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G Additional Weighted Average Aggregation Results

Figure 14: The weighted average aggregator (wavg) performs worse than many others, including the
default, max, on T-Maze Agreement.

In addition to the softmax aggregator, which computes a weighted softmax of the inputs, we exper-
imented with a weighted average aggregator that does not use softmax. The weights and aggregates
are still predicted separately for each input, as with wsoftmax aggregator, resulting in half the num-
ber of neurons output as are input. We chose to evaluate this aggregator as it more closely resembles
the aggregator in PEARL. In fact, it is the same aggregation method if PEARL always output zero
variance, and thus did not train a stochastic latent variable. Our results, shown in figure 14 show
this aggregation method to learn slightly faster than the average aggregator, but less stable. It also
performed worse than max, softmax, and wsoftmax.

H Environment Details

Cheetah-Dir. In Cheetah-Dir Zintgraf et al. (2021), the agent outputs six different torques in
order to control a cheetah robot. The agent is rewarded for its velocity in either the forward or
reverse direction, depending on the sampled task, and receives a penalty for the magnitude of the
torques. The agent receives a 17-dimensional observation consisting of the position, angle, and
velocity of each body part. Here, the agent has one episode during which it can adapt to the task.

Walker. In Walker Zintgraf et al. (2021), the agent outputs six different torques in order to control
a two-legged torso morphology. The agent receives 17-dimensional observations and receives a reward
for running only in the forward direction. The tasks are defined by random samples of 65 different
physics coefficients, such as body mass and friction, which collectively define the task. Here, the
agent has two episodes during which it can adapt to the task.

T-LS. In the T-LS environment Beck et al. (2020), the agent inhabits a T-shaped maze, called a
T-Maze. The agent is shown a signal and then deterministically stepped down a corridor of length
100. At the end of the corridor, that agent opens one of two doors. If the door matches the signal,
then the agent receives a reward of 4, and if not, it receives a penalty of -3. In between the start and
end of the corridor, observations are augmented by a Bernoulli random variable. The agent adapts
across four sequential episodes, which together constitute a single meta-episode.

MC-LS. The MC-LS environment Beck et al. (2020) is designed to challenge an agent’s long-
term memory based on visual cues from Minecraft. The task involves navigating a sequence of 16
rooms. In each room, the agent must choose to go either left or right around a central column.
This decision is based on the column’s material: diamond or iron. Discrete actions allow for a finite
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set of observations. When the agent makes a decision in line with the observed material, it earns
a reward of 0.1. The final decision at the end of the sequence is dictated by a color signal (red or
green) presented at the beginning, which specifies the task. As in the T-Maze, the agent receives
a high reward (4) for a correct final action and a significant penalty (-3) for an incorrect one. The
agent adapts across two sequential episodes, which together constitute a single meta-episode.

Planning Game. The Planning Game, which is adapted from Ritter et al. (2021). In the Planning
Game (Ritter et al., 2021), the agent inhabits a 3 × 3 grid that wraps around each side. In this
grid, the agent must navigate to a goal. The goal location, observed by the agent, changes multiple
times during a single episode. The MDP is not defined by the goal location, shown to the agent,
but rather by a changing transition function. The state in each cell of the grid changes in each task.
A task is thus defined by a permutation of the 9 states. For instance, while the agent may be in
the bottom right of the grid in two different tasks, it observes a different state there in each task.
The states themselves are encoded by one-hot encodings. The agent must explore each state once to
learn where each state is on the grid. Once it has seen each state, then it can immediately interpret
the given goal instruction. Without knowing the state locations, there is a suboptimal policy that
does not require remembering each state, namely, re-exploring the entire grid every time a goal is
reached. Note the grid size in our experiments is 3 × 3, rather than the original 4 × 4, to decrease
the total number of frames required for training.

I Additional Baselines

SplAgger-noRNN-avg. This method replaces the max operator in SplAgger with an average
and removes the RNN. Since removal of the RNN obviates the need for split aggregation, split
aggregation is removed as well. This is equivalent to just computing a mean operation over linear
encodings of each transition, τt.

SplAgger-avgmax. This method replaces the max operator in SplAgger with an average and a
max operator. The avgmax aggregator averages half of the neurons and computes a maximum over
the other half. This aggregation is evaluated as a way to use both the average and max aggregation.

SplAgger-softmax. This method replaces the max operator in SplAgger with a softmax operator.
The softmax aggregator computes an average over the inputs where the weights are determined by
the softmax of the aggregates themselves. In order to aggregate online, in O(1) memory, we store
both the sum of the weighted aggregates, i.e., n = e0exp(e0/η)+ ...+etexp(et/η), and the sum of the
weights seen so far, i.e., d = exp(e0/η)+...+exp(et/η), where η is a learnable temperature parameter.
The output is then the quotient of the weighted aggregates and the weights, n/d. This aggregator
interpolates between the average and max. The initialization of the temperature is important, as it
defines the interpolation, and is set to 0.1. Tuning information is available in Appendix B.

SplAgger-wsoftmax. This method replaces the max operator in SplAgger with a different soft-
max operator. This aggregator is the same as softmax, but the weights are predicted separately
from the weighted encodings. Half of the input neurons are aggregated, and the other half are used
to compute the logits for the softmax weights. An additional version of this aggregator without the
softmax is investigated in Appendix G.
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Abstract

In reinforcement learning, Reverse Experience Replay (RER) is a recently proposed
algorithm that attains better sample complexity than the classic experience replay
method. RER requires the learning algorithm to update the parameters through
consecutive state-action-reward tuples in reverse order. However, the most recent
theoretical analysis only holds for a minimal learning rate and short consecutive
steps, which converge slower than those large learning rate algorithms without RER.
In view of this theoretical and empirical gap, we provide a tighter analysis that
mitigate the limitation on the learning rate and the length of consecutive steps.
Furthermore, we show theoretically that RER converges with a larger learning rate
and a longer sequence.

1 Introduction

Reinforcement Learning (RL) is highly successful for a variety of practical problems in the realm of
long-term decision-making. Experience Replay (ER) of historical trajectories plays a vital role in
RL algorithms (Lin, 1992; Mnih et al., 2015). The trajectory is a sequence of transitions, where each
transition is a state, action, and reward tuple. The memory space used to store these experienced
trajectories is noted as the replay buffer. The methods to sample transitions from the replay buffer
determine the rate and stability of the convergence of the learning algorithms.

Recently, Reversed Experience Replay (RER) (Florensa et al., 2017; Rotinov, 2019; Lee et al., 2019;
Agarwal et al., 2022) is an approach inspired by the hippocampal reverse replay mechanism in human
and animal neuron (Foster & Wilson, 2006; Ambrose et al., 2016; Igata et al., 2021). Theoretical
analysis shows that RER improves the convergence rate towards optimal policies in comparison
with ER-based algorithms. Unlike ER, which samples transitions uniformly (van Hasselt et al.,
2016) (known as classic experience replay) or weightily (Schaul et al., 2016) (known as prioritized
experience replay) from the replay buffer, RER samples consecutive sequences of transitions from
the buffer and reversely fed into the learning algorithm.

However, the most recent theoretical analysis on RER with Q-learning only holds for a minimal
learning rate and short consecutive steps (Agarwal et al., 2022), which converges slower than classic
Q-learning algorithm (together with ER) with a large learning rate. We attempt to bridge the gap
between theory and practice for the newly proposed reverse experience replay algorithm.

In this paper, we provide a tighter analysis that relaxes the limitation on the learning rate and the
length of the consecutive transitions. Our key idea is to transform the original problem involving a
giant summation (shown in Equation 3) into a combinatorial counting problem (shown in Lemma 2),
which greatly simplifies the whole problem. We hope the new idea of transforming the original prob-
lem into a combinatorial counting problem can enlighten other relevant domains. Furthermore, we
show in Theorem 2 that RER converges faster with a larger learning rate η and a longer consecutive
sequence L of state-action-reward tuples.
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2 Preliminaries

Markov Decision Process We consider a Markov decision process (MDP) with discounted re-
wards, noted as M = (S,A, P, r, γ). Here S ⊂ Rd is the set of states, A is the set of actions, and
γ ∈ (0, 1) indicates the discounting factor. We use P : S×A×S → [0, 1] as the transition probability
kernel of MDP. For each pair (s, a) ∈ S × A, P (s′|s, a) is the probability of transiting to state s′

from state s when action a is executed. The reward function is r : S ×A → [−1, 1], such that r(s, a)
is the immediate reward from state s when action a is executed (Puterman, 1994). The policy π
is a mapping from states to a distribution over the set of actions: π(s) : A → [0, 1], for s ∈ S. A
trajectory is noted as {(st, at, rt)}∞

t=0, where st (respectively at) is the state (respectively the action
taken) at time t, rt = r(st, at) is the reward received at time t, and (st, at, rt, st+1) is the t-step
transition.

Value Function and Q-Function The value function of a policy π is noted as V π : S → R.
For s ∈ S, V π(s) := E [

∑∞
t=0 γtr(st, at|s0 = s)], which is the expected discounted cumulative reward

received when 1) the initial state is s0 = s, 2) the actions are taken based on the policy π, i.e., at ∼
π(st), for t ≥ 0. 3) the trajectory is generated by the transition kernel, i.e., st+1 ∼ P (·|st, at), for
all t ≥ 0. Similarly, let Qπ : S ×A → R be the action-value function (also known as the Q-function)
of a policy π. For (s, a) ∈ S ×A, it is defined as Qπ(s, a) := E [

∑∞
t=0 γtr(st, at|s0 = s, a0 = a)] .

There exists an optimal policy, denoted as π∗ that maximizes Qπ(s, a) uniformly over all state-action
pairs (s, a) ∈ S × A (Watkins, 1989). We denote Q∗ as the Q-function corresponding to π∗, i.e.,
Q∗ = Qπ∗ . The Bellman operator T on a Q-function is defined as: for (s, a) ∈ S ×A,

T (Q)(s, a) := r(s, a) + γEs′∼P (·|s,a)

[
max
a′∈A

Q(s′, a′)
]

.

The optimal Q-function Q∗ is the unique fixed point of the Bellman operator (Bertsekas & Yu,
2012).

Q-learning The Q-learning algorithm is a model-free algorithm to learn Q∗ (Watkins & Dayan,
1992). The high-level idea is to find the fixed point of the Bellman operator. Given the trajectory
{(st, at, rt)}∞

t=0 generated by some underlying behavior policy π′, the asynchronous Q-learning algo-
rithm estimates a new Q-function Qt+1 : S ×A → R at each time. At time t ≥ 0, given a transition
(st, at, rt, st+1), the algorithm update as follow:

Qt+1(st, at) = (1− η)Qt(st, at) + ηTt+1(Qt)(st+1, at),
Qt+1(s, a) = Qt(s, a), for all (s, a) ̸= (st, at).

(1)

Here η ∈ (0, 1) is the learning rate and Tt+1 is the empirical Bellman operator: Tt+1(Qt)(st, at) :=
r(st, at) + γ maxa′∈A Qt(st+1, a′). Under mild conditions, Qt will converge to the fixed point of the
Bellman operator and hence to Q∗. When the state space S is small, a tabular structure cab be
used to store the values of Qt(s, a) for (s, a) ∈ S ×A.

Q-learning with Function Approximation When the state space S is large, the asynchronous
Q-learning in Equation (1) cannot be applied since it needs to loop over a table of all states and
actions. In this case, function approximation is brought into Q-learning. Let Qw : S ×A → R be an
approximated Q-function, which is typically represented with a deep neural network (Mnih et al.,
2015) and w denotes the parameters of the neural network. Qw is often called the Q-network. Given
a batch of transitions {(sti

, ati
, rti

, sti+1)}m
i=1, we define yti

as the image of Qw′(sti
, ati

) under the
empirical Bellman operator, that is:

yti := rti + γ max
a′∈A

Qw′
(sti+1, a′), for 1 ≤ i ≤ m

where w′ represents the parameters in target neural network. Parameters w′ are synchronized to
w every Ttarget steps of Stochastic Gradient Descent (SGD). Since Q∗ is the fixed point of the
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Bellman operator, yti
should match Qw(sti

, ati
) when Qw converges to Q∗. Hence, learning is done

via minimizing the following objective using SGD: ℓ(w) = 1
m

∑m
i=1 ∥yti −Qw(sti , ati)∥2

2.

Experience Replay For the Q-learning with function approximation, the new trajectories are
generated by executing a behavioral policy, which are then saved into the replay buffer, noted as B.
When learning to minimize ℓ(w), SGD is performed on batches of randomly sampled transitions from
the replay buffer. This process is often called Experience Replay (ER) (Lin, 1992; Li et al., 2022). To
improve the stability and convergence rate of Q-learning, follow-up works sample transitions from
the replay buffer with non-uniform probability distributions. Prioritized experience replay favors
those transitions with a large temporal difference errors (Schaul et al., 2016; Saglam et al., 2023).
Discor (Kumar et al., 2020) favors those transitions with small Bellman errors. LaBER proposes a
generalized TD error to reduce the variance of gradient and improve learning stability (Lahire et al.,
2022). Hindsight experience replay uses imagined outcomes by relabeling goals in each episode,
allowing the agent to learn from unsuccessful attempts as if they were successful (Andrychowicz
et al., 2017).

Reverse Experience Replay is a recently proposed variant of experience replay (Goyal et al.,
2019; Bai et al., 2021; Agarwal et al., 2022). RER samples consecutive sequences of transitions from
the replay buffer. The Q-learning algorithm updates its parameters by performing in the reverse
order of the sampled sequences. Compared with ER, RER converges faster towards the optimal
policy empirically (Lee et al., 2019) and theoretically (Agarwal et al., 2022), under tabular and
linear MDP settings. One intuitive explanation of why RER works is to consider a sequence of
consecutive transitions s1

a1,r1−−−→ s2
a2,r2−−−→ s3. Incorrect Q-function estimation of Q(s2, a2) will affect

the estimation of Q(s1, a1). Hence, reverse order updates allow the Q-value updates of Q(s1, a1) to
use the most up-to-date value of Q(s2, a2), hence accelerating the convergence.

2.1 Problem Setups for Reverse Experience Replay

Linear MDP Assumption In this paper, we follow the definition of linear MDP from Zanette
et al. (2020), which states that the reward function can be written as the inner product of the
parameter w and the feature function ϕ. Therefore, the Q function depends only on w and the
feature vector ϕ(s, a) ∈ Rd for state s ∈ S and action a ∈ A.
Assumption 1 (Linear MDP setting from Zanette et al., 2020). There exists a vector w ∈ Rd

such that R(s, a; w) = ⟨w, ϕ(s, a)⟩, and the transition probability is proportional to its corresponding
feature P(·|s, a) ∝ ϕ(s, a). Therefore, the optimal Q-function is Q∗(s, a; w∗) = ⟨w∗, ϕ(s, a)⟩ for every
s ∈ S, a ∈ A.

The assumption 1 is the current popular Linear MDP assumption that allows us to quantify the
convergence rate (or sample complexity) for the Q-learning algorithm (Zanette et al., 2020; Agarwal
et al., 2022). We need the following additional assumptions to get the final convergence rate result.
Assume the sequence of consecutive transitions is of length L and the constant learning rate in the
gradient descent algorithm is η.
Assumption 2 (from Zanette et al. (2020)). The MDP has zero inherent Bellman error
and ϕ(s, a)⊤ϕ(s, a) ≤ 1 for all (s, a) ∈ S × A. There exists constant κ > 0, such that
E(s,a)∼µϕ(s, a)ϕ(s, a)⊤ ⪰ I/κ. Here µ is the stationary distribution over all the state-action pairs of
the Markov chain determined by the transition kernel and the policy.
Remark 1. Suppose we pick a set of state-action tuples L = {(s, a)|(s, a) ∈ S × A}, which may
contains duplicated tuples. By linearity of expectation, we have: Eµ

(∑
(s,a)∈L ϕ(s, a)ϕ(s, a)⊤

)
=

∑
L E(s,a)∼µ

(
ϕ(s, a)ϕ(s, a)⊤) ⪰ |L|

κ I. Here |L| indicates the number of state-action tuples in this
set.
Definition 1. Given the feature function ϕ : S ×A → Rd. Denote the largest inner product between
parameter w and the feature function ϕ as ∥w∥ϕ = sup(s,a) |⟨ϕ(s, a), w⟩|.
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Definition 2. Let I be an identity matrix of dimension d×d and η ∈ R as the learning rate. Define
matrix Γl recursively as follow:

Γl :=
{

I for l = 0,(
I− ηϕL+1−lϕ

⊤
L+1−l

)
Γl−1 for 1 ≤ l ≤ L,

where we use the simplified notation ϕL+1−l to denote ϕ(sL+1−l, aL+1−l). The explicit form for ΓL

is:

ΓL =
(
I− ηϕ1ϕ⊤

1
) (

I− ηϕ2ϕ⊤
2
)

. . .
(
I− ηϕLϕ⊤

L

)
=

L∏

l=1

(
I− ηϕlϕ

⊤
l

)

The semantic interpretation of ΓL in Definition 2 is that it represents the coefficient of the bias term
in the error analysis of the learning algorithm’s parameter (as outlined in Lemma 4). This joint
product arises because the RER algorithm updates the parameter over a subsequence of consecutive
transitions of length L. The norm of ΓL is influenced by both the sequence length L and the learning
rate η. When the norm of ΓL is small, the parameters of the learning model converge more rapidly
to their optimal values.

3 Methodology

3.1 Motivation

Let µ denote the stationary distribution of the state-action pairs in the MDP, η be the learning rate
of the gradient descent algorithm, and L the length of consecutive transitions processed by the RER
algorithm. Previous work (Agarwal et al., 2022, Lemma 8 and Lemma 14) established that when
ηL ≤ 1

3 , the following inequality holds:

E(s,a)∼µ

[
Γ⊤

L ΓL

]
⪯ I− η

L∑

l=1
E(s,a)∼µ

[
ϕlϕ

⊤
l

]
⪯
(

1− ηL

κ

)
I, (2)

where the matrix ΓL ∈ Rd×d is defined in Definition 2 and serves as a “coefficient” in the conver-
gence analysis, as outlined in Lemma 4. The positive semi-definite relation ⪯ between two matrices
is defined in Definition 4. Here, I represents an identity matrix of dimension d × d, and the co-
efficient κ > 0 is introduced in Assumption 2. The matrix ΓL was mentioned in (Agarwal et al.,
2022, Appendix E, Equation 5), but we provide a formal definition here and streamline the original
expression by removing unnecessary variables.

The condition in Equation (2) was further incorporated into the convergence requirement in (Agarwal
et al., 2022, Theorem 1). It suggests that the RER algorithm cannot handle sequences of consecutive
transitions that are too long (corresponding to a large L) or use a learning rate that is too large (i.e.,
η). This presents a major limitation between the theoretical justification and real-world application
of the RER algorithm. In this work, we address this gap by providing a tighter theoretical analysis
that relaxes the constraint ηL ≤ 1/3.

We begin by explaining the main difficulty in upper-bounding the term E(s,a)∼µ

[
Γ⊤

L ΓL

]
. According

to Definition 2, we can expand Γ⊤
L as Γ⊤

L =
(
I− ηϕLϕ⊤

L

)
· · ·
(
I− ηϕ1ϕ⊤

1
)
. Using the linearity of

expectation, we expand the entire joint product Γ⊤
L ΓL under the expectation as follows:

E(s,a)∼µ

[
Γ⊤

L ΓL

]
= E(s,a)∼µ

[(
I− ηϕLϕ⊤

L

)
· · ·
(
I− ηϕ1ϕ⊤

1
) (

I− ηϕ1ϕ⊤
1
)
· · ·
(
I− ηϕLϕ⊤

L

)]

= I− 2ηE(s,a)∼µ

[
L∑

l=1
ϕlϕ

⊤
l

]
+ E(s,a)∼µ




2L∑

k=2
(−η)k

∑

l1,...,lk

ϕl1ϕ⊤
l1 . . . ϕlk

ϕ⊤
lk


 . (3)

In the third term on the right-hand side (RHS) of the second line, the summation is over all valid
combinations of the indices (l1, l2, . . . , lk), where l1, l2, . . . , lk ∈ {1, 2, . . . , L}. This is determined by
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first selecting the index l1 from the index sequence [L, L − 1, . . . , 2, 1, 1, 2, . . . , L − 1, L], as seen in
the first row of the equation above. The second index l2 is then chosen, ensuring that l2 lies to the
right of l1. The valid combination constraint requires the entire sequence l1, . . . , lk to satisfy the
condition that li−1 must appear to the left of li.

The main challenge to upper-bound the entire product Γ⊤
L ΓL under expectation lies in upper-bound

the combinatorially many high-order terms. Our approach leverages the high-level idea that the
RHS of Equation (3) can be upper-bounded by a form of E(s,a)∼µ

[∑L
l=1 ϕlϕ

⊤
l

]
with an appropriate

coefficient. Specifically, we demonstrate that the third term on the RHS, which contains a large
number of combinatorial terms of the form ϕl1ϕ⊤

l1
· · ·ϕlk

ϕ⊤
lk

, can be bounded by terms involving only
ϕlϕ

⊤
l (with 1 ≤ l ≤ L) through the use of a proposed combinatorial counting method.

Theorem 1. Let µ be the stationary distribution of the state-action pair in the MDP. The following
matrix inequalities, which are positive semi-definite, hold for η ∈ (0, 1):

E(s,a)∼µ

[
Γ⊤

L ΓL

]
⪯
(

1− (η(4− 2L)− (1− η)L−1 − η2 + 1)L
κ

)
I,

where the matrix ΓL is defined in Definition 2. The relation ⪯ between the matrices on both sides
is defined in Definition 4, referring to the positive semi-definite property.

Proof Sketch. By the linearity of expectation, we can upper-bound the second part of Equation (3)
as follows:

−2ηE(s,a)∼µ

[
L∑

l=1
ϕlϕ

⊤
l

]
= −2η

L∑

l=1
E(s,a)∼µ

[
ϕlϕ

⊤
l

]
= −2ηLE(s,a)∼µ

[
ϕϕ⊤] ⪯ −2ηL

κ
I.

Based on the new analysis from Lemma (2), the third part in Equation (3) is upper-bounded as:

E(s,a)∼µ




2L∑

k=2
(−η)k

∑

l1,...,lk

ϕl1ϕ⊤
l1 . . . ϕlk

ϕ⊤
lk


 ⪯ E(s,a)∼µ




2L∑

k=2
(−η)k

∑

l1,...,lk

1
2(ϕl1ϕ⊤

l1 + ϕlk
ϕ⊤

lk
)




⪯
(
(1− η)L−1 + η2 + η(2L− 2)− 1

)
E(s,a)∼µ

[
L∑

l=1
ϕlϕ

⊤
l

]

⪯ ((1− η)L−1 + η2 + η(2L− 2)− 1)L
κ

I.

Combining these two inequalities, we arrive at the upper bound stated in the theorem. A detailed
proof can be found in Appendix B.

Theorem 1 is established based on the new analysis in Lemma (2), which is introduced in Section 3.2.
It serves as a key component in the final convergence proof of the RER algorithm, which will be
presented in Section 4.

Numerical Justification of the Tighter Bound We provide a numerical evaluation of the
derived bound and the original bound in Agarwal et al. (2022, Lemma 8) in Figure 11. For a fixed
value of sequence length L, we compare the value (η(4− 2L)− (1− η)L−1 − η2 + 1)L in our derived
upper bound and the original value ηL. For all the different sequence lengths, our derived expression
value is numerically higher than the original expression, which implies our bound (in Lemma 3) is
tighter than the original one in Agarwal et al. (2022, Lemma 8).

1The code implementation for the numerical evaluation of the equalities and inequalities in this paper is available
at https://github.com/jiangnanhugo/RER-proof.
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Figure 1: For all the different sequence lengths, our derived expression value is numerically higher
than the original expression, which implies our bound (in Lemma 3) is tighter than the original one
in Agarwal et al. (2022, Lemma 8).

3.2 Relaxing the Requirement ηL ≤ 1/3 through Combinatorial Counting

Lemma 1. Let x ∈ Rd be any non-zero d-dimensional vector. For l1, . . . , lk ∈ {1, 2, . . . , L} and
2 ≤ k ≤ 2L, consider a high-order term ϕl1ϕ⊤

l1
. . . ϕlk

ϕ⊤
lk

in Equation (3). By Assumption 1, we can
relax this high-order term as follows:

|x⊤ϕl1ϕ⊤
l1 . . . ϕlk

ϕ⊤
lk

x| ≤ 1
2x⊤ (ϕl1ϕ⊤

l1 + ϕlk
ϕ⊤

lk

)
x.

The proof of this inequality can be found in Appendix A.1.

This result implies that, after relaxation, only the first term ϕl1ϕ⊤
l1

(indexed by l1) and the last term
ϕlk

ϕ⊤
lk

(indexed by lk) determine the upper bound of the high-order term ϕl1ϕ⊤
l1

. . . ϕlk
ϕ⊤

lk
. This

relaxation simplifies the original complex summation problem
∑

1≤l1,...,lk≤L to count how many
valid l1 and lk can be selected at each possible position in the sequence of transitions.
Lemma 2. Based on the relaxation provided in Lemma 1, the third part in Equation (3) can be
expanded combinatorially as follows:

2L∑

k=2
(−η)k

∑

l1,...,lk

1
2(ϕl1ϕ⊤

l1 +ϕlk
ϕ⊤

lk
) =

2L∑

k=2
(−η)k

L∑

l=1

((
L + l − 2

k − 1

)
+
(

L− l

k − 1

)
+
(

2l − 2
k − 2

))

︸ ︷︷ ︸
sum over combinatorially many terms

ϕlϕ
⊤
l (4)

Sketch of Proof. As depicted in Figure 2, we consider two arrays of length L. The indices in these
arrays are symmetrical: the left array decreases from L to 1, while the right array increases from
1 to L. These arrays represent the indices of the matrix products in the first line of Equation (3).
The left array simulates ΓL, and the right array simulates Γ⊤

L . The key idea is to count the number
of combinations of l1 and lk that can produce ϕlϕ

⊤
l for a fixed l (where 1 ≤ l ≤ L).

In the first case, illustrated in Figure 2, we fix l1 in the left l-th slot. For lk, it cannot choose any of
the slots in the left array with indices L, . . . , l + 1 due to the sequential ordering constraint, which
requires that li−1 must be to the left of li. Additionally, to avoid double counting, we also exclude
the right l-th slot for lk. Consequently, there are L + l−2 available slots for assigning the remaining
sequence l2, . . . , lk. This results in

(
L+l−2

k−1
)

contributions for this case, as shown on the right-hand
side.

For the remaining cases, detailed in Figure 3 and analyzed in Appendix A.2, they contribute to the
second and last terms in Equation (4).
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///// ///// ///// /////
1 L… l

“////” indicates this slot cannot be chosen.

ϕlϕ⊤
l

22l + 1… …l + 1

Figure 2: Case 1 in the proposed combinatorial counting procedure. This case illustrates how many
terms of the form ϕl1ϕ⊤

l1
. . . ϕlk

ϕ⊤
lk

can be reduced to ϕlϕ
⊤
l for a fixed l using Lemma 1, where

1 ≤ l ≤ L. If l1 is assigned to the left l-th slot, then lk cannot choose any of the left terms with
indices L, . . . , l + 1 due to the sequential ordering constraint li must be to the right of li−1. To avoid
double counting, lk is also disallowed from occupying the right l-th slot. Consequently, there are
L + l − 2 available slots for assigning the remaining sequence l2, . . . , lk of length k − 1. Therefore,
there are

(
L+l−2

k−1
)

such terms for this case. Further cases are illustrated in Figure 3 in the appendix.

Lemma 2 demonstrates the process of simplifying the complex summation
∑

l1,...,lk
into a more

manageable form
∑L

l=1. This transformation significantly simplifies the task of obtaining a tighter
upper bound.
Lemma 3. For η ∈ (0, 1) and L > 1, the following holds:∑2L

k=2(−η)k
((

L+l−2
k−1

)
+
(

L−l
k−1
)

+
(2l−2

k−2
))

= (1− η)L+l−2 + (1− η)L−l + η2(1− η)2l−2 + η(2L− 2)− 2.

The proof of Lemma 3 is presented in detail in Appendix A.3, where we utilize the Binomial theorem.
To ensure that the oscillatory term (−η)k does not cause divergence, we require the learning rate η
to lie within the interval η ∈ (0, 1).

4 Sample Complexity of Reverse Experience Replay-Based Q-Learning
on Linear MDPs

The convergence analysis assumes that every sub-trajectory of length L is almost (or asymptotically)
independent of each other with high probability. This condition, known as the mixing requirement
for Markovian data, implies that the statistical dependence between two sub-trajectories τL and τ ′

L

diminishes as they become further apart along the trajectory (Tagorti & Scherrer, 2015; Nagaraj
et al., 2020).

Prior work (Lee et al., 2019) provided a convergence proof for the Reverse Experience Replay (RER)
approach but did not address the rate of convergence, primarily due to the challenges associated
with quantifying deep neural networks. By contrast, Linear MDPs (defined in Definition 1), which
approximate the reward function and transition kernel linearly via features, allow for an asymptotic
performance analysis of RER. Recently, Agarwal et al. (2022) presented the first theoretical proof for
RER. However, their analysis is limited by stringent conditions, notably requiring a minimal learning
rate ηL ≤ 1

3 . This constraint suggests that RER may struggle to compete with plain Experience
Replay (ER) when using larger learning rates.

To address this challenge, we provide a tighter theoretical analysis of the RER method in Theorem 1.
Our analysis mitigate the constraints on the learning rate for convergence. We demonstrate that
the convergence rate can be improved with a larger learning rate and a longer sequence of state-
action-reward tuples, thus bridging the gap between theoretical convergence analysis and empirical
learning results.
Lemma 4 (Bias and variance decomposition). Let the error terms for every parameter w as the
difference between empirical estimation and true MDP: εi(w) := Q(si, ai) − Q∗(si, ai). For the
current iteration t, the difference between current estimated parameter w and the optimal parameter
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Algorithm 1 Episodic Q-learning with Reverse Experience Replay
Require: Sequence length L of consecutive state-action tuples; Replay buffer B; Total learning

episodes T ; Target network update frequency N .
Ensure: The best-learned policy.

1: for t = 1 to T do
2: Act by ϵ-greedy strategy w.r.t. policy π.
3: Save the new trajectory into the replay buffer B.
4: Retrieve a sub-trajectory τL from buffer B, where τl := (sl, al, rl), for all 1 ≤ l ≤ L.
5: for l = 1 to L do ▷ reverse experience replay
6: ε← rL−l + γ maxa′∈A Q(sL+1−l, a′; θk)−QL+1−l

7: wt,l+1 ← wt,l + ηε∇Qt,L+1−l

8: if t mod N = 0 then ▷ online target update
9: θk ← wt,L+1

10: k ← k + 1
11: π(s)← arg maxa∈A, Q(s, a; wt,L+1), for all s ∈ S. ▷ policy extraction
12: Return The converged policy π.

w∗ accumulated along the L length transitions with reverse update is:

wL − w∗ = ΓL (w1 − w∗)︸ ︷︷ ︸
Bias term

+ η
L∑

l=1
εlΓl−1ϕl

︸ ︷︷ ︸
variance term

.

For clarity, ΓL in Definition 2 is a joint product of L terms involving the feature vector of the
consecutive state-action tuples. When the norm of ΓL is small, the parameter will quickly converge
to its optimal.

The first part on RHS is noted as the bias and the second part on RHS is variance along the sub-
trajectory, which we will later show with zero mean.

The proof is presented in Appendix C.1. The result is obtained by unrolling the terms for consecutive
L steps in reverse update order according to Lines 5-7 in Algorithm 1. This allows us to separately
quantify the upper bound the bias term and the variance terms.
Lemma 5 (Bound on the bias term). Let x ∈ Rd be a non-zero vector and N is the frequency for the
target network to be updated. For η ∈ (0, 1) and L > 1, the following matrix’s positive semi-definite
inequality holds with probability at least 1− δ:

E

∥∥∥∥∥∥

1∏

j=N

ΓLx

∥∥∥∥∥∥

2

ϕ

≤ exp
(
− (η(4− 2L)− η2 + 1)NL

κ

)√
κ
δ ∥x∥ϕ .

The ϕ-based norm is defined in Definition 1.

Sketch of proof. The result is obtained first expand the joint product over
∏i

j=N over ΓL and inte-
grate the result in Theorem 1. The detailed proof is presented in Appendix C.2.

In terms of the bound for the variance term in Lemma 4, even though the term Γl is involved in the
expression, it turns out we do not need to modify the original proof and thus we follow the result in
the original work. The exact statement is presented in the Appendix C.3.
Theorem 2. For Linear MDP, assume the reward function, as well as the feature, is bounded
R(s, a) ∈ [0, 1], ∥ϕ(s, a)∥2 ≤ 1, for all (s, a) ∈ S × A. Let T be the maximum learning episodes, N
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be the frequency of the target network update, η be the learning rate and L be the length of sequence
for RER described in Algorithm 1. When η ∈ (0, 1), L ≥ 1, with sample complexity

O


γT/N

1− γ
+
√

Tκ

Nδ(1− γ)4 exp
(
− (η(4− 2L)− η2 + 1)NL

κ

)
+

√
η log( T

Nδ )
(1− γ)4


 ,

∥QT (s, a)−Q∗(s, a)∥∞ ≤ ε holds with probability at least 1− δ.

Sketch of Proof. We first establish the independence of sub-trajectories of length L. We then decom-
pose the error term of the Q-value using bias-variance decomposition (as shown in Lemma 4), where
the RER method and target network help control the variance term using martingale sequences.
The upper bound for the bias term is given in Lemma 5 and the upper bound for the variance term
is presented in Lemma C.3. Finally, we summarize the results and provide the complete proof in
Lemma 6, leading to the probabilistic bound in this theorem.

Compared to the original theorem in Agarwal et al. (2022, Theorem 1), our work provides a tighter
upper bound and relaxes the assumptions needed for the result to hold. This advancement bridges
the gap between theoretical justification and empirical MDP evaluation. Furthermore, we hope that
the new approach of transforming the original problem into a combinatorial counting problem will
inspire further research in related domains.

We acknowledge that the main structure of the convergence proof (i.e., Theorem 2) follows the
original work. Our contribution lies in presenting a cleaner proof pipeline and incorporating our
tighter bound as detailed in Theorem 1.

5 Conclusion

In this work, we gave a tighter finite-sample analysis for heuristics which are heavily used in practical
Q-learning and showed that seemingly simple modifications can have far-reaching consequences in
linear MDP settings. We provide a rigorous analysis that relaxes the limitation on the learning
rate and the length of the consecutive tuples. Our key idea is to transform the original problem
involving a giant summation into a combinatorial counting problem, which greatly simplifies the
whole problem. Finally, we show theoretically that RER converges faster with a larger learning rate
η and a longer consecutive sequence L of state-action-reward tuples.
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Abstract

In recent years, by leveraging more data, computation, and diverse tasks, learned
optimizers have achieved remarkable success in supervised learning, outperforming
classical hand-designed optimizers. Reinforcement learning (RL) is essentially dif-
ferent from supervised learning, and in practice, these learned optimizers do not
work well even in simple RL tasks. We investigate this phenomenon and identify
two issues. First, the agent-gradient distribution is non-independent and identically
distributed, leading to inefficient meta-training. Moreover, due to highly stochastic
agent-environment interactions, the agent-gradients have high bias and variance,
which increases the difficulty of learning an optimizer for RL. We propose pipeline
training and a novel optimizer structure with a good inductive bias to address these
issues, making it possible to learn an optimizer for reinforcement learning from
scratch. We show that, although only trained in toy tasks, our learned optimizer
can generalize to unseen complex tasks in Brax. 1

1 Introduction

Deep learning has achieved great success in many areas (LeCun et al., 2015), which is largely
attributed to the automatically learned features that surpass handcrafted expert features. The use
of gradient descent enables automatic adjustments of parameters within a model, yielding highly
effective features. Despite these advancements, as another important component in deep learning,
optimizers are still largely hand-designed and heavily reliant on expert knowledge. To reduce the
burden of hand-designing optimizers, researchers propose to learn to optimize with the help of
meta-learning (Sutton, 1992; Andrychowicz et al., 2016; Chen et al., 2017; Wichrowska et al., 2017;
Maheswaranathan et al., 2021). Compared to designing optimizers with human expert knowledge,
learning an optimizer is a data-driven approach, reducing the reliance on expert knowledge. During
training, a learned optimizer can be optimized to speed learning and help achieve better performance.

Despite the significant progress in learning optimizers, previous works only present learned opti-
mizers for supervised learning (SL). These learned optimizers usually have complex neural network
structures and incorporate numerous human-designed input features, requiring a large amount of
computation and human effort to design and train them. Moreover, they have been shown to per-
form poorly in reinforcement learning (RL) tasks (Metz et al., 2020b; 2022b). Learning to optimize
for RL remains an open and challenging problem.

∗Work was done during an internship at Sea AI Lab, Singapore.
1The code is available at https://github.com/sail-sg/optim4rl/.
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Classical optimizers are typically designed for optimization in SL tasks and then applied to RL tasks.
However, RL tasks possess unique properties that are largely overlooked by classical optimizers. For
example, unlike SL, the input distribution of an RL agent is non-stationary and non-independent
and identically distributed (non-iid) due to locally correlated transition dynamics (Alt et al., 2019).
Additionally, due to policy and value iterations, the target function and the loss landscapes in RL
are constantly changing throughout the learning process, resulting in a much more unstable and
complex optimization process. In some cases, these properties also make it inappropriate to apply
optimization algorithms designed for SL to RL directly, such as stale accumulated gradients (Bengio
et al., 2020a) or unique interference-generalization phenomenon (Bengio et al., 2020b). We still lack
optimizers specifically designed for RL tasks.

In this work, we aim to learn optimizers for RL. Instead of manually designing optimizers by studying
RL optimization, we apply meta-learning to learn optimizers from data generated in the agent-
environment interactions. We first investigate the problem and find that the complicated agent-
gradient distribution impedes the training of learned optimizers for RL. Furthermore, the non-iid
nature of the agent-gradient distribution also hinders meta-training. Lastly, the highly stochastic
agent-environment interactions can lead to agent-gradients with high bias and variance, exacerbating
the difficulty of learning an optimizer for RL. In response to these challenges, we propose a novel
approach, Optim4RL, a learned optimizer for RL that involves pipeline training and a specialized
optimizer structure of good inductive bias. Compared with previous methods, Optim4RL is more
stable to train and more effective in optimizing RL tasks, without complex optimizer structures or
numerous human-designed input features. We demonstrate that Optim4RL can learn to optimize
RL tasks from scratch and generalize to unseen tasks. Our work is the first to propose a learned
optimizer for deep RL tasks that works well in practice.

2 Background

2.1 Reinforcement Learning

The process of reinforcement learning (RL) can be formalized as a Markov decision process (MDP).
Formally, let M = (S,A, P, r, γ) be an MDP which includes a state space S, an action space A, a
state transition probability function P : S × A × S → R, a reward function r : S × A → R, and
a discount factor γ ∈ [0, 1). At each time-step t, the agent observes a state St ∈ S and samples
an action At from the policy π(·|St). Then it observes the next state St+1 ∈ S according to P and
receives a scalar reward Rt+1 = r(St, At). The return is defined as the weighted sum of rewards,
i.e., Gt =

∑∞
k=t γk−tRk+1. The state-value function vπ(s) is defined as the expected return starting

from a state s. The agent aims to find an optimal policy π∗ to maximize the expected return.

Proximal policy optimization (PPO) (Schulman et al., 2017) and advantage actor-critic (A2C) (Mnih
et al., 2016) are two widely used RL algorithms for continuous control. PPO improves training
stability by using a clipped surrogate objective to prevent the policy from changing too much at each
time step. A2C is a variant of actor-critic method (Sutton & Barto, 2018), featured with multiple-
actor parallel training and synchronized gradient update. In both algorithms, vπ is approximated
by v, which is usually parameterized as a neural network. In practice, temporal difference (TD)
learning is applied to approximate vπ:

v(St)← v(St) + α(Rt+1 + γv(St+1)− v(St)), (1)

where α is the learning rate, St and St+1 are two successive states, and Rt+1 +γv(St+1) is named the
TD target. TD targets are usually biased, non-stationary, and noisy due to changing state-values,
complex state transitions, and noisy reward signals (Schulman et al., 2016). They usually induce
a changing loss landscape that evolves during training. As a result, the agent-gradients 2 usually
have high bias and variance (Lan et al., 2022) which can lead to sub-optimal performance or even a
failure of convergence.

2In this work, we use the term agent-gradients to refer to gradients of all parameters in a learning agent, which
may include policy gradient, gradient of value functions, gradient of other hyper-parameters.
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2.2 Learning to Optimize with Meta-Learning

We aim to learn an optimizer using meta-learning. Let θ be the agent-parameters of an RL agent
that we aim to optimize. A (learned) optimizer is defined as an update function U that maps
input gradients to parameter updates, implemented as a meta-network, parameterized by the meta-
parameters ϕ. Let z be the input of this meta-network which may include gradients g, losses L,
exponential moving average of gradients, etc. Let h be an optimizer state which stores historical
values. We can then compute agent-parameters updates ∆θ and the updated agent-parameters θ′:

∆θ, h′ = Uϕ(z, h) and θ′ = θ + ∆θ.

Note that all classical first-order optimizers can be written in this form with ϕ = ∅. As an illustration,
for SGD, h′ = h = ∅, z = g, and USGD(g, ∅) = (−αg, ∅), where α is the learning rate. For
RMSProp (Tieleman & Hinton, 2012), set z = g; h is used to store the average of squared gradients.
Then URMSProp(g, h) = (− αg√

h′+ϵ
, h′), where h′ = βh + (1− β)g2, β ∈ [0, 1], and ϵ is a tiny positive

number for numerical stability.

Similar to Xu et al. (2020), we apply bilevel optimization to optimize θ and ϕ. First, we collect
M + 1 trajectories T = {τi, τi+1, · · · , τi+M−1, τi+M}. For the inner update, we fix ϕ and apply
multiple steps of gradient descent updates to θ by minimizing an inner loss Linner. Specifically, for
each trajectory τi ∈ T , we have

∆θi ∝ ∇θLinner(τi; θi, ϕ) and θi+1 = θi + ∆θi,

where ∇θLinner are agent-gradients of θ. By repeating the above process for M times, we get
θi

ϕ−→ θi+1 · · · ϕ−→ θi+M . Here, θi+M are functions of ϕ. For simplicity, we abuse the notation and
still use θi+M . Next, we use τi+M as a validation trajectory to optimize ϕ with an outer loss Louter:

∆ϕ ∝ ∇ϕLouter(τi+M ; θi+M , ϕ) and ϕ′ = ϕ + ∆ϕ,

where ∇ϕLouter are meta-gradients of ϕ. Since θi+M are functions of ϕ, we can apply the chain rule
to compute meta-gradients ∇ϕLouter, with the help of automatic differentiation packages.

3 Related Work

Our work is closely related to three areas: optimization in RL, discovering general RL algorithms,
and learning to optimize in SL.

3.1 Optimization in Reinforcement Learning

Henderson et al. (2018) tested different optimizers in RL and pointed out that classical adaptive
optimizers may not always consider the complex interactions between RL algorithms and environ-
ments. Sarigül & Avci (2018) benchmarked different momentum strategies in deep RL and found
that Nesterov momentum is better at generalization. Bengio et al. (2020a) took one step further and
showed that unlike SL, momentum in TD learning becomes doubly stale due to changing parameter
updates and bootstrapping. By correcting momentum in TD learning, the sample efficiency can be
improved. These works together indicate that it may not always be appropriate to bring optimization
methods in SL directly to RL without considering the unique properties in RL. Unlike these works
which hand-design new optimizers for RL, we adopt a data-driven approach and apply meta-learning
to learn an RL optimizer from data generated in the agent-environment interactions.

3.2 Discovering General Reinforcement Learning Algorithms

The data-driven approach is also explored in discovering general RL algorithms. For example,
Houthooft et al. (2018) proposed to meta-learn a loss function that takes the agent’s history into ac-
count and greatly improves learning efficiency. Similarly, Kirsch et al. (2020) proposed MetaGenRL,
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which learns the objective function for deterministic policies using off-policy second-order gradients.
Oh et al. (2020) applied meta-learning and discovered an entire update rule for RL by interacting
with a set of environments. Instead of discovering the entire update rule, Lu et al. (2022) focused on
exploring the mirror learning space with evolution strategies and demonstrated the generalization
ability in unseen settings. Bechtle et al. (2021) incorporated additional information at meta-train
time into parametric loss functions and applied this method to image classification, behavior cloning,
and model-based RL. Kirsch et al. (2022) explored the role of symmetries in discovering new RL
algorithms and showed that symmetries improve generalization. Jackson et al. (2023) examined
the impact of environment design in meta-learning update rules in RL and developed an automatic
adversarial environment design approach to improve in-distribution robustness and generalization
performance of learned RL algorithms. Following these works, our work adheres to the data-driven
spirit, aiming to learn an optimizer instead of general RL algorithms. Our training and evaluation
procedures are largely inspired by them as well.

3.3 Learning to Optimize in Supervised Learning

Initially, learning to optimize is only applied to tune the learning rate (Jacobs, 1988; Sutton, 1992;
Mahmood et al., 2012). Recently, researchers started to learn an optimizer completely from scratch.
Andrychowicz et al. (2016) implemented learned optimizers with long short-term memory net-
works (Hochreiter & Schmidhuber, 1997) and showed that learned optimizers could generalize to
unseen tasks. Li & Malik (2017) applied a guided policy search method to find a good optimizer.
Wichrowska et al. (2017) introduced a hierarchical recurrent neural network (RNN) (Medsker & Jain,
2001) architecture, which greatly reduces memory and computation, and was shown to generalize
to different network structures. Metz et al. (2022a) developed learned optimizers with multi-layer
perceptions, which achieve a better balance among memory, computation, and performance.

Learned optimizers are known to be hard to train. Part of the reason is that they are usually
trained by truncated backpropagation through time, which leads to strongly biased gradients or
exploding gradients. To overcome these issues, Metz et al. (2019) presented a method to dynamically
weigh a reparameterization gradient estimator and an evolutionary strategy style gradient estimator,
stabilizing the training of learned optimizers. Vicol et al. (2021) resolved the issues by dividing
the computation graph into truncated unrolls and computing unbiased gradients with evolution
strategies and gradient bias corrections. Harrison et al. (2022) investigated the training stability
of optimization algorithms and proposed to improve the stability of learned optimizers by adding
adaptive nominal terms from Adam (Kingma & Ba, 2015) and AggMo (Lucas et al., 2019). Metz
et al. (2020a) trained a general-purpose optimizer by training optimizers on thousands of tasks with
a large amount of computation. Following the same spirit, Metz et al. (2022b) continued to perform
large-scale optimizer training, leveraging more computation (4, 000 TPU-months) and more diverse
SL tasks. The learned optimizer, VeLO, requires no hyperparameter tuning and works well on a
wide range of SL tasks. VeLO is the precious outcome of long-time research in the area of learning
to optimize, building on the wisdom and effort of many generations. Although marking a milestone
for the success of learned optimizers in SL tasks, VeLO still performs poorly in RL tasks, as shown
in Section 4.4.4 in Metz et al. (2022b).

The failure of VeLO in RL tasks suggests that designing learned optimizers for RL is still a challenging
problem. Unlike previous works that focus on learning optimizers for SL, we aim to learn to optimize
for RL. As we will show next, our method is simple, stable, and effective, without using complex
neural network structures or incorporating numerous human-designed features. As far as we know,
our work is the first to demonstrate the success of learned optimizers in deep RL tasks.

4 Issues in Learning to Optimize for Reinforcement Learning

Learned optimizers for SL are infamously hard to train, suffering from high training instabil-
ity (Wichrowska et al., 2017; Metz et al., 2019; 2020a). Learning an optimizer for RL is even
harder (Metz et al., 2022b). In the following, we identify two issues in learning to optimize for RL.
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(c) At the end of training

Figure 1: Visualizations of agent-gradient distributions (a) at the beginning of training, (b) in the
middle of training, and (c) at the end of training. All agent-gradients are collected during training
A2C in big_dense_long , optimized by RMSProp. We compute log(|g|+ 10−8) to avoid the error of
applying log function to non-positive agent-gradients.

4.1 The Agent-Gradient Distribution is Non-IID

In RL, a learned optimizer takes the agent-gradient g as an input and outputs the agent-parameter
update ∆θ. To investigate the hardness of learning an optimizer for RL, we train an A2C agent in a
gridworld (i.e., big_dense_long , see Appendix B for details) with RMSProp (Tieleman & Hinton,
2012) and collect the agent-gradients at different training stages. We plot these agent-gradients with
logarithmic x-axis in Figure 1. The y-axis shows the probability density. Clearly, the agent-gradient
distribution is non-iid, changing throughout the training process. Specifically, at the beginning of
training, there are two peaks in the agent-gradient distribution. In the middle of training, most
agent-gradients are non-zero, concentrated around 10−3. At the end of the training, a large portion
of the agent-gradients are zeros. It is well-known that a non-iid input distribution makes training
more unstable and reduces learning performance in many settings (Ma et al., 2022; Wang et al.,
2023; Khetarpal et al., 2022). Similarly, the violation of the iid assumption would also increase
learning instability and decrease efficiency for training learned optimizers. Note that this issue
exists in both learning to optimize for SL and RL. However, the agent-gradient distribution from
RL is generally more non-iid than the gradient distribution from SL, since RL tasks are inherently
more non-stationary. For more details, please check Appendix D.

4.2 A Vicious Spiral of Bilevel Optimization

Learning an optimizer while optimizing parameters of a model is a bilevel optimization, suffering
from high training instability (Wichrowska et al., 2017; Metz et al., 2020a; Harrison et al., 2022).
In RL, due to highly stochastic agent-environment interactions, the agent-gradients have high bias
and variance, which make the bilevel optimization even more unstable.

Specifically, in SL, it is often assumed that the training set consists of iid samples. However, the
input data distribution in RL is non-iid, which makes the whole training process much more unstable
and complex, especially when learning to optimize is involved. In most SL settings, true labels are
noiseless and time-invariant. For example, the true label of a written digit 2 in MNIST (Deng, 2012)
is y = 2, which does not change during training. In RL, TD learning (see Equation (1)) is widely
used, and TD targets play a similar role as labels in SL. Unlike labels in SL, TD targets are biased,
non-stationary, and noisy, due to highly stochastic agent-environment interactions. This leads to a
loss landscape that evolves during training and potentially results in the deadly triad (Van Hasselt
et al., 2018) and capacity loss (Lyle et al., 2021). Moreover, in SL, a lower loss usually indicates
better performance (e.g., higher classification accuracy). But in RL, a lower outer loss is not neces-
sarily a good indicator of better performance (i.e., higher return) due to a changing loss landscape.
Together with biased TD targets, the randomness from state transitions, reward signals, and agent-
environment interactions, make the bias and variance of agent-gradients relatively high. In learning
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to optimize for RL, meta-gradients are afflicted with large noise induced by the high bias and vari-
ance of agent-gradients. With noisy and inaccurate meta-gradients, the improvement of the learned
optimizer is unstable and slow. Using a poorly performed optimizer, policy improvement is no longer
guaranteed. A poorly performed agent is unlikely to collect “high-quality” data to boost the per-
formance of the agent and the learned optimizer. In the end, this bilevel optimization gets stuck in
a vicious spiral: a poor optimizer → a poor agent policy → collected data of low-quality → a poor
optimizer → · · · .

5 Optim4RL: A Learned Optimizer for Reinforcement Learning

To overcome the issues in Section 4, we propose a learned optimizer for RL, named Optim4RL, which
incorporates pipeline training and a novel optimizer structure. As we will show next, Optim4RL is
more robust and efficient to train than previous methods.

5.1 Pipeline Training

In Figure 1, we show that the agent-gradient distribution is non-iid during training. Generally, a
good optimizer should be well-functioned under different agent-gradient distributions in the whole
training process. To make the agent-gradient distribution more iid, we propose pipeline training.

Instead of training only one agent, we train n agents in parallel, each with its own task and optimizer
state. Together, the three elements form a training unit (agent, task, optimizer state); and we have
n training units in total. Let m be a positive integer we call the reset interval. A complete training
interval lasts for m training iterations. In Figure 2 (a), we show an example of pipeline training
with m = n = 3. To train an optimizer effectively, the input of the learned optimizer includes agent-
gradients from all n training units. Before training, we choose n integers {r1, · · · , rn} such that they
are evenly spaced over the interval [0, m−1]. Then we assign ri to training unit i for i ∈ {1, · · · , n}.
At training iteration t, we reset training unit i if ri ≡ t (mod m). By resetting training units at
regular intervals, it is guaranteed that at iteration t, we can access training data across one training
interval. For instance, at t = 3, the input consists of agent-gradients from unit 1 at the beginning
of an interval, agent-gradients from unit 2 at the end of an interval, and agent-gradients from unit
3 in the middle of an interval, indicated by the dashed line in Figure 2 (a). With pipeline training,
the input agent-gradients are more diverse and spread across a whole training interval, making the
input distribution more iid. Ideally, we expect m ≤ n so that the input consists of agent-gradients
from all training stages. In our experiments, n is the number of training environments; m depends
on the training steps of each task, and it has a similar magnitude as n.

5.2 Improving the Inductive Bias of Learned Optimizers

Recently, Harrison et al. (2022) proved that adding adaptive terms to learned optimizers improves
the training stability of optimizing a noisy quadratic model. Experimentally, Harrison et al. (2022)
showed that adding terms from Adam (Kingma & Ba, 2015) and AggMo (Lucas et al., 2019) improves
the stability of learned optimizers as well. However, including human-designed features not only
makes an optimizer more complex but is also against the spirit of learning to optimize — ideal learned
optimizers should be able to automatically learn useful features, reducing the reliance on human
expert knowledge as much as possible. Instead of incorporating terms from adaptive optimizers
directly, we design the parameter update function in a similar form to adaptive optimizers:

∆θ = −α
m√
v + ϵ

, (2)

where α is the learning rate, ϵ is a small positive number, and m and v are the processed outputs
of dual-RNNs, as shown in Figure 2 (b). Specifically, for each input gradient g, we generate two
scalars o1 and o2. We then set m = gsign exp(o1) and v = exp(o2), where gsign ∈ {−1, 1} is the sign
of g. More details are included in Algorithm 1.
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(a) Pipeline training (b) The optimizer structure of Optim4RL

Figure 2: (a) An example of pipeline training where the reset interval m = 3 and the number of
units n = 3. All training units are reset at regular intervals to diversify training data. (b) The
network structure of Optim4RL. g is the input agent-gradient, hi and h′

i are hidden states, α is the
learning rate, ϵ is a small positive constant, and ∆θ is the parameter update.

By parameterizing the parameter update function as Equation (2), we improve the inductive bias of
learned optimizers by choosing a suitable hypothesis space for learned optimizers and reducing the
burden of approximating square root and division for neural networks. In general, we want to learn a
good optimizer in a reasonable hypothesis space. It should be large enough to include as many good
optimizers as possible, such as Adam (Kingma & Ba, 2015) and RMSProp (Tieleman & Hinton,
2012). Meanwhile, it should also rule out bad choices so that a suitable candidate can be found
efficiently. An optimizer in the form of Equation (2) meets the two requirements exactly. Moreover, it
is generally hard for neural networks to approximate mathematical operations accurately (Telgarsky,
2017; Yarotsky, 2017; Boullé et al., 2020; Lu et al., 2021). With Equation (2), a neural network
can spend all its expressivity and capacity learning m and v, reducing the burden of approximating
square root and division.

Finally, we combine the two techniques and propose our method — a learned optimizer for RL
(Optim4RL). Following Andrychowicz et al. (2016), our optimizer also operates coordinatewisely
on agent-parameters so that all agent-parameters share the same optimizer. Besides gradients,
many previously learned optimizers for SL include human-designed features as inputs, such as mov-
ing average of gradient values at multiple timescales, moving average of squared gradients, and
Adafactor-style accumulators (Shazeer & Stern, 2018). In theory, these features can be learned and
stored in the hidden states of RNNs in Optim4RL. So for simplicity, we only consider agent-gradients
as inputs. As we will show next, despite its simplicity, our learned optimizer Optim4RL achieves
satisfactory performance in many RL tasks, outperforming several learned optimizers.

6 Experiment

In this section, we first verify that Optim4RL can learn to optimize for RL from scratch. Then,
we show how to train a general-purpose learned optimizer for RL. More experimental results are
included in Appendix E.

Following Oh et al. (2020), we design several gridworlds with various properties, such as different
horizons, reward functions, or state-action spaces. More details are described in Appendix B. Besides
gridworlds, we also test our method in Catch (Osband et al., 2020) and Brax tasks (Freeman et al.,
2021). We mainly consider two RL algorithms — A2C (Mnih et al., 2016) and PPO (Schulman
et al., 2017). For all experiments, we train A2C in gridworlds and train PPO in Brax tasks. For
Optim4RL, due to resource constraints, we choose a small network with two GRUs (Cho et al., 2014)
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Figure 3: The optimization performance of different optimizers in four RL tasks. Note that the
performance of VeLO is estimated based on Figure 11 (a) in Metz et al. (2022b). All other results
are averaged over 10 runs, and the shaded areas represent 90% confidence intervals. Optim4RL is
the only learned optimizer that achieves satisfactory performance in all tasks.

of hidden size 8; both multi-layer perceptrons (MLPs) have two hidden layers of size 16. We use
Adam to optimize learned optimizers. More implementation details are included in Appendix C.

6.1 Learning an Optimizer for RL from Scratch

We first show that it is feasible to train Optim4RL in RL tasks from scratch, while learned optimizers
for SL do not work well consistently in RL tasks. We consider both classical (Adam and RMSProp)
and learned optimizers (L2LGD2 (Andrychowicz et al., 2016), STAR (Harrison et al., 2022), and
VeLO (Metz et al., 2022b)) as baselines. Except for VeLO, we meta-learn optimizers in one task
and then test the fixed learned optimizers in this specific task. The optimization performance of
optimizers is measured by returns averaging over 10 runs, as shown in Figure 3. In general, L2LGD2

fails in all four tasks. In Catch, both STAR and Optim4RL perform better than classical optimizers
(Adam and RMSProp), achieving a faster convergence rate. In Ant, Optim4RL and STAR perform
pretty well, on par with Adam and RMSProp, while significantly outperforming the state-of-the-art
optimizer — VeLO. However, STAR fails to optimize effectively in big_dense_long ; in Humanoid,
STAR’s performance is unstable and crashes in the end. Optim4RL is the only learned optimizer that
achieves stable and satisfactory performance in all tasks, which is a significant accomplishment in its
own right, as it demonstrates the efficacy of our approach and its potential for practical applications.

The advantage of the inductive bias of Optim4RL As an ablation study, we demonstrate the
advantage of the inductive bias of OptimRL by comparing it with LinearOptim, which has a “linear”
parameter update function: ∆θ = −α(a∗g +b), where α is the learning rate, a and b are the outputs
of an RNN model. The only difference between LinearOptim and Optim4RL is the inductive bias
— the parameter update function of LinearOptim is in the form of a linear function. In contrast,
the parameter update function of Optim4RL is inspired by adaptive optimizers (see Equation (2)).
As shown in Figure 3, LinearOptim fails to optimize in all tasks, verifying the advantage of the
inductive bias of Optim4RL.

The effectiveness of pipeline training By making the input agent-gradient distribution more
iid and less time-dependent, pipeline training could improve the training stability and efficiency.
To verify this claim, we compare the optimization performance of Optim4RL with and with-
out pipeline training in Table 1. We observe minor performance improvement in two gridworlds
(small_dense_long and big_dense_long ) and more significant improvement in two Brax tasks (Ant
and Humanoid), confirming the effectiveness of pipeline training.

6.2 Toward a General-Purpose Learned Optimizer for RL

A general-purpose optimizer should perform well even when the input gradients are at various
scales. To meta-train a learned general-purpose optimizer, first we design six gridworlds such that the
generated agent-gradients in these tasks vary across a wide range. To demonstrate the generalization
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Figure 4: Optim4RL shows strong generalization ability and achieves good performance in Brax
tasks, although it is only trained in six simple gridworlds from scratch. For comparison, VeLO (Metz
et al., 2022b) is trained for 4, 000 TPU-months with thousands of tasks but only achieves sub-optimal
performance in Ant. These results demonstrate the generalization ability of Optim4RL in complex
unseen tasks, which is a significant achievement in itself, proving the effectiveness of our approach.

Method
Task small_dense_long big_dense_long Ant Humanoid

With Pipeline Training 32.22±0.52 23.10±0.31 6421±355 8440±364
W.o. Pipeline Training 30.64±0.69 22.47±0.51 5038±235 6557±1055

Table 1: The performance of Optim4RL with and without pipeline training. All results are averaged
over 10 runs, reported with 90% confidence intervals.

ability of Optim4RL, we then meta-train Optim4RL in these gridworlds with A2C and test it in Brax
tasks with PPO. As shown in Figure 4, Optim4RL achieves satisfactory performance in these tasks,
showing a strong generalization ability. Note that Optim4RL surpasses VeLO (the state-of-the-art
learned optimizer) significantly in Ant. This is a great success since VeLO is trained for 4, 000 TPU-
months on thousands of tasks while Optim4RL is only trained in six toy tasks for a few GPU-hours.
Finally, Optim4RL is also competitive compared with classical human-designed optimizers (Adam
and RMSProp), even though it is entirely trained from scratch. Training a universally applicable
learned optimizer for RL tasks is an inherently formidable challenge. Our results demonstrate the
generalization ability of Optim4RL in complex unseen tasks, which is a great achievement in itself,
proving the effectiveness of our approach.

7 Conclusion and Future Work

In this work, we analyzed the hardness of learning to optimize for RL and studied the failures
of learned optimizers in RL. Our investigation reveals that agent-gradients in RL are non-iid and
have high bias and variance. To mitigate these problems, we introduced pipeline training and a
novel optimizer structure. Combining these techniques, we proposed a learned optimizer for RL,
Optim4RL, which can be meta-learned to optimize RL tasks entirely from scratch. Although only
trained in toy tasks, Optim4RL showed its strong generalization ability to unseen complex tasks.

Learning to optimize for RL is a challenging problem. Due to memory and computation constraints,
our current result is limited since we can only train Optim4RL in a small number of toy tasks. In the
future, by leveraging more computation and memory, we expect to extend our approach to a larger
scale and improve the performance of Optim4RL by training in more tasks with diverse RL agents.
Moreover, theoretically analyzing the convergence of learned optimizers is also an interesting topic.
We hope our analysis and proposed method can inspire and benefit future research, paving the way
for better learned optimizers for RL.
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A Pseudocode of Optim4RL

The pseudocode of Optim4RL is presented in Algorithm 1. Specifically, in all our experiments, we
use GRUs (Cho et al., 2014) with hidden size 8, MLPs with hidden sizes [16, 16].

Algorithm 1 Optim4RL: A Learned Optimizer for Reinforcement Learning
Require: RNN1 and RNN2, MLP1 and MLP2, hidden states h1 and h2, input gradient g, ϵ = 10−8,

learning rate α.
g ←⊥ g ▷ ⊥ denotes the stop-gradient operation
h1, x1 ← RNN1(h1, g) and o1 = MLP1(x1)
m = sign(g) exp(o1) ▷ Compute m: 1st pseudo moment estimate
h2, x2 ← RNN2(h2, g2) and o2 = MLP2(x2)
v = exp(o2) ▷ Compute v: 2nd pseudo moment estimate
∆θ ← −α m√

v+ϵ
▷ Compute the parameter update

B Gridworlds

We follow Oh et al. (2020) and design 6 gridwolds. In each gridworld, there are N objects. Each
object is described as [r, ϵterm, ϵrespawn]. Object locations are randomly determined at the beginning
of each episode, and an object reappears at a random location after being collected, with a probability
of ϵrespawn for each time-step. The observation consists of a tensor {0, 1}N×H×W , where N is the
number of objects, and H×W is the size of the grid. An agent has 9 movement actions for adjacent
positions, including staying in the same position. When the agent collects an object, it receives
the corresponding reward (r× reward scale), and the episode terminates with a probability of ϵterm
associated with the object. The default reward scale is 1. In Table 2, we describe the setting of each
gridworld in detail.

Task
Setting Size (H ×W ) Objects Horizon

big_sparse_short 10× 12 2× [1.0, 0.0, 0.05], 2× [−1.0, 0.5, 0.05] 50
big_sparse_long 12× 10 2× [1.0, 0.0, 0.05], 2× [−1.0, 0.5, 0.05] 500
big_dense_short 9× 13 2× [1.0, 0.0, 0.5], 2× [−1.0, 0.5, 0.5] 50
big_dense_long 13× 9 2× [1.0, 0.0, 0.5], 2× [−1.0, 0.5, 0.5] 500
small_dense_long 6× 4 [1.0, 0.0, 0.5], [−1.0, 0.5, 0.5] 500
small_dense_short 4× 6 [1.0, 0.0, 0.5], [−1.0, 0.5, 0.5] 50

Table 2: The detailed settings of gridworlds.

C Experimental Details

In this work, we apply Jax (Bradbury et al., 2018) to do automatic differentiation. For A2C training
in gridworlds, the feature net is an MLP with hidden size 32 for the “small” gridworlds. For the
“big” gridworlds, the feature net is a convolution neural network (CNN) with 16 features and kernel
size 2, followed by an MLP with output size 32. Unless mentioned explicitly, we use ReLU as the
activation function. We set λ = 0.95 to compute λ-returns. The discount factor γ = 0.995. One
rollout has 20 steps. The critic loss weight is 0.5, and the entropy weight is 0.01. For PPO training
in Brax games, we use the same settings in Brax examples 3. To meta-learn optimizers, we set
M = 4 in all experiments; that is, for every outer update, we do 4 inner updates. Potentially, a
larger M could lead to more farsighted learning but results in increasing memory and computation

3https://github.com/google/brax/blob/main/notebooks/training.ipynb
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requirements. We set M = 4 as a trade-off, which also works well in practice. Following common
practice (Lu et al., 2022), we report results averaged over 10 runs. Other details are presented in
the following sections.

C.1 Computation Resource

All our experiments can be trained with V100 GPUs. For some experiments, we use 4 V100 GPUs
due to a large GPU memory requirement. The computation to repeat all experimental results in
this work should be less than 1 GPU-year, while the exact computation used is hard to estimate.

C.2 Implementation Details for Section 4

We collect agent-gradients by training A2C in big_dense_long for 30M steps with learning rate
3e − 3, optimized by RMSProp. All collected agent-gradients are divided into 30 parts by time-
steps. We then plot the agent-gradients in the first, sixteenth, and last parts as the agent-gradient
distributions at the beginning, middle, and end of training, respectively.

C.3 Implementation Details for Section 6.1

For both LinearOptim and L2LGD2, the model consists of a GRU with hidden size 8, followed
by an MLP with hidden sizes [16, 16]. For STAR, we use the official implementation from
learned_optimization 4. Unlike the supervised learning setting, we set weight decay to 0 since
a positive weight decay in STAR leads to much worse performance. For a fair comparison, we apply
pipeline training to train all learned optimizers.

For Catch, the agent learning rate is 1e − 3; the number of environments / training units n is
64; the reset interval m is chosen from {32, 64}. For big_dense_long , the agent learning rate
is 3e − 3; the number of environments / training units n is 512; the reset interval m is chosen
from {72, 144, 288, 576}. For Ant and Humanoid, the agent learning rate is 3e − 4; the number of
environments / training units n is 2048; the reset interval m is chosen from {32, 64, 128, 256, 512}.
Furthermore, in order to reduce memory requirement, we set the number of mini-batches to 8; and
change the hidden sizes of the value network from [256, 256, 256, 256, 256] to [64, 64, 64, 64, 64].

We use Adam as the meta optimizer and choose the meta learning rate from {1e − 5, 3e − 5, 1e −
4, 3e− 4, 1e− 3, 3e− 3, 1e− 2}.

C.4 Implementation Details for Section 6.2

Optim4RL is meta-trained in 6 gridworlds and then tested in Brax tasks. We use Adam as the
meta optimizer and choose the meta learning rate from {1e − 5, 3e − 5, 1e − 4, 3e − 4, 1e − 3, 3e −
3}. The number of environments/training units n is 512. The reset interval m is chosen from
{72, 144, 288, 576}. The reward scales of all gridworlds are in Table 3.

Gridworld Reward Scale
small_dense_long 1000
small_dense_short 100
big_sparse_short 100
big_dense_short 10
big_sparse_long 10
big_dense_long 1

Table 3: The reward scales of gridworlds used for learning a general-purpose optimizer.

4https://github.com/google/learned_optimization/blob/main/learned_optimization/learned_optimizers/
adafac_nominal.py
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D Experiments for the Gradient Distribution in Supervised Learning

In this section, we show that the gradient distribution in supervised learning is also non-iid, but it
is more iid than the agent-gradient distribution in RL. Specifically, we train a neural network on
MNIST (Deng, 2012) for 10 epochs with RMSProp and collect gradients at different training stages.
Note that the network is the same as the actor network used in training A2C in big_dense_long ,
except for the output layer. We plot these gradients with logarithmic x-axis in Figure 5. Similar
to Figure 1, the gradient distribution is also non-iid, changing throughout the training process.

−9 −8 −7 −6 −5 −4 −3 −2 −1
log(|g| + 10−8)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y 
de

ns
ity

(a) At the beginning of training

−9 −8 −7 −6 −5 −4 −3 −2 −1
log(|g| + 10−8)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y 
de

ns
ity
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(c) At the end of training

Figure 5: Visualizations of gradient distributions (a) at the beginning of training, (b) in the middle
of training, and (3) at the end of training. All gradients are collected during training in MNIST,
optimized by RMSProp.

To show the gradient distribution from training on MNIST is more iid than the agent-gradient dis-
tribution from training in big_dense_long , we compute the Wasserstein distance (WD) between the
(agent-)gradient distribution at different training stages and the distribution of all (agent-)gradients
during training in Table 4. Note that a smaller distance indicates a higher iid degree. Thus these
results support the above claim.

Task
WD Value WD(beginning, all) WD(middle, all) WD(end, all)

MNIST 4.0642× 10−4 0.7205× 10−4 1.4204× 10−4

big_dense_long 7.1583× 10−4 1.1726× 10−4 6.7967× 10−4

Table 4: The Wasserstein distance between the (agent-)gradient distribution at different training
stages and the distribution of all (agent-)gradients during training.

E Robust Training and Strong Generalization Under Different
Hyper-Parameter Settings

Generally, we find it hard to train learned optimizers partly due to Not a Number (NaN) errors
during training, even when gradient clipping or gradient normalization is applied. For example,
among all meta-training hyper-parameter settings, we fail to train STAR due to NaN errors in more
than 80% and 50% settings in Humanoid and Ant, respectively. However, NaN errors are seldom
encountered when we meta-train Optim4RL, LinearOptim, and L2LGD2 in Humanoid and Ant; and
Optim4RL is the only one that achieves satisfactory performance among them.

Next, we show that Optim4RL not only generalizes to unseen tasks, but also transfers to different
hyper-parameter settings. To be specific, we train our learned optimizer Optim4RL under the default
hyper-parameter setting and then test it under different hyper-parameter settings in two gridworlds
– small_dense_short and big_dense_long . We report the returns at the end of training, averaged
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over 10 runs. As shown in Table 5, Table 6, and Table 7, Optim4RL is robust under different
hyper-parameter settings, such as GAE λ, entropy weight, and discount factor.

Task Parameter Value Return
small_dense_short 0.9 11.51±0.19
small_dense_short 0.95 11.25±0.16
small_dense_short 0.99 10.81±0.17
small_dense_short 0.995 10.66±0.17
big_dense_long 0.9 23.35±0.76
big_dense_long 0.95 23.57±0.60
big_dense_long 0.99 21.31±0.64
big_dense_long 0.995 20.55±0.54

Table 5: The performance of Optim4RL with different GAE λ values in two gridworlds. All results
are averaged over 10 runs, reported with 90% confidence intervals.

Task Parameter Value Return
small_dense_short 0.005 11.01±0.16
small_dense_short 0.01 11.13±0.09
small_dense_short 0.02 11.29±0.12
small_dense_short 0.04 11.25±0.16
big_dense_long 0.005 22.41±0.59
big_dense_long 0.01 22.45±0.79
big_dense_long 0.02 22.59±0.43
big_dense_long 0.04 19.96±1.30

Table 6: The performance of Optim4RL with different entropy weights in two gridworlds. All results
are averaged over 10 runs, reported with 90% confidence intervals.

Task Parameter Value Return
small_dense_short 0.9 12.47±0.14
small_dense_short 0.95 12.32±0.09
small_dense_short 0.99 11.48±0.09
small_dense_short 0.995 11.01±0.17
big_dense_long 0.9 18.13±3.27
big_dense_long 0.95 25.01±1.42
big_dense_long 0.99 25.45±0.47
big_dense_long 0.995 22.07±0.81

Table 7: The performance of Optim4RL with different discount factors in two gridworlds. All results
are averaged over 10 runs, reported with 90% confidence intervals.
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Abstract

The performance of image-based Reinforcement Learning (RL) agents can vary
depending on the position of the camera used to capture the images. Training
on multiple cameras simultaneously, including a first-person egocentric camera, can
leverage information from different camera perspectives to improve the performance
of RL. However, hardware constraints may limit the availability of multiple cameras
in real-world deployment. Additionally, cameras may become damaged in the real-
world preventing access to all cameras that were used during training. To overcome
these hardware constraints, we propose Multi-View Disentanglement (MVD), which
uses multiple cameras to learn a policy that is robust to a reduction in the number of
cameras to generalise to any single camera from the training set. Our approach is a
self-supervised auxiliary task for RL that learns a disentangled representation from
multiple cameras, with a shared representation that is aligned across all cameras to
allow generalisation to a single camera, and a private representation that is camera-
specific. We show experimentally that an RL agent trained on a single third-person
camera is unable to learn an optimal policy in many control tasks; but, our approach,
benefiting from multiple cameras during training, is able to solve the task using only
the same single third-person camera.

1 Introduction

(a) first-person (b) third-person

Figure 1: First-person and third-person
camera views for MetaWorld Soccer task.

The ability of a Reinforcement Learning (RL) agent to
learn an optimal policy on robotic control tasks from
images depends on the position of the camera available
during training. Often, a static third-person camera
pointing towards the scene (e.g. Figure 1b) is not suffi-
cient to learn an optimal policy. A first-person egocen-
tric camera on the robot’s end-effector (e.g. Figure 1a)
has been shown to be necessary to learn an optimal
policy in many tasks (Hsu et al., 2022). Approaches
that leverage both first-person and third-person cam-
eras simultaneously have been shown to improve the
performance of RL algorithms (Hsu et al., 2022; Jangir
et al., 2022; Barati & Chen, 2019). Whilst it is pos-
sible to create multiple camera views in simulation to
improve training, access to multiple cameras in the real-world may be restricted due to hardware
limitations. Therefore, it is desirable for an RL agent to be able to generalise from multiple cameras
to a single camera for successful deployment. Even when multiple cameras are available in the real-
world, cameras may fail or become faulty during deployment, so a robust RL agent should continue
to perform optimally with only a subset of the cameras that were available during training. We
propose to address these hardware limitations with an approach that leverages multiple cameras
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during training to learn a policy that successfully performs control tasks with multiple cameras as
well as achieving robustness to a reduction in the available cameras.

We use multiple cameras to learn a disentangled representation that allows robustness to a reduction
in cameras to generalise to any single camera from the training set. Our approach, called Multi-View
Disentanglement (MVD), is a self-supervised auxiliary task to learn such a disentangled representa-
tion and can be used with existing RL algorithms. The learned representation is disentangled into a
shared representation that is similar across all cameras, and a private representation that contains
information only available to an individual camera. The shared representation gives the RL policy
a consistent representation that can be relied upon regardless of the camera. The private represen-
tation allows information only available to a single camera to be used during training to improve
policy learning as some camera views make it easier to discern important features than others.

We evaluate our approach on robotic control tasks using a Panda robot (Gallouédec et al., 2021;
Hsu et al., 2022), and several MetaWorld tasks (Yu et al., 2020) using a Sawyer robot. We show
experimentally that an RL agent often cannot learn an optimal policy when training on a third-
person camera alone, and that an approach combining multiple cameras during training (Hsu et al.,
2022) does not generalise to a single camera. Our results also show that our approach, MVD, is able
to learn an optimal policy from multiple cameras and achieve zero-shot generalisation to successfully
solve the task using any of the cameras individually in many tasks.

2 Related work

Robotic control with multiple cameras. Prior work uses multiple cameras to improve perfor-
mance on robotic control tasks. Hsu et al. (2022) use both first-person and third-person cameras
together with a variational information bottleneck to regularise the third-person representation, Jan-
gir et al. (2022) use transformers with cross-view attention, Barati & Chen (2019) train multiple
workers with different views and combine features for each worker weighted by Q-values, and Driess
et al. (2022) use Neural Radiance Fields to learn a representation from multiple images to improve
the performance of RL. These approaches combine camera representations to learn a policy that
is dependent on all available cameras, and so cannot generalise if one of the training cameras is
no longer available. Acar et al. (2023) trains a teacher RL policy on multiple cameras augmented
with human demonstrations. They use imitation learning to learn a student single-camera policy to
output an action similar to the teacher multi-camera policy. Shang & Ryoo (2021) also use imitation
learning where demonstrations are a third-person view from a human or robot, which are used along-
side first-person views of the egocentric robot to learn a disentangled representation for imitation
learning. Our approach does not require training a separate teacher policy or collecting suitable
demonstrations, and instead learns a disentangled representation online that allows generalisation
to a single camera.

Multi-view representation learning. Multi-view representation learning approaches use mul-
tiple sources/views of a shared context. This can consist of multiple camera views of the same scene
(as is the case in our work) as well as combining multi-modal inputs. Li et al. (2019) categorise
approaches into representation alignment and representation fusion. Representation alignment in-
cludes minimising the distance between representations of different views (Feng et al., 2014; Li et al.,
2003), maximising similarity between views (Bachman et al., 2019; Frome et al., 2013) and maximis-
ing correlation of variables across views (Andrew et al., 2013). Representation fusion combines the
representations from different views into a single representation for downstream tasks (Geng et al.,
2022; Xie et al., 2021; Karpathy & Fei-Fei, 2014). Multi-view disentanglement separates the learned
representation into shared and private parts. The shared representation is aligned across views,
while the private representation is view-specific. Several approaches have been proposed to achieve
multi-view disentanglement in the supervised and unsupervised learning literature (Jain et al., 2023;
Ke et al., 2023; Xu et al., 2021; Ke et al., 2021; Xin et al., 2021; Hosoya, 2019; Gonzalez-Garcia
et al., 2018; Ye et al., 2016). Our work is aligned with the multi-view disentanglement literature,
but we consider multi-view disentanglement for RL and use the temporal data available in RL.
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Self-supervised auxiliary tasks in RL. Disentangled representations have been used to improve
RL generalisation for a single camera (Dunion et al., 2023a;b; Higgins et al., 2017). Other approaches
learn representations using mutual information (Lee et al., 2020; Garcin et al., 2024), regression
targets (McInroe et al., 2024) and similarity constraints (Agarwal et al., 2021; Mazoure et al., 2020;
van den Oord et al., 2018). CURL (Laskin et al., 2020) uses contrastive learning to maximise the
similarity between representations of the same image with different augmentations to improve sample
efficiency. However, Li et al. (2022) find that self-supervised learning frameworks with augmented
images have limited impact on RL performance compared to image augmentation alone. While we
also use contrastive learning with images, we consider camera views rather than augmentations.

3 Preliminaries

Reinforcement learning. We assume the agent is acting in a Markov Decision Process (MDP),
defined by the tuple M = (S, A, P, R, γ), where S is the state space, A is the action space,
P (xt+1|xt, at) is the probability of next state xt+1 ∈ S given action at ∈ A is taken in state
xt ∈ S at time t, R(xt, at) is the reward function giving reward rt after taking action at in state xt,
and γ ∈ [0, 1) is the discount factor. The goal of an RL agent is to learn a policy π to maximise
the discounted return, maxπ EP,π[

∑∞
t=0[γtR(xt, at)]]. In this work, we focus on RL from image pix-

els, where the agent observation ot ∈ Rc×h×w at timestep t is an RGB image, a high-dimensional
observation of the underlying state, where c is the channels, and h and w are the image height and
width respectively. An observation can consist of multiple consecutive image frames where required
for the task. The agent learns a lower-dimensional latent representation zt and the policy π is now a
function of the learned representation, π(at|zt). We consider N different camera views of the same
scene; we use C to denote the set of cameras and ci ∈ C is a single camera. We use superscript to
identify the observation oci

t or representation zci
t for camera ci ∈ C.

Contrastive learning. We use contrastive learning to learn disentangled representations in a
self-supervised way. Given a query q (sometimes also referred to as an anchor), contrastive learning
aims to maximise the similarity between q and a positive key k+ while minimising the similarity
with each negative key k−. Many approaches use the dot product qT k to measure the similarity
between vectors q and k (Chen et al., 2020; He et al., 2020; Wu et al., 2018) or the bilinear product
qT Wk where W is a learnable weight matrix (Laskin et al., 2020; van den Oord et al., 2018).

We use the InfoNCE loss (van den Oord et al., 2018) with normalised dot product similarity measure,
also known as cosine similarity, to measure the distance between vectors. This loss function was also
used for the SimCLR (Chen et al., 2020) and MoCo (He et al., 2020) methods. Let sim(q, k) denote
the cosine similarity between two vectors q and k, given by:

sim(q, k) = qT k
∥q∥ ∥k∥ . (1)

Then the InfoNCE loss with query q, positive key k+ and M negative keys {k−
i }M

i=1 is given by:

LInfoNCE(q, k+, {k−
i }M

i=1) = log
[

exp (sim(qT , k+)/τ)
exp (sim(qT , k+)/τ) +

∑M
i=1 exp (sim(qT , k−

i )/τ)

]
(2)

where τ is a temperature parameter.

4 Multi-view disentanglement for RL

We propose Multi-View Disentanglement (MVD) to learn a disentangled representation from multi-
ple cameras that is robust to a reduction in available cameras. Our approach learns separate shared
sci

t and private pci
t representations for each camera ci ∈ C, where C denotes the set of cameras and

t is the timestep. The shared representation sci
t is trained to be similar across all cameras ∀ci ∈ C,
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Maximise similarity between shared
representations , 

Minimise similarity between shared 
 and private representations , for

each 

Reinforcement learning with

Disentangled representation

Minimise similarity between private
representations , 

Shared encoder

Private encoder

...

Figure 2: Multi-view Disentanglement (MVD) architecture. Each camera image is used to generate
a shared and private representation. The shared auxiliary loss LS uses these representations to max-
imise similarity between shared representations and minimise similarity between shared and private
representations. The private auxiliary loss LP minimises similarity between private representations.

while the private representation pci
t encodes information available only to a specific camera ci ∈ C.

Both representations together are used to condition the RL policy π(at|zt) with zt = (sci
t , pcj

t ), where
the shared part allows for camera generalisation and the private part allows the policy to leverage
extra information available to a single camera to improve training. We define two contrastive learn-
ing objectives that together give an auxiliary task for multiple camera views that can be applied to
existing RL algorithms. We first provide an overview of the approach in Section 4.1, then discuss
the MVD auxiliary task in Section 4.2. Finally, we explain how the disentangled representation is
used as input to the RL policy in Section 4.3.

4.1 Overview of approach

An outline of our approach is depicted in Figure 2. MVD consists of two separate encoders, which
both learn a lower-dimensional latent representation of the same size for each camera ci ∈ C. There
is one encoder for the shared representation, sci

t = fθ(oci
t ), where fθ is an encoder parameterised by

θ. There is a separate encoder for the private representation, pci
t = gϕ(oci

t ), where gϕ is an encoder
parameterised by ϕ. Both encoders take the same observation image pixels of a single camera,
oci

t , as input and encoder parameters are shared across all cameras. We use a contrastive learning
approach to maximise similarity between the shared representations, sci

t , of all cameras ci ∈ C while
minimising similarity between the shared sci

t and private pci
t representations for each camera ci ∈ C

to achieve disentanglement. An additional contrastive loss is used to minimise similarity between
private representations pci

t for all ci ∈ C to ensure the policy cannot rely solely on the private
representation. The contrastive learning details are provided in Section 4.2. Both the shared and
private representations are used as input to the RL algorithm, which will be described in Section 4.3.

4.2 Multi-view disentanglement

Shared contrastive loss. The goal of the shared contrastive loss is to disentangle the shared
sci

t and private pci
t representations for each camera ci ∈ C by minimising the similarity between

these representations, while also maximising the similarity between the shared representation sci
t for

all cameras ∀ci ∈ C to achieve alignment. These two objectives are combined into one contrastive
loss by defining suitable positive and negative keys. We use the InfoNCE loss in Equation 2 with
the cosine similarity measure in Equation 1. For each calculation of the InfoNCE loss, one camera
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cq ∈ C is selected as the query camera and another as the positive camera c+ ∈ C where cq ̸= c+.
The shared representation for the query camera cq is the query for the contrastive loss, q = scq

t . The
shared representation of the positive camera c+ is the positive key, k+ = sc+

t . The negative keys
consist of two sets: (1) the positive keys of all other queries in the batch {sc+

t′ }t′ ̸=t, and (2) the private
representations for all N cameras {pcn

t }N
n=1. The positive key encourages the shared representations

to be similar across cameras, while the negative keys encourage (1) shared representations to be
different for different timesteps to capture task-relevant information, and (2) shared and private
representations to be dissimilar to disentangle them. The query, positive and negative keys are used
as the input to the InfoNCE loss:

LS =
∑

cq ̸=c+

LInfoNCE(scq

t , sc+
t , {sc+

t′ }t′ ̸=t ∪ {pcn
t }N

n=1) (3)

where we sum the loss over each camera in a single update step.

Private contrastive loss. To prevent the shared representation from collapsing and the agent
relying solely on the private representation, we minimise the similarity between the private repre-
sentations. We use the InfoNCE loss with cosine similarity again to achieve this. The query is the
private representation for a given camera at timestep t, q = pcq

t for cq ∈ C. The positive key is the
private representation for the same camera at the next timestep t + 1, such that k+ = pcq

t+1. The
negative keys are the private representations for all other cameras at timestep t, given by {pcn

t }∀n ̸=q.
The positive keys are needed to keep the representation bounded and are chosen to encourage tem-
poral consistency in the private representations at consecutive timesteps, while the negative keys
encourage the private representation for each camera to be dissimilar. This prevents the agent from
encoding information available to all cameras in the private representation. The query, positive and
negative keys are used as the input to the InfoNCE loss:

LP =
∑

cq

LInfoNCE(pcq

t , pcq

t+1, {pcn
t }∀n ̸=q) (4)

MVD loss. Since the similarity measure is normalised, we combine the shared and private con-
trastive losses by summing them, giving the MVD loss:

LMVD = LS + LP (5)

4.3 Reinforcement learning

We use both the shared and private representations to create the representation zt as input to the
RL algorithm (for both value and policy where applicable) because the shared representation alone
does not benefit from the features that are easier to discern or only available to one camera during
training. One shared representation sci

t and private representation pcj

t are randomly sampled for
each update step, such that zt =

(
sci

t , pcj

t

)
with ci, cj ∈ C. The shared and private representation

do not have to come from the same camera due to the consistency across shared representations.
We randomly sample the representations at each update step because combining all representations
would result in a policy that can learn to rely on all cameras and would therefore fail to generalise
if one camera is unavailable. Both the RL and MVD losses are used to update both shared and
private encoders. Combining the RL loss with the MVD loss gives the loss used in training at every
update step:

L = LRL + LMVD (6)

where LRL is the RL loss for the chosen RL algorithm.
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Figure 4: Results for Panda tasks showing success rate for evaluation on all cameras (left of dashed
line) compared with success rate on each of the individual cameras (right). Success rate is averaged
over 20 evaluation episodes for 5 seeds. The shaded region is standard deviation.

5 Experimental results

Our experiments evaluate performance on multiple cameras as well as zero-shot generalisation to
any single camera from the training set. We evaluate our approach on robotic control tasks with a
Panda robot using the Reach task from Panda Gym (Gallouédec et al., 2021) and a cube grasping
task from Hsu et al. (2022). We also evaluate on four MetaWorld (Yu et al., 2020) tasks using a
Sawyer robot. Our results show that MVD learns a policy that can solve the task with multiple
cameras and generalise to a single camera. In many experiments, our approach is able to learn an
optimal policy for a single camera where an agent trained directly on that camera alone is unable
to learn at all.

5.1 Experimental setup

(a) first-person (b) third-person
(front)

(c) third-person
(side)

Figure 3: Camera views used for Panda tasks.

To demonstrate the broad applicability of our ap-
proach, we apply MVD to two RL algorithms and
different numbers of cameras. For the Panda tasks
we use SAC (Haarnoja et al., 2018) with a de-
coder to aid learning from images and three cam-
eras (depicted in Figure 3). For the MetaWorld
tasks we use DrQ (Yarats et al., 2021a), which uses
image augmentations to improve sample efficiency
on these more difficult tasks, and two cameras (de-
picted in Figure 1). In all tasks, one of the cameras
is a first-person camera on the end-effector, while
the remaining views are static third-person cam-
eras. Implementation details and hyperparameters are provided in Appendix B.1. Our code is
available at github.com/uoe-agents/MVD.

In the MetaWorld tasks only, we also concatenate the representation with proprioceptive state
information to improve training, similar to prior work using MetaWorld from images (Hsu et al.,
2022). The proprioceptive state consists of the 3D end-effector position and 1D gripper width, and
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Figure 5: Results for MetaWorld tasks showing success rate for evaluation on all cameras (left of
dashed line) compared with success rate on each of the individual cameras (right). Success rate is
averaged over 20 evaluation episodes for 5 seeds. The shaded region is standard deviation.

is used for baselines as well as our method. However, we also demonstrate that our approach does
not depend on proprioceptive state information by excluding it on the Panda tasks.

To demonstrate the importance of using multiple cameras in training, we compare to the same
base RL algorithm trained only on a single camera for each available camera separately. We also
demonstrate the importance of our disentanglement approach for generalisation over representation
fusion approaches by comparing to VIB (Hsu et al., 2022), an approach that combines camera
views with a variational information bottleneck on the third-person camera, for which we use the
same base RL algorithm as MVD in each task. Finally, we include an ablation of our method that
has only the shared representation with the corresponding loss to maximise similarity between the
shared representation for all cameras (‘MVD-SharedOnly’). This ablation is used to demonstrate
the importance of the private representation during training.

5.2 Generalisation results

The results for Panda tasks in Figure 4 and MetaWorld in Figure 5, show the task success rate
of evaluation episodes completed at intervals throughout training. For MVD and VIB, which both
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Figure 6: Results of ablation experiments for Panda Reach showing success rate for evaluation on all
cameras (left of dashed line) compared with success rate on each of the individual cameras (right).
Success rate is averaged over 20 evaluation episodes for 5 seeds. The shaded region is standard
deviation. See text for details of each ablation.

train on all cameras, the success rate for evaluation episodes on all cameras is provided on the left of
the vertical dashed line for each task. The success rate for each individual camera in the training set
is provided on the right of the dashed line, representing the zero-shot generalisation performance of
MVD and VIB while also showing the performance of the base RL algorithm that learns only with
that individual camera.

As expected, the VIB baseline achieves optimal performance when evaluated on all three cameras
but is unable to generalise to any individual camera. The base RL algorithm trained directly on
each single camera is able to learn an optimal policy only for the first-person camera but fails to
learn on the third-person cameras. In contrast, MVD achieves similar performance to VIB when
evaluated on all cameras, albeit with lower sample efficiency in some tasks, but also achieves zero-
shot generalisation to each camera, even when the base RL algorithm is unable to learn directly
from that camera alone. MVD is the only method to attain consistent performance when evaluated
on each camera individually.

The ablation of MVD with the shared representation only (MVD-SharedOnly) demonstrates the
importance of the private representation in MVD. In all the tasks except Panda Reach, the shared
representation alone achieves lower performance than MVD. This may be because the first-person
camera is easier to learn from than the third-person cameras (as evidenced by the single camera
baseline). Encouraging the shared representations to be similar for all cameras, without the flexibility
of a separate private representation, may prevent important features from a single camera being used
during training if the agent is not yet able to extract similar features from the other cameras.

5.3 Ablation study

In this section, we conduct more detailed analysis of MVD for the Panda Reach and MetaWorld
Soccer tasks with ablation experiments to better understand the components of MVD. We also
provide some analysis of the learned representations in Appendix C.

We consider the MVD shared loss (Equation 3), which uses two types of negative samples: shared
representations from the same camera at different timesteps, and private representations for all
cameras at the same timestep. We assess the impact of each type of negative sample by measuring
performance when one type is removed, resulting in two MVD ablations: MVD shared loss without
shared negatives and MVD shared loss without private negatives. The results in Figures 6 and
7 show that removing either of the negative samples reduces the performance of MVD, but the
shared negatives have a much greater impact on performance than the private negatives. This
may be due to the other constraints in the MVD shared and private losses indirectly encouraging
disentanglement by encouraging shared representations to be similar and private representations to
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Figure 7: Results of ablation experiments for MetaWorld Soccer showing success rate for evaluation
on all cameras (left of dashed line) compared with success rate on each of the individual cameras
(right). Success rate is averaged over 20 evaluation episodes for 5 seeds. The shaded region is
standard deviation. See text for details of each ablation.

be dissimilar, limiting the additional improvement gained by explicitly doing so through the use of
private negatives in the shared loss.

To understand the impact of the similarity measure for InfoNCE, we compare the normalised dot
product similarity measure used for MVD to an alternative bilinear similarity measure. The results,
also in Figures 6 and 7, show that while the method is reasonably robust to the choice of similarity
measure, the dot product outperforms the bilinear similarity measure, particularly in Panda Reach.
This may be due to the learnable weight matrix in the bilinear similarity measure making it a more
lenient constraint as the agent can learn to give less weight to some dimensions than others.

Finally, we consider the same training setup as MVD but without the MVD loss. We train the base
algorithm with randomised cameras to replicate the MVD training setup by randomly sampling a
camera representation as input to the RL loss at each timestep (as described in Section 4.3) but
without the MVD loss to structure the learned representation. As in the previous section, the
base algorithm is SAC for Panda Reach and DrQ for MetaWorld Soccer. The results in Figures 6
and 7 show that randomising the cameras alone is not enough to learn to solve the more difficult
MetaWorld Soccer task. While camera randomisation does improve on the single camera baseline
(see Figure 4) for the easier Panda Reach task, it achieves a much lower success rate than MVD.

6 Conclusion and future work

We demonstrated that camera perspective impacts the ability of an RL agent to learn an optimal
policy. The impact can be mitigated by training with multiple cameras in simulation, but hardware
constraints may prevent an RL agent from always relying on access to all of these cameras in the
real-world. We propose Multi-View Disentanglement (MVD), an auxiliary task for RL algorithms to
learn disentangled representations with a shared representation, which is aligned across all cameras,
and a private representation, which is camera-specific. Our experiments showed that an RL agent
trained only on a single third-person camera cannot learn an optimal policy in many control tasks,
whereas MVD, benefiting from multiple cameras in training, achieves robustness to a reduction in
cameras to solve the task with the same single third-person camera.

Future work could leverage progress on feature-level disentanglement, either within RL (Dunion
et al., 2023a;b; Higgins et al., 2017) or in the multi-view disentanglement literature (Qiu et al.,
2023; Hsieh et al., 2018), to further extend this work to disentangle individual features within the
shared and private representations. Future work could also consider extending to a larger number
of cameras to learn a representation that generalises out-of-distribution for sim2real transfer when
real-world camera views do not perfectly match simulation.
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A Extended background

We use SAC (Haarnoja et al., 2018) and DrQ (Yarats et al., 2021a) as the base RL algorithms for
the MVD auxiliary task.

SAC is an actor-critic RL algorithm for continuous control. SAC maximises the expected return
and entropy of the policy π. The critic Q minimises the loss:

LQ = E(ot,at,ot+1,rt)∼D
[(

Q(ot, at) − rt − γV̄ (ot+1))
)2]

(7)

where ot is the image observation and at is the action at time t. The actor π is trained by minimising
the loss:

Lπ = Eot∼D

[
Eat∼π

[
αSAC log(π(at | ot)) − min

i=1,2
Q̄i(ot, at)

]]
(8)

where Q̄ is exponential moving average of the Q network parameters. We augment SAC with a
decoder, trained with an image reconstruction loss, to improve learning from images. The encoder
and decoder details are provided in Appendix B.1.

DrQ is a data augmentation approach for robust learning from image pixels without the need for
a decoder. DrQ adds padding and random crop augmentations to the image observations and
averages over the target Q-value for each augmentation in the critic update as well as averaging over
the augmentations for the Q function itself. The actor π uses unaugmented images and applies the
SAC policy loss in Equation 8.

B Implementation details

B.1 MVD implementation

Our codebase is built on top of the public and open-source generalisation benchmark code provided
by Hansen & Wang (2021), and uses the official DrQ implementation by Yarats et al. (2021a). A
public and open-source implementation of MVD is available at github.com/uoe-agents/MVD.

Encoders. Both the shared encoder fθ and private encoder gϕ consist of 4 convolutional layers,
each with a 3 × 3 kernel size and 32 channels. The first layer has a stride of 2, all other layers have a
stride of 1. There is a ReLU activation between each of the convolutional layers. The convolutional
layers are followed by a linear layer, normalisation, then a tanh activation function. The output size
(i.e. size of each representation) is 50. The encoder weights are shared between the actor π and
critic Q.

Decoder. Where we use SAC as the base RL algorithm, we also include a decoder trained with an
image reconstruction loss as this improves the sample efficiency of SAC with images (e.g. Yarats et al.
(2021b)). The decoder is not used for DrQ. The first layer of the decoder is a fully-connected layer,
which is followed by 4 deconvolutional layers, each with a 3 × 3 kernel size and 32 channels. Each
deconvolutional layer has a stride of 1, except the last, which has a stride of 2. The reconstruction
loss, which is used to update both the encoder and the decoder, is the mean squared error between
the input image and the reconstructed image.

Actor and critic. Both the actor π and critic Q networks are multilayer perceptrons that each
consist of two layers and have a hidden dimension of 1024. There is a ReLU activation after each
layer except the last layer.

Hyperparameters. Table 1 shows the hyperparameters for all tasks for both MVD and baselines
as they use the same base RL algorithm.
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Hyperparameter Value
Replay buffer capacity 100000

Initial steps before training begins 1000
Stacked frames 3 for MetaWorld, 1 for Panda
Action repeat 2 for MetaWorld, 1 for Panda

Batch size 128
Discount factor 0.99

Optimizer Adam
Learning rate (actor, critic and encoder) 1e-3

αSAC learning rate 1e-4
Q function soft-update rate 0.01

Actor update frequency 2
Actor log stddev bounds [−10, 2]

Initial temperature 0.1
Image size 3 × 84 × 84

InfoNCE temperature 0.1

Table 1: Hyperparameter values.

C Representation analysis

We use saliency maps to show that our learned representations reflect shared and private features
in the camera images. The attribution method we use is Integrated Gradients (Sundararajan et al.,
2017) with SmoothGrad-Squared (Hooker et al., 2018) to reduce visual noise. However, while features
attribution methods such as Integrated Gradients are commonly used in the literature, very recently
Bilodeau et al. (2024) has shown that such feature attributions methods can fail to improve on
random guessing for inferring model behaviour. We provide our representation analysis results for
completeness.

C.1 Saliency map results

Using the learned encoders fθ and gϕ, we calculate the attributions for each image pixel on each
representation feature. We also calculate the attributions for each dimension in the representations
on the output of the learned policy π. The pixel attributions are weighted by the corresponding
policy attributions, and normalised for each camera to be in [0, 1], to visualise the attention of the
RL policy based on the features in the shared and private representations separately.

The resulting saliency maps in Figure 8 show that the shared and private representations focus
on different features. The shared representation consistently focuses on features that are visible
in all cameras, such as goal position for both Panda Reach and MetaWorld Soccer. The private
representation focuses on camera-specific features that are not clearly visible in all cameras. In Panda
Reach, the private representation for the first-person camera highlights the end-effector, which may
be harder to extract from the third-person cameras; while the third-person front camera highlights
the table edge, which is not visible in the first-person camera. In MetaWorld Soccer, the private
representation for the first-person camera highlights the right edge of the goal post, which may help
the agent guide the ball into the goal but is obscured by the robot in the third-person camera.
The shared and private saliency maps are shown on different scales for readability. Comparing the
maximum attribution on each of the scales shows that the attributions for the shared representations
are higher than the corresponding private representations. This means that the policy focuses more
on the shared representation by the end of training since the most important features for the task
are visible in all cameras, such as the goal positions. However, the private representation is still
required during training as evidenced by the ablation experiment in Section 5.2.
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Figure 8: Policy saliency maps for MVD on the Panda Reach and MetaWorld Soccer tasks. The first
row shows the original images used to calculate the attributions for each camera, the second and
third rows show the saliency maps for the shared and private representations, respectively. Brighter
pixels correspond to higher attributions.

C.2 Implementation details

We use the Integrated Gradients implementation from the open-source Captum library (Kokhlikyan
et al., 2020) to calculate the attributions for the saliency maps in Figure 8. We use an input image
for each camera (depicted in the first row of Figure 8) and an all black image as the baseline. We
used SmoothGrad-Squared to reduce visual noise, which adds Gaussian noise to n copies of the
input image, calculates the Integrated Gradient attributions for each of these noisy images, and
returns the mean squared of the attributions across the noisy images. We use the implementation
of SmoothGrad-Squared provided by Captum with the default n = 5.

For the input image oci
t for each camera ci ∈ C, we calculated the image pixel attributions for

each dimension of the output for both the shared encoder fθ and the private encoder gϕ. For
the corresponding representation zci

t = (sci
t , pci

t ), we calculated the attribution of each dimension
of both the shared and private representation on the output of the policy network π(at|zt). The
pixel attributions for each dimension of the shared and private representation are weighted by the
corresponding attributions from the policy network. The absolute value of the attributions are
summed over all dimensions for each of the shared and private representations. The resulting pixel
attributions allow us to visualise the attention of the policy network to the pixels based on whether
those pixels were used by the shared or private representation. The attributions are re-scaled be
in [0, 1] for each camera for easier comparison across cameras and different representations. These
normalised attributions are overlayed onto the input image to create the saliency maps. The shared
and private saliency maps are shown on a different scale to improve readability of the private
attributions since they are much smaller than the shared attributions.
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D Environment details

In this section, we provide a description and images of each task used in our experiments.

D.1 Panda tasks

We evaluate performance using tasks with the simulated Franka Emika Panda robotic arm instan-
tiated in the PyBullet physics engine (Coumans & Bai, 2016–2019). For both tasks, we use three
camera views as the observations generated with PyBullet, depicted in Figure 9.

(a) Panda Reach

(b) Panda Cube Grasping

Figure 9: Images showing each camera view used for the Panda tasks.

Panda Reach. We use the Reach task from Panda Gym (Gallouédec et al., 2021), where the goal
is for the robot to place it’s end-effector at a target position. We use the dense reward setting in
which the agent receives a reward at each timestep based on the distance to the goal. The action
space consists of the 3D end-effector position and 1D gripper control. The position of the end-effector
and goal are randomly initialised at the start of each episode.

Panda Cube Grasping. The Cube Grasping task was proposed by Hsu et al. (2022). The goal
is for the robot to grasp and pick up a cube. The reward at each timestep is based on the distance
to the cube plus additional rewards if the agent is gripping or lifting the cube. The action space
consists of the 3D end-effector position and 1D gripper control. The cube and end-effector position
are randomly initialised at the start of each episode.

D.2 MetaWorld tasks

We evaluate performance on four tasks from the MetaWorld benchmark suite (Yu et al., 2020). All
tasks use the simulated Sawyer robotic arm and are implemented in the MuJoCo physics engine
(Todorov et al., 2012). We use the ‘Multi-Task 1’ setup which randomises the goal position for every
episode within a single task. The action space consists of the 3D change in end-effector position and
1D gripper control. The goal of each task is described in Table 2. For all tasks, we render camera
images from first-person and third-person perspectives for the observations, depicted in Figure 10.
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Task Goal
Soccer Guide the ball in to the goal

Basketball Pick up the basketball and place into the hoop
Pick and Place Move the object to the goal position

Peg Insert Pick up and insert a peg sideways into the hole

Table 2: Description of MetaWorld tasks.

(a) Soccer (b) Basketball

(c) Pick and Place (d) Peg Insert

Figure 10: Images showing each camera view used for the MetaWorld tasks.
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Abstract

Offline pretraining with a static dataset followed by online fine-tuning (offline-to-
online, or OtO) is a paradigm well matched to a real-world RL deployment process.
In this scenario, we aim to find the best-performing policy within a limited budget of
online interactions. Previous work in the OtO setting has focused on correcting for
bias introduced by the policy-constraint mechanisms of offline RL algorithms. Such
constraints keep the learned policy close to the behavior policy that collected the
dataset, but we show this can unnecessarily limit policy performance if the behavior
policy is far from optimal. Instead, we forgo constraints and frame OtO RL as an
exploration problem that aims to maximize the benefit of online data-collection.
We first study the major online RL exploration methods based on intrinsic rewards
and UCB in the OtO setting, showing that intrinsic rewards add training instabil-
ity through reward-function modification, and UCB methods are myopic and it is
unclear which learned-component’s ensemble to use for action selection. We then
introduce an algorithm for planning to go out-of-distribution (PTGOOD) that
avoids these issues. PTGOOD uses a non-myopic planning procedure that targets
exploration in relatively high-reward regions of the state-action space unlikely to be
visited by the behavior policy. By leveraging concepts from the Conditional Entropy
Bottleneck, PTGOOD encourages data collected online to provide new information
relevant to improving the final deployment policy without altering rewards. We
show empirically in several continuous control tasks that PTGOOD significantly
improves agent returns during online fine-tuning and avoids the suboptimal policy
convergence that many of our baselines exhibit in several environments.

1 Introduction

In real-world reinforcement learning (RL), there is great value in being able to train an agent
offline with a static dataset (Levine et al., 2020). While offline RL (also called batch RL (Ernst
et al., 2005; Reidmiller, 2005)) removes traditional RL’s potentially costly data-collection step, the
resulting policy may be suboptimal. This could occur if the offline dataset does not cover all areas
of the state-action space relevant to our task or if the policy that collected the dataset was itself
suboptimal. Given this risk, fine-tuning an RL agent over a small budget of online interactions
would be useful in real-world deployments.

In this study, we view this offline-to-online (OtO) scenario as an exploration problem. Because
the agent has a limit on its environment interactions, it must choose carefully which state-action
pairs to collect during online fine-tuning. This contrasts starkly with prior work in OtO RL, which
has focused on correcting for bias introduced by the constraint mechanisms used in existing offline

516



RLJ | RLC 2024

RL algorithms (Beeson & Montana, 2022; Nakamoto et al., 2023; Luo et al., 2023). Such policy-
constraint mechanisms are used during offline training to keep the learned policy close to the behavior
policy that collected the offline dataset (e.g., the inclusion of a behavior-cloning term (Fujimoto
& Gu, 2021)). While these methods can work well offline, they can cause detrimental learning
instabilities during online fine-tuning, due to overly-conservative value functions (Nakamoto et al.,
2023). Instead, we do not use these constraint mechanisms at any point. In doing so,
we shift the problem set away from bias correction to data-collection strategy during the online
fine-tuning phase.

While exploration is widely studied in the online RL literature, the OtO problem differs from the
standard online learning setup in two unique ways. First, the OtO setting greatly constrains the
number of online data-collection steps. Second, the online phase in OtO RL can benefit from infor-
mation available from offline pretraining. Because exploration methods have generally not featured
in the OtO RL literature, we evaluate the compatibility of major online RL exploration paradigms
with the OtO setting. In particular, we analyze intrinsic motivation (Chentanez et al., 2004) and
upper confidence bound (UCB) exploration (Auer, 2002). We find that intrinsic-motivation methods
can forget initializations from offline pretraining due to reward-function alteration and that the im-
plementation details of UCB-style methods can affect exploration behavior. Further, UCB methods
only consider exploration consequences in the immediate next-state (i.e., are myopic). Ultimately,
we propose modifications to intrinsic-motivation methods to address their issues and highlight UCB
methods’ shortcomings, leading to several effective OtO baselines.

The aforementioned issues with online exploration methods in OtO RL lead us to develop an algo-
rithm for planning to go out of distribution (PTGOOD) that can be exploited by existing model-
based RL algorithms. PTGOOD first learns a density of state-action pairs in the offline dataset
via the Conditional Entropy Bottleneck (Fischer, 2020). This density is used to identify transi-
tions during online fine-tuning that are out-of-distribution relative to the data in the offline dataset
without altering rewards. By targeting such state-action pairs, PTGOOD continually increases the
diversity of the information available in the total (offline plus online) data. PTGOOD also targets
high-reward state-action pairs by ensuring that exploration occurs near the current-best policy to
ensure relevance of the collected data. PTGOOD uses the learned density in a non-myopic planning
procedure, thereby considering exploration fruitfulness in future steps.

Our experiments in continuous control tasks demonstrate that PTGOOD consistently and signifi-
cantly outperforms our OtO baselines in terms of evaluation returns and avoids suboptimal policy
convergence, a problem we find with many OtO methods in several environments. In addition, we
find that PTGOOD often finds the optimal policy in simpler environments such as Walker in as few
as 10k online steps and in as few as 50k in more complex control tasks like Humanoid, even when
the behavior policy was highly suboptimal (e.g., random).

2 Background

The RL problem usually studies an agent acting within a Markov decision process (MDP) parameter-
ized by the tuple (S,A, T , R, γ). S,A are the state- and action-spaces, respectively, T (s′|s, a) is the
transition function that describes the distribution over next-states conditioned on the current state
and action, R(s, a) is the reward function, and γ ∈ (0, 1) is the discount factor. The agent acts within
the MDP according to its policy π(a|s), which maps states to a distribution over actions. An agent’s
policy π induces a (discounted) occupancy measure ρπ(s, a), which is the stationary distribution over
the S ×A space unique to policy π (Syed et al., 2008; Kang et al., 2018). After executing an action
at in state st at timestep t, the next state is sampled st+1 ∼ T (·|st, at), the agent receives a reward
rt = R(st, at), and the interaction loop continues. The agent’s learning objective is to find the op-
timal policy that maximizes cumulative discounted returns π∗ = arg maxπ Eπ[

∑∞
t=1 γt−1R(st, at)].

Model-based RL approaches learn a model of the MDP’s transition function T̂ and reward function
R̂, which can then be used to generate rollouts of “imagined” trajectories from a given state st:
τ = (st, at, r̂t, ŝt+1, . . . ).
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OtO RL assumes access to a dataset of transition tuples Dπb
= {(s, a, r, s′)i}|Dπb

|
i=1 collected by some

(potentially) unknown behavior policy πb. This behavior policy’s performance can range from that
of a random agent to an expert agent, which means that Dπb

may contain trajectories of highly-
suboptimal behavior. The goal in OtO RL is to leverage offline data Dπb

to determine a policy
πo to collect another dataset Dπo

over a fixed-budget of agent-environment interactions, which are
used together Dπb

∪Dπo
to train a final policy πf that is as close as possible in performance to the

optimal policy π∗. The problem is to optimize over both the choice of final policy πf and the data
collection process that leads to that final policy.

3 Related Work

Exploration in RL. Exploration is a key problem in RL and has been studied extensively in
the online setting. Exploration algorithms cover many strategies such as dithering methods like
ϵ-greedy or randomized value functions (Osband et al., 2016). Intrinsic reward methods leverage
prediction error (Pathak et al., 2017; Burda et al., 2019) and count-based rewards (Ostrovski et al.,
2017) to guide agents towards unseen regions of the state-action space. Upper confidence bound
(UCB) methods use uncertainty to guide agent exploration. For example, some algorithms measure
uncertainty as disagreement within ensembles of Q-functions (Chen et al., 2017; Lee et al., 2021a;
Schäfer et al., 2023) or transition functions (Shyam et al., 2019; Henaff, 2019; Sekar et al., 2020).
In contrast to these methods, PTGOOD uses prior information explicitly by estimating a density of
already-collected data and uses this density to plan exploration.

Offline RL. Many offline RL methods are designed to constrain the learned policy to be similar
to the behavior policy. For example, conservative methods incorporate a policy constraint either
via behavior cloning terms (Wu et al., 2019; Peng et al., 2019; Fujimoto & Gu, 2021), restricting
the policy-search space (Kumar et al., 2021), restricting the policy’s action space (Fujimoto et al.,
2019), or policy-divergence regularization in the critic (Nachum et al., 2019; Kostrikov et al., 2021).
Pessimistic methods suppress the value of out-of-distribution state-action pairs, disincentivizing the
agent from traversing those regions. For example, Kidambi et al. (2020) and Yu et al. (2020) penalize
value based on ensemble disagreement, Rigter et al. (2022) use an adversarial world model to generate
pessimistic transitions, and Kumar et al. (2020) penalize the value of actions too different from ones
the behavior policy would choose. Tangentially related to offline RL is off-policy evaluation, which
studies how to evaluate (but not improve) policies using an offline dataset (e.g., (Zhong et al., 2022)).

OtO RL. Some research in the OtO RL setting involves empirical studies of algorithm implemen-
tation choices. For example, Lee et al. (2021b) and Mao et al. (2022) develop a replay sampling
mechanism to mitigate distribution-shift issues, and Ball et al. (2023) study choices like using Lay-
erNorm and sampling proportions between offline and online data. Most previous work in the OtO
setting targets over-conservatism induced by a given offline RL algorithm (Beeson & Montana, 2022;
Nakamoto et al., 2023; Luo et al., 2023). In contrast, PTGOOD approaches the OtO RL setting
as an exploration problem. Li et al. (2023a) show theoretically that the exploration perspective is
useful for OtO in tabular MDPs when combined with pessimism. In contrast, we focus on MDPs
with continuous state- and action-spaces, and PTGOOD does not use conservatism or pessimism.

Control with Expert Demonstrations. Closely related to OtO RL is learning from demonstra-
tion (LFD) (Schaal, 1996). Many LFD methods use a form of behavior cloning on expert or hand-
crafted trajectories for policy initialization followed by online fine-tuning with RL operators (Hester
et al., 2018; Vecerik et al., 2017; Rajeswaran et al., 2018). In contrast, we study a setting where the
learned policy has no prior access to demonstrations from expert or hand-crafted policies.

4 Online Exploration Methods in the OtO Setting

Motivated by the lack of current OtO exploration algorithms, we now study two common online
exploration methods based on intrinsic rewards (§4.1) and UCB exploration (§4.2) in the OtO
setting. In summary, we find that offline initializations can be unlearned when the intrinsic rewards
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Figure 1: Undiscounted evaluation returns in Halfcheetah (Random) (left) and DMC Walker (Ran-
dom) (right) for λ ∈ {0, 0.1, 1, 10, 50} intrinsic-reward weights throughout online fine-tuning.

introduced during online fine-tuning are too large relative to the true rewards used during offline
pretraining. With UCB methods, we find that the choice of ensemble over which uncertainty is
computed changes exploration behavior, which is critical in OtO RL. Despite the popularity of Q-
function ensembles, it is not clear whether collecting data to reduce value uncertainty is better than
reducing uncertainty in other learned components, such as learned transition functions.

4.1 Intrinsic Rewards

Intrinsic-reward methods modify the reward rt = re
t +λri

t at timestep t as the sum of the MDP’s true
(extrinsic) reward re

t and an intrinsic reward ri
t weighted by λ. Intrinsic rewards guide exploration

by giving the agent a bonus reward in relatively unexplored areas of the MDP. For example, Random
Network Distillation (RND) (Burda et al., 2019) trains a network to predict the output of a fixed
randomly-initialized network that transforms a given state. Here, the prediction error is used as the
bonus reward ri

t, thereby leading the agent to explore unseen areas of the state space.

Because exploration is impossible during offline pretraining, intrinsic-reward methods must use a
two-stage reward function in the OtO setting: one for offline exploitation (only re) and one for online
exploration (re and ri together). We hypothesize that this two-stage reward function is problematic
in the OtO setting. If ri is too large relative to re, we risk destroying the initialization of the
pretrained critic, which destroys the initialization of the pretrained actor.

To test our hypothesis, we evaluate RND agents with λ ∈ {0, 0.1, 1, 10, 50} in two environment-
dataset combinations. We use the Halfcheetah (Random) dataset from D4RL (Fu et al., 2020) and
collect our own dataset in the DeepMind Control Suite (Tassa et al., 2018; 2020) in the Walker envi-
ronment, which we call DMC Walker (Random). Both datasets were collected with behavior policies
that select actions uniformly at random.1 All agents are pretrained offline with the true rewards
(re), fine-tuned online over 50k agent-environment interactions with the RND-altered rewards (re

and ri together), and use Model-Based Policy Optimization (MBPO) (Janner et al., 2019) combined
with Soft Actor-Critc (SAC) (Haarnoja et al., 2017) as the base agent.2 Every 1k environment steps,
we collect the agents’ average undiscounted returns over ten evaluation episodes.

Figure 1 reports the average (bold) ± one standard deviation (shaded area) across five seeds. We
note that when λ is relatively small in Halfcheetah (Random), the agents perform roughly the same
as when no exploration guidance is used (i.e., λ = 0). In contrast, a relatively large λ causes the
agents to lose their pretrained initialization, as shown by the dramatic drop in evaluation returns at
the beginning of online fine-tuning. Our hypothesis is also confirmed in DMC Walker (Random).

1For more details on environments and datasets, see Appendix D.
2For more details on agents, see Appendix E.
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Reward Value Transition Policy
Reward -0.26 0.20 0.15
Value 0.55 -0.41

Transition 0.08
Policy

Reward Value Transition Policy
Reward -0.13 0.54 0.33
Value -0.57 -0.67

Transition 0.53
Policy

Table 1: Pair-wise rank correlation (Spearman’s rho) between different ensembles’ uncertainty in
Halfcheetah (left) and Hopper (right). We color cells in green when ρ ≥ 0.4 and in red when ρ ≤ −0.4
for ease of reading.

In order to overcome the issue of unlearned offline initializations, we propose using two agents: one
for exploitation and one for exploration. Such a framework has been shown to improve learning
stability in Decoupled RL (DeRL) (Schäfer et al., 2022). Both agents can be initialized with offline
pretraining, but the exploitation agent only receives re, while the exploration agent receives re +λri

during online fine-tuning. We only care about the exploitation agent for evaluation purposes and rely
on the exploration agent for data collection. This strategy allows the exploitation agent to avoid the
performance collapse shown in Figure 1 while also potentially benefiting from guided exploration.
We refer to this agent as RND/DeRL in our main experiments.

4.2 Upper Confidence Bound Exploration

Many recent implementations of UCB-style algorithms use ensembles of Q-functions to select actions
at at timestep t according to a mixture of value and uncertainty: at = arg maxa Qmean(st, a) +
λQstd(st, a) (e.g., Liang et al. (2022) and Schäfer et al. (2023)). Here, uncertainty Qstd is measured
as the standard deviation of Q-values over ensemble members for each action in the discrete-action
case, or for a set of sampled actions in the continuous-action case (e.g., Lee et al. (2021a)).

However, in the OtO setting, it is not clear whether it is better to guide exploration with value un-
certainty or the uncertainty in another learned component. For example, when using MBPO+SAC,
we could use an ensemble of transition functions, reward functions, value functions, or policies for
the uncertainty computation. Given that these components are trained with different targets and
update types (e.g., Bellman backups versus value and entropy maximization), can we reasonably ex-
pect the uncertainty of each component to drive exploration into the same regions of the state-action
space during online fine-tuning?

To answer this question, we first train an MBPO+SAC agent with ensembles of all four previously-
mentioned components on the Halfcheetah (Random) dataset and evaluate their uncertainties on
2,500 transition tuples from the Halfcheetah (Expert) dataset. We evaluate the ensembles’ uncer-
tainty on a dataset collected by an expert behavior policy, as it is likely to contain out-of-distribution
tuples relative to the (Random) dataset, which is where we ultimately care about evaluating uncer-
tainty in the OtO setting. We repeat this exercise with datasets from the Hopper environment from
D4RL.3 If uncertainty is the same across all learned components, then the order in which they rank
the expert tuples in terms of uncertainty should be similar. Table 1 shows Spearman’s rho between
the learned components uncertainty rankings of the tuples from the (Expert) dataset. We color cells
in green when ρ ≥ 0.4 and in red when ρ ≤ −0.4 for ease of reading.

We highlight that the rank correlation varies greatly. In some cases, two ensembles agree strongly
(e.g., Value and Transition in Halfcheetah); in others, they disagree strongly (e.g., Value and Policy
in Hopper) or show no relation (e.g., Transition and Policy in Halfcheetah). There is not necessarily
a pattern that holds between the two environments. Hence, swapping learned components into
the UCB action-selection equation would likely not result in similar data-collection behavior. This
inconsistency is a potential issue because the limited budget of interactions in OtO RL makes data-
collection strategy paramount. While methods such as intrinsic motivation have the clear strategy
of guiding the policy towards previously-unseen areas of the MDP, there is no clear reason why we

3See Appendix E for more details.
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should prefer to reduce the uncertainty in one learned component versus any other using a UCB
method in OtO RL. Instead of devising a complex and adaptive UCB method that balances the
uncertainty of all learned components in this work, we evaluate one baseline that uses value-driven
UCB (UCB(Q)) and one that uses dynamics-driven UCB (UCB(T)) in our main experiments.

5 Planning to Go Out-of-Distribution

The exploration methods we examined in §4 are lacking in two respects when considering the OtO
setting. First, intrinsic reward methods use a moving-target reward function which can cause value
functions to unlearn their offline pretraining, leading to instabilities in policy training. Second, UCB
methods are myopic and there is no clear data-collection strategy in terms of which ensemble to use
for exploration. This leads us to propose PTGOOD, a planning paradigm that overcomes and avoids
these issues.

We posit that data collected during online fine-tuning in the OtO setting should meet two criteria:
(1) be non-redundant to data in the offline dataset and (2) be of relatively high reward. Violating
criterion (1) would result in wasted interactions, as no new information would be gained. The
importance of criterion (2) is highlighted by OtO RL’s agent-environment interaction budget. As
an exhaustive exploration of the MDP is likely impossible under this budget, we should prioritize
data-collection in portions of the state-action space that a well-performing policy would traverse.
These regions are likely to satisfy criterion (2).

PTGOOD satisfies criterion (1) via a multi-step (i.e., non-myopic) planning procedure that maxi-
mizes the likelihood of collecting transition tuples that are out-of-distribution relative to the offline
dataset. PTGOOD first estimates ρπb

, the occupancy measure (defined in §2) for policy πb via the
Conditional Entropy Bottleneck (CEB) (Fischer, 2020). This estimate allows PTGOOD to infer
the likelihood of πb executing a given action in a given state. PTGOOD satisfies criterion (2) by
ensuring that the exploration guidance does not stray too far from the policy being fine-tuned. This
is accomplished by sampling the policy and adding a small amount of noise during planning. As
RL policy updates target high-reward regions in the vicinity of the current policy, exploring “close”
to the improving policy should naturally target increasingly higher-reward regions. The notion and
importance of closeness is explored in §6.4. In the following subsections, we describe how PTGOOD
uses the CEB to learn representations, the metric that PTGOOD targets during planning, and the
planning algorithm itself.

5.1 Conditional Entropy Bottleneck

PTGOOD uses the CEB to estimate ρπb
using samples from the offline dataset. The CEB is an

information-theoretic method for learning a representation Z of input data X useful for predicting
target data Y . CEB’s simplest formulation is to learn a Z that minimizes βI(X; Z|Y ) − I(Z; Y ),
where β is a weighting hyperparameter and I(·) denotes mutual information. Intuitively, CEB learns
a representation that minimizes the extra information Z captures about X when Y is known and
maximizes the information Z captures about Y . While the CEB has many different forms, we use the
contrastive “CatGen” formulation as described by Fischer (2020) with the following upper bound:

CEBCatGen ≤ mine(·),b(·) E

[
EzX ∼e(zX |x)[β log e(zX |x)

b(zX |x′) − log b(zX |x′)
1
K

∑K
i=1 b(zX |x′

i)
]

+EzX′ ∼b(zX′ |x′)[β log b(zX′ |x′)
e(zX′ |x) − log e(zX′ |x)

1
K

∑K
i=1 e(zX′ |xi)

]
]

,

(1)

where the outer expectation is over the joint distribution x, x′ ∼ p(x, x′, u, zX , zX′), x is a state-
action pair, x′ is a state-action pair with a small amount of multiplicative noise drawn from a uniform
distribution u ∼ U(0.99, 1.01): x′ = u ⊙ x, e(·) is the encoder, and b(·) is the backwards encoder.
For more details, we refer the reader to Appendix E.1 and the original paper.
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5.2 The Rate R and Modeling ρπb

PTGOOD uses the rate (Alemi et al., 2018a;b) to measure how out-of-distribution a sample is
relative to ρπb

. Rate has been used successfully in computer vision as a thresholding tool for out-of-
distribution detection and has been shown to work well with the CEB representations that we use
here (Fischer, 2020).

We first fit an encoder e(zX |x) and backward encoder b(zX′ |x′) to a latent space Z with Equation 1
and state-action pairs sampled uniformly at random from the offline dataset. Next, we learn a
marginal m(zX) of our training data in the representation space of the encoder e(·) as a mixture of
Gaussians. See Appendix E for more details. Given this encoder conditional density e, and marginal
m, the rate of a given state-action pair x is computed as:

R(x) ≜ log e(zX |x)− log m(zX). (2)

In short, the representation produced by the encoder zX ∼ e(·|x) for an out-of-distribution x should
be highly unlikely according to m(·), thereby producing a rate value much larger than for an in-
distribution x. Ultimately, this allows PTGOOD to estimate the likelihood of a given state-action
pair being collected by πb.

5.3 PTGOOD

PTGOOD is a planning paradigm designed to leverage offline pretraining to maximize the benefit
of online data-collection. PTGOOD can be applied in combination with any OtO RL method that
uses a dynamics model. Given a learnt offline policy and dynamics model, PTGOOD plans the
data collection process one step at a time to collect the next transition tuple, which then augments
the offline data and all data collected so far. The policy can now be updated with the new data.
The data-collection planning process can then be repeated as many times as our budget of online
interactions allows.

The planning part of this process is given in Algorithm 1 in Appendix B. PTGOOD’s planning
procedure has a width w and a depth d. Starting from a given state s, we sample the policy w times
and add a small amount of randomly-sampled Gaussian noise N (0, ϵ) with variance hyperparameter
ϵ to the actions. Then, the learned dynamics model T̂ predicts one step forward from state s for
each w actions, and action sampling is repeated with each new state. The sampling and forward-
step process is repeated d times, forming a tree of state-nodes connected by action-branches of
possible paths from the original state s. For each state-node and action-branch associated with that
state-node in the tree beyond the original state s, PTGOOD computes the rate per Equation 2.

After the tree is fully formed, PTGOOD traverses the tree in reverse, summing the rates associated
to each state-node back to the original w actions in the original state s. Finally, PTGOOD returns
the action from the set of original w actions associated with the highest rate sum. This action is
then executed and the MDP steps forward to a new state. See Figure 2 for a depiction of the two
phases of OtO RL and PTGOOD’s planning procedure.

6 Experiments

In our experiments, we aim to answer the following questions: (1) Can PTGOOD improve agent
evaluation returns within the given agent-environment interaction budget in the online fine-tuning
phase? (2) How important is guided exploration to agent evaluation returns during online fine-
tuning? (3) Are the policy-constraint mechanisms that are important in the purely-offline setting
important in the OtO setting?

6.1 Baselines

We carefully design baselines that reflect prominent categories of exploration strategies in RL (§4).
We tune each of our baselines on a per-environment per-dataset basis and report results for the
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Figure 2: Offline (orange) and online (blue) components in OtO RL, with PTGOOD planning shown
on the far right. During offline pre-training, dynamics T̂ , reward R̂, encoder e, backward encoder b,
marginal m, and policy π (and other agent-related networks, depending on algorithm) are trained
with data from Dπb

. During the online data-collection phase, PTGOOD’s planner interacts with
the environment using T̂ , e, m, π, and stores data in Dπo

. Interleaved with data collection is fine-
tuning, which occurs with data sampled from both Dπb

and Dπo
. As shown on the right, PTGOOD’s

planning procedure follows the improving policy π from a given s towards increasingly higher reward
regions of the S ×A space, and targets data in those spaces that are unlikely under ρπb

.

best-performing hyperparameters for each method. Below we briefly list and describe the baselines
we benchmark against PTGOOD. Unless otherwise noted, all algorithms use MBPO+SAC as the
core model-based RL algorithm. See Appendix A for more details and results.

The No Pretrain baseline does not perform offline pretraining, but does use both the offline dataset
and data collected online for online training. The Naive baseline performs offline pretraining and
online fine-tuning, but only samples the policy to choose actions during online fine-tuning instead of
using exploration methods. The Naive agent contextualizes the added benefit of guided exploration.
We use the RND/DeRL baseline as described in §4.1. We train the RND predictor using the offline
dataset before online fine-tuning begins and periodically update the predictor’s weights throughout
the fine-tuning process. We also use the UCB(Q) and UCB(T) baselines described in §4.2. Cal-
QL (Nakamoto et al., 2023) is a model-free OtO algorithm built on top of CQL (Kumar et al., 2020),
a pessimistic offline RL algorithm. Cal-QL corrects for instabilities during online fine-tuning induced
by CQL’s value constraint. Finally, we benchmark PROTO (Li et al., 2023b) and PEX (Zhang
et al., 2023), model-free methods designed for the OtO setting. PROTO uses a trust-region update
on top of EQL (Xu et al., 2023) and TD3, and PEX learns a set of policies for action selection on
top of IQL (Kostrikov et al., 2022). None of the agents except for Cal-QL, PROTO, and PEX use
conservatism or pessimism of any form during any stage of training. See Appendix E for architecture
and hyperparameter details along with full implementation details for PTGOOD.

6.2 Environments and Datasets

We evaluate PTGOOD and our baselines on a set of environment-dataset combinations that satisfy
two criteria: (a) it must not be possible for current algorithms to learn an optimal policy during
the offline pretraining phase, and (b) we must be able to surpass a random agent during offline
pretraining. If criterion (a) is violated, there is no need for online fine-tuning. If criterion (b)
is violated, then the offline pretraining phase is not useful, and training from scratch online (i.e.,
No Pretrain) would be unlikely to be beaten.4 We use datasets in the Halfcheetah and Hopper
environments from the D4RL study. Additionally, we collect our own datasets from environments
not represented in D4RL, including Ant, Humanoid, and the Walker task from the DeepMind Control
Suite (DMC). The datasets that we collect follow the same dataset design principles of D4RL. See
Appendix D for more details on our environments and datasets.

4We show empirically in Appendix G that this is indeed the case.
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Algorithm Halfcheetah (R) DMC Walker (R) Hopper (R) Ant (R) DMC Walker (MR) Ant (MR) Humanoid (MR)
PTGOOD 8867 ± 88 959 ± 8 3246 ± 123 5624 ± 235 953 ± 6 5866 ± 114 15050 ± 878
No Pretrain 7249 ± 814 668 ± 88 1231 ± 648 3703 ± 901 778 ± 93 4777 ± 1085 10723 ± 3903
Naive 7434 ± 782 736 ± 40 1576 ± 880 4663 ± 626 732 ± 21 4973 ± 337 11706 ± 3403
RND/DeRL 6782 ± 2013 677 ± 63 1818 ± 786 5258 ± 191 700 ± 164 4836 ± 695 1954 ± 1199
UCB(Q) 7300 ± 861 740 ± 50 2037 ± 382 5290 ± 272 783 ± 75 5328 ± 224 13183 ± 885
UCB(T) 8170 ± 513 811 ± 68 2251 ± 830 5022 ± 299 772 ± 93 4509 ± 1364 12079 ± 2461
Cal-QL -315 ± 122 45 ± 4 57 ± 39 -309 ± 575 106 ± 57 990 ± 864 381 ± 174
PROTO 7877 ± 703 583 ± 282 511 ± 298 1174 ± 291 874 ± 66 1696 ± 595 696 ± 120
PEX 4953 ± 454 83 ± 21 1889 ± 951 1436 ± 482 541 ± 65 2960 ± 119 8320 ± 4187

Table 2: Average ± one standard deviation of undiscounted evaluation returns after 50k environment
steps of online fine-tuning. Highest returns per algorithm-dataset combination bolded. Statistical
significance is shown with blue highlight. (R)=Random and (MR)=Medium Replay.

6.3 OtO Results

For each environment-dataset combination, we first pretrain agents offline to convergence and then
fine-tune online for 50k environment steps across five seeds. Every 1k environment steps, we collect
undiscounted returns across 10 evaluation episodes. Reporting comparative results between RL
algorithms is a complex problem (Patterson et al., 2023); therefore, we present results across various
views and mediums. Table 2 shows the average ± one standard deviation of evaluation returns at
the 50k online-steps mark with the highest returns bolded. We highlight in blue when the highest
returns are statistically significantly different via a two-sided Welch’s t-test. Figure 15 displays
undiscounted evaluation return curves for all algorithms in all environment-dataset combinations
across the 50k online fine-tuning steps. Figure 16 displays undiscounted evaluation return curves in
all five training runs for the best and second-best performing algorithms in each environment-dataset
combination.

First, we answer question (1) in the affirmative by highlighting that PTGOOD consistently pro-
vides the strongest performance across all environment-dataset combinations. Table 2 shows that
PTGOOD provides the highest returns in 7/7 environment-dataset combinations, which are statisti-
cally significant in 5/7. Figure 15 shows that PTGOOD is generally stable relative to other baselines
(e.g., RND/DeRL in Halfcheetah (Random)). We also note that PTGOOD tends to avoid the pre-
mature policy convergence that other methods sometimes exhibit (e.g., DMC Walker (Random),
DMC Walker (Medium Replay), and Hopper (Random) in Figure 16). See Appendix F for more
analysis. Aside from higher returns after training has finished, PTGOOD often outperforms other
baselines during the middle portions of fine-tuning (e.g., Halfcheetah (Random) and Ant (Medium
Replay) in Figure 16).

Second, we address question (2). We note that the Naive method is a strong baseline across all
environment-dataset combinations that we tested. Additionally, we highlight that the Naive base-
line outperforms some guided-exploration baselines on occasion (e.g., RND/DeRL in Halfcheetah
(Random) and UCB(T) in Ant (Medium Replay)). These results suggest that certain types of
exploration are not universally helpful in OtO RL.

Third, we answer question (3) by observing Cal-QL results in Table 2 and training curves in Fig-
ure 15. We note that Cal-QL performs poorly consistently. This is unsurprising because Cal-QL’s
base algorithm encourages the learned policy to remain close to the behavior policy. Due to our
environment-dataset selection criteria, the behavior policies are highly suboptimal, which makes
conservatism and pessimism an unideal choice. We investigate Cal-QL’s poor performance further
in Appendix G by training it for two million online steps in all environment-dataset combinations. In
short, we find that Cal-QL does not learn anything useful in any Random dataset nor in Humanoid
(Medium Replay), but it does learn a good policy in the remaining Medium Replay datasets at the
end of the two million online steps. In contrast, PTGOOD is able to find the optimal policy in less
than 50k online steps in all environment-dataset combinations.

Finally, we note that neither UCB type is consistently better than the other. Additionally, in
some environment-dataset combinations, either method is outperformed by the Naive baseline (e.g.,
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Figure 3: Average (bold line) ± one standard deviation (shaded area) of evaluation returns for
different ϵ values in PTGOOD’s planner in Halfcheetah (Random) (left) and DMC Walker (Medium
Replay) (right).

in Halfcheetah (Random) for UCB(Q) and Ant (Medium Replay) for UCB(T)). This evidence,
when combined with our experiment in §4.2, suggests that further research in multi-ensemble UCB
exploration could prove fruitful.

6.4 Planning Noise

Key to PTGOOD is exploring both unknown and high-reward regions of the state-action space.
Instead of targeting high-reward state-action pairs with a Q-function value estimate, PTGOOD
remains “close” to the improving policy by adding a small amount of noise to actions during the
planning process. Using noise instead of explicit value estimation has computational benefits (see
Appendix C) and does not rely on values that may be overestimated due to distributional shift (Fu-
jimoto et al., 2018; 2019).

The meanings of “far” and “close” in the context of action selection are likely to be environment-
dependent. We perform a sweep over ϵ values in all environment-dataset combinations. Figure 3
shows the average ± one standard deviation of undiscounted evaluation returns for Halfcheetah
(Random) and DMC Walker (Medium Replay) for various noise levels. We note that there is an
optimal noise hyperparameter in either environment. If ϵ is too small, evaluation returns degrade
slightly due to the reduced exploration. If ϵ grows too large, PTGOOD’s exploration strays too far
from the improving policy and may become close to random exploration, which produces significantly
reduced evaluation returns. We perform this exercise for all other environment-dataset combinations
in Appendix I, and find the same pattern.

7 Conclusion

In this work, we studied the OtO setting from the exploration perspective. First, we examined
intrinsic motivation and UCB exploration from the lens of OtO RL, identifying compatibility issues
and other shortcomings. Then, we introduced PTGOOD, a planning paradigm for model-based
RL algorithms for exploration in the OtO setting. PTGOOD uses an estimate of the behavior
policy’s occupancy measure within a non-myopic planner to target high-reward state-action pairs
unrepresented in the offline dataset. We demonstrated in diverse continuous-control tasks that
PTGOOD consistently provides the highest returns and avoids suboptimal policy convergence. PT-
GOOD could be improved further with adaptive noise in the planning process, which could account
for state-dependent exploration noise or action-space characteristics (e.g., different joint types in
musculoskeletal control).
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A Baselines

We use λ as a generic weighting hyperparameter. For RND/DeRL (Figure 4), it weights intrinsic
rewards at timestep t: rt = re

t + λri
t, and we scan λ ∈ {0.1, 5, 10, 25}. For UCB(Q) (Figure 5),

it weights the impact of uncertainty on action selection: Qmean(·) + λQstd(·), and we scan λ ∈
{1, 10, 50}. For UCB(T) (Figure 6), it weights the impact of uncertainty on action selection: Q(·) +
λTstd(·), and we scan λ ∈ {1, 10, 50}. For Cal-QL (Figure 7), it weights the Min Q-weight, which
we found to be particularly impactful based on the hyperparameter sweeps found here: https:
//wandb.ai/ygx/JaxCQL--jax_cql_gym_sweep_3. In addition, we performed a sweep over the
number of RL updates per environment step (Figure 8), called “UTD" in the Cal-QL paper. For
Min Q-Weight, we scan λ ∈ {0.1, 1, 5, 25}, and for UTD we scan λ ∈ {1, 10, 20}. We also fine-
tuned PEX (Figure 9). Figure 7 in the PEX paper shows that PEX is sensitive to the “inverse
temperature" hyperparameter. For this hyperparameter, we follow the original authors and scan
α−1 ∈ {0.5, 1, 2, 3}. Interestingly, the PROTO paper shows that PROTO is not sensitive to the
value of hyperparameters that impact important PROTO-specific mechanisms. Specifically, Figure
14 in the PROTO paper shows that adjusting the conservative annealing speed η does not affect
PROTO agent performance in the slightest. As such, we choose not to waste GPU compute and
instead use the hyperparameters suggested by the original authors.

For each hyperparameter setting, we run three seeds. Each plot shows the average (bold line) ±
one standard deviation (shaded area). For the final results we present in the paper, we select the
best performing hyperparameter setting for each algorithm on a per-environment basis and run two
additional seeds.
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Figure 4: Undiscounted evaluation returns for RND/DeRL hyperparameter tuning.
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Figure 5: Undiscounted evaluation returns for UCB(Q) hyperparameter tuning.
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Figure 6: Undiscounted evaluation returns for UCB(T) hyperparameter tuning.
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Figure 7: Undiscounted evaluation returns for Cal-QL (Min Q-Weight) hyperparameter tuning.
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Figure 8: Undiscounted evaluation returns for Cal-QL (UTD) hyperparameter tuning.
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Figure 9: Undiscounted evaluation returns for PEX hyperparameter tuning.
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B PTGOOD Pseudocode

Algorithm 1 PTGOOD Planning Procedure

Input: Dynamics model T̂ , encoder e, marginal m, depth d, width w, state s, policy π, noise
hyperparameter ϵ

1: Initialize empty ordered list action_list
2: Initialize empty ordered list rate_sums
3: Initialize empty list inner_action_list
4: Initialize empty list state_list
5: Initialize empty list inner_state_list
6: Initialize tree rate_tree with single node for s
7: for i in range(w) do
8: Sample action, add sampled noise a ∼ π(·|s), u ∼ N(0, ϵ), a← a + u
9: Append a to action_list

10: Create branch associated to a and linked to s in rate_tree
11: end for
12: for a in action_list do
13: Predict next-state s′ ∼ T̂ (s, a)
14: Append s′ to state_list
15: Create node for s′ linked to branch a in rate_tree
16: end for
17: for i in range(d) do
18: for s in state_list do
19: for j in range(w) do
20: Sample action, add sampled noise a′ ∼ π(·|s), u ∼ N(0, ϵ), a′ ← a′ + u
21: Append a′ to inner_action_list
22: Measure rate p← R(s, a)
23: Store rate p in rate_tree node s
24: Create branch associated to a′ and linked to s in rate_tree
25: end for
26: for a in inner_action_list do
27: Predict next-state s′ ∼ T̂ (s, a)
28: Append s′ to inner_state_list
29: Create node for s′ linked to branch a in rate_tree
30: end for
31: end for
32: state_list ← inner_state_list
33: Clear inner_action_list and inner_state_list
34: end for
35: for a in action_list do
36: rate_sum ← 0
37: Traverse tree until terminal node all the while summing all rates p within each node:

rate_sum ← rate_sum +p
38: Append rate_sum to rate_sums
39: end for
40: Find index of maximum summed rate max_idx ← arg max rate_sums
41: max_rate_action ← action_list[max_idx]
Output: max_rate_action
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Figure 10: Wall-clock time (y-axis) comparison between noise-only planning (blue) and planning
with Q-values (red) for three different width / depth combinations (x-axis).

Environment-dataset Number of Transitions
DMC Walker (R) 50,000

Ant (R) 1,000,000
DMC Walker (MR) 22,000

Ant (MR) 102,000
Humanoid (MR) 206,000

Table 3: The number of transitions included in the custom datasets used for this study.

C Compute Cost Comparison

We compare the wall-clock time of a PTGOOD planning process that uses only additive random
noise (Noise) and one that uses additive random noise and computes Q-values (Q-values). We
evaluate these two variations over three depths and widths (reported as width / depth): 100000 / 1,
50 / 3, 10 / 5. Specifically, we run each planning procedure for 10k environment steps five times and
reports the average wall-clock time in seconds in Figure 10. We highlight that as soon as planning
becomes non-myopic, using only noise provides significant gains in compute time.

D Environments and Datasets

From the D4RL (Fu et al., 2020) dataset we use Halfcheetah (Random) and Hopper (Medium
Replay). We collect our own datasets in the Walk task in Walker from DMC, the Walk task in
Humanoid from the original MBPO (Janner et al., 2019) study, and the Walk task in the Ant
environment from the original MBPO study. All (Random) datasets were collected with a policy
that selects actions uniformly at random. All (Medium Replay) datasets were collected by saving
the replay buffer of an MBPO+SAC agent trained purely online until “medium" performance. The
medium performance is defined as generating evaluation returns of 400, 3000, and 6000 for DMC
Walker, Ant, and Humanoid, respectively. Table 3 lists the number of transitions included in each
custom dataset used in this study.

E Architecture, Hyperparameters, and More Details

The MBPO+SAC agents use an ensemble of seven MLP dynamics models that parameterize Gaus-
sians. In Humanoid environments, the MLPs are four layers with 800 hidden units each. In the
Ant environments, the MLPs are four layers with 400 hidden units each. In all other environments,
the MLPs are four layers with 300 hidden units each. All MLPs use elu activations. We train and
perform inference in the same way as the original MBPO paper (see Table 1 in (Janner et al., 2019)).
For any differences in hyperparameters, see Table 4. For environments with early-termination con-
ditions, we zero out the rate value in states within the planning process that would terminate the
episode to avoid incentivizing the agent to explore these paths.
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Also, the MBPO+SAC agents use MLP actor and critic networks. In Humanoid and Ant environ-
ments, the MLPs are three layers with 512 hidden units each. In all other environments, the MLPs
are three layers with 256 hidden units each. All MLPs use elu activations and the critic networks
use layer norm operations. At each training step, data are sampled from the offline dataset, dataset
of online interactions, and the model-generated synthetic transitions in equal parts.

The CEB encoder and decoder networks are both three-layer MLPs with 256, 128, and 64 hidden
units and elu activations. The learned marginal is a Gaussian mixture model with 32 components.

All networks were trained with the Adam optimizer. The dynamics models used a learning rate of
1e-3 and a weight decay of 1e-5. The critic networks and learnable alpha were trained with a learning
rate of 3e-4, while the actor networks used a learning rate of 1e-4. The target critic networks used
a tau of 5e-3 with an update frequency of every other step.

For Cal-QL, we used the code and default architecture settings provided by the authors here: https:
//github.com/nakamotoo/Cal-QL.

UCB(Q) and UCB(T) both used seven ensemble members for their respective uncertainty compu-
tations.

RND/DeRL fine-tunes its RND predictor at the same frequency as its base agent updates its en-
semble of world models (shown in Table 4).

Environment-dataset ϵ w d imagination horizon world model train freq imagination freq
Halfcheetah (R) 0.15 5 10 5 1000 1000

DMC Walker (R) 0.3 5 10 5 1000 1000
Hopper (R) 0.1 50 3 3 1000 1000

Ant (R) 0.025 50 3 3 250 250
DMC Walker (MR) 0.3 5 10 5 1000 1000

Ant (MR) 0.025 10 5 5 250 250
Humanoid (MR) 0.005 50 3 3 250 250

Table 4: Hyperparameters used for PTGOOD and base MBPO+SAC agent.

For the uncertainty-comparison experiments in §4.2, we measure the “uncertainty” of a given input
as the average standard deviation across outputs from all members in the ensemble. For example,
members of a “Transition” ensemble may each output a prediction for the next-state where ŝ ∈ R6

for a given (s, a). Here, if the ensemble has 7 members, uncertainty for (s, a) is computed with

1
6

∑6
i=1

√∑7
j=1

(Ŝj,i−µi)
7 where Ŝ ∈ R7×6 is a matrix whose entry ŝj,i is ith value in the jth ensemble

member’s output, and µi is the mean value of the ith column of Ŝ.

E.1 The Conditional Entropy Bottleneck

The Conditional Entropy Bottleneck (CEB) (Fischer, 2020) is an information-theoretic method for
learning a representation Z of input data X useful for predicting target data Y . CEB’s simplest for-
mulation is to learn a Z that minimizes βI(X; Z|Y )−I(Z; Y ), where β is a weighting hyperparameter
and I(·) denotes mutual information. Intuitively, CEB learns a representation that minimizes the
extra information Z captures about X when Y is known and maximizes the information Z captures
about Y . This form treats X and Y asymmetrically. Instead, the bidirectional CEB objective uses
two separate representations ZX and ZY for X and Y , respectively:

CEBbidir ≜ min−H(ZX |X) + H(ZX |Y ) + H(Y |ZX)
−H(ZY |Y ) + H(ZY |X) + H(X|ZY ),

(3)

where H(·) and H(·|·) are entropy and conditional entropy, respectively. We can form Equation 3
as a self-supervised objective via a noise function X ′ = f(X, U) with noise variable U , and treating
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the noised data X ′ as the target Y . Additionally, Fischer (2020) show that we can place variational
bounds on Equation 3 using a sampling distribution encoder e(zX |x), and variational approxima-
tions of the backwards encoder b(zX′ |x′), classifier c(x′|zX), and decoder d(x|zX′) distributions. At
convergence, we learn a unified representation that is consistent with both zX and zX′ by applying
the CEB objective in both directions with the original and noised data:

min ⟨log e(zX |x)⟩ − ⟨log b(zX |x′)⟩ − ⟨log c(x′|zX)⟩
+ ⟨log b(zX′ |x′)⟩ − ⟨log e(zX′ |x)⟩ − ⟨log d(x|zX′)⟩, (4)

where each ⟨·⟩ denotes the expectation over the joint distribution p(x, x′, u, zX , zX′) =
p(x)p(u)p(x′|f(x, u))e(zX |x)b(zX′ |x′). We refer the reader to the original CEB paper for more
details. Fischer (2020) show that we do not need to learn parameters for c(·) in Equation 4 because
c(x′|zX) ∝ b(zX |x′)p(zX′), which can be simplified further by marginalizing p(zX′) over a minibatch
of size K. The same can be done for d(·) using e(·). Altogether, this forms the contrastive “CatGen"
formulation with the following upper bound:

CEBdenoise ≤ mine(·),b(·) E

[
EzX ∼e(zX |x)[β log e(zX |x)

b(zX |x′) − log b(zX |x′)
1
K

∑K
i=1 b(zX |x′

i)
]

+EzX′ ∼b(zX′ |x′)[β log b(zX′ |x′)
e(zX′ |x) − log e(zX′ |x)

1
K

∑K
i=1 e(zX′ |xi)

]
] (5)

where the outer expectation is over the joint distribution x, x′ ∼ p(x, x′, u, zX , zX′).

F Suboptimal Convergence

We highlight that many of our baselines’ policies converge prematurely to suboptimal returns in both
DMC Walker datasets. To help explain the phenomenon and describe how PTGOOD avoids this
issue, we examine several metrics throughout online fine-tuning. Specifically, for UCB-style baselines,
we examine ensemble disagreement and policy entropy. UCB-style methods sample the policy to
create the set of actions over which disagreement is evaluated. Therefore, both of these metrics
drive exploration. For the other methods, such as No Pretrain and Naive, we examine only policy
entropy. For these methods, the policies are sampled for action selection during online fine-tuning,
and, therefore, its entropy is important for exploration. Both policy entropy and disagreement are
captured during the evaluation episodes rolled out every 1k steps during online fine-tuning. We
also capture average Q-values of each mini-batch used during agent training and evaluation returns.
Finally, we collect all metrics except for disagreement for a PTGOOD agent. Figure 11 and Figure 12
show these metrics for DMC Walker (Random) and DMC Walker (Medium Replay), respectively.

We highlight that the disagreement metric for both UCB methods in both environment-dataset
combinations starts relatively high but quickly collapses to a low number roughly around the time
evaluation returns converge. Also, we note that the policy entropy of both UCB agents and the
naive agent shows a consistent downward trend in both environment-dataset combinations. Such
a reducing entropy will reduce the diversity in the action sets used for exploration in all three of
these methods. In contrast, the PTGOOD agents’ policy entropy remains relatively high throughout
online fine-tuning.

Next, we show that the reduced exploration mentioned above causes the three baselines to miss
exploring the same regions of the state-action space that PTGOOD explores. We demonstrate this
by showing that the baselines’ critics undervalue the state-action pairs collected by a higher-return
PTGOOD agent and overvalue the state-action pairs that they themselves collect. If the baselines
were to explore as well as PTGOOD, such erroneous Q-values would not exist. At the end of online
fine-tuning, we collect 10 episodic trajectories of state-action pairs from each of the four agents. For
their returns, see Figure 11 and Figure 12. Table 5 displays the average Q-values over the trajectories
for each baseline in each environment-dataset combination.
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Figure 11: Metrics collected over 50k steps on online fine-tuning for the premature convergence
experiment in DMC Walker (Random).

Dataset Baseline Q-value on PTGOOD trajectory Q-value on own trajectory
MR Naive 51.1 ± 4.3 62.6 ± 2.8
MR UCB(T) 48.6 ± 3.1 63.4 ± 3.7
MR UCB(Q) 53.3 ± 2.9 64.1 ± 3.8
R Naive 46.8 ± 2.8 54.1 ± 4.3
R UCB(T) 71.6 ± 3.9 79.7 ± 3.6
R UCB(Q) 68.7 ± 2.4 79.2 ± 4.1

Table 5: Q-value over trajectory comparison for the premature convergence experiment.
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Figure 12: Metrics collected over 50k steps on online fine-tuning for the premature convergence
experiment in DMC Walker (Medium Replay).
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Figure 13: Undiscounted evaluation returns over 100 thousand environment steps in the sparse-like
Adroit environments from the Cal-QL paper.

G Investigating Cal-QL and other Cal-QL Environments

Here we benchmark PTGOOD, Cal-QL, PEX, PROTO, and Scratch (same as No Pretrain) on
two of the datasets provided by the Cal-QL authors in the Adroit environments. The Cal-QL
authors altered the base Adroit environments to be “sparse-like”. That is, their reward function is
R : S ×A → {−5, 5}. We specifically chose these environments because the dataset are “narrow” in
the sense that the information about the MDP contained within the datasets is a very small subset
of all possible information contained in the MDP. Due to this characteristic, the offline pre-training
phase is unlikely to be useful. In such a case, our dataset selection criterion (b) is violated, which
we hypothesize would cause our Scratch (same as No Pretrain) baseline to be tough to beat.

We highlight that our hypothesis is confirmed when comparing PTGOOD and Scratch (same as No
Pretrain) results in Figure 13.

Next, we examine Cal-QL’s performance in the datasets used in the main study but with many more
(2 million) online finetuning steps allowed. Figure 14 shows that Cal-QL struggles to learn much
in any of the (Random) datasets and in Humanoid (Medium Replay). However, in the remaining
(Medium Replay) datasets, Cal-QL does eventually find the optimal policy.
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Figure 14: Undiscounted evaluation returns for Cal-QL over two million online steps versus 50
thousand online steps for PTGOOD.
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Figure 15: Undiscounted evaluation returns for all algorithms over the 50k online fine-tuning stage.
Average (bold)± one standard deviation (shaded area) displayed. Scratch is the same as No Pretrain.

H Additional Results

Here, we present the full evaluation curves for all algorithms in all environment-dataset combinations
in Figure 15. Also, we provide the full evaluation curves for all seeds for the best and second-best
performing algorithms in all environment-dataset combinations in Figure 16.
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Figure 16: Undiscounted evaluation returns in all five training runs for the best and second-best
performing algorithms over the 50k online fine-tuning stage.

545



RLJ | RLC 2024

0 10 20 30 40 50
Online Environment Steps (×103)

200

400

600

800

1000

(U
nd

isc
ou

nt
ed

) E
va

lu
at

io
n 

Re
tu

rn
s

DMC Walker (Random)

0.05
0.3
1.0
2.5
5.0

0 10 20 30 40 50
Online Environment Steps (×103)

0

500

1000

1500

2000

2500

3000

3500

(U
nd

isc
ou

nt
ed

) E
va

lu
at

io
n 

Re
tu

rn
s

Hopper (Random)
0.1
0.05
0.3
1.0
2.5

0 10 20 30 40 50
Online Environment Steps (×103)

1000

2000

3000

4000

5000

6000

(U
nd

isc
ou

nt
ed

) E
va

lu
at

io
n 

Re
tu

rn
s

Ant (Random)
0.005
0.025
0.1
0.75
0.3

0 10 20 30 40 50
Online Environment Steps (×103)

1000

2000

3000

4000

5000

6000

(U
nd

isc
ou

nt
ed

) E
va

lu
at

io
n 

Re
tu

rn
s

Ant (Medium Replay)
0.005
0.025
0.1
0.75
0.3

0 10 20 30 40 50
Online Environment Steps (×103)

0

2500

5000

7500

10000

12500

15000

17500

(U
nd

isc
ou

nt
ed

) E
va

lu
at

io
n 

Re
tu

rn
s

Humanoid (Medium Replay)
0.00005
0.005
0.025
0.1
0.3

Figure 17: Undiscounted evaluation returns for the planning noise experiment.

I More Planning Noise Ablations

In Figure 17, we repeat the experiment in §6.4 for all environment-dataset combinations. We high-
light that we find the same pattern as shown in the main body of the paper.

546



RLJ | RLC 2024

Surprise-Adaptive Intrinsic Motivation for
Unsupervised Reinforcement Learning

Adriana Hugessen∗ Roger Creus Castanyer∗ Faisal Mohamed∗ Glen Berseth
Université de Montréal and Mila Quebec AI Institute
{adriana.knatchbull-hugessen,roger.creus-castanyer,faisal.mohamed}@mila.quebec

Abstract

Both entropy-minimizing and entropy-maximizing objectives for unsupervised rein-
forcement learning (RL) have been shown to be effective in different environments,
depending on the environment’s level of natural entropy. However, neither method
alone results in an agent that will consistently learn intelligent behavior across
environments. In an effort to find a single entropy-based method that will encourage
emergent behaviors in any environment, we propose an agent that can adapt its
objective online, depending on the entropy conditions it faces in the environment,
by framing the choice as a multi-armed bandit problem. We devise a novel intrinsic
feedback signal for the bandit, which captures the agent’s ability to control the
entropy in its environment. We demonstrate that such agents can learn to optimize
task returns through entropy control alone in didactic environments for both high-
and low-entropy regimes and learn skillful behaviors in certain benchmark tasks.
Videos and summarized findings can be found on our project webpage.

1 Introduction

Unsupervised reinforcement learning (URL), or learning without access to an extrinsic reward function,
has recently gained significant attention, often as a pretraining method (Jaderberg et al., 2017) or
as a reward bonus in sparse reward domains (Schmidhuber, 1991; Pathak et al., 2017; Burda et al.,
2019b). A recent focus has been on developing objectives where the agent has no access to extrinsic
rewards and instead develops emergent behaviors from intrinsic motivation alone (Lopes et al., 2012;
Kim et al., 2020; Berseth et al., 2021). In this context, unsupervised RL holds the promise of being
able to develop natural-like intelligence, i.e. generally-capable agents that can be deployed to solve
diverse tasks across diverse environments. However, thus far, no single intrinsic motivation function
has succeeded in capturing the complexity of motivation that gives rise to intelligent systems.

Interestingly, two seemingly opposing methods, surprise-minimization (Friston, 2010; Berseth et al.,
2021) and surprise-maximization (Schmidhuber, 1991; Pathak et al., 2017; Hazan et al., 2019; Tiapkin
et al., 2023), have been proposed as intrinsic motivations, with both methods performing well
depending on the properties of the environment in which they are deployed. In general, surprise-
minimizing methods (Berseth et al., 2021) perform well in environments with naturally high entropy
that can be reduced through control, while curiosity-based methods (Pathak et al., 2017) are
better suited to environments where explicit exploration is necessary to encounter novel information.
However, both methods are known to possess failure modes when exposed to the opposite entropy
regime (Schmidhuber, 2010; Sun & Firestone, 2020).

In this work, we propose an adaptive mechanism to select between maximizing and minimizing surprise
in a given environment, based on the agent’s ability to exert control over its entropy conditions,
which we frame as a multi-armed bandit problem. We experimentally validate our surprise-adaptive
agent by demonstrating its ability to mirror a surprise-maximizing or -minimizing agent in didactic

∗Equal contribution.
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low- and high-entropy environments, respectively, and, in doing so, perform well on these tasks
without any access to extrinsic task rewards. In benchmark environments, we demonstrate more
diverse emergent behaviors, as measured by the performance on extrinsic task reward, than observed
from the single-objective agents.

2 Related work

There is a rich body of work in the field of unsupervised RL and intrinsic motivation, upon which our
method builds. The most widely explored class of intrinsic objectives is related to improving state
coverage through exploration bonuses which reward some measure of novelty. In low-dimensional
settings, count-based methods (Auer, 2002; Bellemare et al., 2016; Machado et al., 2020) are simple
and effective but do not always extend well to higher dimensions (Lobel et al., 2023). Another
popular class of methods in high-dimensional settings uses prediction error as an exploration bonus
(Schmidhuber, 1991; Pathak et al., 2017). A conceptually similar idea is that of entropy maximization
(Hazan et al., 2019; Tiapkin et al., 2023; Jain et al., 2023), which seeks to maximize the entropy of
the distribution of states experienced by the agent throughout its lifetime. Naive implementations
of these novelty-seeking agents, however, can be susceptible to what is known as the "noisy-TV
problem" (Schmidhuber, 2010), where the agent becomes transfixed by irreducible aleatoric noise in
the environment. Various formulations have been developed to combat this issue, though issues often
persist (Houthooft et al., 2016; Pathak et al., 2017; Burda et al., 2019b). Though these methods are
generally implemented as bonuses to the extrinsic reward, some works have also investigated the
ability of curiosity-driven agents to achieve good task rewards without any access to the extrinsic
reward (Burda et al., 2019a)

An alternative class of intrinsic objectives also targets the scenario where no extrinsic rewards are
available by incentivizing the agent to exert control over its environment. This class of methods is
rooted in the free energy principle, a concept from neuroscience that posits that intelligent organisms
seek out stable niches by learning to control their environment to minimize the entropy they experience
over their lifetime (Friston, 2010). One prominent formulation in this class is that of empowerment,
defined as the maximal mutual information between an agent’s actions and future states (Klyubin
et al., 2005; Karl et al., 2015; Zhao et al., 2020). However, empowerment is computationally difficult
to estimate in large or continuous state and action spaces. A more tractable approximation to
the free-energy principle was proposed by Berseth et al. (2021) as surprise-minimization. In this
formulation, an upper bound on an agent’s total trajectory entropy is minimized by rewarding the
agent with the log-probability of the current state under the estimated state marginal distribution.
This method has shown promising results in a diverse set of stochastic environments (Berseth et al.,
2021; Rhinehart et al., 2021). Surprise-minimizing agents, however, can fall victim to the "dark room
problem" (Sun & Firestone, 2020), where the agent discovers an area of the state-space without any
stochastic dynamics and fails to seek out any additional experience.

Two recent works make efforts towards combining surprise-minimization and maximization objectives
to avoid the degenerate cases of prior methods, either using a complex multi-agent paradigm (Fickinger
et al., 2021) or learned skills (Zhao et al., 2022). In Fickinger et al. (2021) the authors seek to capture
more complex behaviors by alternately minimizing and maximizing surprise in an adversarial game
between surprise-minimizing and surprise-maximizing players. However, this adversarial approach is
susceptible to unstable training dynamics. In Zhao et al. (2022), they circumvent the complexity of
adversarial RL, instead training a single agent equipped with two different skill sets, one surprise-
minimizing, and the other surprise-maximizing. This approach is conceptually and practically simpler
than the multi-agent approach. However, neither method uses an adaptive mechanism to control
the objective, instead using fixed-length windows to alternate between objectives. In contrast, our
proposed method can adapt to entropy conditions online to bias the agent towards the objective with
the greatest potential.

Prior works have explored adaptivity in RL and found that it can be beneficial for learning (Badia
et al., 2020; Moskovitz et al., 2021). Similar to our work, Moskovitz et al. (2021) uses a multi-armed
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bandit to control a learning hyperparameter. However, their method relies on extrinsic rewards for
providing feedback to the bandit, while our method derives rewards based only on intrinsic signals.

3 Background

Reinforcement learning. RL is a learning paradigm for sequential decision-making problems. In
RL, an agent acts in an environment from which it receives observations and rewards. Formally, this
process can be modelled as a Markov Decision Process (MDP) consisting of the tuple (S,A, T ,R, γ)
where S is the state space, A is the action space, T : S ×A× S → [0, 1] is the transition function,
R : S ×A → R is the reward function, and γ is the discount factor. The goal of the RL agent is to
find a policy πϕ that produces actions that maximize the expected sum of discounted future rewards.

πϕ(at|st) = argmaxϕEp(τ |ϕ)

[
T∑

t=0
γtr(st, at)

]
(1)

In our experiments, we use the value-based method DQN (Mnih et al., 2015) to solve Equation 1.

Multi-armed bandits Multi-armed bandits can be thought of as a special case of RL where the
state-space consists only of a single state. Typically evaluated based on regret, multi-armed bandit
algorithms focus on the efficient trade-off between exploration and exploitation in order to find an
optimal action while incurring the minimum amount of sub-optimal actions. In this work, we adopt
one of the most popular algorithms, Upper Confidence Bounding (UCB)(Lai et al., 1985) for an
efficient trade-off. The UCB algorithm adds a count-based exploration bonus to the current value
estimate of an action before selecting the maximum valued arm:

at = argmaxa∈A

(
Qt(a) +

√
log t

Nt(a)

)
(2)

Entropy and surprise The notion of surprise derives from the optimization of the entropy of the
state marginal distribution under the policy πϕ(a|s), which we denote dπϕ(st). Given an estimate of
this state marginal distribution, pθt−1(st), we can express an estimate of the sum of the entropies
of the state distribution across a trajectory (see Appendix A of Berseth et al. (2021) for a full
derivation):

T∑

t=0
H(st) =

T∑

t=0
−Est∼dπϕ (st) [log dπϕ(st)] ≤

T∑

t=0
Est∼dπϕ (st)

[
− log pθt−1(st)

]
(3)

Recalling Equation 1, we can see that minimizing the sum of the state entropy over a trajectory
(Equation 3) corresponds to a surprise minimizing agent (Berseth et al., 2021) with a reward function
given by:

rs-min(st, at) = log pθt
(st+1) (4)

Maximizing this objective corresponds to an RL agent with a reward function given by:

rs-max(st, at) = − log pθt
(st+1) (5)

which is similar to the rewards provided to the EntGame agent in Tiapkin et al. (2023).

Conceptually, this means that the agent is punished (or rewarded) if the observed state st is
"surprising", that is, if it has high negative log-likelihood under the state marginal distribution
estimated so far. Hence, we refer to Equation (4) as surprise-minimization and Equation (5) as
surprise-maximization.
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4 Surprise-adaptive bandit

Surprise-minimization and surprise-maximization are most effective under particular entropy condi-
tions in the environment, surprise-minimization under high-entropy conditions (Berseth et al., 2021),
and surprise-maximization under low-entropy conditions. An intrinsically motivated agent that could
capitalize on the advantages each objective provides in its respective entropy regime would be a more
powerful and versatile intrinsic learner. Hence, we propose an agent that can alternatively optimize
for either objective, with an online adaptive mechanism for selecting the objective.

To design such an adaptive agent, we must first be able to optimize for either single-objective, which
requires an estimation of the state marginal distribution at time t, parameterized by θt (denoted
pθt−1 in Equation (3)). In general, this estimation can be quite complex; In Berseth et al. (2021), the
authors propose a simplification which we adopt here. The method estimates θt by first selecting
an appropriate distribution family to model observations (i.e. Gaussian, Bernoulli, etc.) and using
maximum likelihood estimation to estimate the sufficient statistics of the distributions, fitted to
the history of observed states through time t. Further details on estimating the state marginal
distribution as well as ablations on the choice of distribution are provided in Appendix A.3.

To adaptively select between the two objectives online, we propose a multi-armed bandit approach.
Provided with an appropriate performance signal, a bandit learns to select optimally between actions,
trading off exploration with exploitation to minimize the overall regret, making it an appropriate
choice for online adaption. The key question is what type of feedback is best to provide the bandit,
given access only to intrinsic rewards. We propose a feedback mechanism grounded in the observation
that the general goal in both surprise minimization and surprise maximization is for the agent to
be able to affect a change in the level of surprise it experiences. In a low-entropy environment, the
agent can best affect change by increasing entropy, and vice versa.

We propose using the absolute percent difference between the entropy of the state marginal distribution
at the end of the mth episode (H(p(m)

θT
)) and that of a random agent in the same environment

(H(prand
θT

)) (Equation (6)). The motivation for this is as follows: a random agent cannot control the
environment entropy as it cannot take any actions in response to feedback. Agents that produce
state visitation distributions whose entropy significantly diverges from that of a random agent must
therefore be exerting control over the entropy in the environment. We therefore provide feedback
to the bandit which promotes agents that can exert such control by rewarding large deviations
from a random agent. Since we are approximating the state marginal distributions by an analytical
distribution, we can compute H(p(m)

θT
) analytically from the estimated parameters (see A.3 for further

details).

fm =
∣∣∣∣∣
H(p(m)

θT
)−H(prand

θT
)

H(prand
θT

)

∣∣∣∣∣ (6)

The precise algorithm is as follows (Algorithm 1). At the start of training, we estimate the entropy of
a random agent by collecting trajectories using a uniform random policy and averaging the entropy of
the state marginal distributions, computed at the end of each trajectory (Line 2). Then, at the start
of each episode m, we select an arm from the bandit, represented by binary indicator α(m), according
to the UCB algorithm (Line 10), which determines if the agent will receive rewards according to
Equation 4 or Equation 5 during the upcoming episode. The agent is trained for a single episode,
using any RL algorithm (Line 7). At the end of each episode, the bandit receives feedback fm on its
selection (Line 9). Algorithm 1 shows the full training procedure.

To instantiate the surprise-adaptive agent, we construct an augmented MDP out of the original
Markov process. Following Berseth et al. (2021), this augmented MDP has a state space that
includes the original state st, as well as the sufficient statistics of the state marginal distribution θt.
We additionally include α(m), as defined above, to ensure the reward function remains Markovian
(Castanyer et al., 2023).
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In our experiments, all agents were trained using DQN (Mnih et al., 2015), using two convolutional
neural networks (CNN) to encode the state. The first CNN encodes the observed state st, while the
second encodes the sufficient statistic of the state marginal distribution θt along with the bandit
choice α(m) which is added as an additional channel before applying the CNN. The outputs of the
CNNs are concatenated and passed through an MLP that outputs the Q-value. More details on
environments and training can be found in Appendix A.

Algorithm 1 Surprise-adaptive agent
1: Initialize network parameters ϕ, replay buffer β, initial mean of bandit arms µ(0), and initial

optimization direction α(0) ∼ Bern(0.5)
2: Compute H(prand

θT
) by rolling out random trajectories

3: for episode m = 0, 1 . . . , M do
4: so ∼ p(s0), reset θ0, s̄0 = (s0, θ0, 0, α(m)) ▷ construct initial augmented state
5: Set r(st, at) = (−1)α(m) − log pθt

(st) ▷ set reward function
6: for t = 0, . . . , T do
7: Collect experience and update policy ϕ← RL(ϕ, β) ▷ See Berseth et al. (2021)
8: end for
9: µ

(m+1)
i ← µ

(m)
i + 1

N(i) (fm − µ
(m)
i ) if α(m) = i else µ

(m)
i

10: α(m+1) ← UCB(µ(m+1)) ▷ Choose new α(m+1) based on UCB algorithm Lai et al. (1985)
11: end for

5 Experiments and analysis

To validate the usefulness and effectiveness of our method, we must demonstrate (1) Deficiencies in
the single objective agents under particular entropy conditions and how these deficiencies arise from
a lack of controllable entropy (2) Ability of the surprise-adaptive agent to select an objective based
on the controllable entropy and to mimic the behavior of the single-objective agents and, finally (3)
Correlation between entropy control and the emergence of intelligent behaviors.

With these goals in mind, we select several environments for evaluation; First, a set of didactic
environments that are designed specifically to create low- and high-entropy conditions to demonstrate
both the success and failure modes of single-objective entropy control. Second, a set of RL benchmark
environments that are not selected with any particular entropy conditions in mind, and hence are
demonstrative of how our algorithm could perform on arbitrary environments with unknown entropy
conditions.

For the high-entropy environments, we select the Tetris environment used in Berseth et al. (2021)
and construct the new Butterflies environment, shown in Figure 1. In Tetris the agent must survive
as long as possible by clearing rows of blocks before they reach the top of the frame. In Butterflies,
the agent (red) must find and catch butterflies (blue) that are moving randomly in the map, within
a fixed-length episode. For the low-entropy environment, we construct a static maze environment
(Maze), in which the agent navigates around a map with a single goal state, for a fixed-length
episode. For both Butterflies and Maze, we construct small (10x10) and large (32x32) versions of
the environments. More details on these new environments are available in Appendix A.2. For
the benchmark environments, we select the MinAtar (Young & Tian, 2019) suite of tasks. This
suite consists of simplified versions of five Atari games, which are designed to make the state space
categorical and fully observable without frame-stacking. Finally, to experiment on image-based
observations, we test on Freeway from the original Atari games suite (Bellemare et al., 2013)

Our analysis contrasts our method with the two dominant entropy-based intrinsic reward paradigms.
Hence, we compare our method (S-Adapt) against an exclusively surprise-minimizing agent (S-Min)
(Berseth et al., 2021) and an exclusively surprise-maximizing agent (S-Max). Here, the surprise-
maximizing agent represents the space of curiosity and maximum entropy methods (Pathak et al.,
2017; Hazan et al., 2019), though we note that our method could be implemented on top of any
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desired curiosity-based method. Additionally, as baselines, we compare the entropy-based intrinsic
agents against an agent trained on the extrinsic reward (Extrinsic), and a random agent (Random).

We compare the performance of the various agents both in terms of entropy control and emergent
behaviors. As a measure of entropy control, we consider the average surprise the agent experiences
across the episode. The metric for emergent behavior that we consider here is the undiscounted
episode return, as previous work has argued that entropy control can correlate with task rewards in
some environments (Berseth et al., 2021).

5.1 Failures of Single-Objective Entropy Control

First, we demonstrate, qualitatively and quantitatively, the success and failure modes of single-
objective entropy-based agents, using the didactic environments.

Qualitatively, we demonstrate the behaviors of S-Min and S-Max in the Maze and Butterflies
environments in Figure 1. We note that the S-Min agent achieves an interesting behavior of catching
butterflies in the Butterflies environment, but learns a degenerate solution of standing in place in the
Maze environment. On the other hand, the S-Max agent learns to navigate the Maze and reach the
goal but fails to catch any butterflies in the Butterflies environment.

Figure 1: The Butterflies (left) and Maze environments (right). S-Min trains the agent to actively
catch the butterflies in order to prevent diverse state configurations while at the same time preventing
the agent to navigate around Maze. S-Max trains the agent to avoid catching butterflies while
navigating the Maze efficiently. These two didactic environments show that current intrinsic objectives
fail to provide generally useful objectives for RL agents and cannot adapt.

Quantitatively, we evaluate the average surprise and average extrinsic returns for the agents across
training in all environments (Figures 2 to 4). Notably, the S-Min agent achieves the lowest or
near-lowest entropy in all environments, while the S-Max agent achieves the highest or near-highest
entropy in all environments, as expected.

(a) Small Maze (10x10) (b) Large Maze (32x32)

Figure 2: Average episode return (left) and surprise (right) versus environment interactions (average
over 5 seeds, with one shaded standard deviation) in the Maze environment. S-Max and S-Adapt
are the only objectives that allow the RL agents to consistently find the goal in the maze. These also
cause the largest change in surprise when compared to the random agent.
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However, we highlight that the qualitatively interesting direction for entropy control is correlated not
with a single objective, but with the scale of the absolute difference in the final entropy achieved by
the agent versus that of the Random agent. For example, in the Maze environment, the S-Max
agent drives a significant increase in entropy over the Random agent, while the S-Min agent
achieves a relatively small decrease (Figure 2). Similarly, in the Butterflies environment, the opposite
holds in the large map (Figure 2b). Interestingly, in the small map, the S-Min and S-Max agents
achieve roughly the same absolute change in entropy (Figure 2a). This is because in the smaller map,
avoiding butterflies is equally challenging compared to catching butterflies, while in the larger map,
the butterflies are easily avoided.

(a) Small Butterflies (10x10) (b) Large Butterflies (32x32)

Figure 3: Average episode return (left) and surprise (right) versus environment interactions (average
over 5 seeds, with one shaded standard deviation) in the Butterflies environment. S-Min, Extrinsic
and even the Random agent catch most of the butterflies in the small grid. Because of the small size
of the grid, surprise-minimization and surprise-maximization are equally effective in entropy control,
and hence the S-Adapt agent converges to S-Max. In the larger grid, however, the Random agent
can’t catch many butterflies and hence has a high-entropy state distribution. Again, the S-Max agent
learns to also avoid catching butterflies and the S-Min agent learns to catch butterflies. However,
catching butterflies results in a significant change in the state-marginal entropy in this larger grid.
The S-Adapt agent identifies this and converges to S-Min, resulting in agents that catch more than
half of the butterflies without access to the extrinsic reward.

5.2 Adaptive Entropy Control

Figure 4: Average episode return (left) and sur-
prise (right) versus environment interactions (aver-
age over 5 seeds, with one shaded standard devia-
tion) in Tetris. S-Min, S-Adapt, and Extrinsic
agents solve the game (i.e. consistently survive for
more than 200 steps). Interestingly, the surprise-
minimizing objective, which S-Adapt converges
to, turns out to be a better learning signal than
the row-clearing extrinsic reward in Tetris.

Capitalizing on the success modes of the single-
objective agents, the proposed S-Adapt agent
can adapt to the entropy landscape to achieve
entropy control across all didactic environments
(Figures 2 to 4). In Maze, the S-Adapt agent
converges to a surprise-maximizing strategy sim-
ilar to S-Max, as demonstrated by the high
entropy achieved by the end of training (Fig-
ure 2). On the other hand, in Tetris, the S-
Adapt agent converges to a surprise-minimizing
strategy, achieving low entropy on par with the
S-Min agent by the end of training (Figure 4).
In the Butterflies environment, an interesting
dichotomy in the S-Adapt agent’s behavior
arises. As noted in Section 5.1, in the small
grid, both the S-Min agent and S-Max agent
induce roughly the same amount of change in the
entropy versus the Random agent, using equally
challenging strategies (Figure 3a). Here, the S-
Adapt agent converges to surprise-maximizing
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behavior. However, as the size of the grid is increased, and the density of butterflies decreases, the
effect of minimizing entropy becomes much stronger versus the Random agent and the S-Adapt
agent correctly converges to the surprise-minimizing strategy (Figure 2b). More details on the effect
of butterfly density on the behavior of the S-Adapt agent can be found in Appendix B

Our results have shown that the S-Adapt agent can successfully recreate the performance of the S-
Min and the S-Max agents in their respective didactic environments. Next, we investigate controlling
entropy across the MinAtar benchmark, shown in Figure 5. Notably, these environments were not
constructed with any particular entropy regime in mind. Thus, these results are demonstrative of
how the proposed algorithm could perform in an arbitrarily chosen environment.

(a) Freeway (b) Seaquest

(c) Space Invaders (d) Breakout

(e) Asterix

Figure 5: Average episode return (left) and surprise (right) versus environment interactions (average
over 5 seeds, with one shaded standard deviation) in the MinAtar suite of environments. In all
environments the S-Adapt agent is able to select the direction for entropy optimization which
is most controllable, as demonstrated by the change in entropy from the beginning to the end of
training. The S-Adapt agent indeed demonstrates emergent behaviors in certain environments, such
as Freeway where it achieves rewards on par with that of the Extrinsic agent. However, in certain
environments, like Seaquest, Space Invaders and Asterix, the extrinsic reward is not closely correlated
with entropy control, with the Random agent and the Extrinsic agent achieving similar entropy.

Here again, we see that the S-Adapt agent can reliably select the objective with the greatest
controllable entropy. Though the difference between S-Min and S-Max agents in terms of divergence
with the Random agent is not as strong in some environments, the S-Adapt agent consistently

554



RLJ | RLC 2024

chooses the objective with the relatively larger change in entropy. This provides confirmation that
our bandit algorithm can successfully select for controllable entropy in arbitrary environments.

5.3 Emergent Behaviour

Figure 6: Average episode return versus environ-
ment interactions (average over 5 seeds, with one
shaded standard deviation) in the Atari Freeway
environment. The S-Adapt agent learns useful
behaviours (making progress in the original task)
from image-based observations. The Extrinsic
agent achieves the highest returns as it exploits the
task rewards, the S-Max agent achieves slightly
lower returns than the S-Adapt agent, while the
S-Min agent achieves zero returns.

Finally, for these objectives to be useful, it is im-
portant that they correlate with the emergence of
interesting behaviors. Indeed, we note that the
extrinsic rewards in the didactic environments
generally correlate closely with one of two single-
objective agents (Figures 2 to 4). This suggests
that these environments have good potential for
entropy-based control to elicit emergent behav-
iors. Importantly, however, the extrinsic reward
does not correlate well with strictly one of S-
Min or S-Max in all environments. In Maze,
S-Max achieves high rewards, while in Butter-
flies and Tetris, S-Min achieves high rewards.
On the other hand, the S-Adapt agent achieves
high task rewards, on par or better than the Ex-
trinsic agent across all didactic environments.

Additionally, in some MinAtar environments, the
entropy-based agents exhibit emergent behavior
similar to that of the Extrinsic agent. In the
Freeway environment (Figure 5a), the S-Adapt
agent achieves competitive rewards with the Ex-
trinsic agent. A similar result is observed in
Breakout (Figure 5d). However, other environ-
ments, like Space Invaders and Seaquest (Figures 5b and 5c) do not appear to be good candidates
for intrinsic entropy control, since the Extrinsic and Random agents achieve similar entropy.

Finally, we investigate the emergence of interesting behaviors in a more complex, image-based
environment using Atari Freeway (Figure 6) as a case study. Unlike the previous environments,
observations in pixel space are non-binary and hence cannot be modeled using Bernoulli distributions.
Instead, we model the state marginal using a Gaussian distribution (see Appendix A.3 for more
details). The results show that both the S-Max and S-Adapt agents achieve respectable results
as compared to the extrinsic agent. Moreover, in this environment, the emergent behavior of the
S-Adapt agent is qualitatively different from both S-Max and S-Min agents; The S-Adapt agent
solves the game more frequently than the S-Max agent. This hints that mixing entropy maximization
and minimization in one adaptive objective induces emergent behaviors that cannot be learned by
exclusively optimizing for surprise minimization or maximization alone.

6 Conclusion

Our experiments demonstrate encouraging results for a surprise-adaptive agent. The S-Adapt agent
can select the objective with the more controllable landscape across both didactic environments
and benchmark environments. Moreover, the S-Adapt agent inherits the emergent behaviors of
the single-objective agents, achieving high rewards across all didactic environments, which neither
of the single-objective agents nor the extrinsic agent is able to achieve. Further work is needed to
understand exactly under what conditions such emergent behaviors can manifest, and how to elicit
them more reliably in arbitrary environments like MinAtar. Possible directions for improvement
here could include better methods for estimating the state marginal distribution with more accuracy.
Moreover, an interesting extension to this work would be to apply an adaptive agent in the continual
learning setting, where adaptation can occur at any time, not only at episode end.
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A Environment and Training Details

A.1 Training Details

All agents were trained using DQN (Mnih et al., 2015). Reward values are normalized by subtracting
the rolling mean and dividing by the standard deviation before fitting the Q network. For the
S-Adapt agent, we use the original UCB algorithm with exploration coefficient 2 in the Maze (large)
and MinAtar environments, for all other environments we set the exploration coefficient to

√
2. we

trained all agents using the implementation of DQN from CleanRL (Huang et al., 2022). We trained
all agents with a learning rate of 0.0001 with Adam optimizer, a discount factor of 0.99, a batch size
of 32, a replay buffer size of 1M, and for 10M environment interactions. We use epsilon-greedy for
exploration with a linearly decaying epsilon from a value of 1 to 0.01, decaying over the first 10%
of timesteps in all environments except MinAtar and Atari which decays over the first 50% of time
steps. Model architecture details for each environment are provided in the next section.

A.2 Environments

Tetris We take the Tetris environment directly from the implementation provided by the authors
of (Berseth et al., 2021). In this environment, the agent receives 0 at all steps, except for a losing
step which results in a -100 reward. The maximum episode length is 200. Environment observations
and the sufficient statistic of the state marginal are flattened before being fed into two independent
two-layer MLPs with hidden dimensions 120 and 84. The outputs of the MLPs are concatenated and
passed through a linear layer that outputs the Q-value.

Maze We constructed custom Maze environments (small and large) using the Griddly platform
(Bamford, 2021). A pixel-rendering of the small and large mazes used in our experiments can be
found in Figure 7. The task reward in both environments is +1 when the agent reaches the goal and
0 otherwise.

Figure 7: Pixel-rendering of the small maze (left) and the large maze (right)

The size of the small maze is 10x10 and the episode length is 100. Environment observations and
the sufficient statistic of the state marginal are passed through two independent CNNs with a single
convolutional layer. The outputs of the CNNs are concatenated and passed through a single-layer
MLP with hidden dimension 512 that outputs the Q-value.
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The size of the large maze is 32x32 and the episode length is 250. Environment observations and
the sufficient statistic of the state marginal are passed through two independent CNNs with three
convolutional layers with kernel size of (3,3), a stride value of 2 and a padding value of 1. The outputs
of the CNNs are concatenated and passed through a single-layer MLP with hidden dimension 512
that outputs the Q-value.

Butterflies We constructed the custom Butterflies environment (small and large) using the Griddly
platform (Bamford, 2021). The task reward in both environments is +1 when the agent catches a
butterfly and 0 otherwise.

The size of the small map is 10x10 and the episode length is 100, while the size of the large map
is 32x32 and the episode length is 500. We use the same architecture as the Maze environment for
estimating the Q-value.

MinAtar In MinAtar environments, we use the same architecture as the Butterflies environments
and we set the episode length to 500.

Atari In Atari Freeway environment, we use the same architecture and pre-processing as in Mnih
et al. (2015). We use the same multiple CNN architecture as the Maze environment for estimating
the Q-values from the augmented state with sufficient statistics.
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A.3 Estimation of State Marginal Distribution

In all binary environments (Tetris, Maze, Butterflies, MinAtar), the observed state st is a binary
entity map of size H ×W × C, where H is the height of the map, W is the width of the map and C
is the number of channels, with each channel representing a single object type in the environment. A
value of one is set in the (h, w) position of channel c (denoted sh,w,c

t ) if an object of type c currently
occupies the (h, w) position in the map, and zero otherwise. The state marginal distribution is
estimated as H ×W × C independent Bernoulli distributions, with probability ph,w,c

t =
∑t

t′=0
sh,w,c

t′
t ,

which constitutes a sufficient statistic for the Bernoulli distribution. Hence, the sufficient statistic of
the entire state marginal distribution is given by θt = {ph,w,c

t : h ∈ H, w ∈W, c ∈ C} and is the same
shape as the observations st.

The choice of the Bernoulli distribution is justified by the binary nature of the data. However, we
perform an ablation using a Gaussian distribution as an alternative to confirm the validity of this
choice (Figure 8).

In the image-based environment (Atari Freeway), the observed state st is an image. Here, we
use a Gaussian distribution for the state marginal estimation. Using the same notation as above,
the sufficient statistics for the Gaussian distribution are given by empirical mean and variance
µh,w,c

t =
∑t

t′=0
sh,w,c

t′
t , σh,w,c

t =
∑t

t′=0
(µh,w,c

t −sh,w,c

t′ )2

t . The sufficient statistic for the entire state
marginal distribution is then given by θt = {µh,w,c

t , σh,w,c
t : h ∈ H, w ∈W, c ∈ C}.

(a) Maze (small) (b) Maze (large) (c) Space Invaders

(d) Seaquest (e) Freeway (f) Breakout

Figure 8: Average episode return of the S-Adapt (average over 5 seeds, with one shaded standard
deviation), using Gaussian and Bernoulli distributions for estimating the state marginal distribution.
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B Additional Experiments

Here we present additional results on the impact of butterfly density on the behavior of the S-Adapt
agent.

(a) Very High Density (b) High Density (c) Medium Density

(d) Low Density (e) Very Low Density

Figure 9: Average episode return of the S-Adapt agent (average over 5 seeds, with one shaded
standard deviation) over various butterflies densities in the Butterflies (large) environment. At (very)
high density (Figures 9a and 9b), the Random agent resembles the S-Min agent and catches large
number of butterflies as indicated by the high episode return. Hence, the S-Adapt agent converges
to surprise-maximization to induce large absolute difference in entropy from the Random agent and
avoids butterflies as indicated by the low episodic return. In contrast, at very low density (Figure 9e),
the Random agent is unable to catch butterflies and resembles the S-Max agent. The S-Adapt
agent converges to surprise-minimization and almost catches all the butterflies as indicated by the
high episodic return. At medium and low densities (Figures 9c and 9d), the S-Adapt agent oscillates
between surprise-maximization and surprise-minimization as they roughly induce the same absolute
difference in entropy.
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Abstract

The standard framework in reinforcement learning (RL) dictates that an agent
should use every observation collected from interactions with the environment when
updating its value estimates. As this sequence of observations becomes longer,
the agent is afflicted with the curse of horizon since the computational cost of its
updates scales linearly with the length of the sequence. In this paper, we propose
methods to mitigate this curse and improve sample efficiency for continuous-time
value estimation with Monte-Carlo methods. This is accomplished by selecting
a subsequence of observations on which the value estimates are computed. We
empirically demonstrate on standard RL benchmarks that adopting an adaptive
sampling scheme outperforms the default uniform sampling procedure.

1 Introduction

The reinforcement learning (RL) framework is typically modeled as a Markov Decision Process in
discrete-time intervals (Sutton & Barto, 2018), in which the interaction between agent and environ-
ment evolves at a predetermined time interval, fixed a priori. There are two evident shortcomings in
carelessly adopting the latter model: first, the discrete-time nature of the process might not capture
the nature of many real-world dynamics, in which treating time as a continuous variable can be
more appropriate and advantageous; second, the fixed-time assumption is taking away a degree of
freedom from the framework.

The second issue is particularly interesting in RL as the greater freedom can be exploited to design
algorithms with better performance. Note that usually the system is assumed to have a fixed
discretization step, and current algorithms make use of all the samples they are given. It has been
recently established by Zhang et al. (2024) that using only a subset of the trajectory tuples can
yield more sample-efficient learning when performing Monte-Carlo value estimation. This paper
goes beyond uniform temporal discretization schemes and considers a procedure that makes use of
an adaptive integration scheme taken from the numerical integration literature. Such an adaptive
scheme does not fix a uniform sampling time, but instead adapts the sampling time to balance
the error in approximating the integral of a single trajectory with collecting several trajectories to
reduce variance from the system’s inherent stochasticity. Therefore the question this work aims to
investigate is:

Can non-uniform discretization be leveraged to improve sample efficiency in
continuous-time value estimation?

With uniform sampling, employing a finer discretization leads to a better approximation of the
continuous-time system from discrete measurements; however, considering a fixed sample budget,

*These authors contributed equally to this work.

563



RLJ | RLC 2024

more samples within each trajectory results in fewer collected trajectories, leading to an increase
in estimation error due to system stochasticity. Conversely, a coarser discretization leads to more
collected trajectories at the expense of a worse approximation of the continuous-time system.

With an adaptive scheme, we can employ a finer discretization in the volatile regions of the
continuous-time system and employ a coarser discretization in the smoother regions of the sys-
tem. Thus fewer measurements of the system can be made to achieve a comparable approximation
error to a uniform sampling scheme, which allocates the same discretization to all regions of the sys-
tem. This, in turn, enables the adaptive scheme to allocate more of its sample budget to collecting
trajectories to reduce its estimation error.

Our main contribution is demonstrating that an adaptive algorithm achieves better policy evaluation
than previous uniform discretization methods. This is done through empirically evaluating both the
adaptive and uniform methods in standard RL benchmarks such as the Gymnasium Classic Control
suite (Towers et al., 2023) and MuJoCo (Todorov et al., 2012) environments. The impact of this
work is evident as using significantly less samples enhances training efficiency thereby accelerating
the learning process.

2 Problem Setting

The continuous-time reinforcement learning (RL) problem is modeled as a Markov Decision Process
(MDP), which is characterised by the tuple (S, A, f, r, γ, η), where S denotes the state space, A the
action space, f specifies the state evolution dynamics, r the reward function, γ is the discount factor,
and η represents the initial state distribution. Through this model, an agent and the environment
interact over time, denoted as t. This interaction is initialized by sampling a state from the initial
state distribution η ∈ M1(S), where M1(X) denotes the set of distribution supported on X, for any
measurable set X. Given the current state s (t) ∈ S and current action a (t) ∈ A, the environment
transitions to a new state. This transition can be described through a differential equation as

d s (t)
dt

= f (s (t) , a (t)) (1)

where f (s (t) , a (t)) represents the dynamics of the environment. In what follows, we will consider
deterministic dynamics as is common in the continuous-time RL literature (Doya, 2000; Yildiz et al.,
2021). The behavior of the agent also affects the reward, which is a scalar-valued function given by

r (t) = r (s (t) , a (t)) . (2)

The reward is an immediate measure the agent’s performance. Given a fixed horizon T , the return,
or cumulative reward, is defined as

GT =
∫ T

0
γtr (s (t) , a (t)) dt, (3)

subject to d s (t)
dt

= f (s (t) , a (t)) ,

where without loss of generality we considered the initial time to be t0 = 0. The return is a random
variable since it is subject to the variability of the initial state, which is sampled i.i.d. from η in
each trajectory. In RL, the agent’s objective is to find a policy a (t) = π (s (t)) that maximizes the
expected return, also known as the value function, given by:

vπ
T (η) = Eπ [GT |s (0) ∼ η] . (4)

Maximizing vπ
T (η) is accomplished by learning an optimal policy, defined as π⋆ ∈ arg maxπ vπ

T (η).
An important step towards this goal is to estimate the value function for a fixed policy, which
correspond to the task of policy evaluation.
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2.1 Monte-Carlo Policy Evaluation

The main focus of this work is policy evaluation, which aims to estimate the expected return from
discrete-time observations. Given N samples {(s(tn), a(tn), r(tn))}N−1

n=0 , observed at discrete-time
points 0 = t0 < t1 < · · · < tN−1 = T , we consider the First-Order-Hold (FOH) scheme (Franklin
et al., 1997) to approximate the reward function, which yields a piecewise linear function:

r̂ (t) = r (tn−1) + r (tn) − r (tn−1)
tn − tn−1

(t − tn−1) , (5)

∀t ∈ [tn−1, tn]. By defining

rn = γtnr(tn) + γtn−1r(tn−1)
2 (tn − tn−1) (6)

we can approximate the integral in Equation (3) by the discrete-time return

Ĝ =
N−1∑

n=1
rn , (7)

which amounts to using the trapezoidal rule for numerical integration. To estimate vπ
T (η), we

average M independent trajectories with return estimates Ĝ1, Ĝ2, . . . , ĜM to obtain the Monte-
Carlo estimator

V̂M = 1
M

M∑

m=1
Ĝm, (8)

where the initial states are sampled independently from the initial state distribution η.

The main goal of this work is to empirically study the relationship between the number of samples
used, i.e., the budget B = M · N , in constructing the Monte-Carlo estimator V̂M and the absolute
error of our estimator under various discretization schemes. When considering the uniform discretiza-
tion scheme, only one degree of freedom remains in choosing the discretization points t0, t1, . . . , tN−1
for a given trajectory m ∈ {1, . . . , M}, for a fixed budget B. If a coarse discretization is used (N
small), then more of the sample budget can be allocated to collecting trajectories. Conversely, if a
fine discretization is used (N large), then less of the budget is allocated to collecting trajectories.
Thus the choice of N controls the approximation error due to discretization and the statistical error
due to stochasticity through M = B/N . Note that in a deterministic setting, statistical errors are
inherently nonexistent, therefore the optimal strategy entails allocating the entire budget to a single
trajectory.

3 Algorithms

In the following, we detail both an adaptive and uniform method for approximating the integral in
Equation (3) from which our Monte-Carlo estimator V̂M is constructed. The adaptive method is
detailed in Algorithm 1 while the uniform method is detailed in Algorithm 2. To the best of our
knowledge, our work is the first to propose and study such an adaptive method for Monte-Carlo
policy evaluation in RL.

3.1 Adaptive Integration

In Algorithm 1, we detail an adaptive integration scheme, often referred to as adaptive quadrature
in the numerical integration literature, that uses a finer discretization in the parts of the domain of
integration where it is harder to get good accuracy and a coarser discretization in the parts of the
domain of integration where it is easy to get good accuracy.

The basis for adaptive integration schemes is the additive property of definite integrals, namely that
for any c ∈ [a, b] it holds that

∫ b

a
f(x)dx =

∫ c

a
f(x)dx +

∫ b

c
f(x)dx. Thus if the two integrals on
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Algorithm 1 Adaptive
To approximate

∫ τ2
τ1

r(t)dt within tolerance ε.
Input: The rewards r, the limits of integration τ1 and τ2, and the tolerance ε
τ3 = τ1+τ2

2
Qτi,τj = γτi r(τi)+γτj r(τj)

2 (τj − τi) for (i, j) = {(1, 2), (1, 3), (3, 2)}.
if |Qτ1,τ2 − Qτ1,τ3 − Qτ3,τ2 | > ε then

Q = Adaptive(r, τ1, τ3, ε/2) + Adaptive(r, τ3, τ2, ε/2)
else

Q = Qτ1,τ2

end if
return Q

the right can be approximated within an arbitrary tolerance ε, then their sum gives an approxima-
tion of the desired integral which is within 2ε. Otherwise, we can recursively apply the additive
property on the sub-intervals [a, c] and [c, b]. Note the each subdivision of the intervals results in
the tolerance getting halved. Thus, we can expect this adaptive integration scheme to adapt to the
integrand “automatically”, partitioning the interval into sub-intervals with fine discretization where
the integrand changes rapidly and coarse discretization where the integrand changes slowly.

Algorithm 1 is implemented with the trapezoidal integration rule and a Newton-Cotes quadrature
rule, i.e., equally spaced points. The algorithm begins by applying a Newton-Cotes quadrature
rule to compute the sub-interval, i.e. τ3 = (τ1 + τ2)/2. Then the trapezoidal rule is exploited
to approximate the integral on the intervals [τ1, τ2], [τ1, τ3] and [τ3, τ2]. If the absolute difference
between the approximation on the original interval, [τ1, τ2], and the approximations on the sub-
intervals, [τ1, τ3] and [τ3, τ2], is larger than the prescribed tolerance, then the procedure is run
recursively on the sub-intervals. Otherwise, the method accepts the approximation and it is added
to the running sum.

Note that this method can also be applied with different integration rules, such as Simpson’s 3/8
rule, and different quadrature rules, such as Gaussian quadrature. Our method is presented with the
trapezoidal rule and Newton-Cotes rule for simplicity of exposition. It is often the case in adaptive
integration that other combinations of integration and quadrature rules significantly outperform the
combination used in Algorithm 1. For a more detailed discussion of the different adaptive integration
schemes, we refer the reader to (Davis & Rabinowitz, 2007; Gonnet, 2012).

3.2 Uniform Integration

Algorithm 2 details the trapezoidal rule for approximation a definite integral. Using N uniformly
spaced points, Algorithm 2 computes the trapezoidal rule on each of the uniformly spaced sub-
intervals a = t0 < t0 + h < t0 + 2h < · · · < tN−1 = b where h = (b − a)/(N − 1). The method then
sums all the approximations on the sub-intervals and returns the approximation of the integral. As
the resolution of the partition increases, the approximation becomes more accurate.

As with adaptive integration schemes, both the spacing of the points, i.e., the quadrature rule, and
the integration rule can be varied to achieve better approximations with fewer points. However,
unlike adaptive integration schemes, uniform schemes must use all the points pre-specified by the
user when performing numerical integration and does not attempt to adapt to the integrand.

4 Properties of Trapezoidal Integration Schemes

In this section, we provide standard error analysis of the numerical integration schemes detailed in
Algorithms 1 and 2. Put simply, the following results detail the amount of points needed to produce
a good approximation of the integral and allow for a better insight into the behavior of the two
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Algorithm 2 Uniform

To approximate
∫ b

a
r(t)dt with uniformly spaced points.

Input: The rewards r, the number of points N .
h = b−a

N−1

Q = h · γt1 r(t1)+γt2 r(t2)
2

for i = 0, . . . , N − 1 do
ti = a + ih
Q = Q + h · γti r(ti)

end for
return Q

different sampling schemes. The next proposition gives a uniform bound on the approximation of
the uniform sampling scheme, for sufficiently smooth functions.
Proposition 4.1. Let F be the class of twice differentiable functions such that for all x ∈ [a, b]
and f ∈ F it holds that |f ′′(x)| ≤ C. For any ε > 0 there exists f ∈ F such that Algorithm 2
returns an approximation Q of the integral

∫ b

a
f(x)dx whose absolute error is no greater than ε, i.e.,

|Q −
∫ b

a
f(x)dx| ≤ ε, only if N ≥ 1 + (b − a)

√
C/(12ε).

Proof. From Equation 5.21 of Sauer (2006) we have that
∫ b

a

f(x)dx = b − a

2 (f(a) + f(b)) − (b − a)3

12 f ′′(c), (9)

where c ∈ [a, b]. For a natural number N , define h = (b − a)/(N − 1), and let a = x0, xi = x0 + ih
for i ∈ {1, . . . , N − 1}. Then the additive property of integrals gives us

∫ b

a

f(x) =
∫ x1

x0

f(x)dx +
∫ x2

x1

f(x)dx +· · · +
∫ xN−1

xN−2

f(x)dx . (10)

Plugging in Equation (9) for each integral on the right hand side, we get
∫ b

a

f(x) = h

(
f(xN−1) + f(x0)

2 +
N−2∑

i=1
f(xi)

)
+ h3

12

N−1∑

i=1
f ′′(ci), (11)

where ci ∈ [xi−1, xi]. Rearranging and taking the absolute value yields
∣∣∣∣∣∣∣∣∣∣

∫ b

a

f(x) − h

(
f(xN−1) + f(x0)

2 +
N−2∑

i=1
f(xi)

)

︸ ︷︷ ︸
=Q

∣∣∣∣∣∣∣∣∣∣

=
∣∣∣∣∣
h3

12

N−1∑

i=1
f ′′(ci)

∣∣∣∣∣ (12)

≤
∣∣∣∣
(N − 1)Ch3

12

∣∣∣∣ (13)

where the inequality uses f ′′(c) ≤ C for all c ∈ [a, b]. Equality in (13) is attained by f0 ∈ F with
f ′′(ci) = C ∀i. Substituting in the definition of h we have that

(N − 1)Ch3

12 = (b − a)2C

12(N − 1)2 . (14)

Therefore if N ≥ 1 + (b − a)
√

C/(12ε), we have that
∣∣∣∣∣

∫ b

a

f(x) − Q

∣∣∣∣∣ ≤ ε , (15)

and that f0 requires this many points to be approximated sufficiently precisely.
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Figure 1: The absolute error in value estimates returned by the uniform and adaptive methods in
Cartpole (left) and MountainCar (right). Each colored curve corresponds to a fixed budget, and
displays the relationship between the hyperparameter of the method and the experienced error. The
adaptive method experiences near zero error in these environments for all tolerances and even the
smallest budget of 1000 samples.

The following corollary immediately follows from Proposition 4.1 and gives a worst-case guarantee
on the amount of times Algorithm 1 calls itself to produce a good approximation of the integral of
interest.
Corollary 4.2. Under the conditions of Proposition 4.1, there exists a function f ∈ F such that
Algorithm 1 needs to call itself at least 1 + (b − a)

√
C/(12ε) times to return an approximation Q

such that |Q −
∫ b

a
f(x)dx| ≤ ε.

In order to show this, it suffices to observe that in the worst-case Algorithm 1 needs to consider at
least N uniformly spaced points in the interval [a, b].

5 Numerical Experiments

In order to understand the performance of the different integration schemes presented in Section 3,
the adaptive and uniform methods are evaluated on several standard RL benchmarks. These include
a selection of the environments from the Gymnasium Classic Control suite (Towers et al., 2023),
which provides low-dimensional control tasks, and from the MuJoCo physics-based simulation en-
vironments (Todorov et al., 2012), offering more complex dynamics. We adopt the Monte-Carlo
estimator described in Equation (8). Since all of our experiments are finite horizon, we set γ = 1.
Our findings demonstrate that the adaptive method generally performs better than the uniform
method without an extensive hyperparameter search.

5.1 Classic Control Environments

We evaluate well-performing policies in the MountainCar (Moore, 1990) and Cartpole (Barto et al.,
1983) environments in Gymnasium. In MountainCar, the agent receives the same negative reward
in every time step until it either reaches the top of the mountain and the episode terminates or it
runs out of time. The policy we evaluate reaches the goal from the vast majority of start states,
though the number of steps this takes and therefore the total reward depends on the start state. In
Cartpole, the agent receives a reward of +1 for each time step the pole is balanced, and once the
pole falls the episode ends. Since a good policy can balance the pole forever, the policy we evaluate
artificially drops the pole after some time. The random start state determines the exact time to fall
and therefore the total reward. For both environments, we sample the start states uniformly from a
set of 100 unique states. To approximate continuous-time interaction, we collect data at 100 times
the base frequency, which leads to long sequences of observations.

We estimate the value of these policies using both the adaptive and uniform methods. We con-
sider tolerances ε ∈ {0, 2−3, 2−1, 21, . . . , 29} for the adaptive method and discretizations h ∈
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Figure 2: The absolute value error, in log scale, based on discretization h. Each colored curve
represents a fixed budget B = B0 × K, where K = {1, 2, 5, 10, 20, 40}, used for estimating the value
function vπ. Solid curves correspond to the uniform method and dashed curves correspond to the
adaptive method. Note that in some cases the lowest tolerance considered ε = 0.125 is not mapped
through (16) to the finest discretization of h = 2, i.e., ĥ(ε) > 2. The adaptive method is generally
better than the uniform method on larger h.

{1, 4, 16, . . . , 1024} for the uniform method. We run 100 trials for each hyperparameter. Figure 1
plots the absolute error in the value estimates for each of these settings.

The adaptive method, irrespective of the tolerance parameter, successfully exploits the unique struc-
ture of the reward in these environments and therefore is able to achieve a low error with a limited
sample budget. The reward is constant in these environments, hence an approximation based on
just the first and last points recovers the correct integral. The adaptive method discovers this in
the first iteration and hence focuses its budget on reducing the statistical error by sampling many
trajectories. The uniform method also gets zero approximation error but must use all the points
pre-specified by the user. This leaves less of the budget for reducing statistical error. As the average
number of points per trajectory grows with finer discretization parameters, fewer trajectories can be
observed which given a fixed budget leads to larger statistical error.

5.2 MuJoCo Environments

In our evaluation of MuJoCo environments, a policy is trained for each task using the Deep Ad-
vantage Updating (DAU) (Tallec et al., 2019) algorithm. DAU can be seen as the deep version
of Advantage Updating (Baird, 1994) and it is specifically designed to perform well on problems
with high-frequency observations. The policy exhibits stable trajectories, ensuring for instance that
the inverted double pendulum remains predominantly upright or the ant moving forward, without
inducing premature termination of the episodes. The data is collected at a fine rate of δt = 0.001
as a proxy for continuous-time behavior.

The reward function has a high-frequency component since it is directly influenced by rapidly chang-
ing actions. This violates the operating conditions for both methods to be effective, Proposition 4.1
and Corollary 4.2, thus a smoothing function has been applied to the rewards. Consequently, both
methods take as input the smoothed version of the rewards for the different trajectories. In par-
ticular, for each trajectory, we fit a 7 degree polynomial function to the rewards and obtain the
smoothed rewards using the fitted polynomial.
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We sweep over tolerances ε ∈ [0.125, 4096] for the adaptive method and discretizations h ∈ [2, 3444]
for the uniform method. We run 10 trials for each hyperparameter—we note that the only source
the randomness comes from the uniform sampling of a set of 10000 unique initial states.

To effectively compare both methods, we map the tolerance ε in the adaptive method onto the
average discretization:

ĥ(ε) = 1
M

M∑

m=1

(
Nfg

Nm(ε) − 1

)
≈ EZ

[
Nfg

NZ(ε) − 1

]
, (16)

where Nfg = T/δt = 50000 (40000 for Swimmer environment) is the fixed horizon of the fine-grained
trajectories, Z is a random trajectory, and Nm(ε) is the number of discrete points used for trajectory
zm, generated by the adaptive method with tolerance ε. Figure 2 indicates that the adaptive method
generally outperforms the uniform method in estimating the value function, especially when a larger
discretization h, which corresponds to a larger tolerance ε, is used. Notably, the adaptive method
is more robust to a larger range of discretization. Note that while we expect low h to have larger
variance, we emphasize that the MuJoCo environments are deterministic with small variations in
the initial states. Consequently, the return variance of a good policy will be small as the returns
will mostly differ in the initial timesteps.

6 Related Work

The continuous-time problem setting has received considerable attention in previous works (Doya,
2000; Lee & Sutton, 2021; Yildiz et al., 2021; Lutter et al., 2021a;b), which has attempted to
address problems in the regime of deterministic dynamics (Kim et al., 2021) and stochastic dynamics
(Munos & Bourgine, 1997; Munos, 2006), aiming to solve the continuous-time problem rather than
discretizing it. Tallec et al. (2019) showed that action-value function do not hold the same meaning
in near-continuous time control and developed methods based on advantage estimation (Baird, 1994)
for the deep RL setting. The study of time discretization in RL tackles the challenges stemming from
the necessity to adapt continuous-time models to the discrete computational frameworks utilized in
practice. Previous studies have focused on this issue, ranging from uniform temporal resolution
(Metelli et al., 2020; Zhang et al., 2024) to adopting non-uniform strategies for determining the
optimal timing for actions (Biedenkapp et al., 2021; Sharma et al., 2017; Lakshminarayanan et al.,
2017; Park et al., 2021).

Improved temporal resolution can also be viewed as a means for conducting more effective and fo-
cused exploration (Dabney et al., 2021). Jacq et al. (2022) considers temporal resolution as a method
for the agent to determine when to execute actions that maximize impact while minimizing the num-
ber of decisions made. Patel et al. (2023) extends this concept, balancing the quantity of decisions to
facilitate learning policies that react either quickly or slowly. Additionally, temporal resolution can
be examined through the lens of temporal abstraction within the options framework (Sutton et al.,
1999), where each option comprises primitive actions and the agent aims to identify a termination
condition. Temporal resolution can also be interpreted as introducing skip connections in the tran-
sition function (Biedenkapp et al., 2021) to enhance sample efficiency while preserving optimality.
Ultimately, these concepts converge on the goal of implementing real-time RL systems (Ramstedt &
Pal, 2019), where continuous-time problems are discretized for control and the environment’s state
does not halt for the agent to decide on its next action.

7 Conclusion and Future Directions

We have investigated an adaptive temporal discretization algorithm for Monte-Carlo policy evalua-
tion in RL. Our results demonstrate that for sufficiently smooth reward functions the data efficiency
of policy evaluation can be significantly improved. It remains future work to extend the adaptive dis-
cretization scheme to non-smooth reward functions or reward functions exhibiting highly stochastic
behaviour.
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Abstract

Reinforcement learning algorithms utilizing policy gradients (PG) to optimize Con-
ditional Value at Risk (CVaR) face significant challenges with sample inefficiency,
hindering their practical applications. This inefficiency stems from two main facts:
a focus on tail-end performance that overlooks many sampled trajectories, and the
potential of gradient vanishing when the lower tail of the return distribution is overly
flat. To address these challenges, we propose a simple mixture policy parameteriza-
tion. This method integrates a risk-neutral policy with an adjustable policy to form
a risk-averse policy. By employing this strategy, all collected trajectories can be
utilized for policy updating, and the issue of vanishing gradients is counteracted by
stimulating higher returns through the risk-neutral component, thus lifting the tail
and preventing flatness. Our empirical study reveals that this mixture parameter-
ization is uniquely effective across a variety of benchmark domains. Specifically, it
excels in identifying risk-averse CVaR policies in some Mujoco environments where
the traditional CVaR-PG fails to learn a reasonable policy.

1 Introduction
Avoiding risks is a practical consideration in real world applications, inspiring risk-averse reinforce-
ment learning (RL). Risk-averse RL involves optimizing some risk measures of the return random
variable. Many risk measures have been studied, for instance, variance (Tamar et al., 2012; La &
Ghavamzadeh, 2013), exponential utility functions (Borkar, 2002; Fei et al., 2021), Value at Risk
(VaR) (Chow et al., 2018; Jung et al., 2022), and Conditional VaR (CVaR) (Tamar et al., 2015;
Lim & Malik, 2022). We focus on CVaR in this work, which emphasizes the worst case outcome
of a policy’s return. Intuitively, CVaR measures the expected return below a specific quantile level
α, termed the risk level. This kind of risk is also known as the tail risk measure (Liu & Wang,
2021), since only the tail of a distribution is considered, and CVaR is more often preferred than VaR
because it is coherent (Delbaen & Biagini, 2000).

Among the existing CVaR algorithms in RL (Tamar et al., 2015; Chow et al., 2018; Tang et al.,
2019; Yang et al., 2021; Ying et al., 2022), policy gradient (PG) is a common choice. CVaR-PG
samples a batch of N trajectories and maximizes the mean return of the αN trajectories with worst
returns (Tamar et al., 2015). This approach suffers from sample inefficiency due to two major
facts (Greenberg et al., 2022): 1) 1 − α portion of sampled trajectories are discarded; 2) gradients
vanish when the tail of the return quantile function is overly flat, which is discussed later in Sec. 3.1.
Another line of research on optimizing CVaR is based on distributional RL (Bellemare et al., 2017),
e.g., Dabney et al. (2018a); Tang et al. (2019); Keramati et al. (2020). However, due to the time-
inconsistency of the risk, the objectives of some approaches differ from maximizing the α-CVaR of
the total return, while the behavior of some others are not well-understood yet (Lim & Malik, 2022).

In this paper, we focus on the policy gradient approach and propose a simple mixture policy param-
eterization to improve sample efficiency. Our key insight is that in many real-world risk-sensitive
domains, the agent may only need to perform risk-averse actions in a subset of states, e.g., related
to risky regions, and behave akin to a risk-neutral agent in other states. We give an example in

573



RLJ | RLC 2024

Sec. 3.3. This motivates representing a risk-averse policy via integrating a risk-neutral policy and
an adjustable component. With this parameterization, all collected trajectories can be used to up-
date the policy under the mixture framework, and gradient vanishing is counteracted by stimulating
higher returns with the help of its risk-neutral component, thus lifting the tail and preventing flat-
ness of the quantile function. To demonstrate the effectiveness of our method in learning risk-averse
policies, we modify several domains (Maze (Greenberg et al., 2022), Lunar Lander(Brockman et al.,
2016), Mujoco (Todorov et al., 2012)) where risk-aversion can be clearly verified. We empirically
show that our method can learn a risk-averse policy when others fail to learn a reasonable policy.

Contributions. To the best of our knowledge, a generally applicable approach to improve the
sample efficiency of CVaR-PG algorithms remains unclear. In summary, our work provides 1)
insights into a novel perspective on scenarios where risk-averse behavior is required only in a subset
of states; 2) a simple mixture policy parameterization to address sample inefficiency. Notably, our
algorithm, in certain Mujoco domains, marks a pioneering advancement in CVaR optimization.

2 Background: CVaR Optimization in RL
In standard RL settings, agent-environment interactions are modeled as a Markov Decision Process
(MDP), represented as a tuple ⟨S,A, P,R, µ0, γ⟩ (Puterman, 2014). S and A denote state and action
spaces. P (·|s, a) defines the transition. R is the state and action dependent reward. µ0 is the initial
state distribution, and γ ∈ (0, 1] is a discount factor. An agent takes actions according to its policy
π : S × A → [0,+∞). The return at time step t is defined as Gπt =

∑∞
i=0 γ

iR(st+i, at+i). Thus,
Gπ0 is the random variable indicating the total return starting from the initial state following π.
CVaR-based risk-averse RL avoids catastrophic outcomes by optimizing the tail risk measure of Gπ0 ,
e.g., CVaR, instead of maxπ E[Gπ0 ] as done in risk-neutral RL.

2.1 Problem Formulation

Let Z be a bounded random variable with cumulative distribution function FZ(z) = P(Z ≤ z).
Denote the α-quantile as qα(Z) = min{z|FZ(z) ≥ α}, α ∈ (0, 1]. The CVaR at confidence level α is
given by (Rockafellar et al., 2000)

CVaRα(Z) = 1
α

∫ α

0
qβ(Z)dβ (1)

When α → 1, CVaRα(Z) becomes E[Z]. If Z has a continuous distribution, CVaRα(Z) is more
intuitively expressed as CVaRα(Z) = E[Z|Z ≤ qα(Z)]. Thus, CVaRα(Z) can be interpreted as
the expected value of the α-portion of the left tail of the distribution of Z. Another way to define
CVaRα(Z) is (Rockafellar et al., 2000)

CVaRα(Z) = max
k∈R

k − 1
α
E[(k − Z)+] (2)

where (x)+ = max{x, 0}, and the maximum is always attained at k = qα(Z) as a by product.
In this paper, we consider the problem of maximizing the CVaR of total return Gπ0 given a confidence
level α (we consider small α in practice) (Tamar et al., 2015), i.e.,

max
π

CVaRα(Gπ0 ) (3)

Remark. Some works optimize the CVaR term plus the mean term or treat CVaR as a con-
straint (Chow et al., 2018; Yang et al., 2021; Ying et al., 2022), which differ from the problem in
Eq. 3. In addition, the risk defined on the total return (Eq. 3) is known as the static risk. Another
line of research on CVaR works on dynamic risk (Ruszczyński, 2010; Huang et al., 2021; Du et al.,
2023), where risk is recursively computed at each time step. The comparison between static and
dynamic CVaR is discussed, e.g., in Lim & Malik (2022).

2.2 CVaR Policy Gradient (CVaR-PG)

Consider π is parameterized by θ. Under some mild assumptions, the gradient of Eq. 3 w.r.t. θ can
be estimated by sampling trajectories {τi}Ni=1 from the environment using πθ (Tamar et al., 2015).
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∇θCVaRα(Gπθ0 ) ≃ 1
αN

N∑

i=1
I{R(τi)≤q̂α}(R(τi)− q̂α)

T∑

t=0
∇θ log πθ(ai,t|si,t) (4)

where R(τ) represents the total return of trajectory τ , q̂α is the empirical α-quantile estimated from
{R(τi)}Ni=1, and T is the maximum trajectory length. This gradient is derived from Eq. 1. For
further details, readers can refer to Tamar et al. (2015). Note that computing policy gradient from
Eq. 2 is also feasible and results in a similar update as Eq. 4, e.g., see Algo. 1 in Chow et al. (2018).

2.3 Distributional RL with CVaR

Distributional RL (Bellemare et al., 2017) is recently used for CVaR optimization. Since it directly
learns a value distribution, the risk metric is easy to compute. Denote the return random variable at
the state-action pair (s, a) as Zπ(s, a) =

∑∞
t=0 γ

tR(st, at), where s0 = s, a0 = a, st+1 ∼ P (·|st, at),
and at ∼ π(·|st). Then the distributional Bellman equation is given by Zπ(s, a) D= R+ γZπ(S′, A′),
with S′ ∼ P (·|s, a), A′ ∼ π(·|S′), and X

D= Y indicates that random variables X and Y follow the
same distribution. The well known Q-value can be extracted by Qπ(s, a) = E[Zπ(s, a)].

Dabney et al. (2018a); Keramati et al. (2020) propose to select actions according to
Zπ(s, a) D= R+ γZπ(S′, A′), A′ = arg max

a′
CVaRα(Zπ(S′, a′)) (5)

This strategy always selects actions leading to the largest α-CVaR at the current step and is termed
as "Markov action selection strategy" by Lim & Malik (2022). Within the framework of actor critic,
a similar way is applied by updating the actor towards the α-CVaR of the critic, e.g., see Tang et al.
(2019). However, Lim & Malik (2022) showed this strategy converges to neither static nor dynamic
optimal CVaR policies by counterexamples. Thus, it is not consistent with the problem in Eq. 3.

Bäuerle & Ott (2011) simplified Eq. 2 by avoiding optimizing k and fixing it to some constant k0,
resulting in the problem maxπ −E[(k0 − Gπ0 )+]. This problem can be modeled by an augmented
MDP with new state s̃ = (s, k) ∈ S ×R, where k is a moving variable keeping track of the accumu-
lated rewards so far. Lim & Malik (2022) incorporated this perspective with distributional RL by
introducing the tracking variable, and proposed a new action selection strategy as

Zπ(s, a) D= R+ γZπ(S′, A′), A′ = arg max
a′

E[−(k −R
γ
− Zπ(S′, a′))+] (6)

where k is the tracking variable at (s, a), and is set to α-CVaR for the initial state. Lim & Malik
(2022) showed that the optimal CVaR policy is a fixed point of Eq. 6 if it exists and it is unique.
However, when π is not CVaR optimal, its behavior is generally unknown.

2.4 Other CVaR RL Algorithms

There are several other CVaR algorithms in the context of MDPs, where full knowledge of the MDP
is required. Thus, they are not applicable to RL problems where transition dynamics are unknown.
These works are less relevant to ours and hence we only provide a brief review here. Based on
the theory of CVaR decomposition (Pflug & Pichler, 2016), a dynamic programming approach is
developed by decomposing the CVaR via its risk envelope (Chow et al., 2015). This approach returns
the optimal α-CVaR value for any α ∈ (0, 1]. Recently, Hau et al. (2023) pointed out this method
has some flaws in the control setting, and provided counter examples.

3 Mixture Parameterization Policies
In this section, we examine the difficulties inherent in classical CVaR-PG methods. This examination
sets the stage for our proposed solution: a mixture parameterization approach.

3.1 Challenges of CVar-PG: low-efficiency gradient estimation

The classical CVaR-PG (Eq. 4) faces two significant challenges that undermine its sample efficiency
and practical applicability. Firstly, to emphasize the tail outcomes, a small value of α is chosen.
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Consequently, only an α-fraction of the trajectories contribute to the gradient estimation in Eq. 4,
leading to the discarding of the majority of trajectories and resulting in low sample efficiency.

Secondly, as identified by Greenberg et al. (2022), a small α also introduces a gradient vanishing
issue. This occurs because the term I{R(τi)≤q̂α}(R(τi) − q̂α) can equal zero for any τi satisfying
R(τi) ≤ q̂α, i.e., R(τi) = q̂α for those trajectories τi selected by the indicator function. This issue
arises when the left tail of the quantile function is notably flat, meaning that all quantile values
below the α-quantile are identical. Such a scenario is particularly likely in environments with a
discrete rewards distribution, a fact that is often overlooked when assuming continuous rewards.
For illustration, we present the empirical quantile function of Gπ0 obtained through Monte Carlo
sampling in Fig. 1(c), during the initial training phase with a random policy in a maze environment
(detailed in Sec. 3.3 and shown in Fig. 1(a)). In this scenario, if the agent neither reaches the
goal nor enters the red state, the resulting trajectories will yield identical low returns, leading to a
markedly flat left tail of the quantile function for Gπ0 .

To tackle gradient vanishing, Greenberg et al. (2022) proposed curriculum learning by starting from
an α close to 1 (risk-neutral) and gradually decreasing α to its target value. To further improve
sample efficiency, Greenberg et al. (2022) proposed a sampling method based on cross-entropy to
sample high-risk scenarios from the environment. The algorithm is then focused on learning high-
risk parts of the environment and thus improving sample efficiency. However, this sampling strategy
requires knowledge of the environment dynamics and the ability to control the parameters of the
dynamics in ways that are domain specific, which is not realistic for many RL domains.

3.2 Mixture with Risk-neutral Policy

To address the aforementioned challenges, our key observation is that many real-world risk-sensitive
applications exhibit a pattern wherein only a subset of states requires risk-averse behavior. In the
remaining portion of the state space, the agent can behave akin to a risk-neutral agent. For example,
in scenarios with minimal or no other cars on a highway, a driver may simply need to follow the
road without slowing down or braking, as long as the vehicle remains under the speed limit. This
observation leads us to propose representing the policy as a mixture of a risk-neutral policy and an
adjustable component, i.e.,

π(a|s) = w(s)π′(a|s) + (1− w(s))πn(a|s) (7)

where w(s) ∈ [0, 1] is the mixture component weight. πn is the risk neutral policy, and π′ is the
adjustable policy. At different phases of a task, the agent self-selects the most suitable policies to
execute to ensure the overall policy π is risk averse.

It is evident that the proposed parameterization effectively addresses the challenges outlined earlier.
Firstly, it allows for the use of all trajectories collected so far to update the risk-neutral policy within
the mixture framework. Secondly, the risk-neutral component encourages the agent to venture into
areas of high reward, potentially avoiding the flat tail of the return distribution, and hence mitigates
the issue of vanishing gradients. We illustrate the advantages in the following example.

3.3 A Motivating Maze Example

Consider a maze domain in Fig. 1(a), which is originally from Greenberg et al. (2022) and slightly
modified by Luo et al. (2023). Starting from the bottom left corner, the goal of the agent is to reach
the green goal state. The gray color marks the walls. The per-step reward is deterministic (i.e., -1)
except for the red state, whose reward distribution is −1 + N (0, 1) × 30. The reward for visiting
the goal is a positive constant value (i.e., 10). Thus, the shortest path going through the red state
towards the goal is the optimal risk-neutral path, while the longer path (shown in white color) is
α-CVaR optimal if α is small, though its expected return is slightly lower.

In this domain, suppose we are given the optimal risk neutral policy for each state (which is actually
easy to get, e.g., via Q-learning or value iteration (Sutton & Barto, 1998), or even by observing the
shortest path), it is easy to see most actions along the white (i.e., risk-averse) path are the same as

576



RLJ | RLC 2024

Figure 1: (a) A maze domain with green goal state. The red state returns an uncertain reward
(details in Sec. 3.3). Triangle pointers indicate the risk-neutral actions (not unique for the second
state). (b) Value of w of Eq. 7 for each state after the mixture policy is updated by CVaR-PG. (c)
The empirical quantile function of the total return in maze at an early training stage, if the initial
policy is a random and mixture policy.

the risk-neutral policy except the initial state. This means the risk-averse agent only needs to adjust
the actions at that state and then follow the optimal risk-neutral policy afterwards. We validate
this idea by visualizing the value of w(s) of Eq. 7 in Fig. 1(b), after the mixture policy is trained
by CVaR-PG. The value of w(s) represents the probability of choosing π′ at each state. Here the
risk neutral policy πn is pre-computed and provided as the softmax of the optimal Q-values (we use
temperatures to make the entropy of πn small). Thus, π′ and w are the components that need to
be learned by CVaR-PG. As shown in the figure, the probability of choosing π′ is only high in the
surroundings of the starting state, and the probability of choosing πn significantly increases after the
agent moves far away from the beginning. Also, the empirical quantile function of Gπ0 obtained by
this mixture policy at the initial training phase is shown in Fig. 1(c). Compared with the randomly
initialized policy, the flat tail is eliminated, thereby preventing gradient vanishing.

Algorithm 1: Mixture policy for CVaR-PG
Input: risk level α, trajectories sampled per

batch N , training steps M , IQL
update frequency C

Initialize: policy πθ = wθ2π
′
θ1

+ (1− wθ2)πnϑ
where θ = (θ1, θ2), buffer B, Q-function Qϕ
(target Qϕ̂), value function Vψ;

for m in 1 : M do
// Sample trajectories
{τi}Ni=1 ← run_episodes(πθ, N) ;
Store {τi}Ni=1 to B;
// CVaR PG, i.e., Eq. 4
Update θ via CVaR-PG(πθ, {τi}Ni=1, α);
// Risk-neutral, e.g., IQL updates
if m % C == 0 then

Sample D = {(s, a, r, s′)} ∼ B;
Update Qϕ via Eq. 8;
Update Vψ via Eq. 9;
Update πnϑ via Eq. 10;

Remark. This concept, where risk-averse be-
havior is required only in a subset of states, ex-
tends to various fields. For example, in port-
folio management, such behavior is crucial only
in particular market trends (Ji et al., 2019; Yu
et al., 2023), and in healthcare, it is essen-
tial only with specific health indicator warn-
ings (Mulligan et al., 2023).

3.4 Offline RL Risk Neutral Learning

This section explores the process of acquiring a
risk-neutral policy under the function approxi-
mation setting. We discovered that incorporat-
ing a pre-trained deep risk-neutral policy into
the mixture policy frequently leads to a subop-
timal risk-averse policy, a finding that is further
elaborated in Appendix A.3.3.

Observing that the update of CVaR-PG typi-
cally involves collecting substantial trajectories,
these trajectories naturally constitute an empir-
ical MDP to which an offline RL algorithm can be applied to extract a risk-neutral policy. The field
of offline RL has seen rapid advancements in recent years, offering promising solutions for solving
the empirical MDP formed from the collected trajectories.

Offline RL attempts to learn an optimal policy from a pre-gathered offline dataset D =
{(s, a, s′, r)}ni=1, where the learning algorithm is restricted to learning from the samples contained
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within D without any additional interaction with the real environment. One key challenge in offline
RL is to not overestimate the action values outside of the dataset (Fujimoto et al., 2019). To address
this challenge, there are generally two strategies. The first approach aims to keep the learned policy
closely aligned with the dataset’s policy by applying some KL constraint, ensuring the learned policy
remains within the dataset’s support (Peng et al., 2020; Brandfonbrener et al., 2021; Fujimoto &
Gu, 2021). The second strategy involves directly optimizing the policy using the samples available
in the dataset (Fujimoto et al., 2019; Kostrikov et al., 2022; Xiao et al., 2023).

In our research, we utilize Implicit Q-Learning (IQL) (Kostrikov et al., 2022) for learning risk-neutral
policies, chosen for its proven reliability and empirical validation. IQL possesses a Q estimator
Qϕ(s, a), a value estimator Vψ(s), and a policy πnϑ(a|s). Q-function is updated via minimizing

LQ(ϕ) = E(s,a,s′)∼D[(r(s, a) + γVψ(s′)−Qϕ(s, a))2] (8)

Value function is updated via expectile regression to avoid overestimation (Qϕ̂ is the target function)

LV (ψ) = E(s,a)∼D[Lη2(Qϕ̂(s, a)− Vψ(s))], Lη2(u) = |η − I{u<0}|u2 (9)

Policy is updated by advantage-weighted regression (Peters & Schaal, 2007) with temperature β

Lπn(ϑ) = E(s,a)∼D[exp(β(Qϕ(s, a)− Vψ(s))) log πnϑ(a|s)] (10)

All the trajectories are stored in a replay buffer for IQL update to learn πn. In practice, we can
perform this update after enough transition data are collected. The overall process of training the
mixture policy is described in Algo. 1.

4 Experiments
We modify several domains such that the risk-averse behavior is clear to identify to evaluate the
algorithms. We include REINFORCE with baseline method, as a risk-neutral baseline. In more
complex domains, we use SAC (Haarnoja et al., 2018) instead.

Figure 2: (a) Policy return (y-axsis) and (b) Risk-
aversion (long path) rate (y-axsis) v.s. training
episodes in Maze. Curves are averaged over 10
seeds with shaded regions indicating standard er-
rors.

Baselines. We compare our method with
CVaR-PG in Eq. 4 (Tamar et al., 2015), distri-
butional RL with Markov action selection strat-
egy in Eq. 5 (denoted as DRL-mkv), and Lim’s
action selection strategy in Eq. 6 (Lim & Malik,
2022) (denoted as DRL-lim). In continuous ac-
tion domains, we adapt DRL-mkv and DRL-lim
by DPG (Silver et al., 2014) as done in Tang
et al. (2019), see Sec. A.1 for an overview.
We use MIX to represent our method. Pre-
computed πn in maze is provided to MIX as de-
scribed in Sec 3.3 since it is easy to get. In other
domains, πn is learned by IQL during training.
Please refer to Appendix A for any missing im-
plementation details.

Remark. The method in Greenberg et al. (2022) is CVaR-PG with curriculum learning and a
special trajectory sampling strategy, which is orthogonal to our approach. It requires to control
the environment dynamics, and may not be straightforwardly applicable to most domains discussed
here. We compare with it in one domain from Greenberg et al. (2022) in Sec. A.7.

4.1 Tabular case: Maze Problem

This domain is modified from Greenberg et al. (2022) that was previously described in Sec. 3.3.
The maximum episode length is 100. CVaR α = 0.1. REINFORCE, CVaR-PG, and MIX collect
N = 50 episodes before updating the policy. Here we report the rate of choosing the long path during

578



RLJ | RLC 2024

training in Fig. 2(b). Since the policy is non-deterministic, the length of the sampled risk-averse
path may not be exactly 11 (the length of the white path in Fig. 1(a)). Here we treat a path as
risk-averse if it goes towards the top, reaches the goal, and the path length does not exceed 14.

CVaR-PG fails to learn a reasonable policy even in this simple domain due to gradient vanishing
as discussed in Sec. 3.1. We show the gradient norm of CVaR-PG in Fig. 5 in appendix to further
illustrate this phenomenon in Maze. By initializing MIX with a risk neutral policy, it achieves a
relatively high return at the early learning phase, thus potentially avoids gradient vanishing.

4.2 Discrete control: LunarLander

Figure 3: (a,c) Policy return (y-axis), and (b,d) Left-landing rate (i.e., risk-averse landing rate)
(y-axis) v.s. training episodes or steps in LunarLander. Curves are averaged over 10 seeds with
shaded regions indicating standard errors. For the landing left rate, higher is better.

This domain is taken from OpenAI Gym (Brockman et al., 2016). We refer readers to its official
documents for a full description. The goal of the agent is to land on the ground without crashing.
We split the ground into left and right parts by the middle line of the landing pad, as shown in
Fig. 6 in appendix. If landing on the right, an additional noisy reward sampled from N (0, 1) times
100 is given. A risk-averse agent should learn to land on the left as much as possible. We set CVaR
α = 0.1. REINFORCE, CVaR-PG, and MIX collect N = 30 episodes before updating the policy.
DRL-mkv and DRL-lim are off-policy methods and update policies at each environment step. We
train them for 2e6 steps instead of as many episodes as other methods.

We report the left-landing rate of different methods in Fig. 3(b) and (d). Comparing DRL-mkv
and DRL-lim against episode-based algorithms is not straightforward within the same figure due
to the difference in parameter update frequency. Thus we show them separately. MIX achieves a
comparable return with REINFORCE at the end, but shows a clear risk-aversion by landing more
on the left. DRL-mkv and DRL-lim can not learn a reasonable policy given the small CVaR α. As
mentioned in Section 2.3, they optimize a different objective than CVaR that is not well understood.

4.3 Continuous control: Mujoco

Mujoco (Todorov et al., 2012) is a collection of robotics environments with continuous states and
actions in OpenAI Gym (Brockman et al., 2016). Here, we select three domains, namely Inverted-
Pendulum, HalfCheetah, and Ant (disparities in the inherent difficulty of moving backward versus
forward are observed in other domains, which likely stems from the intrinsic design of the physics
engine’s dynamics). Inspired by Malik et al. (2021); Liu et al. (2022), we define the risky region
based on the X-position. Specifically, if X-position > 0.04 in InvertedPendulum, X-position < −3
in HalfCheetah and Ant, a zero-mean Gaussian noise is added to the reward (N (0, 1) × 10 in In-
vertedPendulum, N (0, 1) × 50 in HalfCheetah and Ant). To further ensure that agents move both
forward and backward with equal preference in terms of expected reward in the two environments,
we define the distance-based reward as the difference in distance between the current and previous
states from the origin, regardless of the sign of the X-position. Consequently, in InvertedPendulum,
a risk-averse agent aims to keep the pendulum balanced while staying out of the noisy region. In
HalfCheetah and Ant, a risk-averse agent should learn to move toward the opposite direction of the
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Figure 4: (a, c) Policy return (y-axsis) in InvertedPendulum, (b, d) visiting non-noisy region rate (y-
axis) in InvertedPendulum, (e, g) Final X-position (y-axsis) in HalfCheetah, (f, h) Final X-position
in Ant (y-axsis) v.s. training episodes or steps in Mujoco. Curves are averaged over 10 seeds with
shaded regions indicating standard errors. For the location visiting rate, higher is better.

noisy region. We optimize CVaR α = 0.2. REINFORCE still serves as the risk neutral baseline
in InvertedPendulum. In HalfCheetah and Ant, we use SAC (Haarnoja et al., 2018) instead, since
the vanilla policy gradient is not good at more complex domains. REINFORCE, CVaR-PG, and
MIX collect N = 30 episodes before updating the policy in InvertedPendulum, and N = 15 in
HalfCheetah and Ant. DRL-mkv, DRL-lim, and SAC are trained for 1e6 steps.

We report the total return and X<0.04 rate in InvertedPendulum, which are sufficient to reflect the
risk-averse behavior of the agent, since the reward is 1 as long as the pendulum is balanced. In
HalfCheetah and Ant, we report the final X-position in Fig. 4, as the return can not reflect which
direction the agent is moving in the two domains. The policy returns in these two domains are
shown in Fig. 9 and 10 in appendix. CVaR-PG achieves a risk-averse policy in InvertedPendulum,
i.e., high return and high rate of staying in the non-noisy region. But it fails to learn a reasonable
policy in HalfCheetah and Ant, i.e., the final X-position is always close to the origin. MIX learns
risk-averse policy by moving away from the noisy region. DRL-mkv and DRL-lim generally do not
work well in all three domains since they optimize a different objective than CVaR that is not well
understood (see Sec 2.3).

5 Conclusions and Future Work
This paper proposes a mixture policy framework for CVaR-PG. It is motivated to overcome the
sample inefficiency of the original CVaR-PG, caused by the waste of most sampled trajectories and
gradient vanishing in some domains. We empirically show that our method can succeed when others
fail to learn a risk-averse or a reasonable policy by mitigating the sample efficiency issue.

Limitations and future work. We have pinpointed a class of risk-averse RL problems charac-
terized by requiring risk-averse behavior in a subset of states, suitable for our mixture approach.
Though this category intuitively covers a broad range of scenarios, situations that do not fit this
framework remain unexplored in this paper. Additionally, our method can be potentially integrated
with other techniques aimed at enhancing sample efficiency, e.g., Greenberg et al. (2022), given its
versatile nature. However, exploring such hybrid methodologies falls outside the scope of our current
research. Observing the two limitations, researching algorithms to enhance the sample efficiency for
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the broader class of risk-averse problems, as well as possible integration with existing methods to
improve sample efficiency, remains valuable for future work.

Broader Impact Statement

This paper presents work whose goal is to advance the risk-averse reinforcement learning. There may
be potential societal consequences of our work, none of which we feel must be specifically highlighted
here.
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A Experiments Details

A.1 General Descriptions of Different Methods

Policy gradient methods. Among the methods included in this paper, REINFOCE (Sutton &
Barto, 1998), CVaR-PG (Tamar et al., 2015), and the CVaR part of our mixture policy are on-
policy policy gradient methods. In our implementation, we update the policy after gathering N
trajectories.

Time difference methods. DRL-mkv (Dabney et al., 2018a; Keramati et al., 2020), DRL-lim (Lim
& Malik, 2022), SAC (Haarnoja et al., 2018) are off-policy time difference methods, i.e., updating
policy at each environment step. Continuous action domains are not considered in the original paper
of Lim & Malik (2022). We follow Tang et al. (2019) to apply DRL-mkv and DRL-lim to continuous
action domains, e.g., for DRL-mkv, the actor is updated via

∇θJα = Es,a∼πθ [∇θ log πθ(a|s)CVaRα(Zπ(s, a))] (11)

for DRL-lim, the actor is updated via

∇θJα = Es,k,a∼πθ
[
∇θ − log π(a|s)E[(k − Zπ(s, a))+]

]
(12)

where k is the tracking variable at state s.

Both DRL-mkv and DRL-lim are built on top of distributional RL (Bellemare et al., 2017). The
most commonly used approach to update distributional value function (critic) is quantile regres-
sion (Dabney et al., 2018b;a; Zhou et al., 2020; 2021; Luo et al., 2022). We also adopt quantile
regression in our implementation.

Solving the quantile crossing issue. In particular, Zhou et al. (2020) pointed out some previous
quantile regression based work, e.g., QR-DQN (Dabney et al., 2018b), IQN (Dabney et al., 2018a)
suffered from the quantile crossing issue, i.e., the predicted quantile values do not satisfy the mono-
tonicity of the quantile function. This is shown to hinder policy learning and exploration (Zhou
et al., 2020). The monotonicity of the quantile is also important in DRL-mkv and DRL-lim to make
sure the estimated quantities, e.g. α-CVaR, are correct. We follow the approach in Yue et al. (2020)
by sorting the predicted quantile values to make them non decreasing.

A.2 The Maze Problem

The maze consists of a 6 × 6 grid. The initial state of the agent is fixed at the bottom left corner.
The action space is four (up, down, left, right). The maximum episode length is 100.

Policy function. For CVaR-PG, the policy is represented as

πθ(a|s) = eζ(s,a)·θ
∑
b e
ζ(s,b)·θ (13)

where ζ(s, a) is the state-action feature vector, basically a one-hot encoding in our implementation.
Thus, the dimension of ζ(s, a) is 6× 6× 4. The derivative of the logarithm is

∇θ log πθ(a|s) = ζ(s, a)− Eb∼πθ(·|s)ζ(s, b) (14)

For our mixture policy, the policy parameter θ consists of two parts θ = (θ1, θ2), where θ1 is for the
adjustive policy π′

θ1
, and θ2 is for the weight w.

πθ(a|s) = σ(ζ(s, a) · θ2)π′
θ1(a|s) +

(
1− σ(ζ(s, a) · θ2)

)
πn(a|s) (15)

with π′
θ1 = eζ(s,a)·θ1

∑
b e
ζ(s,b)·θ1

(16)
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where σ(·) is the sigmoid function. The derivative of the logarithm is

∇θ1 log πθ(a|s) = 1
πθ(a|s)

σ(ζ(s, a) · θ2)π′
θ1(a|s)∇θ1 log π′

θ1(a|s) (17)

∇θ2 log πθ(a|s) = 1
πθ(a|s)

(π′
θ1(a|s)− πn(a|s))σ(ζ(s, a) · θ2)

(
1− σ(ζ(s, a) · θ2)

)
ζ(s, a) (18)

Value function. The value function of REINFORCE baseline is represented as Vυ(s) = ζ(s) · υ.
Similarly, ζ(s) is a one-hot encoding.

A.2.1 Learning Parameters

Discount factor γ = 0.999. Optimizer is stochastic gradient descent (SGD).

REINFORCE: Policy learning rate is 1e-2∈ {1e-2, 1e-3, 1e-4}. Value leaning rate is 10 times
policy learning rate. (the suffix ’e-2’ means 0.01)

CVaR-PG: Learning rate is 1e-2∈ {1e-1, 1e-2, 1e-3, 1e-4}.
MIX: Learning rate is 1e-2∈ {1e-2, 1e-3, 1e-4}.

A.2.2 Policy Gradient Norm of CVaR-PG

We show the policy gradient norm of CVaR-PG to further demonstrate the gradient vanishing issue
in Maze. The norm is computed by numpy.linalg.norm. As shown in Fig. 5, in most of the time,
the policy gradients are zero.

Figure 5: Policy gradient norm (y-axsis) of CVaR-PG in Maze. Curves are averaged over 10 seeds
with shaded regions indicating standard errors

A.3 LunarLander Discrete

The goal is to land the agent on the ground without crashing. The state dimension is 8. The action
dimension is 4. The detailed reward information is available at this webpage 1. Here, we split the
ground into left and right parts by the middle line of the landing pad as shown in Figure 6. If the
agent lands on the right part of the ground, an additional noisy reward signal N (0, 1)×100 is given.
The maximum episode length is 500.

Policy function. The policy is a categorical distribution in REINFORCE and CVaR-PG, modeled
as a neutral network. Hidden layer: 2. Hidden size: 128. Activation: ReLU. Softmax function is
applied to the output to generate categorical probabilities.

1https://www.gymlibrary.dev/environments/box2d/lunar_lander/
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Figure 6: Split the ground of LunarLander into left and right parts by the middle (red) line. If
landing on the right, an additional reward smapled from N (0, 1) times 100 is given.

The policy of MIX is a weighted summation of π′ and πn with weight w. π′ and w are modeled as
a neutral network with two output heads. πn is a separate neutral network. Both of them have:
Hidden layer: 2. Hidden size: 128. Activation: ReLU.

Value function. For value function in REINFORCE baseline, Q and V function in IQL of MIX.
Hidden layer: 2. Hidden size: 128. Activation: ReLU.

For distributional value function in DRL-mkv and DRL-lim. Hidden layer: 2. Hidden size: 128.
Activation: ReLU. Quantile size (i.e., final layer output size): 80.

A.3.1 Learning Parameters

Discount factor γ = 0.999. Optimizer is Adam.

REINFORCE: Policy learning rate is 7e-4∈ {1e-3, 7e-4, 3e-4, 1e-4}. Value leaning rate is 10 times
policy learning rate.

CVaR-PG: Learning rate is 7e-4∈ {1e-3, 7e-4, 3e-4, 1e-4}.
MIX: Learning rate for π′ and w is 7e-4∈ {1e-3, 7e-4, 3e-4, 1e-4}. Learning rate for IQL part
(including policy and value functions) is 1e-4∈ {3e-4, 1e-4}. IQL update frequency C = 50, by
sampling 2e5 transitions from buffer. η = 0.8 in Eq. 9. β = 1 in Eq. 10.

DRL-mkv: Learning rate is 7e-4∈ {1e-3, 7e-4, 3e-4, 1e-4, 7e-5}.
DRL-lim: Learning rate is 1e-4∈ {1e-3, 7e-4, 3e-4, 1e-4, 7e-5}.

A.3.2 Performance of the risk neutral component of the mixture policy

In this domain, the risk neutral component πn of the mixture policy is updated vi IQL (Kostrikov
et al., 2022). We report the total successful landing rate and left landing rate of πn during training in
Fig. 7. πn does not demonstrates a preference of landing location, which indicates the risk-aversion
is achieved by the mixture policy.

A.3.3 Incorporate pre-trained risk-neutral policy

A natural question raises that whether we can use a pre-trained risk-neural policy to form the
mixture policy, as done in maze (Sec. 3.3), when using deep RL. We conduct the experiments in this
LunarLander domain.

Similar as the risk-neutral policy in maze, we represent the risk-neutral policy by the softmax of
Q-values with temperature. The Q-values are learned by deep Q-network (DQN). To validate the
pre-trained risk-neutral policy performs well, we show its total successful landing rate in Fig. 8(a).
The whole training process for MIX is as follows. The first 3k episodes are used to update the
risk-neutral policy only (i.e., update DQN), with the remaining part of the MIX policy unchanged.
After the first 3k episodes, the risk-neutral policy is fixed, and the remaning part of the MIX policy
begins to update. However, as indicated by the left landing rate in Fig. 8(b), MIX leads to a
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Figure 7: Total landing rate and left landing rate of IQL (y-axsis) in MIX during training. Curves
are averaged over 10 seeds with shaded regions indicating standard errors.

Figure 8: (a) The total successful landing rate (y-axsis) of pre-trained risk-neutral policy. (b) The
left landing (i.e., risk-averse) (y-axsis) rate of Mix by incorporating this pre-trained risk-neutral
policy. Curves are averaged over 10 seeds with shaded regions indicating standard errors.

suboptimal risk-averse policy. One possible reason may be when training the deep risk-neutral RL
algorithm, the data distribution tends to concentrate on those states in the optimal (or near optimal)
trajectories. Thus, the learned value or policy function approximator may not generalize well around
the risk-averse path.

A.4 InvertedPendulum

The description of the Mujoco environments can be found at this webpage 2.

The goal is to balance a inverted pendulum on a cart. The state dimension is 4 (X-position is already
contained in the observation). The action dimension is 1. Per step reward is 1. If the agent reaches
the region X-position > 0.04, and additional noisy reward sampled from N (0, 1) times 10 is given.
The game ends if angle between the pendulum and the cart is greater than 0.2 radian or a maximum
episode length 300 is reached.

Policy function. The policy is a normal distribution in REINFORCE and CVaR-PG, modeled as
a neutral network. Hidden layer: 2. Hidden size: 128. Activation: ReLU. Tanh is applied to the
last layer. The logarithm of standard deviation is an independent trainable parameter.

For MIX, π′ and w is a neutral network with two output heads. One for the mean of the normal
distribution π′, one for w. The logarithm of standard deviation is an independent trainable param-

2https://www.gymlibrary.dev/environments/mujoco/
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eter. πn is a seperate neutral network as above. Both of them have: Hidden layer: 2. Hidden size:
128. Activation: ReLU. Tanh is applied to the output of the distribution layer.

Value function. For value function in REINFORCE baseline, Q and V function in IQL of MIX.
Hidden layer: 2. Hidden size: 128. Activation: ReLU.

For distributional value function in DRL-mkv and DRL-lim. Hidden layer: 2. Hidden size: 128.
Activation: ReLU. Quantile size (i.e., final layer output size): 80.

A.4.1 Learning Parameters

Discount factor γ = 0.999. Optimizer is Adam.

REINFORCE: Policy learning rate is 3e-4∈ {7e-4, 3e-4, 1e-4}. Value leaning rate is 10 times
policy learning rate.

CVaR-PG: Learning rate is 3e-4∈ {7e-4, 3e-4, 1e-4}.
MIX: Learning rate for π′ and w is 3e-4∈ {7e-4, 3e-4, 1e-4}. Learning rate for IQL part (including
policy and value functions) is 1e-4∈ {3e-4, 1e-4}. IQL update frequency C = 50, by sampling 1e5
transitions from buffer. η = 0.9 in Eq. 9. β = 2 in Eq. 10.

DRL-mkv: Learning rate is 7e-4∈ {1e-3, 7e-4, 3e-4, 1e-4, 7e-5}.
DRL-lim: Learning rate is 1e-3∈ {1e-3, 7e-4, 3e-4, 1e-4, 7e-5}.

A.5 HalfCheetah

The agent controls a robot with two legs. The state dimension is 18 (add X-position). The action
dimension is 6. One part of the reward is determined by the distance covered between the current
and the previous time step. Originally, it is positive only when the agent moves toward the forward
(right) direction. To encourage the agent to freely move forward (left) and backward (right), we
modify this part of the reward to make it positive as long as the agent is moving far from the origin.
If the agent reaches the region X-position <-3, an additional noisy reward sampled from N (0, 1)
times 50 is given. The game ends when a maximum episode length 500 is reached.

Policy function. Hidden size: 256. Others are the same as the case in InvertedPendulum.

Value function. Hidden size: 256. Others are the same as the case in InvertedPendulum.

A.5.1 Learning Parameters

Discount factor γ = 0.99. Optimizer is Adam.

SAC: Learning rate is 3e-4∈ {7e-4, 3e-4, 1e-4}.
CVaR-PG: Learning rate is 3e-4∈ {7e-4, 3e-4, 1e-4}.
MIX: Learning rate for π′ and w is 3e-4∈ {7e-4, 3e-4, 1e-4}. Learning rate for IQL part (including
policy and value functions) is the same. IQL update frequency C = 30, by sampling 2e5 transitions
from buffer. η = 0.8 in Eq. 9. β = 2 in Eq. 10.

DRL-mkv: Learning rate is 3e-4∈ {7e-4, 3e-4, 1e-4, 7e-5}.
DRL-lim: Learning rate is 1e-4∈ {7e-4, 3e-4, 1e-4, 7e-5}.

A.5.2 Policy Return in HalfCheetah

The policy return of different methods in HalfCheetah is shown in Fig. 9. Note that the policy
return does not indicate the risk-aversion of a policy.
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Figure 9: Policy return (y-axsis) v.s. training episodes or steps in HalfCheetah. Curves are averaged
over 10 seeds with shaded regions indicating standard errors.

A.6 Ant

The agent controls a robot with four legs attached to it with each leg having two links. The state
dimension is 113 (add X-position). The action dimension is 8. Similar to HalfCheetah, we modify
the reward to make the distance based reward positive as long as the agent is moving far from the
origin. If the agent reaches the region X-position <-3, an additional noisy reward sampled from
N (0, 1) times 50 is given. The game ends when a maximum episode length 500 is reached.

Policy function. Hidden size: 256. Others are the same as the case in InvertedPendulum.

Value function. Hidden size: 256. Others are the same as the case in InvertedPendulum.

A.6.1 Learning Parameters

Discount factor γ = 0.99. Optimizer is Adam.

SAC: Learning rate is 3e-4∈ {7e-4, 3e-4, 1e-4}.
CVaR-PG: Learning rate is 3e-4∈ {7e-4, 3e-4, 1e-4}.
MIX: Learning rate for π′ and w is 3e-4∈ {7e-4, 3e-4, 1e-4}. Learning rate for IQL part (including
policy and value functions) is the same. IQL update frequency C = 30, by sampling 2e5 transitions
from buffer. η = 0.8 in Eq. 9. β = 2 in Eq. 10.

DRL-mkv: Learning rate is 7e-5∈ {7e-4, 3e-4, 1e-4, 7e-5}.
DRL-lim: Learning rate is 7e-5∈ {7e-4, 3e-4, 1e-4, 7e-5}.

A.6.2 Policy Return in Ant

The policy return of different methods in Ant is shown in Fig. 10. Note that the policy return does
not indicate the risk-aversion of a policy.

A.7 Driving Game

The goal of this game is to control the agent’s car to follow the leader car without colliding. The
state dimension is 5. The action dimension is 5. We refer reader to Sec. 5.2 of (Greenberg et al.,
2022) for more details.

The method proposed in Greenberg et al. (2022) is named CeSoR, which includes a curriculum
learning scheduler to adjust CVaR α during learning, i.e., starting from a large value for α and
gradually decreasing to its target value; and a trajectory generator which controls the environment
dynamic. In this domain, it controls the behavior of the leader car.
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Figure 10: Policy return (y-axsis) v.s. training episodes or steps in Ant. Curves are averaged over
10 seeds with shaded regions indicating standard errors.

We directly use the code provided by Greenberg et al. (2022) to produce the results for CeSoR.
CeSoR is orthogonal to MIX, and these two can be combined. We combine MIX with curriculum
learning (denoted as MIX+SoR, SoR means soft risk to represent curriculum learning in Greenberg
et al. (2022)), and combine MIX with CeSoR (denoted as MIX+CeSoR) in this domain.

Policy function. Policy of CeSoR and CVaR-PG: Hidden size: 32. Hidden layer: 2. Activation:
Tanh.

Policy of MIX: Hidden size: 32. Activation: Tanh. Others are the same as the case in InvertedPen-
dulum.

Value function. Q and V of IQL: Hidden size: 32. Others are the same as the case in Inverted-
Pendulum.

A.7.1 Learning Parameters

CVaR α = 0.05. Update policy after gathering N = 80 trajectories. The starting value for CVaR α
is 0.8.

CVaR-PG: Learning rate 1e-2∈ {2e-2, 1e-2, 5e-3}.
CeSoR: Learning rate 1e-2∈ {2e-2, 1e-2, 5e-3}.
MIX: Learning rate for π′ and w is 1e-2∈ {2e-2, 1e-2, 5e-3}. Learning rate for IQL part (including
policy and value function) is 5e-3. IQL update frequency C = 50, by sample 2e4 transitions from
buffer. η = 0.8 in Eq. 9. β = 2 in Eq. 10.

MIX+SoR: Learning parameters are the same as MIX.

MIX+CeSoR: Learning parameters are the same as MIX.

We report the mean return and the 0.05-CVaR of the return in Fig. 11. For both the mean and
tail of the return, CeSoR, MIX, and MIX variants are better than CVaR-PG. CeSoR is slightly
better than MIX, since CeSoR possesses the environment dynamic information while MIX does not.
MIX with curriculum learning, i.e., MIX+SoR, learns faster than MIX at the early training stage
than MIX, though the final mean return is the same as MIX. MIX+CeSoR is better than MIX and
MIX+SoR with respect to the mean and tail of the return, and is comparable to CeSoR. CeSoR
learns faster and achieves the highest risk averse rewards among all techniques, however it requires
access to the environment dynamics and the ability to change the parameters of the dynamics in
a way that is domain specific. In contrast, MIX and MIX+SoR do not need dynamics information
and therefore can be applied directly to any domain.
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Figure 11: (a) The expected return (y-axsis), and (b) the 0.05-CVaR of the return (y-axsis) achieved
by CVaR-PG, CeSoR, MIX, MIX+SoR, and MIX+CeSoR in driving game. Curves are averaged
over 10 seeds with shaded regions indicating standard errors.

Remark. Our mixture policy method differs from the curriculum learning idea in Greenberg et al.
(2022). Tough the CVaR α starts from a large value in curriculum learning, where the objective is
close to a risk-neutral problem, it is an on-policy policy gradient method, i.e., the trajectories used
to update the policy is generated by the current policy (if no importance sampling is assumed).
In contrast, the risk-neutral component of our mixture policy is trained by an off-policy (offline)
algorithm, in this case, all the encountered trajectories can be stored in the replay buffer for policy
update.

B Additional Related Work

Due to its two-layered structure, a mixture policy is also called a hierarchical policy (Daniel et al.,
2012). Though the idea of mixture policy is not new, it is mainly applied in risk-neutral settings.
Osa et al. (2023) constructed a mixture of deterministic policies for offline RL tasks and shown
it can mitigate the issue of critic error accumulation in offline RL. Wulfmeier et al. (2020) and
Seyde et al. (2022) utilized mixture policy to capture the diverse motivations of the robots such
that the skill learned by each sub-policy can be transferred. Akrour et al. (2021) adopted mixture
policy to enhance the interpretability of decision making. The mixture policy is also used for option
discovery (Zhang & Whiteson, 2019; Wulfmeier et al., 2021). The similar mixture structure also
appears in value (critic) function learning, for instance, mixture critic is utilized for distributional
RL (Choi et al., 2019; Kuznetsov et al., 2020).
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Abstract

We study the problem of imitation learning via inverse reinforcement learning where
the agent attempts to learn an expert’s policy from a dataset of collected state,
action tuples. We derive a new Robust model-based Offline Imitation Learning
method (ROIL) that mitigates covariate shift by avoiding estimating the expert’s
occupancy frequency. Frequently in offline settings, there is insufficient data to
reliably estimate the expert’s occupancy frequency and this leads to models that do
not generalize well. Our proposed approach, ROIL, is a method that is guaranteed
to recover the expert’s occupancy frequency and is efficiently solvable as an LP. We
demonstrate ROIL’s ability to achieve minimal regret in large environments under
covariate shift, such as when the state visitation frequency of the demonstrations
does not come from the expert.

1 Introduction

Imitation learning seeks to compute an optimal policy in a Markov decision process (MDP) without
knowing the reward function. Instead, one only has access to a set of demonstrations performed by a
domain expert (Chang et al., 2021; Panaganti et al., 2023; Spencer et al., 2021; Rashidinejad et al.,
2022). Imitation learning promises techniques that can learn to act well in environments where
describing an appropriate reward function may be challenging or impractical. Robotics, medicine,
and autonomous driving are examples of problem domains that can benefit greatly from more reliable
imitation learning algorithms.

Inverse Reinforcement Learning (IRL), or apprenticeship learning, is a common approach to imi-
tation learning (Abbeel and Ng, 2004; Ziebart et al., 2008; Fu et al., 2018). IRL often leverages
the environment’s dynamics, modeled as an MDP, to efficiently mimic the observed policy of the
expert (Arora and Doshi, 2021). The environment’s dynamics may be known a priori (Syed et al.,
2008; Lacotte et al., 2019) or estimated from data (Finn et al., 2016; Ho and Ermon, 2016; Chang
et al., 2021). An important strength of IRL algorithms is that they can learn to mimic experts
quite well even with remarkably little data. However, most IRL algorithms can be very sensitive
to the state distribution in the training data. If the distribution of states present in the dataset
does not follow the expert’s occupancy frequency—a phenomenon known as covariate shift—the
IRL algorithm may compute a policy that is much worse than the expert’s policy.

In this paper, we propose ROIL, a new approach to IRL that is particularly resistant to any covariate
shift. In particular, ROIL allows for data with a state distribution that does not follow the expert’s
occupancy frequency. Most existing algorithms are sensitive to covariate shifts because, in some form,
they reduce to matching the expert’s state occupancy frequency. In comparison, ROIL attempts
to recover the set of plausible expert policies from the training data and compute a policy that
minimizes the regret with respect to this set of experts. With an appropriate choice of modeling
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assumption, we show that ROIL can be formulated as a convex optimization problem and solved
using mature solvers.

There are several reasons why the expert demonstration data may not be sampled according to the
true occupancy frequency. First, the expert’s initial state distribution may differ from the initial
state distribution when the learned policy is deployed. Second, the expert may focus on providing
pedagogic demonstrations that focus on the most challenging parts of the state space (Cakmak and
Lopes, 2012; Hadfield-Menell et al., 2016; Brown and Niekum, 2018). Third, the demonstrations
may not even form a trajectory but instead consist of disconnected state-action pairs. Finally, the
state distribution of the demonstrations may differ simply due to sampling and model errors and
inconsistencies. Thus, the demonstrations may not be representative of the expert’s true policy. As
a result, one must be careful in formalizing the IRL problem to make it tractable.

To better illustrate the importance of covariate shift, consider the following extreme example. In
an MDP with a small state space and the ability to jump between states, the expert provides
a single demonstration for each state showing the optimal actions. Behavior cloning algorithms,
which reduce imitation learning to a classification problem, will recover the optimal policy given
that the classification bias is general enough. Yet, surprisingly, common IRL algorithms based on
the same scheme as LPAL (Linear Programming Apprenticeship Learning) (Syed et al., 2008) or
GAIL (Generative Adversarial Imitation Learning) (Ho and Ermon, 2016) can fail to recover a good
policy, as we show below. ROIL, on the other hand, recovers the optimal policy even in this extreme
setting while preserving most of the benefits of the low sample complexity of IRL.

As with most IRL algorithms, ROIL seeks to minimize the regret given the expert’s demonstrations
for the worst-case plausible reward function. However, ROIL departs significantly from existing IRL
algorithms in that it does not directly use the estimate of the expert’s occupancy frequency. As a
result, ROIL cannot be seen as matching the expert’s feature frequencies, which is a popular view of
existing IRL techniques (Abbeel and Ng, 2004; Syed et al., 2008; Ho and Ermon, 2016). In contrast,
ROIL uses the training data to construct a robust set of plausible expert policies and minimizes the
regret of the computed policy in the context of this set.

The remainder of the paper is organized as follows. Section 2 describes the background in MDPs and
IRL necessary to introduce ROIL. Then, in Section 3, we describe our general framework, analyze
its basic properties, propose an optimization algorithm, and discuss several practical extensions.
Section 4 analyzes ROIL’s guarantees and limitations theoretically and compares them with prior
work. Finally, in Section 5, we analyze ROIL numerically and compare it with relevant algorithms.

2 Preliminaries

Before describing the underlying MDP framework and formally defining the IRL objective, we define
the basic notation we use in the paper. We use calligraphic letters to denote sets and a tilde to
denote random variables. We also adopt the standard convention that AB represents the set of all
functions from a set B to a set A and treat vectors as a function from indexes to real numbers.
Finally, the sets R and R+ represent real and non-negative numbers respectively.

We assume that the domain can be modeled as a Markov Decision Process (Puterman, 1994) with a
finite number of states S = {1, . . . , S} and a finite number of actions A = {1, . . . , A}. The transition
probability function p : S×A → ∆S , where ∆S =

{
x ∈ RS+ | ∑

s∈S xs = 1
}

is the probability simplex
over the elements of the set S. The reward function r⋆ : S × A → R represents the reward obtained
in each transition. We assume that the initial distribution over p0 ∈ ∆S satisfies that p0 > 0.

A solution to an MDP is a policy. In this work, we restrict our attention to stationary randomized
and deterministic policies. The set of deterministic policies is ΠD = AS and the set of randomized
policies is ΠR =

(
∆A)S . Note that deterministic policies are a special case of randomized policies.
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The objective in this work is the γ-discounted infinite horizon objective with γ ∈ [0, 1). We denote
the infinite-horizon discounted return of a policy π ∈ Π and a reward r ∈ R is denoted by

ρ(π, r) = lim
T→∞

Eπ,p0

[
T∑

t=0
γtr(s̃t, ãt)

]
,

where the superscript on the expectation indicates that s̃0 ∼ p0 and s̃t+1 ∼ p(·|s̃t, ãt), and ãt ∼
π(·|s̃t). The return ρ is parameterized by the reward because, in the IRL setting, the reward is
uncertain.

It will be convenient to treat functions that map states and actions to real numbers as vectors, such
as the reward function r⋆ ∈ RSA. We also use Pπ ∈ RS×S

+ where Pπ(s, ·) =
∑
a∈A p(·|s, a)π(a|s)

and rπ ∈ RS =
∑
a∈A r(s, a)π(a|s) to represent the transition probability matrix and reward vector

respectively for each policy π ∈ Π. Similarly, Pa and ra represent the transition probability matrix
and a reward vector respectively for each action a ∈ A.

An important and well-known fact that we use is the relation between the occupancy frequencies
and policies. In particular, for each policy π ∈ ΠR there exists an occupancy frequency uπ ∈ RS×A

such that ρ(π, r) = rT
πu

π. The space of occupancy frequencies for all π ∈ ΠR is denoted as U and
satisfies (Puterman, 1994, Section 6.9):

U = {uπ | π ∈ Π} =
{
u ∈ RSA+ |

∑

a∈A
(I − γ · PT

a ) · u(·, a) = p0

}
. (1)

Finally, for each u ∈ U , one can construct a policy πu such that uπ = u (Puterman, 1994, Theo-
rem 6.9.1) as

πu(a|s) = u(s, a)∑
a′∈A u(s, a′) , ∀s ∈ S, a ∈ A. (2)

The policy πu is well-defined because p0 > 0 guarantees that
∑
a∈A u(s, a) > 0 for each s ∈ S.

With the definitions above, we are now ready to describe the general IRL framework (Abbeel and
Ng, 2004; Syed et al., 2008; Ho and Ermon, 2016). Recall that the main goal is to learn to act in an
environment without knowing the true reward function r⋆. Instead, we have access to transition data
generated from an expert’s policy πe ∈ ΠD. To simplify the exposition, we assume that the expert
follows a deterministic policy and we discuss generalizations to randomized policies in Section 3.
The IRL algorithm has access to a dataset D = (ti, si, πe(si))Di=1, where the states may or may not
be selected sequentially from state trajectories.

To generalize from a small set of demonstrations, IRL algorithms typically rely on a feature function
ϕ : S × A → Rk that assigns k features to each state and action (Abbeel and Ng, 2004; Syed et al.,
2008; Lacotte et al., 2019; Chang et al., 2021; Jonnavittula and Losey, 2021; Arora and Doshi, 2021;
Javed et al., 2021; Ghosal et al., 2023). The features ϕ represent important characteristics of the
state-action pairs that may be part of the demonstrator’s reward function. We can represent our
features with a feature matrix Φ ∈ RSA×k where each row represents the features of a specific state
and action. Linear IRL algorithms assume that rewards can be expressed as a linear combination of
state and action features. Formally, the set R ⊆ RSA of feasible rewards is defined as

R = {Φw | w ∈ W} , where W =
{
w ∈ Rk | ∥w∥1 ≤ 1

}
. (3)

The L1 norm in the definition of W serves to normalize w because optimal policies are invariant to
the scale of the rewards (Abbeel and Ng, 2004; Syed et al., 2008).

Most IRL algorithms adopt the following scheme. The true reward r⋆ is unknown but is assumed to
satisfy that r⋆ ∈ R. Algorithms as varied as LPAL (Syed et al., 2008), GAIL (Ho and Ermon, 2016),
and MILO (Chang et al., 2021) seek to compute a policy that minimizes the worst-case regret with
respect the expert’s policy. In its essence the regret minimization problem is usually formalized as

min
π∈Π

max
r∈R

(
ρ(π̂e, r) − ρ(π, r)

)
. (4)
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Here, π̂e is the empirical estimate of the expert policy πe constructed from the dataset D.

The conceptual optimization in (4) is impractical because the optimization over π is non-convex and
computationally challenging. Instead, using the correspondence between policies and occupancy
frequencies in (2), LPAL and related algorithms solve the following surrogate optimization problem:

min
u∈U

max
r∈R

(
ûT

e r − uTr
)

= min
u∈U

∥∥(ûe − u)TΦ
∥∥

∞ , (5)

where the equality follows because L∞ is the dual norm to the L1 norm used in the definition of W.

The value ûe in (4) represents the empirical estimate of u⋆e constructed as

ûe(s, a) = χ ·
∑

(t,s′,a′)∈D
γt · 1 {s = s′ ∧ a = a′} , (6)

where χ is a normalization factor chosen to guarantee that 1Tûe = (1 − γ)−1. In practice, it is
common to estimate the feature counts ûT

e Φ directly rather than estimating ûe.

Some IRL algorithms, like GAIL, add other regularization terms to the scheme in (5) and substitute
different definitions for the reward set W (Ho and Ermon, 2016). In this work, we focus on the
fundamental properties and trade-offs of this formulation and leave more complex extensions for
future work.

An important limitation of the formulation in (5) is that it relies on estimating the expert’s occupancy
frequency ûe well. Because the occupancy frequency represents the frequency of both states and
actions it is very sensitive to the initial distribution and covariate shifts in state distributions which
may often arise in imitation learning settings. As discussed in the introduction, the expert may
focus on difficult states when performing the demonstrations or have a behavioral state visitation
policy that dictates what states to visit. In the remainder of the paper, we build on (5) to address its
sensitivity to the initial distribution and state distribution of the provided dataset, thereby achieving
better off-policy performance.

3 ROIL Formulation

In this section, we describe and justify ROIL and study its computational properties; we defer
the analysis of its approximation errors to Section 4. First, we describe the foundations of the
approach in Section 3.1 and then outline several modifications that reduce ROIL’s conservativeness
and improve its performance in Section 3.2. We conclude the section with a visualization of ROIL
as a Chebyshev center problem, which offers additional insights into its performance in Section 3.3.

3.1 Basic Formulation

Similar to the standard IRL schema outlined in (5), ROIL also adopts a principled robust optimiza-
tion perspective and minimizes the worst-case regret. The main idea is to compute a policy π ∈ Π
that minimizes regret with respect to the worst-case plausible expert’s policy πe ∈ ΠR(D) and a
reward function r ∈ R. Formally, the basic ROIL optimization problem is as follows:

min
π∈ΠR(D)

max
πe∈ΠR(D)

max
r∈R

(ρ(πe, r) − ρ(π, r)) . (7)

Here, ΠR(D) ⊆ ΠR represents the set of all policies consistent with D and are defined as

ΠR(D) = {π ∈ ΠR | π(a|s) = 1, ∀(s, a) ∈ D} . (8)

If the expert demonstrations in D are constructed from a deterministic policy, then that policy must
be contained in (8). However, when the expert’s policy is randomized, the construction in (8) may
exclude the expert policy from ΠR(D). We discuss how the definition can be extended to account
for randomized policies in Section 3.2.
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Before describing an efficient formulation for solving ROIL, we discuss its benefits compared with
the generic IRL scheme in (4). Recall that ûe, constructed in (6), depends on the initial state
distribution which may lead to large errors when the demonstration and execution state distributions
differ. Instead, ROIL uses the training data to construct the set ΠR(D)—which is independent of
the state distribution—and minimizes regret to all consistent expert policies.

Next, we show that the ROIL optimization problem in (7) can be reduced to a linear program with
a polynomial size. It may be surprising that such a reduction is possible since ROIL’s objective
involves maximizing a non-concave bilinear function. We derive this reduction using the occupancy-
based formulation, similar to existing IRL algorithms. A key part of the formulation is a set of
occupancy frequencies Υ that are consistent with expert demonstrations defined for c ∈ RSA as

Υ =
{
u ∈ U | cTu = 0

}
, where c(s, a) =

{
1 if (s, a) /∈ D ∧ ∃a′ ∈ A, (s, a′) ∈ D,
0 otherwise.

(9)

The following lemma shows that the set of occupancy frequencies constructed in (9) is exactly the
set of frequencies of policies that are consistent with the dataset.
Lemma 1. If D is generated by a deterministic policy π ∈ ΠD. Then

u ∈ Υ ⇔ (u = uπ, ∃π ∈ ΠR(D)) .

Please see the proof in Appendix A.

We now outline the main step in constructing a linear program formulation for solving ROIL. As
Lemma 1 shows, maximizing over the policy space is equivalent to maximizing over the occupancy
frequency space. Then, using the fact that ρ(π, r) = rTuπ and the representation of R in (3), we
can reformulate (7) to

min
u∈Υ

max
r∈R

max
v∈Υ

(v − u)Tr = min
u∈Υ

max
w∈W

max
v∈Υ

(v − u)TΦw. (10)

Solving the formulation in (10) directly is challenging because it involves maximizing a non-concave
bilinear function in both w and v. To turn this optimization into a tractable convex optimization
problem, we take the following steps. The maximization over w maximizes a convex function w 7→
maxv∈Υ (v−u)TΦw. Therefore, there exists an optimal w in one of the extreme points of W, leading
to the following equivalent formulation:

min
u∈Υ

max
w∈ext(W)

(
−uTΦw + max

v∈Υ
vTΦw

)
. (11)

The set W is an L1-norm ball. The number of its extreme points is linear in the number of features,
and we can enumerate them to obtain the following linear program:

minimize
t∈R,u∈RSA

t

subject to t ≥ −uTΦw + b(w), ∀w ∈ ext(W),
u ∈ Υ,

(12)

where b(w) = maxv∈Υ v
TΦw. Note that the constraints u ∈ U defined in (1) are linear and b(w) can

be computed by solving a linear program or an MDP.

From the discussion above and the epigraph formulation (Boyd and Vandenberghe, 2004), we get
the following theorem that states the correctness of the linear program formulation.
Proposition 1. Let u⋆ be optimal in (12). Then, πu⋆ constructed in (2) is an optimal π in (7).
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3.2 Extensions

An important strength of ROIL is its flexibility. The basic ROIL formulation makes no assumptions
except that actions in D are distributed according to the expert’s policy. It also does not make any
assumptions about the state distribution or the optimality of the expert’s policy. In this section, we
discuss several simple techniques that can be used to incorporate additional assumptions about the
data in D that help to compute less conservative solutions.

First, we can make ROIL less conservative by restricting the generic reward set R when computing
the regret. If the expert’s policy πe is close to optimal, it is sufficient to consider only a subset of R
restricted to rewards that are consistent with the near-optimality of πe. That is, we can solve (10)
with Wτ

e ⊆ W defined as

Wτ
e :=

{
w ∈ W | ûT

e Φw + τ ≥ max
u∈U

uTΦw
}
, (13)

where τ ≥ 0 represents the allowed sub-optimality of the expert’s policy πe. It is important to
emphasize that the optimality of a policy is insensitive to the choice of the initial distribution. In
practice, we adapt (12) to solve

minimize
t∈R,u∈RSA

t

subject to t ≥ −uTΦw + b(w), ∀w ∈ Wτ
e ,

u ∈ Υ.
(14)

We solve this optimization problem by first collecting m samples w ∈ Wτ
e from a uniform distribution

and then choose τ in (13) appropriately to retain 10% of the samples.

A second option for reducing the conservativeness of ROIL is to suppose that the expert’s demon-
strations are close to being on-policy. Then, one can use D to estimate ûe ≈ u⋆e and consider the set
Υ̂ϵ defined as

Υ̂ϵ =
{
u ∈ Υ | ∥(ûe − u)TΦ∥∞ ≤ ε

}
. (15)

This set represents all policies that are consistent with the expert’s demonstrations and also have
occupancy frequencies that are close to the observed expert data. One can estimate ϵ by solving

ϵ = η · min
u∈U

∥(ûe − u)TΦ∥∞, (16)

where η ≥ 1 is some constant. The linear program in (12) can be easily adapted to handle the
restricted set Υ̂e by redefining b(w) = maxv∈Υ̂e

vTΦw.

Finally, we discuss how to extend ROIL to account for an expert policy which randomizes be-
tween actions. In such a scenario, the constraint cTu = 0 must be replaced by a constraint
us,a/

∑
a′∈A |u(s, a′) − π̂e(s, a)| ≤ ϵ,∀s ∈ S, a ∈ A for some appropriately chosen ϵ and an esti-

mate π̂e of expert’s policy. Using perspective functions, one can readily see that this constraint is
convex and does not increase the computational complexity of this formulation.

3.3 Discussion and Visualization

We now discuss a connection between ROIL and the geometric problem of computing the Chebyshev
center of a convex set. This connection helps to elucidate what conditions make ROIL tractable and
offers an intuitive way of visualizing ROIL and its relationship with other IRL algorithms.

In (3), we define the set W in terms of an L1 ball. However, this set could be defined in terms of
any norm ∥ · ∥ as W =

{
w ∈ Rk | ∥w∥ ≤ 1

}
. For any norm, there exists a dual norm ∥ · ∥⋆ defined

as ∥x∥⋆ = supy ̸=0 yTx/∥y∥. (Horn and Johnson, 2013). The dual to an Lp norm (p ≥ 1) is an Lq
norm such that 1/p + 1/q = 1. Using the definition of a dual norm, the ROIL optimization problem
in (10) can be represented as

min
u∈U

max
v∈Υ

∥(v − u)TΦ∥⋆. (17)
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Figure 1: Depiction of ROIL solution (u∗
R) as a Chebyshev center of the set Υ. The dashed line

shows the minimum circumscribed L∞ ball.

The following proposition states the correctness of (17) and follows from the discussion above.
Proposition 2. Suppose that u⋆ is optimal in (17) with ∥z∥⋆ = ∥z∥∞ for z ∈ Rk. Then πu⋆ , as
constructed in (2), is an optimal π in (7).

The optimization problem in (17) is equivalent to computing the Chebyshev center of the set Υ with
respect to the norm defined by ∥ · ∥∞. The Chebyshev center is a point that minimizes the distance
to the most distant point in the set Υ. Figure 1 visualizes the Chebyshev center for an MDP with
two features. The red polygon represents the set U and the green polygon represents the set Υ; the
points correspond to deterministic policies.

The relationship to the Chebyshev center problem also offers additional computational insights
regarding the choice of W. It is known that popular choices of the distance metric ∥·∥⋆ in computing
the Chebyshev center of a polyhedron are NP-hard. One notable exception is when the distance
metric ∥ · ∥⋆ corresponds to the L∞ norm. Since L1 is the dual norm to the L∞ norm, the choice of
L1 in the definition of W is crucial to obtaining a tractable optimization problem (Wu et al., 2013;
Eldar et al., 2008).

4 Theoretical Analysis

In this section, we turn to a theoretical analysis of ROIL. We study the theoretical guarantees of
the quality of the solutions computed by ROIL. In particular, we show that, unlike other popular
IRL algorithms, ROIL guarantees to recover the expert’s policy when demonstrations for all states
are available. We also discuss the limitations that arise from the assumption inherent in ROIL
formulations and give an approximation error bound in terms of the approximation error bounds.

First, we show that LPAL and GAIL, popular IRL algorithms, suffer from a surprising weakness.
The algorithms may not recover the expert’s policy even when given demonstrations of deterministic
actions for every state in a tabular MDP. While it is not a prevalent scenario in practice, it points
out that simply adding more demonstrations is insufficient for these methods. We consider LPAL
and GAIL, which can be stated for tabular features Φ = I as the following optimization problems:

min
u∈U

∥u− ûe∥∞, and min
u∈U

DJS(u, ûe) − λH(πu). (18)

Here, the first optimization problem represents LPAL (Syed et al., 2008) and the second optimiza-
tion represents GAIL (Ho and Ermon, 2016, eq. (15)). The distance metric DJS represents the
Jensen-Shannon entropy, and λ ≥ 0 is a regularization parameter. The LPAL optimization prob-
lem in (18) follows immediately from (5) by optimizing over the set of occupancy frequencies. For
the sake of consistency with ROIL, we assume that W is chosen as in (3). This is a superficial
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Figure 2: MDP used in Example 1. The edge labels denote the actions and the corresponding
transition probabilities (if less than 1).
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Figure 3: The loss functions of LPAL and GAIL. Here JSD refers to the Jensen-Shannon Divergence
which is the loss function minimized by GAIL when the coefficient of the causal entropy term H is
zero (Ho and Ermon, 2016).

difference from the original LPAL derivations that assume that feature weights are non-negative:
W =

{
w ∈ Rk+ | ∥w∥1 ≤ 1

}
.

Proposition 3. LPAL and GAIL as defined in (18) may not recover πe even when the demonstra-
tions cover the entire state space: {s ∈ S | ∃ a ∈ A, (s, a) ∈ D} = S.

We show the proposition by constructing the following example.
Example 1. Consider an MDP with two states and transition probabilities depicted in Figure 2. Sup-
pose that πe(s) = a1 for each s ∈ S. The occupancy frequency for this policy is u⋆e =

[
ϵ+γ−1
ϵ(1−γ) , 0,

1
ϵ

]
.

Assume that the dataset D = ((s1, a1), (s2, a1)) represents the demonstrations; note that the
state distribution needs to respect the state distribution of u⋆e . The estimated occupancy fre-
quency from this dataset will be ûe =

[
1

2(1−γ) , 0,
1

2(1−γ)

]
where the elements correspond to

(s1, a1), (s1, a2), (s2, a1). The set of occupancy frequencies in this MDP is

Uξ =
{
ξ ·

[
ϵ+ γ − 1
ϵ(1 − γ) , 0,

1
ϵ

]
+ (1 − ξ) ·

[
0, 1 − ϵ,

γ

1 − γ
+ ϵ

]
| ξ ∈ [0, 1]

}
, (19)

because the set of occupancy frequencies of randomized policies can be represented as a convex hull
of the frequencies of deterministic policies. One can then readily verify that u⋆e does not minimize
either one of the objectives in (18) when λ = 0. Specifically, choosing ξ = 0.5 in (19) achieves
minimal loss however one can easily verify u⋆e = uξ when ξ = 1. Figure 3 depicts the objective
functions in (18) as a function of ξ in (19).

In contrast with LPAL and GAIL, ROIL is guaranteed to recover the expert’s policy when provided
with demonstrations for all states as the following proposition states.
Proposition 4. Suppose that {s ∈ S | (·, s, ·) ∈ D} = S. Then u⋆e is the unique minimizer to (12).

Proof. When D completely covers the states, ΠR(D) = {πe} and Υ = {u⋆e} by Lemma 1. One can
readily see that u⋆e attains 0 objective in (12), which is optimal because the regret is lower-bounded
by 0. The uniqueness is immediate because Υ is a singleton.

Recall that ROIL dispenses with the assumption that the states in the demonstrations D are dis-
tributed according to the occupancy frequency. This assumption makes ROIL appropriate in a
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Figure 4: An MDP used in Example 2.

broader range of off-policy scenarios than competing IRL algorithms. However, the following result
shows the limitations arising from ignoring the state distribution assumption in D. The following
example demonstrates that even when all but one state is covered by D, ROIL cannot give any
guarantees on the regret of the computed policy.
Example 2. Consider the deterministic MDP depicted in Figure 4 where S = {s1, s2, s3}, A =
{a1, a2}, p0 = [1, 0, 0], and Φ = r⋆ = [0, 0, 1, 1,−1,−1]. Here, r⋆ is the true reward and vectors
are ordered as (s1, a1), (s1, a2), (s2, a1), . . . . Assume that the expert follows the optimal policy
πe(s) = a1,∀s ∈ S with an occupancy frequency u⋆e = [1, 0, γ/1−γ, 0, 0, 0]. However, ROIL fails to
find this solution even when demonstrations cover all but one state. Consider the dataset D =
((s2, a1), . . . , (s2, a1)). The optimal solution to ROIL is u = [1/2, 1/2, γ/2(1−γ), 0, γ/2(1−γ), 0] which is
sub-optimal regardless of how well the estimated ûe approximated u⋆e . Using the observed data,
ROIL has no evidence supporting taking actions a1 or a2 in the initial state s1.

Example 2 exposes a limitation of ROIL but also hints at how to overcome it. Note that occupancy
frequency matching methods, like LPAL (Syed et al., 2008), may do well in Example 2. This is
because LPAL will use the prevalence of the state s2 in D to deduce that taking action a1 in s1
is preferable to a2. As we discuss in Section 3.2, it is easy to extend ROIL to benefit from similar
distributional assumptions. The following theorem establishes approximation bounds for ROIL with
this assumption.
Theorem 1. Suppose that u⋆r is an optimal solution to (12) with Υ̂ϵ some ϵ > 0 such that Υ̂ϵ ̸= ∅
and an occupancy frequency estimate ûe. Then the regret of π⋆r = πu

⋆
r is bounded as

ρ(πe, r) − ρ(π⋆r , r) ≤ ∥(u⋆e − ûe)TΦ∥∞ + ε, ∀r ∈ R.

Moreover, one can choose ϵ such that ϵ = ∥(u⋆e − ûe)TΦ∥∞.

Proof. The result follows by replacing the worst-case over the L1 ball by its dual norm (L∞), and
from the construction of W, and the triangle inequality:

ρ(πe, r) − ρ(π⋆r , r) ≤ max
r∈R

(u⋆e − u⋆r )Tr = ∥(u⋆e − u⋆r )TΦ∥∞ ≤ ∥(u⋆e − ûe + ûe − u⋆r )TΦ∥∞

≤ ∥(u⋆e − ûe)TΦ∥∞ + ∥(ûe − u⋆r )TΦ∥∞ ≤ ∥(u⋆e − ûe)TΦ∥∞ + ε.

The last inequality follows from the fact that the u⋆r ∈ Υ̂ϵ.

Theorem 1 shows that when ∥(u⋆e − ûe)TΦ∥∞ is small, then ROIL with the extensions is guaranteed
to find a policy that has a small regret to the expert’s policy. We also note that Theorem 1 essentially
matches the error bounds derived for LPAL (Syed et al., 2008).

5 Experimental Results

In this section, we study ROIL’s behavior numerically on common benchmark problems. We study
its performance both on-policy (states distributed according to the true expert policy) and off-policy
(states distributed arbitrarily) and compare it with closely related IRL algorithms.

The first domain we use is an instance of the standard grid world problem (Abbeel and Ng, 2004) in
which each square is designated a color that represents the feature that is active for the state. The
reward is some linear combination of the features for each state. That is, the matrix Φ represents the
state colors and r⋆ = ΦTw for some w ∈ W. The features for each action in the state are identical.
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Figure 5: On-policy (left) and off-policy (right) expected return of imitation learning methods on
40x40 grid world for a fixed reward. Higher is better.

The agent has a choice of up, down, left, and right as their actions with small noise that takes it to
a different neighboring state. The rewards in this domain are generated randomly for each run by
sampling w uniformly from W. The expert policy is computed and chosen as the optimal policy for
the true (unobserved) reward.

The second domain we use is a driving simulator inspired by prior work (Abbeel and Ng, 2004; Syed
et al., 2008; Brown et al., 2018; Trinh et al., 2024) where the agent begins in the bottom row and
can go straight up, up and to the left, or up and to the right. At the first row, the actor loops back
to the bottom row to simulate a continuous environment. Similarly to the grid world, the driving
simulator has some small noise in the transitions. The driving simulator has some motorists on
the road, which the actor must avoid, and the left-most and right-most columns are designated as
“offroad” where the actor receives negative rewards.

To generate on-policy data, we use the standard protocol in which expert demonstrations are tra-
jectories of a policy. To generate off-policy data, we collect states according to a uniform behavior
policy. That is, the expert follows a uniform behavior policy πb(a|s) = 1/|A|, which controls the
transition dynamics. The uniform policy πb is only used to generate the states in D and the actions
are chosen by the true expert πe.

We evaluate two versions of ROIL: The basic ROIL makes no assumptions on ûe and solves (12).
ROIL-P solves (14), pruning away reward functions that make ûe perform sub-optimally see Equa-
tion (14). We compare these algorithms with two IRL algorithms: LPAL and GAIL. For consistency
with our results, we do not impose the constraint w ≥ 0 used in the original LPAL formulation (Syed
et al., 2008). For the GAIL implementation, we use the original formulation with λ = 0; we did
not find that λ had a significant effect on our results. We also compare it with Naive Behavioral
Cloning (NBC). NBC follows the expert’s policy in states that are visited but takes a random action
in states that have not been visited.

Figures 5 and 6 depict the performance of multiple IRL methods as a function of the number of
samples in the demonstrations. The samples are constructed from trajectories sampled from the
domain. Each data point is computed as an average of 10 seeds, and standard error bars are
displayed; see the appendix for more details. We do not provide timing data because most of the
algorithms are implemented in Python, and the main focus of our methods is for a setting where
sample complexity and not computation time are the limiting factors.

LPAL performs very well on policy in our experiments. This is unsurprising because it matches ûe,
and its estimate improves with increasing samples. However, in the off-policy regime, LPAL and
other occupancy frequency matching methods fail to work well because the estimate ûe does not
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Figure 6: Robust regret for on-policy (left) and off-policy (right) of imitation learning methods on
40x40 Grid World (lower is better).

necessarily improve with increasing numbers of samples. ROIL, on the other hand, works well in
both settings.

Our experiments demonstrate that ROIL and ROIL-P perform well both on-policy and off-policy.
Because ROIL minimizes the worst-case regret, it can be quite conservative when the dataset is
small. In comparison, our results confirm that pruning the reward vectors in ROIL-P makes it
less conservative and improves its performance significantly. Additional empirical evaluation and
discussion of methods described in Section 3.2 can be found in Appendix B.

6 Conclusion

We presented a new algorithm for IRL that can handle expert demonstrations gathered from off-
policy (or offline) state distributions which may not form a trajectory. This is an important topic
that, to the best of our knowledge, has not received sufficient attention in prior work. We proposed
ROIL, a principled and flexible framework for this problem. ROIL minimizes the regret concerning
the expert’s policy and makes minimal assumptions about the data and the expert. However, the
framework can be easily extended to a setting in which one makes more assumptions about the expert
and the demonstrations generated. We address a surprising weakness with other IRL methods like
LPAL and GAIL and provide guarantees on our convergence to the expert policy when all states
are observed while the existing algorithms may not.

There are many avenues for future work. ROIL builds on the same ideas as most modern IRL
algorithms and can be readily integrated with the improvements developed in recent years (Arora
and Doshi, 2021). It is important to study whether there are possible refinements of ROIL along
the lines described in Section 3.2 that would significantly impact its performance. We also studied
ROIL in a simple tabular setting. Future work should study the best ways to generalize these ideas
to large problems with continuous states and actions and non-linear function approximators.
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Abstract

Reinforcement learning (RL) agents make decisions using nothing but observations
from the environment, and consequently, rely heavily on the representations of those
observations. Though some recent breakthroughs have used vector-based categorical
representations of observations, often referred to as discrete representations, there
is little work explicitly assessing the significance of such a choice. In this work, we
provide an empirical investigation of the advantages of discrete representations in
the context of world-model learning, model-free RL, and ultimately continual RL
problems, where we find discrete representations to have the greatest impact. We
find that, when compared to traditional continuous representations, world models
learned over discrete representations accurately model a larger portion of the state
space with less capacity, and that agents trained with discrete representations learn
better policies with less data. In the context of continual RL, these benefits translate
into faster adapting agents. Additionally, our analysis suggests that it is the binary
and sparse nature, rather than the “discreteness” of discrete representations that
leads to these improvements.1

1 Introduction

This work is motivated by the quest to design autonomous agents that can learn to achieve goals in
their environments solely from their stream of experience. The field of reinforcement learning (RL)
models this problem as an agent that takes actions based on observations of the environment in order
to maximize a scalar reward. Given that observations are the agent’s sole input when choosing an
action (unless one counts the history of reward-influenced policy updates), the representation of
observations plays an indisputably important role in RL.

In this work, we examine the understudied yet highly effective technique of representing observations
as vectors of categorical values, referred to in the literature as discrete representations (van den
Oord et al., 2017; Hafner et al., 2021; Friede et al., 2023) — a method that stands in contrast to the
conventional deep learning paradigm that operates on learning continuous representations. Despite
the numerous uses of learned, discrete representations (e.g., Robine et al., 2021; Hafner et al., 2023;
Micheli et al., 2023), the mechanisms by which they improve performance are not well understood.
To our knowledge, the only direct comparison to continuous representations in RL comes from a
single result from Hafner et al. (2021) in a subfigure in their paper. In this work, we dive deeper
into the subject and investigate the effects of discrete representations in RL.

The successes of discrete representations in RL date back to at least as early as tile coding methods,
which map observations to multiple one-hot vectors via a hand-engineered representation function

1Code for the implementation and analysis is accessible at
https://github.com/ejmejm/discrete-representations-for-continual-rl.
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(Sutton & Barto, 2018, p. 217-222). Tile coding was most popular prior to the proliferation of deep
neural networks as a way to construct representations that generalize well. Continuous alternatives
existed — notably, radial basis functions (RBFs) could be viewed as a generalization of tile coding
that produce values in the interval [0, 1]. But despite the superior representational capacity of RBFs,
they have tended to underperform in complex environments with high-dimensional observations (An
et al., 1991; Lane et al., 1992).

A similar comparison can be seen between the work of Mnih et al. (2015) and Liang et al. (2016).
Mnih et al. train a deep neural network (DNN) to play Atari games, relying on the neural network
to learn its own useful representation, or features, from pixels. In contrast, Liang et al. construct a
function for producing binary feature vectors that represent the presence of various patterns of pixels,
invariant to position and translation. From this representation, a linear function approximator is
able to perform as well as a DNN trained from pixels.

Recent approaches to producing discrete representations in the area of supervised learning have
moved away from hand-engineering representations, and towards learning representations. Van den
Oord et al. (2017), for example, propose the vector quantized variational autoencoder (VQ-VAE), a
self-supervised method for learning discrete representations. VQ-VAEs perform comparably to their
continuous counterparts, variational autoencoders (Kingma & Welling, 2014), while representing
observations at a fraction of the size. When applied to DeepMind Lab (Beattie et al., 2016), VQ-
VAEs are able to learn representations that capture the salient features of observations, like the
placement and structure of walls, with as little as 27 bits (van den Oord et al., 2017).

Similar representation learning techniques have also been successfully applied in the domain of RL.
Hafner et al. (2021) train an agent on Atari games (Bellemare et al., 2013; Machado et al., 2018),
testing both discrete and continuous representations. They find that agents learning from discrete
representations achieve a higher average reward, and carry on the technique to a follow-up work
(Hafner et al., 2023) where they find success in a wider variety of domains, including the Proprio
Control Suite (Tassa et al., 2018), Crafter (Hafner, 2022), and Minecraft (Johnson et al., 2016).
Works like those from Robine et al. (2021) and Micheli et al. (2023) further build on these successes,
using discrete representations to learn world models and policies. Work from Wang et al. (2022) finds
that representations that are more successful in transfer learning are often sparse and orthogonal,
suggesting that these properties may underpin such successes of discrete representations.

The goal of this work is to better understand how discrete representations help RL agents. We use
vanilla autoencoders (Ballard, 1987) to learn dense, continuous representations, fuzzy tiling activa-
tion (FTA) autoencoders (Pan et al., 2021) to learn sparse, continuous representations, and vector
quantized-variational autoencoders (VQ-VAEs) to learn fully discrete, binary representations. In-
spired by the success of the Dreamer architecture (Hafner et al., 2021; 2023), we first examine how
these different representations help in two distinct parts of a model-based agent: world-model learn-
ing and (model-free) policy learning. Observing that discrete and sparse representations specifically
help when an agent’s resources are limited with respect to the environment, we turn to the continual
RL setting, where an agent must continually adapt in response to its constrained resources (Ku-
mar et al., 2023). We particularly emphasize the benefits of discrete and sparse representations in
continual RL, as the largest and most complex environments are impossible to perfectly model and
require continual adaptation to achieve the best possible performance (Sutton et al., 2007; 2022).

The primary contributions of our work include:

• Showing that discrete representations can help learn better models and policies with less
resources (modeling capacity and data).

• Demonstrating that the successes of discrete representations are likely attributable to the
choice of one-hot encoding rather than the “discreteness” of the representations themselves.

• Identifying and demonstrating that discrete and sparse representations can help continual
RL agents adapt faster.
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2 Experimental Setup

This work primarily focuses on how to train agents to achieve some goal in their environment by
learning to select actions, At ∈ A. This problem is formulated as learning to select actions from
states St ∈ S, that best maximize a given reward signal, Rt+1 ∈ R. We are specifically concerned
with how to learn the parameters, θ, of a policy, πθ(At|St), that maps from states to a distribution
over actions. The goal is to maximize the discounted return from the current state, which is given
by Gt

·= ∑T
k=0 γ

kRt+k+1, where T is the terminal time step, and γ ∈ [0, 1] is the discount factor.
In this following parts of this section, we discuss the algorithms we use to achieve this goal, and
the environments we use in our experiments.

2.1 Algorithms

We use proximal policy optimization (PPO) (Schulman et al., 2017) to learn policies, which collects
transitions through environment interactions, and then applies multiple epochs of stochastic gra-
dient descent to weights that directly parameterize the policy. The sample efficiency of model-free
RL algorithms like PPO can sometimes be further improved with the additional use of a world
model (Atkeson & Santamaría, 1997; Sutton et al., 2008; Jin et al., 2018; Janner et al., 2019).
In our work, we independently study two components that are often part of model-based RL
methods—world-model learning and (model-free) policy learning—for a fine-grained view of how
the different types of representations affect complex RL agents.

Both policy and world model architectures are split into two components in our work: a represen-
tation network (or encoder) that extracts a representation, and a higher-level network that learns a
policy or world model atop the learned representations. This decoupling allows us to swap out the
encoder (both architecture and objective), while keeping the higher-level model unchanged. With
the exception of an end-to-end baseline, each of the encoders we use are trained with an observation
reconstruction objective as part of a larger autoencoder model (Ballard, 1987). The autoencoder
architecture compresses an observation into a bottleneck state before attempting to reconstruct it,
forcing it to learn a representation that captures salient aspects of the observation. Each of the three
types of learned representations in our work are produced by different autoencoder variants. We
also evaluate the standard approach of end-to-end learning, where the representations are learned
as a byproduct of the optimization process.

Dense, continuous representations are produced by a vanilla autoencoder.2 Sparse, continuous rep-
resentations also use a vanilla autoencoder, but the bottleneck layer outputs are passed through
a Fuzzy Tiling Activation (FTA) (Pan et al., 2021). FTA produces sparse outputs by converting
scalars to “fuzzy” one-hot vectors. The FTA representations provide a strong baseline (Miahi, 2022;
Wang et al., 2022) that acts as a bridge between dense, continuous representations and discrete rep-
resentations. Discrete representations are produced by a vector quantized-variational autoencoder
(VQ-VAE) (van den Oord et al., 2017), which quantizes the multiple outputs of the encoder to
produce a vector of discrete values, also referred to as the codebook. The discrete representations
we refer to in our work comprise multiple one-hot vectors, each representing a single, discrete value
from the codebook. The details of these autoencoders are explained in more depth in Appendix A.

2.2 Environments

Throughout this work, we use the empty, crossing, and door key Minigrid environments (Chevalier-
Boisvert et al., 2023), as displayed in Figure 1. In each environment, the agent receives pixel
observations, and controls a red arrow that navigates through the map with left, right, and
forward actions. The agent in the door key environment additionally has access to pickup and use
actions to pickup the key and open the door. The crossing and door key environments are stochastic,
with each action having a 10% chance to enact a random, different action. The stochasticity increases

2We also tested variational autoencoders (Kingma & Welling, 2014) in early model learning experiments, but were
unable to find hyperparameters to make the method competitive.
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the difficulty of learning a world model by increasing the effective number of transitions possible in
the environments. The increase in difficulty widens the performance gap between different methods,
which makes the results easier to interpret.

(a) Empty (b) Crossing (c) Door Key

Figure 1: Minigrid environments used in our experi-
ments. We refer to these as the (a) empty, (b) cross-
ing, and (c) door key environments. The agent re-
ceives lower-resolution RGB arrays representing pix-
els as observations.

The environments are episodic, terminating
when the the agent reaches the green square,
or when the episode reaches a maximum
length. The former yields a reward Rt ∈
[0.1, 1] depending on the length of the episode
(shorter episodes yield higher rewards), and
the latter yields no reward. The reward is
calculated with the standard Minigrid for-
mula, 1 − 0.9 t

T , where t is the current step
and T is the maximum episode length (de-
pendent on the experiment). Contrary to the
standard Minigrid environments, the layouts
are fixed throughout all episodes. Further
environment details are displayed in Table 4
in Appendix D.

3 World-Model Learning with Discrete Representations

We begin our experiments by examining the benefits of using discrete representations in world model
learning. We specifically focus on the case of sample models, where the model is trained to produce
outcomes with probability equal to that of outcomes in the environment.

3.1 Learning World Models

We train autoencoders and world models on a static dataset, D, of one million transition tuples,
(s, a, s′), collected with random walks. In each episode, the environment terminates when the agent
reaches the green square or after 10,000 steps. Training occurs in two phases: first the autoencoder
is trained, and then a transition model is trained over the fixed representations.

Observations are 3-dimensional RGB arrays, so we use convolutional and deconvolutional neural
networks (LeCun et al., 1989) for the encoder and decoder architectures. The encoder architecture
is similar to the IMPALA network (Espeholt et al., 2018), but the size of the bottleneck layer
is chosen with a hyperparameter sweep. Architectural details are given in Section C. All of the
autoencoders are trained with a mean squared error reconstruction loss, and the VQ-VAE with
additional loss terms as detailed in Section A. Training for both autoencoders and world models use
the Adam optimizer (Kingma & Ba, 2015) with hyperparameter values of β1 = 0.9, β2 = 0.999, and
a step size of 2× 10−4. Training continues for a fixed number of epochs, until near-convergence, at
which point the model weights are frozen and world model learning begins.

World models learned over latent representations take a latent state, z, and an action, a, as input
to predict the next latent state, ẑ′ = wψ(z, a), with an MLP, wψ. World models learned over
continuous representations, or continuous world models, consist of three layers of 64 hidden units
(32 in the crossing environment), and rectified linear units (ReLUs) (Agarap, 2018) for activations.
In discrete world models, the MLP is preceded by an embedding layer that converts discrete values
into a continuous, 64-dimensional vectors. The loss for both world models is given by the difference
between the predicted next latent state and the ground-truth next latent state. The continuous
world model outputs a continuous vector and uses the squared error loss. The discrete model
outputs multiple vectors of categorical logits and uses a categorical cross-entropy loss over each.3
All world models are trained with 4 steps of hallucinated replay as described by Talvitie (2017).

3We also experimented with a squared error loss for the discrete world model and found it made little difference
in the final world model accuracy.
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Hallucinated replay entails feeding outputs of the model back in as new inputs, and training over
multiple “hallucinated” steps to increase the accuracy of the world model. Figures 10 and 11 in
Appendix G depict the training process for continuous and discrete world models, and include a
visualization of hallucinated replay.

Our aim is to train sample models—models that emulate the environment by producing outcomes
with frequency equivalent to that of the real environment. This is more difficult in stochastic
environments because our current training procedure would result in expectations models, where
predictions are weighted averages over possible outcomes. To instead learn sample models, we
augment our models using the method proposed by Antonoglou et al. (2022). This approach learns
a distribution over potential outcomes, and samples from it when using the world model. We provide
a more detailed explanation and relevant hyperparameters in Appendix B.

3.2 Experiments

The goal of this first set of experiments is to measure how the representation of the latent
space affects the ability to learn an accurate world model. Unfortunately, this is not as
simple as comparing a predicted latent state to the ground-truth latent state, as multiple outcomes
may be possible for any given state-action pair. To account for this, we look at distributions
over many transitions instead of the outcomes of single transitions. Specifically, we choose a
behavior policy and measure the difference between the state distribution it induces in the real
environment and in a learned model of the environment. Accurate world models should produce
state distributions similar to that of the real environment, and inaccurate models should produce
state distributions that differ. Figure 12 in Appendix G contains a visualization that helps build
an intuition of how state distributions may differ, which we will discuss in more detail later.

Emulating how world models are often used to simulate multiple different policies, we choose
different behavior policies in each environment. We use a random policy for the empty environment,
a policy that explores the right half of the grid in the crossing environment, and a policy that
navigates directly to the goal in the door key environment. We enact the policies in the real environ-
ments and learned world models for 10,000 episodes each. Episodes are cut off early, or are frozen
at the terminal state to reach exact 30 steps of interaction. We then compare the KL divergence
between ground-truth and induced state distributions at each step of the rollouts. A lower KL
divergence is better, indicating that a model predicts outcomes more similar to the real environment.

We include two baselines in our comparisons that are free of auxiliary autoencoder objectives: the
uniform baseline and the end-to-end baseline. The uniform baseline predicts a uniform distribution
over all states and is strong when the agent’s target policy leads it to spread out, like in a random
walk. The end-to-end baseline shares an architecture equivalent to the vanilla autoencoder, but
is trained end-to-end with a next-observation reconstruction loss. The size of the latent state is
re-tuned in a separate hyperparameter sweep. This is the standard setup in deep RL.

3.2.1 Model Rollouts

We roll out the trained world models for 30 steps and evaluate their accuracy, plotting the results
in Figure 2. Although all of the methods perform the same in the empty environment, the gap in
accuracy widens as the complexity progressively increases in the crossing, and then in the door key
environment.

We examine visualizations of trajectories to better understand the patterns observed in Figure 2,
showing two visualizations that most clearly represent these patterns in Figures 12 and 13 in
Appendix G. The trajectories predicted by the continuous models (Vanilla AE and FTA AE) in the
crossing environment rarely make it across the gap in the wall, which manifests as a steady increase
in the KL divergence starting around step 14. The performance of the continuous model in the door
key environment suffers much earlier as the model struggles to predict the agent picking up the
key, and again as the model struggles to predict the agent passing through the door. Notably, these
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Vanilla AE
VQ-VAE FTA AEEnd-to-End

Uniform

Figure 2: The mean KL divergence between the ground-truth and the world model induced state
distributions. Lower values are better, indicating a closer imitation of the real environment dynamics.
The VQ-VAE and Vanilla AE learn near-perfect models in the empty environment, so the curves
are so close to zero that they are not visible without maginification. FTA AE and End-to-End
experiments were not run in the empty environment because of the triviality. Curves depict a 95%
confidence intervals over 20 runs.

Vanilla AE

VQ-VAE

FTA AE

End-to-End

Uniform

Figure 3: The median KL divergence between the ground-truth and the world model induced state
distributions, averaged over 30 steps. Lower is better, indicating a closer imitation of the real
environment dynamics. The x-axis gives the number of hidden units per layer for all three layers
of the world model. The shaded region depicts a 95% confidence interval over 20 runs. Error bars
are wide for the end-to-end method due to a few divergent runs. Training the end-to-end model is
harder because gradients for multiple objectives must be passed back in time through multiple steps.

two actions occur infrequently in the training data because the training data is generated with
random walks, and because they can only happen once per episode even when they do occur. Stated
concisely, the discrete world model more accurately predicts transitions that occur less frequently in
the training data.

3.2.2 Scaling the World Model

Despite sweeping over the latent vector dimensions of the vanilla and FTA autoencoders in the
hyperparameter sweep, we were unable to find an encoder architecture that enabled either of the
continuous world models to adequately learn transitions underrepresented in the training data.
Either the discrete representations allow learning something that is not learnable with
the continuous representations, or the fixed size of the world model is limiting the
continuous model’s performance. We test the latter hypothesis by varying the size of the world
model while tuning the latent dimensions of each autoencoder as described in Appendix C. We plot
the average performance of each world model in Figure 3.

In the plot, an interesting pattern emerges: the performance of all methods become indistinguishable
beyond a certain size of the world model. Only when the environment dynamics cannot be modeled
near-perfectly, due to the limited capacity of the world model, do the discrete representations
prove beneficial. As the size of the world model shrinks, the performance of the continuous models
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Quantized

Multi-One-Hot

Uniform

Figure 4: The mean KL divergence between the ground-truth and the world model induced state
distributions. Lower values are better, indicating a closer imitation of the real environment dynamics.
Both methods use the same VQ-VAE architecture, but represent the information in different ways.
Curves depict 95% confidence intervals over 20 runs.

degrade more rapidly. This observation aligns with the findings in the previous section, where the
performance gap between models widened with the complexity of the environment. Both results
point to the same conclusion: the discrete VQ-VAE representations enable learning a more accurate
world model with less modeling capacity. This gap is notable especially when the world is much
larger than what the agent has capacity to model. In this setting in our experiments, discrete
representations are favorable because they allow the agent to learn more despite its limited capacity.

3.2.3 Representation Matters

Our goal in the previous experiments was to assess how a change in representation alone can affect
performance, but VQ-VAEs may affect more than just the representation learned. Latent spaces
are defined by both the information they represent—informational content—and by the way that
information is structured—representation. Because the altered bottleneck structure and objectives
of a VQ-VAE may change what is learned, the previous experiments do not directly control for
differences in information content. Our next experiment controls for this factor as we ask the
question: do the benefits of discrete world models stem from the representation or from
the informational content of the latent states?

To answer this question, we rerun the model learning experiment with two types of latents, both
produced by the same VQ-VAE but represented in different ways. Generally, the outputs of a
VQ-VAE are quantized by “snapping” each latent to the nearest of a finite set of embedding vectors.
The resulting quantized latents are discrete in the sense that each can take only a finite number
of distinct values, but they are element-wise continuous. In our work, we alternatively represent
latents as (one-hot encoded) indices of the nearest embedding vectors, which are element-wise
binary. Both of these methods encode the same informational content and can produce latents of
the same shape, but have different representations. If the representation of the latent space does
not matter, then we would expect models learned over both representations to perform similarly.

We prepare the experiment by constructing architecturally equivalent world models with quantized
and multi-one-hot representations. The number and dimensionality of the embedding vectors are
set to 64 so that both representations take the same shape. The quantized model is trained with
the squared error loss, but both models otherwise follow the same training procedure.

We plot the accuracy of both models in Figure 4, where we see multi-one-hot representations vastly
outperform quantized representations despite both being discrete and semantically equivalent. These
results support the claim that the representation, rather than the informational content, is responsi-
ble for the superior performance of the VQ-VAE latents in our experiments. Our results also suggest
that the superior performance of discrete representations is not necessarily attributable to their “dis-
creteness”, but rather to their sparse, binary nature. Both quantized and multi-one-hot representa-
tions are discrete and semantically equivalent, yet yield different results. These results suggest that
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(a)

Vanilla AE

FTA AE

(b)

VQ-VAE

End-to-End

(c) (d)

Figure 5: Performance of RL agents as measured by episode length with a 95% confidence interval
over 30 runs. Lower is better. (a-b) Agents are trained with PPO and autoencoder objectives from
the beginning. (c-d) The PPO objective is introduced only after the dotted line (with the exception
of the end-to-end method).

the implicit choice of representing discrete values as multi-one-hot vectors is essential to the success
of discrete representations, yet to our knowledge, such a choice is not discussed in any prior work.

4 Model-Free RL with Discrete Representations

We now progress to the full RL problem. Our first experiments aim to understand the effects of
using discrete representations in the standard, episodic RL setting. After identifying a clear benefit,
we progress to the continual RL setting with continually changing environments (Abbas et al., 2023)
as a proxy for environments that are too big for the agent to perfectly model.

We train all RL agents in this section with the clipping version of proximal policy optimization
(PPO) (Schulman et al., 2017). Instead of observations, the policy and value functions intake learned
representations. Separate networks are used for the policy and value functions, but both share the
same architecture: an MLP with two hidden layers of 256 units and ReLU activations. We sweep over
select hyperparameters for PPO and over autoencoder hyperparameters as described in Section 3.

The training loop alternates between collecting data, training the actor-critic model, and training the
autoencoder, as detailed in Algorithm 2 in Appendix H. This setup differs from previous experiments
in that environment interaction and the training of each component happen in tandem instead of
in separate phases. The objectives, however, remain separate; PPO gradients only affect the policy
and value function weights, and autoencoder gradients only affect the encoder. Only the end-to-end
baseline is an exception, in which the entire model is trained with PPO, as is often standard in deep
RL. Agents are trained in the crossing and door key environments shown in Figure 1. The maximum
episode length is set to 400 in the crossing environment and 1,000 in the door key environment.

4.1 Episodic RL

We train RL agents with each type of representation in the crossing and door key environments,
plotting the results in Figures 5a and 5b. All of the methods with an explicit representation learning
objective perform better than end-to-end RL. In a reverse from the previous model learning results,
the VQ-VAE now performs the worst of all the representation learning methods. Inspecting the
autoencoder learning curves in Figure 15 in Appendix H, however, reveals an important detail: all
of the autoencoders learn at different speeds. If the speed of the RL learning updates is our primary
concern (whether it actually is will be discussed later), then the learning speed of the autoencoder is a
confounding factor in our analysis. We address this by delaying PPO updates until all autoencoders
are trained to around the same loss and plot the results in Figures 5c and 5d. Though the gap in
performance in the new results looks small, the VQ-VAE and FTA autoencoder methods converge
with around two to three times less PPO updates than the vanilla autoencoder.
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(a)

Vanilla AE End-to-End

(b) (c)

VQ-VAE

(d)

FTA AE

Figure 6: (a-b) Mean agent performance as the environments change at intervals indicated by the
dotted, gray lines. Lower is better. (c-d) Median encoder reconstruction loss. Lower peaks mean the
representation generalizes better, and a quicker decrease means the autoencoder is learning faster.
Overall, a lower reconstruction loss is better. (a-d) Curves depict 95% confidence intervals over 30
runs. Performance is plotted after an initial delay to learn representations, after which all methods
are trained with PPO. Refer to Figure 16 in Appendix H for the full figure.

4.2 Continual RL

While static Minigrid environments can test these representation learning methods to an extent,
they do not reflect the vastness of the real world. When the size of the world and the complexity of
its problems dwarf that of the agent, the agent will lose its ability to perfectly model the world and
learn perfect solutions (Sutton et al., 2022). The agent must instead continually adapt in response
to its limited capacity if it is to best achieve its goal(s) in this continual RL setting (Kumar et al.,
2023). Given the ability of these representation learning methods to expedite policy learning, they
may be well suited for the continual RL setting, where fast adaptation is key.

To test this hypothesis, we modify the previous experimental RL setup by randomizing the layout
of the crossing environment every 40,000 steps, and the layout of the door key environment every
100,000 steps, as is similarly done in related work (Taylor & Stone, 2009; Khetarpal et al., 2022;
Abbas et al., 2023). All of the same items and walls remain, but their positions are randomized,
only the positions of the goal and outer walls remaining constant. Example layouts are shown in
Figure 14 in Appendix H. By only changing the environment after a long delay, we create specific
points in the learning process where we can observe the difference between how the different types of
representation methods adapt to change. The RL training process otherwise stays the same, and is
specified in Algorithm 2 in Appendix H. With only this modification to the environments, we rerun
the previous RL experiment with a delayed PPO start, and plot the results in Figures 6a and 6b.

Latent Type Crossing Reward Door Key Reward
End-to-End 28± 5 14± 2
Vanilla AE 382± 33 866± 94
FTA AE 574± 57 1033± 130
VQ-VAE 674 ± 21 1324 ± 64

Table 1: RL performance per environment layout (95% CI)

We observe a spike in the episode length each time the environment changes, indicating that the
agents’ previous policies are no longer sufficient to solve the new environments. While the repre-
sentation learning methods clearly outperform end-to-end training, the confidence intervals over-
lap at many time steps. If we instead, however, consider the average reward accumulated by
each method per layout as displayed in Table 1, a clear ranking emerges. In the crossing en-
vironment we see VQ-VAE > FTA AE > Vanilla AE, and in the door key environment we see
VQ-VAE > FTA AE ≈ Vanilla AE.
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While the slower initial learning speed of the VQ-VAE hinders its ability to maximize reward at the
beginning of the training process (when PPO updates are not delayed), it does not seem to hinder its
ability to adapt after an initial representation has already been learned. Inspecting the reconstruction
loss of both autoencoders, plotted in Figures 6c and 6d, shows that the VQ-VAE’s reconstruction
loss increases much less when the environment changes. The shorter spikes suggest that the VQ-VAE
representations generalize better, allowing them to adapt faster when the environment changes.

With these results, we return to the prior question: can multi-one-hot representations be beneficial
in RL even if the initial representation is learned slower? We argue in the affirmative. If we consider
continually learning RL agents in the big world setting, where the goal of the agent is to maximize
reward over its lifetime by quickly adapting to unpredictable scenarios, then the cost of learning an
initial representation can be amortized by a lifetime of faster adaptation.

5 Conclusion & Future Work

In this work, we explored the effects of learning from discrete and sparse representations in two
modules that comprise many model-based RL algorithms: model learning and model-free policy
learning. When learning a world model, discrete, multi-one-hot representations enabled accurately
modeling more of the world with fewer resources. When in the model-free RL setting (policy
learning), agents with multi-one-hot or sparse representations learned to navigate to the goal and
adapt to changes in the environment faster.

Our study underscores the advantages of multi-one-hot representations in RL but leaves several ques-
tions of deeper understanding and extrapolation to future work. We show that one-hot encoding is
crucial to the success of discrete representations, but do not disentangle multi-one-hot representations
from purely binary or sparse representations in our experiments. Prior work by Wang et al. (2022)
on feature generalization aligns with our results in continual RL (Section 4.2 and Appendix F), and
suggests that sparsity and orthogonality play a role in the success of multi-one-hot representations.
Prior work on DreamerV3 (Hafner et al., 2023) and the success of VQ-VAEs in the domain of com-
puter vision (van den Oord et al., 2017; Nash et al., 2021; Esser et al., 2021; Hong et al., 2022) already
imply that this method can extrapolate and scale to larger environments, but future work could apply
these works to a wider variety of environments, beyond the inherently discrete domain of Minigrid.

Regardless of these open questions, our results implicate multi-one-hot representations learned by
VQ-VAEs as a promising candidate for the representation of observations in continual RL agents. If
we care about agents working in worlds much larger than themselves, we must accept that they will
be incapable of perfectly representing the world. The agent will see the world as forever changing
due to its limited capacity, which is the case in complex environments like the real world (Sutton
et al., 2022; Kumar et al., 2023). If we wish to address this issue in the representation learning
space, agents must learn representations that enable quick adaptation, and are themselves quick to
adapt (Sutton et al., 2007). The multi-one-hot representations learned in our experiments exhibit
these features, and provide a potential path to build ever more efficient, continually learning RL
agents.
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A Autoencoders Explained

In this work, we opt to learn representations with autoencoders, neural networks with the objective
of reconstructing their own inputs. Autoencoders can be decomposed into an encoder, fθ, that
projects the input into a latent space, and a decoder, gϕ, that attempts to reverse the transformation.
Where x ∈ Rn is an observation input to the encoder, the corresponding latent state is given by
z = fθ(x) ∈ Rk, and the goal is to learn parameters θ and ϕ such that gϕ(fθ(x)) = x. We achieve
this by minimizing the squared error between the input and the reconstruction over observations
sampled from some dataset, D:

Lae = Ex∼D
[
||x− gϕ(fθ(x))||22

]
. (1)

Because the latent space of an autoencoder is constrained (generally by size, and sometimes by
regularization), the model is encouraged to learn properties of the input distribution that are the
most useful for reconstruction. We refer to this type of autoencoder, where the latent states are
represented by vectors of real-valued numbers, as a vanilla autoencoder. An overview of the model
is depicted in Figure 7.
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To learn discrete representations, we use an autoencoder variant called a vector quantized variational
autoencoder (VQ-VAE) van den Oord et al. (2017). VQ-VAEs also use an encoder, a decoder, and
have the same objective of reconstructing the input, but include an additional quantization step
that is applied to the latent state between the encoder and decoder layers. After passing the
input through the encoder, the resultant latent state z is split into k latent vectors of dimension
d: {z1, z2, . . . , zk} ∈ Rd. Each latent vector is quantized, or “snapped”, to one of l possible values
specified by a set of embedding vectors. The quantization function uses l embedding vectors of
dimension d, {e1, e2, . . . , el} ∈ Rd, which are learned parameters of the VQ-VAE.

The quantization happens in two phases. First, each latent vector is compared to every embedding
vector using the L2 norm, and indices of the most similar embedding vectors are returned:

ci = arg min
j
∥zi − ej∥2, for all i = 1, 2, ..., k. (2)

The resultant vector of integers c is called the codebook, and indicates which embedding vectors are
the most similar to each latent vector. In the second phase, the indices in the codebook are used to
retrieve their corresponding embeddings, producing the quantized latent vectors:

z′
i = eci , for all i = 1, 2, ..., k. (3)

The quantized vectors {z′
1, z′

2, . . . , z′
k} ∈ Rd are the final output of the quantization function, and

are concatenated before being passed to the decoder. The full architecture is depicted in Figure 8.

Figure 7: Depiction of a vanilla autoencoder with a continuous latent space. The input x is encoded
with fθ to produce a latent state z, which is decoded by gϕ to produce the reconstruction x̂.
The model is trained to minimize the distance between the input and reconstruction with the
reconstruction loss Lae.

Because the quantization process is not differentiable, a commitment loss is added to pulls pairs of
latent states and their matching embeddings towards each other. If latent vectors are always near
an existing embedding, then there will be minimal difference between all zi and z′

i, and we can use
the straight-through gradients trick Bengio et al. (2013) to pass gradients directly back from z′ to z
with no changes. Combining the reconstruction and commitment losses, the full objective is given
by the minimization of

Lvqvae = Ex∼D

[
||x− gϕ(qe(fθ(x)))||22 + β

k∑

i=1
∥zi − ezi∥2

2

]
, (4)

where qe is the quantization function, β is a hyperparameter that weights the commitment loss,
and ezi is the closest embedding vector to zi. In practice, the speed at which the encoder weights
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Figure 8: Depiction of the VQ-VAE architecture. The input x is encoded with encoder fθ to produce
latent vectors {z1, z2, . . . , zk} ∈ Rd. In the first green circle, each latent vector is compared to every
embedding vector to produce codebook c, a vector of indices indicating the most similar embedding
vectors (example values are depicted). In the second green circle, the indices are transformed into
their corresponding embedding vectors to produce quantized vectors {z′

1, z′
2, . . . , z′

k} ∈ Rd. The
quantized vectors are then decoded by gϕ to produce the reconstruction x̂. Our work uses one-hot
encodings of the codebook c as discrete representations.

and embedding vectors change are modified separately by weighting the gradients of both modules
individually. We use a value of β = 1 in our work, and scale the embedding updates with a weight
of 0.25.

The discrete representations we use for downstream tasks RL tasks are different from the quantized
vectors that are passed to the decoder. We instead use one-hot encodings of the values in the
codebook:

oij =
{

1 if j = ci,

0 otherwise
for j = 1, 2, . . . , l. (5)

The result is a series of one-hot vectors {o1,o2, . . . ,ok} ∈ Rl that represent a single state, which we
refer to as a multi-one-hot encoding or discrete representation.

B Stochastic World Models

We use a variant of the method proposed by Antonoglou et al. (2022) to learn sample models
for stochastic environments. The method works similarly to a distribution model, first learning a
distribution over possible outcomes during training, and then sampling from that distribution during
evaluation. The problem faced by most distribution models is how to represent a distribution over
a complex state space (or latent space in our case). Antonoglou et al. circumvent this problem by
learning an encoder e that discretizes each state-action pair, mapping it to a single, k-dimensional
one-hot vector we call the outcome vector. Each of the possible k values represents a different
outcome of the transition.

The high-level idea is that while directly learning a distribution over full latent states is intractable,
learning a categorical distribution over a limited, discrete set of outcomes (the outcome distribution)
is possible. Whenever we wish to use the world model, we can sample from the outcome distribution
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and include the one-hot outcome vector as an additional input to the world model, indicating which
of the k outcomes it should produce. Table 2 in provides the relevant hyperparameters for this
method.

Hyperparameter Value
Bin count 32
Discretization projection 256, 256
Prediction projection 256, 256

Table 2: Stochastic sample model hyperparameters

C Autoencoder Architecture

The vanilla autoencoder, FTA autoencoder, and VQ-VAE use the same encoder and decoder archi-
tecture, only differing in the layer that produces the latent state. The decoder is a mirror of the
encoder, reversing each of the shape transformation, so we describe only the encoder architecture.
The encoder starts with three convolutional layers with square filters of sizes {8, 6, 4}, channel of
sizes {64, 128, 64}, strides of {2, 2, 2} (or {2, 1, 2} for the crossing environment), and uniform padding
of {1, 0, 0}. Each convolutional layer is followed by a ReLU activation. The downscaling convolu-
tions are followed by an adaptive pooling layer that transforms features into a shape of (k× k× 64),
and finally a residual block (He et al., 2016) consisting of a convolutional layer, batch norm (Ioffe
& Szegedy, 2015), ReLU, convolutional layer, and another batch norm. These general layers are
followed by layers specific to the type of autoencoder.

The vanilla autoencoder flattens the convolutional output and projects it to a latent space of size
D with a linear layer. We use a value of k = 8 and sweep over values of d = {16, 64, 256, 1024} for
each environment. We use d = 64 for the empty environment, d = 256 for crossing, and d = 1024 for
door key, though we note that we do not observe a statistically significant difference in performance
for values of d ≥ 64. The end-to-end baseline uses the same architecture and tuning procedure, but
the final hyperparameter values are d = 64 for crossing, and d = 1024 for door key.

The FTA autoencoder has the same structure as the vanilla autoencoder, but with an FTA after the
final bottleneck layer. The tiling bounds are fixed at [−2, 2] for all cases, except for learning a world
model in the door key environment, where it is [−4, 4]. We sweep over values of d = {64, 256, 1024}
and the number of tiles, k = {8, 16, 32}. The sparsity parameters, η, is set to be the same as the
size of the tiles, as is recommended in the original work (Pan et al., 2021). We use values of d = 64
and k = 16 in both environments.

The VQ-VAE directly quantizes the output of the general layers, so the only other parameters added
are the embedding vectors. The number of vectors that make up a latent state is given by k2, and
we let l be the number of embedding vectors, resulting in discrete representations of shape (k2, l).
We sweep over values of k = {3, 6, 9} and l = {16, 64, 256, 1024} for each environment. We use k = 6
and l = 1024 (for a total size of 6,144) for all environments except for crossing, which uses a value
of k = 9 (for a total size of 9,216).

When designing the experiments, we considered how to construct a fair comparison between the
continuous and discrete methods despite the fact that each have different ideal sizes of the latent
state, which makes one model bigger than the other. This is a particularly difficult question because
it is unclear if we should focus on the size of a representation in bits, or the size of the representation
in the number of values used to represent it in a deep learning system. A discrete representation is
orders of magnitude smaller than a continuous representation if represented in bits (9×log2 1024 = 90
bits in the crossing environment), but takes an order of magnitude more values to represent as one-
hot vectors being passed to a neural network (9× 1024 = 9216 values in the crossing environment).
Ultimately, we found that answering this question was unnecessary, as the performance of both
methods was limited no matter how large we made the size of the representations. In the crossing
environment, for example, the performance of the continuous model would not increase even if we
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increased the size of the latent state from 256 to 9,216 values to match that of the discrete latent
state.

D Reinforcement Learning Hyperparameters

Before running the model-free RL experiments, we performed a grid search over the most sensitive
PPO hyperparameters for the continuous model. We swept over clipping values, ϵ ∈ {0.1, 0.2, 0.3},
and the number of training epochs per batch, n ∈ {10, 20, 30, 40}. We use the same final PPO
hyperparameters for training the RL models with FTA and VQ-VAE latents, which are provided in
table 3.

After the sweep over PPO hyperparameters, we also repeated a sweep over the latent dimensions
of all of the autoencoders (with the exception of the VQ-VAE, which we found to be robust to
a large range of hyperparamers) as described in Section C. The vanilla autoencoder and end-to-
end baseline use a d = 256 dimensional latent space. The FTA autoencoder also uses d = 256
dimensional pre-activation latent space with k = 8 tiles, forming a 2048-dimensional post-activation
latent space. The VQ-VAE uses k2 = 36 latent vectors and l = 256 embedding vectors, forming a
9216-dimensional latent space.

Hyperparameter Value
Horizon (T) 256
Adam step size 256
(PPO) Num. epochs 10
(PPO) Minibatch size 64
Clipping value (ϵ) 0.2
Discount (γ) 0.99
(Autoencoder) Num. epochs 8

Table 3: RL training hyperparameters

E Experiment Details

Environment
Name

Image
Dimensions Actions Stochastic

# of
Unique
States

Empty 48× 48× 3 left, right, forward no 64
Crossing 54× 54× 3 left, right, forward yes 172

Door Key 64× 64× 3 left, right, forward,
pickup, use yes 292

Table 4: Minigrid environment specifications

F Measuring Sparsity

In Section 3.2.3, our comparison between multi-one-hot and quantized VQ-VAE representations
(Figure 4) resulted in a decisive victory for multi-one-hot representations, which are both sparse and
binary. Then in the continual RL setting in Section 4.2, we again see the two sparse representations
perform the best. These results suggest that there is an advantage to using sparse representations,
but can we measure the effects of different levels of sparsity?

In this section, we design an experiment that measures the effects of varying levels of sparsity in the
continual RL setting. The most straightforward way to design such an experiment with a VQ-VAE
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Figure 9: Episode length of a continual RL agent averaged over 15 runs per data point. Lower is
better, indicating faster navigation to the goal. All agents use VQ-VAE representations, and the
sparsity level indicates the ratio of 0s to 1s in the representation (e.g. a sparsity level of 8 indicates
that there are 7 zeros for each one). The shaded region depicts a 95% confidence interval.

is to change the size of the codebook, which directly controls the level of sparsity. Changing only the
codebook, however, also changes the number of the parameters in the model. If we want to measure
the effects of only sparsity, then we need to control for the size of the model.

In this experiment, we vary the dimensionality of the embeddings, the number of latents, and the
size of the codebook all in tandem so that the size of the model stays constant as the level of sparsity
changes. At each level of sparsity, we rerun the continual RL experiments as described in Section 4.2
and plot a summary of the results in Figure 9. In the results, we see that sparsity does help and
that there is an ideal amount of sparsity. In both the crossing and door key environments, a
sparsity level of 8 leads to optimal performance.4 These results mirror findings from the work on
FTA by Pan et al. (2021), which also show sparsity helping up to a certain threshold.

4Note that the optimal sparsity levels in this experiment do not align with experiments in previous sections because
we use a modified architecture that allows us to change the sparsity level more freely.
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G Supplemental World-Model Materials

This section contains additional materials that help describe the model training process and results.
Algorithm 1 provides pseudo-code for the training algorithm, Figures 10 & 11 visualize the training
process, and Figures 12 & 13 visualize distributions of rollouts predicted by the learned world models.

Algorithm 1 Training Autoencoder and World Model
D ← dataset of transition tuples (s, a, s′)
Initialize the encoder, fθ, decoder, gϕ, and world model, wψ
Set the number of autoencoder training steps, N , the number of of world model training steps, L,
and the number of hallucinated replay steps, K

{Training the Autoencoder}
for N steps do

Sample transition (s0, a0, s1) ∈ D
z← fθ(s0)
ŝ0 ← gϕ(z0)
loss ← MSE(s0, ŝ0)
Update parameters θ and ϕ with Adam

end for
Freeze autoencoder model weights, θ and ϕ

{Training the World Model}
for L steps do

Sample a sequence of transitions (s0, a0, s1, a1, ..., sK) ∈ D
ẑ← fθ(s0)
for k in {0, 1, ...,K − 1} do

ẑ← wψ(ẑ, ak)
zk+1 ← fθ(sk+1)
Compute loss between ẑ and zk+1 {cross-entropy for discrete, MSE for continuous}
Update parameters ψ with Adam

end for
end for
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Figure 10: Depiction of a continuous world model training with n steps of hallucinated replay. After
encoding the initial observation, the world model rolls out a trajectory of predicted latent states,
ẑt+1, ẑt+2, . . . , ẑt+n. Actions from a real trajectory are used during training, but are excluded in the
depiction to avoid clutter. The loss at each time step is calculated as the mean squared error between
the hallucinated latent state ẑt+i and the ground-truth, zt+i. This method is called hallucinated
replay because the entire trajectory after the first latent state is hallucinated by the world model.

Figure 11: Depiction of a single step of discrete world model training and the subsequent discretiza-
tion of the latent state. The observation xt is encoded to produce latent state zt, which is passed
to the world model to sample the logits ẑt+1 for a following state. The predicted next state logits
ẑt+1 are compared to the ground truth state zt+1, which is constructed from the corresponding
ground-truth observation: zt+1 = fθ(xt+1). Before the world model can be reapplied, the latent
state logits must be discretized with an argmax operator and converted to the one-hot format.
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Figure 12: Comparison of rollouts predicted by different world models in the crossing environment.
Each row visualizes the state distributions throughout rollouts predicted by different world models,
with the x-axis giving the step in the rollout. The ground-truth row depicts the state distribution
over rollouts as a policy that explores the right side of the environment is enacted in the true
environment. Predicted observations are averaged over 10,000 rollouts. Being closer to the ground-
truth indicates a higher accuracy.
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Figure 13: Comparison of rollouts predicted by different world models in the door key environment.
Each row visualizes the state distributions throughout rollouts predicted by different world models,
with the x-axis giving the step in the rollout. The ground-truth row depicts the state distribution
over rollouts as a policy that navigates to the goal state is enacted in the true environment. Predicted
observations are averaged over 10,000 rollouts. Being closer to the ground-truth indicates a higher
accuracy.
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H Supplemental RL Materials

This section contains additional materials that help describe the RL training process and results.
Algorithm 2 provides pseudo-code for episodic and continual RL training. Figure 14 shows different
environment variations used in the continual learning setting. Figure 15 plots the reconstruction
loss of the autoencoder during episodic RL training. And lastly, Figure 16 depicts the full results of
the continual RL runs starting from the first timestep.

Algorithm 2 Reinforcement Learning Training Process
Initialize the encoder, fθ, and decoder, gϕ
Initialize the policy and value networks, πψ and Vψ, with combined parameters ψ
D ← ∅ {Dataset of observations}
Set number of interaction steps, N , batch size, B0, autoencoder epochs, L, PPO epochs K, PPO
start step P , and autoencoder batch size, B1
For continual learning experiments, specify environment change frequency, C

while number of interactions is less than N do
Enact policy πψ in the environment to obtain a batch of B0 transition tuples
if interaction step ≥ P then

Using the online data, perform K epochs of PPO updates on parameters ψ
end if
for L steps do

Sample a batch of observations (s0, s1, ..., sB1) ∈ D
Apply the autoencoder and calculate the reconstruction loss
Update parameters θ and ϕ using Adam

end for
if doing continual learning and C interaction steps have passed then

Randomize the environment
end if

end while

Figure 14: The top row depicts random initializations of the crossing environment, and the bottom
that of the door key environment. Each time the environment changes, the positions of all internal
walls and objects are randomized, with the exception of the agent position in the crossing environ-
ment and the goal in both environments.
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Vanilla AE

VQ-VAE

FTA AE

Figure 15: Median reconstruction loss of the autoencoder during episodic RL training. The au-
toencoder is trained on observations randomly sampled from a buffer that grows as the RL training
progresses. Lower is better, indicating a better reconstruction of the input observation. The plot
depicts a 95% confidence interval around the median over 30 runs. We plot the median of this metric
as there are a few outliers that drastically skew the average. The VQ-VAE in particular exhibits
the highest variance in reconstruction loss, but this does not seem to hinder the representation’s
performance in the RL setting.

(a)

End-to-End

(b) (c)

VQ-VAE

Vanilla AE

(d)

FTA AE

Figure 16: (a-b) Mean agent performance as the environments change at intervals indicated by the
dotted, gray lines. Lower is better. (c-d) Median encoder reconstruction loss. Lower peaks mean the
representation generalizes better, and a quicker decrease means the autoencoder is learning faster.
Overall, a lower reconstruction loss is better. (a-d) Results are averaged over 30 runs and depict
95% confidence intervals. Performance is plotted after an initial delay to learn representations, after
which all methods are trained with PPO.
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Abstract

Modern reinforcement learning has been conditioned by at least three dogmas. The
first is the environment spotlight, which refers to our tendency to focus on modeling
environments rather than agents. The second is our treatment of learning as finding
the solution to a task, rather than adaptation. The third is the reward hypothesis, which
states that all goals and purposes can be well thought of as maximization of a
reward signal. These three dogmas shape much of what we think of as the science
of reinforcement learning. While each of the dogmas have played an important
role in developing the field, it is time we bring them to the surface and reflect on
whether they belong as basic ingredients of our scientific paradigm. In order to
realize the potential of reinforcement learning as a canonical frame for researching
intelligent agents, we suggest that it is time we shed dogmas one and two entirely,
and embrace a nuanced approach to the third.

1 On a Paradigm for Intelligent Agents

In The Structure of Scientific Revolution, Thomas Kuhn distinguishes between two phases of scientific
activity (Kuhn, 1962). The first Kuhn calls "normal science" which he likens to puzzle-solving, and
the second he calls the "revolutionary" phase, which consists of a re-imagining of the basic values,
methods, and commitments of the science that Kuhn collectively calls a "paradigm".

The history of artificial intelligence (AI) arguably includes several swings between these two phases,
and several paradigms. The first phase began with the 1956 Dartmouth workshop (McCarthy et al.,
2006) and arguably continued up until sometime around the publication of the report by Lighthill
et al. (1973) that is thought to have heavily contributed to the onset of the first AI winter (Haenlein &
Kaplan, 2019). In the decades since, we have witnessed the rise of a variety of methods and research
frames such as symbolic AI (Newell & Simon, 1961; 2007), knowledge-based systems (Buchanan
et al., 1969) and statistical learning theory (Vapnik & Chervonenkis, 1971; Valiant, 1984; Cortes &
Vapnik, 1995), culminating in the most recent emergence of deep learning (Krizhevsky et al., 2012;
LeCun et al., 2015; Vaswani et al., 2017) and large language models (Brown et al., 2020; Bommasani
et al., 2021; Achiam et al., 2023).

In the last few years, the proliferation of AI systems and applications has hopelessly outpaced our
best scientific theories of learning and intelligence. Yet, it is our duty as scientists to provide the
means to understand the current and future artifacts borne from the field, especially as these artifacts
are set to transform society. It is our view that reflecting on the current paradigm and looking
beyond it is a key requirement for unlocking this understanding.

In this position paper, we make two claims. First, reinforcement learning (RL) is a good candidate
for a complete paradigm for the science of intelligent agents, precisely because "it explicitly considers
the whole problem of a goal-directed agent interacting with an uncertain environment" (p. 3, Sutton
& Barto, 2018). Second, in order for RL to play this role, we must reflect on the ingredients of
our science and shift a few points of emphasis. These shifts are each subtle departures from three
"dogmas", or implicit assumptions, summarized as follows:
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1. The Environment-Spotlight (Section 2): Our emphasis on modeling environments rather
than agents.

2. Learning as Finding a Solution (Section 3): Our search for agents that learn to solve tasks.

3. The Reward Hypothesis (Section 4): Assuming all goals are well thought of in terms of
reward maximization.

When we relax these dogmas, we arrive at a view of RL as the scientific study of agents, a vision closely
aligned with the stated goals of both RL and AI from their classic textbooks (Sutton & Barto, 2018;
Russell & Norvig, 1995), as well as cybernetics (Wiener, 2019). As important special cases, these
agents might interact with a Markov decision process (MDP; Bellman, 1957; Puterman, 2014), seek to
identify solutions to specific problems, or learn in the presence of a reward signal with the goal of
maximizing it, but these are not the only cases of interest.

2 Dogma One: The Environment Spotlight

The first dogma we call the environment spotlight (Figure 1), which refers to our collective focus on
modeling environments and environment-centric concepts rather than agents. For example, the
agent is essentially the means to deliver a solution to an MDP, rather than a grounded model in itself.

We do not fully reject this behaviourist view, but suggest balancing it; after all the classical RL
diagram features two boxes, not just one. We believe that the science of AI is ultimately about
intelligent agents, as argued by Russell & Norvig (1995); yet, much of our thinking, as well as our
mathematical models, analysis, and central results tend to orbit around solving specific problems,
and not around agents themselves. In other words, we lack a canonical formal model of an agent.
This is the essence of the first dogma.

Dogma 1: The Environment Spotlight
Our collective focus on environments and environment-centric concepts, rather than agents.

What do we mean when we say that we focus on environments? We suggest that it is easy to answer
only one of the following two questions:

1. What is at least one canonical mathematical model of an environment in reinforcement learning?

2. What is at least one canonical mathematical model of an agent in reinforcement learning?

The first question has a straightforward answer: the MDP, or any of its nearby variants such as a
𝑘-armed bandit (Lattimore & Szepesvári, 2020), a contextual bandit (Langford & Zhang, 2007), or a
partially observable MDP (POMDP; Cassandra et al., 1994). These each codify different versions

Environment

Agent

Figure 1: The first dogma, the Environment Spotlight.
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of decision making problems, subject to different structural assumptions—in the case of an MDP,
for instance, we make the Markov assumption by supposing there is a maintainable bundle of
information we call the state that is a sufficient statistic of the next reward and next distribution over
this same bundle of information. We assume these states are defined by the environment and are
directly observable by the agent at each time step for use in learning and decision making. The
POMDP relaxes this assumption and instead only reveals an observation to the agent, rather than
the state. By embracing the MDP, we are allowed to import a variety of fundamental results and
algorithms that define much of our primary research objectives and pathways. For example, we know
every MDP has at least one deterministic, optimal, stationary policy, and that dynamic programming
can be used to identify this policy (Bellman, 1957; Blackwell, 1962; Puterman, 2014). Moreover, our
community has spent a great deal of effort in exploring variations of the MDP such as the Block
MDP (Du et al., 2019) or Rich Observation MDP (Azizzadenesheli et al., 2016), the Object-Oriented
MDP (Diuk et al., 2008), the Dec-POMDP (Oliehoek et al., 2016), Linear MDPs (Todorov, 2006), and
Factored MDPs (Guestrin et al., 2003), to name a few. These models each forefront different kinds of
problems or structural assumptions, and have inspired a great deal of illuminating research.

In contrast, this second question ("what is a canonical agent model?") has no clear answer (Haru-
tyunyan, 2020). We might be tempted to respond in the form of a specific kind of a popular learning
algorithm, such as 𝑄-learning (Watkins & Dayan, 1992), but we suggest that this is a mistake.
𝑄-learning is just one instance of the logic that could underlie an agent, but it is not a generic
abstraction of what an agent actually is, not in the same way that a MDP is a model for a broad
family of sequential decision making problems. As discussed by Harutyunyan (2020), we lack a
canonical model of an agent, or even a basic conceptual picture. We believe that at this stage of the
field, this is becoming a limitation, and is due in part to our focus on environments.

Indeed, the exclusive focus on environment-centric concepts (such as the dynamics model, envi-
ronment state, optimal policy, and so on) can often obscure the vital role of the agent itself. As a
result, we are less capable of exploring questions that feature agents directly. But, here we wish
to reignite interest in an agent-centric paradigm that can give us the conceptual clarity we need
to explore the principles of agency. Without such ground currently, we struggle to even precisely
define and differentiate between key agent families such as "model-based" and "model-free" agents
(though some precise definitions have been given by Strehl et al. 2006 and Sun et al., 2019), or study
more complex questions about the agent-environment boundary (Jiang, 2019; Harutyunyan, 2020),
the extended-mind (Clark & Chalmers, 1998), embedded agency (Orseau & Ring, 2012), the effect of
embodiment (Ziemke, 2013; Martin, 2022), or the impact of resource-constraints (Simon, 1955; Ortega
et al., 2015; Griffiths et al., 2015; Kumar et al., 2023; Aronowitz, 2023) on our agents in a general way.
Most agent-centric concepts are typically beyond the scope of the basic mathematical language of
our field, and are consequently not featured in our experimental work.

The Alternative: Shine the Spotlight on Agents, Too. Our suggestion is simple: it is important
to define, model, and analyse agents in addition to problems and environments. We should build
toward a canonical mathematical model of an agent that can open us to the possibility of discovering
general laws governing agents (if they exist), building on the work of Russell & Subramanian (1994),
Wooldridge & Jennings (1995), Kenton et al. (2023), and echoing the call of Sutton (2022). We should
engage in foundational work to establish axioms that characterize important agent properties and
families, as in work by Sunehag & Hutter (2011; 2015) and Richens & Everitt (2024). We should do
this in a way that is confluent with our latest empirical data about agents, drawing from the variety
of disciplines that study agents, from psychology,1 cognitive science, and philosophy, to biology,
AI, and game theory. Doing so can expand the purview of our scientific efforts to understand and
design intelligent agents.

1Tomasello makes a similar case that the field of psychology should center around the concept of agency: "Every scientific
discipline begins with a proper domain, a first principle. In biology, that proper domain or first principle is life: physical
substances organized in particular ways to perform particular organismic functions. In psychology, depending on one’s
theoretical predilections, that proper domain or first principle might be either behavior or mentality. But my preferred
candidate would be agency, precisely because agency is the organizational framework within which both behavioral and
mental processes operate." (p. 134, Tomasello, 2022).
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3 Dogma Two: Learning as Finding a Solution

The second dogma is embedded in the way we treat the concept of learning. We tend to view
learning as a finite process involving the search for—and eventual discovery of—a solution to a
given task. For example, consider the classical problem of an RL agent learning to play a board
game, such as Backgammon (Tesauro et al., 1995) or Go (Silver et al., 2016). In each of these cases, we
tend to assume a good agent is one that will play a vast number of games to learn how to play the
game effectively. Then, eventually, after enough games, the agent will reach optimal play and can
stop learning as the desired knowledge has been acquired.

In other words, we tend to implicitly assume that the learning agents we design will eventually
find a solution to the task at hand, at which point learning can cease. This is present in many of
our classical benchmarks, too, such as mountain car (Taylor et al., 2008) or Atari (Bellemare et al.,
2013), in which agents learn until they reach a goal. On one view, such agents can be understood
as searching through a space of representable functions that captures the possible action-selection
strategies available to an agent (Abel et al., 2023b), similar to the Problem Space Hypothesis (Newell,
1994). And, critically, this space contains at least one function—such as the optimal policy of an
MDP—that is of sufficient quality to consider the task of interested solved. Often, we are then
interested in designing learning agents that are guaranteed to converge to such an endpoint, at which
point the agent can stop its search (and thus, stop its learning). This process is pictured in Figure 2,
and is summarized in the second dogma.

Dogma 2: Learning as Finding a Solution
Our implicit focus on designing agents that find a solution, then stop learning.

This view is embedded into many of our objectives, and follows quite naturally from the use of the
MDP as a model of the decision making problem. It is well established that every MDP has at least
one optimal deterministic policy, and that such a policy can be learned or computed through dynamic
programming or approximations thereof. The same tends to be true of many of the alternative
settings we consider.

The Alternative: Learning as Adaptation. Our suggestion is to embrace the view that learning
can also be treated as adaptation (Barron et al., 2015). As a consequence, our focus will drift away
from optimality and toward a version of the RL problem in which agents continually improve, rather
than focus on agents that are trying to solve a specific problem. Of course, versions of this problem
have already been explored through the lens of lifelong (Brunskill & Li, 2014; Schaul et al., 2018),
multi-task (Brunskill & Li, 2013), and continual RL (Ring, 1994; 1997; 2005; Khetarpal et al., 2022;
Anand & Precup, 2023; Abel et al., 2023b; Kumar et al., 2023). Indeed, this perspective is highlighted
in the introduction of the textbook by Sutton & Barto (2018):

Representable 
Behaviors

Time

Pe
rf

or
m

an
ce Solution 

found!

Figure 2: Dogma 2: Learning as Finding a Solution.
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When we say that a reinforcement learning agent’s goal is to maximize a numerical
reward signal, we of course are not insisting that the agent has to actually achieve
the goal of maximum reward. Trying to maximize a quantity does not mean that
that quantity is ever maximized. The point is that a reinforcement learning agent is
always trying to increase the amount of reward it receives. (p. 10, Sutton & Barto,
2018).

This is a matter of a shift of emphasis: when we move away from optimality, how do we think about
evaluation? How, precisely, can we define this form of learning, and differentiate it from others?
What are the basic algorithmic building blocks that carry out this form of learning, and how are
they different from the algorithms we use today? Do our standard analysis tools such as regret and
sample complexity still apply? These questions are important, and require reorienting around this
alternate view of learning. We suggest that we as a community shed the second dogma and study
these questions directly.

4 Dogma Three: The Reward Hypothesis

The third dogma is the reward hypothesis (Sutton, 2004; Littman, 2015; Christian, 2021; Abel et al., 2021;
Bowling et al., 2023), which states "All of what we mean by goals and purposes can be well thought
of as maximization of the expected value of the cumulative sum of a received scalar signal (reward)."

First, it is important to acknowledge that this hypothesis is not deserving of the title "dogma" at all.
As originally stated, the reward hypothesis was intended to organize our thinking around goals
and purposes, much like the expected utility hypothesis before it (Machina, 1990). And, the reward
hypothesis seeded the research program of RL in a way that has led to the development of many of
our most celebrated results, applications, and algorithms.

Dogma 3: The Reward Hypothesis
All goals can be well thought of in terms of reward maximization.

However, as we continue our quest for the design of intelligent agents (Sutton, 2022), it is important
to recognize the nuance in the hypothesis.

In particular, recent analysis by Bowling et al. (2023), building on the work of Pitis (2019); Abel et al.
(2021) and Shakerinava & Ravanbakhsh (2022), fully characterizes the implicit conditions required
for the hypothesis to be true. These conditions come in two forms. First, Bowling et al. provide
a pair of interpretative assumptions that clarify what it would mean for the reward hypothesis

 observation
action

goal space

reward 
function

goal

Environment

Figure 3: The third dogma, the Reward Hypothesis. Any goal that a designer might conceive of can
be well thought of in terms of the maximization of a reward signal by a learning agent.
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to be true or false—roughly, these amount to saying two things. First, that "goals and purposes"
can be understood in terms of a preference relation on possible outcomes. Second, that a reward
function captures these preferences if the ordering over agents induced by value functions matches
that of the ordering induced by preference on agent outcomes. Then, under this interpretation, a
Markov reward function exists to capture a preference relation if and only if the preference relation
satisfies the four von Neumann-Morgenstern axioms (von Neumann & Morgenstern, 1953), and a
fifth Bowling et al. call 𝛾-Temporal Indifference.

This is significant, as it suggests that when we write down a Markov reward function to capture a
desired goal or purpose, we are forcing our goal or purpose to adhere to the five axioms, and we
must ask ourselves if it is always appropriate. As an example, consider the classical challenge on the
incomparability (or incommeasurability) of values in ethics, as discussed by Chang (2015). That
is, certain abstract virtues such as happiness and justice might be thought to be incomparable to
one another. Or, similarly, two concrete experiences might be incommeasurable, such as a walk on
the beach and eating breakfast—how might we assign measure to each of these experiences in the
same currency? Chang notes that two items might not be comparable without further reference to a
particular use, or context: "A stick can’t be greater than a billiard ball...it must be greater in some
respect, such as mass or length." However, the first axiom, completeness, strictly requires that the
implicit preference relation assigns a genuine preference between all pairs of experiences. As such, if
we take the reward hypothesis to be true, we can only encode goals or purposes in a reward function
that reject both incomparability and incommeasurability. It is worth noting that completeness in
particular has been criticized by Aumann (1962) due to the demands it places on the individual
holding the preference relation. Finally, the completeness axiom is not the only one restricting the
space of viable goals and purposes; axiom three, independence of irrelevant alternatives, famously
rejects risk-sensitive objectives as well due to the Allais paradox (Allais, 1953; Machina, 1982). Indeed,
Skalse & Abate (2023) establish that Markovian rewards cannot capture risk-sensitive or multi-criteria
objectives, and Miura (2022) similarly prove that multidimensional Markov rewards are strictly more
expressive than scalars.

The Alternative: Recognize and Embrace Nuance. Our suggestion is to be aware of the limitations
of scalar rewards, and to be open to other languages for describing an agent’s goals. It is important
that we recognize the implicit restrictions we are placing on the viable goals and purposes under
consideration when we represent a goal or purpose through a reward signal. We should become
familiar with the requirements imposed by the five axioms, and be aware of what specifically we
might be giving up when we choose to write down a reward function. On this latter point there is a
profound opportunity for future work. It is also worth highlighting the fact that preferences are
themselves just another language for characterizing goals—there are likely to be others, and it is
important to cast a wide net in our approach to thinking about goal-seeking.

5 Discussion

We have here argued that one long-term vision of RL is to provide a holistic paradigm for the science
of intelligent agents. To realise this vision, we suggest that it is time to reconcile our relationship
with three implicit dogmas that have shaped aspects of RL so far. These three dogmas amount
to over-emphasis on (1) environments, (2) finding solutions, and (3) rewards as a language for
describing goals. Further, we have initial suggestions on how to pursue research that makes subtle
departures from these dogmas. First, we should treat agents as one of our central objects of study.
Second, we must move beyond studying agents that find solutions for specific tasks, and also study
agents that learn to endlessly improve from experience. Third, we should recognize the limits of
embracing reward as our language for goals, and consider alternatives.

Open Questions. Each of these suggestions can be translated into important research questions we
encourage the community to explore further. First, what is our canonical model of an agent? Several
recent proposals have emerged, and agree on many aspects. What are the consequences of adopting
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one view, rather than another? Which ingredients of an agent are necessary, rather than extraneous?
We suggest that it is important to think carefully about these questions, and adopt conventions for
the standard model of an agent. Such a model can be used to clarify old questions, and as discussed,
open new lines of study around agent-centric concepts such as the agent-environment boundary
(Todd & Gigerenzer, 2007; Orseau & Ring, 2012; Harutyunyan, 2020), embodiment (Ziemke, 2013;
Martin, 2022), resource-constraints (Simon, 1955; Ortega, 2011; Braun & Ortega, 2014; Ortega et al.,
2015; Griffiths et al., 2015; Kumar et al., 2023; Aronowitz, 2023), and embedded agency (Orseau &
Ring, 2012). Second, what is the goal of learning when we give up the concept of a task’s solution? In
other words: how do we think about learning when no optimal solution can be found? How do we
begin to evaluate such agents, and measure their learning progress? Third, we suggest embracing a
wide variety of views about plausible accounts of the objectives of an agent. This includes continuing
to embrace classical accounts of reward maximization, but also considering varied objectives like
average reward (Mahadevan, 1996; Wan et al., 2021a;b), risk (Howard & Matheson, 1972; Mihatsch &
Neuneier, 2002), constraints (Altman, 2021), logical goals (Tasse et al., 2020; 2021), or even open-ended
goals (Stanley & Lehman, 2015; Colas et al., 2019; Samvelyan et al., 2023).

On the term "Dogma". The title of this paper and use of the term "dogma" are an homage to "Two
Dogmas of Empiricism" by Quine (1951). The term "dogma" casts a more negative light on each
of the principles than we intend (though, as Kuhn (1963) notes, there is a role for dogma in the
sciences). Indeed, as discussed, the reward hypothesis was originally conceived of as a hypothesis
as its name suggests. Still, it is a principle that is often taken as a presupposition that frames the
rest of the field of RL similar to the way that the Church-Turing Thesis frames computation—they
are both standard pre-scientific commitments that are part of most research programmes (Lakatos,
2014). The other two dogmas are both implicit rather than conventions we regularly state openly and
embrace; it is rare to see work in RL actively argue against the importance of thinking about agents
or agency, for instance. Instead, it is a convention to begin most RL research by framing our research
questions around dynamic programming and MDPs. In this sense, the community has been drawn
to specific well-tread research paths that involve modeling environments first, rather than agents
directly. The same implicit character is true of the second dogma: due to our focus on MDPs and
related models, it also tends to be the case that instances of the RL problem we study have a well
structured solution that is known to be discoverable through means such as dynamic programming
or temporal difference learning. We then often use language involving an algorithm solving a task by
converging to an optimal policy, reflecting the influence of the second dogma. It is in this sense that
we take the term “dogma" to be fitting of the first two: we tend not to question these aspects of our
research programme, yet they influence much of our methods and goals.

It is worth noting that it is understandable why the sentiments underlying the three dogmas were
adopted: by building our study from Markov models, we can make use of the suite of well-understood,
efficient algorithms based on dynamic programming, thanks to the seminal work by Bellman (1957),
Sutton (1988), Watkins (1989), and others. This is further supported by the way that fundamental
results from stochastic approximation (Robbins & Monro, 1951) have influenced many classical
results, such as the convergence of 𝑄-learning by Watkins & Dayan (1992) or TD-learning with
function approximation by Tsitsiklis & Van Roy (1996).

Inspiration. We are not the first to suggest moving beyond some of these conventions. The work on
general reinforcement learning by Hutter (2000; 2002; 2004) and colleagues (Lattimore & Hutter, 2011;
Leike, 2016; Cohen et al., 2019) has long studied RL in the most general possible setting. Indeed,
the stated goal of the original work on AIXI by Hutter (2000) was "...to introduce the universal AI
model" (p. 3). Similarly, a variety of work has explicitly focused on agents. For instance, the classical
AI textbook by Russell & Norvig (1995) defines AI "as the study of agents that receive percepts from
the environment and perform actions" (p. viii), and frames the book around "the concept of the
intelligent agent" (p. vii). Russell & Subramanian (1994) also feature a general take on goal-directed
agents that has shaped much of the agent-centric literature that follows—the agent functions there
introduced have been more recently adopted as one model of an agent (Abel et al., 2023a;b). Sutton
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(2022) proposes the "quest for a common model of the intelligent decision maker", and provides
initial suggestions for how to frame this quest. Work by Dong et al. (2022) and Lu et al. (2021)
have built on the traditions of agent-centric modeling, providing detailed accounts of the possible
constituents of an agent’s internal mechanism, similar to Sutton. Further work by Kenton et al. (2023)
and Richens & Everitt (2024) explore a causal perspective on agents, giving both concrete definitions
and insightful results. Outside of AI, the subject of agency is an important subject of discourse in
its own right—we refer the reader to the work by Barandiaran et al. (2009) and Dretske (1999) or
the books by Tomasello (2022), Nguyen (2020), and Dennett (1989) for further insights from nearby
communities.

Similarly, a variety of work has explored alternative ways to think about goals. For instance, Little &
Sommer (2013) study an agent that learns a predictive model of its environment, and ground this
study using the tools of information theory. This is similar in spirit to the Free-Energy Principle
proposed by Friston (2010), with recent work by Hafner et al. (2020) exploring connections to RL.
Preferences have also been used as an alternative to rewards, as in preference-based RL (Wirth et al.,
2017), with a more recent line of work on RL from human feedback (Knox & Stone, 2008; 2009;
Christiano et al., 2017; MacGlashan et al., 2016; 2017) now playing a significant role in the current
wave of language model research (Achiam et al., 2023). Others have proposed the use of various
logical languages for grounding goals, such as linear temporal logic (Kress-Gazit et al., 2009; Littman
et al., 2017; Li et al., 2017; Camacho & McIlraith, 2019; Hasanbeig et al., 2020; Hammond et al., 2021)
and nearby structures such as reward machines (Icarte et al., 2022). Another perspective presented
by Shah et al. (2021) explicitly contrasts the framing of assistance games (Hadfield-Menell et al.,
2016) with reward maximization, and suggests that the former provides a more compelling path to
designing assistive agents. Lastly, a variety of work has considered forms of goal-seeking beyond
expected cumulative reward, as in ordinal dynamic programming (Koopmans, 1960; Sobel, 1975),
convex RL (Zahavy et al., 2021; Mutti et al., 2022; 2023), empowerment (Salge et al., 2014), active
inference (Friston et al., 2012; Da Costa et al., 2022), other departures from the expectation (Bellemare
et al., 2017; 2023), or by incorporating other objectives such as constraints (Le et al., 2019; Altman,
2021) or risk (Mihatsch & Neuneier, 2002; Shen et al., 2014; Wang et al., 2023).

Other Dogmas. There are many other assumptions inherent to the basic philosophy of reinforcement
learning that we did not discuss. For instance, it has been common to focus on agents that learn
from a tabula rasa state, rather than consider other stages of learning. We also tend to adopt the
cumulative discounted reward with a geometric discounting schedule as the objective, rather than
using a hyperbolic schedule (Fedus et al., 2019), or consider the existence of environment-state rather
than a partially observable setting (Cassandra et al., 1994; Dong et al., 2022). We take it that reflecting
on these and other perspectives is also important, but that they have already received significant
attention by the community.

Conclusion. We hope this paper can reinvigorate the RL community to explore beyond our current
frames. We believe this begins by embracing the vision that RL is a good candidate for a holistic
paradigm of intelligent agents, and continues with a careful reflection of the values, methods, and
ingredients of our scientific practice that will enable this paradigm to flourish.
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Abstract

Importance sampling (IS) represents a fundamental technique for a large surge of
off-policy reinforcement learning approaches. Policy gradient (PG) methods, in
particular, significantly benefit from IS, enabling the effective reuse of previously
collected samples, thus increasing sample efficiency. However, classically, IS is em-
ployed in RL as a passive tool for re-weighting historical samples. However, the
statistical community employs IS as an active tool combined with the use of be-
havioral distributions that allow the reduction of the estimate variance even below
the sample mean one. In this paper, we focus on this second setting by addressing
the behavioral policy optimization (BPO) problem. We look for the best behav-
ioral policy from which to collect samples to reduce the policy gradient variance as
much as possible. We provide an iterative algorithm that alternates between the
cross-entropy estimation of the minimum-variance behavioral policy and the actual
policy optimization, leveraging on defensive IS. We theoretically analyze such an
algorithm, showing that it enjoys a convergence rate of order Opϵ´4q to a stationary
point, but depending on a more convenient variance term w.r.t. standard PG meth-
ods. We then provide a practical version that is numerically validated, showing the
advantages in the policy gradient estimation variance and on the learning speed.

1 Introduction

Policy gradient (PG, Peters & Schaal, 2006) algorithms represent a large class of reinforcement
learning (RL, Sutton & Barto, 2018) approaches that are particularly suitable to address complex
control problems thanks to their ability to deal with continuous state and action spaces natively. PG
methods address the RL problem by considering a parametric control policy πθ and formulate the
learning process as a particular stochastic optimization problem by updating the policy parameters
θ in the ascent direction of the policy gradient. Clearly, the policy gradient needs to be estimated
from samples, making the accuracy of such an estimate crucial for the actual performance of the PG
approaches (Zhao et al., 2011; Papini et al., 2022).

In this direction, a significant line of research is represented by the approach to sample reuse.
Borrowing the techniques from the statistical simulation community, importance sampling (IS, Owen,
2013) has been imported to the PG methods. The majority of the approaches that apply IS to PG
methods are based on the idea of reweighting the data collected in the past (i.e., with behavioral
policies) proportionally to the probability of being generated by the current policy (i.e., target policy),
whose gradient needs to be estimated (e.g., Thomas et al., 2015; Metelli et al., 2018). Theoretical
results about the advantages in terms of variance reduction have been provided in Metelli et al.
(2020). However, these approaches can be considered passive since the focus is on reusing in the
most effective way the sample collected in the past without considering the possibility of choosing
the behavioral policy to improve the estimation of the gradient of the current target policy.

645



RLJ | RLC 2024

Indeed, this is the main use of IS for in the Monte Carlo simulation community, where this technique
takes an active role. Specifically, in these scenarios, the objective is to find the best behavioral policy
from which to collect samples in order to reduce the estimate variance as much as possible. It can be
proved that under specific assumptions on the random variable whose expectation is to be estimated,
such off-policy variance can be reduced even below that of the standard sample mean estimate Owen
(2013). Although this line represents an appealing direction within a class of approaches (like RL)
that suffer from an inherent sample inefficiency, the community has not deeply studied this direction.

Original Contributions In this paper, we focus on the active role of IS in the PG family of RL
algorithms. Specifically, we investigate if we can actively learn the behavioral policy from which to
collect samples in order to control the variance of the PG estimator effectively. We call this problem
behavioral policy optimization (BPO). The contributions of the paper can be stated as follows:
• We formulate the BPO problem as finding the behavioral policy that minimizes the variance of

the off-policy gradient estimate of a given target policy. After showing that this optimization
problem allows for a closed-form solution under restrictive conditions, we introduce an approach
for estimating such a behavioral policy based on cross-entropy minimization (Section 3).

• We provide a theoretical analysis of a principled algorithm that alternates two phases: behavioral
policy learning based on cross-entropy and actual performance optimization based on the off-
policy gradient update. We show that a careful sample partition between the two phases allows
for achieving convergence rates of order Opϵ´4q but depending on a more convenient variance
term compared to standard REINFORCE (Section 4).

• We provide a practical version of the analyzed algorithm that uses all the samples collected.
Then, we empirically evaluate such an algorithm, showing a significant reduction in the variance
of the gradient estimate that translates into a faster learning curve (Section 6).

The proofs of all the results reported in the main paper can be found in Appendix B.

2 Preliminaries

Notation Let n P N, we denote with rns :“ t1, . . . , nu. For a measurable set X , we denote with
∆X the set of probability measures over X . Let P, Q P ∆X be two probability measures such that
P ! Q, that is, P is absolutely continuous with respect to Q. When the reference measure λ is
clear from the context (Lebesgue measure for continuous X and counting measure for discrete X ,
respectively), we use p to denote the Radon-Nikodym derivative dP {dλ (density and mass function,
respectively) and

ş
X ¨ dx to denote integration with respect to λ (Lebesgue integral and summation,

respectively). We define the KL-divergence DKL and the chi-square divergence χ2 as:

DKLpP }Qq :“
ż

X
ppxq log

ˆ
ppxq
qpxq

˙
dx, χ2pP }Qq :“

ż

X

pppxq ´ qpxqq2

qpxq dx. (1)

Markov Decision Processes A discounted Markov decision problem (MDP, Puterman, 2014) is
defined as a 6-tuple pS, A, P, R, µ0, γq, where S is the measurable state space, A is the measurable
action space, P : S ˆA Ñ ∆S is the transition model defining for every ps, aq P S ˆA the probability
distribution of the next state s1 „ P p¨|s, aq, R : SˆA Ñ r´Rmax, Rmaxs is the reward function Rps, aq
when performing action a in state s, uniformly bounded by Rmax ă `8 defining the reward Rps, aq
obtained when playing action a in state s, µ0 P ∆S is the initial-state distribution prescribing the
state at which interaction begins, s0 „ µ0, and γ P r0, 1s is the discount factor.

Actor-only Policy Gradient We consider an agent whose behavior is described by a parametric
policy πθ : S Ñ ∆A where θ P Θ is the parameter belonging to the parameter space Θ Ď Rd,
assumed to be convex. In this setting, the agent’s goal consists of maximizing the expected return:

θ˚ P arg max
θPΘ

Jpθq :“ E
τ „pθ

rRpτ qs , where Rpτ q :“
T ´1ÿ

t“0
γtRpst, atq,
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and τ “ ps0, a0, . . . , sT ´1, aT ´1q P T is the trajectory whose probability density function is given by
pθpτ q “ µ0ps0q śT ´1

t“0 πθpat|stqP pst`1|st, atq, T is the trajectory length, and T “ pS ˆ AqT is the
trajectory set.1 If πθ is differentiable in θ, we can express the policy gradient (Williams, 1992), that
is the gradient of the expected return Jpθq with respect to θ:

∇Jpθq “ E
τ „pθ

r∇ log pθpτ qRpτ qs .

Actor-only methods (Peters & Schaal, 2006) perform learning by updating the policy parameters in
the direction of the ascending policy gradient θ Ð θ ` α∇Jpθq, where α ą 0 is the step size.

On-policy gradient estimators The policy gradient ∇Jpθq needs to be estimated from a set of
collected trajectories. If the trajectories Don “ tτiuiPrns are collected with the same policy πθ of
which we seek to estimate the policy gradient, we speak of on-policy gradient estimation:

p∇Jpθ; Donq “ 1
n

nÿ

i“1
gθpτiq, τi „ pθ, @i P rns, (2)

where gθpτ q is a single-trajectory estimator of the policy gradient. Classical unbiased estima-
tors include: REINFORCE (Williams, 1992) where gR

θ pτ q “ přT ´1
t“0 ∇ log πθpat|stqqRpτ q and

G(PO)MPD (Baxter & Bartlett, 2001) where gG
θ pτ q “ řT ´1

t“0 γtRpst, atq řt
l“0 ∇ log πθpal|slq.

Off-policy gradient estimators with Single behavioral policy When, instead, we seek to
estimate the policy gradient ∇Jpθq of a target policy πθ having collected n trajectories Doff “
tτiuiPrns with a different behavioral policy πθb , under the assumption that πθp¨|sq ! πθb p¨|sq for
every s P S, we speak of (single) off-policy gradient estimation:2

p∇Jpθ; Doffq “ 1
n

nÿ

i“1

pθpτiq
pθb pτiq pτiqgθpτiq, τi „ pθb , @i P rns, (3)

where pθpτ q
p

θb pτ q is the trajectory (simple) importance weight (Owen, 2013), defined as:

pθpτ q
pθb pτ q “

T ´1ź

t“0

πθpat|stq
πθb pat|stq . (4)

Off-policy gradient estimators with Multiple behavioral policies It is possible to extend
these estimators to the case in which trajectories are collected from multiple m P N behavioral
policies parameters tθb

jujPrms. In such a case, for every j P rms, we have collected nj trajectories
tτijuiPrnj s from the behavioral policy πθb

j
and such that βjp¨qπθp¨|sq ! πθb

j
p¨|sq for every s P S, we

speak of multiple off-policy gradient estimation:

p∇Jpθ; Doff; βq “
mÿ

j“1

1
nj

njÿ

i“1
βjpτijq pθpτijq

pθb
j
pτijqgθpτijq, τij „ pθb

j
, @i P rnjs, @j P rms, (5)

where Doff “ ttτijuiPrnj sujPrms and βjpτ q ě 0 for every j P rms and
řm

j“1 βjpτ q “ 1 for every
trajectory τ P T is a partition of the unity. A common choice for the coefficients βj which enjoys
desirable theoretical properties is the balance heuristic (BH, Veach & Guibas, 1995):

βBH
j pτ q :“

njpθb
j
pτ q

řm
k“1 nkpθb

k
pτ q “

nj

śT ´1
t“0 πθb

j
pat|stq

řm
k“1 nk

śT ´1
t“0 πθb

k
pat|stq

. (6)

1For a sufficiently large length, namely T ě p1 ´ γq´1 log
`
ϵ´1Rmaxp1 ´ γq´1˘

, the finite-horizon γ-discounted
expected return is ϵ-close to its infinite-horizon counterpart (Kearns & Singh, 2002). For this reason, we will use the
two interchangeably, and just make sure T » p1 ´ γq´1 in our simulations.

2if dataset Doff is made of just one trajectory τ , with little abuse of notation, we denote the estimator by p∇Jpθ; τ q.
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The resulting estimator becomes:

p∇Jpθ; Doffq “ 1
n

mÿ

j“1

njÿ

i“1

pθpτijqřm
k“1

nj

n pθb
k
pτijqgθpτijq, τij „ pθb

j
, @i P rnjs, @j P rms, (7)

where n “ řm
j“1 nj is the total number of trajectories. The (multiple) importance weight can be

interpreted as the (single) importance weight having as a behavioral distribution the mixture of the
m behavioral distributions with weights nj

n , i.e., Φm :“ řm
k“1

nj

n pθb
k

(Metelli et al., 2020).

When the set of behavioral policy parameters contains the target policy parameter θ too, we speak
of defensive (multiple) off-policy gradient estimation Owen (2013). In such a case, the importance
weight is guaranteed to be bounded.

3 Behavioral Policy Optimization

In this section, we introduce the behavioral policy optimization (BPO) problem we aim to solve in
this paper. The BPO problem consists in finding the “best behavioral policy” πθb to be used for
collecting the trajectories τ „ pθb for estimating the policy gradient p∇Jpθ; τ q of the target policy
πθ. We formalize the notion of “best behavioral policy” as the one that minimizes the trace of the
covariance matrix of the off-policy gradient estimator p∇Jpθ; τ q where τ „ pθb (that we will refer to
as gradient variance) induced by the candidate behavioral policy πθb :3

p˚,θ P arg min
p

θb : θbPΘ
Var

τ „p
θb

”
p∇Jpθ; τ q

ı
:“ E

τ „p
θb

„››› p∇Jpθ; τ q ´ ∇Jpθq
›››

2

2

ȷ
. (8)

The trace is a common scalarization of the covariance matrix. Moreover, controlling the trace of the
covariance of the gradient estimate is enough to establish finite-time convergence guarantees for SGD
algorithms (Ghadimi & Lan, 2013). The optimization problem of Equation (8) can be challenging
since it involves a minimization over the parameter space Θ, which can determine, in general, a
non-convex optimization problem. In Section 3.1, we show that when extending the optimization
over the full set of distributions over the trajectory space T , we can solve the BPO problem in
closed form. In Section 3.2, we illustrate how the closed-form solution can be employed to learn
a policy that induces a trajectory distribution representable within the policy parameters space Θ
approximately close to the best one.

3.1 Closed-form solution

In this section, we study the solution of the problem of Equation (8) when no restriction to the
representable trajectory distributions is enforced. Although this assumption is not realistic from
the policy gradient perspective, given the fact that the transition model of the environment is not
under control and the policy space might be constrained to the specific parametrization θ P Θ, it
represents an important preliminary step for obtaining a practical algorithm. The following result
provides a closed-form solution to the BPO problem.
Theorem 1. Let θ P Θ and gθ : T Ñ Rd be the single-trajectory gradient estimator used to compute
p∇Jpθ; τ q. The solution p˚,θ P ∆T to the BPO problem (Equation 8) is given by:

p˚,θpτ q “ pθpτ q}gθpτ q}2ş
T pθpτ q}gθpτ q}2dτ

. (9)

The optimal value of Equation (8) is given by:

Var
τ „p˚,θ

”
p∇Jpθ; τ q

ı
“ E

τ „pθ

r}gθpτ q}2s2 ´ }∇Jpθq}2
2 . (10)

3In the following, we will continue employing the policy gradient notation, although the presented result hold for
the estimation of the expected value of a general vector-valued function.
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It is worth comparing the result of Equation (10) with the variance of the on-policy gradient estimator
that can be easily computed from Equation (8):

Var
τ „pθ

”
p∇Jpθ; τ q

ı
“ E

τ „pθ

“}gθpτ q}2
2
‰ ´ }∇Jpθq}2

2 . (11)

Although the subtracted term }∇Jpθq}2
2 is the same in (11) and (10), the first one presents some

differences. Indeed, in Equation (11) we have an expectation of the squared L2-norm of the single-
trajectory gradient estimator, i.e., Eτ „pθ

“}gθpτ q}2
2
‰
, whereas in Equation (10), we have the squared

expectation of the L2-norm of the single-trajectory gradient estimator, i.e., Eτ „pθ
r}gθpτ q}2s2. From

Jensen’s inequality, we immediately observe that:

E
τ „pθ

r}gθpτ q}2s2 ď E
τ „pθ

“}gθpτ q}2
2
‰

, (12)

and, consequently, we conclude that the off-policy gradient estimator with p˚,θ as behavioral distri-
bution suffers a smaller variance compared with the on-policy gradient estimator.

Furthermore, it is worth comparing the result of Theorem 1 with the well-known result for minimum-
variance estimation of expectation for non-negative scalar functions (Kahn, 1950). Indeed, Theo-
rem 1 generalizes this result for vector-valued functions, reducing to the classical result for non-
negative scalar functions, with the standard zero-variance estimator.

As already noted at the beginning of the section, although a convenient closed-form expression for
the trajectory density function exists, it cannot be used in practice to collect trajectories since no
policy exists inducing such a trajectory distribution. Nevertheless, it can be employed to learn a
policy that induces a distribution as close as possible to this one.

3.2 Cross-entropy minimization

In this section, we illustrate how to employ the closed-form solution of the BPO problem derived
in Section 3.1 in order to obtain a practical algorithm. Since, in practice, the parameter space Θ,
together with the transition model, allows to span of a subset of the trajectory distributions ∆T , we
cannot represent the optimal behavioral distribution p˚ by means of a parametrization, i.e., there
not exists θb˚ P Θ such that p˚,θ “ pθb

˚
a.s. However, we can conveniently project it into the space

of representable behavioral distributions by minimizing the KL divergence:

θb: P arg min
θbPΘ

DKL pp˚,θ}pθb q . (13)

This minimization problem can be further simplified into a weighted cross-entropy minimization by
exploiting the functional form of p˚,θ, as shown in the following result.
Proposition 3.1. Let p˚,θ as defined in Equation (9). Then, the solution to the problem in Equa-
tion (13) can be obtained via the weighted cross-entropy minimization:

θb: P arg min
θbPΘ

E
τ „pθ

r´}gθpτ q} log pθb pτ qs “ E
τ „pθ

«
´}gθpτ q}

T ´1ÿ

t“0
log πθb pat|stq

ff
. (14)

This alternative formulation has the advantage that the objective function is expressed as an expected
value w.r.t. the trajectory distribution induced by the target policy, which can be estimated either
on- or off-policy. In the most general case, we can resort to (multiple) off-policy estimation:

pθb: P arg min
θbPΘ

1
n

mÿ

j“1

njÿ

i“1

pθpτijq
Φmpτijq}gθpτijq} log pθb pτijq, τij „ pθb

j
, @i P rnjs, @j P rms. (15)

In the general case, a closed-form solution may not be available, but we can still resort to iterative
optimization techniques such as gradient descent. In practice, it is common to use Gaussian or
softmax policies parametrized by neural networks. In this case, by using over-parametrized networks,
we expect to find good behavior policies even if the objective is non-convex (Du et al., 2019).
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Algorithm 1 Policy Gradient with Behavioral Policy Optimization.
1: Input: initial target policy parameters θ0, batch sizes NBPO, NPG, step size α, defensive parameter β
2: for k “ 0, . . . , K ´ 1 do
3: DBPO

k “ tNBPO trajectories collected with θku
4: rθk Ð Solve (approximately) Equation (13) with DBPO

k

5: DPG
k “

!
p1 ´ βqNPG trajectories τ „ prθk

and βNPG trajectories τ „ pθk

)

6: vk Ð p∇Jpθk; DPG
k q

7: θk`1 Ð θk ` αvk

8: end for
9: return θL with L „ UniprKsq

4 Theoretical Analysis

In this section, we study the theoretical properties of Algorithm 1, with a focus on the variance
reduction granted by the active-IS estimator and how this impacts the rate of convergence of policy
gradient to stationary points of the expected-return objective.

The quality of the policy gradient update will ultimately depend on how close our behavior policy is
to the optimal one, and this cannot be ignored when deciding how many samples NBPO are allocated
to approximately solving Equation (13) in Line 4 of the algorithm. In Section 4.1, we first study
the problem in full generality, assuming access to an ϵ-minimizer of Equation (13). We remove this
assumption in Section 4.2, studying the convergence rate for a specific but broad class of policies.

4.1 Behavior Policy Optimization Oracle

The following lemma shows the relationship between the variance of the off-policy estimator and
the distance, in terms of chi-square divergence, between the chosen behavior distribution and the
optimal one. It is given in terms of the variance reduction over Monte Carlo (on-policy) estimation.
Lemma 4.1. Fix a target policy θ P Θ and a behavior trajectory distribution q P ∆T . Let p∇θJpθ, τ q
be the importance-weighted estimate of ∇θJpθq computed with τ „ q. Then the variance reduction
from using q in place of pθ is given by:

Var
τ „pθ

”
p∇θJpθ; τ q

ı
´ Var

τ „q

”
p∇θJpθ; τ q

ı
“ Var

τ „pθ

r}gθpτ q}2s ´ Z2
θχ2pp˚,θ}qq,

where Zθ :“ Eτ „pθ
r}gθpτ q}2s.

This lemma shows that the variance reduction depends on how closely we can approximate the
optimal behavior distribution in terms of chi-square divergence. Unfortunately, the latter is hard to
optimize from data. Using defensive samples reduces this to a KL-divergence error, which is much
easier to control. In this section, we just observe that the KL divergence can be made small using
the approach proposed in Section 3.2, and operate under the following, more abstract:
Assumption 1 (BPO Oracle). For any target policy parameter θ P Θ, let p˚,θ be the corresponding
optimal behavior distribution as defined in Equation (8). We assume access to a Behavioral Policy
Optimization oracle BPO : Θ Ñ Θ that takes a target policy parameter θ and returns a behavior
policy parameter rθ such that:

DKL
`
p˚,θ}prθ

˘ ď ϵKL,

for some constant ϵKL ě 0 independent of θ.

The following theorem upper-bounds the excess variance in terms of the KL-divergence and provides
a principled way to choose the defensive parameter β in Algorithm 1.
Theorem 2. Fix a target policy θ P Θ and a behavior policy rθ P Θ. Let β P r0, 1s and let
Φ “ βpθ ` p1 ´ βqprθ be the mixture trajectory distribution. Let p∇θJpθ; τ q be the β-defensive
importance-weighted estimate of ∇θJpθq computed with τ „ Φ. Then the variance reduction from
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using Φ in place of pθ is at least

Var
τ „pθ

”
p∇Jpθ; τ q

ı
´ Var

τ „Φ

”
p∇θJpθ; τ q

ı
ě Var

τ „pθ

r}gθpτ q}2s ´ 4ZθpZθ ` βGθq
ˆ

2 ` 1 ´ β

β
DKLpp˚,θ}prθq

˙
,

where Zθ “ Eτ „pθ
r}gθpτ q}2s and Gθ “ ess supτ „pθ

t}gθpτ q}2u. Under Assumption 1, provided
ϵKL ď 1, by setting β “

b
ϵKL

2´ϵKL
, the variance reduction is at least

Var
τ „pθ

”
p∇Jpθ; τ q

ı
´ Var

τ „Φ

”
p∇θJpθ; τ q

ı
ě Var

τ „pθ

r}gθpτ q}2s ´ 4Z2
θp2 ´ ϵKLq ´ 4ZθGθϵKL

´ 4ZθpZθ ` Gθqa
ϵKLp2 ´ ϵKLq (16)

ě Var
τ „pθ

r}gθpτ q}2s ´ 8Z2
θ ´ 4ZθpZθ ` 2Gθq?

ϵKL. (17)

Remark 4.1. As ϵKL Ñ 0, we have Varτ „pθ
r p∇Jpθ; τ qs´Varrτ „Φr p∇Jpθ; τ qs ě Varτ „pθ

r}gθpτ q}2s´
8Z2

θ ´ op?
ϵKLq. Thus, if the KL-divergence is small enough, we there is variance reduction if

Var
τ „pθ

r}gθpτ q}2s “ E
τ „pθ

r}gθpτ q}2
2s ´ Z2

θ ą 9Z2
θ, (18)

that is, when Eτ „pθ
r}gθpτ q}2

2s ą 10Z2
θ. To see that variance reduction is indeed possible, consider the

example: let T “ tτ1, τ2u and the target distribution is pθ such that pθpτ1q “ θ and pθpτ2q “ 1 ´ θ,
with θ P r0, 1s. Suppose gθpτ1q P t1, ´1u and gθpτ2q “ 0 for all θ. Then Eτ „pθ

r|gθpτ q|2s “ θ, while
Z2

θ “ Eτ „pθ
r|gθpτ q|s2 “ θ2. So we can be sure there is variance reduction as long as θ ă 1{10.

We can use this result on variance reduction to upper bound the variance of the policy gradient
estimates computed by our algorithm. In the following, let Fk denote the sigma-algebra generated
by all the random variables from Algorithm 1 up to iteration k ´ 1 included, and all the trajectories
from DBPO

k . Note that both θk and rθk are Fk-measurable. For brevity, we will write EkrXs
for the conditional expectation ErX|Fks, and VarkrXs for the conditional variance VarrX|Fks “
Ekr}X ´ EkrXs}2

2s of a random element X.
Theorem 3. Fix an iteration k P rKs of Algorithm 1 and let DON denote a dataset of NPG inde-
pendent trajectories collected with θk. Under Assumption 1, the variance reduction granted by using
the off-policy estimator vk :“ p∇Jpθk; DPG

k q with respect to an on-policy estimator is given by:

Var
k

”
p∇Jpθk; DONq

ı
´ Var

k
rvks ě 1

NPG

`
Vk ´ 8Z2

k ´ 4ZkpZk ` 2Gkq?
ϵKL

˘
, (19)

where Zk :“ Eτ „pθk
r}gθk

pτ q}2 |Fks, Vk :“ Varτ „pθk
r}gθk

pτ q}2 |Fks, and Gk :“
ess supτ „pθk

t}gθk
pτ q}2u. Thus, the conditional variance of vk is upper-bounded as follows:

Var
k

rvks ď 1
NPG

´
9Z2

k ` ZkpZk ` 2Gkq?
ϵKL ´ }∇Jpθkq}2

2

¯
. (20)

4.2 Convergence Rate

So far, we studied the variance of the active-IS estimator from Algorithm 1, showing that variance
reduction is possible whenever the KL divergence between the optimal behavior distribution pθ,˚
and its estimate prθ is small enough. We now give a more concrete characterization of the variance
reduction in terms of how many on-policy samples are used to compute prθ. We are only able to do
so for a restricted class of policies, namely exponential-family policies with linear sufficient statistics.
However, this is a broad class that includes linear Gaussian and Softmax policies. Furthermore, this
is the class of policies for which the (empirical) cross-entropy minimization problem described in
Section 3.2 admits a closed-form solution. Thus, it represents a setting where sample and computa-
tional efficiency can be achieved at the same time. Our analysis will also provide a principled way
to allocate a per-iteration budget of N trajectories in Algorithm 1, that is, how to split them into
NBPO trajectories for behavior policy optimization, and NPG trajectories for gradient estimation.

We begin by listing all the assumptions that we will use in this section.
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Assumption 2 (Exponential-Family Policy). The target policy is of the form:

πθpa|sq “ hpaq exp
`
θJφps, aq ´ Apθ, sq˘

, @ps, aq P S ˆ A,

where φ : S ˆ A Ñ Rd is the sufficient statistic, h : A Ñ R`, and Apθ, sq “
log

ş
A hpaq exp

`
θJφps, aq˘

da is the log-partition function.

This general model allows to conveniently represent widely used policies, including Gaussian policies
with linear mean and Softmax policies (Metelli et al., 2023). Note that, for a policy satisfying
Assumption 2, the score function is ∇θ log πθpa|sq “ φps, aq ´ Ea1„πθp¨|sqrφps, a1qs “: φθps, aq, and
also ∇2

θ log πθpa|sq “ ´Cova1„πθp¨|sqrφps, a1qs. We will refer to φθ as the centered sufficient statistic.
We now introduce a necessary assumption to guarantee that the optimal behavioral distribution over
trajectories p˚,θ: is representable within the ones induced by the policies πθ˚ with θ˚ P Θ.

Assumption 3 (Realizability). For any target policy θ: P Θ, there exists θ˚ P Θ s.t. the optimal
behavior distribution w.r.t. θ: is p˚,θ: “ pθ˚ , the trajectory distribution induced by policy πθ˚ .

The next assumption is related to the tail behavior of the noise

Assumption 4 (Subgaussianity). For any θ P Θ and s P S, the centered sufficient statistic φθps, ¨q
is σ-subgaussian in the sense that, for any λ P Rd:

E
a„πθp¨|sq

“
exp

`
λJφθps, aq˘‰ ď exp

ˆ}λ}2
2 σ2

2

˙
, @s P S.

Finally, we enforce the following assumption that prescribes an exploration condition of the played
policy encoded in a property of the spectrum of the empirical Fisher information matrix.

Assumption 5 (Explorability). For a fixed target policy θ: P Θ and a dataset of n trajectories
tτiuiPrns collected with πθ: let

pFpθq “ 1
n

nÿ

i“1
}gθ: pτiq}2

T ´1ÿ

t“0
Cov

a„πθp¨|si
tq

rφpsi
t, aqs. (21)

We assume that, for all n ě 1 and θ:, θ P Θ, E
”
λminp pFpθqq

ı
ě λ˚ ą 0.

Given the previously listed assumptions, we are able to provide a meaningful bound on the expected
error expressed in KL-divergence between the optimal behavioral trajectory distribution p˚,θ and
the one estimated by the cross entropy minimization procedure rθ.

Lemma 4.2. Fix a target policy parameter θ: P Θ and let tτiuiPrns be a dataset of n i.i.d. trajectories
collected with πθ: . Let

rθ “ arg max
θPΘ

nÿ

i“1
}gθ: pτiq}2

T ´1ÿ

t“0
log πθpai

t|si
tq,

and if ess supτ „pθ
}gθpτ q}2 ď G for all θ P Θ. Then, under Assumptions 2, 3, 4, 5 it holds that:

E
“
DKLpp˚,θ: }prθq‰ ď G2T 3σ4

2λ2˚n
.

We are now ready to quantify the complete variance of the defensive off-policy estimator.

Theorem 4. Assuming NBPO ą G2T 3σ4

2λ2
˚

, let ϵ˚ “ G2T 3σ4

2λ2
˚NBPO

. Then, under Assumptions 2, 3, 4, 5,
Algorithm 1 with β “ a

ϵ˚{p2 ´ ϵ˚q guarantees

Var
k

rvks ď 1
NPG

ˆ
9Z2

k ` ZkpZk ` 2GqGT 3{2σ2

λ˚
?

2NBPO
´ }∇Jpθkq}2

2

˙
. (22)
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Furthermore, by setting NBPO “ NPG “ N
2 and β P p0, 1q, provided N ą G2T 3σ4p1`β2q

2λ2
˚β2 we have:

Var
k

rvks ď 1
N

´
18Z2

k ´ }∇Jpθkq}2
2

¯
` ZkpZk ` 2GqGT 3{2σ2

2λ˚N3{2 . (23)

We are finally able to provide the convergence rate of the corresponding iterative optimization.
Corollary 1. Let rV :“ 18Z2

k ´ }∇Jpθkq}2
2 denote the residual variance left by the BPO process.

Under the assumptions of Theorem 4, a total number of trajectories

NK ď
S

12pJpθ˚q ´ Jpθ0qq
˜

3C1 rV
ϵ4 ` C1 ` 3C2

ϵ10{3

¸W

is sufficient for Algorithm 1 to obtain Er}∇Jpθoutq}2s ď ϵ, where θout is chosen uniformly
at random from the iterates θ1, . . . , θK of the algorithm, where C1 “ Rmaxσ2

p1´γq2 and C2 “
R4

maxσ5}φ}8p?
T σ`2T }φ}8qT 3

2λ˚p1´γq5 .

Remark 4.2. Although, in the worst case, the sample complexity is Opϵ´4q like on-policy RE-
INFORCE (Yuan et al., 2022), when the residual variance rV is negligible, namely, rV “ Opϵ2{3q,
Algorithm 1 can achieve an improved sample complexity of Opϵ´10{3q, the same as SVRPG (Papini
et al., 2018). Examples of this can be constructed as in Remark 4.1. Even though the optimal sample
complexity for first-order policy optimization is Opϵ´3q (Xu et al., 2020a) and our ϵ2{3 improvement
does not hold in full generality, we are not aware of any other case of provable acceleration of policy
gradient algorithms following from behavior-policy optimization.

5 Related Works

Baselines A common technique from statistical simulation to reduce variance in policy gradient
estimation is using the baselines. A baseline b is a non-random quantity that is subtracted from the
return Rpτ q based on the observation that Eτ „pθ

r∇ log pθpτ qRpτ qs “ Eτ „pθ
r∇ log pθpτ qpRpτ q´bqs.

Optimal baselines for the REINFORCE and G(PO)MDP estimators have been derived by Peters
& Schaal (2006). Other approaches exploit a baseline that is obtained from a moving average of
the most recent returns (Weaver & Tao, 2001; Zhao et al., 2011). This approach is similar to using
a critic to estimate the value function (Mei et al., 2022). The effectiveness of a baseline is highly
problem-dependent and, in the end, does not change the convergence rate of the policy gradient
algorithm, which remains of order Opϵ´4q, being ϵ the expected norm of the policy gradient reached.

Variance-Reduced Policy Gradient Algorithms Variance reduction techniques have been
first introduced for supervised learning, having SVRG (Johnson & Zhang, 2013) as progenitor. The
idea consists of re-using snapshots of gradients computed in the past to exploit the correlation
in order to reduce the variance. Still, in the supervised learning community, several variations and
improvements have been presented, which include SARAH (Nguyen et al., 2017), STORM (Cutkosky
& Orabona, 2019) and PAGE (Li et al., 2021). Each of these has been adapted to the policy gradient
setting, giving rise to SVRPG (Papini et al., 2018), SRVR-PG (Xu et al., 2020c), STORMPG (Yuan
et al., 2020), and PAGEPG (Gargiani et al., 2022), respectively. These approaches have succeeded in
strictly improving the convergence rate over standard PGs. Indeed, SVRPG archives a convergence
rate of order Opϵ´10{3q, as shown by Xu et al. (2020b), while SRVR-PG, STORMPG, and PAGEPG
outperform it with a convergence rate of order Opϵ´3q, which is currently conjectured to be optimal.

Active Importance Sampling In Hanna et al. (2017), the problem of behavioral policy search
is addressed with the goal of finding the most effective (i.e., minimum variance) behavioral policy
to estimate the expected return of a given target policy. The approach is based on a gradient
method that optimizes the policy parameters in order to find the minimum-variance behavioral
policy. Although the approach demonstrated advantages from the policy evaluation perspective,
it struggles to extend to policy optimization. In Hanna (2019), the extension to the optimization
perspective has been provided with a parallel policy search approach that simultaneously optimizes
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over the parameters of the behavioral and target policies. Unfortunately, the algorithm enjoys no
theoretical guarantees and shows limited empirical advantages. Recently, in Metelli et al. (2023), the
authors have deepened the connections between minimum-variance behavioral policy and the policy
optimization have been studied. Specifically, under certain assumptions on the policy space, it is
possible to show that the minimum variance behavioral policy attains a performance improvement.
However, these works lack a comprehensive theoretical analysis capable of quantifying analytically
the actual advantage of active IS, possibly in terms of convergence rate.

6 Numerical Simulations

In this section, we first provide a practical version of Algorithm 1 and then provide the experimental
results on classical control tasks.

6.1 Practical Algorithm

Here, we present some practical aspects related to the implementation of Algorithm 1, based on
the above-introduced idea of IS estimators. In particular, in Algorithm 1, we face two estimation
problems: the estimation of KL divergence in Line 4 and the off-policy gradient estimation in Line 6.
Both can benefit from effectively reusing already collected trajectories during the algorithm execution
so as to reduce the overall number of samples generated per iteration.

Offline KL divergence, Line 4 In place of collecting, at every iteration k, new NBPO trajectories
with the current target policy πθk

to build the dataset DBPO
k , we reuse the samples for the off-policy

gradient estimation at the previous iteration k ´1, namely DPG
k´1. We call this KL estimation offline,

as it employs trajectories from the previous target and behavioral policies πθk´1 and πθ̃k´1
. Such

offline samples need to be re-weighted proportionally to the probability of being generated by the
current target policy πθk

, for which we resort to the (multiple) off-policy estimator in Equation 15.

Biased off-policy gradient, Line 6 The off-policy gradient estimation in Algorithm 1 is computed
with the only behavioral policy πθ̃k

and, when the defensive strategy is used β ą 0,4 with the current
target policy πθk

. To increase the number of trajectories available for the gradient estimation, we
can reuse the already collected trajectories for the (offline) KL divergence estimation, namely DBPO

k .
This approach is a multiple off-policy gradient estimator. If the offline KL strategy is employed,
this means using the target policy πθk´1 at the previous iteration as an additional behavioral policy.
Otherwise, DBPO

k contains biased defensive samples from the current target policy πθk
, as they were

already used to compute the current behavioral policy πθ̃k
.

6.2 Experimental Results

All experiments are conducted with Gaussian policies with fixed diagonal variance, and the mean
is linearly parametrized in the state so that πθ “ N pθJs, σIq. We first provide a set of numerical
results on the Linear Quadratic Regulator (LQ) environment, quantifying the variance reduction of
the single target policy gradient estimate; we then show the impact of such variance reduction on
the learning iterations for solving the full control task in the Cartpole benchmark. We employed the
G(PO)MDP gradient estimator and its optimal baselines as derived in Peters & Schaal (2006).

Variance Reduction In this set of experiments, we want to analyze the impact of the optimal
behavioral policy in estimating the target policy gradient. In particular, we compare the gradient
variance (as defined in Equation (8)) in the on-policy and the proposed off-policy setting. The
optimal behavioral policy parameters pθb: were computed by solving (15), where the cross-entropy
term was estimated by sampling NBPO trajectories from the target policy πθ. Afterwards, NPG

4From theory, one can set some ϵ ă 1 as the desired accuracy of the BPO subroutine and then set β “
b

ϵ
2´ϵ

.
In practice, one can tune β like any other hyperparameter (e.g., the step size). See Appendix D for additional
experimental results obtained with different choices of β.
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Table 1: LQ environment, with horizon = 2 and state dimension = 1. Variance reduction in off-
policy gradient, expressed as ∆Var and its 95% Gaussian confidence interval p∆Var´, ∆Var`q, with
different hyper-parameters.

(a) Target policy with log σ “ 0 and varying θ.

∆Var ∆Var´ ∆Var` biased β NBPO NPG θ

2.05 1.13 2.97 True 0.8 50 50 1.0
1.64 ´0.10 3.39 True 0.0 10 90 1.0
1.50 0.78 2.23 True 0.4 50 50 1.0
1.39 0.32 2.45 False 0.0 10 90 1.0
1.26 0.63 1.89 True 0.0 50 50 1.0
1.15 ´0.62 2.91 True 0.8 10 90 1.0
0.70 0.25 1.15 True 0.0 30 70 ´1.0
0.56 ´0.71 1.84 False 0.0 50 50 1.0
0.56 0.30 0.82 True 0.8 50 50 ´1.0
0.51 0.03 0.98 True 0.0 10 90 ´1.0
0.47 0.26 0.68 True 0.4 50 50 ´1.0
0.41 0.14 0.67 True 0.4 50 50 0.5
0.40 0.18 0.61 True 0.0 50 50 ´1.0
0.39 ´0.02 0.80 False 0.0 10 90 0.5
0.32 0.16 0.49 True 0.0 30 70 0.5
0.32 ´0.17 0.81 False 0.4 10 90 ´1.0
0.31 ´0.07 0.69 False 0.0 10 90 ´1.0
0.31 ´0.16 0.77 False 0.4 50 50 ´1.0
0.30 0.07 0.52 True 0.8 50 50 0.5
0.29 ´0.14 0.72 False 0.8 10 90 ´1.0
0.27 ´0.14 0.68 True 0.4 10 90 ´1.0

(b) Target policy with θ “ 0 and varying log σ.

∆Var ∆Var´ ∆Var` biased β NBPO NPG log σ

4.04 2.02 6.07 True 0.8 50 50 1.0
3.77 2.40 5.15 True 0.4 50 50 1.0
3.25 1.63 4.86 True 0.0 30 70 1.0
3.18 1.95 4.40 True 0.0 50 50 1.0
2.70 0.72 4.68 True 0.8 30 70 1.0
2.36 ´0.39 5.11 True 0.4 30 70 1.0
2.06 0.52 3.59 True 0.0 10 90 1.0
1.54 ´0.38 3.45 False 0.0 10 90 1.0
1.19 ´0.69 3.06 False 0.0 30 70 1.0
0.60 ´1.28 2.49 False 0.8 30 70 1.0
0.59 0.24 0.94 True 0.8 50 50 0.5
0.58 ´1.89 3.05 False 0.0 50 50 1.0
0.56 0.22 0.90 True 0.0 50 50 0.5
0.48 0.19 0.78 True 0.4 50 50 0.5
0.42 0.15 0.69 True 0.8 30 70 0.5
0.39 ´1.54 2.32 False 0.4 30 70 1.0
0.24 ´0.04 0.52 True 0.8 10 90 0.5
0.23 ´0.03 0.48 True 0.4 30 70 0.5
0.16 ´0.28 0.60 True 0.0 10 90 0.5
0.16 ´0.25 0.56 False 0.0 50 50 0.5
0.15 ´0.20 0.50 False 0.0 30 70 0.5

trajectories were sampled from the behavioral πpθb
:

to build the data-set Doff and compute the off-
policy gradient as in equation (3). The on-policy gradient estimations were instead obtained with a
batch of NBPO ` NPG trajectories forming the data-set Don.

We run exhaustive experiments by varying the LQ horizon and the state dimensions. The complete
results are reported in Appendix D. Here, we fix the horizon to 2 and consider mono-dimensional LQ
problems varying parameters of the target policy, i.e., various θ P t´1.0, ´0.5, 0.0, 0.5, 1.0u and log
standard deviations log σ P t´1.0, ´0.5, 0.0, 0.5, 1.0u. Finally, we varied also the hyper-parameters
of our off-policy method, i.e. the defensive coefficient β P t0, 0.4, 0.8u, the biased off-policy practical
gradient calculation (the offline estimation of the KL divergence here is not possible), and the batch
sizes NBPO (10, 30 and 50) and NPG P t90, 70, 50u. Tables 1a and 1b report, for each environment
and policy configuration, the first 20 results ordered by the average variance gap between the on-
policy and off-policy methods (over 100 repetitions), i.e.:

∆Var “ 1
100

100ÿ

i“1

´
Var

”
p∇Jpθ; Dpiq

on q
ı

´ Var
”

p∇Jpθ; Dpiq
off q

ı¯
. (24)

Across all the results, we can notice a few prevalent patterns. Firstly, as may be expected, the
variance reduction is numerically more significant for "extreme" values of the policy parameters (θ
and log σ close to 1), as the gradient estimation problem becomes more and more difficult and
prone to high variance, thus leading to significant margin of improvement (see also the complete
results in Appendix D). Secondly, the biased off-policy gradient calculation is predominant in most
of the highest variance reduction results, as it allows the use of the same number of samples of
the on-policy counterpart. Lastly, the other off-policy hyper-parameters do not seem to impact
these variance reduction results clearly, alternating different combinations in the best experiments
reported in all the tables.

Learning Speed-up In this second set of experiments, we want to measure the impact of the
variance reduction provided by our off-policy method in the learning process for solving the classic
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Cartpole balancing problem and compare our results with the state-of-art variance reduction algo-
rithm STORMPG. For our off-policy algorithm, we chose β “ 0, and employed both the practical
aspects of the offline KL divergence estimation (hence we do not use NBPO) and of biased off-policy
gradient estimation (see Section 6.1). All the experiments were run with a fixed budget of NPG sam-
ples for each iteration, which also correspond to the mini batch-size employed by the STORMPG
(the initial batch-size was set to 10 times NPG). Figure 1 shows that our off-policy method outper-
forms the STOMRPG in all the different configurations, enjoying both a more stable behavior at
convergence and a lower variance during the learning iterations.

(a) (b) (c)

(d) (e)

Figure 1: Cartpole. Average return and its 95% Gaussian CI (30 repetitions) over the learning
iterations. Different policy gradient batch-sizes were used: (a) NPG “ 5, (b) NPG “ 10, (c) NPG “
20, (d) NPG “ 50, (e) NPG “ 100.

7 Discussion and Conclusions

In this paper, we have presented a novel approach to control the variance of the PG estimator.
Leveraging the idea of looking for the best behavioral policy that minimizes the variance of the IS
estimator, we have introduced a novel algorithm that exploits a two-phase procedure, alternating
between the cross-entropy estimation of such a policy and the actual off-policy performance improve-
ment. We have shown that, thanks to the defensive estimate, we are able to achieve a convergence
rate of order Opϵ´4q to a stationary point. Compared to the standard REINFORCE convergence
rate, our algorithm enjoys a smaller residual variance. Then, we provided a practical version of such
an algorithm, which uses all the samples collected so far at the price of an estimation bias. This
algorithm was evaluated on benchmark continuous control tasks compared to standard baselines,
showing a significant reduction of the estimation variance and a faster learning curve. Future works
include studying other kinds of scalarization than the trace of the covariance matrix, the extension
of the provided algorithm in combination with variance reduction techniques, such as SVRPG, and
the conception of a more practical adaptation that suitably combines with deep architectures.
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A Hellinger Distance

The Hellinger distance between two distributions P ! Q is defined as5

DHpP, Qq “
dż

T

´a
ppτ q ´ a

qpτ q
¯2

dτ . (25)

In the following we list some known properties of the Hellinger distance that will be useful in our
proofs. See, for instance, (Foster & Krishnamurthy, 2021).

• Boundedness: DHpP, Qq ď ?
2.

• The Hellinger distance is a metric. In particular, we will use symmetry, DHpP, Qq “
DHpQ, P ), and the fact that DHpP, P q “ 0.

• The squared Hellinger distance is an f-divergence. In particular, we will use the joint con-
vexity of f-divergences: D2

HpβP1 ` p1 ´ βqP2, βQ1 ` p1 ´ βqQ2q ď βD2
HpP1, Q1q ` p1 ´

βqD2
HpP2, Q2q. By taking P2 “ Q1 “ Q2, we have D2

HpP, βP `p1´βqQq ď p1´βqDHpP, Qq.
• Pinsker-style inequality: DHpP, Qq ď a

mintDKLpP }Qq, DKLpQ}P qu.

B Omitted Proofs

B.1 Proofs of Section 3

Theorem 1. Let θ P Θ and gθ : T Ñ Rd be the single-trajectory gradient estimator used to compute
p∇Jpθ; τ q. The solution p˚,θ P ∆T to the BPO problem (Equation 8) is given by:

p˚,θpτ q “ pθpτ q}gθpτ q}2ş
T pθpτ q}gθpτ q}2dτ

. (9)

The optimal value of Equation (8) is given by:

Var
τ „p˚,θ

”
p∇Jpθ; τ q

ı
“ E

τ „pθ

r}gθpτ q}2s2 ´ }∇Jpθq}2
2 . (10)

Proof. We consider a probability measure over the trajectory space p P ∆T . Let us first observe
that since the off-policy estimator is unbiased, we can focus on the second moment:

Var
τ „p

θb

”
p∇Jpθ; τ q

ı
“ E

τ „p
θb

«››››
pθpτ q
pθb pτ qgθpτ q ´ ∇Jpθq

››››
2

2

ff
(26)

“ E
τ „pθ

«ˆ
pθpτ q
pθb pτ q

˙2
}gθpτ q}2

2

ff
´ }∇Jpθq}2

2 (27)

where the first inequality follows from the independence of the trajectories. Thus, we consider the
following optimization problem, where the expectations are written with the corresponding integrals
for convenience:

min
pP∆T

ż

T

pθpτ q2

ppτ q }gθpτ q}2
2 dτ (28)

s.t.
ż

T
ppτ qdτ “ 1 (29)

ppτ q ě 0 @τ P T (30)

5In some texts, the Hellinger distance is normalized by
?

2 to be in r0, 1s.
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The problem has a convex objective function and linear constraints. Thus, we approach it with the
Lagrange multipliers, dropping the non-negativity constraint that, as we shall see, will be already
ensured by the derived solution. Let λ P R:

Lppp¨q, λq “
ż

T

pθpτ q2

ppτ q }gθpτ q}2
2 dτ ` λ

ˆż

T
ppτ qdτ ´ 1

˙
. (31)

By vanishing the functional derivative w.r.t. pp¨q, we obtain for every τ P T :
δLppp¨q, λq

δpp¨q pτ q “ ´pθpτ q2

ppτ q2 }gθpτ q}2
2 ` λ “ 0 ùñ ppτ q “ ?

λpθpτ q}gθpτ q}2, (32)

having retained the non-negative solution only. Since for constraint 30, the density must integrate
up to 1, we have that for every τ P T :

ppτ q “ pθpτ q}gθpτ q}2ş
T pθpτ q}gθpτ q}2dτ

. (33)

Proposition 3.1. Let p˚,θ as defined in Equation (9). Then, the solution to the problem in Equa-
tion (13) can be obtained via the weighted cross-entropy minimization:

θb: P arg min
θbPΘ

E
τ „pθ

r´}gθpτ q} log pθb pτ qs “ E
τ „pθ

«
´}gθpτ q}

T ´1ÿ

t“0
log πθb pat|stq

ff
. (14)

Proof. We simply exploit the form of the optimal behavioral distribution p˚ and the definition of
KL divergence:

arg min
θbPΘ

DKL pp˚,θ}pθb q “ arg min
θbPΘ

E
τ „p˚,θ

„
log

ˆ
p˚,θpτ q
pθb pτ q

˙ȷ
(34)

“ arg min
θbPΘ

´ E
τ „p˚,θ

rlog pθb pτ qs (35)

“ arg min
θbPΘ

´
ż

T

pθpτ q}gθpτ q}2
pθpτ 1q}gθpτ 1q}2dτ 1 log pθb pτ qdτ (36)

“ arg min
θbPΘ

´ E
θ„pθ

r}gθpτ q} log pθb pτ qs , (37)

which proves the first equality. For the second equality, we observe that:

log pθb pτ q “ log µ0ps0q `
T ´1ÿ

t“0
log πθb pat|stq `

T ´1ÿ

t“0
log P pst`1|st, atq, (38)

and that the addenda of the initial-state distribution and of the transition model do not depend on
θb.

B.2 Proofs of Section 4.1

Lemma 4.1. Fix a target policy θ P Θ and a behavior trajectory distribution q P ∆T . Let p∇θJpθ, τ q
be the importance-weighted estimate of ∇θJpθq computed with τ „ q. Then the variance reduction
from using q in place of pθ is given by:

Var
τ „pθ

”
p∇θJpθ; τ q

ı
´ Var

τ „q

”
p∇θJpθ; τ q

ı
“ Var

τ „pθ

r}gθpτ q}2s ´ Z2
θχ2pp˚,θ}qq,

where Zθ :“ Eτ „pθ
r}gθpτ q}2s.
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Proof. Let p˚ be short for p˚,θ. First, we know from Theorem 1 that the variance reduction granted
by the optimal behavior distribution w.r.t. on-policy estimation is

Var
τ „pθ

r p∇Jpθ; τ qs ´ Var
τ „p˚

r p∇Jpθ; τ qs “ E
τ „pθ

r}gθpτ q}2
2s ´ E

τ „pθ

r}gθpτ q}2s2 “ Var
τ „pθ

r}gθpτ q}2s.

Let v “, so the variance reduction granted by sampling from q is

Var
τ „pθ

r p∇Jpθ; τ qs ´ Var
τ „q

r p∇Jpθ; τ qs “ Var
τ „pθ

r p∇Jpθ; τ qs ´ Var
τ „p˚

r p∇Jpθ; τ qs
` Var

τ „p˚
r p∇Jpθ; p˚; τ qs ´ Var

τ „q
r p∇Jpθ; τ qs (39)

“ Var
τ „pθ

r}gθpτ q}2s ´
ˆ
Var
τ „q

r p∇Jpθ; τ qs ´ Var
τ „p˚

r p∇Jpθ; p˚; τ qs
˙

,

(40)
which is the variance reduction granted by p˚ minus the excess variance due to using a proxy q of
p˚. We can characterize this excess variance as follows. Since both estimates are unbiased:

Var
τ „q

r p∇Jpθ; τ qs ´ Var
τ „p˚

r p∇Jpθ; τ qs “ E
τ „q

„››› p∇Jpθ; τ q
›››

2

2

ȷ
´ E

τ „p˚

„››› p∇Jpθ; τ q
›››

2

2

ȷ
(41)

“
ż

T
qpτ qpθpτ q2

qpτ q2 }gθpτ q}2
2 dτ ´

ż

T
p˚pτ qpθpτ q2

p˚pτ q2 }gθpτ q}2
2 dτ (42)

“
ż

T
pθpτ qpθpτ q

qpτ q }gθpτ q}2
2 dτ ´

ż

T
pθpτ qpθpτ q

p˚pτ q }gθpτ q}2
2 dτ (43)

“ Zθ

ż

T
p˚pτ qpθpτ q

qpτ q }gθpτ q}2 dτ ´ Zθ

ż

T
pθpτ q }gθpτ q}2 dτ (44)

“ Zθ

ż

T

pθpτ q
qpτ q }gθpτ q}2 pp˚pτ q ´ qpτ qq dτ (45)

“ Z2
θ

ż

T

p˚pτ q
qpτ q pp˚pτ q ´ qpτ qq dτ (46)

“ Z2
θ

ˆż

T

p˚pτ q2

qpτ q dτ ´ 1
˙

(47)

“ Z2
θχ2pp˚}qq, (48)

where Equation (44) and (46) are by definition of p˚.

Unfortunately, it is not possible to upper bound the chi-square divergence in terms of the KL in
general. To obtain an upper bound for the special case of defensive estimators, we will need the
following technical lemma, a generalization of Lemma 8 by Bubeck & Sellke (2020).

Lemma B.1. For any η ą 0,
ż

T

pqpτ q ´ ppτ qq2

qpτ q 1tqpτ qěηppτ qudτ ď 4η´3{2D2
Hpp, qq.

Proof. Let ftpsq “ p?
t ´ ?

sq2. Its second derivative is f2
t psq “

?
t

2s
?

s
. We can see that, restricted to

s ď η´1t, ft is η3{2

2t -strongly convex. Hence:

ftpsq ě η3{2pt ´ sq2

4t
. (49)
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Letting t “ qpτ q and s “ ppτ q and using the definition of Hellinger distance:

D2
Hpp, qq “

ż

T

´a
qpτ q ´ a

ppτ q
¯2

dτ ě
ż

T

´a
qpτ q ´ a

ppτ q
¯2

1tqpτ qěηppτ qudτ (50)

ě η3{2

4

ż

T

pqpτ q ´ ppτ qq2

qpτ q 1tqpτ qěηppτ qudτ . (51)

We are now ready to prove Theorem 2.
Theorem 2. Fix a target policy θ P Θ and a behavior policy rθ P Θ. Let β P r0, 1s and let
Φ “ βpθ ` p1 ´ βqprθ be the mixture trajectory distribution. Let p∇θJpθ; τ q be the β-defensive
importance-weighted estimate of ∇θJpθq computed with τ „ Φ. Then the variance reduction from
using Φ in place of pθ is at least

Var
τ „pθ

”
p∇Jpθ; τ q

ı
´ Var

τ „Φ

”
p∇θJpθ; τ q

ı
ě Var

τ „pθ

r}gθpτ q}2s ´ 4ZθpZθ ` βGθq
ˆ

2 ` 1 ´ β

β
DKLpp˚,θ}prθq

˙
,

where Zθ “ Eτ „pθ
r}gθpτ q}2s and Gθ “ ess supτ „pθ

t}gθpτ q}2u. Under Assumption 1, provided
ϵKL ď 1, by setting β “

b
ϵKL

2´ϵKL
, the variance reduction is at least

Var
τ „pθ

”
p∇Jpθ; τ q

ı
´ Var

τ „Φ

”
p∇θJpθ; τ q

ı
ě Var

τ „pθ

r}gθpτ q}2s ´ 4Z2
θp2 ´ ϵKLq ´ 4ZθGθϵKL

´ 4ZθpZθ ` Gθqa
ϵKLp2 ´ ϵKLq (16)

ě Var
τ „pθ

r}gθpτ q}2s ´ 8Z2
θ ´ 4ZθpZθ ` 2Gθq?

ϵKL. (17)

Proof. To prove the first lower bound on variance reduction, we use Lemma 4.1 with ϕ (density of
Φ) in place of q and upper bound the negative term as follows, applying Lemma B.1 twice:

Z2
θχ2pp˚}Φq “ Z2

θ

ż

T

pϕpτ q ´ p˚pτ qq2

ϕpτ q 1tϕpτ qěβ2{3p˚pτ qudτ ` Z2
θ

ż

T

pϕpτ q ´ p˚pτ qq2

ϕpτ q 1tϕpτ qďβ2{3p˚pτ qudτ

(52)

ď Z2
θ

4
β

D2
Hpp˚, ϕq ` Z2

θ

ż

T

pϕpτ q ´ p˚pτ qq2

ϕpτ q 1tϕpτ qďβ2{3p˚pτ qudτ (53)

ď 4Z2
θ

β
D2

Hpp˚, ϕq ` Z2
θ

β

ż

T

pϕpτ q ´ p˚pτ qq2

ppτ q 1tϕpτ qďβ2{3p˚pτ qudτ (54)

“ 4Z2
θ

β
D2

Hpp˚, ϕq ` Zθ

β

ż

T
}gθpτ q}2

pϕpτ q ´ p˚pτ qq2

p˚pτ q 1tp˚pτ qěβ´2{3ϕpτ qudτ (55)

ď 4Z2
θ

β
D2

Hpp˚, ϕq ` ZθGθ

β

ż

T

pϕpτ q ´ p˚pτ qq2

p˚pτ q 1tp˚pτ qěβ´2{3ϕpτ qudτ (56)

ď 4Z2
θ

β
D2

Hpp˚, ϕq ` 4ZθGθD2
Hpϕ, p˚q (57)

ď 4Zθ
Zθ ` βGθ

β

`
βD2

Hpp˚, pq ` p1 ´ βqD2
Hpp˚, prθq˘

(58)

ď 4Zθ
Zθ ` βGθ

β

`
2β ` p1 ´ βqDKLpp˚}prθq˘

(59)

“ 4ZθpZθ ` βGq
ˆ

2 ` 1 ´ β

β
DKLpp˚}prθq

˙
, (60)

where the inequalities (53) and (57) are by Lemma B.1. The latter expression is convex in β, but
the optimal value β˚ “

b
ZθϵKLp2´ϵKLqGθ

cannot be computed since Zθ is unknown. However, upper-
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bounding Zθ by Gθ and setting6 β “
b

ϵKL
2´ϵKL

yields, provided ϵKL ď 1:

Z2
θχ2pp˚}Φq ď 4Z2

θp2 ´ ϵKLq ` 4ZθGθϵKL ` 4ZθpZθ ` Gθqa
ϵKLp2 ´ ϵKLq, (61)

proving the second bound. The third and final bound follows from the fact that ϵ ď ?
ϵ for ϵ ď 1.

Theorem 3. Fix an iteration k P rKs of Algorithm 1 and let DON denote a dataset of NPG inde-
pendent trajectories collected with θk. Under Assumption 1, the variance reduction granted by using
the off-policy estimator vk :“ p∇Jpθk; DPG

k q with respect to an on-policy estimator is given by:

Var
k

”
p∇Jpθk; DONq

ı
´ Var

k
rvks ě 1

NPG

`
Vk ´ 8Z2

k ´ 4ZkpZk ` 2Gkq?
ϵKL

˘
, (19)

where Zk :“ Eτ „pθk
r}gθk

pτ q}2 |Fks, Vk :“ Varτ „pθk
r}gθk

pτ q}2 |Fks, and Gk :“
ess supτ „pθk

t}gθk
pτ q}2u. Thus, the conditional variance of vk is upper-bounded as follows:

Var
k

rvks ď 1
NPG

´
9Z2

k ` ZkpZk ` 2Gkq?
ϵKL ´ }∇Jpθkq}2

2

¯
. (20)

Proof. Assumption 1 allows Algorithm 1 to query the BPO oracle at Line 4, obtaining rθk “ BPOpθkq
with DKLpp˚,θk

}prθk
q ď ϵKL. So, the first statement follows immediately from Theorem 2 and the

properties of variance (just notice that vk can also be written as the average of NPG independent
random variables). Then, the second statement follows by rearranging the terms and noting that:

NPG Var
k

”
p∇Jpθk; DONq

ı
´ Vk “ Z2

k ´ }∇Jpθkq}2
2 . (62)

B.3 Proofs of Section 4.2

For the scope of this section, fix a target policy θ:, let p˚ be the corresponding optimal behavior
policy p˚

θ: , and let F pτ q “ }gθ: pτ q}2 for brevity. Let pL : Θ Ñ R` be the empirical loss defined as:

pLpθq “ ´ 1
n

nÿ

i“1
F pτiq

T ´1ÿ

t“0
log πθpai

t|si
tq, (63)

where τi “ psi
0, ai

0, . . . , si
T ´1, ai

T ´1q, so that rθ “ arg minθPΘ pLpθq. Also, let

Lpθq “ E
”

pLpθq
ı

“ ´ E
τ „p

θ:

«
F pτ q

T ´1ÿ

t“0
log πθpat|stq

ff
, (64)

where τ “ ps0, a0, . . . , aT ´1, sT ´1q, and θ˚ “ arg minθPΘ Lpθq.
Lemma B.2. Under Assumptions 2 and 4:

∇Lpθq “ ´ E
τ „p

θ:

«
F pτ q

T ´1ÿ

t“0
φθpst, atq

ff
, (65)

∇2Lpθq “ E
τ „p

θ:

«
F pτ q

T ´1ÿ

t“0
Cov

a„πθp¨|stq
rφpst, aqs

ff
, (66)

››∇2Lpθq››
2 ď GTσ2. (67)

6Note that we do not actually need to know Gθ , nor an upper bound.
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Proof. The first two statements follow immediately from Assumption 2. As for the third statement:

››∇2Lpθq››
2 ď E

«
G

T ´1ÿ

t“0

›››› E
a„πθp¨|stq

“
φθpst, aqφθpst, aqJ‰››››

2

ff
(68)

ď E

«
G

T ´1ÿ

t“0
E

a„πθp¨|stq

”
}φθpst, aq}2

2

ıff
ď GTσ2, (69)

where the last inequality is by Assumption 4 and Proposition 1.

Lemma B.3. Under Assumptions 2, 3 and 4,

E
„›››∇pLpθ˚q

›››
2

2

ȷ
ď Zθ:GT 2σ2

n
. (70)

Proof. First notice that, for policies of the exponential family (Assumption 2):

E
”
∇pLpθ˚q

ı
“ E

τ „p
θ:

«
}gθ: pτ q}2

T ´1ÿ

t“0
φθ˚ pst, atq

ff
(71)

“ Zθ: E
τ „p˚

«
T ´1ÿ

t“0
φθ˚ pst, atq

ff
(72)

“ Zθ: E
τ „pθ˚

«
T ´1ÿ

t“0
E

a„πθ˚ p¨|stq
rφθ˚ pst, aq|sts

ff
(73)

“ 0, (74)

where the second-to-last equality is by Assumption 3. Then

E
„›››∇pLpθ˚q

›››
2

2

ȷ
“ Var

”
∇pLpθ˚q

ı
(75)

“ 1
n

Var
τ „p

θ:

«
}gθ: pτ q}2

T ´1ÿ

t“0
φθ˚ pst, atq

ff
(76)

“ 1
n

E
τ „p

θ:

»
–}gθ: pτ q}2

2

›››››
T ´1ÿ

t“0
φθ˚ pst, atq

›››››

2

2

fi
fl (77)

“ Zθ:

n
E

τ „p˚

»
–}gθ: pτ q}2

›››››
T ´1ÿ

t“0
φθ˚ pst, atq

›››››

2

2

fi
fl (78)

ď Zθ:GT

n
E

τ „pθ˚

«
T ´1ÿ

t“0
E

a„πθ˚ p¨|stq

”
}φθ˚ pst, aq}2

2

ˇ̌
ˇst

ıff
(79)

ď Zθ:GT 2σ2

n
, (80)

where the last inequality is by Assumption 4 and the second-to-last relies on Assumption 3.

Lemma 4.2. Fix a target policy parameter θ: P Θ and let tτiuiPrns be a dataset of n i.i.d. trajectories
collected with πθ: . Let

rθ “ arg max
θPΘ

nÿ

i“1
}gθ: pτiq}2

T ´1ÿ

t“0
log πθpai

t|si
tq,

and if ess supτ „pθ
}gθpτ q}2 ď G for all θ P Θ. Then, under Assumptions 2, 3, 4, 5 it holds that:

E
“
DKLpp˚,θ: }prθq‰ ď G2T 3σ4

2λ2˚n
.
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Proof. By the mean value theorem, there exists a c P r0, 1s such that

Lprθq “ Lpθ˚q ` xrθ ´ θ˚, ∇Lpθ˚qy ` 1
2 prθ ´ θ˚qJ∇2Lpθcqprθ ´ θ˚q (81)

ď Lpθ˚q ` 1
2GTσ2

›››rθ ´ θ˚
›››

2

2
, (82)

where θc “ crθ ` p1 ´ cqθ˚ for some c P r0, 1s and the last inequality is by Lemma B.2 under
Assumptions 2 and 4.

Now let
pGpθq “ ´ 1

n

nÿ

i“1
F pτiq

T ´1ÿ

t“0

`
φθpsi

t, ai
tq ´ φθ˚ psi

t, ai
tq

˘
, (83)

and notice that pGpθ˚q “ 0, and that ∇ pGpθq “ pFpθq where pF is defined in Assumption 5. Then,
from the mean value theorem, there exists a c P r0, 1s such that:

pGprθq “ pGpθ˚q ` prθ ´ θ˚qJ∇ pGpθcq “ prθ ´ θ˚qJ pF pθcq, (84)

where θc “ crθ ` p1 ´ cqθ˚. Hence, by Assumption 5,

E
„››› pGprθq

›››
2

2

ȷ
ě λ2˚ E

„›››rθ ´ θ˚
›››

2

2

ȷ
. (85)

Next, notice that pGpθq “ ∇pLpθq ´ ∇pLpθ˚q by Assumption 2. Thus, by definition of rθ, pGprθq “
∇pLprθq ´ ∇pLpθ˚q “ ∇pLpθ˚q, and

E
„››› pGprθq

›››
2

2

ȷ
“ E

„›››∇pLpθ˚q
›››

2

2

ȷ
ď Zθ:GT 2σ2

n
. (86)

where the last inequality is by Lemma B.3 under Assumptions 2, 3 and 4.

Finally, chaining the inequalities from Equations (82), (85), and (86):

ErLprθqs ď Lpθ˚q ` 1
2GTσ2 E

„›››rθ ´ θ˚
›››

2

2

ȷ
(87)

ď Lpθ˚q ` GTσ2

2λ2˚
E

„››› pGprθq
›››

2

2

ȷ
(88)

ď Lpθ˚q ` Zθ:G2T 3σ4

2λ2˚n
. (89)

Finally:

DKLpp˚}prθq “ E
τ „p˚

“
log p˚pτ q ´ log prθpτ q‰

(90)

“ E
τ „pθ˚

“
log pθ˚ pτ q ´ log prθpτ q‰

(91)

“ E
τ „pθ˚

«
T ´1ÿ

t“0

`
log πθ˚ pat|stq ´ log πrθpat|stq

˘
ff

(92)

“ 1
Zθ:

E
τ „p

θ:

«
}gθ: pτ q}2

T ´1ÿ

t“0

`
log πθ˚ pat|stq ´ log πrθpat|stq

˘
ff

(93)

“ Lprθq ´ Lpθ˚q
Zθ:

, (94)

and by Equation (89):

ErDKLpp˚}prθqs “ ErLprθqs ´ Lpθ˚q
Zθ:

ď G2T 3σ4

2λ2˚n
. (95)
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Lemma B.4. Under Assumptions 2 and 4, for all θ, θ1 P Θ:

Jpθ1q ´ Jpθq ě xθ1 ´ θ, ∇Jpθqy ´ Rmaxσ2

p1 ´ γq2

››θ1 ´ θ
››2

2 .

Proof. Under Assumption 2,

E
a„πθp¨|sq

r}∇ log πθpa|sq}2
2s “ E

a„πθp¨|sq
r}φθps, aq}2

2s ď σ2,

where the last inequality is by sub-Gaussianity of the centered sufficient statistic (Assumption 4 and
Proposition 1). Similarly:

E
a„πθp¨|sq

r››∇2 log πθ

››
2s “

›››› Cov
a„πθp¨|sq

rφps, aqs
››››

2

ď trace
ˆ

Cov
a„πθp¨|sq

rφps, aqs
˙

“ Var
a„πθp¨|sq

rφps, aqs

“ E
a„πθp¨|sq

r}φθps, aq}2
2s ď σ2.

Hence, by Proposition 2,
››∇2Jpθq››

2 ď 2Rmaxσ2

p1´γq2 for all θ P Θ. Finally, by the mean value theorem,
there exists c P p0, 1q such that:

Jpθ1q “ Jpθq ` xθ1 ´ θ, ∇Jpθqy ` 1
2 pθ1 ´ θqJ∇2Jpθcqpθ1 ´ θq

ě Jpθq ` xθ1 ´ θ, ∇Jpθqy ´ 1
2

››∇2Jpθq››
2

››θ1 ´ θ
››2

2

ě Jpθq ` xθ1 ´ θ, ∇Jpθqy ´ Rmaxσ2

p1 ´ γq2

››θ1 ´ θ
››2

2 ,

where θc “ cθ ` p1 ´ cqθ1 for some c P r0, 1s.

Theorem 4. Assuming NBPO ą G2T 3σ4

2λ2
˚

, let ϵ˚ “ G2T 3σ4

2λ2
˚NBPO

. Then, under Assumptions 2, 3, 4, 5,
Algorithm 1 with β “ a

ϵ˚{p2 ´ ϵ˚q guarantees

Var
k

rvks ď 1
NPG

ˆ
9Z2

k ` ZkpZk ` 2GqGT 3{2σ2

λ˚
?

2NBPO
´ }∇Jpθkq}2

2

˙
. (22)

Furthermore, by setting NBPO “ NPG “ N
2 and β P p0, 1q, provided N ą G2T 3σ4p1`β2q

2λ2
˚β2 we have:

Var
k

rvks ď 1
N

´
18Z2

k ´ }∇Jpθkq}2
2

¯
` ZkpZk ` 2GqGT 3{2σ2

2λ˚N3{2 . (23)

Proof. The first statement follows from Theorem 3 and Lemma 4.2. For the second statement, notice
that for every β P p0, 1q there is an ϵ P p0, 1q such that β “ a

ϵ{p2 ´ ϵq. The assumption on the
batch size N guarantees that ϵ is a valid upper bound on the KL divergence.

Corollary 1. Let rV :“ 18Z2
k ´ }∇Jpθkq}2

2 denote the residual variance left by the BPO process.
Under the assumptions of Theorem 4, a total number of trajectories

NK ď
S

12pJpθ˚q ´ Jpθ0qq
˜

3C1 rV
ϵ4 ` C1 ` 3C2

ϵ10{3

¸W
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is sufficient for Algorithm 1 to obtain Er}∇Jpθoutq}2s ď ϵ, where θout is chosen uniformly
at random from the iterates θ1, . . . , θK of the algorithm, where C1 “ Rmaxσ2

p1´γq2 and C2 “
R4

maxσ5}φ}8p?
T σ`2T }φ}8qT 3

2λ˚p1´γq5 .

Proof. By Lemma B.4:

E
k

rJpθk`1 ´ Jpθkqqs ě E
k

„
xθk`1 ´ θk, ∇Jpθkqy ´ Rmaxσ2

p1 ´ γq2 }θk`1 ´ θk}2
2

ȷ
(96)

“ E
k

„
αxvk, ∇Jpθkqy ´ α2Rmaxσ2

p1 ´ γq2 }vk}2
2

ȷ
(97)

“ α }∇Jpθkq}2
2 ´ α2Rmaxσ2

p1 ´ γq2 Ekr}vk}2
2s (98)

“ α

ˆ
1 ´ αRmaxσ2

p1 ´ γq2

˙
}∇Jpθkq}2

2 ´ α2Rmaxσ2

p1 ´ γ2q Var
k

rvks (99)

ě α

ˆ
1 ´ αRmaxσ2

p1 ´ γq2

˙
}∇Jpθkq}2

2 ´ α2Rmaxσ2p18Z2
k ´ }∇Jpθkq}2

2q
p1 ´ γq2N

(100)

´ α2Rmaxσ4ZkpZk ` 2GqGT 3{2

2λ˚p1 ´ γq2N3{2 (101)

ě α

ˆ
1 ´ αRmaxσ2

p1 ´ γq2

˙
}∇Jpθkq}2

2 ´ α2Rmaxσ2 rV
p1 ´ γq2N

(102)

´ α2Rmaxσ4ZkpZk ` 2GqGT 3{2

2λ˚p1 ´ γq2N3{2 (103)

ě α

ˆ
1 ´ αRmaxσ2

p1 ´ γq2

˙
}∇Jpθkq}2

2 ´ α2Rmaxσ2 rV
p1 ´ γq2N

(104)

´ α2Rmaxσ4ZkpZk ` 2GqGT 3{2

2λ˚p1 ´ γq2N3{2 (105)

ě α

ˆ
1 ´ αRmaxσ2

p1 ´ γq2

˙
}∇Jpθkq}2

2 ´ α2Rmaxσ2 rV
p1 ´ γq2N

(106)

´ α2R4
maxσ5 }φ}8 p?

Tσ ` 2T }φ}8qT 3

2λ˚p1 ´ γq5N3{2 . (107)

Summing both sides for k “ 0, . . . , K ´ 1, by the tower rule of expectation, the sum on the LHS
telescopes:

ErJpθKqs ´ Jpθ0q ě α p1 ´ αC1qE
«

K´1ÿ

k“0
}∇Jpθkq}2

2

ff
´ Kα2C1 rV

N
´ Kα2C2

N3{2 . (108)

Rearranging and dividing by K, by definition of θOUT, provided α ă 1{C1:

E
”
}∇JpθOUTq}2

2

ı
ď ErJpθKqs ´ Jpθ0q

αp1 ´ αC1qK ` αC1 rV
p1 ´ αC1qN ` αC2

p1 ´ αC1qN3{2 (109)

ď Jpθ˚q ´ Jpθ0q
αp1 ´ αC1qK ` αC1 rV

p1 ´ αC1qN ` αC2
p1 ´ αC1qN3{2 . (110)

Now let N “ ϵ´4{3 and α “ min
!

1
2C1

, ϵ2{3

6C1 rV , 1
6C2

)
. Then:

E
”
}∇JpθOUTq}2

2

ı
ď 2pJpθ˚q ´ Jpθ0qq

αK
` 2αC1 rV ϵ4{3 ` 2αC2ϵ2. (111)

668



RLJ | RLC 2024

We consider three cases, and call K the smallest integer K such that E
”
}∇JpθOUTq}2

2

ı
ď ϵ2. Note

that the latter implies E r}∇JpθOUTq}2s ď ϵ by Jensen’s inequality.

Case 1. Suppose 1
2C1

ď min
!

ϵ2{3

6C1 rV , 1
6C2

)
. Then α “ 1

2C1
and

E
”
}∇JpθOUTq}2

2

ı
ď 4C1pJpθ˚q ´ Jpθ0qq

K
` rV ϵ4{3 ` C2ϵ2

C1
(112)

ď 4C1pJpθ˚q ´ Jpθ0qq
K

` ϵ2

3 ` ϵ2

3 , (113)

so K ď 12C1pJpθ˚q´Jpθ0qq
ϵ2 in this case.

Case 2. Suppose ϵ2{3

6C1 rV ď min
!

1
2C1

, 1
6C2

)
. Then α “ ϵ2{3

6C1 rV and

E
”
}∇JpθOUTq}2

2

ı
ď 12C1 rV pJpθ˚q ´ Jpθ0qq

ϵ2{3K
` ϵ2

3 ` C2ϵ8{3

3C1 rV
(114)

ď 12C1 rV pJpθ˚q ´ Jpθ0qq
ϵ2{3K

` ϵ2

3 ` ϵ2

3 , (115)

so K ď 36C1 rV pJpθ˚q´Jpθ0qq
ϵ8{3 in this case.

Case 3. Suppose 1
6C2

ď min
!

1
2C1

, ϵ2{3

6C1 rV

)
. Then α “ 1

6C2
and

E
”
}∇JpθOUTq}2

2

ı
ď 12C2pJpθ˚q ´ Jpθ0qq

K
` C1 rV ϵ4{3

3C2
` ϵ2

3 (116)

ď 12C2pJpθ˚q ´ Jpθ0qq
K

` ϵ2

3 ` ϵ2

3 , (117)

so K ď 36C2pJpθ˚q´Jpθ0qq
ϵ2 in this case.

Considering the three cases, we know for sure that

K ď 12pJpθ˚q ´ Jpθ0qq
˜

3C1 rV
ϵ8{3 ` C1 ` 3C2

ϵ2

¸
. (118)

So the total number of trajectories is at most

NK “ ϵ´4{3K ď 12pJpθ˚q ´ Jpθ0qq
˜

3C1 rV
ϵ4 ` C1 ` 3C2

ϵ10{3

¸
. (119)

C Auxiliary Results

Proposition 1. Let X be a zero-mean σ-subgaussian random vector in Rd in the sense of Assump-
tion 4. Then

E
”
}X}2

2

ı
ď σ2.

Proof. For any λ ą 0 and t P Rd with }t}2 “ 1, by hypothesis, ErexppλtJXqs ď exppλ2σ2{2q. Then

1 ` λtJ ErXs ` λ2

2 ErptJXq2s ` opλ2q ď 1 ` λ2σ2

2 ` opλ2q, (120)

so ErptJXq2s ď σ2. The proof is concluded by noting that }X}2 “ suptPRd:}t}2“1ttJXu.
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Proposition 2 (Lemma 4.4 from Yuan et al. (2022)). If there are constants L1, L2 ą 0 such that
the following holds for all θ P Θ and s P S (E-LS, Assumption 4.1 inYuan et al. (2022)):

E
a„πθp¨|sq

r}∇ log πθpa|sq}2
2s ď L2

1, (121)

E
a„πθp¨|sq

r››∇2 log πθpa|sq››
2s ď L2, (122)

then
››∇2Jpθq››

2 ď RmaxpL2
1`L2q

p1´γq2 for all θ P Θ.

D Additional numerical results

In this section, we report the full experimental results of Section 6, with different target policy
parameters (Table 2), standard deviations (Table 3), LQ horizons (Table 4) and state dimensions
(Table 5). Each experiment was repeated 100 times and run with different hyper-parameters of our
off-policy method, i.e., the defensive coefficient β, the biased off-policy practical gradient calculation
(the offline estimation of the KL divergence here is not possible), and the batch sizes NBPO and
NPG.

Table 2: LQ environment, with horizon = 2 and state dimension = 1, and target policy with
log σ “ 0. Variance reduction in off-policy gradient, expressed as ∆Var and its 95% Gaussian
confidence interval p∆Var´, ∆Var`q, with different hyper-parameters and values of θ.

∆Var ∆Var´ ∆Var` biased β NBPO NPG θ
0.311 033 ´0.068 349 0.690 415 False 0.0 10 90 ´1.0
0.209 282 ´0.216 109 0.634 673 False 0.0 50 50 ´1.0
0.321 055 ´0.169 663 0.811 773 False 0.4 10 90 ´1.0
0.306 358 ´0.159 384 0.772 100 False 0.4 50 50 ´1.0
0.290 852 ´0.136 284 0.717 988 False 0.8 10 90 ´1.0
0.029 209 ´0.385 136 0.443 554 False 0.8 50 50 ´1.0
0.508 645 0.032 941 0.984 350 True 0.0 10 90 ´1.0
0.703 738 0.253 894 1.153 583 True 0.0 30 70 ´1.0
0.398 966 0.183 075 0.614 856 True 0.0 50 50 ´1.0
0.270 046 ´0.144 759 0.684 851 True 0.4 10 90 ´1.0
0.469 772 0.258 537 0.681 006 True 0.4 50 50 ´1.0
0.235 018 ´0.137 044 0.607 080 True 0.8 10 90 ´1.0
0.561 355 0.302 557 0.820 153 True 0.8 50 50 ´1.0
0.140 721 0.006 513 0.274 928 False 0.0 10 90 ´0.5
0.106 241 ´0.011 837 0.224 319 False 0.0 30 70 ´0.5
0.004 764 ´0.112 903 0.122 432 False 0.0 50 50 ´0.5
0.111 122 ´0.034 218 0.256 462 False 0.4 10 90 ´0.5

´0.027 326 ´0.127 503 0.072 851 False 0.4 50 50 ´0.5
0.037 222 ´0.083 851 0.158 295 False 0.8 10 90 ´0.5

´0.050 209 ´0.168 186 0.067 768 False 0.8 50 50 ´0.5
0.047 626 ´0.069 773 0.165 025 True 0.0 10 90 ´0.5
0.220 818 0.068 769 0.372 868 True 0.0 50 50 ´0.5

´0.016 716 ´0.179 981 0.146 548 True 0.4 10 90 ´0.5
0.222 632 0.064 101 0.381 162 True 0.4 50 50 ´0.5
0.078 851 ´0.041 082 0.198 785 True 0.8 10 90 ´0.5
0.195 087 0.059 070 0.331 105 True 0.8 50 50 ´0.5
0.055 112 ´0.037 841 0.148 065 False 0.0 10 90 0.0

´0.025 057 ´0.207 522 0.157 408 False 0.0 30 70 0.0
´0.093 295 ´0.238 400 0.051 810 False 0.0 50 50 0.0
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´0.055 413 ´0.187 053 0.076 227 False 0.4 10 90 0.0
´0.134 235 ´0.228 541 ´0.039 929 False 0.4 50 50 0.0
´0.044 929 ´0.146 132 0.056 273 False 0.8 10 90 0.0
´0.031 705 ´0.121 440 0.058 030 False 0.8 30 70 0.0
´0.144 370 ´0.240 908 ´0.047 833 False 0.8 50 50 0.0

0.063 952 ´0.017 625 0.145 529 True 0.0 10 90 0.0
0.120 536 0.057 602 0.183 469 True 0.0 50 50 0.0
0.044 606 ´0.063 858 0.153 070 True 0.4 10 90 0.0
0.094 860 0.012 727 0.176 992 True 0.4 50 50 0.0
0.035 522 ´0.039 497 0.110 541 True 0.8 10 90 0.0
0.120 686 0.060 903 0.180 469 True 0.8 50 50 0.0
0.392 953 ´0.018 980 0.804 886 False 0.0 10 90 0.5
0.122 100 ´0.185 945 0.430 145 False 0.0 50 50 0.5

´0.053 468 ´0.408 500 0.301 563 False 0.4 10 90 0.5
´0.094 985 ´0.448 332 0.258 362 False 0.4 50 50 0.5

0.058 454 ´0.334 086 0.450 995 False 0.8 10 90 0.5
´0.233 754 ´0.643 237 0.175 729 False 0.8 30 70 0.5
´0.285 911 ´0.647 637 0.075 815 False 0.8 50 50 0.5

0.217 064 ´0.100 778 0.534 905 True 0.0 10 90 0.5
0.324 804 0.159 038 0.490 571 True 0.0 30 70 0.5
0.204 845 ´0.114 787 0.524 477 True 0.0 50 50 0.5
0.084 464 ´0.244 899 0.413 827 True 0.4 10 90 0.5
0.408 988 0.144 608 0.673 367 True 0.4 50 50 0.5
0.177 405 ´0.197 537 0.552 347 True 0.8 10 90 0.5
0.296 821 0.071 193 0.522 449 True 0.8 50 50 0.5
1.388 987 0.323 475 2.454 499 False 0.0 10 90 1.0
0.562 928 ´0.714 201 1.840 058 False 0.0 50 50 1.0
0.006 273 ´1.342 498 1.355 045 False 0.4 10 90 1.0

´1.602 914 ´3.087 272 ´0.118 555 False 0.4 50 50 1.0
0.163 557 ´1.012 538 1.339 652 False 0.8 10 90 1.0

´1.083 920 ´2.889 235 0.721 395 False 0.8 50 50 1.0
1.643 050 ´0.103 186 3.389 286 True 0.0 10 90 1.0
1.260 688 0.628 243 1.893 133 True 0.0 50 50 1.0

´0.856 033 ´2.625 640 0.913 575 True 0.4 10 90 1.0
1.503 771 0.775 425 2.232 117 True 0.4 50 50 1.0
1.148 023 ´0.616 740 2.912 785 True 0.8 10 90 1.0
2.048 126 1.127 738 2.968 514 True 0.8 50 50 1.0

Table 3: LQ environment, with horizon = 2 and state dimension = 1, and target policy with θ “ 0.
Variance reduction in off-policy gradient, expressed as ∆Var and its 95% Gaussian confidence interval
p∆Var´, ∆Var`q, with different hyper-parameters and values of log σ.

∆Var ∆Var´ ∆Var` biased β NBPO NPG log σ
´0.005 930 ´0.029 759 0.017 899 False 0.0 10 90 ´1.0

0.005 660 ´0.009 167 0.020 486 False 0.0 30 70 ´1.0
´0.012 477 ´0.029 328 0.004 374 False 0.0 50 50 ´1.0
´0.019 162 ´0.045 400 0.007 076 False 0.4 10 90 ´1.0
´0.009 285 ´0.022 311 0.003 742 False 0.4 30 70 ´1.0
´0.031 216 ´0.049 090 ´0.013 342 False 0.4 50 50 ´1.0

0.003 573 ´0.007 268 0.014 413 False 0.8 10 90 ´1.0
´0.001 659 ´0.016 295 0.012 977 False 0.8 30 70 ´1.0
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´0.019 955 ´0.042 961 0.003 050 False 0.8 50 50 ´1.0
0.007 892 ´0.012 674 0.028 458 True 0.0 10 90 ´1.0
0.003 067 ´0.012 134 0.018 267 True 0.0 30 70 ´1.0
0.022 473 0.009 903 0.035 043 True 0.0 50 50 ´1.0
0.009 122 ´0.008 918 0.027 162 True 0.4 10 90 ´1.0
0.011 459 ´0.002 588 0.025 507 True 0.4 30 70 ´1.0
0.024 397 0.013 399 0.035 394 True 0.4 50 50 ´1.0
0.008 570 ´0.006 337 0.023 477 True 0.8 10 90 ´1.0
0.013 768 0.000 079 0.027 457 True 0.8 30 70 ´1.0
0.021 262 0.006 614 0.035 910 True 0.8 50 50 ´1.0
0.008 268 ´0.029 189 0.045 725 False 0.0 10 90 ´0.5

´0.005 033 ´0.033 272 0.023 205 False 0.0 30 70 ´0.5
´0.012 141 ´0.053 830 0.029 549 False 0.0 50 50 ´0.5
´0.010 019 ´0.055 467 0.035 429 False 0.4 10 90 ´0.5
´0.041 924 ´0.082 961 ´0.000 888 False 0.4 30 70 ´0.5
´0.017 607 ´0.063 668 0.028 453 False 0.4 50 50 ´0.5

0.005 316 ´0.024 194 0.034 827 False 0.8 10 90 ´0.5
´0.013 986 ´0.039 499 0.011 528 False 0.8 30 70 ´0.5
´0.036 312 ´0.075 203 0.002 580 False 0.8 50 50 ´0.5
´0.020 111 ´0.084 565 0.044 343 True 0.0 10 90 ´0.5

0.015 060 ´0.035 335 0.065 454 True 0.0 30 70 ´0.5
0.043 786 0.024 192 0.063 380 True 0.0 50 50 ´0.5
0.006 319 ´0.025 938 0.038 576 True 0.4 10 90 ´0.5
0.026 350 ´0.001 615 0.054 315 True 0.4 30 70 ´0.5
0.047 319 0.022 475 0.072 162 True 0.4 50 50 ´0.5

´0.008 211 ´0.035 239 0.018 817 True 0.8 10 90 ´0.5
0.033 399 0.010 778 0.056 020 True 0.8 30 70 ´0.5
0.039 081 0.017 615 0.060 547 True 0.8 50 50 ´0.5
0.055 784 ´0.044 796 0.156 364 False 0.0 10 90 0.0
0.041 080 ´0.035 048 0.117 208 False 0.0 30 70 0.0

´0.005 922 ´0.126 384 0.114 540 False 0.0 50 50 0.0
´0.108 877 ´0.277 607 0.059 853 False 0.4 10 90 0.0
´0.068 676 ´0.192 034 0.054 683 False 0.4 30 70 0.0
´0.014 881 ´0.095 332 0.065 571 False 0.4 50 50 0.0
´0.023 581 ´0.100 187 0.053 025 False 0.8 10 90 0.0
´0.019 248 ´0.106 283 0.067 788 False 0.8 30 70 0.0
´0.110 193 ´0.239 846 0.019 460 False 0.8 50 50 0.0
´0.012 017 ´0.095 599 0.071 565 True 0.0 10 90 0.0

0.065 525 ´0.001 559 0.132 608 True 0.0 30 70 0.0
0.103 235 0.046 921 0.159 549 True 0.0 50 50 0.0
0.010 584 ´0.077 404 0.098 572 True 0.4 10 90 0.0
0.043 050 ´0.036 176 0.122 275 True 0.4 30 70 0.0
0.129 326 0.022 730 0.235 923 True 0.4 50 50 0.0
0.033 573 ´0.057 323 0.124 468 True 0.8 10 90 0.0
0.042 062 ´0.015 675 0.099 800 True 0.8 30 70 0.0
0.124 324 0.048 137 0.200 510 True 0.8 50 50 0.0

´0.033 518 ´0.456 779 0.389 743 False 0.0 10 90 0.5
0.151 897 ´0.199 452 0.503 245 False 0.0 30 70 0.5
0.157 868 ´0.245 560 0.561 297 False 0.0 50 50 0.5

´0.261 459 ´0.687 112 0.164 193 False 0.4 10 90 0.5
´0.044 700 ´0.398 698 0.309 298 False 0.4 30 70 0.5
´0.136 862 ´0.578 197 0.304 473 False 0.4 50 50 0.5
´0.160 264 ´0.574 757 0.254 229 False 0.8 10 90 0.5
´0.293 061 ´0.759 271 0.173 149 False 0.8 30 70 0.5
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´0.288 713 ´0.862 787 0.285 361 False 0.8 50 50 0.5
0.161 052 ´0.278 498 0.600 601 True 0.0 10 90 0.5
0.148 964 ´0.147 220 0.445 148 True 0.0 30 70 0.5
0.556 353 0.215 147 0.897 560 True 0.0 50 50 0.5
0.105 981 ´0.300 877 0.512 839 True 0.4 10 90 0.5
0.227 993 ´0.026 717 0.482 703 True 0.4 30 70 0.5
0.483 820 0.186 378 0.781 262 True 0.4 50 50 0.5
0.240 989 ´0.039 873 0.521 851 True 0.8 10 90 0.5
0.419 434 0.145 579 0.693 288 True 0.8 30 70 0.5
0.590 495 0.244 142 0.936 848 True 0.8 50 50 0.5
1.535 046 ´0.378 748 3.448 839 False 0.0 10 90 1.0
1.186 207 ´0.690 749 3.063 163 False 0.0 30 70 1.0
0.581 094 ´1.889 402 3.051 590 False 0.0 50 50 1.0

´0.436 245 ´2.535 319 1.662 828 False 0.4 10 90 1.0
0.392 720 ´1.539 439 2.324 879 False 0.4 30 70 1.0

´0.407 481 ´2.796 212 1.981 250 False 0.4 50 50 1.0
´0.025 073 ´2.070 740 2.020 595 False 0.8 10 90 1.0

0.604 685 ´1.277 262 2.486 632 False 0.8 30 70 1.0
´2.374 359 ´5.105 622 0.356 903 False 0.8 50 50 1.0

2.055 510 0.523 027 3.587 994 True 0.0 10 90 1.0
3.247 087 1.631 413 4.862 761 True 0.0 30 70 1.0
3.176 471 1.951 825 4.401 116 True 0.0 50 50 1.0

´0.638 350 ´2.931 465 1.654 765 True 0.4 10 90 1.0
2.361 232 ´0.389 329 5.111 792 True 0.4 30 70 1.0
3.773 828 2.399 339 5.148 317 True 0.4 50 50 1.0

´0.121 002 ´2.025 865 1.783 861 True 0.8 10 90 1.0
2.700 678 0.718 395 4.682 962 True 0.8 30 70 1.0
4.041 229 2.016 358 6.066 101 True 0.8 50 50 1.0

Table 4: LQ environment, with state dimension = 1, and target policy with θ “ 0 and log σ “ 0.
Variance reduction in off-policy gradient, expressed as ∆Var and its 95% Gaussian confidence interval
p∆Var´, ∆Var`q, with different hyper-parameters and values of LQ horizon.

∆Var ∆Var´ ∆Var` biased β NBPO NPG horizon
0.069 930 ´0.046 726 0.186 585 False 0.0 10 90 2
0.041 136 ´0.072 254 0.154 527 False 0.0 30 70 2

´0.005 922 ´0.126 384 0.114 540 False 0.0 50 50 2
´0.050 883 ´0.162 004 0.060 239 False 0.4 10 90 2

0.010 338 ´0.076 535 0.097 211 False 0.4 30 70 2
´0.090 330 ´0.192 410 0.011 749 False 0.4 50 50 2

0.035 092 ´0.055 714 0.125 898 False 0.8 10 90 2
´0.007 530 ´0.102 390 0.087 330 False 0.8 30 70 2
´0.115 648 ´0.213 301 ´0.017 995 False 0.8 50 50 2

0.066 612 ´0.001 504 0.134 728 True 0.0 10 90 2
0.085 898 0.031 732 0.140 063 True 0.0 30 70 2
0.103 235 0.046 921 0.159 549 True 0.0 50 50 2
0.112 833 0.030 839 0.194 826 True 0.4 10 90 2
0.095 228 ´0.006 859 0.197 315 True 0.4 30 70 2
0.149 218 0.056 437 0.241 998 True 0.4 50 50 2
0.042 195 ´0.048 001 0.132 391 True 0.8 10 90 2
0.093 129 0.009 514 0.176 744 True 0.8 30 70 2
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0.105 378 0.035 148 0.175 607 True 0.8 50 50 2
10.687 620 ´2.869 784 24.245 024 False 0.0 10 90 5
7.282 445 ´6.616 917 21.181 807 False 0.0 30 70 5
2.874 308 ´4.688 494 10.437 109 False 0.0 50 50 5
4.071 531 ´5.723 477 13.866 538 False 0.4 10 90 5
0.956 628 ´10.018 669 11.931 925 False 0.4 30 70 5

´5.491 321 ´18.211 299 7.228 656 False 0.4 50 50 5
0.573 767 ´7.492 679 8.640 214 False 0.8 10 90 5

´3.820 528 ´12.886 054 5.244 998 False 0.8 30 70 5
´4.917 480 ´15.161 070 5.326 109 False 0.8 50 50 5
10.507 537 0.036 861 20.978 213 True 0.0 10 90 5
12.273 186 3.825 430 20.720 942 True 0.0 30 70 5
18.397 351 11.233 154 25.561 549 True 0.0 50 50 5
1.784 933 ´7.365 845 10.935 710 True 0.4 10 90 5
8.188 129 1.217 410 15.158 849 True 0.4 30 70 5

20.694 907 9.166 655 32.223 160 True 0.4 50 50 5
2.638 710 ´9.021 860 14.299 280 True 0.8 10 90 5

10.948 408 3.223 581 18.673 235 True 0.8 30 70 5
17.933 160 9.614 722 26.251 598 True 0.8 50 50 5

309.723 170 48.773 653 570.672 686 False 0.0 10 90 10
264.708 738 8.706 979 520.710 497 False 0.0 30 70 10

´310.144 245 ´633.900 151 13.611 661 False 0.0 50 50 10
´57.120 902 ´253.024 398 138.782 594 False 0.4 10 90 10

´212.141 924 ´498.899 103 74.615 254 False 0.4 30 70 10
´429.773 537 ´786.701 764 ´72.845 309 False 0.4 50 50 10
´133.179 844 ´370.851 501 104.491 814 False 0.8 10 90 10
´182.821 632 ´456.259 702 90.616 438 False 0.8 30 70 10
´435.518 703 ´791.043 397 ´79.994 010 False 0.8 50 50 10

220.182 609 11.927 906 428.437 312 True 0.0 10 90 10
287.629 645 102.303 168 472.956 122 True 0.0 30 70 10
397.739 142 159.122 421 636.355 863 True 0.0 50 50 10
31.267 834 ´172.938 839 235.474 507 True 0.4 10 90 10

112.227 812 ´64.333 427 288.789 050 True 0.4 30 70 10
229.049 254 78.704 906 379.393 601 True 0.4 50 50 10
75.251 773 ´214.074 304 364.577 849 True 0.8 10 90 10

147.828 473 ´45.398 299 341.055 245 True 0.8 30 70 10
223.758 261 63.647 799 383.868 723 True 0.8 50 50 10

Table 5: LQ environment, with horizon = 2, and target policy with θ “ 0 and log σ “ 0. Vari-
ance reduction in off-policy gradient, expressed as ∆Var and its 95% Gaussian confidence interval
p∆Var´, ∆Var`q, with different hyper-parameters and values of LQ dimensions.

∆Var ∆Var´ ∆Var` biased β NBPO NPG horizon
´8.339 387 ´24.727 999 8.049 225 False 0.0 10 90 2

0.015 846 ´0.078 860 0.110 552 False 0.0 30 70 2
´0.084 267 ´0.288 979 0.120 445 False 0.0 50 50 2
´0.061 526 ´0.197 193 0.074 140 False 0.4 10 90 2
´0.057 192 ´0.164 759 0.050 375 False 0.4 30 70 2
´0.104 342 ´0.228 757 0.020 073 False 0.4 50 50 2
´0.036 944 ´0.159 470 0.085 583 False 0.8 10 90 2
´0.086 518 ´0.184 832 0.011 796 False 0.8 30 70 2
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´0.203 195 ´0.335 921 ´0.070 469 False 0.8 50 50 2
´0.008 285 ´0.214 530 0.197 959 True 0.0 10 90 2

0.104 098 0.032 116 0.176 080 True 0.0 30 70 2
0.238 017 0.131 980 0.344 053 True 0.0 50 50 2
0.011 235 ´0.095 540 0.118 011 True 0.4 10 90 2
0.095 955 0.012 872 0.179 039 True 0.4 30 70 2
0.127 433 0.055 541 0.199 325 True 0.4 50 50 2
0.002 206 ´0.080 722 0.085 135 True 0.8 10 90 2
0.079 307 0.000 681 0.157 932 True 0.8 30 70 2
0.125 603 0.058 244 0.192 963 True 0.8 50 50 2
0.194 184 ´0.083 991 0.472 359 False 0.0 10 90 5

´0.146 855 ´0.614 440 0.320 730 False 0.0 30 70 5
´0.177 411 ´0.438 773 0.083 951 False 0.0 50 50 5
´0.289 803 ´0.550 181 ´0.029 424 False 0.4 10 90 5
´0.255 346 ´0.520 408 0.009 716 False 0.4 30 70 5
´0.269 124 ´0.526 112 ´0.012 137 False 0.4 50 50 5
´0.129 578 ´0.334 713 0.075 557 False 0.8 10 90 5
´0.123 404 ´0.340 821 0.094 013 False 0.8 30 70 5
´0.437 729 ´0.671 352 ´0.204 107 False 0.8 50 50 5
´0.834 077 ´2.383 864 0.715 710 True 0.0 10 90 5

0.182 321 ´0.092 779 0.457 422 True 0.0 30 70 5
0.163 729 ´0.067 104 0.394 563 True 0.0 50 50 5

´0.229 281 ´0.510 593 0.052 031 True 0.4 10 90 5
0.088 913 ´0.137 086 0.314 913 True 0.4 30 70 5
0.225 710 0.014 423 0.436 998 True 0.4 50 50 5

´0.046 998 ´0.214 187 0.120 191 True 0.8 10 90 5
0.090 860 ´0.086 864 0.268 584 True 0.8 30 70 5
0.229 097 0.034 306 0.423 888 True 0.8 50 50 5
1.044 491 0.832 316 1.256 666 False 0.0 10 90 10
0.040 743 ´0.419 189 0.500 674 False 0.0 30 70 10

´0.638 193 ´1.225 117 ´0.051 268 False 0.0 50 50 10
´0.692 391 ´1.118 963 ´0.265 820 False 0.4 10 90 10
´0.385 588 ´0.904 039 0.132 862 False 0.4 30 70 10
´0.746 861 ´1.588 713 0.094 990 False 0.4 50 50 10
´0.007 001 ´0.385 542 0.371 541 False 0.8 10 90 10
´0.372 875 ´0.864 685 0.118 934 False 0.8 30 70 10
´0.936 066 ´1.681 347 ´0.190 786 False 0.8 50 50 10
´1.728 083 ´5.132 161 1.675 995 True 0.0 30 70 10

0.268 508 ´0.029 918 0.566 934 True 0.0 50 50 10
´0.118 744 ´0.583 906 0.346 419 True 0.4 10 90 10
´0.272 643 ´0.906 404 0.361 118 True 0.4 30 70 10

0.130 968 ´0.137 975 0.399 911 True 0.4 50 50 10
0.194 654 ´0.199 835 0.589 142 True 0.8 10 90 10
0.306 706 ´0.081 120 0.694 532 True 0.8 30 70 10
0.601 394 0.316 451 0.886 338 True 0.8 50 50 10
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Abstract

The problem of pure exploration in Markov decision processes has been cast as
maximizing the entropy over the state distribution induced by the agent’s policy,
an objective that has been extensively studied. However, little attention has been
dedicated to state entropy maximization under partial observability, despite the lat-
ter being ubiquitous in applications, e.g., finance and robotics, in which the agent
only receives noisy observations of the true state governing the system’s dynamics.
How can we address state entropy maximization in those domains? In this paper, we
study the simple approach of maximizing the entropy over observations in place of
true latent states. First, we provide lower and upper bounds to the approximation
of the true state entropy that only depend on some properties of the observation
function. Then, we show how knowledge of the latter can be exploited to com-
pute a principled regularization of the observation entropy to improve performance.
With this work, we provide both a flexible approach to bring advances in state
entropy maximization to the POMDP setting and a theoretical characterization of
its intrinsic limits.

1 Introduction

A plethora of recent works (Hazan et al., 2019; Lee et al., 2019; Mutti & Restelli, 2020; Tarbouriech
et al., 2020; Zhang et al., 2021; Guo et al., 2021; Liu & Abbeel, 2021b;a; Seo et al., 2021; Yarats
et al., 2021; Mutti et al., 2021; 2022b;c; Nedergaard & Cook, 2022; Yang & Spaan, 2023; Tiapkin
et al., 2023; Jain et al., 2023; Kim et al., 2023; Zisselman et al., 2023; Mutti, 2023) have studied state
entropy maximization for pure exploration of Markov Decision Processes (MDPs, Puterman, 2014)
in the absence of a reward function. In this Maximum State Entropy (MSE) framework, formally
introduced by Hazan et al. (2019), the agent aims to maximize the entropy of the state visitation
induced by its policy instead of the cumulative sum of rewards, which is a generalization of the
Reinforcement Learning (RL, Bertsekas, 2019) problem that often goes as convex RL (Zahavy et al.,
2021; Geist et al., 2021; Mutti et al., 2022a; 2023) due to the convexity of the entropy function.

Despite the problem being harder than RL, MSE has brought remarkable empirical success as a
tool for data collection (Yarats et al., 2022), transition model estimation (Tarbouriech et al., 2020),
and policy pre-training (Mutti et al., 2021), as well as an essential building block for improved skills
discovery (Liu & Abbeel, 2021a) and generalization across various tasks (Zisselman et al., 2023).

Especially, Mutti et al. (2021); Liu & Abbeel (2021b); Seo et al. (2021); Yarats et al. (2021) have
popularized a practical policy optimization procedure that allows to address MSE at scale. Their
method is based on pairing flexible nearest-neighbors estimators of the entropy (Singh et al., 2003)
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with policies implemented through neural networks trained via backpropagation, a recipe for success
in complex and high-dimensional domains, e.g., continuous control or learning from images.

Although many facets of the MSE problem have been studied, all of the previous works assume the
states, on which the entropy is maximized, to be fully observable to the agent. However, this is not
the case for several interesting applications. Let us think of a trading scenario: A trader typically
accesses a small portion of the true state, e.g., current stock prices, volumes, and so on, while other
parts, e.g., the general sentiment of the market or companies’ revenues published quarterly, mostly
remain latent, albeit crucial to define the system’s dynamics. The same goes for a robotic navigation
task, where the state is often accessed through noisy sensory inputs, such as cameras and proximity,
rather than true spatial coordinates. An important question arises naturally:

Can we maximize the entropy over states getting partial observations only?

While the problem of addressing a learning objective that is hidden from the agent is fascinating per
se, we argue that any improvement in this direction is paramount to bringing MSE closer to practical
applications. Unfortunately, the problem we just described is a clear generalization of learning in
Partially Observable MDPs (POMDPs, Åström, 1965), which is well-known to be intractable.

In this paper, we study the simple approach of maximizing the entropy over the partial observations
in place of the true states. This framework, which we call Maximum Observation Entropy (MOE),
gives two crucial benefits. On the one hand, we can sidestep the inherent computational hardness of
dealing with POMDPs (Papadimitriou & Tsitsiklis, 1987), as the class of policies that are Markovian
over observations suffices (Hazan et al., 2019) and we do not need to build complex belief distributions
over the true state as the objective is fully observable. Secondly, all of the previous implementations
can be directly transferred from MSE to MOE without changes, which gives a head start to the
MOE problem instead of implementing new techniques from the ground up.

Surprisingly, we can show that this straightforward approach is not hopeless. We derive formal
approximation results on the difference between the entropy induced over observations and the
corresponding entropy over the true (latent) states, which can be upper bounded as a function of
properties of the observation matrix, namely its maximum singular value or the average entropy of
its rows. This is in stark contrast with RL in POMDPs, in which the optimal policy over observations
is almost arbitrarily sub-optimal under similar assumptions.

Whereas the approximation bounds characterize settings where optimizing for MOE is enough, they
tell little about how to address domains in which the observation matrix is not so well-behaved. In
those settings, we show that knowledge of the observation matrix, a reasonable requirement in some
applications (e.g., the specifics of sensors and cameras equipped on a robot may be available), can be
exploited to improve performance over MOE. First, we derive a principled regularization term that
discounts the entropy induced by the observations with the entropy of their emission, intuitively
putting more weight on the observations for which the emission process is reliable and less on those
that are known to be noisy. Then, we incorporate the latter regularization in an appropriate policy
gradient algorithm inspired by previous MSE approaches (Mutti et al., 2021; Liu & Abbeel, 2021b).
Finally, we test the algorithm on a set of simple yet illustrative domains to validate our theoretical
findings, bringing an algorithmic blueprint for scalable state entropy maximization in POMDPs.

Contributions. Throughout the paper, we make the following contributions:

• In Section 3, we provide the first generalization of the MSE problem to the POMDP setting,
introducing MOE as a simple yet flexible and tractable approach;

• In Section 4, we theoretically analyze the gap between MOE and MSE, providing a family of
upper and lower bounds that link the approximation error to spectral and information properties
of the observation matrix;

• In Section 5, we design a policy gradient algorithm for (general) MOE optimization, and we pro-
vide a variation including a principle regularization term to exploit knowledge of the observation
matrix (but not the POMDP specification);
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• In Section 6, we report an empirical validation that tests the introduced algorithms against an
ideal baseline accessing the true states of the POMDP, which both upholds the algorithms’ design
and our theoretical findings.

Finally, in a concurrent work (Zamboni et al., 2024) we explore state entropy maximization in
POMDPs beyond MOE, studying methodologies that exploit observations to build beliefs over the
true states and then maximize the entropy of the believed states. With the combined contributions
of this paper and Zamboni et al. (2024), we hope to pave the way for future studies of state entropy
maximization in partially observable environments.

2 Preliminaries

In this section, we introduce the most relevant background and the basic notation.

Notation. In the following, we denote [N ] := {1, 2, . . . , N} for a constant N < ∞. We denote a
set with a calligraphic letter A and its size as |A|. We denote AT := ×T

t=1A the T -fold Cartesian
product of A. The simplex on A is denoted as ∆A := {p ∈ [0, 1]|A||∑a∈A p(a) = 1} and ∆B

A denotes
the set of conditional distributions p : A → ∆B. Let X a random variable on the set of outcomes
X and corresponding probability measure pX , we denote as Hα(X) = 1

1−α log(
∑

x∈X pX(x)α) the
Rènyi entropy of order α, from which we recover the Shannon entropy H(X) = limα→1 Hα(X) =
−∑

x∈X pX(x) log(pX(x)) and the min-entropy H∞(X) = limα→∞ Hα(X) = − log(maxx∈X pX(x)).
We denote x = (X1, . . . , XT ) a random vector of size T and x[t] its entry at position t ∈ [T ]. For
a vector v ∈ RN we denote ∥v∥∞ := maxi∈[N ] vi. For a matrix V ∈ RN×M we denote ∥V∥∞ :=
maxij∈[N ]×[M ] Vij its infinity norm, V∗ its conjugate transpose and V◦−1 its Hadamard inverse, such
that V ◦−1

ij = 1/Vij ∀i, j. We further denote λ(V), σ(V), the vectors of eigenvalues and singular
values of V, respectively. We denote the spectral norm of V as ∥V∥2 :=

√
λmax(V∗V) = σmax(V)

where λmax(V) := ∥λ(V)∥∞ and σmax(V) := ∥σ(V)∥∞.

As a base model for interaction, we consider a finite-horizon Partially Observable Markov Decision
Process (POMDP, Åström, 1965) without rewards. A POMDP M := (S,X ,A,O,P, µ, T ) is com-
posed of a set S of latent states, a set X of observations, and a set of actions A, which we let discrete
and finite with size |S|, |X |, |A| respectively. At the start of an episode, the initial state s1 of M is
drawn from an initial state distribution µ ∈ ∆S . An agent interacting with M never accesses the
true state of the system but an observation x1 ∼ O(·|s1) where O ∈ ∆S

X is the observation func-
tion.1 Upon observing x1, the agent takes action a1 ∈ A, the system transitions to s2 ∼ P(·|s1, a1)
according to the transition model P ∈ ∆S×A

S , and a new observation x2 ∼ O(·|s2) is generated. The
process is repeated until sT is reached and xT is generated, being T <∞ the horizon of an episode.

The agent selects actions according to a decision policy π ∈ ∆A
X such that π(a|x) denotes the

conditional probability of taking action a upon observing x. Deploying a policy π over a POMDP M
induces a specific distribution over states and observations. Let denote as S, X the random variables
corresponding to the state and observation respectively, we have that S is distributed as pπ

S ∈ ∆S ,
where pπ

S(s) = 1
T

∑
t∈[T ] Pr(st = s), and X as pπ

X ∈ ∆X , where pπ
X(x) = 1

T

∑
t∈[T ] Pr(xt = x).

Further, it is easy to see that pπ
X(x) =

∑
s∈S pπ

S(s)O(x|s). Furthermore, let us denote with s, x, a
the random vectors corresponding to sequences of states, observations, and actions of length T , which
are supported in ST ,X T ,AT respectively. We have that s is distributed as qπ

S ∈ ∆ST , where qπ
S(s) =∏

t∈[T ] Pr(st = s[t]), and x, a as qπ
XA ∈ ∆X T ×AT , where qπ

XA(x, a) =
∏

t∈[T ] Pr(xt = x[t], at = a[t]).
Finally, we denote the empirical distributions induced by s, x as p̂S(s| s) = 1

T

∑
t∈[T ] 1(s[t] = s) and

p̂X(x|x) = 1
T

∑
t∈[T ] 1(x[t] = x), which does not depend on π due to the conditioning on s, x.

1With slight overload of notation, we will equivalently represent the observation function through a stochastic
matrix O ∈ R|S|×|X |.
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3 Problem Formulation

In the MDP setting, i.e., observations coincide with the true states of the state of the system, Hazan
et al. (2019) have formulated the Maximum State Entropy (MSE) objective as follows

max
π∈Π̃

{
H(S|π) := −

∑
s∈S

pπ
S(s) log pπ

S(s)
}

(1)

where Π̃ ⊆ ∆A
S is the set of Markovian policies from states to distribution over actions, and H(S|π)

is the entropy of the state variable S “conditioned” on running the policy π in the MDP. When the
MDP is fully known, Hazan et al. (2019) shows that (1) is non-convex, but it admits a convex dual
formulation, which is optimized by a stochastic Markovian policy in general.

In principle, we aim to address the same objective (1) in POMDPs as well. However, in the POMDP
setting, we cannot access the true states, which are latent, but we have to rely on partial observations
generated from those states. Thus, a straightforward adaptation of (1) to POMDPs is to define an
analogous objective on observations as a proxy for H(S|π), which we cannot access. We define the
Maximum Observation Entropy (MOE) objective as follows

max
π∈Π

{
H(X|π) := −

∑
x∈X

pπ
X(x) log pπ

X(x)
}

(2)

where Π ⊆ ∆A
S is the set of Markovian policies from observations to distribution over actions, and

H(X|π) is the entropy of the observation X “conditioned” on running the policy π in the POMDP.

Similarly, as in MDPs, we aim to find a policy π that maximizes (2), but we are actually interested
in achieving a good performance on (1). It is easy to see how the value of (2) can depart significantly
from the true objective (1). Take, for instance, an observation matrix that maps every state to the
same observation O(x̄|s) = 1 ∀s ∈ S. It is clear that every policy is optimal for MOE in this setting,
but the entropy on the true states can be arbitrarily bad. While those extreme cases are rather
unrealistic, the observation matrix can be truly messed up in practice. We want to understand what
are the settings that are worth addressing with MOE and what kind of guarantees we can get. In
the following section, we provide answers to these questions by deriving theoretical bounds on the
approximation of MSE with MOE that depends on crucial properties of the observation matrix.

4 A Formal Characterization of Maximum Observation Entropy

In this section, we aim to characterize the gap H(S|π) − H(X|π) induced by a chosen policy π,
e.g., the policy that maximizes the MOE objective (2). Due to the POMDP nature, in which only
partial information (if any) on the true states is leaked to the agent, we cannot provide any general
guarantee on the latter gap, which can be as large as

|H(S|π)−H(X|π)| ≤ max{log |S|, log |X |}. (3)

Nonetheless, we can provide instance-dependent results that formally characterize the gap according
to notable properties of the observation function in the given instance. First, we prove the following.
Theorem 4.1 (Spectral Approximation Bounds). Let M a POMDP and let π ∈ Π ⊆ ∆A

X a policy.
Then, it holds

log
(

1
σmax(O◦−1)

)
≤ H(S|π)−H(X|π) ≤ log(σmax(O)).

Proof. First, we derive the upper bound. Starting from H(X|π), we have

H(X|π) ≥ H2(X|π) = log
(

1
∥pπ

X∥2

)
= log

(
1

∥O · pπ
S∥2

)
(4)

≥ log
(

1
∥O∥2 ∥pπ

S∥2

)
= log

(
1

∥pπ
S∥2

)
+ log

(
1
∥O∥2

)
= H2(S|π)− log (σmax(O))
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where the first inequality comes from H(V ) ≥ H2(V ) for every variable V and the second inequality
from ∥V · v∥2 ≤ ∥V∥2 ∥v∥2 for every matrix V and vector v. Then, starting from H(S|π), we get

H(S|π) = ∥pπ
S∥∞ log

(
1

∥pπ
S∥∞

)
+

∑

s:pπ
S

(s)<∥pπ
S

∥∞

pπ
S(s) log

(
1

pπ
S(s)

)
(5)

≤ ∥pπ
S∥∞H∞(S|π) + (1− ∥pπ

S∥∞) log
( |S| − 1

1− ∥pπ
S∥∞

)

where the inequality is obtained by letting pπ
S be uniformly distributed outside of the entry ∥pπ

S∥∞.
By noting H∞(V ) ≤ H2(V ) and plugging (5) back to (4) we get

H(X|π) ≥ H(S|π)
∥pπ

S∥∞
+ ∥p

π
S∥∞ − 1
∥pπ

S∥∞
log

( |S| − 1
1− ∥pπ

S∥∞

)
+ log

(
1

σmax(O)

)
(6)

which gives the result for ∥pπ
S∥∞ → 1.2

To derive the lower bound, we proceed as follows. We start from the H(X|π) definition to write

H(X|π) =
∑

x∈X
pπ

X(x) log
(

1
pπ

X(x)

)
=

∑

x∈X
pπ

X(x) log
( ∑

s∈S pπ
S(s)∑

s pπ
S(s)O(x|s)

) ∑

s∈S
pπ

S(s) (7)

≤
∑

x∈X
pπ

X(x)
∑

s∈S
pπ

S(s) log
(

pπ
S(s)

pπ
S(s)O(x|s)

)
= H(S|π) +

∑

x∈X
pπ

X(x)
∑

s∈S
pπ

S(s) log
(

pπ
S(s)

O(x|s)

)
(8)

≤ H(S|π) + E
x∼pπ

X

E
s∼pπ

S

[
log(O◦−1(x|s))

]
≤ H(S|π) + log

(
max
x∈X

max
s∈S

O◦−1(x|s)
)

(9)

≤ H(S|π) + log
(
σmax(O◦−1)

)
(10)

where we exploit pπ
X(x) =

∑
s∈S pπ

S(s)O(x|s) and
∑

s∈S pπ
S(s) = 1 to write (7), we first apply the

log-sum inequality and we split the logarithm to get (8). Then, in (9), we write the first inequality
through the definition of the Hadamard inverse of O and noting that pπ

S(s) ≤ 1 ∀s ∈ S, we get
the second inequality from E[V ] ≤ max(V ) for any random variable V and the monotonicity of the
logarithm. Finally, we obtain the result (10) by ∥V∥∞ ≤ ∥V∥2 = σmax(V) for any matrix V.

Figure 1: Spectral Bound behavior for two differ-
ent observation matrices O. MOE values compat-
ible with MSE values are in orange.

Theorem 4.1 gives bounds on the approximation
gap that can be much tighter than the worst-
case gap in (3). The bounds relate the gap to
the scale of the transformation induced by the
observation matrix on the distribution of the la-
tent states, which is captured by the maximum
singular value of O and O◦−1, respectively. For
instance, an observation matrix that maps every
state to the same observation O(x̄|s) = 1 ∀s ∈ S
can lead to a larger gap between MOE and MSE,
as visualized in the left-hand side of Figure 1.
On the other hand, when the observation ma-
trix maps with high probability each state to
a different observation, the gap is necessarily
smaller (see the right-hand side of Figure 1).
Notably, both sides of the bound collapse to zero
when the observation matrix is an identity ma-
trix, i.e., when the states are fully observed.

The bounds in Theorem 4.1 only focus on spectral properties of the observation matrix O. In a
similar vein, we can provide an analogous characterization based on information properties of O.

2Note that (6) is a tighter version of the upper bound than the one provided in the theorem statement, although
it directly depends on the state distribution pπ

S beyond spectral properties of O.
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Theorem 4.2 (Information Approximation Bound). Let M a POMDP, let π ∈ Π ⊆ ∆A
X a policy,

and let H(X|S, π) = Es∼pπ
S
[H(O(·|s))]. Then, it holds

H(S|π) ≥ H(X|π)−H(X|S, π).

Proof. Starting from H(X|π) definition, we can write

H(X|π) =
∑

x∈X
pπ

X(x) log 1
pπ

X(x) =
∑

x∈X

∑

s∈S
O(x|s)pπ

S(s) log 1∑
s′∈S O(x|s′)pπ

S(s′)

≤
∑

x∈X

∑

s∈S
O(x|s)pπ

S(s) log 1
O(x|s)pπ

S(s) (11)

=
∑

x∈X

∑

s∈S
O(x|s)pπ

S(s) log 1
pπ

S(s) +
∑

x∈X

∑

s∈S
O(x|s)pπ

S(s) log 1
O(x|s) (12)

= H(S|π) +
∑

s∈S
pπ

S(s)H(O(·|s)) = H(S|π) + H(X|S, π) (13)

where we get (11) by noting
∑

s′∈S O(x|s′)pπ
S(s′) ≥ O(x|s)pπ

S(s), we split the logarithm to write (12),
we let

∑
x∈X O(x|s) = 1 and

∑
s∈S pπ

S(s)H(O(·|s)) = H(X|S, π) to obtain the result in (13).

Figure 2: Information Approximation Bound be-
havior for two different pπ

S . MSE values compati-
ble with MOE values are in green.

Theorem 4.2 essentially states that the gap be-
tween the entropy on observations and true
states is small as long as the policy π induces
visits to states where the observation function
has low entropy, which is captured by the term
H(X|S, π) = Es∼pπ

S
[H(O(·|s))]. When a policy

visits states emitting observations with high en-
tropy, the bound on the gap will be loose, as
visualized in the left-hand side of Figure 2. In-
stead, when the most visited states emit almost
deterministic observations, then the bound on
the gap is tighter (see the right-hand side in
Figure 2). Just as Theorem 4.1, also the lat-
ter bound is tight when the true states are fully
observed, collapsing the gap to zero.

The combination of Theorems 4.1, 4.2 yield a
nice description of the instances that is reason-
able to address with a MOE approach, i.e., those for which the gap between the resulting policy
and the optimal MSE policy is small thanks to the properties of the observation matrix. Unfor-
tunately, policies in POMDPs have control over neither the spectral properties of the observation
function nor whether the visited states have low-entropy observation distributions. In other words,
while being descriptive, these results do not provide any further tool to actively address MSE in
POMDPs. In the next section, we reformulate the bound in Theorem 4.2 around quantities that
can be actively controlled by a policy conditioned on observations and we provide a family of policy
gradient algorithms to learn a MOE policy in those relevant instances.

Before diving into algorithmic solutions, it is interesting to confront the properties making a state
entropy maximization problem on POMDPs easy and analogous requirements for RL in POMDPs.
In the latter setting, we generally ask for an observation function that leaks significant information
on the latent state. For instance, this is captured by a lower bound on the minimum singular
value of O in the revealing POMDP assumption (e.g., Liu et al., 2022). Instead, in state entropy
maximization, we care less about identifying the latent state, and we can just focus on observations
as long as O does not dramatically jeopardize the underlying state distribution.
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Algorithm 1 PG for MOE (Reg-MOE)
1: Input: learning rate α, number of iterations K, batch size N
2: Initialize the policy parameters θ1
3: for k = 1, . . . , K do
4: Sample N trajectories {(xi, ai)}i∈[N ] with the policy πθk

5: Compute {H(X|xi)}i∈[N ] and {∇θ log πθ(xi, ai) =
∑

t∈[T ]∇θ log πθ(ai[t]|xi[t])}i∈[N ]
6: Update the policy parameters in the gradient direction

θk+1 ← θk + α 1
N

∑N
i ∇θ log πθ(xi, ai)

(
H(X|xi)−β

∑
x∈X pX(x|xi)H(O(x|·)

)

7: end for
8: Output: the final policy πθK

5 Towards Principled Policy Gradients for MOE

In the previous section, we analyzed the theoretical guarantees we get on the state entropy maxi-
mization problem by optimizing the MOE objective (2), but we did not yet describe how the latter
optimization can be performed. Here we propose a family of Policy Gradient algorithms (Peters &
Schaal, 2008) to learn a MOE policy from sampled interactions with the POMDP.

First, we define a space of parametric policies πθ ∈ ΠΘ ⊆ Π where θ ∈ Θ ⊆ R|X ||A| are differentiable
policy parameters.3 The expression of the MOE objective does not allow for an easy computation of
policy gradients. However, if we let H(X|x) = −∑

x∈X p̂X(x|x) log p̂X(x|x) the observation entropy
induced by a sequence of observations x, we can write a convenient trajectory-based counterpart
of (2), namely

max
πθ∈ΠΘ

{
H(X|πθ) :=

∑
(x,a)∈X T ×AT

qπθ

XA(x, a)H(X|x)
}

. (14)

Notably, the trajectory-based objective (14) is a lower bound to the MOE objective (2), due to
the concavity of the entropy function and the Jensen’s inequality (see Mutti et al., 2022a). Thus,
optimizing for (14) guarantees a non-degradation of our initial objective function (2), while it allows
for an easy derivation of the gradient ∇θ w.r.t. the policy parameters.4

Proposition 5.1 (Policy Gradient for MOE). Let πθ ∈ ΠΘ a parametric policy and let the policy
scores ∇θ log πθ(x, a) =

∑
t∈[T ]∇θ log πθ(a[t]|x[t]). We can compute the policy gradient of πθ as

∇θH(X|πθ) = E
(x,a)∼qπ

XA

[
∇θ log πθ(x, a)H(X|x)

]
.

With the latter result, we can design a policy gradient algorithm based on REINFORCE (Williams,
1992). The procedure, described in Algorithm 1, initializes the policy parameters and then performs
several iterations of gradient ascent updates. As we shall see in the next section, Algorithm 1 can be
a simple yet effective solution to MOE optimization in various settings. However, the resulting policy
can be underwhelming in domains where the observation matrix is particularly challenging. While
we cannot overcome the barriers established in Theorems 4.1, 4.2, we can still exploit additional
information on the observation function to further improve the performance.

Known Observation Matrix. With the knowledge of O, we are tempted to directly optimize
the lower bound to H(S|π) provided in Theorem 4.2 by trading-off high entropy on observations
(H(X|π)) with the entropy of their emission (H(X|S, π)). Unfortunately, we do not have access to
the state distribution dπ

S to compute the expectation H(X|S, π) = Es∼pπ
S
[H(O(·|s))]. Nonetheless,

we can rework the lower bound into an alternative form where all of the terms are known and can be
controlled by a policy conditioned on observations only, as it demonstrates the following corollary
to Theorem 4.2.

3See Deisenroth et al. (2013, Section 1.3) for common choices of parametric policy spaces.
4The proof can be found in Appendix A.
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Corollary 5.2 (Actionable Lower Bound). Let M a POMDP, let π ∈ Π ⊆ ∆A
X a policy, and let

H(S|X, π) = Ex∼pπ
X

[H(O(x|·))]. Then, it holds

H(S|π) ≥ H(X|π)−H(S|X, π) + log(σmax(O)).

Proof. The result follows straightforwardly through further manipulation of Theorem 4.2. We have,

H(S|π) ≥ H(X|π)−H(X|S, π) = H(X|π)−H(S|X, π) + H(S|π)−H(X|π) (15)

≥ H(X|π)−
∑

x∈X
pπ

X(x)H(O(x|·)) + log(σmax(O)) (16)

where (15) is the result of the application of the Bayes rule to the conditional entropy H(X|S, π)
and (16) follows from the fact that H(X|π)−H(S|π) ≥ − log(σmax(O)) due to Theorem 4.1.

Figure 3: Actionable Lower Bound behavior for
two different pπ

X . MSE values compatible with
MOE values are in green.

From the latter result, we get a lower bound
to H(S|π) that can be controlled, as we flipped
the conditioning from H(X|S, π) to H(S|X, π),
which we can compute by taking an expecta-
tion with the observation distribution. Visually,
when a policy visits observations that can be
emitted by many states, the bound on the gap
will be looser (Figure 3, left-hand side). When
the visited observations are emitted by specific
states with high probability, then the bound on
the gap is tighter (Figure 3, right-hand side).

Inspired by the rational provided by this bound,
it is then possible to explicitly account for the
effect of dealing with observation only: for every
β ∈ (0, 1), we can write a regularized version
of (14) as

Hβ(X|π) :=
∑

(x,a)∈X T ×AT
qπ

XA(x, a)
(

H(X|x)− β
∑

x∈X
p̂X(x|x)H(O(x|·)

)
,

which we call Regularized MOE (Reg-MOE), and a slight variation of the Algorithm 1 (highlighted in
the pseudocode) to optimize the regularized objective. In the next section, we provide an empirical
validation of the proposed PG algorithms to describe their respective strengths and weaknesses. Note
that the presented algorithms can be further enhanced with the same technical solutions of advanced
policy optimization algorithms for the MSE objective (e.g., Mutti et al., 2021; Liu & Abbeel, 2021b;
Seo et al., 2021; Yarats et al., 2021) to address continuous and high-dimensional domains.

6 Numerical Validation

Here we provide a brief numerical validation of the theoretical results provided in Section 4 and the
algorithmic solutions proposed in Section 5. Especially, we aim to show that

(a) Optimizing MOE is particularly effective when the observation matrix is “well-behaved”;
(b) Optimizing MOE is bound to fail when the observation matrix is not “well-behaved”;
(c) Additional knowledge of the observation structure can be sometimes exploited to improve the

performance in the latter challenging cases by optimizing the regularized MOE.

Intuitively, an observation matrix is “well-behaved” when it does not induce a significant transfor-
mation of the state distribution, keeping the approximation gap between MOE and MSE small.
Thanks to Theorems 4.1, 4.2 we can provide a formal characterization of this property. In the
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(a) Well-behaved observations
E[H(O)] ≈ 1

(b) Challenging observations
E[H(O)] ≈ 2.2

(c) Challenging observations
with structure E[H(O)] ≈ 1.85

Figure 4: Entropy on latent states (MSE) achieved by PG for MSE, PG for MOE, and PG for
Reg-MOE in gridworlds with various O. We report the average and 95% c.i. over 16 runs.

experiments below, we measure the latter through the average entropy of the observation function
E[H(O)] =

∑
s∈S H(O(·|s))/|S| on the lines of the information bound in Theorem 4.2.

In Figure 4a we test (a) by showing that the performance of the algorithms accessing observations
only, i.e., PG for MOE and PG for Reg-MOE, is remarkably close to the ideal baseline having
access to the true states, i.e., PG for MSE. This is due to the low average entropy of the observation
function: Although the agent cannot know its exact position, maximizing the entropy of observations
still leads to a large entropy over the latent states.

This is not the case in the experiment in Figure 4b, where the gridworld configuration is the same,
but the observation function is now more challenging, i.e., more entropic on average. The significant
gap between the algorithms optimizing MOE and the ideal baseline is a testament of (b) and a
corroboration of the theoretical limits of the MOE approach, which are formally provided in Theo-
rems 4.1, 4.2. PG for MOE and PG for Reg-MOE can still successfully maximize the entropy over
observations, but cannot avoid a significant mismatch with the resulting entropy over latent states.

However, not all the domains with challenging (i.e., entropic) observations are hopeless for the
MOE approach, especially when we can exploit knowledge on how the observations are themselves
generated. In Figure 4c, we report a further experiment in which the observation matrix has a
block with very high entropy (in which observations are almost random) and a block with nearly
deterministic observations. PG for MOE does not exploit the structure of O and cannot distinguish
between observations that are reliable from those that are not. Instead, the regularization term
in PG for Reg-MOE leads to more visitations of reliable observations (i.e., generated with lower
entropy) effectively reducing the gap with the ideal baseline (PG for MSE), which corroborates
both (c) and the result in Corollary 5.2.

As a bottom line, this numerical validation shows that the MOE approach, while not being a
solution to every POMDP instance, can still provide a remarkable performance on domains where
the observation matrix is not too challenging or when its knowledge can be exploited.

7 Related Work

This work rests in the intersection between POMDPs, state entropy maximization, and policy opti-
mization. Here we report a list of the most relevant contributions in those areas.

POMDPs. Learning and planning problems in POMDPs have been extensively studied. In
the most general formulation, POMDPs are known to be computationally and statistically in-
tractable (Papadimitriou & Tsitsiklis, 1987; Krishnamurthy et al., 2016; Jin et al., 2020). Nonethe-
less, several recent works have analyzed tractable sub-classes of POMDPs under convenient structural
assumptions, such as (Jin et al., 2020; Golowich et al., 2022; Chen et al., 2022; Liu et al., 2022; Zhan
et al., 2023; Zhong et al., 2023).
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State Entropy Maximization. State entropy maximization in MDPs has been introduced
in Hazan et al. (2019), from which followed a variety of subsequent works focusing on the problem
from various perspectives (Lee et al., 2019; Mutti & Restelli, 2020; Mutti et al., 2021; 2022b;c; Mutti,
2023; Zhang et al., 2021; Guo et al., 2021; Liu & Abbeel, 2021b;a; Seo et al., 2021; Yarats et al.,
2021; Nedergaard & Cook, 2022; Yang & Spaan, 2023; Tiapkin et al., 2023; Jain et al., 2023; Kim
et al., 2023; Zisselman et al., 2023). Among them, Savas et al. (2022) indeed study the problem of
maximizing the entropy over trajectories induced in a POMDP, yet we are the first to formulate
state entropy maximization in POMDPs in this paper and, concurrently, Zamboni et al. (2024).

Policy Optimization. First-order methods have been extensively employed to address non-
concave policy optimization (Sutton et al., 1999; Peters & Schaal, 2008). In this work, we proposed
a vanilla policy gradient estimator (Williams, 1992) as a first step, yet several further refinements
could be made, such as natural gradient (Kakade, 2001), trust-region schemes (Schulman et al.,
2015), and importance sampling (Metelli et al., 2018).

8 Conclusions

In this paper, we made a step forward into generalizing state entropy maximization in POMDPs.
Specifically, we addressed the problem of learning a policy conditioned only by observations that
target the entropy over the latent states. We proposed the simple approach of optimizing the entropy
over observations in place of latent states and we formally characterized the instances where it is
effective by deriving approximation bounds of the latent objective that depend on the structure of
the observation matrix. Finally, we design a family of policy gradient algorithms to optimize the
observation entropy in practice and to exploit knowledge of the observation structure when available.

Before concluding, it is worth mentioning that state entropy maximization can find further motiva-
tion in POMDPs beyond its common use in MDP settings. While how those methods can benefit
offline data collection and transition model estimation is less obvious under partial observability,
it is worth noting that the reward in a POMDP is usually defined over the true states, such that
pre-training a policy to explore over them is still relevant (Eysenbach et al., 2021). Moreover, the
policy we aim to learn is commonly a mapping from beliefs to actions, for which ensuring good
exploration over beliefs is important. Interestingly, in POMDPs one may choose to pre-train belief
representations alone, to be transferred to various downstream tasks. For this problem, accessing
data with coverage over the space of beliefs and, consequently, true states is essential. Exploring
other potential uses of state entropy maximization in POMDPs is a nice future direction.

Future works may extend our results in many other directions, such as enhancing our algorithms by
incorporating recent advancements in policy optimization for MSE (e.g., Liu & Abbeel, 2021b) and
designing alternative objectives and algorithms to target domains where the entropy of observations
is not enough (Zamboni et al., 2024). To conclude, we believe that this work sets a crucial first step
in the direction of extending state entropy maximization to yet more practical settings.
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A Missing Proofs

Here we report the derivations of the policy gradient reported in Proposition 5.1. Especially, we
write

∇θH(X|πθ) = ∇θ

∑
(x,a)∈X T ×AT

qπθ

XA(x, a)H(X|x)

=
∑

(x,a)∈X T ×AT

(
∇θqπθ

XA(x, a)
)

H(X|x)

=
∑

(x,a)∈X T ×AT
qπθ

XA(x, a)∇θ log qπθ

XA(x, a)H(X|x)

= E
(x,a)∼q

πθ
XA

[
∇θ log qπθ

XA(x, a)H(X|x)
]

by exploiting the linearity of the expectation to go from the first to the second equality, then applying
the common log-trick (Peters & Schaal, 2008) and finally recognising the sum as an expectation again.

To derive the gradient we then have to provide the calculation of the policy scores ∇θ log qπθ

XA(x, a).
For every π ∈ ΠΘ, we notice that qπθ

XA(x, a) =
∏

t∈[T ] Pr(xt = x[t])πθ(at = a[t]|xt = x[t]) and that
the only term depending on θ is the policy itself. By exploiting the properties of the logarithm we
have

∇θ log qπθ

XA(x, a) =
∑

t∈[T ]

∇θ log πθ(at = a[t]|xt = x[t])

which leads to the standard REINFORCE formulation (Williams, 1992).
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B Additional Details on the Experiments

In the following, we report additional details on the experiments of Section 6. Specifically, we
describe the employed domains and their properties in Appendix B.1, we comment on the choice of
hyper-parameters in Appendix B.2, and on the effect of the regularization on the results of PG for
Reg-MOE in Appendix B.3.

B.1 Domains

Most of the reported experiments refer to the grid-
world reported on the left, which is composed of
a set of rooms connected by narrow corridors.
The grid is composed of 44 cells, which define
both the set of states (|S| = 44) and observations
(|X | = 44). The set of actions A include an ac-
tion to move to the adjacent cell in every direction
(|A| = 4). To every action is associated a proba-
bility of failure p̄ = 0.1 that leads the agent to an
adjacent cell (at random) different from the one
intended by the taken action. The episode hori-
zon is T = 55 and the initial state distribution µ
was set to be a deterministic over the top-left cell.

The glasses icon in the bottom left cell of the grid represents a state that “flips” the behavior of the
observations. This is only relevant in the experiment in Figure 4c and is better explained below.
All the experiments of Section 6 were performed with a regularization factor β = 0.8 (for PG for
Reg-MOE) and a learning rate of α = 0.9. Finally, the batch size was N = 6 and the number of
independent runs was set to 16.

Observations. The observations were set to be Gaussian distributions G(0, σ2) over the Manhat-
tan distance centered in the true state and without caring about any obstacles, with 0 mean and
different values of variance σ2. The resulting observation matrices are reported in Figure 5. Finally,
the effect of “wearing” the glasses (i.e., reaching the bottom-left cell of the grid) is to make the
observation function fully deterministic. Note that the information on whether the agent wears the
glasses is encoded in the state themselves, doubling the size of the set of states to |S| = 88.

(a) Observation matrix of the
experiment in Figure 4a

(b) Observation matrix of the
experiment in Figure 4b

(c) Observation matrix of the ex-
periment in Figure 4c

Figure 5: Heatmaps representing the observation matrix O employed in the experiments of Section 6.
Note that in Figure 5c the colormap has logarithmic scale.
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B.2 Hyper-Parameters Selection

In this section, we briefly discuss the choice behind the selection of specific hyper-parameters em-
ployed in the experiments.

Learning Rate. As for the learning rate α, a value of α = 0.9 was selected across the experiments.
As one can see from Figure 6, the best performance were reached with a learning rate between α = 1
and α = 0.7, so α = 0.9 can be seen as a robust choice across the boards.

(a) PG for MOE (observation ma-
trix as in Figure 5a)

(b) PG for MOE (observation ma-
trix as in Figure 5b)

(c) PG for Reg-MOE (observation
matrix as in Figure 5c)

Figure 6: Comparison of the performance with different values of the learning rate for various
algorithms and domains.

Regularization. As for the regularization term β, the best performance for the various instances
was generally reached with β ∈ (0.3, 1), as shown in Figure 7 (the learning rate is fixed to α = 0.9).
For lower values of β, the effect of the regularization is almost negligible, while for higher values of β
the agent tended to over-optimize the regularization term in place of the entropy over observations,
reducing performance. As one would expect, the best value for the regularization depend on the
specific POMDP instance.

(a) With glasses (variance of ob-
servations σ2 = 10)

(b) With glasses (variance of ob-
servations σ2 = 1)

(c) Without glasses (variance of
observations σ2 = 0.25)

Figure 7: A comparison of different values of regularization for varying emission matrices’ quality
and settings with and without glasses. For the low value of regularization, the performances of
Reg-MOE are equivalent to the MOE performances.
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B.3 Further Insights on the Effect of the Regularization

In this section, we further investigate the effect of
the regularization term. For this specific test, we
consider a different gridworld configuration than
previous experiments, which is reported on the
right. The observation matrix is designed as a
Gaussian G(0, σ2) over the Manhattan distance in
the blue rooms, while it is deterministic (and thus
fully revealing) in the red room. For this experi-
ment, we set the variance to σ2 = 1, the regular-
ization term to β = 0.3, and the horizon T = 40.
As for the remaining parameters, they are kept as
in the previous experiments.
Figure 8 shows that, in this experiment, the two learned policies have similar performances. Yet, as
can be seen, while the policy trained with PH for MOE tries to explore the environment uniformly,
the one trained with PG for Reg-MOE successfully explored the portion of the grid with lower
entropy in the observations, to later address a deeper exploration of the remaining rooms. This
behaviour exactly aligns with the role of the regularization term, which should indeed make the
agent prefer observations that are emitted with lower entropy by the observation function.

(a) MSE performance of PG for
MSE (green), PG for MOE (or-
ange), PG for Reg-MOE (red) (b) PG for MOE (c) PG for Reg-MOE

Figure 8: Comparison of the policies learned by PG for MOE and PG for Reg-MOE over 2000
episodes. The magnitude of each arrow is proportional to the probability of the policy to choose
that action, after marginalizing over all the possible observations emitted in that state.
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Abstract

Applying reinforcement learning (RL) to real-world applications requires addressing
a trade-off between asymptotic performance, sample efficiency, and inference time.
In this work, we demonstrate how to address this triple challenge by leveraging par-
tial physical knowledge about the system dynamics. Our approach involves learning
a physics-informed model to boost sample efficiency and generating imaginary tra-
jectories from this model to learn a model-free policy and Q-function. Furthermore,
we propose a hybrid planning strategy, combining the learned policy and Q-function
with the learned model to enhance time efficiency in planning. Through practical
demonstrations, we illustrate that our method improves the compromise between
sample efficiency, time efficiency, and performance over state-of-the-art methods.
Code is available at https://github.com/elasriz/PHIHP/

1 Introduction

Reinforcement learning (RL) has proven successful in sequential decision-making tasks across diverse
artificial domains, ranging from games to robotics (Mnih et al., 2015; Lillicrap et al., 2016; Fujimoto
et al., 2018; Haarnoja et al., 2018). However, this success has not yet been evident in real-world
applications, where RL is facing many challenges (Dulac-Arnold et al., 2019), especially in terms
of sample efficiency and inference time needed to reach a satisfactory performance. A limitation of
existing research is that most works address these three challenges – sample efficiency, time efficiency,
and performance – individually, whereas we posit that addressing them simultaneously can benefit
from useful synergies between the leveraged mechanisms.

Concretely, on one side Model-Free Reinforcement Learning (MFRL) techniques excel at learning
a wide range of control tasks (Lillicrap et al., 2016; Fujimoto et al., 2018), but at a high sample
cost. On the other side, Model-Based Reinforcement Learning (MBRL) drastically reduces the
need for samples by acquiring a representation of the agent-environment interaction (Deisenroth &
Rasmussen, 2011; Chua et al., 2018), but requires heavy planning strategies to reach competitive
performance, at the cost of inference time.

A recent line of works focuses on combining MBRL and MFRL to benefit from the best of both
worlds (Ha & Schmidhuber, 2018; Hafner et al., 2019a; Clavera et al., 2020). Particularly, Byravan
et al. (2021); Wang & Ba (2019); Hansen et al. (2022) combine a learned model and a learned policy
in planning, this combination helps improve the asymptotic performance but requires more samples,
due to the sample cost of learning a good policy.

This paper introduces PhIHP, a Physics-Informed model and Hybrid Planning method in
RL.PhIHP improves the compromise between the three main challenges outlined above – sample
efficiency, time efficiency, and performance –, as illustrated in Figure 1. Compared to state-of-the-
art MFRL TD3 (Fujimoto et al., 2018) and hybrid TD-MPC (Hansen et al., 2022), we show that
PhIHP provides a much better sample efficiency, reaches higher asymptotic performance, and is
much faster than TD-MPC at inference.
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Figure 1: PhIHP includes a Physics-Informed
model and hybrid planning for efficient policy
learning in RL. PhIHP improves the compro-
mise over state-of-the-art methods, model-
free TD3 and hybrid TD-MPC, between sam-
ple efficiency, time efficiency, and perfor-
mance. Results averaged over 6 tasks (Tow-
ers et al., 2023).

To achieve this goal, PhIHP first learns a physics-
informed model of the environment and uses it to
learn an MFRL policy in imagination. This policy is
used in a hybrid planning scheme. PhIHP leverages
three main mechanisms:
• Physics-informed model: We leverage an ap-
proximate physical model and combine it with a
learned data-driven residual to match the true dy-
namics. This physical prior boosts the sample effi-
ciency of PhIHP and the learned residual improves
asymptotic performance.
• MFRL in imagination: we preserve the sam-
ple efficiency by training a policy in an actor-critic
fashion, using TD3 on trajectories generated from
the learned model. The reduced bias in the physics-
informed model enables to learn an effective policy
in imagination, which is challenging with data-driven
models, e.g. TD-MPC.
• Hybrid planning strategy: We incorporate the
learned policy and Q-function in planning with the
learned model. A better model and policy learned
in imagination improve the performance vs inference
time trade-off.

2 Related work

Our work is at the intersection of Model-based RL, physics-informed methods, and hybrid controllers.

Model-based RL: Since DYNA architectures (Sutton, 1991), model-based RL algorithms are
known to be generally more sample-efficient than model-free methods. Planning with inaccurate
or biased models can lead to bad performance due to compounding errors, so many works have fo-
cused on developing different methods to learn accurate models: PILCO (Deisenroth & Rasmussen,
2011), SVG (Heess et al., 2015), PETS (Chua et al., 2018), PlaNet (Hafner et al., 2019b) and
Dreamer (Hafner et al., 2019a; 2020; 2023). Despite the high asymptotic performance achieved by
model-based planning, these methods require a large inference time. By contrast, by learning a
policy used to sample better actions, we can drastically reduce the inference time.

Physics-informed methods: Recently, a new line of work attempted to leverage the physical
knowledge available from the laws of physics governing dynamics, to speed up learning and enhance
sample efficiency in MBRL. (Kloss et al., 2017; Ajay et al., 2018; Jeong et al., 2019; Johannink et al.,
2019; Zeng et al., 2020; Cranmer et al., 2020; Yin et al., 2021; Yildiz et al., 2021; El Asri et al., 2022;
Ramesh & Ravindran, 2023). However, these methods use the learned model in model predictive
control (MPC) and suffer from a large inference time. In this work, we efficiently learn an accurate
model by jointly correcting the parameters of a physical prior knowledge and learning a data-driven
residual using Neural ODEs.

Hybrid controllers: An interesting line of work consists in combining MBRL and MFRL to benefit
from the best of both worlds. This combination can be done by using a learned model to generate
imaginary samples and augment the training data for a model-free agent (Buckman et al., 2018;
Clavera et al., 2020; Morgan et al., 2021; Young et al., 2022). However, the improvement in terms
of sample efficiency is limited, since the agent remains trained on real data. Recent hybrid methods
enhance the planning process by using a policy (Byravan et al., 2021; Wang & Ba, 2019), or a Q-
function (Bhardwaj et al., 2020) with a learned model. More related to our work, TD-MPC (Hansen
et al., 2022) combines the last two methods, using a learned policy and a Q-function with a learned
data-driven model to evaluate trajectories. TD-MPC jointly trains all components on real samples
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and learns a latent representation of the world, resulting in improved sample efficiency. However, the
need for samples remains significant as they learn a policy from real data. By contrast, we first train
a physics-informed model from real samples, and then the policy and the Q-function are trained
in imagination. In addition, TD-MPC uses an expensive method to optimize sequences of actions,
which impacts inference time. By contrast, accurately learning a policy from the physics-informed
model reduces the action optimization budget, thereby enhancing time efficiency.

3 Background

Our work builds on reinforcement learning and the cross-entropy method.

Reinforcement learning: In RL, the problem of solving a given task is formulated as a Markov
Decision Process (MDP), that is a tuple (S, A, T , R, γ, p(s0)) where S is the state space, A the
action space, T =: S ×A → S the transition function, R : S ×A → R the reward function, γ ∈ [0, 1]
is a discount factor and ρ0 is the initial state distribution. The objective in RL is to maximize
the expected return

∑∞
t=t0

γt−t0rt at each timestep t0. In model-free RL, an agent learns a policy
πθ : S → A that maximizes this expected return. In contrast, in model-based RL, the agent learns
a model that represents the transition function T , then uses this learned model T̂θ to predict the
next state ŝt+1 = T̂θ(st, at). The agent maximizes the expected return by optimizing a sequence of
actions A = {at0 , ..., at0+H} over a horizon H:

A∗ = arg max
A∈AH

H∑

t=t0

γt−t0R(st, at), subject to st+1 = T̂θ(st, at). (1)

Furthermore, using an inaccurate model can degrade solutions due to compounding errors. So, one
often solves this optimization problem at each time step, only executes the first action from the
sequence, and plans again at the next time step with updated state information. This is known as
model predictive control (MPC).

Cross Entropy Method (CEM): Since the dynamics and the reward functions are generally
nonlinear, it is difficult to analytically calculate the exact minimum of (1). In this work, we use the
derivative-free Cross-Entropy Method (de Boer et al., 2005) to resolve this optimization problem.
In CEM, the agent looks for the best sequence of actions over a finite horizon H. It first generates
N candidate sequences of actions from a normal distribution X ∼ N (µ, σ2). Then, it evaluates the
resulting trajectories using the learned dynamics model using a reward model and determines the
K elite sequences of actions (K < N), that is the sequences that lead to the highest return. Finally,
the normal distribution parameters σ and µ are updated to fit the elites. This process is repeated
for a fixed number of iterations. The optimal action sequence is calculated as the mean of the K
elites after the last iteration. We call CEM budget the size of the population times the number of
iterations, this budget being the main factor of inference time in methods that use the CEM.

4 Physics-Informed model for Hybrid Planning

In this section, we describe PhIHP, our proposed Physics-Informed model for Hybrid Planning.
PhIHP first learns a physics-informed residual dynamics model (Sec. 4.1), then learns a MFRL
agent through imagination (Sec. 4.2), and uses a hybrid planning strategy at inference (Sec. 4.3).
PhIHP follows recent hybrid MBRL/MFRL approaches, e.g. TD-MPC Hansen et al. (2022), but
the physics-informed model brings important improvements at each stage of the process. It brings a
more accurate model, which improves predictive performance and robustness with respect to training
data distribution shifts. Crucially, it benefits from the continuous neuralODE method (Sec. 4.1)
to accurately predict trajectories, enabling to learn a powerful model-free agent in imagination
(Sec. 4.2). Finally, it enables to design a hybrid policy learning (Sec. 4.3) optimizing the performance
vs time efficiency trade-off.
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(a) Learn a physics-informed model (b) Learn an actor/critic offline (c) Behaviour at inference time

Figure 2: Schematic view of PhIHP. (a) We iteratively learn a physics-informed model from few
interactions in the environment. (b) We learn a policy and Q-function from trajectories imagined
with the learned model. (c) The agent samples actions from the policy output and random actions
and then evaluates the resulting trajectories using CEM, a reward function, and the Q-function.

4.1 Learning a physics-informed dynamics model

Model-based RL methods aim to learn the transition function T of the world i.e. a mapping from
(st, at) to st+1. However, learning T is challenging when st and st+1 are similar and actions have
a low impact on the output, in particular when the time interval between steps decreases. We
address this issue by learning a dynamics function T̂θ to predict the state change ∆st over the time
step duration ∆t. The next state st+1 can be subsequently determined through integration with an
Ordinary Differential Equation (ODE) solver. Thus, we describe the dynamics as a system following
an ODE of the form:

dst

dt

∣∣∣
t=t0

= T̂θ(st0 , at0), and st+1 ≃ ODESolve
(
st, at, T̂θ, t, t + ∆t

)
, (2)

where st and at are the state and action vector for a given time t. We assume the common situation
where a partial knowledge of the dynamics is available, generally from the underlying physical
laws. The dynamics T̂θ can thus be written as T̂θ = F p

θp
+ F r

θr
, where F p

θp
is the known analytic

approximation of the dynamics and F r
θr

is a residual part used to reduce the gap between the
model prediction and the real world by learning the complex phenomena that cannot be captured
analytically. The physical model F p

θp
is described by an ODE and the residual part F r

θr
as a neural

network with respective parameters θp and θr. We learn the dynamics model in a supervised manner
by optimizing the following objective:

Lpred(θ) = 1
|Dre|

∑

(st,at,st+1)∈Dre

∥st+1 − ŝt+1∥2
2 subject to dŝt

dt

∣∣∣
t=t′

= (F p
θp

+ F r
θr

)(st′ , at′) , (3)

on a dataset Dre of real transitions (st, at, st+1). As the decomposition T̂θ = F p
θp

+F r
θr

is not unique,
we apply an ℓ2 constraint over the residual part with a coefficient λ to enforce the model T̂θ to
mostly rely on the physical prior. The learning objective becomes Lλ(θ) = Lpred(θ)+ 1

λ ·∥F r
θr

∥2. The
coefficient λ is initialized with a value λ0 and updated at each epoch with λj+1 = λj + τph ·Lpred(θ),
where λ0 and τph are fixed hyperparameters.

4.2 Learning a policy and Q-function through imagination

Simply planning with a learned model and CEM is time expensive. MFRL methods are generally
more time-efficient during inference time than planning methods, since they use policies that directly
map a state to an action. However, learning complex policies requires a large amount of training
data which impacts sample efficiency. To maintain sample efficiency, a policy can be learned from
synthetic data generated by a model. However, an imperfect model may propagate the bias to
the learned policy. In this work, we benefit from the reduced bias in the physics-informed model
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to generate a sufficiently accurate synthetic dataset Dim to train a parametric policy πθ(st) and a
Q-function Qθ(st, at), using the TD3 model-free actor-critic algorithm (Fujimoto et al., 2018).

4.3 Hybrid planning with learned model and policy

PhIHP leverages a hybrid planning method that combines a physics-informed model with a learned
policy and Q-function. This combination helps overcome the drawbacks associated with each method
when used individually. While using a sub-optimal policy in control tasks significantly affects the
asymptotic performance, planning with a learned model has a high computational cost: i) the
planning horizon must be long enough to capture future rewards and ii) the CEM budget must be
sufficiently large to converge.

We use the learned policy in PhIHP to guide planning. In practice, a CEM-based planner first
samples Nπ informative candidates from the learned policy outputs π̂(st) and complements them
with Nrand exploratory candidates sampled from a uniform distribution X ∼ N (µ, σ2). These
informative candidates help reduce the population size and accelerate convergence. The planner
estimates the resulting trajectories using the learned model and evaluates each trajectory using the
immediate reward function up to the MPC horizon and the Q-value beyond that horizon.

By using the Q-value, we can evaluate the trajectories over a considerably reduced planning horizon
H and we add the Q-value of the last state to cover the long-term reward. Hence, the optimization
problem is written as follows:

A∗ = arg max
A∈AH

( H∑

t=t0

γt−t0R(st, at) + α · γH−t0Q(sH)
)
, subject to st+1 = T̂θ(st, at), (4)

where the discounted sum term represents a local solution to the optimization problem, while the
Q-value term encodes the long-term reward and α balances the immediate reward over the planning
horizon and the Q-value.

5 Experiments

We first compare PhIHP to baselines in terms of performance, sample efficiency, and time efficiency.
Then we perform ablations and highlight the generalization capability brought by the physics prior.
The robustness of PhIHP to hyper-parameter settings is deferred to Appendix E.

5.1 Experimental setup

Environments: We evaluate our method on 6 ODE-governed environments from the gymnasium
classic control suite. These include the continuous versions of 3 basic environments: Pendulum,
Cartpole, and Acrobot. Additionally, we consider their swing-up variants, where the initial state is
“hanging down” and the goal is to swing up and balance the pole at the upright position, similarly
to Yildiz et al. (2021). We opted for this benchmark for its challenging characteristics, including
tasks with sparse rewards and early termination.

However, to move closer to methods applicable in a real-world situation, we added to the original
environments from the gymnasium suite a friction term which is not present in the analytical model
of these environments. Thus, the dynamic of each system is governed by an ODE that can be
represented as the combination of two terms: a friction-less component F p and a friction term F r.
Please refer to Appendix B for additional details.

Evaluation metrics. In all experiments, we use three main metrics to compare methods:
• Asymptotic performance: we report the episodic cumulated reward on each environment.
• Sample efficiency: we define the sample efficiency of a method as the minimal amount of samples
required to achieve 90% of its maximum performance.
• Inference time: we report the wall-clock time taken by the agent to select an action at one timestep.
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Design choice for PhIHP: We learn the model by combining an approximate ODE describing
frictionless motion with a data-driven residual model parameterized as a low-dimension MLP. We
use TD3 (Fujimoto et al., 2018) for the model-free component of our method, i.e. the policy and
Q-function. We found it beneficial to modify the original hyperparameters of TD3 to resolve the
friction environments. For planning, we use CEM-based MPC. Please refer to Appendix C for
additional details.

5.2 Comparison to state of the art:

We compare PhIHP to the following state-of-the-art methods:
• TD-MPC (Hansen et al., 2022), a state-of-the-art hybrid MBRL/MFRL algorithm shown to
outperform strong state-based algorithms whether model-based e.g. LOOP (Sikchi et al., 2022) and
model-free e.g. SAC (Haarnoja et al., 2018) on diverse continuous control tasks.
• TD3 (Fujimoto et al., 2018), a state-of-the-art model-free algorithm. In addition to its popularity
and strong performance on continuous control tasks, TD3 is a backbone algorithm for our method
to learn the policy and Q-function. We used the same hyperparameters as in PhIHP.
• CEM-oracle: a CEM-based controller with the ground-truth model.

(a) Learning curves, the x-axis uses a symlog scale. (b) Performance profiles.

Figure 3: Comparison of PhIHP vs baselines aggregated on 6 control tasks (10 runs). a) PhIHP shows
excellent sample efficiency and better asymptotic performance. b) Performance profiles are obtained
with rliable (Agarwal et al., 2021). PhIHP shows better performance profiles which indicates a
better robustness to outliers. Comparison on individual environments are shown in Appendix D.

Asymptotic performance Sample efficiency (×103 samples) Inference time (in milliseconds)
PhIHP TD-MPC TD3 CEM-oracle PhIHP TD-MPC TD3 PhIHP TD-MPC TD3 CEM-oracle

Pendulum -263 ±144 -276 ±301 -229 ±155 -228 ±71 2±0 26±24 86±40 6.32±0.02 39.56±0.28 0.11±0.0 18.89±0.26
Pendulum-sw -356 ±13 -395±324 -368±14 -597 ±6 5±0 28±12 57±16 6.37±0.01 39.6±0.54 0.11±0.0 18.87±0.05
CartPole 500±0 432 ±129 464±80 453±24 5±0 23±10 108±27 7.43±0.02 39.3±0.07 0.11±0.0 33.22±0.03
CartPole-sw 453 ±8 460 ±4 354 ±113 446±5 5±0 76±27 27±10 10.13±0.06 39.36±0.05 0.11±0.0 33.73±0.03
Acrobot -138 ±122 -249±168 -237±183 -500±0 5±0 10±5 233±110 11.14±0.02 39.38±0.09 0.12±0.0 59.83±0.1
Acrobot-sw 371 ±52 373 ±127 119 ±71 349 ±5 15±0 135±123 500±0 9.12±0.02 39.39±0.06 0.12±0.0 58.50±0.27

Table 1: Return of PhIHP and baselines on 6 classic control tasks. Mean and std. over 10 runs

In Tab. 1, Figure 4 and Figure 3a, we show that PhIHP outperforms the baselines with a large mar-
gin in at least one of the metrics without being worse on the others. Specifically, PhIHP is far more
sample efficient than TD3 and it generally shows 5-15 times better sample efficiency than TD-MPC,
except on Acrobot where they are comparable. Figure 3a further illustrates this excellent sample
efficiency of PhIHP and how TD3 stacks on sub-optimal performance. This enhanced sample effi-
ciency of PhIHP results from training the model-free policy on imaginary trajectories generated by
the learned model, as opposed to using real samples in the baselines. Besides, PhIHP demonstrates
superior performance in sparse-reward early-termination environment tasks (Cartpole and Acrobot)
compared to TD-MPC, and PhIHP outperforms TD3 with a large margin in Cartpole-swingup,
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Figure 4: Agregated median, interquartile median (IQM), mean performance, and optimality gap of
PhIHP and baselines on 6 tasks (10 runs). Higher mean, median, and IQM performance and lower
optimality gaps are better. Confidence intervals are estimated using the percentile bootstrap with
stratified sampling (Agarwal et al., 2021). PhIHP outperforms baselines in all metrics.

Acrobot, and Acrobot-swingup. Figure 4 in Appendix D.1 shows how TD3 stacks on lower asymp-
totic performance for the aforementioned tasks. It also shows that TD-MPC performance drops in
sparse-reward early-termination environments e.g. Cartpole and Acrobot. It also illustrates that,
since CEM-oracle uses the reward function to evaluate trajectories within a limited horizon, it man-
ages to solve both tasks with smooth reward functions, and tasks with sparse reward where the goal
is to maintain an initial state (i.e. Cartpole), but it fails to solve sparse reward problems where the
goal is to reach a position out of the planning horizon (i.e. Acrobot).

Finally, Figure 3b shows that PhIHP has better performance profiles compared to baselines which
indicates better robustness to outliers in PhIHP.

Tab. 1 also reports the time needed for planning at each time step, obtained with an Apple M1 CPU
with 8 cores. It is noteworthy that PhIHP significantly reduces the inference time when compared
to TD-MPC. The inference time is still larger than that of TD3 since the latter is a component of
our method, but it meets the real-time requirements of various robotics applications.

5.3 Ablation study

In this section, we study the impact of each PhIHP component to illustrate the benefits of using an
analytical physics model, imagination learning, and combining CEM with a model-free policy and
Q-function for planning. To illustrate this, we compare PhIHP to several methods:

• TD-MPC*: our method without physical prior and without imagination. It is similar to TD-
MPC since the model is data-driven and it is learned with the policy from real trajectories. But
learning the model and the policy are separated.
• Ph-TD-MPC*: our method without learning in imagination, thus a physics-informed TD-MPC*.
• dd-CEM: our method without physical prior nor policy component, thus a CEM with a data-
driven model learned from real trajectories.
• Ph-CEM: our method without the policy component, thus a simple CEM with a physics-informed
model learned from real trajectories.
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Figure 5: Comparison of PhIHP and its variants on the 3 main metrics. The figures illustrate the
aggregated results of running all algorithms on 6 classic control tasks. Histograms and bars represent
mean and std. over 10 runs.
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Figure 5 shows the impact of the quality of the model on the final performance in MBRL. Precisely,
leveraging a physical prior in Ph-CEM and Ph-TD-MPC* shows improvements compared to full
data-driven methods, i.e. dd-CEM and TD-MPC*. We also illustrate that planning with a model,
a Q-function, and a policy leads to better performance compared to planning only with the model.
For instance Ph-TD-MPC* outperforms Ph-CEM and TD-MPC* outperforms dd-CEM. However,
this gain in performance comes with a significant cost in samples, because the agent needs a large
amount of data to learn a good policy and Q-function.
Figure 5 illustrates the trade-off between asymptotic performance, sample efficiency, and inference
time in RL. On one hand, methods that learn a model and directly plan with it (e.g. dd-CEM
and ph-CEM) do not need many samples to achieve sufficiently good performance, but they are
too expensive at inference time. On the other hand, methods that learn to plan with a model,
Q-function, and policy plan fast but require many samples to train their policies and Q-functions.
PhIHP is the only method that achieves good asymptotic performance with low cost in sample
efficiency due to learning in imagination and a good inference time due to hybrid planning.

5.4 Generalization benefits of the physics prior

In this section, we highlight the key role of incorporating physical knowledge into PhIHP in find-
ing the better compromise between asymptotic performance, sample efficiency, and time efficiency
illustrated in Figure 5. Actually, learning a policy and Q-function through imagination leads to
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Figure 6: A data-driven model still poorly predicts the next states even when its asymptotic per-
formance matches that of the physics-informed model. Figure obtained with 10 episodes of model
training on Pendulum swingup.

superior performance only when the model used to generate samples is accurate enough. Figure 5
in Appendix D.3 shows that an agent trained on imaginary trajectories generated with a physics-
informed model largely outperforms the same agent using a fully data-driven model and matches
the performance of TD3 which is trained on real trajectories. This highlights the capability of the
physics-informed model to immediately generalize to unseen data, in contrast to the data-driven
model, which poorly predicts trajectories in unseen states. Figure 6 illustrates this faster general-
ization capability, showing that the agent with a data-driven model still poorly predicts trajectories
even when it meets the asymptotic performance of the agent with the physics-informed model.

6 Conclusion

We have introduced PhiHP, a novel approach that leverages physics knowledge of system dynamics
to address the trade-off between asymptotic performance, sample efficiency, and time efficiency in
RL. PhIHP enhances the sample efficiency by learning a physics-informed model that serves to
train a model-free agent through imagination and uses a hybrid planning strategy to improve the
inference time and the asymptotic performance. In the future, we envision to apply PhIHP to more
challenging control tasks where there is a larger discrepancy between the known equations and the
real dynamics of the system.

700



RLJ | RLC 2024

References
Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G Bellemare.

Deep reinforcement learning at the edge of the statistical precipice. Advances in Neural Informa-
tion Processing Systems, 2021.

Anurag Ajay, Jiajun Wu, Nima Fazeli, Maria Bauza, Leslie P Kaelbling, Joshua B Tenenbaum,
and Alberto Rodriguez. Augmenting physical simulators with stochastic neural networks: Case
study of planar pushing and bouncing. In 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 3066–3073. IEEE, 2018.

Andrew G Barto, Richard S Sutton, and Charles W Anderson. Neuronlike adaptive elements that
can solve difficult learning control problems. IEEE transactions on systems, man, and cybernetics,
pp. 834–846, 1983.

Mohak Bhardwaj, Sanjiban Choudhury, and Byron Boots. Blending mpc & value function approxi-
mation for efficient reinforcement learning. arXiv preprint arXiv:2012.05909, 2020.

Jacob Buckman, Danijar Hafner, George Tucker, Eugene Brevdo, and Honglak Lee. Sample-efficient
reinforcement learning with stochastic ensemble value expansion. Advances in neural information
processing systems, 31, 2018.

Arunkumar Byravan, Leonard Hasenclever, Piotr Trochim, Mehdi Mirza, Alessandro Davide Ialongo,
Yuval Tassa, Jost Tobias Springenberg, Abbas Abdolmaleki, Nicolas Heess, Josh Merel, et al.
Evaluating model-based planning and planner amortization for continuous control. arXiv preprint
arXiv:2110.03363, 2021.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement
learning in a handful of trials using probabilistic dynamics models. Advances in neural information
processing systems, 31, 2018.

Ignasi Clavera, Violet Fu, and Pieter Abbeel. Model-augmented actor-critic: Backpropagating
through paths. arXiv preprint arXiv:2005.08068, 2020.

Miles Cranmer, Sam Greydanus, Stephan Hoyer, Peter Battaglia, David Spergel, and Shirley Ho.
Lagrangian neural networks. arXiv preprint arXiv:2003.04630, 2020.

P. T. de Boer, Dirk P. Kroese, Shie Mannor, and Reuven Y. Rubinstein. A tutorial on the cross-
entropy method. Annals of Operations Research, 134:19–67, 2005.

Marc Peter Deisenroth and Carl Edward Rasmussen. Pilco: A model-based and data-efficient ap-
proach to policy search. In ICML, 2011.

Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd Hester. Challenges of real-world reinforcement
learning. arXiv preprint arXiv:1904.12901, 2019.

Zakariae El Asri, Clément Rambour, Vincent Le Guen, and Nicolas THOME. Residual model-
based reinforcement learning for physical dynamics. In 3rd Offline RL Workshop: Offline RL as
a”Launchpad”, 2022.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and appli-
cations. arXiv preprint arXiv:1812.05905, 2018.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019a.

701



RLJ | RLC 2024

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International conference on
machine learning, pp. 2555–2565. PMLR, 2019b.

Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with
discrete world models. arXiv preprint arXiv:2010.02193, 2020.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal difference learning for model predictive
control. In ICML, 2022.

Nicolas Heess, Gregory Wayne, David Silver, Timothy Lillicrap, Tom Erez, and Yuval Tassa. Learn-
ing continuous control policies by stochastic value gradients. Advances in neural information
processing systems, 28, 2015.

Rae Jeong, Jackie Kay, Francesco Romano, Thomas Lampe, Tom Rothorl, Abbas Abdolmaleki, Tom
Erez, Yuval Tassa, and Francesco Nori. Modelling generalized forces with reinforcement learning
for sim-to-real transfer. arXiv preprint arXiv:1910.09471, 2019.

Tobias Johannink, Shikhar Bahl, Ashvin Nair, Jianlan Luo, Avinash Kumar, Matthias Loskyll,
Juan Aparicio Ojea, Eugen Solowjow, and Sergey Levine. Residual reinforcement learning for
robot control. In 2019 International Conference on Robotics and Automation (ICRA), pp. 6023–
6029. IEEE, 2019.

Alina Kloss, Stefan Schaal, and Jeannette Bohg. Combining learned and analytical models for
predicting action effects. arXiv preprint arXiv:1710.04102, 11, 2017.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Manfred Otto Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement
learning. CoRR, abs/1509.02971, 2016.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg Ostrovski, Stig Petersen,
Charlie Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518:529–533, 2015.

Andrew S Morgan, Daljeet Nandha, Georgia Chalvatzaki, Carlo D’Eramo, Aaron M Dollar, and Jan
Peters. Model predictive actor-critic: Accelerating robot skill acquisition with deep reinforcement
learning. In 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 6672–
6678. IEEE, 2021.

Adithya Ramesh and Balaraman Ravindran. Physics-informed model-based reinforcement learning.
In Learning for Dynamics and Control Conference, pp. 26–37. PMLR, 2023.

Harshit Sikchi, Wenxuan Zhou, and David Held. Learning off-policy with online planning. In
Conference on Robot Learning, pp. 1622–1633. PMLR, 2022.

Richard S Sutton. Dyna, an integrated architecture for learning, planning, and reacting. ACM
Sigart Bulletin, 2(4):160–163, 1991.

Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-Vicente, Andrea
Pierré, Sander Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G. Younis. Gymnasium,
March 2023. URL https://zenodo.org/record/8127025.

Tingwu Wang and Jimmy Ba. Exploring model-based planning with policy networks. arXiv preprint
arXiv:1906.08649, 2019.

702



RLJ | RLC 2024

Chris Xie, Sachin Patil, Teodor Moldovan, Sergey Levine, and Pieter Abbeel. Model-based rein-
forcement learning with parametrized physical models and optimism-driven exploration. In 2016
IEEE international conference on robotics and automation (ICRA), pp. 504–511. IEEE, 2016.

Cagatay Yildiz, Markus Heinonen, and Harri Lähdesmäki. Continuous-time model-based reinforce-
ment learning. In International Conference on Machine Learning, pp. 12009–12018. PMLR, 2021.

Yuan Yin, Vincent Le Guen, Jérémie Dona, Emmanuel de Bézenac, Ibrahim Ayed, Nicolas Thome,
and Patrick Gallinari. Augmenting physical models with deep networks for complex dynamics
forecasting. Journal of Statistical Mechanics: Theory and Experiment, 2021(12):124012, 2021.

Kenny Young, Aditya Ramesh, Louis Kirsch, and Jürgen Schmidhuber. The benefits of model-based
generalization in reinforcement learning. arXiv preprint arXiv:2211.02222, 2022.

Andy Zeng, Shuran Song, Johnny Lee, Alberto Rodriguez, and Thomas Funkhouser. Tossingbot:
Learning to throw arbitrary objects with residual physics. IEEE Transactions on Robotics, 36(4):
1307–1319, 2020.

703



RLJ | RLC 2024

A Comparison to existing methods

In this section, we present a conceptual comparison of PhIHP and existing RL methods. Figure 7
illustrates the general scheme of existing RL methods and the possible connections between learning
and planning. We highlight in Figure 8 the origin of the well-known drawbacks in RL: i) learning a
policy on real data (arrow 1) impacts the sample efficiency, ii) learning a policy from a data-driven
learned model (arrow 3) impacts the asymptotic performance due to the bias in the learned model,
iii) model-based planning (arrow 4) impacts the inference time.

Figure 7: Overview of existing scheme of learning/planning in RL. 1- learn a policy/value function
from real data. 2- learn a model from real data. 3- learn a policy/value function from imaginary
data. 4- plan with a learned model. 5- plan with a learned policy/value function. 6- act based on a
policy output. 7- act based on the planning outcome. 8- collect data from the interaction with the
real world.

(a) general scheme (b) MFRL (TD3, SAC) (c) MBRL (PILCO)

(d) Dyna-style RL (LOOP) (e) Hybrid RL (TD-MPC) (f) PhIHP (Ours)

Figure 8: Conceptual comparison of PhIHP and existing methods based on the general scheme in
Figure 7. Thick lines are used by a method, red lines indicate the origin of the main drawbacks: 1-
learning on real data impacts the sample efficiency, 3- bias introduced by the data-driven model
impacts the asymptotic performance, 4- planning with a model impacts the inference time.
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PhIHP benefits from the good sample efficiency of model-based learning methods (arrow 2) and
from the physical knowledge to reduce the bias in the learned model. The accurately learned model
generates good trajectories to train the policy/value networks (arrow 3). When interacting with
the environment, PhIHP uses a hybrid planning strategy (arrows 4 & 5) to improve asymptotic
performance and time efficiency.

B Environments

In this section, we give a comprehensive description of the environments employed in our work.
Across all environments, observations are continuous within [−Sbox, Sbox] and actions are continuous
and restricted to a [−amax, amax] range. An overview of all tasks is depicted in Figure 9 and specific
parameters are outlined in Table 2.

Pendulum: A single-linked pendulum is fixed on one end, with an actuator on the joint. The
pendulum starts at a random position and the goal is to swing it up and balance it at the upright
position. Let θ be the joint angle at time t and θ̇ its velocity, the observation at time t is (θ, θ̇).

Pendulum-Swingup: the version of Pendulum where it is started at the "hanging down" position.

Cartpole: A pole is attached by an unactuated joint to a cart, which moves along a horizontal
track. The pole is started upright on the cart and the goal is to balance the pole by applying forces
in the left and right direction on the cart.

Cartpole-Swingup: the version of Cartpole where the pole is started at the "hanging down"
position.

Acrobot: A pendulum with two links connected linearly to form a chain, with one end of the chain
fixed. Only the joint between the two links is actuated. The goal is to apply torques on the actuated
joint to swing the free end of the linear chain above a given height.

Acrobot-Swingup: For the swingup task, we experiment with the fully actuated version of the
Acrobot similarly to (Yildiz et al., 2021; Xie et al., 2016). Initially, both links point downwards at
the "hanging down" position. The goal is to swing up the Acrobot and balance it in the upright
position. Let θ1 be the joint angles of the first fixed to a hinge at time t and θ2 the relative angle
between the two links at time t. The observation at time t is (θ1, θ2, θ̇1, θ̇2).

Figure 9: Experimental tasks : Pendulum & Pendulum-swingup (left), Cartpole & Cartpole-swingup
(center), Acrobot & Acrobot-swingup(right). The Acrobot-swingup is fully actuated while Acrobot
is only actuated at the joint between the two links, thus a2 = 0.
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Environments
Parameters Pendulum Pendulum-SU Cartpole Cartpole-SU Acrobot Acrobot-SU
Reward type Smooth Smooth Sparse Smooth Sparse Smooth
Early termination No No Yes No Yes No
State space R2 R4 R4

States
[
θ, θ̇

] [
x, ẋ, θ, θ̇

] [
θ1, θ2, θ̇1, θ̇2

]

Observation space R3 R5 R6

Observations
[
cos(θ), sin(θ), θ̇

] [
x, ẋ, cos(θ), sin(θ), θ̇

] [
cos(θ1), sin(θ1), cos(θ2), sin(θ2), θ̇1, θ̇2

]

Actions space R1 R1 R1 R1 R1 R2

amax [2.0] [2.0] [10.0] [10.0] [1.0] [1.0, 1.0]
Length of the rollout 200 500 500 500 500 500
∆t 0.05 0.02 0.2

Table 2: Environment specifications

B.1 Dynamic functions

In this section, we provide details of the dynamic functions. For each task, the dynamic function
consists of a frictionless component and a friction term.

Pendulum and Pendulum Swingup: Let st = (θ, θ̇) be the state and at the action at time t.
The dynamic of the pendulum is described as:

F (st, at) =
[
θ̇

θ̈

]
=

[
θ̇

Cg · sin(θ) + Ci · at + CF r · θ̇

]
(5)

where Cg is the gravity norm, Ci is the inertia norm and CF r is the Friction norm.

Acrobot and Acrobot Swingup: Let st = (θ1, θ2, θ̇1, θ̇2) be the state and at = (a1, a2) (a1 = 0
for the Acrobot environment) the action at time t. The dynamic of the system is similar to (Yildiz
et al., 2021) described as:

F (st, at) =




θ̇1
θ̇2
θ̈1
θ̈2


 =




θ̇1
θ̇2

−(α0+d2+θ̈2+Σ1)
d1

α1+ d2
d1

·Σ1−m2×l1·lc2×θ̇2
1 ·sin θ2−Σ2

m2·lc22+I2− d22
d1




(6)

where:
α0 = a1 − Cfr1 · θ̇1 such as Cfr1 is the friction norm in the first joint ,
α1 = a2 − Cfr2 · θ̇2 such as Cfr2 is the friction norm in the second joint ,
m1 and m2 the mass of the first and second links,
l1 and l2 the length of the first and second links,
lc1 and lc2 the position of the center of mass of the first and second links,
I1 and I2 the moment of inertia of the first and second links,

and

d1 = m1 · lc1
2 + m2 · (l12 + lc2

2 + 2 · l1 · lc2 · cos(θ2)) + I1 + I2

d2 = m2 · (lc2
2 + l1 · lc2 · cos(θ2)) + I2

Σ2 = m2 · lc2 · g · cos(θ1 + θ2 − π
2 )

Σ1 = m2 · l1 · lc2 · θ̈2 · sin(θ2) · (θ̈2 − 2 · θ̈1) + (m1 · lc1 + m2 · l1) · g · cos(θ1 − π
2 ) + Σ2.
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Cartpole and Cartpole Swingup: Let st = (x, ẋ, θ, θ̇) be the state and at the action at time t.
The dynamic of the system is based on (Barto et al., 1983) and described as:

F (st, at) =




ẋ
ẍ

θ̇

θ̈


 =




ẋ

Σ − mp · l · θ̈ · cos(θ)
mtotal

θ̇
g·sin(θ)−(cos(θ)·Σ)− F rpθ̇

mp·l

l·[ 4
3 − mp·cos(θ)2

mtotal
]




, (7)

where:
Frc is the friction norm in the contact between the cart and the ground,
Frp is the friction norm in the joint between the cart and the pole,
l is the length of the pole,
mtot = mc + mp and mp, mc are the mass of the pole and the cart respectively,
Σ = 1

mtotal
· (a + mp · l · θ̇2 · sin(θ) − (Frc · sgn(ẋ)).

B.2 Reward Functions

The reward function encodes the desired task. We adopt the original reward functions in the three
main environments. For the swingup variants, we choose functions that describe the swingup task:
we adopt the same function as Pendulum for Pendulum swingup. For Cartpole swingup, we set a
reward function as the negative distance from the goal position sgoal = (x = 0, y = 1). For Acrobot
swingup, we take the height of the pole as a reward function.

Environment Reward function
Pendulum −θ2 − 0.1 · θ̇2 − 0.001 · a2

Pendulum swingup −θ2 − 0.1 · θ̇2 − 0.001 · a2

Cartpole +1 for every step until termination
Cartpole swingup exp (∥s − sgoal∥2

2)
Acrobot -1 for every step until termination
Acrobot swingup − cos(θ1) − cos(θ1 + θ2)

Table 3: Reward functions for each environment.

C Implementation details

In this section, we describe the experimental setup and the implementation details of PhIHP. We first
learn a physics-informed residual dynamics model, then learn an MFRL agent through imagination,
and use a hybrid planning strategy at inference.
To learn the model, we first use a pure exploratory policy during T timesteps to collect the initial
samples to fill Dre, then we perform stochastic gradient descent on the loss function (Eq. 3 in Sec.
4.1) to train Fθ. The learned model F̂ is used with CEM to perform planning and gather new T
samples to add to Dre. To improve the quality of the model, the algorithm iteratively alternates
between training and planning for a fixed number of iterations.

To train the model-free component of PhIHP, the training dataset Dim is initially filled with T ′

samples generated from the learned model F̂ and random actions from a pure exploratory policy,
πθ and Qθ are trained on batches from Dim which is continuously filled by samples from the learned
model F̂ .

We list in Tab. 4 the relevant hyperparameters of PhIHP and baselines. and we report in Tab. 5 the
task-specific hyperparameters for PhIHP.
We adopted the original implementation and hyperparameters of TD-MPC. However, we needed
to adapt it for early termination environments (i.e. Cartpole and Acrobot) to support episodes of
variable length, and we found it beneficial for TD-MPC to set the critic learning rate at 1e-4 in
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these two tasks.
Fot TD3, we tuned the original hyperparameters and used the same for the TD3 baseline and the
model-free component of PhIHP.

Hyperparameter PhIHP TD-MPC TD3 CEM-oracle

Model learning

Model ODE + MLP MLP - Ground truth
Activation Relu ELU - -
MLP size 2 x 16 2 x 512 - -
Learning rate 1e-3 1e-3 - -

Policy/Value learning

Batch size 64 512 64 -
Critic size 3 x 200 2 x 512 3 x 200 -
Actor size 2 x 300 2 x 512 2 x 300 -
Activation Relu ELU Relu -
Critic learning rate 1e-4 1e-3 1e-4 -
Actor learning rate 1e-3 1e-3 1e-3 -
Soft update coefficient τ 0.05 0.01 0.05 -
Policy update frequency 2 2 2 -
Discount factor 0.99 0.99 0.99 -
Exploratory steps 10000 5000 10000 -
Replay Buffer size 1e6 1e6 1e6 -
Sampling technique Uniform PER (α = 0.6, β = 0.4) Uniform -

Planning

Planner CEM MPPI - CEM
Exploratory population size 200 512 - 700
Policy population size 20 25 - -
Elite 10 64 - 20
CEM iterations I 3 6 - 3
Update distribution mean and std. weighted mean and std. - mean and std.
Planning horizon H 4 5 - 30
Receding horizon RH 1 1 - 5

Table 4: PhIHP and baselines hyperparameters. We emphasize that we use the same hyperparam-
eters for TD3 in the baseline and the model-free component of PhIHP.

Hyperparameter Pendulum Pendulum swingup Cartpole Cartpole swingup Acrobot Acrobot swingup

Model learning

MLP size 2 x 16 2 x 16 2 x 16 2 x 16 3 x 16 3 x 16
Loss initial coefficient λ0 1e3 1e3 1e3 1e3 1e2 1e3
Loss update coefficient τph 1e3 1e3 1e5 1e5 1e5 1e5
Samples needed 2000 5000 5000 5000 5000 15000

Planning

Planning horizon H 5 5 4 6 4 3
Reward coefficient α 1.5 1.5 0.2 0.03 0.8 0.8

Table 5: Task-specific hyperparameters of PhIHP.

708



RLJ | RLC 2024

D Comparison to state of the art

We compare PhIHP to baselines on individual tasks, we present both statistical results and a qual-
itative analysis.

D.1 Learning curves

We provide learning curves of PhIHP and baselines on individual tasks. PhIHP outperforms baselines
by a large margin in terms of sample efficiency. Figure 10 shows that TD3, even when converging
early in Cartpole-swingup, achieves sub-optimal performance and fails to converge within 500k steps
in Acrobot-swingup.
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Figure 10: Return of PhIHP and baselines on the gymnasium classic control tasks. Mean and std.
over 10 runs. PhIHP outperforms or matches the baselines.

D.2 Statistical Comparison: PhIHP vs. Baselines

To ensure a robust and statistically sound comparison with the results previously reported in Table
1 in Sec. 5.2, we conducted Welch’s t-test to statistically compare the performance of PhIHP vs
baselines across individual tasks. We set the significance threshold at 0.05, and calculated p-values
to determine whether observed differences in performance were statistically significant. Tab. 6 shows
that PhIHP is equivalent to all baselines in Pendulum, and it significantly outperforms TD3 on the
remaining tasks. Moreover, PhIHP outperforms TD-MPC in sparse-reward early-termination envi-
ronment tasks (Cartpole and Acrobot), while they demonstrate equivalent performance in Pendulum,
Pendulum swingup, and Acrobot swingup.
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TD3 TD-MPC CEM-oracle TD3 TD-MPC CEM-oracle TD3 TD-MPC CEM-oracle
Pendulum Cartpole Acrobot

T-statistic -1.41 0.52 -1.18 4.66 5.47 25.75 4.39 5.35 29.78
P-value 0.16 0.61 0.26 9.92e-06 3.40e-07 9.69e-10 1.96e-05 2.58e-07 3.30e-51
Significant difference No No No Yes Yes Yes Yes Yes Yes

Pendulum swingup Cartpole swingup Acrobot swingup
T-statistic 6.35 1.19 6.47 8.41 -7.59 1.65 27.49 -0.10 4.02
P-value 1.48e-09 0.24 1.15e-4 2.70e-13 9.01e-12 0.11 3.54e-66 0.92 1.09e-4
Significant difference Yes No Yes Yes Yes No Yes No Yes

Table 6: Statistical Comparison of PhIHP vs Baselines across individual tasks: we present the
Welch’s t-test results including T-statistics and P-values, to assess the significance of performance
differences. Yes denotes a statistically significant difference (p-value < 0.05), with green Yes in-
dicating PhIHP outperforming the baseline (T-statistics > 0), and red Yes indicating the baseline
performing better (T-statistics < 0). No indicates no significant difference between PhIHP and the
baseline (p-value > 0.05).

D.3 Imagination learning for model-free TD3

We provide learning curves of TD3 through imagination on individual tasks in Figure 11. TD3-
im-ph is a component of PhIHP, it is a TD3 agent learned on trajectories from a physics-informed
model. It largely outperforms TD3-im-dd, a TD3 learned on trajectories from a data-driven model.
we limited the training budget for TD3-re, trained on real trajectories, at 500k real samples in all
tasks.
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Figure 11: Learning curve of TD3 on classic control tasks, mean and std. over 5 runs. TD3-re
(orange curve) is a TD3 agent trained on real trajectories, TD3-im-ph (green curve) and TD3-im-
dd (red curve) are TD3 agents trained on imaginary trajectories respectively from a physics-informed
model and data-driven model.
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D.4 Qualitative comparison

In this section, we compare performance metrics on individual classic control tasks. We estimate
confidence intervals by using the percentile bootstrap with stratified sampling (Agarwal et al.,
2021).
We show in Figure 12 a comparison of the median, interquartile median (IQM), mean performance,
and optimality gap of PhIHP and baselines. PhIHP matches or outperforms the performance of
TD-MPC and TD3 in all tasks except in Cartpole swingup. PhIHP shown to be robust to outliers
compared to TD-MPC with shorter confidence intervals.
Moreover, Figure 13 shows the performance profiles of PhIHP and baselines. PhIHP shows better
robustness to outliers.

(a) Pendulum. PhIHP matches the performance of TD-MPC and TD3.

(b) Pendulum swingup. PhIHP outperforms TD-MPC and TD3, and PhIHP shows to be robust to
outliers compared to TD-MPC.

(c) Cartpole. PhIHP largely outperforms TD-MPC and TD3.

(d) Cartpole swingup. PhIHP outperforms TD3 and shows slightly less performance than TD-MPC.

(e) Acrobot. PhIHP largely outperforms TD3 and TD-MPC.

(f) Acrobot swingup. PhIHP outperforms TD3 and matches the performance of TD-MPC.

Figure 12: Median, interquartile median (IQM), mean performance, and optimality gap of PhIHP
and baselines on individual classic control tasks (10 runs). Higher mean, median, and IQM per-
formance and lower optimality gap are better. Confidence intervals (CIs) are estimated using the
percentile bootstrap with stratified sampling (Agarwal et al., 2021).
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Figure 13: Performance profiles of PhIHP and baselines on individual tasks (10 runs). Confidence
intervals are estimated using the percentile bootstrap with stratified sampling (Agarwal et al., 2021).
PhIHP shows a better robustness to outliers.

712



RLJ | RLC 2024

E Hyperparameter sensitivity analysis

We investigate the impact of varying controller hyper-parameters on the performance and inference
time of PhIHP. We first study the impact of varying planning horizons and receding horizons (from
1 to 8). We note that planning over longer horizons generally leads to better performance, however,
the performance slightly drops in Acrobot-swingup for planning horizon H > 4 (Figure 14). We
explain this by the compounding error effect on complex dynamics. Unsurprisingly, lower receding
horizons always improve the performance because the agent benefits from replanning.
For the impact of the population size, Figure 14 shows that excluding the policy (policy-population
= 0) from planning degrades the performance, and increasing it under 10 does not have a significant
impact. Moreover, excluding random actions (random-population = 0) from planning degrades the
performance.
Unsurprisingly, the inference time increases with an increase in both the planning horizon and the
population size. Conversely, it decreases when the receding horizon increases.
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Figure 14: Impact of varying planning hyperparameters on asymptotic performance and inference
time on individual tasks.
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Abstract

An often neglected issue in multi-agent reinforcement learning (MARL) is the poten-
tial presence of unreliable agents in the environment whose deviations from expected
behavior can prevent a system from accomplishing its intended tasks. In particu-
lar, consensus is a fundamental underpinning problem of cooperative distributed
multi-agent systems. Consensus requires different agents, situated in a decentral-
ized communication network, to reach an agreement out of a set of initial proposals
that they put forward. Learning-based agents should adopt a protocol that allows
them to reach consensus despite having one or more unreliable agents in the sys-
tem. This paper investigates the problem of unreliable agents in MARL, considering
consensus as a case study. Echoing established results in the distributed systems
literature, our experiments show that even a moderate fraction of such agents can
greatly impact the ability of reaching consensus in a networked environment. We
propose Reinforcement Learning-based Trusted Consensus (RLTC), a decentralized
trust mechanism, in which agents can independently decide which neighbors to com-
municate with. We empirically demonstrate that our trust mechanism is able to
handle unreliable agents effectively, as evidenced by higher consensus success rates.

1 Introduction

A cooperative multi-agent system (MAS) is a system composed of multiple autonomous entities,
known as agents, which collaborate within a shared environment to solve tasks in order to improve
their joint welfare (Dafoe et al., 2020). A largely neglected yet fundamental issue in the multi-agent
reinforcement learning (MARL) literature is the potential presence of unreliable agents within the
environment. Indeed, dealing with unreliability is of essential importance for building real world
MARL systems. An agent might be unreliable due to node and/or transmission failure, or simply
because it exchanges incorrect information. Identifying the exact cause of unreliability is difficult
and often impossible a priori.

A general class of cooperative tasks that is susceptible to unreliable agents is consensus. Consensus
is indeed an essential element of the design of any distributed system, including multi-agent sys-
tems. It is one of the classic problems in multi-agent and distributed systems, which has fascinated
generations of scientists from the foundations of the field (Lamport et al., 1982; Lamport, 1998)
due to its theoretical elegance and vast applicability to a series of practical problems (Ongaro &
Ousterhout, 2014; Olfati-Saber et al., 2007; Barrat et al., 2008). Consensus deals with reaching an
agreement among agents that put forward different proposals. A consensus protocol can be defined
as a procedure that agents follow in order to reach agreement successfully. A protocol can be hard-
coded, where each agent executes an algorithm written by an expert (e.g., in the distributed systems
literature (Cachin et al., 2011)). Otherwise, the protocol is emergent if it arises from agents learning
how to achieve consensus through repeated interactions. Consensus problems are often studied in
decentralized settings, where agents can only make local observations of the environment, act inde-
pendently of each other and interact solely by communicating over a network (Lamport et al., 1982;
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Pease et al., 1980; Cachin et al., 2011; Coulouris et al., 2012). These limitations make the problem of
reaching consensus nontrivial. A reason is the lack of a central coordinator that can aggregate and
distribute values to and from all agents in the system. Another reason is the existence of failed or
unreliable agents in the network that deviate from their expected behavior. Decentralization renders
failures hard to detect since this cannot be performed based on direct observation.

In real-world scenarios, the occurrence of unexpected failures is often an integral property of the
environment (Schroeder & Gibson, 2010; Lianza & Snook, 2020). Suppose that a MAS adopts a
consensus protocol that assumes agents are always reliable. In cases where agents fail unexpectedly,
this may lead to errors in message transmission or performing local computations. Since the protocol
cannot accommodate for these failures, agents will assume that the rest of the system is still reliable
and execute the protocol as usual, using incomplete or incorrect information, which may severely
impact the system’s performance. Therefore, to reach consensus reliably, agents must adopt a
protocol that can continue operating at an acceptable level despite one or more failures in the system.
One way to deal with unreliable agents is through the introduction of trust mechanisms, which have
been widely studied in the distributed systems and multi-agent systems literature (e.g., (Abdul-
Rahman & Hailes, 1998; Ramchurn et al., 2004)). Agents can try to quantify the trustworthiness of
other agents based on past interactions and data about them.

This paper investigates the problem of unreliable agents in MARL, considering the problem of
distributed consensus as a case study. We start by assuming a network of reliable agents with a
basic communication model, then introduce unreliable agents and observation noise and study their
impact on achieving consensus. In line with classic results in distributed systems (e.g., Lamport
et al. (1982); Pease et al. (1980)), we find that unreliable agents greatly impact the ability of
decentralized learning-based setups to reach consensus. To mitigate this issue, we introduce the
notion of trust by equipping RL agents with a learnable trust mechanism, which we refer to as
Reinforcement Learning-based Trusted Consensus (RLTC). Experiments show that RLTC increases
the consensus success rate of the system when compared to a setting without the trust mechanism
(i.e., in which agents assume all other agents are reliable), generalizing to various types of failure
models. We also show that RLTC is able to scale as the number of agents increases, demonstrating
practical applicability of the proposed mechanism to real-world scenarios.

2 Related Work

Emergent communication protocols in MARL. In the last decade, there has been a significant
amount of work on deep multi-agent reinforcement learning for cooperative multi-agent tasks, such
as traffic junctions (Sukhbaatar et al., 2016), multi-robot warehouses (Christianos et al., 2020),
cooperative navigation and predator-prey games (Lowe et al., 2017). Differentiable communication
mechanisms have been introduced to allow deep agents to choose what and to whom to communicate
(Foerster et al., 2016; Sukhbaatar et al., 2016; Das et al., 2019; Rangwala & Williams, 2020; Zhang
et al., 2020b). Progress is also being made in the design of emergent communication protocols,
where agents learn to associate communication symbols with perceptual input and actions by solving
cooperative downstream tasks (Mordatch & Abbeel, 2017; Lazaridou et al., 2018; Bouchacourt &
Baroni, 2018; Graesser et al., 2019). However, this body of work often assumes that all agents are
fully functional throughout the lifetime of the system. In our work, we instead investigate if RL
agents can learn to adapt to the presence of unreliable agents.

Adversarial attacks in (MA)RL. Several works have studied the design of RL policies that are
robust to adversarial attacks in a single-agent setting. Pinto et al. (2017) focused on continuous
control environments in which an adversary is allowed to apply disturbances to the agent’s action,
demonstrating that more robust policies can be obtained even in the absence of the adversary at test
time. Zhang et al. (2020a) considered a threat model in which the observations received by the agent
are adversarially perturbed. In the MARL literature, Blumenkamp & Prorok (2021) showed that,
in environments that are not fully cooperative, self-interested agents are able to learn to construct
messages that disrupt the cooperative agents. Xue et al. (2022) proposed to train a model that
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recovers the true message from the malicious message, which relies on the assumption that the
message is perturbed (rather than replaced altogether). Sun et al. (2023) considered a multi-agent
setting and proposed a technique for dealing with adversarial agents that relies on aggregating the
received messages (by majority vote for the discrete action case and the median for each coordinate in
the continuous case). This technique requires the assumption of a non-adversarial training phase for
learning the message aggregation policy. In contrast, RLTC is based on an explicit and interpretable
trust mechanism that improves performance over standard MARL even when unreliable agents are
present at training time.

Consensus in complex networks. Interactive models have been used to study the collective
behavior of agents in networked environments, such as social networks and particle systems in
general. Examples include the Voter model (Barrat et al., 2008) and majority rule (Krapivsky &
Redner, 2003), where neighboring agents can communicate and update their local state using a
random mechanism. In our work, we use a discrete-time variant of the Voter model, where each
agent can choose who to communicate with by sampling from a subset of trusted neighbors, which
the agent can adjust over time.

Averaging consensus algorithms. There are other formulations of consensus applied to areas such
as social influence networks (DeGroot, 1974), sensor networks (Olfati-Saber & Shamma, 2005) and
vehicle formations (Fax & Murray, 2004). A relevant example is the class of averaging algorithms,
where each node in a network updates its local scalar value by computing an average over its
neighbors, potentially using different and/or randomized weights (Bullo, 2022). Properties of these
algorithms, such as asymptotic convergence, have been studied with matrix theory and algebraic
graph theory (Ren et al., 2005; Olfati-Saber et al., 2007). In contrast, our work uses RL, where each
agent decides which neighbors to trust and aggregate values from, resulting in adaptive rather than
pre-determined behavior.

Trust in distributed systems. Trust is important for supporting cooperation and coordination
in multi-agent systems (Dafoe et al., 2020). Various formulations of trust have been studied in the
distributed and multi-agent systems literature. Ways to quantify trust include discrete trust levels
and scores, which are usually computed based on past interactions and data about other agents
(Abdul-Rahman & Hailes, 1998; Sabater & Sierra, 2005). These can help an agent to decide if it is
beneficial to cooperate with another agent. Models based on reputation and recommendations for
gathering, aggregating and promoting ratings that approximate the trustworthiness of an agent have
also been developed (Abdul-Rahman & Hailes, 1998; Castelfranchi & Falcone, 1998; Ramchurn et al.,
2004; Sabater & Sierra, 2005; Cohen et al., 2019). Our work is related to the area of decentralized
trust, where agents learn who to trust by interacting with others, rather than relying on a central
authority (Abdul-Rahman & Hailes, 1998).

3 Problem Description

This section provides a formal definition of a consensus problem, including modeling assumptions
such as the means of inter-agent communication and trust mechanisms.

Consensus definition. Consensus is reached when agents agree upon a common value out of a
set of initial proposals. Denote the set of agents in the system as N = {1, 2, . . . , N}. They must
agree upon a global value from a known set of candidates D, which we assume is binary: D = {0, 1}.
We also define a predetermined ground-truth value as 1, while the incorrect value is 0. Initially,
each agent i ∈ N proposes a value vi ∈ D with independent probability p of being equal to 1 and
0 with probability 1 − p, the latter of which we will refer to as the noise parameter. Then, agents
can share information over a communication network and update their local values appropriately.
Eventually, consensus is reached if all agents agree upon the true value, otherwise known as global
consensus. However, due to the decentralized nature of our setup, where agents can only interact
with their immediate neighbors, it is difficult for agents to determine if all other agents agreed on
1. Thus, we define an agent-specific success criterion, known as local consensus, which is when the
agent and its neighbors in the network agree on 1.

716



RLJ | RLC 2024

Figure 2: Communication mechanism from the perspective of agent 5. Agent 5 receives the values
from its neighbors, then updates its local value by randomly selecting from the set of received values
and its own. During each timestep, this is performed simultaneously by all agents.

Figure 1: Commu-
nication network ex-
ample with 9 agents,
where nodes repre-
sent agents, arrows in-
dicate communication
links and colors are
mapped to the agents’
local values.

Communication model. Agents are interconnected by a communica-
tion network. It is defined by an undirected, connected graph G = (N , E)
with nodes N , which correspond to agents, and bi-directional communica-
tion links E between nodes. For simplicity, we assume the communication
network is a 2D square lattice. See Figure 1 for an illustration with N = 9
agents. Agents interact by performing consecutive message-passing rounds
in lock-step. A round starts with each agent broadcasting its current value
vi to all of its neighbors ne(i). Then, upon receiving all incoming values
into a message buffer denoted bufferi, each agent updates its current value
by randomly selecting a value in {vi} ∪ bufferi. See Figure 2 as an example
of communication between an agent and its neighbors. This communication
mechanism described is similar to opinion formation models which are used
to simulate interactions in social networks (Barrat et al., 2008). They as-
sume a population of agents that initially have contradictory opinions and
can update their own opinions over time by interacting pairwise with other
agents in the network. This is also similar to randomized averaging algo-
rithms, where nodes can choose which values to aggregate by following a
stochastic model (Bullo, 2022).

Failure models. In addition, we specify the failure models that describe
how agents can deviate from expected behavior. Here, we assume that a
faulty or unreliable agent may send the incorrect value 0 to its neighbors.
This is shown in Figure 3. If an unreliable agent does this all the time, we refer to this as following
a Fixed failure model. Another possibility is that the agent sends 0 or 1 uniformly at random,
which we refer to as the Random failure model. We will investigate the extent of which our trust-
based mechanism that we introduce next can generalize to both types of unreliability. In addition,
Figure 6a illustrates an example network with a single unreliable Fixed agent in which, despite the
simple failure model, consensus is not achieved due to the propagation of misinformation by the
other agents. Note that agents cannot determine the reliability of other agents a priori due to the
decentralized property of the system, hence learning is necessary.

4 Trust Mechanisms for Consensus

Figure 3: Example of an unreliable agent 1
(square) that always ignores messages from
neighbors 2 and 3 and sends 0.

A potential solution to our consensus problem is
through the notion of trust, as introduced in Sec-
tion 2. To this end, we propose a simple decentral-
ized trust mechanism that can be learned through
MARL. In this section, we present its basic opera-
tion, then Section 5 will provide the reader with a
more formal description of the proposed solution.

Each agent i maintains a binary score for each neighbor j, representing whether i trusts j. Denote
trustsi(j) as the trust score of agent i towards j and trustsi(·) as the array containing all trust scores
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Figure 4: Communication between agent 5 and its neighbors, but agent 5 is equipped with a trust
mechanism. Agent 5 trusts neighbors 4, 6 and 8 but not agent 2. It updates its local value by
randomly sampling from itself and its trusted neighbors only.

Algorithm 1: RLTC Consensus Protocol Episode Execution
1 Initialize each vi randomly to 1 with probability p, 0 otherwise.
2 Initialize all trustsi(j) = 1.
3 for timestep t = 1, 2, . . . , T do
4 for i ∈ N do

// Receive messages
5 bufferi ← {vj | j ∈ ne(i) ∧ trustsi(j) = 1}
6 for i ∈ N do

// Update local values
7 vi ← random({vi} ∪ bufferi)
8 for i ∈ N do
9 j ← πi(si

t);
10 if j ̸= ∅ then

// Update trust score
11 trustsi(j)← ¬trustsi(j)

// If training, do Q-learning update for agent i (Eq. 1)

of that agent. If an agent i distrusts a neighbor j, or trustsi(j) = 0, then it can choose to ignore all
incoming messages from j.

Figure 5: Communication
grid example with 9 agents,
in which not all agents trust
each other.

In effect, the array trustsi(·) defines the subset of neighbors from which
agent i is allowed to sample values from during each timestep. Fig-
ure 4 demonstrates this from the perspective of one agent. Figure 5
illustrates an example of trust in a grid. For example, both agents
4 and 5 distrust each other (trusts4(5) = 0 and trusts5(4) = 0). As
a result, both agents ignore each other’s incoming messages, as in-
dicated by the grayed out arrows from node 5 to 4 and vice versa.
Agents 2 and 3 mutually trust each other, as shown by black arrows
in both directions. Agent 1 distrusts Agent 4 (so Agent 1 ignores 4’s
messages, indicated by the grayed out incoming arrow into Agent 1
from Agent 4), but Agent 4 trusts Agent 1. This is an example of
unreciprocated trust. Through continual interactions, each agent can
update its trust scores in order to minimize the effects of unreliable
agents and improve the chances of successful consensus.

5 MARL Model

Given the trust mechanism discussed in Section 4, we will describe how the agents can learn to update
their trust scores. This is achieved by formulating the problem as a multi-agent decentralized Markov
Decision Process, then learning the trust mechanism using Q-learning (Watkins & Dayan, 1992;
Tan, 1993). The multi-agent MDP that we will use is characterized by a tuple M = (S,A, P, R),
containing the state space, action space, transition probability and reward function respectively.
Each of these elements is described below. In addition, we assume a finite horizon of length T . Note
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Name Equation Description

Success rate 1
N

N∑

i=1

1[vi = vtrue] Fraction of reliable agents with the cor-
rect value.

Average trust rate 1
N

∑

i∈N

1
|ne(i)|

∑

j∈ne(i)

trustsi(j) Average fraction of neighbors, reliable
or otherwise, that each reliable agent
trusts.

Mutual trust rate 1
|E|

∑

i,j∈E

1[trustsi(j) ∧ trustsj(i)] Fraction of mutually-trusting reliable
agents. 0 if no reliable agents are adja-
cent in the network.

Average trust accuracy 1
N

∑

i∈N

1
|ne(i)|

∑

j∈ne(i)

1[trustsi(j) = 1[j ∈ N ]] Fraction of correct trust scores as-
signed to neighbors on average, i.e., the
agent assigns trust score 1 for reliable
neighbors and 0 for unreliable ones.

Table 1: Performance metrics used in the evaluation.

that each agent i in the MDP corresponds to a reliable node in the network only. Unreliable nodes
follow a pre-defined behavior as described in Section 3. They do not have a trust mechanism and are
not trained, thus are excluded from the MDP. Figure 6b illustrates an example of episodic execution
with 9 agents.

States. S =
∏

i∈N Si is the global state space, which is composed of the local state spaces Si per
agent i. An agent’s local state si corresponds to its trust array trustsi(·) as described in Section
4. In other words, si maps neighbors to trust scores: si : ne(i) 7→ {0, 1}. For example, Agent 1
in Figure 5 has trusts1(2) = 1 and trusts1(4) = 0, so s1 = {(2, 1), (4, 0)}. Agent 5’s local state
is s5 = {(2, 0), (4, 0), (6, 0), (8, 1)}. At the start of each episode, all entries of all trust arrays are
initialized to 1 (e.g., s5 = {(2, 1), (4, 1), (6, 1), (8, 1)} at t = 0). Note that local states only consider
trust scores and are independent of the agent’s current local value (0 or 1).

Actions. A =
∏

i∈N Ai is the joint action space composed of the individual local action space Ai of
each agent i. A local action ai corresponds to agent i toggling its trust score of a specific neighbor
or not toggling any score at all. So, Ai = {∅} ∪ ne(i), where ∅ is a no-op action. Concretely, if
ai = j then trustsi(j) ← ¬trustsi(j). For example, in Figure 6b between t = 0 and t = 1, agent 1
toggles its trust score of neighbor 2 from trusts1(2) = 1 to 0 by selecting action a1 = 2. Agent 4 did
not modify its trust scores, so a4 = ∅. Due to the decentralized nature of our setup, agents select
actions ai independently, following their local policy πi(si) and independently of other agents.

Transitions. P is the transition function: P (s′|s, {ai}i∈N ) is the probability of moving from global
state s ∈ S to state s′ ∈ S when each agent i executes some action ai. The global state is the union
of the trust score arrays of all agents in the system after they individually perform local actions
(toggling or doing nothing). The state transitions are deterministic, only depending on the agents’
actions. See Figure 6b for examples of consecutive global state transitions, but ignore the agents’
local values (red or blue) because the MDP does not consider this information.

Reward and consensus optimization objective. The goal of the trust mechanism is to ensure
that consensus can still be attained despite disruptions caused by unreliable nodes in the network.
Each reliable agent must update its trust scores so that it reaches agreement with its neighbors
correctly. To achieve this, it must discover a policy πi that allows it to perform appropriate updates
to its trust array. Thus, we define the reward function Ri in terms of the local success criteria for
consensus described in Section 3, which is appropriate for our decentralized setup where agents can
only interact directly with their neighbors. Each agent i is assigned reward Ri = +1 if it correctly
agrees with all neighbors: ∀j ∈ {i}∪ne(i) : vj = 1. If this is not satisfied, then Ri = −1. The global
objective is to find an optimal joint policy π = ⟨π1, . . . , πN ⟩ that maximizes the joint action-value
function Qπ(s, a) = E

[∑T
k=t+1 γk−t−1 ∑

i∈N Ri
k|st = s, at = a

]
, where s is the joint state, a is the

joint action, T is the horizon and γ ∈ [0, 1) is the discount factor.
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Q-learning update. Due to the decentralized setup, we will optimize the above objective using
independent Q-learning (Tan, 1993), where each agent learns according to its own actions and local
state. The update rule for agent i ∈ {1, . . . N} is as follows:

Qi(si
t, ai

t)← Qi(si
t, ai

t) + α

([
Ri

t + γ max
a∈Ai

Qi(si
t+1, a)

]
−Qi(si

t, ai
t)

)
(1)

where Qi is the Q-function of agent i, α is the learning rate and γ is the discount factor. The update
uses states and actions local to agent i, i.e., si and ai. Agents use the ϵ-greedy policy for training
and the greedy policy for evaluation.

(a) Without trust mechanism (implicit full trust).

(b) With trust mechanism (agents 1, 5 and 3 distrust agent 2).

Figure 6: An example scenario with 9 agents with one unreliable agent labeled 2. Timesteps 0, 1, 2
and T = 30 of an episode are shown. Figure 6a does not have the trust mechanism and results in
failure, because the incorrect value 0 (red) has spread to all agents. Figure 6b has the trust update
mechanism. Reliable agents 1 and 5 toggle their trust scores of agent 2 to 0 at t = 1, then agent 3
does the same at t = 2. Here, consensus is successful, because agent 2 is effectively isolated from
the rest of the network, and all reliable agents agree on 1 (blue).

Summary of consensus protocol execution. The full execution of our consensus protocol is
detailed in Algorithm 1. To aid understanding, an example is illustrated in Figure 6b. At the
beginning, the communication graph contains both reliable and unreliable agents. In the example,
only agent 2 is unreliable. Reliable agents are trained, and unreliable agents have fixed behavior as
described in Section 3. Then, the consensus protocol consists of both the trust mechanism (set up as
an MDP above) and communication (sending and updating local values, which are not part of the
MDP). The protocol executes over a finite episode with length T . At the start of each episode, all
trust scores are initialized to 1, as indicated by all black arrows in Figure 6b. Each reliable agent’s
local value is randomly set to 0 with probability 1−p, 1 otherwise, while the unreliable agents always
start with 0. In the example, reliable agents 1 and 9 start with 0 while the others have 1, while
unreliable agent 2 has 0. Then, each timestep consists of three phases: agents receive the incoming
values of trusted neighbors, update their local values, and finally update their trust scores (decided
by the agents’ local action policies). The episode terminates after the final timestep T is reached.

6 Experiments

Our goal is to determine whether the proposed decentralized trust mechanism can increase the
chances of successful consensus despite the presence of unreliable agents, for either the Fixed or
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Figure 7: Success rates for different fractions of reliable agents f and noise values 1− p (16 agents).
Each bar height and error bar represent the mean and 1 standard deviation respectively wrt. 30
runs. Top and bottom plots are for the Fixed and Random failure models respectively.

Figure 8: f against trust metrics for fixed 1 − p with 16 agents and the Fixed failure model. Each
line and error band represent the mean and 1 standard deviation respectively wrt. 30 runs.

Random failure model. To this end, we implement an environment according to our problem speci-
fication and perform a series of MARL experiments using the setup described in Section 5.1

1The source code is publicly available at https://github.com/hlf-ucl/rlc-2024-rltc.
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Figure 9: f against trust metrics for fixed 1− p values with 16 agents and Random failure model.

6.1 Experimental Setup

(a) Trust All (b) Oracle

Figure 10: Scenarios with baseline
agents with fixed trust score ar-
rays (circles) and unreliable agents
(squares).

We run experiments on both 3× 3 and 4× 4 square lattices
(N = 9 and 16 respectively) and both Fixed and Random
failure models. We vary two parameters, namely the frac-
tion f of reliable agents in the system and the value initial-
ization noise 1− p. For each failure model, we measure the
average consensus success rate and also observe the emer-
gent properties of the learned trust mechanisms. We repeat
the experiments 30 times, each one starting with a unique
random seed. At the start of each repetition, the reliable
and unreliable agents are randomly positioned in the com-
munication graph. Each repetition executes 20,000 training
episodes and 2,000 evaluation episodes. Results are aver-
aged over the random seeds.

RLTC is compared with two fixed baselines: Trust All (all agents trust each other) and Oracle (each
reliable agent knows which of its neighbors are reliable and only trusts them). These baselines are
not trained using RL and their trust scores are always fixed. We illustrate example trust scores
for the baselines in Figure 10. We note that the Oracle baseline is provided access to privileged
information (i.e., fully accurate knowledge of which neighbors are reliable). Therefore, it is only
intended as a comparator, functioning as an upper bound on the success rate that can be achieved
by independently trained agents. Please refer to the Appendix for additional experimental details.

Table 1 outlines the metrics that are recorded in our experiments. We assess both the consensus
success rate and properties of the trust system that emerges. All metrics are computed exclusively
over the subset of reliable agents. For the Trust All baseline, the average trust rate is always 1 since
all agents trust each other. For the Oracle, average trust accuracy is 1. This metric describes how
far a learned solution differs from the oracle. During the experiments, each metric is computed per
timestep, then averaged over all timesteps for an episode-specific statistic.
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6.2 Results

Fixed failure model results. We first present the experimental results for 16 agents and the
Fixed failure model. The observed trends in the 9-agent experiments are similar, thus are moved
to the Appendix. Figure 7 (top) and Figure 8 show the effects of varying the fraction of reliable
agents on the performance metrics for several fixed values of noise. The values for f and 1 − p are
{0.25, 0.5, 0.75, 1.0} and {0, 0.1, 0.2, 0.3} respectively.

We observe that fixing the fraction of reliable agents and varying noise has little effect on the output
metrics for RLTC agents. Increasing 1− p only decreases the success rate for Oracle and Trust All
agents, which is expected behavior. For fixed 1− p, as f increases, the success rate increases as for
Trust All and RLTC ; we also note that the success rate for RLTC agents is higher than Trust All,
suggesting that the trust mechanism leads to a statistically significant improvement. In addition,
both the average trust rate and mutual trust increase as the reliable fraction increases. However,
the values are low compared to the oracle, meaning that the reliable agents do not always trust each
other and often prefer their own values vi over those of their neighbors when performing updates.
Low mutual trust also indicates the lack of reciprocation between agents. This is challenging due
to our decentralized setup: each agent updates its trust scores locally and independently of others,
hence it is difficult to coordinate trust between pairs of agents. The trust accuracy for RLTC agents
is also relatively low, which means that it deviates from the oracle solution. It shows a decreasing
trend as the fraction of reliable agents increases until f = 0.75, but increases between 0.75 ≤ f ≤ 1
(refer to the Appendix for a further discussion about this phenomenon).

Figure 11: Success rates against the
grid dimension

√
N .

Random failure model results. Similarly, for the Ran-
dom failure model, we present these results for 16 agents
in Figure 7 (bottom) and Figure 9. Notice that the success
rates are higher in general because the unreliable agents out-
put the correct value 50% of the time. However, RLTC ex-
hibits a statistically significant increase in success rate from
Trust All. This shows that the functionality of our method
is not limited to one type of failure model.

Scalability. We also investigate the fundamental dimen-
sion of scalability by experimenting with larger communi-
cation grid sizes (5, 6, 7, 8, 9, 10) with parameters f = 0.75
and 1− p = 0.3 as an example. The results shown in Figure
11 demonstrate that our decentralized approach maintains
similar performance as the number of agents increases.

7 Conclusion

In this paper, we have investigated the problem of learning consensus in the presence of unreliable
agents, a largely neglected yet fundamental issue for the deployment of real-world MARL systems.
We have presented Reinforcement Learning-based Trusted Consensus (RLTC), a decentralized emer-
gent trust mechanism that allows agents to independently learn which neighbors to trust and which
to ignore. Our experiments show that the trust mechanism significantly improves the consensus
success rate, indicating that we can deal with unreliable agents effectively while generalizing to dif-
ferent types of failure models and scaling to systems with a greater number of agents. We have
also studied properties of the emerging protocol, showing that it leads to low overall trust rate as
well as asymmetric trust between agents. Our findings highlight that the proposed trust mechanism
enables a decentralized protocol to emerge, which can reduce the impact of unreliable agents in a
multi-agent system. RLTC has the potential to be used as a modular component for other, more
complex tasks that involve agent coordination.
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A Experimental Setting

Implementation. The source code is publicly available at https://github.com/hlf-ucl/
rlc-2024-rltc. It enables the reproduction of all results presented in the paper, including ta-
bles and figures. Our implementation uses public software libraries (Hagberg et al., 2008; Harris
et al., 2020; McKinney et al., 2011; Hunter, 2007; Waskom, 2021).

Platform specifications. Experiments are run on Linux (CentOS 7.9.2009) using Python 3.10.3.
The platform uses Intel(R) Xeon(R) CPU E5-2637 v4 @ 3.50GHz with 16 cores and 60 GB RAM.
Training occurs purely on CPU. The full set of experiments takes approximately 12 hours to run.

Configuration. Table 2 lists the hyperparameters used in all experiments. Multiplicative epsilon
decay is used, i.e. εt+1 = rtε0 at each timestep, where r is a constant decay factor. 20,000 training
episodes and 2,000 evaluation episodes are used, each episode with length 30. Results are averaged
over 30 random seeds, which were generated using Haahr (1998–2018) in the source code. Table 3
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Table 2: RL hyperparameters.

Name Value
Q-learning step size α 0.03
Discount factor γ 0.999
Initial exploration probability ε0 0.3
Exploration decay factor r 0.9996

Table 3: Variable ranges.

Name Values
Number of agents N 9, 16
Fraction of reliable agents f 0.25, 0.5, 0.75, 1.0
Local value initialization noise 1− p 0, 0.1, 0.2, 0.3

reiterates the values that were used in experiments from the main paper for convenience (excluding
the scalability experiment, which uses more values of N .)

Hyperparameter selection. The RL hyperparameters are selected using a grid search. See Table 4
for the combinations used. We discover that only the discount factor γ and epsilon decay factor r
have any noticeable impact on the average reward: using γ = 0.999 and r = 0.9996 converges to the
highest value. α = 0.03 leads to less noisy rewards over time, and a larger ε0 allows for more initial
exploration.

Table 4: RL hyperparameter grid search.

Name Values
α 0.03, 0.01, 0.1
γ 0.999, 0.95
ε0 0.1, 0.3
r 0.9996, 1.0

B Additional Results and Figures

Results for 9 agents, fixed failure model. Figure 12 and Figure 13 show the experimental
results for 9 agents (fixed failure model) that were omitted in the main text for brevity, mainly due
to similar trends being exhibited.

Plots for 16 agents, fixed failure model, but with constant f per column. Figure 14 shows
the same results for 16 agents as seen in the main text, but with 1− p on the x-axes and fixed f per
column.

Plots for 16 agents, randomized failure model, but with constant f per column. Figure 15
shows the same results for the random failure model and 16 agents as seen in the main text, but
with 1− p on the x-axes and fixed f per column.

Investigating trust accuracies for 0.75 ≤ f ≤ 1.0. In the main paper, we notice that the trust
accuracy of trained agents decreases when the fractions of reliable agents is between 0 and 0.75,
but increases in the 0.75 to 1.0 interval. To investigate this inconsistency, we run finer-grained
experiments for values 0.75, 0.8, 0.85, 0.9, 0.95, 1.0. The results are illustrated in Figure 16. We
notice a general smooth increase for fixed values of noise, which is an interesting emergent property
of the system.
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Figure 12: Noise against metric for fixed reliable fractions (9 agents, fixed failure model).
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Figure 13: Reliable fraction against metric for fixed noise values (9 agents, fixed failure model).
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Figure 14: Noise against metric for fixed reliable fractions (16 agents, fixed failure model).
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Abstract

Hierarchical reinforcement learning (HRL) addresses complex long-horizon tasks by
skillfully decomposing them into subgoals. Therefore, the effectiveness of HRL is
greatly influenced by subgoal reachability. Typical HRL methods only consider
subgoal reachability from the unilateral level, where a dominant level enforces com-
pliance to the subordinate level. However, we observe that when the dominant level
becomes trapped in local exploration or generates unattainable subgoals, the sub-
ordinate level is negatively affected and cannot follow the dominant level’s actions.
This can potentially make both levels stuck in local optima, ultimately hindering
subsequent subgoal reachability. Allowing real-time bilateral information sharing
and error correction would be a natural cure for this issue, which motivates us to
propose a mutual response mechanism. Based on this, we propose the Bidirectional-
reachable Hierarchical Policy Optimization (BrHPO)—a simple yet effective algo-
rithm that also enjoys computation efficiency. Experiment results on a variety of
long-horizon tasks showcase that BrHPO outperforms other state-of-the-art HRL
baselines, coupled with a significantly higher exploration efficiency and robustness1.

1 Introduction

Reinforcement learning (RL) has demonstrated impressive capabilities in decision-making scenarios,
ranging from achieving superhuman performance in games (Mnih et al., 2015; Lample & Chaplot,
2017; Silver et al., 2018), developing complex skills in robotics (Levine et al., 2016; Schulman et al.,
2015) and enabling smart policies in autonomous driving (Jaritz et al., 2018; Kiran et al., 2021;
Cao et al., 2023). Most of these accomplishments are attributed to single-level methods (Sutton
& Barto, 2018), which learn a flat policy by trial and error without extra task decomposition or
subgoal guidance. While single-level methods excel at short-horizon tasks involving inherently atomic
behaviors (Levy et al., 2018; Nachum et al., 2018b; Pateria et al., 2021b), they often struggle to
optimize effectively in long-horizon complex tasks that require multi-stage reasoning or sparse reward
signals. To address this challenge, hierarchical reinforcement learning (HRL) has been proposed,
aiming to decompose complex tasks into a hierarchy of subtasks or skills (Kulkarni et al., 2016;
Bacon et al., 2017; Vezhnevets et al., 2017). By exploiting subtask structure and acquiring reusable
skills, HRL empowers agents to solve long-horizon tasks efficiently.

1We have released our code here: https://github.com/Roythuly/BrHPO
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Set Fixed 
Subgoals

✘ passive exploration ✘ unattainable subgoals ✓mutually responsive

Figure 1: A motivating example of our proposed
BrHPO. The earth, brain, and robot symbols
stand for the environment, high-level policy, and
low-level policy, respectively. We illustrate the
behaviors of hierarchical policies before and after
updated for each case. Left: Updated subgoal is
limited by low-level exploration. Middle: Low-
level policy struggles to approach the fixed sub-
goal. Right: hierarchical policies are mutually
responsive for subgoal reachability.

Start Point Target Point State Trajectory Subgoal

(c) Ours(a) Corrected subgoals (b) Fixed subgoals

AntMaze Task AntPush Task

Figure 2: The state-subgoal trajectory compar-
ison of baselines HIRO (a), RIS (b) and our
BrHPO (c). We visualize the state trajectories
(represented by the red-to-blue gradient lines)
and the guided subgoals (represented by trian-
gles). Note that lines and triangles of the same
colour indicate that they belong to the same sub-
task. The results demonstrate that BrHPO can
improve the alignment between states and sub-
goals, thus benefitting overall performance.

Subgoal-based HRL methods, a prominent paradigm in HRL, partition complex tasks into simpler
subtasks by strategically selecting subgoals to guide exploration (Vezhnevets et al., 2017; Nachum
et al., 2018b). Subgoal reachability, which is utilized as an intrinsic reward for exploration in
different subtasks (Sukhbaatar et al., 2018), is crucial in evaluating how effectively the low-level
policies’ exploration trajectory aligns with the high-level policy’s subgoal, ultimately determining
task performance (Vezhnevets et al., 2017; Zhang et al., 2020). However, existing approaches for
improving subgoal reachability predominantly focus on one level of the hierarchical policy, imposing
dominance on the other level. This can be categorized as either low-level dominance or high-level
dominance (Nachum et al., 2018b; Zhang et al., 2020; Andrychowicz et al., 2017; Chane-Sane et al.,
2021; Eysenbach et al., 2019; Jurgenson et al., 2020). Low-level dominance (Figure 1a) refers to
the accommodation of low-level passive exploratory behaviour by the high-level policy, causing the
agent to get stuck near the starting position. On the other hand, high-level dominance (Figure 1b)
may result in unattainable subgoals, causing repeated failure and sparse learning signals for the
low-level policy. To assess these methods, we applied them to two HRL benchmarks, AntMaze
and AntPush, and generated state-subgoal trajectories for visualization. The results reveal that the
former methods exhibit lower exploration efficiency as the high level must generate distant subgoals
to guide the low level (Figure 2a), while the latter methods may create unattainable subgoals,
resulting in the low-level policy’s inability to track them (Figure 2b).

Enforcing subgoal reachability through unidirectional communication between the two levels has
limitations in overall performance improvement. A bidirectional reachability approach, illustrated
in Figure 1c, holds the potential to be more effective in HRL. From an optimization perspective,
bidirectional reachability provides two key benefits: 1) the high-level policy can generate subgoals
that strike a balance between incentive and accessibility, and 2) the low-level policy can take more
effective actions that drive subtask trajectories closer to the subgoal. Despite its potential advantages,
bidirectional subgoal reachability has not been extensively studied in previous research, and its ef-
fectiveness in enhancing HRL performance requires further investigation. We explore the theoretical
benefits of bidirectional insights, and empirically demonstrate its effectiveness through visualizing
the alignment between states and subgoals in Figure 2 and our ablation studies.
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This paper aims to investigate the potential of bidirectional subgoal reachability in improving
subgoal-based HRL performance, both theoretically and empirically. Specially, we propose a joint
value function and then derive a performance difference bound for hierarchical policy optimization.
The analysis suggests that enhancing subgoal reachability, from the mutual response of both-level
policies, can effectively benefit overall performance. Motivated by these, our main contribution is
a simple yet effective algorithm, Bidirectional-reachable Hierarchical Policy Optimization (BrHPO)
which incorporates a mutual response mechanism to efficiently compute subgoal reachability and in-
tegrate it into hierarchical policy optimization. Through empirical evaluation, we demonstrate that
BrHPO achieves promising asymptotic performance and exhibits superior training efficiency com-
pared to state-of-the-art HRL methods. Additionally, we investigate different variants of BrHPO to
showcase the effectiveness and robustness of the proposed mechanism.

2 Preliminaries

We consider an infinite-horizon discounted Markov Decision Process (MDP) with state space S,
action space A, goal/subgoal space G, unknown transition probability P as,s′ : S × A × S → [0, 1],
reward function r : S ×A× G → R, and discounted factor γ ∈ (0, 1). The objective of RL is to find
a policy π : S → ∆(A) to maxmize the discounted cumulative reward from the environment, which
can be formed as π∗ = arg maxπ E(st,at)∼P,π [

∑∞
t=0 γ

tr(st, at)].

Subgoal-based HRL, also called Feudal HRL (Dayan & Hinton, 1992; Vezhnevets et al., 2017),
comprises two hierarchies: a high-level policy generating subgoals, and a low-level policy pursuing
subgoals in each subtask. Assume that each subtask contains a fixed length of k timesteps, allowing
us to split the original task into multiple subtasks. Given the task goal ĝ, at the beginning of the
i-th subtask where i ∈ N, the high-level policy πh observes state sik and then outputs a subgoal
g(i+1)k ∼ πh(·|sik, ĝ) ∈ G. Then, in each subtask, the low-level policy πl performs actions conditioned
on the subgoal and the current state, aik+j ∼ πl(·|sik+j , g(i+1)k) ∈ A, where j ∈ [0, k − 1] is a
pedometer in one single subtask. With the guidance from the subgoal, the state-subgoal-action
trajectory in the i-th subtask comes out to be

τπh,πli ≜
{

(sik+j)|sik, g(i+1)k ∼ πh(·|sik, ĝ), aik+j ∼ πl(·|sik+j , g(i+1)k)
}k−1
j=0 , (1)

and the whole task trajectory forms by stitching all subtask trajectories as τ = ∪∞
i=0 (τπh,πli ).

Following prior methods (Andrychowicz et al., 2017; Nachum et al., 2018b; Zhang et al., 2020),
we optimize πh based on the high-level reward rh, defined as the environment reward feedback
summated over a subtask

rh(τπh,πli ) = rh(sik, g(i+1)k) =
k−1∑

j=0
r(sik+j , aik+j), (2)

and the intrinsic reward for the low-level policy πl is

rl(sik+j , aik+j , g(i+1)k) = −D(ψ(sik+j+1), g(i+1)k). (3)

where ψ : S 7→ G is a pre-defined state-to-goal mapping function and D : G × G → R≥0 is a chosen
binary or continuous distance measurement (Zhang et al., 2022).

3 Bidirectional Subgoal Reachability in HRL

In this section, we introduce the concept of bidirectional subgoal reachability and highlight its
differences from the previously studied unidirectional reachability. Specifically, bidirectional subgoal
reachability considers the capacities of both high-level guidance and low-level exploration, allowing
for more flexibility in HRL. We then discuss how this bidirectional reachability is integrated into the
optimization objective of hierarchical policies, resulting in a mutual response mechanism. Finally, we
present performance difference bounds associated with bi-directional reachability, providing valuable
theoretical insights for subgoal-based HRL.
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3.1 Bidirectional Subgoal Reachability

In contrast to previous unilateral subgoal reachability, termed as the high- or low-level dominance,
our work aims to propose a bidirectional subgoal reachability metric that simultaneously considers
the cooperation capacities of high-level guidance and low-level exploration within a single subtask.
Definition 3.1. The bidirectional subgoal reachability Rπh,πli at the i-th subtask is defined by

Rπh,πli = Eg(i+1)k∼πh,s(i+1)k∼τπh,πl
i

[
D(ψ(s(i+1)k), g(i+1)k)/D(ψ(sik), g(i+1)k)

]
. (4)

In this definition, subgoal reachability is equal to the ratio of the final distance (the final reached state
s(i+1)k to the subgoal g(i+1)k) to the initial distance (the initial state sik to the subgoal g(i+1)k).
Note that the smaller Rπh,πli means the better subgoal reachability and we define Rπh,πli = 0 if
D(ψ(sik), g(i+1)k) = 0. Although conceptually simple, this form has two benefits:

• When given the initial state sik of the sub-task, the subgoal reachability depends only on the
final distance, and is independent of the intermediate exploration process, aligning with the
properties of hierarchical abstraction. Besides, this is conducive to decoupling the guidance
of the high-level policy and the exploration of the low-level policy, avoiding the issues of
high- or low-level dominances;

• Using initial distance D(ψ(sik), g(i+1)k) as the regularization can eliminate the difference
caused by the initial conditions of different sub-tasks. Thus, it can comprehensively measure
whether the subgoal is easily reachable and whether the sub-task is easy to complete. For
instance, a subgoal with an initial distance of 10 and a final distance of 3, although the final
distance is larger, has a better subgoal reachability than a subgoal with an initial distance
of 5 but a final distance 2.

In contrast to previous methods, such as using environmental dynamics (Zhang et al., 2020) or
policy behavior (Nachum et al., 2018b; Kreidieh et al., 2019) for measuring subgoal reachability,
our method is a continuous metric and can assess the cooperative effects of hierarchical policies
rather than one of them. Therefore, improving subgoal reachability during policy optimization can
be effective in enhancing the performance of hierarchical policies. Further, by recognizing that the
low-level intrinsic reward shares the same form as the distance computation, we can replace the
distance computation with the low-level reward. Thus, we can calculate the subgoal reachability by

Rπh,πli = Eg(i+1)k∼πh,s(i+1)k∼τπh,πl
i

[D(ψ(s(i+1)k), g(i+1)k)
D(ψ(sik), g(i+1)k)

]
= Erl∼τπh,πli

rl,(i+1)k

rl,ik
. (5)

Specifically, we use a temporary replay buffer for storing subtask trajectory τπh,πli upon subtask
completion. Then, we can sample the first low-level reward rl,ik = rl(sik, aik, g(i+1)k) and the last
one rl,(i+1)k = rl(s(i+1)k, a(i+1)k, g(i+1)k) from the temporary buffer to calculate the reachability.
Notably, such a design is quite lightweight, incurring O(1) computational complexity, without intro-
ducing additional training costs.

3.2 Bidirectional Reachability Hierarchical Policy Optimization

With the bidirectional subgoal reachability in hand, we turn to design the core mutual response
mechanism, which aims at enhancing the reachability with the help of hierarchical policies.

High-level policy optimization. In our approach, we opt to use Rπh,πli as a regularization for
optimizing πh. During the high-level policy evaluation phase, we exclusively rely on rewards from
the environment to iteratively compute Q-values, which ensures the accuracy of guidance perfor-
mance evaluation. Furthermore, in the policy improvement phase, using Rπh,πli as the regularization
explicitly constrains the high-level policy’s subgoal generation. This focus allows it to concern the
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subgoal-reaching performance of the low-level policy within a subtask. Let Dh = Dh ∪ {τπh,πli } be
the high-level replay buffer, we evaluate the high-level policy by,

Qπh(s, g) = arg min
Q

1
2Es,g∼Dh [rh(s, g) + γEs′∼Dh,g′∼πhQ

πh(s′, g′)−Qπh(s, g)]2 , (6)

and update the high-level policy by minimizing the expected KL-divergence with the reachability
term as,

πh = arg min
πh

Es∼Dh [DKL(πh(·|s)∥ exp(Qπh(s, g)− V πh(s))) + λ1Rπh,πli ] , (7)

where V πh(s) = Eg∼πh(·|s) [Qπh(s, g)− log πh(·|s)] is the high-level soft state value function and λ1
is a weight factor. Thus, we can adjust the response of the high level through tuning λ1.

Low-level policy optimization. In contrast to high-level policy, we utilize Rπh,πli as a reward
bonus for low-level policy. This approach is designed to enable πl to simultaneously focus on both
low-level rewards and subgoal reachability during subgoal exploration. To ensure the improvement
of bidirectional subgoal reachability by low-level policy, we introduce subgoal reachability as well as
the low-level reward, which is formulated as

r̂l(sik+j , aik+j , g(i+1)k) = rl(sik+j , aik+j , g(i+1)k)− λ2Rπh,πli . (8)

Let Dl = Dl ∪ {(s, g, a, r̂l, s′, g)} be the low-level replay buffer. With the surrogate low-level reward
established, the evaluation and optimization of low-level policy can be performed by

Qπl(s, a) = arg min
Q

1
2Es,g,a∼Dl [r̂l(s, a, g) + γEs′,g∼Dl,a′∼πlQ

πl(s′, a′)−Qπl(s, a)]2 , (9)

πl = arg min
πl

Es,g∼Dl [DKL(πl(·|s, g)∥ exp(Qπl(s, a)− V πl(s)))] . (10)

3.3 Theoretical Insights

The previous subsection proposes an optimization algorithm for high- and low-level policies based
on bidirectional subgoal reachability, and we investigate how this algorithm works in this section.
First, to evaluate the overall performance of HRL, we construct a joint value function by calculating
the discounted summation of step-wise rewards accumulated along the trajectory generated by both
the high- and low-level policies, as presented below:
Definition 3.2 (Joint Value Function of Hierarchical Policies). The long-term cumulative return
V πh,πl(s0) of the subgoal-based HRL in the real environment can be defined as,

V πh,πl(s0) =
∞∑

t

γtEs,a∼Pπl,gt (·,·|s0),g∼πh(·|s) [r(st, at, ĝ)]

=
∞∑

i=0
Eg∼πh(·|s)


γik



k−1∑

j=0
γjEs,a∼Pπl,g

ik+j(·,·|s0)r(sik+j , aik+j , ĝ)





 . (11)

To investigate the optimality of the policies, we derive a performance difference bound between an
induced optimal hierarchical policy Π∗ = {π∗

h, π
∗
l } and a learned one Π = {πh, πl}, which can be

formulated as V Π∗(s)− V Π(s) ≤ C.
Theorem 3.3 (Sub-optimal performance difference bound of HRL). The performance difference
bound C between the induced optimal hierarchical policies Π∗ and the learned one Π can be

C(πh, πl) = 2rmax
(1− γ)2

[
(1 + γ)Eg∼πh

(
1 + π∗

h

πh

)
ϵgπ∗
l
,πl

︸ ︷︷ ︸
(i) hierarchical policies’ inconsistency

+ 2
(
Rπh,πlmax + 2γk

)
︸ ︷︷ ︸

(ii) subgoal reachability penalty

]
, (12)
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(a) AntMaze (b) AntBigMaze (c) AntPush (d) AntFall (e) Reacher3D (f) Pusher

Figure 3: Environments used in our experiments. In maze tasks, the red square indicates the start
point and the blue square represents the target point. In manipulation tasks, a robotic arm aims to
make its end-effector and (puck-shaped) grey object reach the target position, which is marked as a
red ball, respectively.

where ϵgπ∗
l
,πl

is the distribution shift between π∗
l and πl, and Rπh,πlmax is the maximum subgoal reacha-

bility penalty from the learned one Π, both of which are formulated as,

ϵgπ∗
l
,πl

= max
s∈S,g∼πh

DTV (π∗
l (·|s, g)∥πl(·|s, g)) and Rπh,πlmax = max

i∈N
Rπh,πli .

Please refer to Appendix A.1 for the detailed proof. As shown in Equation (12), the performance
difference bound consists of two parts: (i) hierarchical policies’ inconsistency and (ii) subgoal reacha-
bility penalty. Of these, the former indicates the difference between the currently learned hierarchical
policies πh and πl and the optimal hierarchical policies π∗

h and π∗
l . Since (1 + π∗

h/πh) and ϵgπ∗
l
,πl

are decoupled from each other, this inspires us to optimize the high and low hierarchical policies
separately to reduce the policies’ inconsistency and improve the performance of the policies. More
importantly, the core difference from previous work is that the subgoal reachability penalty mat-
ters, which requires reduction from both high- and low-level policies, thus we integrate it into the
optimization procedures of the two levels.

4 Experiment

Our experimental evaluation aims to investigate the following questions: 1) How does BrHPO’s
performance on long-term goal-conditioned benchmark tasks compare to that of state-of-the-art
counterparts in terms of sample efficiency and asymptotic performance? 2) How effective is the
mutual response mechanism in enhancing subgoal reachability and improving performance?

Experimental setup We evaluate BrHPO on two categories of challenging long-horizon con-
tinuous control tasks, which feature both dense and sparse environmental reward, as illustrated
in Figure 3. In the maze navigation environments, the reward is determined by the negative L2
distance between the current state and the target position within the goal space. In the robotics
manipulation environments with sparse rewards, the reward is set to 0 when the distance is below a
predefined threshold; otherwise, it’s set to −1. Task success is defined as achieving a final distance
to the target point of d ≤ 5 for the maze tasks and d ≤ 0.25 for the manipulation tasks. To ensure
a fair comparison, all agents are initialized at the same position, eliminating extra environmental
information introduction from random initialization (Lee et al., 2022). Detailed settings can be
found in Appendix B.

4.1 Comparative evaluation

We compared BrHPO with the following baselines. 1) HIRO (Nachum et al., 2018b): designed an
off-policy correction mechanism which required high-level experience to obey the current low-level
policy; 2) HIGL (Kim et al., 2021): relied on the off-policy correction mechanism and introduced
a k-step adjacent constraint (Zhang et al., 2020) and the novelty to discover appropriate subgoals;
3) RIS (Chane-Sane et al., 2021): utilized the hindsight method to generate the least-cost middle

738



RLJ | RLC 2024

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timesteps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

BrHPO
HIRO
HIGL
CHER
RIS
SAC

(a) AntMaze

0 1 2 3 4 5
Timesteps 1e6

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s 

ra
te

BrHPO
HIRO
HIGL
CHER
RIS
SAC

(b) AntBigMaze

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timesteps 1e6

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s 

ra
te

BrHPO
HIRO
HIGL
CHER
RIS
SAC

(c) AntPush

0 1 2 3 4 5
Timesteps 1e6

0.0

0.2

0.4

0.6

Su
cc

es
s 

ra
te

BrHPO
HIRO
HIGL
CHER
RIS
SAC

(d) AntFall

0 1 2 3 4 5
Timesteps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

BrHPO
HIRO
HIGL
CHER
RIS
SAC

(e) Reacher3D (Sparse)

0 1 2 3 4 5
Timesteps 1e5

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s 

ra
te

BrHPO
HIRO
HIGL
CHER
RIS
SAC

(f) Pusher (Sparse)

Figure 4: The average success rate in various continuous control tasks of BrHPO and baselines. The
solid lines are the average success rate, while the shades indicate the standard error of the average
performance. All algorithms are evaluated with 5 random seeds.

points as subgoals, forcing the low-level policy to follow the given subgoals; 4) CHER (Kreidieh et al.,
2019): considered the cooperation of hierarchical policies, and the high-level policy needs to care
about the low-level behaviour per step; 5) SAC (Haarnoja et al., 2018b): served as a benchmark of
flat off-policy model-free algorithm and was applied as the backbone of BrHPO. Simply put, HIRO
and HIGL focused on low-level domination, and RIS focused on high-level domination. CHER also
considers the cooperation of different level policies while it requires step-by-step consideration.

The learning curves of BrHPO and the baselines across all tasks are plotted in Figure 4. Overall,
the results demonstrate that BrHPO outperforms all baselines both in exploration efficiency and
asymptotic performance. In particular, when dealing with large-scale (AntBigMaze) and partially-
observed environments (AntPush and AntFall), BrHPO achieves better exploration and training
stability, benefitting from the mutual response mechanism with information sharing and error cor-
rection for both levels. In contrast, acceptable baselines like HIRO, HIGL and CHER exhibit
performance fluctuations and low success rates. It’s worth noting that BrHPO can handle sparse
reward environments without any reward shaping or hindsight relabeling modifications, indicating
that our proposed mechanism can capture serendipitous success and provide intrinsic guidance. Be-
sides, we report the training wall-time in Appendix C.1, indicating that our method can achieve
efficient computational performance, with training times comparable to a flat SAC policy. Notably,
compared to previous approaches that utilize adjacency matrices (HRAC) or graphs to model sub-
goal reachability (HIGL), our method achieves at least a 2x improvement in training efficiency with
performance guarantee.

4.2 Ablation study

Next, we make ablations and modifications to our method to validate the effectiveness and robustness
of the mechanism we devised.

Ablation on design choices. To investigate the effectiveness of each component, we compared
BrHPO with several variants through AntMaze and AntPush tasks. The BrHPO variants include,
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Figure 5: The performance and state-subgoal trajectory visualization from different BrHPO variants.
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(b) Ablation on λ2

Figure 6: The learning curves with different
weight factors λ1 and λ2 by AntMaze task.
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Figure 7: The learning curves from different D
and k to verify the robustness of the mechanism.

1) Vanilla, which removes the mutual response mechanism in both-level policies, resulting in πh and
πl being trained solely by conventional SAC; 2) NoReg, which keeps the low-level reward bonus but
disables the regularization term in high-level policy training; 3) NoBonus, where only the high-level
policy concerns subgoal reachability but the low-level reward bonus is removed.

The learning curves and state-subgoal trajectory visualizations from different variants are presented
in Figure 5. BrHPO outperforms all three variants by a significant margin, highlighting the impor-
tance of the mutual response mechanism at both levels. Interestingly, the NoBonus variant achieves
better performance than the NoReg variant, suggesting that the subgoal reachability addressed by
the high-level policy has a greater impact on overall performance. This observation is further sup-
ported by the trajectory visualization results.

Hyperparameters. We empirically studied the sensitivity of weight factors λ1 and λ2 in Fig-
ure 6. The results show that λ1 and λ2 within a certain range are acceptable. Upon closer analysis,
we observed that when λ1 is too small, the regularization term in high-level policy optimization
has minimal influence. Consequently, the high-level policy tends to disregard the performance of
the low-level policy during tuning, resembling a high-level dominance scenario. Conversely, when
λ1 is too large, the high-level policy overly prioritizes subgoal reachability, diminishing its explo-
ration capability and resembling a low-level dominance scenario. These observations validate the
effectiveness of the mutual response mechanism in maintaining a balanced interaction between the
high- and low-level policies. Additionally, the results for λ2 suggest that a larger value can generally
improve subgoal reachability from the perspective of the low-level policy, leading to performance
improvements and enhanced stability.

Robustness of mutual response mechanism. We conducted additional experiments on the
AntMaze task to verify the robustness of the proposed mechanism. The computation of subgoal
reachability, a key factor in the mutual response mechanism, depends on the choice of the distance
measurement D and the subtask horizon k. To test the distance measurement D, we compared
three distance functions: L2 norm, L∞ norm, and L1 norm. Figure 7a shows that our method
performs well regardless of the distance function used, highlighting the adaptability of the proposed
mechanism. Additionally, we varied the subtask horizon by setting k = 5, 10, 20, 50 (Figure 7b).
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Figure 8: Learning curves of all methods. Mean
and std by 4 runs.

(a) Visualization of BrHPO.

(b) Visualization of HIRO.

Figure 9: The behavior comparison between
BrHPO and HIRO by HumanoidMaze.

Surprisingly, we achieved success rates of around 0.9 with different subtask horizons, indicating
that the performance is robust to variations in the subtask horizon, only with a slight effect on the
convergence speed during training. This flexibility of BrHPO in decoupling the high- and low-level
horizons without the need for extra graphs, as required in DHRL (Lee et al., 2022), is noteworthy.
More ablations by Reacher3D task are provided in Figure 12 of Apppendix C.

In addition to evaluating parametric robustness, we subjected BrHPO to testing in stochastic envi-
ronments to further evaluate its robustness. As depicted in Figure 13 of Apppendix C, we introduce
varying levels of Gaussian noise into the state space. The results demonstrate our BrHPO can
effectively mitigate the impact of noise and ensure consistent final performance.

Mutual response mechanism in complex tasks. Except for the main results, we consider a
more complex robot in a maze, HumanoidMaze, to further evaluate the mutual response mechanism.
In this task, the simulated humanoid, where the state space contains 274 dimensions and the action
space is 17, needs to maintain body balance while being guided by the subgoal from the high-level
policy. Consequently, the low-level policy necessitates extensive training to facilitate the humanoid’s
ability to learn how to walk proficiently. This training process requires the high-level policy to
exhibit “patience”, gradually adjusting the subgoals to guide the humanoid’s progress effectively.
Figure 8 demonstrates the performance comparison, which showcases the superior advantage of
BrHPO over HIRO. We additionally visualize the trajectory in Figure 9. We find that, our mutual
response mechanism can encourage cooperation between the high- and the low-level policies, while
the erroneous guidance from HIRO makes it difficult for humanoid to maintain balance and easily
fall, thus failing the task.

5 Related Works

Hierarchical Reinforcement Learning (HRL) methods have emerged as promising solutions for ad-
dressing long-horizon complex tasks, primarily due to the synergistic collaboration between high-level
task division and low-level exploration (Jong et al., 2008; Haarnoja et al., 2018a; Nachum et al., 2019;
Pateria et al., 2021b; Eppe et al., 2022). Generally, HRL methods can be broadly categorized into
two groups, option-based HRL (Sutton et al., 1999; Precup et al., 1998; Zhang et al., 2021; Mannor
et al., 2004) and subgoal-based HRL (Dayan & Hinton, 1992; Nachum et al., 2019; Campos et al.,
2020; Li et al., 2021b; Islam et al., 2022), that highlights the scope of guidance provided by the high-
level policy. The first avenue involves the use of options to model the policy-switching mechanism in
long-term tasks, which provides guidance to the low-level policy on when to terminate the current
subtask and transition to a new one (Machado et al., 2017; Zhang & Whiteson, 2019). In contrast,
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the subgoal-based HRL avenue (Vezhnevets et al., 2017; Nachum et al., 2018a; Gürtler et al., 2021;
Czechowski et al., 2021; Li et al., 2021a) focuses on generating subgoals in fixed horizon subtasks
rather than terminal signals, and our work falls under this category. Notably, subgoal-based HRL
approaches prioritize subgoal reachability as a means of achieving high performance (Stein et al.,
2018; Paul et al., 2019; Li et al., 2020; Czechowski et al., 2021; Pateria et al., 2021a).

Various methods have been proposed to enhance subgoal reachability, from either the high-level
or low-level perspectives. When the low level is considered to be dominant, several works have
proposed relabeling or correcting subgoals based on the exploration capacity of the low-level policy.
Examples include off-policy correction in HIRO (Nachum et al., 2018b) and hindsight relabeling in
HER (Andrychowicz et al., 2017), RIS (Chane-Sane et al., 2021) and HAC (Levy et al., 2019). On
the other hand, when the high-level dominates, subgoals are solved from given prior experience or
knowledge, and the low-level policy is trained merely to track the given subgoals (Savinov et al.,
2018; Huang et al., 2019; Eysenbach et al., 2019; Jurgenson et al., 2020). In contrast to the listed
prior works, BrHPO proposes a mutual response mechanism for ensuring bidirectional reachability.
SoRB (Eysenbach et al., 2019), for instance, constructs an environmental graph from the given replay
buffer for high-level planning and uses the waypoints as subgoals. SGT (Jurgenson et al., 2020)
adopts a divide-and-conquer mechanism to search intermediate subgoals from given trajectories.

Meanwhile, our method relates to previous research that encourages cooperation between the high-
level policy and the low-level one, where they explored various techniques for modelling subgoal
reachability, including k-step adjacency matrix (Ferns et al., 2004; Castro, 2020; Zhang et al., 2020)
or state-subgoal graph (Zhang et al., 2018; Kim et al., 2021; Lee et al., 2022). However, these
methods can be computationally intensive and conservative. Our proposed method provides a more
computationally efficient and flexible approach to gain subgoal reachability. By avoiding an explicit
representation of the state-subgoal adjacency, our method can be more easily deployed and applied
to a variety of different environments.

6 Conclusion

In this work, we identify that bilateral information sharing and error correction have been long
neglected in previous HRL works. This will potentially cause local exploration and unattainable
subgoal generation, which hinders overall performance and sample efficiency. To address this issue,
we delve into the mutual response of hierarchical policies, both theoretically and empirically, re-
vealing the crucial role of the mutual response mechanism. Based on these findings, we proposed
the Bidirectional-reachable Hierarchical Policy Optimization (BrHPO) algorithm. BrHPO not only
matches the best HRL algorithms in asymptotic performance, but it also shines in low computa-
tional load. Although BrHPO offers many advantages, a main challenge is to design an appropriate
low-level reward to compute the subgoal reachability, thus limiting the application in sparse low-level
reward settings (Lee et al., 2022). Future work that merits investigation are integrating up-to-date
reachability measurement for bidirectional subgoal reachability and policy optimization backbone to
develop a strong HRL algorithm.
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A Theoretical Analysis

A.1 Omitted Proofs

Theorem A.1 (Sub-optimal performance difference bound of HRL). The performance difference
bound C between the induced optimal hierarchical policies Π∗ and the learned one Π can be

C(πh, πl) = 2rmax
(1− γ)2

[
(1 + γ)Eg∼πh

(
1 + π∗

h

πh

)
ϵgπ∗
l
,πl

︸ ︷︷ ︸
(i) hierarchical policies’ inconsistency

+ 2
(
Rπh,πlmax + 2γk

)
︸ ︷︷ ︸

(ii) subgoal reachability penalty

]
, (13)

where ϵgπ∗
l
,πl

is the distribution shift between π∗
l and πl, and Rπh,πlmax is the maximum subgoal reacha-

bility penalty from the learned one Π, both of which are formulated as,

ϵgπ∗
l
,πl

= max
s∈S,g∼πh

DTV (π∗
l (·|s, g)∥πl(·|s, g)) and Rπh,πlmax = max

i∈N
Rπh,πli .

Summary of proof. We first divide the bound into three parts, V Π∗(s) − V Π(s) =
V π

∗
h,π

∗
l (s0)− V π∗

h,πl(s0)︸ ︷︷ ︸
L1

+V π
∗
h,πl(s0)− V πh,π∗

l (s0)︸ ︷︷ ︸
L2

+V πh,π
∗
l (s0)− V πh,πl(s0)︸ ︷︷ ︸

L3

. Then, we find the

similarity of L1 and L3, both of which denote that under the same high-level policy (π∗
h in L1

while πh in L3). By Performance Difference Lemma (Kakade & Langford, 2002), we have

L1 + L3 ≤
2rmax

(1− γ)2Eg∼πh

(
1 + π∗

h

πh

)
ϵgπ∗
l
,πl
. (14)

For L2, we follow Zhang et al. (2022) and substitute equation (4). Then we have

L2 ≤
rmax

(1− γ)2 (Rπh,πlmax + 2γk). (15)

Thus, we take the results of Equations (14) and (15) and achieve the final bound.

Proof. To derive the performance difference bound between Π∗ and Π, we first divide the bound
into three terms,

V Π∗
(s0)− V Π(s0) = V π

∗
h,π

∗
l (s0)− V πh,πl(s0)

= V π
∗
h,π

∗
l (s0)− V π∗

h,πl(s0)︸ ︷︷ ︸
L1

+V π
∗
h,πl(s0)− V πh,π∗

l (s0)︸ ︷︷ ︸
L2

+V πh,π
∗
l (s0)− V πh,πl(s0)︸ ︷︷ ︸

L3

.

(16)

Then, our proof can be obtained to by tackling L1, L2 and L3, respectively.

• Derivation of L1
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By adding and subtracting the same term in L1, we obtain

L1 = V π
∗
h,π

∗
l (s0)−

[
Ṽ
π∗
h,π

∗
l

0 (s0) + γkE
g∼π∗

h
,s∼P

π∗
l
,g

k
(·|s0)

V π
∗
h,πl(sk)

]

+
[
Ṽ
π∗
h,π

∗
l

0 (s0) + γkE
g∼π∗

h
,s∼P

π∗
l
,g

k
(·|s0)

V π
∗
h,πl(sk)

]
− V π∗

h,πl(s0)

=
[
Ṽ
π∗
h,π

∗
l

0 (s0) + γkE
g∼π∗

h
,s∼P

π∗
l
,g

k
(·|s0)

V π
∗
h,π

∗
l (sk)

]
← By Lemma A.3

−
[
Ṽ
π∗
h,π

∗
l

0 (s0) + γkE
g∼π∗

h
,s∼P

π∗
l
,g

k
(·|s0)

V π
∗
h,πl(sk)

]

+
[
Ṽ
π∗
h,π

∗
l

0 (s0) + γkE
g∼π∗

h
,s∼P

π∗
l
,g

k
(·|s0)

V π
∗
h,πl(sk)

]

−
[
Ṽ
π∗
h,πl

0 (s0) + γkEg∼π∗
h
,s∼Pπl,g

k
(·|s0)V

π∗
h,πl(sk)

]

= γkE
g∼π∗

h
,s∼P

π∗
l
,g

k
(·|s0)

[
V π

∗
h,π

∗
l (sk)− V π∗

h,πl(sk)
]

︸ ︷︷ ︸
part a

+
[
Ṽ
π∗
h,π

∗
l

0 (s0)− Ṽ π
∗
h,πl

0 (s0)
]

︸ ︷︷ ︸
part b

+ γk
[
E
g∼π∗

h
,s∼P

π∗
l
,g

k
(·|s0)

V π
∗
h,πl(sk)− Eg∼π∗

h
,s∼Pπl,g

k
(·|s0)V

π∗
h,πl(sk)

]

︸ ︷︷ ︸
part c

. (17)

Then, we can deal with the three parts one by one to obtain the derivation of L1. Note that, part
b represents the performance discrepancy in the first subtask, caused by different low-level policies
π∗
l and πl. Thus, consider the policy shift of the low-level policies, we suppose

ϵgπ∗
l
,πl

= max
s∈S,g∼πh

DTV (π∗
l (·|s, g)∥πl(·|s, g)) . (18)

Then, recall rmax to be the maximum environmental reward, i.e., r ≤ rmax, we have

part b = Ṽ
π∗
h,π

∗
l

0 (s0)− Ṽ π
∗
h,πl

0 (s0)

=
k−1∑

j=0
E
gk∼π∗

h
,s,a∼P

π∗
l
,g

j
(·,·|s0)

[
γjr(sj , aj , ĝ)

]
−
k−1∑

j=0
Egk∼π∗

h
,s,a∼Pπl,g

j
(·,·|s0)

[
γjr(sj , aj , ĝ)

]

≤
k−1∑

j=0
Egk∼π∗

h
2

[
γjr(sj , aj , ĝ)

]
DTV

(
Pπ

∗
l ,g
j (·, ·|s0)

∥∥∥Pπl,gj (·, ·|s0)
)

≤ 2rmax
k−1∑

j=0
Egk∼π∗

h
γjjϵgπ∗

l
,πl
. ← By Lemma A.4 (19)

For part c, note that the joint value function can be bounded as V πh,πl(s0) ≤ rmax/(1− γ). We can
apply Lemma A.4 to bound the discrepancy of the low-level policies, and have

part c = γk
[
E
g∼π∗

h
,s∼P

π∗
l
,g

k
(·|s0)

V π
∗
h,πl(sk)− Eg∼π∗

h
,s∼Pπl,g

k
(·|s0)V

π∗
h,πl(sk)

]

= γk
∫

g∈G

∫

s∈S
π∗
h(g|sk)

(
Pπ

∗
l ,g
k (s|s0)− Pπl,gk (s|s0)

)
V π

∗
h,πl(s)dsdg

≤ 2γkrmax
1− γ Eg∼π∗

h

[
DTV

(
Pπ

∗
l ,g
k (·|s0)∥Pπl,gk (·|s0)

)]

≤ 2γkrmax
1− γ Eg∼π∗

h
kϵgπ∗

l
,πl
, (20)
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At last, for part a, we can apply the same recursion every k step,

part a = γkE
g∼π∗

h
,s∼P

π∗
l
,g

k
(·|s0)

[
V π

∗
h,π

∗
l (sk)− V π∗

h,πl(sk)
]

≤ γ2kE
g∼π∗

h
,s∼P

π∗
l
,g

2k (·|s0)

[
V π

∗
h,π

∗
l (s2k)− V π∗

h,πl(s2k)
]

+ 2rmax
2k−1∑

j=k
Eg∼π∗

h
γjjϵgπ∗

l
,πl

+ 2γ2krmax
1− γ Eg∼π∗

h
2kϵgπ∗

l
,πl
. (21)

Now, with the derivation of part a, part b and part c, we can combine these and repeat the recursion
step for infinitely many times

L1 = part a + part b + part c

≤ 2rmax
k−1∑

j=0
Egk∼π∗

h
γjjϵgπ∗

l
,πl

+ 2γkrmax
1− γ Eg∼π∗

h
kϵgπ∗

l
,πl

+ 2rmax
2k−1∑

j=k
Eg2k∼π∗

h
γjjϵgπ∗

l
,πl

+ 2γ2krmax
1− γ Eg∼π∗

h
2kϵgπ∗

l
,πl

+ γ2kE
g∼π∗

h
,s∼P

π∗
l
,g

2k (·|s0)

[
V π

∗
h,π

∗
l (s2k)− V π∗

h,πl(s2k)
]

...

≤ 2rmax
∞∑

i=0

k−1∑

j=0
Eg∼π∗

h
γ(ik+j)(ik + j)ϵgπ∗

l
,πl

+ γ(i+1)k

1− γ Eg∼π∗
h
(i+ 1)kϵgπ∗

l
,πl

≤ 2rmax
1 + γ

(1− γ)2Eg∼π∗
h
ϵgπ∗
l
,πl
. (22)

Thus, we complete the derivation of L1.

• Derivation of L3

Compared with L1, the term L3 replaces the high-level policy from π∗
h to πh. Thus, we directly can

get L3 from the results of L1 as

L3 ≤ 2rmax
1 + γ

(1− γ)2Eg∼πhϵ
g
π∗
l
,πl
. (23)

• Derivation of L2
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Similar to the derivation of L1, by adding and subtracting the same term in L2, we have

L2 = V π
∗
h,πl(s0)−

[
Ṽ
π∗
h,πl

0 (s0) + γkEg∼π∗
h
,s∼Pπl,g

k
(·|s0)V

πh,π
∗
l (sk)

]

+
[
Ṽ
π∗
h,πl

0 (s0) + γkEg∼π∗
h
,s∼Pπl,g

k
(·|s0)V

πh,π
∗
l (sk)

]
− V πh,π∗

l (s0)

=
[
Ṽ
π∗
h,πl

0 (s0) + γkEg∼π∗
h
,s∼Pπl,g

k
(·|s0)V

π∗
h,πl(sk)

]

−
[
Ṽ
π∗
h,πl

0 (s0) + γkEg∼π∗
h
,s∼Pπl,g

k
(·|s0)V

πh,π
∗
l (sk)

]

+
[
Ṽ
π∗
h,πl

0 (s0) + γkEg∼π∗
h
,s∼Pπl,g

k
(·|s0)V

πh,π
∗
l (sk)

]

−
[
Ṽ
πh,π

∗
l

0 (s0) + γkE
g∼πh,s∼P

π∗
l
,g

k
(·|s0)

V πh,π
∗
l (sk)

]

= γkEg∼π∗
h
,s∼Pπl,g

k
(·|s0)

[
V π

∗
h,πl(sk)− V πh,π∗

l (sk)
]

︸ ︷︷ ︸
part d

+
[
Ṽ
π∗
h,πl

0 (s0)− Ṽ πh,π
∗
l

0 (s0)
]

︸ ︷︷ ︸
part e

+ γk
[
Eg∼π∗

h
,s∼Pπl,g

k
(·|s0)V

πh,π
∗
l (sk)− E

g∼πh,s∼P
π∗
l
,g

k
(·|s0)

V πh,π
∗
l (sk)

]

︸ ︷︷ ︸
part f

. (24)

According to Assumption A.5, we suppose r(st, at, ĝ) = Eg∼πh,s,a∼Pπl,gt
rl(st, at, g)/D(g, ĝ), thus we

summate the k-step reward in the first subtask in part e as

k−1∑

j=0
Eg∼πh,s,a∼Pπl,g

j
(·,·|s0)

[
γjr(sj , aj , ĝ)

]

= r(s0, a0, ĝ)
k−1∑

j=0
Eg∼πh,s,a∼Pπl,g

j
(·,·|s0)

[
γj
r(sj , aj , ĝ)
r(s0, a0, ĝ)

]

= r(s0, a0, ĝ)
k−1∑

j=0
Eg∼πh,s,a∼Pπl,g

j
(·,·|s0)

[
γj
rl(sj , aj , g)
D(g, ĝ)

D(g, ĝ)
rl(s0, a0, g)

]

= r(s0, a0, ĝ)
k−1∑

j=0
Eg∼πh,s,a∼Pπl,g

j
(·,·|s0)

[
γj
rl(sj , aj , g)
rl(s0, a0, g)

]
. (25)

Since the low-level policy is trained as a goal-conditioned policy, we have rl(sj , aj , g) ≤ rl(sk, ak, g).
And the summation in the first subtask can be

k−1∑

j=0
Eg∼πh,s,a∼Pπl,g

j
(·,·|s0)

[
γjr(sj , aj , ĝ)

]

≤ r(s0, a0, ĝ)
k−1∑

j=0
Eg∼πh,s,a∼Pπl,g

j
(·,·|s0)

[
γj
rl(sk, ak, g)
rl(s0, a0, g)

]

= r(s0, a0, ĝ)1− γk
1− γ

rl(sk, ak, g)
rl(s0, a0, g)

. (26)
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Thus, we let the fraction Rπh,πli = rl(sk, ak, g)/rl(s0, a0, g) be the subgoal reachability definition,
and the part e in L2 can be

part e = Ṽ
π∗
h,πl

0 (s0)− Ṽ πh,π
∗
l

0 (s0)

=
k−1∑

j=0
Eg∼π∗

h
,s,a∼Pπl,g

j
(·,·|s0)

[
γjr(sj , aj , ĝ)

]
−
k−1∑

j=0
E
g∼πh,s,a∼P

π∗
l
,g

j
(·,·|s0)

[
γjr(sj , aj , ĝ)

]

≤ r(s0, a0, ĝ)1− γk
1− γ R

π∗
h,πl

0 −
k−1∑

j=0
E
g∼πh,s,a∼P

π∗
l
,g

j
(·,·|s0)

[
γjr(sj , aj , ĝ)

]

≤ rmax
1− γk
1− γ

(
Rπh,πl0 −Rπ

∗
h,π

∗
l

0

)
← Π∗ can achieve best subgoal reachability

≤ rmax
1− γk
1− γ R

πh,πl
0 . (27)

The penultimate inequality is based on the property of the induced optimal hierarchical policies.
Compared with the learned πh, Figure 3 shows that π∗

h can balance the subgoal reachability and the
guidance, thus Rπh,πl0 ≥ Rπ

∗
h,πl

0 (note that the smaller R implies the better subgoal reachability).
And, the optimal policies Π∗ can achieve the optimal subgoal reachability, i.e. Rπ

∗
h,π

∗
l

0 ≤ Rπh,π
∗
l

0 .
Thus, we have

(
Rπ

∗
h,πl

0 −Rπh,π
∗
l

0

)
≤

(
Rπh,πl0 −Rπ

∗
h,π

∗
l

0

)
.

Then, we turn to part f in L2. Considering the upper bound of the joint value function, we have

part f = γk
[
Eg∼π∗

h
,s∼Pπl,g

k
(·|s0)V

πh,π
∗
l (sk)− E

g∼πh,s∼P
π∗
l
,g

k
(·|s0)

V πh,π
∗
l (sk)

]

≤ γk
∫

g∈G

∫

s∈S
[π∗
h(g|s)− πh(g|s)]

[
Pπl,gk (s|s0)− Pπ

∗
l ,g
k (s|s0)

] rmax
1− γ dsdg

≤ 2γk
∫

g∈G

∫

s∈S

rmax
1− γ dsdg

= 2γkrmax
1− γ . (28)

With the derivation of part e and part f, we deal with part d by the recursion each k-steps as

part d = γkEg∼π∗
h
,s∼Pπl,g

k
(·|s0)

[
V π

∗
h,πl(sk)− V πh,π∗

l (sk)
]

≤ γ2kEg∼π∗
h
,s∼Pπl,g2k (·|s0)

[
V π

∗
h,πl(s2k)− V πh,π∗

l (s2k)
]

+ rmax
γk − γ2k

1− γ Rπh,πl1 + 2γ2krmax
1− γ . (29)

Thus, we combine the result of part d, part e and part f to obtain the results of L2 as
L2 = part d + part e + part f

≤ rmax
1− γk
1− γ R

πh,πl
0 + rmax

γk − γ2k

1− γ Rπh,πl1 + 2γkrmax
1− γ + 2γ2krmax

1− γ
+ γ2kEg∼π∗

h
,s∼Pπl,g2k (·|s0)

[
V π

∗
h,πl(s2k)− V πh,π∗

l (s2k)
]

...

≤ rmax
∞∑

i=0

(1− γk)γik
1− γ Rπh,πli + 2γ(i+1)k

1− γ

≤ rmax
(1− γ)2 (Rπh,πlmax + 2γk). (30)

751



RLJ | RLC 2024

In the last inequality, we define
Rπh,πlmax = max

i∈N
Rπh,πli . (31)

Now, we have the results of L1, L2 and L3. The performance difference bound between Π∗ and Π
can be obtained as

V Π∗
(s0)− V Π(s0) = L1 + L2 + L3

≤ 2rmax
1 + γ

(1− γ)2Eg∼π∗
h
ϵgπ∗
l
,πl

+ rmax
(1− γ)2 (Rπh,πlmax + 2γk)

+ 2rmax
1 + γ

(1− γ)2Eg∼πhϵ
g
π∗
l
,πl

= 2rmax
(1− γ)2

[
(1 + γ)Eg∼πh

(
1 + π∗

h

πh

)
ϵgπ∗
l
,πl

+ 2
(
Rπh,πlmax + 2γk

)]
. (32)

And the proof is complete.

Proposition A.2 (Equivalence between π∗ and Π∗). With the k-step trajectory slicing and the
alignment method, the performance of Π∗ and π∗ is equivalent, i.e., V π∗(s) = V Π∗(s).

Proof. According to the k-step trajectory slicing and the alignment method, the induced optimal
hierarchical policies Π∗ can be generated by aligning with the k-step trajectory slice derived by π∗,
thus we have

g(i+1)k ∼ π∗
h(·|sik) = Pπ

∗
k (s(i+1)k|sik)

= p(sik)
k−1∏

j=0
P (sik+j+1|sik+j , aik+j)π∗(aik+j |sik+j), (33)

aik+j ∼ π∗
l (·|sik+j , g(i+1)k) = π∗(aik+j |sik+j). (34)

Thus, the value function for π∗ and the joint value function for Π∗ can be

V π
∗
(s0) =

∞∑

t

γtEs∼p(s′|s,a),a∼π∗ [r(st, at, ĝ)]

=
∞∑

i=0

k−1∑

j=0
Es∼p(s′|s,a),a∼π∗γik+j [r(sik+j , aik+j , ĝ)]

=
∞∑

i=0
Eg∼π∗

h



γik

k−1∑

j=0
Es∼p(s′|s,a),a∼π∗

l
γj [r(sik+j , aik+j , ĝ)]





=
∞∑

i=0
Eg∼π∗

h
(·|s)


γik



k−1∑

j=0
γjE

s,a∼P
π∗
l
,g

ik+j(·,·|s0)
r(sik+j , aik+j , ĝ)







= V Π∗
(s0) (35)

Thus, through the k-step trajectory slicing and the alignment method, the performance of Π∗ and
π∗ is equivalent. And the proof is complete.

A.2 Useful Lemma and Assumption

Lemma A.3 (Bellman Backup in HRL). Consider that the joint value function can be decomposed
by the summation of subtasks. Given the initial state sik at the i-th subtask, the Bellman Backup of
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HRL defined in each subtask can be

V πh,πl(sik) = Ṽ πh,πli (sik) + γkEg∼πh,s∼Pπl,g(i+1)k(·|sik)
[
V πh,πl(s(i+1)k)

]
, (36)

where Ṽ πh,πli (sik) is the the environment return of Π with the i-th subtask, formulated as

Ṽ πh,πli (sik) =
k−1∑

j=0
Eg∼πh,s,a∼Pπl,g

ik+j(·,·|sik)
[
γjr(sik+j , aik+j , ĝ)

]
. (37)

Proof. According to the decomposition of the joint value function V πh,πl(s), we have

V πh,πl(s0) =
∞∑

i=0
Eg∼πh


γik



k−1∑

j=0
γjEs,a∼Pπl,g

ik+j(·,·|s0)r(sik+j , aik+j , ĝ)







=
k−1∑

j=0
Eg∼πh,s,a∼Pπl,g

j
(·,·|s0)

[
γjr(sj , aj , ĝ)

]

+
∞∑

i=1
Eg∼πh


γik



k−1∑

j=0
γjEs,a∼Pπl,g

ik+j(·,·|s0)r(sik+j , aik+j , ĝ)







= Ṽ πh,πl0 (s0) + γkEg∼πh,s∼Pπl,g
k

(·|sk) [V πh,πl(sk)] . (38)

Thus, we can conclude that

V πh,πl(sik) = Ṽ πh,πli (sik) + γkEg∼πh,s∼Pπl,g(i+1)k(·|sik)
[
V πh,πl(s(i+1))

]
. (39)

And the proof is complete.

Lemma A.4 (Markov chain TVD bound, time-varying). Suppose the expected KL-divergence be-
tween two policy distributions is bounded as ϵgπ∗

l
,πl

= maxs∈S,g∼πh DTV (π∗
l (·|s, g)∥πl(·|s, g)), and the

initial state distributions are the same. Then, the distance in the state-action marginal is bounded
as,

DTV

(
Pπ

∗
l ,g
t (·, ·|s0)

∥∥∥Pπl,gt (·, ·|s0)
)
≤ tϵgπ∗

l
,πl

(40)

Proof. Let p(s′|s) as the adjacent state transition probability, which can be defined as

p(s′|s) = p(s)P (s′|s, a)π(a|s). (41)

Replacing the policy as the low-level policy πl, we can derive the Markov chain TVD bound caused
by the different low-level policy,

max
t

Es∼pt1(s)DKL(p1(s′|s)∥p2(s′|s))

= max
t

Es∼pt1(s)p(s)P as,s′(s′|s, a)DKL(π∗
l (a|s, g)||πl(a|s, g))

≤ max
t

Es∼pt1(s)DKL(π∗
l (a|s, g)||πl(a|s, g))

≤ max
s∈S,g∼πh

DTV (π∗
l (·|s, g)∥πl(·|s, g))

= ϵgπ∗
l
,πl

(42)

Thus, follow the Lemma B.2 in Janner et al. (2019), the distance in the state-action marginal is
bounded as,

DTV

(
Pπ

∗
l ,g
t (·, ·|s0)

∥∥∥Pπl,gt (·, ·|s0)
)
≤ tϵgπ∗

l
,πl
. (43)

And the proof is complete.
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Assumption A.5 (Refer to Assumption 1 in Zhang et al. (2022)). For all s ∈ S and g ∈ G, the
environmental reward can be written as

r(s, a, ĝ) =
∑

s′

P as,s′(s′|s, a)πl(a|s, g)r̃(s, s′) = Eg∼πh,s,a∼Pπl,gt
rl(st, at, g)/D(g, ĝ). (44)

where r̃ : S × G → [0, rmax] is a state-reachability reward function.

In this assumption, the subgoal g generated by the high-level policy represents the desired state to
be reached, while the intermediate low-level state and action details are controlled by the low-level
policy. Therefore, considering that the subgoals are generated towards the environmental goal ĝ,
when given a low-level optimal/learned policy, it is natural to assume that the k-step stage reward
only depends on the state where the agent starts and the state where the agent arrives.
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B Experimental Details

B.1 Implementation Details

Our method BrHPO and all baselines are implemented based on PyTorch.

BrHPO. We employ the soft actor-critic (SAC) algorithm Haarnoja et al. (2018b) as the back-
bone framework for both high- and low-level policies. For the high-level policy, considering that
the subtask trajectory τπh,πli in each subtask would be abstracted as one transition in high level,
we convert the trajectory (sik:(i+1)k−1, aik:(i+1)k−1, g(i+1)k, rh,ik, s(i+1)k) into a high-level transition
tuple (sik, g(i+1)k, rh,ik, s(i+1)k). Then, when a subtask ends, we compute the subgoal reachability
by

Rπh,πli = Erl∼τπh,πli

rl,(i+1)k

rl,ik
.

Then, we can optimize the high-level policy by

Qπh(s, g) = arg min
Q

1
2Es,g∼Dh [rh(s, g) + γEs′∼Dh,g′∼πhQ

πh(s′, g′)−Qπh(s, g)]2 ,

πh = arg min
πh

Es∼Dh [DKL(πh(·|s)∥ exp(Qπh(s, g)− V πh(s))) + λ1Rπh,πli ] .

For the low-level policy which can be trained as a goal-conditioned one, we design the reachability-
aware low-level policy as

r̂l(sik+j , aik+j , g(i+1)k) = rl(sik+j , aik+j , g(i+1)k)− λ2Rπh,πli .

The training tuples for the low-level policy are formed as the per-step state-action transitions
(sik+j , g(i+1)k, aik+j , rl,ik+j , sik+j+1, g(i+1)k)1, which then are stored in the low-level bufferDl. Thus,
with the training tuples, we can optimize the low-level policy as,

Qπl(s, a) = arg min
Q

1
2Es,g,a∼Dl [r̂l(s, a, g) + γEs′,g∼Dl,a′∼πlQ

πl(s′, a′)−Qπl(s, a)]2 ,

πl = arg min
πl

Es,g∼Dl [DKL(πl(·|s, g)∥ exp(Qπl(s, a)− V πl(s)))] .

Algorithm framework. We briefly give an overview of our proposed BrHPO in algorithm 1.
Notably, the mutual response mechanism effectively calculates the subgoal reachability for bilateral
information and then incorporates it into hierarchical policy optimization for mutual error correction,
promoting performance and reducing computation load.

HIRO. In this work Nachum et al. (2018b), to deal with the non-stationarity, where old off-policy
experience may exhibit different transitions conditioned on the same goals, they heuristically relabel
the subgoal g̃ as

logµlo(at:t+c+1|st:t+c+1, g̃t:t+c+1) ∝ −1
2

t+c−1∑

i=t
∥ai − µlo(si, g̃i)∥2

2 + const.

To solve this problem efficiently, they calculated the quantity on eight candidate goals sampled
randomly from a Gaussian centred at st+c − st. Then, with the correcting high-level experience,
the high-level policy can be optimized by off-policy methods. Compared with our methods, the off-
correction can be regarded as a low-level domination method, which requires the high-level experience
to be modified by the subgoal reachability demonstrated at a low level.

1We use the absolute subgoal in this paper, that is, g(i+1)k = sik + πh(·|sik).
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Algorithm 1 Bidirectional-reachable Hierarchical Policy Optimization (BrHPO)
initialize: policy networks πh, πl, Q-networks Qπh , Qπl , replay buffers for high-level Dh and
low-level Dl

for each training episode do
while not done do

sample subgoals g ∼ πh(·|s)
for each step in a subtask do

Sample actions a ∼ πl(·|s, g)
Store (s, g, a, rl, s′, g) into a temp buffer
Update πl by (9) and (10) from Dl ▷ low-level policy optimization

end for
Calculate Rπh,πli by (5) ▷ subgoal reachability computation
Compute r̂l by (8) and push the tuples in Dl ▷ reachability-aware low-level reward
Store (s, g, rh, s′, R̂πh,πli ) into Dh

Update πh by (6) and (7) from Dl ▷ high-level policy optimization
end while

end for

HIGL. In this work Kim et al. (2021), to restrict the high-level action space from the whole goal
space to a k-step adjacent region, they introduced the shortest transition distance as a constraint
in high-level policy optimization. Besides, they utilized farthest point sampling and priority queue
Q to improve the subgoal coverage and novelty. To enhance the subgoal reachability, they made
pseudo landmark be placed between the selected landmark and the current state in the goal space
as follows:

gpseudo
t := gcur

t + δpseudo ·
gsel
t − gcur

t

∥gsel
t − gcur

t ∥2 .

To establish the adjacency constraint by the shortest transition distance, they refer to HRAC Zhang
et al. (2020) and adopt an adjacent matrix to model it. Specifically, we note that the performance
of HIGL in the AntMaze task is different from the original report in their paper, mainly due to the
different scales. Thus, we set the same scale for all tasks for fairness. To ensure that HIGL performs
well in these tasks, we adjusted hyper-parameters such as "landmark coverage" and "n landmark
novelty".

BrHPO HIGL

Figure 10: Comparison of the scales in the maze tasks between BrHPO and HIGL.

CHER. This work Kreidieh et al. (2019) proposed a cooperation framework for HRL. In this work,
the HRL problem can similarly be framed as a constrained optimization problem,

max
πm

[
Jm + min

λ≤0

(
λδ − λmin

πw
Jw

)]
.
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To deal with this problem, they update the high- (πm) and low-level (πw) policies by

θw ← θw + α∇θwJw, and, θm ← θm + α∇θw(Jw + λJw).

Compared to CHER, our BrHPO method distinguishes itself in several key aspects. In CHER,
hierarchical cooperation is achieved solely through high-level policy optimization, while the low-level
policy is trained as a generally goal-conditioned policy without further improvement. Moreover, the
high-level optimization in CHER introduces Jw as (Jw +λJw), necessitating a focus on the step-by-
step behaviour of the low-level policy.

In contrast, our BrHPO method incorporates the concept of subgoal reachability, which considers the
initial and final states of the subtasks. This design choice empowers the high-level policy to relax the
exploration burden on the low-level policy. By leveraging subgoal reachability, our approach enables
more efficient exploration of the low-level policy and facilitates effective hierarchical cooperation
between the high-level and low-level policies.

RIS. In this work Chane-Sane et al. (2021), based on the hindsight method, they collected feasible
state trajectories and predicted an appropriate distribution of imagined subgoals. They first defined
subgoals sg as midpoints on the path from the current state s to the goal g, and further minimized
the length of the paths from s to sg and sg to g. Thus, the high-level policy can be updated as

πHk+1 = arg min
πH

E(s,g)∼D,sg∼πH(·|s,g)[Cπ(sg|s, g)].

Then, with the imagined subgoals, the low-level policy can be trained by

πθk+1 = arg max
θ

E(s,g)∼DEa∼πθ(·|s,g)

[
Qπ(s, a, g)− αDKL

(
πθ∥πpriork

)]
.

B.2 Network Architecture

For the hierarchical policy network, we employ SAC Haarnoja et al. (2018b) as both the high-level
and the low-level policies. Each actor and critic network for both high level and low level consists of
3 fully connected layers with ReLU nonlinearities. The size of each hidden layer is (256, 256). The
output of the high- and low-level actors is activated using the linear function and is scaled to the
range of corresponding action space.

We use Adam optimizer Kingma & Ba (2014) for all networks in BrHPO.

B.3 Environmental Setup

We adopt six challenging long-term tasks to evaluate BrHPO, which can be categorized into the
dense case and the sparse case. For the maze navigation tasks, a simulated ant starts at (0, 0)
and the environment reward is defined as r = −

√
(x− gx)2 + (y − gy)2 (except for AntFall, r =

−
√

(x− gx)2 + (y − gy)2 + (z − gz)2). While in the robotics manipulation tasks, a manipulator is
initialized with a horizontal stretch posture. The environmental reward is defined as a binary one,
determined by the distance between the end-effector (or the object in Pusher) and the target point

r =
{
−1, d > 0.25,
0, d ≤ 0.25.

(45)

And, the success indicator is defined as whether the final distance is less than a pre-defined threshold,
where the maze navigation tasks require d < 5 and the robotics manipulation tasks require d < 0.25.

AntMaze. A simulated eight-DOF ant starts from the left bottom (0, 0) and needs to approach
the left top corner (0, 16). At each training episode, a target position is sampled uniformly at random
from gx ∼ [−4, 20], gy ∼ [−4, 20]. At the test episode, the target points are fixed at (gx, gy) = (0, 16).
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AntBigMaze. Similar to the AntMaze task, we design a big maze to evaluate the exploration
capability of BrHPO. In particular, the target position is chosen randomly from one of (gx, gy) =
(32, 8) and (gx, gy) = (66, 0), which makes it harder to find a feasible path.

AntPush. A movable block at (0, 8) is added to this task. The ant needs to move to the left side
of the block and push it into the right side of the room, for a chance to reach the target point above,
which requires the agent to avoid training a greedy algorithm. At each episode, the target position
is fixed to (gx, gy) = (0, 19).

AntFall. In this task, the agent is initialized on a platform of height 4. Like the AntPush envi-
ronment, the ant has to push a movable block at (8, 8) into a chasm to create a feasible road to
the target, which is on the opposite side of the chasm, while a greedy policy would cause the ant
to walk towards the target and fall into the chasm. At each episode, the target position is fixed to
(gx, gy, gz) = (0, 27, 4.5).

Reacher3D. A simulated 7-DOF robot manipulator needs to move its end-effector to a desired
position. The initial position of the end-effector is at (0, 0, 0) while the target is sampled from a
Normal distribution with zero mean and 0.1 standard deviation.

Pusher. Pusher additionally includes a puck-shaped object based on the Reacher3D task, and the
end-effector needs to find the object and push it to a desired position. At the initialization, the
object is placed randomly and the target is fixed at (gx, gy, gz) = (0.45,−0.05,−0.323).

We summarise these six tasks in Table 1.

Table 1: Overview on Environment settings.

Environment state action environment reward episode step success indicator
AntMaze 32 8 negative x-y distance 500 rfinal ≥ −5

AntBigMaze 32 8 negative x-y distance 1000 rfinal ≥ −5
AntPush 32 8 negative x-y distance 500 rfinal ≥ −5
AntFall 33 8 negative x-y-z distance 500 rfinal ≥ −5

Reacher3D 20 7 negative x-y-z distance 100 dfinal ≤ 0.25
Pusher 23 7 negative x-y-z distance 100 dfinal ≤ 0.25
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B.4 Hyper-parameters

Table 2 lists the hyper-parameters used in training BrHPO over all tasks.

C Additional experiments

Additional Metrics. We report additional (aggregate) performance metrics of BrHPO and other
baselines on the six tasks using the rliable toolkit Agarwal et al. (2021). As show in Figure 11,
BrHPO outperforms other baselines in terms of Median, interquantile mean (IQM), Mean and
Optimality Gap results.

0.0 0.5

BrHPO

SAC

HIGL

CHER

HIRO

RIS

Median

0.0 0.5

IQM

0.25 0.50 0.75

Mean

0.5 1.0

Optimality Gap

Normalized ScoreFigure 11: Median, IQM, Mean (higher values are better) and Optimality Gap (lower values are
better) performance of BrHPO and all baselines on six tasks.

Subgoal reachability report. We report the average subgoal reachabilityRπh,πli of each environ-
ment by Table 3. Note that, the value Rπh,πli → 0 means the final distance D(ψ(s(i+1)k), g(i+1)k)→
0, thus implying the better subgoal reachability. From the results, our implementation is simple yet
effective, which can improve subgoal reachability significantly. Besides, the results show that when
there are contact dynamics in the environment, such as AntPush, AntFall and Pusher, the subgoal
reachability may be decreased, which inspires us to further develop investigation in these cases.

Ablation by the sparse environment. Additionally, we provide ablation studies conducted on
the Reacher3D task (sparse) instead of the AntMaze task (dense). We investigate the effectiveness
of the mutual response mechanism by 1) the three variants of BrHPO, containing Vanilla, NoReg
and NoBonus, and 2) the weighted factors λ1 and λ2. We show the results in Figure 12. Overall,
we find that the tendency from the Reacher3D task is similar to the AntMaze task, which verifies
the effectiveness of our BrHPO in the sparse reward case.
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Figure 12: The ablation of mutual response mechanism by Reacher3D task. Mean and std by 4
runs.

Empirical study in stochastic environments. To empirically verify the stochasticity robust-
ness of BrHPO, we utilize it the a set of stochastic tasks, including stochastic AntMaze, AntPush
and Reacher3D, which are modified from the original tasks. Referring to HRAC Zhang et al. (2020),
we interfere with the position of the ant (x,y) and the position of the end-effector (x,y,z) with Gaus-
sian noise of different standard deviations, including σ = 0.01, σ = 0.05 and σ = 0.1, to verify
the robustness against the increasing environmental stochasticity. As shown in Figure 13, BrHPO
can achieve similar asymptotic performance with different noise magnitudes in stochastic AntMaze,
AntPush and Reacher3D, which shows the robustness to stochastic environments.
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Figure 13: The empirical evaluation of BrHPO by stochastic environments. Mean and std by 4 runs.

C.1 Computing Infrastructure and Training Time

For completeness, we list the computing infrastructure and benchmark training times for BrHPO
and all baselines by Table 4. As discussed in section 4.2, the training complexity of BrHPO is much
less than other HRL methods, which can be comparable to the flat policy.

760



RLJ | RLC 2024

Table 2: The hyper-parameters settings for BrHPO.

AntMaze AntBigMaze AntPush AntFall Reacher3D Pusher
Q-value

network (both
high and low)

MLP with hidden size 256

policy network
(both high
and low)

Gaussian MLP with hidden size 256

discounted
factor γ 0.99

soft update
factor τ 0.005

Q-network
learning rate 0.001

policy network
learning rate 0.0001

automatic
entropy tuning

(high-level)
False True False

automatic
entropy tuning

(low-level)
False

batch size 128
update per

step 1

target update
interval 2

high-level
replay buffer 1e5

low-level
replay buffer 1e6

start steps 5e3
subtask
horizon 20 10

reward scale 1
high-level
responsive
factor λ1

2 0.5 2

low-level
responsive
factor λ2

10 5
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Table 3: The average subgoal reachability of BrHPO.

Environment AntMaze AntBigMaze AntPush AntFall Reacher3D Pusher
subgoal

reachability 0.22 0.29 0.33 0.32 0.13 0.18

Table 4: Computing infrastructure and training time on each task (in hours).

AntMaze AntBigMaze AntPush AntFall Reacher3D Pusher
CPU AMD EPYC™ 7763
GPU NVIDIA GeForce RTX 3090
HIRO 16.66 23.14 18.29 25.43 3.42 4.25
HIGL 31.59 48.45 30.95 49.60 5.96 7.05
CHER 15.38 20.53 16.71 21.37 2.96 3.16

RIS 40.83 53.49 38.46 57.05 8.63 9.88
SAC 10.57 11.36 11.75 15.64 2.35 2.68

BrHPO 12.75 18.74 13.43 19.17 2.73 3.53
comparison

(Ours -
SAC)

2.18 7.38 1.68 3.53 0.38 0.85
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Abstract

In this work, we generalize the problem of learning through interaction in a POMDP
by accounting for eventual additional information available at training time. First, we
introduce the informed POMDP, a new learning paradigm offering a clear distinction
between the information at training and the observation at execution. Next, we
propose an objective that leverages this information for learning a sufficient statistic
of the history for the optimal control. We then adapt this informed objective to
learn a world model able to sample latent trajectories. Finally, we empirically
show a learning speed improvement in several environments using this informed
world model in the Dreamer algorithm. These results and the simplicity of the
proposed adaptation advocate for a systematic consideration of eventual additional
information when learning in a POMDP using model-based RL.

1 Introduction

Reinforcement learning (RL) aims to learn to act optimally through interaction with environments
whose dynamics are unknown. A major challenge in this field is partial observability, where only a
partial observation o of the Markovian state of the environment s is available for taking action a.
Such an environment can be formalized as a partially observable Markov decision process (POMDP).
In this context, an optimal policy η(a|h) generally depends on the history h of all observations
and previous actions, which grows linearly with time. Fortunately, it is theoretically possible to
find a statistic f(h) of the history h that is updated recurrently and that summarizes all relevant
information to act optimally. Such a statistic is said to be recurrent and sufficient for the optimal
control. Formally, a statistic f(h) is recurrent when it is updated according to f(h′) = u(f(h), a, o′)
each time an action a is taken and a new observation o′ is received, with h′ = (h, a, o′). And a statistic
f(h) is sufficient for the optimal control when there exists an optimal policy η(a|h) = g(a|f(h)).

In view of the existence of recurrent and sufficient statistics, many approaches have relied on learning
a recurrent policy ηθ,ϕ(a|h) = gϕ(a|fθ(h)) using a recurrent neural network (RNN) fθ for the statistic.
These policies are simply trained by stochastic gradient ascent of a RL objective using backpropagation
through time (Bakker, 2001; Wierstra et al., 2010; Hausknecht & Stone, 2015; Heess et al., 2015;
Zhang et al., 2016; Zhu et al., 2017). In this case, the RNN learns a sufficient statistic fθ(h) as it
learns an optimal policy (Lambrechts et al., 2022; Hennig et al., 2023). Although these approaches
theoretically allow implicit learning of a sufficient statistic, sufficient statistics can also be learned
explicitly. Notably, many works (Igl et al., 2018; Buesing et al., 2018; Guo et al., 2018; Gregor
et al., 2019; Han et al., 2019; Guo et al., 2020; Lee et al., 2020; Hafner et al., 2019; 2020) focused on
learning a recurrent statistic that encodes the reward and next observation distribution given the
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action: p(r, o′|h, a) = p(r, o′|f(h), a), a property known as predictive sufficiency (Bernardo & Smith,
2009). A recurrent and predictive statistic is indeed proven to be sufficient for the optimal control
(Subramanian et al., 2022). The sufficiency objective is usually pursued jointly with the RL objective.

While these methods can learn sufficient statistics and optimal policies in the context of POMDPs,
they learn solely from the observations. However, assuming the same partial observability at
training time and execution time is too pessimistic for many environments, notably for those that
are simulated. We claim that additional information about the state s, be it partial or complete,
can be leveraged during training for learning sufficient statistics more efficiently. To this end, we
generalize the problem of learning from interaction in a POMDP by proposing the informed POMDP.
This formalization introduces the training information i about the state s, which is only available
at training time. Importantly, this training information is designed such that the observation is
conditionally independent of the state given the information. Note that it is always possible to design
such an information i, possibly by concatenating the observation o with the eventual additional
observations o+, such that i = (o, o+). This formalization offers a new learning paradigm where the
training information is used along the reward and observation to supervise the learning of the policy.

In this context, we prove that recurrent statistics are sufficient for the optimal control when they are
predictive sufficient for the reward and next information given the action: p(r, i′|h, a) = p(r, i′|f(h), a).
We then derive a learning objective for finding a predictive sufficient statistic, which amounts to
approximating the conditional distribution p(r, i′|h, a) through likelihood maximization using a model
qθ(r, i′|fθ(h), a), where fθ is the recurrent statistic. Compared to the classic objective for learning
sufficient statistics (Igl et al., 2018; Buesing et al., 2018; Han et al., 2019; Hafner et al., 2019), this
objective approximates p(r, i′|h, a) instead of p(r, o′|h, a). Next, we show that this learned model
qθ(r, i′|fθ(h), a) can be adapted to provide a world model from which latent trajectories can be
sampled without explicitly reconstructing the observation. This approach boils down to adapting
latent world models such as those of PlaNet or Dreamer (Hafner et al., 2019; 2020; 2021; 2023) by
relying on a model of the information instead of a model of the observation. Our claims are supported
by experiments in several environments that we formalize as informed POMDPs (Mountain Hike,
Velocity Control, Pop Gym, Flickering Atari and Flickering Control). The informed adaptation of
Dreamer exhibits an improvement in terms of convergence speed and policy performance in many
environments, while sometimes hurting performance in others.

This work is structured as follows. In Section 2, we present some related works in asymmetric learning
and multi-agent RL. In Section 3, the informed POMDP is presented with the underlying execution
POMDP. In Section 4, we provide a learning objective for sufficient statistics in this context. In
Section 5, we adapt the Dreamer algorithm to informed POMDPs using this informed objective. In
Section 6, we compare the Uninformed Dreamer and the Informed Dreamer in several environments.

2 Related works

In RL for POMDPs, asymmetric learning consists of exploiting state information during training.
These approaches usually learn policies for the POMDP by imitating a policy conditioned on the
state (Choudhury et al., 2018). However, these heuristic approaches lack a theoretical framework, and
the resulting policies are known to be suboptimal for the POMDP (Warrington et al., 2021; Baisero
et al., 2022). Intuitively, optimal policies in POMDP might indeed need to consider actions that
reduce state uncertainty. Warrington et al. (2021) addressed this issue by constraining the expert
policy so that its imitation results in an optimal policy in the POMDP. Alternatively, asymmetric
actor-critic approaches use a critic conditioned on the state (Pinto et al., 2018). These approaches
were proven to provide biased gradients by Baisero & Amato (2022), who also proposed an unbiased
actor-critic approach by introducing the history-state value function V (h, s). Baisero et al. (2022)
adapted this method to value-based RL, where the history-dependent value function V (h) uses the
history-state value function V (h, s) in its temporal difference target. Alternatively, Nguyen et al.
(2021) proposed to enforce that the statistic f(h) encodes the belief p(s|h), a sufficient statistic for
the optimal control (Åström, 1965). It makes the strong assumption that beliefs b(s) = p(s|h) are
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available at training time. Finally, in a concurrent work, Avalos et al. (2024) learns a statistic f(h)
that encodes the belief distribution p(s|h) by leveraging the states during training.

In multi-agent RL, exploiting additional information available at training time was extensively studied
under the centralized training and decentralized execution (CTDE) framework (Oliehoek et al., 2008).
In CTDE, it is assumed that the histories of all agents, or even the environment state, are available
to all agents at training time. To exploit this additional information, several asymmetric actor-critic
approaches have been developed by leveraging an asymmetric critic conditioned on all histories,
including COMA (Foerster et al., 2018), MADDPG (Lowe et al., 2017), M3DDPG (Li et al., 2019)
and R-MADDPG (Wang et al., 2020). While efficient in practice, Lyu et al. (2022) showed that
these asymmetric actor-critic approaches provide biased gradient estimates, which generalizes results
developed for asymmetric learning in POMDP (Baisero & Amato, 2022) to the multi-agent setting.
In the cooperative CTDE setting, another line of work focuses on value decomposition to learn a
utility function for each agent, including QMIX (Rashid et al., 2018), QVMix (Leroy et al., 2021)
and QPLEX (Wang et al., 2021). These approaches use the additional information to modulate the
contribution of each utility function in the global value function, while ensuring that maximizing the
local utility functions also maximize the global value function, a property known as individual global
max (IGM). Other methods relax this IGM requirement but still condition the value function on all
histories, including QTRAN (Son et al., 2019) and WQMix (Rashid et al., 2020). Recently, Hong
et al. (2022) established that the IGM decomposition is not attainable in the general case.

In contrast to the existing literature on asymmetric learning in POMDP, we introduce an objective
that provides a sufficient statistic for the optimal control, and that leverages the additional information
only through the objective. Moreover, our new learning paradigm is not restricted to state supervision,
but supports any level of additional information. Finally, to the best of our knowledge, our method is
the first to exploit additional information for learning an environment model of the POMDP. While
our approach is probably applicable to the CTDE setting for learning sufficient statistics from the
local histories of each agent, we leave it as future work.

3 Informed POMDP

In this section, we introduce the informed POMDP and the associated training information, along
with the underlying execution POMDP and the RL objective in this context.

3.1 Informed POMDP and execution POMDP

o o oa a

i i ir r

s s s
P

Ĩ

Õ

R

T
. . .

training

execution

Figure 1: Bayesian network of an informed
POMDP execution.

Formally, an informed POMDP P̃ is defined as a tuple
P̃ = (S,A, I,O, T,R, Ĩ, Õ, P, γ) where S is the state
space, A is the action space, I is the information
space, and O is the observation space. The initial
state distribution P gives the probability P (s0) of
s0 ∈ S being the initial state of the decision process.
The dynamics are described by the transition distri-
bution T that gives the probability T (st+1|st, at) of
st+1 ∈ S being the state resulting from action at ∈ A
in state st ∈ S. The reward function R gives the
expected immediate reward rt = R(st, at) obtained at each transition. The information distribution Ĩ
gives the probability Ĩ(it|st) to get information it ∈ I in state st ∈ S, and the observation distribution
Õ gives the probability Õ(ot|it) to get observation ot ∈ O given information it. Finally, the discount
factor γ ∈ [0, 1] gives the relative importance of future rewards. The main assumption about an
informed POMDP is that the observation ot is conditionally independent of the state st given the
information it: p(ot|it, st) = Õ(ot|it). In other words, the random variables st, it and ot satisfy
the Bayesian network st −→ it −→ ot. In practice, it is always possible to define such a training
information it. For example, the information it = (ot, o+

t ) satisfies the aforementioned conditional
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independence for any o+
t . Taking a sequence of t actions in the informed POMDP conditions its

execution and provides samples (i0, o0, a0, r0, . . . , it, ot) at training time, as illustrated in Figure 1.

For each informed POMDP, there is an underlying execution POMDP that is defined as P =
(S,A,O, T,R,O, P, γ), where O(ot|st) =

∫
I Õ(ot|i)Ĩ(i|st) di. Taking a sequence of t actions in the

execution POMDP conditions its execution and provides the history ht = (o0, a0, . . . , ot) ∈ H, where
H is the set of histories of arbitrary length. Note that the information samples i0, . . . , it and reward
samples r0, . . . , rt−1 are not included, since they are not available at execution time.

3.2 RL objective

A policy η ∈ H is a mapping from histories to probability measures over the action space, where
H = H → ∆(A) is the set of such mappings. A policy is said to be optimal for an informed POMDP
when it is optimal in the underlying execution POMDP, i.e., when it maximizes the expected return

J(η) = E
P (s0)
O(ot|st)
η(at|ht)

T (st+1|st,at)

[ ∞∑

t=0
γtR(st, at)

]
. (1)

The RL objective for an informed POMDP is thus to find an optimal policy η∗ ∈ arg maxη∈H J(η)
for the execution POMDP from interaction with the informed POMDP.

4 Optimal control with recurrent sufficient statistics

In this section, we introduce the notion of sufficient statistic for the optimal control and derive an
objective for learning such a statistic in an informed POMDP. For the sake of conciseness, we simply
use x to denote a random variable at the current time step and x′ to denote it at the next time step.
Moreover, we use the composition notation g ◦ f to denote the history-dependent policy g(·|f(·)).

4.1 Recurrent sufficient statistics

Let us first define the concept of sufficient statistic, and derive a necessary condition for optimality.
Definition 1 (Sufficient statistic). In an informed POMDP P̃ and in its underlying execution
POMDP P, a statistic of the history f : H → Z is sufficient for the optimal control if, and only if,

max
g : Z→∆(A)

J(g ◦ f) = max
η : H→∆(A)

J(η). (2)

Corollary 1 (Sufficiency of optimal policies). In an informed POMDP P̃ and in its underlying
execution POMDP P, if a policy η = g ◦ f is optimal, then the statistic f : H → Z is sufficient for
the optimal control.

In this work, we focus on learning recurrent policies, i.e., policies η = g ◦ f for which the statistic f
is recurrent. Formally, we have,

η(a|h) = g(a|f(h)), ∀(h, a), (3)
f(h′) = u(f(h), a, o′), ∀h′ = (h, a, o′). (4)

This enables the history to be processed iteratively each time that an action is taken and an
observation is received. According to Corollary 1, when learning a recurrent policy η = g ◦ f , the
objective can be broken down into two problems: finding a sufficient statistic f and an optimal
distribution g,

max
f : H→Z

g : Z→∆(A)

J(g ◦ f). (5)
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4.2 Learning recurrent sufficient statistics

Below, we provide a sufficient condition for a statistic to be sufficient for the optimal control.
Theorem 1 (Sufficiency of recurrent predictive sufficient statistics). In an informed POMDP P̃,
a statistic f : H → Z is sufficient for the optimal control if it is (i) recurrent and (ii) predictive
sufficient for the reward and next information given the action,

(i) f(h′) = u(f(h), a, o′), ∀h′ = (h, a, o′), (6)
(ii) p(r, i′|h, a) = p(r, i′|f(h), a), ∀(h, a, r, i′). (7)

The proof for this theorem is in Appendix A, generalizing earlier work by Subramanian et al. (2022).

Now, let us consider a distribution over the histories and actions whose density function is denoted as
p(h, a). For example, we consider the stationary distribution induced by the current policy η in the
informed POMDP P̃. Let us also assume that the density function p(h, a) is non-zero everywhere.
As shown in Appendix B, under mild assumptions, any statistic f satisfying the objective

max
f : H→Z

q : Z×A→∆(R×I)

E
p(h,a,r,i′)

log q(r, i′|f(h), a) (8)

also satisfies (ii). This variational objective jointly optimizes the statistic function f : H → Z with a
conditional probability density function q : Z × A → ∆(R × I). According to Theorem 1, a statistic
that is recurrent and that satisfies objective (8) is sufficient for the optimal control.

In practice, both the recurrent statistic and the density function are implemented with neural networks
fθ and qθ respectively, both parametrized by θ ∈ Rd. In this case, the objective can be maximized
by stochastic gradient ascent. Regarding the statistic function fθ, it is implicitly implemented by
the update function zt = uθ(zt−1;xt) of an RNN. The inputs are xt = (at−1, ot), with a−1 the null
action that is typically set to zero. The hidden state of the RNN zt = fθ(ht) is thus a statistic of
the history that is recurrently updated using uθ. Regarding qθ, it is implemented by a parametrized
probability density function estimator. In such a context, we obtain the objective

max
θ

E
p(h,a,r,i′)

log qθ(r, i′|fθ(h), a)
︸ ︷︷ ︸

L(fθ)

. (9)

We might wonder whether this informed objective is better than the classic objective, where i = o. In
this work, we hypothesize that approximating the information distribution instead of the observation
distribution is a better objective in practice. This is motivated by the data processing inequality
applied to the Bayesian network s′ −→ i′ −→ o′, which concludes that the information i′ is more
informative than the observation o′ about the Markovian state s′ of the environment,

I(s′, i′|h, a) ≥ I(s′, o′|h, a), (10)

where I denotes the conditional mutual information. We thus expect the statistic fθ(h) to converge
faster towards a sufficient statistic, and the policy to converge faster towards an optimal policy. It
is however important to note that the information i might contain irrelevant state variables. In
practice, the conditional distribution p(i′|h, a) may thus be much more difficult to approximate than
p(o′|h, a), while not being much more useful to the control task. While we consider this study out of
the scope of this work, ensuring that the sufficient representations of the histories are also necessary
for the control task is a promising avenue for future work.

4.3 Optimal control with recurrent sufficient statistics

As seen from Corollary 1, sufficient statistics are needed for the optimal control of POMDPs. Moreover,
as we focus on recurrent policies implemented with RNNs, we can exploit objective (9) to learn a
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sufficient statistic fθ. In practice, we jointly maximize the RL objective J(ηθ,ϕ) = J(gϕ ◦ fθ) and the
statistic objective L(fθ). This enables one to use the information i to guide the statistic learning
through L(fθ). This joint maximization results in the objective

max
θ,ϕ

J(gϕ ◦ fθ) + L(fθ). (11)

Note that a policy maximizing (11) also maximizes the return J(gϕ ◦ fθ) if fθ and qθ are expressive
enough, such that this objective provides optimal policies in the sense of objective (5).

5 Model-based RL through informed world models

Model-based RL focuses on learning a model of the dynamics p(r, o′|h, a) of the environment, known
as a world model, that is exploited to derive a near-optimal policy. Since the approximate model
usually allows one to generate trajectories, many works derive a near-optimal policy by online
planning (e.g., model-predictive control) or by optimizing a parametrized policy based on these
trajectories (Sutton, 1991; Ha & Schmidhuber, 2018; Chua et al., 2018; Zhang et al., 2019; Hafner
et al., 2019; 2020). In this section, we first modify the model qθ(r, i′|fθ(h), a) in order to get a world
model from which trajectories can be sampled. We then adapt the DreamerV3 (Hafner et al., 2023)
algorithm using this world model, resulting in the Informed Dreamer algorithm.

5.1 Informed world model

We implement the informed world model with a variational RNN (VRNN) as introduced by Chung
et al. (2015), also known as a recurrent state-space model (RSSM) in the RL context (Hafner et al.,
2019). It is worth noticing that such a model performs its recurrent update using a latent stochastic
representation of the observation. When generating trajectories, it also samples latent representations
of the observations without explicitly reconstructing them, which we refer to as latent trajectories.
This key design choice enables the sampling of trajectories without explicitly learning the observation
distribution, but the reward and information distribution only. Formally, we have,

ê ∼ qpθ (·|z, a), (prior, 12)
r̂ ∼ qrθ(·|z, ê), (reward decoder, 13)
î′ ∼ qiθ(·|z, ê), (information decoder, 14)

where ê is the latent variable of the VRNN when generating trajectories. The prior qpθ and the
decoders qiθ and qrθ are jointly trained with the encoder,

e ∼ qeθ(·|z, a, o′), (encoder, 15)

to maximize the likelihood of reward and next information samples. The latent representation
e ∼ qeθ(·|z, a, o′) of the next observation o′ can be used to update the statistic to z′,

z′ = uθ(z, a, e). (recurrence, 16)

Note that the statistic z is no longer deterministically updated to z′ given a and o′, instead we have
z ∼ fθ(·|h), which is induced by uθ and qeθ. In practice, we maximize the evidence lower bound
(ELBO), a variational lower bound on the likelihood of reward and next information samples given
the statistic (Chung et al., 2015),

E
p(h,a,r,i′)
fθ(z|h)

log qθ(r, i′|z, a) ≥ E
p(h,a,r,i′,o′)
fθ(z|h)

[
E

qe
θ

(e|z,a,o′)

[
log qiθ(i′|z, e) + log qrθ(r|z, e)

]

− KL (qeθ(·|z, a, o′) ∥ qpθ (·|z, a))
]
. (17)
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Figure 2: VRNN loss for a given trajectory at training time. Dependence of qrθ and qiθ on z is omitted.

As illustrated in Figure 2 for a trajectory sampled in the informed POMDP, the ELBO objective
maximizes the conditional log-likelihood qrθ(r|z, e) and qiθ(i|z, e) of r and i′ for a sample of the encoder
e ∼ qeθ(·|z, a, o′), and minimizes the KL divergence from qeθ(·|z, a, o′) to the prior distribution qpθ (·|z, a).
Note that when i = o, it corresponds to Dreamer’s world model and learning objective.

As can be noticed from Equation 17 and Figure 2, the encoder is conditioned on the observation
and not on the information. While this is required for the encoder to be used at execution time, it
certainly loosen the lower bound and limits the quality of the conditional information distribution
that can be learned. Future work may improve the quality of the information reconstruction by
considering an additional information encoder, also conditioned on the statistic of the history, whose
samples are not used in the recurrence.

5.2 Informed Dreamer

As explained above, while our informed world model does not learn the observation distribution,
it is still able to sample latent trajectories. Indeed, the VRNN only uses the latent representation
e ∼ qeθ(·|z, a, o′) of the observation o′, trained to reconstruct the information i′, in order to update
z to z′. Consequently, we can use the prior distribution ê ∼ qpθ(·|z, a), trained according to (17) to
minimize the KL divergence from e ∼ qpθ (·|z, a, o′) in expectation, to sample latent trajectories.

The Informed Dreamer algorithm leverages such trajectories to learn a latent critic vψ(z) and a latent
policy a ∼ gϕ(·|z). Figure 3a illustrates the generation of a latent trajectory, along with estimated
rewards r̂ ∼ qrθ(·|z, e) and values v̂ = vψ(z). The actions are sampled according to the latent policy,
and any RL algorithm can be used to maximize the estimated return. Moreover, note that the
estimated return is given by a function that is differentiable with respect to ϕ, and it can be directly
maximized by stochastic gradient ascent. In the experiments, we use an actor-critic approach for
discrete actions and direct maximization for continuous actions, following DreamerV3 (Hafner et al.,
2023). Finally, as shown in Figure 3b, when deployed in the execution POMDP, the encoder qeθ is
used to compute the latent representations of the observations and to update the statistic. The
actions are then selected according to a ∼ gϕ(·|z).

/

/

z z z
uθ

ê ê ê

gϕ
v̂ v̂ v̂/ a a/ r̂ r̂

qrθ vψ

qp
θ

(a) Imagination of a trajectory using policy gϕ with estimated
rewards and values. Dependence of qrθ and vψ on z is omitted.

/

/

z z z
uθ

e e e
qeθ

o o oa a
gϕ

(b) Execution of the policy on a trajectory of the POMDP
using the encoder qeθ to condition the latent policy gϕ.

Figure 3: Bayesian graph of a VRNN evaluation during imagination and execution.

A pseudocode for the adaptation of the DreamerV3 algorithm using this informed world model is
given in Appendix C. We also detail some divergences of our formalization with respect to the
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original DreamerV3 algorithm. As in DreamerV3, we use symlog predictions, a discrete VAE, KL
balancing, free bits, reward normalisation, a distributional critic, and entropy regularization.

6 Experiments

In this section, we compare Dreamer to the Informed Dreamer on several informed POMDPs,
all considered with a discount factor of γ = 0.997. For reproducibility purposes, we
use the implementation and hyperparameters of DreamerV3 released by the authors at
github.com/danijar/dreamerv3, and release our adaptation to informed POMDPs using the same
hyperparameters at github.com/glambrechts/informed-dreamer.

6.1 Varying Mountain Hike

In the Varying Mountain Hike environments, the agent should walk throughout a mountainous
terrain to reach the mountain top as fast as possible while avoiding the valleys. There exists four
versions of this environment, depending on the agent orientation (north or random) and on the
observation that is available (position or altitude). More formally, the agent has a position x and a
fixed orientation c in each episode. The orientation c is either always north or a random cardinal
orientation, depending on the environment version. It can take four actions to move relative to its
orientation (right, forward, left and backward). The orientation is not observed by the agent, but it
receives a Gaussian observation of its position, or its altitude, depending on the environment version
(σo = 0.1 in both cases). The reward is given by its altitude relative to the mountain top, such
that the goal of the agent is to obtain the highest cumulative altitude. Around the mountain top,
states are terminal and the trajectories are truncated at t = 160 in practice. We refer the reader to
Lambrechts et al. (2022) for a formal description of these environments, strongly inspired by the
Mountain Hike of Igl et al. (2018).

For this environment, we first consider the position and orientation to be available as additional
information at training time. In other words, we consider the state-informed POMDP with i = s. As
can be seen in Figure 4a, the speed of convergence of the policies is improved in all four environments
when using the Informed Dreamer. Moreover, as shown in Table 1 in Appendix D, the final
performance of the Informed Dreamer is better in 3 out of 4 environments.
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(a) Uninformed Dreamer and Informed Dreamer
with i = s in the four environments.
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(b) Informed Dreamer with i = (x̃, c̃) with position
observation and random orientation.

Figure 4: Varying Mountain Hike environments: minimum, maximum and average returns over five trainings.

We also experiment with other types of information in the Varying Mountain Hike with position
observation and random orientation. More precisely, we consider an information i = (x̃, c̃) about the
state s = (x, c), where x̃ is an observation of the position x with Gaussian noise of standard deviation
σi ∈ [0, σo], and c̃ is a noisy observation of the orientation c replaced by a random orientation with
probability ϵi ∈ [0, 1]. Note that when σi = 0, the position x is encoded in the information, while
when σi = σo, the observation o is encoded in the information. As shown in Figure 4b, without
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confidence intervals for the sake readability, the better the information, the faster the policy converges.
It supports the idea that the more information about the state is exploited, the faster an optimal
policy for the POMDP is learned. Moreover, we observe that the Informed Dreamer with ϵi = 1 and
σi = 0.1 performs even worse than the Uninformed Dreamer. It suggests that considering additional
information that is not informative about the state (i.e., I(s, i|o) = 0), such as c̃ with ϵi = 1, can
degrade learning. Similar results are obtained for the other three environments in Subsection E.1.

6.2 Velocity Control

In the Velocity Control environments, we consider the standard DeepMind Control tasks (Tassa
et al., 2018), where only the joints velocities are available as observations and not their absolute
positions, which is a standard benchmark in the partially observable RL literature (Han et al., 2019;
Lee et al., 2020). These environments consists of controlling different multi-joints robots to achieve
several tasks. We consider the absolute positions to be available at training time along with the
velocities, which results in a Markovian information i = s.
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Figure 5: Uninformed Dreamer and Informed Dreamer with i = s in the Velocity Control environments:
minimum, maximum and average returns over five trainings.

Figure 5 shows that the convergence speed of the policies is improved in this benchmark, for nearly
all of the considered games. Moreover, the final returns are given in Table 2 in Appendix D, and
show that policies obtained after one million time steps are better in 13 out of 18 environments when
considering additional information.

6.3 Pop Gym

The Pop Gym environments have been specifically designed to benchmark the ability of handling
partial observability (Morad et al., 2023). The latter notably includes memory games, board games,
or control problems involving partial observability and noise. For these environments, we consider
the state to be available as additional information.

Figure 6 shows that learning in those POMDPs sometimes benefits from the exploitation of additional
information as proposed in the Informed Dreamer. The learning of the Informed Dreamer seems
to suffer from the approximation of the information distribution in 2 out of those 10 environments
(Concentration and Higher Lower). The final returns are given in Table 3 in Appendix D, showing a
better final performance in 7 out of 10 environments, even though returns have a high variability.
In particular, we observe that the Informed Dreamer converges to a significantly higher return
for the Repeat First and Repeat Previous environments, that both require discovering long time
dependencies. The exploitation of additional information seems crucial in these environments, and
we study this in depth on harder instances of the Repeat Previous environment in Subsection E.2.
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Figure 6: Uninformed Dreamer and Informed Dreamer with i = s in the Pop Gym environments: minimum,
maximum and average returns over five trainings.

This analysis shows that the Informed Dreamer can learn near-optimal policies in environments for
which the Uninformed Dreamer does not learn at all.

6.4 Flickering Atari and Flickering Control

While arguably not constituting a relevant benchmark for measuring the ability of handling partial
observability (Shao et al., 2022; Avalos et al., 2024), the Flickering Atari and Flickering Control
environments have become standard benchmarks in the partially observable RL literature (Hausknecht
& Stone, 2015; Zhu et al., 2017; Igl et al., 2018; Ma et al., 2020). For completeness, the results for
these environments are reported in Appendix E. We observe that the speed of convergence and final
performance of the agent is sometimes greatly improved when considering additional information
(e.g., Asteroids, Pong, Breakout). However, we also observe that the performance is lower in some
environments. As far as the Flickering Atari environments are concerned, the Informed Dreamer
only outperforms Dreamer in 6 out of 12 environments. In the Flickering Control environments, the
Informed Dreamer tends to systematically underperform the Uninformed Dreamer, attaining a better
performance in only 2 out of 18 environments. It suggests that additional state information is not
useful for these tasks. We furthermore hypothesize that the conditional information distribution is
difficult to approximate, which may cause learning to degrade. It shows that not all information is
worth exploiting, particularly when the level of uncertainty due to partial observability is low.

7 Conclusion

In this work, we introduced a new formalization for considering additional information available at
training time for POMDP, called the informed POMDP. In this context, we proposed a learning
objective and proved that it provides sufficient statistic for the optimal control. Next, we adapted
this objective to provide an environment model from which latent trajectories can be sampled. We
then adapted a successful model-based RL algorithm, known as Dreamer, with this informed world
model, resulting in the Informed Dreamer algorithm. By considering several environments from the
partially observable RL literature, we showed that this informed learning objective often improves
the convergence speed and quality of the policies. This work also presents several limitations. First,
a formal justification for the use of the information instead of the observation is still lacking. Future
work may consider the notion of approximate information states to bound the suboptimality of
the policy for a given error on the information distribution instead of the observation distribution.
Second, we observed that this informed objective hurts performance in some environments, motivating
further work in which particular attention is paid to the design of the information. It would be
worth drawing connection to the exogenous RL literature that complements this work by focusing on
discarding irrelevant information. Third, the proposed ELBO learning objective is probably a loose
lower bound on the information likelihood. Future work may improve the quality of the information
distribution by considering informed world models with a dedicated information encoder.
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A Sufficiency of recurrent predictive sufficient statistics

In this section, we prove Theorem 1, that is recalled below.
Theorem 1 (Sufficiency of recurrent predictive sufficient statistics). In an informed POMDP P̃,
a statistic f : H → Z is sufficient for the optimal control if it is (i) recurrent and (ii) predictive
sufficient for the reward and next information given the action,

(i) f(h′) = u(f(h), a, o′), ∀h′ = (h, a, o′), (6)
(ii) p(r, i′|h, a) = p(r, i′|f(h), a), ∀(h, a, r, i′). (7)

Proof. From Proposition 4 and Theorem 5 by Subramanian et al. (2022), we know that a statistic is
sufficient for the optimal control of an execution POMDP if it is (i) recurrent and (ii’) predictive
sufficient for the reward and next observation given the action: p(r, o′|h, a) = p(r, o′|f(h), a). Let us
consider a statistic f : H → A satisfying (i) and (ii). Let us show that it satisfies (ii’). We have,

p(r, o′|f(h), a) =
∫

I
p(r, o′, i′|f(h), a) di′ (18)

=
∫

I
p(o′|r, i′, f(h), a)p(r, i′|f(h), a) di′, (19)

using the law of total probability and the chain rule. As can be seen from the informed POMDP
formalization of Section 3 and the resulting Bayesian network in Figure 1, the Markov blanket of o′

is {i′}. As a consequence, o′ is conditionally independent of any other variable given i′. In particular,
p(o′|i′, r, f(h), a) = p(o|i′), such that,

p(r, o′|f(h), a) =
∫

I
p(o′|i′)p(r, i′|f(h), a) di′. (20)

From hypothesis (ii), we can write,

p(r, o′|f(h), a) =
∫

I
p(o′|i′)p(r, i′|h, a) di′. (21)

Finally, exploiting the Markov blanket {i′} of o′, the chain rule and the law of total probability again,
we have,

p(r, o′|f(h), a) =
∫

I
p(o′|i′, r, h, a)p(r, i′|h, a) di′ (22)

=
∫

I
p(o′, r, i′|h, a) di′ (23)

= p(r, o′|h, a). (24)

This proves that (ii) implies (ii’). As a consequence, any statistic f satisfying (i) and (ii) is a sufficient
statistic of the history for the optimal control of the informed POMDP.

B Recurrent sufficient statistic objective

First, let us consider a fixed history h and action a. Let us recall that two density functions p(r, i′|h, a)
and p(r, i′|f(h), a) are equal almost everywhere if, and only if, their KL divergence is zero,

E
p(r,i′|h,a)

log p(r, i′|h, a)
p(r, i′|f(h), a) = 0. (25)

Now, let us consider a probability density function p(h, a) that is non zero everywhere. We have that
the KL divergence from p(r, i′|h, a) to p(r, i′|f(h), a) is equal to zero for almost every history h and
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action a if, and only if, it is zero on expectation over p(h, a) since the KL divergence is non-negative,

E
p(r,i′|h,a)

log p(r, i′|h, a)
p(r, i′|f(h), a)

a.e.= 0 ⇔ E
p(h,a,r,i′)

log p(r, i′|h, a)
p(r, i′|f(h), a) = 0. (26)

Rearranging, we have that p(r, i′|h, a) is equal to p(r, i′|f(h), a) for almost every h, a, r and i′ if, and
only if,

E
p(h,a,r,i′)

log p(r, i′|h, a) = E
p(h,a,r,i′)

log p(r, i′|f(h), a). (27)

Now, we recall the data processing inequality, enabling one to write, for any statistic f ′,

E
p(h,a,r,i′)

log p(r, i′|h, a) ≥ E
p(h,a,r,i′)

log p(r, i′|f ′(h), a). (28)

since h(r, i′|h, a) = h(r, i′|h, f(h), a) ≤ h(r, i′|f(h), a), ∀(h, a), where h(x) is the differential entropy
of random variable x. Assuming that there exists at least one f : H → Z for which the inequality is
tight, we obtain the following objective for a predictive sufficient statistic f ,

max
f : H→Z

E
p(h,a,r,i′)

log p(r, i′|f(h), a). (29)

Unfortunately, the probability density p(r, i′|f(h), a) is unknown. However, knowing that the
distribution that maximizes the log-likelihood of samples from p(r, i′|f(h), a) is p(r, i′|f(h), a) itself,
we can write,

E
p(h,a,r,i′)

log p(r, i′|f(h), a) = max
q : Z×A→∆(R×I)

E
p(h,a,r,i′)

log q(r, i′|f(h), a). (30)

By jointly maximizing the probability density function q : Z × A → ∆(R × I), we obtain,

max
f : H→Z

q : Z×A→∆(R×I)

E
p(h,a,r,i′)

log q(r, i′|f(h), a). (31)

This objective ensures that the statistic f(h) is predictive sufficient for the reward and next information
given the action. If f(h) is a recurrent statistic, then it is also sufficient for the optimal control,
according to Theorem 1.

C Informed Dreamer

The Informed Dreamer algorithm is presented in Algorithm 1. Differences with the Uninformed
Dreamer algorithm (Hafner et al., 2020) are highlighted in blue. In addition, it can be noted that in the
original Dreamer algorithm, the statistic zt encodes ht = (o0, a0, . . . , ot) and at, instead of ht only. As
a consequence, the prior distribution et ∼ qpθ (·|zt) can be conditioned on the statistic zt only, instead of
the statistic and last action. Similarly, the encoder distribution et ∼ qpθ (·|zt, ot+1) can be conditioned
on the statistic zt only, instead of the statistic and last action. On the other hand, the latent policy
at+1 ∼ g(·|zt, et) should be conditioned on the statistic zt and the new latent et to account for the
last observation, and the same is true for the value function vψ(zt, et). In the experiments, we follow
the original implementation for both the Uninformed Dreamer and the Informed Dreamer, according
to the code that we release at github.com/glambrechts/informed-dreamer.

Following Dreamer, the algorithm introduces the continuation flag ct, which indicates whether state
st is terminal. A terminal state st is a state from which the agent can never escape, and in which
any further action provides a zero reward. It follows that the value function of a terminal state is
zero, and trajectories can be truncated at terminal states since we do not need to learn their value or
the optimal policy in those states. Alternatively, ct can be interpreted as an indicator that can be
extracted from the observation ot, but we made it explicit in the algorithm.
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Algorithm 1 Informed Dreamer - direct reward maximization
Hyperparameters: Environment steps S, steps before training F , train ratio R, backpropagation horizon
W , imagination horizon K, batch size N , replay buffer capacity B.
Initialize neural network parameters θ, ϕ, ψ randomly, initialize empty replay buffer B.
Let g = 0, t = 0, a−1 = 0, r−1 = 0, z−1 = 0.
Reset the environment and observe o0 and c0 (true at reset).
for s = 0 . . . S − 1 do

// Environment interaction
Encode observation ot to et−1 ∼ qeθ(·|zt−1, at−1, ot).
Update zt = uθ(zt−1, at−1, et−1).
Given the current statistic zt, take action at ∼ gϕ(·|zt).
Observe reward rt, information it+1, observation ot+1 and continuation flag ct+1.
if ct+1 is false (terminal state) then

Reset t = 0.
Reset the environment and observe o0 and c0 (true at reset).

end if
Update t = t+ 1.
Add trajectory of last W time steps (aw−1, rw−1, iw, ow, cw)tw=t−W+1 to replay buffer B.
// Learning
while |B| ≥ F ∧ g < Rs do

// Environment learning
Draw N trajectories of length W

{
(anw−1, r

n
w−1, i

n
w, o

n
w, c

n
w)W−1
w=0

}N−1
n=0 uniformly from replay buffer B.

Compute statistics and encoded latents
{

(znw, enw)W−2
w=−1

}N−1
n=0 = Encode

(
uθ, q

e
θ ,

{
(anw−1, o

n
w)W−1
w=0

}N−1
n=0

)
.

Update θ using ∇θ

∑N

n=0
∑W−2

w=−1 L
n
w, where an−1 = 0 and,

Lnw = log qiθ(inw+1|znw, enw) + log qcθ(cnw+1|znw, enw) + log qrθ(rnw|znw, enw)
− KL (qeθ(·|znw, anw, onw+1) ∥ qpθ (·|znw, anw)) .

// Behaviour learning
Sample latent trajectories

{{
(zn,wk , ên,wk )K−1

k=0
}W−2
w=−1

}N−1

n=0
= Imagine

(
uθ, q

p
θ , gϕ,

{
(znw, enw, anw)W−2

w=−1
}N−1
n=0

)
.

Predict rewards rn,wk ∼ qrθ(·|zn,wk , ên,wk ), continuations flags cn,wk+1 ∼ qcθ(·|zn,wk , ên,wk ), and values vn,wk =
vψ(zn,wk ).
Compute value targets using λ-returns, with Gn,wK−1 = vn,wK−1 and

Gn,wk = rn,wk + γcn,wk
(
(1 − λ)vn,wk+1 + λGn,wk+1

)
.

Update ϕ using ∇ϕ

∑N−1
n=0

∑W−2
w=−1

∑K−1
k=0 Gn,wk .

Update ψ using ∇ψ

∑N−1
n=0

∑W−2
w=−1

∑K−1
k=0 ∥vψ(zn,wk ) − sg(Gn,wk )∥2, where sg is the stop-gradient

operator.
Count gradient steps g = g + 1

end while
end for
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Algorithm 2 Encode

Inputs: Update function uθ, encoder qeθ , and histories
{

(anw−1, o
n
w)W−1
w=0

}N−1
n=0 .

Let zn−1 = 0.
for w = 0 . . .W − 1 do

Let enw−1 ∼ qeθ(·|znw−1, a
n
w−1, o

n
w).

Let znw = uθ(znw−1, a
n
w−1, e

n
w−1).

end for
Returns:

{
(znw, enw)W−2

w=−1
}N−1
n=0 .

Algorithm 3 Imagine
Inputs: Update function uθ, prior qpθ , policy gϕ, statistics, encoded latents and actions{

(znw, enw, anw)W−2
w=−1

}N−1
n=0 .

Let zn,w−1 = znw, ên,w−1 = enw, an,w−1 = anw.
for k = 0 . . .K − 1 do

Let zn,wk = uθ(zn,wk−1, a
n,w
k−1, ê

n,w
k−1).

Let ên,wk ∼ qpθ (·|zn,wk , an,wk ).
Let an,wk ∼ gϕ(·|zn,wk ).

end for
Returns:

{{
(zn,wk , ên,wk )K−1

k=0
}W−2
w=−1

}N−1

n=0
.

D Final returns

We provide the final returns obtained by Dreamer and the Informed Dreamer for the Varying
Mountain Hike environments in Table 1, for the Velocity Control environments in Table 2, and for
the Pop Gym environments in Table 3.

Table 1: Average final return and standard deviation over five trainings in the Mountain Hike environments.

Altitude Random Uninformed Informed
False False −13.70 ± 03.32 −13.35 ± 02.93
False True −18.32 ± 06.04 −17.72 ± 04.19
True False −14.78 ± 02.44 −14.98 ± 04.73
True True −67.05 ± 21.76 −45.94 ± 32.77

Table 2: Average final return and standard deviation over five trainings in the Velocity Control environments.

Task Uninformed Informed
Acrobot Swingup 113.73 ± 108.03 112.49 ± 54.67
Cartpole Balance 511.60 ± 01.95 513.22 ± 00.82

Cartpole Balance Sparse 491.07 ± 00.00 485.34 ± 49.39
Cartpole Swingup 347.58 ± 18.30 371.24 ± 05.62

Cartpole Swingup Sparse 36.98 ± 42.83 102.44 ± 139.79
Cheetah Run 315.40 ± 39.64 305.91 ± 103.62
Cup Catch 465.23 ± 28.77 468.32 ± 12.53
Finger Spin 186.66 ± 39.34 245.77 ± 61.99

Finger Turn Easy 359.32 ± 76.13 414.82 ± 46.09
Finger Turn Hard 347.91 ± 81.80 398.38 ± 63.40

Hopper Hop 91.05 ± 29.62 97.50 ± 29.83
Hopper Stand 350.77 ± 88.92 384.44 ± 74.34

Pendulum Swingup 301.01 ± 39.80 233.66 ± 199.66
Reacher Easy 463.30 ± 17.78 477.51 ± 14.02
Reacher Hard 391.94 ± 148.99 466.35 ± 25.94
Walker Run 238.07 ± 76.42 271.72 ± 63.37

Walker Stand 462.81 ± 18.20 460.51 ± 41.87
Walker Walk 429.65 ± 27.06 440.85 ± 49.87
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Table 3: Average final return and standard deviation over five trainings in the Pop Gym environments.

Task Uninformed Informed
Concentration 00.01 ± 00.16 −0.24 ± 00.09
Count Recall −0.66 ± 00.17 −0.58 ± 00.24
Higher Lower 00.39 ± 00.07 00.31 ± 00.12
Mine Sweeper −0.06 ± 00.32 −0.07 ± 00.38

Noisy Position Cart Pole 00.21 ± 00.19 00.23 ± 00.27
Noisy Position Pendulum 00.54 ± 00.06 00.55 ± 00.05

Position Cart Pole 00.75 ± 00.00 00.75 ± 00.00
Position Pendulum 00.64 ± 00.07 00.65 ± 00.04

Repeat First 00.24 ± 00.87 00.56 ± 01.00
Repeat Previous −0.01 ± 00.18 00.44 ± 00.13

E Additional experiments

In this section, we provide results for non-Markovian information in the Varying Mountain Hike
environments, for harder Pop Gym environments, along with the results of the flickering environments.

E.1 Non-Markovian information

We experiment with other levels of information in the Varying Mountain Hike environments. More
precisely, we consider an information i that contains an observation x̃ of the position x (or an
observation ỹ of the altitude y) with Gaussian noise of standard deviation σi ∈ [0, σo]. In addition,
in the case of environments with random orientation, we consider an information that also contains a
noisy observation of the orientation c replaced with a random orientation with probability ϵi ∈ [0, 1].
Note that when σi = 0, the exact position x (or altitude y) is encoded in the information, while when
σi = σo, the observation o is encoded in the information.
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Figure 7: Varying Mountain Hike environments: average return of the Informed Dreamer with various level
of information over five trainings.

As shown in Figure 7, without confidence intervals for the sake of readability, the better the
information, the faster the policy converges. These results hold in all environments except that
with altitude observation and fixed orientation, for which the results are more mixed. As said in
Subsection 6.1, it supports the hypothesis that the more informative about the state the information
is, the faster an optimal policy is learned. Moreover, it can be observed that when an additional
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information c̃ is not informative about the state, convergence is slower than for the Uninformed
Dreamer. This highlights again the importance of the quality of the additional information.

E.2 Harder Pop Gym environments

Despite the performance of the informed policy being equal to the performance of the uninformed
policy at optimum, there may exists environments for which the optimum is never reached in
practice without considering additional information at training time. We observe it to be the case
for environments with long time dependencies, such as the Repeat Previous environment of the Pop
Gym suite. In this subsection, we study in depth this failure case of the Uninformed Dreamer for this
particular environment. In the Repeat Previous environment, the agent is observing random noise,
and is rewarded for outputting the observation that it got k time steps ago. While in Subsection 6.3
we only considered the default Pop Gym environments, where k = 4 for the Repeat Previous
environment, we here consider the Medium (k = 32) and Hard (k = 64) versions of this environment.
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Figure 8: Uninformed Dreamer and Informed Dreamer with i = s in the Repeat Previous environments:
minimum, maximum and average returns over five trainings.

In Figure 8, we see that the Uninformed Dreamer is not able to improve the performance of its policy
at all in these harder environments, while the Informed Dreamer still seems to converge towards a
near-optimal policy. It once again validates empirically the assumption that exploiting additional
information about the state improves the speed of convergence towards an optimal policy. Even
more, it shows that exploiting additional information about the state can lead to convergence in
environments where traditional approaches fail, such as those with long time dependencies. The
additional supervision provided by this Markovian information (the last k observations) certainly
endows the statistic z ∼ f(·|h) with a useful encoding of the last k observations, which is then
decoded by the policy. Table 4 provides the final return obtained by the Uninformed Dreamer and
the Informed Dreamer for these environments.

Table 4: Average final return and standard deviation over five trainings in the Repeat Previous environments.

Task Uninformed Informed
Repeat Previous Easy −0.01 ± 00.18 00.44 ± 00.13

Repeat Previous Medium −0.41 ± 00.06 00.46 ± 00.16
Repeat Previous Hard −0.36 ± 00.07 00.33 ± 00.19

E.3 Flickering Atari

In the Flickering Atari environments, the agent is tasked with playing the Atari games (Bellemare
et al., 2013) on a flickering screen. The dynamics are left unchanged, but the agent may randomly
observe a blank screen instead of the game screen, with probability p = 0.5. While the classic Atari
games are known to have low stochasticity and few partial observability challenges (Hausknecht
& Stone, 2015), their flickering counterparts have constituted a classic benchmark in the partially
observable RL literature (Hausknecht & Stone, 2015; Zhu et al., 2017; Igl et al., 2018; Ma et al., 2020).
Moreover, regarding the recent advances in sample-efficiency of model-based RL approaches, we
consider the Atari 100k benchmark, where only 100k actions can be taken by the agent for generating
samples of interaction.
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For these environments, we consider the RAM state of the simulator, a 128-dimensional byte vector,
to be available as additional information for supervision. This information vector is indeed guaranteed
to satisfy the conditional independence of the informed POMDP: p(o|i, s) = p(o|i). Moreover, we
postprocess this additional information by only selecting the subset of variables that are relevant
to the game that is considered, according to the annotations provided by Anand et al. (2019).
Depending on the game, this information vector might contain the number of remaining opponents,
their positions, the player position, etc.

250

500

750

Asteroids

0

2000

Battle Zone

0

10

Bowling

−10

0

10

Boxing

0

5
Breakout

0

200

Frostbite

0.0 0.1
0

2500

Hero

0.0 0.1

250

500

750

Ms Pacman

0.0 0.1

−5

0

Pong

0.0 0.1

0

250

Private Eye

0.0 0.1
0

500

Qbert

0.0 0.1
0

100

Seaquest

Environment steps (M)

Uninformed InformedUninformed InformedUninformed InformedUninformed InformedUninformed InformedUninformed InformedUninformed InformedUninformed InformedUninformed InformedUninformed InformedUninformed InformedUninformed Informed

Figure 9: Uninformed Dreamer and Informed Dreamer with i = ϕ(RAM) in the Flickering Atari environments:
minimum, maximum and average returns over five trainings.

Figure 9 shows that the speed of convergence and the performance of the policies is greatly improved
by considering additional information for six environments, while degraded for four others and left
similar for the rest. The final returns are given in Table 5, offering similar conclusions.

Table 5: Average final return and standard deviation over five trainings in the Flickering Atari environments.

Task Uninformed Informed
Asteroids 362.17 ± 112.95 580.92 ± 95.61

Battle Zone 706.67 ± 776.00 849.61 ± 357.35
Bowling 07.89 ± 02.00 09.17 ± 01.24
Boxing 03.54 ± 12.33 −0.06 ± 05.66

Breakout 02.06 ± 01.32 02.59 ± 01.47
Frostbite 174.96 ± 84.31 115.43 ± 30.20

Hero 2864.66 ± 1054.84 2033.51 ± 226.50
Ms Pacman 534.67 ± 117.97 455.02 ± 155.17

Pong −3.49 ± 01.19 −0.90 ± 01.78
Private Eye 74.27 ± 42.00 29.66 ± 67.47

Qbert 401.27 ± 117.26 574.70 ± 26.92
Seaquest 91.44 ± 13.60 83.95 ± 21.11

E.4 Flickering Control

In the Flickering Control environments, the agent performs one of the standard DeepMind Control
tasks from images but through a flickering screen. As with the Flickering Atari environments, the
dynamics are left unchanged, except that the agent may randomly observe a blank screen instead
of the task screen, with probability p = 0.5. For these environments, we consider the state to be
available as additional information, as for the Velocity Control environments.

Regarding this benchmark, considering additional information seems to degrade learning, generally
resulting in worse policies. This suggests that not all information is good to learn, some might be
irrelevant to the control task and hinders the learning of optimal policies. The final returns are given
in Table 6, and offer similar conclusions.
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Figure 10: Uninformed Dreamer and Informed Dreamer with i = s in the Flickering Control environments:
minimum, maximum and average returns over five trainings.

Table 6: Average final return and standard deviation over five trainings in the Flickering Control environments.

Task Uninformed Informed
Acrobot Swingup 104.87 ± 54.88 141.49 ± 72.53
Cartpole Balance 508.01 ± 00.92 499.95 ± 24.87

Cartpole Balance Sparse 507.94 ± 03.04 495.14 ± 69.63
Cartpole Swingup 384.37 ± 14.66 377.60 ± 32.62

Cartpole Swingup Sparse 347.07 ± 27.63 284.53 ± 72.05
Cheetah Run 372.96 ± 30.98 296.70 ± 23.34
Cup Catch 478.61 ± 12.53 455.59 ± 13.58
Finger Spin 349.85 ± 123.88 303.03 ± 76.30

Finger Turn Easy 441.53 ± 47.13 441.16 ± 66.91
Finger Turn Hard 323.19 ± 200.67 392.48 ± 85.25

Hopper Hop 126.72 ± 37.89 81.92 ± 19.90
Hopper Stand 420.38 ± 57.48 331.48 ± 27.61

Pendulum Swingup 329.35 ± 82.31 286.53 ± 102.18
Reacher Easy 479.25 ± 18.15 457.72 ± 19.31
Reacher Hard 433.40 ± 214.42 412.97 ± 27.10
Walker Run 239.22 ± 92.40 180.63 ± 27.73

Walker Stand 485.78 ± 46.26 457.36 ± 37.65
Walker Walk 447.03 ± 26.83 409.72 ± 68.67
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Abstract

We present a bound for value-prediction error with respect to model misspecification
that is tight, including constant factors. This is a direct improvement of the “sim-
ulation lemma,” a foundational result in reinforcement learning. We demonstrate
that existing bounds are quite loose, becoming vacuous for large discount factors,
due to the suboptimal treatment of compounding probability errors. By carefully
considering this quantity on its own, instead of as a subcomponent of value error,
we derive a bound that is sub-linear with respect to transition function misspecifi-
cation. We then demonstrate broader applicability of this technique, improving a
similar bound in the related subfield of hierarchical abstraction.

1 Introduction

In reinforcement learning, an agent is frequently tasked with making decisions in an environment that
it cannot model perfectly. This may occur because the environment is learned about through sampled
data, or because the agent’s environment model is simplified through some abstraction. In such cases
it is natural to ask, how might the quality of this approximation impact an agent’s decision making?
This is the subject of the “simulation lemma,” a foundational result in reinforcement learning that
bounds the error in value estimation when the transition and reward function are known only with
some specified degree of precision.

The simulation lemma was introduced in the context of exploration and finds use in a variety of
domains that utilize imperfect models, such as hierarchical abstraction (Abel et al., 2016) and offline
policy evaluation (Yin et al., 2021). Frequently, results of this kind rely on developing a recursive
relationship between the value error at subsequent timesteps. We show that this approach implicitly
overestimates how probability errors compound over time. By more directly approximating this
quantity, we produce a bound on value-estimation error that is demonstrably tight. We then show
that existing bounds can be derived as a linearization of our result, and finally apply our result to
a hierarchical setting to demonstrate broader applicability.

2 Background and Related Work

We develop our results in the framework of Markov Decision Processes (MDPs): M = (S, A, R, T, γ),
where S is the state space, A is the action space, and γ ∈ [0, 1] is the discount factor. The next-
state transition probabilities are given by T (s′|s, a), and the reward function by R(s, a) ∈ [0, 1]. A
policy π(a|s) gives the probability of taking an action from a given state. The objective in the MDP
framework is generally either to construct a policy π that maximizes the expected γ-discounted sum
of reward, or to evaluate a given policy on this same measure.

When a model of the environment is given, these quantities can be computed exactly, for example
through policy iteration or dynamic programming (Howard, 1960). In reinforcement learning, how-
ever, the agent generally is not given this model, and instead must learn about the environment
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through interaction. A common approach to this is model-based reinforcement learning (Moerland
et al., 2023; Auer & Ortner, 2006), which aims to estimate the environment’s transitions and rewards
from gathered data. However, when using finite data, the learned model is generally imperfect. This
work concerns itself with developing optimal bounds on policy evaluation error in the setting of
misspecified models. Here we detail a variety of areas in which such a bound is useful, along with
related lines of study.

Exploration The original simulation lemma was introduced in the context of efficient exploration
(Kearns & Singh, 2002), to quantify policy evaluation error as a function of state-action visitation
counts. Understanding the effect of imperfect modelling is central to efficient exploration (Auer
& Ortner, 2006; Auer et al., 2008; Brafman & Tennenholtz, 2002). Methods that use these mea-
sures include count-based exploration (Strehl & Littman, 2008) and its pseudocount approximations
(Bellemare et al., 2016; Lobel et al., 2023).

Abstraction Model approximation frequently appears in the field of abstraction, where a full
model of an MDP is replaced by one that is simpler in some respect. As we show later, our
methodology can be used to improve the value error bounds when performing this replacement
with state-action abstracted options (Sutton et al., 1999). A simple form of state abstraction is
discretization, where sets of states are grouped by some measure of similarity. A common example
of this occurs in the partially observable MDP framework (Lee et al., 2007; Grover & Dimitrakakis,
2021), where the continuous belief-state space can be discretized into an approximate, finite MDP.

Offline Policy Evaluation The goal of offline policy evaluation (OPE) is to estimate the value
of a policy using a fixed dataset of transitions, often generated by a different policy. Model-based
OPE involves fitting an empirical model of transitions and rewards from this dataset, and using this
to estimate value (Gottesman et al., 2019). In this setting, the simulation lemma often is a key step
in constructing accuracy bounds of the estimated value (Yin & Wang, 2020; Yin et al., 2021).

We also note that a variety of results in the literature bound the value error using different measures
of similarity than the original simulation lemma. Perhaps most closely related to our contribution is
work that bounds multi-step transition error of imperfectly-modelled Lipschitz transition functions
(Asadi et al., 2018). This results in a similar sum of compounding errors to ours, albiet in a different
setting. Bisimulation metrics (Ferns et al., 2004) unify transition and reward error into a single
quantity that can be used to measure the similarity of MDPs with entirely different state spaces.

3 Main Result

We begin by stating the conditions of the original simulation lemma. We consider two MDPs:
M = (S, A, R, T, γ), and M̂ = (S, A, R̂, T̂ , γ), which share a state-action space, but have (bound-
edly) different transition and reward functions. We are interested in the effect of running the same
policy π on these two related MDPs. Let P π be a matrix that contains the policy-conditioned
state-state transition probabilities, and Rπ be a vector that contains the per-state expected reward:

P π
s,s′ = Ea∼π(s)[T (s′|s, a)] =

∑

a∈A
T (s′|s, a)π(a|s)

Rπ
s = Ea∼π(s)[R(s, a)] =

∑

a∈A
R(s, a)π(a|s).

(1)

We define P̂ π and R̂π analogously for MDP M̂. Throughout this work, a single index on a matrix (or
vector) extracts the specified row vector (or scalar). Furthermore, P a and Ra refer to the transition
probabilities, and expected reward, of executing action a from each state. Using this notation, we
can quantify the difference between two transition or reward functions with the following:
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∀s, π : ∥P π
s − P̂ π

s ∥1 ≤ ϵT (2)
∀π : ∥Rπ − R̂π∥∞ ≤ ϵR. (3)

We are interested in the value difference between running π on each MDP. The value of a state for
a given policy and MDP is defined as the expected discounted sum of rewards:

vπ(s) = Eai∼π(si)
[ ∞∑

t=0
γtR(st, at) | s0 = s, M

]
,

where st is a random variable representing the state at timestep t. Noting that
Pr(st = s′|s0 = s, π) = (P π)t

s,s′ , we can concisely represent value in vectorized notation as follows:

V π =
∞∑

t=0
γt(P π)tRπ , V π

s =
∞∑

t=0
γt⟨(P π)t

s, Rπ⟩,

where ⟨ · , · ⟩ denotes the inner product between two vectors. We define V̂ π analogously for M̂.

3.1 Original Simulation Lemma

We are interested in quantifying the maximum value difference between running the same policy on
two different MDPs. The original simulation lemma bounds this quantity as follows:

∀s, π : |V π
s − V̂ π

s | ≤ ϵR

1 − γ
+ γϵT

2(1 − γ)2 . (4)

Existing proofs of the simulation lemma frequently take advantage of a recursive representation of
value (the Bellman Equation) (Howard, 1960):

V π = Rπ + γP π
∞∑

t=0
γt(P π)tRπ = Rπ + γP πV π.

For a complete proof, please refer to Jiang (2018) or see Appendix A. The key mathematical idea is
to establish the following recursive relationship:

∀s, π : |V π
s − V̂ π

s | ≤ ϵR + γϵT

2(1 − γ) + γ∥V π − V̂ π∥∞, (5)

which can then be easily transformed into the simulation lemma’s bound. Analyzing the recursive
relationship above, the first term (ϵR) represents a one-step reward-prediction error. The second
term ( γϵT

2(1−γ) ) represents the maximum value error that results from misspecifying ϵT of the next-
state distribution’s probability mass. However, by defining the recursive relationship as such, this
bound implicitly assumes that the process can continually misspecify ϵT of its probability at each
timestep. This quickly amounts to misspecifying more than the entire probability mass, leading to
a vast overestimate of the value error, in particular when ϵT > 1 − γ. In contrast, we carefully track
the probability drift at each timestep to avoid this issue.

3.2 Bounding Probability Distance

We seek to bound the probability distance tightly at any timestep t. To do so effectively, it is useful
to frame distances between probability vectors in terms of their overlap, instead of their L1 distance.
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Figure 1: Visualization of relation between L1 distance and overlap of two probability distributions
(Equation 7). The blue and orange shaded regions together comprise the L1 distance. The brown
region represents overlap. Overlap plus either the blue or orange sections constitutes a probability
distribution, and therefore has total area 1. Thus the blue and orange regions both individually
have area ∥p − p̂∥1/2, and so ∥p̄∥1 = 1 − ∥p − p̂∥1/2.

We note that Jiang et al. (2016) uses similar machinery to bound compounding probability error
(Lemma 1), though applies this insight in a different context. For two probability vectors p, p̂, we
define their overlap as p̄, such that for each index i:

p̄i = min(pi, p̂i).

Usefully, because each element of p − p̄ (and likewise p̂ − p̄) is non-negative, the L1 norm of the
difference between these two vectors is equal to the difference between the L1 norms:

∥p − p̄∥1 =
∑

i

|pi − p̄i| =
∑

i

pi −
∑

i

p̄i = ∥p∥1 − ∥p̄∥1 (6)

We use this to derive an equivalence between overlap and L1 distance, related to the concept of total
variation distance (Levin & Peres, 2017). Below, we use the notation [p]+ to indicate a thresholded
version of p that retains only the non-negative parts, [p]+i = max(pi, 0):

∥p − p̂∥1 = ∥[p − p̄]+∥1 + ∥[p̂ − p̄]+∥1

= ∥p − p̄∥1 + ∥p̂ − p̄∥1

= ∥p∥1 − ∥p̄∥1 + ∥p̂∥1 − ∥p̄∥1

= 1 + 1 − 2∥p̄∥1

=⇒ ∥p̄∥1 = 1 − ∥p − p̂∥1
2 . (7)

See Figure 1 for a demonstration and explanation of this equivalence. This relationship allows for a
simple rewriting of the transition-error condition of the simulation lemma (Equation 2):

∀s, π : ∥P̄ π
s ∥1 ≥ 1 − ϵT

2 . (8)

Using this framing, we can now lower-bound the overlap of state-distributions at timestep t when
starting from s0, by demonstrating that at every timestep, at least 1 − ϵT /2 fraction of the prior
timestep’s distributional overlap is retained. For notational convenience, P t

s0,s = (P π)t
s0,s, and
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M̄ t
s0,s = min(P t

s0,s, P̂ t
s0,s). Thus,

∥M̄ t+1
s0 ∥1 =

∑

s′

min(P t+1
s0,s′ , P̂ t+1

s0,s′)

=
∑

s′

min(
∑

s

P t
s0,s · P π

s,s′ ,
∑

s

P̂ t
s0,s · P̂ π

s,s′)

≥
∑

s′

∑

s

min(P t
s0,s · P π

s,s′ , P̂ t
s0,s · P̂ π

s,s′)

≥
∑

s′

∑

s

min
(

min(P t
s0,s , P̂ t

s0,s) · P π
s,s′) , min(P t

s0,s , P̂ t
s0,s) · P̂ π

s,s′

)

=
∑

s

∑

s′

min(P t
s0,s , P̂ t

s0,s) min(P π
s,s′ , P̂ π

s,s′)

=
∑

s

min(P t
s0,s , P̂ t

s0,s)
∑

s′

min(P π
s,s′ , P̂ π

s,s′)

≥ ∥M̄ t
s0∥1 · max

s
∥P̄ π

s ∥1

=⇒ ∥M̄ t+1
s0 ∥1 ≥ ∥M̄ t

s0∥1 · (1 − ϵT /2).

The third line can be understood as providing the minimum operator more options to choose from,
in that after bringing the minimum inside of the sum, the two elements in the second line are both
still possible choices and so the inequality holds. The fourth line can be understood similarly for
multiplication.

With M̄0 = I as the base case, applying recursion yields

∥M̄ t
s0∥1 ≥ (1 − ϵT /2)t. (9)

We contrast this with the equivalent recursive proof of distributional drift using the L1 formulation
of transition misspecification, akin to the recursion employed by the original simulation lemma
(Equation 5):

∥P t+1
s0 − P̂ t+1

s0 ∥1 = ∥P t
s0P π − P̂ t

s0 P̂ π∥1

= 1
2∥(P t

s0 − P̂ t
s0)(P π + P̂ π) + (P t

s0 + P̂ t
s0)(P π − P̂ π)∥1

≤ 1
2∥P t

s0 − P̂ t
s0∥1∥(P π + P̂ π)T ∥1 + 1

2∥P t
s0 + P̂ t

s0∥1∥(P π − P̂ π)T ∥1

= ∥P t
s0 − P̂ t

s0∥1 + ∥P π − P̂ π∥1

≤ ∥P t
s0 − P̂ t

s0∥1 + ϵT

=⇒ ∥P t+1
s0 − P̂ t+1

s0 ∥1 ≤ (t + 1) ϵT ,

where ∥ · ∥1 above refers to both the matrix and vector 1-norm, and on the third line we use the
identity ∥Ax∥1 ≤ ∥A∥1∥x∥1. This result makes clear the contrast between the two methods for
computing distributional drift: Naïvely using the L1 formulation leads to unbounded accumulation
of drift as horizon approaches infinity, while the overlap formulation smoothly decays from 1 to 0.
This difference is crucial to generating the tighter bound in the next section.

3.3 A Tight Bound on Value Error

We are now ready to prove our main result, a tight bound on the value error.
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Theorem 1 For two MDPs M and M̂ related as described in Equations 2 and 3, the following
inequality holds:

∀s, π : |V π
s − V̂ π

s | ≤ 1
1 − γ

− 1 − ϵR

1 − γ(1 − ϵT /2) . (10)

Furthermore, this bound is tight.

Proof: Since the conditions of the simulation lemma (Equations 2,3) are symmetric with respect
to M and M̂, without loss of generality we assume V π

s0 ≥ V̂ π
s0 , and thus |V π

s0 − V̂ π
s0 | = V π

s0 − V̂ π
s0 . We

now add and subtract the same quantity in a way that allows for discarding a strictly non-positive
term:

|V π
s0 − V̂ π

s0 | = V π
s0 − V̂ π

s0

=
∞∑

t=0
γt⟨P t

s0 , Rπ⟩ − γt⟨P̂ t
s0 , R̂π⟩

=
∞∑

t=0
γt

(
⟨P t

s0 , Rπ⟩ − ⟨M̄ t
s0 , Rπ⟩ + ⟨M̄ t

s0 , Rπ⟩ − ⟨M̄ t
s0 , R̂π⟩ + ⟨M̄ t

s0 , R̂π⟩ − ⟨P̂ t
s0 , R̂π⟩

)

=
∞∑

t=0
γt⟨P t

s0 − M̄ t
s0 , Rπ⟩ + γt⟨M̄ t

s0 , Rπ − R̂π⟩ + γt⟨M̄ t
s0 − P̂ t

s0 , R̂π⟩.

By construction, M̄ t
s0 is the overlap between P t

s0 and P̂ t
s0 , and thus and entries of M̄ t

s0 − P̂ t
s0 are

strictly non-positive. Since rewards are likewise non-negative, the third inner product in the above
sum is always non-positive. Thus, we can drop this term to significantly tighten our bound.

V π
s0 − V̂ π

s0 ≤
∞∑

t=0
γt⟨P t

s0 − M̄ t
s0 , Rπ⟩ + γt⟨M̄ t

s0 , Rπ − R̂π⟩

≤
∞∑

t=0
γt∥P t

s0 − M̄ t
s0∥1 · ∥Rπ∥∞ + γt∥M̄ t

s0∥1 · ∥Rπ − R̂π∥∞

≤
∞∑

t=0
γt∥P t

s0 − M̄ t
s0∥1 + γt∥M̄ t

s0∥1ϵR

=
∞∑

t=0
γt∥P t

s0∥1 − γt∥M̄ t
s0∥1 + γt∥M̄ t

s0∥1ϵR

=
∞∑

t=0
γt + γt(ϵR − 1)∥M̄ t

s0∥1

≤
∞∑

t=0
γt + γt(ϵR − 1)(1 − ϵT /2)t

= 1
1 − γ

+ (ϵR − 1)
∞∑

t=0
(γ − γϵT

2 )t

=⇒ |V π
s0 − V̂ π

s0 | ≤ 1
1 − γ

− 1 − ϵR

1 − γ(1 − ϵT /2) . ■

This proof makes use of Hölder’s inequality to bound inner products with L1 and L∞ norms, as well
as the identity in Equation 6 to split ∥P t

s0 − M̄ t
s0∥1 into ∥P t

s0∥1 − ∥M̄ t
s0∥1. We provide a parallel
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Figure 2: Bounds on value error given by original simulation lemma as well as our tighter bounds,
normalized by VMAX . (Left) Bound on value error with increasing gamma shows the original lemma’s
suboptimality with respect to discount. (Right) Bound on value error with increasing misspecifica-
tion shows looseness of linear approximation compared to the tight bound.

proof for the finite-horizon undiscounted setting in Appendix B. We briefly remark that this bound
matches intuition:

• When γ = 0, then |V π
s − V̂ π

s | ≤ ϵR since only the first step contributes to value.

• When ϵR = 1, the MDPs can have completely different reward functions and thus
|V π

s − V̂ π
s | ≤ 1

1−γ = VMAX .

• When ϵR = ϵT = 0, the MDPs are identical and thus |V π
s − V̂ π

s | = 0.

Additionally we note the the original simulation lemma can be reproduced as a Taylor expansion
of our bound around ϵR = 0 and ϵT = 0, proving that the original bound is the tightest possible
linear approximation to the maximal error as model misspecification approaches 0. Figure 2 presents
a comparison of our bound with the original simulation lemma, demonstrating superiority in the
large-misspecification and large-discount limits.

3.4 Proof of Tightness

We now demonstrate that this is the tightest possible bound, including constant factors, by con-
structing a pair of MDPs with exactly this value error. M consists of two states, both of which
transition to themselves, with R(s1) = 1 and R(s2) = 0. We construct M̂ so that V̂ (s1) is as small
as possible given ϵR, ϵT , by setting R̂(s1) = 1 − ϵR, and transitioning from s1 to s2 with probability
ϵT /2 (and thus self-transitions with ϵT /2 less probability, so ∥P π

s1 −P̂ π
s1∥1 = ϵT ). Hence, V (s0) = 1

1−γ

and V̂ (s0) = 1−ϵR

1−γ(1−ϵT /2) .

Intuitively, this result makes clear the role of ϵT as modifying the discount factor of M̂. A discount
can be interpreted as entering an absorbing state with probability 1 − γ at each timestep (Sutton &
Barto, 2018). In M̂, this instead occurs more frequently, with probability 1 − γ(1 − ϵT /2).

3.5 Value Loss of Optimal Policy

The simulation lemma directly applies to bounding the value difference of executing the same policy
on two related MDPs. However, in reinforcement learning the task is frequently to learn an optimal
policy π∗, that has the following property:

∀π, s : V π∗
s ≥ V π

s .
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It is natural to ask, if one learns the optimal policy π̂∗ by training on an approximate MDP M̂, how
much worse will this policy do than π∗ when executed on the actual MDP M? In contrast to the
simulation lemma, we are comparing the value loss of different policies on the same MDP. Noting
that V̂ π̂∗

s ≥ V̂ π∗
s :

V π∗
s − V π̂∗

s = V π∗
s + (V̂ π∗

s − V̂ π∗
s ) + (V̂ π̂∗

s − V̂ π̂∗
s ) − V π̂∗

s

= (V π∗
s − V̂ π∗

s ) + (V̂ π∗
s − V̂ π̂∗

s ) + (V̂ π̂∗
s − V π̂∗

s )
≤ (V π∗

s − V̂ π∗
s ) + 0 + (V̂ π̂∗

s − V π̂∗
s )

≤ |V π∗
s − V̂ π∗

s | + |V̂ π̂∗
s − V π̂∗

s |.

This is simply twice the value error of executing the same policy on different MDPs. Thus, by
improving the simulation lemma bound, we similarly tighten the estimated value loss when training
on an approximate MDP. Similar results are common in inverse RL, e.g., Burchfiel et al. (2016), and
have been noted in the context of the simulation lemma as well (Jiang, 2018).

3.6 Application to Hierarchy

Analogs to the simulation lemma exist throughout the reinforcement learning literature; here, we
present an extension of our proof to one such instance in the field of hierarchical reinforcement
learning. We use the formalism of ϕ-relative options (Abel et al., 2020), a form of approximately
value preserving state and action abstractions.

Let O∗
ϕ be a set of options o∗ over abstract states sϕ ∈ Sϕ, that can be composed to form a policy

that is optimal in the base MDP. Let Ôϕ be a set of options that approximates O∗
ϕ in that

∀o∗ ∈ O∗
ϕ ∃ô ∈ Ôϕ :

∀s, s′ |P o∗
s,s′ − P ô

s,s′ | ≤ ϵT and |Ro∗
s − Rô

s| ≤ ϵR,

where Ro
s and P o

s,s′ represent the reward and multi-time models of Sutton et al. (1999). We define
V πo∗ as the value of executing the best policy over O∗

ϕ, and V πô as the value of executing an
approximately equivalent policy using options from Ôϕ. By bounding probability distances we
arrive at the following relation:

|V πo∗
s − V πô

s | ≤ RMAX

1 − γ
− RMAX − ϵR

1 − γ + (|S| − 1)ϵT
.

This improves on the existing bound (Abel et al., 2020):

|V πo∗
s − V πô

s | ≤ ϵR + |S|ϵT RMAX

(1 − γ)2 ,

in much the same way as our original result improves upon the simulation lemma. A proof, more
complete definitions, and an example demonstrating tightness are deferred to Appendix C. The main
difference in applying our technique to this domain is careful treatment of the multi-time transition
function, where

∑
s′ P o

s,s′ ̸= 1.

4 Conclusion

The simulation lemma is a widely used result in reinforcement learning that quantifies the effect of
model misspecification on value. We demonstrate that the originally provided bound is quite loose,
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becoming vacuous when applied to large discount factors frequently used in reinforcement learning.
In this work we present a version of this lemma that is optimally tight, along with an example
application of this method to hierarchical reinforcement learning. We expect that our bound can be
applied to a variety of results throughout the literature, and that the general proof technique can
be useful in other domains.
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A Full proof of Simulation Lemma

For completeness, we include the proof of the simulation lemma found in Jiang (2018). We adopt
notation from Section 3.

|V π
s − V̂ π

s | = |Rπ
s + γ⟨P π

s , V π⟩ − R̂π
s − γ⟨P̂ π

s , V̂ π⟩|
≤ ϵR + γ|⟨P π

s , V π⟩ − ⟨P̂ π
s , V π⟩ + ⟨P̂ π

s , V π⟩ − ⟨P̂ π
s , V̂ π⟩|

= ϵR + γ|⟨P π
s , V π − 1

2(1 − γ) ⟩ − ⟨P̂ π
s , V π − 1

2(1 − γ) ⟩ + ⟨P̂ π
s , V π⟩ − ⟨P̂ π

s , V̂ π⟩|

≤ ϵR + γ∥P π
s − P̂ π

s ∥1 · ∥V π − 1
2(1 − γ)∥∞ + γ∥P̂ π

s ∥1 · ∥V π − V̂ π∥∞

≤ ϵR + γϵT

2(1 − γ) + γ∥V π − V̂ π∥∞

=⇒ |V π
s − V̂ π

s | ≤ ϵR

1 − γ
+ γϵT

2(1 − γ)2 .

This proof makes use of Hölder’s inequality to bound inner products with L1 and L∞ norms, as well
as centers the value 0 ≤ V π

s ≤ 1
1−γ through subtracting the midpoint for improved bounds.
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B Application to the Finite-Horizon Setting

We now extend our improved bound to the finite-horizon, undiscounted setting, where an agent
interacts with an environment for H steps. One difference in this setting is that policies are con-
ditioned on timestep as well as state; hence we define π = [π0, . . . , πH−1]. Existing bounds in the
finite-horizon setting establish a relationship between values at subsequent timesteps. Noting that
0 ≤ V π

h,s ≤ H − h (and defining V π
H,s = 0), Then,

|V π
h,s − V̂ π

h,s| = |Rπh
s + ⟨P πh

s , V π
h+1⟩ − R̂πh

s − ⟨P̂ πh
s , V̂ π

h+1⟩|
≤ ϵR + |⟨P πh

s , V π
h+1⟩ − ⟨P̂ πh , V π

h+1⟩ + ⟨P̂ πh , V π
h+1⟩ − ⟨P̂ πh

s , V̂ π
h+1⟩|

= ϵR + |⟨P πh
s , V π

h+1 − H − h − 1
2 · 1⟩ − ⟨P̂ πh , V π

h+1 − H − h − 1
2 · 1⟩

+ ⟨P̂ πh , V π
h+1⟩ − ⟨P̂ πh

s , V̂ π
h+1⟩|

≤ ϵR + ∥P πh
s − P̂ πh

s ∥1 · ∥V π
h+1 − H − h − 1

2 · 1∥∞ + ∥V π
h+1 − V̂ π

h+1∥∞

≤ ϵR + ϵT
H − h − 1

2 + ∥V π
h+1 − V̂ π

h+1∥∞

=⇒ |V π
h,s − V̂ π

h,s| ≤
H−1∑

i=h

ϵR + ϵT
H − i − 1

2

=⇒ |V π
0,s − V̂ π

0,s| ≤ ϵRH + ϵT
H(H − 1)

4

For our bound, the only change from the discounted setting is replacing the discounted infinite sums
of Section 3.3 with finite undiscounted ones. Redefining P t =

∏
0≤i<t P πi , and WLOG assuming

that V π
0,s0 ≥ V̂ π

0,s0 we can show:

|V π
0,s0 − V̂ π

0,s0 | = V π
0,s0 − V̂ π

0,s0

=
H−1∑

t=0
⟨P t

s0 , Rπt⟩ − ⟨P̂ t
s0 , R̂πt⟩

=
H−1∑

t=0
⟨P t

s0 − M̄ t
s0 , Rπt⟩ + ⟨M̄ t

s0 , Rπt − R̂πt⟩ + ⟨M̄ t
s0 − P̂ t

s0 , R̂πt⟩

≤
H−1∑

t=0
⟨P t

s0 − M̄ t
s0 , Rπt⟩ + ⟨M̄ t

s0 , Rπt − R̂πt⟩

≤
H−1∑

t=0
∥P t

s0 − M̄ t
s0∥1 · ∥Rπt∥∞ + ∥M̄ t

s0∥1 · ∥Rπt − R̂πt∥∞

≤
H−1∑

t=0
∥P t

s0 − M̄ t
s0∥1 + ∥M̄ t

s0∥1ϵR

=
H−1∑

t=0
∥P t

s0∥1 − ∥M̄ t
s0∥1 + ∥M̄ t

s0∥1ϵR

≤
H−1∑

t=0
1 + (ϵR − 1)(1 − ϵT /2)t

=⇒ |V π
0,s0 − V̂ π

0,s0 | ≤ H − (1 − ϵR) 2
ϵT

(1 − (1 − ϵT /2)H)
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Again, we note that Taylor expanding this relation at ϵR = 0 and ϵT = 0 recovers the original bound.

C Proof of Hierarchy Bound

This proof exactly mirrors the one in the main body, with additional care taken to handle multi-time
models. We first describe the ϕ-relative options framework (definitions largely taken from Abel et al.
(2020)), and then provide a tighter bound on value loss.

An option o ∈ O is an abstract action defined by the tuple (Io, βo, πo), where Io ⊆ S is the subset
of the state space the option can initiate in, β0 ⊆ S is the subset the option terminates in, and πo is
a policy. For a given state abstraction ϕ : S → Sϕ, an option oϕ is said to be ϕ-relative if and only
if ∃sϕ ∈ Sϕ such that

s ∈ sϕ =⇒ s ∈ Ioϕ
s /∈ sϕ =⇒ s ∈ βoϕ

∀s ∈ sϕ, πoϕ
(s) → ∆(A)

In words, a ϕ-relative option is one that executes from anywhere in one abstract state, and terminates
upon leaving that abstract state. Furthermore, Oϕ denotes a set of only ϕ-relative options, with at
least one option that executes at each abstract state.

Let O∗
ϕ be a set of ϕ-relative options o∗ that can be composed to form an optimal policy in the base

MDP. Let Ôϕ be a set of options that approximates O∗
ϕ in that

∀o∗ ∈ O∗
ϕ ∃ô ∈ Ôϕ :

∀s, s′ |P o∗
s,s′ − P ô

s,s′ | ≤ ϵT and |Ro∗
s − Rô

s| ≤ ϵR

(11)

where Ro
s and P o

s,s′ represent the multi-time reward and transition functions described in Sutton
et al. (1999):

Ro
s = Ea∼o[

∞∑

t=0
γtrt] P o

s,s′ =
∞∑

t=1
γt Pr(st = s′, tβ = t).

In words, Ro
s is the expected discounted reward accumulated over the course of an option execution,

and P o
s,s′ is the total discounted probability that an option terminates in s′ when starting from s.

Crucially,
∑

s′∈S P o
s,s′ ≤ γ < 1. We also note that the ϵT bound is per-entry, not per-vector. This

was the form of the conditions in the original simulation lemma (Kearns & Singh, 2002), which was
replaced with a vectorized version in subsequent work (Kakade et al., 2003).

Since ∥P o
s ∥1 may take on different values for different options and starting states, we can no longer

directly use a relation similar to Equation 7. However, we can augment the MDP by adding an
absorbing state sx, and modify each option such that

Ro
sx

= 0 , P o
s,sx

= γ −
∑

s′ ̸=sx

P o
s,s′ .

By doing this, ∥P o
s ∥1 = γ without modifying the behavior of the given option in the base MDP. This

allows our proof to proceed treating options in roughly the same way as we do actions in the main
body. Noting that since P o

s,s ≡ 0 by construction, for two options o∗, ô∗ satisfying the relations of
Equation 11 we have that:

|P o∗
s,sx

− P ô
s,sx

| ≤
∑

s′ ̸=sx,s

|P o∗
s,s′ − P ô

s,s′ | ≤ (|S| − 1)ϵT .

Thus we can recover a condition similar to that of Equation 2:

∥P o∗
s − P ô

s ∥1 =
∑

s′∈S+sx

|P o∗
s,s′ − P ô

s,s′ | ≤ 2(|S| − 1)ϵT .

12796



Due to the addition of sx, we can now describe the above bound in terms of overlap. Defining
P̄ o∗,ô

s,s′ = min(P o∗
s,s′ , P ô

s,s′), we can produce a similar relation to Equation 8:

∥P̄ o∗,ô
s ∥1 ≥ γ − (|S| − 1)ϵT .

Let ΠOϕ
be the set of abstract policies representable by Oϕ. Let πo∗ be a policy within ΠO∗

ϕ
that is

optimal in the base MDP. Let πô be a policy in ΠÔϕ
produced by replacing each o∗ chosen by πo∗

with an option ô satisfying the relations of Equation 11. Then, we can follow the same algebraic
steps as in the main body to produce the following bound:

|V πo∗
s − V πô

s | ≤ RMAX

1 − γ
− RMAX − ϵR

1 − γ + (|S| − 1)ϵT
.

C.1 Proof of Tightness

We can generate an abstract MDP that achieves this bound using a similar recipe as in Section 3.4.
We construct an abstract MDP where each option o∗ transitions uniformly to each other state with
discounted probability γ

|S|−1 , receiving a reward of RMAX . We then construct a new set of options
that uniformly transition with discounted probability γ

|S|−1 − ϵT , receiving reward RMAX − ϵR. This
exactly reproduces the provided bound.
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Abstract

We investigate the challenge of multi-agent deep reinforcement learning in partially
competitive environments, where traditional methods struggle to foster reciprocity-
based cooperation. LOLA and POLA agents learn reciprocity-based cooperative
policies by differentiation through a few look-ahead optimization steps of their
opponent. However, there is a key limitation in these techniques. Because they
consider a few optimization steps, a learning opponent that takes many steps to
optimize its return may exploit them. In response, we introduce a novel approach,
Best Response Shaping (BRS), which differentiates through an opponent approxi-
mating the best response, termed the "detective." To condition the detective on the
agent’s policy for complex games we propose a state-aware differentiable condition-
ing mechanism, facilitated by a question answering (QA) method that extracts a
representation of the agent based on its behaviour on specific environment states.
To empirically validate our method, we showcase its enhanced performance against
a Monte Carlo Tree Search (MCTS) opponent, which serves as an approximation
to the best response in the Coin Game. This work expands the applicability of
multi-agent RL in partially competitive environments and provides a new pathway
towards achieving improved social welfare in general sum games.

1 Introduction

Reinforcement Learning (RL) algorithms have enabled agents to perform well in complex high-
dimensional games like Go (Silver et al., 2016) and StarCraft (Vinyals et al., 2019). The end goal
of RL is to train agents that can help humans solve challenging problems. Inevitably, these agents
will need to integrate in real-life scenarios that require interacting with humans and other learning
agents. While multi-agent RL training shines in fully cooperative or fully competitive environments,
it often fails to find reciprocity-based cooperation in partially competitive environments. One such
example is the failure of multi-agent RL (MARL) agents to learn policies like tit-for-tat (TFT) in
the Iterated Prisoner’s Dilemma (IPD) (Foerster et al., 2018).

Despite the toy-ish character of common general-sum games such as IPD, these sorts of problems
are ubiquitous in both society and nature. Consider a scenario where two countries (agents), strive
to maximize their industrial output while also ensuring a suitable climate for production by limiting
carbon emissions. On the one hand, each country (agent) would like to see the other country fulfill
it’s obligations to limit carbon emissions. Yet on the other hand, each one is motivated to emit more
carbon themselves to achieve higher industrial yields. An effective climate treaty would compel each
country – likely through the threat of penalties – to abide by the agreed limits to carbon emissions. If
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these agents fail to develop such tit-for-tat-like strategies they will likely converge to an unfortunate
mutual escalation of consumption and carbon emission.

Foerster et al. (2018) proposed Learning with Opponent-Learning Awareness (LOLA), an algorithm
that successfully learns TFT behavior in the IPD setting by differentiating through an assumed
single naive gradient step taken by the opponent. Building upon this, Zhao et al. (2022) introduced
proximal LOLA (POLA), which further enhances LOLA by assuming a proximal policy update for
the opponent. This improvement allows for the training of Neural Network (NN) policies in more
complex games, such as the Coin Game (Foerster et al., 2018). To the best of our knowledge, POLA
is the only method that reliably trains reciprocity-based cooperative agents in the Coin Game.

Despite its success on the Coin Game, POLA has its limitations. While POLA is learning with
opponent-learning awareness, its modeling of opponent learning is limited to a few look-ahead opti-
mization steps. This renders POLA vulnerable to exploitation by opponents engaging in additional
optimization. In particular, our analysis of POLA agents trained on the Coin Game demonstrates
that POLA is susceptible to exploitation by the best response opponent. When the opponent is
specifically trained to maximize its own return against a fixed policy trained by POLA, the first ex-
ploits the former. Also, this limitation can hinder POLA’s scalability; it can’t differentiate through
all opponent optimization steps. This is particularly problematic if the opponent is a complex neural
network, as many optimization steps are needed to approximate its learning.

In this paper, we present a novel approach called Best Response Shaping (BRS). Our method is
based on the construction of an opponent that approximates the best response policy against a
given agent. We refer to this opponent as the "detective." The overall concept is depicted in Figure
1: the detective undergoes training against agents sampled from a diverse distribution. To train
the agent, we differentiate through the detective opponent. Unlike approaches such as LOLA and
POLA, which assume few look-ahead optimization steps, our method relies on the detective issuing
the best response to the current agent through policy conditioning.

We empirically validate our method on Iterated Prisoner’s Dilemma (IPD) and the Coin Game.
Given the dependency on the opponent’s policy for an agent’s outcomes, it is not always straight-
forward to evaluate and compare policies of different agents in games. This is especially true in
non-zero-sum games that exhibit both cooperative and competitive aspects. In this paper, we ad-
vocate that a reasonable point of comparison is the agent’s outcome when facing a best response
opponent, which we approximate by Monte Carlo Tree Search (MCTS). We show that while the
MCTS does not fully cooperate with POLA agents, they fully cooperate with our BRS agent.

Main Contributions: We summarize our main contributions below:

• We identify that the best response opponent, as approximated by Monte Carlo Tree Search
(MCTS), does not cooperate with POLA agents. MCTS exploits the POLA agents achieving
a higher return than it would through complete cooperation.

• To address this vulnerability, we introduce the BRS method, which trains an agent by
differentiating through an opponent approximating the best response (referred to as the
’detective opponent’). We empirically validate our method and demonstrate that the best
response to BRS agents is indeed full cooperation as shown in Figure 3.

• Additionally, we propose a state-aware differentiable conditioning mechanism for the detec-
tive opponent, enabling it to condition on the agent’s policy.

2 Background

2.1 Multi Agent Reinforcement Learning

An N -agent Markov Games is denoted by a tuple (((N,S,{Ai}N
i=1 ,P,{ri}Ni=1 , γ))). Here, N represents

the number of agents, S the state space of the environment, and A ∶= A1 × ⋯ × AN the set of
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actions for each agent. Transition probabilities are denoted by P ∶ S ×A → ∆(S) and the reward
function by ri ∶ S ×A → R. Lastly, γ ∈ [0,1] is the discount factor. In a multi-agent reinforcement
learning problem each agent attempts to maximize their return Ri = ∑∞t=0 γ

trit. The policy of agent
i is denoted by πiθi where θi are policy parameters. In Deep RL these policies are neural networks.
These policies will be trained via gradient estimators such as REINFORCE (Sutton et al., 1999).

2.2 Social Dilemmas and the Iterated Prisoner’s Dilemma

In the context of general sum games, social dilemmas emerge when individual agents striving to
optimize their personal rewards inadvertently undermine the collective outcome or social welfare.
This phenomenon is most distinct when the collective result is inferior to the outcome that could
have been achieved through full cooperation. Theoretical studies, such as the Prisoner’s Dilemma,
illustrate scenarios where each participant, though individually better off confessing, collectively
achieves a lower reward compared to remaining silent.

However, in the Iterated Prisoner’s Dilemma (IPD), unconditional defection ceases to be the dom-
inant strategy. For instance, against an opponent following a tit-for-tat (TFT) strategy, perpetual
cooperation results in a higher return for the agent. It might be expected that MARL, designed
to maximize each agent’s return, would discover the TFT strategy, as it enhances both collective
and individual returns, and provides no incentive for policy change, embodying a Nash Equilibrium.
Yet, empirical observations reveal that standard RL agents, trained to maximize their own return,
typically converge to unconditional defection.

This exemplifies one of the key challenges of multi-agent RL in general sum games: during training,
agents often neglect the fact that other agents are also in the process of learning. To address
this issue, and if social welfare is the primary consideration, one could share the rewards among
the agents during training. For instance, training both agents in an IPD setup to maximize the
collective return would lead to a constant cooperation. However, this approach is inadequate if the
goal is to foster reciprocation-based cooperation. A policy is sought that incites the opponent to
cooperate in order to maximize their own return. While TFT is one such policy, manually designing
a similar TFT policies in other domains is neither desirable nor feasible, underscoring the necessity
to develop novel training algorithms that can discover these policies.

3 Related Work

LOLA Foerster et al. (2018) attempts to shape the opponent by taking the gradient of the value with
respect to a one-step look ahead of the opponent’s parameters. Instead of considering the expected
return under the current policy parameter pair, V 1(θ1

i , θ
2
i ), LOLA optimizes V 1(θ1

i , θ
2
i + ∆θ2

i )
where ∆θ2

i denotes a naive learning step of the opponent. To make a gradient calculation of the
update ∆θ2

i , LOLA considers the surrogate value given by the first order Taylor approximation of
V 1(θ1

i , θ
2
i +∆θ2

i ). Since for most games the exact value cannot be calculated analytically, the authors
introduce a policy gradient formulation that relies on environment roll-outs to approximate it. This
method is able to find tit-for-tat strategies on the Iterated Prisoner’s Dilemma.

POLA Zhao et al. (2022) introduces an idealized version of LOLA that is invariant to policy param-
eterization. To do so, each player attempts to increase the probability of actions that lead to higher
returns while penalizing the Kullback-Leibler divergence in policy space relative to their policies at
the previous time step. Similar to the proximal point method, each step of POLA constitutes an
optimization problem that is solved approximately through gradient descent. Like LOLA, POLA
uses trajectory roll-outs to estimate the value of each player and applies the reinforce estimator to
compute gradients. POLA effectively achieves non exploitable cooperation on the IPD and the Coin
Game improving on the shortcomings of its predecessor.

Lu et al. (2022) considers a meta-game where at each meta-step a full game is played and the meta-
reward is the return of that game. The agent is then a meta-policy that learns to influence the
opponent’s behaviour over these rollouts. M-FOS changes the game and is not comparable to our
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Figure 1: The detective is trained using agents sampled from a replay buffer, which contains agents
encountered during training. Additional noise is incorporated to broaden the range of policies.

method which considers learning a single policy. Baker (2020) changes the structure of the game
where each agent is sharing reward with other agents. The agents are aware of this grouping of
rewards via a noisy version of the reward sharing matrix. In the test time, the representation matrix
is set to no reward sharing and no noise is added to this matrix.

Stackelberg Games Colman & Stirk (1998) revolve around a leader’s initial action selection followed
by a follower’s subsequent move. The Bi-Level Actor-Critic(Bi-AC) Zhang et al. (2020) framework
introduces an innovative approach for training both leader and follower simultaneously during the
training period while maintaining independent executability, making it well-suited for addressing
coordination challenges in MARL. In contrast to our setup, where the detective functions as a
training harness discarded post-training, the Bi-AC varies by deploying both leader and follower
jointly during test time (as the main concern is coordination between the leader and the follower).
The interactions between the agent and the detective mirror the foundational Stackelberg setup,
casting the agent as the leader and the detective as the follower.

Good Shepherd Balaguer et al. (2022) trains a best response to a learning agent, mirroring the
best response to the best response idea. The authors offer two methods for training against this
optimal response. First, by creating an expansive computational graph for the agent’s optimization.
Second, employing evolutionary strategies. Neither of these methods is scalable. Constructing a full
optimization computational graph for every agent’s optimization step is very inefficient. Moreover,
evolutionary strategies require training the opponent against new data points each time. Our ap-
proach circumvents this problem by using a neural network to amortize the optimization process.
PSRO Lanctot et al. (2017) unifies many MARL training frameworks like Independent RL, Iterated
Best Response, and Fictitious Self-Play. PSRO-family methods iteratively extend a set of past poli-
cies, by adding the best response to a mixture of those past policies. In contrast to BRS, PSRO
does not differentiate through the best response.

4 Best Response Shaping

Our Best Response Shaping (BRS) algorithm trains an agent by differentiating through an approx-
imation to the best response opponent (as described in Section 4.1). This opponent, called the
detective, conditions on the agent’s policy via a question answering mechanism to select its actions
(Section 4.2). Subsequently, we train the agent by differentiating through the detective using the
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REINFORCE gradient estimator (Sutton et al., 1999) (Section 4.2.2). Also, to encourage coopera-
tive behaviour, we propose Self-Play as a regularization method, encouraging the agent to explore
cooperative policies. We further prove that this self-play is equivalent to self-play with reward
sharing. The pseudo-code for BRS is provided in Algorithm 1.

4.1 Best Response Agent to the Best Response Opponent

Our notation and definitions follow from Agarwal et al. (2021), we denote τ as a trajectory whose
distribution, Prθ1,θ2

µ (τ), with initial state distribution µ, is given by

Prθ1,θ2
µ (τ) = µ(s0)πθ1(a0∣s0)πθ2(b0∣πθ1 , s0)P (s1∣s0, a0, b0)⋯

Here a denotes the action taken by the agent and b the action taken by the opponent. The best
response opponent is the policy that gets the highest expected return against a given agent. Formally,
given θ1, the best response opponent policy θ∗2 solves for the following:

θ∗2 = arg max
θ2

E
τ∼Prθ1,θ2

µ
[R2(τ)]

Subsequently, we train the agent’s policy to get the highest expected return against the best response
agent. This training of the agent’s policy is solving for the following:

θ∗∗1 = arg max
θ1

E
τ∼Pr

θ1,θ∗2
µ

[R1(τ)]
Note that this is a bi-level optimization problem. We hypothesize that the agent π∗∗θ1

exhibits
characteristics of a non-exploitable agent, as it learns retaliatory strategies in response to a defecting
opponent, thereby creating incentives for a rational opponent to cooperate.

4.2 Detective Opponent Training

In deep reinforcement learning, the training of agents relies on the utilization of gradient-based
optimization. Consequently, we need a differentiable opponent approximating a best response op-
ponent. We call this opponent the detective. The detective’s policy conditions on the agent’s policy
in addition to the state of the environment, which we denote πθ2(a∣πθ1 , s). We train the detective to
maximize its own return against various agents. Formally, the detective is trained by the following
gradient step:

∇θ2 E
θ1∼B E

τ∼Prθ1,θ2
µ

[R2(τ)]
where B represents a distribution of diverse policies for agent 1.It should be noted that the detective
is trained online and the replay buffer, B, is being updated with the current agent parameters.

4.2.1 Conditioning on Agent’s Policy

The detective queries the behaviour of the agent on various states of the game. To do so, it evaluates
the agent’s action probabilities (answers) on a state of the game (questions). Formally, let Qψ(θ1, s)
be the function used by the detective to extract a state-aware representation of the agent. We callQ a question answering (QA) function if Q can be expressed as only having access to the policy
function, i.e. Qψ(πθ1 , s). There are many possible ways to architect a QA function. Next, we outline
a method that has shown success in the Coin Game.

4.2.2 Simulation Based Question Answering

The behavior of the agent in possible continuations of the game starting from state s holds valuable
information. More specifically, we can assess the behavior of the agent against a random agent
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starting from game state s. Formally Let δA be defined as the following where τ is a trajectory
starting from state s at time t:

δA ∶= E
τ∼Prθ1,θr

µ

[Rr(τ)∣st = s]
where πθr is an opponent that chooses action A at time t and afterwards samples from a uniform
distribution over all possible actions:

πθr(ai = A∣si) = ⎧⎪⎪⎨⎪⎪⎩
1∣A∣ if i > t
1{ai=A} if i = t

Detective estimates δA by monte-carlo rollouts of the game to a certain length between the agent
and the random opponent, πθr . We denote the estimate of δA by δ̂A. Then we define Qsimulation =[δ̂A1 , δ̂A2 ,⋯, δ̂A∣A∣]. The number of samples used to estimate the returns of the game and the length
of the simulated games are considered hyperparameters of Qsimulation QA. Note that the Qsimulation

can be differentiated with respect to agent’s policy parameters via REINFORCE (Sutton et al.,
1999) term. Specifically, we use the DICE operator (Foerster et al., 2018).

4.2.3 Differentiating Through the Detective

The agent’s policy is trained to maximize its return against the detective opponent via REINFORCE
gradient estimator. However, because the detective’s policy is taking the agent’s policy as input,
the REINFORCE term will include an additional detective-backpropagation term over the usual
REINFORCE term:

E
τ∼Prθ1,θ2

µ

⎡⎢⎢⎢⎢⎢⎢⎣
R1(τ) T∑

t=1

⎡⎢⎢⎢⎢⎢⎢⎣
∇θ1 log(πθ1(at∣st)) + ∇θ1 log(πθ2(bt∣πθ1 , st))´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

detective-backpropagation term

⎤⎥⎥⎥⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎥⎥⎦

This extra term can be thought of as the direction in policy space in which changing the agent’s
parameters encourages the detective to take actions that increase the agent’s own return.

4.2.4 Cooperation Regularization via Self-Play with Reward Sharing

Agents that are trained against rational opponents tend to rely on the assumption that the opposing
agent is lenient towards their non-cooperative actions. This reliance on rational behavior allows them
to exploit the opponent to some extent. Consequently, they may not effectively learn to cooperate
with their own selves. In scenarios where the objective is to foster more cooperative behavior,
particularly encouraging the agent to cooperate with itself, a straightforward approach is to train
the agent in a self-play setting, assuming that the opponent’s policy mirrors the agent’s policy.
Formally, we update the agent using the following update rule:

∇θ1 E
τ∼Prθ1,θ1

µ

[R1(τ)]
We prove that in symmetric games like IPD and Coin Game, this is equivalent to training an agent
with self-play with reward sharing (see proof in §D). This training brings out the cooperative element
of general-sum games. In zero-sum games, this update will have no effect as the gradient would be
zero (see proof in §D). We refer to this regularization loss term as Self-Play with reward sharing
throughout the paper. We also ablate BRS-NOSP where we skip the self-play loss to study its effect.
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Algorithm 1 BRS pseudo code: a single iteration
Input: Replay Buffer of Agent Parameters B, Agent parameters θ1, Detective parameters θ2,
learning rates α1, α2, α3, Standard Error of Noise σ
Train Detective vs. Sampled Agent:
Sample agent parameter θ1′ from B
θ1′← θ1′ + z, where z ∼ N (0, σ)
Rollout trajectory τ2 using policies (πθ1′, πθ2)
θ2 ← θ2 + α2R

2(τ2)∑Tt=1∇θ2 log(πθ2(at∣πθ1′, st))
Train Agent vs. Detective:
Rollout trajectory τ1 using policies (πθ1 , πθ2)
θ1 ← θ1 + α1R

1(τ)∑Tt=1∇θ1 log(πθ1(at∣st)) +∇θ1 log(πθ2(bt∣πθ1 , st))
Train Agent in Self Play:
Rollout trajectory τ3 using policies (πθ1 , πθ1)
θ1 ← θ1 + α3R

1(τ3)∑Tt=1∇θ1 [log(πθ1(at∣st)) + log(πθ1(bt∣st))]
Update Replay Buffer:
Push θ1 to B
Output: θ1, θ2

5 Experiments

5.1 Iterated Prisoner’s Dilemma

Following Foerster et al. (2018), we study Iterated Prisoner’s Dilemma (IPD) game where the agents
observe the last actions taken by the agents. Therefore, all possible agent observations are S ={C,CC,CD,DC,DD}, where C is the initial state, and each agent’s policy can be described by the
probability of cooperation for each s ∈ S. We consider the IPD game that is six steps long. As
shown by Foerster et al. (2018) and Zhao et al. (2022), training two naïve-learning agents leads to
strategies that always defect. Although this is a Nash Equilibrium, both agents receive negative
returns.

We test our method by training the agent against a tree search detective. The tree search detective
constructs a tree, commencing from the current state. During this process, the agent’s actions
are sampled from the agent’s policy, while the tree branches explore all possible choices for the
detective’s actions. The detective selects the actions that maximize its return, i.e. the actions that
construct the best response path within the tree. The agent receives the return that corresponds to
this particular path (see §F for details). Our agent is a two-layer MLP that receives the five possible
states and outputs the probability of cooperation. We choose an MLP to showcase the possibility
of training neural networks via BRS. We update our agent policy via policy gradient. As shown in
Figure 2 the BRS agent learns tit-for-tat(TFT) policy.

5.2 The Coin Game

We follow Zhao et al. (2022) in training a GRU (Cho et al., 2014) agent on a 3× 3 sized Coin Game
with a game length of 50 and a discount factor of 0.96. The detective opponent is also a GRU agent
with an MLP that conditions on the result of the QA (for more details see §A). We evaluate BRS
and POLA agents against four policies: an opponent that always takes the shortest path towards
the coin regardless of the coin’s color (Always Defect), an opponent that takes the shortest path
towards its associated coin but never picks up the agent’s associated coin (Always Cooperate), a
Monte Carlo Tree Search opponent that evaluates multiple rollouts of the game against the agent
in order to take an action (MCTS), and itself (Self). Note that the MCTS will approximate the
best response opponent. Figure 3 visually presents the evaluation metrics for the BRS and POLA
agents. In the subsequent paragraphs, we present a comprehensive analysis and interpretation of
these results.
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Figure 2: Illustration of the policies of agents trained with BRS and BRS-NOSP in a finite Iterated
Prisoner’s Dilemma game of length 6. The agents are trained against a tree search detective max-
imizing its own return. BRS agents learn tit-for-tat, a policy that cooperates initially and mirrors
the opponent’s behavior thereafter. BRS-NOSP agents learn cynic-tit-for-tat (CTFT), they defect
initially but mirror the opponent’s behavior thereafter.
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Figure 3: Comparison of BRS and POLA on Coin Game. We evaluate the agent’s returns versus
different opponents: Always Defect opponent (AD); Always Cooperate opponent (AC), A Monte
Carlo Tree Search opponent (MCTS) and agent’s performance against itself (Self).
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Figure 4: BRS-NORB is equivalent to BRS, with no replay buffer and no added noise. Its perfor-
mance is close to BRS with more variance. BRS-NOSP is equivalent to BRS but with no self-play.

Does a best response opponent cooperate with the agent? For a given environment, the
opponents will learn the best response to our agent. We want those opponents to figure out that
they cannot do better than Always Cooperate against. In other words, defecting against our agent
would decrease their return. The MCTS approximates the best response opponent. As shown in
Figure 3, the MCTS and BRS are always cooperating with each other1. In contrast, the MCTS does
not fully cooperate with POLA. The MCTS secured a higher return than Always Cooperate against
POLA via defecting.

Does the agent retaliate against Always Defect? If an agent never retaliates against Always
Defect, its maximum return would be close to Always Cooperate against Always Defect which is
-0.31, shown in Figure 5. BRS gets an average return of -0.11 against Always Defect indicating
it retaliates v.s. defects. However, POLA gets -0.03 against Always Defect indicating stronger
retaliation.

Does the agent cooperate with itself? As shown in Figure 3 BRS agents get a return of 0.33
against themselves which is very close to Always Cooperate vs Alwayas Cooperate return of 0.34.
POLA agents get a retun of 0.23 against themselves indicating less cooperation. In summary, BRS
agents are more suitable as a retaliatory cooperative policy. While the best response to them is
always cooperation, they also fully cooperate with themselves. In contrast, the best response to
POLA agents is not full cooperation, and also they do not fully cooperate with themselves.

5.3 Replay Buffer Ablation

As shown in Algorithm 1 we train the detective against agents sampled from a replay buffer. Also,
we add a small noise to the sampled agent parameters. In Figure 4 we show BRS-NORB which has
the same training setup as BRS with no replay buffer and no noise. While BRS-NORB has higher
variance in performance than BRS, its performance is close to BRS.

5.4 Self-Play Ablation

We find that BRS with no self-play (BRS-NOSP) learns policies resembling ZD-Extortion Press &
Dyson (2012), which exploit opponent’s rationality to increase their return and don’t cooperate with
themselves(details in §E) rendering them suboptimal for scenarios where social-welfare is important.

1Note that the return of both agents is very close to Always Cooperate vs Always Cooperate.
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6 Limitations

This paper focuses on the implementation of our proposed idea in two-player games. Extending this
approach to more than two players is non-trivial2. Additionally, the detective agent approximates
the best response opponent by training against a diverse set of agents. In this study, we introduce
a replay buffer that contains previous agents encountered during training as a proxy for a diverse
agent set. In 5.3 we showed BRS works even with no replay buffer on the Coin Game. Nevertheless,
for more complex settings, this level of diversity may be insufficient.

7 Conclusion

Motivated by learning with learning awareness as a framework to learn reciprocity-based cooperative
policies, we introduced BRS. BRS differentiates through an opponent that approximates the best
response. To enable the opponent to condition on agent’s policy, we introduced a novel differentiable
state-aware conditioning mechanism. Additionally, self-play was incorporated to constrain the search
space to self-cooperative policies. We evaluated BRS agents in detail on the Coin game. The BRS
agent reaches a policy where always cooperate is the best response. We hope this work helps
improving the scalability and non-exploitability of agents in Multi Agent Reinforcement Learning
enabling agents that learn reciprocation-based cooperation in complex games.
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A Experimental Details

A.1 IPD

In IPD experiments, we are experimenting on IPD with 6 steps and discount factor of 1., i.e. no
discount factor. The payoff matrix of the IPD game is shown in 1.

Player 2
Player 1 Cooperate Defect

Cooperate −1
−1 −3

0

Defect 0
−3 −2

−2

Table 1: Payoff matrix for the prisoner’s dilemma game

Our agent’s policy is parameterized by a two-layer MLP (Multi-Layer Perceptron) with a tanh non-
linearity. The choice of tanh non-linearity is motivated by its smoothing effect and its ability to
prevent large gradient updates.

During training, the agent is trained against the Tree Search Detective (TSD) (see Appendix F)
using a policy gradient estimator. We employ a learning rate of 3e − 4 with the SGD (Stochastic
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Gradient Descent) optimizer. In the BRS experiments, the Self-Play with reward sharing loss is
optimized using SGD with the same learning rate of 3e−4. To reduce variance, the policy gradients
incorporate a baseline.

For replicating the exact results presented in the paper, we provide the code in Appendix B. Running
the code on an A100 GPU is expected to take approximately an hour. The plots and error bars are
averaged over 10 seeds for both BRS and BRS-NOSP. The hyperparameter search was conducted by
iterating over various learning rates including (1e−4,3e−4,1e−3), and the optimizers were explored
between SGD and Adam.

A.2 Coin Game

The game Our coin game implementation exactly follows the POLA implementation Zhao et al.
(2022). Similar to POLA, we also experiment with the game length of 50 and a discount factor of
0.96.

Agent’s architecture In the coin game, we have an actor-critic setup. The policy of our agent
is parameterized by a GRU (Gated Recurrent Unit) architecture, following the approach outlined
in the POLA repository (source). However, we introduce a modification compared to POLA by
including a two-layer MLP on top of the observations before they are fed into the GRU instead of a
single-layer MLP. Additionally, we utilize two linear heads to facilitate separate learning for policy
and value estimation.

Detective’s architecture The architecture of the detective is as follows: The sequence of observa-
tions is fed into a GRU (Gated Recurrent Unit), which is the same architecture used by the agent.
At each time step, the agent’s representation is extracted using the QA (Question-Answering) mod-
ule of the detective. In our experiments, we employed 16 samples of continuing the game for the
next 4 steps from the current state. Subsequently, the output of the QA module and the GRU are
concatenated and passed through a two-layer MLP with ReLU non-linearities. The resulting output
from this MLP is then fed into a linear layer for estimating the value (critic), and a linear layer for
determining the policy (actor).

Separate optimizers for the two terms The agent uses separate optimizers for the two terms
in the policy gradient. That is, it uses two separate optimizers for the two terms indicated in A.2.

E
τ∼Prθ1,θ2

µ

⎡⎢⎢⎢⎢⎢⎢⎣
R1(τ) T∑

t=1

⎡⎢⎢⎢⎢⎢⎢⎣
∇θ1 log(πθ1(at∣st))´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Term 1

+∇θ1 log(πθ2(bt∣πθ1 , st))´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Term 2

⎤⎥⎥⎥⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎥⎥⎦

Losses and optimizers The value functions in our setup are trained using the Huber loss. On
the other hand, the policies are trained using the standard policy gradient loss with Generalized
Advantage Estimation (GAE) (Schulman et al., 2018). However, it is important to note that our
hyperparameter search led us to set the GAE parameter, λ, to 1, which results in an equivalent
estimation of the advantage using the Monte-Carlo estimate. This choice is similar to the hyperpa-
rameters reported by POLA (source).

In the BRS-NOSP experiments, the agent’s policy is trained using a learning rate of 1e − 3, while
in the BRS experiments, an Adam optimizer with a learning rate of 3e − 4 is utilized. The value
functions of both the agent and the detective in all experiments are trained using Adam with a
learning rate of 3e − 4. Similarly, the detective’s policy is trained using Adam with a learning rate
of 3e − 4 in all experiments.

Replay buffer of previous agents During the training, we keep a replay buffer of previous agents
seen during the training. In BRS-NOSP experiments we keep 2048 previous agents and in BRS
experiments we keep the last 512 agents. For training the detective, we sample a batch from this
replay buffers uniformly. We add a normal noise with variance of 0.01 to the parameters of these
agents to ensure the detective is trained against a diverse set of agents.
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Hyperparameter search We conducted a hyperparameter search using random search over the
configurations explained Table 2. the entropy coefficient β, which is multiplied by the entropy of
the log probabilities associated with the actions of the corresponding player, is added to the policy
gradient loss of the corresponding player for controlling the exploration-exploitation trade-off.

Plots and error bars The results on the paper are computed over three seeds for the BRS, BRS-
NOSP, BRS-NOSP-NORB, and BRS-NOSP-NORB and six seeds for POLA. It is worth noting that
the error bars are calculate over seeds, i.e. checkpoints. The result of games between each pair of
agents is averaged over 32 independent games between those two agents.

Hyperparameter Values
inner game length in QA 4, 8, 12, 16
samples in QA 16, 64, 256, 1024
replay buffer of agent’s size 10, 512, 4096, 16384
value learning algorithm TD-0, Monte-Carlo
GAE λ 0.9, 0.96, 0.99, 0.999, 1.0
agent policy gradient learning rate 0.001, 0.0003
agent entropy β 0.0, 1.0, 2.0, 5.0, 10.0
detective entropy β 0.0, 1.0, 2.0, 5.0, 10.0

Table 2: Hyperparameter search options

Compute Our runs are run for 48 hours on a single A100 GPU with 40 Gigabytes of RAM3.

Batch size We use a batch size of 128.

POLA agent’s training To evaluate the POLA agents, we trained them by executing the POLA
repository here (Zhao et al., 2022).

B Reproducing Results

B.1 IPD

To replicate the results on IPD (Iterated Prisoner’s Dilemma), please refer to the instructions avail-
able at here. By running the provided Colab notebook, you will obtain the IPD plot that is included
in the paper.

B.2 Coin Game

To replicate the outcomes of the coin game, please refer to the instructions available at here. In
essence, the provided guidelines encompass training scripts designed for the purpose of training agent
checkpoints. Subsequently, there is an exporting phase in which these checkpoints are transformed
into their lightweight counterparts. Finally, a script is provided to facilitate the execution of a league
involving multiple agents.

C League Results

In order to visualize the results of our training in complete detail, in Figure 5 we visualize a matrix,
in the format of a heatmap, of the returns of various agents against each other. All the results are

3A single A100 gpu is 80 Gigabyte, but it can be split into two equivalent 40 Gigabyte equivalents and we train
on one of these splits
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Figure 5: Illustrates the outcomes of 1-vs-1 Coin games lasting 50 rounds, involving a range of
agents. The return achieved by each agent is documented within the corresponding cell. The
reported returns are an average across 32 independent games. It is important to note that there are
no games recorded between the MTCS agent and itself as it is not possible.
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averaged over 32 independent games between the corresponding agents. The game is the Coin game
of length 50. 4

D Self-Play

Lemma D.1. Denote o ∈ S to be the state s ∈ S from the perspective of the opponent. For a
symmetric game, if it holds that µ(s0) = µ(o0) for all s0, o0 ∈ S, then

E
τ∼Prθ1,θ1

µ

[R1(τ)] = E
τ∼Prθ1,θ1

µ

[R2(τ)]
where R2 ∶= ∑∞t=0 γ

tr2(ot, bt, at) and r2 denotes r1 from the perspective of the opponent.

Proof. Denote τ̄ = o0, b0, a0, o1,⋯, then notice that

µ(s0)π1
θ1(a0∣s0)π1

θ1(b0∣o0)P (s1∣s0, a0, b0)⋯ = µ(o0)π1
θ1(b0∣o0)π1

θ1(a0∣s0)P (o1∣o0, b0, a0)⋯
⇐⇒ Prθ1,θ1

µ (τ) = Prθ1,θ1
µ (τ̄)

now by symmetry we have that r1(st, at, bt) = r2(ot, bt, at), therefore

E
τ∼Prθ1,θ1

µ
[R1(τ)] = E

τ∼Prθ1,θ1
µ
[∞∑
t=0
γtr1(st, at, bt)]

=∑
τ

Prθ1,θ1
µ (τ) ∞∑

t=0
γtr1(st, at, bt)

= ∑̄
τ

Prθ1,θ1
µ (τ̄) ∞∑

t=0
γtr2(ot, bt, at)

= E
τ∼Prθ1,θ1

µ
[R2(τ)]

where we just rename τ̄ in the last equality. ∎
Proposition D.2 states that the gradient in Equation 4.2.4 is equivalent to that of self-play with
reward-sharing.

Proposition D.2. For a symmetric game,

∇θ1 E
τ∼Prθ1,θ1

µ

[R1(τ)]∝ ⎡⎢⎢⎢⎢⎣∇θ1 E
τ∼Prθ1,θ2

µ

[R1(τ) +R2(τ)] +∇θ2 E
τ∼Prθ1,θ2

µ

[R1(τ) +R2(τ)]⎤⎥⎥⎥⎥⎦θ2=θ1

.

Proof. We write the gradient as follows:

∇θ1 E
τ∼Prθ1,θ1

µ

[R1(τ)] = ∑
τ

R1(τ)∇θ1Prθ1,θ1
µ (τ)

= ∑
τ

R1(τ)Prθ1,θ1
µ (τ)∇θ1 log Prθ1,θ1

µ (τ)
= ∑

τ

R1(τ)Prθ1,θ1
µ (τ)∇θ1 logµ(p0)π1

θ1(a0∣s0)π1
θ1(b0∣o0)⋯

= ∑
τ

R1(τ)Prθ1,θ1
µ (τ) ∞∑

t=0
∇θ1 logπ1

θ1(at∣st) +∇θ1 logπ1
θ1(bt∣ot)

= E
τ∼Prθ1,θ1

µ

[R1(τ) ∞∑
t=0
∇θ1 logπ1

θ1(at∣st) +∇θ1 logπ1
θ1(bt∣ot)] .

4Note that there is no meaning to train MCTS against MCTS because the MCTS needs to roll-out the agent’s
policy to choose an action. However, MCTS against MCTS implies an infinite loop of rolling out the other agent’s
policy
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Now by symmetry and Lemma D.1. we have

E
τ∼Prθ1,θ1

µ

[R1(τ)] = E
τ∼Prθ1,θ1

µ

[R2(τ)] ,
and by linearity of expectation,

E
τ∼Prθ1,θ1

µ

[R1(τ)]∝ E
τ∼Prθ1,θ1

µ

[R1(τ) +R2(τ)] .
Hence

∇θ1 E
τ∼Prθ1,θ1

µ

[R1(τ)] ∝ E
τ∼Prθ1,θ1

µ

[(R1(τ) +R2(τ)) ∞∑
t=0
∇θ1 logπ1

θ1(at∣st) +∇θ1 logπ1
θ1(bt∣ot)]

= ⎡⎢⎢⎢⎢⎣ E
τ∼Prθ1,θ2

µ

[(R1(τ) +R2(τ)) ∞∑
t=0
∇θ1 logπ1

θ1(at∣st) +∇θ2 logπ2
θ2(bt∣ot)]

⎤⎥⎥⎥⎥⎦θ2=θ1

= ⎡⎢⎢⎢⎢⎣ E
τ∼Prθ1,θ2

µ

[(R1(τ) +R2(τ)) (∇θ1 log Prθ1,θ2
µ (τ) +∇θ2 log Prθ1,θ2

µ (τ))]⎤⎥⎥⎥⎥⎦θ2=θ1

= ⎡⎢⎢⎢⎢⎣∇θ1 E
τ∼Prθ1,θ2

µ

[R1(τ) +R2(τ)] +∇θ2 E
τ∼Prθ1,θ2

µ

[R1(τ) +R2(τ)]⎤⎥⎥⎥⎥⎦θ2=θ1

,

which was to be shown. ∎
Corollary D.3. For a symmetric, zero-sum game it holds that

∇θ1 E
τ∼Prθ1,θ1

µ

[R1(τ)] = 0

Proof. By definition of zero-sum game, we have that

r1(st, at, bt) + r2(st, bt, at) = 0

Ô⇒ ∞∑
t=0
γt (r1(st, at, bt) + r2(st, bt, at)) = 0

⇐⇒ R1(τ) = −R2(τ) for all τ

From proposition D.2. we get

∇θ1 E
τ∼Prθ1,θ1

µ

[R1(τ)] ∝
⎡⎢⎢⎢⎢⎢⎢⎣
∇θ1 E

τ∼Prθ1,θ2
µ

[R1(τ) +R2(τ)]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶=0

+∇θ2 E
τ∼Prθ1,θ2

µ

[R1(τ) +R2(τ)]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶=0

⎤⎥⎥⎥⎥⎥⎥⎦θ2=θ1= [∇θ10 +∇θ20]θ2=θ1= 0

completing the proof. ∎
E Self-Play Ablation

E.0.1 IPD

In IPD, as shown in Figure 2 the BRS-NOSP agents learn a variant of tit-for-tat that defects initially
but has the same probability of cooperation as tit-for-tat in {CC,CD,DC,DD}. We name this policy
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cynic-tit-for-tat (CTFT). The best response to a cynic-tit-for-tat in an infinite IPD game is always
cooperating because if the opponent defects initially, the agent will defect in the next turn. Also,
CTFT does not cooperate with itself.

Furthermore, if we use the analytical differentiable returns in IPD, BRS-NOSP learns a ZD-extortion
policy Press & Dyson (2012) similar to Lu et al. (2022) as shown in Figure 7. ZD-Extortion policy
gains advantage by defecting to the extent that best response of the opponent is still cooperation.

E.0.2 Coin Game

In the Coin Game, as shown in Figure 4, the BRS-NOSP agents get a high return against the MCTS.
However, the MCTS opponent gets considerably less return against BRS-NOSP than against BRS.
This indicates BRS exploited the MCTS’s rationality. While MCTS does better than Always Defect
against the BRS-NOSP, it trades a high amount of cooperation to elicit a slight cooperation from the
BRS-NOSP. In other words, teh BRS-NOSP exploites the rationality of the MCTS. Also, BRS-NOSP
agents do not cooperate with themselves and they exploit Always Cooperate.

F Tree Search Detective

In this section, we describe the Tree Search Detective (TSD) used in the IPD experiments.The
intuition behind TSD is that by simulating all possible trajectories based on the agent’s policy, the
opponent can select the path that maximizes its own returns. Consequently, the agent achieves the
return associated with that specific path.

TSD implements this idea. TSD builds a tree structure in which the agent’s actions are directly
sampled from its policy. When it comes to TSD’s action, a branch is formed for each action to
explore the potential outcomes of that specific action.

The agent will treat TSD as a black-box algorithm that queries the agent’s policy on a set of states
and returns a single return, i.e. the return that corresponds to the agent’s return in the path that
yielded the highest return for the TSD. This black-box can be differentiated through via policy
gradient estimators. It is worth noting that when calculating the policy gradient loss, the sum of
all log probabilities should be considered, not just the ones present in the chosen path. This is
crucial because the agent’s actions in states outside of the selected path are significant in TSD’s
decision-making process for selecting that particular path. This idea has been depicted in Figure 6.

G Detailed results of games between agents

In Figure ?? we visualized the average result of 32 games between different agents. Note that for
BRS agents we used three seeds per agent type and for POLA we used six seeds. Indeed, the POLA
agents have more variance in their performance therefore we used more seeds to compute the error
bars for them.

H ZD-Extortion

Figure 7 shows that BRS without self-play learns a ZD-extortion policy as expected.

I Training curves of BRS and BRS-NOSP

Figure 8 shows the training curves of BRS and BRS-NOSP seeds.
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Figure 6: Illustrates the training of the IPD agent against the TSD. TSD samples from the agent’s
policy, represented by red arrows in the plot, while exploring all possible actions when considering
its own actions, represented by black arrows in the plot. The agent treats the TSD as a black-box
algorithm and differentiates through it via REINFORCE. Note that the summation is over all log
probabilities and not only over the log probabilities presnet in the path.
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Figure 7: Visualization of BRS-NOSP’s policy. Similar to Lu et al. (2022) our agent when trained
to find the best response to the best response discovers a ZD-extortion policy.
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Figure 8: Training curves of BRS and BRS-NOSP during training and their evaluation against
Always Defect(AD) and Always Cooperate(AC) opponent

J BRS vs POLA: Head to Head Results

In this section, we delve into the details of POLA vs. BRS. We sampled 32 trajectories between each
POLA seed and each BRS seeds. In summary, we observe: 1) POLA seeds have higher variance in
behaviour. 2) POLA seeds break the cooperation loop much more often than BRS agents. 3) POLA
agents retaliate weakly when BRS breaks the cooperation by defecting. In overall, that indicates
that BRS agents are more suitable than POLA agents as reciprocation-based cooperative agents.

J.1 Reciprocation-based Cooperation Comparison

Agent Start Opponent
Cooperates

Opponent Defects Opponent Defects and
Agent Cooperates

POLA 0.5614 0.8705 0.1350 0.6944
BRS 0.9957 0.9894 0.2599 0.1600

Table 3: This table indicates the empirically estimated probability that each agent cooperates after
a specific condition is met. For example, POLA cooperated with 0.6944 probability in trajectories
in which BRS defected while POLA’s last action was cooperation.

We now consider empirical statistics of the observed trajectories between POLA and BRS agents
in the Coin Game. Here we define cooperation as a turn in which the opponent does not take the
agent’s coin (and vice versa for the agent). We define for both opponent and agent defection as a
turn in which they take the other’s coin.

A shown in Table 3 in contrast to BRS which almost always starts with cooperation, POLA starts
cooperation 0.56 of times deviating from a TFT policy. Both POLA and BRS cooperate with high
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probability in case of observing that the opponent cooperated. However, BRS’s policy cooperates
with higher probability. Both POLA and BRS cooperate with little probability after they observe the
opponent defected. While POLA cooperates with less probability than BRS which seems desirable,
it should be noted that POLA seeds defect more compared to BRS seeds in general. The next column
sheds lights on this. A cooperation reciprocation-based policy should defect after its cooperation
is faced with opponent defection. POLA will cooperate 0.70 times in those situations indicating
lack of strong retaliation. BRS seeds cooperate 0.16 times indicating strong retaliation. Note that
these are conditional probabilities. As shown in Table 4 in these 32 trajectories we observe only 72
situations in which POLA cooperated first and BRS defected. In 22 out of those POLA defected
next and the other 50 POLA cooperated. This is a sign of weak retaliation. In contrast, we observe
950 situations in which BRS cooperated and POLA defected. In 798 out of those, BRS defected
next indicating strong retaliation. In summary, these results show that POLA agents are inclined
towards defecting and also they weakly retaliate while BRS agents show strong inclination towards
cooperation while showing strong signs of retaliation when the opponent defects.

Table 4: Retaliation Behaviors of POLA and BRS Agents

POLA Cooperates & BRS Defects: 72 times BRS Cooperates & POLA Defects: 950 times

POLA Defects Next POLA Cooperates Next BRS Defects Next BRS Cooperates Next

22 times, 0.31 probability 50 times, 0.69 probability 798 times, 0.84 probability 152 times, 0.16 probability

Table 5: Shows the empirical frequency of various retaliations behaviours of POLA and BRS seeds
in 32 rollouts of length 50 in the Coin Game. In 72 times BRS defected after POLA cooperated.
Only 22 times out of those, POLA retaliates. In 950 times POLA defected after BRS cooperated.
BRS retaliated on 798 of those.

J.2 League Results and Analysis

Figure 9 shows the head to head results of BRS and POLA seeds. We observe that while BRS
agents robustly cooperate with themselves, MCTS, and Always Cooperate the behaviour of POLA
agents varies. We observe two main patterns in POLA seeds. POLA-3 and POLA-4 are exploitative,
exploiting other POLA seeds and Always Cooperate. But, they cannot cooperate with themselves.
While they are not exploited by MCTS in the sense of getting lower return than MCTS, their return
against MCTS indicates non-cooperative rollouts. POLA-1, POLA-2, POLA-5, and POLA-6 are
more cooperative - even cooperating with themselves - at the expense of being exploited by other
POLA seeds and MCTS. It should be noted that for all POLA seeds the best response, approximated
by the MCTS agent, is never to always cooperate. This is in contrast with BRS which not only
always cooperates with itself, but also convinces the MCTS agent to always cooperate with them.
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Figure 9: Head to head results of BRS and POLA seeds. Each entry is averaged over 32 independent
rollouts.
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Abstract

Hierarchical Reinforcement Learning (HRL) approaches have shown successful re-
sults in solving a large variety of complex, structured, long-horizon problems. Nev-
ertheless, a full theoretical understanding of this empirical evidence is currently
missing. In the context of the option framework, prior research has devised efficient
algorithms for scenarios where options are fixed, and the high-level policy selecting
among options only has to be learned. However, the fully realistic scenario in which
both the high-level and the low-level policies are learned is surprisingly disregarded
from a theoretical perspective. This work makes a step towards the understand-
ing of this latter scenario. Focusing on the finite-horizon problem, we present a
meta-algorithm alternating between regret minimization algorithms instanced at
different (high and low) temporal abstractions. At the higher level, we treat the
problem as a Semi-Markov Decision Process (SMDP), with fixed low-level policies,
while at a lower level, inner option policies are learned with a fixed high-level policy.
The bounds derived are compared with the lower bound for non-hierarchical finite-
horizon problems, allowing to characterize when a hierarchical approach is provably
preferable, even without pre-trained options.

1 Introduction

Hierarchical Reinforcement Learning (HRL, Pateria et al., 2021) is a framework in the class of
Reinforcement Learning (RL, Sutton & Barto, 2018) methods that has shown successful results
in recent years thanks to its ability to deal with complex, long-horizon, and structured problems
(Bacon et al., 2017; Vezhnevets et al., 2017; Levy et al., 2019; Nachum et al., 2018). In a large
variety of real-world scenarios, a complex task can be decomposed as a concatenation of different
sub-tasks that are often solved as a whole to learn the optimal policy. Nevertheless, in several
cases, these sub-tasks are not fully coupled, and solving them separately leads to (near)optimal
solutions. In these circumstances, a hierarchical RL approach could deliver significant benefits w.r.t.
the application of flat RL algorithms, thanks to its ability to properly exploit the structure of the
environment. A common example in the HRL literature (Dietterich, 2000) is the taxi problem, in
which an autonomous agent controls a taxi that has to bring a passenger from a starting point to
a destination location. This problem embodies three different tasks: (i) driving, (ii) picking up,
and (iii) dropping off the passenger. The HRL power resides in the explicit exploitation of this
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inner structure, subdividing the problem into a set of sub-tasks, individually solvable with their own
optimal policies, which are then linked sequentially, one after the other. This approach naturally
reduces each problem’s complexity, letting the agent focus on one objective at a time.

Recent works have attempted to analyze the theoretical benefits that motivate the great successes of
HRL in practice (Mann et al., 2015; Fruit & Lazaric, 2017; Fruit et al., 2017; Wen et al., 2020; Drappo
et al., 2023; Robert et al., 2024). Most of them focus on problems organized in two-level hierarchies,
where the high-level policy has control over a set of pre-trained options (Precup & Sutton, 1997),
i.e., a particular formalization of temporally extended actions or sub-tasks, and the options’ policies
control the actual interaction with the environment throughout the primitive actions. Using this set
of fixed options helps to reduce the complexity of particular classes of problems, where the structure
enforced by the options does not compromise optimality (Fruit & Lazaric, 2017; Fruit et al., 2017).
While this clearly motivates the performance improvements empirically experienced in several tasks,
when to prefer such approaches in situations where no pre-trained supportive policies are available,
and, thus, the agent is required to face the problem from scratch, solving both the high and the
low-level training, is still an open question. To the best of our knowledge, only Drappo et al. (2023)
provide a preliminary insight in this direction, proposing an approach that first learns the optimal
options’ policies and then exploits them to learn the original task. However, while overcoming the
need for a fixed set of pre-trained policies, they incur sub-optimal performances as any Explore-
then-Commit approach (Lattimore & Szepesvári, 2020), making it hardly comparable with the best
performance achievable by a flat algorithm.1

This paper aims to introduce High-Level/Low-level Meta-Learning, the first method designed to
efficiently handle the lack of pre-trained policies, enabling effective learning of the entire task from
scratch. The key idea involves dividing the learning process of the two levels into multiple phases,
rather than just two, and consistently switching between them by keeping one level fixed while the
other is learning. In this way, the inherent non-stationarity that arises is mitigated. However, to
have efficient performances, a fundamental requirement is the use of efficient regret minimizers for
both levels. Nevertheless, while Azar et al. (2017) proposed an algorithm that achieves the best
possible performance in FH-MDPs (i.e., the low-level), no existing works in the literature propose
a valid alternative when dealing with temporally extended actions. Therefore, to jointly learn both
level policies, we introduce Options-UCBVI, an efficient regret minimizer based on UCBVI for FH-
SMDPs, to handle the high-level problem efficiently.

Original Contributions The contributions of this paper can be summarized as follows:

• We derive Options-UCBVI (O-UCBVI), a novel regret minimization algorithm for FH-SMDPs,
that enjoys an upper bound on the regret of order Õ(H

√
SOKd)2, where S the number of state,

O the cardinality of the option set given, d the average per-episode number of played options,
and K the number of episodes (Section 3).

• We propose the first algorithm, named High-Level/Low-level Meta-Learning (HLML), for simulta-
neously learning at both the high- and the low-levels, exploiting Options-UCBVI for the high-level
and UCBVI for the low-level (i.e., the options learning). It provides regret guarantees of order
Õ(CLH

√
SOKd + CHHO

√
OSAKHO) where other than the already mentioned constants, A

is the primitive action space cardinality, CH , and CL are concentrability coefficient that will be
analyzed later, and HO is an upper bound of the options’ duration. By comparing this result with
the lower bound on the regret for flat problems (Osband & Van Roy, 2016), we’ve been able to
characterize specific classes of problems in which the former delivers provably better theoretical
guarantees, answering the question “when to prefer HRL to standard RL, if both high-level and
low-level policies are unknown?”(Section 4).

The proofs of all the results presented in the main paper are reported in the Appendix B-C.

1An extended discussion of the related works can be found in Appendix A.
2Õ neglects logarithmic terms.
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2 Problem Formulation

In this section, we provide the necessary background employed in the subsequent sections.3

Finite-Horizon MDPs A Finite-Horizon Markov Decision Process (FH-MDP, Puterman, 2014)
is a tuple M = (S,A, rL, pL, H), where S is the state space with caridnality S; A the (low-level
or primitive) action space with cardinality A; rL : S ×A × [H] → [0, 1] is the reward function,
which quantifies the quality rL(s, a, h) of action a ∈ A in state s ∈ S at stage h ∈ [H]; pL :
S ×A×[H]×S → [0, 1] is the transition model, defining the probability pL(s′|s, a, h) of transitioning
to state s′ ∈ S by taking action a ∈ A in state s ∈ S at stage h ∈ [H]; and H ∈ N is the horizon.
The behavior of an agent is modeled by a (low-level) deterministic policy π : S × [H] → A that
maps a state s ∈ S and a stage h ∈ [H] to a (low-level or primitive) action π(s, h) ∈ A.

Finite-Horizon Semi-MDPs A Finite-Horizon Semi-Markov Decision Process (FH-SMDP,
Drappo et al., 2023) is the adaptation of Semi-Markov Decision Processes (Baykal-Gürsoy, 2010,
SMDP) to finite-horizon setting. An FH-SMDP is defined as a tuple SM = (S,O, rH , pH , H),
where S and H are the same quantities of FH-MDPs; O is a set of temporally extended actions
(high-level), with cardinality O; rH : S ×O× [H]→ [0, H] is the (high-level) cumulative reward ob-
tained rH(s, o, h), until the temporally extended (high-level) action o ∈ O terminates, when selected
in state s ∈ S, at stage h ∈ [H]; pH : S ×O× [H]×S × [H]→ [0, 1] is the transition model, defining
the probability pH(s′, h′|s, o, h) of transitioning to state s′ ∈ S, after (h − h′) time steps, h′ ∈ [H],
when playing (high-level) action o ∈ O, in state s ∈ S, and stage h ∈ [H]. The behavior of an agent
is modeled by a deterministic (high-level) policy µ : S × [H] → O that maps a state and a stage
h ∈ [H] to a (high-level) action µ(s, h) ∈ O.

HRL builds upon the theory of Semi-MDPs, characterizing the concept of temporally extended
action with fundamentally two frameworks (Pateria et al., 2021): sub-tasks (Dietterich, 2000) and
options (Sutton et al., 1999). For the sake of this paper, we focus on the options framework.

Options An option (Sutton et al., 1999) is a temporally extended action characterized by three
components o = (Io, βo, πo). Io ⊆ S × [H] is the subset of states and stages pairs (s, h) ∈ S × [H]
in which the option can start, βo : S × [H] → [0, 1] defines the probability βo(s, h) that an option
terminates in state s ∈ S and stage h ∈ [H], and, πo : S × [H] → A is the deterministic policy
executed once an option is selected and until its termination.

Before proceeding, we introduce the following standard assumption.
Assumption 2.1 (Admissible options Fruit & Lazaric (2017)). The set of options O is assumed
admissible, i.e., ∀o ∈ O, s ∈ S, and h ∈ [H] : βo(s, h) > 0 =⇒ ∃o′ ∈ O : (s, h) ∈ Io′ .

The assumption is a minimal requirement for the problem to be well-defined, and it guarantees that
whenever an option o stops in a state s at stage h, there always exists another option o′ that can
start from the state-stage pair (s, h).

Average per-episode duration In the following analysis, we will refer to d (Drappo et al., 2023)
as the average per-episode number of decisions taken in an episode of length H:

d := 1
K

∑

o∈O

∑

s∈S

∑

h∈[H]

nK+1(s, o, h)

where nK+1(s, o, h) is the number of times a temporally extended action (or option) o has been
selected in state s, in step h, up to episode K of interaction with the environment.

Problem Formulation We are given a set of not pre-trained options O, i.e., for every option
o ∈ O, the initiation set Io and the termination function βo are fixed, while the inner low-level
policy πo has to be learned. We seek to learn both the high-level policy µ (selecting options in the
FH-SMDP) and the low-level policies πo (inner to the options) for every o ∈ O as follows:

(µ∗, π∗) ∈ argmax
µ,π

V µ
π (s1, 1), (1)

3Let N ∈ N, we denote with [N ] := {1, . . . , N}.
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where π = (πo)o∈O are the low-level policies and µ is the high-level policy, s1 ∈ S is an initial state,
and V µ

π is the value function, defined for every (s, h) ∈ S × [H] as:
V µ

π (s, h) := E
(s′,h′)∼pH (·|s,µ(s,h),h)

[
rH(s, µ(s, h), h) + V µ

π (s′, h′)
]
,

rH(s, o, h) := E
s′′∼pL(·|,s,πo(s,h),h)

[
rL(s, πo(s, h), h) + (1− βo(s′′, h + 1))rH(s′′, o, h + 1)

]
.

We denote with V ∗
∗ (s1, 1) = V µ∗

π∗ (s1, 1).

Regret The (cumulative) regret (Azar et al., 2017; Fruit & Lazaric, 2017; Zanette & Brunskill,
2018; Drappo et al., 2023) of an algorithm A for the problem defined above is the cumulative value
difference over K episodes when playing the high-level policy µk and the low-level policies πk at the
episode k ∈ [K] := {1, . . . , K} instead of the optimal ones:

R(A, K) :=
K∑

k=1
V ∗

∗ (s1, 1)− V µk
πk

(s1, 1)

Thus the goal of the algorithm is to play a sequence of policies µ0, . . . , µK , and π0, . . . , πK , such
that R(A, K) is as small as possible.

3 Options-UCBVI

In order to develop an algorithm that jointly solves both high and low-level problems, it is necessary
to handle each level efficiently. However, while Azar et al. (2017) proposes an optimal method
for FH-MDP to solve the low level, no provably efficient counterparts have been proposed for FH-
SMDPs, leaving the high level untreated. In this section, we introduce the first novel contribution
of this work, which is a provably efficient algorithm for this framework.

Our method, named Options-UCBVI (O-UCBVI, Algorithm 1), is a model-based approach built
upon UCBVI (Azar et al., 2017) that exploits the given set of options O to learn the optimal
FH-SMDP policy µ∗. The key contribution of this algorithm is its explicit handling of temporally
extended actions, which introduces an additional source of stochasticity due to their random dura-
tion. To address this issue, first, an estimate of the transition model is computed solely with the
data collected from the SMDP, generating an estimate of a multi-step dynamic, thereby ignoring the
primitive state-action pairs visited during option execution (line 5). Then, we address a more crucial
point: the random duration of options (i.e., temporally extended actions) makes the strict applica-
tion of backward induction, used by UCBVI to compute the optimistic value function, unfeasible.
Intuitively, the value of a certain state-step pair, V (s, h), needs to be back-propagated not only to
the previous state-step pair (sh−1, h − 1) but to any state-step pair where an option that would
ultimately lead to (s, h) could be selected. To handle this problem, we introduce a backward-forward
mechanism presented in lines 7-15. Within the first loop, h = H, ..., 1, we move backward, as in
standard backward induction. However, in the inner loop, h′ = h + 1, ..., H + 1, we project to any
possible future state-step pair reachable by playing an option in the current one (forward move)
to update the current value with those of future pairs. By employing this backward induction, we
handle the randomness of the options’ duration, ensuring proper computation of the values.

Up to this crucial change, Options-UCBVI follows the same philosophy as UCBVI-BF. It implements
the concept of optimism in the face of uncertainty for SMDPs, with a tailored bonus added to
the empirical Bellman operator (lines 12-13), which mitigates the exploitation of known solutions
and encourages strategic exploration of more uncertain regions of the SMDP. From a technical
perspective, we modified the exploration bonus to deal with the non-stationary transition model
and the set of given options, with their temporally extended nature. In particular, we focused on
the version using the Bernstein-Freedman (Freedman, 1975; Maurer & Pontil, 2009) bonus in order
to achieve tight regret guarantees. Therefore, by following the same intuition of the analysis of
UCBVI and adapting it to non-stationary transitions and the different backward induction, we end
up demonstrating the following regret guarantee.
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Algorithm 1 Options-UCBVI
1: Input: S,O, H, K
2: Initialize µ0 arbitrarily, Q1(s, o, h) = 0 for all (s, o, h) ∈ S ×O × [H], L = log(5SOKH/δ), DH ← {}
3: for k = 1, . . . , K do
4: Compute nk(s, o, h) =

∑
(x,y,z)∈DH 1{x = s, y = o, z = h}

5: Estimate P̂k(s′, h′|s, o, h) = 1
max{1,nk(s,o,h)}

∑
(x,y,z,w,u)∈DH 1{(x, y, z, w, u) = (s, o, h, s′, h′)}

6: Set Qk(s, o, H + 1) = 0 for all (s, o, h) ∈ S ×O × [H]
7: for h = H, . . . , 1 do
8: for (s, o) ∈ S ×O do
9: for h′ = h + 1, . . . , H + 1 do

10: Ṽ µk (s, h′) = min {H − (h′ − 1), maxo∈O Qk(s, o, h′)}
11: end for

12: bhk(s, o) =

√
8L Var(s′,h′)∼P̂k

[Ṽ µk (s′,h′)]
nk(s,o,h) + 14HL

3nk(s,o,h) +

√
8
∑

(s′,h′)
P̂k(s′,h′|s,o,h) min

{
1002H5S2OL2∑

o
nk(s′,o,h′)

,H2
}

nk(s,o,h)

13: Qk(s, o, h) = r(s, o, h) +
∑

(s′,h′) P̂k(s′h′|s, o, h)Ṽ µk (s′, h′) + bhk(s, o)
14: end for
15: end for
16: µk(s, h) = argmaxo∈OQk(s, o, h)
17: s← s1
18: while h < H do
19: Play option o = µk(s, h), observe (s′, h′), and update DH ← DH ∪ {(s, o, h, s′, h′)}
20: s← s′, h← h′

21: end while
22: end for

Theorem 3.1. Let SM be an FH-SMDP with S states and O temporally extended actions (op-
tions), known reward,4 bounded primitive reward rL(s, a, h) ∈ [0, 1]. The regret suffered by algorithm
Options-UCBVI in K episodes of horizon H is bounded, with probability 1− δ, by:

Regret(O-UCBVI, K) ≤ Õ
(

H
√

SOKd + H3S2Od + H
√

Kd
)

,

where d is the average per-episode number of options played during the execution of the algorithm.

That, for K ≥ H4S3Od translates into a regret bound of Õ(H
√

SOKd).

The regret of this algorithm differs from the regret of UCBVI, Õ(H
√

SAKH)5, for the term
√

O
replacing

√
A, which is the options set cardinality, and for the key term

√
d, instead of

√
H, which

is the average per-episode number of options selected in H steps.
This last term expresses the actual power endorsed by the options that allow a faster and wider
exploration of the problem space and reduce the effective planning horizon. Indeed, this is visible
from the regret that scales with

√
OKd instead of

√
AKH as in the flat version, and since d≪ H,

and normally O ≤ A, being the options longer and often fewer than primitive actions, Options-
UCBVI suffers smaller regret than its flat counterpart when fixed options are given. In addition,
we can show how this result is a generalization of the flat case. The upper bound is tight in its
dominating term also when considering O = A and, consequently, d = H, i.e., running Options-
UCBVI on the flat MDP.

Now, given an optimal method for the high-level problem (i.e., tight in all the dependencies), we are
ready to present the algorithm that jointly learns both level policies.

4The choice of assuming a known reward is for compliance with Azar et al. (2017). Nevertheless, learning the
reward function is known to be a negligible task compared to learning the transition model of the environment and,
consequently, will not alter the regret order.

5The result in Azar et al. (2017) doesn’t present the additional
√

H term, which however is well-known to be tight
even in standard FH-MDPs when the transition model is non-stationary. The non-stationarity of the transition model
is unavoidable in the Semi-Markov setting due to the different durations of the temporally extended actions.
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Algorithm 2 High-Level/Low-level Meta-Learning (HLML)
1: Input: N phases, Options-UCBVI = AH , UCBVI = AL, and schedule ∀n ∈ [N ] : KH

n = KL
n = ⌊2n−1⌋

2: Arbitrarily initialize µ0 and π0
3: for n = 1, . . . , N do
4: Run AH on the FH-SMDP for KH

n episodes playing the sequence of high-level policies µn,1, . . . , µn,KH
n

5: Fix the high-level policy µn = µn,X where X ∼ Uni([KH
n ])

6: Run AL on the FH-MDP for KL
n episodes playing the sequence of low-level policies πn,1, . . . , πn,KL

n

7: Fix the low-level policies πn−1 = πn−1,Y with Y ∼ Uni([KL
n ])

8: end for
9: return (µN , πN )

4 Meta-Algorithm for High-and-Low-level Training

In this section, we provide a complete algorithm High-Level/Low-Level Meta-Learning (HLML), able
to learn both the high-level and the low-level policies in a provably efficient way.

HLML presented in Algorithm 2, takes as input two optimal regret minimizers, Options-UCBVI and
UCBVI (Azar et al., 2017), designed for learning in the FH-SMDP (i.e., at a high level, learning µ∗)
and in the FH-MDP (i.e., at a low level, learning π∗), respectively. The meta-algorithm operates
in N stages. In stage n ∈ [N ], we run the high-level regret minimizer for KH

n episodes, keeping the
low-level policies πn−1 = (πo

n−1)o∈O fixed (line 4). Options-UCBVI will output the high-level policy
µn which is chosen uniformly at random among the µn,1, . . . , µn,KH

n
played during its execution in

the stage (line 5). Then, the control moves to the low level, and we run the low-level regret minimizer
for KL

n episodes, keeping the high-level policy µn fixed (line 6). UCBVI will output the low-level
policies πn chosen uniformly at random among the ones πn,1, . . . , πn,KL

n
played during its execution

in the stage (line 7). The meta-algorithm, then, moves to the next stage n + 1, passing back the
control to the high level, and the process continues.

In order to achieve tight regret guarantees, we need to accurately select the schedule of the number
of episodes KH

n and KL
n , namely, we duplicate the number of episodes when moving from one stage

n to the next one n + 1:

∀n ∈ [N ] : KH
n = KL

n = ⌊2n−1⌋ where N = ⌊log2(2K + 1)⌋ and
N∑

n=1
KH

n + KL
n = K. (2)

The key feature of our meta-algorithm is that when the high-level algorithm is running in stage
n the low-level (inner-option) policies πn−1 are kept fixed. Therefore, Options-UCBVI is actually
performing regret minimization in an FH-SMDP, enjoying the corresponding regret guarantees, for
converging to the optimal high-level policy for the fixed options O. This allows us to solve the
common non-stationarity issues that arise when two learning processes are carried out in parallel.
Clearly, such a high-level policy will not necessarily be µ∗, since we are not guaranteed that the low-
level policies πn−1 are optimal for the corresponding options. This is the reason why the execution
of Options-UCBVI is stopped after KH

n episodes, and, within the same stage n, we proceed to run
the low-level regret minimizer before continuing learning at the high-level. Similarly, in this phase,
UCBVI is acting on the flat MDP with the goal of learning the inner policy πo

n for each of the
options o ∈ O. This amounts to solving for each option o ∈ O a single FH-MDP formalized as
Mo = (So,Ao, p, ro, Ho) where So ⊆ S, Ao ⊆ A, Ho ≤ H, meaning that each option operates on
a restricted portion of the original problem and for a specific fixed horizon Ho (induced by Io and
βo). This time the high-level policy is kept fixed, and consequently, its effect is enforcing a specific
exploration that determines a particular option visitation.

In principle, solving such FH-MDPsMo can be as complex as solving the original problemM with
a flat approach. This is expected since the advantages of a hierarchical approach emerge when a
certain structure on the original problem is present. This is particularly evident if we think of the
convergence of the learning process of the low-level policies, which could potentially end up in a
different optimum than the one reached by a flat approach in that same portion of the problem
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because the latter would have a complete scope over the whole problem. For this reason, a further
assumption over the structure of the problem is required.

Assumption 4.1. For any optimal high-level policy µ∗, let Oµ∗ the set of options played by µ∗ and
for o ∈ Oµ∗ , let Π∗

o the set of optimal low-level policies form the joint optimization. Let Π#
o be the

set of optimal low-level policies from the local optimization (π#
o ∈ argmaxa∈AQ∗,o(s, a)∀s ∈ So). It

is assumed that
Π#

o ⊆ Π∗
o.

This assumption ensures that the optimal inner-option policies π∗
o , on a portion of the original MDP

Mo induced by an options o ∈ O, selected by the optimal SMDP policy µ∗, do not differ from an
optimal policy π∗ of the flat problem. This way, we can safely learn in the FH-MDPs Mo knowing
that the learned policy will be “a portion” of the optimal policy π∗ in the flat FH-MDP. This
assumption, seemingly demanding, is the first one, to the best of our knowledge, that attempts to
characterize a structural property of the FH-MDPs that is suitable for being addressed by means of a
hierarchical approach. Indeed, if Assumption 4.1 is violated, the inner-option learning deviates from
the process of learning the optimal policy in the flat MDP, possibly preventing the convergence to the
optimal policy in the hierarchical architecture. An example of a scenario in which this assumption
is valid is the taxi problem described above. For instance, from a starting point A to destination
B, the optimal driving policy (i.e., the one solving the subtask (i)) does not differ if the problem is
considered a whole or a smaller one that includes just the neighborhood of the two points.

Theoretical Analysis As described above, in each stage n ∈ [N ], the learning process alternates
between the high- and the low-level learning problems, keeping the other fixed. This induces a bias
in both optimizations. To make this clear, we provide a convenient decomposition of the regret,
which highlights the contributions of the two phases of learning in each stage:

Regret(HLML, K) =
N∑

n=1

( KH
n∑

k=1
V ∗

∗ (s1, 1)− V
µn,k

πn−1(s1, 1)︸ ︷︷ ︸
Regret during high-level learning

+
KL

n∑

k=1
V ∗

∗ (s1, 1)− V µn
πn,k

(s1, 1)
︸ ︷︷ ︸

Regret during low-level learning

)
, (3)

where µn,k and πn,k are the high-level policy and the low-level policies played by the corresponding
algorithms Options-UCBVI and UCBVI at episode k of phase n. Unfortunately, the two terms
in Equation (3) cannot be directly bounded in terms of the properties of the regret minimization
algorithms. This is because each of them, as explained above, will converge to the corresponding
high/low-level optimal policy, given that the other-level policy is fixed. Thus, further elaboration is
needed to highlight the bias terms:

V ∗
∗ (s1, 1)− V

µn,k
πn−1(s1, 1)︸ ︷︷ ︸

Regret during high-level learning

= V ∗
∗ (s1, 1)− V ∗

πn−1(s1, 1)
︸ ︷︷ ︸

Bias of not playing π∗

+ V ∗
πn−1(s1, 1)− V

µn,k
πn−1(s1, 1)

︸ ︷︷ ︸
Regret of Options-UCBVI

(4)

V ∗
∗ (s1, 1)− V µn

πn,k
(s1, 1)

︸ ︷︷ ︸
Regret during low-level learning

= V ∗
∗ (s1, 1)− V µn∗ (s1, 1)︸ ︷︷ ︸
Bias of not playing µ∗

+ V µn∗ (s1, 1)− V µn
πn,k

(s1, 1)
︸ ︷︷ ︸

Regret of UCBVI

, (5)

Thus, the regrets of the two phases (low- and high-level learning) are decomposed into a proper
regret term and a bias term, which accounts for the fact that the other level is kept fixed. The regret
terms can be easily managed by resorting to the properties of the regret minimizers. Concerning the
bias terms, the high level corresponds to the value difference between playing the current low-level
policies πn−1 compared to playing the optimal ones π∗. Symmetrically, for the low level, this bias
translates into the value difference between playing the current high-level policy µn compared to
the optimal one µ∗. From a technical perspective, we decide to upper bound the bias terms with
the proper regret terms at the price of introducing a concentrability coefficient for accounting of the
distribution shift, as shown in the following result.

Lemma 4.2. Let us define the concentrability coefficients:

CH := max
n∈[N ]

inf
µ∗ optimal

max
(s,h)∈S×[H]

dµ∗

s1,1(s, h)
dµn

s1,1(s, h) ,
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CL := max
n∈[N ]

max
o∈O

inf
π∗

o optimal
max

(s,h)∈Io
max

(s′,h′)∈So×[Ho]

d
π∗

o

s,h(s′, h′)

d
πo

n−1
s,h (s′, h′)

.

Then, it holds that:
V ∗

∗ (s1, 1)− V ∗
πn−1(s1, 1)

︸ ︷︷ ︸
Bias of not playing π∗

≤ CH
(

V µn∗ (s1, 1)− V µn
πn−1(s1, 1)

︸ ︷︷ ︸
Regret of low-level algorithm

)
,

V ∗
∗ (s1, 1)− V µn∗ (s1, 1)︸ ︷︷ ︸
Bias of not playing µ∗

≤ CL
(

V ∗
πn−1(s1, 1)− V µn

πn−1(s1, 1)
︸ ︷︷ ︸

Regret of high-level algorithm

)
.

Please note that the concentrability coefficients, CH and CL, are defined exclusively for state-stage
pairs. They are ensured to be finite when all state-stage pairs are visited with non-zero probability
under any policy. Additionally, they are proportional to 1/pmin, where pmin > 0 represents the
minimum probability of visiting a state-stage pair with any policy.

We are finally ready to state the main theoretical guarantees on the regret of our meta-algorithm.

Theorem 4.3. Let M = (S,A, p, r, H) be an FH-MDP and let O be a set of options to be learned
inducing the FH-MDPsMo = (So,Ao, p, ro, Ho) for o ∈ O. The regret suffered by Algorithm 2 under
Assumption 4.1, episode schedule as in Equation (2), and where HO = maxo∈O Ho, is bounded with
probability at least 1− δ by:

R(HLML, K) ≤ Õ

(
CL H

√
SOKd︸ ︷︷ ︸

High-Level Regret

+CH HO

√
OSAKHO︸ ︷︷ ︸

Low-Level Regret

)
.

Some observations are in order. First, we relate the regret of the meta-algorithm in terms of the
regret suffered by the individual regret minimizers, Options-UCBVI and UCBVI, weighted by the
concentrability coefficients CH and CL. To be precise, the low-level regret is not the exact regret of
UCBVI. It is the sum of the regret of the UCBVI instances run on all the options played in the nth

phase, then summed for all the N phases. Second, we can now appreciate the role of Assumption 4.1.
Indeed, in order to be able to converge at a low level to the optimal inner-option policies π∗ (as in
Equation (1)), it must happen that the low-level regret minimizer performs an optimization that is
compliant with what would have happened if solving the original flat MDP.

At this point, it is possible to properly characterize the class of problems more efficiently solvable
with this HRL approach instead of a flat one. We can do so by relating the regret of Theorem 4.3,
with the lower bound in FH-MDPs (Osband & Van Roy, 2016) for non-stationary transitions. Let
us consider a particular case for which HO = αH, with 0 < α < 1, we can write:

Regret of Theorem 4.3
Lower Bound FH-MDPs ≤

CLH
√

SOKd + CHHO

√
OSAKHO

H
√

SAKH
= CL

√
Od

AH
+ CH

√
Oα3 (6)

Therefore, considering Equation (6), the classes of problems for which this HRL approach will
outperform the flat one are the ones that guarantee to have this ratio smaller than 1 and with a
structure compliant to Assumption 4.1. Under the assumption that the effect of the concentrability
coefficients is negligible, there is a clear advantage of using the hierarchical approach when the
structure that the options induce on the MDP guarantees Od≪ AH and

√
Oα3 to be small enough.

In other words, the advantage emerges when the number of options is significantly smaller than the
number of primitive actions, and their durations significantly reduce the planning horizon in the
SMDP problem. Of course, given the presence of CL and CH , this advantage gets mitigated by
the magnitude of these constants. However, our conjecture is that with these coefficients, we can
identify the point at which the convenience of HRL emerges, emphasizing the influence of the joint
learning process besides the MDP’s structure. This point would probably open a new question for
the theoretical study of HRL.
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5 Conclusions

In this paper, we investigated the problem of learning the inner-option policies together with learn-
ing the high-level policy in an HRL setting based on the options framework. We first provided
Options-UCBVI, a novel, provably efficient algorithm for learning in finite-horizon SMDPs enjoying
favorable regret guarantees, which become nearly tight when applied to standard FH-MDPs. Then,
we combined Options-UCBVI and UCBVI into a novel meta-algorithm HLML based on the alter-
nation between high- and low-level learning whose theoretical guarantees depend on those of the
individual regret minimizers under particular structural assumptions of the problem. This assump-
tion represents the first attempt to characterize the structure that an MDP should have to make a
hierarchical RL approach provably convenient compared to a flat one. We succeeded in achieving
sublinear regret for learning at both (high and low) levels, also showing the advantages over the
resolution of the FH-MDP with a flat approach. One of the main limitations of the approach lies
in the need for the concentrability coefficients in the analysis of the meta-algorithm. Future works
should investigate further in this direction to understand whether this represents an artifact of our
analysis, a limitation of the algorithm, or an inherent challenge of the setting.
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A Related Works

There is a vast literature for provably efficient algorithms for FH-MDP. Osband & Van Roy (2016)
proves the lower bound for the regret in the FH-MDP setting, Ω(

√
HSAT ). Then, many works pro-

pose algorithms with guarantees that nearly close the problem, i.e., with upper bounds of the same
order as the lower bound (Zanette & Brunskill, 2018). Azar et al. (2017) definitively close the prob-
lem by proposing an innovative analysis of an algorithm for which the upper bound, O(

√
HSAT ),

matches the lower bound in all terms.

Nevertheless, only some works focused on theoretically understanding the benefits of hierarchical
reinforcement learning approaches, and most of them consider a known set of pre-trained policies.
In Fruit & Lazaric (2017), the authors propose an adaptation of UCRL2 (Auer et al., 2008) for
SMDPs. This work was the first to theoretically compare options instead of primitive actions to
learn in SMDPs. It provides both an upper bound for the regret suffered by their algorithm and a
lower bound for the general problem. However, it focuses on the average reward setting to study how
to possibly induce a more efficient exploration when using a set of fixed options. Differently, we aim
to analyze the advantages of using options to reduce the sample complexity of the problem, resorting
to the intuition that temporally extended actions can intrinsically reduce the planning horizon in FH-
SMDPs, and characterize problems likely to benefit from using HRL even when no prior information
about the problem is known, up to its structure. Fruit et al. (2017) is an extension of this work,
where the need for prior knowledge of the distribution of cumulative reward and duration of each
option is relaxed. However, the setting is identical. Furthermore, Mann et al. (2015) studies the
convergence property of Fitted Value Iteration (FVI) using temporally extended actions, showing
that a longer options duration and pessimistic value function estimates lead to faster convergence.
Wen et al. (2020) demonstrate how patterns and substructures in the MDP provide benefits in
terms of planning speed and statistical efficiency. They present a Bayesian approach that exploits
this information, analyzing how sub-structure similarities and sub-problems’ complexity contribute
to the regret of their algorithm. A very recent approach proposed by Robert et al. (2024) studies
the sample complexity of a particular sub-class of HRL approaches: the Goal-conditioned one, in
which a goal-based problem is structured into a hierarchy of sub-tasks, each with its own sub-goal.
They analyzed the best possible performance achievable by the best algorithm in the worst possible
problem by adapting to this framework the lower bound on the sample complexity presented by
Dann & Brunskill (2015). Nevertheless, this work is not completely related to our framework, which
is more general than the goal-conditioned one.

The closest approach in the literature is Drappo et al. (2023). They propose to relax the assumption
of having a set of pre-trained options by implementing an Explore-Then-Commit approach (Latti-
more & Szepesvári, 2020), which first learns each options’ policy and then exploits an adaptation of
UCRL2 to FH-SMDPs (Auer et al., 2008) to find the optimal policy over options. Nevertheless, they
sacrifice optimality to relax this assumption. Indeed, their approach suffer from the standard sub-
optimality of Explore-Then-Commit approaches, having a regret scaling with K2/3, and additionally
is suboptimal in

√
HS being the high-level algorithm used in the second phase based on UCRL2.

Therefore, our approach is the first in the literature able to relax the aforementioned assumption
maintaining optimal guarantees.

B Proof of the regret of Options-UCBVI

In this section, we will present the analysis of the upper bound on the regret paid by Options-
UCBVI. The analysis will adapt the one of UCBVI Azar et al. (2017) to the FH-SMDP for non-
stationary transition models. For simplicity, we will write o = µk(s, h), and P µk (s′, h′|s, h) =
P (s′, h′|s, µk(s), h).
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Theorem 3.1. Let SM be an FH-SMDP with S states and O temporally extended actions (op-
tions), known reward,6 bounded primitive reward rL(s, a, h) ∈ [0, 1]. The regret suffered by algorithm
Options-UCBVI in K episodes of horizon H is bounded, with probability 1− δ, by:

Regret(O-UCBVI, K) ≤ Õ
(

H
√

SOKd + H3S2Od + H
√

Kd
)

,

where d is the average per-episode number of options played during the execution of the algorithm.

Proof. The Proof follows the same ideas as the proofs of UCBVI for the Bernstein-Freedman explo-
ration bonus. We can write the regret as:

Regret(K) ≤ R̃egret(K) ≤
K∑

Ṽ µk (s, 1)− V µk (s, 1)

Where Ṽ µk (s, 1) is the optimistic value function, and V µk (s, 1), is the real value function considering
the policy learned at the kth step. Following the analysis of the original paper we can write the
regret in terms of the per step regret ∆̃hk(shk). Thus,

R̃egret(K) ≤
K∑

i=1

H∑

j=1
∆̃ij(sij)

where the summation over H is composed of d terms, for the temporally extended transitions, where
d is a random variable describing the expected number of options played in one episode, refer to the
main paper for a more detailed explanation (Section 3).
Now let’s define properly the per step regret:

∆̃hk(sij) = Ṽ µk (shk, h)− V µk (shk, h)
a= [P̂ µk

hk Ṽ µk (s′, h′)](shk) + bhk − [P µk

h V µk (s′, h′)](shk) ± [P µk Ṽ µk (s′, h′)](shk)
= [(P̂ µk

hk − P µk

h )Ṽ µk (s′, h′)](shk) + bhk + [P µk

h (Ṽ µk (s′, h′)− V µk (s′, h′))](shk)
± [∆pV ∗(s′, h′)](shk)

= [(P̂ µk

hk − P µk

h )(Ṽ µk (s′, h′)− V ∗(s′, h′)](shk) + bhk + P µk

h ∆̃h′,k(shk)
+ [(P̂ µk

hk − P µk

h )V ∗(s′, h′)](shk) ± ∆̃h′,k(s′)
b= chk + bhk + ehk + ϵhk + ∆̃h′,k(s′)

(a) By applying the bellman operator considering known reward that simplifies, and where
P µk

h = p(·, ·|sh, µk(sh), h), and P̂ µk

hk = p̂(·, ·|shk, µk(shk), h), the estimated transition model
at episode k. By applying the bellman operator on the optimistic value function, the bonus
term bhk is added to the reward.

(b) By defining chk = [(P̂ µk

hk − P µk

h )(Ṽ µk (s′, h′) − V ∗(s′, h′)](shk), the correction term, ehk =
[(P̂ µk

hk − P µk

h )V ∗(s′, h′)](shk) the estimation error of the optimal value function, and ϵhk a
martingale difference, defined as ϵhk =Mt∆̃h′,k(s) = P µk

h ∆̃h′,k(s)− ∆̃h′,k(s′), whereMt is
defined as a martingale operator (refer to appendix B.3 of Azar et al. (2017)).

Let us now bound each of these terms separately.

B.1 Bound of the correction term chk

In this subsection, we bound the correction term
chk = [(P̂ µk

hk − P µk

h )(Ṽ µk (s′, h′)− V ∗(s′, h′)](shk)
a=
∑

s′∈S

∑

h′∈H

(P̂ µk

k (s′, h′|shk, h)− P µk (s′, h′|shk, h))(Ṽ µk (s′, h′)− V ∗(s′, h′))

6The choice of assuming a known reward is for compliance with Azar et al. (2017). Nevertheless, learning the
reward function is known to be a negligible task compared to learning the transition model of the environment and,
consequently, will not alter the regret order.
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b
≤
∑

s′∈S

∑

h′∈H

(
2

√
phk(s′)(1− phk(s′))L

nk(s, o, h) + 4L

3nk(s, o, h)

)
∆̃h′k(s′)

c
≤ 2
√

L
∑

s′∈S

∑

h′∈H

√
phk(s′)

nk(s, o, h)∆̃h′k(s′) + 4SH2L

3nk(s, o, h)

d= 2
√

L

( ∑

(s′,h′)∈[(s′,h′)]typ

√
phk(s′)

nk(s, o, h)∆̃h′k(s′)

+
∑

(s′,h′)/∈[(s′,h′)]typ

√
phk(s′)

nk(s, o, h)∆̃h′k(s′)
)

+ 4SH2L

3nk(s, o, h)

e= 2
√

L

( ∑

(s′,h′)∈[(s′,h′)]typ

P µk (s′, h′|shk, h′)
√

1
phk(s′)nk(s, o, h)∆̃h′k(s′)

+
∑

(s′,h′)/∈[(s′,h′)]typ

√
phk(s′)nk(s, o, h)

nk(s, o, h)2 ∆̃h′k(s′)
)

+ 4SH2L

3nk(s, o, h)

f= 2
√

L

(
ϵ̄hk +

√
1

phk(s′)nk(s, o, h) I((s
′, h′) ∈ [(s′h′)]typ)∆̃h′k(s′)

+
∑

(s′,h′)/∈[(s′,h′)]typ

√
phk(s′)nk(s, o, h)

nk(s, o, h)2 ∆̃h′k(s′)
)

+ 4SH2L

3nk(s, o, h)

g
≤ 2
√

L

(
ϵ̄hk +

√
1

4LH2 ∆̃h′k(s′) + SH2
√

4LH2

nk(s, o, h)

)
+ 4SH2L

3nk(s, o, h)

≤ 2
√

Lϵ̄hk + 1
H

∆̃h′k(s′) + 4SH3L

nk(s, o, h) + 4SH2L

3nk(s, o, h)

(a) By considering, for brevity, P µ(s′, h′|s, h) = P (s′, h′|s, µ(s), h), and summing over all the
possible next states and next stages.

(b) Where for the first term we substitute the difference of transition probabilities with
the relative confidence interval (refer to section B.4 on the appendix of Azar et al.
(2017)),

∣∣P̂ µk

k (s′, h′|shk, h) − P µk (s′, h′|shk, h)
∣∣ ≤ 2

√
phk(s′)(1−phk(s′))L

nk(s,o,h) + 4L
3nk(s,o,h) , where

phk(s′) = P µk (s′, h′|s, h). Then we can bound Ṽ µk (s′, h′)−V ∗(s′, h′) with ∆̃h′k(s′) because
V ∗(s′, h′) ≥ V µk (s′, h′) (the true value function of the policy µk) by definition.

(c) Because (1− phk(s′)) ≤ 1 and ∆̃h′k(s′) ≤ H

(d) We divide the summation over all the possible next state-stage, in the summation over the
pairs contained in the typical pairs and the ones outside the set (the typical episodes are
the episodes in which we have smaller regret; refer to the appendix of Azar et al. (2017)).

(e) We multiply the first term by phk(s′)
phk(s′) , and the second by nk(s,o,h)

nk(s,o,h) .

(f) We sum and subtract
√

I((s′,h′)∈[(s′h′)]typ)
phk(s′)nk(s,o,h) ∆̃h′k(s′) and apply the martingale opera-

tor M (see (b) in the previous proof). ϵ̄hk = P µk

h

√
I((s′,h′)∈[(s′h′)]typ)

phk(s′)nk(s,o,h) ∆̃h′k(s′) +
√

I((s′,h′)∈[(s′h′)]typ)
phk(s′)nk(s,o,h) ∆̃h′k(s′).
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(g) For typical next state-stage pairs nk(s, o, h)P (s′, h′|s, o, h) ≥ 2H2L, where L is a logarithmic
term (We kept the same lower bound of Azar et al. (2017)).

Now, before bounding the estimation error and the exploration bonus, let’s rewrite the regret as

R̃egret(K) =
K∑

i=1
∆̃1i(s1) =

K∑

i=1

H∑

j=1
∆̃ij(sij)

≤
(

1 + 1
H

)d

︸ ︷︷ ︸
≤e

K∑

i=1

H∑

j=1

(
bhk + ehk + ϵhk + 2

√
Lϵ̄hk + 4SH3L

nk(s, o, h) + 4SH2L

3nk(s, o, h)

)

or otherwise omitting the last term which is dominated

R̃egret(K) ≤
K∑

i=1

H∑

j=1

(
bhk + ehk + ϵhk + 2

√
Lϵ̄hk + 4SH3L

nk(s, o, h)

)
(7)

B.2 Bound of the estimation error ehk

Let’s consider just the typical episodes, the episodes for which the number of visits of state-option-
stage pairs is larger than the rest of the episodes.

K∑

k=1

H∑

h=1
ehk =

K∑

k=1

H∑

h=1
I(k ∈ [k]typ)([(P̂ µk

hk − P µk

h )V ∗(s′, h′)](shk))

a
≤

K∑

k=1

H∑

h=1
I(k ∈ [k]typ)

(
2

√
V∗

hkL

nk(shk, o, h) + 4HL

3nk(s, o, h)

)

b
≤ 2
√

L

√√√√
K∑

k=1

H∑

h=1
V∗

hk

√√√√
K∑

k=1

H∑

h=1
I(k ∈ [k]typ) 1

nk(s, o, h)

+
K∑

k=1

H∑

h=1
I(k ∈ [k]typ) 4HL

3nk(s, o, h)
c
≤ 2
√

L
(√

KH2 + HdUK,1 + □
√

H5KL + 4/3H3L
)(√

2SOdL
)

+ 4/3HSOdL2

d
≤ □LH

√
KSOd + □Ld

√
HSOUK,1

(a) Using Bernstein Inequality. V∗
hk = Var(s′,h′)∼P µk (·|s,h)(V ∗(s′, h′)) (Remember the meaning

of P µk )

(b) Using Cauchy-Schwartz inequality

(c) Summing and subtracting Vµk

hk = Var(s′,h′)∼P µk (·|s,h)(V µk (s′, h′)) the variance of the next
state-stage pair value function, inside the first square root, and then using Lemma D.2 and
D.3. For the second square root and the additional term, we just use a pigeon-hole argument
(Lemma D.1). We ignore the numerical constant represented as □.

(d) Because for typical episodes K ≥ H2L2S2Od and thus we consider only the dominant terms.

B.3 Bound of the martingale differences ϵhk and ϵ̄hk

K∑

k=1

H∑

h=1
ϵhk ≤ H

√
dKL
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K∑

k=1

H∑

h=1
ϵ̄hk ≤

√
dK

These results follow the same proofs of the original paper, thus considering the same event E to hold.
The only difference is that the summation over H is a summation of d elements, and thus, (H − h)
is at most d in this case for the effect of the temporally extended actions.

B.4 Second-order term

Let’s now see the upper bound on the second-order term, which will be useful for the upper bound
on the exploration bonus.
By applying the pigeon-hole principle (Lemma D.1).

K∑

k=1

H∑

h=1

4SH3L

nk(s, o, h) ≤ □H3S2OL2d

B.5 Bound of the exploration bonus bhk

Before bounding the sum, we need to define the exploration bonus. We will consider an adaptation
to temporally extended actions and non-stationary transitions of the same bonus presented in the
original paper of UCBVI Azar et al. (2017). However, to make the definition clearer, let us motivate
the need for this term.
Given that the optimistic value function Ṽ µk is an upper bound of the true value function V ∗, we
can not guarantee the same for the relative empirical variance. Hence, if the empirical variance of
Ṽ µk is an upper bound on the empirical variance of V ∗. Nonetheless, it is possible to prove that
when the two value functions are sufficiently close to each other, the same applies to their empirical
variance.
Let’s resort to Lemma 2 of Azar et al. (2017),

V̂∗
hk ≤ 2V̂hk + 2 Var

(s′,h′)∼P̂ µk

(Ṽ (s′, h′)− V ∗(s′, h′)) ≤ 2V̂hk + 2P̂ µk (Ṽ (s′, h′)− V ∗(s′, h′))2

where V̂∗
hk = Var(s′,h′)∼P µk (·|s,h)(V ∗(s′, h′)) and V̂hk = Var(s′,h′)∼P̂

µk
k

(Ṽ µk (s, h)).
We need this term to be of the same order as the estimation error ehk, and thus we can say that

bhk ∼ [(P̂ µk

hk − P µk

h )V ∗(s′, h′)](shk)
This time, however, we use the Empirical-Bernstein inequality Maurer & Pontil (2009) because we
need the empirical variance to appear.

bhk ≤
(

2

√
V̂∗

hkL

nk(s, o, h) + 14HL

3nk(s, o, h)

)

By applying Lemma 2 to this equation and substituting V̂∗
hk we get the same form of bonus of Azar

et al. (2017).

bhk =

√
8LVar(s′,h′)∼P̂

µk
k

(·|s,h)(Ṽ µk (s′, h′)
nk(s, o, h) + 14HL

3nk(s, o, h) +

√
8
∑

s′,h′ P̂ µk

k (s′, h′|s, h)
[

min (b′
h′k, H2)

]

nk(s, o, h)
in which b′

hk stands for the upper bound on the square root of the difference between the optimistic
value function in the next state-stage pair, and the optimal value function in the same next state-
stage.

The last thing to do to properly define the bonus is express b′
hk in our scenario. Let’s write

Ṽ (s′, h′)− V ∗(s′, h′) ≤
√

b′
hk

and consider that b′
hk has to be appropriate to guarantee an adaptation of Lemma 16 of Azar et al.

(2017), in which the second inequality applies if
√

N ′
hk(s) ≥ 2500H2S2AL2, which is the second

order term for standard UCBVI, given that N ′
hk(s) ≥ H2S2AL2 for good episodes. Therefore, in
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our scenario, we need that
√

b′
hk

(∑

o

nk(s, o, h)
)
≥ □H4S2OL2 ≥ □H3S2OL2d

where the r.h.s of the equation above is the second-order term in our case. Thus, considering that∑
o nk(s, o, h) ≤ K, and K ≥ H3L2S2O ≥ H2L2S2Od for typical episodes, we have:

b′
hk = 1002H5S2L2O∑

o nk(s, o, h)
When considering the bound for the next state-stage pair b′

h′k, we simply refer to the visit count of
the next state and next stage nk(s′, o, h′). The numerical constant 1002 is derived analogously to
Azar et al. (2017).

Let’s now analyze the summation of this term, considering, as for ehk, just the typical episodes.
K∑

k=1

H∑

h=1
bhk =

K∑

k=1

H∑

h=1
I(k ∈ [k]typ)

(√
8LVar(s′,h′)∼P̂

µk
k

(·|s,h)(Ṽ µk (s′, h′))
nk(s, o, h) + 14HL

3nk(s, o, h)

)

︸ ︷︷ ︸
(ft)

+
K∑

k=1

H∑

h=1
I(k ∈ [k]typ)

√
8
∑

s′,h′ P̂ µk

k (s′, h′|s, h)
[

min (b′
h′k, H2)

]

nk(s, o, h)
︸ ︷︷ ︸

(st)

We separately analyze the first two terms and then the last.
The analysis of (ft) follows the same concept as the analysis conducted for the estimation error ehk

where instead of using Lemma D.3 we use Lemma D.4

(ft)
a
≤
√

8L

(√
KH2 + □HdUK,1 + □H2Sd

√
KLO + 4/3H3L

)
(
√

SOdL) + 14/3HSOdL2

b
≤
√

8L

(√
KH2 + □HdUK,1

)
(
√

SOdL) + 14/3HSOdL2

≤ □LH
√

KSOd + □Ld
√

HSOUK,1

(a) As we said above, we follow the same concept of point (c) of the proof of the upper bound
of ehk. In this case, we use Lemma D.4 instead of Lemma D.3.

(b) Because for typical episodes K ≥ H2L2S2Od and thus we consider only the dominant terms.

Regarding the second term (st) adapting the proofs of Azar et al. (2017), we will focus only on
the last term (k)(h), which results in a term of the same order of the second-order term already
analyzed, the other two terms are upper bounded by the main terms.

(st)
a
≤

√√√√
K∑

k=1

H∑

h=1
I(k ∈ [k]typ)b′

h′k

√√√√
K∑

k=1

H∑

h=1
I(k ∈ [k]typ) 1

nk(s, o, h)

b
≤
√

H5S2L2O

√√√√
K∑

k=1

H∑

h=1
I(k ∈ [k]typ) 1

nk(s′, o, h′)

√√√√
K∑

k=1

H∑

h=1
I(k ∈ [k]typ) 1

nk(s, o, h)
c
≤
√

H5S2L2O(
√

SOdL)2

= H2S2L2
√

O3Hd2

d
≤ H3S2L2Od

(a) Considering only the (k)(h) of the original proof and applying Cauchy-Schwartz inequality.
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(b) By substituting b′
hk in the equation.

(c) By applying two times Lemma D.1.

(d) If O ≤ H.

To conclude the summation of exploration bonuses
K∑

k=1

H∑

h=1
bhk ≤ □LH

√
KSOd + □Ld

√
HSOUK,1 + H3S2L2Od

neglecting smaller order terms.

B.6 Summing all the terms

Finally, we can combine all the terms analyzed separately back into Equation (7), and we will get:
R̃egret(K) ≤ □LH

√
KSOd + □Ld

√
HSOUK,1 + □H3S2L2Od + H

√
dKL

a
≤ □LH

√
KSOd + □HSL2Od2 + □H3S2L2Od + H

√
dKL

≤ □LH
√

KSOd + □H3S2L2Od + H
√

dKL

where (a) results by solving for UK,1, and this completes the proof, ignoring the numeric constants
replaced by □.

Remark: The term d is a random variable, being the duration of each option a random variable
itself. However, as shown in Drappo et al. (2023), it is possible to bound this value when we have
options with duration τmin ≤ τo ≤ τmax, resorting to renewal processes theory (Pinelis, 2019) with

d ≤
√

32H(τmax − τmin) log(2/δ)
mino∈O E[τo]3 + H

mino∈O E[τo] .

holding with probability at least 1− δ.
This term is bounded by the ratio between the horizon H and the expected duration of the shorter
option composing the set, plus a confidence interval accounting for the stochasticity of the duration.

C Proof of Theorem 4.3

In this section, we will provide a detailed proof of Theorem 4.3.

As described in the main paper, the meta-algorithm alternates between two regret minimizers,
UCBVI and Options-UCBVI, for N stages at two levels of temporal abstraction of the problem.
While learning on one level, the policies of the second are kept fixed for all episodes on the stage.

Initially, we will keep the analysis general for any pair of regret minimizers, AL,AH - where the
former is the regret minimizer used for the low-level and the latter the one used for the high-level.

Before proceeding, we introduce Lemma 4.2, which relates the regret paid by the regret minimizer
of one level to the bias introduced in the learning of the other level.
Lemma 4.2. Let us define the concentrability coefficients:

CH := max
n∈[N ]

inf
µ∗ optimal

max
(s,h)∈S×[H]

dµ∗

s1,1(s, h)
dµn

s1,1(s, h) ,

CL := max
n∈[N ]

max
o∈O

inf
π∗

o optimal
max

(s,h)∈Io
max

(s′,h′)∈So×[Ho]

d
π∗

o

s,h(s′, h′)

d
πo

n−1
s,h (s′, h′)

.

Then, it holds that:
V ∗

∗ (s1, 1)− V ∗
πn−1(s1, 1)

︸ ︷︷ ︸
Bias of not playing π∗

≤ CH
(

V µn∗ (s1, 1)− V µn
πn−1(s1, 1)

︸ ︷︷ ︸
Regret of low-level algorithm

)
,
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V ∗
∗ (s1, 1)− V µn∗ (s1, 1)︸ ︷︷ ︸
Bias of not playing µ∗

≤ CL
(

V ∗
πn−1(s1, 1)− V µn

πn−1(s1, 1)
︸ ︷︷ ︸

Regret of high-level algorithm

)
.

where µ∗ is the optimal high-level policy (SMDP), and π∗
o is the optimal policy of a single option o

(low-level optimal policy).

Proof. Let us write the bias of a level for the stage n ∈ [N ] as βn, respectively specialized as βH
n for

the high-level bias and βL
n for the low-level bias.

βH
n = V ∗

∗ (s1, 1)− V ∗
πn−1(s1, 1)

a= E
(s,h)∼dµ∗

s1,1

[
Rπ∗(s, h)−Rπn−1(s, h)

]

b= E
(s,h)∼dµn

s1,1

[
dµ∗

s1,1(s, h)
dµn

s1,1(s, h)
(
Rπ∗(s, h)−Rπn−1(s, h)

)
]

c
≤ max

n∈[N ]
inf

µ∗ optimal
max

(s,h)∈S×[H]

dµ∗

s1,1(s, h)
dµn

s1,1(s, h)

(
V µn∗ (s1, 1)− V µn

πn−1(s1, 1))
)

d
≤ CH

(
V µn∗ (s1, 1)− V µn

πn−1(s1, 1)
)

(a) We can write the difference in value as the difference in return of the two option policies,
where Rπ∗ and Rπn−1 are respectively the return obtained by playing the optimal options
policies, and the return obtained by playing the options policies learned up to the previous
step, and the state-stage pairs (s, h) are sampled from the distribution of visit induced by
the policy µ∗.

(b) Using an importance-sampling argument, we can change the exploration policy by adding

the importance weighting term dµ∗
s1,1(s,h)

dµn
s1,1(s,h)

(c) Substituting the expectation with the sup over the states and stages, the inf over the possible
optimal exploration policies, and maximizing for all possible n stages.

(d) Substituting the first term with the constant CH , defined above.

We will not consider the proof of the second inequality because it follows the same passages.

Given this Lemma, we can provide a general result for any choice of AL,AH , and any choice of
scheduling.
Lemma C.1. Let AH and AL be two regret minimizers that suffer regret bounded RH(K) and
RL(K) when run for K episodes. Then, under Assumption 4.1, Algorithm 2 when run with the
episode schedule (KH

n , KL
n )N

n=1 such that
∑N

n=1 KL
n + KH

n = K, suffers regret bounded by:

R(HLML, K) ≤
N∑

n=1

(
(CH + 1)RL(KL

n ) + (CL + 1)RH(KH
n )
)

.

Proof. We can write the regret of the two-phase algorithm as a summation of the regret of the
high-level and the regret of the low-level as expressed by Equation (3) in the main paper.

Regret(HLML, K) =
N∑

n=1

( KH
n∑

k=1

(
V ∗

∗ (s1, 1)− V
µn,k

πn−1(s1, 1)
)

+
KL

n∑

k=1

(
V ∗

∗ (s1, 1)− V µn
πn,k

(s1, 1)
))

a=
N∑

n=1

(
βH

n + RH(KH
n ) + βL

n + RL(KL
n )
)
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b
≤

N∑

n=1

(
CHRL(KL

n−1) + RH(KH
n ) + CLRH(KH

n−1) + RL(KL
n )
)

c
≤

N∑

n=1
(CH + 1)RL(KL

n ) + (CL + 1)RH(KH
n ).

(a) We can decompose the two terms of the summation as shown in Equations (4) and (5), and
then for shortness, use βn to express the bias of the two levels at the nth stage, and R(Kn)
for the regret of the two regret minimizers, AL,AH , at the nth stage.

(b) By applying Lemma 4.2 for the two general regret minimizers.

(c) Clearly the sum of n − 1 is smaller than the sum of n terms, thus we can upper bound
RL(KL

n−1) with RL(KL
n ), and the same for RH(KH

n−1).

And with the last step, we conclude the proof.

Now we can specialize Lemma C.1 for UCBVI for the options learning and Options-UCBVI for the
high-level, and we get:
Theorem 4.3. Let M = (S,A, p, r, H) be an FH-MDP and let O be a set of options to be learned
inducing the FH-MDPsMo = (So,Ao, p, ro, Ho) for o ∈ O. The regret suffered by Algorithm 2 under
Assumption 4.1, episode schedule as in Equation (2), and where HO = maxo∈O Ho, is bounded with
probability at least 1− δ by:

R(HLML, K) ≤ Õ

(
CL H

√
SOKd︸ ︷︷ ︸

High-Level Regret

+CH HO

√
OSAKHO︸ ︷︷ ︸

Low-Level Regret

)
.

Proof. For the option learning procedure, we instantiate a UCBVI algorithm for each sub-MDPMo,
and for the n− th phase, we paid a regret proportional to:

KL
n∑

k=1
Rokk

=
∑

o

Ko∑

j=1
Roj

a=
∑

o

Ho

√
SoAoKoHo

b
≤ HO

√
SAHO

∑

o

√
Ko

c
≤ HO

√
SAHO

√
O
∑

o

Ko

= HO

√
OSAHOKL

n

where Rokk
is the regret paid for running the option ok in the k− th episode and Ko are the episodes

given to that option o. With (a), we just write the regret of running UCBVI on Ko episodes. In
the passage (b), we upper bound to the worst possible sub-MDP,Mo, where for the state space and
the action space, we have the cardinalities of the primitive MDP, and we have an episode duration
HO = maxo Ho. In the next inequality (c), we use the Cauchy-Schwartz inequality, and being∑

o Ko = KL
n the last equality holds. Therefore, by considering just the dominant term of the two

upper bounds of regret, we can write

RL
KL

n
= Regret-UCBVI ≤ Õ

(
HO

√
OSAKL

n HO

)

RH
KH

n
= Regret-O-UCBVI ≤ Õ

(
H
√

SOKH
n d

)
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Now by directly substituting these results in Lemma C.1 and considering the scheduling proposed
in Equation (2), we can rewrite the regret of the meta-algorithm as:

Regret(HLML, K) ≤ Õ

(
N∑

n=1

(
(CH + 1)HO

√
OSAHO2n + (CL + 1)H

√
SOd2n

))

= Õ

((
(CH + 1)HO

√
OSAHO + (CL + 1)H

√
SOd

) N∑

n=1

√
2n

)

= Õ



(

(CH + 1)HO

√
OSAHO + (CL + 1)H

√
SOd

)
2
√

2
N/2∑

n=0
2n




= Õ
((

(CH + 1)HO

√
OSAHO + (CL + 1)H

√
SOd

)(
2
√

2(2N/2+1 − 1)
))

a∝ Õ
((

CHHO

√
OSAHO + CLH

√
SOd

)
2(log2(K))/2

)

≤ Õ
((

CHHO

√
OSAHO + CLH

√
SOd

)√
K
)

Where all the passages follow algebraic operations, except for (a) in which we neglect all the numer-
ical constants and we consider that K = 2

∑N
n=1 2n−1 = 2N+1 − 1 and thus, N = log2(K). The last

passage concludes the proof.

D Useful Lemmas

Lemma D.1. Considering nk(s, o, h) the number of visits of the triple (s, o, h) up to episode k, and
[k]typ the typical episodes for which nk(s, o, h) is sufficiently large, the following holds true:

K∑

k=1
I(k ∈ [k]typ)

H∑

h=1

1
nk(s, o, h) ≤ dSO ln(Kd)

Proof.
K∑

k=1
I(k ∈ [k]typ)

H∑

h=1

1
nk(s, o, h)

a
≤

∑

(s,o)∈S×O

∑

h∈[d]

nK(s,o,h)∑

n=1

1
n

b
≤ dSO

Kd∑

n=1

1
n

c
≤ dSO ln(3Kd)

(a) Considering nk(s, o, h) for the whole state space and options space, and considering the
summation over H bounded by d elements, for the temporal extension of the actions.

(b) Considering that the maximum number of (s, o, h) visited until episode K is bounded by
Kd

(c) Considering the rate of divergence of the harmonic series
∑n

i=1
1
i ∼ ln(n)

The following lemmas are adaptations to SMDPs of Lemma 8, 9, and 10 of the paper of the UCBVI
paper Azar et al. (2017). We consider to have the same good event E and Ωk,h.
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Lemma D.2. Let k ∈ [K] and h ∈ [H]. Then under the event E and Ωk,h of the original paper, the
following hold

k∑

i=1

H∑

j=h

Vµ
i,j′ ≤ KH2 + 2

√
H5KL + 4d3/3L

Proof. The proof follows the same passages of the proof of Lemma 8 in Azar et al. (2017), where j′

is the next stage after a temporally extended transition.

Lemma D.3. Let k ∈ [K] and h ∈ [H]. Then under the event E and Ωk,h of the original paper, the
following hold

k∑

i=1

H∑

j=h

(
V∗

i,j′ −Vµ
i,j′

)
≤ 2HdUk + 4H2√HKL + 4d3/3L

Proof. The proof follows the same passages of the proof of Lemma 9 in Azar et al. (2017), where j′

is the next stage after a temporally extended transition.

Lemma D.4. Let k ∈ [K] and h ∈ [H]. Then under the event E and Ωk,h of the original paper, the
following hold

k∑

i=1

H∑

j=h

(
V̂i,j′ − Vµ

i,j′

)
≤ □HdUk,1 + □H2S□d2KLO

Proof. The proof follows the same passages of the proof of Lemma 10 in Azar et al. (2017), where
j′ is the next stage after a temporally extended transition. More precisely, what changes is the
application of the pigeon hole principle (Lemma D.1).
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Abstract

Learning to make temporal predictions is a key component of reinforcement learn-
ing algorithms. The dominant paradigm for learning predictions from an online
stream of data is Temporal Difference (TD) learning. In this work we introduce
a new TD algorithm—SwiftTD—that learns more accurate predictions than exist-
ing algorithms. SwiftTD combines True Online TD(λ) with per-feature step-size
parameters, step-size optimization, a bound on the update to the eligibility vector,
and step-size decay. Per-feature step-size parameters and step-size optimization im-
prove credit assignment by increasing the step-size parameters of important signals
and reducing them for irrelevant signals. The bound on the update to the eligi-
bility vector prevents overcorrections. Step-size decay reduces step-size parameters
if they are too large. We benchmark SwiftTD on the Atari Prediction Benchmark
and show that even with linear function approximation it can learn accurate pre-
dictions. We further show that SwiftTD performs well across a wide range of its
hyperparameters. Finally, we show that SwiftTD can be used in the last layer of
neural networks to improve their performance.

1 Temporal Difference Learning for Learning to Predict

Algorithms that can learn to predict the future are useful. Predicting the future is essential for sound
decision-making, planning, and reasoning. An agent that wants to take the best action must be able
to predict the values of different actions. Predicting the future is also a way to encode knowledge
about the world. Unlike supervised learning which requires ground-truth labels, predictions can be
learned solely from experience which makes predictive knowledge scalable.

A common issue when learning predictive knowledge is dealing with delayed feedback. Many
predictions—such as will it rain in two hours?—require waiting for the predicted outcome to hap-
pen before the ground truth is available. The naive way to learn such predictions is to store the
agent’s experience and wait for the outcome. This scales poorly. An alternative is to use Temporal
Difference (TD) learning and eligibility traces (Sutton, 1988).

TD learning is an online and scalable mechanism for learning predictive knowledge. It is also a
crucial building block of many reinforcement learning algorithms, such as Sarsa(λ) (Rummery &
Niranjan, 1994), Q-learning (Watkins & Dayan, 1992), PPO (Schulman et al., 2017), and Actor-
Critic (Konda & Tsitsiklis, 1999). Improving TD learning has the potential to improve all these
algorithms.

Existing algorithms for TD learning can be ineffective for learning incrementally and quickly. With
existing algorithms, we are forced to make one of the following three unsatisfactory choices. First,
we could learn with a small step-size parameter over a long period. This results in stable but slow
learning. Second, we could attempt to learn with a large step-size parameter. Doing so could result
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Pooyan

SpaceInvaders

Pong

Atlantis

Time step

SwiftTD True Online TD(λ)
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Ground truth

Figure 1: Predictions made by True Online TD(λ) and SwiftTD after learning for two hours of
gameplay on Atari games. The gray dotted lines show the ground-truth returns. SwiftTD learned
significantly more accurate predictions than True Online TD(λ). In some games—Pong, Pooyan—
the predictions were near perfect. Even in more difficult games, like SpaceInvaders, the predictions
anticipated the onset rewards.

in faster learning but risks divergence. Third, we could learn with a small step-size parameter but
use every data point in multiple updates (e.g., by using a replay buffer). The third choice allows
sample efficient and robust learning and is used by popular Deep-RL algorithms (e.g., see Mnih et al.,
2015 and Schulman et al., 2017). However, doing multiple updates is computationally wasteful and
leads to poor performance when learning in big worlds (Javed & Sutton, 2024). Moreover, requiring
multiple updates for learning makes agents less reactive—feedback is not reflected in predictions and
behaviors immediately.

Our goal with SwiftTD was to create a fourth option. A TD learner that could learn quickly, did
not diverge, and did not require multiple updates to learn from feedback. Such an algorithm would
allow a learner to learn as it is experiencing the data stream and remove the need for storing and
replaying data.

Over two years we discovered three ideas that, when combined with True Online TD(λ), achieved
our goal. Neither of the ideas was sufficient on its own to enable fast and robust learning. It is their
unique combination that made SwiftTD work well.

The three ideas are: 1) step-size optimization for per-feature step-size parameters, 2) A bound on
the increment to the eligibility vector to prevent overcorrections, and 3) a mechanism to selectively
decay the step-size parameters if they are too large. Before we introduce the three ideas in detail,
we provide a brief background of two algorithms that our ideas build upon.

2 Background

SwiftTD builds on two existing algorithms—True Online TD(λ) (Van Seijen et al., 2016) and In-
cremental Delta-bar Delta (IDBD) (Sutton, 1992). True Online TD(λ) uses λ-returns as targets for
learning.
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2.1 The λ-return

The λ-return is a form of multistep bootstrapped return that combines n-step returns for all n. The
λ-return is defined as:

Gλ
t

def= (1− λ)
∞∑

n=1
λn−1Gt:t+n, (1)

where :
Gt:t+n

def= rt+1 + γrt+2 + · · ·+ γn−1rt+n + γnvt+n. (2)

Here vt+n is the agent’s estimate of the sum of future discounted rewards at time t + n. λ-returns
are unique because eligibility traces provide a computationally efficient mechanism to learn from
them.

The simplest algorithm for learning with λ-returns is TD(λ) (Sutton, 1988). The weight updates
done by TD(λ), however, are not exactly the same as an algorithm learning directly from λ-returns;
they are only a good approximation when the step-size parameter is small.

2.2 True Online TD(λ)

True Online TD(λ) fixes the approximation error of TD(λ) and exactly matches the Online λ-return
algorithm (Sutton & Barto, 2018) which does not use eligibility traces. Van Seijen et al. (2016)
showed that True Online TD(λ) performs better than TD(λ) when learning with a large step-size
parameter.

In later sections, we will show that using True Online TD(λ) instead of TD(λ) is crucial to achieving
robust learning from large step-size parameters.

2.3 Incremental Delta-bar Delta (IDBD)

IDBD is an algorithm for meta-learning per-feature step-size parameters for linear regression. It
uses gradient-based meta learning and incrementally approximates the gradients using forward-view
differentiation (Williams & Zipser, 1989). Intuitively, IDBD increases the step-size parameters of
features that generalize well to future examples and reduces them for features that generalize poorly.

IDBD is fundamentally different from popular adaptive step-size algorithms such as RMSProp (Tiele-
man & Hinton, 2012) and Adam (Kingma & Ba, 2015). Degris et al. (2024) argued that IDBD is
doing step-size optimization when adapting the step-size parameters as opposed to RMSProp (Tiele-
man & Hinton, 2012), which is doing step-size normalization. They articulated the difference using a
simple problem where IDBD adapted the step-size parameters to optimize a loss whereas RMSProp
ignored the loss landscape when adapting the step-size parameters.

3 Formulating the Problem of Temporal Predictions

Our prediction problem consists of observations and predictions. The agent perceives an observation
vector ϕt ∈ Rn at time step t and makes a scalar prediction vt. The target for evaluating the
prediction is computed by summing the future values of a scalar called the cumulant. The cumulant
can be any scalar component of the observation vector. A common choice for the cumulant is the
reward signal.

Performance on our prediction problem is measured by the lifetime error. Let rt, a component of
ϕt, be the cumulant at time t. The lifetime error is defined as:

Lifetime error(T ) = 1
T

T∑

t=1


vt −

T∑

j=t+1
γj−t−1rj




2

, (3)
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where T is lifetime of the agent and γ is the discount factor. T and γ are part of the problem
definition. The lifetime error captures not only the quality of the solution discovered by the agent
at the end of learning, but also how quickly the agent finds the solution.

The lifetime error metric differs from the popular paradigm of splitting the data into disjoint train
set and test set. Splitting the data is important in offline learning settings where the learner has
access to the complete data set. It is unnecessary in online learning settings where the agent is
evaluated on predictions made before getting the ground truth.

Before introducing the three ideas behind SwiftTD, we present a prediction benchmark in the next
section that we use to explain the three ideas.

4 The Atari Prediction Benchmark

The Atari Prediction Benchmark (Javed et al., 2023) is a suite of prediction problems. It is built on
the Arcade Learning Environment (ALE) (Bellemare et al., 2013), a collection of Atari 2600 games.
In each game, a player can take up to 18 discrete actions with the goal to maximize the score.
The Atari Prediction Benchmark constructs prediction problems from ALE by picking actions using
pre-trained Rainbow-DQN (Hessel et al., 2018) policies taken from the model zoo of Chainer-RL
(Fujita et al., 2021).

To convert the Atari Prediction Benchmark into a set of temporal prediction problems, as defined
in Section 3, we have to specify the observation vector, the cumulant, the discount factor γ, and the
lifetime of the agent (T ) for each game.

We construct the observation vector of the agent by preprocessing the game frame and turning
it into a binary valued vector as explained in the next subsection. We generate the cumulant by
preprocessing the reward given by the Arcade Learning Environment. A positive reward from ALE
sets the cumulant to +1, and a negative reward sets it to -1. The cumulant is zero if the reward is
zero. We use γ = 0.98 for all games. For all experiment, we set the lifetime to be 210,000. This
translates to roughly 2 hours of gameplay at 30 frames per second.

4.1 Constructing the feature vector from the game frame

The Atari game frame is a tensor of dimensions 210 × 160 × 3. Every component of this tensor is
a scalar in the range [0, 255].

In the preprocessing steps, we first resize the frame to 105 × 80 × 3. We convert each of the three
channels in the resized frame to a tensor of dimensions 105 × 80 × 8 by performing a lossy one-hot
coding to the value of each pixel. Pixel values from 0 to 31 set the first channel to one and the
remaining seven to zero, values from 32 to 63 set the second channel to one and the rest to zero, and
so on. Figure 2 (a) illustrates the binning process with a simple example and Figure 2 (b) shows
the binning process applied to a frame of the game Freeway.

The binning process gives us three tensors of dimensions 105 × 80 × 8. We stack them to get
a tensor of dimensions 105 × 80 × 24 and flatten it to get a vector with 201,600 binary valued
components. We then append the previous one-hot coded action (a vector with 18 components) and
the cumulant to the 201,600 length vector to get the final feature vector with 201,619 components.

We use the Atari Prediction Benchmark with the above-mentioned preprocessing to compare different
algorithms in all experiments except in Section 7, where we use a convolutional network to transform
the 105 × 80 × 24 tensor into a vector.

5 Three Ideas for Fast and Robust TD Learning

SwiftTD is a combination of three ideas—step-size optimization for per-feature step-size parame-
ters, a bound on the update to the eligibility vector, and step-size decay for per-feature step-size
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Channel 1

Channel 2

120 84

255 44

140

230

179 0 201

3 x 3 image

Game frame Binary features after binning

(a) (b)

Binary features

Figure 2: (a) A simplified example of the binning step with a 3 × 3 image. We transform the image
into a binary valued tensor by binning the value of the pixel into two channels. Pixel values from 0
to 127 are binned into the first channel, and 128 to 255 into the second channel. (b) The binning
process applied to a real frame on the game Freeway. In our experiments, the agent learns from the
binary features generated by the binning process.

parameters. In the following subsections, we introduce each idea separately. We then combine them
to develop SwiftTD in the next section.

Each agent in our algorithms is parameterized by a weight vector w ∈ Rn and makes predictions by
linearly combining the features with the weights as:

vt =
n∑

i=1
wt−1[i]ϕt[i], (4)

where ϕt[i] is the ith component of ϕt. The time index for the weight vector is t − 1 because the
prediction is made before the weight vector is updated using ϕt.

5.1 Idea 1: TD Learning with Step-size Optimization

An immediate implication of our goal to learn quickly in a single update is that we must do large
updates to the parameters. At the same time, an implication of being robust is that we must not
do large updates to weights associated with noisy or irrelevant features. The two requirements are
at odds if we limit ourselves to using a scalar step-size parameter. However, if we allow the agent to
have different step-size parameters for different weights, both requirements could be simultaneously
satisfied.

If we commit to using different step-size parameters for different weights, the next important question
is how to set the parameters. We can no longer set them manually as the agent can have millions
of weights. A viable option is to learn the step-size parameters from experience.

Using learnable per-feature step-size parameters is precisely the first key idea behind SwiftTD. To
learn them, we parameterize the step-size parameters with a vector β ∈ Rn and use α[i] = eβ[i] in
weight updates.

We can learn the step-size parameter β[i] by updating it as:

βt[i] = βt−1[i]− θ

eβ[i]
∂
(
vt −Gλ

t

)2

∂β[i] , (5)
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Figure 3: Impact of step-size optimization on the lifetime error of TD(λ) and True Online TD(λ)
for different values of step-size parameters at initialization (αinit) and meta-step-size parameter (θ).
All finite errors above 0.5 are clipped to 0.5. Points where the lifetime error diverged are shown
with diagonal lines. Increasing the meta-step-size improved the performance of both algorithms up
to a point. This suggests that step-size optimization for per-feature step-size parameters can help
improve the performance of TD learning.

where θ
eβ[i] is the meta-step-size parameter 1.

Computing the exact meta-gradient is computationally expensive. We instead use an approximation
of the meta-gradient similar to IDBD. We provide the derivations and pseudocode of TD(λ) with
step-size optimization and True Online TD(λ) with step-size optimization in Appendix A.

5.1.1 Related work

We are not the first to suggest step-size optimization for TD learning. Three prior works have
attempted to extend IDBD to TD learning.

Two of them—by Thill (2015) and Kearney et al. (2018)—incorrectly estimated the meta-gradient.
Thill (2015) made a mistake when deriving the update rule for the meta-gradient. Kearney
et al. (2018) derived the meta-gradient correctly, but used the TD(0) objective for the meta-gradient
even when learning with TD(λ). The discrepancy is problematic and can fail to increase step-size
parameters of features correctly (Javed, 2024).

Young et al. (2019) correctly extended IDBD to TD(λ). After we developed SwiftTD, we found
that our extension of IDBD to TD(λ) was identical to that by Young et al. (2019). Our extension
of IDBD to True Online TD(λ) is novel to this work.

5.1.2 Experiments and results: The impact of step-size optimization on the lifetime
error

TD learning with step-size optimization has two key hyperparameters—the meta-step-size parameter
(θ) and the value of the step-size parameters at initialization (αinit). To understand the usefulness
of step-size optimization, we measure the lifetime error of these algorithms as a function of θ and
αinit. We use the Pong environment from the Atari Prediction Benchmark.

We ran both algorithms for fifty-five values of αinit and θ on the game Pong. For both parameters,
we used values from the set {0.7x|x ∈ {0, 1, · · · , 54}}. This translates to a total of 3025 experiments.

We plot all results in a single 2D plot in Figure 3 where the x-axis is the meta-step-size parameter,
the y-axis is the initial value of the step-size parameters, and the color represents the lifetime error.

1We normalize θ by eβ[i] because the scale of the meta-gradient of the error with respect to β[i] is proportional to
eβ[i]
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The performance of both algorithms improved on Pong as the meta-step-size parameter increased
from 10−8 up to 10−2. It diverged when the meta-step-size went over 10−2. This trend held for
αinit in the range 10−8 to 10−5. The algorithm also diverged for αinit larger than 10−4

The three main conclusions from the sensitivity analysis are 1) step-size optimization can help achieve
lower error, 2) TD learning with step-size optimization can diverge when its hyperparameters are
chosen poorly, and 3) TD(λ) and True Online TD(λ), when combined with step-sized optimization,
perform similarly.

The divergence when learning from certain values of θ and αinit is a significant problem. It is unlikely
that the hyperparameters that worked well for Pong would also work well for other problems. There
is a need for a mechanism that can prevent divergence.

5.2 Idea 2: TD Learning with the Overshoot Bound

The primary issue with TD learning with step-size optimization is that if the step-size parameters
are initialized to be too large, the learner diverges. Moreover, even for a small initial value of
the step-size parameters, if the meta-step-size parameter is too large, the step-size parameters can
eventually get too large due to the meta-learning updates. To fix the problem of divergence, we
introduce a bound on the update to the eligibility vector called the overshoot bound.

We define correction ratio of an update as a measure of how close a prediction is to the target after
the update. Let y∗

t be the target for the prediction at time t. The correction ratio of a weight update
for a linear learner is the fraction of the error reduced after the update. More precisely, we define it
as:

τt = (y∗
t −

∑n
i=1 wt−1[i]ϕt[i])− (y∗

t −
∑n

i=1 wt′ [i]ϕt[i])
(y∗

t −
∑n

i=1 wt−1[i]ϕt[i])
, (6)

where wt′ is the weight vector after the updates. For linear regression with per-component step-size
parameters αt, the correction ratio can be simplified to:

τt =
∑

i

αt[i]ϕt[i]2. (7)

A correction ratio of 1.0 means that the prediction has changed to the target. A correction ratio of
0.5 means that the prediction has changed to halfway between the old prediction and the target.

If we can bound the correction ratio of every update to be less than or equal to one, we can guarantee
that the prediction with the updated weights does not overshoot the target. This is precisely the idea
behind the overshoot bound. This idea is not new. Mahmood et al. (2012) proposed a similar bound
for linear regression. Our contribution is a mechanism to implement this bound for TD learning.

The two challenges in applying this bound to TD learning are: 1) dealing with delayed targets, and
2) dealing with fact that our targets also depend on the weights of the agent.

We address the first challenge by realizing that True Online TD(λ) has perfect equivalence with a
learner that does not use delayed targets (The Online λ-return algorithm). This makes it possible
to apply the bound to True Online TD(λ). Care must be taken when applying the bound. It is not
possible to apply the bound at the time of the parameter update. Rather, it must be applied when
adding to the eligibility vector as shown in Algorithm 6.

We address the second challenge by ignoring the influence of the weights on the targets (the semi-
gradient assumption). This makes sense as the goal in TD learning is not to minimize the error but
to propagate credit to the correct features by matching predictions to targets. The pseudocode and
derivations of the overshoot bound for True Online TD(λ) and TD(λ) are in Appendix B.

5.2.1 Related work

Dabney and Barto (2012) made an attempt to bound the correction ratio of TD learning. Their
bound did not make the semi-gradient assumption and used the one-step bootstrapped target as
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Figure 4: Impact of α on the lifetime error for TD(λ) with the overshoot bound and True Online
TD(λ) with the overshoot bound. The bound was not successful for TD(λ) and the lifetime error
diverged for large step-size parameters on multiple games. True Online TD(λ) with the bound, on
the other hand, did not diverge on any of the games and performed reasonably well even for very
large step-size parameters.

opposed to the λ-return target. We tried their bound and found that it did not fix the divergence
issue. Their bound can allow arbitrarily large changes to the weights of an agent if the features for
consecutive time steps are highly correlated.

5.2.2 Experiments and results: The impact of the overshoot bound on the lifetime
error

We implemented the bound as shown in Algorithm 4 and Algorithm 6 and plot the lifetime error
of both algorithms on a randomly selected subset of games in the Atari Prediction Benchmark as a
function of α in Figure 4.

True Online TD(λ) with the overshoot bound did not diverge for any values of α. Moreover, the
bound was not conservative and did not change the performance for the best value of α. It only
kicked in once α was larger than the best α. TD(λ) with the overshoot bound, on the other hand,
performed poorly in some games (e.g., Frostbite, Kangaroo, and Breakout) and diverged in some
games (e.g., VideoPinball, DemonAttack, and Battlezone).

While the overshoot bound prevents divergence, it being triggered is a sign that the step-size param-
eters are too large. We can combine the bound with step-size optimization and hope that step-size
optimization will reduce the step-size parameters when they are too large. However, the way the
bound is applied is not a differentiable operation and gradient-based step-size optimization cannot
be applied. Our third key idea is to force the step-size parameters to get smaller whenever the bound
is triggered. We call this idea step-size decay.

5.3 Idea 3: TD Learning with the Overshoot Bound and Step-size Decay

If we know that the step-size parameters are too large, we don’t have to rely on the meta-gradient
to adapt them. We can simply reduce them.

Mechanistically, step-size decay is simple to implement. Let αt be the step-size parameters at time
t. At every step for which the bound is active because the overcorrection ratio is greater than 1, we
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Algorithm 1: SwiftTD
Parameters with default values: ϵ = 0.99, η = 0.1, ηmin = e−15, αinit = 10−7, λ, γ, θ

Initializations: w, hold, htemp, zδ, p, h, z, z̄ ← 0 ∈ Rn; (vδ, vold) = (0, 0); β ← ln(αinit) ∈ Rn

while alive do
Perceive ϕ and r
v ←∑

ϕ[i] ̸=0 w[i]ϕ[i]
δ′ ← r + γv − vold

for z[i] ̸= 0 do
δw[i]← δ′z[i]− zδ[i]vδ

w[i]← w[i] + δw[i]
β[i]← β[i] + θ

eβ[i] (δ′ − vδ)p[i]
β[i]← clip

(
β[i], ln(ηmin), ln(η)

)
// Clip β to be in range [ln(ηmin), ln(η)]

hold[i]← h[i]
h[i]← htemp[i]
htemp[i]← h[i] + δ′z̄[i]− zδ[i]vδ

zδ[i] = 0
(z[i], p[i], z̄[i])← (γλz[i], γλp[i], γλz̄[i])

vδ ← 0
τ ←∑

ϕ[i]̸=0 eβ[i]ϕ[i]2

T ←∑
ϕ[i] ̸=0 z[i]ϕ[i]

for ϕ[i] ̸= 0 do
vδ ← vδ + δw[i]ϕ[i]
zδ[i]← min

(
1, η

τ

)
eβ[i]ϕ[i] // Overshoot bound

z[i]← z[i] + zδ[i](1− T )
p[i]← p[i] + ϕ[i]h[i]
z̄[i]← z̄[i] + zδ[i] (1− T − ϕ[i]z̄[i])
htemp[i]← htemp[i]− hold[i]ϕ[i]

(
z[i]− zδ[i]

)
− h[i]zδ[i]ϕ[i]

if τ > η then
β[i] = β[i] + ϕ[i]2ln(ϵ) // Step-size decay
(htemp[i], h[i], z̄[i]) = (0, 0, 0)

vold ← v

update the step-size parameters as:

αt+1[i] = αt[i]ϵϕt[i]2
, (8)

where ϵ is a hyperparameter called the decay rate. A reasonable choice for ϵ is 0.99. Note that we are
not decaying the step-size parameter for all features. We are only decaying the step-size parameter
proportional to the squared value of the features. Pseudocode for True Online TD(λ) with step-size
decay is in Algorithm 7.

5.3.1 Related work

The idea of step-size decay is similar in spirit to the Step-size Ratchet algorithm proposed by
Ghiassian (2022). It differs from Step-size Ratchet in three important ways. First, Step-size Ratchet
decays the step-size parameters abruptly to satisfy its bound as opposed to decaying them slowly.
Second, it uses the one-step bootstrapped target as opposed to the λ-return for computing the
overcorrection ratio. Finally, it uses a scalar step-size parameter and does not decay step-size
parameters proportional to their contribution to the overcorrection ratio.
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Figure 5: Performance of SwiftTD on Pong for different αinit and θ. Here SwiftTD used η = 0.1
and ϵ = 0.999. It did not diverge for any combination of αinit and θ and performed reasonably well
for almost all combinations. SwiftTD without step-size decay also did not diverge but performed
poorly for large meta-step-size parameters and initial step-size parameters.

6 SwiftTD: Fast and Robust Learning by Combining the Three Ideas

Now that we have explained the three ideas separately, we combine them in a single algorithm called
SwiftTD. We make two additional changes. First, we generalize the idea of overshoot bound by
introducing a new hyperparameter η. In SwiftTD, the overshoot bound is triggered whenever the
correction ratio is greater than η instead of one. A reasonable default value for η is 0.1. Second, at
every step, we clip every step-size parameter to be in range [ln(ηmin), ln(η)].

Algorithm 1 is the pseudocode for SwiftTD. The pink lines implement step-size optimization, the
blue lines implement the overshoot bound, the purple lines implement step-size decay, and the orange
line implements the clipping of the step-size parameters. The remaining black lines are the same as
True Online TD(λ).

Intuitively, SwiftTD increases the step-size parameters of relevant features and reduces them for
irrelevant features. If the step-size parameters become too large, it uses the overshoot bound to
prevent bad updates while simultaneously decaying the step-size parameters proportional to their
contribution to the correction ratio.

To demonstrate the effectiveness of SwiftTD we did the hyperparameter sensitivity analysis of
SwiftTD for αinit and θ on Pong and report the results in Figure 5. We used η = 0.1 and ϵ = 0.999
for the right most plot. SwiftTD was not only stable for all combinations of αinit and θ but also
performed reasonably well for almost all combinations. SwiftTD without step-size decay, on the
other hand, performed poorly when either the initial value of the step-size parameters or the meta-
step-size parameter was too large. Figure 5 also demonstrates that all three ideas are needed for the
strong and robust performance of SwiftTD.

6.1 Hyperparameter Tuning and Results on All Games

We compared SwiftTD and True Online TD(λ) on all Atari games. For both SwiftTD and True
Online TD(λ), we swept over all their hyperparameters. Because SwiftTD has more hyperparameters
than True Online TD(λ), we did a coarser search over its hyperparameters for a fair comparison.
The details of the hyperparameter sweeps are in Appendix D.

We tuned all hyperparameters for each Atari game individually and report the results with the best
hyperparameter setting for each game. An alternative choice would have been to tune the hyperpa-
rameters on a subset of the games and use the same hyperparameters for all games. Both choices
have their advantages and disadvantages. We verified that the results did not change qualitatively
with either choice.
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Figure 7: Relative lifetime error of SwiftTD to True Online TD(λ) on the Atari Prediction Bench-
mark. SwiftTD achieved lower lifetime error than True Online TD(λ) in almost all games.

We plot individual learning curves for eight games in Figure 6. In each plot the y-axis is the lifetime
error and the x-axis is the lifetime. In each of the eight games in Figure 6, SwiftTD had a smaller
lifetime error for almost all values of the lifetime parameter.

We visualize the predictions made by both methods in the final 3,000 steps on four games in Figure 1.
The gray dotted lines are the return from each time step. Predictions learned by SwiftTD were
significantly more accurate. In some games—Altantis, Pooyan—True Online TD(λ) completely
failed for all hyperparameter settings whereas SwiftTD learned accurate predictions.

We also compared the performance of SwiftTD and True Online TD(λ) on all games. For better
visualization, we divided the lifetime error of both methods by the lifetime error achieved by True
Online TD(λ). After division, True Online TD(λ) had a normalized error of one. We visualize all
errors in Figure 7. SwiftTD performed as well or better on all games. In some games, the error
achieved by SwiftTD was an order of magnitude lower.

Overall, SwiftTD performed better than True Online TD(λ) on the Atari prediction benchmark and
appears to satisfy our goals of fast and robust TD learning.

7 Combining SwiftTD with Neural Network

So far we have compared all methods with linear learners. In this section, we share one way SwiftTD
can be combined with neural networks.
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Figure 8: Comparing performance of convolutional networks on the Atari Prediction Benchmark.
SwiftTD significantly outperformed True Online TD(λ) even when combined with neural networks.
The confidence intervals are +− two standard error around the mean computed over fifteen runs.

Instead of using the preprocessing described earlier, we used SwiftTD with a one layer convolutional
neural network. We applied a convolutional layer on the 105 x 80 x 24 tensor we got after stacking
the three tensors given by the binning process. The convolutional layer had 25 kernels of size 3 × 3
× 24 each. The weights of the kernels were initialized by sampling from U(−1, 1).

We applied all the kernels to the input tensor with a stride of 2. The output of the convolutional
layer was a 52 x 40 x 25 tensor. We passed the output through the ReLU activation function
(Fukushima, 1969) and flattened the tensor to get a vector with 52,000 components. The vector is
linearly combined with a weight vector to make predictions.

The main challenge in applying SwiftTD to neural networks was that SwiftTD was developed for
linear learners. We got past this limitation by applying SwiftTD to only the last layer of the network
and updated the weights of the kernels using TD(λ), similar to Tesauro (1995). For our baseline,
we used True Online TD(λ) in the last layer. We tuned the step-size parameter of weights in the
kernels independently of the hyperparameters of the learners in the last layer.

The results of convolutional networks with SwiftTD and True Online TD(λ) are in Figure 8. Similar
to the linear case, SwiftTD helped in almost all games. Results with convolutional neural networks
highlight that simply using SwiftTD for the weights in the last layer of existing Deep-RL systems
could improve their performance.

8 Conclusions and Future Work

SwiftTD has the potential to be the go-to algorithm for learning predictions from online streams of
data; it unlocks the possibility of computationally efficient few-shot learning. The combination of
SwiftTD with efficient learning algorithms for RNNs (Menick et al., 2021; Javed et al., 2023) is a
particularly promising direction for replay-free state construction from an online stream of data.
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A Step-size Optimization for TD Learning

In this section, we derive efficient and approximate algorithms for step-size optimization for TD(λ)
and True Online TD(λ).

A.1 Step-size Optimization for TD(λ)

TD(λ) uses the λ-return as the target. The λ-return at time step t is defined as:

Gλ
t = (1− λ)

∞∑

n=1
λn−1Gt:t+1. (9)

The step-size parameters are parametrized as a vector of values β ∈ Rn, where the ith step-size
parameter is eβ[i]. TD(λ) updates the ith weight as:

wt[i] = wt−1[i] + δtzt−1[i], (10)

where zt[i] is updated as:
zt[i] = γλzt−1[i] + eβt[i]ϕt[i]. (11)

The prediction at time step t can be made using the weight vector before or after the update (i.e.,
using wt−1 or wt) and both are used in different parts of the update. To differentiate between the
two, we define vt1,t2 as

vt1,t2
def=

n∑

i=1
wt1 [i]ϕt2 [i]. (12)

The objective for step-size optimization is to minimize the sum of squared error between the pre-
diction and the λ-return. To update the step-size parameters, we can use the meta-gradient of the
sum of squared error. The meta-gradient is:

Algorithm 2: TD(λ) with Step-size Optimization
Parameters: α, λ

Initialize: (w, z)← (0, 0) ∈ Rn, (vold, vδ) = (0, 0)
while alive do

Receive ϕ, γ, and r
v ←∑

ϕ[i] ̸=0 w[i]ϕ[i]
δ ← r + γv − vold

for zi ̸= 0 do
δw[i]← δz[i]
w[i]← w[i] + δw[i]
β[i]← β[i] + θ

eβ[i]+ϵ
δp[i]

h[i]← htemp[i]
htemp[i]← h[i] + z[i]δ
(z[i], p[i])← (γλz[i], γλp[i])

for ϕ[i] ̸= 0 do
z[i]← z[i] + αϕ[i]
p[i]← p[i] + ϕ[i]h[i]
htemp[i]← htemp[i]− h[i]z[i]ϕ[i]

vold ←∑
ϕ[i] ̸=0 w[i]ϕ[i]
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∂L(t)
∂β[i] = ∂

∂β[i]
(Gλ

t − vt−1,t)2

2 = (Gλ
t − vt−1,t)

∂vt−1,t

∂β[i] (13)

= (Gλ
t − vt−1,t)

∂

∂β[i]

n∑

j=1
wt−1[j]ϕt[j] (14)

= (Gλ
t − vt−1,t)

n∑

j=1
ϕt[j]∂wt−1[j]

∂β[i] . (15)

Similar to the author of IDBD, we assume that the indirect impact of β[i] on w[j] for j ̸= i is
negligible. Intuitively, this approximation makes sense as changing eβ[i] will mostly impact w[i]. For
a more detailed discussion on this approximation, see Javed et al. (2021). Using this approximation
we get:

(Gλ
t − vt−1,t)

n∑

j=1
ϕt[j]∂wt−1[j]

∂β[i] ≈ (Gλ
t − vt−1,t)ϕt[i]

∂wt−1[i]
∂β[i] , (16)

where δt is
δt

def= rt + γvt−1,t − vt−1,t−1. (17)

We define ∂wt[i]
∂β[i] as ht[i]. We can compute ht[i] recursively as:

ht[i] = ∂wt[i]
∂β[i]

= ∂wt−1[i]
∂β[i] + ∂(δtzt−1[i])

∂β[i]

= ht−1[i] + zt−1[i] ∂δt

∂β[i] + δt
∂zt−1[i]

∂β[i] .

(18)

The gradient ∂δt

∂β[i] can be computed using the same approximation as IDBD as:

∂δt

∂β[i] =
∂(rt + γ

∑n
j=1 wt−1[j]ϕt[j]−∑n

j=1 wt−1[j]ϕt−1[j])
∂β[i]

≈ −ht−1[i]ϕt−1[i].
(19)

Finally, we define z̄t[i] as ∂zt[i]
∂β[i] . Then:

z̄t[i] = ∂

∂β[i]

(
γλzt−1[i] + eβt[i]ϕt[i]

)

= γλz̄t−1[i] + eβt[i]ϕt[i]
= zt[i].

(20)

The final ht[i] update is:

ht[i] ≈ ht−1[i]− zt−1[i]ht−1[i]ϕt−1[i] + δtzt−1[i].
= ht−1[i] (1− zt−1[i]ϕt−1[i]) + δtzt−1[i].

(21)

From Equation 15, we see that we still need to compute (Gλ
t − vt−1,t). This is not a problem as we

can write it as sum of TD errors as:

Gλ
t − vt−1,t =

∞∑

j=t+1
(γλ)j−t−1δj . (22)
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The final update for β[i] is

∂L(t)
β[i] =




∞∑

j=t+1
(γλ)j−t−1δj


ht−1[i]ϕt[i]

=




∞∑

j=t+1
(γλ)j−t−1ht−1[i]ϕt[i]δj




= ht−1[i]ϕt[i]δt+1 + γλ ht−1[i]ϕt[i]δt+2 + γ2λ2ht−1[i]ϕt[i]δt+3 + . . . .

(23)

The update involves future terms but can easily be done online using eligibility traces by accumu-
lating ht−1[i]ϕt[i] in a trace decayed by λγ at each time step, and applying the update overtime, as
shown in Algorithm 2.

A.2 Step-size Optimization for True Online TD(λ)

True Online TD(λ) is a more complex algorithm and the updates for meta-gradients are also more
involved. We define δ′

t as

Algorithm 3: True Online TD(λ) with Step-size Optimization
Parameters: αinit, λ, θ

Initialize: (w, hold, htemp, zδ, p, h, z, z̄)← (0, · · · , 0), (vδ, vold) = (0, 0), β ← ln(αinit) ∈ Rn

while alive do
Receive ϕ, γ, and r
v ←∑

ϕ[i] ̸=0 w[i]ϕ[i]
δ′ ← r + γv − vold

for z[i] ̸= 0 do
δw[i]← δ′z[i]− zδ[i]vδ

w[i]← w[i] + δw[i]
β[i]← β[i] + θ

eβ[i]+ϵ
δ′p[i]

hold[i]← h[i]
h[i]← htemp[i]
htemp[i]← h[i] + δ′z̄[i]− zδ[i]vδ

zδ[i] = 0
(z[i], p[i], z̄[i])← (γλz[i], γλp[i], γλz̄[i])

vδ ← 0
T ←∑

ϕ[i] ̸=0 z[i]ϕ[i]
for ϕ[i] ̸= 0 do

vδ ← vδ + δw[i]ϕ[i]
zδ[i]← eβ[i]ϕ[i]
z[i]← z[i] + zδ[i](1− T )
p[i]← p[i] + ϕ[i]h[i]
z̄[i]← z̄[i] + zδ[i] [1− T − ϕ[i]z̄[i]]
htemp[i]← htemp[i]− hold[i]ϕ[i]

(
z[i]− zδ[i]

)
− h[i]zδ[i]ϕ[i]

vold ← v

δ′
t

def= rt + γvt−1,t − vt−2,t−1. (24)

The weight update for True Online TD(λ) (Van Seijen et al., 2016) is:

wt[i] = wt−1[i] + δ′
tzt−1[i]− eβt−1[i](vt−1,t−1 − vt−2,t−1)ϕt−1[i], (25)
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where zt−2[i] is updated as:

zt[i] = γλzt−1[i] + eβt[i]ϕt[i]− eβt[i]ϕt[i]Tt. (26)

The term Tt is defined as:

Tt
def= γλ

n∑

i=1
zt−1[i]ϕt[i]. (27)

We define ∂wt[i]
∂β[i] as ht[i]. Then, we can expand ht[i] recursively as:

ht[i] = ∂wt[i]
∂β[i]

= ∂wt−1[i]
∂β[i] + δ(δ′

tzt−1[i])
∂β[i] − ϕt−1[i]

∂
(
eβt−1[i](vt−1,t−1 − vt−2,t−1)

)

∂β[i]

= ht−1[i] + zt−1[i] ∂δ′
t

∂β[i] + δ′
t
∂zt−1[i]

∂β[i] − ϕt−1[i]eβt−1[i] ∂(vt−1,t−1 − vt−2,t−1)
∂β[i]

− ϕt−1[i](vt−1,t−1 − vt−2,t−1)eβt−1[i].

(28)

Using the IDBD approximation again, we can simplify the gradient as:

ht[i] ≈ ht−1[i] + zt−1[i]∂(δ′
t)

∂β[i] + δ′
t
∂zt−1[i]

∂β[i] − ϕt−1[i]eβt−1[i](ht−1[i]ϕt−1[i]− ht−2[i]ϕt−1[i])

− ϕt−1[i](vt−1,t−1 − vt−2,t−1)eβt−1[i].

(29)

The gradient ∂δ′
t

∂β[i] can be computed using the same approximation as IDBD as:

∂δ′
t

∂β[i] =
∂(rt + γ

∑n
j=1 wt−1[j]ϕt[j]−∑n

j=1 wt−2[j]ϕt−1[j])
∂β[i]

≈ −ht−2[i]ϕt−1[i].
(30)

Finally, let us define z̄t[i] as ∂zt[i]
∂β[i] . Then:

z̄t[i] = ∂

∂β[i]

(
γλet−1 + eβt[i]ϕt[i]− eβt[i]ϕt[i]Tt

)

= γλz̄t−1[i] + eβt[i]ϕt[i]− eβt[i]ϕt[i]Tt − eβt[i]ϕt[i]
∂Tt

∂β[i]
≈ γλz̄t−1[i] + eβt[i]ϕt[i]− eβt[i]ϕt[i]Tt − γλeβt[i]ϕt[i]2z̄t−1[i]
= γλz̄t−1[i] + eβt[i]ϕt[i] (1− Tt − γλϕt[i]z̄t−1[i]) .

(31)

The final ht[i] update is:

ht[i] ≈ ht−1[i]− zt−1[i]ht−2[i]ϕt−1[i]
+ δ′

tz̄t−1[i]− ϕt−1[i]eβt−1[i](ht−1[i]ϕt−1[i]− ht−2[i]ϕt−1[i])
− ϕt−1[i](vt−1,t−1 − vt−2,t−1)eβt−1[i].

= ht−1[i]− ht−2[i]ϕt−1[i]
(

zt−1[i]− eβt−1[i]ϕt−1[i]
)

+ δ′
tz̄t−1[i]− ϕt−1[i]eβt−1[i]ht−1[i]ϕt−1[i]

− ϕt−1[i](vt−1,t−1 − vt−2,t−1)eβt−1[i].

(32)

The rest of the derivation is the same as TD(λ) with step-size optimization. The pseudocode for
True Online TD(λ) with step-size optimization is given in Algorithm 3.
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Algorithm 4: TD(λ) with the Overshoot Bound
Parameters: α, λ

Initialize: w ← 0 ∈ Rn, z ← 0 ∈ Rn, (vold = 0
while alive do

Receive ϕ, γ, and r
v ←∑

ϕ[i] ̸=0 w[i]ϕ[i]
δ ← r + γv − vold

for zi ̸= 0 do
w[i]← w[i] + δz[i]; z[i]← γλz[i];

τ ←∑
ϕ[i]̸=0 αϕ[i]2

for ϕi ̸= 0 do
z[i]← z[i] + min(1, 1

τ )αϕ[i]
vold ←∑

ϕ[i] ̸=0 w[i]ϕ[i]

B Derivation of the Overshoot Bound

If we know the update rule for the parameters, we can derive a simpler expression for τ . Consider
the case of linear regression when the weights are updated using stochastic gradient descent and the
gradient is computed for the squared loss i.e.,

1
2

(
y∗

t −
n∑

i=0
wt−1[i]ϕt[i]

)2

. (33)

The weight update for the ith component of the parameter vector is:

wt[i] = wt−1[i] + α[i]ϕt[i]δt, (34)

where δt is the prediction error. The correction ratio can be simplified as:

τ = (y∗
t −

∑n
i=1 wt[i]ϕt[i])− (y∗

t −
∑n

i=1 wt+1[i]ϕt[i])
(y∗

t −
∑n

i=1 wt[i]ϕt[i])

=⇒ τ

(
y∗

t −
n∑

i=1
wt[i]ϕt[i]

)
= (y∗

t −
n∑

i=1
wt[i]ϕt[i])− (y∗

t −
n∑

i=1
wt+1[i]ϕt[i])

τ

(
y∗

t −
n∑

i=1
wt[i]ϕt[i]

)
= −

n∑

i=1
wt[i]ϕt[i] +

n∑

i=1
(wt[i] + αδϕ[i])ϕt[i]

τ

(
y∗

t −
n∑

i=1
wt[i]ϕt[i]

)
=

n∑

i=1
αδϕ[i]2

τ

(
y∗

t −
n∑

i=1
wt[i]ϕt[i]

)
= δ

n∑

i=1
αϕ[i]2

τ

(
y∗

t −
n∑

i=1
wt[i]ϕt[i]

)
= (y∗

t −
n∑

i=1
wt[i]ϕt[i])

n∑

i=1
αϕ[i]2

τ =
n∑

i=1
αϕ[i]2.

(35)

B.1 Bound on the Correction Ratio for Stability

A general and sensible inductive bias in a learning mechanism is that an update to the parameters
of an agent on a given sample should not worsen the prediction on the same sample. If the target
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for a given sample is y and the agent’s prediction is 0.5y, then after the update the prediction on
the same sample should be closer to y than before—between 0.5y and y. 2

This inductive bias can be implemented as a constraint on the update rule. The loss for our linear
learner is:

1
2

(
y∗

t −
n∑

i=1
wt−1[i]ϕt[i]

)2

. (36)

The weight update for the ith parameter is

wt[i] = wt−1[i] + αϕt[i]δt. (37)

We can measure the change in error after the update on a sample as:
(

y∗
t −

n∑

i=1
wt−1[i]ϕt[i]

)2

−
(

y∗
t −

n∑

i=1
wt[i]ϕt[i]

)2

. (38)

This quantity should be positive to minimize the error. This is equivalent to:
(

y∗
t −

n∑

i=1
wt[i]ϕt[i]

)2

−
(

y∗
t −

n∑

i=1
wt+1[i]ϕt[i]

)2

> 0

Case 1: y∗
t −

n∑

i=1
wt[i]ϕt[i] ≥ 0 and y∗

t −
n∑

i=1
wt+1[i]ϕt[i] ≥ 0

=⇒ y∗
t −

n∑

i=1
wt[i]ϕt[i] > y∗

t −
n∑

i=1
wt+1[i]ϕt[i] ≥ 0

n∑

i=1
wt[i]ϕt[i] <

n∑

i=1
wt+1[i]ϕt[i] ≤ y

n∑

i=1
wt[i]ϕt[i] <

n∑

i=1
(wt[i] + αϕt[i]δ) ϕt[i] ≤ y

0 <
n∑

i=1

(
αϕt[i]2δ

)
≤ y −

n∑

i=1
wt[i]ϕt[i]

0 < δt

n∑

i=1
αϕt[i]2 ≤ δt

0 <

n∑

i=1
αϕt[i]2 ≤ 1.

(39)

Case 2: y∗
t −

n∑

i=1
wt[i]ϕt[i] < 0 and y∗

t −
n∑

i=1
wt+1[i]ϕt[i] < 0

=⇒ 0 < −y∗
t +

n∑

i=1
wt[i]ϕt[i] ≥ −y∗

t +
n∑

i=1
wt+1[i]ϕt[i]

=⇒ 1 ≤
n∑

i=1
αϕt[i]2 < 0.

=⇒ 1 ≤ τt < 0.

(40)

When y∗
t−
∑n

i=1 wt[i]ϕt[i] > 0 and y∗
t−
∑n

i=1 wt+1[i]ϕt[i] < 0 (or vice-versa) implies that the learner
would overshoot the target after the update. We ignore that case because we want the prediction
after the update to never overshoot the target.

2A more general constraint is that the prediction after the update should be in the between 0.5y and 1.5y, but we
limit ourselves to never overshooting in this work.
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Algorithm 5: Linear Regression with the Learning-rate Bound
Parameters: α
Initialize: w ← 0 ∈ Rn

while alive do
Receive ϕ, and y∗

δ ← y∗ −∑ϕ[i] ̸=0 w[i]ϕ[i]
τ ←∑n

i=1 α[i]ϕ[i]2
for ϕ[i] ̸= 0 do

w[i]← w[i] + min(1, 1
τ )α[i]δϕ[i];

Algorithm 6: True Online TD(λ) with the Overshoot Bound
Parameters: η = 0.5, αinit = 10−7, λ, γ, θ

Initialize: w, zδ, z ← 0 ∈ Rn; (vδ, vold) = (0, 0)
while alive do

Receive ϕ, γ, and r
v ←∑

ϕ[i] ̸=0 w[i]ϕ[i]
δ′ ← r + γv − vold

for z[i] ̸= 0 do
δw[i]← δ′z[i]− zδ[i]vδ

w[i]← w[i] + δw[i] zδ[i] = 0
z[i]← γλz[i]

vδ ← 0
τ ←∑

ϕ[i]̸=0 αϕ[i]2

T ←∑
ϕ[i] ̸=0 z[i]ϕ[i]

for ϕ[i] ̸= 0 do
vδ ← vδ + δw[i]ϕ[i]
zδ[i]← min(1, 1

τ )αϕ[i]
z[i]← z[i] + zδ[i](1− T )

vold ← v

Forcing 0 < τ ≤ 1 for every update guarantees that all update reduce the prediction error and the
prediction after the update does not overshoot the target. This bound can easily be implemented for
linear regression by setting step-size of the update to be min( α∑n

i=1
αtϕt[i]2 , αt) at every time step as

shown in Algorithm 5. AutoStep (Mahmood, 2012) used a similar bound to make linear regression
robust. Our contribution is extending this bound to TD learning.

Van Siejen et al. (2016) and Van Hasselt and Sutton (2015) showed that if we scale the increment to
eligibility vector by the step-size parameter and omit the step-size parameter in the weight update,
we end up with an algorithm that has different step-size parameter for different updates for the
λ-return target. Their analysis works for TD learning with per-feature step-size parameters as well.

Their analysis provides a way of implementing the overshoot bound for TD learning. We can limit
the update to the eligibility vector similar to the way we limited the update to the weights in
Algorithm 5.
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Algorithm 7: True Online TD(λ) with the Overshoot Bound and Step-size Decay
Parameters: η = 0.5, αinit = 10−7, ϵ = 0.99, λ, γ, θ

Initialize: w, zδ, z ← 0 ∈ Rn; (vδ, vold) = (0, 0)
while alive do

Receive ϕ, γ, and r
v ←∑

ϕ[i] ̸=0 w[i]ϕ[i]
δ′ ← r + γv − vold

for z[i] ̸= 0 do
δw[i]← δ′z[i]− zδ[i]vδ

w[i]← w[i] + δw[i] zδ[i] = 0
z[i]← γλz[i]

vδ ← 0
τ ←∑n

i=0 α[i]ϕ[i]2
T ←∑

ϕ[i] ̸=0 z[i]ϕ[i]
for ϕ[i] ̸= 0 do

vδ ← vδ + δw[i]ϕ[i]
zδ[i]← min(1, 1

τ )αϕ[i]
z[i]← z[i] + zδ[i](1− T )
if τ > 0 then

α[i]← α[i]ϵϕ[i]2

vold ← v

C Credit Assignment to Features by SwiftTD

We visualize how much credit SwiftTD assigned to different pixel locations in different games. To
do so, we define a quantity that captures lifetime credit received by the ith feature as:

CreditT
i =

T∑

t=1
eβt[i]ϕt[i]2, (41)

where ϕt[i] and βt[i] are the ith feature and step-size parameter at time t, respectively. CreditT
i

measures credit the ith feature was willing to accept.

We run an experiment with SwiftTD where the initial value of the step-size parameters is very small
(10−8) and all the credit received by features is because the step-size optimization increase their
step-size parameters.

For visualizing, we remove the components of the CreditT vector associated with features for
previous action and reward. After removing them, we get a vector with 201,600 components. We
reshape this vector to a 105 x 80 x 24 tensor and sum over the third dimension to get a 105 x 80
matrix. Finally, we visualize this matrix in Figure 9. SwiftTD assigned credit to meaningful aspects
of the game that are predictive of rewards and returns. For example, in Pong, it assigned credit to
trajectories of the ball. In MsPacman, it assigned credit to the dots and the enemies.

D Hyperparameter Sweeps

For both SwiftTD and True Online TD(λ), we swept over the hyperparameters as shown in Ta-
ble 1. We use the same hyperparameters for both the linear function approximation and the neural
network experiments. The experiments with LFA are completely deterministic and do not require
multiple runs. The experiment results with convolutional networks are stochastic due to the random
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Figure 9: Visualizing the amount of credit assigned to each pixel by SwiftTD over the lifetime of the
agent. The color map is in log space. We see that SwiftTD assigned credit to meaningful aspects
of the game. For example, in Pong, it assigned credit to trajectories of the ball. In MsPacman, it
assigned credit to the dots and the enemies. In SpaceInvaders, it assigned credit to the locations of
enemies, bullets, and the UFO that passes at the top.

initialization of the weights. For statistical significance, we do a hyperparameter sweep with 5 runs
for each configuration. We then find the best configuration, and do an additional 15 runs to report
the results.

Symbol Description Algorithm Values
eβ Step-size vector SwiftTD 0.0001, 0.00001
eβ Step-size scalar True Online TD(λ) 3e−1, 1e−1, 3e−2, 1e−2,

3e−3, 1e−3, 3e−4, 1e−4

3e−5, 1e−5, 3e−6, 1e−6

αnn Scalar step-size of the kernels Both 1e−1, 1e−2, 1e−3, 1e−4,
λ Compound return parameter SwiftTD 0.95, 0.90, 0.80, 0.50, 0.0
λ Compound return parameter True Online TD(λ) 0.95, 0.90, 0.80, 0.50, 0.0
θ Meta step-size SwiftTD 1e−2, 1e−3, 1e−4

η Max correction ratio SwiftTD 1.0, 0.5
ϵ Decay factor SwiftTD 0.9, 0.8

Table 1: Hyper-parameters used in the experiments. Note that the number of configurations for
SwiftTD and True Online TD(λ) are the same. This is achieved by doing a much more fine-grained
search for the step-size parameter of True Online TD(λ).

E Step-size Optimization With and Without the Semi-gradient
Assumption

We used the semi-gradient assumption when deriving the meta-gradient for step-size optimization for
both TD(λ) and True Online TD(λ). Intuitively, the semi-gradient version of the algorithm makes
sense as both the step-size and the parameters are being optimized towards the same objective.
However, one can argue that while semi-gradient makes sense for updating the parameters, it’s better
to optimize the step-size using the full-gradient. Conveniently, both versions can be implemented
using traces and as a sanity check we compare the performance of TD(λ) with semi-gradient step-size
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Full gradient step-size adaptation

Semi-gradient

Normalized
lifetime 

error

Figure 10: We compared TD(λ) with semi-gradient step-size optimization and TD(λ) with full-
gradient step-size optimization. On average, semi-gradient performed better. In some environments,
semi-gradient achieved less than half the error of full-gradient whereas even in the worst case of
Atlantis, full gradient was only 20% better than semi-gradient.

optimization and TD(λ) with full-gradient step-size optimization in Figure 10. The results support
the claim that the semi-gradient version is the better choice.
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Abstract

Policy gradient methods form the basis for many successful reinforcement learning
algorithms, but their success depends heavily on selecting an appropriate step size
and many other hyperparameters. While many adaptive step size methods exist,
none are both free of hyperparameter tuning and able to converge quickly to an
optimal policy. It is unclear why these methods are insufficient, so we aim to
uncover what needs to be addressed to make an effective adaptive step size for
policy gradient methods. Through extensive empirical investigation, the results
reveal that when the step size is above optimal, the policy overcommits to sub-
optimal actions leading to longer training times. These findings suggest the need
for a new kind of policy optimization that can prevent or recover from entropy
collapses.

1 Introduction

Reinforcement learning (RL) algorithms, like any optimization software, should reliably solve many
problems without requiring the user to understand how the algorithms work. However, RL algo-
rithms are not easy to apply because they require carefully selection of hyperparameters (e.g., step
size and policy structure), which often requires expert knowledge of both the algorithm and appli-
cation. Furthermore, domain experts, not just RL experts, will apply the algorithms as RL’s use
becomes prevalent. Thus, it is crucial to design algorithms that non-experts can easily and reliably
use.

Policy gradient methods, which aim to approximate optimal policies using stochastic gradient ascent,
are of particular interest because they can be used in continuous-action control tasks common in
industry. The effectiveness of these algorithms depends on many factors, but a particularly critical
one is the choice of step size. There are numerous policy gradient algorithms, many of which
include an adaptive step size component to address this sensitivity. For example, natural policy
gradient algorithms (Kakade, 2002; Morimura et al., 2005; Peters & Schaal, 2008) adapt the step
size to account for the parameterization of the policy and enable the policy to change quickly in
regions where the the policy is nearly deterministic. Many algorithms (Schulman et al., 2017; Mnih
et al., 2016; Henderson et al., 2018) use optimizers such as RMSProp or Adam from stochastic
optimization that adapt the step sizes based on statistics of the gradient estimate, e.g., the norm
or variance (Hinton et al., 2012; Kingma & Ba, 2015; Mei et al., 2021b). Some methods compute
an upper bound on the step size such that policy improvement is guaranteed with high probability
(Pirotta et al., 2013; Papini et al., 2019) or use line search to estimate the optimal step size for each

*These authors contributed equally to this work.
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update (Schulman et al., 2015). Recent work has focused on optimizing the step size during learning
(Paul et al., 2019; Jaderberg et al., 2017), but these methods introduce additional hyperparameters.
Despite all these efforts, no method exists that quickly finds a good policy and does not require
tuning. So instead of trying to create yet another policy gradient optimizer, the goal of this study is
to further the understanding of step sizes and how they impact the performance of policy gradient
methods.

An effective adaptive step size method will make it so the algorithm can quickly and reliably converge
to a high-performing policy with a wide range of initial step sizes. In this paper, we seek insights into
what key obstacles still need to be addressed to develop an effective adaptive step size strategy. More
specifically, we want to know how the behavior of the algorithm changes when the step size is around
the optimal value and why these rescaling methods are failing. We show that these failures occur
when the step size is above the optimal value and the entropy of the policy collapses too quickly.
In turn, this results in a lack of exploration and the policy is trapped in sub-optimal behavior for a
long time. We call this point where entropy drops to quickly, the cliff of overcommitment.

2 Background

In this section, we provide background on RL and define the notation used in this paper. We
represent the environment an agent interacts with as a finite and episodic Markov decision process
(MDP). An MDP, M , is defined by the tuple (S,A, p, r, d0, γ), where S is the set of all states, A is the
set of all actions. At times t ∈ {0, 1, . . . , T −1} the agent is in state St, selects an action At, receives
a reward Rt, and transitions to state St+1, the reward function r : S ×A → R defines the expected
reward an agent receives for being in state s ∈ S and taking action a ∈ A, i.e., r(s, a) := E[Rt|St =
s,At = a], the transition function p : S × A × S → R specifies the probability of an agent entering
state s′ ∈ S after taking action a in state s, i.e., p(s, a, s′) := Pr(St+1 = s′|St = s,At = a), the initial
state distribution is defined through the function d0 : S → R, such that d0(s) := Pr(S0 = s), and
γ ∈ [0, 1] is a reward discount parameter. In this paper, we use γ = 1.0. We refer to the sequence
s0, a0, r0, . . . , sT−1, aT−1, rT−1 as an episode.

We call the mechanism an agent uses to select an action a policy, and represent it with the function
π : S × A → [0, 1], such that π(s, a) := Pr(At = a|St = s). In this paper we focus on parameterized
policies, π : S × A × Rn → [0, 1], where the policy takes as additional input parameters θ ∈ Rn to
specify the conditional distribution over actions. An agent’s objective is to find policy parameters
θ⋆ that approximately maximize ρ(θ) := E[G], where G =

∑T−1
t=0 γtRt.

A common method to search for θ⋆ is to use gradient ascent to update the parameters iteratively, i.e.,
θ ← θ+η∇ρ(θ), where η > 0 is a step size. The policy gradient theorem (Sutton et al., 2000) provides
an expression for the gradient, but the algorithms we study will derive approximations from the form:
∇ρ(θ) := E[GΨ], where Ψ =

∑T−1
t=0

∂ lnπ(St,At,θ)
∂θ (Tang & Abbeel, 2010). For completeness, we prove

the equivalence of these two forms in Appendix A. One of the simplest stochastic gradient ascent
(SGA) algorithms for policy gradient methods is the REINFORCE algorithm (Williams, 1992),
which uses an unbiased estimate of the gradient ∇̂ = 1

k

∑k
i=1(Gi − b)Ψi, where k is the number of

episodes to sample, Gi and Ψi are the samples from the ith episode, and b ∈ R is a baseline and is
often an estimate of ρ(θ). In this paper, we investigate the following policy update methods:

SGA θ ← θ + η∇̂
RMSprop θ ← θ + η√

v+ϵ∇̂ v ← v + β(∇̂2 − v)

where ϵ > 0 is a regulation parameter, ∇̂2 is an elementwise squaring of the gradient estimate. We use
a running average of the the scaling statistics, v, used in the step size methods, e.g., l← l+β(∥∇̂∥−l),
where β ∈ (0, 1). For our experiments, we use β = 0.05 because it performed well enough but in no
way represents an optimal choice or necessarily a reliable one for any given problem. Additionally,
it is important to note that the regularization ϵ can greatly impact the policy optimization process.
Using a small ϵ, e.g., ϵ = 10−8, can allow the step size to grow large, while a smaller ϵ, e.g., ϵ = 10−1
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can prevent the step size from growing too large, but then the adaptive step size has little impact
once ϵ is larger than the other terms. We also investigate Adam optimizer but finds that it is similar
to RMSProp. We report the results for it in Appendix E

3 Policy Gradient Warm Up

The performance of policy gradient methods is sensitive to the step size because the step size
directly controls the exploration-exploitation trade-off. To see why, first consider that the step size,
η, controls how much change is allowed to the policy’s distribution over actions, where increasing
(decreasing) η leads to larger (smaller) changes in action distribution. Additionally, for some policy
parameterizations, e.g., softmax, as η → ∞, the policy becomes greedy with respect to a given
action sequence (Kakade, 2002; Wagner, 2011). If a policy becomes too deterministic, then little
exploration happens, and the policy will become trapped for long periods and will not improve
(Schaul et al., 2019). Setting η to be small will prevent the policy from becoming too deterministic
too quickly but will result in less exploitation, and improvement will be slow. So, one should select
the step size to balance exploration and exploitation throughout learning.

Balancing exploration and exploitation with η is challenging because the amount a policy will change
depends on the magnitude of the gradient estimate ∥∇̂∥. One can interpret the policy update as a
step in the direction of the unit length vector ∇̂/∥∇̂∥, with an effective step size η∥∇̂∥. The magni-
tude ∥∇̂∥ can vary significantly from problem to problem and during learning. To make stochastic
gradient ascent methods robust to changes in the magnitude of the component of the gradients, gra-
dient rescaling methods such RMSprop, Adam (Kingma & Ba, 2015), and return rescaling (Hafner
et al., 2023) change the gradient so the amount the policy changes is more consistent. The result is
that these methods often produce similar ranges of good step sizes across different problems. While
this makes it easier to search for a good step size, it does not remove the need to tune the step size
for each problem. Our goal is to understand when these rescaling methods will lead to a failure in
learning and what an adaptive step size method will need to address.

4 Experiment Settings

Start (0.5, 0.1)

(0.1, 0.3)

(0.9, 0.9)

Figure 1: This is an illustra-
tion of the 2D environment.
The red and green circles are
goal regions and give rewards
of +1 and +10, respectively.

There are many variations of policy gradient algorithms, however,
they are all based around the REINFORCE update. So we study
the basic update method first to establish our hypothesis and in-
sights, then we will check that it remains true with PPO. Further-
more, the parameterizaton of the action distribution and function
approximation can cause differences in the results. So, we investi-
gate the combinations of softmax and squashed Gaussian (tanh of a
Gaussian random variable) distributions with both linear function
approximation and neural networks.

For our experiments to be thorough, we need to be able to run
the agent many times for many different step sizes and be able to
identify what happens to the agent’s policy. For this reason, we
begin our investigation with a simple two dimensional world where
the agent needs to get to a goal state as quickly as possible. To make
this problem, slightly harder, we introduce a second goal state that
is closer to the start state and gives a smaller reward. The agent
receives a reward of −0.01 every step, a reward of +1 if it enters
the close goal, and a reward of +10 if it enters the far goal. For
discrete actions the agent has nine actions: each of the four cardinal directions, the four diagonals,
and a no-op action. For continuous actions the can choose any pair in [−1, 1]2, which leads to a
displacement in each coordinate of the agent’s position. For each settings the agent moves up to
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Figure 2: The top row shows the number of iterations it took for REINFORCE with a softmax
policy to find a near optimal policy for each step size. The bottom row shows the averaged return
(from the last 300 episodes) when the algorithm was allowed to run for 2,000 iterations. Each
column represent a different combination of function approximator (linear or neural network) and
optimizer. Each dot represent one run of the algorithm with a specific step size. The color of the
dot indicates success (blue) or failure (red) in finding a near optimal policy. When analyzing the
number of iterations, pay attention to the log scale on the vertical axis. The scaling means the time
it takes to find a good policy increases very quickly for a step size that is too small. Additionally,
note that some blue dots will have a final return less than the threshold, because the algorithm was
allowed to run past the point that it found a near optimal policy and got worse.

0.05 units in each direction. We illustrate this environment in Figure 1. In Section 7, we test our
findings on the MuJoCo Ant environment (Todorov et al., 2012).

5 Modeling Performance Sensitivity

In this section, we focus on understanding how performance changes as a function of the step size.
Specially, we want to understand how performance changes for step sizes above and below the
optimal step size.

Before continuing, we need to define the performance metric of interest. Two metrics categorize an
optimization algorithm’s performance, the quality of the final solution, and the time it takes for the
algorithm to terminate. However, in RL research, the algorithms are often run for a fixed amount
of time (episodes or time steps), and only the expected return of the final policy is considered,
i.e., ρ(πfinal). This paper examines something different: we run each algorithm until the policy
performance is above a chosen threshold, thresh. In this sense, we view performance as the time, in
the number of episodes, it takes for the algorithm to reach the threshold. To account for stochasticity
in estimating the ρ(π) we estimate a lower bound ρ−(π) and terminate when ρ−(π) ≥ thresh. We
construct ρ−(π) using the previous n returns, i.e., ρ−(π) = Ḡi−n+1:i − 3σ(Gi−n+1:i)√

n
, where i is the

current episode number and Ḡi−n+1:i and σ(Gi−n+1:i) are the average and standard deviation of
the n most recent returns. This lower bound is similar to a confidence interval using z-scores but
is biased due to data reuse. We use the constant 3 to scale the interval as it eliminated almost all
false positives in initial tests. Additionally, we set an upper limit of 2,000 iterations (N = 100,000
episodes). This limit avoids the algorithm running too long, but it is high enough that we can still
see the effects for a wide range of step sizes.

For 800 randomly chosen step sizes in the range [10−8, 104], we show both the number of of iterations
to find a near optimal policy and the policy performance after 2,000 iterations on the 2D environment,
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Figure 3: These are the same as those in Figure 2, but correspond to using the squashed Gaussian
parameterization. The biggest difference to note is that often REINFORCE was unable to find a
near optimal policy with neural network, even when using good step sizes.

in Figures 2 and 3. The first thing to notice in these plots, is that the performance is asymmetric
around the optimum step size (the step size that minimizes the expected number of iterations to
find a near optimal policy). Step sizes that are below the optimal step size have a high likelihood
of finding a good policy. Step sizes that are above optimal quickly increase optimization time and
have a reduced chance to find a near optimal policy. We refer to this phenomenon as the cliff of
overcommitment. We investigate this further in the following sections.

6 Sensitivity around the Optimum

The performance around the optimal step size is asymmetric, with the performance above optimal
step size forming a cliff, where the step size being above optimal leads to longer training times and
reduced chance of finding a near optimal policy. Two things are apparent in Figures 2 and 3. The
first is that the optimal step size is not always the step size that achieves the fastest convergence.
The second is that the optimal step size is slightly below or just into the region where the algorithm
does not consistently find a policy above the performance threshold. This finding implies that even
if the variation of the optimal step size is moderately small, choosing a step size based on the
center of optimal step sizes means that for some problems, the algorithm will not be likely to find a
good policy. Thus, to develop reliable adaptive step size methods, we need to understand why the
algorithm fails when the step size goes above the optimal value.

There are several possible reasons for the algorithms failing to find a good policy above the optimal
step size, such as overstepping, where the policy changes too much, and performance decreases or
diverges, as is common in supervised learning. While this can happen, especially if the gradient
estimate is poor, we hypothesize a different reason: with large step sizes, the policy becomes nearly
deterministic too quickly, and there is insufficient exploration to improve the policy. To test this
hypothesis, we need to show two things: 1) that the step size has a direct impact on the rate at which
the entropy decreases, 2) that trials that successfully find a good policy have higher entropy in the
policy than the trials that fail to find a good policy, and 3) that the performance is not decreasing
as step sizes go above the optimal step size.

To test this hypothesis, we run the SGA and RMSprop update methods while recording the policy’s
returns and entropy at each iteration. We use H(θ) := −E

[
1
T

∑T−1
t=0 ln π(St, At)

]
as the measure of

policy entropy for softmax policies. For continuous actions, we discretize the action space and use
the entropy of the sampled actions overall time. See Appendix C for details.
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Figure 4: (left, middle-left) These plots show the return and entropy over each iteration for the
REINFORCE with RMSprop and softmax policies. Each line corresponds to a run of the algorithm
with randomly chosen step size and the line color indicates the step size. (middle-right,right) These
plots illustrate the same data as the other two, but are colored based on if the a near optimal policy
was successfully found or not. The lines are truncated to the point where a near optimal policy was
found. Notice how the step size directly impacts how fast the entropy decreases. Additionally, note
that the trials that go on a long time all have low entropy.

We plot the returns and entropy over time for each trial for REINFORCE with linear function
approximation, RMSprop, and softmax policy parameterization in Figure 4. We show the results
for other configurations in Appendix E. In Figure 4, the relationship between step size and the rate
of entropy reduction is apparent: a larger step size leads to a faster reduction in entropy. When the
step size is small, the rate of entropy reduction is consistent and has little variability. However, as
the step size increases, so does the noise in the entropy reduction process.

To answer the second part of our hypothesis, trials that fail to find a good policy reach low entropy
policies, we use Figure 4 to show the differences in successful and unsuccessful trials. The results
show that the algorithm will successfully terminate with a good policy for a sufficiently slow enough
drop in entropy. In some of the successful trials entropy drops quickly. This can occur if the policy
prioritizes going towards the better goal state and then becomes nearly deterministic. If this does
not happen, then it is unlikely, but still possible that the policy will find the near optimal goal and
be able to reach it. This event can be seen in middle-right plot of Figure 4, where there are two blue
spikes later in learning.

To answer the last part of our hypothesis, that the failure is due to small entropy and not due to
overstepping and finding a worse policy or diverging, we visualize the returns over time in Figure
4. We see that both successful and failed trials have overstepping where performance notably gets
worse. However, on the failed trials, performance is stuck in a performance plataeu and have low
entropy. Decreases in performance are, unsurprisingly, more common at higher step sizes. Together,
this suggests that overstepping may occur, but the policy can eventually improve if the entropy
remains high enough. Thus with step sizes larger than optimal, we say that the policy overcommits
to suboptimal actions and becomes less likely to improve.

This hypothesis does not explain all observations in Figures 2 and 3. Specially, that when optimizing
neural network policies there are failures even when using small step sizes. This was particularly
common for the squashed Gaussian policies. We discuss some plausible explanations for these failures
in Section 8, but leave a precise answer to future work. Although these events are unexplained, our
hypothesis is well supported and explains most of the observations.

7 Evaluating Entropy Collapse in PPO

While the experiments in the previous section illustrate the overcommitment cliff with the basic
REINFORCE method in a simple environment, we need to check and make sure it is present with
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Figure 5: These plots show the final entropy of a softmax policy after 2,000 iterations for each step
size. The red dots correspond to runs of REINFORCE (RF), while the other colors indicate PPO
with a different entropy coefficient. Each version of PPO has at least 500 individual runs.

methods in environments typically seen in RL research. In this section, we investigate PPO in our
simple 2D environment and the MuJoCo Ant environment.1 Since PPO uses a an reward bonus
of −α ln π(s, a, θ), where a larger coefficient α encourages the policy to have more entropy, we also
explore the impacts of entropy regularization in PPO on the cliff of overcommitment.

For the simple 2D environment, we repeat the experiment above and measure the number of itera-
tions, final return, and final entropy of the policy for each step size. The results are very similar to
REINFORCE, with the exception of the final entropy. So, we show the final entropy in Figure 5 and
show the other measurements in Appendix E. The first thing we noticed was that PPO also exhibits
the cliff of overcommitment. However, the impact of step size on final entropy is much different and
depends on the entropy coefficient.

PPO has different relationship with final entropy than REINFORCE. In REINFORCE, as the step
sizes increase the final entropy in the policy decreases. PPO with linear function approximation also
behaves similarly. However, in PPO with neural networks, even with no entropy regularization, the
entropy has ‘U’ shaped relationship with the step size. While the final entropy initially decreases
with increasing step sizes, it eventually starts to increase. It then suddenly drops of at the cliff of
overcommitment. This observation suggests there is some interesting property of the dynamics of
PPO that impact entropy.

We repeat the investigation of PPO on the Ant environment, but we run the algorithm for a fixed
amount of time for each step size and estimate the performance at the end of training. Additionally,
we use a Gaussian policy parameterization instead of a squashed Gaussian because the action space
was not bounded. So, instead of measuring entropy, we compute the logarithm of the standard
deviation averaged over each action as it will reflect the spread of the actions. Figure 6 shows the
results for PPO on the Ant environment with both the results at the end of optimization and during
learning.

The results, generally, follow the same trend as in the other environments, e.g., the standard devi-
ation gets smaller as the step sizes goes above the optimal value. However, at very high steps the
standard deviation begins to grow larger, which, combined with the decreasing performance, likely
indicates divergence. Based on these results we conclude that the overcommitment cliff is a common
phenomenon across policy gradient methods.

8 Discussion and Conclusion

As mentioned before, the step size cliff does not explain all the failures in the above results, particular
those with neural networks and squashed Gaussian policies. While these results make it clear that
optimizing neural network policies is more challenging than linear policies, it is not clear why smaller

1Appendix D describes a simple modification to the Ant environment used in the experiments.
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Figure 6: These plots represent the average return (left) and average log standard deviation (right)
of the policy from the last 300 episodes (top row) and at each time step (bottom row) of PPO on
the Ant environment. For each dot, the algorithm is run for 100,000,000 time steps. In the right
plot, the log standard deviation is averaged for each action and each of the episodes. The algorithm
is run 20 times for each step size. The per time step plots, average data from each run and use a
windowed average to smooth the data.

step sizes were insufficient. We speculate that this has to do with with feature collapse (Lyle et al.,
2022; Dohare et al., 2023), which makes it more difficult for the network to switch to another policy.
For Gaussian policies, we hypothesize the extra failures are due to the policy not being able to
represent actions that can go to both goals. This hypothesis is consistent with other findings that
unimodal continuous action distributions can make optimization difficult (Lim et al., 2018; Sasaki &
Matsubara, 2019). Nevertheless, these other failures indicate that a well tuned step sizes, alone, may
be unable to have reliable convergence to a near optimal solution. There will need to be independent
and compatible approaches to address each of these failures.

When designing an adaptive step size it can be tempting to think of trust region methods, which
model the objective function and take a step relative to the trust of the model, as a solution. The
goal of these methods is to ensure that ρ(θ + η∇̂) ≥ ρ(θ), and this approach has been presented in
several forms (Pirotta et al., 2013; Papini et al., 2019; Furmston & Lever, 2015; Schulman et al.,
2015; Paul et al., 2019), but our results suggest this approach is insufficient. To see why, consider
that becoming greedy with respect to any action a such that qπ(s, a) > vπ(s) will improve the policy,
but then be suck and unable to keep exploring. A different objective is needed to ensure a better
policy keeps being reached until it finds the optimal policy.

Policy gradient methods have a few special issues that making optimization difficult. The first is
that the gradient can point in a direction that decreases the probability of the optimal action. This
is because the value of an action can be highly dependent on the policy, e.g., the optimal action a∗

can be in the sets arg mina minπ qπ(s, a) and arg maxa maxπ qπ(s, a). The second is that even if a∗ ∈
arg maxa qπ(s, a), the gradient can increase the probability of another action more than the optimal
one (Schaul et al., 2019), i.e., the change in probability is proportional to π(s, a)(qπ(s, a) − vπ(s)).
Natural policy gradients (Kakade, 2002) can fix this issue because they change the likelihood of each
action proportional to a linear approximation of qπ(s, a)− vπ(s). However, natural policy gradients
require accurate estimation of qπ(s, a∗), which is not likely if π(s, a∗) is small. If the approximation is
not sufficiently accurate then natural gradient methods are guaranteed to converge to a suboptimal
policy (Chung et al., 2021; Mei et al., 2021a).

Meta learning approaches to step size adaption from supervised learning (Sutton, 1992; Mahmood
et al., 2012; Degris et al., 2024) are not directly applicable to policy gradient methods. These
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methods can optimize the step size because in supervised learning there is a loss function that can
make it clear what is or is not a too large of step, i.e., prediction error goes from negative to positive.
This is not the case for policy gradients, as we do not have an objective that specifies what is too
much commitment.

Several methods aim to reduce the impact of overcommitting: entropy regularization and intrinsic
motivation. Entropy regularization is a technique that uses a secondary objective to encourage
the policy to increase its entropy (Williams & Peng, 1991; Sabes & Jordan, 1995; Ahmed et al.,
2019; Haarnoja et al., 2018). These methods can prevent complete entropy collapse, but they
have additional hyperparameters, and it is unknown how to set or adapt these parameters reliably.
Another technique, intrinsic motivation, applies a reward bonus to encourage the policy to explore
(Agarwal et al., 2020). This last technique, in combination with restart distributions, has been
shown to guarantee polynomial convergence rates for even challenging exploration environments.

In summary, based on our findings the step size has a significant impact on how much exploration
the agent will perform and step sizes above the optimal value lead to overcommitment to suboptimal
actions and increased training times. Thus to develop an reliable adaptive step size method for policy
gradient methods, the solution will either explicitly or implicitly address the exploration exploitation
trade-off.
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A Policy Gradient Form Equivalence

In this section, we prove that the two policy gradient forms: the policy gradient theorem and the
episodic form are equivalent. We make these connections explicit but the correctness of each form
has already be established and we include it here for completeness. We first start by proving a few
lemmas that are helpful in proving that the forms are equivalent.

We begin by proving two lemmas regarding the episodic form.

Lemma 1 (Episode Probability). The probability of an episode τ occurring is

Pr(τ) = Pr(S0 = s0, A0 = a0, R0 = r0, . . . , ST−1 = sT−1, AT−1 = aT−1, RT−1 = rT−1)

= d0(s0)
T−1∏

t=0
π(st, at, θ) Pr(Rt = rt|St = st, At = at)p(st, at, st+1).

Proof. By the Markov property

Pr(At+1 = at+1, Rt+1 = rt+1|St+1 = st+1, St = st, At = at, Rt = rt, . . . ) = Pr(At+1 = at+1, Rt+1 = rt+1|St+1 = st+1)

and Pr(St+1 = st+1|At = at, Rt = rt, St = st, . . . ) = Pr(St+1 = st+1|At = at, St = st). Thus,

Pr(τ) = Pr(S0 = s0, A0 = a0, R0 = r0, . . . , ST−1 = sT−1, AT−1 = aT−1, RT−1 = rT−1, ST = s∞)

= Pr(S0 = s0)
T−1∏

t=0
Pr(St+1 = st+1|St = st, At = at) Pr(At = at, Rt = rt|St = st)

= Pr(S0 = s0)
T−1∏

t=0
Pr(St+1 = st+1|St = st, At = at) Pr(Rt = rt|At = at, St = st) Pr(At = at|St = st)

= d0(s0)
T−1∏

t=0
p(st, at, st+1) Pr(Rt = rt|At = at, St = st)π(st, at, θ)

= d0(s0)
T−1∏

t=0
π(st, at, θ) Pr(Rt = rt|At = at, St = st)p(st, at, st+1).

Lemma 2 (Episode Derivative). The direction of steepest ascent to change policy parameters θ to
make an episode more likely is

∂

∂θ
ln Pr(τ) =

T−1∑

t=0

∂

∂θ
ln π(st, at, θ).
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Proof.

∂

∂θ
ln Pr(τ) = ∂

∂θ
ln
(
d0(s0)

T−1∏

t=0
π(st, at, θ) Pr(Rt = rt|At = at, St = st)p(st, at, st+1)

)

= ∂

∂θ

(
ln d0(s0) + ln

T−1∏

t=0
π(st, at, θ) Pr(Rt = rt|At = at, St = st)p(st, at, st+1)

)

= ∂

∂θ

(
ln d0(s0) +

T−1∑

t=0
ln π(st, at, θ) + ln Pr(Rt = rt|At = at, St = st) + ln p(st, at, st+1)

)

= ∂

∂θ
ln d0(s0) + ∂

∂θ

T−1∑

t=0
ln π(st, at, θ) + ln Pr(Rt = rt|At = at, St = st) + ln p(st, at, st+1)

= ∂

∂θ
ln d0(s0)

︸ ︷︷ ︸
=0

+
T−1∑

t=0

∂

∂θ
ln π(st, at, θ) + ∂

∂θ
ln Pr(Rt = rt|At = at, St = st)

︸ ︷︷ ︸
=0

+ ∂

∂θ
ln p(st, at, st+1)

︸ ︷︷ ︸
=0

=
T−1∑

t=0

∂

∂θ
ln π(st, at, θ).

The primary difference between the episodic form and the policy gradient theorem is that the episodic
form uses all rewards (past and present) to weight the quality of an action. To show these forms are
equivalent we need to show that the contribution of past rewards to future actions does not change
the update direction of θ.

Lemma 3. For any t < t′,

E
[
Rt

∂

∂θ
ln π(St′ , At′ , θ)|St = s

]
= 0.
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Proof. Let ψ(s, a) = ∂
∂θ ln π(s, a, θ).

E
[
Rt

∂

∂θ
ln π(St′ , At′ , θ)|St = s

]
=

∑

rt,st′ ,at′

Pr(Rt = r, St′ = st′ , At′ = at′ |St = s)
(
rt
∂

∂θ
ln π(st′ , at′ , θ)

)

=
∑

rt,st′ ,at′

Pr(Rt = r|St = s) Pr(St′ = st′ , At′ = at′ |St = s)rtψ(st′ , at′)

=
∑

rt

Pr(Rt = r|St = s)
∑

st′ ,at′

Pr(At′ = at′ |St′ = st′) Pr(St′ |St = s)rtψ(st′ , at′)

=
∑

rt

Pr(Rt = r|St = s)rt
∑

st′

Pr(St′ |St = s)
∑

at′

Pr(At′ = at′ |St′ = st′)ψ(st′ , at′)

=
∑

rt

Pr(Rt = r|St = s)rt
∑

st′

Pr(St′ |St = s)
∑

at′

π(st′ , at′ , θ)ψ(st′ , at′)

=
∑

rt

Pr(Rt = r|St = s)rt
∑

st′

Pr(St′ |St = s)
∑

at′

∂

∂θ
π(st′ , at′ , θ)

=
∑

rt

Pr(Rt = r|St = s)rt
∑

st′

Pr(St′ |St = s) ∂
∂θ

∑

at′

π(st′ , at′ , θ)

=
∑

rt

Pr(Rt = r|St = s)rt
∑

st′

Pr(St′ |St = s) ∂

∂θ
1

︸︷︷︸
=0

= 0.

Theorem 1 (Policy Gradient Form 1).

∇ρ(θ) =
∑

s

∞∑

t=0
γt Pr(St = s)

∑

a

π(s, a, θ)qπ(s, a) ∂
∂θ

ln π(s, a, θ).

Proof. See Sutton et al. (2000).

Theorem 2 (Policy Gradient Form 2). For any policy such that ∂ lnπ(s,a,θ)
∂θ exists for all s, a, θ,

then the gradient of ρ(θ) is

∇ρ(θ) = E
[
G

T−1∑

t=0

∂

∂θ
ln π(St, At, θ)

]
= E

[
T−1∑

t=0
γtGt

∂

∂θ
ln π(St, At, θ)

]
.
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Proof. For the first equality:

∇ρ(θ) = ∂

∂θ
ρθ = ∂

∂θ
E [G]

= ∂

∂θ

∑

τ

Pr(τ)G

=
∑

τ

∂

∂θ
(Pr(τ)G)

=
∑

τ

∂

∂θ
Pr(τ)G+ Pr(τ) ∂

∂θ
G

︸ ︷︷ ︸
=0

=
∑

τ

G
∂

∂θ
Pr(τ)

=
∑

τ

Pr(τ)G ∂

∂θ
ln Pr(τ)

=
∑

τ

Pr(τ)G
T−1∑

t=0

∂

∂θ
ln π(St, At, θ) = E

[
G
T−1∑

t=0

∂

∂θ
ln π(St, At, θ)

]
.

For the second equality:

E
[
G
T−1∑

t=0

∂

∂θ
ln π(St, At, θ)

]
= E

[
T−1∑

t′=0
γt

′
Rt′

T−1∑

t=0

∂

∂θ
ln π(St, At, θ)

]

= E
[
T−1∑

t′=0
γt

′
Rt′

∂

∂θ

T−1∑

t=0
ln π(St, At, θ)

]

= E
[
T−1∑

t=0

T−1∑

t′=0
γt

′
Rt′

∂

∂θ
ln π(St, At, θ)

]

= E
[
T−1∑

t=0

t−1∑

t′=0
γt

′
Rt′

∂

∂θ
ln π(St, At, θ) +

T−1∑

t=0

T−1∑

t′=t
γt

′
Rt′

∂

∂θ
ln π(St, At, θ)

]

= E
[
T−1∑

t=0

t−1∑

t′=0
γt

′
Rt′

∂

∂θ
ln π(St, At, θ) +

T−1∑

t=0

T−1∑

t′

γtγt
′−tRt′

∂

∂θ
ln π(St, At, θ)

]

= E
[
T−1∑

t=0

t−1∑

t′=0
γt

′
Rt′

∂

∂θ
ln π(St, At, θ) +

T−1∑

t=0

T−1−t∑

k

γtγkRt+k
∂

∂θ
ln π(St, At, θ)

]

= E
[
T−1∑

t=0

t−1∑

t′=0
γt

′
Rt′

∂

∂θ
ln π(St, At, θ) +

T−1∑

t=0
γtGt

∂

∂θ
ln π(St, At, θ)

]

= E
[
T−1∑

t=0

t−1∑

t′=0
γt

′
Rt′

∂

∂θ
ln π(St, At, θ)

]

︸ ︷︷ ︸
=0

+E
[
T−1∑

t=0
γtGt

∂

∂θ
ln π(St, At, θ)

]

= E
[
T−1∑

t=0
γtGt

∂

∂θ
ln π(St, At, θ)

]
.
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Theorem 3 (Policy Gradient Form Equivalence).

∇ρ(θ) =
∑

s

∞∑

t=0
γt Pr(St = s)

∑

a

π(s, a, θ)qπ(s, a) ∂
∂θ

ln π(s, a, θ) = E
[
T−1∑

t=0
γtGt

∂

∂θ
ln π(St, At, θ)

]
.

Proof.

∇ρ(θ) =
∑

s

∞∑

t=0
γt Pr(St = s)

∑

a

π(s, a, θ)qπ(s, a) ∂
∂θ

ln π(s, a, θ)

=
∑

s

∞∑

t=0
Pr(St = s)

∑

a

π(s, a, θ)γtqπ(s, a) ∂
∂θ

ln π(s, a, θ)

=
∞∑

t=0

∑

s

Pr(St = s)
∑

a

π(s, a, θ)γtqπ(s, a) ∂
∂θ

ln π(s, a, θ)

=
∞∑

t=0

∑

s

Pr(St = s)
∑

a

π(s, a, θ)γtqπ(s, a) ∂
∂θ

ln π(s, a, θ)

=
∞∑

t=0

∑

s

Pr(St = s)
∑

a

π(s, a, θ)E
[
γtGt|St = s,At = a

] ∂
∂θ

ln π(s, a, θ)

=
∞∑

t=0

∑

s

Pr(St = s)
∑

a

π(s, a, θ)E
[
γtGt

∂

∂θ
ln π(s, a, θ)|St = s,At = a

]

=
∞∑

t=0

∑

s

Pr(St = s)E
[
γtGt

∂

∂θ
ln π(s,At, θ)|St = s

]

=
∞∑

t=0
E
[
γtGt

∂

∂θ
ln π(St, At, θ)

]

= E
[ ∞∑

t=0
γtGt

∂

∂θ
ln π(St, At, θ)

]

= E
[
T−1∑

t=0
γtGt

∂

∂θ
ln π(St, At, θ)

]
.

B Hyperparameter Details:

This section lists the hyperparameters used for each experiment.

For the 2D environment we used a tile coding basis function with 16 tilings of 4 tiles per dim
and a two layer neural network with 32 hidden units and relu activations. For each iteration of
REINFORCE 50 episodes were used to estimate the gradient. PPO also collected 50 episodes per
iteration, performed 10 policy updates in mini-batches, a clip ratio of 0.2, and λ = 1. We also do
not use a version of PPO with a KL divergence penalty. Both algorithms use γ = 1.

For the Ant environment PPO used a neural network with two hidden layers of size 64. It performed
updates after every 3072 time steps, using mini-batches of 32, and went over the data 10 times per
batch. The clipping parameter was set to 0.1, γ = 0.98, λ = 0.8, and no entropy bonus.
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C Entropy Computation

For the continuous actions, using differential entropy can lead to negative or very large values and
not necessarily reflect the measure of uncertainty we want to capture. What we want to measure
is how much the action distribution covers the space [−1, 1]. So we discretize the action space
into 1,000 equal width bins. We then create a discrete probability distribution based on the total
probability that an action is sampled in each bin. For example for a bin ui = [ai, ai+1) with ai and
ai+1 being the lower and upper bounds of the bin, the probability of the selected bin U being ui in
state s is

Pr(U = ui) =
∫ ai+1

ai

π(s, a, θ)da = FA(ai+1)− FA(ai),

where FA is the cumulative distribution function of the action A as defined by π. We compute the
entropy of U to represent the spread of the action distribution.

This discretization has maintains the properties we care about, e.g., the entropy is maximized
when the distribution of A is uniform and the entropy goes towards 0 as the distribution becomes
deterministic. Furthermore, it is a better measure of spread than standard deviation for the squashed
Gaussian. When the standard deviation becomes large more probability mass gets put on the end
points−1,+1 than in the middle thus there would not many substantially different actions being tried
even though the standard deviation would be large. In this case the entropy discretized distribution
would be relatively small since the probability mass is mostly on two bins.

D Modification to the Ant environment

The Mujoco Ant environments (all versions) define an is_healthy status for the simulated robot that
terminates the episode if the Ant is unhealthy. Specifically, if the ant is too low to or too far from the
ground, the episode ends. However, the Ant can get stuck on its back; this is not always considered
unhealthy, and the result is that a great deal of compute may be spent on simulating the Ant stuck
upside-down. Since this is clearly an oversight, we use a modification to the Ant environment that
modifies the is_healthy logic to account for this situation. That is, the episode ends if the Ant flips
upside-down.

E Additional Results

This section shows additional resuts. Figures 7 and 8 show the measurements for each step size on
the 2D environment for both softmax and squashed Gaussian distributions. Figures 9 and 10 show
the measurements for REINFORCE using the Adam optimizers. Figure 11 shows the measurements
for PPO with a softmax distribution on the same environment.
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Figure 7: This figure show the results of REINFORCE using the softmax parameterization.
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Figure 8: This figure show the results of REINFORCE using the squashed Gaussian parameteriza-
tion.
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Figure 9: This figure compares the results of REINFORCE using the softmax parameterization with
RMSprop and Adam. Notice that the shape of all the plots for the two optimizers are very similar.
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Figure 10: This figure compares the results of REINFORCE using the squashed Gaussian parame-
terization with RMSprop and Adam.
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Abstract

In real-world control settings, the observation space is often unnecessarily high-
dimensional and subject to time-correlated noise. However, the controllable dynam-
ics of the system are often far simpler than the dynamics of the raw observations. It
is therefore desirable to learn an encoder to map the observation space to a simpler
space of control-relevant variables. In this work, we consider the Ex-BMDP model,
first proposed by Efroni et al. (2022b), which formalizes control problems where
observations can be factorized into an action-dependent latent state which evolves
deterministically, and action-independent time-correlated noise. Lamb et al. (2022)
proposes the “AC-State” method for learning an encoder to extract a complete
action-dependent latent state representation from the observations in such prob-
lems. AC-State is a multistep-inverse method, in that it uses the encoding of the
the first and last state in a path to predict the first action in the path. However,
we identify cases where AC-State will fail to learn a correct latent representation
of the agent-controllable factor of the state. We therefore propose a new algo-
rithm, ACDF, which combines multistep-inverse prediction with a latent forward
model. ACDF is guaranteed to correctly infer an action-dependent latent state
encoder for a large class of Ex-BMDP models. We demonstrate the effectiveness
of ACDF on tabular Ex-BMDPs through numerical simulations; as well as high-
dimensional environments using neural-network-based encoders. Code is available
at https://github.com/midi-lab/acdf.

1 Introduction

In rich-observation decision-making domains, such as robotics, much of the information that the
agent observes is irrelevant to any plausible control objective. To allow for efficient planning, it is
therefore desirable to learn a compact latent state representation, containing only the information
potentially relevant to planning. One approach to this problem is to learn a control-endogenous
latent representation (Efroni et al., 2022b; Lamb et al., 2022). The intuition behind this approach
is that the observations that an agent receives, such as images, may contain a large amount of
irrelevant information (including time-correlated noise) which represents parts of the environment
that the agent has no control over. By contrast, the agent-controllable dynamics of the system
can in some cases be represented by a small number of states with deterministic transitions. This
representation allows for efficient planning, and provides a view of the world model than can be
directly interpreted by humans. The use of such representations has shown success, for example, in
learning robotic manipulation tasks from images in a noisy environment (Lamb et al., 2022).

Efroni et al. (2022b) introduces the Ex-BMDP formalism to represent this kind of environment. An
Ex-BMDP is a (reward-free) Markov Decision Process in which each observed state x ∈ X can be
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factored into an agent-controllable endogenous state s ∈ S, which follows a deterministic transition
function, and an exogenous state e ∈ E , which evolves stochastically, independently of actions. It
is important to note that the observations x in this model are not explicitly segmented into factors:
rather, in order to extract the controllable latent state s, we must learn an encoder.1

Numerous prior works have proposed methods for discovering latent representations useful for plan-
ning (Wang et al., 2022; Zhang et al., 2020; Pathak et al., 2017; Mazoure et al., 2020). We focus
our attention on the multi-step inverse method (Lamb et al., 2022; Islam et al., 2023), which is
compelling due to its explicit theoretical justification. In brief, consider states xt and xt+k visited
by a policy. If an encoder ϕ is learned, such that ϕ(xt) and ϕ(xt+k) provide sufficient informa-
tion to predict the first action at on the path between xt and xt+k, then the learned representation
s = ϕ(x) is claimed to be a complete endogenous latent state representation, providing the necessary
and sufficient information to infer the latent dynamics.

This paper discusses cases where the multistep inverse method proposed by Lamb et al. (2022),
known as AC-State, will fail to discover control-endogenous latent dynamics of an Ex-BMDP, and
proposes a method that provably succeeds for a very general class of Ex-BMDP’s. In particular, we
identify two flaws with the AC-State method:

• The maximum length of the segment k between xt and xt+k required for multistep-inverse
dynamics prediction in order to correctly learn the encoder can be much larger than claimed.

• If the dynamics are periodic, then multistep-inverse dynamics are insufficient for learning
an appropriate encoder ϕ, regardless of k.

We then propose a modified method, which we call ACDF, which fixes these issues. We show that
any encoder which minimizes our loss function (on infinite samples) is guaranteed to be a control-
endogenous latent representation. Specifically, we:

• Give a corrected formulation of the number of steps of multistep-inverse dynamics prediction
required to learn an Ex-BMDP.

• Propose to use a latent forward dynamics loss, to enforce that the learned endogenous states
are in fact compatible with deterministic dynamics.

In addition to our theoretical claims, we show empirically that ACDF can produce a more accurate
endogenous latent model in Ex-BMDPs exhibiting certain properties.

2 Background and Motivating Example

Here, we formally describe the Ex-BMDP model and AC-State algorithm, and provide a simple
example in which AC-State fails:

2.1 Ex-BMDP Model

To formalize this notion of control-endogenous latent dynamics, consider a reward-free MDP with
states x ∈ X , discrete actions a ∈ A, initial distribution D0 ∈ ∆(X ), and transition function
xt+1 ∼ T (x|xt, at). The MDP admits a control endogenous latent representation if its transition
function can be decomposed as follows:

xt+1 ∼ Q(x|st+1, et+1),
st+1 = T (st, at), st = ϕ(xt),
et+1 ∼ Te(e|et), et = ϕe(xt),

(1)

1Additionally, x can also have time-independent noise: the observation x is sampled from a distribution that
depends only on s and e. It is assumed that the observation x contains enough information to fully specify s and e.
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etet−1 et+1... ...

xtxt−1 xt+1

stst−1 st+1... ...

atat−1 at+1... ...

Figure 1: Probabilistic graphical model of the Ex-BMDP transition dynamics, as described in Section
2.1. Endogenous states st are shown as squares to indicate that they are deterministic functions of
the previous endogenous states and actions. Observations xt and actions at are shown in gray to
indicate that they are observable. We do not show dependencies that may determine the actions at.

where:

• s ∈ S and e ∈ E are referred to as the control-endogenous and control-exogenous latent
states, respectively. We assume that S is finite, and typically |S| ≪ |X |.2

• The endogenous latent state s evolves according to a deterministic transition function T .

• The exogenous latent state e evolves according to a Markovian transition function Te that
does not depend on actions.

• We make the block assumption on the observation emission function Q (Du et al., 2019):
that is, we assume that if (s, e) ̸= (s′, e′), then Q(x|s, e) and Q(x|s′, e′) have disjoint support.
In other words, an observation x ∈ X corresponds to only a single pair (s, e).

• The encoders ϕ, ϕe are the (deterministic) inverses of Q: that is, if x ∼ Q(x|s, e), then
s = ϕ(x), e = ϕe(x).

An MDP that admits such a representation is known as an Ex-BMDP. Note that an Ex-BMDP
can have multiple valid factorizations into endogenous and exogenous states. (We discuss this fact
further in Appendix C.) In this work, our objective is to learn the encoder ϕ that is the endogenous
state encoder for some valid factorization of the Ex-BMDP: specifically, we will aim to return a
minimal-state encoder: the number of endogenous states |S| should be as small as possible. We
show a probabilistic graphical model of the Ex-BMDP transition dynamics in Figure 1.

2.2 AC-State

We now give more detail on the AC-State method as proposed by Lamb et al. (2022). In addition to
the Ex-BMDP formulation, that work makes the following further “bounded diameter” assumption:
Assumption (Assumption 3.1 from Lamb et al. (2022)). “The length of the shortest path between
any z1 ∈ S to any z2 ∈ S is bounded by D.”

Lamb et al. (2022) then proposes to learn the endogenous encoder ϕθ by learning a multi-step inverse
dynamics model. This model is a learned classifier f(ϕθ(xt), ϕθ(xt+k); k) which takes the encoded
endogenous latent states of two observations separated by k ≤ D time-steps, as well as k, and returns

2In our proofs, we also assume that E and X are finite, but this is a technical limitation of our theory: see discussion
in Appendix B. In any case, the Ex-BMDP formulation is most useful when |S| ≪ |X |.
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a normalized distribution over actions in A. This classifier is trained to predict the first action at

taken on the trajectory from xt to xt+k. The classifier f is trained jointly with the encoder model.
Then, in the theoretical treatment, the optimal encoder ϕθ∗ is defined as the encoder which allows f
to reach the minimum achievable value of this classification loss while also using the fewest number
of distinct output states. (In practice, Lamb et al. (2022) uses a discrete information bottleneck
and an associated loss term to minimize the output range, rather than learning multiple models.)
Explicitly:

LAC-State(ϕθ) := min
f

E
k∼{1,...,D}

E
(xt,at,xt+k)

− log(fat
(ϕθ(xt), ϕθ(xt+k); k))

{θ}∗ := {θ∗∗|θ∗∗ = arg min
θ

LAC-State(ϕθ)}

θ∗ := arg min
θ∈{θ}∗

∥Range(ϕθ)∥
(2)

where fat
(·) represents the probability assigned by f to the action at. Given some assumptions about

the behavioral policy (which are satisfied, for example, by a uniformly random policy), it is claimed
that the ϕθ which minimizes this loss (assuming perfect function approximation and large numbers
of samples) will produce a control-endogenous latent representation of the MDP. The transition
function T (s, a) can then be inferred after-the-fact by applying the learned ϕ to all observed states
x and counting the transitions between the resulting latent states.

In practice, the diameter D of the endogenous latent dynamics of the Ex-BMDP is unknown a
priori. Throughout this work, we will use D to represent the true diameter of the endogenous latent
dynamics3, and K to represent the number of steps actually used in practice. Based on the above
assumption, AC-State is claimed by Lamb et al. (2022) to work as long as K ≥ D.

However, we can demonstrate a simple case where AC-State will not recover a control-endogenous
latent representation. In particular, consider the Ex-BMDP shown in Figure 2. If we focus our
attention on the “correct” endogenous latent state dynamics shown in Figure 2-C, we can note that:

• We can’t infer the action at from st and st+k if st is any state other than the state st = {a, j},
because for all other states in SACDF, the actions L and R have the same effect.

• We can’t infer at given st and st+k for any k > 2, because, once {a, j} is visited a second
time, at no longer has any impact on the current state.

• The only remaining case is that st = {a, j} and k ∈ {1, 2}. In this case, if st+k is either
{b, g} or {c, h}, then we know that at = L. Similarly, if st+k is either {d, i} or {e, j}, then
we know that at = R.

Note that there are no cases where predicting at requires distinguishing between the states {b, g}
and {c, h}, or distinguishing between the states {d, i} and {e, j}. Therefore the optimal minimal-
state AC-State encoder, the ϕθ∗ produced by Equation 2, will distinguish between only three
“states”: {a, j}, {b, c, g, h}, and {d, e, i, j}. However, these learned states do not constitute a control-
endogenous latent representation of the MDP. In particular, the resulting transition function is not
deterministic (See Figure 2-E). Consequently, the inferred control-endogenous state dynamics are
not enough to predict, for example, whether taking the actions sequence L, R, R, R starting in state
{a, j} will end at state {a, j}, state {b, c, g, h}, or state {d, e, i, j}.

This example demonstrates the non-universality of the multistep-inverse method at learning control-
endogenous latent dynamics. In this work, we further develop the theory of endogenous latent
dynamics, and demonstrate that combining the multistep-inverse method with a latent forward
dynamics model is in fact sufficient to learn a control-endogenous latent encoder.

3Specifically, the minimum diameter of any endogenous representation which meets the assumptions in Appendix B.
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Learned latent states SAC-State

Learned latent states SACDF

D. E. 

Figure 2: A tabular example where our proposed method ACDF successfully learns a control-
endogenous state encoder, while the multistep-inverse method AC-State fails. (A) Full dynamics of
the example Ex-BMDP: observed states are X = {a, b..., j} and actions are ‘L’ and ‘R.’ Transitions
are stochastic: numbers in parentheses after action labels on transitions represent the probability
of that transition, conditioned on the action. (B) Encoded latent states ϕ(x) ∈ S, where ϕ is the
encoder learned using our proposed method, “ACDF.” For example, ϕ maps the observed states b
and g to the same latent state in S. (C) Dynamics on the encoded latent states S. The dynamics
are deterministic, and capture the full agent-controllable factor of the state. Once ϕ is learned, these
dynamics can be inferred from transition data by simple counting. The agent-independent exogenous
dynamics are shown in the inset: these dynamics are not learned by our method. (D) Encoded latent
states produced by the encoder ϕ output by the AC-State algorithm (Lamb et al., 2022). (E) The
encoded latent states learned by AC-State are incorrect: the encoding conflates states with different
forward dynamics, resulting in under-determined transitions between latent states.

3 Guaranteed Learning of Control-Endogenous Dynamics

In this section, we propose a modified loss function to replace LAC-State, for which we prove (in
Appendix E) that any minimum is a correct control-endogenous latent representation. Further,
we show that the minimum-range ϕθ which minimizes our loss function is a minimal-state control-
endogenous latent representation. We call our method ACDF, or AC-State+D’+Forward. The
loss function is given as follows:

LACDF(ϕθ) := min
f

E
k∼{1,...,D′}

E
(xt,at,xt+k)

− log(fat
(ϕθ(xt), ϕθ(xt+k); k))

+ min
g

E
(xt,at,xt+1)

− log(gϕθ(xt+1)(ϕθ(xt), at)).
(3)

Where, relative to LAC-State:

• We have replaced the upper-bound on the control-endogenous diameter, D, with a new
quantity D′, to be defined below. Note that if we are only given the diameter D, we can use
an upper-bound D′ := 2D2 + D, which is tight up to a constant multiple in the worst case.
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Figure 3: A. Example of the witness distance W (a, b). B-D. Witness distance can be greater than D,
leading AC-State to fail. E-F. Witness distance can be infinite if the dynamics are periodic, which
also leads to AC-State failures. (See text of Section 3.1.)

• We have added a latent forward dynamics model g over the learned latent states. This
model takes the encoded endogenous latent state of an observation xt, and the action at, and
returns a normalized probability distribution over the (discrete) encoded latent states. The
model is trained to predict the next latent state ϕθ(xt+1), which should be a deterministic
function of the previous state and the chosen action, and is optimized jointly with ϕθ.

We explain the logic behind these two modifications below:

3.1 Why D Steps is Insufficient for Multi-Step Dynamics

We assume, as Lamb et al. (2022) does, that the Ex-BMDP admits a latent representation such
that the control-endogenous dynamics have diameter upper-bounded by some D, as described in
Section 1. In order to introduce our alternative bound D′, we first define a few quantities. For
a given endogenous representation with states S, we define the witness distance W (a, b) between
states a, b ∈ S as the minimum number of steps k such that there exists some witness state c ∈ S
such that a path of length exactly k exists from c to a and also from c to b (See Figure 3-A). Note
that this quantity may be infinite even for a bounded-diameter graph, if the dynamics are periodic
(in which case W (a, b) = ∞, see Figure 3-E). The witness distance of an endogenous representation
W (ϕ) is the maximum finite W (a, b), for any pair of states a, b in the endogenous representation.
Finally, the quantity D′ is defined as any upper bound on the witness distance W (ϕ).4

The proofs in Lamb et al. (2022) implicitly assume that the witness distance W (a, b) of any pair
of states a, b ∈ S is upper-bounded by the diameter D of the transition graph. To briefly sketch
the main proof in Lamb et al. (2022), let W (a, b) = k ≤ D with witness state c. Assume st = c
and st+k ∈ {a, b}, and we wish to accurately predict at given xt and xt+k (in order to minimize the
k-step inverse loss, which is part of our loss function because k ≤ D, by assumption). Being able
to determine from xt+k whether st+k = a or st+k = b is guaranteed to help us make this prediction,
because the sets of possible values that at can take will be disjoint depending on if st+k = a or
st+k = b. (Otherwise, the witness distance would be most k − 1, because a and b could both be
reached from st+1, leading to a contradiction.)

However, it is not true in general that W (a, b) ≤ D. Figure 3-B,C,D gives an example on a simple
four-state graph, where D = 3, but the largest witness distance W (c, d) = 4. The AC-State loss
with K = D = 3 will learn an encoder that fails to distinguish all of the endogenous latent states.

4More precisely, it is defined as any upper bound on the minimum value of the witness distance W (ϕ) over the set
of ϕ’s that are minimum-|S|, finite-diameter endogenous latent representations of the Ex-BMDP.
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To analyse this example: we can’t infer the action at from st and st+k if st is any state other than a,
because for all other states, the actions L and R have the same effect. From a, the states reachable in
exactly k = 1 step are {b, d}; in k = 2 steps are {c, a}; and in k = 3 steps are {a, b, d}. In particular,
when the classifier f is provided with the value of k ∈ {1, 2, 3}, there is no need for the encoder to
be able to distinguish the state c from the state d.

AC-State will therefore produce incorrect learned endogenous latent dynamics for an Ex-BMDP
with these true endogenous dynamics (Figure 3-D). This learned representation is incorrect because
it is in fact controllable whether the agent is in state c or state d four steps after being in state a (as
seen in 3-C), but the AC-State dynamics do not capture this controllablility.

It also may be impossible to reach two states from the same state in exactly the same number of steps,
leading to an infinite witness distance. This case occurs if the endogenous dynamics are periodic.
AC-State may then fail by conflating states belonging to different cyclic classes. (See Figure 3-E,F.)

3.1.1 D′ := 2D2 + D is a Tight Upper-Bound

In Appendix D, we show that if the witness distance W (a, b) between any two states is finite, then it
is upper-bounded by D′ := 2D2 + D. Therefore, if all pairs of endogenous states have finite witness
distance between them, and D (or an upper-bound on D) is known, then the multistep-inverse loss
with K ≥ 2D2 + D will be sufficient to distinguish all pairs of endogenous states, and hence learn a
correct endogenous state encoder.

Furthermore, we show that this bound is tight up to a constant multiplicative factor. We explicitly
construct Ex-BMDPs on which AC-State learns an incorrect state encoder for any K < D2/2+O(D),
for an infinite sequence of arbitrarily-large values of D. If we use both the multistep-inverse loss
and a latent forward-dynamics loss, as in the ACDF algorithm (Equation 3), the particular family
of Ex-BMDPs we use to derive this lower-bound no longer minimizes the loss. However, through an
alternative construction, we can find Ex-BMDPs where the ACDF loss is minimized by an incorrect
encoder if K < D2/4 + O(D). Therefore the upper bound D′ := 2D2 + D is still tight for ACDF.

3.2 Forward Latent Dynamics for Periodic Transition Functions

The above discussion is applicable only to finite witness distances. With bounded-diameter en-
dogenous dynamics, we show in Appendix D that the witness distance between two states can be
infinite, if and only if the endogenous dynamics are periodic (meaning that, for some period p > 1,
each endogenous state s ∈ S can only be visited in time intervals that are multiples of p). Then
AC-State may fail regardless of the number of steps K used in the multistep inverse dynamics.

However, we show in Appendix E that augmenting the multistep-inverse loss with a latent forward
dynamics loss is sufficient to force the encoder to distinguish between states belonging to different
cyclic classes of a periodic endogenous MDP. (In brief, either the states have different latent forward
dynamics, or else they can be differentiated entirely by a cyclic exogenous state factor, so the
Ex-BMDP admits a more-minimal endogenous representation.) Thus, we prove that any ϕ which
minimizes the ACDF loss is a correct endogenous latent state encoder.

4 Experiments

Numerical Simulation. First, to capture the statistical properties of our proposed method, with-
out concerns about optimization or function approximation, we performed numerical simulations on
tabular Ex-BMDPs. In these environments, |X | is small enough that we can consider all possible
encoders ϕ, and use count-based estimates for the classifier f . Consequently, the only source of
error in minimizing LAC-State or LACDF is the sampling error caused by limited data collection. Full
details of the experiments are included in Appendix G, and results are shown in Figure 4. In general,
we see that the forward latent dynamics loss in LACDF not only enabled correct inference in periodic
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Endogenous Dynamics T Exogenous Noise Te AC-State Success Rate ACDF Success Rate
Env. steps: 200 400 800 1600 3200

K=1 0% 0% 0% 0% 0%

K=2 0% 0% 0% 0% 0%

K=3 0% 0% 0% 0% 0%

K=4 0% 0% 0% 0% 0%

K=5 0% 0% 0% 0% 0%

K=6 0% 0% 0% 0% 0%

K=7 76% 100% 100% 100% 100%

Env. steps: 200 400 800 1600 3200

K=1 100% 100% 100% 100% 100%

K=2 100% 100% 100% 100% 100%

K=3 100% 100% 100% 100% 100%

K=4 100% 100% 100% 100% 100%

K=5 100% 100% 100% 100% 100%

K=6 100% 100% 100% 100% 100%

K=7 100% 100% 100% 100% 100%

Env. steps: 100 200 400 800 1600

K=1 0% 0% 0% 0% 0%

K=2 0% 0% 0% 0% 0%

K=3 0% 0% 0% 0% 0%

K=4 0% 0% 0% 0% 0%

Env. steps: 100 200 400 800 1600

K=1 30% 14% 12% 8% 6%

K=2 92% 100% 100% 100% 100%

K=3 86% 98% 100% 100% 100%

K=4 84% 98% 100% 100% 100%

Env. steps: 100 200 400 800 1600

K=1 0% 0% 0% 0% 0%

K=2 74% 100% 100% 100% 100%

K=3 24% 70% 100% 100% 100%

K=4 4% 19% 74% 97% 100%

K=5 0% 0% 44% 92% 100%

Env. steps: 100 200 400 800 1600

K=1 98% 100% 100% 100% 100%

K=2 91% 100% 100% 100% 100%

K=3 68% 100% 100% 100% 100%

K=4 18% 88% 100% 100% 100%

K=5 4% 50% 98% 100% 100%

Env. steps: 1000 2000 4000 8000 16000

K=10 0% 0% 0% 0% 0%

K=13 0% 0% 0% 0% 0%

K=16 0% 0% 0% 0% 0%

K=19 0% 0% 2% 0% 0%

K=22 0% 0% 2% 54% 98%

K=25 0% 0% 0% 18% 80%

K=28 0% 0% 0% 4% 38%

Env. steps: 1000 2000 4000 8000 16000

K=10 0% 2% 0% 0% 0%

K=13 0% 12% 22% 64% 96%

K=16 0% 22% 96% 100% 100%

K=19 0% 12% 88% 100% 100%

K=22 0% 0% 68% 100% 100%

K=25 0% 0% 42% 98% 100%

K=28 0% 0% 32% 98% 100%

(D’ > D)

(D’ > D)

(“Control”: D’ ≤ D; Aperiodic)

(Periodic)

(None)

Figure 4: Results of numerical simulation experiments. Four environments are tested, with the
dynamics given in the first two columns. For each environment, |X | = 10, and X is isomorphic to
S × E . In the last two columns, we show the success rate of each method (AC-State and ACDF)
at learning the correct endogenous dynamics over 50 simulations. We show this success rate as a
function of the hyperparameter K and the number of environment steps used for learning.

Baseline/AC-State Baseline/ACDF Periodic/AC-State Periodic/ACDF
Success Rate 20/20 training runs 20/20 ” ” 1/20 ” ” 19/20 ” ”

Table 1: Deep RL Results. Success measured as usability of the final ϕ for open-loop planning.

examples, but also lowered the value of K necessary to learn the dynamics, and additionally yielded
improved sample-efficiency even when it wasn’t strictly necessary – as in the “control” example.

Deep Reinforcement Learning. We also ran deep-RL experiments on two gridworld-like en-
vironments with image observations. The first “baseline” environment, from Lamb et al. (2022)’s
released code, consists of nine copies of a four-room maze, with the ego-agent in one maze and ran-
dom “distractor” agents in the others as exogenous noise. The second environment is constructed
similarly, but with dynamics designed to be periodic. Brief results for optimized hyperparameters
are in Table 1, with more details and results in Appendix H. ACDF preserved performance on the
baseline task while also more consistently learning a correct encoder for the periodic task.

5 Related Works

In the area of learning latent representations for reinforcement learning problems, there are numerous
ways of defining the “purpose” of the representation – i.e., what information should ideally be
included or excluded from the representation. Our work specifically focuses on the Ex-BMDP
formulation given in Section 1, which was first proposed by Efroni et al. (2022b), and later studied by
Lamb et al. (2022). Note that the setting considered by Efroni et al. (2022b) is time-inhomogeneous:
the Ex-BMDP is assumed to progress for a finite number of steps H from a (near) deterministic
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control-endogenous start state, and the algorithm learns a different state representation for each
time-step. Consequently, number of states needed to represent the dynamics is potentially greatly
increased, and this setting does not allow for generalization to long sequences, or encoding when
the current time step is not known. In contrast, Lamb et al. (2022) and this work consider the
infinite-time-horizon Ex-BMDP. Note that because AC-State is the only prior work to our knowledge
that considers the infinite-time-horizon finite-S Ex-BMDP explicitly, we compare to it as our sole
baseline in experiments. (While Wang et al. (2022) considers a similar formulation, with continuous
latent states S, the approach proposed in Wang et al. (2022) requires learning a generative model
of the complete system state X , explicitly modeling even the exogenous state E of the system. Kooi
et al. (2023) also requires explicitly modeling both the “controllable” and “uncontrollable” latent
dynamics, and also uses a somewhat different definition for how these factors relate than in the
Ex-BMDP framework.)

Other works present multi-step inverse methods learning for timestep-dependent dynamics, including
by Mhammedi et al. (2023), which allows for nondeterministic endogenous dynamics, and Efroni et al.
(2022a), which considers an explicitly factored state. Multi-step inverse methods have also been used
in the continuous-state setting. Mhammedi et al. (2020) considers the special case of linear control-
endogenous dynamics, and derives theoretical guarantees in this setting. More recently, Islam et al.
(2023) and Koul et al. (2023) have used multi-step inverse methods as an empirical technique for
representation learning under continuous latent states. Note that while Koul et al. (2023) does learn
a forward dynamics model, the forward-dynamics loss is not used to train the state encoder: it is
only used for planning.

Aside from the Ex-BMDP framework and multi-step inverse methods, other methods have been
proposed to learn compact relevant state representations. Efroni et al. (2022b) discusses how several
of these classes of methods will sometimes include control-exogenous noise into the latent repre-
sentation, or fail to include control-endogenous information. Techniques such as Deep Bisimulation
for Control (Zhang et al., 2020) and DeepMDP (Gelada et al., 2019) ultimately rely on an exter-
nal reward signal to determine what features are relevant for control, and so may fail to represent
controllable aspects of the environment that do not affect the training reward. Misra et al. (2020)
demonstrates that one-step inverse dynamics, such as those used empirically by Pathak et al. (2017),
are insufficient for learning control-endogenous dynamics. Techniques based on “compressing” states,
e.g. through auto-encoders (Hafner et al., 2019) may also include exogenous information.

Hutter & Hansen (2022) is another work that examines the limitations of inverse models. However, it
explores the conditions under which an inverse dynamics model on an MDP is sufficient to uniquely
learn the transition function. It does not consider endogenous state representations or the “block”
setting. Note that the problem of learning an endogenous encoder is somewhat “easier” than learning
a forward dynamics model: in the setting we consider, the forward dynamics on the endogenous states
are to be learned directly from samples of the transition function after learning the encoder. By
contrast, Hutter & Hansen (2022) considers the problem of inferring the transition function directly
from the inverse dynamics alone – the conditions in which these tasks are possible may differ.

6 Limitations and Future Work

One limitation to our work is that the cases where AC-State fails are in some sense “edge cases.” In
particular, if the endogenous dynamics have even a single state with a transition to itself, then AC-
State with K = D should succeed (see Appendix F.2.) However, in many real-world environments,
staying in place forever is not possible, so ACDF may still be useful. In addition, we have shown that
adding a forward dynamics loss can improve sample efficiency and reduce the dependence on K, even
when ACDF is not strictly necessary. A general limitation of the Ex-BMDP model is that it assumes
full observation of the state. However, Wu et al. (2023) has extended AC-State to partially-observed
environments: this extension can be straightforwardly adapted to ACDF. In Appendix F, we discuss
some alternative approaches we initially considered for “fixing” AC-State, which we determine do
not work generally; however, this discussion may provide inspiration for future algorithms.
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A A Note on Terminology

Due to assumptions (1), (4), and (5) in the technical assumptions section below (Section B), when
discussing MDPs (including Ex-BMDPs) in these appendices, we will most often be referring to
finite MDPs under stationary behavior policies that assign nonzero probability to each possible
action. As a consequence, properties of the induced Markov chain like periodicity, irreducibly, cyclic
classes, etc. will be invariant to the particular choice of behavior policy, and will only depend on the
structure of the MDP. Therefore, when unambiguous, we will sometimes refer to, for instance,“the
periodicity of the MDP”, as shorthand to mean “the periodicity of the induced Markov chain of the
MDP under any policy that assigns nonzero probability to each action.” (We avoid this shorthand
in major theorem statements, such as the statement of Theorem D.1.)

B Technical Assumptions

In this section, we discuss the technical assumptions we make on the Ex-BMDP model, the behavioral
policy, and on the collection of data. We also note where these assumptions differ from those of Lamb
et al. (2022). Recall that, by the definition of the Ex-BMDP, there must exist at least one endogenous
state representation, which we call s∗ ∈ S∗, with deterministic dynamics T ∗ and a corresponding
exogenous state representation, which we will call e∗ ∈ E∗. Let the endogenous encoder ϕ∗ map X to
S∗, and exogenous encoder ϕ∗

e map X to E∗. Specifically, we will use these symbols to refer to some
correct endogenous state representation which has minimal |S| among the set of correct endogenous
state representations.

While this representation is not necessarily unique (as we show in Appendix C) it will still be
useful to refer to it. In particular, some of our assumptions are in terms of this representation.
When we refer to an assumption about S∗, E∗, etc., unless otherwise specified, we mean that there
exists at least one minimal-endogenous-state decomposition of the Ex-BMDP for which all of these
assumptions simultaneously hold.

We first give a brief statement of our assumptions, and then re-state them with more thorough
discussion.

Brief Assumptions:

1. In the proofs of the correctness of ACDF, we assume that X is finite.

2. We assume that for some correct minimal-state endogenous encoder ϕ∗, the en-
dogenous latent dynamics T ∗ have diameter bounded by D.

3. We assume that, for the exogenous encoder ϕ∗
e corresponding to the above ϕ∗, there are

no transient exogenous latent states in E∗.

4. We assume that, for the above-mentioned endogenous encoder ϕ∗, the behavioral policy
π(x) used to collect data depends only on ϕ∗(x), and ignores exogenous noise E∗.

5. Coverage assumptions: For k ≤ D′, x, x′ ∈ X , a ∈ A, if x′ is reachable from x, a
in exactly k steps, then we assume that we will sample (xt = x, at = a, xt+k = x′)
with fixed, finite, nonzero probability. Let D(k) be the distribution with this property
from which (xt = x, at = a, xt+k = x′) are sampled when computing the expectation in
Equation 3.

We now discuss each of these assumptions in more detail:

1. In the proofs of the correctness of ACDF, we assume that X is finite. This assumption is
necessary because otherwise, some observations x ∈ X occur with infinitesimal probability,
so an incorrect encoding ϕ(x) on such observations would not have a finite effect on the
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overall loss. (However, in practice, ϕ is a neural network with the capacity to generalize to
new observations in a continuous space: this requirement should be thought of as more of a
technical limitation of our proofs rather than a real constraint.)

2. Similar to the “bounded diameter” assumption of Lamb et al. (2022), we assume that for
some correct minimal-state endogenous encoder ϕ∗, the endogenous latent dy-
namics T ∗ have diameter bounded by D.

3. We assume that, for the exogenous encoder ϕ∗
e corresponding to the above ϕ∗, there are

no transient endogenous latent states in E∗. This assumption is necessary because
it might not be possible to uniquely determine the endogenous state of an observation if
the observation’s exogenous state only occurs in the first few steps of a trajectory. (For
example, if two endogenous states have the same forward dynamics, it would be impossible
to uniquely assign an observation x to one state or the other, if ϕ∗

e(x) only occurs at t = 0.)
Note that as a consequence of this assumption, the states of E∗ can be partitioned into
some number of closed, recurrent communicating classes, which each may be periodic or
aperiodic. Additionally, because X is finite, we can assume that E∗ is also finite.

4. We assume that, for the above-mentioned endogenous encoder ϕ∗, the behavioral policy
π(x) used to collect data depends only on ϕ∗(x), and ignores exogenous noise
E∗. Lamb et al. (2022) also makes this assumption explicitly. While this assumption may
seem difficult to meet, because it seemingly requires prior knowledge of ϕ∗, we note that a
policy that takes actions in A according to a fixed distribution at all time-steps (such as a
uniform random policy) will meet this requirement.

5. Coverage/Initial Distribution assumptions: We only provide an asymptotic, rather
than statistical, analysis. In other words, our results are only proven to hold for the pop-
ulation expectation in Equation 3, which occurs in the limit as samples approach infin-
ity. However, me must still be explicit about the distribution from which we draw tuples
(xt, at, xt+k) (and (xt, at, xt+1)). To summarize, for k ≤ D′, x, x′ ∈ X , a ∈ A, if x′

is reachable from x, a in exactly k steps, then we assume that we will sample
(xt = x, at = a, xt+k = x′) with fixed, finite, nonzero probability. We discuss some
implications below:

• Unlike Lamb et al. (2022), we do not assume a single trajectory. Lamb et al.
(2022) at one point mentions that data is assumed to be collected in a single, long
trajectory, which follows dynamics that have a stationary distribution which assigns
finite probability to all endogenous states. However, such a sampling process does
not necessarily give adequate coverage, because neither we nor Lamb et al. (2022)
explicitly assume that the overall dynamics T on the observations X are irreducible.
In particular, T may be reducible if either the exogenous dynamics T ∗

e are reducible,
or if both T ∗

e and the endogenous dynamics are periodic with the same period (a case
we discuss further below). We therefore assume at least one trajectory for each
communicating class in X . Because X is assumed finite, we can assume a finite
number of these communicating classes. When we consider the “infinite sample” limit,
we can assume that the length of each of these trajectories goes to infinity (and therefore
the time-averaged state visitation approaches a stationary distribution).

• Because (under any policy that assigns nonzero probability to every action) the en-
dogenous dynamics are irreducible while the exogenous dynamics only have recurrent
communicating classes, it follows that each communicating class of X is finite, closed
and recurrent. Therefore any stationary policy that assigns nonzero probability
to each action while in each endogenous state s∗ ∈ S∗ will, averaging over
time, approach a stationary distribution assigning finite, nonzero probabil-
ity to each x in the communicating class in X that the chain started in.
Because chains will reach each x with finite, nonzero probability and the execute each
sequence of actions of finite length with finite probability, they will therefore sample
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each possible (xt = x, at = a, xt+k = x′) with fixed finite probability. Any
collection of such chains is a therefore valid data-collection mechanism.

• Unlike Lamb et al. (2022), we do not assume that the initial exogenous
and endogenous states are independent. Lamb et al. (2022) assumes that the
initial distribution of the Ex-BMDP D0 is such that ϕ∗(x0) and ϕ∗

e(x0) are distributed
independently. This assumption seems overly-strict, given that, as discussed above,
Lamb et al. (2022) also assumes that collecting a single trajectory is sufficient. (If
a single episode is sufficient to learn the dynamics, how can the distribution of x0
possibly matter?) We do not make this independence assumption, rather, we define
D0 to be a distribution over X directly.5 A particular consequence of not making
this independence assumption is that we do not assume that all pairs (s∗, e∗)
necessarily correspond to an observation in X . In other words, we assume
coverage over X , not over S∗ × E∗. This consequence comes into play when both
the endogenous and exogenous dynamics are periodic, with the same period. We discuss
the implications in Section B.1 below.

• A note about periodicity in Lamb et al. (2022): One of the major claims of
this paper is that Lamb et al. (2022) incorrectly handles Ex-BMDPs with periodic
endogenous dynamics. Note that Lamb et al. (2022) makes the explicit assumption
that “Markov chain TD has a stationary distribution µD such that µD(s, a) > 0 and
πD(a|s) ≥ πmin, for all s ∈ S and a ∈ A”, where “TD(s′|s) [is] the Markov chain
induced on the control-endogenous state space by executing the policy πD by which
AC-State collects the data.” We wish to emphasise that this assumption should not
preclude Ex-BMDPs with periodic dynamics. In particular, note that periodic Markov
chains (like TD would be in the case of periodic dynamics) can indeed have stationary
distributions that assign nonzero probabilities to all states. Recall that a stationary
distribution is merely any distribution µ for which µP = µ, where P is the transition
matrix. The existence of such a distribution is a property only of the transition function
P , not the initial distribution. Therefore, even if a periodic Markov chain has a fixed
initial state x0, and therefore the distribution of the random variable xt (for any fixed
t) will only have nonzero probability on states of one cyclic class, it is still the case
that the Markov chain can have a stationary distribution that assigns probability to
every state. Therefore Lamb et al. (2022) is not “off the hook” for periodic Ex-BMDPs.
(Moreover, the periodicity or aperiodicity is never discussed explicitly in Lamb et al.
(2022), and the lines quoted above are part of a discussion about the behavioral policy
πD, not about the structure of the Ex-BMDP. Therefore it is doubtful this assumption
was intended in any way to exclude periodic dynamics.)

B.1 Implications of not assuming independence in initial exogenous and endogenous
states

Above, we mentioned that, unlike Lamb et al. (2022), we do not assume that the initial exogenous
and endogenous states are distributed independently. This fact matters when both the endogenous
and exogenous dynamics are periodic, with the same period. Assume that this period is k, and
the exogenous dynamics are irreducible, such that S∗ has cyclic classes {S∗

0 , ..., S∗
k−1} and E∗ has

cyclic classes {E∗
0 , ..., E∗

k−1}. If the support of D0 only includes states x0 such that, for example
(ϕ∗(x0), ϕ∗

e(x0))) ∈ S∗
0 × E∗

1 , then the only states which will ever be reachable will be states x
such that (ϕ∗(x), ϕ∗

e(x)) ∈ S∗
0 × E∗

1 ∪ S∗
1 × E∗

2 ∪ ... ∪ S∗
k−1 × E∗

0 . Because X is defined as the set
of states that the Ex-BMDP can be in, it is therefore the case that ∀x ∈ X , (ϕ∗(x), ϕ∗

e(x)) ∈
S∗

0 × E∗
1 ∪ S∗

1 × E∗
2 ∪ ... ∪ S∗

k−1 × E∗
0 . Note that in this case, X is not equivalent to the union of the

supports of Q∗(s∗, e∗), for all s∗ ∈ S∗ and all e∗ ∈ E∗: in fact, in this case, Q∗(s∗, e∗) is not even
well-defined for cases where s∗ and e∗ cannot co-occur.

5We do, however, assume that x0 is in fact in the support of Q∗(ϕ∗(x0), ϕ∗
e(x0)); in other words, that any

observation x in the support of D0 is also in the support of Q∗(s∗, e∗) for some choice of (s∗, e∗).
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(Also, note that the initial distribution of the Ex-BMDP D0 is a distinct concept from the initial
states used in the sampling trajectories. The former is a property of the Ex-BMDP itself; the latter
is a property of our algorithm.)

This difference in assumptions is important because there exist some Ex-BMDPs where a decom-
position with independent (s0, e0) exists, but a more-minimal endogenous representation is possible
if we allow for arbitrary initial distributions over X . The ACDF algorithm will find these more-
minimal representations. Explicitly, consider the following deterministic Ex-BMDP with |X | = 10
and A = {L, R}:

a0

b1

d1

c2

e2

b4

a3

d4

c5

e5

L
R

L/R

L/R

L/
R

L/
R

L

R

L/R

L/R

L/
R

L/
R

Figure 5: Full Ex-BMDP model of example in Section B.1
.

For this Ex-BMDP, let the initial state distribution D0 take value x0 = b1 with probability 0.5, and
x0 = e2 with probability 0.5.

The ACDF algorithm will learn the minimal-state endogenous representation of the Ex-BMDP
shown in Figure 6, with |S| = 5.

a

b

d

c

e

L
R

L/R

L/R

L/R

L/R

(a) Minimal endogenous dynamics learned by
ACDF.

0 1

2

34

5

p=1.0

p=1.0
p=1.0

p=1.0

p=1.0
p=1.0

(b) Corresponding exogenous dynamics.

Figure 6: Decomposition of the Ex-BMDP in Figure 5 that would be learned by the ACDF algorithm.
As usual, the ACDF algorithm learns an encoder for the endogenous state alone (left); the exogenous
dynamics are implicit. (The observation x emitted by latent states (s, e) is given by concatenating
the labels of s and e; for example state x = ‘c5’ is reached when s = ‘c’ and e = ‘5’.)

This is a minimal endogenous latent representation, and one can confirm that the endogenous
and exogenous latent dynamics together are equivalent to the dynamics shown in Figure 5 on any
trajectory that starts on D0. However, under this decomposition, the initial state distribution D0
corresponds to a non-independent joint distribution on S and E : it assigns probability 0.5 to the
pair (s0 = ‘b′, e0 = ‘1′) and probability 0.5 to the pair (s0 = ‘e′, e0 = ‘2′).
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By contrast, consider the trivial encoder ϕ′(x) = x, where S ′ = X and E ′ consists of a single state
with a self-edge. This is also a valid control-endogenous representation (the transitions on S ′ are
deterministic, and the (single-state) exogenous dynamics do not depend on actions.) Moreover, s′

0
and e′

0 are independent in D0 under this decomposition. Therefore, if we were to accept independent
initial-state distribution as a defining feature of the Ex-BMDP framework, we would be forced to
return this trivial encoder with |X | = 10, as the only valid Ex-BMDP decomposition.

We reject this assumption, because we believe that the more-minimal encoder returned by ACDF
better captures an intuitive notion of controllability: an agent has no control over whether they are in
state ‘a0’ or ‘a3’ for instance. Further, while it might seem like the fact that |S ×E| > |X | means that
our returned encoding is redundant, recall that only the encoding of S is actually learned. In fact,
loosening the definition of the Ex-BMDP model in this way can only lead to more concise learned
representations (because it can only increase the set of valid decompositions of the Ex-BMDP).

Lastly, we note that, while Lamb et al. (2022) may state an assumption of decoupled initial exogenous
and endogenous states, AC-State also does not enforce in any way that the returned representation
will have independent exogenous and endogenous states, even if such a representation is possible.
(In fact, on this particular example, AC-State will return an incorrect encoding consisting of 3 states
with nondeterministic dynamics).

B.1.1 Implications for the structure of X

As discussed above, our lack of an independence assumption on s0, e0 means that X may not contain
elements corresponding to all pairs (s, e), for s ∈ S, e ∈ E . However, we prove the following lemma
which will be useful in showing when such an (s, e) pair does correspond to some element in X .
Lemma B.1. Consider any policy on S∗ that assigns nonzero probability to all actions (i.e., any
valid behavioral policy). Let s, s′ ∈ S∗ and e, e′ ∈ E∗. If (s′, e′) is reachable from (s, e), then (s, e) is
reachable from (s′, e′). Consequentially, if (s′, e′) is reachable from (s, e), and (s′, e′) corresponds to
an observation in X , then (s, e) also corresponds to an observation in X .

Proof. Note that the dynamics on S∗ are irreducible, and there are no transient states in E∗. We
know that e and e′ must belong to the same communicating class in E∗, so we can treat the dynamics
on E∗ as irreducible without loss of generality.

Let Ms and Me be the two Markov chain transition matrices. Let ks be the periodicity of the
endogenous dynamics, and ke be the periodicity of the exogenous dynamics. Note that Mks

s is
ergodic when restricted to the domain of each cyclic class of S∗, and Mke

e is ergodic when restricted
to the domain of each cyclic class of E∗. Then for some n, m, for any n′ ≥ n and m′ ≥ m, Mks·n′

s has
positive probability between any two states in the same cyclic class in S∗ and Mke·m′

e has positive
probability between any two states in the same cyclic class in E∗. Then in particular, Mks·ke·m·n

s

has positive probability between any two states in the same cyclic class in S∗, and Mks·ke·m·n
e has

positive probability between any two states in the same cyclic class in E∗.

Now, let the cyclic classes of e and s be defined as 0 on their respective Markov chains. Let
l((s, e), (s′, e′)) be the length of a path from (s, e) to (s′, e′). Now, consider any state (s′′, e′′)
reached by taking ke · ks − (l((s, e), (s′, e′)) % (ke · ks)) steps starting at (s′, e′). Then (s′′, e′′) can be
reached in a path of length l((s, e), (s′′, e′′)) from (s, e), where

l((s, e), (s′′, e′′)) = l((s, e), (s′, e′) + ke · ks − (l((s, e), (s′, e′)) % (ke · ks)) ≡ 0 (mod ke · ks) (4)

Then s′′ belongs to the same cyclic class (0) as s on Ms, and e′′ belongs to the same cyclic class
(0) as e on Me. Then Mks·ke·m·n

s has positive probability to transition from s′′ to s, and Mks·ke·m·n
e

has positive probability to transition from e′′ to e. Then we can reach (s, e) from (s′′, e′′) in a finite
number (ks · ke · m · n) of steps. Because we can reach (s′′, e′′) from (s′, e′), this implies that we can
reach (s, e) from (s′, e′), as desired. As a consequence, if (s′, e′) corresponds to an observation in X ,
then the latent dynamics of the Ex-BMDP will eventually reach (s, e) with positive probability, so
(s, e) also corresponds to an observation in X .
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C Endogenous Latent Dynamics are not Unique

In this section, we provide some clarifications on the theory of endogenous latent dynamics, which
allow us to more clearly state our theoretical results. In their theoretical presentation, Lamb et al.
(2022) implicitly assumes that a Ex-BMDP has a unique endogenous latent representation; i.e.,
that a single Ex-BMDP only admits a single (minimal |S|) decomposition of the observation x into
endogenous state s and exogenous state e.6 Consequentially, their theoretical claims are often made
in terms of the “ground truth” endogenous latent state. Here, we show that this assumption is
unwarranted.

C.1 An Ex-BMDP with Multiple Control-Endogenous Representations

Consider the Ex-BMDP defined by control-endogenous states S = {a, b}, exogenous states E =
{0, 1}, actions A = {Stay, Move} and transitions as follows:

a b
Move

Move

Stay Stay

(a) Endogenous transitions T (s, a)

0 1
p = 1.0

p = 1.0

(b) Exogenous transitions Te(e|et)

Figure 7: An Ex-BMDP with |S| = 2

The observations x ∈ X are defined by simply concatenating the endogenous and exogenous state
labels: X = {a0, a1, b0, b1}.

This Ex-BMDP in fact admits a different control-endogenous state representation, with the same
(minimal) endogenous state space size |S| = 2. In particular, consider the representation:

a0/b1 a1/b0

Stay

Stay

Move Move

(a) Endogenous transitions T (s, a)

0 1
p = 1.0

p = 1.0

(b) Exogenous transitions Te(e|et)

Figure 8: A different decomposition of the same Ex-BMDP, also with |S| = 2

In this decomposition, the observation x is defined such that, for example, if s = a0/b1 and e = 0,
then x = a0.

Note that this alternative encoding is not a mere relabeling of the same endogenous states: the pair
of observations {a0, a1} belong to different endogenous states under this representation, although
they have the same endogenous state under the first representation. We can confirm that the full
MDP (that is, the observed MDP on X ) is in fact the same for both:

6For example, Lamb et al. (2022) makes claims such as “We present an asymptotic analysis of AC-State showing
it recovers the control-endogenous latent state encoder f∗.”
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a0

a1

b0

b1

Move

Stay

Move

Stay

Move

Stay

Move

Stay

Figure 9: Observed transitions on the full MDP

D Bounds on D’ and K

In this section, we prove an upper bound on the maximum witness distance D′ in terms of the
endogenous transition diameter D. We also show lower bounds on the number of steps K of multi-
step inverse needed to correctly learn a dynamics model in terms of D.
Theorem D.1. Consider a MDP on states S with deterministic transition function T , and finite
diameter D as defined by Assumption 3.1 from Lamb et al. (2022) (reproduced in Section 2 above).
Recall the definition of witness distance W (a, b) from Section 3.1. For any a, b ∈ S, either W (a, b) ≤
2D2 + D, or W (a, b) = ∞. Furthermore, W (a, b) = ∞ if and only if all Markov chains induced by
any policy on T (that assigns nonzero probability to each action) are periodic, and a and b belong to
different cyclic classes of such chains.

Proof. Consider a Markov chain induced by any policy on the transition function T that assigns
nonzero probability to each action in each state. Because of the finite diameter, we know that the
Markov chain is irreducible. We will initially consider the case that the Markov chain is aperiodic,
and later reduce the general case to the aperiodic case.

Our proof technique is inspired by a related result from Perkins (1961), which demonstrated that, for
an irreducible aperiodic Markov chain consisting of N states, a path of length exactly N2 − 2N + 2
exists between any pair of states. Building on this technique, our proof additionally takes advantage
of the bounded-diameter assumption present in our setting, instead of simply using |S|. Perkins
(1961) uses the following theorem sourced from Brauer (1942), which is ultimately attributed to
Issai Schur (presented here in the form used in Perkins (1961)):

Theorem (Theorem of Schur). Consider any set of positive integers B = {b1, ..., bk} such that
gcd(B) = 1, where k = |B|, b1 is the smallest integer, and bk the largest. Then any integer n ≥
(b1 − 1)(bk − 1) can be represented as a sum in the form n =

∑k
i=1 aibi, where a1, ..., ak are non-

negative integers.

For any state a ∈ S, we know from the definition of aperiodicity that the greatest common denom-
inator of the lengths of all possible self-loops from a to a must be 1. Let La be this complete set
of self-loops of a. We will use | · | to denote length of a path (such as a loop). We will show first
that there exists a subset Qa ⊆ La, such that the length of each loop in Qa is at most 2D + 1, the
shortest loop in Qa has length at most D + 1, and such that gcd({|p|

∣∣p ∈ Qa}) = 1.

Consider the subset Pa ⊆ La consisting of paths in the form a → ... → a′ → ... → a, ∀a′ ∈ S \ {a},
where the segments a → ... → a′ take a shortest-possible path from a to a′, and conversely, the
segments a′ → ... → a take a shortest-possible path from a′ to a. In other words, Pa is the
set of shortest self-loops of a containing each possible other state a′. Let d(a, a′) be the length
of the shortest path from a to a′. By the bounded-diameter assumption, we know that |p| =
d(a, a′) + d(a′, a) ≤ 2D, ∀p ∈ Pa. Furthermore, there must exist some a′ with an edge directly
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incident on a: for this a′, we have d(a′, a) = 1, and thus |p| = d(a, a′) + d(a′, a) ≤ D + 1. Therefore
∀p ∈ Pa, |p| ≤ 2D, and ∃p ∈ Pa, |p| ≤ D + 1.

Now, there are two possibilities:

1. gcd({|p|
∣∣p ∈ Pa}) = 1. In this case we tan take Qa = Pa

2. gcd({|p|
∣∣p ∈ Pa}) = n > 1. In this case, let m be any factor of n greater than 1. Because

gcd({|p|
∣∣p ∈ La}) = 1, there must exist some p′ ∈ La such that m ∤ |p′| (m does not divide

|p′|). (Furthermore, we can assume that the state a does not occur in the middle of p′: if
we are given such a “double-loop" with m ∤ |p′|, then m must not divide the length of either
the first segment or the second segment, or both.) Let p′

i be the ith element in the path p′

(zero-indexed). Then p′
0 = p′

|p′| = a. Note that

• d(a, p′
|p′|) − d(a, p′

0) = 0 − 0 = 0 ≡ 0 (mod m)
• |p′| − 0 = |p′| ̸≡ 0 (mod m)

Therefore, it cannot be the case that for all i ∈ [0, |p′|), d(a, p′
i+1) − d(a, p′

i) ≡ 1 (mod m).
(To confirm this fact, sum both sides of this equivalence over i from 0 to |p′|−1.) Fix i so that
p′

|i| is some state on p′ where this equivalence does not hold. (That is, d(a, p′
i+1)−d(a, p′

i) ̸≡ 1
(mod m).) Now, consider a self-loop of a constructed from the following segments:

• A shortest-length path from a to p′
i

• The edge from p′
i to p′

i+1
• A shortest-length path from p′

i+1 to a.

Let this loop be known as p′′, and note that |p′′| ≤ 2D+1, because it consists of two shortest
paths and a single edge. Also, observe that:

d(a, p′
i+1) − d(a, p′

i) ̸≡ 1 (mod m) (As derived above) (5)
d(a, p′

i+1) + d(p′
i+1, a) ≡ 0 (mod m) (A self-loop in Pa) (6)

−d(p′
i+1, a) − d(a, p′

i) ̸≡ 1 (mod m) (Subtract Eq. 6 from Eq. 5) (7)
d(a, p′

i) + d(p′
i+1, a) ̸≡ −1 (mod m) (Rearrange and negate Eq. 7.) (8)

d(a, p′
i) + 1 + d(p′

i+1, a) ̸≡ 0 (mod m) (Add 1 to Eq. 8.) (9)
|p′′| ̸≡ 0 (mod m) (From the definition of p′′ and Eq. 9.) (10)

Note that we can construct such a p′′ for each factor m of n. Then we can let Qa consist
of each loop in Pa, and additionally one of these p′′ loops constructed for for each factor
m. Then by construction, gcd({|p|

∣∣p ∈ Qa}) = 1 and ∀p ∈ Qa, |p| ≤ 2D + 1, as desired.
(Additionally, Qa still contains the loop of length ≤ D + 1 from Pa, as desired.)

Now, we have constructed Qa such that the longest loop in Qa has length at most 2D + 1 , while
the shortest loop has length at most D + 1, and furthermore that the lengths of the loops are
relatively prime. Then the Theorem of Schur given above tells us that by taking some combination
of self-loops in Qa from a in sequence, we can construct a path from a to a of any arbitrary length
n, for any n ≥ (2D + 1 − 1)(D + 1 − 1) = 2D2. Then for any b ∈ S, we can construct a path
from a to b of length exactly 2D2 + d(a, b) (by self-looping for exactly 2D2 steps at a, and then
taking the shortest path to b), and also a path from a to a of length exactly 2D2 + d(a, b) (because
2D2 + d(a, b) ≥ 2D2, so such a self-loop must exist). Then a can act as a witness for a and b, and
W (a, b) ≤ 2D2 + d(a, b) ≤ 2D2 + D, as desired.

Finally, we return to the periodic case. Let k be the periodicity of the Markov chain, such that the
chain is partitioned into the k cyclic classes S0, ..., Sk−1, where a state in class i (mod k) is always
succeeded by a state in class i + 1 (mod k). There are two possibilities:
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• States a and b belong to the same cyclic class, which we can call Sia
. Then consider the

Markov chain raised to the k’th power; that is, the Markov chain induced by taking k
steps of the original Markov chain at each step; call this new chain Mk. We will show
that Mk is irreducible, bounded-diameter, and aperiodic, and thus we can apply the above
aperiodic case to Mk. First, consider any path starting in Sia

in the original chain, of length
|p|. Either k | |p|, in which case it ends in Sia

and has an equivalent path of length |p|/k
in Mk, or k ∤ |p|, in which case it does not end in Sia and also has no equivalent path
in Mk. Thus we see that, if we start in Sia , Mk forms an irreducible Markov chain on
the states of Sia

alone. Furthermore, Mk on the states Sia
has diameter at most ⌊D/k⌋

(because there is a path of length of most D between every pair of states in Sia
in the

original Markov chain). Finally, Mk on the states Sia
is aperiodic: to confirm this fact,

note that by the definition of periodicity, we have that in the original Markov chain, the
g.c.d. of the lengths of all self-loops from any particular state in Sia is k. All of these
self-loops will still exist in Mk, but their lengths will be divided by k. Therefore, the g.c.d.
of the lengths of the self-loops will be 1. This fact directly implies that Mk on Sia

is
aperiodic. Now, because Mk on Sia

is irreducible and aperiodic with bounded diameter
⌊D/k⌋, we can apply the aperiodic case above to Mk. Then, in Mk on Sia

, we have that
W (a, b) ≤ 2⌊D/k⌋2 + ⌊D/k⌋ ≤ 2D2/k2 + D/k. The paths from the witness state to a and b
will also exist in the original MDP, but will be longer by a factor of k. Therefore the witness
distance in the original MDP will be W (a, b) ≤ 2D2/k + D ≤ 2D2 + D.

• States a and b belong to different cyclic classes, which we can call Sia
and Sib

, where ia ̸≡ ib

(mod k). In this case, for any witness state c in any Sic , note that any path from c to a
will have length congruent to ia − ic (mod k), while any path from c to b will have length
congruent to ib − ic (mod k). Because ia ̸≡ ib (mod k), we have that ia − ic ̸≡ ib − ic

(mod k), so no path from c to a can be the same length as any path from c to b. Then
W (a, b) = ∞. Note that this case is the only case in which W (a, b) = ∞.

The above result shows that the maximum witness distance D′ is upper-bounded by 2D2 + D, and
thus, if we are given diameter D, we can safely set the hyperparameter K = 2D2 + D and be
guaranteed that ACDF will correctly discover a endogenous state representation.

We now show two kinds of lower bounds on K, the number of multi-step inverse steps actually
needed to learn the endogenous state:

• A bound for the AC-State loss. For this bound, we assume that the dynamics are ape-
riodic; thus K = 2D2 + D steps are in fact sufficient to find a correct endogenous state
representation.

• A bound for the ACDF loss.

These results are proven by construction: we will explicitly construct examples of dynamics for
which AC-State/ACDF fail when K is too small.

We first give the following useful lemma:
Lemma D.2. Consider an Ex-BMDP defined on states indexed as X = {0, ..., |X | − 1}, such that
the dynamics of the Ex-BMDP are deterministic, and such that any Markov chain induced by any
policy on the Ex-BMDP (that puts nonzero probability on every action) is irreducible and aperiodic.
Then the only valid endogenous latent encoder (up to a relabeling permutations) is the trivial one:
ϕ(x) = x. That is to say, the endogenous state s is the full state x, and the endogenous transition
function is the same as the full Ex-BMDP transition function.

Proof. We proceed as follows:
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• Consider any pair of endogenous state s and exogenous state e. By the block assumption,
each observed state x corresponds to exactly one such pair, and any two observed states
x, x′ which correspond to the same pair (s, e) must have in-edges in M from exactly the
same set of states in X , with exactly the same actions for each edge, with a fixed probability
ratio. Because the Ex-BMDP is deterministic, there are no such pairs, and it immediately
follows that each pair (s, e) corresponds to exactly one x, and vice-versa.

• Because the full dynamics of x = (s, e) are deterministic, and because the dynamics of s
are deterministic (by definition), it immediately follows that the dynamics of e must be
deterministic.

• Given that the dynamics of e are deterministic and by definition do not depend on actions, E
and Te can only consist of some set of disjoint cycles of states. However, if there are multiple
such cycles, then under any choice of policy, any Markov chain on x = (s, e) would have
multiple communicating classes (because states x = (s, e) with values of e on different cycles
would be inaccessible from each other), and would therefore not be irreducible. Therefore
E can only consist of a single cycle. However, this cycle can in fact only consist of a single
state: note that the length of any self-loop of any state x = (s, e) will by divisible by the
cycle length of E = |E|. Because the Markov chain is aperiodic, the g.c.d of such loops must
be 1. Then |E| must be equal to 1.

Therefore, each x corresponds one-to-one with a endogenous-exogenous pair (s, e), and there is only a
single exogenous state e. So each x corresponds one-to-one with an endogeous state s, as desired.

We now present our lower-bound results:
Proposition D.3. ∀D, there exists an Ex-BMDP such that a minimal endogenous latent dynamics
has a diameter of D and is aperiodic, and such that the AC-State algorithm given by Equation 2 with
a uniform exploration policy will return an encoder that does not produce a valid endogenous state
representation using K ≤ h(D) -step inverse dynamics, where h(D) ∈ Ω(D2). Here, we are using
the Hardy-Littlewood Ω notation (not to be confused with Knuth’s Ω), and specifically h(D) ∼ D2/2,
in the sense that:

lim sup
D→∞

h(D)
1
2 D2 = 1 (11)

Proof. Consider two arbitrary primes p, q, with p < q, and let these primes define a deterministic
Ex-BMDP M with transition function T (x, a) as follows:

• q states, labeled X = {0, ..., q − 1}

• Two actions, {L, R}

• T (s, a) defined as:

– T (0, L) = 1
– T (0, R) = q − p + 1
– ∀x ∈ X , x ̸= 0: T (x, L) = T (x, R) = (x + 1) % q, where % is the modulo operator.

We first note that for this Ex-BMDP, under any policy that assigns nonzero probability to all actions,
the resulting Markov chain is irreducible and aperiodic. For irreducibility, simply note that any state
can be reached from any other state (i.e., any state b can be reached from any state a by simply
taking action L (b − a) % q times). For aperiodicity, note that the state 0 ∈ X has a self-loop of
length q (by taking L and then any other q − 1 actions) and a self-loop of length p (by taking R
and then any other p − 1 actions). Because these are both prime, the g.c.d. of the lengths of all of
state 0’s self-loops is 1, so the Markov chain is aperiodic. Then, by applying Lemma D.2, we know
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that the only valid endogenous latent encoder (up to a relabeling permutations) is the trivial one:
ϕ(x) = x. We can thus regard the states S = X as the only “true” endogenous states: any encoder
which maps any two states in X to the same endogenous state must be incorrect.

Now, consider the AC-State prediction task of determining at from ϕ(xt), ϕ(xt+k), and k. We will
assume that ϕ maps the state 0 ∈ X to its own endogenous state (otherwise, AC-State has already
failed, as desired).

Note that under a uniform exploration policy, where defined,

∀x ∈ X \ {0}, x′ ∈ X , k ∈ N Pr(at = L|xt = x, xt+k = x′) = 0.5 (12)

that is, it is impossible to determine at from the inverse dynamics unless xt = 0 (because for xt ̸= 0,
the next action at does not affect the dynamics). Then it is only useful to distinguish two values of
x ∈ X \ {0} if they produce distinct values of Pr(at = L|xt = 0, xk = x) for some particular k ≤ K.
In particular, if two states x, x′ ∈ X \ {0} cannot each occur exactly k steps after state 0
for some k ≤ K, then the AC-State loss can be minimized without ϕ distinguishing x
and x′. Because AC-State returns the minimum-range encoder ϕ, it will preferentially return an
encoder that maps x and x′ to the same endogenous state over the only correct encoder, which maps
every x to its own s. Therefore, to show that AC-State will fail for some K, we need only show that
there are two states x, x′ ∈ X \ {0} which cannot both be reached from state 0 in the same number
of steps ≤ K.

For simplicity and without loss of generality assume that the Ex-BMDP is in state x = 0 at timestep
t = 0. Then the state at timestep k is given by:

(k + (q − p)r) % q (13)

where r is the number of times the action R is selected while the Ex-BMDP is in the state 0, and
is at most ⌈k/p⌉ (because the agent can start to take the “short” p-length loop at most this many
times in k total steps.) Now, let x, x′ be any two states in X \ {0} such that

(x − x′) ≡ (q − p)((q − 1)/2) (mod q) (14)

(Concretely, if ((q −p)(q −1)/2) % q ̸= q −1, we can set x = q −1; x′ = q −1− ((q −p)(q −1)/2) % q;
otherwise we can set x = q − 2, x′ = q − 1.)

Then, a path of length k ends at x if and only if it contains r R-actions at state 0, where:

(k + (q − p)r) ≡ x (mod q) (15)

and such a path ends at x′ if and only if it contains r′ R-actions at state 0, where

(k + (q − p)r′) ≡ x′ (mod q) (16)

Subtracting these two congruences (Eq. 15 and 16) gives:

(q − p)(r − r′) ≡ x − x′ (mod q). (17)

Substituting in Eq. 14 gives

(q − p)(r − r′) ≡ (q − p)((q − 1)/2) (mod q). (18)

Because q is prime and q − p < q, the quantities (q − p) and q are relatively prime, so we can safely
divide off (q − p):

r − r′ ≡ (q − 1)/2 (mod q). (19)
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Now either r − r′ > 0, in which case r − r′ is at least (q − 1)/2, or r − r′ < 0, in which case r − r′ is
at most (q − 1)/2 − q = −(q + 1)/2, so r′ − r is at least (q + 1)/2. In either case, because r and r′

are non-negative, one of r or r′ must be at least (q − 1)/2. But r and r′ must be at most ⌈k/p⌉, as
noted above. Therefore, for x and x′ to both be reached from state 0 in the same number of steps
k, we must have:

(q − 1)/2 ≤ ⌈k/p⌉ ≤ (k − 1)/p + 1 (20)

Then
1
2p(q − 3) + 1 ≤ k (21)

Therefore, AC-State will fail if:
K ≤ 1

2p(q − 3). (22)

Now, we need to frame this bound in terms of the radius D, rather than p and q. First, note that
the radius of the MDP is in fact D = q − 1 (In particular, the longest distance between any two
states is the distance from i to i − 1, for 0 < i ≤ q − p.)

Secondly, in order to make this bound as tight as possible in terms of D, we would like to make p
as close to D as possible. It is known (Polymath, 2014) that there are an infinite number of pairs
of primes p, q such that q − p ≤ 246. Then, in terms of D alone, we have that there are arbitrarily
large values of D for which AC-State can fail for all values of K with:

K ≤ 1
2(D − 245)(D − 2) = 1

2D2 + O(D). (23)

If the Twin Prime conjecture holds, then this bound becomes tighter (although not asymptotically):
in this case, there are arbitrarily large values of D for which AC-State can fail for all values of K
with:

K ≤ 1
2(D − 1)(D − 2) = 1

2D2 − 3
2D + 1 (24)

Finally, because we have shown that such MDPs can be constructed for an infinite number of
arbitrarily large values of D, we can define h(D) = 1

2 (D − 245)(D − 2) for such values of D, and
h(D) = 0 elsewhere. By the definition of lim sup, we have:

lim sup
D→∞

h(D)
1
2 D2 = 1 (25)

as desired, and thus h(D) ∈ Ω(D2) (by the Hardy-Littlewood definition) as desired.

While we have shown that we do in fact need to use K = Ω(D2) steps in the AC-State method
(in environments with aperiodic latent dynamics, where AC-State works at all), it is natural to
ask whether Ω(D2) steps are still necessary when using the ACDF loss. In the ACDF case, it is
not enough to show that the multistep inverse loss can conflate two individual states (i.e., to show
that two states can have a witness distance quadratic in D, as above). Rather, in order to fail,
the method must conflate some sets of states such that the resulting dynamics on the combined
“states” produced by the encoder are deterministic. In fact, this requirement does not hold for the
construction above: empirically, in Section 4 we see that ACDF is able to consistently, successfully
infer ϕ even with one-step inverse dynamics (K = 1) on the version of this MDP with p = 3, q = 5.7

However, we are still able to construct a family of Ex-BMDPs such that ACDF will fail for K smaller
than a function ∈ Ω(D2), specifically, a function that goes as D2/4.

7Shown in the first numerical experiment at the top of Figure 4. Note that while the bound above for this problem
would suggest that AC-State will fail for K ≤ 3, a tighter analysis of the specific instance shows that it will in fact
fail for K ≤ 6, which is confirmed in the experimental results.
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Proposition D.4. ∀D, there exists an Ex-BMDP such that a minimal endogenous latent dynamics
has a diameter of D, and such that the ACDF algorithm given by Equation 3 with a uniform explo-
ration policy will return an encoder that does not produce a valid endogenous state representation
using K ≤ h(D) -step inverse dynamics, where h(D) ∈ Ω(D2). Here, we are using the Hardy-
Littlewood Ω notation (not to be confused with Knuth’s Ω), and specifically h(D) ∼ D2/4, in the
sense that:

lim sup
D→∞

h(D)
1
4 D2 = 1 (26)

Proof. Consider two arbitrary primes p, q, with p < q, and let these primes define a deterministic
Ex-BMDP M with transition function T (x, a) as follows:

• 2q states, labeled X = {0, ..., q − 2, q − 1; 0′, 1′..., (q − 1)′}

• Two actions, {L, R}

• T (s, a) defined as:

– T (0, L) = 1
– T (0, R) = (q − p + 1)′

– T (0′, L) = 1′

– T (0, R) = q − p + 1
– ∀x ∈ {1, ..., q − 1}: T (x, L) = T (x, R) = (x + 1) % q; and T (x′, L) = T (x′, R) =

((x + 1) % q)′, where % is the modulo operator.

First, we note that this Ex-BMDP is irreducible and aperiodic. To show that it is irreducible, simply
note that we can reach any state from any other state (i.e., any state b can be reached from any
state a by simply taking action L (b − a) % q times; any state b′ can be reached from a′ in a similar
manner; any b′ can be reached from a by first going from a to 0 using L actions as described, using
the action R to go from 0 to (q − p + 1)′, and then using L actions to go to b′; b can be reached
from a′ similarly). For aperiodicity, note that the state 0 ∈ X has a self-loop of length q (by taking
L and then any other q − 1 actions) and a self-loop of length 2p (by taking R and then any other
p − 1 actions to get to state 0′, then repeating this process to return to 0). Because p and q are
both prime and q ̸= 2, the g.c.d. of the lengths of these two self-loops is 1, so the Markov chain is
aperiodic. Then, by applying Lemma D.2, we know that the only valid endogenous latent encoder
(up to a relabeling permutations) is the trivial one: ϕ(x) = x. We can thus regard the states S = X
as the only “true” endogenous states: any encoder which maps any two states in X to the same
endogenous state must be incorrect.

We will show that there is an alternate encoder, ϕ′, such that the dynamics on the inferred “states”
produced by ϕ′ are deterministic and the multistep inverse loss of ϕ′ is minimal if K ≤ h(D), where
h(D) ∈ Ω(D2). Specifically, ∀x ∈ [0, q − 1], ϕ′ maps both x and x′ to the same element. To avoid
ambiguity, we will refer to this element as x∗. Thus, for example, the element 3∗ is the image of the
set {3, 3′} under ϕ′. Because ϕ′ can only output q unique elements, its range is smaller than that of
the correct encoder ϕ, and therefore ACDF will produce ϕ′ instead of ϕ if both have the same loss.

To show that ϕ′ has zero forward dynamics loss, we need to verify that the dynamics on the elements
x∗ are deterministic. In fact, they are:

• T (0∗, L) = 1∗

• T (0∗, R) = (q − p + 1)∗

• ∀x ∈ {1, ..., q − 1}: T (x∗, L) = T (x∗, R) = ((x + 1) % q)∗;
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which happen to be the dynamics of the Ex-BMDP used in the proof of Proposition D.3.

As in the construction used in the proof of Proposition D.3, we note that the first action only affects
the dynamics, and hence will only be predictable, if the Ex-BMDP is initially in state 0 or state 0′.
We also note that by the symmetry of the dynamics:

∀x ∈ {0, ..., q − 1}, k ∈ N Pr(at = L|xt = 0, xt+k = x) = Pr(at = L|xt = 0′, xt+k = x′) (27)

and:

∀x ∈ {0, ..., q − 1}, k ∈ N Pr(at = L|xt = 0′, xt+k = x) = Pr(at = L|xt = 0, xt+k = x′) (28)

Therefore, up to symmetry, the only case in which distinguishing states x and x′ (where x ∈
{0, ..., q − 1}) is necessary to minimize the multistep-inverse loss is when it is needed to distinguish

Pr(at = L|xt = 0, xt+k = x′) (29)

from
Pr(at = L|xt = 0, xt+k = x) (30)

for some particular choice of x and k: otherwise ϕ′ will be a sufficient encoder to minimize the loss.

For simplicity and without loss of generality assume that the Ex-BMDP is in state x = 0 at timestep
t = 0. Then the state at timestep k is given by:

xk =
{

(k + (q − p)r) % q if r even
((k + (q − p)r) % q)′ if r odd

(31)

where r is the number of times the action R is selected while the Ex-BMDP is in the state 0 or the
state 0′, and is at most ⌈k/p⌉. (because the agent can start to take the “short” p-length path from
0 to 0′ or vice-versa at most this many times in k total steps.) Then, in order to reach both x and
x′ in the same number of steps k, we need, for some even r and odd r′:

(k + (q − p)r) % q = (k + (q − p)r′) % q (32)

which implies
k + (q − p)r ≡ k + (q − p)r′ (mod q) (33)

Rearranging:
0 ≡ (q − p)(r′ − r) (mod q) (34)

Because q is prime and p < q, we know that q − p is relatively prime with q, so this equivalence
implies:

0 ≡ r′ − r (mod q) (35)
Because r′ is odd and non-negative, this equivalence implies that r′ ≥ q. But then we have:

q ≤ r′ ≤ ⌈k/p⌉ ≤ (k − 1)/p + 1 (36)

Which gives us:
(q − 1)p + 1 ≤ k (37)

Therefore, ACDF will fail if:
K ≤ (q − 1)p. (38)

Now, we need to frame this bound in terms of the radius D, rather than p and q. First, note that
the radius of the MDP is D = 2q − 1 (In particular, the longest distance between any two states is
the distance from 1 to (q − p)′, which requires going “all the way around” the non-primed states to
0, going from 0 to (q −p+1)′, and then going “all the way around” the primed states to (q −p+1)′.)
then in terms of D and the “prime gap” g := q − p:

K ≤
(

1
2(D − 1)

)
·
(

1
2(D + 1) − g

)
(39)
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As discussed in the proof of Proposition D.3, there are an infinite number of pairs of primes with
prime gaps bounded by a constant (=246), and under the Twin Primes conjecture, this bound can
be made even tighter, with g = 2. In either case, we have, for arbitrarily large values of D:

K ≤ 1
4D2 + O(D). (40)

One can then proceed exactly as in Proposition D.3 to prove this proposition.

E ACDF returns a correct, minimal Encoder

We show both that every function ϕ which minimizes the ACDF loss is a valid endogenous state
encoder of the Ex-BMDP, and that there exists a valid, minimal-state endogenous state encoder
of the Ex-BMDP which minimizes the ACDF loss. This is sufficient to prove that the minimal-
state encoder ϕ′ returned Equation 3 will be a valid, minimal-state endogenous state encoder of the
Ex-BMDP. Our main result is given as Theorem E.2 below.

To show that a particular ϕ′ is a valid endogenous state encoder, we will use the fact that, by the
definition of the Ex-BMDP, there must exist at least one minimal endogenous state representation,
which we will call s∗ ∈ S∗, and a corresponding exogenous state representation, which we will call
e∗ ∈ E∗. We assume this encoder follows the assumptions discussed in Section B. Even though it is
arbitrarily chosen, for simplicity in our proofs we will call this the “canonical” endogenous/exogenous
representation. The “canonical” endogenous encoder ϕ∗, which maps X to S∗, and “canonical”
exogenous encoder ϕ∗

e, which maps X to E∗, are also defined. We will similarly define the canonical
emission distribution Q∗, such that xt ∼ Q∗(x|s, e), and ϕ∗ and ϕ∗

e are inverses of Q∗.

We will also introduce a pair of new objects, which we refer to as the “enhanced exogenous encoder”
ϕ̄e

∗(x) and “enhanced exogenous state” Ē∗. These are relevant if the dynamics on the canonical
endogenous states S∗ are periodic. Specifically, let k be the periodicity of the canonical endogenous
transition function T ∗, and let c(s) ∈ S∗ → [0, k − 1] refer to the cyclic class of the canonical state
s ∈ S∗. (We can fix any labeling of these classes; if T ∗ is aperiodic, then ∀s, c(s) = 0). Then the
“enhanced exogenous state” is defined by concatenating the canonical exogenous state with c(ϕ∗(x));
that is, ϕ̄e

∗(x) := (ϕ∗
e(x), c(ϕ∗(x))). Note that because the cyclic class of s evolves independently of

actions, the dynamics of states in Ē∗ is Markovian and exogenous. For a state e′ ∈ Ē∗, we will refer
to the two components as e′[0] and e′[1].

We then introduce the following “simulation lemma”:
Lemma E.1. Consider an Ex-BMDP with states X , transition function T , canonical endogenous
states S∗ and canonical endogenous states S∗, canonical encoders ϕ∗ and ϕ∗

e, and canonical emission
distribution Q∗. If some encoder ϕ′ exists, such that:

1. ∀x ∈ X , there is a deterministic function which maps from the pair (ϕ̄∗
e(x), ϕ′(x)) to ϕ∗(x).

2. The dynamics on the encoded latent states produced by ϕ′(x) are deterministic. That is, if
we fix any s ∈ Range(ϕ′) and a ∈ A, then ∀x ∈ {x|ϕ′(x) = s}, let x′ ∼ T (x, a), then ϕ′(x′)
takes a single deterministic value, a function only of s and a. Additionally, we assume that
the range of ϕ′ is discrete and finite.

then ϕ′ is a valid endogenous latent encoder for the Ex-BMDP.

Proof. We will show that the Ex-BMDP’s transition function T can be decomposed into endogenous
and exogenous parts as defined in Equation 1, such that the endogenous encoder is ϕ′, and the exoge-
nous decoder is ϕ̄e

∗(x). We will refer to the endogenous/exogenous states under this decomposition
as s′ and e′. We showed above that the enhanced exogenous state has Markovian dynamics which
do not depend on actions; we will refer to these dynamics as T ′

e .
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By assumption, there is a deterministic function F (·, ·), which maps (ϕ′(x), ϕ̄∗
e(x)) to ϕ∗(x). There

is also, by assumption, a deterministic transition function T ′(·, ·) which maps ϕ′(x) and a to ϕ′(x′),
where x′ is any element in the support of T (x, a).

Then, we can define the emission distribution Q′ as:

∀x ∈ X , s′ ∈ S ′, e′ ∈ Ē ′, Pr
Q′

(xt = x|s′
t = s′, e′

t = e′) := Pr
Q∗

(xt = x|s∗
t = F (s′, e′), e∗

t = e′[0]) (41)

We now show that:

1. The complete transition function given by:

xt+1 ∼ Q′(x|s′
t+1, e′

t+1),
s′

t+1 = T ′(s′
t, at), s′

t = ϕ′(xt)
e′

t+1 ∼ T ′
e (e′|e′

t), e′
t = ϕ̄e

∗(x),
(42)

is equivalent to the Ex-BMDP transition function T , which by assumption can be expressed
as:

xt+1 ∼ Q∗(x|s∗
t+1, e∗

t+1),
s∗

t+1 = T ∗(s∗
t , at), s∗

t = ϕ∗(xt)
e∗

t+1 ∼ T ∗
e (e∗|e∗

t ), e∗
t = ϕ∗

e(x),
(43)

To show this fact, is it sufficient to demonstrate that the overall transition probabilities on
X are equal in the two models. That is, we must show that:

Pr
T

(xt+1= x|xt, at) =
∑

e′∈Ē∗

Pr
Q′

(xt+1= x|s′
t+1= T ′(ϕ′(xt), at), e′

t+1= e′)·Pr
T ′

e

(e′|e′
t = ϕ̄∗

e(xt)) (44)

.
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We can proceed as follows:
∑

e′∈Ē∗

Pr
Q′

(xt+1 = x|s′
t+1 = T ′(ϕ′(xt), at), e′

t+1 = e′) · Pr
T ′

e

(e′|e′
t = ϕ̄∗

e(xt)) = (45)

∑

e′∈Ē∗

Pr
Q′

(xt+1= x|s′
t+1 = ϕ′(xt+1), e′

t+1 = e′) · Pr
T ′

e

(e′|e′
t = ϕ̄∗

e(xt)) = (46)

∑

e′∈Ē∗

Pr
Q∗

(xt+1= x|s∗
t+1 = F (ϕ′(xt+1), e′), e∗

t+1 = e′[0]) · Pr
T ′

e

(e′|e′
t = ϕ̄∗

e(xt)) = (47)

∑

e′∈Ē∗

Pr
Q∗

(xt+1= x|s∗
t+1=F (ϕ′(xt+1), e′), e∗

t+1= e′[0], c(s∗
t+1)=e′[1])·Pr

T ′
e

(e′|e′
t = ϕ̄∗

e(xt)) = (48)

∑

e′∈Ē∗

Pr
Q∗

(xt+1=x|s∗
t+1=F (ϕ′(xt+1), e′

t+1), e∗
t+1=e′[0], c(s∗

t+1)=e′[1])·Pr
T ′

e

(e′|e′
t =ϕ̄∗

e(xt))= (49)

∑

e′∈Ē∗

Pr
Q∗

(xt+1= x|s∗
t+1 = ϕ∗(xt+1), e∗

t+1 = e′[0], c(s∗
t+1) = e′[1]) · Pr

T ′
e

(e′|e′
t = ϕ̄∗

e(xt)) = (50)

∑

e′∈Ē∗

Pr
Q∗

(xt+1= x|s∗
t+1 = T ∗(ϕ∗(xt), at), e∗

t+1 = e′[0]) · Pr
T ′

e

(e′|e′
t = ϕ̄∗

e(xt)) = (51)

∑

e′∈Ē∗

Pr
Q∗

(xt+1= x|s∗
t+1 = T ∗(ϕ∗(xt), at), e∗

t+1 = e′[0])

· Pr
T ∗

e

(e′[0]|e∗
t = ϕ∗

e(xt)) · 1e′[1]≡c(ϕ∗(xt))+1 (mod k) =
(52)

∑

e′[0]∈E∗

Pr
Q∗

(xt+1= x|s∗
t+1 = T ∗(ϕ∗(xt), at), e∗

t+1 = e′[0]) · Pr
T ∗

e

(e′[0]|e∗
t = ϕ∗

e(xt)) = (53)

∑

e∗∈E∗

Pr
Q∗

(xt+1= x|s∗
t+1 = T ∗(ϕ∗(xt), at), e∗

t+1 = e∗) · Pr
T ∗

e

(e∗|e∗
t = ϕ∗

e(xt)) = (54)

Pr
T

(xt+1= x|xt, at) (55)

where Eq. 46 follows by the assumption that T ′ exists and is deterministic (Assumption 2
of the Lemma); Eq. 47 follows by Assumption 1 of the Lemma; Eq. 48 follows from the fact
that, if PrT ′

e
(e′|e′

t = ϕ̄∗
e(xt)) is nonzero, then e′[1] must follow e′

t[1] (mod k), therefore e′[1] =
c(s∗

t+1) for all of these terms; the conditioning is merely making this constraint on e′ explicit.
Then in Eq. 49 we use the two conditions that e′[0] = e∗

t+1 and e′[1] = c(s∗
t+1) to conclude

that e′ = e′
t+1, and substitute using this identity in the other condition. Eq. 50 follows from

the definition of F (·, ·); and Eq. 51 follows from the definition of the canonical endogenous
transition function T ∗ (we also hide the implicit conditioning/constraint on e′[1], which as
discussed above is redundant on all nonzero terms.) Eq. 52 factors the transition function
T ′

e into the canonical exogenous transition function T ∗
e and the deterministic procession

of the cyclic class of s∗. Note that e′[1] now only appears in the final indicator function
term. Furthermore, the indicator is equal to 1 for exactly one of the possible values of e′[1].
Therefore, in Eq. 53 we split the sum over e′ ∈ Ē∗ into a sum over e′[0] ∈ E∗ and a sum
over e′[1] ∈ [0, k −1]. The latter sum can be factored to apply only to the indicator function
term, and the resulting sum is equal to exactly 1, so it can be eliminated. Eq. 54 is simply
a notational change, from e′[0] to e∗. Finally, Eq. 55 holds directly from the definition of
the Ex-BMDP in terms of the canonical endogenous and exogenous dynamics.

2. The conditions on Eq. 1 are met:
• S ′, the range of ϕ′ is finite, by assumption.
• The transition function T ′ is deterministic, by assumption.
• The transition function T ′

e is Markovian and independent of actions, because it consists
of factor T ∗

e , which is Markovian and independent of actions, and a cyclic term which
evolves deterministically as n → (n+1) % k, and is thus also Markovian and independent
of actions.
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• Q′ follows the “block” assumption, because the encoders ϕ′ and ϕ̄∗
e are both functions,

which implies that every value of x ∈ X corresponds to a unique (s′, e′) pair.
• ϕ′ and ϕ̄∗

e are inverses of Q′: in other words, if x ∼ Q′(s′, e′), then ϕ′(x) = s′ and
ϕ̄∗

e(x) = e′. This statement is only meaningful (i,e., Q′(s′, e′) is only defined) in cases
where s′ and e′ can co-occur (which is not always the case if T ′

e and T ′ are both periodic
with the same period.) The sets S ′ and Ē∗ are defined as the ranges of their respective
encoders, so (s′, e′) can co-occur if and only if there is some x′ ∈ X such that s′ = ϕ′(x′)
and e′ = ϕ̄∗

e(x′) . Then we must show that x ∼ Q′(ϕ(x′), ϕ̄∗
e(x′)) implies ϕ(x) = ϕ(x′)

and ϕ̄∗
e(x) = ϕ̄∗

e(x′). For the first implication, note that, by Eq. 41, we have that
x ∼ Q∗(F (ϕ(x′), ϕ̄∗

e(x′)), ϕ̄∗
e(x′)[0]), and therefore that ϕ∗(x) = F (ϕ(x′), ϕ̄∗

e(x′)) and
ϕ∗

e(x) = ϕ̄∗
e(x′)[0] = ϕ∗

e(x′) . Then, by the definition of F , ϕ∗(x) = ϕ∗(x′) and ϕ∗
e(x) =

ϕ∗
e(x′). Then, from the dynamics of the canonical latent encoding (specifically, the

bounded diameter assumption of S∗ and lack of transient states in E∗), we know that
there must exist some x′′ such that x′′ can transition to both x and x′ under the same
action a. Then, by the determinism of T ′, we have that T ′(ϕ′(x′′), a) = ϕ′(x) = ϕ′(x′),
so ϕ(x) = ϕ(x′) as desired. Given this result and the fact that ϕ∗

e(x) = ϕ∗
e(x′), it follows

by definition that ϕ̄∗
e(x) = ϕ̄∗

e(x′).

Given this lemma, we can now prove our main theorem:
Theorem E.2. Given an Ex-BMDP, under the assumptions listed in Section B, there exists a correct
minimal-state endogenous state encoder ϕ∗ that will minimize the ACDF loss given in Equation 3
on the Ex-BMDP. Conversely, any encoder ϕ′ which minimizes the ACDF loss given in Equation 3
on the Ex-BMDP is a correct endogenous state representation for the Ex-BMDP. As a consequence,
the encoder ϕ′ which minimizes Equation 3 with the minimum number of output states is a correct
minimal-state endogenous representation.

Proof. Our general approach is as follows:

1. We show that there exists a minimal-state endogenous encoder which simultaneously mini-
mizes both the multi-step inverse loss term and the latent forward loss term in Equation 3.
As a consequence, the encoder also minimizes the overall loss, the sum of these two terms.

2. We show that any ϕ′ which achieves the minimum possible value of the both terms in the
ACDF loss (independently) is a correct endogenous-state encoder.

3. Due to item (1) above, we know that it is possible to simultaneously minimize both loss
terms. Therefore, any ϕ′ which achieves the minimum value of the overall loss in Equation
3 must also minimize both loss terms independently. Then we can conclude that any ϕ′

which minimizes the overall loss LACDF is a correct endogenous latent state encoder.

4. Finally, because all minimizers of LACDF are correct endogenous state encoders, and we
know that at least one of these minimizers is minimal-state among correct encoders, it
follows that the minimizers of LACDF which have the fewest numbers of output states are
all minimal-state endogenous state encoders.

It show that points (1) and (2) above are correct; points (3) and (4) follow immediately.

(1) A correct, minimal-state encoder minimizes both loss terms.

Let ϕ∗ be the correct “canonical” minimal-state endogenous state encoder, as described in Section B.
To show that ϕ∗ minimizes the multistep inverse loss, we can proceed exactly as in Proposition 5.1
in Lamb et al. (2022).
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However, for completeness, we present a version of the proof here. Recall that, by assumption (4)
listed in Section B, the behavior policy used to collect data depends only on the endogenous state
s∗. Let M be the represent the transition operator of the entire Ex-BMDP on X under the behavior
policy, so that xt+k ∼ Mkxt. Similarly, let Me represent the exogenous-state transition operator un-
der the exogenous transition function T ∗

e and Ms represent the endogenous-state transition operator
under the behavioral policy π and the exogenous transition function T ∗. Then, by the definition of
the Ex-BMDP dynamics, we have that

Pr
Mk

(xt+k = x|xt) = Pr
Q∗

(x|ϕ∗(x), ϕ∗
e(x)) · Pr

Mk
e

(e∗
t+k = ϕ∗

e(x)|ϕ∗
e(xt)) · Pr

Mk
s

(s∗
t+k = ϕ∗(x)|ϕ∗(xt)) (56)

Additionally:

Pr
Mk−1,T

(xt+k = x|at = a, xt) =

Pr
Q∗

(x|ϕ∗(x), ϕ∗
e(x)) · Pr

Mk
e

(e∗
t+k = ϕ∗

e(x)|ϕ∗
e(xt)) · Pr

Mk−1
s

(s∗
t+k = ϕ∗(x)|s∗

t+1 = T ∗(ϕ∗(xt)))
(57)

Now, for any (xt, xt+k; k) tuple, the multistep-inverse loss in Equation 3 is minimized by the function
fopt. defined as: fopt.

at
(xt, xt+k; k) := PrD(k)(at|xt, xt+k) where D(k) is the sampling distribution

over which we compute the loss, as defined in Section B; note that the transition function on this
distribution is the M defined above. Now, we can write:

Pr
D(k)

(at = a|xt, xt+k = x) =

Prπ(at = a|xt) · PrMk−1,T (xt+k = x|at = a, xt)
PrMk (xt+k = x|xt)

=

Pr
π

(at = a|ϕ∗(xt))·
Pr
Q∗

(x|ϕ∗(x), ϕ∗
e(x)) · Pr

Mk
e

(e∗
t+k = ϕ∗

e(x)|ϕ∗
e(xt)) · Pr

Mk−1
s

(s∗
t+k = ϕ∗(x)|s∗

t+1 = T ∗(ϕ∗(xt)))

PrQ∗(x|ϕ∗(x), ϕ∗
e(x)) · PrMk

e
(e∗

t+k = ϕ∗
e(x)|ϕ∗

e(xt)) · PrMk
s

(s∗
t+k = ϕ∗(x)|ϕ∗(xt))

=

Prπ(at = a|ϕ∗(xt)) · PrMk−1
s

(s∗
t+k = ϕ∗(x)|s∗

t+1 = T ∗(ϕ∗(xt)))
PrMk

s
(s∗

t+k = ϕ∗(x)|ϕ∗(xt))

(58)

Where the we use Equations 56 and 57, and the fact that π depends only on the endogenous state,
in the third line. Note that the final line of the equation depends on x and xt only through ϕ∗(x)
and ϕ∗(xt) respectively, so fopt. can be equivalently written as a function only of ϕ∗(xt+k), ϕ∗(xt),
and k. Then the encoder ϕ∗ is able to achieve the minimum possible value of the multistep inverse
loss term.

We now show that ϕ∗ minimizes the latent forward loss as well. Because T ∗ is deterministic, it
follows that, for all transitions (xt, at, xt+1), ϕ∗(xt+1) is a deterministic function of ϕ∗(xt) and at (in
particular, ϕ∗(xt+1) = T ∗(ϕ∗(xt), at)). Then the forward-prediction loss term will be exactly zero,
achieved by setting gs′(s, a) := 1s′=T ∗(s,a). This is the minimum possible value for a negative-log
loss term.

(2) An encoder ϕ′ which minimizes both loss terms is a correct endogenous encoder.

By assumption, the Ex-BMDP must have some canonical endogenous states S∗ and canonical ex-
ogenous states E∗, canonical encoders ϕ∗ and ϕ∗

e, and canonical emission distribution Q∗. In order
to use the above Lemma E.1, we will first show that if ϕ′ minimizes the multistep-inverse loss term,
then there is a deterministic mapping from (ϕ̄∗

e(x), ϕ′(x)) to ϕ∗(x).
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We proceed by contradiction. Suppose, for two distinct x, x′, we have that (ϕ̄∗
e(x), ϕ′(x)) =

(ϕ̄∗
e(x′), ϕ′(x′)), but ϕ∗(x) ̸= ϕ∗(x′). Because ϕ̄∗

e(x)[1] = ϕ̄∗
e(x′)[1], we know that ϕ∗(x) and

ϕ∗(x′) must belong to the same cyclic class in S∗; additionally, we have that ϕ∗
e(x) = ϕ∗

e(x′).
Let w = W (ϕ∗(x), ϕ∗(x′)). Because ϕ∗(x) and ϕ∗(x′) belong to the same cyclic class, we know by
Theorem D.1 that w ≤ D′ < ∞. Let c ∈ S∗ be the corresponding witness state. By the lack of
transient states in E∗, we know that there is some e∗ ∈ E∗ such that under the exogenous dynamics
T ∗

e , ϕ∗
e(x) can be reached from e∗ in exactly w steps. We can step from (c, e∗) to (ϕ∗(x), ϕ∗

e(x)) in
exactly w steps, or from (c, e∗) to (ϕ∗(x′), ϕ∗

e(x)) in exactly w steps. By Lemma B.1, there exists an
observation xc ∈ X such that ϕ∗(xc) = c and ϕ∗

e(xc) = e∗. Then, by Assumption 5 listed in Section
B, we sample (xt = xc, at ∈ A, xt+w = x) with finite probability and (xt = xc, at ∈ A, xt+w = x′)
with finite probability. By assumption, ϕ′(x) = ϕ′(x′), so

f(ϕ′(xc), ϕ′(x); w) = f(ϕ′(xc), ϕ′(x′); w). (59)

Note that the multistep inverse loss term is minimized on every tuple (xt, xt+k; k) by the trivial
encoder ϕtriv which maps ϕtriv(x) := x. Under this encoder, we can simply define fopt.

at
(xt, xt+k; k) :=

PrD(k)(at|xt, xt+k) where D(k) is the sampling distribution as defined in Section B. Furthermore, for
a fixed (xt, xt+k; k) which occurs with nonzero probability, this minimizer fopt.(xt, xt+k; k) is unique:
the excess loss conditioned on (xt, xt+k; k) is exactly the KL-divergence between PrD(k)(at|xt, xt+k)
and the distribution output by the classifier f(xt, xt+k; k).

Then, ϕ′ can only minimize the loss term if, for some f and all a ∈ A:

Pr
D(w)

(at = a|xt = xc, xt+w = x) =fa(ϕ′(xc), ϕ′(x); w) =

fa(ϕ′(xc), ϕ′(x′); w) = Pr
D(w)

(at = a|xt = xc, xt+k = x′).
(60)

Where the middle equality is Equation 59.

However, PrD(w)(at = a|xt = xc, xt+w = x) and PrD(w)(at = a|xt = xc, xt+w = x′) have disjoint
support over values of a ∈ A. To see why, suppose that some a′ ∈ A existed such that both of
these probabilities were nonzero. This would imply that, for the canonical endogenous latent state
d ∈ S∗ defined as d := T ∗(c, a′), it is possible to reach both latent states ϕ∗(x) and ϕ∗(x′) from d in
exactly w − 1 steps of T ∗. But then W (ϕ∗(x), ϕ∗(x′)) ≤ w − 1, which contradicts the definition of
w := W (ϕ∗(x), ϕ∗(x′)).

Then we can conclude that distributions PrD(w)(at = a|xt = xc, xt+w = x) and PrD(w)(at = a|xt =
xc, xt+w = x′) have disjoint support. This leads to a contradiction with Equation 60, which requires
the two distributions to be equal. Therefore ϕ′ cannot minimize the multistep inverse loss term if,
for any two distinct x, x′, we have (ϕ̄∗

e(x), ϕ′(x)) = (ϕ̄∗
e(x′), ϕ′(x′)), but ϕ∗(x) ̸= ϕ∗(x′). Therefore

for any ϕ′ which minimizes the loss term, there must be a deterministic mapping from (ϕ̄∗
e(x), ϕ′(x))

to ϕ∗(x).

Secondly, we note that any ϕ′ which minimizes the forward dynamics loss term must produce a set
of states S ′ with a deterministic transition function. To see this, note that this loss term can be zero
with some encoder (such as the encoder which maps all x to a single latent state), and further note
that the loss is only zero if ϕ′(xt+1) is exactly predictable from ϕ′(xt) and at; which means that the
dynamics are deterministic.

From these two conclusions, that there is a deterministic mapping from (ϕ̄∗
e(x), ϕ′(x)) to ϕ∗(x), and

that there are deterministic dynamics on the endogenous states produced by ϕ′, we can conclude by
Lemma E.1 that ϕ′ is a valid endogenous encoder of the Ex-BMDP.
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F Alternative “fixes” to AC-State that do not work

While ACDF has nice theoretical properties, one concern is that, unlike the purely supervised action-
prediction task of AC-State, the ACDF method’s latent-forward prediction task has moving targets.
In other words, the latent code of the next state st + 1 will evolve throughout training, complicating
the training optimization. Given this difficulty, it would be desirable to come up with a method for
provably learning the endogenous encoder of an Ex-BMDP that does not rely on moving targets.
We considered two initially promising possibilities, but found that both can fail to capture a correct
endogenous state representation.

F.1 Full Multi-Step Inverse

F.1.1 What is it?/Why was it Promising?

The multistep inverse method proposed by Lamb et al. (2022) uses ϕ(xt) and ϕ(xt+k) to predict
at, that is, the action immediately following xt. A natural extension of this method would be to
model the probability distribution over all of the actions on the path between ϕ(xt) and ϕ(xt+k),
that is, at, at+1., , , , at+k−1, based on ϕ(xt) and ϕ(xt+k) alone. Equivalently, this modeling can
be done autoregressively by, for each k′ ∈ [0, k − 1], predicting at+k′ given ϕ(xt), ϕ(xt+k), and
at, at+1., , , , at+k′−1. This formulation yields the following modified loss function:

LAC-State-Full-Multi(ϕθ) :=
min

f
E

k∼{1,...,K}
E

k′∼{1,...,k−1}
E

(xt,at,...,at+k′−1,xt+k)
− log(fat+k′ (ϕθ(xt), ϕθ(xt+k), at, ..., at+k′−1; k))

(61)

Conceptually, this technique might seem promising because the task of predicting at+k′ from ϕ(xt),
ϕ(xt+k), and at, at+1., , , , at+k′−1 can be accomplished by decomposing the problem into predicting
ϕ(xt+k′) from ϕ(xt) and at, at+1., , , , at+k′−1, and then predicting at+k′ from ϕ(xt+k′) and ϕ(xt+k).
In other words, it can be accomplished by composing a latent forward model with a multistep inverse
model. Thus, it would seem to require learning a representation similarly rich to the representation
learned by ACDF, without dealing with the moving-target issue caused by explicitly learning a
forward dynamics model.

Furthermore, the “AC-State-Full-Multi” method successfully learns the encoder for the 5-state peri-
odic Ex-BMDP shown in Figure 3-E in the main text, which AC-State fails on. In particular, the en-
coder must be able to distinguish states b and c, because Pr(at+1 = L|st = b, st+3 = b, at = L) = 0.5,
while Pr(at+1 = L|st = c, st+3 = c, at = L) = 1. States d and e can be distinguished similarly.

F.1.2 Why it fails

Unfortunately, while the “AC-State-Full-Multi” prediction task can be accomplished by learning a
deterministic latent forward model and a first-action multistep-inverse model, it does not require
learning these two things. We show a counterexample here. Consider the following Ex-BMDP on
the states X = {a, b, c, a′, b′, c′}, with actions A = {A, B, C} and deterministic transition function
T (x, a) shown in Figure 10.

The transition function is defined such that, letting x/X and y/Y represent a/A, b/B, or c/C, we
have that for most inputs, T (x, Y ) = y′ and T (x′, Y ) = y, with the exceptions that T (c′, B) = c
and T (c′, C) = b. This state representation turns out to be minimal (the only correct encoder up to
permutation is the trivial one ϕ(x) = x). To confirm this fact, briefly, note being in {a, a′}, {b, b′},
or {c, c′} is clearly controllable, and furthermore we must always keep track of whether we are in a
primed or non-primed state to determine the effect of actions B and C when we reach {c, c′}.

However, the “AC-State-Full-Multi” loss will be minimized by an encoder ϕ′ that produces only 5
latent states, with a and a′ conflated into a single latent state. The resulting endogenous dynamics

915



RLJ | RLC 2024

a

b

c

a’

b’

c’

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

Figure 10: Transitions of T (x, a).

are not deterministic, because starting at the state {a, a′} and taking the action B may lead to
either the state b or state b′, and similarly for for the action C. (See Figure 11).

{a, a′}

b

c

b’

c’

A

B

C

A

B

C

A

B

C

B

C

A

B

C

A
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Figure 11: Nondeterministic transitions on T (ϕ′(x), a) for the example in Section F.1.2.

To show that this incorrect ϕ′ minimizes the “AC-State-Full-Multi’ loss, note that, under a uniform
policy:

• For any sequence of actions that ends in state a or a′, none of the actions can be meaningfully
inferred except the final action of the sequence, which we know is A with probability 1.
Therefore distinguishing whether xt+k = a or xt+k = a′ is not necessary to minimize the
loss.
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• For any sequence of actions that begins with state a or a′, but ends in b,b’,c or c’, one can
distinguish if the initial state is a or a’ by simply looking at the final state and the parity
of the length k of the sequence between them (e.g, if the final state is b, and k is odd, we
know the initial state was a’ rather than a). Then it is not necessary for the encoder to
distinguish between xt = a and xt = a′.

Therefore, ϕ′ is sufficient to minimise the “AC-State-Full-Multi’ loss, and is more minimal than the
correct endogenous state representation, but is an incorrect endogenous representation. Therefore
the “AC-State-Full-Multi” loss fails to discover the true minimal endogenous state representation.

F.2 Artificial Self-Edges/Imprecise k

F.2.1 What is it?/Why was it Promising?

Note that for any bounded-diameter (i.e., irreducible) MDP, adding any self-edges, even a single
self-edge, will make the MDP aperiodic. (A self-edge is a transition from a state to itself.) Making
this change to the endogenous dynamics of an Ex-BMDP would therefore eliminate the need to use
a latent forward model, as in ACDF. In fact, if we add a self-edge to any state, the witness distance
between any pair of states will automatically become ≤ D: if c is the state with the self-edge, then
any states a and b can both be reached in exactly max(d(c, a), d(c, b)) steps. Concretely, if a is the
further state, then we can reach b in d(c, a) steps by taking the self-edge at c for d(c, a) − d(c, b)
timesteps before going to b.

Unfortunately, we cannot simply alter the underlying dynamics by adding a self-edge, or many
self-edges. However, we might hope to simulate such self-edges by randomly duplicating some
observations x in the replay buffer, and inserting a “new” action symbol in between the duplicated
observations. After learning the state abstraction and dynamics, the self-edges with the “new” action
symbol can simply be removed.

A nearly-equivalent idea is to, rather than trying to predict at given ϕ(xt), ϕ(xt+k), and k, instead
to predict at given ϕ(xt), ϕ(xt+k), and k′, where k′ is an upper bound on the true value of k (i.e.,
k ≤ k′). Note that this formulation is similar to saying that we are given ϕ(xt), ϕ(xt+k′), and k′,
but this path of length k′ may contain some number (k′ − k) of artificially-inserted self-edges. (The
only difference is that this second formulation does not allow the first action, the predicted action
at, to be the self-edge, but this distinction is a minor one.) This is an appealing picture, because it
directly addresses the core problem with the AC-State method, which is that in order to distinguish
two states, they must be exactly the same distance k (on some path) from a third state. By allowing
some imprecision in k, this method would seem to address this issue.

F.2.2 Why it fails

The problem with this approach is that duplicating an observation effectively “pauses” the exogenous
state of the Ex-BMDP, not just the endogenous state. This modification makes the exogenous state
seem to be “controllable”, and therefore may cause the encoder to “leak” information about the
exogenous state. Concretely, an incorrect encoder ϕ′, with a larger range of output “states” than a
correct minimal-range encoder ϕ, will have a lower loss than ϕ.

To give an example, consider the Ex-BMDP defined by control-endogenous states S = {a, b, c},
exogenous states E = {0, 1}, actions A = {L, R} and transitions shown in Figure 12.

The observations x ∈ X are defined by simply concatenating the endogenous and exogenous state
labels: X = {a0, a1, b0, b1, c0, c1}. Let ϕ be a “correct” minimal-state encoder, which maps a0 and
a1 to a, and so on.

The diameter of these dynamics is D = 2, and this value is indeed sufficient to learn all endogenous
state representations (although the maximum witness distance is in fact D′ = 3).
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Figure 12: An Ex-BMDP with |S| = 2

Let’s consider what happens if we use “imprecise k” multi-step inverse, with k′ = 2. Suppose we
have that xt = a0, xt+k = c1. If we use the encoder ϕ, our inverse model is only given that st = a,
st+k = c, and k ∈ {1, 2}. Then at can either be L or R, because one can reach c from a in one step
with action L, or in two steps with action R. The exact value of Pr(at = L|st = a, st+k = c, k ∈ {1, 2})
will depend on specifics of the implementation: either the distribution from which k is drawn given
k′, or equivalently, the probability of taking an artificial self-edge (that is, of duplicating any given
state on the replay buffer). However, crucially, Pr(at = L|st = a, st+k = c, k ∈ {1, 2}) will not equal
1. However, if we instead use a less minimal encoder ϕ′, which distinguishes a0 from a1 and c0 from
c1, we can infer by parity that k is in fact equal to 1, from the facts that xt = a0, xt+k = c1, and
k ∈ {1, 2}. We then know that Pr(at = L) = 1, because taking L is the only way to reach c from a in
a single step. Therefore, the inverse dynamics model will have a smaller loss if the learned encoder
ϕ′ outputs extra exogenous information. Then this loss function is not minimized by the minimal
endogenous state encoder.

G Numerical Simulation Experiment Details

G.1 Method

For each Ex-BMDP shown in Figure 4, we perform 50 data-collection runs, and use this data for
each value of K and each loss function, to generate 50 trial encoders each. We then determine
whether each resulting encoder is either (a) a minimal control-endogenous latent representation, (b)
a non-minimal but still correct control-endogenous latent representation, or (c) an incorrect encoder.
For each trial run, we:

• Collect two trajectories, each of T timesteps, used as “training” and “validation” datasets.
(This setup is similar to the setup of Lamb et al. (2022), where a single trajectory is used
for training.)

• Iterate over all possible encoders ϕ. For each ϕ, we:

– Fit the classifiers f and (g if applicable) on the “training” trajectory, with:

fa(s, s′, k) := Freq. of (s, a) (k)−−→ s′ in Train.

Freq. of s
(k)−−→ s′ in Train.

gs′(s, a) := Freq. of (s, a) (1)−−→ s′ in Train.
Freq. of (s, a) in Train.

Note that the states s, s′ here are the encoded states under ϕ. For both classifiers, if
the denominator is zero, we set the distribution as uniform over actions/latent states.
If the numerator is zero but the denominator is not, we set the probability as 10−7 to
avoid infinite losses.
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– Evaluate the expected loss (Equation 2 or 3) on the “validation” trajectory, and record
the expected loss as L(ϕ). (The train/validation split is necessary to avoid over-fitting.)

• Find the ϕ with the minimum loss. Among the ϕ’s with loss within 0.1% of this overall
minimum loss, choose the one with the smallest number of latent states to return.

Note that the number of possible encoders grows extremely quickly with |X | (> 105 for 10 states), so
we limit our examples to cases with |X | = 10. We also use a uniform random behavioral policy, rather
than incorporating planning for exploration as in Lamb et al. (2022), in order to avoid repeatedly
searching for the optimal encoder.

One minor technical caveat is that, for the sake of efficient parallel computation, when measuring
the frequency of a transition (s, a) (k)−−→ s′, we only consider spans st → st+k for t ∈ [0, T −Kmax −1],
where Kmax is the largest K considered in the experiment (e.g., Kmax = 7 for the first experiment
in Figure 4). This wastes a small number (up to Kmax − k) of possible samples from the trajectory.
However, this is negligible compared to the overall length of the trajectory T , and in any case we
would not expect this to bias us towards either AC-State or ACDF. (This approximation was also
used when computing one-step frequencies for ACDF.)

G.2 Additional Results

G.2.1 Success Rates for Correct Minimal Encoders

In the previous section, we noted that a returned encoder can either be (a) a minimal control-
endogenous latent representation, (b) a non-minimal but still correct control-endogenous latent
representation, or (c) an incorrect encoder. In the results shown in the main text, we consider a
“success” as either case (a) or case (b). That is, we consider all correct encoders as successes, even if
they are not minimal-state. Here, in Figure 13, we present the results considering only minimal-state
encoders as successful. Interestingly, this only differed at all from the results shown in the main text
in two cases (the top and bottom row examples of Figure 4), so we only show results for these cases.
For the other two Ex-BMDPs, neither method ever returned a correct but non-minimal encoder.

Endogenous Dynamics T Exogenous Noise Te AC-State Success Rate ACDF Success Rate
Env. steps: 200 400 800 1600 3200

K=1 0% 0% 0% 0% 0%

K=2 0% 0% 0% 0% 0%

K=3 0% 0% 0% 0% 0%

K=4 0% 0% 0% 0% 0%

K=5 0% 0% 0% 0% 0%

K=6 0% 0% 0% 0% 0%

K=7 72% 86% 94% 92% 96%

Env. steps: 200 400 800 1600 3200

K=1 100% 100% 100% 100% 100%

K=2 100% 100% 100% 100% 100%

K=3 100% 100% 100% 100% 100%

K=4 100% 100% 100% 100% 100%

K=5 100% 100% 100% 100% 100%

K=6 100% 100% 100% 100% 100%

K=7 100% 100% 100% 100% 100%

Env. steps: 100 200 400 800 1600

K=1 0% 0% 0% 0% 0%

K=2 46% 48% 34% 30% 30%

K=3 4% 58% 82% 78% 78%

K=4 0% 16% 58% 84% 92%

K=5 0% 0% 42% 86% 100%

Env. steps: 100 200 400 800 1600

K=1 98% 100% 100% 100% 100%

K=2 90% 100% 100% 100% 100%

K=3 64% 100% 100% 100% 100%

K=4 14% 88% 100% 100% 100%

K=5 2% 50% 98% 100% 100%

Figure 13: Results of numerical simulation experiments, where the “Success Rate” includes only
cases where the learned encoder is both correct and state-minimal. For the other two examples in
Figure 4, no correct but non-minimal encoders were returned, so the results are identical to those
shown in the main text.

G.2.2 Complete Results for the Deterministic Ex-BMDP Example (Second Row of
Figure 4)

In the example shown on the second row of Figure 4, we tested over a larger range of K than could
fit in the figure. The complete results are shown in Figure 14.
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Endogenous Dynamics T Exogenous Noise Te AC-State Success Rate ACDF Success Rate

Env. steps: 1000 2000 4000 8000 16000

K=1 0% 0% 0% 0% 0%

K=2 0% 0% 0% 0% 0%

K=3 0% 0% 0% 0% 0%

K=4 0% 0% 0% 0% 0%

K=5 0% 0% 0% 0% 0%

K=6 0% 0% 0% 0% 0%

K=7 0% 0% 0% 0% 0%

K=8 0% 0% 0% 0% 0%

K=9 0% 0% 0% 0% 0%

K=10 0% 0% 0% 0% 0%

K=11 0% 0% 0% 0% 0%

K=12 0% 0% 0% 0% 0%

K=13 0% 0% 0% 0% 0%

K=14 0% 0% 0% 0% 0%

K=15 0% 0% 0% 0% 0%

K=16 0% 0% 0% 0% 0%

K=17 0% 0% 6% 8% 10%

K=18 0% 0% 2% 2% 4%

K=19 0% 0% 2% 0% 0%

K=20 0% 0% 2% 4% 14%

K=21 0% 0% 2% 4% 10%

K=22 0% 0% 2% 54% 98%

K=23 0% 0% 0% 24% 88%

K=24 0% 0% 0% 16% 82%

K=25 0% 0% 0% 18% 80%

K=26 0% 0% 0% 4% 68%

K=27 0% 0% 0% 4% 62%

K=28 0% 0% 0% 4% 38%

K=29 0% 0% 0% 4% 36%

K=30 0% 0% 0% 2% 30%

(None)

Env. steps: 1000 2000 4000 8000 16000

K=1 2% 14% 0% 0% 0%

K=2 4% 12% 0% 0% 0%

K=3 4% 12% 2% 0% 0%

K=4 4% 10% 2% 0% 0%

K=5 2% 10% 2% 0% 0%

K=6 2% 6% 0% 0% 0%

K=7 2% 2% 0% 0% 0%

K=8 0% 2% 0% 0% 0%

K=9 0% 2% 0% 0% 0%

K=10 0% 2% 0% 0% 0%

K=11 0% 2% 0% 0% 0%

K=12 0% 0% 0% 0% 0%

K=13 0% 12% 22% 64% 96%

K=14 2% 16% 78% 98% 100%

K=15 0% 16% 90% 100% 100%

K=16 0% 22% 96% 100% 100%

K=17 0% 18% 90% 100% 100%

K=18 0% 16% 90% 100% 100%

K=19 0% 12% 88% 100% 100%

K=20 0% 8% 86% 100% 100%

K=21 0% 2% 72% 100% 100%

K=22 0% 0% 68% 100% 100%

K=23 0% 0% 60% 100% 100%

K=24 0% 0% 46% 98% 100%

K=25 0% 0% 42% 98% 100%

K=26 0% 0% 40% 98% 100%

K=27 0% 0% 36% 98% 100%

K=28 0% 0% 32% 98% 100%

K=29 0% 0% 28% 98% 100%

K=30 0% 0% 28% 96% 100%

Figure 14: Full results for the numerical simulation experiment shown in the second row of Figure 4.

H Deep RL Experiment Details

In this section, we describe the deep representation learning experiments we conducted, where the
final results are shown in Table 1.

H.1 Environments

We tested on two environments, both shown in Figure 15. The first “baseline” environment is taken
from the released code from Lamb et al. (2022), and is similar to the environment described in
Section 6.2 of that paper (specifically, it is similar the variant of the environment from that section
without “reset” actions). The baseline environment consists of nine copies of a four-room maze,
where the controllable agent navigates using four actions (up/down/left/right), in just one of the
nine mazes. The other eight mazes have other “agents” in them which take random actions. The
observation is a 11 × 99 image of all nine mazes. For this environment, we start at a random
configuration and run for a single trajectory of 5000 steps.

The second environment we tested is designed to be similar in format to the baseline environment,
but to specifically highlight the flaws of AC-State. This environment has a periodic transition
function, and an action space consisting of two possible actions. To accomplish the periodicity, in
this environment, each of the nine identical mazes consists of a track of 40 states, where in most
states, the agent simply moves to the next state regardless of action. However, in every fifth state,
there is an action which transports the agent to some other position in the track, in the pattern
shown in Figure 15. In each of these long-distance jumps, the agent either moves back or forward by
a multiple of 10 states. This gives the overall dynamics a periodicity of 10. The maximum witness
distance D′ of these dynamics is also 10. For data collection, we again collect 5000 transitions; here,
we do so as 25 trajectories of length 200 each. In each trajectory, we initialize the state at a random
configuration. (The reason for using multiple trajectories is that, because both the ego-agent and
the distractor agents have periodic dynamics with the same periodicity, a single episode will not
cover the full configuration space.)
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H.2 Architecture and Hyperparameters

In general, unless otherwise noted here, we use exactly the architecture and training hyperparam-
eter settings that are default in the released code of Lamb et al. (2022) for gridworld exploration
environments.8

H.3 Training Schedule and Behavior Policy

We conducted our experiments in an “offline” setting: we collected all 5000 transitions for each
each environment under uniformly random actions. We then performed 30,000 training iterations,
evaluating after every 5000 steps. When evaluating, we evaluated using the version of ϕθ from
the previous training steps which achieved the lowest training loss using a rolling average over 20
batches. We exclude the first 3000 training iterations when selecting the lowest-loss previous ϕθ.

H.4 Implementation of the forward-dynamics loss

To implement the forward dynamics loss of ACDF (Equation 3), for the dynamics model g we use
a LeakyReLU MLP consisting of four layers of sizes [512 + 10, 1024, 1024, N ] where the input is the
discretized vector output of the vector-quantization output layer of the state encoder, representing
the encoded state (a vector of size 512), concatenated with the action label. The output is the
discrete index of the vector-quantized latent representation code of the next latent state. (The
number of codes is a hyperparameter of AC-State which we vary.) Note that because we treat the
next-state as a discrete index, we do not backpropagate into the encoder of ϕθ(xt+1), only into
the encoder of ϕθ(xt). This is to mitigate the “moving-target” issue mentioned at the beginning
of Appendix F. Also to mitigate this issue, we only use the forward prediction loss to update the
encoder ϕθ every fifth training iteration: at other iterations, we update the parameters of g alone
(and separately update ϕθ with the multistep-inverse loss).

H.5 Evaluation

In order to capture a real-world usability of the learned representations in planning, we measure
success based on the ability to perform open-loop planning to successfully reach a goal.

• We first infer a count-based tabular representation of the deterministic forward dynamics
T on the encoded states output by ϕθ, by passing each observation of all transitions in the
dataset through the final learned ϕθ, and inferring that the correct latent transition for a
given latent state and action is the one which occurs most often.

• Using this graph, we repeat the following test 1000 times:

– We first select two random observations x and x′, representing a start state and an end
state, from the observation space X if the environment.

– We record the ground-truth controllable-agent state for both observations, and com-
pute the learned latent states ϕθ(x) and ϕθ(x′). We then use our count-based tabular
representation of the learned latent transition function to plan (using Dijkstra’s algo-
rithm) a shortest path from ϕθ(x) to ϕθ(x′). This generates a sequence of actions that
should (ideally) navigate from x to x′.

– We execute this sequence of actions from x in an open-loop manner.
– We count the trial as a success if the ground-truth controllable-agent state after exe-

cuting these actions is equal to the ground-truth controllable-agent state of x′.
8In particular, we used exactly the network architecture for the encoder provided by Lamb et al. (2022)’s released

code, for both AC-State and ACDF. We have observed that this architecture design appears to be specifically well-
suited to easily learn to filter out the exogenous “distractor” mazes in these multi-maze environments, and may not
be more generally applicable. However because we use the same architecture for both ACDF and AC-State, our direct
comparison of these methods is valid.

921



RLJ | RLC 2024

Controllable 
Agent

Controllable 
Agent

Observation x ∈ X

Observation x ∈ X
Controllable dynamics T on S

Controllable dynamics T on S

Environment from Lamb et al. (2022)

Novel Periodic Environment

Distraction 
Agents

Distraction 
Agents

Figure 15: The two high-dimensional environments we tested on. For both environments, we show
the image observations x ∈ X as well as the states S∗ and deterministic state transitions T ∗ in the
controllable latent dynamics (for readability, we do not show action labels). In these environments,
the controllable latent dynamics only represent the top maze in the image: the other mazes contain
agents which move randomly.

• The overall success rate over the 1000 trials is recorded as a percentage. If it is at least 98%
(980/1000), the representation is considered to be successfully learned.

H.6 Results

For both environments and both methods, we ran a hyperparameter sweep over K, the number of
steps used in multistep-inverse, and N , the maximum number of latent states (i.e., the size of the
codebook of the final vector-quantization layer of the encoder). For each hyperparameter setting, we
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ran on 10 seeds. We then evaluated on the “best” version of the hyperparameters for each method
for 20 additional seeds. Our final results reflect the rate of successful representation learning at the
98% planning success threshold, at training step 30,000, as described above. Note that the final
averages are over the 20 additional seeds alone, to avoid multiple-comparison issues.

To select the “best” hyperparameter setting, we used the following criteria:

• We first used the percentage of successfully-learned representations out of the 10 seeds after
30,000 iterations, based on the 98%-planning success threshold for each seed.

• To break ties, we used the number successfully-learned representations over all 10 seeds and
all 6 evaluation times (every 5000 training steps) for each seed. This rewards configurations
which learn a successful encoder early, as well as those which may have arrived on successful
encoders by chance but then later found a lower-loss encoder for the loss function which was
incorrect.

• To break further ties, we used the percentage of all open-loop planning trials, over all
evaluation times and all seeds, on which the agent succeeded. Note, however, that this
is often a misleading statistic, because an incorrect representation of the environment’s
dynamics might still happen to wind up on the correct place with considerable frequency.

We report the full hyperparameter-sweep results over each of these statistics here (Tables 2-13).
We note that while both methods are able to consistently learn the controllable dynamics on the
baseline environment, only ACDF consistently learns the dynamics of the periodic environment. By
contrast, there is only a single hyperparameter configuration (K=1, N=120) where the lowest-loss
encoder under AC-State at the final training iteration was correct, and this was for only two out
of ten random seeds. (This result is robust to changes in the threshold planning accuracy to be
considered a correct representation: these two seeds were the only runs out of the hyperparameter
sweep where AC-State succeeded at the final training iteration for success thresholds as low as 75%.)

In the final results shown in the main text, we show that both methods succeeded on the baseline
environment on all 20 seeds, while ACDF succeeded on the periodic environment in 19/20 seeds9,
and AC-State only succeeded with one training seed out of 20 on this environment. This is a highly
statistically significant difference. Using the Clopper-Pearson method, the 99% CI for the ACDF
success rate on this environment is (.68 − 0.9997), while the 99% CI for AC-State is (.0003 − .32).
The final open-loop planning accuracies for each of the 20 evaluation seeds for each method and
each environment are reported in Tables 14 and 15.

N=68 N=78 N=88 N=98 N=108
K=3 10.0% 80.0% 90.0% 100.0% 100.0%
K=5 10.0% 80.0% 90.0% 100.0% 100.0%
K=7 0.0% 60.0% 60.0% 90.0% 100.0%

Table 2: AC-State, Baseline Environment, Final-Iteration Complete-Representation Success Rate

N=68 N=78 N=88 N=98 N=108
K=3 3.3% 58.3% 61.7% 78.3% 80.0%
K=5 3.3% 61.7% 71.7% 76.7% 73.3%
K=7 0.0% 45.0% 46.7% 68.3% 80.0%

Table 3: AC-State, Baseline Environment, All-Iterations Complete-Representation Success Rate

9For the remaining one seed, the open-loop navigation task succeeded in 97.5% of trials, falling just barely under
the 98% threshold we set to consider the run a success.
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N=68 N=78 N=88 N=98 N=108
K=3 68.8% 85.8% 88.4% 91.5% 91.2%
K=5 66.4% 83.7% 85.4% 88.7% 86.8%
K=7 60.0% 73.7% 78.4% 85.7% 88.4%

Table 4: AC-State, Baseline Environment, All-Iterations Path-Planning Success Rate

N=68 N=78 N=88 N=98 N=108
K=3 10.0% 90.0% 100.0% 100.0% 100.0%
K=5 40.0% 90.0% 100.0% 100.0% 100.0%
K=7 10.0% 80.0% 100.0% 100.0% 100.0%

Table 5: ACDF, Baseline Environment, Final-Iteration Complete-Representation Success Rate

N=68 N=78 N=88 N=98 N=108
K=3 6.7% 78.3% 83.3% 81.7% 83.3%
K=5 16.7% 61.7% 76.7% 80.0% 76.7%
K=7 1.7% 48.3% 65.0% 73.3% 76.7%

Table 6: ACDF, Baseline Environment, All-Iterations Complete-Representation Success Rate

N=68 N=78 N=88 N=98 N=108
K=3 72.1% 87.5% 88.0% 88.3% 88.7%
K=5 72.3% 80.4% 82.6% 84.4% 85.0%
K=7 65.0% 76.1% 77.9% 81.3% 82.4%

Table 7: ACDF, Baseline Environment, All-Iterations Path-Planning Success Rate

N=40 N=80 N=120
K=1 0.0% 0.0% 20.0%
K=5 0.0% 0.0% 0.0%
K=10 0.0% 0.0% 0.0%

Table 8: AC-State, Periodic Environment, Final-Iteration Complete-Representation Success Rate

N=40 N=80 N=120
K=1 0.0% 0.0% 11.7%
K=5 0.0% 0.0% 1.7%
K=10 0.0% 0.0% 0.0%

Table 9: AC-State, Periodic Environment, All-Iterations Complete-Representation Success Rate

N=40 N=80 N=120
K=1 15.3% 28.8% 44.3%
K=5 9.2% 16.6% 26.5%
K=10 4.7% 7.9% 15.6%

Table 10: AC-State, Periodic Environment, All-Iterations Path-Planning Success Rate

N=40 N=80 N=120
K=1 10.0% 100.0% 100.0%
K=5 0.0% 0.0% 0.0%
K=10 0.0% 0.0% 0.0%

Table 11: ACDF, Periodic Environment, Final-Iteration Complete-Representation Success Rate
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N=40 N=80 N=120
K=1 1.7% 48.3% 46.7%
K=5 0.0% 0.0% 0.0%
K=10 0.0% 0.0% 0.0%

Table 12: ACDF, Periodic Environment, All-Iterations Complete-Representation Success Rate

N=40 N=80 N=120
K=1 54.8% 65.5% 65.9%
K=5 2.1% 4.2% 4.4%
K=10 2.3% 2.0% 1.9%

Table 13: ACDF, Periodic Environment, All-Iterations Path-Planning Success Rate

AC-State 100.0%, 100.0%, 100.0%, 100.0%, 100.0%, 100.0%, 100.0%, 100.0%, 100.0%,
K=1, N=108 100.0%, 100.0%, 100.0%, 100.0%, 99.9%, 99.9%, 99.9%, 99.8%, 99.8%, 99.7%, 99.5%

ACDF 100.0%, 100.0%, 100.0%, 100.0%, 100.0%, 100.0%, 100.0%, 100.0%, 100.0%,
K=1, N=108 100.0%, 100.0%, 100.0%, 100.0%, 99.9%, 99.9%, 99.9%, 99.9%, 99.9%, 99.9%, 99.8%

Table 14: Open-loop path planning accuracy for all 20 random seeds for AC-State and ACDF on
the baseline environment at final evaluation, after hyperparameter optimization. Values are sorted
in descending order of accuracy.

AC-State 99.6%, 74.6%, 72.0%, 65.4%, 64.5%, 64.4%, 60.2%, 55.0%, 53.8%, 36.3%,
K=1, N=120 34.8%, 33.9%, 30.8%, 27.8%, 27.5%, 24.4%, 23.8%, 23.6%, 19.8%, 19.0%

ACDF 100.0%, 99.9%, 99.9%, 99.9%, 99.8%, 99.7%, 99.7%, 99.7%, 99.7%, 99.6%,
K=1, N=80 99.5%, 99.5%, 99.4%, 99.0%, 99.0%, 99.0%, 98.9%, 98.9%, 98.6%, 97.5%

Table 15: Open-loop path planning accuracy for all 20 random seeds for AC-State and ACDF on
the periodic environment at final evaluation, after hyperparameter optimization. Values are sorted
in descending order of accuracy.
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Abstract

Combining Reinforcement Learning (RL) with a prior controller can yield the best
out of two worlds: RL can solve complex nonlinear problems, while the control
prior ensures safer exploration and speeds up training. Prior work largely blends
both components with a fixed weight, neglecting that the RL agent’s performance
varies with the training progress and across regions in the state space. Therefore,
we advocate for an adaptive strategy that dynamically adjusts the weighting based
on the RL agent’s current capabilities. We propose a new adaptive hybrid RL algo-
rithm, Contextualized Hybrid Ensemble Q-learning (CHEQ). CHEQ combines three
key ingredients: (i) a time-invariant formulation of the adaptive hybrid RL problem
treating the adaptive weight as a context variable, (ii) a weight adaption mechanism
based on the parametric uncertainty of a critic ensemble, and (iii) ensemble-based
acceleration for data-efficient RL. Evaluating CHEQ on a car racing task reveals
substantially stronger data efficiency, exploration safety, and transferability to un-
known scenarios than state-of-the-art adaptive hybrid RL methods.

1 Introduction

Deep reinforcement learning (RL) methods have shown great success in challenging control prob-
lems such as gameplay (Mnih et al., 2015; Silver et al., 2018a; OpenAI et al., 2019) and robotic
manipulation (Gupta et al., 2021; Büchler et al., 2022). Despite the great potential of RL methods,
their data inefficiency, unstructured exploration behavior, and inability to generalize to unknown
scenarios represent a significant hurdle to their application to real-world problems.

A prime reason for limited real-world applications is the task-agnostic architecture of state-of-the-
art RL approaches (Schulman et al., 2017; Haarnoja et al., 2018) that does not incorporate prior
knowledge on how to solve the task at hand. In contrast, control theory provides a rich set of
methods for deriving near-optimal controllers in many applications. This motivates the drive for
hybrid RL methods (Silver et al., 2018b; Johannink et al., 2019) that blend control priors with deep
RL policies. Hybrid algorithms thus combine the prior controller’s generalization capabilities and
informed behavior with the power of deep RL for solving general nonlinear problems.

Notwithstanding the conceptual benefit of hybrid RL formulations, how to systematically combine
the control prior with the RL agent largely remains an open problem. The majority of prior work (Sil-
ver et al., 2018b; Johannink et al., 2019; Schoettler et al., 2020; Ceola et al., 2024) proposes a fixed

∗These authors contributed equally.

926



RLJ | RLC 2024

weighting between the control prior and the RL agent. A fixed blending, however, disregards the
fact that the capability of the RL agent depends on training time and state. In general, as more
data is observed, the RL agent improves its behavior, ultimately outperforming the control prior in
large portions of the domain. The core idea of our approach is to adapt the weighting between RL
agent and control prior based on the agent’s confidence. As the RL agent improves over time, this
induces a time-variant weighting mechanism. This time dependency leads to structural problems of
prior formulations in uncertainty-adapted hybrid RL (Cheng et al., 2019; Rana et al., 2023).

We provide a unified view on hybrid RL that allows us to classify prior work within a general frame-
work. Analyzing this framework highlights the necessity for a novel adaptive hybrid RL formulation
with descriptive, time-invariant dynamics. We define the contextualized hybrid Markov decision pro-
cess (MDP), introducing the adaptive weight as a context variable. Building upon this formulation,
we propose the Contextualized Hybrid Ensemble Q-learning (CHEQ) algorithm that systematically
adapts the weighting between RL agent and control prior based on an uncertainty estimate of a
critic ensemble. CHEQ combines the contextualized hybrid RL formulation with uncertainty-based
weight adaption and existing ensemble-based acceleration techniques for data-efficient RL.

We evaluate our algorithm on a racing task (Schier et al., 2023), which requires operating a car close
to its stability limits in order to achieve maximum return. We find that compared to prior work in
adaptive hybrid RL, the CHEQ algorithm shows (i) reduced failures during training, (ii) increased
sample efficiency, and (iii) improved transfer behavior on unseen race tracks.

In summary, our main contributions are:

• A unified framework that allows us to classify existing approaches and reveal key limitations.
• A hybrid MDP formulation, introducing the adaptive weight as a context variable and thus

addressing structural problems of prior work in hybrid RL with adaptive weighting.
• A novel hybrid RL algorithm, CHEQ, that systematically adapts the weighting between RL

agent and control prior based on Q-ensemble disagreement.

2 Related Work

This section discusses relevant prior work combining RL and a control prior. We distinguish two
types; hybrid RL with fixed and adaptive weighting between the RL agent and controller.

Hybrid Reinforcement Learning with Fixed Weighting. Two concurrent works (Silver et al.,
2018b; Johannink et al., 2019) first combined RL and a control prior and introduced the term resid-
ual RL. In residual RL, the control prior is assumed to be fixed, and the RL agent learns a residual
on top of this. In this work, we use the general term hybrid RL to include approaches that adapt the
controller’s weight. Silver et al. (2018a) and Johannink et al. (2019) show advantages of hybrid RL,
such as sample efficiency, improved sim-to-real transfer, and robustness towards uncertainties. Hy-
brid RL with fixed weights has then successfully been applied to real robot insertion tasks (Schoettler
et al., 2020), peg insertion under uncertainty (Ranjbar et al., 2021), driving (Kerbel et al., 2022)
and to learn a residual RL policy on top of a pre-trained RL agent (Ceola et al., 2024). A fixed
mixing, however, does not allow one to consider the improving capabilities of the RL agent.

Hybrid Reinforcement Learning with Adaptive Weighting. Daoudi et al. (2023) assume a
given controller confidence function, employing a controller in instances of high confidence and an
RL agent in other scenarios. Our work focuses on the RL agent’s confidence and proposes to estimate
the confidence based on a critic ensemble. Similar to our approach, Hoel et al. (2020a;b) train an
ensemble of bootstrapped Q-networks for a driving task with discrete actions. They evaluate the
uncertainty as the coefficient of variation of Q-estimates and resort to safe fallback actions in case
of high uncertainty. However, they do not combine controller and RL agent but switch between
both. In this work, we investigate a seamless blending approach for continuous control. Rana et al.
(2020b) estimate the policy uncertainty using Monte-Carlo dropout and based on this uncertainty
either sample from a residual policy or the controller alone. Rana et al. (2020a) directly fuse a prior
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control distribution with an RL policy in a multiplicative fashion and anneal the influence of the
control prior over training time. Rana et al. (2023) use a policy ensemble to estimate how certain the
RL agent is in the current action. The combined action is then computed as the Bayesian posterior
of control prior and policy distribution. Cheng et al. (2019) use the TD-error as an uncertainty
estimate and combine controller and RL agent based on this. Both Rana et al. (2023) and Cheng
et al. (2019) base their adaption mechanism on a form of policy uncertainty. Both approaches train
based on the combined action, which becomes brittle when facing large distributional shifts. We
further discuss this limitation in Section 5.

3 Background

The following introduces the key components and the general concept of hybrid RL.

Reinforcement Learning. RL is a method for solving sequential decision problems based on the
interaction between an agent and an environment (Sutton & Barto, 2018). The environment is
modeled as a discounted Markov decision process defined by the tuple M = (S,A, p, r, ρ0, γ), with
state space S, action space A, and start state distribution ρ0. The commonly unknown transition
function p(st+1, rt+1 | st,aRL

t ) describes transitions between states st ∈ S and actions aRL
t ∈ A.

During transitions, rewards rt ∈ R are emitted according to a reward function rt+1 ∼ r(st,aRL
t ).

The objective of the RL agent is to learn a policy πRL(aRL
t | st) that maximizes the expected

cumulative sum of rewards discounted by γ ∈ (0, 1). This results in the RL objective

J(πRL) = max
πRL

EπRL,M

[ ∞∑

t=0
γtrt+1

]
. (1)

The discounted sum of rewards is referred to as return and is accumulated along trajectories under the
policy πRL and the environment MDPM. State value functions condition expected return on a par-
ticular state V πRL(st) = EπRL,M

[∑∞
k=t γ

k−trk+1 | st
]

while, action value or Q-functions condition
expected return on specific state action pairs QπRL(st,aRL

t ) = EπRL,M
[∑∞

k=t γ
k−trk+1 | st,aRL

t

]
.

Control Prior. The prior policy πprior(aprior
t | st) represents prior knowledge for solving the RL

objective (1), while typically not providing the optimal policy over the whole domain S × A. This
work focuses on control priors based on classic control theory. These can be derived with limited
effort in many applications and often provide a good baseline for interaction withM. We assume a
control prior that is time-invariant and without an internal state.

Hybrid Reinforcement Learning. Hybrid RL combines the control prior and the RL agent by
blending their actions via some mixing function amix

t = f(aprior
t ,aRL

t ,λt) depending on a weight λt.

4 A Unified View on Hybrid Reinforcement Learning

Next, we develop a unified view on hybrid RL that allows classifying prior methods (cf. Section 2).
In the standard RL setup depicted in Figure 1a, the RL agent πRL interacts with the time-invariant
MDPM with dynamics p(st+1, rt+1 | st,aRL

t ) that represents the controlled system. Hybrid RL (see
Figure 1b) incorporates a control prior πprior which requires reformulating the standard framework.
Here, πRL and πprior apply a combined action amix

t to M. The mixing function f generates a
combined action by blending the individual actions based on a weighting vector λt provided by a
weight adaption function Λ. Within this generalized framework, prior work in hybrid RL can be
categorized based on the choice of f and Λ.

4.1 Mixing Function f

We consider mixing functions based on a weighted sum with a weighting vector λt = [λprior
t , λRL

t ]⊤

amix
t = f(aprior

t ,aRL
t ,λt) = λprior

t · aprior
t + λRL

t · aRL
t .
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This formulation allows to distinguish a residual and a regularized setting.

In the residual setting, λprior
t is typically constant while λRL

t can be variable λt = [1, λRL
t ]⊤ (Silver

et al., 2018b; Johannink et al., 2019; Schoettler et al., 2020). Thus, the RL agent interacts with the
closed control loop between πprior andM and learns a residual action on top of aprior

t . Consequently,
λt modulates the RL agent’s impact on the closed loop dynamics. As the control prior is not scaled
down, it might interpret the RL agent as a disturbance and counteract it (Ranjbar et al., 2021),
which can limit the overall performance of residual formulations.

In the regularized setting, both weights are adaptable such that λprior
t +λRL

t = 1 (Cheng et al., 2019;
Rana et al., 2023). This results in a mixing function of the form

amix
t = f(aprior

t ,aRL
t , λRL

t ) = (1− λRL
t ) · aprior

t + λRL
t · aRL

t . (2)

with λRL
t ∈ [0, 1]. In the limit λRL

t = 0, the control prior interacts with M without the interference
of the RL agent, while the regularized setting reduces to the standard RL problem for λRL

t = 1.
Thus, λRL

t indicates not only the impact of aRL
t but also whether the RL agent interacts with the

open loop dynamics of M or the closed loop dynamics as in the residual setting. Consequently,
the control prior can be interpreted as a regularization of the RL agent. Our proposed algorithm
operates in the regularized setting, allowing the agent to take over complete control when λRL

t = 1.

4.2 Weight Adaption Function Λ

Hybrid RL approaches can further be classified, based on the choice of the weight adaption function
Λ modulating the weighting vector λt of the mixing function f .

A large body of work, which we refer to as fixed-weight hybrid RL (Silver et al., 2018b; Johan-
nink et al., 2019; Schoettler et al., 2020; Ranjbar et al., 2021; Ceola et al., 2024) chooses λt fixed
throughout training. Neglecting the time- and state-dependent capabilities of the RL agent.

Approaches that adapt λt, which we refer to as adaptive hybrid RL methods, rely on different
mechanisms. Scheduling approaches (Rana et al., 2020a) change the weight explicitly with time, i.e.
λt = Λ(t), typically increasing the weight of the RL agent as training progresses. Domain-based
approaches (Kulkarni et al., 2022; Daoudi et al., 2023) adapt the weights based on the point of
operation within the domain S×A, i.e. λt = Λ(st,at). Uncertainty-based approaches (Cheng et al.,
2019; Rana et al., 2023) adapt the weight based on the confidence of the RL agent, indicated by an
uncertainty estimate u(st,at, t), giving more weight to the RL agent when it has high confidence.
Thus, they aim to leverage the benefits of the RL agent whenever possible, while resorting to a
safe controller in situations where the RL agent has not seen enough data. The time dependency
of the uncertainty estimate, however, increases the complexity of the hybrid RL setting, requiring a
reformulation of the learning problem. In Section 5, we discuss the shortcomings of prior formulations
and propose our own.

5 Contextualized Hybrid Reinforcement Learning

In Section 5.1, we propose a novel contextualized formulation of the adaptive hybrid RL problem
and illustrate its benefits over prior approaches in Section 5.2. Based on that framework, we propose
the Contextualized Hybrid Ensemble Q-learning (CHEQ) algorithm in Section 5.3.

5.1 General Concept of Contextualized Hybrid Reinforcement Learning

Based on the unified view provided in Section 4, we propose a general formulation for the hybrid
RL problem we call contextualized hybrid RL.

The environment in the hybrid setting not only consists of the controlled system M but also com-
prises the control prior, the mixing function, and the weight adaption function. We consider both the
control prior and the mixing function to be time-invariant. In contrast, the weight adaption function
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(a) (b) (c)

Figure 1: A standard RL setting (a), hybrid RL settings from prior work (b) and our contextualized
hybrid RL setting based on RL action aRL

t and weighting factor λRL
t (c).

Λ can have time-varying behavior, i.e. λt = Λ(t, . . . ), as discussed in Section 4.2. This leads to
time-varying dynamics of the hybrid environment, violating the assumption of time-invariance in the
MDP formulation (Bellemare et al., 2023). Instead, we exclude Λ from the definition of the hybrid
environment and introduce the adaptive weight vector λt as a context variable to the agent and the
environment (see Figure 1c). We model the hybrid environment introducing the contextualized hy-
brid MDP M̂ = (S,A,W, p̂, r, ρ0, γ) with W the set of weighting vectors λt and the contextualized
dynamics function p̂(st+1, rt+1 | st,aRL

t ,λt).

The MDP formulation M̂ induces the contextualized hybrid RL objective

Ĵ(πRL) = max
πRL

EπRL,M̂

[
T∑

t=0
γtrt+1

]
, (3)

which enforces to learn a policy π̂RL(aRL
t | sRL

t ,λt) that maximizes expected return in M̂. Introduc-
ing λt as a context variable further yields the contextualized hybrid value functions V̂ πRL(st,λt) =
EπRL,M̂

[∑∞
k=t γ

k−trk+1 | st,λt
]

and Q̂π
RL(st,aRL

t ,λt) = EπRL,M̂
[∑∞

k=t γ
k−trk+1 | st,aRL

t ,λt
]
.

Thus, we can optimize (3) using standard RL methods by additionally conditioning on λt. The
general mechanism of contextualized hybrid RL is illustrated in Algorithm 1.

Algorithm 1 Contextualized Hybrid Reinforcement Learning
Require: RL policy π̂RL

ϕ (aRL
t | sRL

t ,λt), control prior πprior(aprior
t | s), mixing function

f(aRL
t ,aprior

t ,λt), weight adaption function Λ, replay buffer D ← ∅.
1: for each episode do
2: Sample initial state s0 ∼ ρ0, initialize λ0.
3: for each step do
4: Sample RL action aRL

t ∼ πRL
ϕ

(
aRL
t | st,λt

)
.

5: Sample control prior action aprior
t ∼ πprior

ϕ

(
aRL
t | st

)
.

6: Get combined action amix
t = f(aRL

t ,aprior
t ,λt).

7: Observe state transition st+1, rt+1 ∼ p
(
·, · | st, amix

t

)
.

8: Store
(
st,aRL

t ,λt, st+1, rt+1
)

into replay buffer D.
9: Get next adaptive weight λt+1 = Λ.

10: Sample set of transitions (s, a, λ, s′, r) ∼ D.
11: Optimize ϕ with respect to (3) using RL with sampled transitions.
12: end for
13: end for

Prior work takes different approaches to formulating the hybrid learning problem. Approaches with
a time-invariant weight adaption function, such as fixed-weight hybrid methods, include Λ in the
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Figure 2: We illustrate different hybrid RL formulations on a cart pole system (a) with a biased
control prior, pushing to the left. Return of hybrid agents with fixed λRL

t (b) and variable λRL
t (c).

Only the contextualized hybrid RL agent observing dynamics p̂ can cope with both scenarios.

definition of the environment MDP M̄ = (S,A, p̄, r, ρ0, γ) with dynamics p̄(st+1, rt+1 | st,aRL
t ). This

formulation is directly applicable to the standard RL objective (1), however, does not generalize
to time-varying adaption mechanisms such as uncertainty-adapted methods. Approaches with a
time-varying adaption mechanism (Cheng et al., 2019; Rana et al., 2023) typically formulate the
hybrid RL problem concerning the controlled system MDP and the combined action with dynamics
p(st+1, rt+1 | st,amix

t ). This likewise yields a formulation that is directly applicable to (1), however,
this can lead to problems as the agent is unaware of the downstream mixing process. Furthermore,
this introduces a distributional shift between trained policy and data-collecting behavior policy. The
distributional shift can lead to training instability and divergence (Kumar et al., 2020; Fujimoto et al.,
2018).

5.2 Illustrative Example

We exemplify the strength of the contextualized hybrid RL formulation based on M̂ introduced
in Section 5.1 by comparing it to prior approaches on the cart pole system depicted in Figure 2a.
The goal is to balance the pole upright while keeping the cart close to its initial position. The
system is controlled via continuous forces on the cart. We choose πprior to apply a constant force
to the left, which destabilizes formulations unconscious of the mixing process. We investigate a
time-invariant fixed weight setting as well as a time-varying schedule-based weight adaption setting
to highlight the capability of the respective formulations to deal with both scenarios. This simple
example illustrates that the contextualized hybrid MDP formulation can deal with destabilizing
control priors and time-varying weight adaption functions while prior formulations fail.

Fixed Weighting. First, we consider a residual setting with fixed weights λRL
t = λprior

t = 0.5.
Figure 2b depicts the performance of RL agents trained under M̂, M̄, and M with respective
dynamics p̂(st+1, rt+1 | st,aRL

t ,λt), p̄(st+1, rt+1 | st,aRL
t ), and p(st+1, rt+1 | st,amix

t ). While agents
trained under M̂ and M̄ learn to stabilize the cart pole, the hybrid formulation concerningM fails.
When formulating the RL problem concerning amix

t the RL agent observes the combined action in
its data and therefore learns the combined action in its policy. This, however, neglects the fact
that the policy action is mixed with the controller action before being applied toM. Assuming the
cart pole is not moving, and the pole is upright, an agent trained under M provides the optimal
combined action, namely applying no force, while aprior

t pushes the pole to the left. This results in
amix
t pointing to the left, causing the pole to fall while giving the agent no mechanism to observe and

counteract this phenomenon. Instead, formulating the hybrid RL problem concerning aRL
t allows

the agent to observe the mixing mechanism and compensate for the destabilizing control prior.

Adaptive Weighting. Second, we consider an adaptive hybrid RL problem with time-varying
Λ. We choose a schedule-based approach with a regularizing mixing function (2) and λRL

t ∈ [0, 1]
linearly increasing over time. Figure 2c shows the performance of agents trained under formulations
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based on M̂, M̄, and M. While agents trained under M̄ and M fail, the formulation based on
M̂ succeeds. In the beginning, when the RL agent is given only low weight, the formulation under
M suffers from a high distributional shift between the action of the behavior policy amix

t and the
action of the target policy aRL

t . The large distributional shift causes the agent to diverge (Kumar
et al., 2020; Fujimoto et al., 2018). Although the distributional shift decreases with increasing weight
lambda, the agent does not manage to recover. The formulation under M̄ fails due to the missing
information about the time-variant behavior of the mixing process. The proposed contextualized
hybrid RL formulation solves these issues by formulating the task concerning aRL

t and introducing
the context variable λt.

5.3 Contextualized Hybrid Ensemble Q-learning (CHEQ)

Based on the contextualized hybrid RL formulation introduced in Section 5.1, we propose the Contex-
tualized Hybrid Ensemble Q-learning (CHEQ) algorithm. At the heart of CHEQ is a critic ensemble
that (i) provides an uncertainty estimate enabling an uncertainty-adapted hybrid RL mechanism,
and (ii) allows to incorporate ensemble-based acceleration techniques for data-efficient RL.

We base CHEQ on the Soft Actor-Critic (SAC) (Haarnoja et al., 2018) algorithm and a regularizing
mixing function (2) with λt = [(1− λRL

t ), λRL
t ]⊤. The weight adaption mechanism relies on a critic

ensemble comprising of E contextualized Q-functions with parameters θe, e ∈ {1, . . . , E} and cor-
responding target Q-functions with parameters θ̄e, e ∈ {1, . . . , E}. We update the critics with the
mechanism of Randomized Ensemble Double Q-learning (REDQ) (Chen et al., 2021) and enforce
sufficient independence between Q-estimates using Bernoulli masking of the training data (Osband
et al., 2016; Lee et al., 2021; Mai et al., 2022). Model ensembles estimate parametric uncertainty,
referred to as epistemic uncertainty, from disagreement between individual models within the en-
semble. If different critics disagree about the outcome of taking action aRL

t in st while weighting
with λt, this indicates a weak understanding of the task in the particular area of S ×A×W. Thus,
the control prior should be prioritized over the RL agent in such situations. Therefore, epistemic
uncertainty represents a suitable quantity for adapting the weighting of control prior and RL agent.
We define epistemic uncertainty as the standard deviation of critic predictions

u(st,aRL
t , λRL

t ) =

√√√√ 1
E

E∑

e=1

(
Q̂θe(st,aRL

t , λRL
t )− µ(st,aRL

t , λRL
t )
)2

(4)

with µ(st,aRL
t , λRL

t ) = 1
E

∑E
e=1 Q̂θe(st,aRL

t , λRL
t ). We aim to give low weight to the RL agent in

areas of high uncertainty and vice versa. Thus, the weight adaption function Λ(u(st,aRL
t , λRL

t ))
maps the critics epistemic uncertainty to the weighting factor λRL

t ∈ [λmin, λmax] ⊆ [0, 1] via the
piece-wise linear function

λRL
t+1 =





λmax if u(st,aRL
t , λRL

t ) < umin
u(st,aRL

t ,λRL
t )−umax

umin−umax
(λmax − λmin) + λmin if u(st,aRL

t , λRL
t ) ∈ [umin, umax]

λmin if u(st,aRL
t , λRL

t ) > umax.

(5)

Besides providing an uncertainty estimate of the RL agent, the critic ensemble used in CHEQ has
proven effective in mitigating overestimation bias (Thrun & Schwartz, 1993) in Q-learning-based
approaches (Lan et al., 2021; Wang et al., 2021; Chen et al., 2021). The Update-To-Data (UTD)
ratio describes the number of gradient steps per environment interaction. Due to the reduction of the
overestimation bias, the critic ensemble allows for increasing the UTD ratio while maintaining stable
learning. This substantially improves the data efficiency of value-based actor-critic methods (Chen
et al., 2021). A detailed pseudocode algorithm of CHEQ is provided in Algorithm 2 of Appendix A.

6 Experiments

We evaluate CHEQ on a racing task and compare it to standard RL, fixed-weighting hybrid RL, and
state-of-the-art adaptive hybrid RL. In our experiments, CHEQ yields substantial improvements in
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(a) (b) (c)

Figure 3: Performance of all trained RL approaches in terms of evaluation return and training
failures on the training track. Comparison of (a) CHEQ with fixed-weight hybrid RL and standard
RL, (b) increased UTD ratios and (c) prior work in adaptive hybrid RL.

(i) data efficiency compared to other hybrid methods, as well as (ii) exploration safety, and (iii)
zero-shot transferability to unknown scenarios as compared to all competitor approaches.

6.1 Experimental Setup

We base our evaluation on a car racing setting adapted from (Schier et al., 2023). Achieving high
returns requires advanced trajectory planning and control while operating the vehicle close to sta-
bility limits, including tire slip. The control prior is a trajectory-following task along the center line
of the track using a Stanley controller (Thrun et al., 2006) for lateral and a proportional controller
for longitudinal control. Further details are provided in Appendix B.

We compare CHEQ against the standard RL approaches SAC (Haarnoja et al., 2018) and
REDQ (Chen et al., 2021), fixed-weighting hybrid RL based on SAC, and the state-of-the-art adap-
tive hybrid RL methods Controller Regularized RL (CORE) (Cheng et al., 2019) and Bayesian
Controller Fusion (BCF) (Rana et al., 2023). In all experiments, we provide results for CHEQ with
a high UTD ratio (CHEQ-UTD20) to demonstrate the capabilities of the approach and a low UTD
ratio (CHEQ-UTD1) for a fair comparison to SAC-based methods. All implementations1 are based
on either the Clean RL library (Huang et al., 2022) or the original paper implementation (Rana
et al., 2023). We provide a detailed description of the hyperparameter settings in Appendix A.1.

We train all our approaches on ten random seeds and one fixed race track. We report return and
cumulative training failures. Runs are considered a failure when the car leaves the track. For zero-
shot transfer, we evaluate ten trained models per algorithm on ten unseen racetracks. Return and
failure plots show the respective mean (solid lines) and 95 % confidence interval (shaded areas).

6.2 Evaluation on the Car Racing Environment

We compare CHEQ to standard RL, fixed-weight hybrid RL, and adaptive hybrid RL concerning
learning performance (see Figure 3) and zero-shot transfer to unknown tracks (see Figure 4).

Comparison against Fixed-Weight Hybrid RL and Standard RL. Comparing the CHEQ
algorithm based on SAC (CHEQ-UTD1) to a standalone SAC agent and the control prior in Figure
3a illustrates the general benefit of hybrid RL. While the control prior operates safely without failing,

1The code is available at github.com/Data-Science-in-Mechanical-Engineering/cheq .
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Figure 4: Comparison of return (a) and failures (b) of ten trained models per algorithm on ten
transfer tracks. Development of λRL of the UTD-20 agent for an exemplary transfer track (c).

it shows limited performance due to the conservative driving policy. SAC shows strong asymptotic
performance at the cost of frequent failures throughout training. CHEQ-UTD1 considerably outper-
forms SAC concerning data efficiency and exploration safety, learning faster with fewer failures while
yielding comparable asymptotic performance. The comparison of CHEQ to fixed-weight hybrid RL
methods further illustrates the advantage of an adaptive weighting scheme. The fixed-weight hybrid
RL approaches (0.5-SAC, 0.7-SAC) combine the control prior with a SAC agent using the mixing
function in (2) with λRL

t = 0.5 and λRL
t = 0.7, respectively. Here, the choice of λRL

t represents a
trade-off between exploration safety and asymptotic performance, where a higher λRL

t enables better
performance while reducing safety. A fixed weight of λRL

t = 0.5 arguably reduces failures compared
to CHEQ-UTD1, however, this comes at the cost of substantially lower performance.

Update-To-Data Ratio. As discussed in Section 5.3, the critic ensemble of CHEQ allows the use of
acceleration techniques originally proposed in the REDQ algorithm. Increasing the UTD ratio to 20
notably improves data efficiency as compared to SAC, both as a standalone RL algorithm (REDQ)
and as an adaptive hybrid RL algorithm (CHEQ-UTD20). The speed-up in training helps to reduce
training failures as REDQ reports a drastically reduced number of failures compared to SAC. The
benefit is further amplified in the adaptive hybrid formulation of CHEQ-UTD20 as indicated by its
strong initial performance and the ability to reduce the mean cumulative fails to less than 20.

Comparison against state-of-the-art Adaptive Hybrid RL. Finally, Figure 3c compares
CHEQ to the most relevant adaptive hybrid RL methods. CHEQ-UTD1 shows similar data ef-
ficiency and performance compared to CORE and BCF while considerably reducing accumulated
fails. CHEQ-UTD20 substantially outperforms all competitor approaches in all performance metrics.
A more detailed hyperparameter analysis of the prior approaches, as well as results for reformulations
of CORE and BCF as contextualized hybrid RL methods are provided in in Appendix C.

Zero-shot Transfer. Next, we perform a zero-shot transfer of the trained agents. Returns are de-
picted in Figure 4a while Figure 4b shows the success rate of the respective methods. CHEQ-UTD1,
CHEQ-UTD20 and the control prior achieve a success rate of 97 %, 95 %, and 100 %, respectively.
The other standard and hybrid RL methods frequently fail in unseen scenarios. While the CHEQ
variants fail slightly more often than the controller, they drive notably faster, i.e., they achieve
higher returns. Figure 4c illustrates the adaption mechanism of CHEQ on one example track. In
challenging and unseen curves, the agent gradually hands over to the control prior as can be seen in
Figure 4c. We find that in the few failure cases (3 out of 100 for CHEQ-UTD1 and 5 out of 100 for
CHEQ-UT20), the agent correctly identifies its uncertainty, and hands over to the controller, but the
controller is unable to navigate the situation safely. We provide an illustration of all transfer tracks,
as well as the weight adaption of CHEQ-UTD20 on these tracks in Appendix C.2. In summary,
CHEQ shows strong zero-shot transfer behavior, driving faster than the controller with only a few
failure cases.
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Figure 5: Final return over number of fails during training (a) and zero-shot transfer (b).

Summary. We summarize the trade-off between failures and asymptotic performance in Figure 5.
Figure 5a illustrates the training results of the respective approaches while Figure 5b depicts the
transfer results. Fixed weight hybrid RL effectively reduces failures as compared to standard SAC.
This, however, comes at the cost of asymptotic performance. Our adaptive CHEQ algorithm avoids
this trade-off, achieving high return with only a few failures. In zero-shot transfer, the CHEQ agent
again performs best due to its ability to detect unforeseen situations reliably and then fall back to
the safe control prior.

7 Conclusion

This work addresses how to systematically combine an RL agent with a control prior. We propose
a novel formulation of the adaptive hybrid RL problem which introduces the adaptive weighting
parameter as a context variable of the MDP, and based on this, propose the Contextualized Hy-
brid Ensemble Q-learning (CHEQ) algorithm. CHEQ combines a reliable critic uncertainty-based
weight adaption mechanism with the data efficiency of critic ensemble methods, yielding substan-
tially stronger results than state-of-the-art adaptive hybrid RL methods on a racing task concerning
data efficiency, exploration safety, and transferability.
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A Algorithmic Details

Algorithm 2 shows the pseudocode of the Contextualized Hybrid Ensemble Q-learning algorithm.

Algorithm 2 CHEQ
Initialize control prior πprior(aprior

t | st), contextualized RL policy π̂RL
ϕ (aRL

t | st, λRL
t ), contex-

tualized critic ensemble Q̂θe(st,aRL
t , λRL

t ), e ∈ {1, . . . , E}, contextualized target critic ensemble
Q̂θ̄e(st,a

RL
t , λRL

t ), e ∈ {1, . . . , E}, replay buffer D ← ∅, weighting interval [λmin, λmax], uncer-
tainty limits [umin, umax], UTD ratio G, Bernoulli masking rate κ, minimization targets F , Polyak
averaging factor τ
for each epoch do

s0 ∼ ρ0, λRL
0 = λmin

for each epoch step do
aRL
t ∼ π̂RL

ϕ (· | st, λRL
t )

aprior
t ∼ πprior(· | st)

amix
t = (1− λRL

t )aprior
t + λRL

t aRL
t

u(st,aRL
t , λRL

t ) according to (4)
λt+1 = Λ(u(st,aRL

t , λRL
t )) according to (5)

st+1, rt+1 ∼ p̂(·, · | st,aRL
t , λRL

t )
for e = 1, . . . , E do

Sample Bernoulli Mask me
t ∼ Ber(κ)

end for
D ← D ∪ {(st,aRL

t , λRL
t , st+1, rt+1),m1

t , . . . ,m
E
t }

for G updates do
Sample mini-batch B = {(s,aRL, λRL, s′, r} from D
Sample a set F with |F| = F uniform at random from {1, . . . , E}
ã′RL ∼ π̂RL

ϕ (· | s′, λRL)
y = r + γ

(
mine∈F Q̂θ̄e(s

′, ã′RL, λRL)− α log π̂RL
ϕ (ã′RL | s′, λRL)

)

for e = 1, . . . , E do
Update θe with gradient descent using
1me∇θe 1

|B|
∑

(s,aRL,λRL,r,s′)∈B

(
Q̂θe(s,a, λRL)− y

)2

θ̄e ← τ θ̄e + (1− τ)θe
end for

end for
update ϕ with gradient ascent using
ãRL ∼ π̂RL

ϕ (· | s, λRL))
∇ϕ 1

|B|
∑

s∈B

(
1
E

∑E
e=1 Q̂θe(s, ãRL, λ

RL)− α log π̂RL
ϕ (ãRL | s, λRL))

)

end for
end for

A.1 Hyperparameters Settings

We build our SAC implementation based on CleanRL (Huang et al., 2022). All SAC-specific hyper-
parameters are kept consistent between all approaches and reported in Table 1.

CHEQ (UTD1 and UTD20) uses an ensemble of E = 5 critics. We set the upper bound of the
uncertainty as umax = 0.15 and the lower bound as umin = 0.03. Further we set λmax = 1.0 and
λmin = 0.2. We use a Bernoulli masking rate of κ = 0.8 and F = 2 minimization targets.

BCF trains an ensemble of policy networks. We maintain the original ensemble size from (Rana
et al., 2023) which uses ten policy networks. We set the standard deviation of the control prior in
BCF as σprior = 6.0.
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Table 1: Shared Hyperparameters.

Hyperparameter Value
number of steps 1.5× 106

batch size 256
learning rate actor 3× 10−4

learning rate critic 3× 10−4

target entropy Ht −3
replay buffer size 1× 106

discount factor γ 0.99
gradient update start 1× 103 steps
Polyak averaging factor τ 0.005

For the uncertainty estimate in CORE, we set A = 7, C = 0.02. Note that in the original paper, A
is denoted as λmax, which we change to avoid ambiguous notation.

SAC uses a UTD ratio of 1. REDQ implementation uses an ensemble size of 5 and a UTD ratio of
20.

For all algorithms, we include a random sampling phase for the first 1× 103 steps where we sample
the RL action uniformly random and do not update our agent. In this setting, we keep λRL

t small
for the hybrid agents. For CHEQ we vary λRL between [0.2, 0.3]. As CORE and BCF are unable to
observe changes in λRL we use a fixed λRL = 0.2 which has shown to be favorable in our experiments.
After the random sampling phase, agent training starts, but λRL is kept small for another 4 × 103

steps and afterward, λ adaption starts.

For performance evaluation, we conduct a greedy evaluation run every 20 episodes. Evaluation
happens in an adapted setting, together with the controller where the weight is calculated as in the
training procedure.

B Environment Details

B.1 Racing Environment

We test our agent on the simulated racing task adapted from Schier et al. (2023). Figure 6 shows
an example of the environment.

(a) (b)

Figure 6: Racing task and the training track.

The vehicle uses a dynamic single-track model with a coupled Dugoff tire model. The throttle,
brake, and steering are continuous actions. The vehicle is a front-wheel drive. The RL agent may
learn to control brake balance by applying throttle and brake individually. We define the state of the
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RL agent as st = (vx, vy, ω, β, otrack), with the ego vehicle’s velocity vector vego = (vx, vy) in vehicle
reference frame, steering angle β, and yaw rate ω. The observation of the track otrack = (x,y)T is
given as a vector of 20 Cartesian distances (xi, yi) to the centerline of the track. The points are
sampled equidistantly from the 60 m track segment ahead.

We use the original reward formulation from Schier et al. (2023) where the RL agent receives a
penalty rcollision whenever it collides with the track boundary and a penalty rfail for leaving the
track with the center of mass. The latter case also terminates the episode. The RL agent receives
a positive reward for driving fast: the scalar projection of its velocity vector vego onto the forward
track direction ntrack. The complete reward is then given by

r(s, a) = −rfail − 0.2 · rcollision + 0.01 · ntrack · vego.

B.2 Control Prior

For the racing task, we design a simple path-following controller with adaptive speeds. For the
lateral control, we use a Stanley Controller (Thrun et al., 2006) following the steering control law

δ(t) = ψ(t) + kcross · e(t)
v(t) + ksoft

,

where ψ(t) denotes the heading error, e(t) denotes the crosstrack error of the front axle and v(t)
describes the velocity of the vehicle.

For the longitudinal control, we design two symmetric P-controllers; one for the brake and one for
the throttle. First, we compute the target velocity dependent on the curve radius R(t) of the track
directly in front of the vehicle as

vtarget(t) = min{kr ·R(t), vmax},
where vmax is the maximum desired velocity. Then, we design the throttle control as

throt(t) =
{
kv(t) ∗ (vtarget(t)− v(t)), vtarget(t)− v(t) ≥ 0
0, else

and the brake control as

br(t) =
{
kv(t) ∗ (v(t)− vtarget(t)), vtarget(t)− v(t) ≤ 0
0, else,

with shared gain kv. Following this control law, the control prior accelerates if it is going too slow
and brakes if it is going too fast. It never uses the brake and the throttle at the same time.

To avoid aggressive braking behavior when the RL agent hands over to the controller in risky
situations (high velocity around curves), we additionally introduce a simple clipped linear gain
schedule on kv attenuating the braking control for higher velocities as

kv(t) = clip
(
kmax
v − kmin

v

vlow − vhigh
(v(t)− vlow) + kmax

v ; kmax
v , kmin

v

)
.

We tuned the controller gains and coefficients to kcross = 0.5[1/s], ksoft = 1[m s−1], kr = 0.4[1/s],
vmax = 8[m s−1], kmax

v = 0.25[s m−1], kmin
v = 0.05[s m−1], vlow = 8[m s−1] and vhigh = 28[m s−1].

C Additional Results and Ablation Study

In this section, we formulate contextualized hybrid variants of CORE and BCF, C-CORE and C-
BCF. Further, we present additional results on hyperparameter sensitivity and the distribution of
λRL for CHEQ-UTD1, CORE, and BCF. For a reasonable comparison, we focus mainly on CHEQ-
UTD1 using a UTD ratio of 1.
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C.1 Contextualized Hybrid Variants of Prior Work

To further substantiate our claim that the contextualized hybrid RL formulation aids the training
progress, we developed contextualized variants of the CORE and BCF algorithm, which we call
C-CORE and C-BCF. To use the adaptive weight as a context variable, a weighting parameter λRL

t

needs to be determined.

The CORE algorithm comes with a direct weight estimate(Cheng et al., 2019), which can be written
as

λRL
t = 1

1 + λCORE
t

where λCORE
t = A(1− e−C|δt−1|) with the TD-error δt−1 and C, A being tuning parameters2.

For C-BCF, we derive a pseudo-weight, as the BCF algorithm (Rana et al., 2023) does not
have a straightforward weighting factor λRL. In BCF, at timestep t − 1, the fusion of the prior
Nψ,t−1(µψ,t−1, σψ,t−1) and the SAC-ensemble Nπ,t−1(µπ,t−1, σπ,t−1) results in a Gaussian distribu-
tion with mean

µfuse,t−1 =
σ2
ψ,t−1

σ2
ψ,t−1 + σ2

π,t−1
· µπ,t−1 +

σ2
π,t−1

σ2
ψ,t−1 + σ2

π,t−1
· µψ,t−1.

Thus, in BCF the weight has the dimension of the action space, whereas the contextualized mecha-
nism requires a scalar weight λRL

t . For C-BCF, we compute a scalar weight

λRL
t = 1

N

N∑

i=1

(
σ2
ψ,t−1

σ2
ψ,t−1 + σ2

π,t−1

)

i

.

The next action amix
t is computed according to Equation 2 where aRL

t ∼ Nπ,t and aprior
t = µψ,t.

For C-BCF and C-CORE we use the same warm-up phase as for our CHEQ agent.

C.2 Additional Results and Hyperparameter Tuning for CHEQ
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Figure 7: Comparison of CHEQ-UTD1 with different umax thresholds. Plotting return (a) and
number of fails (b) for the racing environment.

Our algorithm has only two important hyperparameters, upper and lower bounds of the uncertainty
umax and umin. We chose these hyperparameters by conducting one training run and investigating

2CORE (Cheng et al., 2019) uses the term λmax instead of A. As we use λmax in a different context, we stick to
A here.
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Figure 8: Distributions of λRL over training steps shown for all hybrid agents.
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Figure 9: The 10 transfer tracks and the corresponding zero-shot transfer of one seed of CHEQ-
UTD20.

the uncertainty range within this run. CHEQ is generally robust against changes in these thresholds.
We observe slightly lower final return and fewer fails for lower upper bounds umax. This is to be
expected as frequent handover to the control prior results in lower velocities and thus lower return.
Figure 7 shows the return and the number of fails during training for our CHEQ-UTD1 variants.
For CHEQ-UTD20 we were able to use the same upper and lower uncertainty bounds as for CHEQ-
UTD1.

Figure 8 shows the distribution of the weight λRL over the training progress. We find that for
CHEQ-UTD1 the agent starts with an almost uniform distribution of the weight and slowly moves
towards a λRL = 1 regime. Even in later training stages, the agent hands over to the controller from
time to time.

Lastly, we investigated the transfer behavior of the CHEQ-UTD20 agent further. Figure 9 shows
the ten transfer tracks. We plot λRL over the track for one evaluated model. Here, we find that the
agent frequently becomes uncertain and hands over to the controller, especially in unknown curves.
In plot C we see one of the two failure cases (out of 100 runs) that we experience during transfer.
We find that the agent becomes uncertain and hands over to the controller. In this specific scenario,
however, the controller is not able to safely navigate the situation and leaves the track.

C.3 Additional Results and Hyperparameter Tuning for CORE and C-CORE

In Figure 10 we compare different parameters C. We find stable training progress and high return
for C = 0.02 but since this uses high λRL values, this setting results in many failures. Figure 8
illustrates the high λ regime of the C = 0.02 agent. C-CORE using our contextualized hybrid
framework, notably outperforms CORE in terms of asymptotic return, training stability, and the
number of training failures. Using the contextualized formulation, C-CORE can use a much wider
λRL distribution (see Figure 8).
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Figure 10: Comparison of return (a) and number of fails (b) CORE and C-CORE runs with different
C parameters.

C.4 Additional Results and Hyperparameter Tuning for BCF and C-BCF

The BCF algorithm is sensitive to the parameters of the uncertainty threshold, which in this case
is the variance of the control prior σprior. Higher variances, lead to less weight on the control prior
and thus high λRL regimes. In Figure 11 we compared different parameters σprior. We find stable
training progress and high return for σprior = 6. However, this setting, as expected, uses a λRL

regime close to one and thus results in a high number of failures. Figure 8 illustrates this regime.

Our C-BCF variant can resolve this problem only partially. Due to its construction, the BCF
algorithm has a separate weighting factor for each action of which we take the mean. In addition,
our pseudo λRL factor is only a rough estimate of the actual mixing as BCF samples from the
posterior distribution. Both factors result in information loss and make the weight λRL only a rough
estimate. We find that C-BCF-2.0 and BCF-6.0 achieve similar asymptotic performance, while
C-BCF-2.0 leads to fewer failures.
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Figure 11: Comparison of return (a) and number of fails (b) of BCF and C-BCF runs with different
σprior parameters.

C.5 Return vs. Failure Comparison for all trained Models

Figure 12 shows a scatter plot of the final return and the accumulated failures during training for
all hybrid algorithms discussed in this paper. This final comparison shows that if prior methods are
trained with the contextualized framework and tuned well ( C-BCF-0.8, C-CORE-0.4, C-CORE-0.8),
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they achieve high returns while maintaining fewer failures than their non-contextualized counter-
parts. Our algorithm (CHEQ-UTD1, CHEQ-UTD20) achieve the highest return while maintaining
the lowest number of cumulative failures.
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Figure 12: Scatter plot of the return and number of fails for different hyperparams for BCF, CORE,
C-BCF, C-CORE. CHEQ-UTD20, CHEQ-UTD1 + Prior in Comparison
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Abstract

Autocomplete suggestions are fundamental to modern text entry systems, with ap-
plications in domains such as messaging and email composition. Typically, autocom-
plete suggestions are generated from a language model with a confidence threshold.
However, this threshold does not directly take into account the cognitive load im-
posed on the user by surfacing suggestions, such as the effort to switch contexts
from typing to reading the suggestion, and the time to decide whether to accept the
suggestion. In this paper, we study the problem of improving inline autocomplete
suggestions in text entry systems via a sequential decision-making formulation, and
use reinforcement learning to learn suggestion policies through repeated interac-
tions with a target user over time. This formulation allows us to factor cognitive
load into the objective of training an autocomplete model, through a reward func-
tion based on text entry speed. We acquired theoretical and experimental evidence
that, under certain objectives, the sequential decision-making formulation of the
autocomplete problem provides a better suggestion policy than myopic single-step
reasoning. However, aligning these objectives with real users requires further ex-
ploration. In particular, we hypothesize that the objectives under which sequential
decision-making can improve autocomplete systems are not tailored solely to text
entry speed, but more broadly to metrics such as user satisfaction and convenience.

1 Introduction

The ability to enter text is essential in today’s world, spanning technology such as keyboards,
phone/tablet screens, and smart watches. Autocomplete suggestions are fundamental to modern text
entry systems, with applications in domains such as messaging and email composition. Autocomplete
provides a mechanism for users to transmit more information without needing to enter too many
more characters. For example, the user may simply enter “how a”, upon which the autocomplete
system suggests “how are you?”, which can be accepted by the user in one additional stroke.

Among many possible instantiations, we choose to focus on inline autocomplete systems, which may
provide the user with up to a single suggestion at each timestep, displayed inline, e.g., “how are
you?”. Such systems have been shown to be more effective at encouraging users to enter text than
other approaches, such as displaying multiple suggestions in a different on-screen location (Azzopardi
& Zuccon, 2016). An inline autocomplete system must decide not only what to suggest to the user,
but also when to make a suggestion to avoid interrupting users’ focus (Quinn & Zhai, 2016).

Existing autocomplete systems generally follow a two-stage process: 1) generate a ranked list of
candidate completions of the current text entered by the user, 2) decide which, if any, to surface to
the user based on a pre-defined fixed confidence threshold (Cai et al., 2016; Mitra & Craswell, 2015;
Quinn & Zhai, 2016; Fowler et al., 2015). The downside of these systems is that they do not directly
consider the cognitive load that surfacing autocomplete suggestions will impose on the user. This
may come from several aspects of the autocomplete process, such as switching contexts from typing

∗ Work done while author was an intern at Meta AI. Correspondence to: {ronuchit, alborzg}@meta.com
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Figure 1: Left: An overview of the workflow of our RL agent for inline text autocomplete. A
language model (LM) generates k candidate completions of the current text. The RL agent decides
which, if any, to give the user as an inline suggestion. The agent is rewarded based on the user’s
text entry speed, which takes into account the cognitive load of showing suggestions. Right: The
interface for our user study (Section 6.3). In this example, the user was asked to type the sentence
“sorry, i’ll call later” on a keyboard. Currently, they have typed “sorry, i’ll ca”, and a suggestion
was made that completes the last word as “call”, which the user can accept by pressing the tab key.

to reading a suggestion, mentally processing the suggestion, and deciding whether to accept it. Too
many suggestions, even if usually accurate, can therefore lead to bad user experience.

We tackle the problem of generating inline autocomplete suggestions while minimizing the user’s
cognitive load by formulating text autocomplete as a sequential decision-making problem, and apply
reinforcement learning (RL) methods (Kaelbling et al., 1996; Sutton & Barto, 2018) to train the
autocomplete model. RL solves the problem of learning an optimal sequential decision-making policy
through environment interaction, without assuming the differentiability of the objective/reward
function w.r.t. the model parameters. RL methods have demonstrated impressive success in domains
such as Atari (Mnih et al., 2013) and Go (Silver et al., 2016). Using RL methods to train an
autocomplete model on top of a language model (LM) allows us to learn suggestion policies through
repeated interactions with a target user, and define a reward function based on text entry speed
that captures the cognitive load of surfacing suggestions (Figure 1). We note that RL is suitable
here since the cognitive load takes an unknown functional form w.r.t. the autocomplete model.

This paper’s contributions are as follows:

• We formulated the inline text autocomplete problem as sequential decision-making.
• We performed theoretical analysis on when this formulation can improve over myopic reasoning.
• We ran simulated experiments on how an RL autocomplete agent performs on an idealized user.
• We performed a user study to understand the gaps between an idealized user and a real one.

Our key findings are as follows:

(1) We acquired theoretical and experimental evidence that, when optimizing certain objective
functions, RL can provide a better suggestion policy than myopic reasoning, but aligning these
objectives with real-world users requires further exploration. We believe these objectives are not
tailored solely to text entry speed, but more broadly to metrics like user satisfaction and convenience,
which aligns with earlier findings in the text entry literature (Quinn & Zhai, 2016).

(2) Given an idealized user that always accepts correct suggestions and inputs each character without
typos, we could not find any evidence with a real dataset and language model that RL-trained models
improve text entry speed over the classical threshold-based approach with a fixed threshold value.

(3) Our user study (N = 9) reveals that for keyboard typing, the cognitive load of looking at a
suggestion is independent of its length, but is dependent on whether the suggestion matches what
the user is trying to type (10ms if it matches, 50ms if it does not). Also, we could not find any
evidence that suggestion acceptance rate is affected by the number of past surfaced suggestions.

Recommendation. Based on these findings, we recommend that further research into sequential
decision-making for inline text autocomplete should not pursue the goal of solely increasing text
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entry speed for idealized users. Instead, more realistic scenarios (stochastic user behavior, typos in
their input, etc.), with a focus on user experience, may provide better opportunities for RL methods.

2 Related Work

Autocomplete has a rich history, especially in the domain of search queries (Cai et al., 2016), where
methods that rely on neural language models have become increasingly popular (Wang et al., 2020;
Park & Chiba, 2017; Wang et al., 2018). For example, Wang et al. (2020) demonstrate how to make
use of context in both the generation and ranking phases to improve end-to-end performance. These
methods can also be used to obtain personalized models by embedding user IDs (Fiorini & Lu, 2018;
Jiang et al., 2018). Like these works, we also use a neural language model in this paper for candidate
suggestion generation, but for selection, we use a policy trained using deep reinforcement learning.

A separate line of work has investigated the empirical performance of existing autocomplete sys-
tems (Fowler et al., 2015; Quinn & Zhai, 2016; Azzopardi & Zuccon, 2016). Fowler et al. (2015)
found that the text entry enhancements found in modern touchscreen phones greatly reduce word
error rate. Quinn & Zhai (2016) discovered, surprisingly, that even though autocomplete suggestions
can impair text entry speed, users often prefer them subjectively because they lowered cognitive and
physical burden. Azzopardi & Zuccon (2016) studied the cost-benefit tradeoffs that users make when
conducting searches, concluding that inline autocomplete systems are an effective way to increase
the amount of text entered. This entire line of work complements our paper, providing rationale for
why inline autocompletion is a useful problem to study, and why cognitive load is important.

Reinforcement learning methods have demonstrated impressive success in domains such as
Atari (Mnih et al., 2013), Go (Silver et al., 2016), and control tasks (Brockman et al., 2016), but it is
not commonly applied to text autocomplete systems. The two closest works to ours are Wang et al.
(2017) and Lee et al. (2019). The former studies query autocomplete as opposed to inline autocom-
plete; the authors formulated the problem as a multi-armed bandit (Katehakis & Veinott, 1987),
a stateless simplification of the Markov decision process framework we adopt. The latter studied
autocomplete as a two-agent communication game solved via unsupervised learning and optimized
with policy gradients (Sutton et al., 1999). However, they assumed the user only enters keywords
drawn from the target phrase, while we allow the user to input any English characters.

3 Background: Reinforcement Learning

In this section, we give background for sequential decision-making and reinforcement learning in the
Markov decision process (MDP) framework (Puterman, 2014). An MDP is given by ⟨S, A, T, R, γ⟩,
with state space S; action space A; transition model T (st, at, st+1) = P (St+1 = st+1 | St = st, At =
at), where t is the time-step, st, st+1 ∈ S, at ∈ A, and St, At, St+1 are random variables; reward
function R(st, at, st+1) = rt ∈ R; and discount factor γ ∈ [0, 1]. The optimal solution to an MDP is
a policy π∗ : S → A, a mapping from states to actions, such that acting under π∗ maximizes return,
the expected sum of discounted rewards: π∗ = argmaxπ E

[∑H
t=0 γtR (st, π(st), st+1)

]
. Here, H is

the horizon of an episode, a sequence of state-action-rewards from an initial to a terminal state. The
optimal Q-value of a state-action pair, Q∗(st, at), is the expected return of taking action at from
state st, and acting optimally afterward: Q∗(st, at) = Est+1∼T (st,at,·) [R(st, at, st+1) + γV ∗(st+1)].
The optimal value of a state, V ∗(st), is the maximum Q-value over actions: V ∗(st) = maxa Q∗(st, a).

In reinforcement learning, an agent interacts with an MDP where T and R are unknown, and
attempts to discover π∗ through these interactions. There are many families of algorithms for
RL (Kaelbling et al., 1996; Arulkumaran et al., 2017; Sutton & Barto, 2018), but some of the
most popular are policy gradient methods and value-based methods. The former optimize a policy
directly (Sutton et al., 1999; Schulman et al., 2017; 2015), while the latter learn the value of each
state-action pair and use that to infer the policy (Mnih et al., 2013; Watkins & Dayan, 1992). Another
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recently popularized direction is offline RL (Levine et al., 2020), in which the agent does not get to
interact with the environment, but rather must learn from a static dataset of prior interactions.

4 Problem Formulation: Autocomplete as Sequential Decision-Making

In this section, we describe how to formulate inline text autocomplete as an MDP, which can then be
solved via RL. As shown in Figure 1, we assume access to a language model (LM) that can generate
k candidate completions of a partial sentence, along with their probabilities. We build the MDP on
top of this LM. A state in the MDP is the current context and the k candidates from the LM (with
their probabilities). The context is all characters entered so far in the sentence, which includes the
full previous words and the prefix of the current word. The action space has size k +1: surfacing one
of the k candidates to the user, or a special wait action that does not surface anything. Note that
in this formulation, the word corresponding to each action a ∈ {1, . . . , k} (except for wait) changes
on each step based on the LM output. While the agent should do better with higher k since it has
more candidates to choose from, increasing k would also increase the problem complexity.

The transition model is defined by the user and LM. On each timestep, after the RL agent acts,
the user enters a character. The character can be a special acceptance key (e.g., tab), or the next
English character the user wants to enter. After that, the LM generates k new candidates from the
updated context. In our computational experiments (Section 6.2), we will consider an idealized user
who behaves as follows. They sample a target sentence at the start of each episode, unknown to the
RL agent. On each timestep, the idealized user accepts the suggestion if and only if it matches any
prefix of the remaining sentence. In case of no suggestion or a mismatched suggestion, the idealized
user enters the next English character of the current word without making any typos.1 An episode
ends when all characters of the target sentence have been entered.

Finally, the reward function is proportional to the time saved/lost due to the suggestions:

R =





0 no suggestion made by agent
(1 − α) · len(suggestion) − β suggestion accepted by user
−α · len(suggestion) − β suggestion ignored by user

.

Here, α, β ∈ [0, 1] are parameters controlling the degree of penalty on the agent when it makes
a suggestion, due to the user’s cognitive load. α is the cognitive load proportional to suggestion
length, while β is a constant cognitive load incurred for moving the gaze. Refer to Appendix A for the
derivation of the reward function. By default, we use α = 40/521 (character reading time / character
writing time) and β = 60/521 (2× saccade time / character writing time). If the user is idealized,
then under this reward function, wait actions give zero reward, correct suggestions accepted by the
user give positive reward, and incorrect suggestions ignored by the user give negative reward. The
choice of γ can heavily influence the optimal solution; our experiments will explore this further.

5 Theoretical Analysis

We begin with a theoretical study of a simple setting where a user may be entering one of two words
with equal probability. Our goal is to answer: Do there exist conditions such that the sequential
decision-making formulation of text autocomplete is beneficial over myopic reasoning? To answer
this question, we study a restricted setup and derive conditions on the reward function under which
the optimal policy in the MDP with γ = 1 obtains higher return at a particular timestep than the
optimal (myopic) policy in the MDP with γ = 0, holding all other components fixed. In particular,
we aim to show that the farsighted agent waits for more information in certain cases where the
myopic agent would make an incorrect suggestion, which gives the farsighted agent higher return.
1This transition model is stochastic from the perspective of the RL agent because it does not know the target sentence.
We could alternatively model this using a partially observable MDP (Kaelbling et al., 1998), but we stick with the
fully observable formulation due to its simplicity and popularity in the RL field.
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5.1 Analysis Setup

We focus on an idealized user (Section 4) and k = 1, meaning there are two actions to choose from
at each timestep: show the top LM candidate suggestion (S) or wait (W ). To keep the analysis
simple, we consider two arbitrary words u and v of length n. Both words share the first m letters,
e.g., for words “this” and “they” we have n = 4, m = 2. The user picks the target word uniformly
at random across both at the start of each episode. We aim to find α, β in our reward function such
that the optimal policy for γ = 1 waits while the optimal policy for γ = 0 shows, at the last common
letter (position m). Note that this is sufficient to answer our central question stated above, because
the Q-value of the γ = 1 policy is precisely the sum of future rewards, our evaluation criteria. Due
to greedy action selection, the γ = 1 policy will find a better action than the γ = 0 policy, should
they behave differently.

We consider a specific form of the LM that outputs the non-target word as the candidate when ≤ m
letters are entered, and the target word after that. Let ut be the state of the tth step consisting of
the first t letters of u, and similarly for vt, for any t ≤ n. For notational simplicity, we use “Q(ut, ·)”
to refer to the optimal Q-value of the state ut (similarly with vt) and action either S or W . Note
that this notation hides the LM candidates portion of the state.

5.2 Derivation for γ = 0

We begin by deriving conditions on α and β under which the optimal policy for γ = 0 would prefer
to suggest (S) at t = m. The base case is Q(un, W ) = Q(un, S) = Q(vn, W ) = Q(vn, S) = 0. Then:

Case 1: m < t ≤ n
Q(ut, W ) = Q(vt, W ) = 0

Q(ut, S) = Q(vt, S) = (n − t)(1 − α) − β
Case 2: t ≤ m

Q(ut, W ) = Q(vt, W ) = 0
Q(ut, S) = Q(vt, S) = 0.5[(n − t)(1 − α) − β] + 0.5[−(n − t)α − β]

= (n − t)(0.5 − α) − β

The condition for preferring suggesting (S) at t = m under γ = 0 is Q(um, S) > Q(um, W ), which
implies that (n − m)(0.5 − α) − β > 0.

5.3 Derivation for γ = 1

Now, we derive conditions on α and β under which the optimal policy for γ = 1 would prefer to
wait (W ) at t = m. This derivation is more involved as the Q-value expressions are recursive, due
to lookahead. Again, the base case is Q(un, W ) = Q(un, S) = Q(vn, W ) = Q(vn, S) = 0. Now:

Case 1: m < t ≤ n
Q(ut, W ) = max(Q(ut+1, W ), Q(ut+1, S))
Q(vt, W ) = max(Q(vt+1, W ), Q(vt+1, S))
Q(ut, S) = Q(vt, S) = (n − t)(1 − α) − β

Case 2: t ≤ m
Q(ut, W ) = Q(vt, W ) = 0.5 max(Q(ut+1, W ), Q(ut+1, S)) + 0.5 max(Q(vt+1, W ), Q(vt+1, S))
Q(ut, S) = Q(vt, S) = 0.5[(n − t)(1 − α) − β] + 0.5[−(n − t)α − β + max(Q(vt+1, W ), Q(vt+1, S))]
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With some algebra, we can solve the recursion for the t = m case that we care about:

Q(um, W ) = (n − m − 1)(1 − α) − β

Q(um, S) = (n − m)(1 − 1.5α) − 0.5(1 − α) − 1.5β

The condition for preferring wait (W ) at t = m under γ = 1 is Q(um, S) < Q(um, W ), which implies
that (n − m + 1)α + β > 1.

5.4 Final Constraints on α and β

Putting together the work in Section 5.2 and Section 5.3, we finally obtain the following constraint
on α and β which would lead to different optimal policies for γ = 0 and γ = 1 at at position m:

1 − β

n − m + 1 < α <
0.5(n − m) − β

n − m
.

With a fixed value of β, an α value close to 0.5 can satisfy the above. To go beyond the two-word
setup empirically, we obtained the most likely 500 words from our LM (described in Section 6.1),
calculated the optimal policy using backward dynamic programming for γ = 0 and γ = 1 (other
MDP components are the same), and measured the number of states for which the two policies
differed. Figure 2 below depicts this difference for various α. We set β to the default value 60/521.

Figure 2: Number of states where the optimal far-
sighted policy (γ = 1) and the optimal myopic pol-
icy (γ = 0) disagree, for various values of α.

We can see that the gap is largest when α is
between 0.3 and 0.4. Hence, for these values
of α, we should see more benefit to solving
the autocomplete problem via the sequential
decision-making formulation; however, the dis-
agreement (y-axis) only corresponds to ∼2%
of the state space. Another intuition for us-
ing larger α values is to more strongly penal-
ize long but incorrect suggestions, which incen-
tivizes an RL agent to wait for additional input
from the user before being informed enough to
make a suggestion. Notice that as α gets closer
to 1, both policies become very conservative
due to the high potential penalty of making
wrong suggestions, and hence the number of
disagreements reduces drastically.

5.5 Limitations of our Analysis

Although we derived constraints under which text autocomplete benefits from sequential reasoning,
these constraints may not reflect the goal of text entry speed improvement. In our user study (Section
6.3), we will see that the ideal values of α and β for faster text entry are near zero, which violates the
constraints we derived. Additionally, our analysis depends on a simple form of LM which is unlikely
to reflect those used in practice. The degree to which the sequential decision-making formulation
can benefit our problem depends on the user’s goal and what LM we use to implement the MDP.
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6 Experiments

6.1 Experimental Setup

We sampled target sentences for the user from two open-source datasets, SMS Spam Collection
(“ham” labels only) (Almeida et al., 2011) and Reddit Webis-TLDR-17 (Volske et al., 2017). Ap-
plying the following filters led to ∼500 and ∼300,000 sentences in each dataset respectively:

• Use only sentences with length ≤ 10 words to save compute.
• Use only sentences with no profanity and whose perplexity is under 150 as computed by GPT2-

Large (Radford et al., 2019), to ensure language quality (e.g., no misspellings or slang).
• Remove sentences with characters not in the set “a-z,.’?! ” to satisfy the LM input requirements.

For our language model (LM), we trained a small (∼25MB) transformer (Vaswani et al., 2017)
on the Wikipedia2 and Reddit Webis-TLDR-17 corpora. This transformer outputs a probability
distribution over the English vocabulary. To reduce down to the k candidates fed into our RL
agent, we take the top k outputs and renormalize their probabilities. Unless otherwise specified, our
experiments only consider single-word autocompletion (as opposed to multi-word).

For all simulations, we assume the user is the idealized one described in Section 4.

6.2 Computational Experiments

We explored three RL algorithms: PPO, an online policy gradient method (Schulman et al., 2017);
DQN, an online value-based method (Mnih et al., 2013); and IQL, an offline method (Kostrikov et al.,
2021). We benchmark these algorithms against three baseline agents: oracle, uniform random, and
threshold-based. The oracle agent has privileged access to the target sentence and always surfaces
correct suggestions when given by the LM; it thus establishes an upper bound on performance.
The threshold-based agent surfaces the top suggestion if and only if its probability is above a fixed
threshold. Optimization on the validation set led us to use threshold=0.3. For PPO and DQN, we
used DistilBERT (Sanh et al., 2019) as the policy architecture and initialization, while IQL used a
multi-layer perceptron (MLP) trained from scratch. See Appendix B for more details.

The IQL policy received the suggestion probabilities from the LM as part of its input, while
PPO/DQN policies did not. This design choice was made because probabilities from the LM are
floating-point numbers and it is not useful to tokenize them as strings to feed into transformers.
Future work may consider learning or constructing an input representation for these probabilities,
e.g., using an embedding layer (Chen et al., 2021) or predefined activation (Gorishniy et al., 2022).

All RL algorithms were trained for 250K gradient steps with γ = 0.99. Since IQL is an offline RL
algorithm, we trained it on a static dataset of 5,000 trajectories collected by a policy that follows
the threshold-based baseline but with a 5% chance of taking a random exploratory action each step.

First, we considered the k = 1 setting, where the LM generates one candidate and the action space
is {suggest, wait}. We used the default reward function parameters α = 40/521, β = 60/521.
Figure 3 shows the average return and number of saved characters in our two domains. In both
cases, IQL performed best among RL techniques (9.37 ± 0.17 average return), but could not improve
significantly over the threshold-based agent (9.27 ± 0.18). Interestingly, PPO was overly aggressive:
it saved the user the most characters, yet it obtained a lower return due to more incorrect suggestions.

These observations made us question whether our autocomplete problem benefits from sequential
decision-making, or if a contextual bandit suffices. To answer this, we reran the RL agents under
the same MDP but with γ = 0. Results are shown in Figure 4 (left two plots). Theoretically,
γ = 0.99 renders the problem harder, yet the solution asymptotically should be better or the same
as when γ = 0. For IQL, the results with both γ values were on par. However, for PPO, we observed
better results with γ = 0, though as we increased the number of training steps to 1M, the difference

2https://huggingface.co/datasets/wikipedia
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Figure 3: Average return and number of characters saved, over 5 independent runs (including train-
ing, for RL agents). Error bars depict 95% confidence interval. Left two: SMS dataset, 50 sentences
in evaluation set. Right two: Reddit Webis-TLDR-17 dataset, 400 sentences in evaluation set.

Figure 4: Left two plots: Analysis of how varying γ affects RL agents. Right two plots: Results
of rerunning experiments with α = 0.4, as suggested by our theory (Section 5). All plots use the
Reddit Webis-TLDR-17 dataset and show the same metrics (y-axis) as in Figure 3. In the right two
plots, DQN results are omitted because they were significantly worse than PPO and IQL, and we
changed the threshold-based agent to use threshold 0.7 based on re-tuning with the updated α.

disappeared (not shown in plots). Our observations support the hypothesis that with our current
setup, sequential decision-making may not be helpful.

Next, we incorporated our theoretical takeaways from Section 5 and set α = 0.4 to see if this provides
better opportunity for RL. Results are shown in Figure 4 (right two plots). Indeed, our theoretical
analysis transferred to PPO: we see that the PPO agent trained under γ = 0.99 performs better
than γ = 0. Because this difference was not significant after 250K steps, we extended the learning
to 1M steps and confirmed the returns differed significantly (not shown in plots): (3.14 ± 0.27) for
γ = 0.99 vs. (2.65 ± 0.16) for γ = 0. However, like in Figure 3, PPO could not reach the average
return of IQL and the threshold-based agent. We believe this gap in performance is due to the fact
that the PPO policy does not receive suggestion probabilities from the LM as part of its input.

Our final computational experiment revolved around multi-word suggestions, drawing on the intu-
ition that longer suggestions have more opportunity to improve text entry speed. We increased our
candidate pool to k = 5 and allowed LM candidates to be 1 or 2 words. Since the joint likelihood of
suggesting two words is always lower than the likelihood of suggesting just the first, we normalized
the joint probability of 2-word suggestions, similar to Murray & Chiang (2018). See Appendix C
for details. Unfortunately, our initial experiments indicated that allowing multi-word suggestions
degraded the return for both oracle and threshold-based agents. Surprisingly, it also reduced the
oracle agent’s number of saved characters. The reason is that 2-word candidates can take up the
slot of the correct 1-word candidate, preventing it from being seen by the agent. See Appendix D for
details. Given these findings, we didn’t train RL agents (which are GPU-intensive) in this setting.

6.3 User Study

In addition to our computational experiments, we ran a user study to understand how well our
reward function aligns with real user behavior. Our goals were to 1) estimate real values for the
reward function parameters, α and β, that capture the cognitive load of the user, and 2) explore the
possibility of “accumulated fatigue” (Paas et al., 2003) for the users, meaning that as the number of
surfaced suggestions increases, the user is less likely to accept suggestions. To address these goals,
we ran a study where we asked N = 9 users to enter 42 sentences on a keyboard, both with and
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Figure 5: User study results (Section 6.3). Error bars depict 95% confidence interval. Left: Average
cognitive load versus suggestion length. The cognitive load did not grow significantly with suggestion
length. Right: Average cognitive load versus suggestion correctness. There is a significant difference
between the user’s cognitive load when considering correct versus incorrect suggestions.

without autocomplete suggestions. Figure 1 (right) shows an example of the study interface. All
N = 9 users work with computers as a regular part of their profession.

We obtained 3968 instances where a user entered the same key given the same context (letters typed
so far) both with and without autocomplete suggestions. To measure the cognitive load due to the
suggestions, we looked at the time difference between how long it took the user to enter the next key
in both cases. Figure 5 (left) shows this cognitive load measure as a function of suggestion length.
Contrary to our initial estimate of α = 40/521, the time users spend on suggestions did not grow
with suggestion length, implying that α should be set to 0. The average cognitive load for users was
21.29±3.61ms, which falls within the 20-30ms of a single saccade time for reading (Rayner & Clifton,
2009). This observation suggests that the user only has to saccade once, not twice, after reading
a suggestion. This is likely because initially, their eyes are already focused where the suggestion
appears, which can in return explain the widespread adoption of inline suggestions.

Furthermore, Figure 5 (right) shows that the cognitive load of looking at a suggestion is highly
dependent on suggestion correctness. Specifically, users experienced cognitive loads of 9.18 ± 3.05ms
and 50.49±9.67ms for correct and incorrect suggestions respectively. This observation suggests that
β is dependent on suggestion correctness, as opposed to our initial fixed estimate of β = 60/521.

Finally, we probed the presence of “accumulated fatigue”, as defined earlier. See Figure 7 in Ap-
pendix E for results. The data did not show any evidence of declined acceptance rate based on the
cumulative number of past suggestions, or the cumulative number of past incorrect suggestion.

Based on these findings, we re-ran our experiments on the Reddit Webis-TLDR-17 dataset with
α = 0, and β = 10/521 if the suggestion is correct and 50/521 if it is wrong. With these changes, we
found that the optimal threshold for the threshold-based agent was 0: always surface the top LM
candidate, regardless of its probability. This is because by reducing α and β, we reduced the penalty
for incorrect suggestions. This result implies that the sequential decision-making formulation does
not improve text entry speed of an idealized user when α, β are chosen based on real user behavior.
Yet in reality, users do not prefer always-on suggestions, meaning that there is something more than
text entry speed that is important to the user (Quinn & Zhai, 2016).

7 Conclusion and Future Work

In this paper, we studied the problem of generating inline autocomplete suggestions via sequential
decision-making. This formulation allowed us to apply RL methods to solve the problem, and define
a reward function that captures user cognitive load through text entry speed. Our experimental
findings suggest that sequential decision-making and RL do not improve text entry speed for an
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idealized user. Therefore, we recommend that further research into sequential decision-making for
inline text autocomplete should not pursue the goal of solely increasing text entry speed, but rather
aim to make real users enjoy the text entry experience.

There are several important directions for future work, to address some of the limitations of this
paper. (1) It would be interesting to perform our theoretical analysis on the outputs of a real language
model, to connect better with practice. (2) On the computational side, we hope to experiment with
feeding the LM probability values as part of the input into the PPO and DQN agents. (3) Our user
study only considered prompted writing tasks, where our software told users what sentences to write.
The results may be different if users were asked to do freeform writing. (4) Most importantly, we
believe that introducing more realistic conditions into our simulations would provide greater scope
for RL-based agents to improve over threshold-based methods. Examples include stochasticity in the
user suggestion acceptance behavior, typos in their text input, or deciding suggestion acceptance
based on semantic matching with the target sentence rather than hard matching. This research
would align well with other work that has found users to prefer autocomplete suggestions due to
lower cognitive and physical burden, even when text entry speed is impaired (Quinn & Zhai, 2016).
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A Reward Derivation

Our objective is to minimize the total time it takes for the user to enter the input. Hence, the
instantaneous reward will be proportional to the saved time due to a correct suggestion that the user
accepted minus the lost time due to cognitive load imposed on the user. For simplicity, we assume
all characters take the same amount of time to write (∆tchar−write) and to be read (∆tchar−read).
We also associate an additional fixed time loss for every suggestion, where the user has to pause and
move their gaze (∆tdistraction). Hence we will have:

r ∝ Saved Time − Lost Time (1)
∝ len(a) × accepted × ∆tchar−write − len(a) × ∆tchar−read − ∆tdistraction × (len(a) ̸= 0) (2)

∝ len(a)
(

accepted − ∆tchar−read

∆tchar−write

)
− ∆tdistraction

∆tchar−write
× (len(a) ̸= 0) (3)

∝ len(a)(accepted − α) − β × (len(a) ̸= 0), (4)
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where a is the suggestion made by the agent (an empty string if no suggestion was made), and “ac-
cepted” is a binary indicator for whether the user accepted the suggestion. We estimate ∆tdistraction

by two saccada times for the task of natural reading (Rayner & Clifton, 2009), which amounts to
∆tdistraction = 2 × 30 ms = 60ms. We estimated the per-character writing time and reading time
to be 521ms and 40ms respectively, based on an internal dataset in our target use case of EMG
handwriting (CTRL-labs at Reality Labs et al., 2024). This leads to α = 40

521 , β = 60
521 .

B Further Details on Computational Experiments

Our PPO and DQN agents are built off the CleanRL implementations (Huang et al., 2022), while
our IQL agent is built off the CORL implementation (Tarasov et al., 2022). For PPO and DQN,
we use a per-action Q-network architecture that takes as input the state and a single candidate
suggestion (or wait), and produces the corresponding Q-value (and similarly the action probability
for the PPO policy). To obtain the best action, we simply choose the candidate suggestion or wait
with highest Q-value (or with highest action probability for PPO); note that this requires running
k + 1 forward passes through the model, one per k candidate suggestions plus one for wait. Both
PPO and DQN used the distilbert-base-uncased pre-trained model from HuggingFace3, where
the Q-function and the PPO policy network are implemented as one-layer projection MLPs on top
of the distilbert transformer. We did not freeze any layers of the transformer; initial experiments
found that only training the projection layer of the Q-function network and using distilbert as a
frozen feature extractor worsened DQN’s performance. IQL used a multi-layer perceptron (MLP)
with two hidden layers of size 256 each, and k + 1 output nodes, one for each of the k candidates
and wait. To obtain the best action, we take the action corresponding to the output node with
maximum value. All RL agents were trained for 250K steps.

The default hyperparameters for the RL agents are as follows.

PPO: learning rate 10−6, number of steps per iteration 20, number of optimization epochs 1, discount
factor 0.99. All other hyperparameters were unchanged from the CleanRL defaults.

DQN: learning rate 3 · 10−7, target network update interval 10000, learning start iteration 25000,
discount factor 0.99, model update frequency 10, batch size 32, exploration ϵ linearly decaying from
1.0 to 0.05 over the first half of training. All other hyperparameters were unchanged from the
CleanRL defaults.

IQL: learning rate 3 · 10−4, batch size 256, discount factor 0.99, τ = 0.7. All other hyperparameters
were unchanged from the CORL defaults.

C Multi-Word Suggestion Length Normalization

In our multi-word suggestions experiment, we generated multiple LM candidates via beam search.
Since the joint likelihood of suggesting two words is always lower than the likelihood of suggesting
just the first, i.e., P (second word | first word) × P (first word) < P (first word), we normalized the
joint probability of each 2-word suggestion by taking the square root to counteract this effect,
similar to Murray & Chiang (2018). We note that in the multi-word suggestions experiment, we
considered both 1-word and 2-word suggestions, not just the 2-word ones. Hence, for all suggetions,
we universally replace the raw probability from the LM, denoted as P , by the normalized probability,
denoted as P ′. Concretely, the normalized probability P ′ for a general m-word suggestion w1:m after
the entered partial sentence wprev is

P ′(w1:m | wprev) =
(

m∏

i=1
P (wi | w1:i−1, wprev)

) 1
m

.

3https://huggingface.co/distilbert/distilbert-base-uncased
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Here, wi refers to the ith word. We can see that when m = 1, we simply have P ′(w1 | wprev) =
P (w1 | wprev), and hence no length normalization is applied.

Here is a real example from our LM in the multi-word suggestions experiment. For the context
finally, we have a third val, the LM generated three candidate completions: entine’s day,
ue, and entine’s. After length normalization, the normalized probabilities were {entine’s day:
33%, ue: 32%, entine’s: 17%}. This would be impossible without length normalization, as the
joint probability of entine’s day could never exceed the probability of entine’s, but it is clear
that entine’s day is a better completion for the stated context.

D Why Does Incorporating 2-Word Suggestions Harm the Oracle?

In our initial experiments, we were surprised to find that incorporating 2-word suggestions harms
the performance of even the oracle agent. Recall that the oracle agent has privileged access to the
target sentence the user is trying to write, and therefore will never make a wrong suggestion that
gets ignored by the user. Upon probing further, we discovered that this is due to several situations
where 2-word candidates take up the slot of the correct 1-word candidate, preventing it from being
one of the k candidates seen by the agent. Here, we provide a real example from our experiments.

Recall that our 2-word suggestions experiment used k = 5, i.e., the agent picks from the top-5
candidate completions from the LM with the highest probabilities (together with wait). For the
context i am gr, where the user’s target sentence is i am great, how are you?, the five candidate
completions from our LM, in order of descending probability, are: ateful, ateful for, ateful to,
eat for, and eat with. None of these matches the remaining target sentence, so the oracle agent
does not surface any suggestion to the user, and instead chooses to wait with a reward of 0. However,
the LM’s sixth completion turned out to be eat, which matches the remaining target sentence.
Hence, if we were still in the 1-word suggestion scenario, the unmatched 2-word suggestions (ateful
for, ateful to, eat for, and eat with) would not be present, and the oracle agent would have
received eat as one of its k = 5 options. The oracle then would have surfaced this suggestion to the
user and received positive reward.

E Cognitive Load User Study - Extended Results
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Figure 6: Detailed results of the cognitive load user study based on N = 9 subjects. The top
row shows the average and 95% confidence intervals, while the bottom row shows all the actual
datapoints. The three columns from left to right represent the average cognitive load across: 1) all
suggestions, 2) correct suggestions only, and 3) incorrect suggestions only.
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Figure 7: User acceptance rate as a function of the total number of past a) suggestions (blue) and b)
incorrect suggestions (orange). The data did not show any evidence of declined suggestion acceptance
rate based on the cumulative number of past suggestions, or the cumulative number of past incorrect
suggestion. Therefore, we did not find evidence for the accumulated fatigue hypothesis. Error bars
depict 95% confidence interval.
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Abstract

Epistemic uncertainty, which stems from what a learning algorithm does not know,
is the natural signal for exploration. Capturing and exploiting epistemic uncer-
tainty for efficient exploration is conceptually straightforward for model-based meth-
ods. However, it is computationally ruinous, prompting a search for model-free ap-
proaches. One of the most seminal and venerable such is Bayesian Q-learning, which
maintains and updates an approximation to the distribution of the long run returns
associated with state-action pairs. However, this approximation can be rather se-
vere. Recent work on distributional reinforcement learning (DRL) provides many
powerful methods for modelling return distributions, which offer the prospect of
improving upon Bayesian Q-learning’s parametric scheme, but have not been fully
investigated for their exploratory potential. Here, we examine the characteristics
of a number of DRL algorithms in the context of exploration and propose a novel
Bayesian analogue of the categorical temporal-difference algorithm. We show that
this works well, converging appropriately to a close approximation to the true return
distribution.

1 Introduction

Efficient exploration remains a challenging problem in reinforcement learning (RL). Optimal solu-
tions to the explore-exploit trade-off involve planning in continuous belief spaces (Kaelbling et al.,
1998) whereby the long-run costs and benefits of acquiring information are calculated and balanced
off against exploitation of the current knowledge. Belief states correspond to full probability distri-
butions which characterise the epistemic state of knowledge of a learning algorithm, indicating what
it knows it knows and what it knows it does not know. The incentive for exploration thus naturally
arises from the resulting opportunity for learning that there might be a better alternative.

However, computing this incentive is notoriously challenging (Gittins, 1979; Deisenroth et al., 2009;
Silver & Veness, 2010; Guez et al., 2012). Heuristic approaches typically collapse such distributional
information onto single statistics, such as constraints on action values associated with the popular
upper confidence bound policy (Auer, 2002). However, representing epistemic uncertainty with a
full distribution, rather than a single statistic, allows exploration to be directed to the precise task
of reward-efficient policy improvement. That is, one can calculate the value of perfect information
(Howard, 1966) that one expects to gain through exploring a given action, and balance this against
the expected cost of doing so. This provides an (admittedly myopic) guarantee that exploration is

961



RLJ | RLC 2024

directed towards improving the subsequent behaviour of the algorithm, and can thus be employed
when appropriate.

Along these lines, Dearden et al. (1998) proposed the seminal Bayesian Q-learning (BQL) algorithm
which maintains a full (albeit approximate) belief distribution over the possible long-run expected
values of actions. BQL makes a number of strong assumptions, including that the return distribution
is Gaussian; however, it performs very well, with highly sample-efficient exploration informed by a
rich representation of subjective uncertainty.

Distributional RL (Bellemare et al., 2023) offers a formal framework for learning the whole distribu-
tion over returns. In this work, however, the uncertainty in the return is of the objective rather than
subjective kind: it comes from the aleatoric nature of the environment, and is therefore irreducible.
Here, we examine both the merits and perils of maintaining and using such distributional repre-
sentations for exploration. We derive a novel Bayesian distributional RL algorithm which explicitly
models its subjective uncertainty and, as a result, exhibits stable learning and efficient exploration.

2 Background

2.1 Setting

We consider the setting in which an agent interacts with an environment modelled as a Markov
decision process (MDP). An MDP is defined as a tuple ⟨S,A, P,R, γ⟩ where S is the state space,
A is the action space, R : S × A → R is a stochastic reward function, T : S × A × S → [0, 1] is
a stochastic transition kernel, and γ ∈ [0, 1) is the discount factor. The agent is equipped with a
policy π : S ×A → [0, 1] which, for any given state, outputs a probability distribution over actions.

The random return Zs,a
1 is defined as the discounted cumulative reward collected by the agent

conditioned on starting in state s and executing action a, that is Zs,a =
∑∞
t=0 γ

tRt | S0 = s,A0 = a.
The value of a given policy π is given by the state-action value function Qπ : S ×A → R, defined as
the expected return accrued when choosing action a in state s and following π thereafter, Qπ(s, a) =
E[Zs,a].

One main goal of an RL agent is to learn an optimal policy which maximises the expected return for
all state-action pairs, that is π∗ = argmaxπ E[Zs,a] ∀ (s, a) ∈ S ×A. The state-action value function
for such an optimal policy is denoted by Qπ∗ . The main difficulty lies in the agent not knowing R
and T , as well as having a limited interaction with the environment. Throughout this paper, we
focus on model-free algorithms which learn the Q-values without learning R and T .

2.2 Exploration

The strategy that the agent uses to select actions is critical for its performance, since an appropriate
amount of initial exploration is necessary to learn a good policy. Directed exploration is typically
achieved by selecting actions based on their current value estimates with an additional exploration
bonus. For instance, upper confidence bound (Auer, 2002) is a popular count-based heuristic which
estimates an upper bound on the action values given the number of sampled experiences.

On the other hand, if one had access to the full probability distribution over action values, p(Q),
one could calculate a more informative exploration bonus. Here, we consider an exploration bonus
based on the value of perfect information (Howard, 1966; Dearden et al., 1998).

2.3 Value of Perfect Information

The utility of exploration can be formalised with the notion of value of perfect information (VPI)
which quantifies how much more reward one expects to accrue if one were to change one’s policy in
the light of learning the true value, q∗(a), associated with the outcome of an action. The gain from

1We use notation consistent with the distributional RL literature.
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learning the true value is defined as:

Gains,a(q∗(a)) =





E[Q(s, a2)]− q∗(a) if a = a1 and q∗(a) < E[Q(s, a2)]
q∗(a)− E[Q(s, a1)] if a ̸= a1 and q∗(a) > E[Q(s, a1)]
0 otherwise

(2.1)

where a1 is the action currently estimated to be best, and a2 is the action currently estimated to be
second-best. Of course, the agent has to calculate the gain (2.1) before finding out the true value
q∗(a); it does this by calculating the expected gain under its current belief. The value of perfect
information is thus V PI(s, a) =

∫∞
−∞ Gains,a(x)p(Q(s, a) = x)dx. The myopic VPI exploratory

policy at state s is therefore to select an action as a = argmaxb [E[Q(s, b)] + V PI(s, b)].

2.4 Bayesian Q-learning

Dearden et al. (1998) proposed a Bayesian variant of Q-learning (Watkins & Dayan, 1992) which
maintains uncertainty about the return distribution associated with taking an action at a state.
Bayesian Q-learning (BQL) assumes that the return has a Gaussian distribution with an unknown
mean and precision; that is, Zs,a ∼ N (µs,a, τ−1

s,a ). The bivariate normal-gamma distribution is a
conjugate prior for the Gaussian likelihood implied by this assumption, and therefore BQL models
its prior belief as p(µs,a, τs,a) = NG(µs,a, αs,a, βs,a, λs,a). We can see that µs,a = E[Zs,a] = Q(s, a),
and therefore the marginal distribution p(µs,a) corresponds to epistemic uncertainty about action
values. The choice of representation makes it possible to derive VPI for BQL in closed form.2

BQL updates its prior belief with every experience, ⟨s, a, r, s′⟩, sampled from the environment. Notice
that the belief specifies a distribution over the full return, whereas in an online setting the agent only
has access to local rewards and its belief at the next state. Dearden et al. (1998) define the mixture
posterior pmix(µs,a, τs,a) =

∫∞
−∞ p(µs,a, τs,a | r + γx)p(Zs′,a′ = x)dx, where a′ = argmaxb E[Qs′,b].

Since the mixture posterior is not a member of the normal-gamma family, it is approximated by
a projection which corresponds to the closest normal-gamma distribution in Kullback-Leibler (KL)
divergence. Projections are, of course, a common thread in distributional RL.

2.5 Distributional reinforcement learning

Instead of learning the expected return, distributional RL algorithms (Bellemare et al., 2023) also
attempt to learn the entire distribution of the random return, which we denote by η(s, a) = D(Zs,a).
Various algorithms have been proposed, which differ most in the way they represent the return
distribution. In this paper, we focus on the categorical (Bellemare et al., 2017) and quantile rep-
resentations (Dabney et al., 2018). Put crudely, regular distributional RL maintains and updates
parameters associated with these representations. Our form of Bayesian distributional RL maintains
and updates simple distributions over these parameters, and thereby captures epistemic uncertainty.
Through appropriate learning, the uncertainty about these parameters vanishes, leaving certain
knowledge of the return distributions.

2.5.1 Categorical representation

The categorical representation for each state-action pair (s, a) consists of a finite set of
M regularly-spaced locations (or atoms) and the probabilities associated with each location:
{(θs,a1 , ps,a1 ), ..., (θs,aM , ps,aM )}.3 The return distribution is then a weighted mixture of Dirac deltas at
the represented locations, written as η(s, a) =

∑M
m=1 p

s,a
m δθs,am where 0 ≤ ps,am ≤ 1 and

∑M
m=1 p

s,a
m = 1.

The true return, however, need not be categorical. This requires an additional projection step to
find the closest approximation within the representational class to the required return distribution.

2Note that our result, with derivations appearing in Appendix A, and consistent with extensive simulations, slightly
differs from that reported by Dearden et al. (1998).

3The superscripts will occasionally be omitted for brevity.
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For a probability atom at g, the categorical projection operator, ΠC , is defined as

ΠC(δg) =





δθ1 if g ≤ θ1
θm+1−g
θm+1−θm δθm + g−θm

θm+1−θm δθm+1 if θm < g < θm+1

δθM if g ≥ θM
(2.2)

In response to the sample experience ⟨s, a, r, s′⟩, the categorical Q-learning (CatQL) algorithm up-
dates its return distribution estimate as:

η(s, a)← η(s, a) + α

[
M∑

m=1
ps,am ΠC

(
δ
r+γθs′,a′

m

)
− η(s, a)

]

where a′ = argmaxb E[Zs′,b] and α ∈ [0, 1] is a learning rate parameter.

2.5.2 Quantile representation

The quantile representation consists of a finite set of M evenly spaced quantile levels, τm = 2m−1
2M ,

and the corresponding quantiles: {(θs,a1 , τs,a1 ), ..., (θs,aM , τs,aM )}. In general, the τ th ∈ (0, 1) quantile of
a random variable Z is defined as inf{z ∈ R : FZ(z) ≥ τ} where FZ is the distribution function of Z.
Moreover, with the uniform spacing of quantile levels, the return distribution is a uniform mixture
of quantiles, written as η(s, a) = 1

M

∑M
m=1 δθs,am .

An equivalent of CatQL can be derived for the quantile representation, which we abbreviate as
QQL. We use the quantile projection introduced by Dabney et al. (2018), which finds a quantile
representation which minimises the 1-Wasserstein distance to an arbitrary return distribution.

3 Bayesian Categorical Q-learning

In this section we present our algorithm, Bayesian Categorical Q-learning (BCQL), which extends
the idea of maintaining epistemic uncertainty whilst learning a return distribution using a more
flexible, categorical return representation.

3.1 Dirichlet prior for the categorical return

BCQL uses the categorical return representation described in 2.5.1. That is, the support locations
{θs,a1 , ..., θs,aM } are fixed and the problem is to learn the associated return probabilities {ps,a1 , ..., ps,aM }.
Given the categorical representation, a Dirichlet distribution over the return probabilities is a natural
choice for capturing epistemic uncertainty about the return distribution. Thus, BCQL’s prior belief
state for each state-action pair is p(ps,a1 , ..., ps,aM ) = Dir(αs,a1 , ..., αs,aM ). Together with the fixed
locations, we write BCQL’s representation as {(θs,a1 , αs,a1 ), ..., (θs,aM , αs,aM )}.

3.2 Epistemic uncertainty in the expected return

The prior belief of BCQL corresponds to uncertainty over the return probabilities, which in turn im-
plies epistemic uncertainty in the expected return. Unfortunately, there is no closed-form expression
for the distribution of the expected return. In practice, we approximate it with a Gaussian centred at
the expected return,

∑M
m=1 θmE[Pm], and whose variance is given by

∑M
m=1

∑M
n=1 θmθnCov(Pm, Pn).

Note that although BCQL approximates its epistemic uncertainty with a Gaussian distribution, its
underlying return representation is more flexible than BQL (Dearden et al., 1998), allowing it to
learn a better approximation to the true return distribution and thus a better approximation of the
epistemic uncertainty. Furthermore, with this approximation, the expression for VPI can be reduced
to closed form.
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Proposition 1. Assuming that the Bayesian Categorical Q-learning algorithm approximates its
epistemic uncertainty as Q(s, a) ∼ N (E[Q(s, a)], V ar[Q(s, a)]), V PI(s, a) is equal to

V PI(s, a) =
{

(E[Q(s, a2)]− E[Q(s, a)])p(Q(s, a) < E[Q(s, a2)]) + c(a2) if a = a1

(E[Q(s, a)]− E[Q(s, a1)])p(Q(s, a) > E[Q(s, a1)]) + c(a1) if a ̸= a1

where c(b) =
√
V ar[Q(s, a)]p(Q(s, a) = E[Q(s, b)]).

In Fig E1 we present simulation results which show that the quality of such an approximation
improves as the number of categories, M , increases.

3.3 Distributional updates

BCQL faces a similar problem to BQL: namely, the prior belief is specified for the full return, but
the agent only ever observes local sample rewards and its own beliefs. We approach it in the same
way as Dearden et al. (1998) by defining a mixture posterior resulting from the possible posterior
distributions under the current belief over the corresponding return realisations. Moreover, because
of the discrete categorical representation, BCQL’s mixture posterior is a sum rather than an integral:

pmix(ps,a1 , ..., ps,aM ) =
M∑

m=1
p
(
ps,a1 , ..., ps,aM | ΠC

(
δ
r+γθs′,a′

m

))
E[p(Zs′,a′ = θs

′,a′
m )] (3.1)

where ΠC is the categorical projection defined in (2.2).

Since the mixture posterior (3.1) does not belong to the Dirichlet family, we find the best Dirichlet
approximation which minimises the KL divergence to the true mixture posterior distribution.
Theorem 1. Let P1, ..., PM be jointly distributed random probabilities with a density measure p.
Then, the parameters of the Dirichlet distribution q(p1, ..., pM ) = Dir(α1, ..., αM ) which minimise
the KL divergence DKL(p||q) are given by:

αm = ψ−1

(
ψ

(
M∑

i=1
αi

)
+ Ep[logPm]

)

where ψ(x) = Γ′(x)
Γ(x) is the digamma function and ψ−1(y) is its inverse.

Two caveats arise which are in essence identical to those in BQL (Dearden et al., 1998). The first
is that Theorem 1 does not give a closed-form solution for the parameters of the approximating
distribution. Minka (2000) derived an iterative procedure for a numerical solution, which we em-
ployed in our simulations. The second is that one has to calculate expectations of logPm with
respect to the mixture posterior pmix, which requires another approximation by instead using the
sufficient statistics of the projected Dirichlet distribution, which take a particularly simple form.
We provide a pseudocode for BCQL’s distributional updates in Algorithm C1, which details all
the necessary approximations involved. Moreover, we demonstrate empirically that BCQL’s belief
state converges appropriately to a close approximation to the true return distribution in a simple
evaluation environment (Fig E2).

4 Results

To compare learning and exploration capacities of the distributional agents, we performed simula-
tions in a modified version of the loop environment (Watkins, 1989; Dearden et al., 1998) shown in
Figure 1. Here, all transitions are deterministic, and what makes this environment challenging for
exploration is that along the left loop, one of the available actions in each state brings the agent
back to the start state with zero reward. This means that insufficient exploration would likely result
in suboptimal policies favouring the right loop even when its expected reward is lower.
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s0

a0, 0s5
a0, 0

s6

a0, 0

s7

a0, 0
s8

a1, a0, rb

a1, 0a1, 0

a1, 0
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a1, a0, 0
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a1, a0, 0
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a1, a0, 0
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a1, a0, ru

Generative model
π µ1 σ1 σ0

rb

rb∼πN (µ1,σ
2
1)+(1−π)N (10−µ1,σ

2
2)

σ3

ru

ru∼N (5,σ3
1)

Meta-prior

Figure 1: Modified loop environment from Watkins (1989). The starting state is s0. In the right
loop, both actions a0 and a1 in each state deterministically transition the agent towards the starting
state. In the left loop, the transitions are also deterministic but the two actions in each state can
either progress the agent further along the loop (a0) or bring it back to the start state (a1). The
reward for each action is 0 except for the actions from states s4 and s8. For the former, ru is
sampled from a unimodal Gaussian and for the latter rb is sampled from a bimodal Gaussian. The
generative model of the environment is shown to the right of the transition structure. The prior
was π ∼ Beta(1, 1), µ1 ∼ Uniform([0, 10]), σi ∼ Gamma(3) for i = 1, ..., 3. In addition, we show
the meta-prior for the optimal return distribution in this environment, accounting for the possible
realisations of the generative model.

We introduced a number of modifications to this environment to make it even more challenging, and
to take full advantage of the representational capacity of distributional agents. First, the reward
at the end of the left loop followed a bimodal Gaussian distribution, and the reward at the end of
the right loop had a unimodal Gaussian distribution (Fig 1). Second, we noticed that the agents
could cheat by choosing high learning rates in the cases where the expected reward from the bimodal
loop was lower and effectively collapsing their distributional estimates at occasional samples from
the lower mode. To avoid this, we specified a prior distribution over the parameters of the two
reward functions which included their means, variances, and mixing coefficient for the bimodal
reward function (Fig 1). This resulted in environment samples for which such a collapse would have
been catastrophic, and thus enforced more gradual learning. The free parameters of all agents were
optimised on environments sampled from this distribution, and the performance was subsequently
evaluated on unseen environment samples from the same distribution.

The prior return distributions for all agents were initialised to the average true optimal return dis-
tribution under the specified prior over the environments (which we refer to as the ’meta-prior’; Fig
1). This was done to reduce the number of free parameters to optimise, as well as to make a fair
comparison of the learning process and eliminate confounds associated with lucky prior initialisa-
tions.

We report a number of performance measures in Fig 2. These include reward-based measures, such
as i) discounted reward-to-go until the end of the run, calculated for each trial t as

∑T
i=t γ

i−tri where
T = 4000 (Fig 2A); and ii) total reward collected in the first 2000 and second 2000 trials (Fig 2C).
Because of the high variance of reward distributions in the sampled environments, these reward-
based measures were also highly variable (Fig 2A,C). Thus, we additionally report a performance
measure based on the fraction of trials in which the agents executed the optimal sequence of actions
from the start state (Fig 2B,D). According to this measure, BCQL and CatQL agents scored highest
in their ability to discover optimal paths (Fig 2B,D).
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A B

C
1st phase 2nd phase

Agent Mean Std Mean Std
QQL 2090.4 738.8 2353.5 532.3
BQL 2178.0 432.9 2212.0 446.2

CatQL 2276.8 591.4 2360.1 507.1
BCQL 2093.5 735.4 2377.9 512.5

D
Proportion

Agent Mean Std
QQL 0.80 0.25
BQL 0.74 0.41

CatQL 0.93 0.11
BCQL 0.84 0.20

Figure 2: Exploration performance. A) Discounted reward-to-go for each agent averaged over 40
simulations. Each agent was simulated in the same 40 environment samples. The shaded areas
show standard error of the mean. B) Proportion of optimal episodes executed by each agent. The
individual dots show the total fraction of times an agent executed the optimal trajectory from the
start state in that environment sample. The height of the bar indicates the average fraction over
the same 40 simulations. C) Total reward collected by each agent in the first and second 2000 trials,
averaged over the same 40 simulations. D) Summary of C).

The performance of CatQL and BCQL did not differ substantially, most likely because our modified
loop environment was insufficiently challenging. To gain a deeper insight into the learning processes,
we examined the underlying learning by simulating all agents on the same stream of experience in
the same environment sample (Fig 3). This revealed some of the pathological modes of learning in
the non-Bayesian distributional algorithms which we had expected would affect their performance
(Fig 3). First, due to the non-adaptive nature of their learning rates, we observed large fluctuations
in the distributional estimates in response to sample experiences (Fig 3A). This concerned both the
estimated mean (Fig 3A; left), VPI (Fig 3B), and variance of the expected return distribution (Fig
3; right). BCQL and BQL did not suffer from such fluctuations since, being Bayesian algorithms,
they are able to adapt their learning rates optimally.

Second, the non-Bayesian distributional algorithms consistently overestimated VPI (Fig 3A; middle)
because of the irreducible aleatoric uncertainty in the return distribution (Fig 3B,C). By contrast,
BCQL and BQL correctly calculated VPI based on their epistemic uncertainty which reduced with
experience, as reflected in the vanishing values of VPI (Fig 3A; middle).

Lastly, BQL learnt the worst approximation to the true return distribution (Fig 3B,C) because
of its assumption that the return had a Gaussian distribution, whereas it was actually bimodal
(Fig 3C; bottom). On the other hand, BCQL correctly learnt the bimodal structure of the return
distribution (Fig 3B,C), with the learning being most stable across all the other algorithms. All of
these observations are even more apparent when one considers the immediately rewarding action in
state s8 (Fig E3).
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A

B C

Figure 3: Learning distributional representations. A) Left: expected Q-values at the start state
s0 for the optimal action a0 as estimated by each agent. The black dotted line denotes the true
optimal Q-value. Middle: Value of perfect information for the same action. Notice how VPI for the
Bayesian agents drops to nearly zero, whereas for the other agents it keeps fluctuating at relatively
high values. Right: variance of the estimated expected return distribution. B) Final distributions
learnt by the agents for the same action at the end of the run. The solid black lines for the
BCQL agent indicate standard deviation (i.e., epistemic uncertainty) for each return category. C)
Top: Wasserstein distance between the estimated expected return distribution and the true return
distribution (bottom) over the course of learning.

5 Discussion

We present a novel Bayesian distributional RL algorithm, Bayesian Categorical Q-learning. BCQL
improves on the seminal Bayesian Q-learning algorithm (Dearden et al., 1998) by relaxing the as-
sumption that the return distribution is Gaussian. This is indeed often violated. Instead, BCQL
represents the return distribution using a more flexible, categorical representation, which allows it
to learn a better approximation to the true return distribution. Moreover, BCQL is significantly
faster than BQL because its return representation assumes discrete support which replaces expensive
numerical integration with finite sums.

The main difference between our Bayesian approach and regular distributional RL (Bellemare et al.,
2023) is the notion of subjective, or epistemic, uncertainty, captured by the prior belief about the
return distribution. BCQL models its epistemic uncertainty using a Dirichlet prior over return prob-
abilities, which it updates incrementally with every experience by approximating optimal Bayesian
updates. This uncertainty is exactly what model-free algorithms should exploit to arrange for effi-
cient exploration, insofar as it provides rich signals for learning opportunities.

We used a challenging exploration task to compare the exploration abilities of BCQL and BQL to
two regular distributional RL algorithms which used categorical and quantile return representations.
The Bayesian agents were significantly more competent learners, manifested in their ability to adapt
their learning rates optimally as a function of their uncertainty about the learnt distributions. As
a result, the learning of distributional representations was smoother and more stable. One could
equally imagine a decaying learning rate schedule for the regular distributional RL algorithms, which
is in fact needed for convergence; however, such a schedule would need to be heuristically fine-tuned
to each environment.
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Prior work has suggested the use of distributional information for exploration (Tang & Agrawal,
2018; Mavrin et al., 2019), albeit without exploiting the full richness of learnt distributions and still
relying on count-based heuristics. Here, we operationalised exploration by means of value of perfect
information (Howard, 1966; Dearden et al., 1998). We showed that the Bayesian agents correctly
calculated VPI. This allowed them to learn efficiently up to the point when all subjective uncertainty
was reduced to certainty, yielding policies which could be efficiently exploited. By contrast, regular
distributional RL algorithms overestimated VPI because of the objective, irreducible uncertainty in
their learnt distributional representations. Thus the resulting policies tended to favour exploration
that continued even after the optimal paths had been discovered.

The myopic nature of VPI means that it does not explicitly account for the statistical interactions be-
tween the whole collection of state-action pairs. However, the propagation of subjective uncertainty
via experience and learning does implicitly capture at least a part of this dependency structure.
Extending our methods to DYNA-like architectures (Sutton, 1991) could be a powerful means of
arranging for efficient presbyopic exploration.

Distributional RL has uncovered powerful algorithms for learning rich representations of uncertainty
useful in a wide array of applications including, for instance, risk-sensitive control (Gagne & Dayan,
2021; Shen & Dayan, 2024). Combined with general function approximators, these have furthermore
shown substantial performance gains on challenging control tasks relative to classic RL methods (Lyle
et al., 2019). In this work, we have examined the use of distributional information for exploration,
and argued that capturing a different source of uncertainty, which is subjective in nature, is critical
for efficient and stable learning.
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A Derivations

In this Appendix, we provide some useful derivations which will be used in supplying proofs. More-
over, we show how VPI was calculated for the non-Bayesian agents by expressing it in terms of
their representations (since the non-Bayesian agents incorrectly used the objective uncertainty in
the return distribution).

A.1 VPI

We first repeat the definition of the Value of Perfect Information. The gain from learning the true
value is defined as:

Gains,a(q∗(a)) =





E[Q(s, a2)]− q∗(a) if a = a1 and q∗(a) < E[Q(s, a2)]
q∗(a)− E[Q(s, a1)] if a ̸= a1 and q∗(a) > E[Q(s, a1)]
0 otherwise

where a1 is the action currently estimated to be best, and a2 is the action currently estimated to be
second-best. The value of perfect information is thus V PI(s, a) =

∫∞
−∞ Gains,a(x)p(Q(s, a) = x)dx

which can be written out for each case individually:

V PI(s, a) =
{
E[Q(s, a2)]p(Q(s, a) < E[Q(s, a2)])−

∫ E[Q(s,a2)]
−∞ xp(Q(s, a) = x)dx if a = a1∫∞

E[Q(s,a1)] xp(Q(s, a) = x)dx− E[Q(s, a1)]p(Q(s, a) > E[Q(s, a1)]) if a ̸= a1
(A.1)
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A.2 VPI for the Quantile representation

Consider the case that a = a1. We can re-write the integral which appears in the definition of VPI
by using the following fact:
∫ E[Q(s,a2)]

−∞
p(Q(s, a) < x)dx = [xp(Q(s, a) < x)]E[Q(s,a2)]

−∞ −
∫ E[Q(s,a2)]

−∞
xp(Q(s, a) = x)dx

= E[Q(s, a2)]p(Q(s, a) < E[Q(s, a2)])−
∫ E[Q(s,a2)]

−∞
xp(Q(s, a) = x)dx

And therefore we get:
∫ E[Q(s,a2)]

−∞
xp(Q(s, a) = x)dx = E[Q(s, a2)]p(Q(s, a) < E[Q(s, a2)])−

∫ E[Q(s,a2)]

−∞
p(Q(s, a) < x)dx

Plugging this into the expression for VPI we obtain:

V PI(s, a) =
∫ E[Q(s,a2)]

−∞
p(Q(s, a) < x)dx

The calculations for the case when a ̸= a1 are similar. Overall, we can express VPI as:

V PI(s, a) =
{∫ E[Q(s,a2)]

−∞ p(Q(s, a) < x)dx if a = a1∫∞
E[Q(s,a1)] p(Q(s, a) > x)dx if a ̸= a1

We use this expression to approximate VPI for the QQL agent numerically, since it learns the inverse
of the distribution function.

A.3 VPI for the Categorical representation

Since the categorical representation has a discrete support, VPI for the CQL agent was calculated
as:

V PI(s, a) =
M∑

m=1
Gains,a(θm(s, a))pm(s, a)

A.4 VPI for Bayesian Q-learning

Lemma 3.2 from Dearden et al. (1998) establishes that, if p(µ, τ) = NG(µ0, λ, α, β), then the
marginal density of µ is:

p(µ) =
√

λ

2πβ
αΓ(α+ 1

2 )
Γ(α)

(
β + 1

2λ(µ− µ0)2
)−(α+ 1

2 )

and the marginal distribution of µ is:

p(µ < x) = T ((x− µ0)

√
λα

β
: 2α)

where T (x : d) is the cumulative t-distribution with d degrees of freedom:

T (x : d) =
Γ
(
d+1

2
)

Γ
(
d
2
)√

dπ

∫ x

−∞

(
1 + y2

d

)− d+1
2

dy

We consider the case when a = a1 and focus on the integral in (A.1). By plugging in the marginal
density, we can write:
∫ E[Q(s,a2)]

−∞
xp(Q(s, a) = x)dx =

√
λ

2πβ
αΓ(α+ 1

2 )
Γ(α)

∫ E[Q(s,a2)]

−∞
x

(
β + 1

2λ(x− E[Q(s, a)])2
)−(α+ 1

2 )
dx
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Next, we make the substitution u(x) = (x− E[Q(s, a)])
√

λα
β , which leads to:

∫ E[Q(s,a2)]

−∞
xp(Q(s, a) = x)dx =

√
λ

2πβ
αΓ(α+ 1

2 )
Γ(α)

∫ u(E[Q(s,a2)])

−∞
u

(
β + 1

2λ
(
u2β

λα

))−(α+ 1
2 )√

β

λα
du

=
Γ(α+ 1

2 )
Γ(α)

√
2πα

∫ u(E[Q(s,a2)])

−∞

(
u

√
β

λα
+ E[Q(s, a)]

)(
1 + u2

2α

)−(α+ 1
2 )

du

=
Γ(α+ 1

2 )
Γ(α)

√
2πα

∫ u(E[Q(s,a2)])

−∞
u

√
β

λα

(
1 + u2

2α

)−(α+ 1
2 )

du

+ E[Q(s, a)]
Γ(α+ 1

2 )
Γ(α)

√
2πα

∫ u(E[Q(s,a2)])

−∞

(
1 + u2

2α

)−(α+ 1
2 )

du

In the last line we recognise the distribution function p(Q(s, a) < E[Q(s, a2)]). As for the other
integral, we again solve it by substitution, this time using h(u) = 1 + u2

2α :

Γ(α+ 1
2 )
√
β

Γ(α)α
√

2πλ

∫ u(E[Q(s,a2)])

−∞
u

(
1 + u2

2α

)−(α+ 1
2 )

du =
Γ(α+ 1

2 )
√
β

Γ(α)α
√

2πλ

∫ h(u(E[Q(s,a2)]))

−∞
αh−(α+ 1

2 )dh

=
Γ(α+ 1

2 )
√
β

Γ(α)α
√

2πλ

[
αh

1
2 −α

1
2 − α

]h(u(E[Q(s,a2)]))

−∞

= − Γ(α+ 1
2 )
√
β

(α− 1
2 )Γ(α)

√
2πλ

[(
1 + u2

2α

) 1
2 −α]u(E[Q(s,a2)])

−∞

= − Γ(α+ 1
2 )
√
β

(α− 1
2 )Γ(α)

√
2πλ

(
1 +

(E[Q(s, a2)]− E[Q(s, a)])2 λα
β

2α

) 1
2 −α

= − Γ(α+ 1
2 )
√
β

(α− 1
2 )Γ(α)

√
2πλ

(
1 + (E[Q(s, a2)]− E[Q(s, a)])2λ

2β

) 1
2 −α

Performing similar algebraic manipulations for the case when a ̸= a1 gives the following final ex-
pression for VPI:

EV PI(s, a) =
{

(E[Q(s, a2)]− E[Q(s, a)])p(Q(s, a) < E[Q(s, a2)]) + c(a2) if a = a1

(E[Q(s, a)]− E[Q(s, a1)])p(Q(s, a) > E[Q(s, a1)]) + c(a1) if a ̸= a1

where

c(b) =
Γ(α+ 1

2 )
√
β

(α− 1
2 )Γ(α)Γ( 1

2 )
√

2λ

(
1 + (E[Q(s, b)]− E[Q(s, a)])2λ

2β

) 1
2 −α

B Proofs

Proposition 1. Assuming that the Bayesian Categorical Q-learning algorithm approximates its
epistemic uncertainty as Q(s, a) ∼ N (E[Q(s, a)], V ar[Q(s, a)]), V PI(s, a) is equal to

V PI(s, a) =
{

(E[Q(s, a2)]− E[Q(s, a)])p(Q(s, a) < E[Q(s, a2)]) + c(a2) if a = a1

(E[Q(s, a)]− E[Q(s, a1)])p(Q(s, a) > E[Q(s, a1)]) + c(a1) if a ̸= a1
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where c(b) =
√
V ar[Q(s, a)]p(Q(s, a) = E[Q(s, b)]).

Proof of Proposition 1. Consider the case where a = a1 in (A.1) and focus on the integral. To
ease the notation, let µs,a = E[Q(s, a)] and σ2

s,a = V ar[Q(s, a)] where the subscripts index a state
and an action. Assuming the Gaussian approximation, the random expected return is Q(s, a) ∼
N (µs,a, σ2

s,a). We can re-write it as the following transformation:

Q(s, a) = σs,aZ + µs,a

where Z is the standard normal variable with cdf Φ(z) and pdf ϕ(z). Furthermore, by letting
t = µs,a2 −µs,a

σs,a
, we can write the distribution of the random expected return Q(s, a) in terms of the

distribution of Z:
p(Q(s, a) ≤ µs,a2) = p(Z ≤ t) = Φ(t)

Now consider the following conditional expectation:

E[Q(s, a) | Q(s, a) ≤ µs,a2 ] =E[σs,aZ | Z ≤ t] + E[µs,a | Z ≤ t]

=
σs,a

∫ t
−∞ zϕ(z)dz + µs,a

∫ t
−∞ ϕ(z)dz

Φ(t)

=
−σs,a

∫ t
−∞ ϕ′(z)dz + µs,aΦ(t)

Φ(t)

=µs,a − σs,a
ϕ(t)
Φ(t)

where the first equality is due to the linearity of conditional expectations, and in the third line we
used the fact that ϕ(z) = −zϕ′(z). We can now write out the original integral using this expression
for the conditional expectation:

∫ E[Q(s,a2)]

−∞
xp(Q(s, a) = x)dx =E[Q(s, a) | Q(s, a) ≤ µs,a2 ]p(Q(s, a) ≤ µs,a2)

=
(
µs,a − σs,a

ϕ(t)
Φ(t)

)
Φ(t)

=µs,aΦ(t)− σs,aϕ(t)

which, in terms of our original notation, can be written as
∫ E[Q(s,a2)]

−∞
xp(Q(s, a) = x)dx = E[Q(s, a)]p(Q(s, a) ≤ E[Q(s, a2)])−

√
V ar[Q(s, a)]p(Q(s, a) = E[Q(s, a2)])

The calculations for the case with a ̸= a1 are similar. Finally, this leads to:

V PI(s, a) =
{

(E[Q(s, a2)]− E[Q(s, a)])p(Q(s, a) < E[Q(s, a2)]) + c(a2) if a = a1

(E[Q(s, a)]− E[Q(s, a1)])p(Q(s, a) > E[Q(s, a1)]) + c(a1) if a ̸= a1

where c(y) =
√
V ar[Q(s, a)]p(Q(s, a) = E[Q(s, y)]).

Theorem 1. Let P1, ..., PM be jointly distributed random probabilities with a density measure p.
Then, the parameters of the Dirichlet distribution q(p1, ..., pM ) = Dir(α1, ..., αM ) which minimise
the KL divergence DKL(p||q) are given by:

αm = ψ−1

(
ψ

(
M∑

i=1
αi

)
+ Ep[log pm]

)

where ψ(x) = Γ′(x)
Γ(x) is the digamma function and ψ−1(y) is its inverse.
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Proof of Theorem 1. The Kullback-Leibler (KL) divergence between two distributions p and q is
defined as DKL(p||q) = Ep[log p/q]. To minimise the divergence, we find the parameters of q so
that dDKL(p||q)/dq = 0. Notice further that DKL(p||q) = Ep[log p] − Ep[log q]. The first term
does not depend on q, and so we only need to differentiate Ep[log q]. Moreover, d{Ep[log q]}/dq =
Ep[d{log q}/dq], and so we can first differentiate the log-density and then take the expectation.

The Dirichlet density q(p1, ..., pM ) = Dir(α1, ..., αM ) is defined as:

q(p1, ..., pM ) =
Γ
(∑M

i=1 αi

)

∏M
i=1 Γ (αi)

M∏

i=1
pαi−1
i

The log-density is therefore:

log q(p1, ..., pM ) = log Γ
(

M∑

i=1
αi

)
−

M∑

i=1
log Γ (αi) +

M∑

i=1
(αi − 1) log pi

We can now take the partial derivatives to obtain:

∂ log q(p1, ..., pM )
∂αm

= ∂

∂αm
log Γ

(
M∑

i=1
αi

)
− ∂

∂αm

M∑

i=1
log Γ (αi) + ∂

∂αm

M∑

i=1
(αi − 1) log pi

= ∂

∂αm
log Γ

(
M∑

i=1
αi

)
− ∂

∂αm
log Γ (αm) + log pm

=ψ
(

M∑

i=1
αi

)
− ψ(αm) + log pm

where ψ(x) = d log Γ(x)
dx is the digamma function.

Setting the derivatives to zero and taking the expectation, we get

αm = ψ−1

(
ψ

(
M∑

i=1
αi

)
+ Ep[log pm]

)

as required.

C Pseudocode

The pseudocode for BCQL mixture posterior update appears in Algorithm C1.
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Algorithm C1 Bayesian Categorical Q-learning (BCQL) mixture belief update

Input: Current state s, prior belief state of BCQL {(θs
′,a′

1 , αs
′,a′

1 ), ..., (θs
′,a′

M , αs
′,a′

M )} for each (s′, a′),
discount factor γ, tolerance threshold ϵ

1: procedure BeliefUpdate(s, a, g)
2: if r ≤ θ1 then ▷ If g lies outside of the support
3: αs,a1 ← αs,a1 + 1
4: else if r ≥ θM then
5: αs,aM ← αs,aM + 1
6: else ▷ Dirichlet prior update with ΠC projection
7: i∗ ← argmaxi∈{1,...,M}{θi : θi ≤ g}
8: ζ ← r−θi∗

θi∗+1−θi∗
9: αs,ai∗ ← αs,ai∗ + 1− ζ

10: αs,ai∗+1 ← αs,ai∗+1 + ζ

11: return {αs,am }m=1,...,M

12: procedure MixtureBeliefUpdate(s, a, r, s′)
13: if s′ == goal state then
14: {αs,am }m=1,...,M ← BeliefUpdate(s, a, r)
15: else ▷ Mixture update
16: a′ ← argmaxb E[Q(s′, b)]
17: Ep[logPm]← 0 for each m = 1, ...,M
18: for each i in m = 1, ...,M do
19: for each j in m = 1, ...,M do
20: {αs,am }m=1,...,M ← BeliefUpdate(s, a, r + γθj)
21: Ep[logPi]←

[
ψ(αs,ai )− ψ

(∑M
k=1 α

s,a
k

)]
αs

′,a′

j /
∑M
k=1 α

s′,a′

k

22: δ ← 1
23: αs,am,old ← αs,am for each m = 1, ...,M
24: αs,am,new ← 0 for each m = 1, ...,M
25: while δ ≥ ϵ do
26: for each i in m = 1, ...,M do
27: αs,am,new ← ψ−1

(
ψ
(∑M

k=1 α
s,a
k,old

)
+ Ep[logPm]

)

28: δ ← maxm=1,...,M (|αs,am,new − αs,am,old|)
29: αs,am,old ← αs,am,new for each m = 1, ...,M
30: for each i in m = 1, ...,M do
31: if αs,am,old < 1 then
32: αs,am,new ← 1
33: else
34: αs,am,new ← αs,am,old

35: return {αs,am,new}m=1,...,M

36: a← argmaxb {E[Q(s, b)] + V PI(s, b)}
37: Sample next state s′ and reward r
38: {αs,am }m=1,...,M ←MixtureBeliefUpdate(s, a, r, s′)

The digamma inverse function ψ−1 in line 27 of Algorithm C1 was implemented with Newton’s
method (with a tolerance of 10−5) using its analytical derivative. To spare computation and speed
up convergence, recent evaluations of this inverse were memoized. For values which had not been
memoized, the initial point was chosen as a lower bound on ψ−1 (Batir, 2017). The additional
constraint on the Dirichlet hyperparameters in lines 30-34, namely α ≥ 1, was added to enforce the
maximal uncertainty of the algorithm to correspond to the uniform distribution, and to counteract
the approximation errors of the numerical procedures.
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D Simulation Details

D.1 Parameter optimisation

The prior distributions for all algorithms were initialised as described in D.2. The remaining free
parameters of all algorithms except BQL were optimised using the gp_minimize Bayesian optimi-
sation routine from Python’s scikit-optimize package. For each parameter sample, we ran each
algorithm on 40 random environment samples, and took the average total reward collected as the
maximisation objective.

The learning rates of the regular distributional RL algorithms were restricted to α ∈ (0, 1). For
CatQL and QQL we additionally optimised for the number of atoms and number of quantiles re-
spectively, both of which were limited to the interval [10, 50]. The return support represented by
CatQL was limited to the interval [−5, 15], as described in D.2.

For BCQL, the number of atoms and the return support were limited to the same range as for
CatQL. BCQL had an additional parameter, N ∈ [1, 10], which controlled the initial amount of
epistemic uncertainty about the prior return distribution. This was operationalised by multiplying
the hyperparameters of the Dirichlet prior by this constant number.

BQL’s parameters were optimised by performing grid search. We specified 40 regularly-spaced
variance values for the algorithm’s epistemic uncertainty about the expected return, which ranged
from 0.1 to 10 (this corresponded to the same range of uncertainties as for BCQL). BQL’s prior
is specified by 4 parameters, µs,a, λs,a, αs,a, βs,a, where µs,a corresponds to the mean of the return
distribution, which was always initilised to the mean of the meta-prior (D.2). The remaining pa-
rameters, λs,a, αs,a, βs,a, were chosen by solving a minimisation problem such that the variance of
the marginal return distribution, V ar[p(Zs,a)], where p(Zs,a) =

∫
p(Zs,a | µs,a, τs,a)p(µs,a, τs,a)dµdτ

was as close as possible to the variance of the meta-prior. The minimisation was implemented using
the minimize routine from Python’s SciPy package.

The final optimised parameters for all algorithms are reported in Table D1. Due to space constraints,
we only report optimised parameters for BQL for one state-action pair; however, the procedure
described above was applied to all state-action pairs.

Agent Parameter Value
QQL Number of quantiles 23

α 0.57
CatQL Number of atoms 10

α 0.17
BCQL Number of atoms 12

N 1.02
BQL V ar[µs0,a0 ] 6.45

µs0,a0 4.59
λs0,a0 2.95
αs0,a0 1.51
βs0,a0 9.68

Table D1: Optimised parameter values.

The discount factor for all algorithms and in all simulations was set to γ = 0.99. Moreover, the
tolerance threshold for BCQL’s mixture posterior updates was set to ϵ = 10−5.
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D.2 Prior initialisations

The prior distributions of all algorithms were initialised to the ’meta-prior’, which was obtained
by averaging the true optimal return distributions for 1000 environment samples, repeated for each
state-action pair. Each environment sample corresponded to sampling the parameters of the reward
distributions in the loop environment (Fig 1).

The optimal return distribution at each state-action pair was found for each environment sample
using categorical dynamic programming (CDP) (Bellemare et al., 2023). That is, we ran CDP for
each integer number of atoms in the range [10, 50], where the atoms were regularly-spaced on a
grid ranging from −5 to 15 (we empirically verified that this covered most of the support of the
meta-prior; this can be seen in Fig 1). The resulting optimal return distributions were then averaged
across the environment samples (more specifically, we averaged the estimated probabilities for each
atom) and re-normalised to obtain the meta-prior for the optimal return distribution.

The prior for the QQL algorithm was obtained by performing quantile regression over the resulting
categorical meta-prior with 50 atoms (Dabney et al., 2018).

The prior for CatQL was simply set to the meta-prior with the same number of atoms as came out
of the optimisation procedure.

The prior for BCQL was set in the same way as for CatQL, but we additionally divided it by the
smallest probability so that the smallest Dirichlet hyperparameter was equal to 1. However, this
was then multiplied by the fit parameter N as described in D.1.

E Supplementary Figures

Figure E1: Quality of the Gaussian approximation to BCQL’s epistemic uncertainty. The left column
shows BCQL’s prior belief over return distributions for various number of locations (M = 3, 15, 50 top
to bottom), as well as the Dirichlet parameters ({αm}m=1,...,M , which are written on top of the bars).
The individual bars show the expected probabilities and the vertical black lines show 1 standard
deviation above and below the mean (that is, BCQL’s epistemic uncertainty). The second column
shows the empirical probability distribution of the Q-value associated with the return distribution
in the previous column obtained by sampling from the prior over the return distributions and taking
the mean for each sample. The next column shows a Gaussian approximation to this distribution,
which was obtained as described in 3.2. Finally, the last column compares V PI for the action
associated with this prior belief based on the empirical and Gaussian approximations to the true
distribution over the Q-values, as a function of the expected Q-value of an alternative action. As
expected, the Gaussian approximation improves with increasing the number of locations M .
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s0

s1

s2

a0, 0

a0, 0

a0, r

Prior 500 moves 2000 moves

Figure E2: Evaluation of the return distribution by BCQL. The diagram on the left shows the simple
3-state Markov chain in which the agent was simulated. There was a single action a0 available in
each state which occasioned a deterministic transition to the next state. The reward was zero for
executing this action in every state except s2, where it was distributed according to a bimodal
Gaussian distribution, that is r ∼ 0.5N (0, 0.5) + 0.5N (4, 0.5). The plots to the right show the
evolution of BCQL’s belief state over the course of learning in this environment. In each plot,
the height of the bars shows the expected return probabilities for the associated locations. The
vertical black lines show BCQL’s epistemic uncertainty, namely 1 standard deviation around the
mean value. The rows show BCQL’s belief about the return distribution for states s0, s1, s2 (top
to bottom, on the same level as in the chain diagram). We see that after 2000 moves BCQL’s
belief state corresponds to a close approximation to the true return distribution in this environment.
Moreover, its epistemic uncertainty is reduced appropriately with experience, as can be seen from
the variance of the expected return (approximated as described in 3.2).

A

B C

Figure E3: Learning distributional representations at the final state. The layout is the same as in
Fig 3 but here we show learning in state s8. The Wasserstein distance in C) as well as in Fig 3C)
was computed using the available method in SciPy.
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Abstract

Offline reinforcement learning (RL) is a promising direction that allows RL agents
to pre-train on large datasets, avoiding the recurrence of expensive data collection.
To advance the field, it is crucial to generate large-scale datasets. Compositional
RL is particularly appealing for generating such large datasets, since 1) it permits
creating many tasks from few components, 2) the task structure may enable trained
agents to solve new tasks by combining relevant learned components, and 3) the
compositional dimensions provide a notion of task relatedness. This paper provides
four offline RL datasets for simulated robotic manipulation created using the 256
tasks from CompoSuite (Mendez et al., 2022a). Each dataset is collected from an
agent with a different degree of performance, and consists of 256 million transitions.
We provide training and evaluation settings for assessing an agent’s ability to learn
compositional task policies. Our benchmarking experiments show that current offline
RL methods can learn the training tasks to some extent and that compositional
methods outperform non-compositional methods. Yet current methods are unable
to extract the compositional structure to generalize to unseen tasks, highlighting a
need for future research in offline compositional RL.

1 Introduction

Large-scale data has generated much of the success of deep learning. We would expect robot learning
techniques to similarly leverage vast amounts of data to solve multitudes of real-world problems.
However, generating datasets for robotics is expensive and time consuming, even in simulation.
Large-scale data collection is imperative to maximizing the utility of deep learning for robotics.

Much of the efforts in deep learning research for robotics have been devoted to reinforcement
learning (RL). However, online RL methods require the agent to collect data over time, and therefore
each new online RL experiment requires a new round of large-scale data collection. Offline RL
approaches (Lange et al., 2011; Fujimoto et al., 2019) train on a fixed (previously collected) dataset,
potentially permitting to learn high-quality policies without the need to obtain additional data. Once
an agent has been pre-trained on offline data, its model can be fine-tuned to unseen tasks in the real
world with little additional data (Chebotar et al., 2021). Despite these advantages, the offline setting
comes with its own challenges. First, offline RL requires large datasets (Fu et al., 2020) labeled with
reward functions. Image labels, the computer vision counterpart, can easily be crowdsourced, which
has facilitated the creation of large vision datasets; crowdsourcing is not readily applicable to RL

† The two first authors contributed equally to this work.
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⟨IIWA, box, no_obstacle,
pick_and_place⟩

⟨Jaco, hollow_box,
object_door, push⟩

⟨Gen3, plate, goal_wall,
trash_can⟩

⟨Panda, dumbbell,
object_wall, shelf⟩

Figure 1: Examples of four CompoSuite tasks, showing each task’s initial state. Each task is
composed of one element from each of four compositional axes, involving a robot (IIWA, Jaco,
Gen3, or Panda) manipulating an object (box, hollow_box, plate, or dumbbell) while avoiding
an obstacle (no_obstacle, object_door, goal_wall, object_wall) to achieve a specific objective
(pick_and_place, push, trash_can, or shelf). Images from Mendez et al. (2022a).

rewards. Second, offline RL agents are not allowed to explore new states during training, and must
generalize to unseen states at evaluation time. Notably, unlike in supervised settings, RL agents do
not make a single prediction on a new state, but instead the actions they choose lead them to traverse
the state space, moving them increasingly far away from the original training distribution. This leads
to a unique form of distribution shift. These issues are exacerbated by the fact that standard offline
RL evaluations are limited to single-task problems, further restricting the scale of current datasets.

To address these issues, we consider compositional agents and environments. A compositional agent
decomposes complex problems into components, re-composes the components to solve the problems,
and re-uses the acquired knowledge throughout the state space, improving state generalization.
Further, compositional RL agents exhibit sample efficiency improvements in multi-task and lifelong
RL via generalizable components and behaviors that can be combined to solve new tasks (Mendez
et al., 2022b). On the other hand, compositional environments offer re-usability of reward functions
to induce a plethora of training behaviors (Mendez et al., 2022a). They also enable the creation of
numerous tasks with a clear notion of task relatedness along the different compositional dimensions,
which is useful for selective transfer and for analyzing performance.

To facilitate the combined study of offline RL and compositionality, we provide multiple datasets
collected using CompoSuite (Mendez et al., 2022a)—a simulated robotic manipulation benchmark
designed for studying online compositional RL—and experiment scenarios designed to answer questions
related to the interplay of the two fields. Specifically, we contribute the following1:

1. Four datasets of varying performance with trajectories from each of the 256 CompoSuite tasks,
2. Training-test split lists for evaluation to ensure comparability and reproducibility of results, and
3. An evaluation demonstrating the utility of our datasets for offline compositional RL research, and

the (relatively) poor ability of current offline RL techniques to leverage compositional structures.
These results validate both the learnability and difficulty of the datasets using common learning
techniques, and demonstrate the need for improved algorithms for offline compositional RL.

2 Preliminaries

Offline RL Standard online RL solves a Markov decision process M = {S, A, R, P, γ, µ} via direct
interaction with M, where S is the state space, A is the action space, R is the reward function,
P are the transition probabilities, γ is a discount factor, and µ is the distribution over starting
states. In offline RL, the agent does not have access to M for training, but instead receives a dataset
D = {(si, ai, s′

i, ri)}N
i=1 of transition tuples, where s′

i and ri are the state and reward obtained by
executing action ai in state si using an unknown behavioral policy ai ∼ πβ(si) in M. Consequently,
D is a sample from the distribution dπβ (s)πβ(s, a), where dπβ (s) is the marginal state distribution

1Datasets are available at datadryad.org/stash/dataset/doi:10.5061/dryad.9cnp5hqps; train-test split lists and code
for the experiments can be found at github.com/lifelong-ml/offline-compositional-rl-datasets.
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induced by πβ . The goal in offline RL is to find an optimal policy π∗ which maximizes the expected
cumulative return Jπ = E[

∑∞
t=0 γtr(st, at)] in M without interacting with M.

Functional composition in RL Unlike traditional temporal sequencing of skills, functionally
compositional RL considers the composition of functional transformations of the state by a chain
of computations that results in a chosen action (Mendez et al., 2022b). These functional modules
are akin to functions in programming, which consume as inputs the outputs of other functions and
produce inputs to yet other functions. At each timestep, multiple functions are involved in computing
the action to take from the current state; compare this to temporal composition (e.g., in the Options
framework (Sutton et al., 1999b; Bacon et al., 2017)) in which only one module (an option) is active
at each time. A set of RL tasks related via functional composition can be described formally as a
compositional problem graph whose paths represent the transformations required to solve each task.

CompoSuite benchmark for compositional RL CompoSuite (Mendez et al., 2022a) is a recent
simulated robotics benchmark for RL built on top of robosuite (Zhu et al., 2020), designed to study
functional composition in RL. Every CompoSuite task is created by composing elements of four
different axes: a robot manipulator that moves an object to achieve an objective while avoiding
an obstacle. Each axis consists of four elements, for a total of 256 tasks (Figure 1). For a given
objective, the reward function is constant across other axes, making it easy to scale the number of
tasks without the need to craft labeling functions for each individual task.

3 Datasets and experimental setup for offline compositional RL

We elaborate on the specific training setting we consider and structure of the datasets we provide,
and detail several reproducible experiment configurations for analyzing offline compositional RL.
Figure 2 provides an overview of the dataset collection process and its use in training and evaluation.

3.1 Data shape and spaces

Following Fu et al. (2020), we collect one million transitions for each task, totaling 256 million
transitions per dataset. Every transition contains: observation, action, reward, next observation,
timeout indicator, and terminal indicator. Observations are vectors of size 93 containing proprioceptive
robot information such as joint and finger positions and velocities, absolute and relative object,
obstacle, and goal positions, and a multi-hot task indicator to identify the elements of the current task.
The action space is eight-dimensional; the first seven dimensions correspond to target joint angles of
the 7-DoF robots for joint position control, and the last dimension is a gripper action. Tasks use dense
rewards to ensure that every transition has a non-zero reward. Rewards are specific to each objective
and encourage the learning of a policy in stages (e.g., the rewards for pick-and-place encourage first
reaching the object, then grasping the object, lifting the object, and finally approaching the target).
The reward for being in a goal-satisfying state is 1 for all tasks. Episodes time out after 500 timesteps,
and push tasks additionally terminate if the grasped object is lifted from the table.

3.2 Data collection

To collect our datasets, we trained agents using standard online RL methods to obtain the behavioral
policies πβ . For three of the datasets, we trained a single agent via proximal policy optimization
(PPO; Schulman et al., 2017) across all tasks, storing trained policies at various levels of performance
for each task. PPO can be parallelized and offers a fast algorithm to obtain these policies in terms
of wall-clock time. To ensure that the agent would achieve high success rate on all tasks, we used
the compositional neural network architecture of Mendez et al. (2022b). For the fourth dataset, we
trained a separate agent on each task via soft actor critic (SAC; Haarnoja et al., 2018) to simulate a
warmstart scenario in which some data from an RL run is available. Here, we use SAC due to its
sample efficiency. Concretely, we provide the following four datasets.

• Expert dataset: Transitions from an agent trained to achieve 90% success on every task.
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IIWA
Jaco
Gen3
PandaArm

box
hollow_box

plate
dumbbellObject

no_obstacle
object_door
object_wall
goal_wallObstacle

pick_and_place
push

trash_can
shelfTarget

Task Dimensions 256 Tasks RL Agents

Expert (90%) Medium (30%) Warmstart (1%)

CompoSuite

Datasets
Expert Medium Warmstart

Medium-
Replay

post-training during training

Training Settings

sample
trajectories

New Agent

Uniform
Compositional

Restricted Policy

Evaluation

Figure 2: An overview of our dataset creation and training process. Manipulation tasks vary along
four compositional dimensions, as taken from CompoSuite. Trajectories are sampled from pre-trained
PPO agents, forming four different datasets of varying difficulties (Section 3.2). Three different
training settings (Section 3.3) provide different views into these data for training, and evaluation of
the learned policies is performed on the CompoSuite simulator using mujoco.

• Medium dataset: Transitions from an agent trained to achieve 30% success on every task.
• Warmstart dataset: Transitions that were stored during the training of one SAC agent per

task for 1 million steps. The average success rate across all trajectories is in the order of 1%.
• Medium-replay (subsampled) dataset: Transitions that were stored during the training of

an agent up to 30% success. For tasks that required more than one million steps to achieve 30%
success, the one million transitions were obtained by uniformly sampling trajectories.

The different datasets were collected to serve various research purposes. In the real world, expert data
is rarely available. Instead, datasets have varying levels of performance, represented by the expert,
medium, and warmstart datasets. This allows for the construction of training sets containing data
from trajectories of varying success rates and task progress (as discussed in Section 3.3), which both
offers realistic data collection settings and lets researchers experiment with diverse levels of difficulty
of offline RL tasks. We chose to replace the random agents commonly used in the literature (e.g.,
Fu et al., 2020) with warmstart agents trained for a short period to ensure that the data contained
diverse states covering the various stages of each task—because the tasks are long-horizon, a random
policy would only cover a small portion of the state space, since it would never even grasp the object.
Warmstart agents simulate a setting where a researcher can do some online-RL but is limited in time.

In addition, the medium-replay dataset contains data that an online RL agent would see during
training, exhibiting varied levels of proficiency at solving the task. Intuitively, this should be sufficient
to learn good policies via offline RL, yet current approaches struggle in this setting (Fujimoto et al.,
2019; Fu et al., 2020). Note that since our agents require substantially more than one million samples
to converge in many of the tasks, the medium-replay dataset subsamples trajectories observed during
training. Since some trajectories from push tasks might be truncated (due to the termination
condition), we artificially truncate the last subsampled trajectory and place a time-out at the final
position. This might, in rare cases, lead to one incorrect trajectory if the datasets are used for
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explicitly finite horizon RL experimentation. However, the truncation ensures a consistent dataset
size of one million across tasks and compatibility with other standard code implementations.

3.3 Training task lists and multi-task training

We consider multiple training settings to analyze an agent’s ability to functionally decompose a task
and re-use its acquired knowledge. These settings are represented by different samplings of tasks
across the various datasets. To facilitate comparability of results, we provide lists splitting the tasks
into training and zero-shot tasks, analogous to train-test splits in supervised learning problems. Any
of the following sampling techniques can be used with any of the datasets from section 3.2.

Uniform sampling This standard multi-task setting is used to evaluate training performance and
zero-shot generalization. Akin to data splits in supervised learning, the agent trains offline on 224
tasks and is evaluated for generalization to 32 online test tasks without any data for those tasks.

Compositional sampling A more realistic setting should not assume access to data of equal
performance for every task. To simulate this scenario, we split the data into 76 training tasks from
the expert dataset, 148 additional training tasks from one of the other (non-expert) datasets, and 32
zero-shot tasks. The 76 expert tasks contain all 16 CompoSuite components in equal proportions.
This setting acts as a proxy for measuring compositionality in a learning approach; a model that
can successfully decompose its knowledge about successful executions from the expert tasks into the
relevant components should be able to combine this knowledge with the noisier information from
remaining tasks to compositionally generalize to those and the unseen tasks. Note that, if non-expert
tasks are drawn from the warmstart dataset, the combined dataset has similar average success as the
medium dataset but with a substantially different success distribution across tasks.

Restricted sampling Similar to the equivalent setting in online CompoSuite, restricted sampling
constitutes a harder setting to evaluate an agent’s ability to extract compositional information. This
is achieved by restricting the training dataset to be smaller and to contain only a single task for a
specific element. For example, if the selected element is the IIWA arm, then the training set contains
exactly one task which uses an IIWA arm and 55 tasks that use other arms. The training set contains
a total of 56 tasks while the zero-shot set contains the remaining 63 tasks that contain the IIWA arm.

4 Experiments

4.1 Implementation and experiment details

We evaluated various settings from Section 3.3 over three different random seeds controlling the choice
of train-test split list, network parameter initialization, and data sampling within each algorithm—
because our comparisons are over large numbers of tasks, the results have low variance and so three
seeds are sufficient to show general trends. We consider four baselines2: Behavioral Cloning (BC),
Compositional BC (CP-BC), Implicit Q-Learning (IQL; Kostrikov et al., 2022) and Compositional IQL
(CP-IQL), using the d3rlpy implementations (Takuma Seno, 2021) (hyperparameters in Appendix B).
BC imitates the behavioral policy πβ by learning to predict the correct action given a state from
the dataset, and we expect it to perform well given high-performance data. IQL is an offline RL
baseline designed to generalize beyond the training data distribution and is expected to achieve
better performance given non-expert data. These two baselines use standard multilayer perceptrons
(MLP) to encode policies and value functions. The CP versions of the algorithms instead employ a
compositional neural network architecture as described by Mendez et al. (2022b;a) for all networks
(see Appendix D for details). The compositional network architecture consists of hierarchically
stacked modules that correspond to the various elements in CompoSuite. Each module operates in
two stages: the pre-processing stage is an MLP that takes as input the module-specific state (e.g.,
object modules take only the object state as input); the post-processing stage is a second MLP that

2We additionally ran the evaluations using conservative Q-learning (Kumar et al., 2020), but found that it attained
0% success on all settings (including the training tasks with Expert data), so we omit it from our results.
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Table 1: Test and training return and success rates achieved by Behavioral Cloning (BC), Implicit
Q-Learning (IQL), Compositional BC (CP-BC), and Compositional IQL (CP-IQL) on the various
datasets using 224 training tasks and 32 test tasks. All agents achieve decent success and generalize
when given access to expert data (sub-table 1). IQL agents strictly outperform BC on the medium
and replay datasets (sub-tables 2 and 3). When having to extract compositional information from
expert data, the compositional policy yields some benefits over feed-forward networks but is still far
from optimal (sub-table 4). Success rates are shaded from green (100%) to yellow (50%) to red (0%).
All values represent mean ± standard deviation.

Dataset: Expert; Sampling: Uniform
Train Return Test Return Train Success Test Success

Behavioral Cloning 339.05 ±4.26 297.29 ±7.18 0.87 ±0.01 0.73 ±0.02

Implicit Q-Learning 264.97 ±2.16 279.67 ±33.92 0.65 ±0.01 0.68 ±0.07

CP Behavioral Cloning 380.42 ±2.44 354.61 ±11.23 0.97 ±0.01 0.88 ±0.05

CP Implicit Q-Learning 351.62 ±1.98 345.19 ±10.16 0.90 ±0.01 0.86 ±0.03

Dataset: Medium; Sampling: Uniform
Train Return Test Return Train Success Test Success

Behavioral Cloning 190.84 ±8.40 162.93 ±6.11 0.24 ±0.03 0.21 ±0.06

Implicit Q-Learning 176.84 ±11.46 150.66 ±22.31 0.30 ±0.02 0.24 ±0.02

CP Behavioral Cloning 211.10 ±3.27 190.04 ±21.61 0.28 ±0.02 0.22 ±0.08

CP Implicit Q-Learning 223.44 ±4.23 196.98 ±30.63 0.47 ±0.02 0.38 ±0.1

Dataset: Medium-Replay; Sampling: Uniform
Train Return Test Return Train Success Test Success

Behavioral Cloning 102.65 ±4.63 95.04 ±12.00 0.00 ±0.01 0.00 ±0.00

Implicit Q-Learning 138.37 ±1.68 142.35 ±23.51 0.10 ±0.02 0.09 ±0.05

CP Behavioral Cloning 95.31 ±1.04 91.60 ±5.02 0.00 ±0.00 0.00 ±0.00

CP Implicit Q-Learning 102.66 ±10.11 99.08 ±20.67 0.09 ±0.03 0.09 ±0.03

Dataset: Warmstart (+ Expert); Sampling: Compositional
Train Return Test Return Train Success Test Success

Behavioral Cloning 132.54 ±3.45 51.04 ±18.34 0.29 ±0.01 0.07 ±0.06

Implicit Q-Learning 98.64 ±3.13 57.82 ±11.90 0.18 ±0.01 0.07 ±0.03

CP Behavioral Cloning 153.36 ±7.94 89.86 ±10.51 0.35 ±0.01 0.17 ±0.01

CP Implicit Q-Learning 127.75 ±5.97 87.31 ±22.72 0.30 ±0.01 0.18 ±0.10

takes as input the concatenation of the output of the previous module (in the hierarchy) and the
output of the pre-processing stage. Intuitively, encoding the tasks’ inherent compositional structures
into the policies should facilitate transfer to unseen tasks.

We trained each agent simultaneously on a subset of the 256 tasks, and evaluated it on held-out
tasks per the task lists from Section 3.3. All BC and IQL agents were trained for 50,000 and 300,000
update steps respectively using a batch size of #training tasks × 256. Trained agents are evaluated
online using CompoSuite (Mendez et al., 2022a), with the metrics from Appendix C. We report mean
cumulative return and success rate over one evaluation trajectory per task for train and test tasks.
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Table 2: Test and training return and success rates achieved by Behavioral Cloning (BC), Implicit
Q-Learning (IQL) and Compositional BC (CP-BC) and Compositional IQL (CP-IQL) on the expert
datasets in the restricted sampling setting. All agents achieve decent training success. However,
transfer to unseen tasks remains a challenge, especially for non-compositional agents. All values
represent mean ± standard deviation.

Dataset: Expert; Fixed Element: IIWA
Train Return Test Return Train Success Test Success

Behavioral Cloning 371.57 ±10.27 18.54 ±5.54 0.95 ±0.03 0.02 ±0.01

Implicit Q-Learning 273.71 ±17.64 34.85 ±5.25 0.70 ±0.05 0.03 ±0.02

CP Behavioral Cloning 386.30 ± 4.79 77.02 ±40.17 0.98 ±0.02 0.11 ±0.11

CP Implicit Q-Learning 361.49 ± 8.82 127.49 ±25.98 0.95 ±0.02 0.18 ±0.04

Dataset: Expert; Fixed Element: pick_and_place
Train Return Test Return Train Success Test Success

Behavioral Cloning 346.84 ±19.94 41.76 ± 9.27 0.88 ±0.06 0.06 ±0.03

Implicit Q-Learning 262.24 ±13.35 49.82 ±11.46 0.64 ±0.05 0.07 ±0.01

CP Behavioral Cloning 382.70 ±5.03 81.83 ±34.19 0.97 ±0.01 0.13 ±0.07

CP Implicit Q-Learning 368.92 ±7.38 75.18 ±21.34 0.93 ±0.02 0.16 ±0.08

Dataset: Expert; Fixed Element: hollow_box
Train Return Test Return Train Success Test Success

Behavioral Cloning 363.83 ±13.15 45.38 ±25.12 0.92 ±0.03 0.08 ±0.08

Implicit Q-Learning 278.81 ±41.53 63.48 ±13.99 0.69 ±0.12 0.11 ±0.04

CP Behavioral Cloning 383.11 ±0.62 103.27 ± 24.06 0.97 ±0.02 0.25 ±0.05

CP Implicit Q-Learning 377.45 ±0.69 60.50 ± 4.32 0.97 ±0.02 0.14 ±0.01

Dataset: Expert; Fixed Element: object_wall
Train Return Test Return Train Success Test Success

Behavioral Cloning 349.58 ±14.81 12.69 ± 3.31 0.88 ±0.04 0.02 ±0.03

Implicit Q-Learning 267.90 ±20.08 19.56 ± 2.39 0.64 ±0.07 0.02 ±0.02

CP Behavioral Cloning 393.10 ± 3.64 41.42 ±9.64 0.99 ±0.01 0.10 ±0.01

CP Implicit Q-Learning 377.43 ± 1.19 23.39 ±11.84 0.96 ±0.01 0.04 ±0.03

4.2 Experimental results

Training on uniformly sampled datasets To evaluate learnability and characterize different
levels of challenge among our scenarios, we trained the BC, IQL, CP-BC and CP-IQL agents on the
expert, medium, and medium-replay datasets. We used uniform sampling of 224 training and 32
zero-shot test tasks as discussed in section 3.3. The results in the first three sub-tables of Table 1
verify that the four baselines can achieve high performance on the expert datasets. IQL baselines
strictly outperform BC baselines in the settings where fewer successful trajectories are available
(medium and replay), and generalize better to unseen configurations. When trained on replay data,
BC attains no success, while IQL achieves some success. Further, while the compositional architecture
boosts performance on the medium dataset, its generalization capabilities remain far from optimal.

Training on Expert-Warmstart composition We demonstrate the importance of composition-
ality by evaluating agents using compositional sampling combining expert and warmstart datasets.
As shown in the fourth sub-table of Table 1, all four agents are able to extract some information from
the expert datasets. The compositional architecture leads to an increase in training performance,

985



RLJ | RLC 2024

which translates to better zero-shot performance. This indicates that the learned modules discover
how to solve pieces of tasks on the training set, which are then re-used on the zero-shot tasks. BC
and standard IQL agents perform substantially better on the medium dataset (sub-table 2) even
though the medium dataset and the warmstart-expert dataset with compositional sampling contain a
similar amount of successful trajectories. This suggests that they learn something akin to an “average”
policy, instead of extracting the compositional structure and specializing it to each task.

Training on restricted sampling As one additional test of compositionality, we compared agents
on four restricted settings, each restricting one element from a distinct axis (Table 2). Agents were
trained on expert data that only contains one task with the restricted element, while all zero-shot
tasks contain the restricted element. The four agents perform well on the training tasks, but fail to
generalize to the zero-shot tasks. Together with the uniform sampling results in Table 1, these results
demonstrate that the baselines require a large amount of data from varied task combinations for
every single task element to generalize to unseen tasks. This is further evidence that current methods
are incapable of extracting and leveraging the compositional structure of the environment. However,
the compositional architecture shows signs of zero-shot generalization across all tasks, encouraging
the study of compositional methods for robotic transfer learning problems.

5 Related work

Compositional RL Composition has been used in RL for decades in attempts to improve sampling
efficiency (Mendez & Eaton, 2023). Intuitively, learning components of a problem may be easier
than learning the full problem, and learned components can be combined with others to solve new
tasks. The majority of such works in RL focused on learning temporally extended actions (skills or
options) that can be sequenced to construct a compositional policy (Sutton et al., 1999a; Konidaris
& Barto, 2009; Bacon et al., 2017; Tessler et al., 2017). Other common forms of composition include
logical composition (Nangue Tasse et al., 2020; Barreto et al., 2018; Van Niekerk et al., 2019),
state abstraction learning (Dayan & Hinton, 1993; Dietterich, 2000; Vezhnevets et al., 2017), and
object-based RL (Li et al., 2020; Mu et al., 2020). We consider the functional composition perspective,
described in Section 2, where components correspond to successive functional transformations of the
state to generate actions (Devin et al., 2017; Goyal et al., 2021; Mendez et al., 2022b).

Offline RL Offline RL research has grown steeply in recent years (Lange et al., 2011; Levine et al.,
2020). Most methods operate in the single-task setting (Fujimoto et al., 2019; Kumar et al., 2019b;
Nair et al., 2020; Kumar et al., 2020; Ma et al., 2021; Kostrikov et al., 2022), failing to leverage related
datasets to train more powerful and general policies. Works on multi-task offline RL have been
successful, but their scale remains limited (Siegel et al., 2020; Yu et al., 2021). Recently, large-scale
datasets have enabled generalization of multi-task offline Q-learning (Kumar et al., 2023). Offline
meta-RL, which pre-trains models on varied tasks to rapidly adapt to new tasks, shares motivation
with our work. While most such methods consider offline fine-tuning (Mitchell et al., 2021; Dorfman
et al., 2021; Li et al., 2021), others instead adapt the policy to new tasks online via exploration (Pong
et al., 2022; Zhao et al., 2022). These prior works share information across tasks in an unstructured
way, without considering common elements. Our explicitly compositional datasets promote the study
of algorithms that reason about compositional relations across tasks.

Datasets and benchmarks Large image datasets have driven many advancements of deep
learning (Deng et al., 2009; Krizhevsky & Hinton, 2009). Conversely, (online) RL has been restricted
to the use of simulation benchmarks for assessing new methods’ performance, primarily focused
on single-task training (Bellemare et al., 2013; Brockman et al., 2016; Vinyals et al., 2017). More
recent work has developed online benchmarks for multi-task, lifelong, and meta-RL (James et al.,
2020; Cobbe et al., 2020; Chevalier-Boisvert et al., 2019; Henderson et al., 2017; Ahmed et al., 2021;
Yu et al., 2020; Tomilin et al., 2023). With the advent of offline RL, it has become desirable to
leverage large datasets for standardized RL training. Several such datasets have been proposed to
benchmark offline RL (Mandlekar et al., 2018; Dasari et al., 2020; Fu et al., 2020; Gulcehre et al.,
2020; Qin et al., 2022; Zhou et al., 2022; Liu et al., 2023) and offline multi-agent RL (Qu et al.,
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2023) approaches. However, none of these study the interplay of deep RL and compositionality. Our
dataset construction follows D4RL (Fu et al., 2020) to collect data from existing online benchmarks
(in particular, CompoSuite; Mendez et al., 2022a). Offline RL datasets are important for moving
towards benchmarks on robot hardware (Collins et al., 2020; Gürtler et al., 2023), and so our work
relates to the development of low-cost (Yang et al., 2019; Ahn et al., 2019) or remote-access (Pickem
et al., 2017; Paull et al., 2017; Kumar et al., 2019a) robotic platforms for data collection.

6 Limitations

While our datasets are collected from simulation of commercially available robotic manipulators, it is
well known that most learning algorithms suffer from a simulation-to-real (sim2real) performance gap.
In consequence, work that seeks to apply learned policies or modules directly to physical robots would
need to develop mechanisms to bridge this gap. Notably, compositionality might enable one such
technique: training a new module for the physical robot in combination with pre-trained modules for
the remaining task components. In addition, our focus is on releasing large-scale data sets to enable
pre-training of powerful, generalizable offline RL models. As such, the computing requirements for
running experiments on the full data sets would be prohibitive for organizations without access to
powerful computers (see Appendix A for details of the computational setup used in our experiments).
That being said, several of the proposed experimental settings require substantially less computation,
making them more accessible for such organizations. Beside these limitations, our datasets inherit
some of the limitations of the original CompoSuite benchmark. Namely, our datasets use symbolic
(and not image) observations, the observation space reveals the compositional structure of the tasks
explicitly, and the tasks contain a fixed number of four compositional axes (Mendez et al., 2022a).

7 Conclusion

In this paper we have introduced several novel datasets to study the intersection of offline and
compositional RL. Our results indicate that current offline RL approaches do not capture the
compositional structure of our tasks well, and that further research is required in this area. An
interesting direction for future work is the explicit modeling of modularity in neural networks,
or the discovery of modular structure, required to obtain networks that are capable of zero-shot
generalization. Other directions include the study of offline to online transfer in a multi-task setting
as well as a continual learning setting. An interesting open scientific question would be whether
increasing the variety of compositional tasks has significant benefits over training on single tasks. We
hope that, by releasing the datasets and the experimental settings described in this work, we can
further research efforts in offline and compositional RL for robotics applications.
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A Computational requirements

We ran our experiments using both server-grade (e.g., NVIDIA RTX A6000s) and consumer-grade
(e.g., NVIDIA RTX 3090) GPUs, depending on the number of tasks we consider. Large experiment’s
training on 224 tasks can be run within two days on a single NVIDIA A6000 GPU, but require up to
256GB of RAM. Smaller experiments with up to 64 training tasks can be trained within less than
one day on a single RTX 3090 and 70GB of RAM. For evaluation, we used consumer-grade AMD
CPUs with 16 cores and a single RTX 3090 for model inference.

B Hyperparameters

With the exception of the batch size, hyperparameters were left at the default values used in d3rlpy.
Table 3 contains the hyperparameters used to generate the BC results, Table 4 contains those for
IQL. Compositional BC/IQL used the same hyperparamters as BC/IQL, with the exception of the
neural network architecture, which is described in detail in Appendix D. For the standard BC and
IQL training, each neural network (all policies, Q-functions, and value functions) is encoded as a
multi-layer perceptron (MLP) with 2 hidden layers and 256 hidden units per layer.

Table 3: Hyperparameters for Behavioral Cloning

Optimizer Adam
Adam β1 0.9
Adam β2 0.999
Adam ε 1e-8
Learning Rate 1e-3

Batch Size #Tasks
×256

Table 4: Hyperparameters for Implicit Q-Learning
Optimizer Adam
Adam β1 0.9
Adam β2 0.999
Adam ε 1e − 8
Actor Learning Rate 4e − 3
Critic Learning Rate 4e − 3

Batch Size #Tasks
×256

n_steps 1
γ 0.99
τ 0.005
n_critics 2
expectile 0.7
weight_temp 3.0
max_weight 100
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C Metrics

The metrics we report follow the original CompoSuite publication (Mendez et al., 2022a). The two
metrics are given by:

• per-task cumulative returns: R = 1
NM

∑N
i=1

∑M
j=1

∑H
t=1 Ri(st, at), and

• per-task success rate: S = 1
NM

∑N
i=1

∑M
j=1 maxt∈[1,H] 1[Ri(st, at) = 1],

where N is the number of tasks, M is the number of evaluation trajectories, the length of each
trajectory is H, and 1 is the indicator function. A success is defined as reaching the maximum reward
of 1 per step in a single step during evaluation. Note that the success metric counts trajectories
in which the agent is in a successful state at any time. In consequence, if the agent receives the
maximum step reward once but then moves to a non-successful configuration, the trajectory is still
counted as successful. We evaluate these two metrics separately over the training tasks and the
(remaining) zero-shot tasks.

D Details on Compositional Policy

Our compositional policies use the same neural network architecture as used by Mendez et al. (2022a;b),
which follows a graph structure that exploits the compositional relations across CompoSuite tasks.
The full network consists of 16 MLP modules, each of which corresponds to a single element in
CompoSuite—four obstacle modules, four object modules, four objective modules, and four robot
modules. The graph is constructed hierarchically by passing the output of the previous module as
(part of the) input to the next module. Each module operates in three stages: 1) a pre-processing
MLP that consumes the module-specific component of the state as input (e.g., the robot module
processes only the proprioceptive state features), 2) a concatenation layer that combines the output
of the pre-processing module and the output of the previous module, and 3) a post-processing MLP
that consumes the concatenated input and produces the module’s output. The order of the hierarchy
is obstacle → object → objective → robot. The obstacle modules have a single stage (since
they are the first module), which is an MLP with a single hidden layer of size 32. The MLPs of the
object module have each one hidden layer of 32 units. The first stage of the objective modules
is an MLP with two hidden layers of 64 units each, and the second stage is an MLP with a single
hidden layer of size 64. The robot module’s first stage MLP has three hidden layers of size 64 and
the second stage is the policy’s output layer of dimension 8 for the 8 actions.
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Abstract

We show that deep reinforcement learning algorithms can retain their ability to
learn without resetting network parameters in settings where the number of gradient
updates greatly exceeds the number of environment samples by combatting value
function divergence. Under large update-to-data ratios, a recent study by Nikishin
et al. (2022) suggested the emergence of a primacy bias, in which agents overfit
early interactions and downplay later experience, impairing their ability to learn.
In this work, we investigate the phenomena leading to the primacy bias. We inspect
the early stages of training that were conjectured to cause the failure to learn and
find that one fundamental challenge is a long-standing acquaintance: value function
divergence. Overinflated Q-values are found not only on out-of-distribution but also
in-distribution data and can be linked to overestimation on unseen action prediction
propelled by optimizer momentum. We employ a simple unit-ball normalization
that enables learning under large update ratios, show its efficacy on the widely
used dm_control suite, and obtain strong performance on the challenging dog tasks,
competitive with model-based approaches. Our results question, in parts, the prior
explanation for sub-optimal learning due to overfitting early data.

1 Introduction

To improve sample efficiency, contemporary work in off-policy deep reinforcement learning (RL) has
begun increasing the number of gradient updates per collected environment step (Janner et al., 2019;
Fedus et al., 2020; Chen et al., 2021; Hiraoka et al., 2022; Nikishin et al., 2022; D’Oro et al., 2023;
Schwarzer et al., 2023; Kim et al., 2023). As this update-to-data (UTD) ratio increases, various
novel challenges arise. Notably, a recent study proposed the emergence of a primacy bias in deep
actor critic algorithms, defined as “a tendency to overfit initial experiences that damages the rest of
the learning process” (Nikishin et al., 2022). This is a fairly broad explanation of the phenomenon,
leaving room for investigation into how fitting early experiences causes suboptimal learning behavior.

First approaches to tackle the learning failure challenges have been suggested, such as completely
resetting networks periodically during the training process and then retraining them using the con-
tents of the replay buffer (Nikishin et al., 2022; D’Oro et al., 2023). Resetting network parameters
is a useful technique in that, in some sense, it can circumvent any previous optimization failures
without prior specification. Yet it seems likely that a more nuanced treatment of the various opti-
mization challenges in deep RL might lead to more efficient training down the line. Especially if the
† The two first authors contributed equally to this work.
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objective is efficiency, throwing away all learned parameters and starting from scratch periodically
is counter-productive, for instance in scenarios where, keeping all previous experience is infeasible.
As such, we set out to study the components of early training that impair learning more closely and
examine whether high-UTD learning without resetting is possible.

To motivate our study, we repeat the priming experiment of Nikishin et al. (2022), in which a
network is updated for a large number of gradient steps on limited data. We show that during
priming stages of training, value estimates diverge so far—and become so extreme—that it takes
very long to unlearn them using new, counter-factual data. However, contrary to prior work, we
find that it is not impossible to learn even after priming, it merely takes a long time and many
samples. This sparks hope for our endeavor of smooth learning in high-UTD regimes. We show that
compensating for the value function divergence allows learning to proceed. This suggests that the
failure to learn does not stem from overfitting early data, which would result in correct value function
on seen data, but rather from improperly fitting Q-values. We demonstrate that this divergence is
most likely caused by prediction of out-of-distribution (OOD) actions that trigger large gradient
updates, compounded by the momentum terms in the Adam optimizer (Kingma & Ba, 2015).

The identified behavior, although triggered by OOD action prediction, seems to be more than the
well-known overestimation due to statistical bias (Thrun & Schwartz, 1993). Instead, we hypothe-
size that the problem is an optimization failure and focus on limiting the exploding gradients from
the optimizer via architectural changes. The main evidence for this hypothesis is that standard RL
approaches to mitigating bias, such as minimization over two independent critic estimates (Fuji-
moto et al., 2018), are insufficient. In addition, using pessimistic updates (Fujimoto et al., 2019;
Fujimoto & Gu, 2021) or regularization (Krogh & Hertz, 1991; Srivastava et al., 2014) to treat the
value divergence can potentially lead to suboptimal learning behavior, which is why architectural
improvements are preferable in many cases.

We use a simple feature normalization method (Zhang & Sennrich, 2019; Wang et al., 2020; Bjorck
et al., 2022) that projects features onto the unit sphere. This decouples learning the scale of the values
from the first layers of the network and moves it to the last linear layer. Empirically, this approach
fully mitigates diverging Q-values in the priming experiment. Even after a large amount of priming
steps, the agent immediately starts to learn. In a set of experiments on the dm_control MuJoCo
benchmarks (Tunyasuvunakool et al., 2020), we show that accounting for value divergence can
achieve significant across-task performance improvements when using high update ratios. Moreover,
we achieve non-trivial performance on the challenging dog tasks that are often only tackled using
model-based approaches. We demonstrate comparable performance with the recently developed
TD-MPC2 (Hansen et al., 2024), without using models or advanced policy search methods. Lastly,
we isolate more independent failure modes, giving pointers towards their origins. In Appendix E we
list open problems whose solutions might illuminate other RL optimization issues.

2 Preliminaries

Reinforcement learning We phrase the RL problem (Sutton & Barto, 2018) via the com-
mon framework of solving a discounted Markov decision process (MDP) (Puterman, 1994) M =
{S,A, P, r, γ}. Here, S denotes the state space, A the action space, P (s′|s, a) the transition proba-
bilities when executing action a in state s, r(s, a) the reward function, and γ the discount factor. A
policy π encodes a behavioral plan in an MDP via a mapping from states to a distribution over ac-
tions π : S → ∆(A). The goal is to find an optimal policy π∗ that maximizes the sum of discounted
return Jt =

∑∞
k=t+1 γ

k−t−1rk(s, a). The value function Vπ(s) = Eπ,P [Jt | st = s] and the Q-value
function Qπ(s, a) = Eπ,P [Jt | st = s, at = a] define the expected, discounted cumulative return given
that an agent starts in state st or starts in state st with action at respectively.

Deep actor-critic methods We focus on the setting of deep RL with off-policy actor-critic
frameworks for continuous control (Lillicrap et al., 2016; Fujimoto et al., 2018; Haarnoja et al., 2018).
Our analysis uses the soft-actor critic (SAC) algorithm (Haarnoja et al., 2018), but our findings
extend to other methods such as TD3 (Fujimoto et al., 2018). Commonly used off-policy actor
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Figure 1: Return, in-distribution Q-values and Adam optimizer moments during priming for different
lengths. Dotted lines correspond to end of priming. More priming leads to lower return and larger
Q-value and optimizer divergence.

critic algorithms like SAC have four main components: a policy πψ(a|s), a critic network Qθ(s, a),
a delayed target network Q̄θ̄(s, a), and a replay buffer D = {si, ai, ri, si+1}Ni=1 that stores past
interaction data. All functions are parameterized as neural networks (by ψ, θ, and θ̄, respectively)
and, except for the target network, updated via gradient descent. The target network is updated
using Polyak averaging (Polyak & Juditsky, 1992) at every time-step, formulated as θ̄ ← (1−τ)θ̄+τθ,
where τ modulates the update amount. Actor and critic are updated using the objectives

max
ψ

E s∼D
a∼πψ(·|si)

[
min

j∈{1,2}
Qθj (s, a)

]
, (1)

min
θ

(
Qθ(s, a)−

(
r + γEa′∼πψ(·|si+1)

[
min

j∈{1,2}
Q̄θ̄j (s

′, a′)
]))2

, (2)

respectively. In SAC, the update rules additionally contain a regularization term that maximizes the
entropy of the actor H (πψ(·)|s). The differentiability of the expectation in Equation (1) is ensured
by choosing the policy from a reparameterizable class of density functions (Haarnoja et al., 2018).
We assume that all Q-functions consist of a multi-layer perceptron (MLP) encoder ϕ and a linear
mapping w such that Qθ(s, a) = ϕ(s, a)w, where we omit parametrization of the encoder for brevity.

3 Investigating the effects of large update-to-data ratios during priming

As mentioned, the definition of the primacy bias is broad. To obtain a more nuanced understanding,
we set out to re-investigate the early stages of high-UTD training. To do so, we repeat the priming
experiment conducted by Nikishin et al. (2022).1 We first collect a small amount of random samples.
Then, using the SAC algorithm, we perform a priming step, training the agent for a large number of
updates without additional data. After priming, training continues as usual. Prior results reported
by Nikishin et al. (2022) suggest that once the priming step has happened, agents lose their ability
to learn completely. We use the simple Finger-spin task (Tunyasuvunakool et al., 2020) to study the
root causes for this systematic failure and to examine if there are ways to recover without resets.
In this section, we report means over five random seeds with standard error in shaded regions.
Hyperparameters are kept consistent with previous work for ease of comparison.

3.1 An old acquaintance: Q-value overestimation

We first ask whether there is a barrier as to how many steps an agent can be primed for before
it becomes unable to learn. We test this by collecting 1,000 samples and varying the number of
updates during priming from 25,000 to 50,000 and 100,000. The results are presented in Figure 1.

We make two key observations. First, lower amounts of priming are correlated with higher early
performance. More precisely, it seems that many runs simply take longer before they start learning
as the number of priming steps increases. Second, during priming the scale of the average Q-value
estimates on observed state-action pairs increases drastically. We find that the Q-values start out at

1For consistency with later sections, we use the ReLU activation here which can lead to unstable learning of other
components. We repeat all the experiments with ELUs in Appendix B to provide even stronger support of our findings.

997



RLJ | RLC 2024

0 100 200 300 400
Update Steps, x1000

0

200

400

600

800

R
et

ur
n

SAC, 100K Priming
Action-regularized, 100K Priming

0 100 200 300 400
Update Steps, x1000

107
105
103
101

0
101
103
105
107

M
ea

n 
Q

-V
al

ue
s

Figure 2: Priming with SAC and
action regularization during prim-
ing. The latter lowers divergence.
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Figure 3: Return and Q-values of priming runs with weight
decay and dropout. Results indicate that both regularizations
mitigate priming to some extent but not sufficiently.

a reasonable level, but as priming goes on they eventually start to diverge drastically. Once the agent
estimates very large Q-values, the final performance in terms of average returns deteriorates. We also
observe that the second moment of the Adam optimizer (Kingma & Ba, 2015) is correlated with the
divergence effect. Optimizer divergence has been observed before as a cause of plasticity loss under
non-stationarity (Lyle et al., 2023), but in our experiments the data is stationary during priming.
We conjecture that the momentum terms lead to much quicker propagation of poor Q-values and
ultimately to prediction of incorrect Q-values, even on in-distribution data.

After priming, there exist two cases: 1) either the Q-values need to be unlearned before the agent
can make progress or 2) there is a large drop from very high to very low Q-values that is strongly
correlated with loss in effective dimension of the embedding, as defined by Yang et al. (2020) (see Ap-
pendix B.3). In the second case, rank can sometimes be recovered upon seeing new, counter-factual
data and the network continues to learn. Yet, sometimes the agent gets stuck at low effective dimen-
sion; a possible explanation for the failure to learn observed in the priming experiments of Nikishin
et al. (2022). This is orthogonal to a previously studied phenomenon where target network-based
updates lead to perpetually reduced effective rank (Kumar et al., 2021).

3.2 On the potential causes of divergence

We conjecture that Q-value divergence starts with overestimated values of OOD actions. This
overestimation could cause the optimizer to continually increase Q-values via its momentum leading
to divergence. To test this hypothesis, we add a conservative behavioral cloning (Pomerleau, 1988;
Atkeson & Schaal, 1997) loss term to our actor that forces the policy to be close to replay buffer
actions. Prior work employed this technique in offline RL to mitigate value overestimation (Fujimoto
& Gu, 2021). More formally, our actor update is extended by the loss Lc,ψ = minψ Ea∼D,â∼πψ(s)[||a−
â||2]. The results in Figure 2 indicate that the basis of the conjecture is corroborated as divergence
is much smaller—but not mitigated completely—when values are learned on actions similar to seen
ones. However, in practice we do not know when divergence sets in, which limits the applicability
of this technique in realistic scenarios. Using it throughout all of training, rather than just during
priming, impairs the learner’s ability to explore. We investigate the effects of the optimizer in more
detail and provide preliminary evidence that the second-order term may be at fault in Appendix B.2.

3.3 Applying common regularization techniques

Regularization is a common way to mitigate gradient explosion and is often used to address over-
estimation (Farebrother et al., 2018; Chen et al., 2021; Liu et al., 2021; Hiraoka et al., 2022; Li
et al., 2023). We investigate the priming experiments under techniques such as using L2 weight de-
cay (Krogh & Hertz, 1991) or adding dropout (Srivastava et al., 2014) to our networks in Figure 3.

Both L2 weight decay as well as dropout can somewhat reduce the divergence during priming,
however not to a sufficient degree. While L2 regularization fails to attain very high performance,
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Figure 5: (Left) Return and (Right) Q-values comparing
SGD result and OFN when priming for 100K steps. OFN
obtains returns close to that of the well-trained SGD agent
and learns an appropriate Q-value scale correctly.
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Figure 6: L2 norm of network
weights per layer after priming
for default and OFN architectures.
OFN leads to smaller weights and
significant mass in the last layer.

dropout is able to recover a good amount of final return. However, both methods require tuning of a
hyperparameter that trades off the regularization term with the main loss. This hyperparameter is
environment-dependent and tuning it becomes infeasible for large UTD-ratios due to computational
resource limitations. Still, the results imply that it is in fact possible to overcome the divergence in
priming and continue to learn good policies.

3.4 Divergence in practice

One question that remains is whether we can find these divergence effects outside of the prim-
ing setup. We find that, while priming is an artificially constructed worst case, similar phe-
nomena happen in regular training on standard benchmarks when increasing update ratios (see
Figure 4). Further, the divergence is not limited to early stages of training as it happens
at arbitrary points in time. We therefore conjecture that divergence is not a function of
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Figure 4: In-distribution Q-values and critic loss of five
SAC seeds on the humanoid-run task using UTD = 32.
Values diverge at arbitrary time-points, not only dur-
ing the beginning. Loss mirrors Q-value divergence.

amount of experience but rather one of
state-action space coverage. Note that the
reported Q-values have been measured on
the observed training data, not on any out-
of-distribution state-action pairs. The re-
spective critic losses become very large. All
this points toward a failure to fit Q-values.
This behavior does not align with our com-
mon understanding of overfitting (Bishop,
2006), challenging the hypothesis that high-
UTD learning fails merely due to large val-
idation error (Li et al., 2023).

4 Towards high-UTD optimization without resetting

Regularization techniques such as those in Section 3.3 can fail to alleviate divergence as they tend to
operate across the whole network and lower the weights everywhere even if higher values are actually
indicated by the data. They also require costly hyperparameter tuning. Thus, we turn towards
network architecture changes to the commonly used MLPs that have proven useful in overcoming
issues such as exploding gradients in other domains (Ba et al., 2016; Xu et al., 2019).

4.1 Limiting gradient explosion via unit ball normalization

As discussed previously, the prediction of an unknown action might trigger the propagation of a
large, harmful gradient. Further, the Q-values of our network ought to grow over time as they more
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closely approximate those of a good policy. If we predict incorrectly on one of these Q-values, a
potentially very large loss is propagated. Gradients are magnified by multiplicative backpropagation
via ReLU activations (Glorot et al., 2011) as well as momentum from Adam (Kingma & Ba, 2015).
Note that all resulting issues arise in the early network layers. We hypothesize that we can address
many of these problems by separating the scaling of the Q-values to the appropriate size from the
earlier non-linear layers of the network and moving the Q-value scaling to the final linear layer.

One contender to achieve the value decoupling described in the previous paragraph is layer normaliza-
tion (Ba et al., 2016), but one would have to disable scaling factors used in common implementations.
Still, standard layer normalization would not guarantee small features everywhere. Instead, we use
a stronger constraint and project the output features of the critic encoder onto the unit ball using
the function f(x) = x

∥x∥2
(Zhang & Sennrich, 2019), where ∥ · ∥2 denotes the L2 vector norm and x

is the output of our encoder ϕ(s, a). This ensures that all values are strictly between 0 and 1 and
the gradients will be tangent to the unit sphere. Note that this function’s gradient is not necessarily
bounded to ensure low gradient propagation (see Appendix D), but we argue that if large values are
never created in the early layers, gradient explosion will not occur. The unit ball has previously been
used to mitigate large action prediction in the actor (Wang et al., 2020) or to stabilize RL training in
general (Bjorck et al., 2022). For brevity, we will refer to this method as output feature normalization
(OFN). We solely apply OFN to the critic, unlike Wang et al. (2020), since our goal is to mitigate
value divergence. OFN is very simple and requires only a one-line change in implementation.

4.2 Evaluating feature output normalization during priming

To test the efficacy of the OFN-based approach, we repeat the priming experiment in Figure 5. We
find that OFN achieves high reward and most distinctly, Q-value divergence during priming is fully
mitigated. Note also that we are using a discount factor of γ = 0.99, returns are collected over 1,000
timesteps and rewards are in [0, 1]. We therefore expect the average Q-values to be roughly at 10%
of the undiscounted return which seems correct for the OFN network. However, more importantly,
as shown in Figure 6, most of the Q-value scaling happens in the last layer.

5 Experimental evaluation

We evaluate our findings on the commonly used dm_control suite (Tunyasuvunakool et al., 2020).
All results are averaged over ten random seeds.2 We report evaluation returns similar to Nikishin
et al. (2022), which we record every 10,000 environment steps. We compare a standard two-layer
MLP with ReLU (Nair & Hinton, 2010) activations, both with and without resetting, to the same
MLP with OFN. The architecture is standard in many reference implementations. Architecture and
the resetting protocol are taken from D’Oro et al. (2023) and hyperparameters are kept without new
tuning to ensure comparability of the results. More details can be found in Appendix A.

To understand the efficacy of output normalization on real environments under high UTD ratios,
we set out to answer multiple questions that will illuminate RL optimization failures:
Q1: Can we maintain learning without resetting neural networks?
Q2: Are there other failure modes beside Q-value divergence under high UTD ratios?
Q3: When resets alone fall short, can architectural changes enable better high-UTD training?

5.1 Feature normalization stabilizes high-UTD training

To answer Q1, we compare OFN and SAC with resets on the DMC15-500k benchmark with large
update ratios of 8 and 32 as proposed by Nikishin et al. (2022) and Schwarzer et al. (2023). We
report mean, interquartile mean (IQM) and median as well as 95% bootstrapped confidence intervals
aggregated over seeds and tasks, following Agarwal et al. (2021). The results are shown in Figure 7.

2For comparison with TD-MPC2 (Hansen et al., 2024) we use data provided by their implementation, which only
contains three seeds. As the goal is not to rank algorithmic performance but to give intuition about the relative
strengths of adapting the network architecture, we believe that this is sufficient in this case.
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First, we observe that in both cases, UTD = 8 and UTD = 32, OFN can significantly improve over
the non-resetting MLP baseline across all metrics. The value estimates that diverge seem to have
been handeled properly (see Appendix C.2); learning is maintained. We note that our approach
with UTD = 8 achieves mean and IQM performance comparable to that of standard resetting with
UTD = 32. In median and quantile performance, all UTD = 32 overlap, highlighting that outliers
contribute to the performance measurement. Note that the overall performance drops slightly for the
OFN-based approach when going from UTD = 8 to UTD = 32. We conjecture that there are other
learning problems such as exploration that have not been treated by alleviating value divergence.
However, these do not lead to complete failure to learn but rather slightly slower convergence.

5.2 Other failure modes: Exploration limitations

To validate the hypothesis of other failures and answer Q2, we run two additional experiments.
First, our current focus is on failures of the critic; our proposed mitigation does not address any
further failures that might stem from the actor. We defer a more detailed analysis of actor failure
cases to future work. Instead, we test the OFN-based architecture again and, for now, simply reset
the actor to shed light on the existence of potential additional challenges. For comparison, we also
run a second experiment in which we reset all learned parameters, including the critic.

The results in Figure 7 indicate that actor resetting can account for a meaningful portion of OFN’s
performance decline when going from UTD = 8 to UTD = 32. The actor-reset results are within
variance of the full-resetting standard MLP baseline. Further, we observe that there is still some
additional benefit to resetting the critic as well. This does not invalidate the premise of our hy-
pothesis, value divergence might not be the only cause of problems in the high UTD case. We have
provided significant evidence that it is a major contributor. Resetting both networks of OFN with
UTD = 32 outperforms all other baselines on mean and IQM comparisons.

To explain the remaining efficacy of critic resets, we examine the hopper-hop environment where
standard SAC with resets outperforms OFN. In RL with function approximation, one might not
only encounter over- but also under-estimation (Wu et al., 2020; Lan et al., 2020; Saglam et al.,
2021). We believe that hopper is sensitive to pessimism, and periodically resetting the networks
might partially and temporarily counteract the inherent pessimism of the dual critic setup.

To obtain evidence for this conjecture, we repeated some experiments with a single critic. As OFN
handles divergence it might not require a minimization over two critics (Fujimoto et al., 2018). We
compare OFN using a single critic and 32 updates per environment step to standard SAC and OFN
in Figure 8. With a single critic, OFN does not get stuck in a local minimum and outperforms full
resetting. Note that this is only true in few environments, leading us to believe that the effects of
high-update training are MDP-dependent. In some environments we observe unstable learning with
a single critic, which highlights that the bias countered by the double critic optimization and the
overestimation from optimization we study are likely orthogonal phenomena that both need to be
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Figure 9: Mean return on the dog DMC tasks, comparing OFN to SAC with resets and the model-
based TD-MPC2. Shaded regions indicate standard error. OFN outperforms SAC with resets, which
is unable to learn and OFN with UTD = 8 and resetting is competitive with TD-MPC2.

addressed. Most likely, there is a difficult trade-off between optimization stability and encouraging
sufficient exploration, which is an exciting avenue for future research.

5.3 Limit-testing feature normalization

To answer Q3, we move to a set of training environments that is considered exceptionally hard for
model-free approaches, namely the dog tasks of the DMC suite. Standard SAC can generally not
obtain any reasonable reward and, due to their complex dynamics, these tasks are often tackled
using model-based approaches such as TD-MPC2 (Hansen et al., 2024) with complicated update
procedures and carefully tuned network architectures. We evaluate SAC and OFN on the dog tasks
and compare against TD-MPC2 in Figure 9.

First, observe that resetting without OFN obtains no improvement over a random policy. However,
OFN with UTD = 1 can already obtain very good performance across all tasks, indicating that a
major problem for SAC in these high-dimensional tasks is value divergence. When increasing the
update ratio to 8 and adding resetting, we improve the performance of the OFN agent even further
and can match the reported results of the strong model-based TD-MPC2 baseline.

We have already seen that resetting can take care of multiple optimization failures. However, these
experiments also indicate that resetting is not a panacea as it is only effective when the initially
learned policy can obtain some reward before being overwritten. This seems intuitive since resetting
to a policy that cannot gather any useful data should not help. These results highlight that the early
training dynamics of RL are highly important when it comes to training on complex environments
and fitting early data correctly and quickly is crucial for success.

This also opens up the question why resetting in the humanoid environments in the previous sections
can yield success even though very little reward is observed. Besides greater divergence due to larger
observation spaces in the dog MDPs, we suspect that this might be related to the complexity of
exploration. The ability of a random policy to obtain non-trivial reward and information about the
environment has been shown to be a crucial factor in explaining the success of DRL methods in
discrete environments (Laidlaw et al., 2023), and similar phenomena might be in effect here.

6 Related work

Our work closely examines previous work on the primacy bias and the related resetting technique
(Anderson, 1992; Nikishin et al., 2022; D’Oro et al., 2023; Schwarzer et al., 2023). Going beyond,
overestimation and feature learning challenges are a widely studied phenomenon in the literature.

Combatting overestimation Overestimation in off-policy value function learning is a well-
established problem in the RL literature that dates back far before the prime times of deep learn-
ing (Thrun & Schwartz, 1993; Precup et al., 2001). The effects of function approximation error and
the effect on variance and bias have been studied (Pendrith & Ryan, 1997; Mannor et al., 2007) as
well. With the rise of deep learning, researchers have tried to address the overestimation bias via
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algorithmic interventions such as combining multiple Q-learning predictors to achieve underestima-
tion (Hasselt, 2010; Hasselt et al., 2016; Zhang et al., 2017; Lan et al., 2020), using averages over
previous Q-values for variance reduction (Anschel et al., 2017), or general error term correction (Lee
et al., 2013; Fox et al., 2016). In the context of actor-critic methods, the twinned critic minimization
approach of Fujimoto et al. (2018) has become a de-facto standard. Most of these approaches are not
applicable or break down under very high update ratios. To regulate the overestimation-pessimism
balance more carefully, several authors have attempted to use larger ensembles of independent
Q-value estimates (Lee et al., 2021; Peer et al., 2021; Chen et al., 2021; Hiraoka et al., 2022). En-
sembling ideas were also combined with ideas from distributional RL (Bellemare et al., 2017) to
combat overestimation (Kuznetsov et al., 2020). Instead of addressing the statistical bias in deep
RL, our study focuses on the problems inherent to neural networks and gradient based optimization
for value function estimation. Work from offline-to-online RL has demonstrated that standard layer
normalization can bound value estimates during offline training and mitigate extrapolation while still
allowing for exploration afterwards (Ball et al., 2023). Layer normalization has subsequently been
used to achieve generally strong results in offline RL (Tarasov et al., 2023). Our work is also related
to a recent contribution using batch-normalization for increased computational efficiency by Bhatt
et al. (2024) who focus on decreasing update ratios rather than increasing them. A concurrent work
by Nauman et al. (2024) provides a large scale study on different regularization techniques to combat
overestimation. This work also demonstrates the efficacy of SAC on the dog tasks when properly
regularized but it does not highlight the effects of Q-value divergence from exploding gradients as a
key challenge for this set of environments.

Combating plasticity loss Another aspect of the primacy bias is the tendency of neural net-
works to lose their capacity for learning over time (Igl et al., 2021), sometimes termed plasticity
loss (Lyle et al., 2021; Abbas et al., 2023). Recent work mitigates plasticity loss using feature rank
maximization (Kumar et al., 2021), regularization (Lyle et al., 2023), or learning a second copied
network (Nikishin et al., 2024). Some of the loss stems from neurons falling dormant over time (Sokar
et al., 2023). A concurrent, closely related work by Lyle et al. (2024) disentangles the causes for
plasticity loss further. They use layer normalization to prevent some of these causes, which is closely
related to our unit ball normalization. Our work differs in that we focus on the setting of high update
ratios and use stronger constraints to mitigate value divergence rather than plasticity loss.

7 Conclusion and future work

By dissecting the effects underlying the primacy bias, we have identified a crucial challenge: value
divergence. While the main focus in studying increased Q-value has been on the statistical bias
inherent in off-policy sampling, we show that Q-value divergence can arise due to problems inherent
to neural network optimization. This optimization-caused divergence can be mitigated using the
unit-ball normalization approach, which shines on the dm_control benchmark with its simplicity
and efficacy. With this result, we challenge the assumption that failure to learn in high-UTD
settings primarily stems from overfitting early data by showing that combating value divergence is
competitive with resetting networks. This offers a starting point towards explaining the challenges
of high-UTD training in more detail and opens the path towards even more performant and sample
efficient RL in the future.

However, as our other experiments show, mitigating value overestimation through optimization is
not the only problem that plagues high-UTD learning. To clearly highlight these possible directions
for future work, we provide an extensive discussion of open problems in Appendix E. Additional
problems, such as exploration failures or suboptimal feature learning, can still exist and need to be
resolved to unlock the full potential of high-UTD RL.
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A Implementation details and hyperparameters

We employ two commonly used implementations, one for fast iterations on priming experiments
(https://github.com/denisyarats/pytorch_sac) and one for scaling up our experiments to high up-
date ratios (https://github.com/proceduralia/high_replay_ratio_continuous_control). All exper-
iments in the main sections use default hyperparameters of the high update ratio codebase unless
otherwise specified with minor exceptions.

Table 1: Shared hyperparameters between
priming and high-UTD implementations

Optimizer Adam
Adam β1 0.9
Adam β2 0.999
Adam ε 1e− 8
Actor Learning Rate 4e− 3
Critic Learning Rate 4e− 3
Temp. Learning Rate 3e− 4
Batch Size 256
γ 0.99
τ 0.005
# critics 2
# critic layers 2
# actor layers 2
critic hidden dim 256
actor hidden dim 256

Table 2: Differing hyperparameters between priming
and high-UTD implementations

Priming High UTD
Initial
temperature 0.1 1.0

Target
entropy -action_dim -action_dim / 2

actor log
std bounds [-5, 2] [-10, 2]

B Additional priming experiments

B.1 Activation functions
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Figure 10: ELU activations. Return, in-distribution Q-values and Adam optimizer moments during
priming for different lengths. Dotted lines correspond to end of priming. More priming leads to
lower return and larger Q-value and optimizer divergence.

During our experiments, we found that the ReLU activation can sometimes lead to destabilization
of other parts of the SAC agent during priming. We found that using ELU (Clevert et al., 2016)
activations instead remedies some of these issues. We repeat various experiments from Section 3
again but with more stable activations. First, we show in Figure 10 that divergence happens similar
to before and that it is correlated with the amount of priming.

Furthermore, we discussed that the divergence is most likely triggered by out of distribution action
prediction (see Figure 11) and that regularization can help. When using ELUs, the effect of reg-
ularization is much more stable and as expected but still not as good as our OFN approach from
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Section 4.2 (compare with Figure 12). Dropout leads to significantly worse performance and L2

regularization learns Q-values too small for the obtained return which we suspect correlates with
decreased exploration.
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Figure 11: ELU activations. Prim-
ing with SAC and action regular-
ization during priming. The latter
lowers divergence.
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Figure 12: ELU activations. Return and Q-values of priming
runs with weight decay and dropout. Results indicate that
both regularizations mitigate priming more than with ReLUs.

B.2 Optimizer divergence

With more stable effects from the ELU activation, we introduce a second intervention to the prim-
ing stage. We hypothesize that most of the divergence stems from the second optimizer term that
will propell the gradients to increase more and more over time. To test this, we run an additional
experiment in which we use standard stochastic gradient descent (SGD) (Robbins & Monro, 1951)
with first-order momentum (Rumelhart et al., 1986; Sutskever et al., 2013) during priming to isolate
the effect of the second-order momentum term. We compare this against RMSProp which is equiv-
alent to Adam but without the first optimizer term instead. The results are shown in Figure B.2.
As we can see, the divergence is almost completely gone when using SGD with momentum but is
even larger in RMSProp. Note that running the same experiment with ReLU activations leads to
divergence in the actor when using SGD only. We suspect this might have to do with divergence in
the actor entropy.
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Figure 13: Comparing standard SAC priming to priming when using either SGD+momentum or
RMSProp during the priming updates. SGD+momentum does not diverge with ELU activations,
indicating that the second-order momentum term is the problematic one.

B.3 Effective dimension

Let Φ ∈ R|S||A|×d be a feature matrix (in our case produced by ϕ). The effective dimension of a
feature matrix has previously been defined as

srankδ = min
{
k :

∑k
i=1 σi(Φ)

∑d
i=1 σi(Φ) ≥ 1− δ

}
,
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where δ is a threshold parameters and {σi(Φ)} are the singular values of Φ in decreasing order (Yang
et al., 2020; Kumar et al., 2021).

An additional finding of ours is that divergence of Q-values is correlated with this effective rank
srankδ. We plot three different random seeds that have been subjected to 75,000 steps of priming
in Figure 14; the effective rank is approximated over a sample 10 times the size of the embedding
dimension. We observe, that divergence correlates with a decrease in effective dimension and that
when divergence is exceptionally strong, the effective dimension drops so low that the agent has
trouble to continue learning. This might explain the failure to learn observed by Nikishin et al.
(2022). However, as long as the effective dimension does not drop too far, the agent can recover and
regain capacity by observing new data. Previous work on effective rank loss has often assumed that
it is mostly irreversible, yet we find that this is not always the case. We suspect that in complete
failure cases, the policy has collapse and rarely any new data is seen.
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Figure 14: Returns, Mean Q-values and effective dimension for 3 seeds of standard priming for
75,000 steps. When divergence happens, effective dimension is lost. If the effective dimension drops
too far, the agent has difficulties to recover.
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C Additional experimental results

C.1 Returns on all environments
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Figure 15: UTD8 Returns on Full DMC15-500K.
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Figure 16: UTD32 Returns on Full DMC15-500K.
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C.2 Q-values on all environments
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Figure 17: UTD8 Q-values on Full DMC15-500K. Resetting often works when Q-values diverge.
ONF mitigates divergence.
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Figure 18: UTD32 Q-values on Full DMC15-500K. Resetting often works when Q-values diverge.
ONF mitigates divergence.
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D Unit norm gradient derivation

Here, we take a look at the gradient of the unit norm projection.

Let i ∈ 1, ..., N , for all x = (x1, ..., xn) ∈ Rn \ {0}. Suppose f(x) =
x
∥x∥.

Then,

∂if(x) =
∥x∥ei − x∂i∥ · ∥(x)

∥x∥2

=
∥x∥ei −

xi

∥x∥x

∥x∥2

=
1
∥x∥ei −

xi

∥x∥3x

Note that the second term can grow quite large if the norm of x is relatively small. Despite this fact,
we are able to remedy the exploding gradients using unit norm projection, likely because gradients
are small when the norm is small.

E Open Problems and Limitations

Feature divergence without regularization is an important problem that contributes substantially to
the issues facing high-UTD learning However, as our experiments show, there are many additional
open problems that introducing normalization does not address.

Understanding actor issues The resetting experiments in Figure 7 highlight that a part of the
performance impact of high UTD comes from the actor optimization, not the critic optimization, as
resetting the actor can boost performance without changing the critic. Our work does not address
this issue, and to the best of our knowledge there are no specific attempts to investigate the actor
optimization process in deep actor-critic reinforcement learning.

RL Optimizer As the priming experiments show (Figure 13), the update dynamics introduced by
momentum terms in modern optimizers can exacerbate existing overestimation problems. Dabney
(2014) derives adaptive step-sizes for reinforcement learning from a theoretical perspective, but the
resulting optimization rules have not been adapted to Deep Reinforcement Learning to the best of
our knowledge. A recent study by Asadi et al. (2023) shows that resetting the optimizer can have
some benefit in the DQN setting, where it can be tied to the hard updates of the target Q network.
In addition, Lyle et al. (2023) show that optimizers like Adam can lead to reduced plasticity of
neural networks. However, our experiments also highlight that without the accelerated optimization
of modern optimizers, convergence of the Q value can be prohibitively slow, highlighting the urgent
need for stable and fast optimization in RL.

Conservative Learning for Online RL Most current actor-critic methods use some form of
pessimistic value estimate to combat the overestimation bias inherent in off-policy Q learning. i.e.
via the use of a twinned Q network (Fujimoto et al., 2018). However, this can lead to pessimistic
under-exploration (Lan et al., 2020). To address this, Moskovitz et al. (2021) propose to tune the
relative impact of pessimistic and optimistic exploration for the environments, while Lee et al. (2021)
show that by combining independent critic estimates from ensembles, a UBC like exploration bound
can be computed. These changes could be combined with the mitigation strategies for the feature
layer divergence in future work to mitigate the harmful effects of underexploration further.

As our work shows, some of the previous problems with overestimation might not emerge from the
bias introduced by off-policy actions, but from the learning dynamics of neural network updates.
This suggests that more work on the exact causes of overestimation might allow us to move beyond
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the overly pessimistic twinned network minimization trick without needing costly solutions like
ensemble methods.

Tau The rate of the target network updates is an important hyperparameter in online RL, either
through periodic hard copies (Mnih et al., 2013) or the use of a Polyak averaging scheme (Lillicrap
et al., 2016). Updating the network too fast can exacerbate the impact of value divergence, while
updating too slowly can delay learning. Preliminary experiments show a relationship between value
divergence and target update speed that requires further investigation.

There have also been attempts to accelerate optimization not via the neural network optimization,
but through adapting the updates of the target networks (Vieillard et al., 2020; Farahmand &
Ghavamzadeh, 2021). This is an orthogonal direction to the one presented here, and the interplay
between target network updates and neural network optimization steps are an important topic for
future work.

Reward Shaping Impact In several environments, we observe almost no detrimental effects due
to high update ratios, while in others the Q-values diverge even without moving beyond one update
per sample collected. A closer inspection suggests that environments in which the initial reward
is small and uninformative are much more prone to lead to catastrophic divergence, suggesting
a close connection between reward shaping and divergence. While sparse reward problems have
received much attention in the context of exploration, our findings suggests that they also present a
challenge for efficient optimization. Beyond this phenomenon, the interactions between optimization
and explorations have been hypothesized to be a strong contributing factor to the good performance
of some algorithms (Schaul et al., 2022), but the role diverging Q-values play in this phenomenon is
to the best of our knowledge mostly unexplored.
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Abstract

The recency heuristic in reinforcement learning is the assumption that stimuli that
occurred closer in time to an acquired reward should be more heavily reinforced.
The recency heuristic is one of the key assumptions made by TD(λ), which
reinforces recent experiences according to an exponentially decaying weighting.
In fact, all other widely used return estimators for TD learning, such as n-step
returns, satisfy a weaker (i.e., non-monotonic) recency heuristic. Why is the
recency heuristic effective for temporal credit assignment? What happens when
credit is assigned in a way that violates this heuristic? In this paper, we analyze the
specific mathematical implications of adopting the recency heuristic in TD learning.
We prove that any return estimator satisfying this heuristic: 1) is guaranteed to
converge to the correct value function, 2) has a relatively fast contraction rate,
and 3) has a long window of effective credit assignment, yet bounded worst-case
variance. We also give a counterexample where on-policy, tabular TD methods
violating the recency heuristic diverge. Our results offer some of the first theoretical
evidence that credit assignment based on the recency heuristic facilitates learning.

1 Introduction

The temporal credit-assignment problem in reinforcement learning (RL) is the challenge of determin-
ing which past actions taken by a decision-making agent contributed to a certain outcome (Minsky,
1961). Addressing the temporal credit-assignment problem effectively is paramount to efficient RL.
Unfortunately, an optimal solution is likely infeasible for an agent acting in an arbitrary, unknown
environment; perfect credit assignment would require precise knowledge of the environment’s dy-
namics. Even then, the complexity of the problem grows enormously as the agent takes more actions
over its lifetime. Instead, heuristics—simplifying rules or assumptions for credit assignment—can be
adopted to make the problem more approachable. In the absence of any prior knowledge of the en-
vironment, a common and reasonable choice is the recency heuristic: “One assigns credit for current
reinforcement to past actions according to how recently they were made” (Sutton, 1984, p. 94). The
recency heuristic reflects the fact that there is likely to be a cause-and-effect relationship between
actions and rewards that are close together in time.

In computational RL, the reinforcement signal is taken to be the temporal-difference (TD) error:
the difference between the observed and expected reward earned by an action. TD(λ) (Sutton,
1988) is the prime example of the recency heuristic; each TD error is applied to past actions in
proportion to an exponentially decaying eligibility, achieving credit assignment that gracefully fades
as the time between the action and TD error increases. This strategy, although simple, is highly
effective and has been used by many recent algorithms (e.g., Schulman et al., 2015; Harb & Precup,
2016; Harutyunyan et al., 2016; Munos et al., 2016; van Seijen, 2016; Mahmood et al., 2017; Mousavi
et al., 2017; Daley & Amato, 2019; Kozuno et al., 2021; Gupta et al., 2023; Tang et al., 2024).
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Figure 1: Illustrations of the eligibility curves for (a) λ-return, (b) n-step return, (c) inverted U-
shape assignment inspired by Klopf (1972), and (d) time-delayed λ-return. The horizontal axis
represents the elapsed time since the stimulus. Neither (c) nor (d) satisfy the recency heuristic.

However, the recency heuristic is, by definition, a simplifying assumption; one can imagine complex
environments where non-recent credit assignment would theoretically be more beneficial. For exam-
ple, if it were known that there is always some fixed delay between actions and their corresponding
effects—especially when under partial observability (Kaelbling et al., 1998)—then this information
could theoretically be exploited for faster learning. Klopf (1972), for instance, describes credit-
assignment functions based on an inverted-U shape (see Figure 1c) that could achieve this exact
effect. The shape of the credit-assignment curve encodes a prior belief over the likelihood of when
a reward will arrive following an action, with the smooth distribution reflecting some uncertainty in
the exact time of arrival. Klopf (1972) hypothesized that reactions in a firing neuron would leave
it eligible to learn for a short duration. This later inspired the simplified spike-and-decay model of
eligibility traces (Barto et al., 1983; Sutton, 1984) used by TD(λ), which obeys the recency heuristic
and has become a standard approach for credit assignment in computational RL.

Although there is potential for more efficient learning with non-recent credit assignment, it has not
been tried in computational RL. Even alternatives to TD(λ) that are not generally connoted with
the recency heuristic, such as n-step TD methods (Cichosz, 1995), implement a crude form of recency
heuristic: TD errors within some fixed time interval following an action are reinforced, while those
outside are not. In fact, all other return estimators used for TD learning (which are constructed
from n-step returns) satisfy some form of recency heuristic (see Section 5). We are not aware of any
results that analyze what happens when TD updates do not follow the recency heuristic.

The goals of this paper are to understand the implications of forgoing the recency heuristic in TD
learning, and to provide new insights into why assigning credit based on the recency heuristic has
been so effective for RL. We test a model of non-recent credit assignment based on a short, time-
delayed pulse inspired by Klopf’s (1972) inverted-U function. Although this is one of the simplest
and most benign forms of non-recency in TD learning, we show that it diverges under the favorable
conditions of tabular, on-policy learning. We prove that the root cause of divergence is negative
weights on some of the n-step returns in the return estimate, which appear whenever the recency
heuristic is violated, and counteract learning by increasing the contraction modulus. In the off-
policy setting, our analysis resolves the open problem by Daley et al. (2023) on the convergence of
trajectory-aware eligibility traces. Finally, we show that satisfying the recency heuristic increases
the effective credit-assignment window of a return estimate without increasing its bias and variance
in the worst case, which partly explains the empirical success of methods like TD(λ). Overall, our
results demonstrate that the recency heuristic is not an overly simplistic assumption but is actually
a crucial component in the mathematical basis of TD learning.

2 Background

We adopt the standard RL perspective of a decision-making agent learning in an unknown environ-
ment through trial and error (Sutton & Barto, 2018, Sec. 3.1). The agent-environment interface is
modeled by a Markov decision process (MDP) formally described by the tuple (S,A, p, r). The finite
sets S and A contain the possible environment states and agent actions, respectively. At each time
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step t ≥ 0, the agent observes the current state of the environment, St, and takes an action, At ∈ A,
with probability π(At|St), where π is the agent’s policy. Consequently, the environment state tran-
sitions to St+1 ∈ S with probability p(St+1|St, At), and the agent receives a reward, Rt

def= r(St, At).

In prediction problems, the agent’s objective is to learn the value function vπ(s) def= Eπ[Gt | St = s],
where Gt

def=
∑∞

i=0 γiRt+i is the observed discounted return. The constant γ ∈ [0, 1] is called the
discount factor and determines the agent’s relative preference for delay rewards. In the rest of this
section, we discuss various types of temporal-difference (TD) learning (Sutton, 1988), a common
approach for prediction in reinforcement learning.

TD(λ) and the Recency Heuristic TD methods estimate vπ by iteratively reducing an error
between predicted and observed returns, bootstrapping from the previous (biased) estimates in order
to reduce variance. Let v : S → A be the agent’s estimate of the value function, and define Vt

def= v(St)
for brevity. The TD error, defined as δt

def= Rt + γVt+1 − Vt, is the fundamental unit of reinforcement
in TD methods. For instance, the simplest TD method, known as TD(0) or 1-step TD (Sutton, 1988),
performs the update v(St) ← Vt + αtδt, where αt ∈ (0, 1] is the step size. TD(0) is a special case
of TD(λ) (Sutton, 1988), one of the earliest and most widely used TD methods. TD(λ) is able
to assign credit simultaneously to multiple states through the use of eligibility traces (Klopf, 1972;
Barto et al., 1983; Sutton, 1984), a function z : S → R that tracks recent state visitations. On each
time step, TD(λ) performs the following updates:

z(s)← γλ z(s) , ∀ s ∈ S , z(St)← z(St) + 1 , v(s)← v(s) + αtδt z(s) , ∀ s ∈ S , (1)

where λ ∈ [0, 1] is the recency hyperparameter. Every eligibility trace is unconditionally decayed by
a factor of γλ, but only the trace for the current state is incremented. Then, every state is updated
in proportion to its eligibility trace, using the current TD error. Eligibility traces are an efficient
mechanism for assigning credit to recently visited states.

The above updates are known as the backward view of TD(λ). An alternative perspective is the
forward view. Suppose we hold the value function and step size fixed, and track the cumulative
update for a single state visitation. We would find that the state is updated according to

v(St)← Vt + αt

(
Gλ

t − Vt) , (2)

where Gλ
t

def= Vt +
∞∑

i=0
(γλ)iδt+i . (3)

The forward and backward views are equivalent under the conditions described above (Sutton, 1988;
Watkins, 1989). The quantity defined in Eq. (3) is known as the λ-return and represents the theoreti-
cal target of the TD(λ) update. Although the forward view is acausal and not directly implementable
as an online algorithm, it reveals the temporal relationship between a state and the degree to which
future TD errors are reinforced. The exponential decay of Eq. (3) represents a form of recency
heuristic, the assumption that the causality between events weakens as the time between them in-
creases. Mathematically, the hyperparameter λ controls the bias-variance trade-off by interpolating
between high-bias 1-step TD (λ = 0) and high-variance Monte Carlo (λ = 1) methods (Kearns &
Singh, 2000). As we show next, non-exponential implementations of the recency heuristic are also
possible; however, they do not enjoy the same efficient implementation with eligibility traces.

n-step Returns and Compound Returns More generally, TD methods can be expressed as a
forward-view update in terms of an arbitrary return estimate, Ĝt:

v(St)← Vt + αt

(
Ĝt − Vt

)
. (4)

This operation is known as a value backup, and we refer to the estimate Ĝt as its target. We already
established in Eq. (2) that the λ-return, Gλ

t , is one possible target. Another common target is
the n-step return (Watkins, 1989; Cichosz, 1995), defined as G

(n)
t

def=
∑n−1

i=0 γiRt+i + γnVt+n, where
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n ≥ 1 determines the length of the return. Just like the λ-return, the n-step return interpolates
between high-bias TD (n = 1) and high-variance Monte Carlo (n = ∞) methods. Although not
commonly used, the n-step return admits a forward-view cumulative error similar to Eq. (3):

G
(n)
t = Vt +

n−1∑

i=0
γiδt+i , (5)

This reveals that the n-step return also satisfies the recency heuristic, albeit a weaker notion than
that of the λ-return (see Section 3). Nevertheless, it still fulfills the basic assumption that TD errors
nearer in time to a given state should be reinforced, whereas those farther away should not. The
n-step return is also useful as a fundamental building block for constructing other estimates. For
instance, the λ-return from Eq. (3) is equivalent to a weighted average of n-step returns:

Gλ
t = (1− λ)

∞∑

n=1
λn−1G

(n)
t . (6)

More generally, we can consider arbitrary convex combinations of n-step returns, strictly generalizing
both λ-returns and n-step returns. Let (cn)∞

n=1 be a sequence of nonnegative weights such that∑∞
n=1 cn = 1. We refer to the following estimate as a convex return:

Gc
t

def=
∞∑

n=1
cnG

(n)
t . (7)

When at least two weights are nonzero, a convex return becomes a weighted average of n-step returns
known as a compound return (Watkins, 1989; Sutton & Barto, 2018; Daley et al., 2024). Examples
of compound returns include λ-returns, γ-returns (Konidaris et al., 2011), and Ω-returns (Thomas
et al., 2015). In Section 5, we show that the definition of a convex return is inherently related to the
recency heuristic. Prior to our work, convex returns were the most general form of return estimator
for TD learning, but we generalize them further in Section 5.

Value-Function Operators and Convergence Conditions We have discussed a variety of TD
methods based on forward-view return estimates, but we have not yet established what makes an
estimate valid for learning. Convergence to vπ is perhaps most easily seen from the perspective
of value-function operators. An operator H : R|S| → R|S| transforms a value function. The most
fundamental value-function operator is the Bellman operator (Bellman, 1957), defined as

Tπv
def= r + γPπv , where (Pπv)(s) def=

∑

a∈A
π(a|s)

∑

s′∈S
p(s′|s, a) v(s′) .

Note that r and v here are treated as vectors in R|S|, and Pπ is treated as a |S|×|S| stochastic matrix.
Let T n

π v
def= TπT n−1

π v and T 0
π v

def= v. The n-iterated Bellman operator, T n
π , corresponds to the n-step

return. Hence, convex returns are associated with the operator v 7→∑∞
n=1 cnT n

π v. More generally,
every value backup like Eq. (4) is equivalent to the noisy application of some operator, H, to an
element of the value function. That is, a return estimate can be represented as Ĝt = (Hv)(St) + ωt,
where ωt is zero-mean noise. TD updates can thus be expressed in the form

v(s)←
{

(1− αt) v(s) +αt

(
(Hv)(s) + ωt

)
, if s = St ,

v(s) , otherwise.
(8)

To produce a TD method of the form of Eq. (4) that converges to vπ under general conditions
(e.g., Bertsekas & Tsitsiklis, 1996, Proposition 4.4), it is required that H is a maximum-norm
contraction mapping with vπ as its unique fixed point, and that the step sizes are annealed such
that

∑∞
t=0 αt =∞ and

∑∞
t=0 α2

t <∞ (Robbins & Monro, 1951). An operator H is a contraction
mapping if and only if ∥Hv −Hv′∥∞ ≤ β∥v − v′∥∞, where β ∈ [0, 1) is the contraction modulus.
All of the operators discussed so far satisfy these properties because they are convex combinations of
n-step Bellman operators, each of which are contraction mappings around vπ with a modulus of γn.
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3 Formalizing the Recency Heuristic

In this section, we precisely define the notion of the recency heuristic. We consider a general
estimator for TD learning of the form

Ĝt = Vt +
∞∑

i=0
hiγ

iδt+i , (9)

where (hi)∞
i=0 is a sequence of real numbers. Although this may appear to be restrictive, we show in

Section 5 that it can represent every valid return estimate (i.e., converges to vπ) that comprises a
linear combination of future rewards and state values, and thus is implementable as a TD method.

We can think of Eq. (9) as an abstract form of TD(λ): one with an arbitrary stimulus-response model
rather than the familiar exponential decay. At time t, the agent experiences an external stimulus
modulated by the current environment state, St. Positive or negative reinforcement subsequently
arrives in the form of the TD errors, (δt, δt+1, δt+2, . . . ). Each weight, hi, determines the agent’s
receptiveness, or eligibility, to learn from the TD error that occurs exactly i steps after the initial
stimulus. In this view, a return estimate, Ĝt, is uniquely determined by the impulse response of a
linear time-invariant system encoded by (hi)∞

i=0. One possible interpretation of the recency heuristic,
then, is a constraint on the impulse response such that it never increases after the initial stimulus.
This gives us the following definition.
Definition 3.1 (Weak Recency Heuristic). A return estimate satisfies the weak recency heuristic if
and only if it has the form of Eq. (9), and hi ≥ hi+1 ≥ 0 holds for all i ≥ 0.

We show in Section 5 that this definition is highly related to the question of whether (and how
fast) TD learning using this estimator converges in expectation, but it is slightly weaker than what
is typically thought of as the recency heuristic. For instance, Sutton (1984, p. 94) is explicit that
“Credit assigned should be a monotonically decreasing function of the time between action and re-
inforcement, approaching zero as this time approaches infinity.” The credit-assignment function in
Definition 3.1 is merely nonincreasing, and so we refer to it as the weak recency heuristic. Alterna-
tively, we refer to the monotonically decreasing case as the strong recency heuristic, defined below.
Definition 3.2 (Strong Recency Heuristic). A return estimate satisfies the strong recency heuristic
if and only if it has the form of Eq. (9), and hi > hi+1 > 0 holds for all i ≥ 0.

Notice that Definition 3.2 implies Definition 3.1. We make the distinction between these more
concrete with a few examples. The λ-return, used by TD(λ), is the canonical example of the strong
recency heuristic; its eligibility weights in Eq. (3) are strictly decreasing for any λ ∈ (0, 1). In
contrast, the n-step return remains equally receptive to the first n TD errors, and then abruptly
stops responding to the ones afterwards. However, these two updates are alike in that the weights
never increase at any point: they both satisfy the weak recency heuristic. We could also imagine
arbitrary weights in Eq. (9) that do not satisfy either definition of recency heuristic. For example,
the inverted-U shape described by Klopf (1972) takes time to reach its peak value before falling back
to zero, and thus violates Definitions 3.1 and 3.2. Similarly, we can take the standard spike-and-
decay model of a λ-return and introduce a delay between the initial stimulus and the response. Both
of these could exploit some known structure regarding the agent’s environment, and may be more
biologically plausible, but their mathematical implications are not yet known. These four examples
are graphed in Figure 1. Notably, there are many more possibilities in Eq. (9), most of which have
not yet been explored.

4 What Happens When the Recency Heuristic Is Violated?

We conduct an experiment to demonstrate that on-policy TD learning with a tabular value function
can diverge when the recency heuristic is violated. This is surprising, since one view of the TD-error
weights, (hi)∞

i=0, is that they encode a belief over the time when rewards will arrive following a
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Figure 2: (Left) MRP for Counterexample 4.1; rewards are zero. (Center) Credit-assignment func-
tion for delayed TD(0). (Right) Expected update directions of Eq. (10) for τ = 1, γ = 0.9, p = 0.4.

stimulus. Ideally, these weights could represent any shape for the credit-assignment function and
the agent would still learn the correct value function, yet this does not appear to be the case.

We test perhaps the simplest possible example of non-recent credit assignment: an update based on
a single, future TD error. More specifically, we generalize TD(0) by introducing a delay of τ ≥ 0:

v(St)← Vt + αtγ
τ δt+τ . (10)

The impulse response for this method is generally given by hi = 1 if i = τ , and hi = 0 otherwise.
That is, the eligibility curve is a square pulse initiated exactly τ steps after the initial stimulus (see
Figure 2, center). The operator corresponding to this update is H : v 7→ v + (γPπ)τ (Tπv− v). The
fixed point of this operator is vπ for any value of τ because Tπvπ − vπ = 0.

Notice that this is a rather benign form of non-recent credit assignment; we are taking the simplest
TD method and merely translating its impulse response along the time axis. More complex forms of
non-recent credit assignment would consist of a superposition of multiple such updates, and so this
example provides insight into other methods. Nevertheless, despite the simplicity of this method, we
present a simple Markov reward process (MRP) that causes almost every value-function initialization
to diverge away from vπ.

Counterexample 4.1. Consider a 2-state MRP with reward r(s, s′) = 0, ∀ s, s′ ∈ {s1, s2}. Let
p ∈ [0, 1] be the self-transition probability (see Figure 2, left) and let v0 be the initial value function.
If τ = 1, γ = 0.9, and p = 0.4, then the TD update in Eq. (10) diverges whenever v0(s1) ̸= v0(s2).

We give specific values of τ , γ, and p for the sake of the counterexample; however, it appears that
divergence is inevitable for any τ > 0 as γ → 1 and p→ 0. The divergent behavior of the method is
visualized in Figure 2 (right), where the arrows represent unit vectors pointing in the direction the
expected update (i.e., Hv − v). Because the reward is zero for all transitions, vπ is the origin (red
star) regardless of γ and p. However, we see that every value-function initialization not on the blue
line where v0(s1) = v0(s2) progresses arbitrarily far away from the fixed point, vπ.

Why does violating the recency heuristic in this easy problem cause divergence? The reason becomes
more clear when we observe that γτ δt+τ = G

(τ+1)
t −G

(τ)
t . Thus, an equivalent operator for Eq. (10)

is v 7→ v + T τ+1
π v − T τ

π v, whose worst-case contraction modulus is 1 + γτ+1 + γτ by the triangle
inequality—greater than 1. Although this does not automatically mean the operator will diverge, it
does suggest that divergence is possible, and we see one instance of it here. It is important to note
that this divergence is not due to sampling noise nor an uneven state distribution, as we are explicitly
computing the expected result of the operator in both states. Furthermore, the phenomenon is not
unique to this particular algorithm or problem, but generally arises whenever the weak recency
heuristic is violated too much. We prove this formally in the next section.
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5 Only Convex Returns Satisfy the Weak Recency Heuristic

Recall that convex returns are convex combinations of n-step returns: either compound returns
or n-step returns themselves. In this section, we show this definition is logically equivalent to the
weak recency heuristic; Definition 3.1 is satisfied if and only if a return estimate is convex (see
Proposition 5.2).

To illuminate the role of the weak recency heuristic, we first justify the general return estimator in
Eq. (9). In particular, we show that estimates of this form correspond to the largest set of linear
operators suitable for TD learning. This allows us to later analyze how the properties of these
operators are affected by the choice of the weights, (hi)∞

i=0, especially when these weights do not
satisfy the recency heuristic.

To produce a TD method in the form of Eq. (4) that converges to vπ under general conditions, the
return estimate Ĝt must correspond to a maximum-norm contraction mapping, H, with its unique
fixed point at vπ (recall Section 2). In addition to these requirements, we want a sample-realizable
operator in order to create an implementable TD method: one that can be constructed from any
rewards or state values following time t. To match existing TD methods, we assume that this
operator is linear with respect to these quantities, giving us the following definition.
Definition 5.1. A sample-realizable linear operator has the form Hv =

∑∞
i=0 ai(γPπ)ir+bi(γPπ)iv,

where (ai)∞
i=0 and (bi)∞

i=0 are bounded sequences of real numbers.

This definition covers all possible operators based on return estimates that can be constructed from
a linear combination of sampled experiences: i.e., Ĝt =

∑∞
i=0 aiγ

iRt+i +biγ
iVt+i. However, the vast

majority of these operators will not meet our convergence criteria. In the following proposition, we
reduce the space of operators by identifying only those whose fixed point is exactly vπ.
Proposition 5.1. For every sample-realizable operator H whose fixed point is vπ, there exists a
sequence of real numbers (hi)∞

i=0 such that

Hv = v +
∞∑

i=0
hi(γPπ)i(Tπv − v) . (11)

If we let cn
def= hn−1 − hn for n ≥ 1, then H also has the equivalent form

Hv =
(

1−
∞∑

n=1
cn

)
v +

∞∑

n=1
cnT n

π v . (12)

Proof. See Appendix A.1.

Notice that Eq. (11) corresponds exactly to the sample estimate in Eq. (9) that we considered in
Section 3 when defining the weak recency heuristic. We refer to these as linear returns. Hence,
every linear return with vπ as its fixed point is expressible as a weighted sum of either TD errors or
n-step returns, without loss of generality.

We now have a generic operator that is both sample realizable and has the correct fixed point, but
it is not necessarily a contraction mapping without any conditions on its weights, (hi)∞

i=0 . Eq. (12)
expresses the operator in terms of the n-step Bellman operators, facilitating the analysis of its
contraction properties. Because Pπ is a stochastic matrix, we have ∥Pπ∥∞ = 1, which also implies
that ∥T n

π v − T n
π v′∥∞ ≤ γn∥v − v′∥∞, for any v, v′ ∈ R|S|. Thus, by the triangle inequality,

∥Hv −Hv′∥∞ ≤
(∣∣∣∣∣1−

∞∑

n=1
cn

∣∣∣∣∣+
∞∑

n=1
|cn|γn

)
∥v − v′∥∞ , (13)

and the contraction modulus is therefore β = |1−∑∞
n=1 cn|+

∑∞
n=1 |cn|γn. The operator is a con-

traction mapping if and only if β < 1.
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Notice that Eq. (12) consists of two terms: the original value function scaled by 1 −∑∞
n=1 cn, and

a linear combination of n-step returns. The first term can be eliminated without loss of generality
by normalizing the sum of weights, i.e., by adding the constraint that

∑∞
n=1 cn = 1. This is because

the first term changes only the magnitude of the update, which can be absorbed into the step size,
αt, in Eq. (8). With this constraint in place, it follows that the weight of the first TD error is h0 = 1
because of the telescoping series: h0 =

∑∞
n=1 hn−1 − hn =

∑∞
n=1 cn = 1. The operator is now an

affine combination of n-step Bellman operators, and so we refer to such return estimates as affine
returns. Note that, since we have h0 = 0 in Eq. (10) when τ > 0, the divergent return estimate
in Counterexample 4.1 is not an affine return, although it is linear. Affine returns look identical to
convex returns from Eq. (7), but they are more general because they allow for negatively weighted
n-step returns. We depict the hierarchical relationship between linear, affine, convex, compound,
and n-step returns in Figure 3, and summarize their operators and corresponding sample estimates
in Table 1.

This analysis provides a hint of why counterexamples like the one in Section 4 are possible; negative
weights increase the contraction modulus due to the absolute value in Eq. (13). It turns out that
such negative weights coincide exactly with the time steps on which the weak recency heuristic is
violated, and therefore only convex returns satisfy the heuristic, as we show in the next proposition.
Proposition 5.2. An affine return satisfies the weak recency heuristic if and only if it is a convex
return (i.e., a compound return or an n-step return).

Proof. See Appendix A.2.

Linear

Affine

n-stepCompound

Convex

Figure 3: Hierarchical relationship between differ-
ent return estimators. A return satisfies the weak
recency heuristic if and only if it is a convex re-
turn: i.e., a compound or n-step return.

An immediate corollary of the above is that the
weak recency heuristic is a sufficient condition
for convergence, since both compound returns
and n-step returns are already known to corre-
spond to contraction mappings (Watkins, 1989,
Sec. 7.2). This stems from the fact that a convex
combination of n-step returns, each of which is
contractive with modulus γn, must also be con-
tractive: i.e.,

∑∞
n=1 cnγn ≤ γ < 1 for every

choice of nonnegative weights that sum to one.
In this view, the weak recency heuristic can be
seen as a convergence test for TD learning, and
explains some of its utility in computational RL:
divergence is impossible under this heuristic.

On the other hand, violating the weak recency
heuristic increases the contraction modulus of
the return estimator, with divergence possible
if the violation becomes too extreme (e.g., Counterexample 4.1). This is because any time an n-
step return has a negative weight, another n-step return must have a larger positive weight to
counterbalance it and ensure the weights sum to 1 overall. This necessarily increases the contraction
modulus in Eq. (13) due to the absolute value, underscoring yet another benefit of the weak recency
heuristic. A convex return is not only guaranteed to converge regardless of its weights, but also has
a faster contraction than a nonconvex (affine) return constructed from the same n-step returns.

6 Are Monotonically Decreasing Weights Necessary?

So far, we have focused on the weak recency heuristic: when the eligibility weights are nonincreasing.
However, as we discussed in Section 3, the connotation of the recency heuristic is often that of strictly
decreasing TD-error weights, i.e., the strong recency heuristic (Definition 3.2). This is why, for ex-
ample, λ-returns are more strongly associated with a recency heuristic than n-step returns are. Does
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Name Operator Sample Estimate Conditions

Linear
(

1−
∞∑

n=1
cn

)
v +

∞∑
n=1

cnT n
π v

(
1−

∞∑
n=1

cn

)
Vt +

∞∑
n=1

cnGn
t None

Affine
∞∑

n=1
cnT n

π v
∞∑

n=1
cnGn

t

∞∑
n=1

cn = 1 and
∞∑

n=1
|cn|γn < 1

Convex
∞∑

n=1
cnT n

π v
∞∑

n=1
cnGn

t Affine and cn ≥ 0, ∀ n ≥ 1

Compound
∞∑

n=1
cnT n

π v
∞∑

n=1
cnGn

t Convex and ∃ ci, cj > 0

n-step T n
π v Gn

t n ≥ 1

Table 1: Summary of operators and sample estimates for the return estimators in Figure 3.

this distinction between weak and strong recency heuristics matter in practice? In this section, we
conduct experiments indicating that the answer is yes, but in a surprising way; the smoothness of the
weights do not appear to be significant, but the strong recency heuristic does imply that the return
estimate consists of infinitely many n-step returns, which empirically improves credit assignment.

To test the question of whether the smoothness of the TD-error weights matters, we introduce the
sparse λ-return, defined as

Gλ,m
t

def=
∞∑

i=0
γiλ⌊ i+m−1

m ⌋δt+i = (1− λ)
∞∑

k=1
λk−1G

(m(k−1)+1)
t , (14)

where m ≥ 1. The contraction modulus of this return is β = γ(1− λ) / (1− γmλ). When m = 1, we
simply recover the standard exponential decay of the λ-return from Eq. (6). However, for m > 1,
the TD-error weights no longer satisfy the strong recency heuristic as they become more stepwise
(see Figure 5). This implies that every m−1 out of m n-step returns have zero weight. For example,
setting m = 2 generates the TD-error weight sequence (1, λ, λ, λ2, λ2, . . . ), which produces an
exponential average of the odd n-step returns: (G(1)

t , G
(3)
t , G

(5)
t , G

(7)
t , G

(9)
t , . . . ). The reason we choose this

form is because it isolates the effects of the two recency heuristics by keeping the type of weighted
average consistent (i.e., exponential). If monotonicity is beneficial to learning, then we would expect
to observe a performance degradation for sparse λ-returns (m > 1) compared to dense (m = 1).

Our experiment setup is a discounted variation (γ = 0.99) of the 19-state random walk from Sutton
& Barto (2018, Sec. 12.1). In this environment, each episode starts with the agent in the center of
a linear chain of 19 connected states (see Figure 4). The agent can move either left or right, and its
behavior is fixed such that it randomly chooses either action with equal probability. Reaching either
end of the chain terminates the episode and yields a reward: −1 for the left or +1 for the right.

We test three different degrees of sparsity for the λ-returns, adjusting λ for each return to maintain
the same contraction modulus in all cases: (λ, m) ∈ {(0.9, 1), (0.75, 3), (0.65, 5)}. The agents are
trained for 10 episodes by applying offline value backups of the form Eq. (4) to every experience
at the end of each episode. In Figure 6, we plot the root-mean-square (RMS) error, ∥v − vπ∥2,

1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 192

start

Figure 4: The 19-state random walk (Sutton & Barto, 2018, Sec. 12.1).
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averaged over the 10 episodes versus the step size, α, for each return. The final results are averaged
over 400 trials with 95% confidence intervals indicated by shaded regions. Code is available online.1
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Figure 5: Impulse responses of
λ-returns with varying degrees of
sparsity.

Figure 6: Random-walk perfor-
mance of λ-returns with varying
degrees of sparsity.

Because the three returns
all have the same con-
traction modulus (i.e.,
expected convergence
rate), their performance
is nearly the same for
small values of α which
are able to average out
the noise in the updates.
Likewise, the returns
share the same lowest
error, as indicated by the
dashed horizontal lines
in Figure 6. However,
as α gets larger, their
performance begins to
separate, achieving lower
average error as the
sparsity of the λ-return
increases. Thus, even though the eligibility curves become more step-like as the sparsity is increased
and they violate the strong recency heuristic, the overall performance of the return improves.
This demonstrates that the monotonicity of the eligibility curves does not directly factor into the
performance of the return estimators.

The main reason for the sparse λ-return’s improvement appears to be that its eligibility initially
decays faster than that of the dense λ-return, but then slower as time goes on (see Figure 5). This
gives the eligibility curve a long-tailed characteristic which, in turn, propagates credit back in time
more quickly. In fact, every return that satisfies the strong recency heuristic must have a similar
characteristic, because Definition 3.2 implies that cn = hn−1−hn > 0 for all n ≥ 1, and thus Eq. (7)
must correspond to a positively weighted average of infinitely many n-step returns. Although this
property is not unique to the strong recency heuristic (e.g., the sparse λ-return has it but does not
satisfy Definition 3.2), it does suggest a practical significance for this heuristic: it implies a longer
horizon for credit assignment.

However, any benefit of a longer credit-assignment horizon is contingent on controlling the variance
of the return. Fortunately, as we show in the following proposition, a long-tailed eligibility curve
does not increase the worst-case variance when the contraction modulus is held constant.
Proposition 6.1. Let κt

def= maxi,j≥0 Cov[δt+i, δt+j | St]. The worst-case conditional variance of
any convex return Gc

t with contraction modulus β has the bound

Var[Gc
t | St] ≤

(
1− β

1− γ

)2
κt . (15)

Proof. See Appendix A.3.

This bound is rather loose, but it is general. Eq. (15) implies that averages of n-step returns
always have finite variance, even as the n-step returns become arbitrarily long. Furthermore, this
upper bound depends only on the contraction modulus of the return itself and not the chosen
weights for the average. Since the contraction modulus is proportional to the worst-case bias of the
return by Eq. (13), we see that both the worst-case bias and worst-case variance of the λ-returns
in our previous experiment remain the same regardless of sparsity. Thus, compound returns with a

1https://github.com/brett-daley/recency-heuristic
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long-tailed eligibility curve are able to assign credit more quickly without negatively impacting the
bias-variance trade-off2 (at least, in a worst-case sense).

To test the effect of a longer credit-assignment horizon under a controlled contraction
modulus, we repeat the previous random-walk experiment but with truncated λ-returns:
Gλ

t:t+N
def= Vt +

∑N−1
i=0 (γλ)iδt+i = (1− λ)

∑N−1
n=1 λn−1G

(n)
t + λN−1G

(N)
t , where N ≥ 1 is the trunca-

tion length. The contraction modulus of this return is β =
(
(1 − γ)(γλ)N + γ(1 − λ)

)
/ (1 − γλ).

The eligibility curve for this return is a monotonically decreasing function, up until time N when
it abruptly falls to zero (see Figure 7). As N → ∞, we recover the true λ-return, Eq. (6). We
test three variants of this return: (λ, N) ∈ {(0.99, 10), (0.93, 20), (0.9,∞)}. As before, all of these
values are chosen to produce approximately the same contraction modulus. We plot the average
RMS error in Figure 8, again averaged over 400 trials with 95% confidence intervals shaded. The
performance is roughly identical when α is small, since the same contraction modulus guarantees
the same expected performance. However, as α gets larger, the truncated returns perform poorly
compared to the full λ-return. This suggests that the performance of the returns is strongly tied to
longer n-step returns in the average, but only when the contraction moduli are equalized. This also
supports our earlier hypothesis that the results observed with the sparse λ-returns in Figure 6 are
due to their long-tail eligibility curves and not some other property such as monotonicity.
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Figure 7: Eligibility curves of λ-
returns with varying degrees of
truncation.

Figure 8: Random-walk perfor-
mance of λ-returns with varying
degrees of truncation.

To summarize, satisfy-
ing the strong recency
heuristic creates a com-
pound return consisting
of infinitely many n-step
returns—a long-tailed el-
igibility curve. This im-
proves the effective win-
dow of credit assign-
ment without exacerbat-
ing variance (in a conser-
vative sense), as long as
the contraction modulus
is held constant. How-
ever, this property is not
unique to the strong re-
cency heuristic; for in-
stance, sparse λ-returns
violate this heuristic, but
are still averages of infinitely many n-step returns, and outperform dense λ-returns in Figure 6.
These insights help explain why smooth averages like the λ-return are often effective in practice,
even if not strictly necessary for good performance.

7 Off-Policy Learning and Other Extensions

The weak recency heuristic is closely tied to an open problem on the convergence of off-
policy eligibility traces (Daley et al., 2023, Sec. 5.3). Off-policy learning occurs whenever the
agent’s policy for action selection, b, differs from the policy for return estimation, π. Let
ρt+i

def= π(At+i|St+i) / b(At+i|St+i) be the importance-sampling ratio. Daley et al. (2023) proved that
satisfying hiρt+i+1 ≥ hi+1 ≥ 0, ∀ i ≥ 0, is sufficient for the off-policy update analogous to Eq. (9) to
converge to vπ, where the TD-error weights can generally be trajectory aware (i.e., dependent on past
state-action pairs). The open problem is to determine whether this condition is necessary as well.

2In fact, it is likely such long-tailed returns have a positive impact on the bias-variance trade-off by reducing vari-
ance, under an additional assumption that the TD-error variances are roughly uniform (see Daley et al., 2024, Sec. 6).
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Notably, the condition is exactly the off-policy generalization of the weak recency heuristic (Def-
inition 3.1), since ρt+i = 1 when π = b. Based on the analysis in Section 5, we know that it is
sometimes possible to violate this heuristic and still converge, and so the condition is sufficient but
not necessary. We provide more details in Appendix B, where we also extend our theory to state-
dependent eligibilities (e.g., Yu, 2012; White & White, 2016) and function approximation (Tsitsiklis
& Van Roy, 1997). These results show that the possibility of divergence like in Counterexample 4.1
is a general phenomenon of TD learning when not utilizing a recency heuristic.

8 Conclusion

Although non-recent credit assignment should theoretically be possible and useful in certain learning
environments, it does not seem readily compatible with our current formulation of TD learning.
In particular, violating the recency heuristic manifests as negative weights on some of the n-step
components of the return target. These negative weights appear to counteract learning by increasing
the contraction modulus, without offering a clear benefit to learning, and potentially culminating
in divergence as demonstrated by Counterexample 4.1. The fact that divergence is possible in such
a favorable setting—an on-policy, tabular MRP with fully observable states—points to the severity
of this issue. Indeed, as we discussed in Section 7, this issue persists in more challenging settings
including off-policy learning and function approximation. Successfully implementing new forms of
credit assignment that do not strictly follow the recency heuristic will likely require rethinking how
we formulate the reinforcement signal in computational RL. Our theory will provide a good starting
point for algorithmic development in this direction.

Another major finding is that the recency heuristic is not merely a simple protocol for addressing the
temporal credit-assignment problem, but also has intrinsic importance for learning value functions.
The existence of diverging counterexamples illuminates the critical role of nonincreasing weights
on the TD errors—the weak recency heuristic. The logical equivalence between this heuristic and
the return estimate’s ability to be expressed as a convex combination of n-step returns unifies two
fundamental yet seemingly disparate ideas in RL. More specifically, convex returns were the most
general return estimates for TD learning identified before our work, and so it is surprising to find
they coincide exactly with another foundational concept in RL: the recency heuristic. This appears
to be a novel, unifying perspective between the forward and backward views of TD learning with
arbitrary return estimates. In the off-policy setting, the weak recency heuristic is equivalent to the
convergence condition for eligibility traces discovered by Daley et al. (2023), providing more evidence
for its importance in learning value functions.

Finally, our results help to further explain the strong empirical performance and continued popularity
of TD(λ), along with its many variants, for nearly four decades. Our experiments suggest that the
smoothness of TD(λ)’s exponential decay is not directly responsible for this success; rather, all
compound returns (including λ-returns) that average an infinite number of n-step returns are able
to distribute credit over a longer period without exacerbating the maximum bias or variance. These
results confirm the intuition that “the fading strategy [of TD(λ)] is often the best [versus n-step TD
methods]” (Sutton & Barto, 2018, p. 304), though non-exponential fading strategies are also viable.
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A Proofs

This section contains the omitted proofs of all propositions in the paper.

A.1 Proof of Proposition 5.1

Proposition 5.1. For every sample-realizable operator H whose fixed point is vπ, there exists a
sequence of real numbers (hi)∞

i=0 such that

Hv = v +
∞∑

i=0
hi(γPπ)i(Tπv − v) . (11)

If we let cn
def= hn−1 − hn for n ≥ 1, then H also has the equivalent form

Hv =
(

1−
∞∑

n=1
cn

)
v +

∞∑

n=1
cnT n

π v . (12)

Proof. It is given that H is sample realizable. Without loss of generality, we consider an alterna-
tive parameterization of Definition 5.1 that spans the same space of linear operators. There exist
sequences of real numbers (xi)∞

i=0 and (yi)∞
i=0 such that

Hv = v +
∞∑

i=0
(γPπ)i

[
xi(r + γPπv)− yiv

]

= v +
∞∑

i=0
(γPπ)i

[
xi(r + γPπv − v) + (xi − yi)v

]

= v +
∞∑

i=0
(γPπ)i

[
xi(Tπv − v) + (xi − yi)v

]

= v +
∞∑

i=0
xi(γPπ)i(Tπv − v) +

∞∑

i=0
(xi − yi)(γPπ)iv .

Because Tπvπ = vπ, it follows that Hvπ = vπ +
∑∞

i=0(xi − yi)(γPπ)ivπ . To ensure that vπ is
the fixed point of H (i.e., that Hvπ = vπ), we must make the remaining sum zero. However, this
happens only when xi = yi, ∀ i ≥ 0 . Thus, we substitute hi = xi and hi = yi to get Eq. (11).

To derive Eq. (12), we apply the fact that hi =
∑∞

n=i+1 cn due to the telescoping series. We
complete the proof by rewriting Eq. (11) as

Hv = v +
∞∑

i=0

( ∞∑

n=i+1
cn

)
(γPπ)i(Tπv − v)

= v +
∞∑

n=1
cn

n−1∑

i=0
(γPπ)i(Tπv − v)

= v +
∞∑

n=1
cn(T n

π v − v)

=
(

1−
∞∑

n=1
cn

)
v +

∞∑

n=1
cnT n

π v .

The second equality interchanged the sums using the rule
∑∞

i=0
∑∞

n=i+1 =
∑∞

n=1
∑n−1

i=0 . The third
equality followed from the n-step Bellman operator expansion: T n

π v = v+
∑n−1

i=0 (γPπ)i(Tπv−v).
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A.2 Proof of Proposition 5.2

Proposition 5.2. An affine return satisfies the weak recency heuristic if and only if it is a convex
return (i.e., a compound return or an n-step return).

Proof. Recall that cn = hn−1 − hn. Therefore, the affine operator from Eq. (12) is equal to

Hv =
∞∑

n=1
(hn−1 − hn) T n

π v . (16)

If the weak recency heuristic (Definition 3.1) holds, then we have hn−1 ≥ hn =⇒ hn−1 − hn ≥ 0,
for all n ≥ 1. Thus, Eq. (16) is a convex combination of n-step returns, because we have∑∞

n=1 hn−1 − hn =
∑∞

n=1 cn = 1 for an affine return.

To complete the proof, we also show the contrapositive. Consider an affine return that is not a
convex combination of n-step returns. Consequently, it must have at least one negatively weighted
n-step return: there exists some k ≥ 1 such that ck < 0. However, this implies that hk−1 − hk < 0,
and therefore hk−1 < hk, so the weak recency heuristic is violated. We conclude that an affine return
satisfies the weak recency heuristic if and only if it is a convex return.

A.3 Proof of Proposition 6.1

Proposition 6.1. Let κt
def= maxi,j≥0 Cov[δt+i, δt+j | St]. The worst-case conditional variance of

any convex return Gc
t with contraction modulus β has the bound

Var[Gc
t | St] ≤

(
1− β

1− γ

)2
κt . (15)

Proof. First, note that Var[Ĝt | St] = Var[Ĝt − Vt | St] for any return estimate, Ĝt, since Vt is
deterministic given state St. This allows us to derive an upper bound on the covariance between
two n-step returns with lengths n1 and n2 using Eq. (5):

Cov[G(n1)
t , G

(n2)
t | St] = Cov

[
n1−1∑

i=0
γiδt+i,

n2−1∑

j=0
γjδt+j

∣∣∣∣∣ St

]

=
n1−1∑

i=0

n2−1∑

j=0
γi+jCov[δt+i, δt+j | St]

≤
n1−1∑

i=0

n2−1∑

j=0
γi+jκt

= Γ(n1) Γ(n2) κt ,

where Γ(n) def= (1−γn)/ (1−γ) is the n-th partial sum of the geometric series. Because
∑∞

n=1 cn = 1
and β =

∑∞
n=1 cnγn for a convex return, we also have

∞∑

n=1
cn Γ(n) =

∞∑

n=1
cn

(
1− γn

1− γ

)
= 1−∑∞

n=1 cnγn

1− γ
= 1− β

1− γ
.
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Therefore, we derive the following upper bound on the variance of a convex return:

Var[Gc
t | St] =

∞∑

i=1

∞∑

j=1
Cov[ciG

(i)
t , cjG

(j)
t | St]

=
∞∑

i=1

∞∑

j=1
cicjCov[G(i)

t , G
(j)
t | St]

≤
∞∑

i=1

∞∑

j=1
cicj Γ(i) Γ(j) κt

=
(

1− β

1− γ

)2
κt ,

which completes the proof.

B Extensions

This section contains extensions of our theory to off-policy learning, state- or trajectory-dependent
eligibility traces, and function approximation.

B.1 Function Approximation

Our results easily generalize to the case where the value function is approximated by a linear para-
metric function: Vt = x⊤

twt, where wt ∈ Rd is the value-function weights, and xt ∈ Rd is a feature
vector corresponding to state St. Because ∂

∂w Vt

∣∣
w=wt

= xt, the semi-gradient TD update becomes

wt+1 = wt + αt

(
Ĝt − Vt

)
xt .

Let X ∈ R|S|×d be the matrix whose rows correspond to the feature vectors for every state in S.
Because Hv generally cannot be represented exactly by the function approximator, the estimate
Ĝt corresponds to a composite linear operator ΠH, where Π is a projection operator onto the
set {Xw | w ∈ Rd} under the state weighting induced by the MDP’s stationary distribution
(Tsitsiklis & Van Roy, 1997). Furthermore, Π is nonexpansive, linear, and independent of wt

(Tsitsiklis & Van Roy, 1997, proof of Lemma 6); hence, if H is a contraction mapping, then so is
ΠH with the same maximum contraction modulus. This implies that violating the weak recency
heuristic too much can still increase the contraction modulus and cause divergence, just like in
Counterexample 4.1.

In the case of nonlinear function approximation, the existence of counterexamples is certain, as even
TD(0) diverges for at least one function (Tsitsiklis & Van Roy, 1997, Fig. 1).

B.2 State-Dependent Eligibility Traces

The general return estimate considered by our work, Eq. (9), determines the eligibility weights solely
based on the elapsed time since the initial state. Additionally, we can have weights that depend on
the actual states experienced on each time step (e.g., Yu, 2012; White & White, 2016). A return
estimate in this case has the form

Ĝt = Vt +
∞∑

i=0
hi(St+i) γiδt+i , (17)

where hi : S → R is now a weighting function over the state space. This estimate satisfies the weak
recency heuristic if

hi(s) ≥ hi+1(s′) ≥ 0 , ∀ i ≥ 0 , ∀ s, s′ ∈ S .
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The operator corresponding to Eq. (17) is (Hv)(s) = Eπ[Ĝt | St = s], i.e., a convex combination
of the estimates in Eq. (17). Therefore, it too satisfies the weak recency heuristic, except that the
weight at each time step is an average of random variables and cannot be explicitly written without
additional information about the MDP. Other than this minor difference, we see that the results
for state-based eligibility curves are analogous to the strictly time-based eligibility curves discussed
in our paper.

B.3 Off-Policy Learning and Trajectory-Aware Eligibility Traces

A further generalization of the state-dependent eligibility traces discussed in the previous section
is trajectory-aware eligibility traces (Daley et al., 2023). These have been studied in the con-
text of off-policy learning with action values, where the agent estimates the action-value function
qπ(s, a) def= E[Gt | (St, At) = (s, a)]. Additionally, it is assumed that the agent samples actions from
a behavior policy, b, that differs from the target policy, π. The off-policy bias resulting from the
mismatch between behavior and target distributions must be corrected to converge to qπ.

Let Ft:t+i
def= (St+j , At+j)i

j=0 be the partial history of the MDP from time t to t + i. Addi-
tionally, let δπ

t
def= Rt + γV̄t+1 − q(St, At) denote the mean TD error using action values, where

V̄t
def=
∑

a′∈A π(a′|St) q(St, a′). A trajectory-aware return estimate has the form

Ĝt = Vt +
∞∑

i=0
hi(Ft:t+i) γiδt+i ,

where hi : (S×A)i → R is a weighting function over partial histories. The corresponding operator is
(Hq)(s, a) = Eµ[Ĝt | (St, At) = (s, a)]. For the operator to converge to qπ, it is sufficient to satisfy
the following condition (Daley et al., 2023, Theorem 5.2):

hi(Ft:t+i) ρt+i+1 ≥ hi+1(Ft:t+i+1) ≥ 0 , ∀ i ≥ 0 , ∀ t ≥ 0 , (18)

where ρt+i
def= π(At+i|St+i) / b(At+i|St+i) is the importance-sampling ratio. An open problem is

whether this condition is necessary in addition to being sufficient (Daley et al., 2023, Sec. 5.3).
Rather interestingly, this condition is the off-policy analog of the weak recency heuristic, since
Eµ[ρt+i+1 | (St, At)] = 1 and therefore the inequality equates to Definition 3.1 in expectation.
Based on our analysis in Section 5, the heuristic can be slightly violated without increasing the
contraction modulus above 1, still allowing the operator to sometimes converge to qπ. We thus
settle the open problem in the negative: the condition in Eq. (18) is sufficient but not necessary for
the operator to converge to its fixed point.
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Abstract

Deep reinforcement learning (deep RL) has achieved tremendous success on var-
ious domains through a combination of algorithmic design and careful selection
of hyper-parameters. Algorithmic improvements are often the result of iterative
enhancements built upon prior approaches, while hyper-parameter choices are typ-
ically inherited from previous methods or fine-tuned specifically for the proposed
technique. Despite their crucial impact on performance, hyper-parameter choices
are frequently overshadowed by algorithmic advancements. This paper conducts an
extensive empirical study focusing on the reliability of hyper-parameter selection
for value-based deep reinforcement learning agents, including the introduction of a
new score to quantify the consistency and reliability of various hyper-parameters.
Our findings not only help establish which hyper-parameters are most critical to
tune, but also help clarify which tunings remain consistent across different training
regimes.

1 Introduction

Sequential decision making is generally considered an essential ingredient for generally capable
agents. The ability to plan ahead and adapt to changing circumstances is synonymous with the
concept of agency. For decades, the field of reinforcement learning (RL) has worked on developing
methods, or agents, for precisely this purpose. This research has borne impressive results, such as
developing agents which can play difficult Atari games (Mnih et al., 2015), control stratospheric
balloons (Bellemare et al., 2020), control a tokamak fusion reactor (Degrave et al., 2022), among
others. These are all examples of deep reinforcement learning (DRL), which combines the theory of
reinforcement learning with the expressiveness and flexibility of deep neural networks.

The success of these methods built on years of academic research, where novel algorithms and
techniques were introduced and showcased on academic benchmarks such as the ALE (Bellemare
et al., 2012), MuJoCo (Todorov et al., 2012), and others. These benchmarks typically consist of
a suite of environments that have varied transition and reward dynamics. Their common usage
provides us with a familiarity which affords us a sense of interpretability, a consistency in evaluation
that grants us a sense of reliability, and their variety yields a sense of generalizability. Unfortunately,
this promise often fails to materialize: their reliability has been brought into question by numerous
works which demonstrate their fickleness (Henderson et al., 2017; Agarwal et al., 2021), while there
is a general sentiment that researchers have “overfit” to these benchmarks, bringing into question

*Authors contributed equally. Correspondence to jobando0730@gmail.com,[joaogui,psc]@google.com
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their generalizability. A critical aspect to these challenges is the difficulty in training neural networks
in an RL setting (Ostrovski et al., 2021; Lyle et al., 2022; Sokar et al., 2023).

Although the successes above built on prior methods, they were not taken “as is”: it took large
teams of researchers many months and lots of compute to adapt prior work to their specific prob-
lem. These adaptations include changes to the network architectures, designing reward functions to
induce the desired behaviours, and careful tuning of the many hyper-parameters. This last point is
indeed essential to the success of any DRL method: improper hyper-parameter choices can cause
a theoretically sound method to drastically underperform, while careful hyper-parameter selection
can dramatically increase the performance of an otherwise sub-optimal method.

As an example of this dichotomy, we examine how DER (van Hasselt et al., 2019), a method that has
become a common baseline for the Atari 100k benchmark (Kaiser et al., 2019), came to be. DQN,
considered to be the start of the field of DRL research, was introduced by showcasing its super-
human performance on the ALE (Bellemare et al., 2012), a suite of 57 Atari 2600 games. This suite
became one of the most popular benchmarks on which to evaluate new methods over 200 million
environment frames1. A few years later, when Kaiser et al. (2019) introduced the SiMPLe algorithm
as a sample-efficient method, they argued for evaluating it only on 100k agent actions2 with a subset
of 26 games, so as to properly test the sample-efficiency of new methods. The authors demonstrated
that their proposed method outperformed Rainbow (Hessel et al., 2018), the state-of-the-art method
of the time. In response, van Hasselt et al. (2019) introduced Data Efficient Rainbow (DER), which
outperformed SiMPLe even though it was the same Rainbow algorithm, but with a careful tuning
of the hyper-parameters for the 100k training regime.

One could argue that the hyper-parameters of Rainbow were overly-tuned to the 200M benchmark,
while the hyper-parameters of DER were overly-tuned to the 100k benchmark. More importantly,
what this story highlights is that, despite careful evaluation it is quite likely that a new method will
not work as intended when deployed on a different environment from which it was trained on, and
that a significant amount of hyper-parameter tuning will be necessary. This flies in the face of the
supposed generalizability of DRL academic research, and makes it difficult for groups without large
computational budgets to successfully apply prior work to applied problems.

It thus behooves the community to develop a better understanding of the transferability and con-
sistency of hyper-parameter selection across different training regimes, and to build a better shared
understanding of the relative importance of the many possible hyper-parameters to tune. In this
work, we take a stride towards this by conducting an exhaustive empirical investigation of the various
hyper-parameters affecting DRL agents. We focus our attention on two value-based agents developed
for the Atari 100k suite: DER mentioned above, and DrQ(ε), a variant of DQN that was optimized
for the 100k suite. Although developed for the 100k suite, we also train these agents for 40M mil-
lion environment frames. Our intent is to examine the transferability of various hyper-parameter
choices across different training regimes. Specifically, we investigate: Across data regimes: Do
hyper-parameters selected in the 100k regime work well in a larger data regime? Across agents:
Do hyper-parameters selected for one agent work well in another? Across environments: Do
hyper-parameters tuned in one set of environments work well in others?

In total, we investigated 12 hyper-parameters with different values for 2 agents over 26 environments,
each for 5 seeds, resulting in a total of 108k independent training runs. This breadth of experimen-
tation results in an overwhelming amount of data which complicates their analyses. We address this
challenge in two ways: (i) We introduce a new score which provides us with an aggregate value for
the considerations mentioned above. (ii) We provide an interactive website where others may easily
navigate the large number of experimental figures we have generated.

1See (Machado et al., 2018) for more details on ALE evaluation standards.
2The standard for ALE agents is to use frame-skipping, where 4 environment frames occur for every agent action.

This results in frustratingly confusing nomenclature, as 200M is specified in environment frames (or 500k agent
actions), while 100k is specified in agent actions (or 400k environment frames).
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The score provides us with a high-level overview of our findings, while the website grants us a fine-
grained mechanism to analyze the results. We hope this effort provides the community with useful
tools so as to develop not just better DRL algorithms, but better methodologies to evaluate their
interpretability, reliability, and generalizability.

2 Background

The field of reinforcement learning studies algorithms for sequential decision-making problems. In
these settings, an algorithm (or agent) interacts with an environment by transitioning between
states and making action choices at discrete timesteps; the environment responds to each action
by (possibly) changing the agent’s state and yielding a numerical reward or cost. The goal of the
agent is to maximize the cumulative rewards (or minimize the cost) throughout its lifetime. This is
typically formalized as a Markov decision process (MDP) (Puterman, 2014) 〈X ,A,P,R, γ〉, where
X is the set of states, A is the set of available actions, P : X × A → ∆(X )3 is the transition
function, R : X × A → R is the reward function, and γ ∈ [0, 1) is a discount factor. An agent’s
behaviour is formalized by a policy π : X → ∆(A), whose value from any state x ∈ X is given
by the Bellman recurrence V π(x) := Ea∼π(x)

[
R(x, a) + γEx′∼P(x,a)V

π(x′)
]
. Q-functions allow us

to measure the value of taking any action a ∈ A from a state x ∈ X and following π afterwards:
Qπ(x, a) := R(x, a) + γEx′∼P(x,a)V

π(x′). A policy π∗ is considered optimal if for any policy π,
V ∗ := V π

∗ ≥ V π.
Solving for the equations discussed above would require access to both R and P, which are usually
unknown. Instead, RL typically assumes the agent has access to transitions τ := (x, a, r, x′) ∈
X ×A×R×X , arising from interactions with the environment. Given such a transition, Q-learning
(Watkins & Dayan, 1992) updates its estimate of Q via: Qt+1(x, a) ← Qt(x, a) + αTD(Q, τ),
where α is a learning rate and TD is the temporal-difference error, given by TD(Qt, τ) := r +
γmaxa′∈AQt(x′, a′) − Qt(x, a). If the state and action spaces are small, one can store all the Q-
values in a table of size |X |×|A|. For most problems of interest, however, state spaces are very large
(and possibly infinite). In these cases, one can use a function approximator, such as a neural network,
parameterized by θ: Qθ ≈ Q. Indeed, in order to achieve super-human performance on the Arcade
Learning Environment (ALE) (Bellemare et al., 2012), Mnih et al. (2015) used a neural network
consisting of three convolutional layers (Conv layers), followed by two multi-layer perceptrons (Dense
layers) with |A| outputs in the final layer (representing the Q-value estimates for each action). With
the exception of the final layer, a ReLU non-linearity follows each layer.

Updating Qθ thus corresponds to updating the parameters θ, which may be done by using optimiza-
tion algorithms such as Adam (Kingma & Ba, 2015) to minimize the temporal-difference error. At
a high-level, this yields an update of the form: θt+1 ← θt +α∇θtEτ∼DTD(Qθt , τ). The expectation
can be approximated using a batch of m transitions drawn from a distribution D, which can be com-
puted efficiently on specialized hardware such as GPUs and TPUs. Additionally, Mnih et al. (2015)
argued that using θ̄, a less-frequently updated copy of the parameters, when computing TD helps
with training stability. A common approach introduced by Mnih et al. (2015) is to clip the rewards at
(−1, 1). The TD term thus becomes: TD(Qθ, τ) := clip(r, (−1, 1))+γmaxa′∈AQθ̄(x′, a′)−Qθ(x, a).

Although DQN benchmarked on the 57 ALE games with the same set of hyper-parameters, Anschel
et al. (2017) demonstrated that in some environments it can result in degraded performance. A
number of papers have proposed improvements to increase stability and performance, which Hessel
et al. (2018) combined into a single agent they called Rainbow. Specifically, they combined DQN
with double Q-learning (van Hasselt et al., 2016), prioritized experience replay (Schaul et al., 2016),
dueling networks (Wang et al., 2016), multi-step learning (Sutton, 1988), noisy nets (Fortunato
et al., 2018), and distributional reinforcement learning (Bellemare et al., 2017).

3∆(X) denotes a distribution over the set X.
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3 THC Score

Statistical metrics play a crucial role in assessing and evaluating the performance of DRL algorithms.
They provide valuable insights into the strengths and weaknesses of different approaches, guiding
researchers and practitioners in the development of more effective reinforcement learning systems.
For example, some the metrics focus on the mean reward obtained by an agent per time step (Average
Reward), the percentage of episodes in which the agent achieves a predefined goal or task (success
rate) among others (Agarwal et al., 2021; Chan et al., 2019; Henderson et al., 2017).

Measuring the transferability/consistency of hyper-parameters in DRL is challenging, as existing
metrics fall short in capturing the nuanced aspects of how well hyper-parameter settings generalize
across different environments or agents. Developing such a metric would enhance the ability to
systematically compare and select hyper-parameter configurations that exhibit robust performance
across a range of application domains.

To understand the consistency of hyper-parameters we focus on their ranking consistency across
experimental settings. Put another way: if a given hyper-parameter value is optimal/pessimal in
a setting, is it still optimal/pessimal in another? And so we analyse, for each hyper-parameter,
whether their values lead to the same ranking order for different experimental settings, where the
ranking is on final performance.

We compute ranking agreement for three setups: 1) Varying algorithms while keeping the envi-
ronment and data regime fixed (e.g. when proposing a new value-based algorithm but not having
enough compute to run a comprehensive hyper-parameter search). 2) Varying environments
while keeping the algorithm and data regime fixed (e.g. when using a state of the art algorithm in a
new domain). 3) Varying data regimes while keeping the environment and algorithm fixed (e.g.
when adapting a new algorithm to a new data regime (van Hasselt et al., 2019)). Concretely, our
desire is to have a metric that yields a high value score would indicate that the hyper-parameter in
question is important, in the sense that it will likely require retuning; conversely, a low score suggests
the hyper-parameter value can likely be kept as is.

Kendall’s Tau (Kendall, 1938) and Kendall’s W (Kendall & Smith, 1939) are natural choices, but
these metrics were developed for situations where the rankings were based on a single score, instead of
a range of possible scores, and they can result in degenerate values when two settings have similar per-
formance or when two settings alternate between optimal and pessimal rankings. For these reasons,
we introduce the Tuning Hyperparameter Consistency (THC) score. Consider a set of n hyper-
parameters {H1, . . . ,Hn}, each with its set of values {{h11, h12, . . . , h1m1}, . . . , {hn1, hn2, . . . , hnmn

}}
(e.g. hyper-parameter Hi has mi values). The THC score involves three computations: (i) rankings
for each hyper-parameter setting (Algorithm 1); (ii) normalized peak-to-peak value for each hyper-
parameter setting (Eqn. 1 below); and (iii) overall THC score for the hyper-parameter (see Eqn. 2
below).

If we run multiple independent runs for each hyper-parameter setting hij , we can compute the
mean µij and standard deviation σij for these runs4. For each hyper-parameter setting hij we then
compute an initial ranking r′ij based on the upper bound (µij+σij), with the lower bound (µij−σij)
used to break ties. We then define a set containing hyper-parameter settings with overlapping values:

Iij := {k|(µij − σij < µik + σik and µij − σij > µik − σik)
or

(µij + σij > µik − σik and µij + σij < µik + σik)}

The final ranking of each hyper-parameter is rij =
∑

k∈Iij
r′ik

|Iij | , as Algorithm 1 details. These
rankings are for one training regime; however, as mentioned in the introduction, we are inter-
ested in quantifying the consistency of a hyper-parameter H across varying training regimes.

4One may also use confidence intervals instead of standard deviations.
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Algorithm 1 Compute rankings
Require: Multiple runs for various settings of hyper-parameter Hi: {hi1, hi2, . . . , himi

}, aggregate
metrics µi: {µi1, µi2, . . . , µimi} and measure of spread σi: {σi1, σi2, . . . , σimi}

1: for i in 1 . . . n do
2: r′i = argsort(µi + σi) . Gets the index of each value as if the array was sorted
3: µ′i, σ

′
i = µi[r′i], σi[r′i] . Sorted versions of aggregate and spread metrics

4: for j in 1 . . .mi do
5: uj = binary_search(µ′i − σ′i, µij + σij) . highest rank whose lower bound overlaps with j
6: lj = binary_search(µ′i + σ′i, µij − σij) . lowest rank whose upper bound overlaps with j
7: end for
8: ri = u+l

2 . The average rank in lj , lj + 1, . . . , uj is the average of lj and uj
9: end for

Consider four training regimes A,B,C,D, and let {RA, . . . ,RD} denote their respective rank-
ings. For each hyper-parameter value hx ∈ H we compute its normalized “peak-to-peak”5 value
ptp, which quantifies its variance in ranking, as follows: First compute the ptp value ptp(hx) =
max

(
{RA(hx), . . . ,RD(hx)}

)
−min

(
{RA(hx), . . . ,RD(hx)}

)
, then normalize:

ptp(hx) = ptp(hx)∑
hy∈H ptp(hy) (1)

Notably, hyper-parameter settings that have consistent rankings across training regimes will have a
normalized ptp value of zero. Finally, the THC score for hyper-parameter H is defined as:

THC(H) =
∑
hx∈H ptp(hx)
|H| . (2)

This score will result in low values for hyper-parameters whose varying settings have consistent
ranking across various training regimes, and high values when these rankings vary. Intuitively,
hyper-parameters with high values will most likely require re-tuning when switching training regimes.
See Appendix A for more examples of computing the score, as well as the source code provided with
this submission.

4 Hyper-parameters considered

We describe the set of hyper-parameters explored in this work, with the values used for each listed
in Appendix C. Unless otherwise specified, these are examined for both Conv and Dense layers.

Activation functions: Non-linear activation functions are a fundamental part of neural networks,
as their removal effectively turns the network into a linear function approximator. While various
activation functions have been proposed (Devlin et al., 2018; Elfwing et al., 2018; Dauphin et al.,
2017), there have been few works comparing their performance (Shamir et al., 2020); to the best of
our knowledge, there are no previous examples of such a comparison in the RL setting.

Normalization: Normalization plays an important role in supervised learning (Tan & Le, 2019;
Xie et al., 2017) but is relatively rare in deep reinforcement learning, with a few exceptions (Gogianu
et al., 2021; Bhatt et al., 2019; Arpit et al., 2019; Silver et al., 2017). We explore batch normalization
(Ioffe & Szegedy, 2015) and layer normalization (Ba et al., 2016).

Network capacity: “Scaling laws” have been central to the growth of capabilities in large lan-
guage/vision models, but have mostly eluded reinforcement learning agents, with a few exceptions
(Schwarzer et al., 2023; Taiga et al., 2022; Farebrother et al., 2022; Ceron et al., 2024b;a; Farebrother

5Inspired by numpy’s peak-to-peak function numpy.ptp (Harris et al., 2020).
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et al., 2024). To investigate the impact of network size, we vary the depth (e.g. the number of hidden
layers) and the width (e.g. the number of neurons of each hidden layer).

Optimizer hyper-parameters: We explore three hyper-parameters of Adam (Kingma & Ba,
2015), which has become the standard optimizer used by most: learning rate, epsilon and weight
decay. Learning rate determines the step size at which the algorithm adjusts the model’s parameters
during each iteration. ε represents a small constant value that is added to the denominator of the
update rule to avoid numerical instabilities. Weight decay adds a penalty term to the loss function
during training that discourages the model from assigning excessively increasing weight magnitudes.

ε-greedy exploration: ε-greedy exploration is a simple and popular exploration technique which
picks actions greedily with probability 1− ε, and a random action with probability ε. Traditionally,
experiments on the ALE use a linear decay strategy to decay ε from 1.0 to its target value.

Reward clipping: Most ALE experiments clip rewards at (−1, 1) (Mnih et al., 2015).

Discount factor: The multiplicative factor γ discounts future rewards and its importance has been
observed in a number of recent works (Amit et al., 2020; Hessel et al., 2019; Gelada & Bellemare,
2019; Van Seijen et al., 2019; François-Lavet et al., 2015; Schwarzer et al., 2023).

Replay buffer: DRL agents store past experiences in a replay buffer, to sample from during
learning. The replay capacity parameter refers to the amount of data experiences stored in the
buffer. It is common practice to only begin sampling from the replay buffer when a minimum
number of transitions have been stored, referred to as the minimum replay history.

Batch size: The number of stored transitions that are sampled for learning at each training step.

Update horizon: Multi-step learning (Sutton, 1988) computes the temporal difference error using
multi-step transitions, instead of a single step. DQN uses a single-step update by default, whereas
Rainbow chose a 3-step update (Hessel et al., 2018). The update horizon has been argued to trade-off
between the bias and the variance of the return estimate (Kearns & Singh, 2000).

Target Update periods: Value based agents often employ an online and a target Q-network,
the latter which is updated less frequently by directly syncing (or Polyak-averaging) from the online
network; the target updated period determines how frequently this occurs.

Update periods: The online network parameters are updated after every update period environ-
ment steps, with a value of 4 used in standard ALE training.

Number of atoms: In distributional reinforcement learning (Bellemare et al., 2017), the output
layer predicts the distribution of the returns for each action a in a state s, instead of the mean
Qπ(s, a). A popular approach is to model the return as a categorical distribution parameterized by
a certain number of ’atoms’ over a pre-specified support.

5 Experimental results

As mentioned in the introduction, there already exist two data regimes for evaluating agents on
the ALE suite: the (low-data regime) 100k (Kaiser et al., 2019) and the original 200M benchmark
(Mnih et al., 2015). The 100k benchmark includes only 26 games from the original suite, so we
focus on these for our evaluation. For computational considerations, we follow Graesser et al. (2022)
and use 40M million environment frames as our large-data regime. We use the settings of DrQ(ε)
(introduced by Agarwal et al. (2021) as an improvement over the DrQ of Yarats et al. (2021)),
and Data Efficient Rainbow (DER) introduced by van Hasselt et al. (2019). All experiments were
run on a Tesla P100 GPU and took around 2-4 hours (100k) and 1-2 days (40M) per run. Both
algorithms are implemented in the Dopamine library (Castro et al., 2018). Since the 100k setting
is cheaper, we evaluated a larger set of hyper-parameter values there and manually picked the most
informative subset for running in the 40M setting. For all our experiments we ran 5 independent
seeds and followed the guidelines suggested by Agarwal et al. (2021) for more statistically meaningful
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Figure 1: Tuning hyper-parameter Consistency (THC Score, see section 3) evaluated across agents
(left panel), data regimes (center panel), and environments (right panel). Different colors indi-
cate different data regimes (left panel) and different agents (center and right panels); grey bars/titles
indicate hyper-parameters which are not comparable across the considered transfer settings.

comparisons. Specifically, we computed aggregate human-normalized scores and report interquantile
mean (IQM) with 95% stratified bootstrap CIs.

In Figure 1 we present the computed THC score for all the hyper-parameters discussed in section 4,
and we discuss their consistency across agents in Section 5.1, across data regimes in Section 5.2, and
across environments in Section 5.3. More detailed discussions are provided in Appendix B and a
set of interesting findings in Appendix D. It is worth recalling that higher THC scores indicate less
consistency, which suggests a likely need to re-tune the respective hyper-parameters when changing
training configurations.

5.1 Optimal hyper-parameters mostly Transfer Across Agents

We find that optimal hyper-parameters for DrQ(ε) agree quite often with DER, which is somewhat
expected given that they’re based on the same classical RL algorithm of Q-learning, and have the
same number of updates in the same environments. Looking at THC values between the two agents
for different data regimes we see that all values are below 0.5, and in the 100k regime tend to be
even lower. Nevertheless, comparing the results of the two rows in figs. 3 and 4 demonstrate that
there can still be strong differences between the two. In the 40M regime, the hyper-parameters with
the highest THC are batch size and update horizon, consistent with the findings of Obando Ceron
et al. (2023), where these two hyper-parameters proved crucial to boosting agent performance.
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Figure 2: Measured IQM of human-normalized scores on the 26 100k benchmark games,
with varying Adam’s ε for DER. We evaluate performance at 100k agent steps (or 400k environ-
ment frames), and at 40 million environment frames. The ordering of the best hyper-parameters
switches between the two data regimes.

5.2 Optimal hyper-parameters mostly do not Transfer Across Data Regimes

We find that optimal hyper-parameters for Atari 100k mostly do not transfer once you move to 40M
updates, showing that even when keeping algorithms and environment constant one may still need
to tune hyper-parameters should they change the amount of data their agent can train on. Of the
hyper-parameters considered, Adam’s ε and update period seem to be the most critical to re-tune
(see Figure 2 for results on DER for Adam’s ε). The results with Adam’s ε are surprising, as the
purpose of this hyper-parameter is mostly for numerical stability. The update period (as well as the
update horizon) results are consistent with what is done in practice between these two data regimes
(e.g. Rainbow uses an update period of 4 and an update horizon of 3, while DER uses 1 and 10,
respectively).

5.3 Optimal hyper-parameters do not Transfer Across Environments

Our experiments show that hyper-parameters that perform well on some games lead to lackluster
final performance in others. Indeed, in Figure 1 we can see that the THC score is highest when
evaluating across environments. This strongly suggests that, when using an existing agent in a new
environment, most of the hyper-parameters would need extra tuning. Figure 3 displays the results
when varying batch size, where we can see that the rankings can sometimes be complete opposites
across games (compare Kangaroo and Gopher).

6 A web-based appendix

We have run an extensive number of experiments (around 108k) for this work, which would render
a traditional appendix unwieldy. Instead, we provide an interactive website6 which facilitates nav-
igating the full set of results7. Presenting empirical research results in this manner offers a range
of benefits that enhance accessibility, engagement, and comprehension. This dynamic presentation
allows readers to more easily make comparisons over different games, agents, and parameters.

The website’s main page presents aggregate IQM results for all hyper-parameters investigated in
both data regimes (e.g. Figure 2), while sub-pages present detailed performance comparisons when
sliced by game (Figure 3 presents a subset of this) and hyper-parameter (Figure 4 presents a subset

6Website available at https://consistent-hparams.streamlit.app/ .
7Website repository at https://github.com/Consistent-Website.
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Figure 3: Measured returns with varying batch size for DrQ(ε) (top) and DER (bottom)
at 40M environment frames for four representative games, demonstrating that the ranking of the
hyper-parameter values can drastically change from one game to the next. All results averaged over
5 seeds, shaded areas represent 95% confidence intervals.
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Figure 4: Measured returns with various hyper-parameter variations on Asterix for
DrQ(ε) (top) and DER (bottom) at 40M environment frames. Displaying eight representative hyper-
parameters, enabling per-game analyses for hyper-parameter selection.

of this). The added level of granularity provided by the sub-pages can be crucial for understanding
the specific strengths and weaknesses of an algorithm in various scenarios. All results averaged over
5 seeds, shaded areas represent 95% confidence intervals.

7 Related work

While RL as a field has seen many innovations in the last years, small changes to the algorithm or
its implementation can have a big impact on its results (Engstrom et al., 2020; Araújo et al., 2021).
Deep reinforcement learning approaches are often notoriously sensitive to their hyperparamaters
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and demonstrate brittle convergence properties (Haarnoja et al., 2018). This is particularly true for
off-policy approaches that use a replay buffer to leverage past experiences (Duan et al., 2016).

Henderson et al. (2017) investigate the effects of existing degrees of variability between various RL
setups and their effects on algorithm performance. Although restricted to the domain of existing
environments, Henderson et al. (2017) propose more robust performance estimators for RL learning
algorithms. Islam et al. (2017) and Huang et al. (2022) have shown the difficulty in reproducing
policy gradient algorithms due to the variance. Andrychowicz et al. (2020) did a deep dive in algo-
rithmic choices on policy-based algorithms. Their analyses covered differences in hyper-parameters,
algorithms, and implementation details.

In an effort to consolidate innovations in deep RL, several papers have examined the effect of smaller
design decisions like the loss function or policy regularization for on-policy algorithms Andrychowicz
et al. (2020), DQN agents (Ceron & Castro, 2021), imitation learning (Hussenot et al., 2021) and
offline RL (Paine et al., 2020; Lu et al., 2021). AutoRL methods, on the other hand, have focused on
automating and abstracting some of these decisions (Parker-Holder et al., 2022; Eimer et al., 2023) by
using data-driven approaches to learn various algorithmic components or even entire RL algorithms
(Co-Reyes et al., 2021; Lu et al., 2022). All these works have demonstrated that hyperparameters
in deep reinforcement learning warrant more attention from the research community than they
currently receive. Underreported tuning practices can distort algorithm evaluations, and overlooked
hyperparameters may lead to suboptimal performance.

8 Discussion

One of the central challenges in reinforcement learning research is the non-stationarity during train-
ing in the inputs (due to self-collected data) and targets (due to bootstrapping). This is in direct
contrast with supervised learning settings, where datasets and labels are typically fixed throughout
training. This non-stationarity may be largely to blame for some of the ranking inconsistencies ob-
served under different training regimes (e.g. Figure 2), and why different hyper-parameter tunings
are required for different settings (e.g. DER versus Rainbow).

Hyper-parameters are commonly tuned on a subset of environments (e.g. 3-5 games) and then
evaluated on the full suite. Our findings suggest that this approach may not be the most rigorous,
as hyper-parameter selection can vary dramatically from one game to the next (c.f. figs. 3 and 4).
While aggregate results (e.g. IQM) provide a succinct summary of performance, they unfortunately
gloss over substantial differences in the individual environments. If our hope as researchers is to
be able to use these algorithms beyond academic benchmarks, understanding these differences is
essential, in particular in real-world applications such as healthcare and autonomous driving.

We have conducted a large number of experiments to investigate the impact of various hyper-
parameter choices. While the THC score (Figure 1) provides a high-level view of the transferability
of hyper-parameter choices, our collective results suggest that a single set of hyper-parameter
choices will never suffice to achieve strong performance across all environments. The ability to
dynamically adjust hyper-parameter values during training is one way to address this; to properly
do so would require quantifiable measures of environment characteristics that go beyond coarse
specifications (such as sparse versus dense reward systems). The per-game results we present here
may serve as an initial step in this direction. In Appendix D.3 we provide a fine-grained analysis
of DER on Gopher as an example of the type of analyses enabled by our website. We hope our
analyses, results, and website prove useful to RL researchers in developing robust and transferable
algorithms to handle increasingly complex problems.
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A Computing Tuning Hyperparameter Consistency (THC)

Computing the ranking between hyper-parameter values is non-trivial given the noise involved in
Deep Reinforcement Learning Agents performances. We used 5 seeds to improve the robustness to
noise of our results in this paper, but if we simply used the average performance the effects of noise
would still be significant. As such our ranking is based on the Inter-Quantile Mean (IQM) (Agarwal
et al., 2021) and its 95% confidence interval.

First we sort the performance array in decreasing order based on the upper bound of the confidence
interval for each hyper-parameter. Then we compute the rank of each hyper-parameter as the average
between the lowest position (1-based) whose lower bound is less than or equal to the current hyper-
parameter’s performance upper bound and the highest position whose upper bound is greater than or
equal to the current hyper-parameter’s lower bound. Our choice of treating overlaps in performance
by averaging the rankings comes from what is typically done when dealing with ties when computing
Kendall’s W and Kendall’s τ , which are other commonly used metrics for inter-ranking agreement.

As an example imagine we are analyzing a hyper-parameter with 5 possible values, 1e-2, 1e-1, 1,
1e1, 1e2. We run all the experiments and get the following confidence intervals on their IQM ranges
(200, 300), (250, 350), (400, 600), (110, 220), (30, 70). After sorting them we’re left with:

1. 1: (400, 600)

2. 10−1: (250, 350)

3. 10−2: (200, 300)

4. 101: (110, 220)

5. 102: (30, 70)

Then we can compute the ranks as:

1. 1 : 1+1
2 = 1

2. 10−1 : 2+3
2 = 2.5

3. 10−2 : 2+4
2 = 3

4. 101 : 3+4
2 = 3.5

5. 102 : 5+5
2 = 5

An important feature of this method is that ranks needs not be integers. Now another relevant
example is one where the 3 values, let’s call them A, B, C, have completely overlapping intervals:

1. A: (200, 300)

2. B: (250, 350)

3. C: (180, 260)

In this case all of them will have the ranking 1+3
2 = 2, which shows how given our results we’re

unable to fully determine which one is the best or worst performing value for this hyper-parameter.

Here are two extra examples of computing the THC score.
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1. We analyze a case with 2 hyper-parameters, A1 and B1, both with 3 values, being evaluated
across 5 games (columns are ranks in a game):

rA1 =




1 1 2 1 3
2 3 2 3 2
3 2 2 2 1




rB1 =




1 2 1 2 1
2 1 2 1 2
3 3 3 3 3




peak-to-peak−−−−−−−−→

ptpA1 =




2
1
2




ptpB1 =




1
1
0




Normalize−−−−−−→

ptpA1 =




1.0
0.5
1.0




ptpB1 =




0.5
0.5
0.0




Finally we average the values to get the THC for each hyper-parameter:

THCA1 = 2.5
3 ≈ 0.83333 THCB1 = 1.0

3 ≈ 0.33333 (3)

This example also shows an important property of THC, while a1 seems to be consistently
the best value for A, whereas b1 and b2 vary their position more often, the value of THC
is higher for A then for B, since the largest change in performance for values of A is larger
than the change for values of B. This is because THC considers the worst-case variance
when assigning how important is tuning a given hyper-parameter.

2. Another example, now one hyper-parameter, A2, has 4 possible values and the other, B2,
has 3, and we have 4 games.

rA2 =




1 1 1 3
2 2 2 2
3 3 3 1
4 4 4 4




rB2 =




1 1 1 1
2.5 2 3 2
2.5 3 2 3




peak-to-peak−−−−−−−−→

ptpA2 =




2
0
2
0




ptpB2 =




0
1
1




Normalize−−−−−−→

ptpA2 =




2
3

0.0
2
3

0.0




ptpB2 =




0.0
0.5
0.5




And then average across the hyper-parameter values:

THCA2 =
4
3
4 = 1

3 THCB2 = 1
3 (4)

In this case we see that while A2 has 2 hyper-parameter values with more variance in ranking
then the 2 values of B2 the fact that A2 has more values overall than B2 leads them to having
the same THC value.

Finally it’s worth pointing out that since the performances in the second case were more stable than
in the first one their THC value was overall lower.

B Finer-grained experimental discussion

B.1 Optimal hyper-parameters do not Transfer Across Environments

1. For batch size in DrQ(ε)@40M we find that 4 is the optimal batch size for Asterix, Breakout,
Gopher, and Seaquest, while being the worst value for effectively all the other games. See
Figure 3

2. Convolutional width for DER@40M, 0.25 is the clear optimum in Assault, CrazyClimber,
Roadrunner, Seaquest, and UpNDown, while leading to the worst performance in Breakout,
Krull, and QBert
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3. Dense layer width for DrQ(ε)@40M we see that 768 neurons per layer lead to best perfor-
mance for Amidar, Assault, Hero, and Qbert, while most other games have 128 neurons as
their optimal layer width. We see a similar mismatch for DER, though the games were 768
is optimal are different.

4. A discount factor of 0.99 is optimal for DER@40M in Alien, Amidar, Asterix, BankHeist,
Breakout, Frostbite, Kangaroo, Kung Fu Master, QBert, RoadRunner, Seaquest, and Up-
NDown, but leads to pessimal performance in PrivateEye and non-optmimum in Assault,
Boxing, ChopperCommand, CrazyClimber and many others.

B.2 Optimal hyper-parameters do not Transfer Across Data Regimes

1. Adam’s ε, an often overlooked hyper-parameter, has optimal values < 1.5 · 10−4 for Atari
100k, while having optimal value of 1.5 · 10−2 in the 40M setting. This result also begs for
further research, as higher values of ε move Adam closer to SGD with momentum behaviour.

2. For Convolutional Width we find that the worst performing value for 100k, 0.25, is the
optimal value when number of updates is 40M. Another important result given that it
means one may want to effectively change the network architecture when the number of
updates changes.

3. For normalization of the dense layers we see that while in the 100k regime Layer Norm leads
to worse performance than no normalization, it is the best performing normalization once
we move to the 40M regime.

4. For update horizon one can see that the best performing values are high, around 10, in the
100k regime, while lower values (as low as 1 for DER) are optimal in the 40M regime.

5. For update period we see that in the 100k regime a value of 6 is low performing and 1 is
optimal, but once we move to the 40M regime we see an inversion, where 6 is substantially
superior to 1.
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C Hyper-parameters list

Default hyper-parameter settings for DER and DrQ(ε) across the environments. Table 1 shows
the default values for each hyper-parameter across all the Atari games. In Table 2 we list all the
possible values we explored for both agents. The values selection is informed by the recommendations
provided by Araújo et al. (2021).

Table 1: Default hyper-parameters setting for DER and DrQ(ε) agents.
Atari

Hyper-parameter DER DrQ(ε)
Adam’s(ε) 0.00015 0.00015
Batch Size 32 32

Conv. Activation Function ReLU ReLU
Convolutional Normalization None None

Convolutional Width 1 1
Dense Activation Function ReLU ReLU

Dense Normalization None None
Dense Width 512 512

Discount Factor 0.99 0.99
Exploration ε
Learning Rate 0.0001 0.0001

Minimum Replay History
Number of Atoms 51 0

Number of Convolutional Layers
Number of Dense Layers 2 2

Replay Capacity 1000000 1000000
Reward Clipping True True
Update Horizon 10 10
Update Period 1 1
Weight Decay 0 0
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Table 2: Hyper-parameters settings for DER and DrQ(ε) agents
Hyper-parameter Values

Adam’s(ε) 1, 0.5, 0.3125, 0.03125, 0.003125, 0.0003125, 3.125e-05,
3.125e-06

Batch Size 4, 8, 16, 32, 64
Conv. Activation Function ReLU, ReLU6, Sigmoid, Softplus, Soft sign, SiLU,

Log Sigmoid, Hard Sigmoid, Hard SiLU, Hard tanh, ELU,
CELU, SELU, GELU, GLU

Convolutional Normalization None, BatchNorm, LayerNorm
Convolutional Width 0.25, 0.5, 1, 2, 4

Dense Activation Function ReLU, ReLU6, Sigmoid, Softplus, Soft sign, SiLU,
Log Sigmoid, Hard Sigmoid, Hard SiLU, Hard tanh, ELU,

CELU, SELU, GELU, GLU
Dense Normalization None, BatchNorm, LayerNorm

Dense Width 32, 64, 128, 256, 512, 1024
Discount Factor 0.1, 0.5, 0.9, 0.99, 0.995, 0.999
Exploration ε 0, 0.001, 0.005, 0.01, 0.1
Learning Rate 10, 5, 2, 1, 0.1, 0.01, 0.001, 0.0001, 1e-05

Minimum Replay History 125, 250, 375, 500, 625, 750, 875, 1000
Number of Atoms 11, 21, 31, 41, 51, 61

Number of Convolutional Layers 1, 2, 3, 4
Number of Dense Layers 1, 2, 3, 4

Replay Capacity
Reward Clipping True, False

Target Update Period 10, 25, 50, 100, 200, 400, 800, 1600
Update Horizon 1, 2, 3, 4, 5, 8, 10
Update Period 1, 2, 3, 4, 8, 10, 12
Weight Decay 0, 0.01, 0.03, 0.1, 0.5, 1
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D Interesting Miscellaneous Findings

There were a couple of interesting findings from our experiments which are out of scope for this
paper, but which may warrant further exploration in the future.

D.1 High Values of Weight Decay Can Be Optimal

We found that for DER at 40 Million environment frames having a weight decay of 0.1 was the
overall best choice, and that for many games like Gopher and Boxing the optimal value was 0.5, an
uncommonly high value for the hyperparameter.
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Figure 5: Measured IQM of human-normalized scores on the 26 100k benchmark games,
with varying Weight Decay for DER. We evaluate performance at 100k agent steps (or 400k
environment frames), and at 40 million environment frames. At 40 million frames 0.1 is on average
optimal, with 0.5 being at second place and the standard value of 0.0 being in fourth.

D.2 Higher Values of Adam’s ε can improve Performance

In our experiments we found that both DrQ(ε) and DER can benefit from a 100 times higher value
of Adam’s ε than what is commonly used. This is somewhat perplexing, as using such a high value
of epsilon leads Adam to behave closer to SGD than to its common behaviour in other settings.
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Figure 6: Measured IQM of human-normalized scores on the 26 100k benchmark games,
with varying Adam’s ε for DER. We evaluate performance at 100k agent steps (or 400k environ-
ment frames), and at 40 million environment frames.
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D.3 Example Analysis: DER on Gopher

Finally we found that in a specific experimental setting, DER with 40 million frames on Gopher,
whose optimal hyperparameters are very different from what is commonly observed in other appli-
cations of Deep Learning, and in some cases quite different even from the optimal values when using
DER with 40 million environment frames in other Atari games. Not only that, but also we observed
that often the difference in performance between the counter-intuitive optimal hyper-parameter and
the standard is significant, leading to multiple-fold improvement in returns. For example in Gopher
specifically we find that:

• For DER the standard value of update horizon is 10, but in the case of Gopher using an
update horizon of 1 leads to roughly a 28 times improvement in performance.

• In Gopher a Weight Decay of 0.5 lead to a 5-fold increase of returns when compared to the
standard value of 0.

• While the standard value of the Discount Factor is 0.99, for Gopher we see a 4.5 times
improvement in performance when using a lower value of 0.9

• The optimal batch size we found was 4, which is relatively small compared to the standard
of 32, and goes against the common Deep Learning practice of increasing batch sizes to
increase performance. Changing batch size to 4 leads to a 4.5-fold increase in returns

• Finally, we recall the previous sub-section on Adam’s ε and see that Gopher also benefits
from an uncommonly high value of the hyperparameter, though here the performance gap
is smaller, being closer to a 2x increase compared to the considerable differences discussed
previously.
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Abstract

Social rewards shape human behavior. During development, a caregiver guides a
learner’s behavior towards culturally aligned goals and values. How do these be-
haviors persist and generalize when the caregiver is no longer present, and the
learner must continue autonomously? Here, we propose a model of value inter-
nalization where social feedback trains an internal social reward (ISR) model that
generates internal rewards when social rewards are unavailable. Through empirical
simulations, we show that an ISR model prevents agents from unlearning socialized
behaviors and enables generalization in out-of-distribution tasks. We character-
ize the implications of incomplete internalization, akin to “reward hacking” on the
ISR. Additionally, we show that our model internalizes prosocial behavior in a multi-
agent environment. Our work provides a foundation for understanding how humans
acquire and generalize values and offers insights for aligning AI with human values.

1 Introduction

Why do we want what we want? Some goals we pursue are responses to the extrinsic rewards and
punishments of the environment. We pursue food when hungry, shelter when cold, and sleep when
tired. Money can motivate us to work harder, and the threat of punishment can incentivize us to
follow the law. Other goals are intrinsically self-motivated and do not require external reinforcement.
We play and explore, feel a warm glow when altruistic, and may take pride in our work even when
no one is watching (Andreoni, 1990; Ryan & Deci, 2000). Both extrinsic and intrinsic rewards
have likely been shaped by natural selection to enable adaptive behavior across many environments
(Singh et al., 2009). They have also played a key role in building reinforcement learning agents that
can learn in an open-ended fashion across a lifetime of experiences and tasks without hand-crafting
reward functions for each one (Singh et al., 2010; Schmidhuber, 2010; Mohamed & Jimenez Rezende,
2015; Kulkarni et al., 2016; Jaques et al., 2019). While some pursue a quest for a universal reward
function that generates the full suite of human-like intelligent behavior (Silver et al., 2021), we aim
to study how values might be acquired through social and cultural learning and then leveraged for
open-ended autonomy.

Our approach can explain some key challenges for understanding the source of values. First, although
many aspects of desire are innate, and any acquisition process itself requires some degree of innate
motivation and machinery, there must be a substantial role for learning in determining what humans
find rewarding. Different cultures across time and space have varied substantially in terms of what
people in those societies find rewarding (Henrich et al., 2001; 2006; Medvedev et al., 2024). In some
places, spicy food can cause physical pain, while in others, food without spice is considered bland
and tasteless (Billing & Sherman, 1998). Different individuals chase meaning and reward in different
ways: maximizing money, power, artistic expression, knowledge, fame, the probability of reaching
an afterlife, and many others (Maslow, 1958). Moral values, such as how different individuals trade
off the welfare of different groups, vary as well; some might weight family members highly, while
others strive for impartiality (Kleiman-Weiner et al., 2017; McManus et al., 2020). This logic applies
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to even more basic aspects of daily thinking. Is curiosity a virtue to be celebrated and inculcated
in children, or a vice (“curiosity kills the cat”), and is it best repressed or inhibited? This broad
diversity suggests that a satisfactory explanation will have learning play a key role.

Second, while different environments might differentially shape what one finds rewarding to some
extent, it is unlikely that differences in the physical environment alone are sufficient to fully explain
human variation. Most environments are highly open-ended, where correct behavior cannot be
reduced to a single goal specification or clear metric for success (Stanley & Lehman, 2015). Outside of
the most basic needs, such as survival, the importance of a given goal is often determined collectively
and specific to one’s culture. Even within the narrow context of a video game, there are many ways
to play: go for the highest score, “speedrun” to finish the game as fast as possible, explore every
nook and cranny, find exploits, create games within the game, and more.

We address these two challenges by proposing that to the extent environments have relevant rewards
or reward-relevant information; those rewards often come from social influences (Bandura & Mc-
Donald, 1963; Ho et al., 2017; Magid & Schulz, 2017). The structure of this information can take
many forms. Direct forms of feedback, such as praise, smiles, laughs, punishments, comparison, and
correction, and more indirect forms of feedback, such as instruction or demonstration (Jeon et al.,
2020). Children’s interactions with their caretakers are rich in this kind of feedback, shaping human
reward learning from an early age (Grusec & Goodnow, 1994). Yet learning from social rewards
contains a computational puzzle. If the source of reward is social, it will not be available when the
social partner isn’t present. From a developmental perspective, while a caregiver might provide a
learning signal early on – ultimately, the learner will need to continue their learning, exploration,
and autonomy without supervision. This is a problem for any system that learns from reinforcement
– if rewards disappear from an environment, the behavior those rewards incentivized will quickly be
extinguished. Clearly, this does not happen for human learners.

Here, we propose that learners sustain exploration and autonomy when social reward subsides by
internalizing their caregiver’s rewards. This requires the ability to model the caregiver’s rewards in a
way that generalizes to the new environments the learner faces. This idea is prominent in attachment
theory and is called an internal working model (Bowlby, 1969; Ainsworth et al., 1978; Johnson et al.,
2007). In our work, we develop a novel paradigm for studying the challenge of generalizing from social
rewards. First, we extend the Markov Decision Process (MDP) formalism so that environmental
rewards are augmented with social feedback that is only present temporarily. Second, using a suite
of navigation tasks developed with this framework, we demonstrate the abovementioned challenge
and show that a baseline reinforcement learning (RL) agent unlearns their goal-directed behavior
once social rewards are removed. Third, we develop an RL agent that internalizes the rewards of
others and show that it solves this key challenge. Finally, we test this agent in a variety of different
challenges and study its limitations in generalizing both within the training distribution and to new
more demanding tasks, internalizing self and prosocial rewards, and overcoming reward hacking.
Together, this work proposes a framework for analyzing value internalization, formalizes the key
challenges, and proposes a new agent that addresses these challenges and captures aspects of human
value internalization.

1.1 Related Computational Work

Our work takes inspiration from reinforcement learning from human feedback (RLHF), a technique
currently used to train agents and align models to judgments made by human annotators. Christiano
et al. (2017) train a reward model from pairwise preference judgments of an agent’s behavior and
show that the reward model can be used to train a deep reinforcement learning agent on simple
tasks. Tien et al. (2022) study generalization in reward models and show that reward modeling
from pairwise judgment data often fails to generalize because the reward models can learn spurious
correlations rather than capturing the underlying causal process. Similar to our work here, Colas
et al. (2020) train a goal generator from the language of a social partner and show that this goal
generator can imagine new goals to improve generalization and exploration. Finally, Kleiman-Weiner
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Figure 1: The challenge of learning from social
rewards. (left) Three example grids from our en-
vironment. The goal square is shown in green,
and the agent is the red triangle. Three obsta-
cles shown in grey are randomly arranged in each
grid. (right) Learning with (blue) and without
(green) social rewards. A baseline reinforcement
learning agent learns to navigate to the green
square when the caregiver is present. The goal-
directed behavior is unlearned once the caregiver
leaves (dotted vertical line at 6K episodes for the
green trace). Traces averaged over ten seeds and
smoothed. Bands show the min and max.

et al. (2017) develop a hierarchical probabilistic model for the moral domain that learns to set the
weights of a multi-attribute utility function depending on the observations made by the learner.

2 MDPs With Social Rewards

We study the process of value internalization in a two-agent Markov decision process (MDP) with a
learner and a caregiver. In our setup, the caregiver only interacts with the learner by giving social
rewards. Social reward is a single continuous number corresponding to the degree to which the
feedback is intended to be rewarding (positive) or punishing (negative). Finally, in some trials, the
caregiver is absent, so there is no social reward in those trials.

Formally, an MDP with social rewards (MDP-SR) is a tuple ⟨S, A, T , γ, Re, P, Rs⟩: a set of states
S, a set of actions for each state A(s), a transition function that maps states and actions to future
states T (s, a) → s′, a discount factor γ ∈ [0, 1), an extrinsic reward function that maps actions and
outcomes to environmentally given rewards R(s, a, s′)e → R. We extend these terms to account
for social reward by augmenting the MDP with P(s) ∈ {0, 1} that indicates whether the caregiver
is present (1) or absent (0) and the social reward Rs(s, a, s′) → R which is available only when
P (s) = 1. We assume that learners are socially motivated and have a utility function U = Re + Rs

that integrates environmental and social rewards (Dweck, 2017). The learner aims to find a policy
π that maximizes expected cumulative discounted utility.

Our experiments are divided into two phases. First is a socialization phase where the caregiver
is present (p = 1). Second is an autonomous phase where the caregiver is absent (p = 0). Our
framework allows for more complex dynamics (e.g., slowly reducing the probability of the caregiver’s
presence over time), but we use a simple two-phase approach to simplify the analyses. The MDP-SR
framework enables us to ask questions about how computational learners will handle the transition
between these two phases.

We developed a procedurally generated set of navigation tasks using the Minigrid Learning Environ-
ment (Chevalier-Boisvert et al., 2023). Figure 1 shows some examples. In each episode, we generate
a 5x5 grid with the agent denoted as a red arrow that can face any of the cardinal directions, a green
square, and three blocks that create obstacles for navigation. The green square, three blocks, starting
position, and agent orientation are uniformly randomly sampled. The agent can turn 90 degrees in
place or move forward one square. Going forward has a small negative cost, Re = − 0.9

max(steps) , where
max(steps) is the maximum number of steps in an episode. There were 20 steps in each episode,
so Re = −0.045. This small cost incentivizes efficient action and is the only extrinsic reward in our
setting. The discount rate γ = 0.99. The grid and starting location are randomly resampled if the
agent reaches the green square. During the first phase (socialization), when the caregiver is present,
the caregiver provides a large reward (Rs = 0.4) when the agent reaches the green square.
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3 Modeling Value Internalization

Our baseline agent is a deep reinforcement learner trained with PPO from Stable Baselines 3 (Schul-
man et al., 2017; Raffin et al., 2021). We use a learning rate of 1e-4 and otherwise use the default
hyperparameters from Stable Baselines 3 for all models tested. The top of Figure 2 shows an ab-
stracted version of the typical loop between the environment and the agent where the environment
provides the state and an extrinsic reward, and the agent produces actions based on its learned
policy.

Figure 1 shows the performance of the baseline agent on our environment distribution. We contrast
what happens when the caregiver is present (blue) versus when the caregiver leaves at the halfway
point (green). When the caregiver remains, the agent steadily improves its performance until even-
tually plateauing near an optimal level. In contrast, when the caregiver leaves at the halfway point,
performance rapidly drops to zero. This confirms our initial hypothesis: when the social rewards
provided by the caregiver are the primary source of rewards that define the task, a typical reinforce-
ment learner will not be able to continue learning and exploring autonomously when the caregiver
is no longer present.

We hypothesize that human learners address this problem by internalizing the values of others. Here,
we formalize this hypothesis by augmenting our baseline agent with an internalized social reward
model (ISR) that learns to model the social rewards given by the caregiver and creates internal
rewards (Ri) when the caregiver is absent (Figure 2). Thus we can write the full utility function of
an agent with an ISR as U = Re +P ·Rs +(1−P ) ·Ri. It receives a non-zero social reward Rs when
the caregiver is present P = 1 and a non-zero internalized reward Ri when the caregiver is absent
P = 0.

The ISR model is a deep neural network using the same architecture as the policy network. The
network takes in the state and action and predicts reward. During the socialization phase, the agent
stores the social rewards received, and those stored rewards are used to train the ISR model. The
model was trained to minimize mean square error (MSE, ||Rs − Ri||) since rewards are continuous.
Finally, since the distribution of social rewards is imbalanced – positive rewards are more sparse
than zero rewards – rewards were sampled such that each training batch had a balanced sample of
reward magnitudes.

When the task or distribution of tasks changes, deep RL policies often fail to generalize (Kansky
et al., 2017). This failure results partly from the challenge of needing to predict an entire sequence
of actions that optimize the expected cumulative discounted rewards. In contrast, the ISR module
only needs to predict the reward for a particular action in a particular state without considering
future actions. If the ISR module generalizes to new environments before the policy does, the agent
could continue learning in those new environments even in the total absence of extrinsic reward. On
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Figure 2: Agent architectures. (left) Standard view of reinforcement learning with extrinsic reward
from the environment. (right) Learning from social rewards. Dotted lines indicate that the caregiver
and the social rewards they give are not always present. When present, social rewards affect the
policy as well as train an internalized social reward model (ISR) that provides internal rewards when
the caregiver is absent.
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Figure 3: Training the internalized so-
cial reward (ISR) model. (left) Exam-
ple training curve for the ISR model
trained on social rewards. The model
quickly converges with no measurable
gap between train and test performance.
(right) ISR test loss continually de-
creases when trained with more social
rewards. Results averaged over ten
seeds and smoothed. Error bars are the
standard error.

the flip side, if the ISR fails to generalize, then the agent will learn to optimize a misspecified reward
(Pan et al., 2022; Tien et al., 2022). This could lead to reward hacking where the agent successfully
optimizes its reward signal, but that reward no longer matches what the caregiver intended (Skalse
et al., 2022). We study these possibilities empirically in the next section.

4 Results

We first analyze the training of the ISR model. We then test whether a reinforcement learner aug-
mented with ISR can solve the challenge posed in Figure 1 and analyze whether the ISR enables
generalization by allowing for additional learning even without any social reward. Finally, we in-
troduce a multi-agent scenario where the caregiver rewards altruistic behavior and show that our
model extends to prosocial value internalization.

4.1 Training the ISR model

Figure 3 shows learning curves for the ISR. With sufficient data, the model achieves minimal test
loss. The final test loss was an exponential function of the amount of social rewards observed, where
each doubling of the number of rewards yielded an order of magnitude reduction in MSE loss.

4.2 Continual Learning and Generalization

We next test whether augmenting a reinforcement learner with the ISR module is sufficient to enable
continual learning (Thrun, 1998; Hadsell et al., 2020). Figure 4 updates Figure 1 and shows how a
model with internalized reward (shown in red) performs when the social rewards from the caregiver
are removed. The model with ISR continues to do the task at the same rate as one that continues
receiving social rewards. Thus, for this context, the ISR model fully internalized the social rewards
of the caregiver. This enables the agent to continue autonomously without dependence on the
caregiver’s social rewards to maintain its behavior.

The right panel of Figure 4 shows a test of generalization. During the socialization period, when the
caregiver was present, the agent was trained with just one block in the environment for 6K episodes.
We then tested how well the agent could learn directly from the ISR in environments with five blocks
(another 6K episodes). Performance was evaluated by calculating the total reward that would have
been obtained if the caregiver was present in a held-out set of 100 episodes, i.e., a proxy for how
well the caregiver’s values have been internalized and generalized. This is labeled Reward (OOD) on
Figure 4b. We compared ISR performance to a baseline (“frozen”) and an upper bound (“oracle”).
The frozen baseline corresponds to testing a model right after the one-block socialization period on
the five-block test without additional learning (all weights are frozen).
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Figure 4: The ISR model prevents unlearning and enables out-of-distribution (OOD) generalization
(left) Agents first learn with social rewards from the caregiver (blue). After 6K episodes, the caregiver
is removed (vertical dotted line). Without the ISR model, the agent quickly unlearns the behavior
(green). The ISR model prevents unlearning with no measurable loss in performance (red). Results
averaged over ten seeds and smoothed. Bands show the min and max. (right) Comparing OOD
generalization where models were trained with one block and must generalize to five. The ISR
performance was significantly greater than the frozen baseline (p < 0.05, t-test) and not significantly
different from the oracle (p = 0.32, t-test). See text for model descriptions. Results averaged across
ten seeds and smoothed. Error bars show the standard error of the mean.

While we do see some generalization, the model with an ISR is able to continue learning on a five-
block task and performs closer to the oracle, which learns directly from the ground truth caregiver’s
social rewards on the test environments. See Figure 4 for statistical information.

Finally, using the same paradigm as above, we looked at generalization performance on a few hand-
chosen held-out grids shown in Figure 5. In all but one case, the ISR outperforms the frozen
baseline with performance approaching the oracle. In the one case where the agent with ISR did not
outperform the baseline (“four rooms” on the far right), performance was at ceiling for all models.

4.3 Internalization Failure: Reward Hacking

When value internalization is incomplete, problems can arise when the internalized rewards are
prematurely optimized. Generalization failures in the ISR model will propagate into errors in the
agent’s policy during the autonomous period when the ISR model is the target for learning. To
study this empirically, we undertrained the ISR model on 1/12th of the data as before. Figure 6
shows that while the agent correctly optimizes its internal reward from the ISR model, it is less
likely to reach the caregiver’s goal. This failure can be considered an instance of reward hacking:

Figure 5: Out of distribution (OOD) generalization on custom environments. Agents were trained
with only a single block and evaluated on their ability to generalize OOD to the above five block tasks.
Starting location of the goal and agent was sampled randomly. The ISR significantly outperforms
the frozen model (p < 0.001, t = −3.66, linear mixed-effect model with environment as a fixed effect)
but did not significantly differ from the oracle (p = .27, t = 1.12, linear mixed-effect model with
environment as a fixed effect). Results are averaged over ten seeds and smoothed. Error bars are
standard errors.

1065



RLJ | RLC 2024

0.4

0.5

0.6
In
te
rn
al
 r
ew
ar
d

0.75

0.875

1

Go
al
s 
re
ac
he
d

10 15
Episodes (x 103)

10 15
Episodes (x 103)

Figure 6: Internalization fail-
ures. Reward hacking when
the ISR model is under-
trained. (left) After the care-
giver leaves (break in the
x-axis), internal rewards in-
crease when learning from the
ISR (right), but the number
of goals reached declines. In-
set shows an example of the
loops that the agent learns in
order to optimize internal re-
ward.

the agent is optimizing for a proxy objective, the ISR, which diverges from the true objective, the
caregiver’s reward (Skalse et al., 2022). The inset shows that the reward model is inconsistent, and
the agent learns to loop around without reaching the green square.

4.4 Internalization of Prosocial Values

Up to this point, our empirical investigation focused on a single agent operating alone in an envi-
ronment. However, many of the most important culturally acquired values are interpersonal and
relate to how we should treat others. We investigate this phenomenon in a procedurally generated
set of two-player scenarios shown in Figure 7 inspired by Ullman et al. (2009). Instead of the red
agent being socially rewarded when it reaches the green square, the caregiver rewards it when the
green player reaches the green square. However, a blue boulder blocks the green arrow’s path in
each generated grid. The red agent has two additional actions “pick up” and “drop” which allow it
to pick up and move the boulder, clearing the path. The state is also augmented to include a binary
indicator of whether or not the player is carrying the boulder. If possible, the green agent always
moves toward the goal using a depth-first search. If no path is found, it remains in place.

To create solvable tasks procedurally, we generated 5x5 grids with seven blocks subject to the
constraint that the remaining open tiles form a single connected component, which results in a tree
structure. The boulder is placed in the location with the maximum degree in that tree, and the
green player and green goal are placed on opposite components of the resulting disconnected graph
at the tree’s leaf nodes (endpoints). The red agent is placed at another leaf node. Thus, in each
starting configuration, the green player’s path is blocked by the boulder, and the only way for that
player to reach the goal is if the red agent picks up and moves the boulder away. The caregiver gives
a social reward to the red agent when the green player reaches the green square and otherwise gives
no reward. Thus, we can study how a prosocial reward that is dependent on the behavior of another
is internalized by the ISR module.

Figure 7 shows the results from this experiment. Overall, we observe similar phenomena to those
seen in previous experiments. During the socialization period, the agent learns the task. When
the caregiver leaves, the agent without ISR unlearns the behavior. However, with ISR, the agent
continues helping the other agent in new environments, having internalized the prosocial value. This
is reminiscent of the human feeling of a “warm glow” when behaving altruistically (Andreoni, 1990).

5 Discussion

We develop a new computational cognitive model for studying how values can be socially acquired
and maintained during learning. We proposed a process called value internalization, where, during
a socialization period, a caregiver socially rewards a learning agent based on the correctness of
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their behavior. The learner models these rewards internally, and once the caregiver leaves and the
learner must continue independently, the internal model of reward prevents unlearning the socially
acquired behaviors and enables further learning and generalization. Together, these results shed
light on some of the features and challenges of value acquisition. In the following, we discuss some
implications that arise from this view and describe opportunities for future study on computational
value internalization.

Here, we only considered the simplest kind of social feedback, directly rewarding the desired outcome.
However, human social feedback is far richer and often requires some computation on the side of the
receiver to be interpreted correctly. For instance, when people teach with rewards and punishments,
their actions have a communicative goal rather than just shaping a policy (Ho et al., 2017; 2019).
In the prosocial environments shown in Figure 7, rather than giving a reward when the green agent
reaches the green square, it might be more natural to give a positive reward when the red agent
picks up the boulder and moves it out of the way. Once the boulder has been moved, the red agent
no longer has a role to play as a helper, so it might make sense to deliver the reward then. However,
without additional inferential machinery, the agent will learn that moving boulders is the goal rather
than seeing moving the boulder as a means to an end. A sophisticated learning agent should learn to
disambiguate between approval of instrumentally valuable actions and intrinsically valuable actions
when interpreting an approval signal provided by a caregiver. Other forms of social feedback, such
as observation, demonstrations, language, or corrections, may need their own inferential machinery
to distill into an ISR model (Colas et al., 2020; Jeon et al., 2020; Kleiman-Weiner et al., 2020).

Why internalize social rewards instead of learning from scratch? Internalization is useful for any
boundedly rational agent (including humans) that is unable to perform the (very) long-horizon
planning required for survival in a complex world. Instead, a resource-rational strategy is to learn to
intrinsically value the goals that have already been acquired by previous learners. These goals may
end up somewhat decorrelated from the original environmental rewards, but may still lead to the
acquisition of a wide variety of skills relevant to survival without the computational cost. Similar
explanations have been offered for why it’s adaptive for humans to internalize social norms (Gintis,
2003).

Our computational approach to value internalization gives a novel view on a developmental ques-
tion: when is an agent or organism ready to seek independence instead of further care? From the
perspective of value internalization, the more time an agent spends with their caregiver, the more
accurate their internal rewards will be (as we showed in Figure 3). If we assume that the caregiver’s
social rewards transmit a culturally evolved set of values, then accurately representing those values
will be of benefit to the learner (Henrich, 2015). While a learner can only weakly estimate the
benefit of a more accurate ISR model because of the uncertain future, an outer optimization loop
of cultural evolution could at least estimate the average value of a given ISR accuracy (Sorg et al.,
2010). Let B(n) be the benefit to a particular ISR and n be the amount of social feedback that the
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Figure 7: Prosocial value internalization. (left)
Three procedurally generated environments where
the red agent needs to pick up the blue boul-
der so the green agent can reach the green goal.
(right) Agent’s first learn to be prosocial with so-
cial rewards from the caregiver (blue). After 2.4K
episodes, the caregiver is removed (vertical dotted
line). Without the ISR model, the agent quickly
unlearns the prosocial behavior (green). The ISR
model prevents unlearning and the agent main-
tains a prosocial motivation (red). Results are av-
eraged over ten seeds and smoothed. Bands show
the min and max.
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ISR module was trained with. Furthermore, providing feedback is costly to the caregiver and may
delay the productivity of the learner during independence. Let C(n) be these costs, which are also
a function of the amount of social rewards. Applying the logic of marginal utility, an agent is ready
for independence when:

∂B

∂n
<

∂C

∂n

or when the marginal benefit of improving the ISR is less than the marginal cost of the next additional
social reward.

While this work used a deep neural network to model social reward, the framework we presented
applies more generally to a wide range of representations. More structured models, such as hierar-
chical Bayesian models or probabilistic programs, may be better suited to capture people’s inductive
biases when learning what kinds of states and actions are likely to be rewarding (Kleiman-Weiner
et al., 2017). These inductive biases give up some flexibility for greater sample efficiency. However,
from an evolutionary perspective, flexibility might be highly valuable – the range of possible cul-
tural values cannot be easily anticipated (e.g., non-intuitive complex rituals) over the time span of
biological evolution, and it may be worth spending more time and energy in a socialization phase
to allow for a wider range of possible values (Piantadosi & Kidd, 2016). For instance, what kind of
ISR model could accurately recognize and reward values like curiosity and exploration? We hope to
study this question empirically in future work.

Value internalization may have implications for aligning artificial intelligence with human values.
Today, large language models (LLMs) are made more helpful and ethical and less biased and harmful
through a process called reinforcement learning from human feedback (RLHF) that shares a resem-
blance with the ISR model (Ouyang et al., 2022). Acting in a caregiver-like role, human annotators
rate pairs of model outputs. Those ratings are used to train a reward model, which tunes the lan-
guage model toward the preferences of the human annotators. In our work, we attempted to reverse
engineer how human learners might internalize their caregiver’s feedback, aligning their wants and
desires to those of the previous generation. Now, we are faced with engineering these internalization
mechanisms into AI agents in order to build safe, intelligent machines.

5.1 Source Code

https://github.com/friedeggs/social-play
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Abstract

Mixtures of Experts (MoEs) have gained prominence in (self-)supervised learning
due to their enhanced inference efficiency, adaptability to distributed training, and
modularity. Previous research has illustrated that MoEs can significantly boost
Deep Reinforcement Learning (DRL) performance by expanding the network’s pa-
rameter count while reducing dormant neurons1, thereby enhancing the model’s
learning capacity and ability to deal with non-stationarity. In this work, we shed
more light on MoEs’ ability to deal with non-stationarity and investigate MoEs in
DRL settings with “amplified” non-stationarity via multi-task training, providing
further evidence that MoEs improve learning capacity. In contrast to previous work,
our multi-task results allow us to better understand the underlying causes for the
beneficial effect of MoE in DRL training, the impact of the various MoE compo-
nents, and insights into how best to incorporate them in actor-critic-based DRL
networks. Finally, we also confirm results from previous work.

1 Introduction

Deep Reinforcement Learning (RL), which integrates reinforcement learning algorithms with deep
neural networks, has demonstrated remarkable success in enabling agents to achieve complex tasks
beyond human capabilities in domains ranging from video games to strategic board games and
beyond (Mnih et al., 2015; Berner et al., 2019; Vinyals et al., 2019; Fawzi et al., 2022; Bellemare et al.,
2020). Despite the pivotal role of deep networks in these advanced RL applications, their learning
dynamics within RL contexts still need to be fully understood. Recent research has uncovered
unexpected behaviours and phenomena associated with the use of deep networks in RL, which often
diverge from those observed in traditional supervised learning environments (Ostrovski et al., 2021;
Kumar et al., 2021; Lyle et al., 2022; Graesser et al., 2022; Nikishin et al., 2022a; Sokar et al., 2023;
Obando Ceron et al., 2023).

Transformers (Vaswani et al., 2017), adapters (Houlsby et al., 2019), and Mixture of Experts (MoEs;
Shazeer et al., 2017), are crucial for the scalability of supervised learning models, particularly within
the domains of natural language processing and computer vision. MoEs stand out by facilitating the
scaling of networks to encompass trillions of parameters, a feat made possible through their modular
design that seamlessly integrates with distributed computing techniques (Fedus et al., 2022). More-
over, MoEs introduce a form of structured sparsity into the network architecture, a characteristic

*Authors contributed equally. Correspondence to [timon.willi, jobando0730]@gmail.com,psc@google.com
1Dormant neurons: neurons that have become practically inactive through low activations.
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associated with enhancements in network performance through various studies on network sparsity
(Evci et al., 2020; Gale et al., 2019; Jin et al., 2022). Finally, there is growing evidence in the
supervised learning literature that MoEs specialise on different problem characteristics in multi-task
settings (Gupta et al., 2022). These settings are inherently non-stationary and may benefit from the
modularity and sparsity induced by MoE-based architectures.

Recently, Ceron et al. (2024b) demonstrated that MoEs unlock scaling in DRL networks for single-
task settings. However, they did so under a specific setting where only the penultimate layer was
replaced by an MoE module. Their analyses suggest that incorporating MoEs makes networks less
susceptible to loss of plasticity, as evidenced by measurements including the fraction of dormant
neurons. Sokar et al. (2023), in exploring the phenomenon of dormant neurons in DRL, provided
strong evidence that their growth is due mainly to the non-stationary nature of RL training.

In this work, we set out to better understand how MoEs help training under non-stationarity and
which aspects of MoEs yield these results. To do so, we “amplify” the non-stationarity of DRL
training by investigating settings where multiple tasks are learned concurrently by the same agent.
Specifically, we investigate the incorporation of a variety of MoE architectures in Multi-Task Re-
inforcement Learning (MTRL) and Continual Reinforcement Learning (CRL) settings. Our results
demonstrate that the induced sparsity of expert modules is critical to mitigating plasticity loss
under amplified non-stationarity and highlight the difficulty and importance of properly training
the router. While focusing on the MTRL and CRL settings, some insights below apply to more
traditional single-task settings.

2 Background

2.1 Reinforcement Learning

A Markov Decision Process (MDP; Bellman, 1957; Puterman, 1990; Sutton & Barto, 2018) is defined
by a tupleM = 〈S,A,P, r, ρ, γ〉, where S denotes the set of all possible states, A denotes the set of
possible actions, P : S×A → S is the state transition probability kernel, r : S×A → R is the reward
function, ρ denotes the initial state distribution, and γ (where 0 < γ ≤ 1) is the discount factor that
determines the present value of future rewards. In Reinforcement Learning (RL), a policy π assigns
to each state s a probability distribution π(s) over actions in A. The objective in RL is to devise
a policy π that maximises the expected sum of discounted rewards J(π) = Eπ [

∑∞
t=0 γ

tr (st, at)].
The policy parameterised by θ is denoted as πθ(at | st). The parameter θ is chosen via optimisation
maximising J(θ), thereby achieving the highest possible cumulative reward.

In Multi-Task Reinforcement Learning (MTRL), an agent engages with a variety of tasks τ
from a set T , with each task τ constituting a distinct Markov Decision Process (MDP) denoted
by Mτ = 〈Sτ ,Aτ ,Pτ , rτ , ρτ , γτ 〉. The objective in MTRL is to devise a unified policy π that
optimises the average expected cumulative discounted return across all tasks, expressed as J(θ) =

1
|T |

∑
τ Jτ (θ). In our work, at each training step a single agent trains synchronously on multiple

tasks. MTRL is effective at measuring an agent’s capabilities at devising control policies from a
highly varying set of inputs and environment dynamics.

Continual RL (Abbas et al., 2023) is a variant of MTRL where the agent trains on one task for
an extended period before switching to a new task (Khetarpal et al., 2022); once all tasks have been
trained on once, the agent once again trains on all the environments in the same order. This setting
enables measuring an agent’s ability to learn new tasks while retaining previously learned policies.

As a concrete example, imagine we have two MDPs (M1, M2). MTRL would train on both
(M1,M2) at each step, whereas CRL would train on M1 for an extended number of steps, then
M2, and so on: M1 →M2 →M1 →M2.
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Figure 1: Architectures considered: (a) Baseline architecture; (b) Middle, used by Ceron et al.
(2024b); (c) Final, where an MoE module replaces the final layer; (d) All, where all layers are
replaced with an MoE module; (e) Big, with a single MoE module where an expert comprises the
full original network.

2.2 MoEs

Mixtures of Experts (MoEs) emerged as a cornerstone in designing Large Language Models (LLMs),
integrating a collection of n “expert” sub-networks. A gating mechanism, known as the router and
usually learned during training, manages the experts by directing each incoming token to k selected
experts (Shazeer et al., 2017). Typically, k is less than the total count of experts (in our case,
k = 1). This sparsity is key for enhancing inference speed and facilitating distributed computing,
making it a pivotal factor in training LLMs. In transformer architectures, MoE units substitute all
dense feedforward layers (Vaswani et al., 2017). The impressive empirical performance of MoEs has
sparked significant research interest (Shazeer et al., 2017; Lewis et al., 2021; Fedus et al., 2022; Zhou
et al., 2022; Puigcerver et al., 2023; Lepikhin et al., 2020; Zoph et al., 2022; Gale et al., 2023).

The strict routing of tokens to specific experts, known as hard assignments, presents several issues,
including training instability, token loss, and obstacles in expanding the number of experts (Fedus
et al., 2022; Puigcerver et al., 2023). To mitigate these issues, Puigcerver et al. (2023) proposed
the concept of Soft MoE, which utilises a soft, fully differentiable method for allocating tokens
to experts, thereby circumventing the limitations associated with router-based hard assignments.
This soft assignment method calculates a blend of weights for each token across the experts and
aggregates their outputs accordingly. Adopting the terminology of Puigcerver et al. (2023), consider
input tokens represented by X ∈ Rm×d, with m indicating the count of d-dimensional tokens. A
Soft MoE layer processes these tokens through n experts, each defined as {fi : Rd → Rd}1:n. Every
expert is associated with p slots for both input and output, each slot characterised by a d-dimensional
vector of parameters. These parameters are collectively denoted as Φ ∈ Rd×(n·p).

The input slots X̃ ∈ R(n·p)×d represent a weighted average of all tokens, given by X̃ = D>X, where
D is commonly known as the dispatch weights. The outputs from the experts are expressed as
Ỹi = fbi/pc(X̃i). For the Soft MoE layer, the overall output Y results from merging Ỹ with the
combined weights C, described by Y = CỸ. D and C are represented by the following expressions:

Dij = exp ((XΦ)ij)∑m
i′=1 exp ((XΦ)i′j)

, Cij = exp ((XΦ)ij)∑n·p
j′=1 exp ((XΦ)ij′)

.
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The findings from Puigcerver et al. (2023) indicate that Soft MoE provides an improved balance
between accuracy and computational expense relative to alternative MoE approaches.

3 Mixtures of Experts in a mixture of RL settings

Although shifting targets (due to bootstrapping) and dynamic data collection (from the agent’s
policy) already render single-task RL a non-stationary problem, MTRL and CRL take this non-
stationarity to an extreme by changing the environments during training. A critical difference
between the two is that in MTRL, at every step, the agent interacts and learns from each environment
(e.g. regular task-switching). In contrast, in CRL tasks are switched very infrequently. Thus, both
settings provide complementary perspectives when investigating the efficacy of MoEs under high
levels of non-stationarity.

3.1 Experimental setup

As we investigate many settings in many scenarios, we wanted to maximise the number of runs per
setting to ensure statistical robustness, while keeping the computational expense at bay. For this
reason, we chose to run our experiments with the PureJaxRL codebase2 (Lu et al., 2022b;a; 2023),
which is a high-performance and parallelisable library including an implementation of Proximal
Policy Optimisation (Schulman et al., 2017, PPO). Since Ceron et al. (2024b) focused on value-
based methods, our use of PPO provides complementary insights and results. We rely on the
Gymnax suite (Lange, 2022) to implement optimised versions of MinAtar environments (Young &
Tian, 2019), which have been shown to provide insights comparable to the full ALE suite (Obando-
Ceron & Castro, 2021). The hyper-parameters used are provided in Appendix H and were adapted
from Jesson et al. (2023) (we deviate in the network size due to computational constraints). For all
experiments, we evaluate on three environments: SpaceInvaders (SI), Breakout (BO), and Asterix
(Ast). The input observations from Asterix differ substantially from SpaceInvaders and Breakout,
whereas the latter are similar in observation and action space. This environment selection allows us
to investigate whether MDP similarity encourages sharing representations between experts.

For MTRL we train simultaneously on SI, BO, and Ast; in practice, the PPO agent performs one
update step per environment in sequence. For CRL, we train the agent on a fixed sequence of MDPs
(Abbas et al., 2023) for 1e7 environment steps (∼ 80k update steps), specifically SI → BO → Ast
→ SI → BO → Ast. We present further analysis with different task orders in Section 4.

Ceron et al. (2024b) propose replacing the penultimate layer with an MoE module and sharing the
other layers across the network. We term this variant Middle. We also evaluate a variant called
Final, where the MoE module replaces the last layer. We also propose two new architectures: All,
where MoE modules replace all three layers, and Big, where the network contains a single MoE
module and each expert consists of a full network (see Figure 1). Since we are dealing with three
distinct environments, all versions of MoEs have three experts. In all cases, we are using per-
sample tokenization: one token – the state – per forward pass (Ceron et al., 2024b). All other
hyper-parameters are reported in Appendix H.

We use a hardcoded routing strategy for many of our experiments to isolate the impact of routing
versus expert architecture. This routing strategy will assign one expert for each task and route inputs
accordingly. For the Big architecture, this effectively trains a separate network for each task and
serves as a useful baseline. For all our results, we report the mean, averaged over 10 independent
seeds, with shaded areas representing standard error. In most figures, we also present the average
normalised performance across all tasks (in parentheses in the legend), where normalisation scores
were taken from Jesson et al. (2023). Our experiments were run on a single Tesla P100 or A100
GPU, each taking 10 minutes. In total, we ran 870 distinct settings over 10 seeds each and are
reported in Sections 3.2, 3.3 and 4 and Appendices A to G.

2PureJaxRL code available at: https://github.com/luchris429/purejaxrl
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Figure 2: Measuring the impact of MoE architectures with hardcoded routing in MTRL (top).
and CRL (bottom). In each legend, the numbers in parentheses indicate the average performance
of each approach over all games. Big outperforms all other methods.
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Figure 3: Measuring the impact of routing with Big architecture using different routing ap-
proaches under the MTRL (top row) and CRL (bottom row) settings. In each legend, the numbers in
parentheses indicate the average performance of each approach across all games. SoftMoE and Hard-
coded work best in MTRL, and Hardcoded works best in CRL, though SoftMoE still outperforms
the baseline.
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3.2 The impact of MoE architectures

To evaluate the impact of the choice of MoE architectures (Figure 1), we make use of the hardcoded
router, which avoids potentially confounding factors due to also learning a routing strategy. In
Figure 2, it is evident that the Big architecture performs best as expected since it is essentially a
separate network per task. Still, it is promising to observe that all architectures outperform the
baseline in the CRL setting, with All being the strongest performer. Surprisingly, in the MTRL
setting, only Big outperforms the baseline. We hypothesise that All struggles due to suboptimal
hyperparameters, as it was not computationally feasible to run a hyperparameter search over all
possible settings. For Middle and Final, it is possible that gradient interference (Lyle et al., 2023)
is complicating the learning process since there is parameter sharing outside of the MoE modules.

3.3 The impact of learned routers

The Big architecture provides a direct way to evaluate the impact of routing, as gating and combining
are only done before and after the original network parameters, respectively. In Figure 3, we present
the learning curves for Big architecture with varying routing strategies under CRL and MTRL.

In MTRL, we see little difference between the hardcoded router and SoftMoE. This is surprising
since the hardcoded router trains separate networks for each task (performing as well as the baseline
trained on each environment individually). This suggests that the gating used by SoftMoE is effective
in situations where tasks are frequently changed. The rigidity of TopK routing appears to make it
difficult for it to learn proper routing strategies, resulting in deteriorated performance.

In CRL, the hardcoded router performs best and retains previously learned policies (as evidenced by
the second time the tasks are run). While SoftMoE ultimately outperforms the baseline in each task,
it struggles in retaining previously learned policies; it is worth noting that the second time training
on Ast, although its starting performance is essentially at zero, its final performance is higher than
the first time training through, suggesting some policy retention (bottom right of Fig. 3).

A major learning challenge in the CRL setting is that no signal is provided to the network when
the environment changes. Thus, a natural question is whether learned routers can effectively use
task information. To investigate this, in Figure 4, we added the task ID as an input to the router
(top row) and observed the surprising result that including task ID slightly hurts performance for
Big-SoftMoE. Examining the gradient similarity from one update to the next (bottom left panel
of Figure 4), it becomes evident that task-switching induces a discontinuity in the gradients used
for learning. Interestingly, including this gradient similarity information as part of the input to the
router does not hurt performance, but it does not improve either (bottom right).

In summary, our results suggest that SoftMoE routing is effective at dealing with high levels of non-
stationarity, provided that discontinuous changes in environment dynamics (such as those arising
from task switching) occur with relative frequency.

4 Extra Analyses

In the previous section, we provided empirical evidence suggesting that MoEs can improve DRL
agents’ performance in various non-stationary training regimes. Next, we conduct additional analyses
to uncover the underlying causes of MoEs’ benefits.

Impact on network plasticity. We measure the fraction of dormant neurons (Sokar et al., 2023)
during training as a proxy for network plasticity. As Figs. 5 (top), 11, and 15 demonstrate, all MoE
variants reduce the fraction of dormant neurons, suggesting MoEs help with maintaining network
plasticity, consistent with the findings of Ceron et al. (2024b).

Expert specialisation. In Figs. 5 (bottom), 10, and 16 we measure the probabilities assigned to
each expert during training; what these values indicate is the likelihood that inputs will be routed
to each respective expert; observe that the hardcoded router has maximal specialisation, where each
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Figure 4: Top: Adding the task ID as an input to the router hurts performance for Big-SoftMoE.
Bottom left: Sequential gradient similarity calculated throughout training, where dashed vertical
lines represent when tasks switch. Bottom right: Adding gradient information as an input to the
router does not improve performance.

expert is assigned to one task. We can also observe that both Big-SoftMoE and All-SoftMoE variants
tend to specialise in all layers.

In supervised learning settings, it is common to use load-balancing losses to avoid this type of spe-
cialisation to maximise expert usage. We explored this idea by adding entropy regularisation during
training and observed that, while we do see a decrease in expert specialisation (c.f. Figs. 4 (bottom),
10, and 16), this does not affect performance in any meaningful way (c.f. Fig. 14 and Table 8).

Impact on actor and critic networks. Ceron et al. (2024b) focused on value-based methods
(where a single network serves as critic and actor), so using an actor-critic method like PPO provides
a novel, complementary perspective. By default, we use MoE modules on the actor and critic
networks, but in Figs. 6, 17 and 18 and Tables 9 and 10, we show that, in the two settings, it is best
to use MoEs on both networks. However, the results suggest that MoEs have a greater impact on
the actor than on the critic network. The fact that actor networks seem to benefit more from MoEs
than critic networks is aligned with the findings of Graesser et al. (2022), where they found that
actor networks could handle much higher levels of sparsity than critics without any degradation in
performance.

Order of environments. To investigate the impact of environment ordering, we train using the
ordering Ast → BO → SI to compare with the orderings we have used thus far; we present results
for MTRL and CRL in Figs. 20 and 21, respectively. While conclusions do not change in MTRL,
changing the order of environments affects CRL performance significantly (excluding the hardcoded
router). We observe two interesting changes: (i) training BO after Ast (as opposed to after SI)
causes all methods (excluding hardcoded) to collapse, and (ii) when training on Ast last, none of the
agents were able to retain the learned policy (c.f. Fig. 3), whereas when training on Ast first there
is some policy retention (as seen on the bottom left of Fig. 20). As mentioned previously, Ast differs
substantially from the other two environments, so our findings in Fig. 20 suggest that the agents
have overfit the input distribution of Ast, hindering its ability to adapt to the other environments
but allowing the retention of the policy learned on Ast.
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Figure 5: Top: presents the ratio of dormant neurons for CRL under different routing approaches
using Big. The numbers in the legend represent average dormant neuron fractions across all games.
MoE variants have lower dormant neurons than the baseline. Bottom: Regularising the entropy
of the router makes the expert selection more uniform. Without regularisation, there is more spe-
cialisation. This shows one seed, as different seeds might choose different experts. See section 4 for
more details.

Single Environment. Despite the clear improvements from CRL and MTRL, there are no signif-
icant performance improvements across all games in the single environment setting. However, Big
improves over the baseline in Asterix while performing worse in Breakout, as shown in Figure 30
and Table 21, suggesting that MoEs might be beneficial in specific types of environments. Adding
gradient information did not affect performance (see Figure 34).

5 Related Work

Parameter underutilisation is a roadblock to parameter efficiency in deep Reinforcement Learning
(RL). The latter was highlighted by Sokar et al. (2023) in the form of dormant neurons. Arnob
et al. (2021) demonstrate that in offline RL, up to 95% of network parameters can be pruned at
initialisation without impacting performance. Further, several studies have shown that periodic
network weight resets enhance performance (Igl et al., 2020; Dohare et al., 2021; Nikishin et al.,
2022b; D’Oro et al., 2022; Sokar et al., 2023; Schwarzer et al., 2023) and that RL networks maintain
performance when trained with a high degree of sparsity (Tan et al., 2022; Sokar et al., 2022;
Graesser et al., 2022; Ceron et al., 2024a). These findings underscore the need for methods that
more effectively leverage network parameters in RL training. Our work explores the use of Mixture
of Experts (MoEs) for actor-critic methods, demonstrating significant reductions in dormant neurons
across various tasks and network architectures.
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Figure 6: Comparing the impact of MoE architectures on actor and critic networks with
the hardcoded router, under the MTRL (top row) and CRL (bottom row) settings. In each legend,
the numbers in parentheses indicate the average performance of each approach across all games.
It is best to use MoEs on both networks. However, the results suggest that MoEs have a greater
impact when used on the actor network than on the critic. See section 4 for more details.

Mixtures of Experts (MoEs) revolutionised large-scale language/vision models primarily due to their
modular design, which supports distributed training and enhances parameter efficiency during in-
ference (Lepikhin et al., 2020; Fedus et al., 2022; Yang et al., 2019; Wang et al., 2020; Abbas &
Andreopoulos, 2020; Pavlitskaya et al., 2020). MoEs show benefits in transfer and multi-task learn-
ing scenarios, e.g., by assigning experts to specific sub-problems (Puigcerver et al., 2023; Chen et al.,
2023; Ye & Xu, 2023), or by improving the statistical performance of routers (Hazimeh et al., 2021).

MoEs have been studied in DRL (Ren et al., 2021; Hendawy et al., 2024; Akrour et al., 2021) but
based on a previous definition of MoE (Jacobs et al., 1991), closely related to ensembling, and not
the more recent interpretation of MoEs in LLMs. Ensembles are often used to represent the policy
(Anschel et al., 2016; Lan et al., 2020; Agarwal et al., 2020; Peer et al., 2021; Chen et al., 2021; An
et al., 2021; Wu et al., 2021; Liang et al., 2022) or to predict model dynamics (Shyam et al., 2019;
Chua et al., 2018; Kurutach et al., 2018). Most closely related to ensembling is our Big architecture,
where each expert is a full model. Fan et al. (2023) could be interpreted as using multiple meta-
controllers as routers for Big and ensembling the resulting policy. In contrast to our work, they do
not investigate different MoE architectures and rely on population-based training.

Two recent works have explored using MoEs (as used in LLMs) in DRL: the work of Ceron et al.
(2024b) has already been referenced extensively above, as our work builds on their findings. More
recently, Farebrother et al. (2024) argued that classification losses yield stabler learning dynamics
than regression losses, which also applies to using MoEs.

6 Conclusion

Our work provides additional evidence of the effectiveness of MoEs in improving the training of
DRL agents. Using MTRL and CRL grants us a novel perspective on evaluating and analysing
MoEs under “extreme” non-stationarity. Consistent with the findings of Ceron et al. (2024b), DRL
is most performant using SoftMoE, whereas it struggles with hard TopK routing.
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Our use of the hardcoded router served as a useful baseline for our analyses and demonstrates much
room for improvement in training DRL agents in multi-task settings. Indeed, in CRL, only mild
policy retention was observed in Ast, and the retention amount was dependent on the order in which
the environments were trained. An exciting avenue for future work is thus investigating what task
curricula would lead to best agent performance and policy retention. As mentioned previously, the
observations in Ast differ substantially from those of BO and SI (which are similar to each other);
the fact that we only observed policy retention in Ast thus begs the question of whether the agent
is over-fitting to the anomalous input distribution of Ast, at the expense of being able to generalise
to the other environments.

Expert specialisation and whether load-balancing is desirable are also interesting questions for future
research. The findings from the supervised learning community in this respect may not naturally
carry over to DRL settings, largely due to training’s inherent non-stationarity. Finally, MoEs could
be investigated in multi-agent settings, where experts represent different agents in cooperative (Ellis
et al., 2024) or general-sum settings (Lu et al., 2022b; Willi et al., 2022), where vectorised environ-
ments are widely available (Khan et al., 2023; Rutherford et al., 2023).
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A Continual RL
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Figure 7: CRL: Variants with shared parameters across task do not necessarily improve
performance over the baseline. Middle performs better than the baseline, whereas Final does not.

Game Baseline Final-Hardcoded Middle-Hardcoded
SI 0.97± 0.01 0.95± 0.01 0.94± 0.01
BO 0.08± 0.05 0.38± 0.04 0.13± 0.01
Ast 0.35± 0.04 0.34± 0.01 0.37± 0.01
SI-2 0.78± 0.12 0.19± 0.12 0.98± 0.01
BO-2 0.08± 0.02 0.09± 0.03 0.07± 0.02
Ast-2 0.51± 0.06 0.57± 0.02 0.60± 0.02
Total 0.46± 0.03 0.42± 0.02 0.52± 0.01

Table 1: CRL: Variants with shared parameters across task do not necessarily improve
performance over the baseline. Middle performs better than the baseline, whereas Final does not.
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Figure 8: CRL: Isolated Params: Variants with isolated parameters across task improve
performance over the baseline. Big-Hardcoded works the best.
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Game Baseline All-Hardcoded Big-Hardcoded Middle-Hardcoded
Game Baseline Final-Hardcoded Middle-Hardcoded Additional-Column
SI 0.97± 0.01 0.95± 0.01 0.95± 0.00 0.94± 0.01
BO 0.08± 0.05 0.13± 0.00 0.32± 0.03 0.13± 0.01
Ast 0.35± 0.04 0.45± 0.03 0.56± 0.04 0.37± 0.01
SI-2 0.78± 0.12 1.00± 0.00 0.98± 0.01 0.98± 0.01
BO-2 0.08± 0.02 0.16± 0.01 0.34± 0.04 0.07± 0.02
Ast-2 0.51± 0.06 0.65± 0.06 0.87± 0.06 0.60± 0.02
Total 0.46± 0.03 0.56± 0.02 0.67± 0.02 0.52± 0.01

Table 2: CRL: Isolated Params: Variants with isolated parameters across task improve
performance over the baseline. Big-Hardcoded works the best.

2 4 6 8
0

1
SpaceInvaders

2 4 6 8
0.0

0.1
Breakout

2 4 6 8
0.0

0.5
Asterix

2 4 6 8
0.0

0.5

Baseline  Big-SoftMoE (no task ID) Big-SoftMoE (with task ID)

2 4 6 8
Number of Updates (in 10k)

0.05
0.10
0.15

2 4 6 8

0.25
0.50
0.75Re

tu
rn

Figure 9: CRL: Adding Task ID as input slightly hurts performance for Big-SoftMoE.

Game Baseline w/ Task-ID w/o Task-ID
SI 0.97± 0.01 0.98± 0.01 0.99± 0.01
BO 0.08± 0.05 0.08± 0.03 0.07± 0.02
Ast 0.35± 0.04 0.46± 0.03 0.47± 0.04
SI-2 0.78± 0.12 0.81± 0.13 0.51± 0.16
BO-2 0.08± 0.02 0.13± 0.03 0.04± 0.02
Ast-2 0.51± 0.06 0.73± 0.04 0.76± 0.05
Total 0.46± 0.03 0.53± 0.02 0.47± 0.02

Table 3: CRL: Adding Task ID as input slightly hurts performance for Big-SoftMoE.

Game Baseline Big-Hardcoded Big-SoftGradMoE Big-SoftMoE
SI 0.97± 0.01 0.95± 0.00 0.99± 0.01 0.98± 0.01
BO 0.08± 0.05 0.32± 0.03 0.12± 0.03 0.08± 0.03
Ast 0.35± 0.04 0.56± 0.04 0.45± 0.04 0.46± 0.03
SI-2 0.78± 0.12 0.98± 0.01 0.79± 0.13 0.81± 0.13
BO-2 0.08± 0.02 0.34± 0.04 0.14± 0.03 0.13± 0.03
Ast-2 0.51± 0.06 0.87± 0.06 0.69± 0.06 0.73± 0.04
Total 0.46± 0.03 0.67± 0.02 0.53± 0.02 0.53± 0.02

Table 4: Performance of algorithms across games with total performance.
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Figure 10: CRL: Big-SoftMoE also specialises in the CRL setting.
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Figure 11: CRL: MoE variants have less dormant neurons than the baseline without MoE
modules.

Game Baseline Big-Hardcoded Big-TopK Big-SoftMoE
SI 20.86± 1.41 17.19± 0.94 19.22± 1.78 1.72± 0.45
BO 55.94± 5.38 7.58± 1.44 23.20± 4.71 20.86± 4.34
Ast 65.31± 3.13 22.89± 1.49 32.73± 1.72 15.70± 1.65
SI-2 67.34± 5.38 16.41± 1.22 47.11± 4.49 21.17± 7.97
BO-2 84.06± 2.41 12.11± 1.61 63.52± 2.47 41.33± 4.19
Ast-2 79.30± 2.65 28.05± 1.27 46.17± 1.76 47.58± 3.94
Total 62.14± 1.53 17.37± 0.83 38.66± 1.59 24.73± 1.58

Table 5: CRL Dormant Neurons for Big router variants. The hardcoded variant has the least
dormant neurons
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A.1 Hard-switching based on Gradient Similarity

We also attempt to route when the gradient similarity drops below a threshold. However, this proved
difficult as the thresholds depend on the architecture and expert might switch too early, as shown
in Figure 12.
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Figure 12: CRL: As shown here with SMSMHC, finding a correct threshold for gradient switching
proves difficult, as the experts might switch too early, as in this case it already switches twice during
SpaceInvaders (see the dips)

Game Baseline Big-Hardcoded Big-TopK Big-SoftMoE
SI 21.95± 1.15 22.34± 1.12 19.61± 2.10 2.89± 0.40
BO 22.50± 3.02 7.89± 1.21 20.39± 1.36 3.91± 1.23
Ast 72.66± 1.59 29.14± 1.11 44.30± 2.35 26.02± 1.21
Total 39.04± 0.88 19.79± 0.92 28.10± 1.81 10.94± 0.77

Table 6: MTRL Dormant Neurons for Big router variants. Big-SoftMoE has the least
dormant neurons.
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B Multi-Task RL

Combining router learning with some task-specialized layers via Hardcoding. We per-
form preliminary tests how enforced task-specialization in the final layer affects performance. For
this, we introduce a new architecture termed SMSMHC (SoftMoE, SoftMoE, Hardcoded Router).
This architecture consists of two initial layers of learned SoftMoE and a final layer with a Hardcoded
Router. Contrary to expectations, SMSMHC does not yield a performance improvement (0.56 ±
0.02 and 0.53 ± 0.01), as shown in Figure 13, leading to questions about the value of specialization
in this context.
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Figure 13: MTRL: SMSMHC does not improve performance over All, suggesting that
extreme specialisation in the last layer is not necessarily helpful.

Game Baseline All SMSMHC
SI 0.90± 0.01 0.94± 0.01 0.95± 0.00
BO 0.46± 0.07 0.33± 0.01 0.28± 0.03
Ast 0.51± 0.05 0.43± 0.05 0.36± 0.04
Total 0.63± 0.03 0.56± 0.02 0.53± 0.01

Table 7: MTRL: SMSMHC does not improve performance over All, suggesting that extreme
specialisation in the last layer is not necessarily helpful.
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Figure 14: MTRL: Regularising the entropy does not affect performance significantly,
suggesting that specialisation only plays a limited role for performance.

Game Baseline All w/o RE All w/ RE Big w/o RE Big w/ RE
SI 0.90± 0.01 0.94± 0.01 0.94± 0.01 0.95± 0.01 0.93± 0.01
BO 0.46± 0.07 0.28± 0.01 0.33± 0.01 0.47± 0.08 0.60± 0.09
Ast 0.51± 0.05 0.42± 0.05 0.43± 0.05 0.68± 0.04 0.62± 0.05
Total 0.63± 0.03 0.55± 0.02 0.56± 0.02 0.70± 0.02 0.72± 0.03

Table 8: MTRL: Regularising the entropy does not affect performance significantly, suggesting that
specialisation only plays a limited role for performance.
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Figure 15: MTRL: Generally, dormant neurons are lower when using Big variants.
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Figure 16: MTRL: Row 1-3 is Layer 1-3 when playing SpaveInvaders, row 4-6, is layer 1-3 when
playing Breakout, row 7-9 is layer 1-3 when playing Asterix.
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C Actor/Critic Ablation

Figure 17: CRL: In general, having an MoE module in the actor seems to be most helpful
for performance, whereas the critic MoE module does not improve performance significantly. We
used the Big variant for the ablation.

Game Baseline /C A/ A/C
SI 0.96± 0.00 0.98± 0.01 0.95± 0.01 0.99± 0.01
BO 0.06± 0.02 0.09± 0.03 0.12± 0.03 0.08± 0.03
Ast 0.38± 0.04 0.33± 0.02 0.44± 0.03 0.53± 0.04
SI-2 0.78± 0.12 0.88± 0.09 0.97± 0.01 0.91± 0.10
BO-2 0.08± 0.02 0.09± 0.02 0.12± 0.03 0.07± 0.03
Ast-2 0.56± 0.06 0.56± 0.03 0.71± 0.05 0.81± 0.05

Table 9: CRL: In general, having an MoE module in the actor seems to be most helpful
for performance, whereas the critic MoE module does not improve performance significantly. We
used the Big variant for the ablation.

Figure 18: MTRL: The combination of Actor and Critic MoE modules appears most
beneficial. We used the Big variant for the ablation.

Game Baseline /C A/ A/C
SI 0.91± 0.01 0.93± 0.01 0.92± 0.00 0.95± 0.01
BO 0.38± 0.04 0.37± 0.03 0.46± 0.06 0.52± 0.07
Ast 0.52± 0.04 0.52± 0.05 0.55± 0.04 0.64± 0.04
Total 0.60± 0.02 0.61± 0.02 0.64± 0.02 0.70± 0.03

Table 10: MTRL: The combination of Actor and Critic MoE modules appears most
beneficial. We used the Big variant for the ablation.
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Figure 19: There is no significant difference in using either Actor or Critic, though the combination
of both works significantly better than using only the Critic.

Game Baseline A/C A/ C/
SI 0.95± 0.01 0.98± 0.00 0.86± 0.09 0.96± 0.00
BO 0.64± 0.08 0.68± 0.08 0.57± 0.09 0.47± 0.08
Ast 0.54± 0.02 0.70± 0.02 0.70± 0.02 0.59± 0.01
Total 0.71± 0.05 0.79± 0.05 0.71± 0.07 0.67± 0.05

Table 11: There is no significant difference in using either Actor or Critic, though the
combination of both works significantly better than using only the Critic.
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Figure 20: CRL: The order does affect the conclusion for CRL, especially because Breakout perfor-
mance completely collapses if trained first on Asterix, then Breakout, then SpaceInvaders. Learned
routers now do not perform better than the baseline. Big-Hardcoded still works as expected.

Game Baseline Big-Hardcoded Big-TopK Big-SoftMoE
SI 0.31± 0.13 0.95± 0.01 0.10± 0.08 0.17± 0.10
BO 0.01± 0.00 0.30± 0.03 0.01± 0.00 0.01± 0.00
Ast 0.60± 0.02 0.61± 0.02 0.35± 0.02 0.70± 0.02
SI-2 0.38± 0.14 0.98± 0.01 0.20± 0.11 0.48± 0.15
BO-2 0.01± 0.00 0.34± 0.04 0.01± 0.00 0.01± 0.00
Ast-2 0.91± 0.03 0.93± 0.03 0.55± 0.02 1.04± 0.03
Total 0.37± 0.03 0.69± 0.01 0.20± 0.03 0.40± 0.03

Table 12: CRL: The order does affect the conclusion for CRL, especially because Breakout perfor-
mance completely collapses if trained first on Asterix, then Breakout, then SpaceInvaders. Learned
routers now do not perform better than the baseline. Big-Hardcoded still works as expected.
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Figure 21: MTRL: The conclusions do not change when changing the order of training
for MTRL. Learned routers and hardcoded routers perform on par and better than the baseline.

Game Baseline Big-Hardcoded Big-TopK Big-SoftMOE
SI 0.92± 0.01 0.95± 0.00 0.90± 0.01 0.97± 0.00
BO 0.34± 0.05 0.39± 0.05 0.29± 0.02 0.49± 0.04
Ast 0.51± 0.04 0.61± 0.02 0.39± 0.04 0.60± 0.03
Total 0.59± 0.02 0.65± 0.02 0.53± 0.01 0.68± 0.02

Table 13: MTRL: The conclusions do not change when changing the order of training
for MTRL. Learned routers and hardcoded routers perform on par and better than the baseline.
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E MTRL - More Results
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Figure 22: MTRL: All Hardcoded architectures, Big-Hardcoded works best. It is unclear
why All does not perform as well as Big, though we hypothesise it is due to suboptimal hyperpa-
rameters

Game Baseline All Big Final Middle
SI 0.90± 0.01 0.94± 0.01 0.95± 0.01 0.93± 0.01 0.96± 0.01
BO 0.46± 0.07 0.26± 0.03 0.57± 0.07 0.38± 0.07 0.29± 0.02
Ast 0.51± 0.05 0.35± 0.04 0.59± 0.01 0.47± 0.03 0.43± 0.03
Total 0.63± 0.03 0.52± 0.01 0.70± 0.02 0.59± 0.02 0.56± 0.01

Table 14: MTRL: All Hardcoded architectures: Big-Hardcoded works best. It is unclear
why All does not perform as well as Big, though we hypothesise it is due to suboptimal hyperpa-
rameters.
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Figure 23: MTRL: All TopKRouter architectures: Generally, TopKRouters perform worse
than the baseline.

Game Baseline All Big Final Middle
SI 0.90± 0.01 0.83± 0.01 0.91± 0.01 0.92± 0.00 0.90± 0.01
BO 0.46± 0.07 0.27± 0.02 0.40± 0.04 0.33± 0.04 0.40± 0.07
Ast 0.51± 0.05 0.19± 0.02 0.34± 0.03 0.54± 0.03 0.43± 0.05
Total 0.63± 0.03 0.43± 0.01 0.55± 0.02 0.60± 0.01 0.58± 0.03

Table 15: MTRL: All TopKRouter architectures: Generally, TopKRouters perform worse than
the baseline.
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Figure 24: MTRL: All SoftMoE Architectures: Only Big-SoftMoE performs better than the
baseline.

Game Baseline All Big Final Middle
SI 0.90± 0.01 0.94± 0.01 0.93± 0.01 0.92± 0.01 0.92± 0.01
BO 0.46± 0.07 0.33± 0.01 0.60± 0.09 0.35± 0.03 0.39± 0.05
Ast 0.51± 0.05 0.43± 0.05 0.62± 0.05 0.51± 0.04 0.51± 0.05
Total 0.63± 0.03 0.56± 0.02 0.72± 0.03 0.60± 0.02 0.61± 0.02

Table 16: MTRL: All SoftMoE Architectures: Only Big-SoftMoE performs better than the
baseline.
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Figure 25: MTRL: Big-SoftGradientMoE vs. Big-SoftMoE, adding gradient information does
not improve performance.

Game Baseline Big-Hardcoded Big-SoftGradientMoE Big-SoftMoE
SI 0.90± 0.01 0.95± 0.01 0.95± 0.00 0.93± 0.01
BO 0.46± 0.07 0.57± 0.07 0.51± 0.07 0.60± 0.09
Ast 0.51± 0.05 0.59± 0.01 0.66± 0.03 0.62± 0.05
Total 0.63± 0.03 0.70± 0.02 0.70± 0.03 0.72± 0.03

Table 17: MTRL: Big-SoftGradientMoE vs. Big-SoftMoE, adding gradient information does
not improve performance.
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F CRL - More Results
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Figure 26: CRL: All HardcodedRouter Architectures. Big-Hardcoded works best. It is
unclear why AllLayers performs significantly worse on Breakout, though we hypothesise it is due to
suboptimal hyperparameters

Game Baseline All Big Final Middle
SI 0.97± 0.01 0.95± 0.01 0.95± 0.00 0.95± 0.01 0.94± 0.01
BO 0.08± 0.05 0.13± 0.00 0.32± 0.03 0.38± 0.04 0.13± 0.01
Ast 0.35± 0.04 0.45± 0.03 0.56± 0.04 0.34± 0.01 0.37± 0.01
SI-2 0.78± 0.12 1.00± 0.00 0.98± 0.01 0.19± 0.12 0.98± 0.01
BO-2 0.08± 0.02 0.16± 0.01 0.34± 0.04 0.09± 0.03 0.07± 0.02
Ast-2 0.51± 0.06 0.65± 0.06 0.87± 0.06 0.57± 0.02 0.60± 0.02
Total 0.46± 0.03 0.56± 0.02 0.67± 0.02 0.42± 0.02 0.52± 0.01

Table 18: CRL: All HardcodedRouter Architectures. Big-Hardcoded works best. It is un-
clear why AllLayers performs significantly worse on Breakout, though we hypothesise it is due to
suboptimal hyperparameters
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Figure 27: CRL: All TopK variants perform worse than the baseline except for Middle.

1100



RLJ | RLC 2024

Game Baseline All Big Final Middle
SI 0.97± 0.01 0.86± 0.01 0.90± 0.01 0.94± 0.01 0.94± 0.01
BO 0.08± 0.05 0.14± 0.01 0.13± 0.02 0.15± 0.03 0.08± 0.02
Ast 0.35± 0.04 0.10± 0.01 0.20± 0.01 0.37± 0.02 0.34± 0.05
SI-2 0.78± 0.12 0.91± 0.01 0.74± 0.12 0.57± 0.15 0.96± 0.01
BO-2 0.08± 0.02 0.19± 0.02 0.02± 0.01 0.08± 0.03 0.10± 0.01
Ast-2 0.51± 0.06 0.17± 0.02 0.35± 0.02 0.61± 0.04 0.52± 0.09
Total 0.46± 0.03 0.39± 0.01 0.39± 0.02 0.45± 0.02 0.49± 0.02

Table 19: CRL: All TopK variants perform worse than the baseline except for Middle.

Figure 28: CRL: All SoftMoE Architectures: Big-SoftMoE is the only variant that performs
better than the baseline.

Game Baseline All Big Final Middle
SI 0.97± 0.01 0.97± 0.01 0.98± 0.01 0.94± 0.01 0.97± 0.01
BO 0.08± 0.05 0.13± 0.03 0.08± 0.03 0.17± 0.03 0.10± 0.02
Ast 0.35± 0.04 0.20± 0.02 0.46± 0.03 0.30± 0.03 0.35± 0.03
SI-2 0.78± 0.12 0.99± 0.01 0.81± 0.13 0.66± 0.14 0.97± 0.01
BO-2 0.08± 0.02 0.18± 0.03 0.13± 0.03 0.08± 0.02 0.15± 0.02
Ast-2 0.51± 0.06 0.36± 0.06 0.73± 0.04 0.50± 0.05 0.49± 0.05
Total 0.46± 0.03 0.47± 0.01 0.53± 0.02 0.44± 0.03 0.50± 0.01

Table 20: CRL: All SoftMoE Architectures: Big-SoftMoE is the only variant that performs
better than the baseline.
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Figure 29: CRL: Adding gradient information to the input does not improve performance
significantly.
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Figure 30: Left: Aggregate Interquantile Mean (Agarwal et al., 2021) of scores. Right Compar-
ison of different models and routers on the single environment setup. We report the mean of the
normalised scores for 3 Atari games. All games run with 10 independent seeds, shaded areas repre-
senting the standard error. We normalise performance according to the single environment results
reported in Jesson et al. (2023). BigMoE improves performance over the baseline, especially due to
performance improvements in Asterix.

Game Big-SoftMoE Baseline Big-Hardcoded Big-TopK
SI 0.98± 0.01 0.95± 0.01 0.94± 0.01 0.90± 0.01
BO 0.54± 0.09 0.66± 0.08 0.52± 0.07 0.54± 0.07
Ast 0.67± 0.03 0.58± 0.03 0.57± 0.03 0.32± 0.01
Total 0.73± 0.06 0.73± 0.05 0.67± 0.05 0.59± 0.04

Table 21: Single environment: Normalised Performance of algorithms across games with
average total performance. We normalise performance according to the single environment
results reported in Jesson et al. (2023). We do not achieve the same performance as we use smaller
networks due to computational limits.
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Figure 31: Single environment: All TopK Architectures, all variants perform worse than the
baseline.

Game All Final Middle Baseline Big
SI 0.86± 0.01 0.94± 0.01 0.94± 0.00 0.95± 0.01 0.92± 0.01
BO 0.31± 0.03 0.40± 0.03 0.43± 0.05 0.66± 0.08 0.43± 0.07
Ast 0.19± 0.01 0.54± 0.02 0.60± 0.02 0.58± 0.03 0.30± 0.02
Total 0.45± 0.02 0.63± 0.02 0.66± 0.03 0.73± 0.05 0.55± 0.04

Table 22: Single environment: All TopK Architectures, all variants perform worse than the
baseline.
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Figure 32: Single environment: All SoftMoE Architectures: Big, Final, and Middle all
perform as well as the baseline.

Game Big All Final Baseline Middle
SI 0.98± 0.01 0.96± 0.00 0.94± 0.01 0.95± 0.01 0.95± 0.01
BO 0.54± 0.09 0.31± 0.02 0.67± 0.08 0.66± 0.08 0.44± 0.05
Ast 0.67± 0.03 0.55± 0.04 0.56± 0.03 0.58± 0.03 0.65± 0.02
Total 0.73± 0.06 0.61± 0.03 0.72± 0.05 0.73± 0.05 0.68± 0.03

Table 23: Single environment: All SoftMoE Architectures: Big, Final, and Middle all perform
as well as the baseline.
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Figure 33: Single environment: All SoftGradientMoE Architectures., adding gradient in-
formation does not change the conclusions of the softmoe architectures above.

Game Baseline Middle Big Final All
SI 0.95± 0.01 0.86± 0.09 0.99± 0.00 0.93± 0.01 0.96± 0.01
BO 0.60± 0.09 0.42± 0.07 0.46± 0.04 0.53± 0.07 0.39± 0.06
Ast 0.59± 0.03 0.64± 0.03 0.70± 0.02 0.55± 0.03 0.47± 0.04
Total 0.71± 0.05 0.64± 0.07 0.72± 0.03 0.67± 0.05 0.60± 0.04

Table 24: Single environment: All SoftGradientMoE Architectures, adding gradient infor-
mation does not change the conclusions of the softmoe architectures above.

Game w/ Gradient Info w/o Gradient Info
SI 0.95± 0.01 0.95± 0.01
BO 0.66± 0.08 0.60± 0.09
Ast 0.58± 0.03 0.59± 0.03
Total 0.73± 0.05 0.71± 0.05

Table 25: Baseline vs. Baseline with Gradient Information: Adding gradient information to
the input of the baseline does not affect its performance.
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Figure 34: Single environment: Baseline vs. Baseline with Gradient Information, adding
gradient information to the input of the baseline does not affect its performance.
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H Hyperparameters

Hyperparameter Value
Number of Environments 128
Learning Rate 9e-4
Steps 64
Total Timesteps 1e7
Updates total_timesteps // num_steps // num_envs
Update Epochs 10
Minibatches 8
Minibatch Size num_envs * num_steps // num_minibatches
GAE-γ 0.99
GAE-λ 0.7
Clip ε 0.2
Entropy Coefficient 0.01
Value Function Coeffficient 0.5
Max Gradient Norm 1.9
Activation relu
Environment {SpaceInvaders-MinAtar, Breakout-Minatar, Asterix-MinAtar}
Anneal learning rate True
# Experts 3
Layer Size 64
Expert Hidden Size 64
Model {BigMoE, FinalLayer, AllLayers, MiddleLayer}
MoE {SoftMoE, MoE, SoftGradientMoE}
Expert {BigExpert, Expert}
Router {TopKRouter, HardcodedRouter}
Number of Selected Experts 1
Task ID {True, False}
Actor MoE {True, False}
Critic MoE {True, False}
Gradient Buckets 5
Router Entropy {True, False}

Table 26: Potential Hyperparameters configurations. We did not run a grid search over all
potential combinations but report meaningful selections.
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Abstract

An exciting and promising frontier for Deep Reinforcement Learning (DRL) is its
application to real-world robotic systems. While modern DRL approaches achieved
remarkable successes in many robotic scenarios (including mobile robotics, surgi-
cal assistance, and autonomous driving) unpredictable and non-stationary environ-
ments can pose critical challenges to such methods. These features can significantly
undermine fundamental requirements for a successful training process, such as the
Markovian properties of the transition model. To address this challenge, we pro-
pose a new benchmarking environment for aquatic navigation using recent advances
in the integration between game engines and DRL. In more detail, we show that
our benchmarking environment is problematic even for state-of-the-art DRL ap-
proaches that may struggle to generate reliable policies in terms of generalization
power and safety. Specifically, we focus on PPO, one of the most widely accepted
algorithms, and we propose advanced training techniques (such as curriculum learn-
ing and learnable hyperparameters). Our extensive empirical evaluation shows that
a well-designed combination of these ingredients can achieve promising results. Our
simulation environment and training baselines are freely available to facilitate fur-
ther research on this open problem and encourage collaboration in the field.

1 Introduction

In recent years, Deep Reinforcement Learning (DRL) methods have advanced rapidly and achieved
impressive results in various domains. For instance, modern DRL algorithms, such as TD3 (Fujimoto
et al., 2018), SAC (Haarnoja et al., 2018a), PPO (Schulman et al., 2017), or Rainbow (Hessel et al.,
2018), have demonstrated remarkable capabilities in solving highly complex problems, ranging from
video games (Mnih et al., 2013) to complex decision-making tasks and robotic applications (Kober
et al., 2013; Rolf et al., 2023). However, even the state-of-the-art algorithms struggle when dealing
with unpredictable and non-stationary environments, where the basic Markovian properties may be
violated (Marchesini et al., 2021).

In this direction, the limited availability of challenging benchmarking environments, where even
state-of-the-art algorithms fail to achieve optimal performance, makes it difficult to evaluate the
impact of new DRL methods and advanced learning approaches. This is especially relevant in
the field of robotics, where issues related to safe control are often impossible to separate from the
hardware and therefore not readily available to the community as a benchmark (Aractingi et al.,
2023; Akkaya et al., 2019). Moreover, a common limitation shared by almost all the DRL algorithms
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lies in their data efficiency (Lillicrap et al., 2015; Haarnoja et al., 2018b). In the context of robotics,
this limitation assumes particular significance due to the challenging process of data collection.
Collecting real-world data on the actual robot can be slow and dangerous, especially when factors
such as human safety or the use of expensive hardware are involved. Consequently, the development
of realistic simulators for the training process has emerged as a priority (Attanasio et al., 2020; Pore
et al., 2021; Amir et al., 2023a).

Against this background, the first contribution of this paper involves developing a simulator designed
for aquatic navigation, that considers both surface and underwater scenarios (see Fig.1). In this type
of environment, many of the aforementioned issues related to the complex and unpredictable evo-
lution of water can arise, potentially compromising training performance. Specifically, our focus
is on autonomous navigation, which is increasingly used for important tasks such as exploration,
cable monitoring, security, and seabed mapping in oceans and lakes (Carreras et al., 2018; Wynn
et al., 2014). The simulator is tailored specifically for this purpose and addresses several critical
requirements. First, it is designed to be lightweight and high-performing, enabling multiple exe-
cutions to collect the substantial volume of data necessary for effective training. Second, it allows
a wide range of customization possibilities to replicate different real-world environments. Finally,
it strongly emphasizes realism, crucial for training autonomous agents in environments that mirror
real-world challenges. Mapless navigation problems can generally be addressed with Deep Reinforce-
ment Learning (DRL) approaches (Zhu et al., 2017; Bojarski et al., 2016; Marchesini & Farinelli,
2021; 2022); nevertheless, our results show that the unpredictable nature of the environment makes
the task much more challenging for the DRL agent.

Our second contribution is a pipeline for training and validating a DRL agent to provide a stable
baseline for comparison with future work and algorithmic improvements. We rely on Proximal Policy
Optimization (PPO) (Schulman et al., 2017), a state-of-the-art reinforcement learning algorithm that
has shown groundbreaking results across a wide range of tasks. While PPO offers a general approach
for reinforcement learning problems, achieving satisfactory results demands careful consideration of
problem-specific configurations (Engstrom et al., 2020; Corsi et al., 2024) and additional optimization
tricks and implementation details (Schulman et al., 2015; Marchesini & Amato, 2023; Liang et al.,
2022). Throughout this paper, we present a comprehensive set of ablation studies that support our
ultimate design choices, highlighting the limitations that even state-of-the-art algorithms can have
on such a complex problem. This work emphasizes the critical problem of safety in the domain
of autonomous navigation. The involvement of expensive equipment and the inherent challenges
associated with potential rescue operations make safety a particularly relevant concern (Fossen,
2011). Our benchmark includes additional safety requirements, making it suitable for research in
the field of safe deep reinforcement learning (Corsi et al., 2021; Ray et al., 2019; Yerushalmi et al.,
2022).

Figure 1: The figures depict two environments within our simulator. The first figure shows our
Autonomous Underwater Vehicle (AUV) navigating a 3D model of Porth yr Ogof marine cave, while
the second figure shows our surface drone in one of the scenarios from our marine benchmark.
Although the two environments differ in their objective, they share the main challenges introduced
by the aquatic environment.
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Finally, to further validate the effectiveness of our agent, we extensively test our baseline on a cave
navigation scenario that is created using real-world data. In detail, we recreate the Porth yr Ogof
cave, located in South Wales; where we then deploy our trained agent without any prior knowledge
of the cave’s structure. The results demonstrate that the agent is able to explore the entire cave
while avoiding catastrophic collisions. However, a more detailed analysis showed some limitations in
terms of generalization power and safety against specific corner cases, even employing state-of-the-
art solutions. For this reason, we believe that this challenging environment can be of great value
to the DRL community, and not strictly limited to applications in water navigation domains. Our
analysis shows that solving these tasks – taking into account the safety and generalization aspects –
is still an open problem, and we believe that it can be considered a challenging benchmark to validate
novel learning tools and algorithms. Crucially, to promote further research and collaboration in this
domain, we offer open access to our simulation environment and training algorithms12.

2 Related Work

In the previous section, we discuss a critical problem in DRL, the high amount of data necessary for
an effective learning process (Lillicrap et al., 2015; Haarnoja et al., 2018b). Collecting all these expe-
riences can be hard in a robotic context, where expensive equipment is involved and failures can be
barely tolerated. A common solution is the exploitation of realistic simulation engines. Historically,
the robotic community has relied on software such as RViz (for visualization) and Gazebo (for simu-
lation); however these solutions are not designed to support fast computation and parallel execution,
both necessary requirements in a DRL context (Zhao et al., 2020; Azar et al., 2023). In contrast,
standard benchmarks for DRL rely on libraries such as MuJoCo, Bullet, or PyGame to approximate
the real-world dynamics, often sacrificing the accuracy of the physics simulation to obtain faster
computation (Gronauer, 2022; Ray et al., 2019). To bridge this gap modern approaches propose the
use of 3D simulation engines typically developed for video games such as Unreal (De Melo et al.,
2019), Coppelia (Nogueira, 2014), or Unity3D (Juliani et al., 2020). In this work, we focus on the
latter, which has been recently successfully employed as a simulation engine for robotic research
(Technologies, 2020). Unity offers unique capabilities to fasten the simulation, such as a server
mode that allows computing the simulation without the rendering part, time acceleration, and the
synchronous execution to allow easier integration with the state-of-the-art DRL libraries. In fact, a
crucial advantage of Unity3D with respect to other engines is the built-in package Unity ML-Agents,
which provides full compatibility with Gym, a standardized set of API for DRL research (Juliani
et al., 2020). We believe this is a critical asset to foster the wider use of a DRL benchmark in the
community as Gym is the de facto standard interface for the most popular DRL implementation
(e.g., Stable-Baselines, SpinningUP, CleanRL, and more). There are already underwater navigation
simulators that accurately simulate the physical characteristics of these scenarios (Lončar et al.,
2022; Cieślak, 2019), but they are not simulators designed for DRL, but rather for data collection
and dataset generation from simulations. This represents a significant limitation for DRL practi-
tioners, as it does not allow for a straightforward integration of the learning algorithm. For example,
DRL algorithms are designed to solve variations of a Markov Decision Process, which requires a dis-
cretization of the time. This is particularly challenging in the context of complex physics simulations
(e.g., water). Moreover, our environment allows for easy access to the reward (and cost) function
and a clear and explicit definition of the state and action spaces. Finally, the results presented in
this paper provide a fair baseline for future algorithm and approach development.

Navigation and Mapless Navigation

We focus on the problem of navigating a robot through an environment, to reach a specific target
position. Typically, the agent should adhere to additional constraints, that may include finding the
shortest path, avoiding obstacles, or optimizing energy consumption. In the last years, this problem

1https://github.com/dadecampo/aquatic_navigation_envs
2https://github.com/dadecampo/SafeRLAUV
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Figure 2: Viscous liquid. Figure 3: Runny liquid.

has gathered increasing attention, particularly due to its relevance in the context of autonomous
vehicles (Pan et al., 2017), and it is today considered one of the classical problems in robotics.
Robotic Navigation has been extensively studied over the years, resulting in various algorithmic
solutions such as planning and search-based approaches (LaValle, 2006; Latombe, 2012). Neverthe-
less, a variant of robotic navigation, known as mapless navigation, has recently emerged as a popular
problem, and a standard benchmark for DRL, that presents additional unique challenges (Zhu et al.,
2017; Marchesini & Farinelli, 2022). In mapless navigation, the robot operates within the environ-
ment without using a map, relying solely on its local observations. This configuration introduces
additional complexities, as the absence of a map hinders the use of conventional planning-based
methods. Moreover, limited sensor information makes the problem partially observable, giving rise
to additional challenges such as sensor noise and the uncertainty of action outcomes (Marchesini &
Farinelli, 2022). State-of-the-art solutions for mapless navigation suggest exploiting DRL techniques
to generate policies capable of controlling the autonomous vehicle; these solutions have demonstrated
exceptional performance (Bojarski et al., 2016) and are nowadays considered a clear example of the
DRL’s potential. Moreover, recent works show that these kinds of problems can be accomplished by
employing relatively simple and small DNN architectures, which is essential for enabling on-board
control of the robot, where resource constraints require compact models.

3 Simulation Environment

In this section, we introduce our environment, presenting the first contribution of the paper: a
realistic underwater simulator based on the Unity3D game engine. Unity has emerged as a powerful
tool for the development of Reinforcement Learning agents in simulated scenarios, especially in
the domain of robotics research (Juliani et al., 2020). As a fundamental building block for our
experiments, we developed a virtual environment tailored to closely emulate the challenges of aquatic
environments. To replicate the hydrodynamic aspects of water, we rely on ZibraAI Liquids (ZibraAI,
2021), a state-of-the-art solution for real-time 3D liquid simulation. This versatile tool provides us
with the flexibility to manipulate a wide array of parameters, encompassing liquid physics settings
and interaction dynamics with other physical objects in the environment.

3.1 Simulation of Fluid Behavior

Simulating the behavior of fluids has always been considered a hard challenge, especially due to
the multitude of intricate physical forces involved (Lončar et al., 2022; Cieślak, 2019). More-
over, precisely reproducing all these forces in real time remains impractical, necessitating a sig-
nificant degree of approximation. ZibraAI enables the creation of water zones that can be
precisely parameterized to adjust viscosity, surface tension, and other essential characteristics.
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Figure 4: Illustration of the influence that water exerts on
the AUV as it attempts to follow an ideal path.

Through rigorous experimentation
with various settings, we identified
an optimal configuration that aligned
perfectly with our research objectives,
paving the way for the subsequent
development of our aquatic environ-
ment. An illustrative example of Zi-
bra’s plugin capabilities can be found
in Fig.2 and Fig.3, where we show the
interaction between a simple object
and a liquid of varying viscosity. The
underlying mechanics of ZibraAI’s op-
eration involve a novel approach to
encoding a 3D object into concise vec-
tors, subsequently decoded by a com-
pact neural network to regenerate the
original Signed Distance Field (SDF).
This innovative technique finds prac-
tical application in gaming physics,
particularly in particle simulations.
The Zibra Liquids Pro plugin repre-
sents a collaborative synergy between proprietary physical solvers and machine learning-based neu-
ral representations of objects (ZibraAI, 2021). Additionally, ZibraAI has internally developed fluid
simulation technology utilizing the Moving Least Squares Material Point Method (Hu et al., 2018).
Early experiments have demonstrated the remarkable efficiency of this approach, capable of simu-
lating 300,000 particles in only 7 milliseconds on a GTX 1050, even without extensive optimizations.
The ZibraAI plugin is publicly available, further contributing to the advancement of fluid simulation
research, resulting in a critical asset also for robotics and deep learning.

Impact of Water Physics We now delve into the influence of the water in our aquatic environment,
which represents the critical challenge for our learning agent. In particular, we consider an under-
water navigation scenario where a rover must safely navigate in an underwater cave. Understanding
this detail is crucial for quantifying the level of unpredictability in the underwater environment and,
consequently, assessing the challenges the agent faces in making decisions in this non-stationary
scenario. To demonstrate how marine currents can influence AUV trajectories we conducted an
additional experiment, illustrated in Fig.4. We created an ideal trajectory (blue line) by manually
moving an AUV unaffected by water forces. Subsequently, we instructed a second AUV to follow the
same sequence of actions as the first, with the additional challenge of marine currents (red dashed
line). As shown in the figure, this second rover collided with the cave walls a total of three times.
This result underscores the critical importance of generating an intelligent agent capable of dynam-
ically correcting unexpected trajectories that could potentially bring the rover to operate too close
to cave walls.

4 Training Approach

In this section, we introduce our deep reinforcement learning pipeline, showing the various strategies
we employed to develop a safe and reliable agent that serves as a stable baseline for our benchmarking
environment. In the following sections, we discuss different approaches describing their respective
strengths and weaknesses. Our comparative analysis has been performed to meet the standard
requirements for an empirical DRL evaluation (Henderson et al., 2018); in particular, we report
the average reward with the standard deviation from different random initializations for the neural
networks (i.e., 10 different random seeds for each set of experiments). In the following sections,
we conduct a comparative analysis focusing solely on the underwater cave exploration sub-domain
available in our simulator. The choice is motivated by the fact that underwater navigation is more

1110



RLJ | RLC 2024

Figure 5: Comparison be-
tween curriculum learning and
E2E.

Figure 6: Ablation study on
the PPO-clip hyperparame-
ter.

Figure 7: Comparison be-
tween sparse and dense re-
ward functions.

complex than surface navigation. Indeed, additional factors such as controlling the diving motion and
adjusting pressure based on the depths reached need to be considered. These additional difficulties
allow us to conduct a more meaningful analysis. Nevertheless, in Sec. 5 we perform a validation
step on the surface navigation problem, confirming our findings.

In both our benchmarks, the goal for the agent is to reach a target destination without colliding with
obstacles. Our agent is equipped with 28 sensors arranged in the 180-degree frontal field, allowing it
to observe the immediate surrounding environment directly. It is aware of the direction of the target
point in a straight line and also knows its own linear and angular velocity. At each time step, the
model determines which actions to take by selecting them from a discrete action space, enabling the
agent to move forward, rotate, or adjust its depth when submerged. The configuration of sensors
and actuators results in a vector observation of 31 real values; while the action space can be tuned
by the user and consists of a variable set of discrete actions.

Cave Environments for Training and Testing

The primary objective of our agent is to navigate through a cave and safely reach the target point
without colliding with rocks and walls. Crucially the agent is provided with the coordinates of
the destination in terms of polar coordinates to its position; this setup is widely adopted in the
literature and constitutes a challenging benchmark for the training agent (Ray et al., 2019; Amir
et al., 2023a; Marchesini & Farinelli, 2021). Achieving this goal demands high capabilities in obstacle
avoidance and the ability to counter the unpredictable movements induced by water currents. To
comprehensively evaluate our model’s performance, we have designed various cave models. Some
of these caves serve for the training phase, while others are used for testing purposes. The idea
behind this diversity is to expose the agent to a broad spectrum of scenarios, each posing unique
challenges. All the training caves exhibit distinct characteristics that serve as robust evaluative
metrics for our model. The first cave features larger dimensions compared to the others, moreover,
it does not present any additional forces due to the currents of the water. The agent can thus focus
completely on the simple control aspect. The second cave comprises a sequence of narrow passages
interspersed with wider areas. This configuration introduces the additional challenge of navigating
through tunnels of varying difficulty. The third cave presents a long series of curves, each posing
different levels of difficulty; crucially, the parameters related to the velocity of the water particles
are raised significantly, posing a significant challenge for the agent. Moreover, in addition to the
custom caves for training and testing, in Sec.5 we perform an additional evaluation using a 3D model
built from data from a real cave. This test aims to assess the ability of the agent to navigate safely
in complex and realistic environments. All these caves and settings are available for testing in our
simulation engine. The set of hyperparameters employed for the training is reported in the public
repository3; these values have been empirically tuned through a grid search process over a set of
common configurations.

3https://github.com/dadecampo/aquatic_navigation_envs

1111



RLJ | RLC 2024

Curriculum Learning

We start by comparing two distinct training approaches: curriculum learning (CL) and end-to-end
(E2E) training. The E2E approach involves training an Artificial Neural Network (ANN) from start
to finish on the entire task, without decomposing it into separate subtasks learned sequentially, this
leads to simplifying features and reward engineering. Another improvement we made among the
different phases of the curriculum regards the PPO-clip value. Specifically, we reduce the clip value
from 0.2 (as recommended in the literature) to 0.1. More details on the approaches and a detailed
comparison between the end-to-end approach and our suggested curriculum learning method can
be found in Appendix A of the supplementary materials. To summarize, from our experiments, the
curriculum learning approach only slightly reduces the convergence time but it does not provide a
substantial improvement in performance (see Fig.5). Interestingly, however, the curriculum learning
approach results in a significant improvement from a safety perspective (e.g., the number of collisions
with rocks); demonstrating a higher generalization capability in previously unseen environments, as
can be seen in Sec.5.

Conclusion: For our final experiments we adopted a curriculum learning strategy. According to
the literature in the field, our findings suggest that a more structured training pipeline strongly
supports a faster and more effective training process (Morad et al., 2021).

Reward Engineering

Reward engineering is a pivotal component of a successful deep reinforcement learning (DRL) pro-
cess. However, the formulation of effective reward functions is often non-trivial, demanding metic-
ulous consideration of various factors. In Appendix C of the supplementary materials we report
a detailed comparison between a sparse and a dense reward function, showing the strengths and
the weaknesses of both methodologies. To summarize, the training with sparse rewards did not
yield success, with the rover notably failing to reach the final goal (see Fig.7). Conversely, train-
ing conducted with dense rewarding has proven to be fruitful, demonstrating the ability to achieve
convergence without excessive difficulty.

Conclusion: For our final experiments we employed a dense function; formally the reward at time
t is calculated as follows:

rt =





RgoalReached if the goal is reached
Rmovementt

+ Rtimestep + Rcollision if a collision occurs
Rmovementt

+ Rtimestep otherwise
(4.1)

The parameters within the reward function have been defined through empirical testing and can be
found in the appendix C.

The Safety Aspect

Although we obtained promising results with the approaches proposed in this section, we focused only
on the pure performance of the agent, while in this section, we consider an additional requirement,
the overall safety. In particular, we focus on two aspects: (i) the number of collisions with rocks
and (ii) the average distance between the agent and the walls of the cave. More details and results
about the safety-oriented reward can be found in Appendix B of the supplementary materials. Our
findings demonstrate the positive impact of our explicit safety-centric reward function in terms of
reducing the number of collisions and increasing the average safety distance from the cave walls.
However, it is worth emphasizing that our approach does not entirely eliminate unsafe behaviors,
highlighting the need for future research in this direction.

Conclusion: To enhance the agent’s safety, we implemented a reward function that considers the
distance from the walls as a cost to minimize during training. Crucially, the final training setup used
for our real-world evaluations, reported in Sec. 5, consists of the previous three training techniques
in combination.
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5 Evaluation in scenarios built from real-world data

In this section, we exploit all the techniques and methodologies discussed throughout this paper
to assess the agent’s performance within the three-dimensional representation of a real cave. This
validation step is made possible through the application of photogrammetry, a technique that enables
the creation of highly accurate three-dimensional models using sequences of images or videos. In
our simulator, we recreated a detailed portion of Porth Yr Ogof, a cave situated in South Wales
(Wilton-Jones, 2023). Porth Yr Ogof is a cave of particular interest due to its unique characteristics.
The complex formation of this cave is due to the frequent floods caused by the overflowing of the
adjacent Afon Mellte River (the reconstruction of the cave is based on a 3D scan of the area). In this
environment, the agent’s goal is to reach the end of the cave and thus explore the entire map. What
makes the task challenging is that the drone does not have access to the map of the environment, the
agent must rely entirely on local observations, exploiting in the decision-making process the policy
learned by exploring the caves used for training.

In Fig.8 we show a screenshot from our simulator and a plot of the results obtained by our trained
agent; for the experimental evaluation, we deploy our agent multiple times starting from a random
position of the cave and collecting the average success rate (i.e., the number of time the AUV manages
to exit the caves normalized by the number of experiments). We note that, for this evaluation
phase, in order to highlight when safety constraints are violated, we considered a single collision as
a complete failure.

Extention to Surface Navigation In the last few sections, we have focused on underwater cave
exploration because our preliminary experiments have shown it to be the most challenging environ-
ment. However, surface navigation presents similar interesting challenges due to the non-stationary
and dynamic nature of water. In this last evaluation, we repeat the analysis of the previous problem
in this second benchmark. In this environment, the goal of the agent is to reach the target posi-
tion while avoiding collisions with rocks and reefs. The agent can only rely on observations from
local sensors, which include a GPS and compass for computing heading and distance to the target
position, and a proximity sensor for detecting obstacles in specific directions. At the initialization
of each episode, the map and the positions of the target and agent are randomly generated. Our
results are shown in Fig.9, although overall simpler, our results confirm that even in this scenario
PPO struggles to find an optimal policy, especially from the safety perspective.

6 Conclusion

This paper has presented a challenging benchmark to stimulate the advancement of DRL methods for
robot control. Our contributions span three key areas: i) we developed a realistic simulator tailored
to the unique challenges of underwater cave exploration and surface navigation; ii) we provided a

Figure 8: On the left is a screenshot of the Porth Yr Ogof cave; on the right are the results obtained
by the trained agent.
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Figure 9: On the left are the results obtained by the trained agent; on the right: a screenshot of the
surface navigation benchmark.

comprehensive pipeline for training autonomous agents using Deep Reinforcement Learning (DRL);
iii) we addressed safety through two critical aspects: collision avoidance and maintaining a safe
distance from cave walls. To demonstrate the effectiveness of our approach, we finally conducted
an extensive testing phase in a simulation of the real-world cave environment of "Porth yr Ogof" in
South Wales where our trained agent successfully explored the cave, avoiding catastrophic collisions
with rocks and maintaining a safe distance from cave walls. These contributions together serve to
introduce a novel benchmark for deep reinforcement learning in a challenging and realistic scenario
and a series of techniques to provide a stable and reproducible result that provides an initial baseline
for future development.

We believe this work paves the way for several future directions, including the exploration of al-
ternative approaches to ensure the safety of our trained agents, such as shielding (Alshiekh et al.,
2018), constrained reinforcement learning (Achiam et al., 2017), explainability (Bassan et al., 2023),
and formal verification tools (Marzari et al., 2023; Corsi et al., 2021; Katz et al., 2019; Amir et al.,
2021). Additionally, a natural direction is to move from the simulated environment to real robotic
platforms so to gain insights into how the agent interacts with the environment in the real world
with the idea of enhancing our simulator. In this last direction, many new challenges arise, such as
generalization to unseen situations (Amir et al., 2023b) and possible delays in the communication
between the drone and the controller (Karamzade et al., 2024). Crucially, our simulation tool is
freely available for future research and collaborations.
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A Curriculum Learning

We start by comparing two distinct training approaches: curriculum learning (CL) and end-to-end
(E2E) training.

The E2E approach involves training an Artificial Neural Network (ANN) from start to finish on the
entire task, without decomposing it into separate subtasks learned sequentially. End-to-end training
offers the advantage of simplifying feature and reward engineering and reducing the need for manually
designing intermediate steps. However, it often necessitates a substantial amount of training data
and can pose challenges in terms of interpretability. Curriculum learning, on the other hand, consists
of training the agent in a sequence of problems, typically of increasing difficulty; this enables the agent
to leverage knowledge and skills acquired in simpler tasks to enhance learning and performance when
facing the complete problem. Our curriculum learning pipeline starts with the simplest environment,
denoted as Cave_Train1 (Fig.10), where the agent learns a set of fundamental skills such as keeping a
safe distance from walls and navigating toward the target while executing gentle turns. Subsequently,
the weights learned in the initial task are transferred to the new neural network as we progress to
the Cave_Train2 environment. Here, the agent exploits the already learned capabilities in a more
intricate environment. Additionally, the rover encounters water currents for the first time, albeit
at half the strength intended for the evaluation phase. The third and final phase of our training
process introduces the rover to water currents at the intended evaluation strength. This phase can
be regarded as a refinement stage, building upon the model developed during the initial two phases.
To prevent any loss of knowledge acquired throughout the entire training process, we lowered the
learning rate for this final step.

Another improvement we made among the different phases of the curriculum regards the PPO-clip
value. Specifically, we reduce the clip value from 0.2 (as recommended in the literature) to 0.1. The
intuition behind this modification is that during the initial Cave_Train1 phase, the rover learns
fundamental movement policies, which we aim to preserve as the training progresses to the more
complex stages. By lowering the clip value, we aim to maintain policy stability. However, reducing
this parameter requires a tradeoff that lies in a loss in data efficiency (i.e., slowing the acquisition
of new behaviors). Typically, knowledge transfer across phases is accompanied by the freezing of
layers trained in the previous stage. However, given that the fundamental objective of our agent
remains unchanged despite the changing environments, we opted to avoid this technique, allowing
for continuous learning and adaptation throughout the curriculum Goutam et al. (2020).

Results:

Fig.5 presents the results of our comparison between the curriculum learning and the E2E approach.
Noticeable drops in rewards correspond to the transitions between lessons, occurring at the 1.5
million and 2.5 million timestep marks. However, in both cases, the reward graphs quickly recover
and converge to approximately 1200. To ensure a fair comparison, we assign to E2E training
the cumulative number of timesteps across all phases of curriculum learning required to achieve
a satisfactory result in the analyzed environment.

Figure 10: Curriculum Learning lessons plan. From left to right the pictures represent the training
caves ordered by growing difficult.

1119



RLJ | RLC 2024

The curriculum learning approach slightly reduces the convergence time required but it does not
provide a substantial improvement in performance. Interestingly, however, the curriculum learning
approach results in a significant improvement from a safety perspective (e.g., number of collisions
with rocks); demonstrating a higher generalization capability (Sec.B provides more detail about this
result). Moreover, Fig.6 shows an ablation study to motivate our choice of using a smaller PPO-clip
value with respect to the standard setting; our results clearly show the obtained improvements,
confirming our design choice.

B The Safety Aspect

Although we obtained promising results with the approaches proposed in Sec. 4, we focused only on
the pure performance of the agent, while in this section, we consider an additional requirement, the
overall safety. In particular, we focus on two aspects: (i) the number of collisions with rocks and (ii)
the average safe distance between the agent and the walls of the cave. In the literature, numerous
approaches exist to improve the safety of a learning agent, such as Constrained Deep Reinforcement
Learning Stooke et al. (2020), Safe Exploration Simão et al. (2021), Shielding Alshiekh et al. (2018),
and Formal Verification Katz et al. (2019); however, these techniques go beyond the benchmarking
scope of this work, and we leave the analysis of these approaches for future research. In contrast, in
this paper, we focus on the concept of “reward engineering". In particular, we propose to modify the
reward function presented in Sec. 4, refining it to encourage more cautious behaviors. Through this
rewarding mechanism, we emphasize the role of the proximity sensors, treating them not only as
part of the observation space but also as key components in the calculation of the reward function.
By doing so, we expect our agent to exhibit safer behavior, actively attempting to maintain a safe
distance from the cave walls.

rt =





RgoalReached goal
Rmovementt

+ Rtimestep + Rcollision + Rsensors collision
Rmovementt + Rtimestep + Rsensors otherwise

The term Rsensors is calculated based on the measurements taken at each timestep by the rover’s
sensors. When contact occurs through the lidar sensor, a value is returned indicating the
height at which the ray was intercepted. This value is normalized to 1, and then, by using
−(1 − rayInterceptionValue), subsequently multiplied by a constant. This operation is repeated
for each of the 28 rays at every single timestep. The way this reward has been adjusted, based
on the multiplication by the chosen constants, limits the range of Rsensors to (−0.6, 0.0]. Figure 11
provides a visual explanation of the lidar sensor readings of our robot.

Figure 11: This image illustrates the concept of “interceptionValue", highlighted in green, while the
penalties imposed on the agent are indicated in red.
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Figure 12: Analysis of the agent’s performance from a safety perspective.

Results:

In this section, we delve into the results of our safety-oriented analysis by focusing on the results
obtained in the most challenging scenario, referred to as “cave_test3". Results are presented in
Figure 12. Our findings demonstrate the positive impact of our safety-centric reward function in
terms of reducing the number of collisions and increasing the average safety distance from the
cave walls. However, it is worth emphasizing that our approach does not entirely eliminate unsafe
behaviors, highlighting the need for future research in this direction.

C Reward Engineering

Reward engineering is a pivotal component of a successful deep reinforcement learning (DRL) pro-
cess. However, the formulation of effective reward functions is often non-trivial, demanding meticu-
lous consideration of various factors. For example, an important challenge revolves around achieving
the delicate balance between shaping the agent’s behavior and avoiding inadvertent side effects. An
excessively simplistic or sparse reward may prevent an effective learning process. Conversely, an
overly intricate function may result in an agent incapable of generalizing beyond the training envi-
ronment Hu et al. (2020). Another well-known problem pertains to reward hacking, i.e., whereby
an agent exploits loopholes or biases in the reward function to maximize rewards without genuinely
fulfilling the intended task. This underscores the imperative need for crafting reward functions that
are both informative and resilient to manipulation. In literature, reward functions are typically
subdivided into two main categories: sparse and dense. In this section, we conduct an analysis
comparing the efficacy of these two reward paradigms applied to our case study.

Sparse Rewards

Sparse rewards consist of a structure where the agent receives a reward signal only upon accomplish-
ing specific operations (e.g., avoiding an obstacle) or achieving particular objectives (e.g., reaching a
target position). However, for the majority of the learning process, the agent encounters limited to
no feedback. Sparse rewards present notable challenges for RL agents due to their nature, offering
minimal guidance during the learning process. For example, an agent may struggle to understand
which actions or states contribute to their success or failure, given the sporadic feedback. Con-
sequently, this can lead to a slow learning loop or hindered convergence, particularly in complex
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Figure 13: Comparison between DistanceRewarder (white) and Euclidean distance (black line).

environments. Despite these limitations, sparse rewards are easy to design and are more robust
against reward hacking.

We now introduce the discrete reward function we employed in our training process. This is a
straightforward reward system that grants rewards to the rover under specific conditions while
imposing penalties for undesirable outcomes (e.g., collisions with rocks or cave walls).

rt =





RgoalReached if the goal is reached
Rcollision if the rover collides
Rfail timeout

(C.1)

In this reward function, RgoalReached represents the reward granted when the rover successfully
reaches its goal, Rcollision signifies the penalty for collisions, and Rfail denotes the penalty imposed
if the rover fails to achieve the goal within the stipulated time frame. In our setup, we impose
RgoalReached = 10, Rcollision = −10, and Rfail = −1.

Dense Rewards

Dense rewards represent an alternative structure where the agent receives a signal more frequently,
typically at each time step of an episode. These rewards exhibit a higher level of continuity and
furnish constant feedback to the agent as it progresses through the environment. We now introduce
the continuous function we proposed in our work. This reward incentivizes movement toward the
cave exit while penalizing proximity to cave walls. During training, an accurate calculation of the
distance from the goal is crucial, and to achieve this, we introduce a system of panels that trace
the tunnel’s curvature (Fig. 13). By measuring the distance between these panels, along with the
distance from the last panel to the rover, we obtain a more precise approximation of the distance
from the goal. This system, termed “DistanceRewarder", is a specific and fundamental component
we developed to furnish a more precise reward to the agent.

Moreover, the reward function we employed for our standard training includes multiple additional
components designed to incentivize specific behaviors. First, a specific signal that encourages the
rover to progress along the path toward the goal. At each timestep, the agent is rewarded with a
value proportional to the distance traveled toward the cave exit. It’s important to note that moving
away from the goal results in a penalty. Second, to promote behavior that takes the environment
into account, a penalty is applied when the agent collides with a cave wall. The third component of
the function is a reward bonus, which is obtained upon reaching the cave exit. During training, the
reward at time t is calculated as follows:
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rt =





RgoalReached if the goal is reached
Rmovementt

+ Rtimestep + Rcollision if a collision occurs
Rmovementt

+ Rtimestep otherwise
(C.2)

For our experiment we set RgoalReached = 500, Rmovementt = (distanceToGoalt−1 −
distanceToGoalt) ∗ 10, Rtimestep = −0.01 and Rcollision = −0.01. Rmovementt rewards the dis-
placement of the rover in the direction of the goal. In our environment, the combination of
rover speed and water friction puts this reward in a range from -0.03 to 0.03, so we can conclude
Rmovementt

∈ (−0.03, 0.03).

Results:

We now provide a comparative analysis of dense and sparse rewarding approaches. As depicted in
Fig.7, training with sparse rewards did not yield success, with the rover notably failing to reach
the final goal. Conversely, training conducted with dense rewarding has proven to be fruitful,
demonstrating the ability to achieve convergence without excessive difficulty. In the next section,
we will focus on the safety aspects, showing how the reward engineering process is crucial also for
this latter aspect.
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Abstract

We propose a welfare-centric fair reinforcement-learning setting, in which an agent
enjoys vector-valued reward from a set of beneficiaries. Given a welfare function W(·),
the task is to select a policy π̂ that approximately optimizes the welfare of their value
functions from start state s0, i.e., π̂ ≈ argmaxπW

(
Vπ

1 (s0), Vπ
2 (s0), . . . , Vπ

g (s0)
)
. We

find that welfare-optimal policies are stochastic and start-state dependent. Whether
individual actions are mistakes depends on the policy, thus mistake bounds, regret
analysis, and PAC-MDP learning do not readily generalize to our setting. We develop
the adversarial-fair KWIK (Kwik-Af) learning model, wherein at each timestep,
an agent either takes an exploration action or outputs an exploitation policy, such
that the number of exploration actions is bounded and each exploitation policy
is ε-welfare optimal. Finally, we reduce PAC-MDP to Kwik-Af, introduce the
Equitable Explicit Explore Exploit (E4) learner, and show that it Kwik-Af learns.
Keywords: Fair RL · Vector-Valued MDP · PAC-MDP · KWIK Learning

1 Introduction

As the negative societal consequences of machine learning (ML) run amok become increasingly
apparent, fair ML methods have seen increased attention for tasks like facial recognition (Buolamwini
and Gebru, 2018; Cook et al., 2019; Cavazos et al., 2020) and hiring (Kleinberg et al., 2018; Raghavan
et al., 2020). Despite this positive trend, most attention on the theory side has been focused on fair
supervised (Agarwal et al., 2018; Thomas et al., 2019; Cousins, 2021) and unsupervised (Chierichetti
et al., 2017; Chhabra et al., 2021) learning, whereas the second-order societal-welfare impact of ML
models, such as the runaway positive feedback loops in settings like predictive policing (Ensign et al.,
2018; Alikhademi et al., 2021), are more naturally posed as reinforcement learning (RL) problems.

We apply ideas from welfare-centric supervised learning to the RL setting; in particular, we assume an
agent receives a vector-valued reward signal from a set of beneficiaries, each representing, e.g., different
racial, gender, or religious groups, and the task is to learn a single policy that treats beneficiaries
fairly. We argue that it is not our role as algorithm designers to dictate what fairness means, or how
one should compromise among beneficiaries, but rather we should seek to optimize for a given fairness
notion (ideally one agreed upon by society, government, impacted groups, political philosophers, and
other interested parties), as encapsulated by a metric of societal welfare. In supervised learning, this
is relatively straightforward, as we generally maximize the welfare of expected per-beneficiary value
(Cousins, 2023b), and in our setting, we take utility to be the standard geometrically discounted
reward (value) for each beneficiary. In general, decision making to optimize welfare is referred to as
the social planner’s problem, so in a sense our work addresses this problem in the context of RL.

While optimizing the welfare of beneficiary value functions is a well-specified goal for planning
and asymptotic learning, we also ask how quickly we can learn to act fairly in an unknown MDP.
Quantifying whether an action is fair is substantially more difficult than quantifying whether an
action is optimal to a single agent because fairness depends on the context of the agent’s policy

∗University of Massachusetts Amherst, College of Information and Computer Sciences
†Brown University, Department of Computer Science

1124



RLJ | RLC 2024

(i.e., tradeoffs among beneficiaries should be balanced). To address this issue, we combine ideas
from the PAC-MDP framework and KWIK (Know What It Knows) learning (Li et al., 2011) to
create the adversarial fair KWIK MDP learning framework (Kwik-Af). We require a Kwik-Af
agent to explicitly output at each step either a fair policy or an exploration action, and with high
probability the agent must always output ε-optimal fair policies while taking only a bounded number
of exploration actions over its infinite lifetime. For the sake of generality, we allow an adversary to
move the agent arbitrarily after it outputs a policy. At any step, the adversary is allowed to select
a new welfare function, representing changing societal ideals of how fairness should work, and the
agent is expected to output either an exploration action or a policy optimizing said welfare function.
Finally, we introduce an algorithm inspired by the classic E3 algorithm of Kearns and Singh (2002),
which we call Equitable Explicit Explore Exploit (E4), and show that it is a Kwik-Af learner.

We summarize our contributions below.

1. We frame the traditionally egocentric challenge of reinforcement learning as a social problem,
where the actions taken by an agent impact a set of beneficiaries, each with their own reward function.
2. Using ideas from vector-valued RL, econometrics, and social welfare theory, we establish the goal
of learning policies to optimize the welfare of per-beneficiary expected discounted rewards.
3. Section 3 introduces the adversarial fair KWIK MDP (Kwik-Af) learning framework, in which an
agent learns only from exploration actions, and an adversary moves the agent when the agent outputs
an exploitation policy. W.h.p., a learner must output only ε-optimal exploitation policies and take
polynomially many exploration actions. We assess policies rather than actions, since welfare-optimal
policies may be stochastic and start-state dependent, thus actions can not be assessed without context.
4. In section 4, we first present efficient welfare-optimal planning routines, then we discuss exploration
in fair RL, define the E4 algorithm, and show that it is a Kwik-Af learner.

1.1 Related Work

With the rapid adoption of ML algorithms, authors such as Thomas et al. (2019) note that it is
imperative to ensure such algorithms are well-behaved, and do not perpetuate harmful biases. Many
works study fairness in supervised and unsupervised learning with various fairness definitions. The
welfare-centric approach has recently seen success as a generic solution to fair compromise among the
wants and needs of various groups, but has thus far been studied primarily in supervised learning
(Cousins, 2021; 2022; 2023b; Cousins et al., 2024). Defining fairness in the RL setting is particularly
challenging due to the sequential nature of RL decision-makers (Thomas et al., 2019; Jabbari et al.,
2017), as we must also decide how fair decisions should be distributed over time.

There is a rich body of literature on multi-objective sequential decision making, which arises naturally
in bandit settings (Metevier et al., 2019; Chen et al., 2020), and more generally in planning and
RL (Roijers et al., 2013). One approach to fairness is to optimize some objective subject to fairness
constraints, usually requiring approximate parity among groups. In contextual bandit settings, Metevier
et al. (2019) learn and plan while (probabilistically) satisfying various fairness constraints. Similarly,
Wen et al. (2021) show guarantees for learning and planning in MDPs under parity constraints on
per-group value functions, Satija et al. (2021) propose finding policies that improve returns while
also satisfying certain group fairness constraints, and Satija et al. (2022) generalize their setting by
allowing not just rewards, but also the transition function, to differ among groups.

In welfare-centric RL, the final objective is a (nonlinear) function of per-group objectives (value
functions). Assuming monotonicity of welfare, the optimal policy lies on the Pareto frontier of feasible
utility vectors (Van Moffaert and Nowé, 2014). Lizotte et al. (2012) show how to identify globally
dominated actions in the multi-objective case under linear function approximation, and Siddique
et al. (2020); Yu et al. (2023) study the problem of learning welfare-optimal for multi-objective deep
RL. Cousins et al. (2022) consider welfare objectives in a similar tabular setting, and Fan et al. (2023)
show how to plan for Nash social welfare, by leveraging its differentiability and linearizability. This
work theoretically treats fair RL, in particular analyzing sample complexity, which has been a core
tool for studying exploration in RL (Kearns and Singh, 2002; Kakade, 2003; Li et al., 2011).
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1.2 Background

We now present relevant background material on RL, fairness, and welfare-centric ML.

Reinforcement Learning Reinforcement learning (RL) is the study of an environment and an
agent that learns to maximize reward through environmental interaction. The Markov decision
process (Puterman, 1994), or MDP, is the standard mathematical formalism of RL. Standard single-
beneficiary MDPs are specified by the tuple M = ⟨S,A, P, R, γ⟩. Here the environment is described
by the state set S, action set A, and transition function P(s, a) : S ×A → P(S), where P(S) denotes
the probability simplex over S. The agent’s goals or desires are then encoded by the reward function
R(s, a) : S × A → R≥0, which may be randomized, and the discount rate γ, which geometrically
downweights future rewards, representing a preference for near-term rewards over delayed gratification.

The standard goal in the RL problem is to learn a policy π : S → P(A) that can achieve high sums
of future discounted rewards. An important concept in RL is the value function, defined as

Vπ(s) .= E
at∼π(st)

st+1∼P(st,at)

[ ∞∑

t=0
γtR(st, at)

∣∣∣∣∣ s0 = s

]
= E

a0∼π(s0)
s1∼P(s0,a0)

[
R(s0, π(s0)) + γVπ(s1)

∣∣∣ s0 = s
]

.

The value function Vπ(s) describes the expected utility of the following policy π at state s. RL often
adopts a egocentric view, in which the scalar-valued reward function R(s, a) : S ×A → R is intrinsic
to the agent, who selfishly wishes to optimize their wellbeing (as measured by the value function).

On Welfare In this paper, we are interested in vector-valued or multi-beneficiary MDPs, denoted
M = ⟨S,A, P, R, γ⟩. The state set S, action set A, transition function P, and discount factor γ are
exactly as in the standard RL setting. We consciously use the term beneficiary to explicitly extricate
the passive nature of preferences of those impacted by the system from the active role played by the
agent. In this setting, there exist g beneficiaries, each with a corresponding reward function Ri and
value function Vπ

i . In this work, we define the utility of a beneficiary to be the standard RL target of
their geometrically discounted accumulated reward (value). The scale of reward is a crucial quantity,
which we measure as Rmax

.= maxs∈S,a∈A∥R(s, a)∥∞, thus utility is limited to the range
[
0, Rmax

1−γ

]
.

A welfare function W(·) : Rg
≥0 → R≥0 summarizes the utility of all beneficiaries as a cardinal value,

thus establishing a preference or ranking over policies, and our goal is select a policy to maximize
welfare. For example, the utilitarian welfare and egalitarian welfare of value vector v are defined as

W1(v) = W1(v1, v2, . . . , vg) = 1
g

g∑

i=1
vi and W−∞(v) = W−∞(v1, v2, . . . , vg) = min

i∈1,...,g
vi .

Utilitarian welfare draws on classical ideas of utilitarian philosophy (Bentham, 1789; Mill, 1863),
wherein all members of society should be treated equally, and the goal is to maximize overall utility.
On the other hand, egalitarian welfare draws from Rawlsian theory (Rawls, 1971; 2001), where the
idea is that society should seek to uplift its most disadvantaged (or impoverished) members. Both
can be interpreted through a mechanism design or game theoretic lens (Cousins, 2023a), wherein a
Dæmon creates a society populated by the beneficiaries, and an Angel then banishes the Dæmon to
join the society. If the Angel uniformly randomly selects who the Dæmon becomes, the Dæmon should
maximize utilitarian welfare to maximize their expected utility. However, if the Angel adversarially
selects the worst-off beneficiary, the Dæmon should instead maximize egalitarian welfare.

Utilitarian welfare is “fair” in the sense that it treats everyone ostensibly equally, however, it has no
preference for equity, and can thus incentivize high utility for some beneficiaries at the cost of low
utility for others. On the other hand, egalitarian welfare is “fair” in the sense that it allocates resources
optimally to help those most in need first, however, beneficiaries that are difficult or impossible
to satisfy may be catered to exclusively, at the expense of all others. Between these extremes,
prioritarian welfare concepts (Parfit, 1997; Arneson, 2000) seek a middle ground, incentivizing equity
by prioritizing the needs of disadvantaged people, but not to the extreme degree of egalitarianism.
We now describe two prioritarian families, both of which contain utilitarian and egalitarian welfare
as extreme cases, as well as a continuum of intermediate cases.
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s1

R(s1, a1) = ⟨1, 0⟩ R(s1, a2) = ⟨0, 1⟩

π1 = ⟨1, 0⟩ , π2 = ⟨0, 1⟩
π∗ = ⟨ 1

2 , 1
2 ⟩

(a) Symmetric 2-Armed Bandit

s1

R(s1, a1) = ⟨1, 0⟩ R(s1, a2) = ⟨0, 1⟩

R(s1, a3) = ⟨ 2
3 , 2

3 ⟩

π1 = ⟨1, 0, 0⟩ , π2 = ⟨0, 1, 0⟩
π∗ = ⟨0, 0, 1⟩

(b) Compromise 3-Armed Bandit

s1

R(s1, a1) = ⟨1, 0⟩ R(s1, a2) = ⟨0, 1⟩

s2 s3R(s2,
·)=
⟨α, 0⟩

R(s3 , ·)=⟨0, α⟩
π1(s1) = ⟨1, 0⟩ , π2(s1) = ⟨0, 1⟩

π∗(s1 from s2)=⟨ 1
2−

1−γ
2γ α, 1

2 + 1−γ
2γ α⟩ or ⟨0, 1⟩

(c) Asymmetric Start Bandit MDP
Figure 1: Small MDPs that exhibit surprising behavior under multi-beneficiary objectives.

Definition 1.1 (Power-Mean Welfare). We define the power-mean family Wp(v), for power p ≤ 1,
for any utility vector v ∈ Rg

≥0, as

Wp(v) .= p

√√√√1
g

g∑

i=1
vp

i , W−∞(v) .= min
i∈1,...,g

vi , or W0(v) .= g

√√√√
g∏

i=1
vi .

Definition 1.2 (Gini Social Welfare). Given a decreasing stochastic weight vector w ∈ △g (i.e.,
1 ≥ w1 ≥ w2 ≥ · · · ≥ wg ≥ 0 s.t. ∥w∥1 = 1), the Gini social welfare of utility vector v ∈ Rg

≥0 is

Ww(v) .=
g∑

i=1
wiv

↑
i ,

where v↑ denotes the entries in v in ascending sorted order.

These classes are intuitive from a prioritarian perspective, as the marginal gain of utility is larger for
low-utility groups than for high-utility groups. This preference for equity is captured by the Pigou
(1912)-Dalton (1920) transfer principle, which states that equitable redistribution of utility should
never decrease welfare. Cardinal welfare theory provides axiomatizations for both the power-mean
(Debreu, 1959; Gorman, 1968; Cousins, 2021; 2023b) and Gini (Weymark, 1981; Gajdos and Weymark,
2005) classes. For technical reasons, we assume the welfare function must be λ-∥·∥∞ Lipschitz
continuous, and concavity is often convenient for planning, but our methods treat any welfare
function that meets these conditions. Cousins (2023b) shows that the power-mean family is Lipschitz
continuous except when p ∈ [0, 1), and the entire Gini family is 1-∥·∥∞ Lipschitz continuous.

In the context of fair RL, our goal is, roughly speaking, to learn a policy to maximize the welfare of
MDP M from start state s0. In other words, we want to find π̂ to approximate π∗, where

W
(

Vπ̂
1 (s0), . . . , Vπ̂

g (s0)
)
≥ argmax

π∗∈ΠM
W
(

Vπ∗
1 (s0), . . . , Vπ∗

g (s0)
)
− ε .

In section 3, we define how agents interact with their environments and receive feedback in this
setting, and we make precise what it means to learn to plan fairly.

2 Illuminating Examples

Here we present a few simple examples (visualized in figure 1) to illustrate that intuition from the
standard scalar-reward RL setting can be misleading. We consider the simple egalitarian welfare
objective for two beneficiaries, on essentially stateless (single recurrent state) MDPs. Even in this
elementary setting, we draw surprising conclusions as to the nature of welfare-optimal policies π∗ (as
compared to per-beneficiary optimal policies π1 and π2) and the behavior of RL algorithms (in both
planning and exploration). Section 2.1 presents these simple MDPs, and section 2.2 then discusses
the challenges of evaluating fair policies and the learners that produce them.
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2.1 Simple Multi-Beneficiary MDPs

We first consider a basic 2-armed bandit, in which the beneficiaries prefer different arms. We then
extend our analysis to allow for a third “compromise” arm. Finally, we also allow for additional
transient states that immediately reward one of the beneficiaries to represent an “unfair start,”
wherein one beneficiary or the other is “privileged,” and fair agents must learn to compensate.

One might expect, or at least hope, that convenient properties from standard RL would be preserved
in the fair-RL setting. In particular, one might expect the following.

1. We need only consider deterministic stationary policies, i.e., we can assume that there always
exists an optimal policy that is deterministic and stationary.
2. We can explore by letting individually beneficiaries take turns controlling the agent (thus mitigating
potentially challenging learning problems with well-studied techniques).
3. A single policy is optimal from all starting states.

Unfortunately, none of these properties hold in the welfare setting. The examples of this section are
presented to disabuse the reader of such notions.

Example 2.1 (Symmetric 2-Armed Bandit; Figure 1a). Suppose a 2-armed bandit with reward
R(s1, a1) .= ⟨1, 0⟩ and R(s1, a2) .= ⟨0, 1⟩. The unique welfare-optimal stationary policy is π∗ = ⟨ 1

2 , 1
2 ⟩.

There are several surprises here:
1. The (unique) optimal policy is stationary (see lemma 3.1), but not deterministic (i.e., stochastic).
2. Policy iteration iteratively selects the greedy welfare-optimal policy, i.e., selects the policy

π(t+1) ← argmax
π∈ΠM

W
(

E
π,s1

[
R1(s0, π(s0)) + γVπ(t)

1 (s1)
]

, . . . , E
π,s1

[
Rg(s0, π(s0)) + γVπ(t)

g (s1)
])

, (1)

where π(t) is the policy selected at iterate t. This would optimize the policy in one step if updating
the policy did not impact the value function, and this strategy is convergent for linear (value)
MDP objectives. However, policy iteration for the egalitarian welfare objective, initiated at either
deterministic policy, oscillates between π(s1) = ⟨1, 0⟩ and π(s1) = ⟨0, 1⟩ for any γ ≥ 1

2 . This occurs
since, assuming π(t)(s1) = ⟨1, 0⟩, the (stale) value function is Vπ(t)(s1) = ⟨ 1

1−γ , 0⟩, thus taking
π(t+1)(s1) = ⟨0, 1⟩ maximizes egalitarian welfare at min( γ

1−γ , 1) = 1 in (1). In other words, each
iteration overcorrects for initial policy unfairness, yielding oscillatory behavior. Notably, for γ < 1

2 ,
the oscillation is damped and (1) actually converges to the optimal stochastic policy, but this is
case-specific, and policy iteration is not in general a valid planning strategy for welfare objectives.

We now consider an extension to this MDP that includes a third arm (action), which is not preferred
by either beneficiary, but is more effective as a compromise than any mixture of the first two arms.
Example 2.2 (Compromise 3-Armed Bandit; Figure 1b). Suppose reward R(s1, a1) .= ⟨1, 0⟩,
R(s1, a2) .= ⟨0, 1⟩, and R(s1, a3) .= ⟨ 2

3 , 2
3 ⟩. The unique optimal stationary per-beneficiary and

welfare-optimal policies are π1 = ⟨1, 0, 0⟩, π2 = ⟨0, 1, 0⟩, and π∗ = ⟨0, 0, 1⟩, respectively.

This example starkly illustrates how different the welfare-optimal policy π∗ may be from the per-
beneficiary optimal policies π1 and π2. Observe that π∗ is not a linear combination of π1 and π2;
these policies are totally disjoint, as no two optimal policies will ever prescribe the same action.

This divergence in optimal policies also has implications for how the MDP should be explored. For
instance, if beneficiaries 1 and 2 are independently allowed to run a UCB-style algorithm (Auer et al.,
2008), in all likelihood, neither will even bother to adequately a3, thus even together they do not
collect the appropriate information for welfare-optimal planning. We can conclude that, not only the
planning, but also the exploration aspect of RL is “more than the sum of its parts,” as under welfare
objectives, there is an obligation to explore the MDP more thoroughly.

We now extend the 2-armed bandit example further by adding two additional states, which represent
disparate starting conditions that favor one beneficiary or the other.
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Example 2.3 (Symmetric 2-Armed Bandit, with Asymmetric Starting Conditions; Figure 1c).
Suppose an MDP with recurrent state s1 and transient states s2 and s3, thus the environment is a
2-armed bandit from s1. Any action from s2 yields reward α to beneficiary 1, and any action from s3
yields reward α to beneficiary 2. Upon reaching state s1, the MDP is identical to example 2.1.
From s1, neither beneficiary is privileged, and the recurrent MDP matches example 2.1, but from s2
or s3, some beneficiary begins with an advantage of α utility. The unique optimal stationary policy
thus selects π∗(s1) to benefit the disadvantaged group. Starting from s2, to achieve equity, we require

γ
1−γ

π∗(s1, a1) + α = Vπ∗
1 (s2) = Vπ∗

2 (s2) = γ
1−γ

(1− π∗(s1, a1)) , thus π∗(s1) = ⟨ 1
2 −

1−γ
2γ

α, 1
2 + 1−γ

2γ
α⟩

or π∗(s1) = ⟨0, 1⟩ if equality is infeasible. By symmetry, starting at s3 swaps these action probabilities.

2.2 On Evaluation and Optimality of Fair Learners

When we consider example 2.3, two extremely subtle points arise as to how we are to evaluate the
performance of a learner and the actions it makes. First, for any α < γ

γ−1 , welfare-optimal stationary
policies are stochastic at s1, (i.e., actions a1 and a2 are both taken with nonzero probability). It is
thus impossible to determine whether individual actions taken by a learner are fair in isolation, and
a simple mistake-bound style of analysis thus seems inapplicable. This issue is not unique to fair RL,
as it arises whenever no deterministic policy is optimal, for instance in game-theortic multi-agent
RL settings (Buşoniu et al., 2010), and also with various constrained (Prashanth and Ghavamzadeh,
2016) or risk-averse (Wang and Chapman, 2022) RL objectives. In particular, evaluating a policy
requires the probability distribution over actions, not just the individual actions taken over the course
of executing the policy. An issue more specific to our fair RL setting is that the optimal policy π∗

depends on the start state, so it is meaningless to decompose the learning process into a sequence of
individual decisions at each timestep and evaluate them independently, as this erases the context
(i.e., the start state of welfare-optimal actions) in which decisions are made.

The next section explores these issues further and derives an appropriate learning model that evaluates
agents — not just on individual actions, but on their ability to output nearly welfare-optimal policies.
Evaluating fair RL agents is deceptively tricky, particularly due to the contextual nature of start-state
dependent policies. Due to the complexity of introducing the context of a starting state, we adopt an
adversarial setting, in which many design decisions — in particular those regarding episodic versus
continuous learning, choice of start states or distributions, and the welfare function — are made
adversarially. Section 4 then shows that even in this general adversarial setting, fair learning remains
possible and algorithmically practical.

3 A Model of Adversarial Fair Reinforcement Learning

In this section, we review the PAC-MDP framework, explain why a straightforward generalization to
fairness-sensitive settings is troublesome, and define the Kwik-Af framework. Our guarantees are
similar to the classical E3 policy-centric guarantees of Kearns and Singh (2002), but are adapted to
adversarial state and welfare-function selection. Both are important to the welfare-centric RL setting,
as the adversary can be used to model how policies generated by the agent are actually used (and
thus how they impact society), as well as shifts in human fairness concepts over time. Furthermore,
we show constructively via reduction that our setting is at least as hard as the PAC-MDP framework.
Before further describing the learning setting, we lead with a key lemma that allows us to restrict
our attention to start-state dependent stationary stochastic MDPs.
Lemma 3.1 (Optimality of Stationary Policies: Lemma 3.1 of Siddique et al. (2020)). For any start
state s0 ∈ S, there exists some W(·)-optimal policy

π∗ .= argmax
π∈ΠM

W
(
Vπ

1 (s0), . . . , Vπ
g (s0)

)

that is a stationary stochastic policy, i.e., given the current state st, π∗(st) may prescribe distributions
over actions, but they may not depend on the history other than s0 (i.e., not on s1, s2, . . . , st−1).
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3.1 Motivation

Our framework introduces two major ideas. First, we explicitly model the explore-exploit tradeoff
by requiring learners to either take exploration actions when uncertain about how to behave, or to
output exploitation policies when they can ε-optimally plan from the current state. In particular,
we require that, with high probability, the agent takes a bounded (usually polynomial) number of
exploration actions, and every exploitation policy is ε-welfare-optimal. Second, many decisions in
our learning model are made adversarially, and thus our model encompasses a plethora of related
settings, including episodic, continual, teacher-assisted, fair, and single-beneficiary (or egocentric)
RL settings. Consequently, our algorithms and analysis can be directly applied to these more specific
settings. The central motivation for our policy-centric framework is that simple per-action regret or
mistake bounds don’t translate to the fair RL setting. This is because, as discussed in section 2.2,
it is not possible to evaluate the optimality of individual actions of a fair learner, as they may be
stochastic, and they may also depend on the context of the start state s0.

Ideally, we could still ensure the agent behaved ε-optimally during learning, however, because fair
policies are inherently contextual, it also does not make sense to have the learner follow its own
policies at each timestep, as these policies may disagree, so from where would we even measure
suboptimality? While resetting the start state at each step ignores historical context, indefinitely
using the agent’s original start state puts too much emphasis on the past, as from a geometric
discounting perspective, we are only planning for optimal behavior in a geometric-length episode,
and as time progresses, the start state should become irrelevant in any recurrent MDP. In either
case, the agent behaves poorly in some sense during learning; one may consider example 2.3 starting
from state s2, where keeping the start state indefinitely favors beneficiary 2, whereas resetting it
each step favors beneficiary 1 (as their initial privilege is never addressed).

There are many reasonable ways to resolve this issue, but we wish not to limit our framework by
committing to one of them. For example, running the agent’s policy for a geometric-length episode
before returning control to the agent (to choose either an exploration action or to output another
exploitation policy) would ensure that behavior during policy execution is fair. However, even here,
reasonable design decisions abound: After a policy execution episode, should we continue from the
current state, or start afresh from a new state? If we restart, should the start state be drawn i.i.d., or
might its distribution change over time? Should the welfare function be fixed, or could it too change
over time to reflect evolving societal values or shifting demographics? Rather than adopt some fixed
control flow, we require agents to behave ε-optimally against a largely adversarial system.

Essentially, the adversary provides modular flexibility to fairness-sensitive decisions and parameters,
and robustness against a learning agent exploiting the structure of the learning procedure. This
preëmpts fairness issues arising from a limited model, by requiring that the agent itself must operate
under general (adversarial) conditions, which modelers may select to fit domain-specific conditions
and ideals of fairness. Furthermore, while exploitation policies are guaranteed to be ε-welfare-optimal,
how they are actually used is equally important to fairness. In this context, adversarial state selection
may be interpreted as taking arbitrary real-world actions informed by the agent’s policy, which
should be ε-optimal, before returning control to the agent.

3.2 MDP Policy Agents and the Adversarial Fair KWIK Framework

We now define the MDP policy agent, which codifies how a learner interacts with its environment.
This interface is more complicated than standard PAC-MDP learners, because it explicitly models
both exploration and exploitation, but this complexity is necessary to disambiguate good from bad
decisions in rich environments where individual actions do not suffice.
Definition 3.2 (MDP Policy Agent). An MDP policy agent interacts with an MDP M =
⟨S,A, P, R, γ⟩ by starting from some start state s0. At any timestep t, at state st, the agent
then produces either an exploration action or an exploitation policy z ∈ Z from the space

Z .= A︸︷︷︸
Exploration Action

⋃
ΠM︸︷︷︸

Exploitation Policy

.
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Timestep Start:
At state s

Explore:
Output action a

Observe s, a, r, s′

Exploit:
Output policy π
Observe nothing

Single Step:
s′ ∼ P(s, π(s))

Episodic:
Bernoulli(γ) coin

Common Start:
Distribution p over S

Take s′ ∼ p

Adversary:
Adversarial s′

Heads:
s← s′∼ P(s, π(s))

Tails:
Return control to agent

s← s′ s← s′ 1: procedure DeployAgent(S,A, γ, ε, δ, Rmax, s)
2: AgentInit(S,A, γ, Rmax, ε, δ)
3: loop
4: W(·)← Adversary ▷ Adversarial welfare
5: z ← AgentStep(s, W(·))
6: if z ∈ A then ▷ Explore action
7: s′, r ←M(s, z) ▷ Take action z in M
8: AgentSarsUpdate(s, a, r, s′); s← s′

9: else if z ∈ ΠM then ▷ Exploit policy
10: case Single Step
11: s ∼ P(s, z(s))
12: case Episode
13: while Bernoulli(γ) do
14: s ∼ P(s, z(s))
15: case Common Start
16: s ∼ p
17: case Adversary
18: s← Adversary ▷ Adversarial state

Figure 2: Illustration of MDP Policy Agent control flow. The flowchart (left) describes the control
flow of the pseudocode (right). An MDP policy agent must implement the AgentInit(. . . ),
AgentStep(. . . ), and AgentSarsUpdate(. . . ) subroutines to interact with the environment.

If the agent outputs an exploration action at, it is executed in state st of M to produce reward
rt+1 ∼ R(st, at) and subsequent state st+1 ∼ P(st, at), and the agent observes ⟨st, at rt+1, st+1⟩.
Alternatively, if the agent outputs an exploitation policy πt, a new state st+1 is produced, and the
agent observes the new state, but the agent does not observe any reward or action. There are many
reasonable models for selecting st+1, and we propose any of the following models:
1. Single Step: The agent’s policy is run for a single step, yielding st+1 ∼ P(st, πt(st));
2. Episode: Let k ∼ Geometric(1− γ), s′

0 = st, and s′
i+1 ∼ P(s′

i, πt(s′
i)), then take st+1 = s′

k;
3. Common Start: Given some start-state distribution p ∈ P(S), we take st+1 ∼ p; or
4. Adversary: st+1 is selected adversarially.

Figure 2 illustrates the control flow of this system. Note that definition 3.2 resembles the interface of
the standard E3 algorithm, in which an agent takes individual exploration actions until it is ready
to output an ε-optimal policy from its current state, at which point it terminates. We require our
agents to continue operating after producing an exploitation policy, and based on the discussion of
section 3.1, we present several reasonable modes of operation following an agent producing policies,
but all are encompassed by adversarial choice of subsequent state. To describe successful or efficient
MDP-policy agents, we define the policy-KWIK class, which resembles the KWIK framework for
supervised learning (Li et al., 2011), in the sense that the agent is issued “queries” (what to do at
the current state), and the agent may either say “I don’t know” to receive information (i.e., issue an
exploration action to receive reward and transition samples), or answer the query (give a policy).
Definition 3.3 (Policy-KWIK Learner). An MDP policy agent is a policy-KWIK learner with
sample complexity m(|S|, |A|, γ, Rmax, ε, δ) if, for any error tolerance ε > 0 and failure probability
δ ∈ (0, 1), the following pair of conditions hold with probability at least 1− δ.

1. Exploration condition: The number of exploration actions is bounded, i.e.,
∞∑

t=1
1A(zt) ≤ m

(
|S|, |A|, γ, Rmax, ε, δ

)
.

2. Exploitation condition: All exploitation policies are ε-optimal, i.e., for all t, if zt ∈ ΠM, then

Vzt(st) ≥ sup
π∗∈ΠM

Vπ∗
(st)− ε .

Definitions 3.2 and 3.3 explicitly delineate between exploration and exploitation. In particular, the
agent output space Z is explicitly factored into exploration actions, which are used to take a single
step and learn from the environment, and exploitation policies, through which the agent demonstrates
that it knows how to act ε-optimally from the current state. This is codified in conditions 1 and 2 of

1131



RLJ | RLC 2024

definition 3.3, as condition 1 requires that an agent may not take too many exploration actions, and
condition 2 requires that each policy an agent dares to output must be ε-optimal.
Theorem 3.4 (Policy-KWIK and PAC-MDP Learners). Every policy-KWIK learner that outputs
deterministic policies with polynomial sample complexity is a PAC-MDP learner, in the sense that
executing an exploitation policy or exploration action at each timestep produces no more than
m(|S|, |A|, γ, Rmax, ε, δ) total mistakes (i.e., ε-suboptimal actions) with probability at least 1− δ.

Proof Sketch. Essentially, this result follows by noting that a policy-KWIK learner can be converted
to a PAC-MDP learner by executing each exploration action a, or π(s) for each exploitation policy π
at state s, and in doing so, with probability at least 1− δ, no exploitation action is ε-suboptimal.
See appendix A for full proof of this result.

Group-Fair Models of Reinforcement Learning Definitions 3.2 and 3.3 describe standard
(scalar-valued) learning settings, so we now generalize them to definitions 3.5 and 3.6 to model
efficient fair learning with welfare objectives for multiple beneficiaries.
Definition 3.5 (Adversarial Fair MDP Policy Agent). At each timestep t, at state st, the adversary
presents a welfare function Wt(·) from some class W. The agent then produces either an exploration
action or an exploitation policy z ∈ Z from the space

Z .= A︸︷︷︸
Exploration Action

⋃
ΠM︸︷︷︸

Exploitation Policy

.

At this point, if the agent selected an exploration action at, the action is executed in state st of
the MDP to produce reward rt+1 ∼ R(st, at) and subsequent state st+1 ∼ P(st, at), and the agent
observes the tuple ⟨st, at, rt+1, st+1⟩. Alternatively, if the agent selected exploitation policy πt, the
adversary then selects the next state st+1, and the agent does not observe any reward or action.
Definition 3.6 (Kwik-Af Learner). An agent is Kwik-Af over welfare class W with sample
complexity m(|S|, |A|, γ, Rmax, g, ε, δ) if, for any error tolerance ε > 0 and failure probability δ ∈ (0, 1),
the following pair of conditions hold with probability at least 1− δ:

1. Exploration condition: The number of exploration actions is bounded, i.e.,
∞∑

t=1
1A(zt) ≤ m

(
|S|, |A|, γ, Rmax, g, ε, δ

)
.

2. Exploitation condition: All exploitation policies are ε-optimal (with respect to the welfare
function Wt ∈ W provided by the adversary at each timestep t), i.e., for all t, if zt ∈ ΠM, then

Wt

(
Vzt

1 (st), Vzt
2 (st), . . . , Vzt

g (st)
)
≥ sup

π∗∈ΠM

Wt

(
Vπ∗

1 (st), Vπ∗
2 (st), . . . , Vπ∗

g (st)
)
− ε .

In other words, the key differences are that reward is now vector-valued, and optimal policies may
now be stochastic and must now be welfare-optimal.

4 Algorithms for Fair Planning and Learning

We now present algorithms for fair planning and learning in our multi-beneficiary MDP setting. We
first demonstrate how to plan in an MDP to maximize concave welfare objectives in section 4.1.
We then introduce the Equitable Explicit Explore Exploit (E4) adversarial fair MDP policy agent in
section 4.2. Finally, we show that E4 is a Kwik-Af learner in section 4.3.

4.1 On Welfare-Optimal Planning

For a given start-state distribution vector p ∈ P(S), let dπ ∈ RS×A
≥0 be the geometrically-discounted

state-action occupancy measure of the policy π, defined as

dπ
s,a

.= E
at∼π(st)

s0∼p
st+1∼P(st,at)

[ ∞∑

t=0
γt
1s(st)1a(at)

]
= π(s, a)

(
ps + γ

∑

s′∈S
a′∈A

Ps(s′, a′)dπ
s′,a′

)
. (2)

1132



RLJ | RLC 2024

Algorithm 1 Equitable Explicit Explore Exploit (E4)
1: procedure AgentInit(S,A, γ, Rmax, ε, δ)
2: T ← max

(
1,
⌈

log 1
γ

(
6λRmax
ε(1−γ)

)⌉)
; t← T ▷ Set escape time T and timer t

3: α← 2ε(1−γ)2

3λ
(

2
√

Rmax+γRmax+6T (1−γ)Rmax
) ▷ Set transition ∥·∥1 error tolerance α

4: E ← 2αT ▷ Set escape probability threshold E

5: mknw ←
⌈

1
2α2 ln

(
2|S||A|(2|S| − 2 + 2g)

δ

)⌉
▷ Compute sufficient per-state-action pair sample size

6: ∀s ∈ S, a ∈ A : ms,a ← 0 ▷ Initialize per-(s, a) visitation counters
7: Sunk ← S; Sout ← ∅; Sinn ← ∅ ▷ Initialize all states to unknown
8: M̂ = ⟨S,A, P̂, R̂, γ⟩ ← ⟨S,A, (s, a) 7→ 1s, (s, a) 7→ 0, γ⟩ ▷ Initialize empirical MDP to 0-reward recurrent
9: procedure AgentStep(s, W(·))

10: case s ∈ Sunk ▷ Successful escape attempt has reached Sunk
11: t← T ▷ Stop escape timer
12: return axpr ← argmin

a∈A
ms,a ▷ Select explore action axpr using balanced wandering

13: case t < T ▷ Ongoing attempt to escape to Sunk
14: t← t + 1 ▷ Increment escape timer
15: return axpr ← πesc(s, t) ▷ Explore action axpr from escape policy πesc

16: case s ∈ Sinn ▷ Return exploit policy
17: return πxpt ← argmax

π∈ΠM
W
(
V̂π(s)

)
▷ Exploit policy πxpt computed from V̂ and M̂

18: case s ∈ Sout ▷ Begin escape attempt
19: t← 0 ▷ Start escape timer
20: return axpr ← πesc(s, t)
21: procedure AgentSarsUpdate(s, a, r, s′)
22: if s ∈ Sunk then
23: ms,a ← ms,a + 1 ▷ Increment visitation count
24: XP

s,a,ms,a
← s′; XR

s,a,ms,a
← r ▷ Append to experience buffers for transitions XP and rewards XR

25: if min
a∈A

ms,a = mknw then ▷ State s is now known
26: ∀a ∈ A, s′ ∈ S : P̂s′ (s, a)← 1

mknw

mknw∑

i=1

1s′ (XP
s,a,i) ▷ Empirical transition model P̂

27: ∀a : R̂(s, a)← 1
mknw

mknw∑

i=1

XR
s,a,i ▷ Empirical reward function R̂

28: πesc ← argmax
π∈ΠT

∑

s∈S
P

st+1∼P̂(st,π(st,t))

( T∨

i=0

si ∈ Sunk

∣∣∣s0 = s
)

▷ T -step deterministic escape policy in P̂

29: Sunk ← Sunk \ {s} ▷ Remove s from the unknown set

30: Sout ←
{

s ∈
(
S \ Sunk

) ∣∣∣∣ P
st+1∼P̂(st,πesc(st,t))

( T∨

i=0

si ∈ Sunk

∣∣∣s0 = s
)
≥ E

}
▷

Known states where
T -step escape is E-likely

31: Sinn ← S \ (Sunk ∪ Sout) ▷ Known states where T -step escape is not E-likely

Wang et al. (2008) show that the state-action occupancy measure gives rise to linear programs that
efficiently plan (optimize value) in scalar-valued MDPs, and Zahavy et al. (2021) extend this idea to
minimize arbitrary convex objectives of the state-action occupancy measure. We now apply this idea
to address welfare-optimal planning in multi-beneficiary MDPs.
Proposition 4.1 (Welfare-Optimal Planning). Suppose start-state distribution p and λ-Lipschitz
concave welfare function W(·). Then the welfare-optimal policy π∗ = argmaxπ∈ΠM W

(
Es∼p [Vπ(s)]

)

from p can be identified by first solving for

d∗ = argmax
d∈RS×A

≥0

W
( ∑

s∈S,a∈A
ds,aR1(s, a),

∑

s∈S,a∈A
ds,aR2(s, a), . . . ,

∑

s∈S,a∈A
ds,aRg(s, a)

)
(3)

such that ∀s ∈ S :
∑

a∈A
ds,a = ps + γ

∑

s′∈S,a′∈A
Ps(s′, a′)ds′,a′ ,

and then setting π∗(s, ·) ∝ d∗
s,· for all s ∈ S. Moreover, an ε-optimal policy can be computed using

standard convex optimization methods in Poly (|S|, |A|, 1
1−γ , Rmax, g, 1

ε , λ) time.

4.2 The E4 Algorithm

We now describe E4, for which we give pseudocode in algorithm 1. The key to E4 is that the state
space S is partitioned into three sets: The unknown set Sunk, the outer-known set Sout, and the
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Learning is
Happening!

A

A
S18

S6

Figure 3: Depiction of an E4 agent A learning, showing the inner-known Sinn (solid), outer-known
Sout (dashed), and unknown Sunk (dotted) sets. All actions self-loop with probability ≈ T/2

√
1− E,

and arrows denote 1-step reachability via some action with probability ≈ 1 − T/2
√

1− E. As the
agent acts (explores) to reach s19 from s18, s18 enters Sout, which cascades to s6 entering Sinn.

inner-known set Sinn. Initially, all states are unexplored in Sunk (line 6). After visiting a state
s ∈ Sunk and taking all actions enough times (line 25) using balanced wandering (line 12), s becomes
known, entering either Sinn or Sout. We then construct an empirical MDP M̂ using the empirical
transition frequencies and mean rewards from each known state and each action (lines 26 and 27),
and self-loop probability 1 and reward 0 from unknown states (line 8). Then, for each known state s,
if with nonnegligible probability (at least E) in M̂ it is possible to reach Sunk from s within T steps,
we place s into Sout (line 30), otherwise we place s into Sinn (line 31). This process is graphically
illustrated in figure 3. Note that E and T are set so as to ensure E4 is Kwik-Af (lines 2 and 4).

As in the classic E3 algorithm, within Sinn, if all tail bounds hold, then the value functions of
M̂ approximate the value functions of M. Furthermore, under λ-Lipschitz continuity of welfare,
optimizing welfare in M̂ ε-optimizes welfare in M. Therefore, at each step, if the agent is in Sinn, it
outputs a ε-optimal policy (line 16). Otherwise, if the agent is in Sout, it begins an escape attempt
(line 18), which follows a T -step temporal policy (i.e., a policy π ∈ ΠT , where the action π(s, t)
depends on the current state and timestep) that maximizes the probability of reaching Sunk in
M̂ (line 28). The escape attempt either proceeds for T steps (line 13), or until Sunk is reached
(line 10). The main concrete difference between the E3 and E4algorithms is that E4 has higher
sample complexity, due both to vector-valued reward and to the nonlinearity of the welfare function.
Furthermore, our analysis is more complex, as we show that E4 Kwik-Af learns M, which requires
robustness against adversarial state selection even after an arbitrary number of exploitation steps,
whereas the classical E3 analysis only guarantees a single ε-optimal exploitation policy is output.

4.3 Theoretical Analysis

We are now ready to theoretically analyze E4 in the Kwik-Af framework. We begin by defining
(α, β)-uniform approximations of MDPs and computing the per-state sample complexity of attaining
such approximations. All claims stated here are all proved in appendix A.
Definition 4.2 (Uniform Approximation MDPs). Let TVD(x, y) denote the total variation distance
between probability distributions x and y. An (α, β)-uniform approximation M′ = ⟨S,A, P′, R′, γ⟩ of
a vector-reward MDP M = ⟨S,A, P, R, γ⟩ is an MDP that, for all s ∈ S and a ∈ A, satisfies
1. TVD

(
P′(s, a), P(s, a)

)
≤ α ; and 2. ∥R′(s, a)−R(s, a)∥∞ ≤ β .

Lemma 4.3 (Per-State Sample Complexity). Suppose MDP M = ⟨S,A, P, R, γ⟩, and let

mknw
.=
⌈

max
(

1
2α2 ,

Rmax
2β2

)
ln
(
|S||A|(2|S| − 2 + 2g)

δ

)⌉
. (4)

1134



RLJ | RLC 2024

If M̂ is estimated as the mean over mknw samples of the reward and destination state from each
state-action pair, then with probability at least 1− δ, M̂ is an (α, β)-uniform approximation of M.

When combined with Lipschitz continuity and a simulation lemma (Strehl et al., 2009), lemma 4.3
bounds the number of times we must take each action from each state before we can ε-δ maximize
Lipschitz welfare functions. This gives us some sense of how E4 operates (see line 5), although it
says nothing of exploration and the learning process. The following result completes the story for the
E4 algorithm, analyzing its sample complexity in the Kwik-Af framework.
Theorem 4.4 (E4 is a Kwik-Af Learner). Algorithm 1 is a Kwik-Af learner w.r.t. the class of all
λ-∥·∥∞ Lipschitz-continuous welfare functions, with sample complexity

m (|S|, |A|, γ, Rmax, g, ε, δ) ∈ O
(
|S|2|A|

(
λRmax
ε(1−γ) log 1

γ

(
λRmax
ε(1−γ)

))3
log |S||A|g

δ

)

⊆ Poly
(
|S|, |A|, 1

1−γ , Rmax, log g, 1
ε , log 1

δ , λ
)

.

Proof Sketch. Proof of this result is rather involved, and relies on several technical lemmata shown in
appendix A. However, the crucial observation is that, subject to all tail bounds of lemma 4.3 holding
over the course of algorithm 1 (which holds by union bound with probability at least 1− δ

2 ), then
the E4 agent is able to act in accordance with the duties of a Kwik-Af learner (definition 3.6).

Indeed, the explore-exploit lemma (A.4) shows that from anywhere in Sinn, exploitation is possible,
and from within Sout, exploration is possible (i.e., escape attempts are worthwhile), which we use to
satisfy both conditions of definition 3.6. In particular, from any inner-known state s ∈ Sinn, V(s) is
approximately preserved between M and M̂, and welfare-optimal planning in M̂ is ε-optimal in
M. Finally, from any outer-known state s ∈ Sout, each escape attempt terminates within T steps,
and reaches Sunk with probability at least E

2 , thus the expected number of exploration actions is
bounded above by 2(T +1)

E |S||A| mknw, and standard binomial tail bounds yield the result.

5 Conclusion

This work motivates and defines a formal model of welfare-centric fair reinforcement learning. We
find that naïve approaches, like planning via policy iteration (example 2.1), and independent per-
beneficiary exploration (example 2.2) do not yield fair RL agents. Defining fair RL and quantifying a
learner’s efficiency are challenging problems (section 3), as we must consider stochastic policies, and
thus can not evaluate learners in terms of the regret or mistakes of individual actions. We thus define
the Adversarial Fair MDP Policy Agent (definition 3.5) and the Kwik-Af learner (definition 3.6)
to model fair RL and codify efficient learning in this domain. We then show (section 4) that it is
possible to Kwik-Af learn the class of Lipschitz-continuous welfare functions in finite MDPs.

In practice, the decision to learn a policy de novo is quite radical, and many suboptimal actions will
likely be taken while learning. This is a general issue for RL in sensitive settings: In medical contexts,
Thomas et al. (2019) start from a reference policy, and seek to improve the policy while ensuring no
reduction in performance. While reasonable in high-risk settings, when fairness among groups is a
concern, it is inherently a conservative approach (as comparison to a reference policy centers the
status quo), whereas starting ex-nihilo solely depends on the structure of the MDP and the learning
algorithm, rather than existing societal biases, which may be encoded in the reference policy.

Finally, we note that suboptimal exploration actions could adversely affect some groups unfairly, and
this should be monitored and controlled for. We note also that the number of suboptimal actions
taken (as bounded by theorem 4.4) can be further reduced with more careful analysis; for instance
the sample complexity of learning transition functions is much smaller when they are sparse, admit a
factoring, or destination distributions are far from uniform, and the sample complexity of learning
rewards may be much smaller when the variance of rewards is small. We are hopeful that future work
will lead to Kwik-Af learners that explore more efficiently under various RL settings of interest.
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Abstract

We study an inverse reinforcement learning (IRL) problem where the experts are
planning under a shared reward function but with different, unknown planning hori-
zons. Without the knowledge of discount factors, the reward function has a larger
feasible solution set, which makes it harder for existing IRL approaches to identify
a reward function. To overcome this challenge, we develop two algorithms that
can learn a global multi-agent reward function with agent-specific discount factors
that reconstruct the expert policies. We characterize the feasible solution space of
the reward function and discount factors for both algorithms and demonstrate the
generalizability of the learned reward function across multiple domains.

1 Introduction

Designing reward functions in reinforcement learning (RL) that appropriately capture key aspects
of a real-world task can be difficult in domains such as healthcare (Riachi et al., 2021) and fi-
nance (Charpentier et al., 2021). Inverse reinforcement learning (IRL) addresses this challenge by
learning a reward function from expert demonstrations for a given task. The learned reward serves
as a succinct description of the task and then can be transferred to similar tasks. Recent research
in IRL has focused on the additional challenge of learning the reward function from heterogeneous
expert behaviors, for example, where expert demonstrations vary in quality (Shiarlis et al., 2016;
Brown et al., 2019), or where each expert is optimizing a different reward function (Mendez et al.,
2018; Gleave & Habryka, 2018; Yu et al., 2019).

In this work, we focus on the setting where the expert behaviors vary because each expert is
optimizing for a different planning horizon, using the same reward function. In RL, the planning
horizon is encoded in the discount factor, which discounts future (expected) rewards attained by a
given policy. A small discount factor corresponds to a short planning horizon, implying that the
expert prioritizes short-term goals, whereas a large discount factor corresponds to a long planning
horizon. For example, in an intensive care unit, the ventilation weaning practice is influenced by
specific unit protocols and team or individual physician preferences (Kapnadak et al., 2015). Here,
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a more aggressive weaning practice implies a small discount factor, since it prioritizes immediate
changes in the patient’s state. In a mobile health application that helps users manage their own
wellness, users may select the planning horizon by choosing to set up short-term (< 1 year), long-
term (1-2 years), or maintenance (> 2 years) health goals (Dicianno et al., 2017).

Existing IRL work often first chooses discount factors based on domain knowledge, and then learns
the reward function by fixing these discount factors (Ng et al., 2000; Ziebart, 2010; Ramachandran &
Amir, 2007). For entropy-regularized Markov decision processes (MDPs), when observing multiple
experts and when the true discount factors of the experts are known, prior work shows that IRL can
identify the true reward function up to a constant (Cao et al., 2021; Rolland et al., 2022). However,
in most applications, we do not know the set of true discount factors a priori – this set must be
learned alongside the reward function. Unfortunately, when the discount factors are misspecified or
unknown, current IRL literature does not address the inference, nor the identifiability of the reward
function. In this work, we fill this gap in the literature and study settings where both the discount
factors (one per expert) and the reward function are unknown.

In this work, we assume that a global reward function is shared among the experts as the first
step in understanding how unknown discount factors pose challenges to existing IRL work. This
setting corresponds to experts having a shared goal, but different attention to the time needed to
achieve them. We first provide analyses on the hardness of adapting existing IRL approaches to our
problem setting, where both the set of discount factors and the reward must be inferred from the
data. In particular, we consider two classes of popular IRL approaches: linear programming IRL
(LP-IRL; Ng et al. (2000)) and max causal entropy IRL (MCE-IRL; Ziebart (2010)). We show that
naive extensions of LP-IRL admit undesirable feasible solutions such as the degenerate solution
wherein multiple experts are assigned the same discount factor.

In the case of MCE-IRL, whose Lagrangian dual problem can be interpreted as maximum likelihood
IRL (ML-IRL) (Zeng et al., 2022), we show that when discount factors are unknown, strong duality
does not hold for MCE-IRL and ML-IRL. Thus, solving ML-IRL does not guarantee convergence
towards a feasible solution that reconstructs the expert policies. Furthermore, we show that for
MCE-IRL, when the discount factors are misspecified, then either: (1) there does not exist a
reward function that recovers the expert policy, or (2) there exists a unique reward function (up to
a constant), which recovers the expert policy but may not be the true reward function. Fortunately,
in Section 6.2, we observe that, in practice, when there are more than two experts, the set of reward
functions that recovers the expert policy is non-empty only for a small set of discount factors. That
is, in many applications, both the discount factors and the reward function are identifiable.

Finally, to address the failure modes of naive adaptations of LP-IRL and MCE-IRL, we develop
two novel algorithms to learn a global multi-agent reward function with agent-specific discount
factors based on LP-IRL and MCE-IRL. We (1) characterize the feasible solution space of the
reward function and discount factors for both algorithms, and (2) empirically demonstrate the
generalizability of the learned reward function across multiple domains.

2 Related Work

IRL with homogeneous demonstrations. Previous IRL work focuses on identifying a reward
function that explains expert behavior when the demonstrations are generated by a single expert.
For example, max-margin IRL methods (Ng et al., 2000; Abbeel & Ng, 2004) seek a reward function
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that maximally separates the optimal policy and the second-most optimal policy. Max entropy
IRL methods (Ziebart et al., 2008; Ziebart, 2010) estimate a reward function that maximizes the
likelihood of the expert demonstrations. Bayesian IRL methods (Ramachandran & Amir, 2007; Jin
et al., 2010) use prior knowledge to infer a posterior distribution over all possible reward functions.
However, when given trajectories from multiple experts, each of these IRL approaches learns a
separate reward function for each expert by default, which is data inefficient. In our work, we
focus on a common scenario where the global reward function is shared by all experts with discount
factors specific to each expert; these different discount factors lead to different optimal policies.

IRL with heterogeneous demonstrations. Recent IRL work explores heterogeneous expert
demonstrations. Some methods study the scenario where expert demonstrations vary in quality.
For example, Shiarlis et al. (2016) learn from demonstrations of both optimal policies and policies
with undesirable behaviors (e.g., violating safety constraints). Similarly, Brown et al. (2019) assume
that one has access to a set of demonstrations ranked by their expected return. Other work studies
the setting where each expert optimizes for a different task. For example, Babes et al. (2011)
first identify the tasks by clustering the expert demonstrations and then identify a reward function
for each task. In Yu et al. (2019), the authors use deep latent generative models to capture the
shared reward structure of expert demonstrations. Finally, Mendez et al. (2018) consider a lifelong
learning setting where the agent faces a sequence of similar tasks and optimizes overall performance.
In contrast, we consider the scenario where experts share the same reward function but have different
planning horizons. To the best of our knowledge, we are the first to study this type of IRL problem.

Identifiability in IRL with respect to the reward function and discount factors. Recent
work provides identifiability analysis on the reward function when the true discount factors are
known for entropy-regularized MDPs (Cao et al., 2021; Rolland et al., 2022). Specifically, the
authors show that, given optimal policies from two distinct discount factors and a shared reward
function, one can identify the true reward function up to a constant. However, their analysis
assumes that the true discount factors are provided, which is not realistic. In this work, we show
that given misspecified discount factors, the feasible reward function set may not include the true
reward function under the same rank conditions in Cao et al. (2021). We develop algorithms to
recover the set of discount factors and the reward function for settings where both are unknown.

3 Problem Setting

Markov decision processes (MDPs). Consider an MDP, M∗ = (S, A, r∗, T, γ∗), where S is a
finite state space, A is a set of discrete actions, T : S × A × S → [0, 1] is the transition dynamics
describing the probability of reaching the next state s′ by taking action a in the current state s,
r∗(s) is an action-independent reward function, and γ∗ ∈ [0, 1] is the discount factor that controls
the weight of the future reward. For standard MDPs, the optimal policy is defined as,

π∗(a|s) = arg max
a

Qr∗,γ∗
π (s, a) = arg max

a
Eπ

[ ∞∑

t=0
γ∗tr∗(St+1)

∣∣∣∣∣St = s, At = a

]
. (1)

For entropy-regularized MDPs, the optimal policy is defined as,

π̃∗(a|s) = arg max
π

Q̃r∗,γ∗
π (s, a) = arg max

π
Eπ

[ ∞∑

t=0
γ∗t [r∗(St+1) + λH(π(·|St))]

∣∣∣∣∣St = s, At = a

]
,

(2)
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where λ is a temperature parameter with a larger λ leading to a more stochastic policy. When
λ → 0, we will recover the expert policy of standard MDPs (π∗ = π̃∗).

Multi-planning horizon IRL (MP-IRL). We assume that we are given an MDP, M∗\{r∗, γ∗},
with an unknown reward function and discount factor. We observe demonstrations from a set of K
expert policies, each optimized under a shared global reward function r∗, and transition dynamics
T , but using distinct discount factors (γ∗

i ̸= γ∗
j for i ̸= j). We denote the set of distinct discount

factors by Γ∗ = {γ∗
k}K

k=1. We assume that the expert policies are solved using Eq. 1 or 2 given
appropriate contexts, and denote the set of expert policies for standard or entropy regularized
MDPs by Π∗ = {π∗

k}K
k=1 or Π̃∗ = {π̃∗

k}K
k=1, respectively.

In MP-IRL, we wish to find a reward function r and a set of distinct discount factors Γ = {γk}K
k=1

such that each expert policy remains optimal under the reconstructed MDP M = (S, A, r, T, γk).

4 Algorithms for MP-IRL: LP-IRL

In this section, we introduce a popular class of IRL algorithms, linear programming IRL (LP-IRL),
for the single known discount factor IRL setting. We explain how naive extensions of LP-IRL to
the MP-IRL setting fail. Finally, we present a novel algorithm, multi-planning horizon LP-IRL
(MPLP-IRL), that extends LP-IRL to jointly learn a set of distinct discount factors and a global
reward function.

In the following, we assume that the expert policies are obtained by solving standard MDPs, and
are denoted by, Π∗ = {π∗

k}K
k=1. In Ng et al. (2000), the authors assume that expert demonstrations

are obtained from a single known planning horizon. They learn a reward function from expert
demonstrations by solving the following optimization problem,

max
r

∑

s∈S

min
a∈A\π∗(s)

{Qr,γ
π∗ (s, π∗(s)) − Qr,γ

π∗ (s, a)} − λ∥r∥1 (3a)

subject to Qr,γ
π∗ (s, π∗(s)) − Qr,γ

π∗ (s, a) ≥ 0 for s ∈ S, a ∈ A \ π∗(s) (3b)
|r| ⪯ rmax (3c)

where the l1 norm penalty, λ∥r∥1, regularizes the sparsity of the reward function. In the above
optimization problem, constraints (3b) ensure that π∗ is optimal under the inferred reward function
r. The reward function solution to Eq. 3a maximizes the sum of the differences of the Q-functions
between the best and the next-best action over all states. The LP-IRL problem in Eq. 3 can be
solved with linear programming (LP) (Ng et al., 2000). We extend the LP-IRL approach to expert
demonstrations with multiple planning horizons. As such, we make an additional assumption:
Assumption 1. For any two distinct expert policies π∗

i , π∗
j ∈ Π∗, optimized under γ∗

i , γ∗
j , respec-

tively, there exists a state s ∈ S such that Q
r∗,γ∗

i

π∗
i

(s, π∗
i (s)) > Q

r∗,γ∗
i

π∗
i

(s, π∗
j (s)).

The above assumption ensures that each expert policy is uniquely optimal in at least one of the
states, i.e., no two expert policies are equally optimal in all states. Since we assume a common
reward function, this assumption implies that γi ̸= γj for i ̸= j. In other words, our assumption
states that the discount factors lead to distinct policies. This assumption is necessary because,
otherwise, we cannot distinguish the expert policies from the observed data and the reward function
is non-identifiable. In Appendix C.1, we also show that in practice, Assumption 1 is rarely violated.
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4.1 Naive Extension of LP-IRL Fails

We first note that naive extensions of the formulation in Eq. 3 to the MP-IRL setting return optimal
solutions that violate Assumption 1. The naive solution would be to simply maximize the sum of
the differences of the Q-functions over all experts and states, i.e.,

max
Γ∈[0,1]K

max
r

∑

k∈[K]

∑

s∈S
min

a∈A\π∗
k

(s)
{Qr,γk

π∗
k

(s, π∗
k(s)) − Qr,γk

π∗
k

(s, a)} − λ∥r∥1 (4a)

subject to Qr,γk

π∗
k

(s, π∗
k(s)) − Qr,γk

π∗
k

(s, a) ≥ 0 ∀s ∈ S, a ∈ A\π∗
k(s), k ∈ [K] (4b)

|r| ⪯ rmax (4c)

In Appendix E.1, we show that without further constraining the discount factors, there are situations
where the above optimization problem assigns the same discount factors to multiple experts. This
implies that, under the learned discount factors, some expert policies are not distinguishable from
each other under any reward function, which violates Assumption 1. The expert policies should be
sufficiently different in terms of Q-functions under the learned reward function and discount factors.
We modify this naive optimization problem to address this problem below in Section 4.2.

4.2 Multi-planning horizon LP-IRL (MPLP-IRL)

To avoid undesirable global optimum in Appendix E.1, we need to incorporate the constraints in
Assumption 1. This is challenging because optimization problems that include strict inequality
constraints may not have attainable optimal solutions. We avoid incorporating strict inequalities
by first selecting states where the expert policies are distinguishable and then maximizing the
differences of Q-functions only on those states. The proposed MPLP-IRL problem is as follows:

max
Γ∈[0,1]K

max
r

min
k∈[K],(s,a)∈Ωk

{Qr,γk

π∗
k

(s, π∗
k(s)) − Qr,γk

π∗
k

(s, a)} − λ∥r∥1 (5a)

subject to Qr,γk

π∗
k

(s, π∗
k(s)) − Qr,γk

π∗
k

(s, a) ≥ 0 ∀s ∈ S, a ∈ A\π∗
k(s), k ∈ [K] (5b)

|r| ⪯ rmax, (5c)

where Ωk is a set of state-action tuples ensuring that there exists a feasible reward solution r such
that, for any (s, a) ∈ Ωk, Qγk

π∗
k
(s, π∗

k(s)) − Qγk

π∗
k
(s, a) > 0. Ωk is constructed by solving another LP

problem which distinguishes the optimal action from other actions on as many states as possible.
Theorem 1. For a set of arbitrary distinct discount factors, Γ (γi ̸= γj for i ̸= j), let {z∗

k}K
k=1 (z∗

k ∈
R|S|×(|A−1|)) be the optimal solution to the following LP problem,

min
r,{zk}

K∑

k=1
1⊺zk (6a)

subject to Qr,γk

π∗
k

(s, π∗
k(s)) − Qr,γk

π∗
k

(s, a) + zk(s, a) ≥ 1 ∀s ∈ S, a ∈ A\π∗
k(s), k ∈ [K] (6b)

Qr,γk

π∗
k

(s, π∗
k(s)) − Qr,γk

π∗
k

(s, a) ≥ 0 ∀s ∈ S, a ∈ A\π∗
k(s), k ∈ [K] (6c)

zk ≥ 0 ∀k ∈ [K], (6d)

where zk(s, a) denotes the element of vector zk corresponding to the state-action tuple (s, a). There
exists a feasible reward solution r that satisfies Assumption 1 if, for any pair of expert policies
π∗

i , π∗
j (i ̸= j), there exists a state s such that z∗

i (s, π∗
j (s)) = 0.
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Proof (Sketch). The optimization problem in Eq. 6 is equivalent to

max
r

K∑

k=1

∑

s∈S

∑

a∈{A\π∗
k

(s)}
1{Q

r,γk
π∗

k

(s,π∗
k

(s))−Q
r,γk
π∗

k

(s,a)>0},

which maximizes the number of state-action pairs where the Q-function difference is positive (where
the expert policy is strictly better). z∗

k(s, a) = 1 if the optimal solution cannot distinguish the
optimal action, π∗

k(s), from action a on state s. If under the optimal solution, there is a pair of
expert policies π∗

i , π∗
j that cannot be distinguished on any states (i.e., (s, π∗

i (s)) /∈ Ωj for ∀s ∈ S), we
fail to find a reward solution that does not violate Assumption 1, and we claim the inner optimization
problem in Eq. 5 to be infeasible under Γ. Otherwise, we have that Ωk = {(s, a)|z∗

k(s, a) = 0}. See
full proof in Appendix A.1.

Intuitively, our proposed optimization problem seeks a reward function that maximizes the mini-
mal non-zero difference of Q-functions over states where expert policies are distinguishable, thus
encouraging expert policies to be sufficiently different and ensuring the satisfaction of Assumption 1.

4.3 Inference for MPLP-IRL

While the objective function in 5a gives us the desired solutions, it is not convex with respect to
the discount factors Γ. To solve for the global optima, we perform a bi-level optimization. Denote
the lower-level objective function as

g(Γ, r) = min
k∈[K],(s,a)∈Ωk

{Qr,γk

π∗
k

(s, π∗
k(s)) − Qr,γk

π∗
k

(s, a)} − λ∥r∥1.

We rewrite the optimization problem in Eq. 5 as,

max
Γ∈[0,1]K

g∗(Γ), where g∗(Γ) = max
r

g(Γ, r) subject to constraints as in 5b, 5c. (7)

Given any Γ ∈ [0, 1]K , the lower-level objective function g can be solved analytically with LP. The
upper-level optimization problem can be solved by performing a grid search over the space [0, 1]K .
However, the computation complexity of grid search increases exponentially with respect to the
total number of expert policies. To improve computation efficiency, we use Bayesian optimization
(BO) techniques, which are suitable for nonconvex objective functions that are expensive to evaluate.
See full algorithm details in Appendix B.

5 Algorithms for multi-planning horizon IRL: MCE-IRL

Although LP-IRL is easy to solve, we cannot apply it to domains with continuous state spaces as
this will result in an infinite number of constraints. In this section, we switch our focus to MCE-IRL,
which is a popular class of IRL algorithms for continuous domains. As is standard in this setting,
we assume that the expert policies, Π̃∗ = {π̃∗

k}K
k=1, are solved with entropy-regularized MDPs and

are optimizing a linear reward function,

rθ∗(s) = θ∗⊺ϕs, θ∗, ϕs ∈ R|S|.
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We first introduce notations used for MCE-IRL. For any state s ∈ S and action a ∈ A, given an
initial state distribution ρ0, the expected discounted state-action visitation count, and the expected
discounted state visitation count of policy π̃ are defined as,

µγ

π̃(s, a) = Eπ̃

[ ∞∑

t=0
γt
1{St=s,At=a}

]
, and µγ

π̃(s) = Eπ̃

[ ∞∑

t=0
γt
1{St=s}

]
=
∑

a

µγ

π̃(s, a),

respectively. We further define the expected feature count of policy π̃ as

fγ

π̃ = Eπ̃

[ ∞∑

t=0
γtϕ(St = s)

]
∈ R|S|.

Note that, the expected feature count can also be written as fγ

π̃ =
∑

s µγ

π̃(s)ϕs. Assuming that the
discount factor γ is given, MCE-IRL solves the following constrained optimization problem:

max
µγ

π̃(s, a)
Hγ

π̃ = Eπ̃

[ ∞∑

t=0
−γt log π̃(At|St)

]
=
∑

(s,a)

− log
(

µγ

π̃(s, a)∑
a µγ

π̃(s, a)

)
µγ

π̃(s, a) (8a)

subject to fγ

π̃ = fγ

π̃∗ (8b)
∑

a

µγ

π̃(s′, a) = ρ0(s′) + γ
∑

s

∑

a

T (s′|s, a)µγ

π̃(s, a) ∀s′ ∈ S (8c)

µγ

π̃(s, a) ≥ 0 ∀(s, a) ∈ (S × A). (8d)

MCE-IRL (Ziebart, 2010) identifies a reward function by the principle of maximum causal entropy
(Eq. 8a) while matching the feature expectations between the expert and the learned policy (Eq. 8b).
The Bellman flow constraints in Eqs. 8c-8d ensure that µγ

π̃(s, a) are state-action visitation count of
a valid stochastic policy π̃ with discount factor γ. When the reward function is linear, Zeng et al.
(2022) establish a strong duality between the MCE-IRL problem (Eq. 8) and its Lagrangian dual
problem, which is equivalent to the following ML-IRL problem:

max
θ

L(θ) = Eπ̃∗

[ ∞∑

t=0
γt log π̃θ(At|St)

]
(9a)

subject to π̃θ = arg max
π

Q̃θ,γ
π (s, a), (9b)

where L(θ) is the expectation of the discounted likelihood of expert trajectories under policy π̃θ. In
practice, one often solves the above ML-IRL problem instead because it is more tractable.

5.1 Strong duality does not hold for multi-planning horizon MCE-IRL
(MPMCE-IRL)

Although extending the formulation in Eq. 8 to the MP-IRL setting is straightforward, we cannot
solve the Lagrangian dual or the ML-IRL problem as alternative optimization problems. In this
section, we show that when the discount factors are unknown, strong duality does not hold between
the MCE-IRL problem and its Lagrangian dual, which makes the inference less tractable. We
extend the MCE-IRL formulation to the MP-IRL setting by maximizing the sum of causal entropy
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while matching the expected feature counts for all expert policies:

max
Γ∈[0,1]K

max
{µ

γk

π̃k
(s,a)}

K∑

k=1

Hγk

π̃k
=

K∑

k=1

∑

(s,a)

− log

(
µ

γk

π̃k
(s, a)

∑
a

µ
γk

π̃k
(s, a)

)
µ

γk

π̃k
(s, a) (10a)

subject to f
γk

π̃k
= f

γk

π̃∗
k

∀k ∈ [K] (10b)
∑

a

µ
γk

π̃k
(s′, a) = ρ0(s′) + γk

∑

s

∑

a

T (s′|s, a)µγk

π̃k
(s, a) ∀s′ ∈ S, k ∈ [K] (10c)

µ
γk

π̃k
(s, a) ≥ 0 ∀(s, a) ∈ (S × A), k ∈ [K]. (10d)

The multi-planning horizon ML-IRL (MPML-IRL) formulation is as follows:

max
Γ∈[0,1]K

max
θ

L(θ, Γ) =
K∑

k=1
Eπ̃∗

k

[ ∞∑

t=0
γt log π̃θ

k(At|St)
]

(11a)

subject to π̃θ
k = arg max

π
Q̃θ,γk

π (s, a) ∀k ∈ [K] (11b)

We first show that strong duality does not hold between the MPMCE-IRL problem and its La-
grangian dual problem.
Theorem 2. Let H∗, G∗ be the optimal value of the MPMCE-IRL problem in Eq. 10 and its
Lagrangian dual problem, respectively. Let L∗ be the optimal value of the MPML-IRL problem in
Eq. 11. Then, we have that G∗ ≥ H∗ ≥ −L∗.

Proof (Sketch). The MPMCE-IRL problem in Eq. 10 is nonconcave because the constraints in
Eq. 10c are not affine. In Appendix A.2, we show that there are no saddle points for the Lagrangian
dual function. Thus, strong duality does not hold.

Theorem 2 also implies that, for MP-IRL problems, solving the MPMCE-IRL problem is not equiva-
lent to solving the MPML-IRL problem. In Proposition 1, we further show that an optimal solution
to the MPML-IRL problem may not reconstruct the expert policies. Thus, we cannot solve the
MPML-IRL as an alternative even though it is more computationally convenient.
Proposition 1. Let Γ, θ be an optimal solution to the MPML-IRL in Eq. 11 and π̃θ

k be the optimal
policy for the reward parameters θ and the discount factor γk. Then Q̃θ,γk

π̃θ
k

≥ Q̃θ,γk

π̃∗
k

(i.e., π̃∗
k may

not be optimal under the optimal solution Γ, θ).

Proof (Sketch). Let θ̂, Γ̂ be any reward parameters and discount factors in the parameter space
such that for all k ∈ [K], π̃θ̂

k = π̃∗
k. In Appendix A.3, we show that such a feasible solution that

reconstructs expert policies Π̃∗ may not be a critical point of L(θ, Γ).

5.2 Inference for multi-planning horizon MCE-IRL

Our theory in Section 5.1 above implies that for MP-IRL problems, we cannot solve the MPMCE-
IRL problem by solving the MPML-IRL problem. To solve the MPMCE-RL problem, similar to
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MPLP-IRL (Sec. 4.3), we propose a bi-level optimization in Eq. 10. Given a fixed set of discount
factors, Γ ∈ [0, 1]K , let the lower-level optimization problem be

g∗(Γ) = max
{µ

γk

π̃k
(s,a)}

∑

k=1
Hγk

π̃k
subject to constraints as in Eq. 10b-10d. (12)

In practice, we observe that the above optimization problem is feasible for only a small set of
discount factors (see the full discussion in Sec. 5.3). To ensure convergence to a feasible solution,
for each lower-level optimization problem, we calculate the duality gap between the primal problem
and its Lagrangian dual problem. For the upper-level optimization problem, we use BO to quickly
identify discount factors with feasible reward functions. The full algorithm is given in Algorithm 2.

5.3 Feasibilty and Identifiability Analysis for Inference

Although the optimization problem in Eq. 12 is concave and can be solved with the Lagrangian
duality method, it may not be feasible when the discount factors are misspecified. In this section,
we study the effect of misspecified or unknown discount factors on the identifiability of the true
reward function, which further determines the feasible solution space of the MPMCE-IRL problem.

Similar to Rolland et al. (2022), we first give matrix rank conditions that determine the set of
reward functions that reconstruct optimal policies, Π̃∗.
Proposition 2. Consider an MP-IRL problem defined in Sec. 3 with K expert policies, Π̃∗ =
{π̃∗

k}K
k=1, solved with entropy-regularized RL. Assume that we are given a set of arbitrary discount

factors, Γ = {γk}K
k=1 (γi ̸= γj for i ̸= j). Tai

is the transition dynamics under action ai. Let

TA =




Ta1
...

Ta|A|


 , Φ =




TA −(1 ⊗ I − γ1TA) 0 · · ·
...

... . . . ...
TA 0 · · · −(1 ⊗ I − γkTA)




and b⊺ = λ
[
log π∗

1(a1|·), · · · , log π∗
1(a|A||·), · · · , log π∗

k(a1|·), · · · , log π∗
k(a|A||·)

]⊺
.

Then there does not exist any reward function that reconstructs optimal policies if and only if
rank(Φ|b) > rank(Φ). There exists a unique reward function (up to a constant factor) that recon-
structs optimal policies if rank(Φ|b) = rank(Φ) = K|S| + |S| − 1.

Proof. The proof of Proposition 2, follows in a similar manner to that of Theorem 3 in Rolland
et al. (2022). To find a reward function that reconstructs optimal policies, the linear system Φx = b,
with K|A||S| equations and (K + 1)|S| variables, needs to be consistent.

Unlike the proof of Theorem 3 in Rolland et al. (2022), we do not assume the linear system is
consistent because when the discount factors, Γ, are misspecified, the expert policies may not be
optimal for the true reward function r∗. According to the Rouché-Capelli theorem, the above system
of equations is inconsistent if rank(Φ|b) > rank(Φ). The linear system has a unique solution (up
to a constant factor) if rank(Φ|b) = rank(Φ) = (K + 1)|S| − 1.

Proposition 2 implies that, without correctly specified discount factors, the reward set that recon-
structs optimal policies may not include the true reward function, which emphasizes the importance
of inferring the discount factors (and learning them correctly) rather than fixing them arbitrarily.
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But is it possible to identify the true discount factors and the true reward function in practice?
By the proof of Proposition 2, with more expert policies, the number of constraints of the linear
system grows faster than the number of variables, which makes the set of feasible solutions of
the linear system smaller. In Section 6.2, we empirically show that when the number of experts is
sufficiently large, the reward set is non-empty for only a small set of discount factors. Thus, in highly
heterogenous settings, both the reward function and the discount factors are more identifiable.

The rank conditions in Proposition 2 also determine if the optimization problem in Eq. 12 is feasible.
Corollary 1. Given a set of discount factors Γ = {γk}K

k=1, the optimization problem in Eq. 12 is
feasible if and only if rank(Φ|b) = rank(Φ) where Φ, b is defined in Proposition 2. Additionally, if
the optimization problem is feasible, the optimal solution is achieved at µγk

π̃k
(s, a) = µγk

π̃∗
k
(s, a).

Proof (Sketch). We show that, when the optimization problem is feasible, an optimal solution of
the Lagrangian multipliers is a reward function that induces the same visitation variables as the
expert policies, {µγk

π̃∗
k
(s, a)}. Thus, for the primal problem to be feasible, it is sufficient to find a

reward function that reconstructs the expert policies. See full details in Appendix A.4.

6 Experiments and Results

In this section, we provide details of our designed domains and experiment setup. We first study the
identifiability and generalizability of both the reward function and discount factors of each domain.
We then study the properties of the learned reward function and the set of discount factors of
MPLP-IRL and MPMCE-IRL algorithms, and investigate how well the learned reward functions
generalize to similar tasks. Last, we demonstrate the fast convergence of our algorithms.

6.1 Domains

We test the MPLP-IRL (Algorithm 1) and MPMCE-IRL (Algorithm 2) on three domains: (1) the
toy domain (Fig. 4a), in which the experts trade off between the probability of getting the reward
and the reward magnitude; (2) the big-small domain (Ankile et al., 2023), in which experts choose
between a small reward close by or a large one that is far away; and (3) the cliff domain, in which
the experts trade off the risk of falling off the cliff with a large reward. For each domain, we provide
expert demonstrations from 3 distinct expert policies. See full details in Appendix C.

6.2 Identifiability and Generalizability Analysis

For each domain, we solve the linear system Φx = b (Proposition 2) by performing a grid search
over the space of Γ ∈ [0, 1]K with an interval of 0.01. Across all designed domains, we observe that
there exist reward functions that reconstruct expert policies only when Γ = Γ∗, which implies that
the MPMCE-IRL problem (Eq. 10) has a small feasible solution space.

For the toy domain, if we only provide expert demonstrations from 2 expert policies, for all the given
discount factors obtained form [0, 1]2, there always exists a unique reward function (up to a constant)
that reconstructs the optimal policy, which may not include the true reward function. We further
conduct a generalizability analysis of these reward functions with the full procedure described in
Appendix D. In Appendix Fig. 11, we see that ∼ 40% of these feasible reward functions do not
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generalize well to new tasks with generalization errors (Eq. 27) larger than 0.5, which emphasizes
the importance of learning the discount factors correctly.

6.3 Results

(a) The value function V γ,r∗
π∗

k
(s0) of expert poli-

cies π∗
0 , π∗

1 , π∗
2 under the true reward r∗.

(b) The value function V
r̃, γ̃

πk (s0) of reconstructed op-
timal policies π0, π1, π2 under the learned reward
function of MPLP-IRL, r̃.

Figure 1: Plots of the value function of the initial state under (a) the true reward function r∗, (b)
the learned reward function of MPLP-IRL, r̃: x, y-axes represent the discount factor γ ∈ [0, 1]
and the value function of expert policies or reconstructed optimal policies, respectively. Each color
represents a different policy. The dashed lines in (b) represent the learned discount factors, Γ̃. We
see that MPLP-IRL recovers the order of true discount factors.

Toy Big Small Cliff
MPLP-IRL 0.009 ± 0.040 0.039 ± 0.117 0.0 ± 0.0
MPMCE-IRL 0.21 ± 0.25 0.040 ± 0.065 0.0 ± 0.0

Figure 2: The table of the generalization error (Eq. 27) with one standard deviation of the learned
reward function: each row and column represents a different algorithm and domain, respectively.

The learned discount factors recover the order of the true discount factors. From Fig. 1,
we see that although the learned discount factor (Γ̃ ≈ {0, 0.35, 1}) does not exactly align with
the ground truth, they follow the same order of the true discount factors (γ∗

0 ≤ γ∗
1 ≤ γ∗

2). This is
also true for the big-small domain and the cliff domain (see full comparison of the true discount
factors and the learned discount factors in Appendix Table 1). This property allows us to interpret
the bias of each expert’s goal—a small discount factor implies that the expert cares more about
short-term outcomes and vice versa.

MPLP-IRL and MPMCE-IRL can appropriately capture key aspects of the task and
the learned reward functions generalize well to similar new tasks. For the toy domain,
we see that both MPLP-IRL and MPMCE-IRL learn a larger reward at state s2 than at state s1
(Appendix Fig. 4). When the discount factor is large, this reward structure encourages the agent
to collect the large reward even in the face of more stochasticity. For the big-small domain, the
learned reward functions have a small reward for the bottom left grid and a large reward for the
bottom right grid (Appendix Fig. 5). For the cliff domain, the learned reward functions have large
penalties for the top rows and a large reward for the upper right grid (Appendix Fig. 7). Thus,
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all the learned reward functions have similar structures to the true reward function, which allows
us to transfer the reward function to new RL tasks. The setup of the generalizability analysis is
described in Appendix Section D. In Table 2, we see that our learned reward functions have good
generalizability (all the generalization errors are below 0.04 except for that of the toy domain of
MPMCE-IRL, which fails to learn r(s0) correctly (Appendix Fig. 4c)).

(a) MPLP-IRL: the toy domain (b) MPMCE-IRL: the toy domain

Figure 3: Trace plots of the best observed objective value of BO: x, y-axis represent the iteration
and the best observed objective value, respectively. The red dashed line represents an approximate
global maximum or the objective value under the ground truth.

MPLP-IRL and MPMCE-IRL converge quickly. For MPLP-IRL, we approximate the global
optimum by performing a grid search over [0, 1]K with an interval of 0.01. For MPMCE-IRL, it is
computationally heavy to solve the optimization problem in Eq. 12 106 times. We instead compare
the best current objective value of BO to the objective value evaluated under the true reward
function and discount factors. In Fig. 3, we see that on the toy domain, MPLP-IRL converges to
the global maximum within 100 iterations while MPMCE-IRL converges within 50, reducing the
computational burden by a factor of ∼ 104 compared to grid search. See Appendix E.3 for details.

7 Discussion and Future Work

In this work, we study the MP-IRL setting where each expert is planning under different plan-
ning horizons but the same reward function. We provide theoretical and empirical evidence that
highlights the importance of learning correct discount factors.

We develop two novel algorithms, MPLP-IRL and MPMCE-IRL, that learn the reward function and
the discount factors jointly. Although MPLP-IRL is more computationally efficient (LP problems
are faster to solve), it only applies to discrete domains. Additionally, MPLP-IRL does not guarantee
identifying the true reward function and discount factors (in fact, for standard MDPs, identifying
the set of discount factors for which the policy is optimal is nontrivial (Denis, 2019)). In contrast,
we show that when there is a sufficiently large number of experts, MPMCE-IRL can identify both
the reward function and discount factors. However, in practice, MPMCE-IRL has a larger feasible
solution set than Corollary 1 suggests because we only require the algorithm to match the feature
expectation in Eq. 10b within some threshold. Moreover, if the optimization problem in Eq. 12 is
feasible for any Γ ∈ [0, 1]K , MPMCE-IRL does not have attainable optimal solutions.

Interesting future work includes studying when the reward function is identifiable for an MP-IRL
problem and extending to an IRL setting where both planning horizons and reward functions vary.
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A Theorems

A.1 Proof of Theorem 1

In this section, we prove that the pre-computed state-action tuple Ωk allows us to find a feasible
reward function that satisfies the following assumptions:
Assumption 1. For any two distinct expert policies π∗

i , π∗
j ∈ Π∗, i ̸= j, optimized under γ∗

i , γ∗
j

(γ∗
i ̸= γ∗

j ), respectively, there is at least one state s ∈ S such that Q
r∗,γ∗

i

π∗
i

(s, π∗
i (s)) > Q

r∗,γ∗
i

π∗
i

(s, π∗
j (s)).

Theorem 1. (Restated) For a set of arbitrary distinct discount factors, Γ (γi ̸= γj for i ̸= j), let
{z∗

k}K
k=1 (z∗

k ∈ R|S|×(|A−1|)) be the optimal solution to the following problem,

min
r,zk

K∑

k=1
1⊺zk (13a)

subject to Qr,γk

π∗
k

(s, π∗
k(s)) − Qr,γk

π∗
k

(s, a) + zk(s, a) ≥ 1 ∀s ∈ S, a ∈ A\π∗
k(s), k ∈ [K] (13b)

Qr,γk

π∗
k

(s, π∗
k(s)) − Qr,γk

π∗
k

(s, a) ≥ 0 ∀s ∈ S, a ∈ A\π∗
k(s), k ∈ [K] (13c)

zk ≥ 0 ∀k ∈ [K], (13d)

where zk(s, a) denotes the element of vector zk corresponding to the state-action tuple (s, a). There
exists a feasible reward solution r that satisfies Assumption 1 if, for any pair of policies π∗

i , π∗
j

(i ̸= j), there exists a state s such that z∗
i (s, π∗

j (s)) = 0.

Proof. Given an optimization problem in the following:

max
r

∑

(s,a)

1{Q
r,γk
π∗

k

(s,π∗
k

(s))−Q
r,γk
π∗

k

(s,a)}≥0 (14a)

subject to Qr,γk

π∗
k

(s, π∗
k(s)) − Qr,γk

π∗
k

(s, a) ≥ 0 ∀s ∈ S, a ∈ A\π∗
k(s), k ∈ [K] (14b)

Let r̂ be an optimal solution to the optimization problem in Eq. 14. It is easy to see that if, for any
pair of policies π∗

i , π∗
j (i ̸= j), there exists a state s such that Qr̂,γi

π∗
i

(s, π∗
i (s)) − Qr̂,γi

π∗
i

(s, π∗
j (s)) > 0,

then Assumption 1 is satisfied.

We start the proof by showing that an optimal solution to optimization problem 13 is also an
optimal solution to optimization problem 14.

With Bellman Equations, the difference of the Q-functions can be written as,

Qr,γk

π∗
k

(s, π∗
k(s)) − Qr,γk

π∗
k

(s, a) = (T (·|s, π∗
k(s)) − T (·|s, a))(I − γkT π∗

k )−1r.

Let W ∈ R(|S|×(|A|−1)×K)×|S| be a matrix where each row

w⊺
s,a,k = (T (·|s, π∗

k(s)) − T (·|s, a))(I − γkT π∗
k )−1, ∀s ∈ S, a ∈ A \ π∗

k(s), k ∈ [K].

The optimization problem in Eq. 13 then can be rewritten as

max
r

|Wr|0 (15a)

subject to Wr ≥ 0 (15b)
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The optimization problem in Eq. 14 can be rewritten as

min
r,z

1⊺z (16a)

subject to Wr + z ≥ 1 (16b)
Wr ≥ 0 (16c)
z ≥ 0 (16d)

Let r be a reward function that satisfies Constraint 16c. Then for any constant c > 0, cr also satisfies
Constraint 16c. Now, let c be a constant such that any positive element in cWr is larger than 1.
Denote the i-th element of any vector x by xi. An optimal solution, z∗ and r̂. of optimization
problem in 16 has the following form:

z∗
i = 1 if (cW r̂)i = 0, z∗

i = 0 if (cW r̂)i ≥ 1. (17)

We show that r̂ is also an optimal solution to optimization problem 15 with proof by contradiction.

Let z∗, r̂ be an optimal solution to optimization problem 16, but r̂ is not an optimal solution to
optimization problem 15. Then there exists another r̃ such that Wr̃ ≥ 0 and |Wr̃|0 > |Wr̂|0. Now,
let c be a constant such that any positive element in W (cr̃) is larger than or equal 1 and construct
a vector z̃ according to Eq. 17. Because |cW r̃|0 = |Wr̃|0 > |Wr̂|0, Wr̃ ≥ 0 and Wr̂ ≥ 0, z̃ will
have more zero elements than z∗. Thus, 1⊺z̃ < 1⊺z∗, which contradicts the assumption that z∗ is
optimal.

Additionally, with the definition of z∗ in Eq. 17, we can see that

w⊺
s,a,k = Qr̂,γk

π∗
k

(s, π∗
k(s)) − Qr̂,γk

π∗
k

(s, a) > 0

if and only if z∗
k(s, a) = 0. Thus, there exists a feasible reward solution r that satisfies Assumption 1

if, for any pair of policies π∗
i , π∗

j , there exists a state s such that z∗
i (s, π∗

j (s)) = 0.

A.2 Proof of Theorem 2

In this section, we show that under our targetted IRL setting in 3, strong duality does not hold
between the MCE-IRL problem and its Lagrangian dual. Furthermore, solving the MCE-IRL
problem is not equivalent to solving the ML-IRL problem.
Theorem 2. (Restated) Let the multi-planning horizon MCE-IRL problem be

max
Γ∈[0,1]K

max
{µ

γk
π̃k

(s,a)}

K∑

k=1

Hγk
π̃k

=
K∑

k=1

∑

(s,a)

− log
(

µ
γk
π̃k

(s, a)∑
a

µ
γk
π̃k

(s, a)

)
µ

γk
π̃k

(s, a) (18a)

subject to f
γk
π̃k

= f
γk
π̃∗

k
∀k ∈ [K] (18b)

∑

a

µ
γk
π̃k

(s′, a) = ρ0(s′) + γk

∑

s

∑

a

T (s′|s, a)µγk
π̃k

(s, a) ∀s′ ∈ S, k ∈ [K] (18c)

µ
γk
π̃k

(s, a) ≥ 0 ∀(s, a) ∈ (S × A), k ∈ [K]. (18d)
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Let the multi-planning horizon ML-IRL problem be

max
Γ∈[0,1]K

max
θ

L(θ, Γ) =
K∑

k=1
Eπ̃∗

k

[ ∞∑

t=0
γt log π̃θ

k(At|St)
]

(19a)

=
K∑

k=1

∑

(s,a)

log
(

µγk

π̃k
(s, a)∑

a µγk

π̃k
(s, a)

)
µγ

π̃∗
k
(s, a) (19b)

subject to π̃θ
k = arg max

π
Q̃θ,γk

π (s, a) ∀k ∈ [K] (19c)

Let H∗, G∗ be the optimal value of the multi-planning horizon MCE-IRL problem in Eq. 10 and its
Lagrangian dual, respectively. Let L∗ be the optimal value of the ML-IRL problem in Eq. 11. Then,
we have G∗ ≥ H∗ ≥ −L∗.

Proof.
Part I – Proof of G∗ ≥ H∗:

The first inequality holds G∗ ≥ H∗ by the weak duality. We further show that when the expert
policies are stochastic, the optimal solutions to the primal problem are not critical points of the
Lagrangian dual function. Thus, strong duality may not always hold.

The Lagrangian dual problem of the primal problem in Eq. 18 is

min
Θ

max
Γ,M

G(Θ, Γ, M) ,where

G(Θ, Γ, M) =
K∑

k=1

∑

(s,a)

− log
(

µγk

π̃k
(s, a)∑

a µγk

π̃k
(s, a)

)
µγk

π̃k
(s, a) + θ⊺k(fγk

π̃k
− fγk

π̃∗
k
)

+
∑

s′,k

xs′,k

(
µγk

π̃k
(s′) − ρ0(s′) − γk

∑

s

∑

a

T (s′|s, a)µγk

π̃k
(s, a)

)

M = {µγk

π̃k
(s, a)}, Θ = {θk, xs,k}, Γ = {γk}K

k=1.

We treat the constraints in Eq. 18d as implicit because the objective function in Eq. 18a is not
defined under non-positive µγk

π̃k
(s, a).

For any Lagrangian multipliers Θ, we find the critical points of G(Θ, Γ, M) by setting the gradient
to zero.

∂G
∂µγk

π̃k
(s, a) = − log

(
µγk

π̃k
(s, a)∑

a µγk

π̃k
(s, a)

)
+ θ⊺kϕs + xs,k − γk

∑

s′

xs′,kT (s′|s, a) = 0

log
(

µγk

π̃k
(s, a)∑

a µγk

π̃k
(s, a)

)
= θ⊺kϕs + xs,k − γk

∑

s′

xs′,kT (s′|s, a) (20)

By Theorem 1 in Cao et al. (2021), Eq. 20 is satisfied by the state-action visitation count of the
optimal policy under the reward parameters θk and discount factor γk with −xs,k being its value
function. Under our targetted IRL setting, the state-action visitation counts need to be induced by
a global reward function. Thus, we have θ1 = · · · = θk = θ.
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Denote the optimal policy under the reward parameters θ and discount factor γk as π̃θ
k and plug it

into G, the Lagrangian dual problem becomes

min
θ

max
Γ

f(θ, γ) =
K∑

k=1

∑

(s,a)

− log




µγk

π̃θ
k

(s, a)
∑

a µγk

π̃θ
k

(s, a)


µγk

π̃θ
k

(s, a) + θ⊺k(fγk

π̃θ
k

− fγk

π̃∗
k
) (21a)

subject to π̃θ
k = arg max

π
Q̃θ,γk

π (s, a) ∀k ∈ [K] (21b)

Both the primal and the dual problems have an optimal solution because both of them feasible and
bounded. Strong duality holds iff there exists a saddle point for function f(θ, Γ). That is, there
exists some θ̃, Γ̃ such that

∀θ, Γ ∈ [0, 1]K , f(θ̃, Γ) ≤ f(θ̃, Γ̃) ≤ f(θ, Γ̃).

Furthermore, if strong duality holds, Γ̃ is a global maximum point of the primal problem and θ̃ is a
global minimum point of the Lagrangian dual. By Corollary 1, we know that Γ̃ is a global maximum
point iff there exist feasible reward functions that reconstruct the expert policies. Corollary 1 also
tells us that θ̃ ∈ arg min f(θ, Γ̃) are the reward parameters such that µγk

π̃θ̃
k

= µγk

π̃∗
k
.

We now rewrite the Lagrangian dual function f as follows:

f(θ, Γ) =
K∑

k=1
Hγk

π̃θ
k

+ θ⊺k(fγk

π̃θ
k

− fγk

π̃∗
k
) =

K∑

k=1
Ṽ θ,γ

π̃θ
k

− Ṽ θ,γ

π̃∗
k

+ Hγk

π̃∗
k

When µγk

π̃θ̃
k

= µγk

π̃∗
k
, we have that f(θ̃, Γ̃) = Hγ̃k

π̃∗
k
. However, for such θ̃, we can find another γk > γ̃k

for some k ∈ [K] such that

f(θ̃, Γ) =
K∑

k=1
Ṽ

θ̃, γ

π̃θ̃
k

− Ṽ
θ̃, γ
π̃∗

k
+ Hγk

π̃∗
k

(i)
≥ 0 + Hγk

π̃∗
k

(ii)
> Hγ̃k

π̃∗
k

where (i) follows from the fact that π̃θ̃
k is optimal for reward parameter θ̃ and discount fact γk and

(ii) follows from the fact that the entropy is monotonically increasing on γk ∈ [0, 1]. Thus, strong
duality does not hold.

Part II – Proof of H∗ ≥ −L∗:

By negating the objective function in Eq. 19a, we have that

min
Γ∈[0,1]K

min
θ

−L(θ, Γ) =
K∑

k=1

∑

(s,a)

log




µγk

π̃θ
k

(s, a)
∑

a µγk

π̃θ
k

(s, a)


µγ

π̃∗
k
(s, a)

subject to π̃θ
k = arg max

π
Q̃θ,γk

π (s, a) ∀k ∈ [K]

Because an optimal solution to the multi-planing horizon MCE-IRL problem in Eq. 18 is a feasible
solution to the multi-planing horizon ML-IRL problem in Eq. 19. Thus, H∗ ≥ H ≥ −L∗.
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A.3 Proof of Proposition 1

In this section, we show that an optimal solution to the naive multi-planning horizon ML-IRL
problem may not reconstruct the expert policies. Thus, we cannot use this formulation to learn a
feasible reward function.

Proposition 3. (Restated) Let Γ, θ be an optimal solution to the ML-IRL in Eq. 11 and π̃θ
k be the

optimal policy for the reward parameters θ and the discount factor γk. Then Q̃θ,γk

π̃θ
k

≥ Q̃θ,γk

π̃∗
k

(i.e.,
π̃∗

k may not be optimal under the optimal solution Γ, θ).

Proof. Given any reward parameters θ, the optimal value function and Q-value function satisfy,

Ṽ θ,γ
π̃θ (s) = λ log

∑

a

exp(Q̃θ,γ
π̃θ (s, a)/λ) (22)

πθ(a|s) = exp

(
Q̃θ,γ

π̃θ (s, a) − Ṽ θ,γ
π̃θ (s))

λ

)
(23)

Given the above equations, we can rewrite the expectation of the discount likelihood of expert
trajectories as,

L(θ, Γ) =
K∑

k=1
E(St,At)∼π̃∗

k

[ ∞∑

t=0
γt

k log π̃θ
k(At|St)

]

(i)= 1
λ

K∑

k=1
E(St,At)∼π̃∗

k

[ ∞∑

t=0
γt

k

(
Q̃θ,γk

π̃θ
k

(St, At) − Ṽ θ,γk

π̃θ
k

(St))
)]

= 1
λ

K∑

k=1
E(St,At)∼π̃∗

k

[ ∞∑

t=0
γt

k

(
r(St+1) + γkṼ θ,γk

π̃θ
k

(St+1) − Ṽ θ,γk

π̃θ
k

(St)
)]

= 1
λ

K∑

k=1

(
E(St,At)∼π̃∗

k

[ ∞∑

t=0
γt

kr(St+1)
]

+E(St,At)∼π̃∗
k

[ ∞∑

t=1
γt

kṼ θ,γk

π̃θ
k

(St+1)
]

−E(St,At)∼π̃∗
k

[ ∞∑

t=0
γt

kṼ θ,γk

π̃θ
k

(St)
])

= 1
λ

K∑

k=1

(
E(St,At)∼π̃∗

k

[ ∞∑

t=0
γt

kr(St+1)
]

−ES0∼ρ

[ ∞∑

t=0
γt

kṼ θ,γk

π̃θ
k

(S0)
])

(ii)=
K∑

k=1


 1

λ
E(St,At)∼π̃∗

k

[ ∞∑

t=0
γt

kr(St+1)
]

−ES0∼ρ


log

∑

a

exp




Q̃θ,γk

π̃θ
k

(S0, A0)
λ






 ,

where (i) and (ii) follow from Eq. 22 and 23, respectively. Let θ̂, Γ̂ be any reward parameters and
discount factors in the parameter space such that for all k ∈ [K], π̃θ̂

k = π̃∗
k. We further map γk to

an unconstrained variable space: δk = logit(γk) and ∆ = {δk}K
k=1.

1156



RLJ | RLC 2024

We now show that ∂L
∂δk

(δ̂k) ≤ 0. Calculating the gradient of L(θ, Γ) with respect to δk gives us the
following:

∂L
∂δk

= 1
λ

∂

∂δk
E(St,At)∼π̃∗

k

[ ∞∑

t=0

∂γt
k

∂δk
r(St+1)

]

− 1
λ
ES0∼ρ


∑

a

exp




Q̃θ,γk

π̃θ
k

(S0, A0)
λ

− log
∑

a

exp




Q̃θ,γk

π̃θ
k

(S0, A0)
λ






∂Q̃θ,γk

π̃θ
k

(S0, A0)
∂δk




(i)= 1
λ


E(St,At)∼π̃∗

k

[ ∞∑

t=0

∂γt
k

∂δk
r(St+1)

]
−ES0∼ρ


∑

a

π̃θ
k(A0|S0)

∂Q̃θ,γk

π̃θ
k

(S0, A0)
∂δk




 , (24)

where (i) follows from Eq. 22 and 23.

The gradient of Q̃θ,γk

π̃θ
k

(S0, A0) can be further expanded as,

∂Q̃θ,γk

π̃θ
k

(S0, A0)
∂δk

= E(St,At)∼π̃θ
k

[ ∞∑

t=0

∂γt
k

∂δk
r(St+1)

]
+ λ

∂

∂δk
E(St,At)∼π̃θ

k

[ ∞∑

t=0
γtπ̃θ

k(·|St) log π̃θ
k(·|St)

]
.

Plugging the gradient of Q̃θ,γk

π̃θ
k

(S0, A0) into Eq. 24 and evaluating the gradient at π̃θ
k = π̃∗

k gives us,

∂L
∂δk

(δ̂k) ∝
��������������

E(St,At)∼π̃∗
k

[ ∞∑

t=0

∂γt
k

∂δk
r(St+1)

]
−
��������������

E(St,At)∼π̃∗
k

[ ∞∑

t=0

∂γt
k

∂δk
r(St+1)

]

− λ
∂

∂δk
E(St,At)∼π̃θ

k

[ ∞∑

t=0
γt

kπ̃θ
k(·|St) log π̃θ

k(·|St)
]

(i)= − λE(St,At)∼π̃∗
k

[ ∞∑

t=0
tγ̂t−1

k γ̂k(1 − γ̂k)π̃∗
k(·|St) log π̃∗

k(·|St)
]

=
∞∑

t=1
−λ(1 − γ̂k)E(St,At)∼π̃∗

k

[ ∞∑

t′=t

γ̂t
kπ̃∗

k(·|St) log π̃∗
k(·|St)

]
≥ 0,

where (i) follows from the fact ∂γk

∂δk
= ∂σ(δk)

∂δk
= σ(δk)(1 − σ(δk)) = γk(1 − γk). We see that when

γ̂k ∈ (0, 1) ∂L
∂δk

(δ̂k) > 0 and Q̃θ,γk

π̃∗
k

< L∗.

A.4 Proof of Corollary 1

In this section, we provide a characterization of the feasible solution space of the reward function
and discount factors for the lower-level optimization problem in Eq. 10.
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Corollary 1. (Restated) Given a set of discount factors Γ = {γk}K
k=1, the following optimization

problem

max
{µ

γk

π̃k
(s,a)}

K∑

k=1

Hγk

π̃k
=

K∑

k=1

∑

(s,a)

− log

(
µ

γk

π̃k
(s, a)

∑
a

µ
γk

π̃k
(s, a)

)
µ

γk

π̃k
(s, a) (25a)

subject to f
γk

π̃k
= f

γk

π̃∗
k

∀k ∈ [K] (25b)
∑

a

µ
γk

π̃k
(s′, a) = ρ0(s′) + γk

∑

s

∑

a

T (s′|s, a)µγk

π̃k
(s, a) ∀s′ ∈ S, k ∈ [K] (25c)

µ
γk

π̃k
(s, a) ≥ 0 ∀(s, a) ∈ (S × A), k ∈ [K], (25d)

is feasible if and only if rank(Φ|b) = rank(Φ) where Φ, b is defined in Proposition 2. Additionally,
if the optimization problem is feasible, the optimal solution is achieved at µγk

π̃k
(s, a) = µγk

π̃∗
k
(s, a).

Proof. In Zeng et al. (2022), the authors show that when the optimization problem in Eq. 25 is
feasible, strong duality holds. We first show that when the optimization problem is feasible, the
optimal solution to the optimization problem in Eq. 25 are the visitation variables induced by the
expert policies (i.e. µγk

π̃k
(s, a) = µγk

π̃∗
k
(s, a)). Thus, Theorem 2 in Syed et al. (2008), π̃k(a|s) = π̃∗

k(a|s).

By strong duality, if the primal problem has an optimal solution, the Lagrangian dual problem also
has an optimal solution, which we denote by θ̂, {µγk

π̂k
(s, a)}K

k=1. Previous work shows that, µγk

π̂k
(s, a)

are the visitation variables induced by the entropy-regularized optimal policy, π̂k, under reward
parameters θ̂ and the discount factor γk (Zhou et al., 2017).

By proof by contradiction, assume that there exists a k such that π̂k ̸= π̃∗
k. By strong duality,

an optimal solution to the dual problem satisfies the constraints of the primal problem. Thus,
fγk

π̂k
= fγk

π̃∗
k
. Because π̂k is a unique optimal policy for reward parameters θ̂ (Haarnoja et al., 2017),

we have that

Ṽ θ̂,γk

π̂k
> Ṽ θ̂,γk

π̃∗
k

θ̂⊺fγk

π̂k
+ Hγk

π̂k
> θ̂⊺fγk

π̃k
+ Hγk

π̃k

Hγk

π̂k
> Hγk

π̃k
.

This implies that for any reward parameters θ, π̃∗
k cannot be optimal because

Ṽ θ,γk

π̂k
= θ⊺fγk

π̂k
+ Hγk

π̂k
= θ⊺fγk

π̃k
+ Hγk

π̂k
> Ṽ θ,γk

π̃∗
k

. (26)

However, we can construct a reward function as

r′ = r∗ + (γ∗
k − γk)Ṽ r∗,γ∗

k
π̃k

=
(

θ +
(γ∗

k − γk)Ṽ r∗,γ∗
k

π̃k∑
s ϕs(s) 1

)⊺

ϕs.

By Theorem 5 in Cao et al. (2021), we have that

T ar′ = T a(r∗ + (γ∗
k − γk)Ṽ r∗,γ∗

k
π̃k

)

= T a(r∗ + γ∗
k Ṽ

r∗,γ∗
k

π̃k
) − γkT aṼ

r∗,γ∗
k

π̃k

= λ log π̃∗
k(a|·) − γkT aṼ

r∗,γ∗
k

π̃k
+ Ṽ

r∗,γ∗
k

π̃k

1158



RLJ | RLC 2024

Thus, policy π̃k is optimal for reward function r′ and the discount factor γk, which conflicts Eq. 26.

Thus, if the optimization problem is feasible, µγk

π̂k
(s, a) = µγk

π̃∗
k
(s, a) and π̂k = π̃∗

k. By Proposition 2,
there exists Lagrangian multipliers θ such that π̂k = π̃∗

k if rank(Φ|b) = rank(Φ).

On the other hand, if rank(Φ|b) = rank(Φ), then there exist reward parameters θ such that π̃∗
k is

optimal for θ and γk. We can see that the solution µγk

π̃∗
k
(s, a) satisfy the KKT conditions. By strong

duality, the primal problem is feasible and has an optimal solution, µγk

π̃∗
k
(s, a).

B Algorithm

In Algorithm 1 and 2, we give the pseudocode of MPLP-IRL and MPMCE-IRL algorithms.

Algorithm 1 Mutli-planning horizon LP-IRL (MPLP-IRL)
1: Given a set of K observed policies Π∗ = {π∗

k}K
k=1, the transition dynamics T .

2: Place a Gaussian process prior on g∗(Γ) (Eq. 7).
3: Observe g∗ at a set of m points, {Γ(i)}m

i=1, with Γ(i) ∼ Unif(0, 1)K

4: while m ≤ MaxIter do
5: Update the posterior distribution of g∗ given all observed points.
6: Query a new point Γ(m) based on the acquisition function.
7: Observe g∗

m = maxr g(Γ(m), r) with constraints in Eq. 5b, 5c.
8: increment m
9: end while

10: Return the reward function r and the set of discount factors Γ with the largest observed g∗.

C Domains

C.1 Toy Domain with a Discrete MDP

The toy domain is designed such that the optimal policy when solving standard MDPs is a 3-step
piecewise function with respect to the discount factor γ ∈ [0, 1].

The MDP is described in Fig. 4a. Specifically, s0 is the initial state, s3 is the absorbing state. The
agent gets a large positive reward when getting to the absorbing state (r∗(s3) = 10). The agent
gets some small rewards when getting to s1, s2 (r∗(s1) = 6, r∗(s2) = 7). With action a0, the agent
moves to the absorbing state s3 with probability (w.p.) 0.95. With action a1, the agent moves to
s1 w.p. 0.9. With action a2, the agent moves to s2 w.p. 0.6. The agent stays otherwise. Note that
although s2 has a larger reward, the agent faces more stochasticity. Thus, there is a trade-off when
the discount factor γ varies.

Expert policies for MPLP-IRL. Let π∗
0 , π∗

1 , π∗
2 denote the optimal policies where the optimal

actions are a0, a1, a2 (π∗
i = 1ai

), respectively. We note that for this toy example, in state s1, s2, s3,
π∗

0 , π∗
1 , π∗

2 are equally optimal. Thus, we focus on s0 in the later analysis.
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s0

+0

s1

+6

s2

+7

s3

+10

a0 w.p. 0.95

a1 w.p. 0.9

a2 w.p. 0.6

(a) Discrete MDP with the true reward
function.

s0

+0

s1

+8.83

s2

+10

s3

+10

a0 w.p. 0.95

a1 w.p. 0.9

a2 w.p. 0.6

(b) Discrete MDP with the learned function
of MPLP-IRL.

s0

+3.4

s1

+4.2

s2

+3.1

s3

+9.7

a0 w.p. 0.95

a1 w.p. 0.9

a2 w.p. 0.6

(c) Discrete MDP with the learned function
of MPMCE-IRL.

s0

+0

s1

+0

s2

+0

s3

+10

a0 w.p. 0.95

a1 w.p. 0.9

a2 w.p. 0.6

(d) Discrete MDP with the learned function
of naive LP-IRL.

Figure 4: Toy Domain
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Algorithm 2 Mutli-planning horizon MCE-IRL (MCELP-IRL)

1: Given a set of K observed policies Π̃∗ = {π̃∗
k}K

k=1 and the transition dynamics T .
2: Place a Gaussian process prior on g∗(Γ) (Eq. 12).
3: Observe g∗ at a set of m points, {Γ(i)}m

i=1, with Γ(i) ∼ Unif(0, 1)K

4: while m ≤ MaxIter do
5: Update the posterior distribution of g∗ given all observed points.
6: Query a new point Γ(m) based on the acquisition function.
7: Solve the Lagrangian dual of the constrained optimization problem in Eq. 12 using the ML-

IRL algorithm in Zeng et al. (2022).
8: Denote the optimal solution to the Lagrangian dual problem as θ̃. Calculate the duality gap

as l =
∑K

k=1 θ̃⊺(fγk

π̃θ̃
k

− fγk

π̃∗
k
)

9: if l ≤ ϵ then
10: g∗

m(Γ) =
∑K

k=1 Hγk

π̃θ̃
k

11: else
12: g∗

m(Γ) = −|l|
13: end if
14: increment m
15: end while
16: Return the reward parameters θ and the set of discount factors Γ with the largest observed g∗.





V π0
γ (s0) = 0.95·10

1−0.05γ

V π1
γ (s0) = 0.9(6+10γ)

1−0.1γ

V π2
γ (s0) = 0.6(7+10γ)

1−0.4γ

Solve pairwise difference between value functions and let γ0 ≈ 0.432, γ1 ≈ 0.876. When γ < γ0,
π∗ = π0. When γ0 < γ < γ1, π∗ = π1. When γ > γ1, π∗ = π2. The value functions of these 3
expert policies, Π∗, under different discount values are shown in 1a.

Satisfaction of Assumption 1. Figure 9a plots the value function of all three expert policies
of s0 under the true reward function r∗ with respect to discount factors γ ∈ [0, 1]. Assumption 1
is violated (Qr∗,γ∗

i

π∗
i

(s, π∗
i (s)) = Q

r∗,γ∗
i

π∗
i

(s, π∗
j (s))) if and only if any of the two lines intersect. We

see that across the entire domain ([0, 1]3), there are only three sets of discount factors that violate
Assumption 1. Thus in practice, the likelihood of violating Assumption 1 is low.

Expert policies for MPMCE-IRL. For MPMCE-IRL, we observe expert demonstrations from
3 expert policies under discount factors Γ∗ = {0.3, 0.5, 0.95}.

C.2 Big-Small Domain

In the big-small domain, there are two absorbing states: one at the left bottom cell with a small
reward (+2) and one at the right bottom cell with a large reward (+20). Each step costs −2 if the
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agent does not reach the absorbing state. The true reward function is plotted in 5a. The agent
can start from anywhere in the grid world except for the absorbing states. The agent can choose
to move {right, down, left, up} at each state. If the agent comes across the wall by taking an
action, the agent stays where it is and moves to the corresponding state otherwise. The transition
dynamics of the grid domain are deterministic.

Expert policies for MPLP-IRL. We observe expert demonstrations from 3 distinct expert
policies whose optimal actions are visualized in Fig. 6. We see that when the discount factor is
small, the agent will go for the closest reward regardless of its magnitude (Fig. 6a). When the
discount factor is large, the agent prefers the large reward regardless of how far the reward is
(Fig. 6c).

Expert policies for MPMCE-IRL. For MPMCE-IRL, we observe expert demonstrations from
3 expert policies under discount factors Γ∗ = {0.1, 0.45, 0.9}

(a) The true reward function r∗. (b) The learned reward function of MPLP-IRL. (c) The learned reward function of MPMCE-IRL.

Figure 5: The reward function of the big-small domain of each state.

(a) The optimal actions of expert policy π∗
0 , (γ∗

0 ∈
[0, 0.2])

(b) The optimal actions of expert policy π∗
1 , (γ∗

1 ∈
(0.2, 0.68])

(c) The optimal actions of expert policy π∗
2 , (γ∗

2 ∈
[0.87, 1])

Figure 6: Visualization of the optimal policies for standard MDPs of the big-small domain.

C.3 Cliff Domain

In the cliff domain, the trajectory ends whenever the agent falls off the cliff (the top row in Fig 7a.
There is one rewarding state at the upper right (+20). The agent gets a large penalty whenever it
falls off the cliff (−10). There is a small cost for each step (−2 when the agent is close to the cliff
and −1 when the agent is far away from the cliff). For each action, the agent moves in the intended
direction with probability 0.9, and moves in a random other direction with probability 0.1.

Expert policies for MPLP-IRL. We observe 3 distinct expert policies whose optimal actions
are visualized in Fig. 8. We see that when the discount factor is small, the agent is not willing to
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risk and tries to avoid walking along the cliff (Fig. 8a). When the discount factor is large, the agent
risks falling off the cliff for good returns (Fig. 8c).

Expert policies for MPMCE-IRL. For MPMCE-IRL, we observe expert demonstrations from
3 expert policies under discount factors Γ∗ = {0, 0.2, 0.52}.

(a) The true reward function r∗. (b) The learned reward function
of MPLP-IRL.

(c) The learned reward function
of MPMCE-IRL.

Figure 7: The reward function of the cliff domain of each state.

(a) The optimal ac-
tions of expert policy
π∗

0 , (γ∗
0 ∈ [0.06, 0.28])

(b) The optimal ac-
tions of expert policy
π∗

1 , (γ∗
1 ∈ (0.28, 0.52])

(c) The optimal actions of expert
policy π∗

2 , (γ∗
2 ∈ (0.52, 0.95])

Figure 8: Visualization of the optimal policies for standard MDPs of the cliff domain.

D Generalization Error

D.1 Generation of random environments

To test the generalizability of the learned reward function of our algorithms, for each domain
environment, we generate N = 100 random transition dynamics {T (n)}N

n=1 and discount factors
{γ(n)}N

n=1. For the toy domain, we randomize the probability of the agent’ moving to the next state
by taking actions from state s0. From state s1, s2, the agent still moves to the absorbing state with
probability 1 regardless of its actions. For the big-small and cliff domains, we generate random
environments by adding noise to the agent’s intended direction. For each action, the agent moves
in the intended direction with probability ϵ ∼ Unif(0, 1), and moves in a random other direction
with probability 1 − ϵ.
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D.2 Evaluation Metrics

For each randomized transition dynamics and discount factor generated from Appendix D.1, we
first solve the optimal policies under the true reward function r∗ and the learned reward function r̂,
denoted as π∗(n), π̂(n) respectively. We evaluate the generalizability of the learned reward function
r̂ by computing the normalized difference of the value function under the true r∗ and randomly
generated environments,

△Vr̂ = 1
N

N∑

n=1

(
V r∗,T (n),γ(n)

π∗(n) − V r∗,T (n),γ(n)

π̂(n)

)
/V r∗,T (n),γ(n)

π∗(n) (27)

E Additional Results

E.1 Undesirable Global Maxima of Naive Extensions of LP-IRL

In this Section, we demonstrate that naive extensions of LP-IRL in Eq. 4 give an undesirable global
optimum. In Fig. 9a, we see that under the true reward function, r∗, each expert policy is optimal
(when the corresponding line is on the top) for a continuous interval. However, in Fig. 9b, we see
that naive LP-IRL algorithm identifies a set of discount factors, Γ̃ = {0, 1, 1} (the orange and the
purple dashed lines intersect at γ = 1). Under the learned discount factors, expert policies π∗

1 and
π∗

2 are not distinguishable from each other under any reward function, which violates assumption 1.

Furthermore, the naive LP-IRL cannot recover the structure of the true reward function In Fig. 4d,
we see that the naive LP-IRL assigns a reward only to the absorbing state with r(s1) = r(s2) = 0.
This reward function gives a generalization error (Eq. 27) of 0.213 ± 0.218. In Fig. 9b, we see that
under this learned reward function, when γ < 1, the expert policy π∗

0 performs substantially better
than π∗

1 , π∗
2 while expert policies π∗

1 , π∗
2 perform similarly to each other. In contrast, under the true

reward function (Fig. 9a), we can find a set of discount factors such that the expert policies are
distinguishable from each other.

E.2 Comparison of the order of true and learned discount factors

In Table 1, we provide a full comparison of the true discount factors Γ∗ and the learned discount
factors Γ̃. Both MPLP-IRL and MPMCE-IRL recover the order of the true discount factors.

E.3 Convergence of MPLP-IRL and MPMCE-IRL

For MPLP-IRL, we approximate the global optimum by performing a grid search on the range
[0, 1]K . For MPMCE-IRL, it is computationally heavy to solve the optimization problem in Eq. 12
for 10K times. We instead compare the best current objective value of BO to the objective value
evaluated under the true reward function and discount factors. From Fig. 3, we see across all
domains, MPLP-IRL converges to the global maximum within 100 iterations while MPMCE-IRL
converges within 50 iterations,
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(a) The value function V γ,r∗
π∗

k
(s0) of expert poli-

cies π∗
0 , π∗

1 , π∗
2 under the true reward r∗.

(b) The value function V
γ̃, r̃

πk (s0) of reconstructed
optimal policies π0, π1, π2 under the learned
reward function of the naive extension of LP-IRL
(Eq. 4), r̃.

Figure 9: Plots of the value function of the initial state under (a) the true reward function r∗,
(b) the learned reward function of the naive extensions of LP-IRL, r̃: x, y-axes represent the
discount factor γ ∈ [0, 1] and the value function of expert policies or reconstructed optimal policies,
respectively. Each color represents a different policy. The dashed lines in (b) represent the learned
discount factors, Γ̃. Each policy is optimal when the corresponding line is on the top. Policies are
equally optimal when the lines interest.

True Γ∗ Learned Γ̃ True Γ∗ Learned Γ̃
of MPLP-IRL of MPLP-IRL of MPMCE-IRL of MPMCE-IRL

Toy
π∗

1 :[0,0.43] π1 : 0 π̃∗
1 : 0.3 π̃1 : 0.53

π∗
2 :(0.43, 0.87] π2 : 0.35 π̃∗

2 : 0.5 π̃2 : 0.82
π∗

3 :[0.87,1) π3 : 1 π̃∗
3 : 0.95 π̃3 : 0.98

Big-Small
π∗

1 :[0,0.2] π1 : 0.38 π̃∗
1 : 0 π̃1 : 0.30

π∗
2 :(0.2,0.68] π3 : 0.74 π̃∗

2 : 0.45 π̃2 : 0.62
π∗

3 :[0.87,1] π3 : 1 π̃∗
3 : 0.9 π̃3 : 0.98

Cliff
π∗

1 :[0.06, 0.28] π1 : 0.04 π̃∗
1 : 0 π̃1 : 0

π∗
2 :(0.28,0.52] π2 : 0.44 π̃∗

2 : 0.2 π̃2 : 0.31
π∗

3 :(0.52,0.95] π3 : 0.84 π̃∗
3 : 0.52 π̃3 : 0.55

Table 1: Table of the true discount factors Γ∗ and the learned discount factors Γ̃. Both MPLP-IRL
and MPMCE-IRL recover the order of the true discount factors.

1165



RLJ | RLC 2024

(a) MPLP-IRL: the toy domain (b) MPLP-IRL: the big-small do-
main

(c) MPLP-IRL: the cliff domain

(d) MPMCE-IRL: the toy domain (e) MPMCE-IRL: the big-small
domain

(f) MPMCE-IRL: the cliff domain

Figure 10: Trace plots of the best observed objective value of BO: x, y-axis represent the iteration
and the best observed objective value, respectively. The red dashed line represents an approximate
global maximum from performing a grid search over [0, 1]K or the objective value under the ground
truth.
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E.4 Identifiability and Generalizability Analysis for the Toy Domain

In this section, we study the identifiability of the reward function for the toy domain, when the
discount factors are misspecified. We only provide expert demonstrations from 2 expert policies.
We obtain Γ on a grid space of Γ ∈ [0, 1]K with an interval of 0.01. For each set of assigned discount
factors, we calculate rank(Φ|b) and rank(Φ). We find out that for all the given discount factors,
rank(Φ|b) = rank(Φ) = 3|S| − 1. By Proposition 2, this result implies that there exists reward
functions that reconstruct expert policies for a large set of discount factors.

We further study the generalizability of these reward functions. In Fig. 11, we see that ∼ 40% of
these feasible reward functions do not generalize well to new tasks with generalization errors (Eq. 27)
larger than 0.5, which emphasizes the importance of learning the discount factors correctly.

(a) Heatmap of the generalization error of the re-
ward functions (Eq. 27) given (mis)specified dis-
count factors.

(b) Percentile plot of the generalization error of
the reward functions (Eq. 27) given (mis)specified
discount factors.)

Figure 11: The (a) heatmap and (2) percentile plot of the generalization error of the reward
functions (Eq. 27) given (mis)specified discount factors: In (a) x, y-axis represents the given γ0, γ1
respectively. The red star represents the true discount factors γ∗

0 , γ∗
1 . There are no feasible solutions

along the diagonal. Lighter blue indicates a smaller error and vice versa. In (b) x, y-axis represents
the percentile and the generalization error, respectively.
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Abstract

Stochastic Approximation (SA) is a widely used algorithmic approach in various
fields, including optimization and reinforcement learning (RL). Among RL algo-
rithms, Q-learning is particularly popular due to its empirical success. In this paper,
we study asynchronous Q-learning with constant stepsize, which is commonly used
in practice for its fast convergence. By connecting the constant stepsize Q-learning
to a time-homogeneous Markov chain, we show the distributional convergence of
the iterates in Wasserstein distance and establish its exponential convergence rate.
We also establish a Central Limit Theory for Q-learning iterates, demonstrating
the asymptotic normality of the averaged iterates. Moreover, we provide an explicit
expansion of the asymptotic bias of the averaged iterate in stepsize. Specifically,
the bias is proportional to the stepsize up to higher-order terms, and we provide
an explicit expression for the linear coefficient. This precise characterization of the
bias allows the application of Richardson-Romberg (RR) extrapolation technique
to construct a new estimate that is provably closer to the optimal Q function. Nu-
merical results corroborate our theoretical finding on the improvement of the RR
extrapolation method.

1 Introduction

Stochastic Approximation (SA) is a fundamental algorithmic paradigm in various fields, including
machine learning, stochastic control and reinforcement learning (RL). SA uses recursive stochastic
updates to solve fixed-point equations. One prominent example is the stochastic gradient descent
(SGD) algorithm for optimizing an objective function (Lan, 2020). In RL, well-known algorithms
such as Q-learning and TD-learning can be viewed as SA algorithms for solving Bellman equations
(Bertsekas & Tsitsiklis, 1996). Classical SA theory suggests using diminishing stepsize, ensuring
asymptotic convergence to the desired solution (Borkar, 2008). However, SA with constant stepsize
is commonly used in practice due to its simplicity and faster convergence. In this case, SA iterates
can be viewed as a time-homogeneous Markov chain. Adopting this perspective, a growing line of
recent work establishes weak convergence of constant stepsize SA and characterizes the stationary
distribution (Durmus et al., 2021a; Huo et al., 2023; Dieuleveut et al., 2020; Yu et al., 2021).

In this paper, we investigate constant-stepsize Q-learning, which is an important instance of nons-
mooth SA with Markovian noise. Q-learning is a popular algorithm that has played a significant role
in the empirical success of RL (Mnih et al., 2015). It aims to learn the optimal action-value function
q∗ by iteratively updating the estimator qk from sample trajectories. Consequently, the iterations
inherently involve Markovian noise resulting from the sampling process of a Markov chain under
the behavior policy. Finite-time guarantees of Q-learning variants have been extensively studied
(Tsitsiklis, 1994; Szepesvári, 1997; Even-Dar et al., 2003; Chen et al., 2021; Li et al., 2020). These
non-asymptotic results provide upper bounds on either the mean squared error (MSE) E[∥qk −q∗∥2

∞
]

or high probability ℓ∞ error ∥qk − q∗∥∞ of the estimated Q-function qk.
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The main goal of this paper is to gain a more comprehensive understanding of the behavior of
constant-stepsize Q-learning and its error decomposition. In the discounted setting, Q-learning aims
to solve the fixed-point equation involving the Bellman operator, which is contractive in the nons-
mooth ℓ∞ norm. Hence Q-learning is an instance of SA with a nonsmooth operator and Markovian
noise. Recently, non-asymptotic analysis of Markovian SA has been gaining attention (Bhandari
et al., 2021; Srikant & Ying, 2019; Chen et al., 2020a; 2021; Huo et al., 2023). However, these
results either concern linear SA or provide upper bounds on the error.

In this work, we study Q-learning through Markov chain theory, which allows us to quantify the
fluctuations and bias of the iterates. Our results lead to a more precise characterization of the error
∥qk − q∗∥: the error is composed of a stochastic part qk − Eq

(α)
∞ and a deterministic part (bias)

Eq
(α)
∞ − q∗, where q

(α)
∞ denotes the limit random vector of the Q-learning iterate {qk} with stepsize

α. Our contributions are summarized as follows.

• (Weak Convergence) Viewing the joint process of the iterates {qk}k≥0 and data trajectory as a
time-homogeneous Markov chain, we establish its distributional convergence in W2, Wasserstein
distance of order 2. Moreover, {qk}k≥0 converges to a limit random vector q

(α)
∞ exponentially fast

due to the use of a constant stepsize α. We further prove a central limit theorem (CLT) for the
iterates {qk}k≥0, thus proving the asymptotic normality of the averaging iterates.

• (Bias Characterization) We provide an explicit expansion of the deterministic bias Eq
(α)
∞ − q∗

with respect to the stepsize α:
Eq(α)

∞ − q∗ = αB + Õ(α2)1,

where B is a vector independent of the stepsize α. Importantly, the leading term in bias scales
linearly with α. Consequently, one can use the Richardson-Romberg (RR) extrapolation technique
to reduce the bias and obtain an estimate closer to q∗ with order-wise smaller bias Õ(α2).

• For the stochastic part, E∥qk−Eq
(α)
∞ ∥2 ≍

∥∥Eqk − Eq
(α)
∞
∥∥2+Var (qk), we show that the optimization

error ∥Eqk − Eq
(α)
∞ ∥ decays exponentially in k. The convergence rate cannot be obtained from

the existing upper bound on E∥qk − q∗∥2 or ∥qk − q∗∥∞, which does not vanish as k → ∞. We
further show that the variance Var (qk) is of order O(1). By law of large numbers, one can use
Polyak-Ruppert averaging to achieve a variance of order O(1/k). Consequently, for large k, the
deviation between the averaged iterate and q∗ for large k is dominated by the deterministic bias.

Compared with prior work focusing on MSE guarantee, we establish the distributional convergence,
CLT and bias expansion of asynchronous Q-learning, which are completely new in this setting. On
the technical side, we emphasize that Markovian noise and nonsmoothness of Q-learning operator
bring additional challenges in showing weak convergence and bias characterization. The recent work
of Huo et al. (2023) establishes the weak convergence of linear SA with Markovian noise, by analyz-
ing the difference of two coupled iterates, which reduces to a special instance of linear SA. However,
this observation does not apply to Q-learning due to the nonsmooth/nonlinear dynamic. We note
that the very recent work by Lauand & Meyn (2023) studies nonlinear SA with Markovian noise,
and a similar challenge arises. To this end, we develop a novel technique to analyze the difference
of two coupled iterates; See Section 4.1 for a detailed discussion. For bias characterization, to deal
with the nonsmooth operator, we employ a local linearization of the operator in the neighborhood
of the optimal solution q∗. While local linearization has been explored in nonlinear SA literature,
they mainly consider the asymptotic regime with diminishing stepsizes (Lee & He, 2020; Li et al.,
2023b; Melo et al., 2008; Gopalan & Thoppe, 2023). We generalize this approach to characterize the
dependence on the constant stepsize. It is worth noting that while the linear approximation compo-
nent resembles similar behavior as linear SA (Huo et al., 2023), a precise characterization of the bias
requires a careful analysis of the linear approximation error to show a proper higher order of α. We
establish this result by analyzing the fourth moment of the iterates. Our techniques may be of inde-
pendent interest and have the potential to be applied to the analysis of other nonsmooth/nonlinear
SA algorithms.

1In this paper, Õ denotes the variant of big O that ignores logarithmic order.
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1.1 Related Work

We discuss closely related work and defer other related work to Section A in supplementary materials.

Q-learning. Recent work has been dedicated to understanding finite-time guarantees of Q-learning
variants, with two main types of results: high probability bounds and mean (square) error bounds.
For asynchronous Q-learning, as considered in this paper, Beck & Srikant (2012) provide the first
result on MSE with constant stepsize and Chen et al. (2021) improve the result by a |S||A| factor.
The work by Li et al. (2023a) presents the best known high probability sample complexity. It is
worth noting that these two types of bounds are not directly comparable, as discussed in Chen et al.
(2021). Importantly, existing results are achieved either by rescaled linear stepsize αk = a/(b + k)
(Qu & Wierman, 2020; Chen et al., 2021) or by a carefully chosen constant stepsize based on the
target accuracy (Chen et al., 2021; Li et al., 2023a). In contrast, we precisely characterize the
convergence rate and the bias induced by any constant-stepsize α in a given range. Our explicit
characterization enables the application of RR technique, leading to an estimate with reduced bias,
while simultaneously enjoying the exponential convergence of the optimization error.

Some recent work also studies Polyak-Ruppert averaged Q-learning. Xie & Zhang (2022) and Li et al.
(2023b) prove a functional CLT for synchronous Q-learning with constant stepsize and diminishing
stepsize, respectively. In this work, we focus on asynchronous Q-learning involving Markovian data.

Stochastic approximation. There is a growing interest in investigating general SA with constant
stepsize. Most work considers i.i.d. or martingale difference noise, and establishes finite-time guar-
antees for contractive/linear SA (Chen et al., 2020a; Mou et al., 2020; Durmus et al., 2021b) or
SGD (Dieuleveut et al., 2020; Yu et al., 2021). Recent work investigates SA with Markovian noise,
motivated by applications in RL (Srikant & Ying, 2019; Mou et al., 2021; Chen et al., 2022b).

Our results have some similarities to Dieuleveut et al. (2020, Proposition 2), Durmus et al. (2021b,
Theorem 3) and Huo et al. (2023), in that we also study instances of SA with constant stepsizes
through Markov chain theory. However, our setting is different from Dieuleveut et al. (2020); Durmus
et al. (2021b), where they assume i.i.d. data. While the work (Huo et al., 2023) also considers
Markovian noise, their focus is linear SA. In contrast, Q-learning involves nonsmooth update, which
brings additional challenges on the analysis of convergence and bias as discussed earlier.

2 Preliminaries

Consider a discounted Markov decision process (MDP) defined by the tuple (S, A, T, r, γ), where
S and A are the (finite) state space and action space, T : S × A → ∆(S) is the transition kernel,
r : S × A → [0, rmax] is the reward function, and γ ∈ (0, 1) is the discounted factor. At time
t ∈ {0, 1, . . . }, the system is in state st ∈ S; upon taking action at ∈ A, the system transits to
st+1 ∈ S with probability T (st+1|st, at) and generates a reward rt = r(st, at).

A stationary policy π : S → ∆(A) maps each state to a distribution over the actions. For each policy
π, the Q-function is defined as follows: ∀s ∈ S, ∀a ∈ A, qπ(s, a) = E

[∑∞
t=0 γtr(st, at)|s0 = s, a0 =

a
]
, where ak ∼ π(·|sk) for all k > 0. An optimal policy π∗ is the policy that maximizes qπ(s, a) for

all s ∈ S and a ∈ A simultaneously (Bertsekas, 2017). We denote the associated Q functions as
q∗ ≡ qπ∗ . Notably, given q∗, one can obtain the optimal policy π∗(s) ∈ arg maxa∈A Q∗(s, a).

Behavior policy. The goal of RL is to learn the optimal policy based on transition data from the
system with unknown model (T, r). In this paper, we consider the off-policy setting, where we have
access to a sample trajectory {sk, ak, rk}k≥0 generated by the MDP under a fixed behavior policy π̃.
Define X := S × A × S, and let xk = (sk, ak, sk+1). Note that when π̃ is stationary, {xk}k≥0 forms a
time-homogeneous Markov chain. We use P = (pij) to denote the corresponding transition matrix.

Assumption 1. {xk}k≥0 is an irreducible and aperiodic Markov chain on a finite state X with
stationary distribution µX . Also, the distribution of the initial state x0 is µX .
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Assumption 1 is equivalent to assuming that the Markov chain {sk, ak}k≥0 induced by the behavior
policy π̃ is uniformly ergodic with a unique stationary distribution µS (Chen et al., 2021). This
assumption is standard for analyzing off-policy Q-learning (Li et al., 2020; Qu & Wierman, 2020).
It implies that {xk}k≥0 mixes geometrically fast to the stationary distribution µX (Levin & Peres,
2017), and there exist c ≥ 0 and ρ ∈ (0, 1) s.t. max

x∈X
∥pk(x, ·) − µX (·)∥T V ≤ cρk, where pk(x, ·)

denotes the distribution of xk at time k given x0 = x.

To quantify how fast {xk}k≥0 mixes to a specified precision, we define the mixing time below.
Definition 1. ∀δ > 0, define the mixing time tδ := min{k ≥ 0 : maxx∈X ∥pk(x, ·) − µX (·)∥T V ≤ δ}.

Under Assumption 1, we have tα ≤ log(c/ρ)+log(1/α)
log(1/ρ) , which implies limα→0 αm1tαm2 = 0, ∀m1, m2 >

0. We assume that x0 ∼ µX to simplify some presentation. This assumption can be relaxed by
adapting our result after the Markov chain {xk}k≥0 has almost mixed. The same assumption is
considered in many previous works (Bhandari et al., 2021; Huo et al., 2023; Mou et al., 2021).

Q-learning. The Q-learning algorithm (Watkins & Dayan, 1992) is an iterative method for esti-
mating the function Q∗ based on the sample trajectory {sk, ak, rk}k≥0. It generates a sequence of
Q-function estimate {qk : S × A → R}k, according to the following recursion:

qk+1 = qk + αkF (xk, qk), (1)

where αk is the stepsize. Here the operator F : X × R|S∥A| 7→ R|S∥A|, known as empirical Bellman
operator, is defined as: ∀(s, a) ̸= (sk, ak), [F (x, q)](s, a) = 0; and

[F (x, q)](sk, ak) = r(sk, ak) + γ max
v

qk(sk+1, v) − qk(sk, ak).

In this paper, we focus on constant stepsize αk ≡ α > 0. We use superscript q
(α)
k to emphasize the

dependence on the stepsize α, but omit it when it is clear from the context.

We state some properties of Q-learning. (1) By the boundedness of reward, there exists a constant
qmax such that ∥qk∥∞ ≤ qmax, ∀k. (2) Denote the expected operator of F by F̄ (q) := Ex∼µX [F (x, q)].
It has been shown that F̄ (q) + q is a β-contraction mapping w.r.t. ∥ · ∥∞ (Chen et al., 2021), where
β = 1 − (1 − γ) min(s,a) µS(s, a). Recall that µS is the stationary distribution of Markov chain
{sk, ak}k≥0. By Assumption 1, min(s,a) µS(s, a) > 0, thus β < 1. (3) Crucially, the iterates {qk}
generated by Q-learning is not a Markov chain. On the other hand, we can see that the joint process
{xk, qk}k≥0 is a Markov chain on the state space X × R|S|×|A|.

Part of our results on Q-learning (cf. Theorem 3) requires the following assumption.
Assumption 2. The optimal policy π is unique. That is, ∃∆ > 0 such that for ∀s ∈ S, q∗(s, a∗

s) −
q∗(s, a) ≥ 2∆, ∀a ̸= a∗

s, where a∗
s := arg max

a
q∗(s, a) denotes the optimal action for each state s.

Similar conditions have been considered in prior work on the analysis of Q-learning variants (Devraj
& Meyn, 2017; Li et al., 2023b). Assumption 2 implies that the operator in (1) can be approximated
by local linearization around q∗ and high-order approximation error, which leads to our precise
characterization of the bias induced by constant stepsize.

3 Main Results

In this section, we present our main results. In Section 3.1, we show that joint data-iterates
{xk, qk}k≥0 converges to a unique limit distribution exponentially fast. We show a central limit
theorem (CLT) for the iterates {qk}k≥0 in Section 3.2. We then precisely characterize the relation-
ship between the limit and the stepsize in Section 3.3. Furthermore, we investigate the implications
of these results for Polyak-Ruppert averaging and Richardson-Romberg extrapolation in Section 3.4.

1171



RLJ | RLC 2024

3.1 Stationary Distribution and Convergence Rate

Note that the Q-learning iterate {qk}k≥0 is not a Markov chain by itself, as its dynamic depends on
the Markovian data {xk}k≥0. To show the distributional convergence of {qk}k≥0, we consider the
joint process {xk, qk}k≥0, which can be cast as a time-homogeneous Markov chain. We will analyze
the convergence of this Markov chain using the Wasserstein 2-distance, which is defined as follows
for any distributions µ and ν in P2(Rd), the space of square-integrable distributions on Rd:

W2(µ, ν) = inf
ξ∈Π(µ,ν)

(∫

Rd

∥u − v∥2
∞ dξ(u, v)

)1/2
= inf

{(
E
[

∥θ − θ′∥2
∞
]) 1

2 : L(θ) = µ, L (θ′) = ν
}

,

where L(θ) denote the distribution of θ and Π(µ, ν) is the set of all joint distributions in P2(Rd ×Rd)
with marginal distributions µ and ν. To analyze the Markov chain {xk, qk}k≥0, we define the
extended Wasserstein 2-distance. Let d̄ ((x, θ), (x′, θ′)) :=

√
1 {x ̸= x′} + ∥θ − θ′∥2

∞, which defines
a metric on X × Rd. The extended Wasserstein 2-distance w.r.t. the metric d̄ is defined as follows:

W̄2(µ̄, ν̄) = inf
{(

E[d̄(z, z′)2]
)1/2 : L(z) = µ̄, L (z′) = ν̄

}
, ∀µ̄, ν̄ ∈ P2(X × Rd). (2)

We show that the Markov chain {xk, qk}k≥0 converges in W̄2 to a unique stationary distribution,
geometrically fast, as stated in the following Theorem.
Theorem 1 (Weak Convergence). Suppose that Assumption 1 holds, and the stepsize α for Q-
learning (1) satisfies αtα ≤ c0

(1−β)2

log(|S∥A|) for some constant c0.

1. Under all initial distribution of q0, the chain {xk, qk}k≥0 converges in W̄2 to a a unique limit
(x∞, q∞) ∼ µ̄. Moreover, we have Var(q∞) ≤ cQ

log(|S∥A|)
(1−β)2 αtα, where cQ = 912e (3∥q∗∥∞ + rmax) .

2. µ̄ is the unique stationary distribution of the Markov chain {xk, qk}k≥0.

3. Let µ := L(q∞) be the second marginal of µ̄. Let η = 1 − (1 − β) α/2. For all k ≥ tα, we have

W 2
2 (L(qk), µ) ≤ 24ηk−tα

(
E
[
∥q0∥2

∞
]

+ E
[
∥q∞∥2

∞
])

. (3)

Theorem 1 states that the Markov chain {xk, qk}k≥0 admits a unique stationary distribution. Recall
that under Assumption 1, for all m1, m2 > 0, we have limα→0 αm1tαm2 = 0. Therefore, there always
exists a sufficiently small stepsize α such that the condition in Theorem 1 holds.

We remark that the convergence results of Theorem 1 cannot be obtained from the existing error
bounds on Q-learning. For example, the sharpest high probability bound on ℓ∞ error scales as
∥qk − q∗∥∞ ≲ (1 − ρ)k∥q0 − q∗∥∞ + O(

√
α), where ρ ∈ (0, 1) (Li et al., 2020). Another type of upper

bound is on the MSE that scales as E[∥qk − q∗∥2
∞] ≲ (1 − (1 − β)α/2)k−tα∥q0 − q∗∥2

∞ + O(αtα)
(Chen et al., 2021). Both upper bounds imply that the sequence eventually falls in a neighbor of the
optimal solution q∗ and the initial condition is forgotten exponentially fast. However, these results
do not imply the distributional convergence of the sequence {qk}k≥0 or its convergence rate in the
W2 metric.

We would like to highlight the techniques employed to prove Theorem 1. A standard method to
prove the convergence of a Markov chain is to verify the irreducibility and the Lyapunov drift
condition (Meyn & Tweedie, 2009), as used in prior work on SA (Borkar et al., 2021) and SGD (Yu
et al., 2021). However, this method requires a strong condition on the randomness of the Markov
chain dynamics, which typically does not hold in Q-learning. Instead, we draw inspiration from
recent work on constant-stepsize SA (Dieuleveut et al., 2020; Huo et al., 2023), and prove weak
convergence by showing the convergence in W2 distance through coupling arguments. We remark
that the coupling argument in our proof is more involved due to the nonsmoothness of the update
operator F . We sketch the proof outline in Section 4.1 and defer the complete proof to Section B.

A direct consequence of the convergence in W2 metric is the convergence of the first two moments.
We can also obtain explicit convergence rates from Theorem 1, as detailed in the following corollary.
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Corollary 1. Under the setting of Theorem 1, for all k ≥ tα,

∥E[qk − q∞]∥2
∞ ≤ C ·

(
1 − (1 − β) α/2

)k−tα
,
∥∥E
[
qkq⊤

k

]
− E

[
q∞q⊤

∞
]∥∥

∞ ≤ C ′ ·
(
1 − (1 − β) α/2

) k−tα
2 ,

where C and C ′ are constants independent of α and k.

3.2 Central Limit Theorem

Building on the convergence result, we establish a CLT for {qk}k≥0. Here we define Sn =
∑n−1

k=0
(
qk −

E[q∞]
)

and Yn(t) = n− 1
2 S⌊nt⌋. Let D = D[0, 1] denote the Skorokhod space, which is a separable

and complete function space under some proper metrics (Prokhorov, 1956).
Theorem 2 (CLT). Under the setting of Theorem 1, Σ := limn→∞ n−1Eπ

(
SnS⊤

n

)
exists, and for

µ̄-almost every point (x0, q0), the sequence {Sn/
√

n}n≥0 converge in distribution to the Gaussian
distribution N (0, Σ). Furthermore, the process (Yn(t))0≤t≤1 converges weakly to

(
Σ 1

2 B(t)
)

0≤t≤1
on the Skorokhod space D[0, 1], where B = (B(t))t≥0 is the standard Brownian motion.

Theorem 2 states that the average of Q-learning iterates is asymptotically normally distributed
around the expected value of the unique stationary distribution. Establishing such a CLT is im-
portant for uncertainty quantification and statistical inference (Li et al., 2023b). A similar result
has been established for synchronous Q-learning with constant stepsize (Xie & Zhang, 2022), where
the data used in each iteration is independently generated. It is worth highlighting that one key
step in Xie & Zhang (2022) uses the Kantorovich–Rubinstein theorem (Edwards, 2011) defined on a
Wasserstein distance with single-step contraction. However, such result does not hold in our setting
due to Markovian data. To this end, we use the result in Theorem 1 and ergodicity of {xk}k≥0 to
establish CLT. The detailed proof is provided in Section C.

3.3 Bias Characterization

Under constant stepsize α, Theorem 1 asserts that the convergence of q
(α)
k to q

(α)
∞ , which is of

distribution µ. Therefore, the estimates q
(α)
k of Q-learning with constant stepsize do not converge

to a point, but oscillate around the mean E[q(α)
∞ ]. Here we would like to quantify the bias, i.e.,

the deviation of the mean E[q(α)
∞ ] from the optimal solution q∗. One of our main contributions is to

provide an explicit expansion of the bias E[q(α)
∞ ] − q∗ in the step-size α.

Theorem 3 (Bias Characterization). Suppose that Assumptions 1 and 2 hold and α ≤ α0 for some
α0. Then the following holds for a vector B = B(r, γ, P ) independent of α:

E [q∞] = q∗ + αB + O(α2 + α2t2
α2). (4)

Theorem 3 states that the asymptotic bias of Q-learning can be decomposed into a linear term and
a higher order term of α. We emphasize that our bias characterization of the linear dependence on
α is exact. As discussed in the previous subsection, existing results are typically in the form of an
upper bound on the bias. Specifically, the high probability upper bound on ℓ∞ error (Li et al., 2020)
implies a bias of O(

√
α). In contrast, our analysis reveals a refined result with αB + Õ(α2) bias.

One key step in the proof of Theorem 3 is to calculate E[F (x∞, q∞) | x∞ = i], ∀i ∈ X . For linear
SA, this step is straightforward. However, for asynchronous Q learning, the operator F is nonlinear
and not even smooth, making the analysis more complicated. In our proof, we develop a local
linearization method which can bridge the gap between nonlinear SA and linear SA. We outline the
proof of Theorem 3 in Section 4.2. The complete proof is provided in Section D.

We remark that the coefficient B of the linear term is independent of α. It depends only on the
underlying MDP and the behavior policy. One can find an explicit expression of B in the proof
(cf. Equation (31)). Importantly, for the special case where the associated data sequence {xk}k≥0 is
i.i.d., we have B = 0. However, the bias term O(α2 + α2t2

α2) still remains, due to the nonlinearity
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of the Q-learning operator. This should be contrasted with the LSA where the bias vanishes under
i.i.d. data (Huo et al., 2023). In general, the existence of bias implies that the mean of the sequence
{qk}k≥0 limit deviates from the optimal solution q∗. Therefore, averaging the iterates qk does not
eliminate the bias. However, thanks to the independence of B on α, we can leverage an extrapolation
technique to reduce the bias, as detailed in Section 3.4.

3.4 Polyak-Ruppert Tail Average and Richardson-Romberg Extrapolation

We now utilize the bias expansion result Theorem 3 to study the behavior of Q-learning when
combined with Polyak-Ruppert (PR) average and Richardson-Romberg extrapolation.

Polyak-Ruppert Averaging. The celebrated PR averaging procedure (Ruppert, 1988; Polyak
& Juditsky, 1992) can reduce the estimator variance and accelerate the convergence rate. Here we
consider the PR tail averaging (Jain et al., 2018), defined as follows with a burn-in period k0:

q̄k0,k := 1
k − k0

∑k−1

t=k0
qt, for k ≥ k0 + 1. (5)

The following corollary provides non-asymptotic results for the first and second moments of q̄k0,k.
Corollary 2. Under the setting of Theorem 3, the tail-averaged iterates (5) satisfy the following:
∀k > k0 ≥ tα2 :

E [q̄k0,k] − q∗ = αB + O(α2 + α2t2
α2) + O

( 1
α(k − k0) exp

(
− α(1 − β)k0

4
))

, (6)

E
[
∥q̄k0,k − q∗∥2] = α2B′ + O(α3 + α3t2

α2)︸ ︷︷ ︸
asymptotic squared bias

+ O
( 1

(k − k0)α

)

︸ ︷︷ ︸
variance

+ O
( 1

(k − k0)2α2 exp
(

− α(1 − β)k0
4

))

︸ ︷︷ ︸
optimization error

,

(7)

where B and B′ are independent of α.

The proof is provide in Section E. For simplicity, let us consider the case k0 = k/2 and discuss the
mean squared distance between the averaged-iterate q̄k/2,k and q∗. The MSE can be decomposed
into three parts: (1) the asymptotic squared bias term ∥E[q̄∞/2,∞ − q∗]∥2 is independent of k and
averaging; (2) the variance of q̄k/2,k scales as 1/k; (3) and the optimization error ∥E[q̄∞/2,∞−q̄k/2,k]∥2

decays to 0 geometrically fast. Importantly, the larger the stepsize α is, the faster the variance and
optimization error decay.

Richardson-Romberg Extrapolation. Given the explicit expansion of the bias in stepsize α
(cf. Theorem 3), we can leverage the RR extrapolation technique from numerical analysis (Gautschi,
2011) to reduce the bias. Specifically, consider running two Q-learning recursions using the same data
stream {xk}k≥0, but with different stepsizes α and 2α. Denote by q̄

(α)
k0,k and q̄

(2α)
k0,k the corresponding

tail-averaged iterates. The corresponding RR extrapolated iterates are given by

q̃
(α)
k0,k = 2q̄

(α)
k0,k − q̄

(2α)
k0,k . (8)

With k0, k → ∞, Theorems 1 and 3 imply that q̃
(α)
k0,k converges to 2q

(α)
∞ − q

(2α)
∞ , which has a bias

2Eq(α)
∞ − Eq(2α)

∞ − q∗ = 2
(
αB + O(α2 + α2t2

α2)
)

−
(
2αB + O(α2 + α2t2

α2)
)

= O(α2 + α2t2
α2).

Compared with q
(α)
∞ and q

(2α)
∞ , the extrapolated sequence reduces the bias by a factor of α. We

formally state the result in the following corollary, which quantifies the non-asymptotic behavior of
the first two moments of extrapolated sequence {q̃

(α)
k0,k}k≥0. The proof is provided in Section F.
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Corollary 3. Under the setting of Theorem 3, the RR extrapolated iterates (8) with stepsizes α and
2α satisfy the following for all k > k0 ≥ tα2 :

E
[
q̃

(α)
k0,k

]
− q∗ = O(α2 + α2t2

α2) + O
(

1
α(k − k0) exp

(
−α(1 − β)k0

4

))
, (9)

E
[
∥q̃

(α)
k0,k − q∗∥2] ∈ O

(
α4 + α4t4

α2
)

+ O
(

1
(k − k0)α

)
+ O

(
1

(k − k0)2α2 exp
(

−α(1 − β)k0
4

))
.

(10)

Let us compare the MSE bounds (7) on the PR-averaged iterates and the extrapolated iterates (10).
Note that the asymptotic squared bias is reduced from O(α2) to O(α4) by RR extrapolation! Mean-
while, RR extrapolation still enjoys similar decaying rates of variance and optimization error. We
remark that the RR procedure involves the computation of two parallel Q-learning iterates, using
either the same or different data sequences. This makes the RR procedure inherently parallelizable,
offering potential performance improvements when implemented on parallel computing architectures.

4 Proof Outlines

4.1 Proof Outline for Theorem 1 on Weak Convergence

Here we outline the proof of the existence of the limit distribution, which is the most challenging part.
Note that the space P(X ×R|S|×|A|) endowed with our extended Wasserstein 2-distance W̄2 is a Polish
space (Villani et al., 2009, Theorem 6.18). We will show that

∑∞
k=0 W̄ 2

2 (L (xk, qk) , L (xk+1, qk+1)) <
∞, thus the sequence {xk, qk}k≥0 forms a Cauchy sequence. This result implies the existence of the
limit distribution, by the fact that all Cauchy sequences converge in a Polish space.

The key step involves coupling through the construction of two Markov chains, {x
[1]
k , q

[1]
k }k≥0 and

{x
[2]
k , q

[2]
k }k≥0, which share the same underlying data stream {x

[1]
k }k≥0 = {x

[2]
k }k≥0 = {xk}k≥0. We

observe that the iterates difference wk := q
[1]
k − q

[2]
k exhibits the following double-recursion that in-

volves both wk and q
[1]
k : wk+1(sk, ak) = (1−α)wk(sk, ak)+αγ

(
max

a
q

[1]
k (sk+1, a)−max

a
q

[2]
k (sk+1, a)

)
.

Proposition 1. Under the setting of Theorem 1, the following bound holds with η = 1− (1−β)α/2:

E
[

∥wk∥2
∞
]

≤ 12E
[
∥w0∥2

∞
]

ηk−tα , ∀k ≥ tα.

For linear SA (Huo et al., 2023), the iterates difference wk is a single-recursion that only involves
wk, which reduces to a special case of linear SA. In constrast, the nonsmoothness of Q-learning leads
to the double recursion of wt, which brings an additional challenge in analyzing the convergence of
wt. Our key idea for proving Proposition 1 is to exploit the fact that the difference between two
max operators can be lower bounded by the minimum of the difference, and upper bounded by the
maximum of the difference. We thus construct two new sequences that serve as lower and upper
bounds on {wk}k≥0, and prove that both sequences decay geometrically fast to 0, which immediately
implies a geometric decay of {wk}k≥0. Next, by carefully choosing the initial distribution of q

[2]
0 ,

we can ensure that (xk, q
[2]
k ) d= (xk+1, q

[1]
k+1). Consequently, W̄ 2

2
(
L
(
xk, qk

)
, L
(
xk+1, qk+1

))
→ 0

geometrically fast, which allows us to show
∑∞

k=0 W̄ 2
2
(
L
(
xk, qk

)
, L
(
xk+1, qk+1

))
< ∞.

4.2 Proof Outline for Theorem 3 on Bias Expansion

A crucial technique employed in the proof of Theorem 3 is the linearization of the non-smooth
operator F (x, q). Specifically, for a fixed x, we linearize F (x, q) around the optimal solution q∗

according to the following proposition.
Proposition 2. There exists a function Gq∗ : X 7→ R|S∥A|×|S∥A| s.t. for any (x, q) ∈ X × R|S∥A|,

F (x, q) = F (x, q∗) + (Gq∗(x) − Id)(q − q∗) + R(x, q), (11)
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where d = |S∥A|, ∥R(x, q)∥∞ = O
(
∥q − q∗∥4

∞
)

, and Ex∼µX [Gq∗(x)] does not have eigenvalue of 1.

We next provide a finite-time upper bound on the fourth moment of the error, which shows that
the remaining term R(x, q) in Proposition 2 is of a higher order of α. We remark that existing
non-asymptotic results for Q-learning are limited to the first moment and second moment of the
error.
Proposition 3. Suppose that Assumption 1 holds and α ∈ (0, α0) for some α0. Then

E[∥qk − q∗∥4
∞] ≤ b1(1 − α(1 − γ)2)k−tα2 + b2α2 + b3α2t2

α2 , ∀k ≥ tα2 , (12)

where b1, b2 and b3 are constants independent of α.

To deal with the nonsmooth ℓ∞ norm, we consider a Generalized Moreau Envelope M(·), which has
been used to analyze MSE ∥·∥2

∞ (Chen et al., 2021). We derive the bound for M(·)2, which provides
a bound for ∥ · ∥4

∞. We defer the complete proof of Proposition 2 and 3 to Section D.1.

Note that the first term on RHS of (12) decays geometrically in k, whereas the remaining two
terms are independent of k. Consequently, as k → ∞, the upper bound is of order O

(
α2 + α2t2

α2

)
.

Therefore, the RHS of equation (11) can be viewed as a combination of a linear operator and a
high-order remaining term R(x, q) of order O

(
α2 + α2t2

α2

)
. We then can analyze the dynamic of

{xk, qk}k≥0 as a combination of linear SA with a remaining term.

5 Numerical Experiments

We consider two MDPs: the first example is a 1 × 3 Gridword with two actions (left/right); the
second one is a classical 4 × 4 Gridworld with the slippery mechanism in Frozen-Lake, and four
actions (left/up/right/down). For both MDPs, the discounted factor is γ = 0.9 and the Markovian
data {xk}k≥0 is generated from a uniformly random behavior policy. We defer details of the reward
function and the transition kernel for the MDPs to Section G.

We run Q-learning with constant stepsize α ∈ {0.1, 0.2, 0.4}. We also consider two commonly used
diminishing stepsizes: a rescaled linear stepsize αk = 1/

(
1 + (1 − γ)k

)
(Qu & Wierman, 2020; Chen

et al., 2020b) and a polynomial stepsize αk = 1/k0.75. The results are illustrated in Figure 1(a) and
1(b). We plot the ℓ1-norm error ∥q̄

(α)
k/2,k − q∗∥1 for the tail-averaged (TA) iterates q̄

(α)
k/2,k, the RR

extrapolated iterates q̃
(α)
k with stepsizes α and 2α, and iterates with diminishing stepsizes.

(a) 1 × 3 Gridworld. (b) 4 × 4 Gridworld.

Figure 1: Errors of tail-averaged (TA) iterates and RR extrapolated iterates with different stepsizes.

We first observe that the larger the stepsize α, the faster it converges, as implied by Corollary 2. We
note that the final TA error, which corresponds to the asymptotic bias, is approximately proportional
to the stepsize, as indicated by the roughly equal space between three TA lines in the log-scale
plots. Moreover, RR extrapolated iterates reduce the bias, which can be observed by comparing,
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e.g, the solid orange line (TA with α = 0.2) and the dotted red line (RR with α = 0.2 and 0.4).
These results are consistent with Corollary 3. Furthermore, the TA and RR-extrapolated iterates
with constant stepsizes enjoy significantly faster initial convergence than those with diminishing
stepsizes. A general choice of diminishing stepsize is of the form αk = a/(b + kc), where a, b and c
are hyperparameters. Tuning the best hyperparameters for diminishing stepsize is generally more
challenging than a single parameter for constant stepsize.

We also perform experiments on MDPs with linear function approximation. We observe similar
behaviors of TA iterates and RR extrapolated iterates as in the tabular case; see Section G for
details.

Our next set of experiments demonstrates the asympotitic normality of Q-learning averaging iterates.
We consider different initializations q0, different number of iterations n and different stepsizes α = 0.4
and α′ = 0.2. We plot the density of n−1/2Sn(ϕ) = n−1/2∑n

k=1 ϕ(qk) with the test function
ϕ(qk) = ∥qk − q∗∥∞ for 1000 Monte Carlo runs. Figures (2(a),2(d)) show the effect of different
initializations (blue, orange) on the normality after a moderate number of iterations n = 2×103. We
observe that the impact of initialization becomes negligible in the long run from Figures (2(b),2(e)),
and the distribution is approximately Gaussian. Lastly, Figures (2(c),2(f)) show the impact of
stepsize on the normality. In particular, a larger stepsize α (blue) induces a larger mean. These
observations are consistent with our Theorems 2 and 3.

(a) (b) (c)

(d) (e) (f)

Figure 2: First and second rows correspond to 1 × 3 Gridword and 4 × 4 Gridworld, respectively.
Figures (2(a), 2(d)) and (2(b), 2(e)) show the density of n− 1

2 Sn(ϕ) with different initializations for
different number of iterations. Figure (2(c), 2(f)) show the density with different stepsizes.

6 Conclusions

In this work, we provide a comprehensive study of asynchronous Q-learning with constant stepsizes,
through the framework of Markov chain theory. We establish the distributional convergence of
the iterates, characterize the convergence rate, and prove a central limit theorem for the averaged
iterates. Our convergence results lead to a refined characterization of the error. In particular, the
explicit expansion of the asymptotic bias w.r.t. stepsize α allows one to use the RR extrapolation
for bias reduction. There are several interesting directions one can take to extend our work. First,
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our CLT, together with our bias characterization and the Richardson-Romberg de-biasing scheme,
allow one to create confidence intervals for the output of the Q-learning algorithms. Second, our
current results require the assumption of local linearity in the neighborhood of the optimal solution.
Extending our analysis without this assumption is a direction worth pursuing.
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A Additional Related Work

Q-learning. An increasing volume of recent work has been dedicated to understanding finite-time
guarantees of Q-learning variants. There are two types of results on the error of the estimate qk:
high probability bounds and mean (square) error bounds. For classical asynchronous Q-learning,
as considered in this paper, Beck & Srikant (2012) provide the first result on MSE with constant
stepsize and Chen et al. (2021) improve the result by at least a |S||A| factor. The work by Li et al.
(2023a) presents the best known high probability sample complexity. It is worth noting that these
two types of bounds are not directly comparable, as discussed in Chen et al. (2021). Importantly,
these results are achieved either by rescaled linear stepsize αk = a/(b + k) (Qu & Wierman, 2020;
Chen et al., 2021) or by a carefully chosen constant stepsize based on the target accuracy (Chen
et al., 2021; Li et al., 2023a; Bravo & Cominetti, 2024). Contrasting with these findings, our results
provide a precise characterization of the convergence rate as well as the bias induced by any constant-
stepsize α in a given range. Our explicit characterization enables the application of RR technique,
leading to an estimate with reduced bias, while simultaneously enjoying the exponential convergence
of the optimization error.

Some recent work also studies Polyak-Ruppert averaged Q-learning. Xie & Zhang (2022) and Li et al.
(2023b) prove a functional central limit theorem for the averaged iterates of synchronous Q-learning
with constant stepsize and diminishing stepsize, respectively. In contrast, we focus on asynchronous
Q-learning involving Markovian data.

Stochastic approximation. There is a growing interest in investigating general SA with constant
stepsize. Most work along this line considers i.i.d. or martingale difference noise, and establishes
finite-time guarantees for contractive/linear SA (Chen et al., 2020a; Mou et al., 2020; Durmus et al.,
2021b) or SGD (Dieuleveut et al., 2020; Yu et al., 2021). Recent work investigates constant-stepsize
SA with Markovian noise, motivated by applications in RL. For linear SA, the work by Srikant &
Ying (2019) provides finite-time upper bounds on the MSE. Mou et al. (2021) study LSA with PR
averaging and presents instance-dependent MSE upper bounds with tight dimension dependence.
The work by Durmus et al. (2021c) shows a finite-time upper bound for the p-th of LSA iterate
on general state space. The paper Lauand & Meyn (2022) shows that LSA with Markovian noise
admits a biass that can not be eliminated by averaging. The work Huo et al. (2023) establishes
the distributional convergence of LSA iterates, and provides an explicit asymptotic expansion of the
bias in stepsize. Going beyond LSA, the work Chen et al. (2022b) considers contractive SA under a
strong monotone condition and provides finite-time upper bound on the MSE.

Our results have some similarities to Dieuleveut et al. (2020, Proposition 2), Durmus et al. (2021b,
Theorem 3) and Huo et al. (2023), in that we also study instances of SA with constant stepsizes
through Markov chain theory. However, our setting is different from Durmus et al. (2021b, Theorem
3) as the sampling process in RL naturally induces Markovian noise, whereas they consider i.i.d.
data. While the work Huo et al. (2023) also considers Markovian noise, their focus is on linear SA. In
contrast, Q-learning involves nonsmooth update, which brings additional challenges on the analysis
of convergence and bias. In particular, for convergence proof, the difference between two coupled
LSA iterates can be reformulated as an LSA; however, this is not the case for Q-learning, which
requires a novel analysis for the coupled iterates. For the bias analysis, we employ a local linearization
method to decompose the Q-learning operator into a linear term and a remaining approximation
term. While the technique for LSA (Huo et al., 2023) can be used to analyse the linear part, it is
highly nontrivial to show the remaining term is of higher order dependence on α. We establish this
result by analyzing the fourth moment of the iterates. Our techniques may be of independent interest
and have the potential to be applied to the analysis of other nonsmooth/nonlinear SA algorithms.

Q-learning Earlier work established the asymptotic convergence of Q-learning algorithm with
diminishing stepsize (Tsitsiklis, 1994; Szepesvári, 1997). Over the past few years, an increasing
volume of work has been dedicated to understanding finite-time guarantees of Q-learning in various
scenarios. from tabular setting (Beck & Srikant, 2012; Chen et al., 2021; Qu & Wierman, 2020;
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Wainwright, 2019a; Li et al., 2023a) to function approximation (Chen et al., 2022b; Xu & Gu, 2020;
Du et al., 2020; Cai et al., 2019). In this paper we focus on the classical asynchrounous Q-learning.
There is another variant of Q-learning that concerns an synchronous setting, where all state-action
pairs are updated simultaneously at each step. This setting requires access to a simulator, which
generates independent samples for each state-action pair. For synchronous Q-learning, the best-
known sample complexity for mean error bound is Õ(SA(1 − γ)−5ϵ−2) (Wainwright, 2019a; Chen
et al., 2020b). The paper Li et al. (2021) provides the state-of-art high probability sample complexity
Õ( SA

(1−γ)4ϵ2 ). In this paper, we focus on the classical asynchronous Q-learning which updates only a
single state-action pair upon each observation. The Markovian noise inherited in the asynchronous
model makes it considerably more challenging to analyze than the synchronous case.

We also note that there are other lines of work focusing on Q-learning variants that aim to accelerate
convergence and improve sample complexity, such as variance-reduced Q-learning (Li et al., 2020;
Wainwright, 2019b; Sidford et al., 2018), speedy Q-learning (Azar et al., 2011) and double Q-
learning (Weng et al., 2020). Another direction considers Q-learning with sophisticated exploration
strategies, with an emphasis on regret bound (Jin et al., 2018; Bai et al., 2019). Regret is a metric
fundamentally different from finite-sample bounds, and techniques for these two types of guarantees
are quite different. A comparison with these results is beyond the scope of this paper.

Stochastic approximation. There is a rich literature on the study of SA. Classical SA theory
mainly focuses on the asymptotic convergence (Kushner & Yin, 2003; Borkar, 2008; Borkar & Meyn,
2000; Blum, 1954), typically assuming a diminishing stepsize sequence. More recent studies have
shifted the focus to non-asymptotic results. In particular, there is a growing interest in investigating
general SA and SGD algorithms with constant stepsize. Most work along this line considers SA or
SGD with i.i.d. or martingale difference noise, and establishes finite-time bounds. The paper Chen
et al. (2020a) considers contractive SA and presents an upper bounds on the MSE. Lakshminarayanan
& Szepesvári (2018) analyzes linear SA (LSA) and establishes finite-time upper and lower bounds
on the MSE. The work Mou et al. (2020) refines these results, providing tight bounds with the
optimal dependence on problem-specific constants as well as a central limit theorem (CLT) for the
averaged iterates. There are also some recent studies developing new bounds on random matrix
products to analyze LSA: Durmus et al. (2021b) establishes tight concentration bounds of LSA, and
Durmus et al. (2022) extends these bounds to LSA with iterate averaging. In the context of SGD,
the work in Dieuleveut et al. (2020) considers strongly convex and smooth functions. They prove
that the iterates converge to a unique stationary distribution by Markov chain theory. Subsequent
work generalizes this result to non-convex and non-smooth functions with quadratic growth (Yu
et al., 2021), and proves asymptotic normality of the averaged SGD iterates. The work Chen et al.
(2022a) exams the limit of the stationary distribution as stepsize goes to zero. All these results are
established under the i.i.d. noise setting. Additionally, Bianchi et al. (2022) explores SGD for non-
smooth non-convex functions with martingale difference noise, and establishes the weak convergence
of the iterates to the set of critical points of the objective function.

B Proof of Theorem 1

In this section, we provide the proof of Theorem 1. The first part of the proof, Section B.1, involves
coupling through the construction of two iterates of Q-learning. Using the result of this step, we
then establish the existence and uniqueness of the stationary distribution for the joint Markov chain
(xk, qk)k≥0 (part 1 and 2 of Theorem 1) in Section B.2. We prove the convergence rate (part 3 of
Theorem 1) in Section B.3.
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B.1 Coupling and Geometric Convergence

We construct a pair of coupled Markov chains, (xk, q
[1]
k )k≥0 and (xk, q

[2]
k )k≥0, defined as

q
[1]
k+1(sk, ak) = q

[1]
k (sk, ak) + α

(
r(sk, ak) + γ max

a
q

[1]
k (sk+1, a) − q

[1]
k (sk, ak)

)
,

q
[2]
k+1(sk, ak) = q

[2]
k (sk, ak) + α

(
r(sk, ak) + γ max

a
q

[2]
k (sk+1, a) − q

[2]
k (sk, ak)

)
.

(13)

Here (q[1]
k )k≥0 and (q[2]

k )k≥0 are two iterates generated by the Q-learning algorithm, coupled by
sharing the underlying data stream (xk)k≥0. We assume that the initial iterates q

[1]
0 and q

[2]
0 may

depend on each other and on x0, but are independent of (xk)k≥1 given x0.

Define the iterates difference as wk := q
[1]
k − q

[2]
k . Note that the dynamic for {wk}k≥0 can be

formulated as follows:

wk+1(sk, ak) = (1 − α)wk(sk, ak) + αγ
(

max
a

q
[1]
k (sk+1, a) − max

a
q

[2]
k (sk+1, a)

)
.

We can exploit the dynamic of {wk}k≥0 to establish its convergence rate, as stated in Proposition 1.
The proof of Proposition 1 is deferred to Section B.4.

When αtα ≤ c0
(1−β)2

log(|S∥A|) , we can apply Proposition 1 to bound the square of W2 distance between
q

[1]
k and q

[2]
k as follows: for all k ≥ tα,

W 2
2

(
L
(

q
[1]
k

)
, L
(

q
[2]
k

)) (i)
≤ W̄ 2

2

(
L
(

xk, q
[1]
k

)
, L
(

xk, q
[2]
k

))

(ii)
≤ E

[∥∥∥q
[1]
k − q

[2]
k

∥∥∥
2

∞

]

= E
[
∥wk∥2

∞

]

(iii)
≤ 12E

[
∥w0∥2

∞
](

1 − (1 − β) α

2

)k−tα

,

(14)

where the inequality (i) follows from the definition of W2 and W̄2; the inequality (ii) holds as the W̄2
is defined by an infimum as in equation (2); the inequality (iii) follows from applying Proposition 1.

Therefore, W 2
2

(
L
(

q
[1]
k

)
, L
(

q
[2]
k

))
decays geometrically. We will use this result in the next sub-

section to prove that (xk, qk)k≥0 converges to a unique stationary distribution.

B.2 Existence and Uniqueness of Stationary Distribution

Additional Notations. Throughout the proof, we denote the discrete metric d0(x′
0, x0) := 1{x′

0 ̸=
x0}, which is used in the definition of extended Wasserstein distance (2). Part of our analysis uses
the reversed Markov chains. An implication of Assumption 1 is that the chain {xk}k≥0 running
backward in time is also a Markov chain (Norris, 1998), with transition kernel P̂ = (p̂ij) given by
µX (j)p̂ji = µX (i)pij .

Note that equation (14) always holds for any joint distribution of initial iterates (x0, q
[1]
0 , q

[2]
0 ). After

fixing an arbitrarily chosen distribution of (x0, q
[1]
0 ), we need to carefully choose the conditional

distribution of q
[2]
0 to ensure that (xk, q

[2]
k ) d= (xk+1, q

[1]
k+1) holds for all k ≥ 0, where d= denotes

equality in distribution. Recall that P̂ represents the transition kernel for the time-reversed Markov
chain of (xk)k≥0, and the initial distribution of x0 is assumed to be mixed already. Given a specific
x0, we sample x−1 from P̂ (· | x0). Additionally, we use q

[2]
−1 to denote a random variable that satisfies
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q
[2]
−1

d= q
[1]
0 and is independent of (xk)k≥0. Finally, we set q

[2]
0 as

q
[2]
0 = q

[2]
−1 + αF (x−1, q

[2]
−1). (15)

By the property of time-reversed Markov chains, we have (xk)k≥−1
d= (xk)k≥0. Given that q

[2]
−1

d= q
[1]
0

and q
[2]
−1 is independent with (xk)k≥−1, we can prove (xk, q

[2]
k ) d= (xk+1, q

[1]
k+1) for all k ≥ 0 by

comparing the dynamic of (q[1]
k )k≥0 and (q[2]

k )k≥0 as given in equations (13) and (15).

We thus have for all k ≥ tα:

W̄ 2
2

(
L
(

xk, q
[1]
k

)
, L
(

xk+1, q
[1]
k+1

))
= W̄ 2

2

(
L
(

xk, q
[1]
k

)
, L
(

xk, q
[2]
k

))

≤ 12E
[
∥w0∥2

∞
](

1 − (1 − β) α

2

)k−tα

,

where the second inequality follows from equation (14). It follows that
∞∑

k=0
W̄ 2

2

(
L
(

xk, q
[1]
k

)
, L
(

xk+1, q
[1]
k+1

))

≤
tα−1∑

k=0
W̄ 2

2

(
L
(

xk, q
[1]
k

)
, L
(

xk+1, q
[1]
k+1

))
+ 12E

[
∥w0∥2

∞
] ∞∑

k=0

(
1 − (1 − β) α

2

)k

<∞,

where the last step holds since (1−β)α
2 ∈ (0, 1). Consequently, (L(xk, q

[1]
k ))k≥0 forms a Cauchy se-

quence with respect to the metric W̄2. Since the space P2(X × Rd) endowed with W̄2 is a Polish
space, every Cauchy sequence converges (Villani et al., 2009, Theorem 6.18). Furthermore, conver-
gence in Wasserstein 2-distance also implies weak convergence (Villani et al., 2009, Theorem 6.9).
Therefore, we conclude that the sequence (L(xk, q

[1]
k ))k≥0 converges weakly to a limit distribution

µ̄ ∈ P2(X × Rd).

Next, we show that µ̄ is independent of the initial iterate distribution of q
[1]
0 , when x0 is initialized

from its unique stationary distribution µX . Suppose there exists another sequence (xk, q̃
[1]
k )k≥0 with

a different initial distribution that converges to a limit µ̃. By triangle inequality, we have

W̄2(µ̄, µ̃) ≤ W̄2

(
µ̄, L

(
xk, q

[1]
k

))
+ W̄2

(
L
(

xk, q
[1]
k

)
, L
(

xk, q̃
[1]
k

))
+ W̄2

(
L
(

xk, q̃
[1]
k

)
, µ̃
)

k→∞−→ 0.

Note that the last step holds since W̄2

(
L
(

xk, q
[1]
k

)
, L
(

xk, q̃
[1]
k

))
k→∞−→ 0 by equation (14). We thus

have W̄2(µ̄, µ̃) = 0, which implies the uniqueness of the limit µ̄.

Moreover, we will show that the unique limit distribution µ is also a stationary distribution for the
Markov chain (xk, qk)k≥0, as stated in the following lemma.
Lemma 1. Let (xk, qk)k≥0 and (x′

k, q′
k)k≥0 be two trajectories of Q-learning iterates, where

L (x0, q0) = µ̄ and L(x′
0, q′

0) ∈ P2(X × Rd) is arbitrary. Under Assumption 1 we have

W̄ 2
2 (L (x1, q1) , L(x′

1, q′
1)) ≤ ρW̄ 2

2 (L (x0, q0) , L(x′
0, q′

0)) ,

where the quantity ρ := max
(
1 + 2(αRmax + αγqmax)2, 2(1 + αγ)2) is independent of L(x′

0, q′
0). In

particular, for any k ≥ 0, if we set L(x′
0, q′

0) = L(xk, qk), then

W̄ 2
2 (L (x1, q1) , L(xk+1, qk+1)) ≤ ρW̄ 2

2 (µ̄, L(xk, qk)) .

Proof of Lemma 1. We prove this lemma by coupling the two processes (xk, qk)k≥0 and (x′
k, q′

k)k≥0
such that

W̄ 2
2 (L (x0, q0) , L(x′

0, q′
0)) = E

[
d0(x0, x′

0) + ∥q0 − q′
0∥2

∞
]

and
xk+1 = x′

k+1 if xk = x′
k, ∀k ≥ 0.
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Since W̄2 is defined by infimum over all couplings, we have

W̄ 2
2 (L (x1, q1) , L(x′

1, q′
1)) ≤ E

[
d0(x1, x′

1) + ∥q1 − q′
1∥2

∞
]

.

We denote by e(s,a) ∈ R|S∥A| the one-hot vector with only one “1” in the location of (s, a). We have

∥q1 − q′
1∥∞ = ∥q0 − q′

0 − αe(s0,a0)q0(s0, a0) + αe(s′
0,a′

0)q
′
0(s′

0, a′
0)

+ αe(s0,a0)r(s0, a0) − αe(s′
0,a′

0)r(s′
0, a′

0)
+ αγe(s0,a0) max

a
q0(s1, a) − αγe(s′

0,a′
0) max

a
q′

0(s′
1, a)∥∞

≤ ∥q0 − q′
0 − αe(s0,a0)q0(s0, a0) + αe(s′

0,a′
0)q

′
0(s′

0, a′
0)∥∞

+ α∥e(s0,a0)r(s0, a0) − e(s′
0,a′

0)r(s′
0, a′

0)∥∞

+ αγ∥e(s0,a0) max
a

q0(s1, a) − e(s′
0,a′

0) max
a

q′
0(s′

1, a)∥∞

≤ ∥q0 − q′
0∥∞ + αd0(x′

0, x0)qmax + αrmaxd0(x′
0, x0) + αγ∥q0 − q′

0∥∞ + αγqmaxd0(x′
0, x0)

= (1 + αγ)∥q0 − q′
0∥∞ + (αrmax + α(γ + 1)qmax)d0(x′

0, x0).

Therefore, we obtain

E
[
d0(x1, x′

1) + ∥q1 − q′
1∥2

∞
]

= E [d0(x1, x′
1)] + E

[
∥q1 − q′

1∥2
∞
]

≤ E [d0(x0, x′
0)] + 2(1 + αγ)2E

[
∥q0 − q′

0∥2
∞
]

+ 2(αrmax + α(γ + 1)qmax)2E [d0(x0, x′
0)]

≤ ρW̄ 2
2 (L (x0, q0) , L(x′

0, q′
0)) ,

with ρ = max
(
1 + 2(αrmax + α(γ + 1)qmax)2, 2(1 + αγ)2) .

By the triangle inequality of extended Wasserstein 2-distance, we obtain

W̄2 (L (x1, q1) , µ̄) ≤ W̄2 (L (x1, q1) , L (xk+1, qk+1)) + W̄2 (L (xk+1, qk+1) , µ̄)
≤ ρW̄ 2

2 (µ̄, L(xk, qk)) + W̄2 (L (xk+1, qk+1) , µ̄)
k→∞−→ 0,

(16)

where the second inequality holds by Lemma 1 and last step comes from the weak convergence
result. Therefore, we have proved that (xk, qk)k≥0 converge to a unique stationary distribution µ̄.

Next, we provide the mean squared error (MSE) bound for Q-learning algorithm by restating a
variant of Theorem 3.1 in Chen et al. (2021) as follows without the assumption that rmax ≤ 1, which
can be proved by Theorem 2.1 and 3.1 in Chen et al. (2021).

Proposition 4. Under Assumption 1, and αtα ≤ c0
(1−β)2

log(|S∥A|) (c0 is a constant), for all k ≥ tα, we
obtain

E
[
∥qk − q∗∥2

∞

]
≤ cQ,1

(
1 − (1 − β) α

2

)k−tα

+ cQ
log(|S∥A|)
(1 − β)2 αtα, (17)

where cQ,1 = 3
(
∥q0 − q∗∥∞ + ∥q0∥∞ + rmax

3
)2 and cQ = 912e (3∥q∗∥∞ + rmax) .

Here, c0 is the same constant as cQ,0 appearing in Theorem 3.1 in Chen et al. (2021). We remark
that under a constant stepsize, the MSE can be upper bounded by one geometrically decaying term
and one bias term that cannot be eliminated as k → ∞; in contrast, using diminishing stepsize
αk ∝ 1

k can ensure that the MSE decays to zero, but the decaying rate is linear (Chen et al., 2021).

Finally, we establish the following lemma to bound the variance of the limit random vector q∞,
Var (q∞).
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Lemma 2. Under Assumption 1, and αtα ≤ c0
(1−β)2

log(|S∥A|) (c0 is a constant), we obtain

Var (q∞) ≤ cQ
log(|S∥A|)
(1 − β)2 αtα

and
(E[∥q∞∥∞])2 ≤ E[∥q∞∥2

∞] ≤ 2cQc0 + 2∥q∗∥2,

where cQ = 912e (3∥q∗∥∞ + rmax) .

Proof for Lemma 2. We have shown that the sequence (qk)k≥0 converges weakly to q∞ in P2(Rd).
It is well known that weak convergence in P2(Rd) is equivalent to convergence in distribution and
the convergence of the first two moments. As a result, we have

E
[
∥q∞ − q∗∥2

∞
]

= lim
k→∞

E
[
∥qk − q∗∥2

∞
]

. (18)

Taking k → ∞ on the both sides of equation (17) and combining with equation 18 yields

E[∥q∞ − q∗∥2
∞] ≤ cQ

log(|S∥A|)
(1 − β)2 αtα.

Note that q∗ is a deterministic quantity. We thus have

Var (q∞)
(i)
≤ max

s,a
Var (q∞(s, a)) ≤ E[∥q∞ − q∗∥2

∞] ≤ cQ
log(|S∥A|)
(1 − β)2 αtα,

where the inequality (i) means an upper bound on elementwise ℓ∞ norm for the covariance matrix
Var (q∞).

In addition, we have
(E[∥q∞∥∞])2 ≤ E[∥q∞∥2

∞]
≤ E[(∥q∞ − q∗∥∞ + ∥q∗∥∞)2]
≤ 2E(∥q∞ − q∗∥2

∞) + 2∥q∗∥2
∞

≤ 2cQ
log(|S∥A|)
(1 − β)2 αtα + 2∥q∗∥2

∞

≤ 2cQc0 + 2∥q∗∥2
∞.

Therefore, we have proved parts 1 and 2 of Theorem 1.

B.3 Convergence Rate

So far we have established that the Markov chain (xk, qk)k≥0 converges to a unique stationary
distribution µ̄ ∈ P2(X ×R|S||A|). As a result, (qk)k≥0 converges weakly to µ ∈ P2(R|S||A|), where µ
is the second marginal of µ̄ over R|S||A|. We next focus on the convergence rate of (qk)k≥0.

Let us consider the coupled processes defined as equation (13) in Section B.1. Suppose that the
initial iterate (x0, q

[2]
0 ) follows the stationary distribution µ̄, thus L(xk, q

[2]
k ) = µ̄ and L(q[2]

k ) = µ for
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all k ≥ 0. By equation (14), we have for all k ≥ 0 :

W 2
2

(
L(q[1]

k ), µ
)

= W 2
2

(
L(q[1]

k ), L(q[2]
k )
)

≤ W̄ 2
2

(
L(xk, q

[1]
k ), L(xk, q

[2]
k )
)

≤ 12E
[
∥q

[1]
0 − q

[2]
0 ∥2

∞
](

1 − (1 − β) α

2

)k−tα

≤ 24
(

1 − (1 − β) α

2

)k−tα

·
(
E
[
∥q

[1]
0 ∥2

∞
]

+ E
[
∥q[1]

∞ ∥2
∞
])

.

(19)

Here the last step follows from the fact that (x0, q
[2]
0 ) follows the stationary distribution, and thus

E
[
∥q

[2]
0 ∥2

∞
]

= E
[
∥q

[2]
∞ ∥2

∞
]

= E
[
∥q

[1]
∞ ∥2

∞
]

.

We have completed the proof of Theorem 1.

B.4 Proof of Proposition 1

To analyze the convergence rate of wk, we construct two new sequences {wk}k≥0 and {w̄k}k≥0 that
satisfy the following recursion:

wk+1(sk, ak) = (1 − α)wk(sk, ak) + αγ
(

min
a′

wk(sk+1, a′)
)

,

w̄k+1(sk, ak) = (1 − α)w̄k(sk, ak) + αγ
(

max
a′

w̄k(sk+1, a′)
)

.

Let w0 = w0 = w̄0. We then prove that wk and w̄k provide a lower bound and upper bound for wk,
respectively.
Lemma 3. For all k ≥ 0 and all (s, a) ∈ S × A, wk(s, a) ≤ wk(s, a) ≤ w̄k(s, a).

Proof of Lemma 3. We use an inductive argument to prove this lemma.

For k = 0, w0 = w0 = w̄0 by definition.

Now assume for k = k0, wk0 ≤ wk0 ≤ w̄k0 . For k = k0 + 1, we consider the following two cases:

For (s, a) ̸= (sk0 , ak0), we have

wk0+1(s, a) = wk0(s, a) ≤ wk0(s, a) = wk0+1(s, a) ≤ w̄k0(s, a) = w̄k0+1(s, a).

For (s, a) = (sk0 , ak0), we have

wk0+1(s, a) = (1 − α)wk0(s, a) + αγ
(

max
a′

q
[1]
k0

(sk0+1, a′) − max
a′

q
[2]
k0

(sk0+1, a′)
)

≤ (1 − α)wk0(s, a) + αγ max
a′

(
q

[1]
k0

(sk0+1, a′) − q
[2]
k0

(sk0+1, a′)
)

= (1 − α)wk0(s, a) + αγ max
a′

(wk0(sk0+1, a′))

≤ (1 − α)w̄k0(s, a) + αγ max
a′

(w̄k0(sk0+1, a′)) = w̄k0+1(s, a).

wk0+1(s, a) = (1 − α)wk0(s, a) + αγ
(

max
a′

q
[1]
k0

(xk0+1, a′) − max
a′

q
[2]
k0

(sk0+1, a′)
)

≥ (1 − α)wk0(s, a) + αγ min
a′

(
q

[1]
k0

(sk0+1, a′) − q
[2]
k0

(sk0+1, a′)
)

= (1 − α)wk0(s, a) + αγ min
a′

(wk0(sk0+1, a′))

≥ (1 − α)wk0(s, a) + αγ min
a′

(
wk0(sk0+1, a′)

)
= wk0+1(s, a).
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By induction, we complete the proof of Lemma 3.

Notice that {−wk} and {w̄k} can be viewed as the iterates generated by the Q-learning algorithm
with r(s, a) = 0 for all (s, a). Then, for both {−wk} and {w̄k}, we obtain the following bound for
the second moment of wk and w̄k by Proposition 4 with the special case of q∗ = 0 and rmax = 0.

E
[
∥wk∥2

∞

]
≤ 12E

[
∥w0∥2

∞
](

1 − (1 − β) α

2

)k−tα

,

E
[
∥w̄k∥2

∞

]
≤ 12E

[
∥w0∥2

∞
](

1 − (1 − β) α

2

)k−tα

.

By Lemma 3, the same bound can also be applied to E
[
∥wk∥2

∞

]
. We thus have

E
[
∥wk∥2

∞

]
≤ 12E

[
∥w0∥2

∞
](

1 − (1 − β) α

2

)k−tα

.

B.5 Proof of Corollary 1

Lemma 2 states that the second moment of q∞ is bounded by a constant, which is E
[
∥q∞∥2

∞
]

= O(1).
Combining this bound with equation (3) in Theorem 1, we obtain

W 2
2 (L(qk), µ) ≤ C(r, γ, P ) ·

(
1 − (1 − β) α

2

)k−tα

,

where C(r, γ, P ) is a numerical constant that only depends on the reward function r, discounted
factor γ, and stationary distribution for Markov chain (xk)k≥0.

By (Villani et al., 2009, Theorem 4.1), there exists a coupling between qk and q∞ such that

W 2
2 (L(qk), µ) = E[∥qk − q∞∥2

∞].

By the above bounds and applying Jensen’s inequality twice, we obtain that

∥E[qk − q∞]∥2
∞ ≤ (E[∥qk − q∞∥∞])2

≤ E[∥qk − q∞∥2
∞]

≤ C(r, γ, P )
(

1 − (1 − β) α

2

)k−tα

.

We thus have for all k ≥ tα,

∥E[qk] − E[q∞]∥∞ ≤ E[∥qk − q∞∥∞] ≤ C(r, γ, P )
(

1 − (1 − β) α

2

) k−tα
2

.
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For the second moment, we notice that
∥∥E
[
qkq⊤

k

]
− E

[
q∞q⊤

∞
]∥∥

∞

=
∥∥∥E
[
(qk − q∞ + q∞) (qk − q∞ + q∞)⊤

]
− E

[
q∞q⊤

∞
]∥∥∥

∞

=
∥∥∥E
[
(qk − q∞) (qk − q∞)⊤

]
+ E

[
q∞ (qk − q∞)⊤

]
+ E

[
(qk − q∞) q⊤

∞
]∥∥∥

∞

≤
∥∥∥E
[
(qk − q∞) (qk − q∞)⊤

]∥∥∥
∞

+
∥∥∥E
[
q∞ (qk − q∞)⊤

]∥∥∥
∞

+
∥∥E
[
(qk − q∞) q⊤

∞
]∥∥

∞

≤ E
[∥∥∥(qk − q∞) (qk − q∞)⊤

∥∥∥
∞

]
+ E

[∥∥∥q∞ (qk − q∞)⊤
∥∥∥

∞

]
+ E

[∥∥(qk − q∞) q⊤
∞
∥∥

∞
]

≤ E
[
∥qk − q∞∥2

∞

]
+ 2E

[∥∥q⊤
∞ (qk − q∞)

∥∥
∞
]

≤ E
[
∥qk − q∞∥2

∞

]
+ 2

(
E
[
∥qk − q∞∥2

∞

]
E
[
∥q∞∥2

∞

])1/2
.

(20)

Meanwhile, we have

E
[
∥qk − q∞∥2

∞

]
≤ C(r, γ, P )

(
1 − (1 − β) α

2

)k−tα

and E
[
∥q∞∥2

∞

]
= O(1).

Substituting the above bounds into the right-hand side of inequality (20) yields

∥∥E
[
qkq⊤

k

]
− E

[
q∞q⊤

∞
]∥∥

∞ ≤ C ′(r, γ, P )
(

1 − (1 − β) α

2

) k−tα
2

,

thereby completing the proof for Corollary 1.

C Proof of Theorem 2

Define f : X × R|S||A| → R|S||A|, such that f(x, q) := q − E(q∞). Consider {(xk, qk)}k≥0 with
x0 ∼ µX and q0 ∼ µ̄(· | x0).

∥∥∥∥∥
n−1∑

k=0
P kf

∥∥∥∥∥
∞,L2

µ̄

=

√√√√E(x0,q0)∼µ̄∥
n−1∑

k=0
E[f(xk, qk) | x0, q0]∥2∞

=

√√√√E(x0,q0)∼µ̄∥
n−1∑

k=0
E[qk | x0, q0] − nE(q∞)∥2∞

≤

√√√√E(x0,q0)∼µ̄∥
n−1∑

k=0
E[qk | x0, q0] − nE(q∞)∥2

2

=

√√√√E(x0,q0)∼µ̄

n−1∑

i,j=0
E[qi − E(q∞) | x0, q0]TE[qj − E(q∞) | x0, q0].

Define gk(x, q) := E[qk −E(q∞) | (x0, q0) = (x, q)], we then give the following Lemma 4 to uniformly
bound gk(x, q) for all (x, q) ∈ X × R|S||A|. The proof of Lemma 4 is given at section C.1.
Lemma 4. For all (x, q) ∈ X × R|S||A|, when k ≥ tα, there exist two constant λ0, λ1 such that

∥gk(x, q)∥2 ≤ λ0 · λk
1 ,

where λ0 > 0 and 0 < λ1 < 1.
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By Lemma 4, we obtain
∥∥∥∥∥

n−1∑

k=0
P kf

∥∥∥∥∥
∞,L2

µ̄

≤

√√√√E(x0,q0)∼µ̄

n−1∑

i,j=0
E[qi − E(q∞) | x0, q0]TE[qj − E(q∞) | x0, q0]

≤

√√√√E(x0,q0)∼µ̄

n−1∑

i,j=0
∥gi(x0, q0)∥2∥gj(x0, q0)∥2

≤
√

λ2
0

(1 − λ1)2 = O(1).

By Lemma 2, we can observe that
∫

∥f(x, q)∥2
∞µ̄(d(x, q)) < ∞ and

∫
f(x)µ̄(d(x, q)) = 0. Therefore,

by Theorem 2.1 in Xie & Zhang (2022), we complete the proof for Theorem 2.

C.1 Proof of Lemma 4

Recall that the Markov chain {xk}k≥0 mixes geometrically fast to the stationary distribution µX ,
and there exist c ≥ 0 and ρ ∈ (0, 1) s.t.

max
x∈X

∥pk(x, ·) − µX (·)∥T V ≤ cρk,

When k ≥ tα, we have

gk(x, q) =
∑

x′∈X

∫

q′∈R|S||A|
E[qk − E(q∞) | (x⌊ k

2 ⌋, q⌊ k
2 ⌋) = (x, q)]dP

(
(x⌊ k

2 ⌋, q⌊ k
2 ⌋) = (x′, q′) | (x0, q0) = (x, q)

)

=
∑

x′∈X

∫

q′∈R|S||A|
gk−⌊ k

2 ⌋(x′, q′)dP
(

(x⌊ k
2 ⌋, q⌊ k

2 ⌋) = (x′, q′) | (x0, q0) = (x, q)
)

=
∑

x′∈X

∫

q′∈R|S||A|
gk−⌊ k

2 ⌋(x′, q′)P
(

x⌊ k
2 ⌋ = x′ | (x0, q0) = (x, q)

)

︸ ︷︷ ︸
p(x′)

dP
(

q⌊ k
2 ⌋ = q′ | x⌊ k

2 ⌋ = x′, (x0, q0) = (x, q)
)

︸ ︷︷ ︸
η(q′|x′)

=
∑

x′∈X

∫

q′∈R|S||A|
gk−⌊ k

2 ⌋(x′, q′)µX (x′)dη(q′ | x′)
︸ ︷︷ ︸

T1

+
∑

x′∈X

∫

q′∈R|S||A|
gk−⌊ k

2 ⌋(x′, q′)(p(x′) − µX (x′))dη(q′ | x′)
︸ ︷︷ ︸

T2

.

By Corollary 1, when x0 ∼ µX , for all k ≥ tα and arbitrary q0 we have

∥E[qk] − E[q∞]∥∞ ≤ C(r, γ, P )
(

1 − (1 − β) α

2

) k−tα
2

.

Therefore, we obtain

∥T1∥2 ≤
√

|S||A|∥T1∥∞

=
√

|S||A|∥Ex′∼µX ,q′∼η(q′|x′)gk−⌊ k
2 ⌋∥∞

≤
√

|S||A|C(r, γ, P )
(

1 − (1 − β) α

2

) k−⌊ k
2 ⌋−tα

2

≤
(
√

|S||A|C(r, γ, P )
(

1 − (1 − β) α

2

)−tα
2
)(

1 − (1 − β) α

2

) k
2

.
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Note that ∥qk∥∞ ≤ qmax, ∥gk(x, q)∥∞ ≤ 2qmax, we have

∥T2∥2 ≤
√

|S||A|∥T2∥∞ ≤
√

|S||A|cρ⌊ k
2 ⌋|S|2|A| = |S| 5

2 |A| 3
2 cρ⌊ k

2 ⌋ ≤ |S| 5
2 |A| 3

2 cρ−1ρ
k
2 .

Therefore, we have

∥gk(x, q)∥2 = ∥T1 + T2∥2

≤ ∥T1∥2 + ∥T2∥2

≤
((

√
|S||A|C(r, γ, P )

(
1 − (1 − β) α

2

)−tα
2
)

+ |S| 5
2 |A| 3

2 cρ−1

)(
max

{√(
1 − (1 − β) α

2

)
,
√

ρ

})k

.

Let λ0 =
((√

|S||A|C(r, γ, P )
(

1 − (1−β)α
2

)−tα
2
)

+ |S| 5
2 |A| 3

2 cρ−1
)

and λ1 =

max
{√(

1 − (1−β)α
2

)
,
√

ρ

}
, we complete the proof of Lemma 4.

D Proof of Theorem 3

In this section, we prove Theorem 3 on the characterization of the bias E(q∞) − q∗. The proof
consists of five steps, which are given in the following five sub-sections.

D.1 Step 1: Local linearization of Operator F

Unlike linear SA, the operator F in the update rule of Q-learning (cf. equation (1)) is nonlinear
and nonsmooth, which makes the analysis considerably more challenging. To address this issue, we
employ the local linearization of the operator F around the optimal solution q∗, with a higher order
remaining term as stated in Proposition 2 and 3. We provide complete proof here.

Proof of Proposition 2. Recall that we define the unique optimal action with respect to the optimal
Q-function q∗ as

a∗
s := arg max

a
q∗(s, a).

We define a function Gq∗ : X → R|S||A|×|S||A| as follows: for each x = (s0, a0, s1) ∈ X ,

[Gq∗(x)] [(s, a), (s̄, ā)] =





1, (s, a) = (s̄, ā) ̸= (s0, a0)
γ, (s, a) = (s0, a0), (s̄, ā) = (s1, a∗

s1)
0, otherwise.

Note that the operator F (x, ·) is nonsmooth and does not admit any gradient. On the other hand,
by the uniqueness of the optimal policy π∗, we can locally linearize F (x, ·) around q∗. In particular,
Gq∗(x) − Id serves as an approximate "gradient" of the operator F (x, ·) around q∗. Define

R(x, q) = F (x, q) − F (x, q∗) − (Gq∗(x) − Id)(q − q∗).

We can observe that for ∀(s, a) ̸= (s0, a0), [R(x, q)] (s, a) = 0. For (s, a) = (s0, a0), we have

[R(x, q)] (s0, a0) = γ
(

max
a

q(s1, a) − q(s1, a∗
s1)
)

≥ 0.

If ∥q − q∗∥∞ < ∆, by Assumption 2, for any action a ̸= a∗
s1 , we have

q(s1, a∗
s1) > q∗(s1, a∗

s1) − δ

≥ q∗(s1, a) + δ

> q(s1, a).
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Thus,
[R(x, q)] (s0, a0) = γ

(
max

a
q(s1, a) − q(s1, a∗

s1)
)

= 0.

If ∥q − q∗∥∞ ≥ ∆, we have

| [R(x, q)] (s0, a0)| = γ| max
a

q(s1, a) − q(s1, a∗
s1)|

= γ| max
a

q(s1, a) − max
a

q∗(s1, a) + q∗(s1, a∗
s1) − q(s1, a∗

s1)|

≤ 2γ∥q − q∗∥∞

≤ 2γ

∆3 ∥q − q∗∥4
∞.

Combining the two situations considered above, we finally obtain that

∥R(x, q)∥∞ ≤ 2γ

∆3 ∥q − q∗∥4
∞.

which proves the first part of Proposition 2.

For the second part, we can multiply the Gq∗(x) by an arbitrary nonzero vector H ∈ R|S∥A|. Let
(sh, ah) = arg max

(s,a)∈S×A
H(s, a) and ph = µS(sh, ah). By Assumption 1, ph > 0. Without loss of

generality, we can assume H(sh, ah) > 0, otherwise we can replace H with −H. We then have

E
[
G′

q∗(x)H
]

(sh, ah) = γphE
(
H(s1, a∗

s1) | s0 = sh, a0 = ah

)
+ (1 − ph)H(sh, ah)

≤ γphH(sh, ah) + (1 − ph)H(sh, ah)
< H(sh, ah),

where the second step hold as the definition of (sh, ah) uses the maximum.

We thus have
E[Gq∗(x)]H = E [Gq∗(x)H] ̸= H.

As H is an arbitrary vector, we conclude that E(Gq∗(x)) does not have an eigenvalue of 1, thereby
completing the proof for Proposition 2.

Proof of Proposition 3: Let f(z) = 1
2 ∥z∥2

∞ and g(z) = 1
2 ∥z∥2

2. Note that g(·) is a convex, differen-
tiable, and 1-smooth function. In Proposition 3, we work with a finite demensional space R|S∥A|.
By Cauchy-Schwarz Inequality, 1√

|S∥A|
∥ · ∥2 ≤ ∥ · ∥∞ ≤ ∥ · ∥2. We construct the Generalized Moreau

Envelope of f(·) with respect to g(·) as follows:

Mη,g
f (z) = min

u∈R|S∥A|

{
f(u) + 1

η
g(z − u)

}
,

where η > 0. For the ease of exposition, we use M(·) to denote Mη,g
f (·). We restate Lemma 2.1 in

Chen et al. (2020b) below on the properties of M(·).

Lemma 5 (Lemma 2.1 in Chen et al. (2020b)). For given η > 0. Then M(·) constructed above has
the following properties:

1. (Smoothness) M(·) is convex, 1
η -smooth with respect to ∥ · ∥2.

2. There exists a norm ∥ · ∥m such that M(z) = 1
2 ∥z∥2

m. Furthermore, there exist lm, um > 0, such
that lm∥ · ∥m ≤ ∥ · ∥∞ ≤ um∥ · ∥m. Specifically, we can let lm = (1 + η

|S∥A| )1/2, um = (1 + η)1/2.
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Therefore, M(·) serves as a smooth approximation of the non-smooth function f(·). Then, we have
for ∀k ≥ 0 :

M2(qk+1 − q∗)
(a)
≤
(

M(qk − q∗) + ⟨∇M(qk − q∗), qk+1 − qk⟩ + 1
2η

∥qk+1 − qk∥2
2

)2

(b)=
(

M(qk − q∗) + α⟨∇M(qk − q∗), F (xk, qk)⟩ + α2

2η
∥F (xk, qk)∥2

2

)2

= (M(qk − q∗) + α⟨∇M(qk − q∗), F̄ (qk)⟩

+ α⟨∇M(qk − q∗), F (xk, qk) − F̄ (qk)⟩ + α2

2η
∥F (xk, qk)∥2

2)2

(c)
≤ M2(qk − q∗) + 2αM(qk − q∗)⟨∇M(qk − q∗), F̄ (qk)⟩︸ ︷︷ ︸

T1

+ 2αM(qk − q∗)⟨∇M(qk − q∗), F (xk, qk) − F̄ (qk)⟩︸ ︷︷ ︸
T2

+ α2

η
M(qk − q∗)∥F (xk, qk)∥2

2
︸ ︷︷ ︸

T3

+ 3α2⟨∇M(qk − q∗), F̄ (qk)⟩2
︸ ︷︷ ︸

T4

+3α2 ⟨∇M(qk − q∗), F (xk, qk) − F̄ (qk)⟩2
︸ ︷︷ ︸

T5

+ 3α4

4η2 ∥F (xk, qk)∥4
2

︸ ︷︷ ︸
T6

,

(21)

where (a) follows from the smoothness of M(·) in Lemma 5, (b) follows from the update rule of qk

in (1), and (c) holds by the inequality (x + y + z)2 ≤ 3(x2 + y2 + z2).

Next we derive an upper bound on M(·)2 by bounding each term of T1 − T6.

Lemma 6. For all k ≥ 0, T1 ≤ −4α (1 − γ)2
M2(qk − q∗).

Proof of Lemma 6. By Proposition 2.1 in Chen et al. (2020b), we have that

⟨∇M(qk − q∗), F̄ (qk)⟩ ≤ −2


1 − γ

(
1 + η

√
|S∥A|

1 + η

) 1
2

M(qk − q∗).

We can always choose a sufficiently small η such that
(

1+η
√

|S∥A|
1+η

) 1
2

≤ 2 − γ because γ < 1, which
is equivalent to

η ≤ (2 − γ)2 − 1√
|S∥A| − 1

. (22)

Since M(·) is non-negative, we complete the proof by multiplying 2αM(qk − q∗) on both sides.

By Lemma 6, T1 can give us a desired negative drift term of order −O(α).

By Cauchy-Schwarz Inequality, we can bound T2 by two terms. One term is proportional to M2(qk −
q∗) but still keep the negative drift generated by T1 and the other term is proportional to T5:

T2 ≤ α(1 − γ)2M2(qk − q∗) + α(1 − γ)−2⟨∇M(qk − q∗), F (xk, qk) − F̄ (qk)⟩2

= α(1 − γ)2M2(qk − q∗) + α(1 − γ)−2T5.
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Then, we can simplify equation (21) as follows when 3α ≤ (1 − γ)−2:

M2(qk+1 − q∗) ≤ (1 − 3α(1 − γ)2)M2(qk − q∗) + T3 + T4 + 2α(1 − γ)−2T5 + T6.

By Cauchy-Schwarz Inequality and Lemma A.5 in Chen et al. (2021), T3 can be bounded as follows:

T3 = α2

η
M(qk − q∗)∥F (xk, qk)∥2

2

≤ α2

η
M(qk − q∗)

(
36u2

m|S∥A|M(qk − q∗) + 2|S∥A|(3∥q∗∥∞ + rmax)2)

= 36u2
m|S∥A|α2

η
M2(qk − q∗) + 2|S∥A|α2

η
M(qk − q∗)(3∥q∗∥∞ + rmax)2

≤ 36u2
m|S∥A|α2

η
M2(qk − q∗) + α(1 − γ)2M2(qk − q∗) + |S|2|A|2α3

(1 − γ)2η2 (3∥q∗∥∞ + rmax)4.

The term T4 can be directly bounded as follows:

T4 = 3α2⟨∇M(qk − q∗), F̄ (qk)⟩2

≤ 3α2 (∥∇M(qk − q∗)∥2∥F̄ (qk)∥2
)2

= 3α2 (∥∇M(qk − q∗) − ∇M(q∗ − q∗)∥2∥F̄ (qk) − F̄ (q∗)∥2
)2

≤ 3α2

(√
|S∥A|
η

∥qk − q∗∥2∥F̄ (qk) − F̄ (q∗)∥∞

)2

≤ 3α2
(

2
η

|S∥A|∥qk − q∗∥2
∞

)2

≤ 12u4
m|S|2|A|2α2

η2 ∥qk − q∗∥4
m

= 48u4
m|S|2|A|2α2

η2 M2(qk − q∗).

By Cauchy-Schwarz Inequality, we bound T5 by the following three parts:

T5 ≤ 3⟨∇M(qk − q∗) − ∇M(qk−tα2 − q∗), F (xk, qk) − F̄ (qk)⟩2
︸ ︷︷ ︸

T51

+ 3⟨∇M(qk−tα2 − q∗), F (xk, qk) − F (xk, qk−tα2 ) + F̄ (qk−tα2 ) − F̄ (qk)⟩2
︸ ︷︷ ︸

T52

+ 3⟨∇M(qk−tα2 − q∗), F (xk, qk−tα2 ) − F̄ (qk−tα2 )⟩2
︸ ︷︷ ︸

T53

.

By Lemma A.3 in Chen et al. (2021), for all k ≥ tα2 with α satisfying αtα2 ≤ 1
12 :

T51 ≤ 3
(

144u2
m|S∥A|αtα2

η
M(qk − q∗) + 8|S∥A|αtα2

η
(3∥q∗∥∞ + rmax)2

)2

≤ 124416u4
m|S|2|A|2α2t2

α2

η2 M2(qk − q∗) + 384|S|2|A|2α2t2
α2

η2 (3∥q∗∥∞ + rmax)4,

T52 ≤ 3
(

576u2
m|S∥A|αtα2

η
M(qk − q∗) + 32|S∥A|αtα2

η
(3∥q∗∥∞ + rmax)2

)2

≤ 1990656u4
m|S|2|A|2α2t2

α2

η2 M2(qk − q∗) + 6144|S|2|A|2α2t2
α2

η2 (3∥q∗∥∞ + rmax)4.
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For term T53, we use the conditional expectation as follows:

E[T53|xk−tα2 , qk−tα2 ]
=3E

[
⟨∇M(qk−tα2 − q∗), F (xk, qk−tα2 ) − F̄ (qk−tα2 )⟩2|xk−tα2 , qk−tα2

] (23)

Let H = ∇M(qk−tα2 − q∗) · ∇M(qk−tα2 − q∗)⊤. Equation (23) can be reformulated as follows:

E[T53|xk−tα2 , qk−tα2 ]
= 3E

[
(F (xk, qk−tα2 ) − F̄ (qk−tα2 ))⊤H(F (xk, qk−tα2 ) − F̄ (qk−tα2 ))|xk−tα2 , qk−tα2

]

= 3E
[
F (xk, qk−tα2 )⊤HF (xk, qk−tα2 ) − F̄ (qk−tα2 )⊤HF̄ (qk−tα2 )|xk−tα2 , qk−tα2

]

− 6E
[
(F (xk, qk−tα2 ) − F̄ (qk−tα2 ))⊤HF̄ (qk−tα2 )|xk−tα2 , qk−tα2

]

= 3
(∑

x∈X

(
P tα2

(
xk−tα2 , x

)
− µX (x)

)
F
(
x, qk−tα2

)⊤
HF

(
x, qk−tα2

)
)

− 6
(∑

x∈X

(
P tα2

(
xk−tα2 , x

)
− µX (x)

)
F
(
x, qk−tα2

)⊤
HF̄

(
qk−tα2

)
)

(a)
≤ 6α2∥F (x̃0, qk−tα2 )∥2

2∥H∥2 + 12α2∥F (x̃1, qk−tα2 )∥2∥H∥2∥F̄ (qk−tα2 )∥2

≤ 18α2|S|2|A|2
η2 (2∥qk−tα2 ∥∞ + rmax)2∥qk−tα2 − q∗∥2

∞

≤ 18α2|S|2|A|2
η2 (2∥qk−tα2 − q∗∥∞ + 2∥q∗∥∞ + rmax)2∥qk−tα2 − q∗∥2

∞

≤ 18α2|S|2|A|2
η2 (2∥qk−tα2 − qk∥∞ + 2∥qk − q∗∥∞ + 2∥q∗∥∞ + rmax)2

· (∥qk−tα2 − qk∥∞ + ∥qk − q∗∥∞)2

≤ 18α2|S|2|A|2
η2 (2(∥qk∥∞ + rmax

3 ) + 2∥qk − q∗∥∞ + 2∥q∗∥∞ + rmax)2

· ((∥qk∥∞ + rmax
3 ) + ∥qk − q∗∥∞)2

≤ 18α2|S|2|A|2
η2 (6∥qk − q∗∥∞ + 6∥q∗∥∞ + 2rmax)2(3∥qk − q∗∥∞ + 3∥q∗∥∞ + rmax)2

= 72α2|S|2|A|2
η2 (3∥qk − q∗∥∞ + 3∥q∗∥∞ + rmax)4

≤ 186624α2|S|2|A|2
η2 M2(qk − q∗) + 576α2|S|2|A|2

η2 (3∥q∗∥∞ + rmax)4.

where (a) follows with some x̃0, x̃1 ∈ X . Here we use the facts that
∑

x∈X |P tα2
(
xk−tα2 , x

)
−

µX (x)| ≤ 2α2 (by Definition 1 of mixing time) and ∥qk−tα2 − qk∥∞ ≤ ∥qk∥∞ + rmax
3 , which has been

proved in Lemma A.2 in Chen et al. (2021).

By putting these three terms together, we obtain the following bound for E[T5]:

E(T5) ≤ |S|2|A|2(2115072u4
mα2t2

α2 + 186624α2)
η2 M2(qk − q∗)

+ |S|2|A|2(6528α2t2
α2 + 576α2)

η2 (3∥q∗∥∞ + rmax)4.
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By Lemma A.5 in Chen et al. (2021), we have

T6 ≤ 3α4

4η2
(
36u2

m|S∥A|M(qk − q∗) + 2|S∥A|(3∥q∗∥∞ + rmax)2)2

≤ 1944u4
m|S|2|A|2α4

η2 M2(qk − q∗) + 6|S|2|A|2α4

η2 (3∥q∗∥∞ + rmax)4.

Using the above bounds for T1 − T6, we can finally bound E[M2(qk+1 − q∗)] by following:

E[M2(qk+1 − q∗)] ≤ (1 − 3α(1 − γ)2)E[M2(qk − q∗)]

+ 36u2
m|S∥A|α2

η
E[M2(qk − q∗)] + α(1 − γ)2E[M2(qk − q∗)]

+ |S|2|A|2α3

(1 − γ)2η2 (3∥q∗∥∞ + rmax)2 + 48u4
m|S|2|A|2α2

η2 E[M2(qk − q∗)]

+ |S|2|A|2(4230144u4
mα3t2

α2 + 373248α3)
η2(1 − γ)2 E[M2(qk − q∗)]

+ |S|2|A|2(13056α3t2
α2 + 1152α3)

η2(1 − γ)2 (3∥q∗∥∞ + rmax)4

+ 1944u4
m|S|2|A|2α4

η2 E[M2(qk − q∗)] + 6|S|2|A|2α4

η2 (3∥q∗∥∞ + rmax)4

≤ (1 − α(1 − γ)2)E[M2(qk − q∗)]

+ |S|2|A|2(374007α3 + 13056α3t2
α2)

η2(1 − γ)2 (3∥q∗∥∞ + rmax)4,

where there exists a α0 > 0 such that the last step always hold for all α ≤ α0.

Then, we obtain that for all k ≥ tα2 :

E[M2(qk − q∗)] ≤ E[M2(qtα2 − q∗)](1 − α(1 − γ)2)k−tα2

+ |S|2|A|2(374007α2 + 13056α2t2
α2)

η2(1 − γ)4 (3∥q∗∥∞ + rmax)4.
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We can choose η = (1−γ)2√
|S∥A|

satisfying equation (22) and by (Chen et al., 2021, Theorem A.1), we
obtain the following bound for E[∥qk − q∗∥4

∞]:

E[∥qk − q∗∥4
∞] ≤ 4u4

mE[M2(qk − q∗)]
≤ 4u4

mE[M2(qtα2 − q∗)](1 − α(1 − γ)2)k−tα2

+ 4u4
m

|S|3|A|3(374007α2 + 13056α2t2
α2)

(1 − γ)8 (3∥q∗∥∞ + rmax)4

≤ u4
m

l4
m

E[∥qtα2 − q∗∥4
∞](1 − α(1 − γ)2)k−tα2

+ 4u4
m|S|3|A|3(374007α2 + 13056α2t2

α2)
(1 − γ)8 (3∥q∗∥∞ + rmax)4

≤ u4
m

l4
m

E((∥qtα2 − q0∥∞ + ∥q0 − q∗∥∞)4)(1 − α(1 − γ)2)k−tα2

+ 4u4
m|S|3|A|3(374007α2 + 13056α2t2

α2)
(1 − γ)8 (3∥q∗∥∞ + rmax)4

≤ u4
m

l4
m

(∥q0∥∞ + ∥q0 − q∗∥∞ + rmax
3 )4(1 − α(1 − γ)2)k−tα2

+ 4u4
m|S|3|A|3(374007α2 + 13056α2t2

α2)
(1 − γ)8 (3∥q∗∥∞ + rmax)4.

By Lemma 5, we can let lm = (1 + η
|S∥A| )1/2, um = (1 + η)1/2. Define

b1 =
(1 + (1−γ)2√

|S∥A|
)2

(1 + (1−γ)2

(|S∥A|) 3
2

)2
(∥q0∥∞ + ∥q0 − q∗∥∞ + rmax

3 )4,

b2 =
374007 × 4(1 + (1−γ)2√

(|S∥A|)
)2|S|3|A|3

(1 − γ)8 (3∥q∗∥∞ + rmax)4,

b3 =
13056 × 4(1 + (1−γ)2√

(|S∥A|)
)2|S|3|A|3

(1 − γ)8 (3∥q∗∥∞ + rmax)4.

We have for all k ≥ tα2 ,

E[∥qk − q∗∥4
∞] ≤ b1(1 − α(1 − γ)2)k−tα2 + b2α2 + b3α2t2

α2 .

This completes the proof of Proposition 3.

D.2 Step 2: Basic Adjoint Relationship

We first derive a recursive relationship for the following quantities

z(i) := E [q∞ | x∞ = i] , i ∈ X .

Recall that (xk)k≥0 is a time-homogeneous Markov chain with transition probability matrix P = (pij)
and a unique stationary distribution µX . Theorem 1 shows that (xk, qk)k≥0 converges in distribution
to a limit (x∞, q∞) ∼ µ̄, with marginal q∞ ∼ µ and x∞ ∼ µX . Given (x∞, q∞), let x∞+1 be a random
variable with conditional distribution P(x∞+1 = j | x∞ = i) = pij , and q∞+1 = q∞ + αF (x∞, q∞).

Since (x∞, q∞) is in the stationary, (x∞+1, q∞+1) also follows the stationary distribution µ̄. Let
d = |S∥A|. Therefore, for any test function f : X ×Rd 7→ Rd that satisfies ∥f(x, q)∥∞ ≤ C(1+∥q∥2

∞)
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for some C ∈ R, the following relationship holds (Villani et al., 2009, Theorem 6.9)

E[f(x∞, q∞)] = E[f(x∞+1, q∞+1)],

which is called Basic Adjoint Relationship (BAR).

Consider the test function f (i), i ∈ X , defined as

f (i)(x, q) = q · 1{x = i}.

Substituting f = f (i) into BAR gives

E[q∞ · 1{x∞ = i}] = E[q∞+1 · 1{x∞+1 = i}]. (24)

To simplify the presentation, we denote by ν(i) := µX (i) the probability of the Markov chain (xk)k≥0
being in state i ∈ X when in stationary. The LHS of equation (24) can be written as follows

E [q∞ · 1{x∞ = i}] = ν(i) · E [q∞ | x∞ = i] = ν(i)z(i).

Recall that P̂ = (p̂ij) is the transition kernel of the time-reversal of the Markov chain (xk)k≥0. The
RHS of equation (24) can be reformulated as

E [q∞+1 · 1{x∞+1 = i}] = ν(i)E [q∞+1 | x∞+1 = i]
= ν(i)E [q∞ + αF (x∞, q∞) | x∞+1 = i]

= ν(i)
∑

j∈X
p̂ijE [q∞ + αF (x∞, q∞) | x∞ = j, x∞+1 = i]

= ν(i)
∑

j∈X
p̂ijE [q∞ + αF (j, q∞) | x∞ = j] .

The last step follows from the fact that condition on xk, qk is conditionally independent of xk+1 for
all k ≥ 1.

By Proposition 2, we can further rewrite the above equation as

E [q∞+1 · 1{x∞+1 = i}]

= ν(i)
∑

j∈X
p̂ijE [q∞ + α (F (j, q∗) + (Gq∗(j) − Id)(q∞ − q∗) + R(j, q∞)) | x∞ = j]

= ν(i)
∑

j∈X
p̂ij [z(j) + α (F (j, q∗) + (Gq∗(j) − Id)(z(j) − q∗) + E(R(j, q∞) | x∞ = j))] .

We thus obtain the following recursive relationship for {z(i)}i∈X :

z(i) =
∑

j∈X
p̂ij [z(j) + α (F (j, q∗) + (Gq∗(j) − Id)(z(j) − q∗) + E(R(j, q∞) | x∞ = j))]

=
∑

j∈X
p̂ij [z(j) + α (F (j, q∗) + (Gq∗(j) − Id)(z(j) − q∗))] + αE [R(x∞, q∞) | x∞+1 = i] .

(25)

Note that the second term of the RHS of equation (25) can be bounded as

E [R(x∞, q∞) | x∞+1 = i] = 1
ν(i)E [R(x∞, q∞)1{x∞+1 = i}]

(i)
≤ 1

ν(i)E [R(x∞, q∞)]

(ii)= O(α2 + α2t2
α2),
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where (i) holds because R(x, q) is always positive, as shown in the proof of Proposition 2; (ii) follows
from Proposition 2, Proposition 3 and Hölder’s inequality.

Let A(x) = Gq∗(x) − Id and b(x) = F (x, q∗) − (Gq∗(x) − Id)q∗. Let D denote the operator given by
(Df)(x) = A(x)f(x) for each x ∈ X . We thus can simplify equation (25) by

z = P̂ (z + α(Dz + b)) + O(α3 + α3t2
α2). (26)

D.3 Step 3: Setting up System of δ

Define the difference
δ(i) := z(i) − µX z for each i ∈ X ,

where µX z :=
∑

i∈X ν(i)z(i). Let Π = 1 ⊗ µX . Then, by applying the operator (P̂ − Π) to both side
of above equation we obtain

(P ∗ − Π) z = (P ∗ − Π) δ.

Subtracting Πz from both sides of equation (26), we obtain

δ = (P̂ − Π)z + αP̂ (Dz + b) + O(α3 + α3t2
α2)

= (P̂ − Π)δ + αP̂ (Dz + b) + O(α3 + α3t2
α2).

(27)

Applying µX to both sides of equation (26), we obtain

µX (Dz + b) = O(α2 + α2t2
α2). (28)

Subtracting equation (28) from equation (27), we obtain

δ = (P̂ − Π)δ + α(P̂ − Π)(Dz + b) + O(α3 + α3t2
α2).

Then, we have

(I − P̂ + Π)δ = α(P̂ − Π)(Dz + b) + O(α3 + α3t2
α2).

It is well-known that (I − P̂ + Π)−1 exists by Huo et al. (2023). Therefore, we obtain

δ = α(I − P̂ + Π)−1(P̂ − Π)(Dz + b) + O(α3 + α3t2
α2). (29)

D.4 Step 4: Establishing δ = O(α)

In this sub-section, we show that δ⃗ = O(α), as stated in the following Lemma.

Lemma 7. Under Assumption 1, and αtα ≤ c0
(1−β)2

log(|S∥A|) , we have

∥δ⃗∥∞ ≤ α · B′′(r, γ, P )

for some number B′′(r, γ, P ) ∈ R that is independent of α.

Proof of Lemma 7. Recalling the definition for z(i), we have

z(i) = E [q∞ | x∞ = i] = E [q∞1 {x∞ = i}]
ν(i) .
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Then by Lemma 2 and the fact that ν(i) > 0, we have

∥z(i)∥∞ ≤ E [∥q∞∥∞]
ν(i) ≤ 1

νmin
·
√

2cQc0 + 2∥q∗∥2∞,

where νmin := min
i

ν(i) > 0.

By equation (29), we conclude that

∥δ⃗∥∞ ≤ α · B′′(r, γ, P )

for some number B′′(r, γ, P ) that is independent of α.

D.5 Step 5: Expansion of the bias

By definition, F̄ (q∗) = 0 and R(x, q∗) ≡ 0. Define Ā = EµX A(x) and b̄ = EµX b(x). Then, we have
Āq∗ + b̄ = 0. From Proposition 2, Ā is a non-singular matrix. Define D̄ be the normalized D such
that (D̄f)(x) = Ā−1A(x)f(x). Therefore, we obtain

q∗ = −Ā−1b̄

= −Ā−1µX b

= µX D̄z + O(α2 + α2t2
α2),

where the last inequality holds by equation (28).

Because δ = z − Πz, we can further obtain

q∗ = µX D̄δ + µX z + O(α2 + α2t2
α2).

Then,

µX z = q∗ − µX D̄δ + O(α2 + α2t2
α2).

z(i) = δ(i) + µX z = δ(i) + q∗ − µX D̄δ + O(α2 + α2t2
α2).

Therefore, we obtain

z = q∗ + (I − ΠD̄)δ + O(α2 + α2t2
α2). (30)

Substituting equation (30) into equation (29), we obtain

δ = α(I − P̂ + Π)−1(P̂ − Π)(Dz + b) + O(α3 + α3t2
α2)

= α (I − P̂ + Π)−1(P̂ − Π)(Aq∗ + b)︸ ︷︷ ︸
v

+ α (I − P̂ + Π)−1(P̂ − Π)D(I − ΠD̄)︸ ︷︷ ︸
Ξ

δ

+ O(α3 + α3t2
α2)

= αv + αΞδ + O(α3 + α3t2
α2).

Therefore, we can finally obtain
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E(q∞) = µX z

= q∗ − µX D̄δ + O(α2 + α2t2
α2)

= q∗ − αµX D̄v − αµX D̄Ξδ + O(α2 + α2t2
α2)

Let B = −µX D̄v. By Lemma 7, we have µX D̄Ξδ = O(α)

Therefore, we have

E(q∞) = q∗ + αB + O(α2 + α2t2
α2)

with

B = −µX D̄(I − P̂ + Π)−1(P̂ − Π)(Aq∗ + b). (31)

We complete the proof of Theorem 3.

E Proof of Corollary 2

In this section, we provide the proof of the first and second moment bounds in Corollary 2.

E.1 First Moment

First, we have

E [q̄k0,k] − q∗ = (E [q∞] − q∗) + 1
k − k0

k−1∑

t=k0

E [qt − q∞]

︸ ︷︷ ︸
T1

.

By Corollary 1, we have that for k ≥ tα,

∥E[qk] − E[q∞]∥∞ ≤ C(r, γ, P ) ·
(

1 − (1 − β) α

2

) k−tα
2

.

Then, when αtα ≤ 1, we have the following bound for T1,

∥T1∥∞ =
∥∥∥∥∥

k−1∑

t=k0

E [qt − q∞]
∥∥∥∥∥

∞

≤
k−1∑

t=k0

∥E [qt] − E [q∞]∥∞

≤ C(r, γ, P )
(

1 − (1 − β) α

2

) k0−tα
2 1

1 −
√

1 − (1−β)α
2

≤ C(r, γ, P )
(

1 − (1 − β) α

2

) k0−tα
2 4

(1 − β) α

(i)
≤ C(r, γ, P ) exp

(
− (1 − β)α(k0 − tα)

4

)
4

(1 − β) α

≤ C ′′(r, γ, P ) · 1
α

· exp
(

−α(1 − β)k0
4

)
,

where (i) follows from the inequality that (1 − u)m ≤ exp(−um) for 0 < u < 1.
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Together with Theorem 3, we have

E [q̄k0,k] − q∗ = αB(r, γ, P ) + O(α2 + α2t2
α2) + O

(
1

α(k − k0) exp
(

−α(1 − β)k0
4

))
,

thereby finishing the proof of equation (6) for the first moment.

E.2 Second Moment

We first derive the bound for the second moment of the tail-averaged iterate. Note that

E
[
(q̄k0,k − E [q∞]) (q̄k0,k − E [q∞])⊤

]

= 1
(k − k0)2E



(

k−1∑

t=k0

(qt − E [q∞])
)(

k−1∑

t=k0

(qt − E [q∞])
)⊤


= 1
(k − k0)2

k−1∑

t=k0

E
[
(qt − E [q∞]) (qt − E [q∞])⊤

]

︸ ︷︷ ︸
T1

+ 1
(k − k0)2

k−1∑

t=k0

k−1∑

l=t+1

(
E
[
(qt − E [q∞]) (ql − E [q∞])⊤

]
+ E

[
(ql − E [q∞]) (qt − E [q∞])⊤

])

︸ ︷︷ ︸
T2

.

For the term T1, we have the following decomposition,

E
[
(qt − E [q∞]) (qt − E [q∞])⊤

]

= E
[
qtq

⊤
t − qtE

[
q⊤

∞
]

− E [q∞] q⊤
t + E [q∞]E

[
q⊤

∞
]]

= E
[
qtq

⊤
t

]
− E [qt]E

[
q⊤

∞
]

− E [q∞]E
[
q⊤

t

]
+ E [q∞]E

[
q⊤

∞
]

=
(
E
[
qtq

⊤
t

]
− E

[
q∞q⊤

∞
])

+
(
E
[
q∞q⊤

∞
]

− E [q∞]E
[
q⊤

∞
])

−
(
E [qt]E

[
q⊤

∞
]

+ E [q∞]E
[
q⊤

t

]
− 2E [q∞]E

[
q⊤

∞
])

=
(
E
[
qtq

⊤
t

]
− E

[
q∞q⊤

∞
])

+ Var (q∞) − E [qt − q∞]E
[
q⊤

∞
]

− E [q∞]E
[
(qt − q∞)⊤

]

(32)

Corollary 1 and Lemma 2 imply the following bounds for k ≥ tα,

E [∥qt − q∞∥∞] ≤ C(r, γ, P ) ·
(

1 − (1 − β) α

2

) t−tα
2

(33)

∥∥E
[
qtq

⊤
t

]
− E

[
q∞q⊤

∞
]∥∥

∞ ≤ C ′(r, γ, P ) ·
(

1 − (1 − β) α

2

) t−tα
2

E [∥q∞∥∞] ≤ C ′′(r, γ, P ),
Var (q∞) ≤ C ′′′(r, γ, P ) · αtα. (34)

Substituting these bounds into equation (32), we have

E
[
(qt − E [q∞]) (qt − E [q∞])⊤

]
= O

((
1 − (1 − β) α

2

) t−tα
2

+ αtα

)
.
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Therefore, we can bound T1 as follows,

T1 = 1
(k − k0)2

k−1∑

t=k0

E
[
(qt − E [q∞]) (qt − E [q∞])⊤

]

= 1
(k − k0)2

k−1∑

t=k0

O
((

1 − (1 − β) α

2

) t−tα
2

+ αtα

)

= O
(

1
α(k − k0)2 exp

(
−α(1 − β)k0

4

))
+ O

(
αtα

k − k0

)

= O
(

1
α(k − k0)2 exp

(
−α(1 − β)k0

4

)
+ αtα

k − k0

)
.

Regarding the term T2, notice that for l > t, we have

E
[
(qt − E [q∞]) (ql − E [q∞])⊤

]
= E

[
E
[
(qt − E [q∞]) (ql − E [q∞])⊤ | qt

]]

= E
[
(qt − E [q∞])E [ql − E [q∞] | qt]⊤

]

= E
[
(qt − E [q∞]) (E [ql | qt] − E [q∞])⊤

]
.

Note that for any y ∈ Rd, it holds that

∥E [ql | qt = y] − E [q∞]∥ = ∥E [ql−t | q0 = y] − E [q∞]∥ ≤ C(r, γ, P ) ·
(

1 − (1 − β) α

2

) l−t−tα
2

,

where the second inequality holds since Corollary 1 holds for all initial value of q0.

Therefore, when l > t, we have

E
[∥∥∥(qt − E [q∞]) (E [ql | qt] − E [q∞])⊤

∥∥∥
∞

]

≤E [∥qt − E [q∞]∥∞ ∥E [ql | qt] − E [q∞]∥∞]

≤E [∥qt − E [q∞]∥∞] ·
(

C(r, γ, P ) ·
(

1 − (1 − β) α

2

) l−t−tα
2
)

≤ (E [∥qt − q∞∥∞] + E [∥q∞ − E [q∞]∥∞]) ·
(

C(r, γ, P ) ·
(

1 − (1 − β) α

2

) l−t−tα
2
)

(i)
≤
(
E [∥qt − q∞∥∞] + (Tr(Var(q∞)))1/2

)
·
(

C(r, γ, P ) ·
(

1 − (1 − β) α

2

) l−t−tα
2
)

(ii)
≤
(

C(r, γ, P ) ·
(

1 − (1 − β) α

2

) t−tα
2

+ C ′(r, γ, P )
√

αtα

)
·
(

C(r, γ, P ) ·
(

1 − (1 − β) α

2

) l−t−tα
2
)

=C2(r, γ, P ) ·
(

1 − (1 − β) α

2

) l−2tα
2

+ C ′′′′(r, γ, P ) ·
√

αtα ·
(

1 − (1 − β) α

2

) l−t−tα
2

,

where in (i) Tr(·) denotes the trace operator and we use the fact that E [∥q∞ − E [q∞]∥∞] ≤√
E
[
∥q∞ − E [q∞]∥2

∞

]
= Tr(Var(q∞))1/2; in (ii) we use the bounds in equations (33) and (34).
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In addition, note that

1
(k − k0)2

k−1∑

t=k0

k−1∑

l=t+1
O
((

1 − (1 − β) α

2

) l−2tα
2
)

≤ 1
(k − k0)2

∞∑

t=k0

∞∑

l=t+1
O
((

1 − (1 − β) α

2

) l−2tα
2
)

≤ 1
(k − k0)2

(
4

(1 − β)α

)2
O



(

1 − (1 − β) α

2

) k0−2tα
2




= O
(

1
(k − k0)2α2 exp

(
−α(1 − β)k0

4

))
,

and
1

(k − k0)2

k−1∑

t=k0

k−1∑

l=t+1
O
((

1 − (1 − β) α

2

) l−t−tα
2
)

≤ 1
(k − k0)2

k−1∑

t=k0

∞∑

l=t+1
O
((

1 − (1 − β) α

2

) l−t−tα
2
)

= O
(

1
(k − k0)α

)
.

Putting together, we obtain the following upper bound for T2,

T2 = 1
(k − k0)2

k−1∑

t=k0

k−1∑

l=t+1
O
((

1 − (1 − β) α

2

) l−2tα
2

+
√

αtα

(
1 − (1 − β) α

2

) l−t−tα
2
)

= O
(

1
(k − k0)2α2 exp

(
−α(1 − β)k0

4

)
+

√
αtα

(k − k0)α

)
.

Combining the above bounds for T1 and T2, we obtain

E
[
(q̄k0,k − E [q∞]) (q̄k0,k − E [q∞])⊤

]

=O
(

1
α(k − k0)2 exp

(
−α(1 − β)k0

4

)
+ αtα

k − k0

)

+ O
(

1
(k − k0)2α2 exp

(
−α(1 − β)k0

4

)
+
√

tα/α

(k − k0)

)

=O
( √

tα/α

(k − k0) + 1
(k − k0)2α2 exp

(
−α(1 − β)k0

4

))
.

(35)

Now we are ready to bound the LHS of equation (7). First, we have the following decomposition

E
[
(q̄k0,k − q∗) (q̄k0,k − q∗)⊤

]

=E
[
(q̄k0,k − E [q∞] + E [q∞] − q∗) (q̄k0,k − E [q∞] + E [q∞] − q∗)⊤

]

=E
[
(q̄k0,k − E [q∞]) (q̄k0,k − E [q∞])⊤

]
+ E

[
(E [q∞] − q∗) (q̄k0,k − E [q∞])⊤

]

+ E
[
(q̄k0,k − E [q∞]) (E [q∞] − q∗)⊤

]
+ E

[
(E [q∞] − q∗) (E [q∞] − q∗)⊤

]
. (36)
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For the second term of RHS of equation 36, we have

E
[
(q̄k0,k − E [q∞]) (E [q∞] − q∗)⊤

]

= 1
k − k0

(
k−1∑

t=k0

E [qt − q∞]
)

(E [q∞] − q∗)⊤

=O
(

1
α(k − k0) exp

(
−α(1 − β)k0

4

))(
αB(r, γ, P ) + O(α2 + α2t2

α2)
)

=O
(

1
k − k0

exp
(

−α(1 − β)k0
4

))
.

Similarly, we have the same bound for the third term of equation (36). For the last term of RHS of
equation (36), we have

E
[
(E [q∞] − q∗) (E [q∞] − q∗)⊤

]
= (E [q∞] − q∗) (E [q∞] − q∗)⊤

=
(
αB(r, γ, P ) + O(α2 + α2t2

α2)
) (

αB(r, γ, P ) + O(α2 + α2t2
α2)
)⊤

= α2B′(r, γ, P ) + O(α3 + α3t2
α2).

Combining all these bounds, we obtain

E
[
(q̄k0,k − q∗) (q̄k0,k − q∗)⊤

]

= α2B′(r, γ, P ) + O(α3 + α3t2
α2)

+ O
( √

tα/α

(k − k0) + 1
(k − k0)2α2 exp

(
−α(1 − β)k0

4

))

= α2B′ + O
(

α3 + α3t2
α2 +

√
tα/α

(k − k0) + + 1
(k − k0)2α2 exp

(
−α(1 − β)k0

4

))
.

thereby completing the proof of Corollary 2.

F Proof of Corollary 3

In this section, we give the proof of the first and second moment bounds in Corollary 3.

F.1 First Moment

We have

E
[
q̃

(α)
k0,k

]
− q∗ =

(
2q̄

(α)
k0,k − q̄

(2α)
k0,k

)
− q∗

=2
(

q̄
(α)
k0,k − q∗

)
−
(

q̄
(2α)
k0,k − q∗

)

(i)=2
(

αB(r, γ, P ) + O(α2 + α2t2
α2) + O

(
1

α(k − k0) exp
(

−α(1 − β)k0
4

)))

−
(

2αB(r, γ, P ) + O(α2 + α2t2
α2) + O

(
1

α(k − k0) exp
(

−α(1 − β)k0
2

)))

=O(α2 + α2t2
α2) + O

(
1

α(k − k0) exp
(

−α(1 − β)k0
4

))

where (i) follows from Corollary 2.
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F.2 Second Moment

We first introduce the following short-hands:

u1 := q̄
(α)
k0,k − E

[
q(α)

∞
]

, u2 := q̄
(2α)
k0,k − E

[
q(2α)

∞
]

and v := 2E
[
q(α)

∞
]

− E
[
q(2α)

∞
]

+ q∗.

With these notations, q̃k0,k − q∗ = 2u1 − u2 + v. We then have the following bound
∥∥∥∥E
[(

q̃
(α)
k0,k − q∗

)(
q̃

(α)
k0,k − q∗

)⊤]∥∥∥∥
∞

≤
∥∥∥∥E
[(

q̃
(α)
k0,k − q∗

)(
q̃

(α)
k0,k − q∗

)⊤]∥∥∥∥
2

=
∥∥∥E
[
(2u1 − u2 + v) (2u1 − u2 + v)⊤

]∥∥∥
2

≤ E
[
∥2u1 − u2 + v∥2

2

]

≤ 3E ∥2u1∥2
2 + 3E ∥u2∥2

2 + 3∥v∥2
2.

By equation (35), we have

E ∥u1∥2
2 = Tr

(
E
[
u1u⊤

1
] )

= O
( √

tα/α

(k − k0) + 1
(k − k0)2α2 exp

(
−α(1 − β)k0

4

))
.

Similarly, we have

E ∥u2∥2
2 = O

( √
tα/α

(k − k0) + 1
(k − k0)2α2 exp

(
−α(1 − β)k0

2

))
.

By Theorem 3, we have ∥v∥2
2 = O

(
α4 + α4t4

α2

)
.

Combining these bounds together, we have

E
[
(q̃k−k0 − q∗) (q̃k−k0 − q∗)⊤

]

= O
(
α4 + α4t4

α2
)

+ O
( √

tα/α

(k − k0) + 1
(k − k0)2α2 exp

(
−α(1 − β)k0

4

))
.

G Experiment Details

Tabular case. We consider two MDPs for our numerical experiments.

The first example is a 1 × 3 Gridword with S = {0, 1, 2} and A = {−1, 1}. For each step, the agent
can walk in two directions: left or right. If the agent walks out of the space, the agent would get
a reward of -4 and stay at the same state. Otherwise, the agent can walk to the next state with
probability of 0.95 or still stay at the same state with probability of 0.05. For the case that the agent
does not exceed the space, the reward function is determined by the current state r(s, a) = r(s) with
r(0) = 0, r(1) = 10 and r(2) = 0.5. The discounted factor is set as γ = 0.9.

The second example is a classical 4 × 4 Gridworld combined with the slippery mechanism in Frozen-
Lake. For each step, the agent can walk in four directions: left, up, right or down. Specially, there
are two state A and B in which the agent can only intend to move to A′ and B′. After the action
is selected by the behavior policy, the agent will walk in the intended direction with probability of
0.9 else will move in either perpendicular direction with equal probability of 0.05 in both directions.
If the agent walks out of the space, the agent would get a reward of -1 and stay in the same state.
Otherwise, the reward function is also determined by the current state with r(A) = 10, r(B) = 5
and r(s) = 0 for s ̸= A, B. The discounted factor is set as γ = 0.9.
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Linear function approximation. Our second set of experiments consider Q-learning with linear
function approximation. More specifically, we consider approximating the Q-function by a linear
subspace spanned by basis vectors ϕ = (ϕ1, . . . , ϕd)⊤ : S × A → Rd. The goal is to find θ∗ such
that q̃θ∗ := Φθ∗ best approximates the optimal Q function q∗, where Φ denotes the feature matrix
Φ =

[
ϕ(s1, a1) · · · ϕ(s|S|, a|A|)

]⊤ ∈ R|S||A|×d. We assume that Φ has a full column rank, which
is standard in literature (Bertsekas & Tsitsiklis, 1996; Chen et al., 2022b; Melo et al., 2008). Note
that θ∗ can be calculated by projected value iteration algorithm.

In this case, the Q-earning algorithm reduces to updating the parameter θ ∈ Rd as follows Bertsekas
& Tsitsiklis (1996):

θk+1 = θk + αϕ(sk, ak)
(

rk + γ max
a′

ϕ(sk+1, a′)⊤θk − ϕ(sk, ak)⊤θk

)
, (37)

where (sk, ak, rk, sk+1) is the sample generated by the behavior policy at time step k.

For the MDP and feature vectors, we consider a similar setup as the work (Chen et al., 2022b,
Appendix D.1). We provide the detail description here for completeness. We consider an MDP with
|S| = 20 states and |A| = 5 actions. We generate the rewards and transition probabilities as follows:
for each (s, a) ∈ S × A,

• The reward r(s, a) is drawn uniformly in [0, 1].

• For the transition probability T (·|s, a), we first obtain |S| numbers by uniformly sampling
of [0, 1], and then normalize these |S| numbers by their sum to make it a valid probability
distribution.

As for the feature matrix, we consider d = 10. For each (s, a), each element of ϕ(s, a) is drawn
from Bernoulli distribution with parameter p = 0.5, and then we normalize the features to ensure
∥ϕ(s, a) ∥ ≤ 1. We repeat this process until the matrix Φ has a full column rank.

We set the discounted factor to be γ = 0.5 and the Markovian data {xk}k≥0 is generated from a
uniformly random behavior policy.

We run Q-learning with linear function approximation (37) with initialization θ
(α)
0 = θ∗ + 10 and

stepsize α ∈ {0.1, 0.2, 0.4}. We also consider two diminishing stepsizes: αk = 1/
(
1 + (1 − γ)k

)
and

αk = 1/k0.75 as we used in tabular Q-learning. The simulation results for the Q-learning with linear
function approximation are illustrated in Figure 3. We plot the ℓ1-norm error ∥θ̄

(α)
k/2,k − θ∗∥1 for the

tail-averaged (TA) iterates θ̄
(α)
k/2,k, the RR extrapolated iterates θ̃

(α)
k with stepsizes α and 2α, and

iterates with diminishing stepsizes.

We can observe some similar results as tabular Q-learning’s:

• The larger the stepsize α, the faster it converges.

• The final TA error, which corresponds to the asymptotic bias, is approximately proportional
to the stepsize.

• RR extrapolated iterates reduce the bias.

• The TA and RR-extrapolated iterates with constant stepsizes enjoy significantly faster initial
convergence than those with diminishing stepsizes.
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Figure 3: The Q-learning with linear function approximation errors of tail-averaged (TA) iterates
and RR extrapolated iterates with different stepsizes.
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Abstract

Thompson sampling (TS) is one of the most popular exploration techniques in rein-
forcement learning (RL). However, most TS algorithms with theoretical guarantees
are difficult to implement and not generalizable to Deep RL. While the emerging
approximate sampling-based exploration schemes are promising, most existing al-
gorithms are specific to linear Markov Decision Processes (MDP) with suboptimal
regret bounds, or only use the most basic samplers such as Langevin Monte Carlo. In
this work, we propose an algorithmic framework that incorporates different approxi-
mate sampling methods with the recently proposed Feel-Good Thompson Sampling
(FGTS) approach (Zhang, 2022; Dann et al., 2021), which was previously known
to be computationally intractable in general. When applied to linear MDPs, our
regret analysis yields the best known dependency of regret on dimensionality, sur-
passing existing randomized algorithms. Additionally, we provide explicit sampling
complexity for each employed sampler. Empirically, we show that in tasks where
deep exploration is necessary, our proposed algorithms that combine FGTS and
approximate sampling perform significantly better compared to other strong base-
lines. On several challenging games from the Atari 57 suite, our algorithms achieve
performance that is either better than or on par with other strong baselines from
the deep RL literature.

1 Introduction

A fundamental problem in reinforcement learning (RL) is balancing exploration-exploitation trade-
off. One effective mechanism for addressing this challenge is Thompson Sampling (TS) (Thompson,
1933; Strens, 2000; Osband et al., 2016b), which gained popularity due to its simplicity and strong
empirical performance (Osband et al., 2016a; 2018; Ishfaq et al., 2024). While there have been
numerous works on TS in both RL theory (Osband et al., 2013; Russo, 2019; Zanette et al., 2020a;
Ishfaq et al., 2021; Xiong et al., 2022) and deep RL literature (Osband et al., 2016a; 2018; Fortunato
et al., 2018; Plappert et al., 2018; Ishfaq et al., 2024; Li et al., 2024), there remains a substantial gap
between algorithms that excel in theoretical properties and those that demonstrate strong empirical
performance. This disparity highlights the need for a unified framework that provides the ultimate
unification of theory and practice for Thompson sampling.

In particular, heuristic RL algorithms that are motivated by TS (Osband et al., 2016a; 2018; Fortu-
nato et al., 2018) have shown great empirical potential while often lacking any theoretical guarantee.
Existing RL theory works on TS suffer from sub-optimal dimension dependency compared to its up-
per confidence bound (UCB) counterparts (Jin et al., 2020; Zanette et al., 2020a; Ishfaq et al., 2021;

∗Equal contribution
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2024). Recently proposed Feel-Good Thompson sampling (FGTS) (Zhang, 2022; Dann et al., 2021)
bypasses this issue by incorporating an optimistic prior term in the posterior distribution of Q func-
tion. However, these works fail to provide any computationally tractable sampling procedure from
this posterior distribution.

Recently there has been some works that use Langevin Monte Carlo (LMC) (Dwaracherla & Van Roy,
2020; Xu et al., 2022; Ishfaq et al., 2024; Hsu et al., 2024) to implement TS which are both provably
efficient and practical. However, these works lack generality by confining only to LMC and it
remains unclear whether many other advanced approximate sampling methods are compatible with
this algorithmic scheme for implementing TS. Moreover, the theoretical analyses of these works
are limited to linear MDPs (Jin et al., 2020) while having sub-optimal regret bound. Thus, it is
unclear how the sampling error of LMC would affect the theoretical regret guarantee under more
general structural assumptions. This shows a clear divergence between the RL theory and the
deep RL literature when it comes to TS. To this end, we aim to design an approximate TS based
RL algorithm that is generalizable and flexible enough to use different approximate samplers while
achieving optimal dependency in the regret bound.

With this aim, we propose several FGTS class of algorithms that incorporates different approximate
samplers from the Markov Chain Monte Carlo (MCMC) literature. Unlike previous works that
assume exact posterior sampling (e.g., Zhang (2022); Dann et al. (2021); Agarwal & Zhang (2022a;b))
by assuming access to unrealistic sampling oracle, we propose practically implementable approximate
posterior sampling scheme under FGTS framework using different approximate samplers.

1.1 Key Contributions

We highlight the main contributions of the paper below:

• We present a class of practical and efficient TS based online RL algorithms that prioritizes
easy implementation and computational scalability. Concretely, we present practically imple-
mentable FGTS style algorithms that are based on approximate samplers from the MCMC lit-
erature. Our proposed algorithm allows flexible usage of different approximate samplers such
as Langevin Monte Carlo (LMC) (Durmus et al., 2019) or Underdamped Langevin Monte Carlo
(ULMC) (Chen et al., 2014; Cheng et al., 2018) and is easy to implement compared to other
state-of-the-art exploration focused deep RL algorithms.

• Our main theoretical result provides regret bound under general Markov decision processes and
value function classes. Our general analytical framework decomposes the regret bound into two
components: 1) the idealistic regret bound assuming exact TS (as addressed in many previous
works such as Agarwal & Zhang (2022b;a)), and 2) the additional term introduced by using
approximate samplers. This generalizable and fine-grained analysis allows us to analyze the
impact of sampling error for any RL setting with an existing exact-sampling regret bound and
known convergence rates for the approximate samplers.

• When applied to linear MDPs (Jin et al., 2020), our proposed algorithm achieves a regret bound
of Õ(dH

3
2
√

T ), where d is the dimension of the feature mapping, H is the planning horizon, and
T is the total number of steps. This regret bound has the best known dimension dependency for
any randomized and UCB based algorithms.

• We provide extensive experiments on both N -chain environments (Osband et al., 2016a) and
challenging Atari games (Bellemare et al., 2013) that require deep exploration. Our experiments
indicate our proposed algorithms perform similarly or better than state-of-the-art exploration
algorithms from the deep RL literature.

1.2 Additional Related Work

Randomized least-squares value iteration (RLSVI) based algorithms induce deep exploration by
injecting judiciously tuned random noise into the value function (Russo, 2019; Zanette et al., 2020a;
Ishfaq et al., 2021; Xiong et al., 2022). Osband et al. (2016a; 2018) propose deep RL variant of
RLSVI wherein they train an ensemble of randomly initialized neural networks and view them as
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approximate posterior samples of Q functions. Another deep RL variant of RLSVI is Noisy-Net
(Fortunato et al., 2018) that directly injects noise to neural network parameters during the training
phase. More recently, Dwaracherla & Van Roy (2020); Ishfaq et al. (2024) propose using LMC to
perform approximate TS. While Ishfaq et al. (2024) provides regret bound for their proposed LMC-
LSVI algorithm under linear MDP, their regret bound, like other existing randomized exploration
algorithms, has sub-optimal dependency on the dimension of the linear MDP. Hsu et al. (2024)
further extends LMC-LSVI to the cooperative multi-agent reinforcement learning setting. Dann et al.
(2021) proposes conditional posterior sampling based on FGTS (Zhang, 2022) with a regret bound
that has optimal dependency on the dimension in linear MDPs, but their algorithm is intractable
due to the need to access to some unknown sampler oracle.

2 Preliminary

In this paper, we consider an episodic discrete-time Markov decision process (MDP), denoted by
(S,A, H,P, r), with S being the state space, and A the action space. The MDP is non-stationary
across H different stages, which form an episode. H is also often referred to as the episode length.
P = {Ph}H

h=1 is the collection of the state transition probability distributions, Ph(· | x, a) denotes
the transition kernel at stage h ∈ [H]. Let r = {rh}H

h=1 be the collection of reward functions, which
we assume to be deterministic and bounded in [0, 1] for the simplicity of the presentation.

We define a policy π in this MDP as a collection of H functions {πh : S → A}h∈[H], where πh(x)
means the action at state x given by policy π at stage h of the episode.

At stage h ∈ [H], we define the value function V π
h : S → R as the total expected rewards col-

lected by the agent if it starts at state xh = x and follows policy π onwards, i.e., V π
h (x) =

Eπ,P
[∑H

h′=h rh′(xh′ , ah′)
∣∣xh = x

]
.

We also define the action-value function (or Q function) Qπ
h : S × A → R as the total expected

rewards by the agent if it starts at state xh = x and action ah = a and follows policy π onwards,
i.e., Qπ

h(x, a) = Eπ,P
[∑H

h′=h rh′(xh′ , ah′)
∣∣xh = x, ah = a

]
.

To simplify the notation, we denote operator [PhV π
h+1](x, a) = Ex′∼Ph(·|x,a)V

π
h+1(x′). Thus, we write

the Bellman equation associated with a policy π as

Qπ
h(x, a) = (rh + PhV π

h+1)(x, a), V π
h (x) = Qπ

h(x, πh(x)), V π
H+1(x) = 0. (2.1)

We denote the optimal policy as π∗ = {π∗
h}H

h=1, which is the collection of the optimal policies at
each stage h. We further denote V ∗

h (x) = V π∗
h (x) and Q∗

h(x, a) = Qπ∗
h (x, a). It can be shown that

π∗ is a deterministic policy and it satisfies Qπ∗
h (s, a) = maxπ Qπ(s, a) and V π∗

h (s) = maxπ V π
h (s) for

all s ∈ S and a ∈ A (Bertsekas, 2019).

We denote the Bellman optimality operator by T ∗
h that maps any function Q over S ×A to

[T ∗
h Q](x, a) = rh(x, a) + Ex′∼Ph(·|x,a)

[
maxa′∈A Qh+1(x′, a′)

]
. (2.2)

Note that the optimal Q function satisfies T ∗
h Q∗

h+1 = Q∗
h, for all h ∈ [H].

The agent follows the following iterative interaction protocol. At the beginning of each episode
k ∈ [K], an adversary picks an initial state xk

1 for stage 1, and the agent executes a policy πk and
updates the policy in the next stage according to the received rewards. We measure the suboptimality
of the agent by the total regret defined as

Regret(K) =
K∑

k=1
REGk :=

K∑

k=1

[
V ∗

1 (xk
1)− V πk

1 (xk
1)
]
.

2.1 Notations

We use a = O(b) to indicate that a ≤ Cb for a universal constant C > 0. Also, we write a = Θ(b) if
there are universal constants c′ > c > 0 such that cb ≤ a ≤ c′b, and the notation Õ(·) and Θ̃(·) mean
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Algorithm 1 Least-Squares Value Iteration with Approximate Sampling Exploration (LSVI-ASE)
1: Input: feel-good prior weight η, step sizes {τk,h > 0}k,h≥1, temperature β, friction coefficient γ,

loss function Lk(w).
2: Initialize w1,0

h = 0 for h ∈ [H], J0 = 0.
3: for episode k = 1, 2, . . . , K do
4: Receive the initial state sk

1 .
5: for step h = H, H − 1, . . . , 1 do
6: wk,0

h = w
k−1,Jk−1
h

7: for j = 1, . . . , Jk do
8: Generate wk,j

h via a sampler in Section 3.2
9: end for

10: Qk
h(·, ·)← min{Q(wk,Jk

h ; ϕ(·, ·)), H − h + 1}+

11: V k
h (·)← maxa∈A Qk

h(·, a).
12: end for
13: for step h = 1, 2, . . . , H do
14: Take action ak

h ← argmaxa∈A Qk
h(sk

h, a).
15: Observe reward rk

h(sk
h, ak

h), get next state sk
h+1.

16: end for
17: end for

they hide polylog factors in the parameters. For two probability distributions p and q on the same
probability space, we denote their total variation (TV) distance by TV (p, q). For T : Rd → Rd,
the pushforward of a distribution p is denoted as T#p, such that T#p(A) = p(T −1(A)) for any
measurable set A.

3 Algorithm Design

In this section, we present our core algorithm, a general framework that leverages Feel-Good Thomp-
son Sampling (FGTS) (Zhang, 2022; Dann et al., 2021) alongside various approximate sampling
techniques such as Langevin Monte Carlo (LMC) (Durmus et al., 2019) and Underdamped Langevin
Monte Carlo (ULMC) (Chen et al., 2014; Cheng et al., 2018). The proposed general algorithm is
displayed in Algorithm 1.

Our algorithm design resembles that of Ishfaq et al. (2024) in the sense that, unlike other approximate
TS algorithms (Russo, 2019; Zanette et al., 2020a; Ishfaq et al., 2021), it performs exploration by
coupling approximate sampling into value iteration step. However, our design choice offers significant
flexibility of the algorithm: it allows us to employ a wide range of prior distributions and integrate
different samplers, enabling us to tailor the exploration process to specific problem characteristics.
The generality of our framework allows it to address suboptimality observed in existing exploration
approaches (Ishfaq et al., 2024). By incorporating a flexible prior selection mechanism, we can
overcome limitations inherent in specific prior choices employed by other methods. This flexibility
enables us to potentially achieve better performance across diverse exploration problems.

3.1 Feel-Good Thompson Sampling

Assume we have collected data trajectories in the first k − 1 episodes as Dk−1 =
{(xτ

1 , aτ
1 , r(xτ

1 , aτ
1)), . . . , (xτ

H , aτ
H , r(xτ

H , aτ
H))}k−1

τ=1. To estimate the Q-function for stage h at the k-th
episode of the learning process, we define the following loss function for h ∈ [H]:

Lk
h(wh) = η

∑k−1
τ=1

[
rh(xτ

h, aτ
h) + maxa∈AQk

h+1(xτ
h+1, a)−Q(wh; ϕ(xτ

h, aτ
h))
]2

, (3.1)

where ϕ(·, ·) is a feature vector of the corresponding state-action pair and Q(wh; ϕ(xτ
h, aτ

h)) denotes
any possible approximation of the Q function that is parameterized by wh and takes ϕ(xτ

h, aτ
h) as
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input. Qk
h is defined in Line 10 of Algorithm 1 and is the truncated estimated Q function. Moreover,

we let Lk
0(w1) = −λmaxa∈AQ(w1; xk

1 , a), where Lk
0 is the Feel-Good exploration prior term (Zhang,

2022). The posterior distribution at episode k and stage h > 1 is then given by

qh
k (wh) ∝ ph

0 (wh) exp(−Lk
h(wh)),

where ph
0 is the prior distribution of wh. And at stage h = 1, we have q1

k(w1) ∝ p1
0(w1) exp(−Lk

1(w1)−
Lk

0(w1)). Then at episode k, the exact target (joint) posterior of Q, which is denoted by qk, is given
by

qk(w) ∝ p0(w) exp(−∑H
h=0 Lk

h(wh)), (3.2)

where p0(w) =
∏H

h=1 ph
0 (wh). Compared to standard TS (Thompson, 1933; Osband et al., 2013),

FGTS incorporates an additional exploration term exp(−Lk
0(w1)) in the likelihood function. This

term encourages the selection of value functions at the first time step that yield large values for the
initial state. This bias is particularly beneficial during early learning stages when wider exploration
is crucial.

Challenges of FGTS in practice: Despite the regret of FGTS has been proven to be achieving the
optimal dependency on the dimension in bandits (Zhang, 2022) and reinforcement learning (Dann
et al., 2021), existing FGTS algorithms are often computationally intractable as they assume access
to sampling oracles for sampling from a high-dimensional distribution at each iteration. Specifically,
previous FGTS based algorithms proposed by Zhang (2022); Dann et al. (2021) simply sample Q
function from the posterior distribution defined in (3.2) in the beginning of each episode and then
follow a greedy policy with respect to the sampled Q function. However, this assumes access to a
sampling oracle which allows one to sample from (3.2) that is not generally available in practice. Since
we cannot directly sample from the true posterior distribution qk, we propose using approximating
samplers to generate posterior estimates which we describe next.

3.2 Approximate Samplers

In this subsection, we present different approximate sampling methods which we use to approxi-
mately sample from the posterior distribution defined in (3.2). Let p ∝ e−L be a probability density
on Rd such that L is continuously differential. The goal is to generate samples from p.

Langevin Monte Carlo. LMC leverages the Euler discretization method to approximate the
continuous-time Langevin diffusion process, making it a popular sampling algorithm in machine
learning (Welling & Teh, 2011). Langevin diffusion with stationary distribution p is the stochastic
process defined by the stochastic differential equation (SDE) dwt = −∇L(wt)dt +

√
2dBt, where Bt

is a standard Brownian motion in Rd. To obtain the LMC algorithm, we take the Euler-Murayama
discretization of the SDE. For a fixed step size τ > 0, temperature β and w0 ∈ Rd, LMC is defined
by the iteration

wk+1 = wk − τ∇L(wk) +
√

2β−1τξk,

where ξk ∼ N (0, Id). Previous works have thoroughly established strong theoretical guarantees for
the convergence of LMC (Dalalyan, 2017; Xu et al., 2018; Zou et al., 2021).

In Line 8 of Algorithm 1, we can use LMC to approximately sample wk,Jk

h from the posterior defined
in (3.2). In our deep RL experiment in Section 5, we also incorporate adaptive bias term for the
gradient of loss function as introduced in Ishfaq et al. (2024).

Underdamped Langevin Monte Carlo. While LMC offers an elegant approach, its scalability
suffers as the problem dimension, error tolerance, or condition number increases (Zheng et al.,
2024; Zhang et al., 2023). To mitigate these limitations, we exploit Underdamped Langevin Monte
Carlo (ULMC), which exhibits enhanced scalability in such high-dimensional or poorly conditioned
settings. The appeal of ULMC lies in its connection to Hamiltonian Monte Carlo (HMC) (Brooks
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et al., 2011). Since underdamped Langevin diffusion (ULD) incorporates a Hamiltonian component,
its discretization can be viewed as a form of HMC. Notably, HMC has been empirically observed to
converge faster to the stationary distribution compared to LMC (Cheng et al., 2018). Introducing
a balance of exploration and exploitation through momentum, the ULD is given by the SDE

dwt = Ptdt,

dPt = −∇L(wt)dt + γPtdt +
√

2β−1γdBt,

where γ, β > 0 are friction coefficient and temperature respectively. We note that instead of using
Euler-Maruyama as for LMC, the ULMC can be implemented in the following way:

dwt = Ptdt,

dPt = −∇L(wkτ )dt + γPtdt +
√

2β−1γdBt, (3.3)

for t ∈ [kτ, (k + 1)τ ], where τ > 0 is the step-size. This formulation of ULMC can be integrated in a
closed form (Cheng et al., 2018; Zhang et al., 2023), and hence our theoretical analysis is based on
this scheme. However, obtaining the closed-form solution is computationally expensive in our setting
due to the cubic cost O(d3) of Cholesky decomposition. So, we employ an adapted Euler-Maruyama
method in our experiments for efficient numerical integration. Applying Euler-Maruyama with step
size τ > 0, we obtain the following iteration scheme of wk and Pk:

wk+1 = wk + τPk,

Pk+1 = Pk − τ∇L(wk)− γτPk +
√

2β−1γτξk, (3.4)

where ξk ∼ N (0, Id). In practice, to improve the performance, we follow Ishfaq et al. (2024) to
incorporate adaptive bias term to the gradient, which leads to the following update:

mk = α1mk−1 + (1− α1)∇L(wk)
vk = α2vk−1 + (1− α2)∇L(wk)⊙∇L(wk)

Pk = (1− γτ)Pk−1 + τ
(
∇L(wk) + amk ⊘

√
vk + λ1

)
+
√

2β−1γτξk

wk+1 = wk − τPk,

(3.5)

where the hyperparameters α1, α2 ∈ [0, 1) control the exponential decay rates of the moving aver-
ages (Kingma & Ba, 2014).

4 Theoretical Analysis

This section presents the theoretical analysis of our proposed algorithm. We begin by establishing a
regret bound for general function classes, shedding light on the impact of sampling error on regret.
Subsequently, we focus on linear MDPs (Jin et al., 2020), providing a detailed analysis of both the
regret bound and the corresponding sampling complexity.

4.1 Regret Bound for General Function Classes

Assume that the agent is given a Q-function classQ = Q1×Q2×. . .×QH of functions Q = {Qh}h∈[H]
where Qh : X × A → R. For any Q ∈ Q, h ∈ [H] and state-action pair x, a, we define the Bellman
residual as

Eh(Q; x, a) = E(Qh, Qh+1; x, a) = Qh(x, a)− T ∗
h Qh+1(x, a). (4.1)

We have the following assumptions on the value-function class:
Assumption 4.1. [Realizability]. Assume that Q∗ ∈ Q.
Assumption 4.2. [Boundedness] Assume that ∃b ≥ 1 such that for all Q ∈ Q and h ∈ [H],
Qh(x, a) ∈ [0, b− 1], for all (x, a) ∈ S ×A.
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Assumption 4.3. [Completeness] For all h ∈ [H] and Qh+1 ∈ Qh+1, there is a Qh ∈ Qh such that
Qh = T ∗

h Qh+1.

It’s important to note that these assumptions are only necessary for general function classes. One
can verify that these assumptions are satisfied in some specific settings, such as linear MDPs (Jin
et al., 2020) defined in Section 4.3.

We first introduce two metrics following Dann et al. (2021) that characterizes the structural com-
plexity of the MDP and the effective size of the value-function class Q respectively.
Definition 4.4. [Decoupling Coefficient] Let KDC be the smallest quantity so that for any sequence
of functions {Qk}k∈N ⊂ Q and h ≥ 0, it holds that,

H∑

h=1

K∑

k=1

E[xh,ah]∼p(·|Qk,x1)
[
Eh(Qk; xh, ah)

]
≤ inf

µ∈(0,1]

[
µ

H∑

h=1

K∑

k=1

k−1∑

s=1

E[xh,ah]∼p(·|Qs,x1)[Eh(Qk; xh, ah)]2 + KDC

4µ

]
.

The decoupling coefficient, KDC, measures the growth rate of average Bellman residuals compared
to cumulative squared Bellman residuals. We refer the readers to Dann et al. (2021) for further
details on relationship between decoupling coefficient and other complexity measures typically used
in RL such as Bellman-Eluder dimension (Jin et al., 2021).
Definition 4.5. For any function Q′ ∈ Qh+1, we define the set Qh(ϵ, Q′) = {Q ∈ Qh :
supx,a |Q(x, a) − T ∗

h Q′(x, a)| ≤ ϵ} of functions that have small Bellman error with Q′ for all state-
action pairs. Using this set, we define κ(ϵ) = supQ∈Q

∑H
h=1− ln ph

0 (Qh(ϵ, Qh+1)).

The set Qh(ϵ, Qh+1) includes the functions that approximately satisfy the Bellman equation and
ph

0 (Qh(ϵ, Qh+1)) denotes the probability that is assigned on this set by the prior. From the definition,
it is clear that the complexity κ(ϵ) takes a small value if the prior is high for any Q ∈ Q and in that
case, it is equivalent to an approximate completeness assumption. Please refer to Dann et al. (2021)
for further details on this metric.

We denote the sampled posterior by Algorithm 1 at episode k by q′
k, which generally deviates

from the true posterior qk defined in (3.2) due to the inherent limitations of approximate samplers
discussed in Section 3.2. At each episode k, we define the sampling error δk = TV (qk, q′

k) as the TV
distance between the true posterior and the approximate posterior generated by our sampler.

Using the quantities defined above, we present our first theorem: a frequentist (worst-case) expected
regret bound for Algorithm 1:
Theorem 4.6. Under Assumption 4.1, 4.2 and 4.3, if η ≤ 2/5b2, then

E[Regret(K)] ≤ λ

η
KDC + 2K

λ
κ(b/K2) + 6H

λ
+ b

K
+

K∑

k=1

[( η

4λ
b2H(k − 1) + b

)
· δk

]
,

where the expectation incorporates the inherent randomness of the MDP through samples drawn
from it and the algorithm’s own stochastic elements. If we further set η = 1/4b2, λ =√

Kκ(b/K2)/b2KDC and assume λb2 ≥ 1 and without loss of generality that b ≥ 16, then the
bound becomes

E[Regret(K)] = O

(
b
√
KDCκ(b2/K)K + b2H + b

K

)
+ 1

16b2
K∑

k=1
kδk. (4.2)

Remark 4.7. It is important to emphasize that the theorem establishes the relationship between
the regret and the sampling error, without necessarily asserting that the sampling error δk is small
for general function classes. In Section 4.3, we delve deeper into controlling the sampling error with
respect to the sampling complexity for linear MDPs.
Remark 4.8. The final term in (4.2) highlights that during initial episodes (small k), our approxi-
mate samplers can have relaxed accuracy requirements. This aligns with the algorithm’s exploratory
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phase, where precise posterior estimates are less crucial compared to later exploitation stages when
accurate value estimation becomes critical.
Remark 4.9. The derived regret bound from Theorem 4.6, can be decomposed into two parts:

Rorigin = λ

η
KDC+ 2K

λ
κ(b/K2)+ 6H

λ
+ b

K
, and Rsample =

K∑

k=1

[( η

4λ
b2H(k − 1) + b

)
· δk

]
. (4.3)

Here Rsample accounts for the sampling error. It is noteworthy that Rorigin mirrors Theorem 1
from Dann et al. (2021), and consequently, we adhere to their analytical framework for deriving this
part. For Rsample, we separately examine different samplers for their respective sampling complexi-
ties.
Remark 4.10. Note that if we can do TS exactly at each step, i.e. δk = 0 for all k, then Theorem 4.6
reduces to Theorem 1 in Dann et al. (2021). Also as discussed in their work, the decoupling coefficient
KDC can vary in different settings.

4.2 Analysis of Errors Induced by Approximating Samplers

It is important to note that δk within Theorem 4.6 cannot be directly controlled by the chosen
approximating samplers employed in Algorithm 1. Therefore, a further decomposition of this term
is necessary (see details in Appendix A.3):
Proposition 4.11. Let δh

k be the sampling error (in the total variation sense) induced by our
sampler at step h ∈ [H] and episode k ∈ [K] and let δk be as defined in Section 4.1. Then
δk ≤

∑H
h=1 δh

k .
Remark 4.12. Proposition 4.11 allows us to decompose the sampling error δk into individual com-
ponents δh

k , representing the total variation distance at step h within episode k. Notably, these
individual components δh

k are directly controllable by our approximate samplers. This translates to
the overall sampling error δk ≤

∑H
h=1 δh

k highlighting the crucial role of sampler accuracy in each
step in managing the cumulative error

∑H
h=1 δh

k .
Remark 4.13. One should expect both sampling error and truncation error to contribute to the
total error δk, however, by considering truncation as a transport map between probability distribu-
tions and assuming that the exact target distribution is invariant with respect to the truncation due
to its belonging to the given function class Q, we are able to disregard the effect of truncation error
using the data-processing inequality. See Appendix A.3 for details.

The proposition implies that the regret arising from the approximate sampler defined in (4.3) is
upper-bounded by Rsample ≤

∑K
k=1

[
(η/4λ)b2H(k − 1) + b) ·∑H

h=1 δh
k

]
.

4.3 Applications to Linear MDPs

A concrete example where we can interpret the regret bound from Theorem 4.6 is the linear MDP
(Jin et al., 2020; Yang & Wang, 2020; 2019) setting.
Definition 4.14. (Linear MDP). An MDP (S,A, H,P, r) is said to be a linear MDP with a feature
ϕ : S × A → Rd, if for any h ∈ [H], there exist d unknown (signed) measures µh = (µ(1)

h , . . . , µ
(d)
h )

over S and an unknown vector θh ∈ Rd such that for any (x, a) ∈ S × A, we have Ph(·|x, a) =
⟨ϕ(x, a), µh(·)⟩ and rh(x, a) = ⟨ϕ(x, a), θh⟩.
Without loss of generality, we assume ∥ϕ(x, a)∥2 ≤ 1 for all (x, a) ∈ S × A, and
max{∥µh(S)∥2, ∥θh∥2} ≤

√
d for all h ∈ [H].

We first bound κ(ϵ) defined in Definition 4.5 for linear MDP. While previous work by Dann et al.
(2021) provides bounds with a uniform prior distribution over the function class, it does not align
with the way TS algorithms are implemented in practice. For this, we consider a Gaussian distri-
bution as the prior distribution.
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Computational SamplingAlgorithm Regret Exploration Tractability Complexity
LSVI-UCB (Jin et al., 2020) Õ(d3/2H3/2√T ) UCB Yes NA
OPT-RLSVI (Zanette et al., 2020a) Õ(d2H2√T ) TS Yes NA
ELEANOR (Zanette et al., 2020b) Õ(dH3/2√T ) Optimism No NA
CPS (Dann et al., 2021) Õ(dH2√T ) FGTS No NA
LSVI-PHE (Ishfaq et al., 2021) Õ(d3/2H3/2√T ) TS Yes NA
LMC-LSVI (Ishfaq et al., 2024) Õ(d3/2H3/2√T ) LMC Yes Θ̃( κ3K3H3

d ln(dT ) )
LSVI-ASE with LMC sampler Õ(dH3/2√T ) FGTS & LMC Yes Θ̃( κ3K3H3

d ln(dT ) )
LSVI-ASE with ULMC sampler Õ(dH3/2√T ) FGTS & ULMC Yes Θ̃( κ3/2K2H2√

d ln(dT )
)

Table 1: Regret upper bound for episodic, non-stationary, linear MDPs. Here, computational
tractability refers to the ability of a computational problem to be solved in a reasonable amount of
time using a feasible amount of computational resources.

Lemma 4.15. If the stage-wise priors ph
0 are chosen as N (0,

√
dHId), then κ(ϵ) = dHO(ln(dH/ϵ)).

Remark 4.16. While Gaussian priors are commonly used (He et al., 2015; Goodfellow et al., 2016),
we highlight that the prior distribution ph

0 can be any distribution in practice, as long as a suitable
bound for κ(ϵ) exists. This flexibility allows for incorporating domain-specific knowledge into the
prior.

We can now illustrate Theorem 4.6 for linear MDP:
Corollary 4.17. If we set η = 2/5H2 and λ =

√
Kκ(H/K2)/dH3(1 + ln(2T )), then the expected

regret of Algorithm 1 after K episodes in a linear MDP is bounded as

E[Regret(K)] = O(dH
3
2
√

T ln(dT )) +
∑K

k=1 αk

(∑H
h=1 δh

k

)
,

where αk = O(
√

ln(dT )/KH2k) and T = HK is the total number of steps.

4.4 Sampling Complexity of Different Samplers

In this section, we characterize the sampling complexity of the proposed algorithms to demonstrate
that we can achieve the desired regret bound as long as the chosen sampler is executed a sufficient
number of times. We begin by establishing an appropriate notion of complexity.
Definition 4.18. (Sampling Complexity) The agent has access to the gradient ∇wQ(w; ϕ(x, a)) for
any w ∈ Rd. Then, if ∇wQ is evaluated Gk times at any episode k ∈ [K], then we define Gk as the
sampling complexity at episode k, and SC =

∑
k∈[K] Gk be the cumulative sampling complexity.

Remark 4.19. In Algorithm 1, Gk specifically represents the total number of iterations employed
by our approximate samplers from line 5 to line 9 during episode k. It follows that within our
analysis, Gk = Jk and SC =

∑
k∈[K] Gk =

∑
k∈[K] Jk.

Theorem 4.20. Consider a linear MDP defined in Definition 4.14. Assume that there exists κ > 0
such that for any (k, h) ∈ [K] × [H], the loss function defined in (3.1) satisfies Mk,hI ≥ ∇2Lk

h ≥
mk,hI and Mk,h/mk,h ≤ κ for some Mk,h ≥ mk,h > 0. Then we can achieve the regret bound of
O(dH

3
2
√

T ln(dT )) using our approximate samplers with the cumulative sampling complexity stated
below:
(1) LMC: SC = Θ̃( κ3K3H3

d ln(dT ) ) with step size τk,h = Θ̃( d ln(dT )
Mk,hH2k2κ );

(2) ULMC: SC = Θ̃( κ3/2K2H2√
d ln(dT )

) with step size τk,h = Θ̃(
√

d ln(dT )
Mk,hHk ).

Remark 4.21. Theorem 4.20 reveals a critical relationship between the choice of sampling method
and the sampling complexity of Algorithm 1. Leveraging established results on demonstrating the
faster mixing of ULMC over LMC in strongly log-concave settings (see Appendix B for details),
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the theorem confirms that Algorithm 1, when employing ULMC, achieves the desired accuracy with
lower data requirements than its LMC-based counterpart. This aligns with the intuitive notion that
ULMC’s momentum-based exploration enables faster learning, thereby reducing the necessary data
for effective Thompson sampling.

5 Experiments

In this section, we provide an empirical evaluation of our proposed algorithms with deep Q-networks
(DQNs) (Mnih et al., 2015) in two sets of environments: (1) the N-chain environment (Osband
et al., 2016a) and (2) the Atari game suite (Bellemare et al., 2013; Taiga et al., 2019). We evaluate
our algorithms with different implementations. In particular, we implement the Algorithm 1 with
different choices of prior terms and samplers. By choosing Feel-Good exploration prior term in
(3.1) and underdamped Langevin Monte Carlo sampler with adaptive bias term in (3.5), we imple-
ment the Algorithm 1 named as Feel-Good Underdamped Langevin Monte Carlo Deep Q-Network
(FG-ULMCDQN). We implement the Algorithm 1 with the Feel-Good exploration prior term and
the adaptive Langevin Monte Carlo sampler introduced in Ishfaq et al. (2024), named Feel-Good
Langevin Monte Carlo Deep Q-Network (FG-LMCDQN). We also provide an implementation for the
Algorithm 1 without the Feel-Good exploration prior term named Underdamped Langevin Monte
Carlo Deep Q-Network (ULMCDQN). Then we evaluate our implementations in the above men-
tioned environments. Our code is available at https://github.com/panxulab/LSVI-ASE.

5.1 Experiments in N-Chain

We demonstrate that our proposed algorithms can explore effectively in sparse-reward environment
by conducting experiments in N -Chain environment (Osband et al., 2016a) that demands deep
exploration capabilities to perform well. An N -chain environment can be constructed by a chain of
N > 3 states denoted by s1, s2, . . . , sN . Each episode of interaction, which starts at state s2, lasts
for N + 9 steps and in each step the agent can either move to the left or right. A myopic agent
would gravitate toward state s1 which has a small reward of r = 0.001 whereas an efficient agent
with deep exploration capabilities would try to reach state sN which has a larger reward of r = 1.
As each episode runs for N + 9 steps, the optimal return for an episode is 10. We refer the reader
to Appendix C.1 for a depiction of the environment.
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Figure 1: A comparison of different methods in
N -chain with different chain lengths N . As N
increases, the exploration hardness increases. All
results are averaged over 20 runs and the shaded
areas represent 95% confidence interval.

In our experiments, we progressively increase
the difficulty level by setting N to be 25, 50,
75, and 100. For each chain length, we run each
learning algorithm for 105 steps across 20 seeds.
As baseline algorithms, we use DQN (Mnih
et al., 2015), Bootstrapped DQN (Osband et al.,
2016a), Noisy-Net (Fortunato et al., 2018) and
Adam LMCDQN (Ishfaq et al., 2024). The per-
formance of each algorithm in each run is mea-
sured by the mean return of the last 10 evalu-
ation episodes. We sweep the learning rate and
pick the one with the best performance for each
algorithm. For our algorithms which use ULMC
as a sampler, we sweep the friction coefficient
γ. For FG-LMCDQN and FG-ULMCDQN, we
sweep the weight for the feel-good prior term η
in the loss function. Please check Appendix C.1 for further details.

Figure 1 shows the performance of our proposed algorithms as well as the baseline algorithms under
different chain lengths. The solid lines represent the average return over 20 random seeds and
the shaded areas represent the 95% confidence interval. For all of our proposed algorithms, namely
ULMCDQN, FG-ULMCDQN and FG-LMCDQN, we set Jk = 4 in Algorithm 1 for all chain lengths.

1220



RLJ | RLC 2024

0

1000

2000

3000

4000

Re
tu

rn

Alien

0

10

20

30

40
Freeway

0

250

500

750

1000

1250
Gravitar

0

5000

10000

15000

20000
H.E.R.O.

0 10 20 30 40 50
Frame (millions)

1500

1000

500

0

Re
tu

rn

Pitfall!

0 10 20 30 40 50
Frame (millions)

0

5000

10000

15000

20000
Q*bert

0 10 20 30 40 50
Frame (millions)

0

1000

2000

3000
Solaris

0 10 20 30 40 50
Frame (millions)

0

500

1000

1500
Venture

FG-ULMCDQN FG-LMCDQN ULMCDQN Adam LMCDQN NoisyNet DQN Prioritized DQN C51 Bootstrapped DQN IQN

Figure 2: The return curves of various algorithms in eight hard Atari tasks over 50 million training
frames. Solid lines correspond to the median performance over 5 random seeds, and the shaded
areas correspond to 95% confidence interval.

From Figure 1, we see that as the chain length N increases, the performance of the baselines drops
drastically. Whereas, our FGTS based algorithms FG-LMCDQN and FG-ULMCDQN are able to
maintain steady performance. In particular, we would like to highlight that FG-ULMCDQN is able
to get almost close to the optimal return of 10 for all values of N , showing the benefit of using
Feel Good prior along with underdamped LMC together in environments where deep exploration is
absolutely necessary to perform well.

5.2 Experiments in Atari Games

We evaluate our algorithms in 8 visually complicated hard exploration games, namely Alien, Freeway,
Gravitar, H.E.R.O., Pitfall, Qbert, Solaris, and Venture from the Atari game suite (Bellemare et al.,
2013; Taiga et al., 2019). As classified in Taiga et al. (2019), among these games, Alien, H.E.R.O., and
Qbert are dense reward environments and Freeway, Gravitar, Pitfall, Solaris, and Venture are sparse
reward environments. In our experiments, we set Jk = 1 in Algorithm 1 to finish the training in a
reasonable time. Following (Ishfaq et al., 2024), we also incorporate the double Q trick (Van Hasselt,
2010; Van Hasselt et al., 2016) in our implementation. As baselines we consider Adam LMCDQN
(Ishfaq et al., 2024), Noisy-Net (Fortunato et al., 2018), Prioritized DQN (Schaul et al., 2015),
C51 (Bellemare et al., 2017), Bootstrapped DQN (Osband et al., 2016a) and IQN (Dabney et al.,
2018). All algorithms are trained for 50M frames (i.e., 12.5M steps) and run for 5 different random
seeds. We refer the reader to Appendix C.2.1 for further details on training and hyper-parameter
choices. Figure 2 depicts the learning curves of all algorithms in 8 Atari games. Compared to the
baseline algorithms, our algorithms appear to be quite competitive despite being much simpler in
implementation. We highlight the advantages of approximate sampling based algorithms in Gravitar
and Venture.

Sensitivity Analysis. In Figure 3a, we draw the learning curves of FG-ULMCDQN with different
weight factor η for the FG prior term. We observe that as long the value of η is not too high, the
performance of FG-ULMCDQN is less sensitive to the value of η. In Figure 3b, we observe that for
very high or low value of friction coefficient γ, the performance of ULMCDQN collapses.

6 Conclusion

This work introduces a novel algorithmic framework that leverages efficient approximate samplers
to make FGTS practical for real-world RL. Unlike prior approaches reliant on unrealistic sampling
oracles, our framework enables computationally feasible exploration. Furthermore, our theoretical
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(a) Different FG prior weight η in FG-ULMCDQN

0 10 20 30 40 50
Frame (millions)

0

200

400

600

800

1000

1200

1400

1600

1800

Re
tu

rn

γ= 100
γ= 10
γ= 1

γ= 0.1
γ= 0.01
γ= 0.001

(b) Different friction coefficient γ in ULMCDQN

Figure 3: (a) A comparison of FG-ULMCDQN with different values of weight η for the feel good
prior term in Alien. Solid lines correspond to the average performance over 5 random seeds, and
shaded areas correspond to 95% confidence interval. The performance of FG-ULMCDQN is not
very sensitive to the values of η as long it is not very large. (b) A comparison of ULMCDQN with
different values of the friction coefficient γ in Alien.

analysis provides a deeper understanding of the relationship between samplers and regret in FGTS
algorithms. This newfound knowledge paves the way for practical exploration strategies with strong
provable guarantees. Notably, our algorithm achieves an improved regret bound in linear MDPs,
and showcases consistent performance in deep exploration environments.

Future directions include exploring the integration of alternative approximate samplers within our
framework. Promising candidates include Metropolis-adjusted Langevin Acceptance (MALA) (Be-
sag et al., 1995) and various proximal sampling algorithms (Lee et al., 2021). Investigating effi-
cient methods to incorporate these samplers into the RL setting while maintaining the framework’s
strengths will further enhance its applicability to diverse exploration problems.
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A Regret Analysis

A.1 Proof of Main Results

In this section, we restate and provide the proof of our main result Theorem 4.6 and its corollary
for the linear MDP.
Theorem A.1. [Restatement of Theorem 4.6] Under Assumption 4.1, 4.2 and 4.3, if η ≤ 2/5b2,
then

E[Regret(K)] ≤ λ

η
KDC + 2K

λ
κ(b/K2) + 6H

λ
+ b

K
+

K∑

k=1

[( η

4λ
b2H(k − 1) + b

)
· δk

]
,

where the expectation incorporates the inherent randomness of the MDP environment through
samples drawn from it and the algorithm’s own stochastic elements. If we further set η = 1/4b2 and
λ =

√
Kκ(b/K2)

b2KDC
and assume λb2 ≥ 1 and without loss of generality that b ≥ 16, then the bound

becomes

E[Regret(K)] = O

(
b
√
KDCκ(b2/K)K + b2H + b

K

)
+ 1

16b2
K∑

k=1
kδk. (A.1)

Proof of Theorem 4.6. Given any policy πk and initial state xk
1 , by Lemma A.4, we can decompose

the regret:

REGk =
H∑

h=1
Eπk

[
Qk

h(xk
h, ak

h)− rh(xk
h, ak

h)− Exh+1∼Ph(·|xk
h

,ak
h

) max
a∈A

Qk
h+1(xh+1, a)

]

−
[
V k

1 (xk
1)− V ∗

1 (xk
1)
]

=:
H∑

h=1
BEh

k − FGk.

and hence we can rewrite the expected regret of episode k (scaled by λ) as

λEQk∼q′
k
REGk = λEQk∼q′

k

[ H∑

h=1
BEh

k − FGk

]

= EQk∼q′
k

H∑

h=1

[
λBEh

k −
η

4

k−1∑

s=1
E[xh,ah]∼p(·|Qs,x1)[Eh(Qk; xh, ah)]2

]

+ EQk∼q′
k

[ H∑

h=1

η

4

k−1∑

s=1
E[xh,ah]∼p(·|Qs,x1)[Eh(Qk; xh, ah)]2 − λFGk

]

=: F dc
k + F κ

k .

Summing over k = 1, 2, . . . , K, we obtain that

λE[Regret(K)] =
K∑

k=1
F dc

k +
K∑

k=1
F κ

k .

Using Definition 4.4, we can bound the first term by

K∑

k=1
F dc

k ≤
λ2

η
KDC (A.2)
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for any η
4λ < 1. For the F κ

k term, by Assumption 4.2, Eh(Qk; xh, ah)2 ≤ b2 and |FGk| ≤ b. Therefore,
∣∣∣∣∣

H∑

h=1

η

4

k−1∑

s=1
E[xh,ah]∼p(·|Qs,x1)[Eh(Qk; xh, ah)]2 − λFGk

∣∣∣∣∣ ≤
η

4 b2H(k − 1) + λb.

Then by the property of total variation distance,

F κ
k ≤ EQk∼qk

[ H∑

h=1

η

4

k−1∑

s=1
E[xh,ah]∼p(·|Qs,x1)[Eh(Qk; xh, ah)]2 − λFGk

]
+
[

η

4 b2H(k − 1) + λb

]
· δk,

where δk = TV (qk, q′
k). The first term on the right handside is exactly the analog of F κ

k with the
expectation taken over the exact target distribution of our algorithm. By Theorem A.5 (which is
Theorem 1 of Dann et al. (2021)),

K∑

k=1
EQk∼qk

[ H∑

h=1

η

4

k−1∑

s=1
E[xh,ah]∼p(·|Qs,x1)[Eh(Qk; xh, ah)]2 − λFGk

]
≤ 2Kκ(b/K2) + 6H + λb

K
.

Hence
K∑

k=1
F κ

k ≤ 2Kκ(b/T 2) + 6H + λb

K
+

K∑

k=1

[
η

4 b2H(k − 1) + λb

]
· δk.

Combining this inequality with (A.2), we obtain that

E[Regret(K)] ≤ 1
λ

[ K∑

k=1
F dc

k +
K∑

k=1
F κ

k

]

≤ λ

η
KDC + 2K

λ
κ(b/K2) + 6H

λ
+ b

K
+

K∑

k=1

[
η

4λ
b2H(k − 1) + b

]
· δk.

If we further set η = 1/4b2 and λ =
√

Kκ(b/K2)
b2KDC

, then a direct calculation gives us

λ

η
KDC + 2K

λ
κ(b/K2) + 6H

λ
= 6b

√
KDCκ(b/K2)K + 6H

√
b2KDC

κ(b/K2)K .

Since λb2 ≥ 1, we have
√

b2KDC
κ(b/K2)K ≤ b2.

And since b ≥ 16, we have
η

4λ
b2H(k − 1) + b ≤ 1

16b2(k − 1) + b ≤ 1
16b2k.

Combining these results, we obtain (4.2).

Next, we restate Corollary 4.17 and provide proof for it.
Corollary A.2. Assume Algorithm 1 is run on a d-dimensional linear MDP. If we set η = 2

5H2 and
λ =

√
Kκ(H/K2)

dH3(1+ln(2T )) , then the expected regret after K episodes is bounded as

E[Regret(K)] ≤ O(dH
3
2
√

T ln(dT )) +
K∑

k=1
αk

( H∑

h=1
δh

k

)
,

where αk = O

(√
ln(dT )

K H2k

)
and T = HK is the total number of steps.
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Proof of Corollary 4.17. For linear MDPs, by proposition A.8, b = H, KDC ≤ 2dH(1 + 2 ln(KH))
and κ(H/K2) = dH ln(dHK). Therefore Rorigin defined in (4.3) becomes O(dH

3
2
√

T ln(dT )). More-
over, by a direct calculation,

αk := η

4λ
b2H(k − 1) + b = O

(√
ln(dT )

K
H2k

)

and hence Rsample defined in (4.3) becomes

K∑

k=1
αkδk ≤

K∑

k=1
αk

( H∑

h=1
δh

k

)
,

where the last inequality is due to Proposition 4.11. In conclusion,

E[Regret(K)] ≤ Rorigin + Rsample = O(dH
3
2
√

T ln(dT )) +
K∑

k=1
αk

( H∑

h=1
δh

k

)
.

With this result, we are ready to prove Theorem 4.20:
Theorem A.3 (Restatement of Theorem 4.20). Consider a linear MDP defined in Definition 4.14.
Assume that there exists κ > 0 such that for any (k, h) ∈ [K]× [H], the loss function defined in (3.1)
satisfies for some Mk,h ≥ mk,h > 0:

Mk,hI ≥ ∇2Lk
h ≥ mk,hI, Mk,h/mk,h ≤ κ.

Then we can achieve the regret bound O(dH
3
2
√

T ln(dT )) using our approximate samplers with the
cumulative sampling complexity stated below:
(1) LMC: SC = Θ̃( κ3K3H3

d ln(dT ) ) with step size τk,h = Θ̃( d ln(dT )
Mk,hH2k2κ );

(2) ULMC: SC = Θ̃( κ3/2K2H2√
d ln(dT )

) with step size τk,h = Θ̃(
√

d ln(dT )
Mk,hHk ).

Proof of Theorem 4.20. We give the proof for ULMC. The proof for LMC is essentially the same
using Theorem B.1. Note that for linear MDP, if we let

max
h∈[H]

δh
k ≤

O(Hd ln(dT )/
√

K)
αk

= O

(
d
√

ln(dT )
Hk

)
(A.3)

at episode k, then αk

∑H
h=1 δh

k ≤ O(H2d ln(dT )/
√

K). This implies that for linear MDP,
E[Regret(K)] = O(dH

3
2
√

T ln(dT )). For ULMC, by Theorem B.2, the requirements in (A.3) can be
achieved by setting the step size τk,h = Θ̃(

√
d ln(dKH)
Mk,hHk ) and after Nk,h = Θ̃( κ3/2Hk√

d ln(dKH)
) iterations.

Summing Nk,h over all k ∈ [K] and h ∈ [H], we obtain that the cumulative sample complexity is
Θ̃( κ3/2K2H2√

d ln(dKH)
).

A.2 Useful Lemmas

In this section, we give some lemmas that are useful in the proof of our main results.
Lemma A.4 (Regret Decomposition). The regret at episode k can be decomposed into two terms

REGk = Eπk,P

[
H∑

h=1
Qk

h(xk
h, ak

h))− [T ∗
h Qk

h+1](xk
h, ak

h)
]
− [V k

1 (xk
1)− V ∗

1 (xk
1)]
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Proof of Lemma A.4. Recall that the Bellman optimality operator T ∗
h maps any state-action func-

tion Qk
h+1 to

[T ∗
h Qk

h+1](x, a) = rh(x, a) + Ex′∼Ph(x,a)[max
a′∈A

Qk
h+1(x′, a′)],

and hence

rh(xk
h, ak

h) = [T ∗
h Qk

h+1](xk
h, ak

h)− Exk
h+1∼Ph(xk

h
,ak

h
)[max

a∈A
Qk

h+1(xk
h+1, a)].

By definition,

V πk

1 (xk
1) = Eπk

[
H∑

h=1
rh(xk

h, ak
h)
∣∣∣∣x1 = xk

1

]
.

And then, we have

V πk

1 (xk
1) = Eπk

[
H∑

h=1
rh(xk

h, ak
h)
∣∣∣∣x1 = xk

1

]

= Eπk

[
H∑

h=1

[
[T ∗

h Qk
h+1](xk

h, ak
h)− Exk

h+1∼Ph(xk
h

,ak
h

)[max
a∈A

Qk
h+1(xk

h+1, a)]
]∣∣∣∣x1 = xk

1

]

= Eπk,P

[
H∑

h=1

[
[T ∗

h Qk
h+1](xk

h, ak
h)−max

a∈A
Qk

h+1(xk
h+1, a)

]∣∣∣∣x1 = xk
1

]

= Eπk,P

[
H∑

h=1

[
[T ∗

h Qk
h+1](xk

h, ak
h)−Qk

h+1(xk
h+1, ak

h+1)
]∣∣∣∣x1 = xk

1

]

= Eπk,P

[
H∑

h=1

[
[T ∗

h Qk
h+1](xk

h, ak
h)−Qk

h(xk
h, ak

h)
]∣∣∣∣x1 = xk

1

]
+ Eπk

[
Qk

1(xk
1 , ak

1)
]

= Eπk,P

[
H∑

h=1

[
[T ∗

h Qk
h+1](xk

h, ak
h)−Qk

h(xk
h, ak

h)
]]

+ V k
1 (xk

1).

We restate Theorem 1 of Dann et al. (2021) below.
Theorem A.5 (Theorem 1 of Dann et al. (2021)). Assume that parameter η ≤ 2

5b2 is set sufficiently
small and that Assumption 4.2 holds. Then the expected regret (with Thompson sampling excuted
exactly) after K episodes on any MDP M is bounded as

E[Regret(K)] ≤ λ

η
KDC + 2K

λ
κ(b/T 2) + 6H

λ
+ b

K
,

where the expectation is over the samples drawn from the MDP and the algorithm’s internal ran-
domness.

A.3 Analysis of Sampling Error

Recalling the procedure for obtaining the Q function at episode k: we first sample wH to obtain
Qk

H , and then for h = H − 1, . . . , 1, we sample wh conditional on Qk
h+1 to obtain Qk

h. Let’s denote
the target conditional distribution of Qk

h given Qk
h+1 as qk

h,h+1. If Thompson sampling is executed
precisely at each step, we should acquire the Q function Qk

h ∼ qh
k such that qh

k = qk
h,h+1(·|Qk

h+1) for all
h ∈ [H]. We denote the joint distribution of {qh

k}h∈[H] as qk. However, due to the high computational
complexity, we can only obtain a sequence of {Q̃k

h ∼ q̃h
k}h∈[H] that satisfies q̃h

k = q̃k
h,h+1(·|Q̃k

h+1),
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where q̃k
h,h+1 is a transition kernel close to qk

h,h+1 and depends on the approximating sampler. We
denote the joint distribution of {q̃h

k}h∈[H] as q′
k. Note that given Q̃k

h+1 generated by our algorithm,
our goal is to sample from qk

h,h+1(·|Q̃k
h+1) while we can only obtain a sample close to that, denoted as

q̃h
k . Our samplers can only control the distance (error) between q̃k

h,h+1(·|Q̃k
h+1) and qk

h,h+1(·|Q̃k
h+1).

We denote their total variation distance by δh
k . However, the sampling error in Theorem 4.6 is in

terms of the distance between the joint distributions at episode k: δk = TV(qk, q′
k). Therefore,

for a concrete analysis of sampling error, it is imperative to express δk in terms of {δh
k}h∈[H]. The

expression relies on the following proposition:
Proposition A.6. Suppose that we have four random variables Xi and Yi, i = 1, 2. Denote the
conditional distribution of Yi given Xi = x by pi(·|x), i = 1, 2. Let qi be the joint distribution of
(Xi, Yi) and qX

i be the distribution of Xi, i = 1, 2. If supx TV(p1(·|x), p2(·|x)) ≤ ϵ <∞, then

TV(q1, q2) ≤ TV(qX
1 , qX

2 ) + ϵ.

Proof of Proposition A.6. In this proof, we abuse notation by identifying a measure with its density
for convenience. By definition of total variation distance,

2TV(q1, q2) =
∫
|p1(y|x)qX

1 (x)− p2(y|x)qX
2 (x)|dydx

≤
∫
|p1(y|x)qX

1 (x)− p2(y|x)qX
1 (x)|dydx +

∫
|p2(y|x)qX

1 (x)− p2(y|x)qX
2 (x)|dydx

≤
∫ (∫

|p1(y|x)− p2(y|x)|dy

)
qX

1 (x)dx +
∫ (∫

p2(y|x)dy

)
|qX

1 (x)− qX
2 (x)|dx

= 2
∫

TV(p1(·|x), p2(·|x))qX
1 (x)dx +

∫
|qX

1 (x)− qX
2 (x)|dx

≤ 2ϵ + 2TV(qX
1 , qX

2 ),

where for the last equality, we use the fact that for any fixed x, p2(y|x) is a probability density and
hence

∫
p2(y|x)dy = 1. This concludes the proof.

With this proposition in hand, we are ready to prove Proposition 4.11 which we restate here first.
Proposition A.7. Let δh

k be the sampling error (in the total variation sense) induced by our sampler
at step h episode k and δk be defined in section 3.1, h ∈ [H] and k ∈ [K]. Then δk ≤

∑H
h=1 δh

k .

Proof of Proposition 4.11. Let qh:H
k be the joint distribution of {qs

k}h≤s≤H and q̃h:H
k be the joint

distribution of {q̃s
k}h≤s≤H . Then by Proposition A.6,

δk = TV(qk, q′
k) ≤ δ1

k + TV(q2:H
k , q̃2:H

k ).

Likewise, for h = 2, . . . , H − 1,

TV(qh:H
k , q̃h:H

k ) ≤ δh
k + TV(qh+1:H

k , q̃h+1:H
k ).

Since qH:H
k = qH

k and q̃H:H
k = q̃H

k , we have TV(qH:H
k , q̃H:H

k ) = δH
k . Then we conclude the proof by

combining the above inequalities.

Now let T be the truncation map

T (x) := min{x, b}+

used in Algorithm 1. Then conditional on Q̃k
h+1, q̃h

k is now given by

q̃h
k = T#[q̃k

h,h+1(·|Q̃k
h+1)].
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Since we assume that Qk
h ∈ Q for all h and k, we have that qh

k = T#[qh
k ]. And therefore the

data-processing inequality gives

TV (q̃h
k , qh

k ) = TV (T#[q̃k
h,h+1(·|Q̃k

h+1)], T#[qh
k ]) ≤ TV (q̃k

h,h+1(·|Q̃k
h+1), qh

k ),

which is exactly the sampling error in Proposition A.7. And hence the conclusion in the proposition
still holds for δk with the truncation error.

A.4 Proof of Linear MDPs

In this section, we prove some properties for linear MDPs.
Proposition A.8. In linear MDPs, the linear function class Q satisfies Assumption 4.1 and 4.2
with b = H. And the decoupling coefficient is bounded by

KDC ≤ 2dH(1 + ln(2KH)).

Proof of Proposition A.8. Note Assumption 4.1 can be verified directly by the definition of linear
MDP. This boundedness follows from the fact that rh ∈ [0, 1] for all h ∈ [H] and hence Qh(x, a) ≤
H − h + 1 ≤ H for any x, a ∈ S × A. Since Qh is arbitrary here, we have b = H. For the upper
bound of the decoupling coefficient, we refer to (Dann et al., 2021, Proposition 1).

Proposition A.9. In linear MDPs, the linear function class Q satisfies Assumption 4.3. And given
any state x ∈ S and h ∈ [H], we have the following representation of Q ∈ Q:

Qh(x, a)− [T ∗
h Qh+1](x, a) = ⟨uh, ϕ(x, a)⟩.

Proof of Proposition A.9. The linearity of the action-value functions directly follows from the Bell-
man equation:

Qh(x, a) = rh(x, a) + (PhVh+1)(x, a) = ⟨ϕ(x, a), θh⟩+
∫

S
Vh+1(x′)⟨ϕ(x, a), dµh(x′)⟩.

And likewise

[T ∗
h Qh+1](x, a) = ⟨ϕ(x, a), θh⟩+

∫

S
max
a′∈A

Qh+1(x′, a′)⟨ϕ(x, a), dµh(x′)⟩.

Then the completeness follows by defining

Qh(x, a) = ⟨ϕ(x, a), θh +
∫

S
max
a′∈A

Qh+1(x′, a′)dµh(x′)⟩.

And therefore

Qh(x, a)− [T ∗
h Qh+1](x, a) = ⟨ϕ(x, a), uh⟩,

where uh =
∫

S(Vh+1(x′)−maxa′∈A Qh+1(x′, a′))dµh(x′).

Next, we restate Lemma 4.15 and provide proof for it.
Lemma A.10. If the stage-wise priors ph

0 are chosen as N (0,
√

dHId), then κ(ϵ) = dHO(ln(dH/ϵ)).

Proof of Lemma 4.15. By our choice of ph
0 ,

ph
0 (Qh(ϵ, Qh+1)) = O(ϵd(2π

√
dH)d/2).
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And hence

ln
(

1
ph

0 (Qh(ϵ, Qh+1))

)
= O(d ln(1/ϵ) + d ln(dH)) = dO(ln(dH/ϵ)).

And finally,

κ(ϵ) =
H∑

h=1
ln
(

1
ph

0 (Qh(ϵ, Qh+1))

)
= dHO(ln(dH/ϵ)).

B More Details on Approximate Samplers

In this section, we provide details of samplers with the target distribution µ ∝ e−L in Rd, where L is
twice continuously differentiable, satisfying the conditions mId ≼ ∇2L ≼ MId for some M ≥ m > 0.
We also define the condition number of µ by κ = M

m .

B.1 Langevin Monte Carlo (LMC)

The Langevin Monte Carlo (LMC) algorithm samples from a target distribution µ ∝ exp(−L), using
a discretized version of the continuous-time Langevin diffusion. Given an initial distribution p0, and
a step size τ > 0, LMC generates a Markov chain {wn}N

n=0, starting from w0 ∼ p0 where wn ∈ Rd.
At each iteration (n + 1), the chain updates its state, wn, using:

wn+1 = wn − τ∇L(wn) +
√

2τξn,

where ξn’s are samples from the d-dimensional standard Gaussian independent of wn. N is the
total number of iteration. The convergence of LMC to the target distribution is a well-known
result, holding true under specific assumptions (Chewi et al., 2022). For illustration, The following
theorem provides a concrete example with sufficient conditions for convergence, which establishes
the theoretical foundation for our analysis.
Theorem B.1 (Vempala & Wibisono (2019)). Denote the distribution of wn by pn. For any
ϵ ∈ [0, κ

√
d], if we take τ = O( ϵ2

κMd ), then we obtain the guarantee TV (pN , µ) ≤ ϵ after

N = Θ̃
(

κ2d

ϵ2

)
iterations.

B.2 Underdamped LMC

The underdamped Langevin dynamics (ULD) for (wt, Pt) ∈ R2d is driven by the SDE

dwt = Ptdt,

dPt = −∇L(wt)dt + γPtdt +
√

2β−1γdBt,
(B.1)

which can be viewed as a second-order Langevin dynamics. We can use different discretization
schemes to obtain discrete-time algorithms. For ULMC using the scheme (3.3), we have the following
convergence result:
Theorem B.2 (Zhang et al. (2023)). For ULMC, assume that our target distribution satisfies that
Eµ[∥ · ∥] = m1 < +∞, ∇L(0) = 0 (without loss of generality) and L(0) − min L = Õ(d). Then if
we set τ = Θ̃( ϵm

1/2
1

Md1/2 ) and γ = Θ(
√

M) with a warm start, the law of the N -th iterate of ULMC pN

satisfies

TV (pN , µ) ≤ ϵ after N = Θ̃
(

κ3/2d1/2

ϵ

)
iterations.
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C Experiment Details

In this section, we provide further details on our experiment and implementation.

C.1 N-Chain

We use ϕtherm(st) = (1{x ≤ st}) in {0, 1}N as input feature following Osband et al. (2016a). We
further follow the same protocol as in Ishfaq et al. (2024) for our experiments. For all the baseline
algorithms, as well as our proposed algorithms FG-LMCDQN, FG-ULMCDQN and ULMCDQN,
we parameterize the Q function using a multi-layer perceptron (MLP). We use [32, 32] sized hidden
layers in the MLP and ReLU as the activation functions. All algorithms are trained for 105 steps
where the experience replay buffer size is 104. The performance of each algorithm is measured by
the mean return of the last 10 test episodes. We use mini-batch size of 32 and set discount factor
as γdiscount = 0.99. The target network is updated every 100 steps.

For our proposed algorithms, we do a grid search for the hyper-parameters: learning rate τ , bias
factor a in the optimizers, the temperature β, the friction coefficient γ and the Feel-Good prior
weight η. We list the detailed values of all swept hyper-parameters in Table 2. Following Ishfaq
et al. (2024), for the adaptive bias term, we set α1 = 0.9, α2 = 0.99, and λ = 10−8 in (3.5).

Figure 4: N-Chain environment (Osband et al., 2016a).

Hyper-parameter Values
learning rate τ {0.01, 0.001}
bias factor a {1.0, 0.1, 0.01}
temperature β {1012, 1010, 108}
update number Jk {4}
friction coefficient γ {1, 0.1, 0.01}
feel-good prior weight η {1, 0.1, 0.01}

Table 2: The swept hyper-parameter in N -Chain experiments.

C.2 Atari

C.2.1 Experiment Setup

For our Atari experiments, our training and evaluation protocol follows that of Mnih et al. (2015);
Ishfaq et al. (2024). We implement FG-LMCDQN, FG-ULMCDQN and ULMCDQN using the
Tianshou framework (Weng et al., 2022).

To maintain a reasonable training time, for all our algorithms FG-LMCDQN, FG-ULMCDQN and
ULMCDQN, we set Jk = 1. Similar to the N-chain experiments, following Ishfaq et al. (2024), for
the adaptive bias term, we set α1 = 0.9, α2 = 0.99, and λ = 10−8 in (3.5). We list the detailed
values of all swept hyper-parameters in Table 3.
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Hyper-parameter Values
learning rate τ {0.01, 0.001, 0.0001}
bias factor a {0.1, 0.01}
temperature β {1016, 1014, 1012}
update number Jk {1}
friction coefficient γ {10, 1}
feel-good prior weight η {1, 10−2, 10−3, 10−4, 10−5}

Table 3: The swept hyper-parameter in Atari games.

C.2.2 Raw Scores in Atari

In Table 4, we directly compare the performance of our proposed algorithms FG-LMCDQN, FG-
ULMCDQN and ULMCDQN with other baselines by presenting the maximal score obtained by each
algorithm in each of the 8 Atari games. The results are averaged over 5 random seeds.

Methods\Games Alien Freeway Gravitar H.E.R.O Pitfall! Q*bert Solaris Venture
Human 7128 30 3351 30826 6464 13455 12327 1188
Random 228 0 173 1027 -229 164 1263 0

IQN 1691 ± 155 34 ± 0 413 ± 31 11229 ± 1098 -5 ± 4 14324 ± 643 1082 ± 258 3 ± 3
BootstrappedDQN 1067 ± 133 29 ± 1 312 ± 50 13538 ± 696 -53 ± 19 11786 ± 1474 923 ± 383 12 ± 12

C51 1878 ± 1878 34 ± 0 254 ± 52 17500 ± 2170 -19 ± 16 13394 ± 1500 303 ± 191 31 ± 31
PrioritizedDQN 1799 ± 202 23 ± 10 149 ± 37 14462 ± 1249 -46 ± 16 9464 ± 880 1377 ± 423 23 ± 23
NoisyNetDQN 1545 ± 217 32 ± 0 124 ± 47 6003 ± 1903 -31 ± 21 11046 ± 1594 1373 ± 361 24 ± 21

AdamLMCDQN 1772 ± 188 33 ± 0 799 ± 34 11366 ± 348 -6 ± 4 14628 ± 498 938 ± 189 1326 ± 92
ULMCDQN 1999 ± 687 34 ± 0 697 ± 64 15201 ± 3141 -3 ± 2 14704 ± 794 1195 ± 390 1132 ± 195

FG-LMCDQN 2380 ± 645 23 ± 10 744 ± 73 11576 ± 202 0 ± 0 14674 ± 436 735 ± 132 1069 ± 60
FG-ULMCDQN 2030 ± 446 34 ± 0 844 ± 312 14044 ± 1220 -9 ± 9 14385 ± 579 1278 ± 851 1198 ± 198

Table 4: Experiments results on 8 Atari Games. Table 4 presents the scores in each environment
with 50M frames. For each environment, the algorithms perform 5 runs with random seeds. Then
we average the scores for each game over 5 runs as the final result with a 95% confidence interval.
We consider 6 baselines: IQN (Dabney et al., 2018), Bootstrapped DQN (Osband et al., 2016a), C51
(Bellemare et al., 2017), Prioritized DQN (Schaul et al., 2015), NoisyNet DQN (Fortunato et al.,
2018) and AdamLMCDQN (Ishfaq et al., 2024). The scores for IQN, C51 and Prioritized DQN
are taken from DQN Zoo (Quan & Ostrovski, 2020). The scores for Bootstrapped DQN, NoisyNet
DQN and AdamLMCDQN are taken from https://github.com/hmishfaq/LMC-LSVI which is the
official github repository of Ishfaq et al. (2024). We implemented our algorithms ULMCDQN, FG-
LMCDQN and FG-UMLCDQN with Tianshou framework (Weng et al., 2022) in which we also use
the double Q method (Van Hasselt et al., 2016). Our algorithms have demonstrated advantages in
Alien, Freeway, Gravitor and Pitfall compared with baselines.
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Abstract

In this paper, we study reinforcement learning from human feedback (RLHF) under
an episodic Markov decision process with a general trajectory-wise reward model.
We developed a model-free RLHF best policy identification algorithm, called BSAD,
without explicit reward model inference, which is a critical intermediate step in the
contemporary RLHF paradigms for training large language models (LLM). The
algorithm identifies the optimal policy directly from human preference information
in a backward manner, employing a dueling bandit sub-routine that constantly
duels actions to identify the superior one. BSAD adopts a reward-free exploration
and best-arm-identification-like adaptive stopping criteria to equalize the visitation
among all states in the same decision step while moving to the previous step as
soon as the optimal action is identifiable, leading to a provable, instance-dependent
sample complexity Õ(cMSA3H3M log 1

δ )1 which resembles the result in classic RL,
where cM is the instance-dependent constant and M is the batch size. Moreover,
BSAD can be transformed into an explore-then-commit algorithm with logarithmic
regret and generalized to discounted MDPs using a frame-based approach. Our
results show: (i) sample-complexity-wise, RLHF is not significantly harder than
classic RL and (ii) end-to-end RLHF may deliver improved performance by avoiding
pitfalls in reward inferring such as overfit and distribution shift.

1 Introduction

Reinforcement learning (RL), with a wide range of applications in gaming AIs (Bradley Knox &
Stone, 2008; MacGlashan et al., 2017; Warnell et al., 2018), recommendation systems (Yang et al.,
2024; Zeng et al., 2016; Kohli et al., 2013), autonomous driving (Wei et al., 2024; Schwarting et al.,
2018; Kiran et al., 2022) , and large language model (LLM) training (Wu et al., 2021; Nakano et al.,
2021; Ouyang et al., 2022; Ziegler et al., 2019; Stiennon et al., 2020), has achieved tremendous success
in the past decade. A typical reinforcement learning problem involves an agent and an environment,
where at each step, the agent observes the state, takes a certain action, and then receives a reward
signal. The state of the environment then transits to another state, and this process continues.
However, most RL advances remain in the simulator environment where the data acquisition process
heavily depends on the crafted reward signal, which limits RL from more realistic applications such
as LLM, as defining a universal reward is generally difficult. In recent years, using human feedback
as reward signals to train and fine-tune LLMs has delivered significant empirical successes for AI

1we use O(·) to hide instance-independent constants and use Õ(·) to further hide logarithmic terms except log 1
δ

.
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Setting Algorithm Sample Complexity Space Instance Policy

RL MOCA O
(

H3SA log 1
δ

∆2
minpπ

max

)
model-based dependent Opt

Q-Learning Õ
(

H4SA log 1
δ

ε2

)
model-free independent ε-Opt

RLHF
P2R-Q Õ

(
H4SA log 1

δ

ε2

)
model-free independent ε-Opt

PEPS Õ
(

H2S2A log 1
δ

ε2 + S4H3 log3 1
δ

ε

)
model-based independent ε-Opt

BSAD(Ours) O
(

H3MSA3 log 1
δ

(∆M

minpπ
max)2

)
model-free dependent Opt

Table 1: Comparison of RL and RLHF algorithms with MOCA (Wagenmaker et al., 2022), Q-
Learning (Jin et al., 2018), PEPS (Xu et al., 2020), and P2R (Wang et al., 2023) with Q-learning.
S, A, and H are the number of states, actions, and planing steps. δ is confidence level, M is the
batch size. ∆min is the minimum value function gap, ∆min characterizes the preference probability
gap (Def. 1), and pπ

max characterizes the maximum state visitation probability (Def. 2).

alignment problems and produced dialog AIs such as the ChatGPT (Ouyang et al., 2022). This
paradigm where the reward of the state and actions is inferred from real human preferences, instead
of being handcrafted, is referred to as Reinforcement Learning from Human Feedback (RLHF). A
typical RLHF algorithm on LLMs involves three steps: (i) pre-train a network with supervised
learning, (ii) infer a reward model from human feedback, in the form of comparisons or rankings
among trajectories (responses), and (iii) use classic RL algorithm to fine-tune the pre-trained model.
An accurate reward model that aligns with human preferences is the key to the superiority of RLHF.

Pitfalls of Reward Inference: However, most reward models are trained on a maximum likelihood
estimator (MLE) (Christiano et al., 2017; Wang et al., 2023; Saha et al., 2023) under Bradley-Terry
model (Bradley & Terry, 1952). This paradigm exhibits pitfalls: (i) the reward models easily over-
fit the dataset which produces in-distribution errors, and (ii) the reward models fail to measure
out-of-distribution state-action pairs during fine-tuning. Even though attempts such as pessimistic
estimations (Zhu et al., 2023; Zhan et al., 2023b;a) and regularity conditions are made to improve
the accuracy and consistency of reward models, it remains a question of whether reward inference
is indeed required. Can we develop a model-free RLHF algorithm without reward inference, which
has provable instance-dependent sample complexity?

Contributions: We study an episodic RLHF problem with general trajectory rewards and pro-
pose a model-free algorithm called Batched Sequential Action Dueling (BSAD) which identifies the
optimal action for each state backwardly using action dueling with batched trajectories to obtain
human preferences. To equalize the state visitation of the same planning step, we adopt a reward-
free exploration strategy and adaptive stopping criteria, which enables learning the exact optimal
policy with an instance-dependent sample complexity (Theorem. 1) similar to classic RL with re-
ward (Wagenmaker et al., 2022), as long as the batch size is chosen carefully. Moreover, our results
only assume the existence of a uniformly optimal stationary policy and do not require the existence
of a Condorcet winner, as we will show the optimal policy is the Condorcet winner when human
preferences are obtained with large batch sizes. To the best of our knowledge, BSAD is the first
RLHF algorithm with instance-dependent sample complexity, and a transformation of BSAD will
provide the first model-free explore-then-commit RLHF algorithm with logarithmic regret.

Comparison to (Xu et al., 2020): From the best of our knowledge, the only algorithm with no
reward inference (explicit/implicit) is PEPS (Xu et al., 2020). Our paper is different in (i) BSAD
is model-free and takes O(SA2) space complexity, while PEPS is model-based and takes O(S2A2)
space complexity, (ii) BSAD employs adaptive stopping criteria which leads to an instance-dependent
sample complexity with improved dependence in S and δ, while PEPS uses fixed exploration horizon
and only has worst-case bounds, (iii) we assume the trajectory reward and require the existence
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of uniformly deterministic optimal policy which slightly generalizes the classic reward, while PEPS
requires the existence of Condorcet winner and stochastic triangle inequality, and (iv) we also gener-
alize to discounted MDPs. The complete comparison of BSAD and related algorithms is summarized
in Tab. 1, and a thorough review of related work is deferred to the appendix.

2 Preliminaries

Episodic MDP: An episodic Markov decision process (MDP) is a tuple M = (S,A, H, P, µ0),
where S is the state space with |S| = S, A is the action space with |A| = A, H is the planning
horizon, P = {Ph}H

h=1 is the transition kernels, and µ0 is the initial distribution. At each episode
k, the agent chooses a policy πk, which is a collection of H functions {πk

h : S → A}H
h=1, and nature

samples an initial state sk
1 from the initial distribution µ0. Then, at step h, the agent takes an action

ak
h = πk

h(sk
h) after observing state sk

h. The environment then moves to a new state sk
h+1 sampled

from the distribution Ph(·|sk
h, ak

h) without revealing any feedback. After each episode, the trajectory
of all state-action pairs is collected, which we use τk to denote, i.e., τk = τk

1:H = {(sk
h, ak

h)}H
h=1.

Trajectory Reward Model: In this paper, we assume the expected reward of each trajectory τ is
a general function f(τ) which maps trajectory to real values, a slight generalization of the cumulative
reward structure. Let Ψ be the set of all partial or complete trajectories. Then, we assume there
exists a function f : Ψ→ [0, D] which is the expected reward of the MDPM, where D is a positive
constant. The reward of a certain trajectory may be random, but humans will evaluate trajectories
based on the expected reward. The cumulative reward model is f(τ) =

∑H
h=1 r(sh, ah). Under the

trajectory reward, we can formulate the Q-function as follows:

V π
h (s) =Eπ [f(τh:H)| sh = s] = E [f(τh:H)| sh = s, ah = π(s), τh+1:H ∼ π] ,

Qπ
h(s, a) =Eπ [f(τh:H)| sh = s, ah = a] = E [f(τh:H)| sh = s, ah = a, τh+1:H ∼ π] .

The optimal policy π∗ is defined as π∗ = arg maxπ Eµ0 [V π
1 (x1)]. Without regularity on f , learning

the π∗ may fundamentally take Ω(AH) samples. Therefore, we impose the following assumption:

Assumption 1 There exists a uniformly optimal deterministic stationary policy π∗ for the MDP,
i.e., π∗ = arg maxπ V π

h (s),∀(h, s).

Under the assumption, we define the value function gap for sub-optimal actions similar to
classic MDPs as ∆h(s, a) = V ∗

h (s) − Q∗
h(s, a) = maxa′ Q∗

h(s, a′) − Q∗
h(s, a). Let ∆min =

minh,s,a̸=π∗(s) ∆h(s, a). For simplicity, we assume the optimal action π∗
h(s) is unique for each (h, s).

Otherwise, we can incorporate ∆min into the algorithm so that the duel between the two optimal
actions will terminate in a finite time. As a special case, Convex MDPs (Zahavy et al., 2021), e.g.,
pure exploration (Hazan et al., 2019), apprenticeship learning (Abbeel & Ng, 2004), and adversarial
RL (Rosenberg & Mansour, 2019), satisfy Assumption 1 when the optimal policy is deterministic.

Human Feedback: The agent has access to an oracle (a human expert) that evaluates the average
quality (reward) of two trajectory batches. At the end of each episode, the agent has the opportunity
to choose two sets of (partial) trajectories, denoted by D0 and D1 with cardinality M0 and M1, to
query the human for which has the higher average reward. We slightly abuse the notation τ to let
τ i

0 and τ i
1 be the i-th (partial) trace in D0 and D1 respectively, i.e., D0 = {τ1

0 , τ2
0 , · · · , τM0

0 }, and
D1 = {τ1

1 , τ2
1 , · · · , τM1

1 }. Each of them may contain only certain steps. After observing the two sets
of trajectories, the oracle will give a one-bit feedback σ ∈ {0, 1} to the agent to indicate the dataset
he/she favors. For simplicity, let f(D1) and f(D0) denote the average trajectory reward of D1 and
D0. Existing works mostly assume the Bradley-Terry model for preference generalization, i.e., the
preference probability is a logistic function of the reward difference, i.e.,

P (D1 ≻ D0) = u
(
f(D1)− f(D0)

)
= 1

1 + exp
(
f(D1)− f(D0)

) ,

where u : R → [0, 1] is referred to as the link function (Bengs et al., 2021) which characterizes the
structure of preference models. Other link functions, such as linear function, probit function, cloglog
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function, and cauchit function, have also been well-studied in dueling bandits (Ailon et al., 2014)
and generalized linear models (Razzaghi, 2013; McCulloch, 2000), but not RLHF. In this paper, we
use a 0-1 link function that indicates the favored set with higher reward, i.e.,

σ = HumanFeedback(D0,D1) = arg max
i∈{0,1}

f(Di) = arg max
i∈{0,1}

1
Mi

Mi∑

m=1
f(τm

i ).

Generalization to other link functions can be achieved through revising the probability gap definition
below (Def. 1). Furthermore, we show in Fig. 1 that single trajectory preference may not align with
the expected reward and thus batched comparison is necessary, and it may be easier for humans
to identify a better response if the trajectory batches resemble each other with the same initial
state, which motivates the comparison between partial and batched trajectories. Typically, in an
LLM training setting, for each candidate policy, the human evaluator will look at multiple responses
generated respectively and then assess which policy has a better average quality. Similarly for UAV
training, humans will watch multiple UAV trajectories for each policy and declare which policy is
better based on the average quality of the movement, i.e., success rate, stability, etc. When the
batch sizes are not unbearably large, batched preference assessment of trajectories should not be
essentially harder than single trajectory preference assessment.

Problem Formulation: Our goal is to design a learning algorithm to interact with the MDP and
learn the optimal policy π∗ from the human feedback as quickly as possible. A learning algorithm
Alg consists of (i) a sampling rule which decides which policy to choose at each episode and whether
to query the human agent, (ii) a stopping rule which decides a stopping time when the learner wishes
to output an learned policy, and (iii) a decision rule which decides which policy π̂ to output. We
call an algorithm δ-PAC if it outputs an optimal policy with probability at least 1− δ. Our goal is
to design such an algorithm to minimize sample complexity K:

minE[K], such that P(π̂ = π∗) ≥ 1− δ.

3 Main Results for Episodic MDPs

In this paper, we focus on the instance-dependent performance. To characterize the structure of the
MDPs under human feedback, we introduce the notion of probability gaps in Def. 1 for each state
and sub-optimal action, which is a generalization of the calibrated pairwise preference probability
considered in the dueling bandits literature (Yue et al., 2012; Yue & Joachims, 2011). We also define
the state visitation probability pπ

h(s) of a given policy π in Def. 2.

Definition 1 (Probability Gap) Given (h, s) and a sub-optimal action a, the probability gap
∆M

h (s, a) for comparison of two trajectory sets with cardinality both being M is defined as:

∆M

h (s, a) = P

(
M∑

m=1
f(τm

0 ) >
M∑

m=1
f(τm

1 )
∣∣∣∣∣ τ

m
0 ∼ π∗, τm

1 ∼ {ah = a, π∗}
)

︸ ︷︷ ︸
pM

h
(s,a)

−1
2 ,

where the traces {τ1
0 , · · · , τM

0 } are independently sampled starting from state (h, s) using the optimal
policy {π∗

k}H
k=h, while {τ1

1 , · · · , τM
1 } are independently sampled starting from state (h, s) using im-

mediate action ah = a and the optimal policy {π∗
k}H

k=h+1 afterwards. Let ∆M

min = minh,s,a ∆M

h (s, a).

Definition 2 (State Visitation Probability) Given (h, s) ∈ [H] × S, the visitation probability
(occupancy measure) of policy π is defined as follows:

pπ
h(s) = P (sh = s|s0 ∼ µ0, ah′ ∼ π(sh′), ∀h′ < h) .

Let pπ
max = minh,s maxπ pπ

h(s), and we assume it is positive. We will use both the probability gap
and the state visitation probability to characterize our instance-dependent performance.
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Algorithm 1: BASD for Episodic MDPs
initialize for all (h, s, a), Jh(s, a)← 1, Lh(s, a)← 0, Mh(s)← 0, and l← H, k ← 0 ;
initialize for all (h, s, a, a′), wh(s, a, a′)← 0, Nh(s, a, a′)← 0, π̂h(s) = D0

h(s) = D1
h(s) = ∅ ;

define ι ≡ c log( SAHk
δ ), βt =

√
Hι

max{t,1} , and αt = H+1
H+t ;

σ̂h(s, a, a′) ≡ wh(s,a,a′)
Nh(s,a,a′) or 1

2 if Nh(s, a, a′) = 0, bh(s, a, a′) ≡
√

ι
max{Nh(s,a,a′),1} , ∀(h, s, a, a′) ;

while l ≥ 1 do
receive s1, k = k + 1;
for step h = 1 : l − 1 do // reward-free exploration

take action ah ← arg maxa Jh(sh, a) and observe sh+1, Lh(sh, ah)← Lh(sh, ah) + 1 ;
Wh+1(sh+1)← min{1, maxa Jh+1(sh+1, a)} ;
Jh(sh, ah)← (1− αt)Jh(sh, ah) + αt[Wh+1(sh+1) + 2βt] where t = Lh(sh, ah) ;

Ml(sl)←Ml(sl) + 1. Wl(sl)← min{1, bMl(sl)} ;
call action dueling sub-routine B-RUCB(l, sl, Ml(sl)) ; // action dueling
if ∀s, ∃a, such that ∀a′, σ̂l(s, a, a′)− bl(s, a, a′) ≥ 0.5 then
∀s, π̂l(s) ∈ {a|∀a′, σ̂l(s, a, a′)− bl(s, a, a′) ≥ 0.5} ;
l← l − 1. Jh(s, a)← 1, Lh(s, a)← 0,∀(h, s, a), k ← 0 ; // backward search

return π̂

Algorithm 2: B-RUCB: a batched dueling bandits sub-routine
Input: step h, state s, candidate policy π̂, past visits Mh(s).
if Mh(s) (mod 2M) ≤M then

if Mh(s) ≡ 1 (mod M) then // select relative optimal arm
Ch(s) = {a|∀a′ : σ̂h(s, a, a′) + bh(s, a, a′) ≥ 0.5}, sample âs uniformly from Ch(s);
D0

h(s)← ∅, D1
h(s)← ∅;

take action ah ← âs and observe sh+1, and use policy π̂ for steps afterwards;
D0

h(s) = D0
h(s) ∪ {(sh, ah), · · · , (sH , aH)};

else
if Mh(s) ≡ 1 (mod M) then // select combating arm based on UCB

ãs = arg maxa̸=âs
{σ̂h(s, a, âs) + bh(s, a, âs)};

take action ah ← ãs and observe sh+1, and use policy π̂ for steps afterwards ;
D1

h(s) = D1
h(s) ∪ {(sh, ah), · · · , (sH , aH)} ;

if Mh(s) ≡ 0 (mod 2M) then // query human every 2M episodes
query feedback σ = HumanFeedback

(
D0

h(s),D1
h(s)

)
;

wh(s, ãs, âs)← wh(s, ãs, âs) + σ, wh(s, âs, ãs)← wh(s, âs, ãs) + 1− σ ;
Nh(s, ãs, âs) = Nh(s, ãs, âs) + 1 ;

return

3.1 Algorithm for Episodic RLHF

In this section, we propose an algorithm called BASD (Alg. 1) to solve the RLHF for episodic MDPs.
The algorithm can be divided into two major modules: (i) an action dueling sub-routine generalizing
the RUCB algorithm from the dueling bandits (Zoghi et al., 2014), and (ii) a reward-free exploration
strategy to equalize the visitation probability of each state to minimize the overall sample complexity.

Backward Action Dueling: BSAD identifies the optimal policy for each state using a backward
search. The backbone is to employ a batched version of the RUCB algorithm (Zoghi et al., 2014),
called B-RUCB in Alg. 2, which is called in step l and controls the action selection policy from step
l to H. Namely, it chooses the action al at step l using the RUCB dueling bandits principle and
then uses the candidate optimal policy π̂ for steps afterward. If the policy π̂ is indeed the optimal
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ℎ = 1 1

𝐷

1 −
1

𝐷

1

𝑟1(𝑠0, 𝑎1) = 0

𝑟1(𝑠0, 𝑎2) = 0

Figure 1: MDP where π∗
h(s) is not the Condorcet winner: there are 3 states ({s1, s2, s3}) at step 2

with 1 action, and 1 state s0 in step 1 with 2 actions. With action a1, the state transits w.p. 1/D
to state s1 with reward D, and w.p. 1− 1/D to state s2 which gives reward 1− ε, where 0 < ϵ < 1.
With action 2, the state transits deterministically to state s3 with reward 1.

policy π∗, the average reward from step l to H constitutes an unbiased estimator of Q∗
h(sl, al), which

resembles dueling bandits. Different from classic RUCB, we query human feedback every 2M episode
with batches and we will show later that it allows the optimal action π∗

h(s) to be the action favored
by the human oracle (Condorcet winner). Moreover, we adopt a stopping rule for each (h, s) that
if there exists one action a whose lower confidence bound of the preference probability estimation
σ̂h(s, a, a′) is larger than half for all other actions, the optimal action is found. Specifically, we use
Th(s) to denote the stopping rule for state (h, s), i.e., Th(s) = {∃a, ∀a′, σ̂l(s, a, a′)−bl(s, a, a′) ≥ 0.5}.
Then, the criteria for l to move from h to h− 1 is equivalent to ∩S

s=1Th(s). Running B-RUCB with
the stopping rule identifies the optimal action π∗

l (s) for all states at step l with high probability.

Reward-free Exploration: To minimize the sample complexity, it is ideal that every state has a
similar visitation probability so that action identification can be performed simultaneously for all
the states. Our chosen model-free reward-free exploration between step 1 to step l − 1 contributes
towards this goal. We slightly adapted the UCBZero algorithm originally proposed in (Zhang et al.,
2020) in our BSAD algorithm so that the overall algorithm is model-free. This strategic exploration
policy will guarantee that we visit each state on step l proportional to the maximum visitation
probability over all possible policy π starting from the initial distribution.

3.2 Theoretical Results

It is well-known from dueling bandits literature (Zoghi et al., 2014) that the RUCB algorithm only
requires the existence of the Condorcet winner to identify the optimal action, where the Condorcet
winner refers to an action that is preferred with probability larger than half when compared to any
other action. Similar to the definition in dueling bandits, for any state (h, s) and any size M , we
say the optimal action π∗

h(s) is the Condorcet winner if the preference probability pM
h (s, a) is larger

than half for all other actions a. For any comparison-based algorithm to identify the optimal policy,
the optimal policy must be the Condorcet winner. We will first characterize the existence of the
Condorcet winner when human experts are queried with batch size M large enough.

Lemma 1 Given an MDPM and for any (h, s), the action π∗
h(s) associated with the optimal policy

π∗ is the Condorcet winner in the HumanFeedback comparison as long as M = Ω(D2∆−2
min).

Existence of Condorcet Winner: In general, the optimal action π∗
h(s), although it maximizes

the expected reward, is not necessarily the Condorcet winner with arbitrary M . To see this, consider
a two-step MDP with traditional cumulative reward as shown in Fig. 1. For state s0 and D > 2 in
step 1, the optimal action is a1 which gives expected reward 1 + (1−D−1)(1− ε) larger than 1 given
by action a2. However, if we choose M = 1 and query human feedback of the duel between action
a1 and a2, the human expert will only prefer action a1 if the state transits to s1, which only occurs
with probability 1/D and could be much less than half. Therefore, the optimal action a1 for state s0
is not the Condorcet winner. Similarly, it is also not hard to construct counter-examples with more

1241



RLJ | RLC 2024

than three actions to show that the Condorcet winner does not exist. However, Lemma. 1 shows that
the optimal action π∗

h(s) is indeed the Condorcet winner at every state (h, s) as long as the batch
size M is large enough. The bound is proportional to D2 which characterizes the variance of reward
for a single trajectory and inversely proportional to the square of the minimum value function gap
∆min, which characterizes the distinguishability among actions. The proof of Lemma. 1 is deferred
to the appendix, where we apply concentration inequalities to lower bound the preference probability
pM

h (s, a). Next, we characterize the sample complexity of BSAD.

Theorem 1 Given an MDP M, fix δ and suppose M is chosen large enough such that the optimal
policy π∗ is the Condorcet winner for all states (h, s). Then with probability at least 1 − O(δ), the
BSAD algorithm terminates within K episodes and returns the optimal policy π̂ = π∗ with:

K = Õ
(

H∑

h=1

SA3h2M log( 1
δ )

mins,a maxπ[∆M

h (s, a)pπ
h(s)]2

)
.

Proof Roadmap: Our main Theorem. 1 conveys two messages: (i) BSAD is δ-PAC, and (ii) BSAD
has provable instance-dependent sample complexity bound under general reward model. The proof
of Theorem. 1 is deferred to appendix. To obtain the correctness guarantee, we decompose the
probability of making a mistake into the sum of probabilities where the mistake is made on a certain
step h. Then, using a backward induction argument, we show that the total mistake probability
is small. To obtain the sample complexity bound, we fix (h, s) and then bound the number of
comparisons between two actions. Next, we bound the total number of comparisons and the total
number of episodes needed to identify the optimal action for this (h, s). This can be achieved by
summing up the number of comparisons between all pairs of arms before the stopping criteria Th(s)
for that state is satisfied. Lemma. 2 characterizes the sample complexity for any state (h, s):

Lemma 2 Given an MDP M, fix δ and suppose M is large enough. For fixed (h, s), the number of
episodes with l = h and sh = s until the criteria Th(s) is bounded with high probability by:

Mh(s) =Õ
(

A∑

i=2

i

∆M

h (s, ai)2
M log

(
1
δ

))
= Õ

(
A2M log

( 1
δ

)

mina ∆M

h (s, a)2

)
,

where {a1, a2, · · · , aA} is a permutation of the action set A such that a1 is the optimal action and
∆M

h (s, a2) ≤ ∆M

h (s, a2) ≤ · · · , ∆M

h (s, aA).

Notice that our bound in Lemma. 2 is different from the original RUCB algorithm provided in (Zoghi
et al., 2014, Theorem 4) due to (i) we study a PAC setting while the vanilla RUCB focuses on regret
minimization and (ii) we chose a larger confidence bonus so that our bound only have logarithmic
dependence on δ. After bounding the sample complexity to identify the optimal action for each
state, we need to relate Mh(s) to the total number of episodes through reward-free exploration. We
show in Lemma. 3 that the number of episodes spent for a step l = h is bounded by the number of
visitations Mh(s), which is analog to (Zhang et al., 2020, Theorem 3).

Lemma 3 Given an MDP M, fix δ and suppose M is large enough. For a fixed (h, s), suppose we
have l = h and k = Kh in the current episode, we have:

∀s, Kh ≤ O
(

SAh2Mh(s)
maxπ pπ

h(s)2

)
.

Combining both Lemma. 2 and Lemma. 3, we will be able to prove Theorem. 1:

K =
H∑

h=1
max

s
O
(

SAh2Mh(s)
maxπ pπ

h(s)2

)
= Õ

(
H∑

h=1

SA3h2M log( 1
δ )

mins,a maxπ[∆M

h (s, a)pπ
h(s)]2

)
.
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RLHF Algorithm with Logarithm Regret: It is very simple to adapt the BSAD algorithm to
an explore-then-commit type algorithm for regret minimization by choosing δ = T −1. Then, the
sample complexity bound will convert into a regret bound in the order of O(log T ). To the best of
our knowledge, this is the first RLHF algorithm with logarithmic regret performance.

Instance Dependence and Connection to Classical RL: Our sample complexity bound in
Theorem. 1 has a linear dependence on the number of states S, a polynomial on the number of
actions A and the planning horizon H, and a logarithmic dependence on the inverse of confidence
δ. Moreover, it characterizes how the sample complexity depends on fine-grained structures of the
MDPM itself. It is also inversely proportional to the square of the probability gap ∆M

h (s, a) which
resembles the sample complexity or regret bounds in the dueling bandit literature, and also resembles
the dependence of the value function gap ∆h(s, a) in the sample complexity bounds for traditional
tabular RL, e.g., (Wagenmaker et al., 2022, Theorem 2). Moreover, the inverse proportional depen-
dence of the maximum state visitation probability over all policies also resembles the traditional RL.
In fact, with M chosen in the same order as in Lemma. 1 and using concentration inequalities, the
sample complexity bound can be converted depending on the value function gap as follows:

K = Õ
(

SA3H3D2 log( 1
δ )

minh,s,a ∆h(s, a)2 maxπ pπ
h(s)2

)
.

This shows that RLHF is almost no harder than classic RL given the appropriate parameter, except
for a polynomial factor on the number of actions A and the planning horizon H. This finding
coincides with (Wang et al., 2023) and sheds light on the similarity between RLHF and classic RL.
Notice that our result is derived from a general reward model where the Bellman equations do not
hold. Therefore, our result also seemingly implies that the fundamental backbone of RL is the
existence of uniformly optimal stationary policy instead of the Bellman equations.

4 Generalization to Discounted MDPs

In this section, we generalize the BSAD algorithm to discounted MDPs with the traditional state-
action reward function r(s, a) ∈ [0, 1] and discount factor γ. Our approach is to segment the time
horizon into frames with length H = Θ( 1

1−γ log 1
ε(1−γ)2 ). Then, we run BSAD (Alg. 1) with horizon H

on the discounted MDP, as if it is episodic. This frame-based adaptation delivers provable instance-
dependent sample complexity shown in Theorem. 2. Discussions are deferred to the appendix.

Theorem 2 suppose M is chosen large enough. Then with probability 1−O(δ), BSAD terminates
within K episodes and returns an ε-optimal policy with:

K = Õ
(

SA3M log( 1
δ ) log3( 1

ε )

(1− γ)3 minh,s,a ∆M

h (s, a)2 maxπ mins′ pπ
h(s|s′)2

)
,

where ∆M

h (s, a) to be the probability gap for action a and trajectories of length H−h compared to the
Condorcet winner of that state s, and pπ

h(s|s′) is the visitation probability of s after h steps starting
from state s′ with policy π. Both definitions are analog to the definitions in episodic MDPs.

5 Numerical Results

In this section, we study the empirical performance of BSAD on an MDP based on Fig. 1 with D = 10.
The only difference is we replicate two copies of s0 in the first step with different initial distributions.
For these states, the optimal policy is not the Condorcet winner under a single trajectory comparison
but will become the Condorcet winner when the batch size increases. We compare BSAD to existing
value-based model-free RLHF algorithms, with and without reward inference, where the performance
is measured by the value function Eµ0 [V π̂

1 (s)] of the candidate policy evaluated on the true MDP.
The baselines that we chose are (i) a model-free and batched adaptation of PEPS (Xu et al., 2020) (no
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(a) batch size (b) adaptive stopping (c) performance

Figure 2: numerical experiment on a three-state two-step MDP: (a) shows the proposed BSAD
algorithm with different batch sizes. (b) compares BSAD with adaptive stopping to batched version
of PEPS with fixed exploration horizon. (c) compares BSAD to model-free RLHF and RL algorithms.
Results are averaged over 100 trajectories and shaded areas represent bootstrap confidence intervals.

reward inference) which uses UCBZero (Zhang et al., 2020), (ii) Q-learning with P2R (Wang et al.,
2023) (reward inference) where the candidate policy π̂ is the greedy policy, and (iii) REGIME (Zhan
et al., 2023b) (reward inference) with UCBZero and pessimistic Q-learning (Shi et al., 2022) as offline
RL oracle, where each point is obtained through a 1k-episode offline RL algorithm. We also compare
to classic RL algorithms, i.e., Q-learning (Jin et al., 2018).

Algorithm BSAD(ours) PEPS Q-learning P2R REGIME
Running Time (ms) 171.21 179.23 1090.12 5898.30 4613.73

Table 2: running time comparisons on 1 CPU averaged over 50 trajectories.

Fig. 2a shows the effect of batch size. When using a small batch size, i.e., M = 2, 4, the Condorcet
winner at h = 1 is not optimal, and BSAD converges to a sub-optimal policy. When M is large,
BSAD identifies the optimal policy, and the sample complexity displays a decrease-then-increase
trend, which coincides with Theorem. 1. Specifically, when M increases, the probability gap in
the denominator increases sharply, leading to reduced sample complexity, and as M continues to
increase, M in the numerator starts to dominate. This justifies BSAD is adaptive to MDP instances.
Fig. 2b shows the comparison of BSAD to a batched version of PEPS with different exploration
horizons. The observation that the curve of BSAD lies uniformly above all PEPS curves shows
the necessity of adaptive algorithm design. Specifically, our design of adaptive stopping criteria
identifies the optimal policy earlier and adapts to the different distinguishability in different states,
which results in improved regret performance. In Fig. 2c, we compare BSAD to Q-learning and RLHF
algorithms with reward inference. First, we observe that BSAD has almost the same performance as
Q-learning which uses the reward information, which shows RLHF is almost no harder than classic
RL. However, our algorithm applies to the general trajectory reward function while Q-learning
cannot be used anymore. BSAD exhibits superior performance than other RLHF algorithms also in
running time as shown in Table. 2, because training reward models with MLE is difficult and takes
much larger sample and computational complexity, let alone the best policy can only be obtained
when the reward model is accurate enough. This observation somewhat justifies the reward model
is unnecessary given it suffers from pitfalls like over-fitting and distribution shift.

6 Conclusion

We studied RLHF under both episodic MDPs with trajectory reward structure, a generalization
of the classic cumulative reward. We propose an algorithm called BSAD which enjoys a provable
instance-dependent sample complexity that resembles the result in classic RL with reward. We also
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generalize our results to discounted MDPs. Our results show RLHF is almost no harder than classic
RL, and the current dominating reward model training module in RLHF may be unnecessary.
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Abstract

Hybrid Reinforcement Learning (RL), leveraging both online and offline data, has
garnered recent interest, yet research on its provable benefits remains sparse. Ad-
ditionally, many existing hybrid RL algorithms (Song et al., 2023; Nakamoto et al.,
2023; Amortila et al., 2024) impose a stringent coverage assumption called single-
policy concentrability on the offline dataset, requiring that the behavior policy visits
every state-action pair that the optimal policy does. With such an assumption, no
exploration of unseen state-action pairs is needed during online learning. We show
that this is unnecessary, and instead study online algorithms designed to “fill in the
gaps” in the offline dataset, exploring states and actions that the behavior policy
did not explore. To do so, previous approaches focus on estimating the offline data
distribution to guide online exploration (Li et al., 2023b). We show that a natural
extension to standard optimistic online algorithms – warm-starting them by includ-
ing the offline dataset in the experience replay buffer – achieves similar provable
gains from hybrid data even when the offline dataset does not have single-policy
concentrability. We accomplish this by partitioning the state-action space into two,
bounding the regret on each partition through an offline and an online complexity
measure, and showing that the regret of this hybrid RL algorithm can be character-
ized by the best partition – despite the algorithm not knowing the partition itself.
As an example, we propose DISC-GOLF, a modification of an existing optimistic
online algorithm with general function approximation called GOLF used in Jin et al.
(2021); Xie et al. (2022a), and show that it demonstrates provable gains over both
online-only and offline-only reinforcement learning, with competitive bounds when
specialized to the tabular, linear and block MDP cases. Numerical simulations
further validate our theory that hybrid data facilitates more efficient exploration,
supporting the potential of hybrid RL in various scenarios.

1 Introduction

Reinforcement Learning (RL) encompasses two main approaches: online and offline. Online RL
involves agents learning to maximize rewards through real-time interactions with their environment,
essentially learning by doing. Conversely, offline RL involves agents learning optimal actions by
analyzing data collected by others, akin to learning by observation. However, learning by both
watching and doing, or learning from both offline pre-collected data and online exploration, often
called hybrid RL, remains under-explored.

Recent developments on hybrid RL theory have primarily focused on two aspects. The first line
of work (Song et al., 2023; Nakamoto et al., 2023; Amortila et al., 2024) shows that hybrid RL,
even without explicit exploration strategies like optimism during the online learning phase, can

∗Equal contribution.
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achieve the typical regret bounds of sample-efficient online algorithms that incorporate carefully
designed exploration strategies. This is contingent upon the full single-policy concentrability of
the offline dataset, highlighting hybrid RL’s potential to simplify the design of the online learning
component by eliminating the need for intricate exploration design. Our paper, however, follows
another line of work (Wagenmaker & Pacchiano, 2023; Li et al., 2023b) that considers the case where
the offline dataset may not have full single-policy concentrability1. Under partial coverage,
the online algorithm could explore unseen states and actions not visited by the behavior policy,
thereby demonstrating improvements over both pure offline and pure online learning approaches.

To analyze this case, Li et al. (2023b) suggest dividing the state and action space X within a tabular
MDP into a disjoint partition Xoff ⊕ Xon = X . The intuition is as follows. If the offline dataset
has sufficient coverage of the state and action pairs in Xoff , a good algorithm should direct its
online exploration to sufficiently explore Xon. Previous approaches (Li et al., 2023b; Wagenmaker &
Pacchiano, 2023) solve difficult optimization problems with the Frank-Wolfe algorithm to perform
reward-free online exploration of the under-covered portion of the state and action space. These
approaches are not generally applicable to existing state-of-the-art online algorithms for deep RL,
and so we take a different approach.

Many online algorithms explore by maintaining an experience replay buffer, minimizing the empirical
risk over it to sequentially update estimates about the unknown environment (Auer et al., 2008). One
may trivially include the offline dataset in the experience buffer to obtain a hybrid RL algorithm,
as others have previously noted (Song et al., 2023; Nakamoto et al., 2023; Amortila et al., 2024),
under coverage assumptions on the offline dataset.2

Though being extensively applied in empirical studies, it is not clear whether (1) simply appending
the offline dataset to the experience replay buffer can lead to a provable improvement when the
offline dataset is of poor quality, or (2) whether it ensures sufficient exploration for the portion of
the state-action space without good coverage. We seek to address this gap in our paper, tackling the
more difficult setting where the offline data may be of arbitrarily poor quality without single-policy
concentrability, in the context of regret-minimizing online RL with general function approximation.

Our Contributions. We address this gap by modifying an optimistic algorithm for general func-
tion approximation algorithm called GOLF (introduced in Jin et al. (2021) and used in Xie et al.
(2022b)). We show that a hybrid version of GOLF (which we call DISC-GOLF) that simply includes
an offline dataset in the parameter estimation achieves a provable improvement in the regret bound
over pure online and offline learning, even when the offline dataset has poor coverage.

This is done through considering arbitrary (not necessarily disjoint) partitions of the state-action
space Xoff ∪ Xon = X . We bound the regret by the coverage of the behavior policy on the offline
partition Xoff and a complexity measure for online learning on the online partition Xon. We then
show that the overall regret of a hybrid algorithm can be characterized by the regret bound on the
best possible partition – despite the algorithm not knowing the partition itself.3 This analysis yields
a general recipe for initializing generic online RL algorithms with offline data of arbitrarily poor
quality, that we hope may be of use to other researchers seeking to derive similar algorithms.

We specialize this bound to the tabular, linear, and block MDP cases, achieving competitive sam-
ple complexities in each. Numerical simulations demonstrate that hybrid RL indeed encourages
exploration of the region of the state-action space that is not well-covered by the offline dataset.

1An offline complexity measure that measures the coverage of the offline dataset (Zhan et al., 2022) with respect
to the state-and-action pairs covered by a single reference policy.

2Unlike these, we are able to include the entire offline dataset – we do not need to discard any offline samples.
3This is similar in spirit to the adaptivity that Li et al. (2023b) showed for the tabular PAC RL case, but with a

far more complicated algorithm that requires data splitting, behavior cloning, and reward-free exploration.
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2 Problem Setup

We consider the situation where we are given access to a function class F , and aim to model the
optimal Q-function using it. Below, we introduce some notation that we use throughout the paper.
Notation. Let NF (ρ) be the ρ-covering number of function class F w.r.t the supremum norm.
Let Noff and Non (where N = Noff +Non) be the number of episodes in the offline dataset and the
number of online episodes respectively. We will use the notation T = Non interchangeably. For any
set X ⊂ S ×A× [H], let Xh = {(s, a) ∈ S ×A : (s, a, h) ∈ X}, and ∆(X ) all distributions over X .
Episodic MDPs. We consider episodic MDPs denoted by {S,A, H, P,R}, where S is the state
space, A the action space, H the horizon, P = {Ph}h∈[H] the collection of transition probabilities
with each Ph : S × A 7→ ∆(S), and R = {Rh}h∈[H] the collection of reward functions with each
Rh : S × A 7→ [0, 1]. An agent interacts with the environment for H steps within each episode.
On the each step h ∈ [H], the agent observes the current state sh ∈ S and chooses an action
ah ∈ A, and the environment generates the next state sh+1 ∼ Ph(· | sh, ah) and the current reward
rh = Rh(sh, ah). A policy π is a mapping from S to ∆(A), the set of distributions over the action
space. The function class F induces a policy class Π := {πf : f ∈ F} through the greedy policy
with regard to each function πf . Throughout the paper, we denote X = S ×A× [H].
Definition 1 (Occupancy Measure). The occupancy measure dπ = {dπh}Hh=1 is the collection of
state-action distributions induced by running policy π. We write D for the set of all possible dπ.

Hybrid RL. We study the natural setting of online fine-tuning given access to an offline dataset,
where an agent interacts with the environment for Non steps given access to an offline dataset Doff
consisting of Noff episodes. We assume that the offline dataset is collected through some fixed policy
πoff = {πoff,h}h∈[H]. Let µ be the occupancy measure induced by πoff , and denote by s(t)

h , a(t)
h and

r
(t)
h the state, action and reward on step h ∈ [H] within episode t ∈ [Non]. The goal of an online RL

algorithm is to maximize the cumulative reward
∑Non
t=1

∑H
h=1 r

(t)
h .

We follow the standard definition of value functions for episodic MDPs. The value function of a
policy π is V πh (s) = Eπ[

∑H
h′=h rh′ | sh′ = s], where Eπ denotes the expectation over trajectories

induced by taking policy π. Let Qπh(s, a) = Eπ[
∑H
h′=h rh′ + V πh′+1(sh′+1) | sh′ = s, ah′ = a], where

we set V πH+1(s) ≡ 0. Write V ⋆ and Q⋆ for the optimal value and Q-functions. The cumulative regret
of an online algorithm L is Reg(Non,L) = EL

[∑Non
t=1

(
V ⋆1 (s(t)

1 )−∑H
h=1 r

(t)
h

)]
, where L : H → Π is

any learning algorithm that maps all the previous observations, i.e. the history H, to a policy, and
EL denotes the expectation over all the trajectories generated by the interaction between algorithm
L and the underlying MDP.
Function Approximation. We approximate the optimal Q-function with a function class
F = {Fh}h∈[H], where each Fh ⊆ [0, H]S×A. The Bellman operator for each h ∈ [H − 1] is
Thfh+1(s, a) := Rh(s, a) + Es′∼Ph(·|s,a) [maxa′∈A fh+1(s′, a′)] . We further define the Bellman error
w.r.t f ∈ F by Ehf = Thfh+1 − fh and the squared Bellman error by E2

hf = (Thfh+1 − fh)2. For
a distribution d ∈ ∆(S × A), we write ∥fh − Thfh+1∥2

2,d = E(sh,ah)∼d[E2
hf ]. Below, we make the

following routine assumption on the richness of the function class (Liu et al., 2020; Rajaraman et al.,
2020; Rashidinejad et al., 2023; Uehara & Sun, 2023). This may be relaxed to the weaker related
notion of realizability as in Zanette (2023) at the cost of an amplifying factor dependent on the
metric entropy of the function class, dataset coverage, and the discrepancy between F and its image
under the Bellman operator, but this is outside the scope of our analysis.
Assumption 1 (Bellman Completeness). We assume that for all fh+1 ∈ Fh+1, Thfh+1 ∈ Fh. Note
that this implies realizability: Q∗

h ∈ Fh.

3 Measures of Complexity

In this section, we extend existing complexity measures for offline and online learning with general
function approximation in order to use them to understand the complexity of hybrid RL. We will
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use each on an arbitrary partition of the state-action space, with the intuition being that the offline
complexity measure should characterize the difficulty of learning only on the portion that is well-
covered by the behavior policy, and the online complexity measure for the difficulty of learning on
the portion that has not been explored yet. We later show that a subsequent regret bound can be
determined by the complexity measures over any partition, and so the regret is characterized by the
infimum over the partitions of the complexity measures on them.
Offline Complexity Measures. In offline RL, the sample complexity is bounded by the notion
of concentrability (Xie et al., 2021). For a function class on Bellman error G and a reference policy
π, the (L2 Bellman-error) all-policy and single-policy concentrability coefficients (Zhan et al., 2022)
are defined as:

coff(F , π) := max
h

sup
f∈F

∥fh − Thfh+1∥2
2,dπ

h

∥fh − Thfh+1∥2
2,µh

, and coff(F) := sup
π
coff(F , π).

We note that other variants exist, such as the L∞ density-ratio single-policy concentrability which
we define as C∗ = suph,s,a dπ

∗
h (s, a)/µh(s, a). We clarify which variant of single-policy and all-policy

concentrability we refer to whenever possible, but note that the L2 Bellman-error concentrability
is upper bounded by the L∞ density-ratio concentrability Zhu et al. (2023). There is an algorithm
(Xie et al., 2021) that finds an ϵ-optimal policy in Õ(coff(F , π⋆)/ϵ2) episodes.
Online Complexity Measures. To characterize the online complexity measure, we extend a
recently proposed measure, the SEC (Sequential Extrapolation Coefficient) from Xie et al. (2022a):

con(F , T ) := max
h∈[H]

sup
{f(1),...,f(T )}⊆F

sup
(π(1),...,π(T ))





T∑

t=1

E
dπ

(t)
h

[f (t)
h − Thf

(t)
h+1]2

H2 ∨∑t−1
i=1 Edπ(i)

h

[(f (t)
h − Thf

(t)
h+1)2]



 .

We note that in their paper, the SEC has a 1 in the denominator instead of H2 because they
assume Qh ∈ [0, 1]. Xie et al. (2022a) provide an online algorithm with a regret bound of the form
Õ(H

√
con(F , T ) · T ). Similar extensions can be proposed for other online complexity measures.

Reduced Complexity Through State-Action Space Partition. As previously mentioned, a
hybrid algorithm can reduce its online learning complexity by exploring what has not been seen in the
offline dataset. This motivates us to consider a partition on the state-action space X = S ×A× [H].
We denote the offline and online partition by Xoff and Xon, respectively. We define the offline and
online partial complexity measure on each partition by

coff(F ,Xoff) := max
h

sup
f∈F

∥(fh − Thfh+1)1(·,h)∈Xoff∥2
2,dπ

h

∥(fh − Thfh+1)1(·,h)∈Xoff∥2
2,µh

,

con(F ,Xon, T ) := max
h∈[H]

sup
{f(1),...,f(T )}⊆F

sup
(π(1),...,π(T ))





T∑

t=1

E
dπ

(t)
h

[(f (t)
h − Thf

(t)
h+1)1(·,h)∈Xon ]2

H2 ∨∑t−1
i=1 Edπ(i)

h

[(f (t)
h − Thf

(t)
h+1)21(·,h)∈Xon ]



 .

Viewing con and coff as complexity measures on the function class Fh − ThFh+1 induced by F and
Bellman operator T , our partial complexity measures can be seen as restricting this function class
such that any function in this class is non-zero only when the input is in Xoff or Xon. This leads to
smaller complexity measures for both online and online learning. This is not unique to our choices
of complexity measures. Other measures in the literature, such as the Rademacher complexity and
covering number, also indicate a reduced complexity for Fh − ThFh+1.
Partial All-Policy Concentrability Is Less Stringent Than Single-Policy Concentrability.
While Li et al. (2023b) successfully employ a notion of (L∞ density ratio) partial single-policy
concentrability in the tabular setting, our regret bound depends on the (L2 Bellman error) partial
all-policy concentrability. This falls short of the notion of partial single-policy concentrability that
Li et al. (2023b) successfully employ in the tabular setting. We attribute this to our desire to work
with the simple procedure of appending the offline dataset to the experience replay buffer in the
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context of general function approximation – our algorithm is much simpler and their techniques,
being specialized to the tabular case, cannot be extended to general function approximation.

However, as our regret bound utilizes the best partition of the state-action space, our result already
obtains an improvement over the common requirement of single-policy concentrability over the entire
state-action space in hybrid RL with general function approximation (Song et al., 2023; Nakamoto
et al., 2023; Amortila et al., 2024). While the two are not directly comparable, the best partial all-
policy concentrability coefficient, which our algorithm uses adaptively, is always finite (we can always
take Xoff to be a singleton) even when the single-policy concentrability coefficient is unbounded.

Main Result. Our main novel theoretical result is in showing that the overall regret of a hybrid
algorithm (we first show this for DISC-GOLF, then for a general class of online algorithms) can be
characterized by coff(F ,Xoff) and con(F ,Xon, Non) for any (not necessarily disjoint) partition Xon
and Xoff – despite the algorithm not knowing the partition itself. As this holds for every partition,
the guarantee we provide therefore incorporates the best possible split without the algorithm having
to know or estimate it.

4 Online Finetuning From Offline Data

Here is an example. In this section, we derive an efficient regret bound for an optimistic online
algorithm with general function approximation that is warm-started with offline data of arbitrarily
poor quality. This regret bound demonstrates provable gains over both online-only and offline-only
reinforcement learning through splitting the state-action space.4

An Optimistic Hybrid RL Algorithm Warm-Started With Offline Data. We modify the
GOLF algorithm from Xie et al. (2022a) to incorporate a dataset Doff collected by a behavior policy
πb with occupancy measure µ. We name the resulting algorithm DISC-GOLF.5 The modification
is simple and intuitive – we simply warm-start the online exploration by appending the offline
data to the experience replay buffer at the beginning, and explore from there. Remarkably, this
simple modification enables us to deal with an offline dataset that only has partial coverage. To
our knowledge, this has only previously been accomplished in the tabular setting with a far more
complicated algorithm (Li et al., 2023b).

Algorithm 1 DISC-GOLF
1: Input: Offline dataset Doff , samples sizes Non, Noff , function class F and confidence width
β > 0

2: Initialize: F (0) ← F , D(0)
h ← ∅,∀h ∈ [H]

3: for episode t = 1, 2, . . . , Non do
4: Select policy π(t) ← πf(t) , where f (t) := argmaxf∈F(t−1) f1 (x1, πf,1 (x1)).
5: Execute π(t) for one episode and obtain trajectory (s(t)

1 , a
(t)
1 , r

(t)
1 ), . . . , (s(t)

H , a
(t)
H , r

(t)
H ).

6: Update dataset D(t)
h ← D

(t−1)
h ∪ {(s(t)

h , a
(t)
h , r

(t)
h , s

(t)
h+1)},∀h ∈ [H].

7: Compute confidence set:

F (t) ←
{
f ∈ F : L(t)

h (fh, fh+1)− min
f ′
h

∈Fh
L(t)
h (f ′

h, fh+1) ≤ β ∀h ∈ [H]
}
,

where L(t)
h (f, f ′) :=

∑

(s,a,r,s′)∈D(t)
h

∪Doff,h

(
f(s, a)− r −max

a′∈A
f ′ (s′, a′)

)2
,∀f ∈ Fh, f ′ ∈ Fh+1.

8: end for

Main Result. The following result shows that the regret can be decomposed into two terms that
depend on the offline and online complexity measures over the best possible partition of X .

4The algorithm is never aware of the partition. The partition is only a convenient, but useful, theoretical construct.
5Data Informed Sequential Confidence-sets – Global Optimism based on Local Fitting.
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Theorem 1 (Regret Bound for DISC-GOLF). Let Xoff ,Xon be an arbitrary partition over X =
S ×A× [H]. Algorithm 1 satisfies the following regret bound with probability at least 1− δ:

Reg(Non) = O
(

inf
Xon,Xoff

(√
βH4Non

(
Non
Noff

)
coff(F ,Xoff) +

√
βH4Noncon(F ,Xon, Non)

))
,

where β = c1 log (NHNF (1/N)/δ) for some constant c1 with N = Non +Noff .6

We defer the proof to Appendix A. This shows that an optimistic online RL algorithm can be adapted
to the hybrid setting in a very natural way – initializing it with an offline dataset. Although the
algorithm is completely unaware of the partition, the regret bound provides the best regret guarantee
over all partitions of the state-action space.

The offline term depends on Non

(
Non
Noff

)
, and so depends on the ratio of the number of online and

offline episodes. However, due to the infimum over partitions, the overall regret bound will always be
no worse than Õ(

√
Non), as when Non ≫ Noff we can simply take Xon = X to find that coff(F , ∅) = 0.

Conversely, in the few-shot learning setting where Noff ≫ Non, the regret bound is approximately
Õ
(√

βH4Noncon(F ,Xon, Non)
)

, improving on the GOLF regret of Õ
(√

βH4Noncon(F ,X , Non)
)

.

This bound roughly matches that of Song et al. (2023); Nakamoto et al. (2023); Amortila et al.
(2024) in terms of the dependence on horizon and log-covering number. However, unlike these, we
do not require single-policy concentrability. The infimum over partitions gives us a finite partial all-
policy concentrability coefficient coff(F ,Xoff), even when the single-policy concentrability coefficient
over the entire space C∗ is unbounded. Additionally, these previous approaches discard any offline
data beyond the size of the online dataset (i.e. offline datapoints Non + 1, ..., Noff), and so obtain a
guarantee that does not depend on Noff . We do not need to discard any offline samples, enabling us
to use the offline data in our regret bound.

5 Case Studies

Theorem 1 established a regret bound for the general function approximation setting. Throughout
this section, we examine case studies to demonstrate the exact improvement of hybrid RL algorithm
over pure online and pure offline algorithms and characterize the set of good partitions. We defer
all proofs in this section to Appendix C.

5.1 Tabular MDPs.

The most commonly considered MDP family is that of the Tabular MDPs, with a finite number of
states and actions. As each Q function at the step h can be represented as a |S| × |A| dimensional
vector, we consider the function class Fh = [0, H]|S||A|. For a constant ρ > 0, an intuitive choice
of partition that corresponds closely to the choice of Li et al. (2023b) is Xoff(ρ) := {(s, a, h) :
supπ dπh(s, a)/µh(s, a) ≤ ρ}. As such, the partial offline concentrability coefficient reduces to the
supremum of density ratios over the offline partition, allowing us to bound the partial SEC by the
cardinality of the online partition.

Proposition 1. We can bound coff(F ,Xoff) ≤ supπ sup(s,a,h)∈Xoff
dπh(s,a)
µπ
h

(s,a) = supπ
∥∥∥d

π
h1Xoff
µπ
h

∥∥∥
∞

and
con(F ,Xon) ≲ maxh∈[H] |Xon,h| log(Non). As such, with probability at least 1− δ,

Reg(Non) = Õ
(

inf
Xon,Xoff

(√
H5SANon

(
Non
Noff

)
sup
π

∥∥∥∥
dπh1Xoff

µπh

∥∥∥∥
∞

+
√
H5SA max

h∈[H]
|Xon|Non

))
.

6The online-only bound in Xie et al. (2022a) is of the form
√

βH2Noncon(F ,X , Non), as they assume Q-functions
are bounded by [0, 1], accounting for the remaining H2 dependence.
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Therefore, if the offline dataset has good coverage on a subset Xoff , the complexity of online learn-
ing complexity can be reduced to the cardinality of its complement Xon. We then obtain a regret
bound that is at most a factor of H2SA off from the minimax-optimal results in the offline-only
and online-only cases (Rashidinejad et al., 2023; Shi et al., 2022; Azar et al., 2017; Xie et al.,
2022b), even though (1) DISC-GOLF is a very general model-free function-approximation algo-
rithm, and (2) we did not perform a specialized analysis of this case beyond simply bounding the
partial SEC in this setting. We anticipate that analyzing specialized versions of DISC-GOLF can
achieve tighter sample complexities in the same sense that Li et al. (2023a) accomplish for Q-
learning. Note that in a few shot learning setting, where Noff ≫ Non, the regret is approximately
Õ
(√

H5SAmaxh |Xon,h|Non log(Non)
)

, where Xon is the set of state, action and step tuples where
the offline occupancy measure µ is unsupported.

5.2 Linear MDPs.

The family of Linear MDPs is a common MDP family that generalizes the tabular case, defined in
Definition 2. It can be shown that the linear function class for action-value function approximation:
Fh = {⟨ϕ(·), wh⟩ : wh ∈ Rd, ∥wh∥ ≤ 2H

√
d} is Bellman complete (Jin et al., 2020).

Definition 2 (Linear MDP). An episodic MDP is a linear MDP with a feature map ϕ : S×
A → Rd, if for any h ∈ [H], there exist d unknown (signed) measures νh = (ν(1)

h , . . . , ν
(d)
h )

over S and an unknown vector θh ∈ Rd, such that for any (s, a) ∈ S × A, we have
Ph(· | s, a) = ⟨ϕ(s, a),νh(·)⟩ and rh(s, a) = ⟨ϕ(s, a),θh⟩ , where ∥ϕ(s, a)∥2 ≤ 1 for all s, a and
max{∥νh(S)∥, ∥θh(S)∥ ≤

√
d} for all h ∈ [H].

We can define a partition of the state-action space X as follows. For any subset X ′ ⊂ S×A, consider
the image of the feature map ϕ(X ′) = {ϕ(s, a) : (s, a) ∈ X ′}. We can choose Φoff ⊆ Rd and Φon ⊆ Rd
to be the subspaces spanned by (ϕ(Xon,h))h∈[H] and (ϕ(Xoff,h))h∈[H], with dimensions doff and don
respectively. That is, any partition of the state-action space X induces two subspaces of Rd through
the feature map ϕ. Let Poff and Pon be the orthogonal projection operators onto Φoff and Φon. We
can then upper bound the complexity measures over each partition, as we show in Proposition 2.
Proposition 2. Let ϕoff = Poffϕ. We have coff(F ,Xoff) ≤ maxh 1/λdoff (Eµh [ϕoffϕ

⊤
off ]) and

con(Gon) = O(don log(HNon) log(Non)), where λn is the n-th largest eigenvalue. Then, with proba-
bility at least 1− δ, the regret Reg(Non) is bounded by

Reg(Non) = Õ
(

inf
Xon,Xoff

(√
dH5Non

(
Non
Noff

)
max
h

1
λdoff (Eµh [ϕoffϕ⊤

off ])
+
√
dondH5Non

))
.

We can compare this result to the
√
d2H3Non minimax lower bound from Zhou et al. (2021), and

the best known upper bound from Zanette et al. (2020) of
√
d2H4Non, for online RL in linear MDPs.

It is exciting to note that by incorporating offline data into an online algorithm, we can improve
the dependence on dimension of the regret incurred on the online partition from d2 to dond. We
accomplish this by bounding the SEC in the linear MDP case by don, up to logarithmic factors. This
therefore demonstrates another example of provable gains from hybrid RL.

5.3 Block MDPs.

A block MDP (BMDP) refers to an environment with a finite but unobservable latent state space U ,
a finite action space A, and a possibly infinite but observable state space S (Dann et al., 2019; Misra
et al., 2019; Du et al., 2021). At each step, the environment generates a current state sh ∼ q(· | uh)
given the underlying latent state uh ∈ U . This is described by the block structure outlined below.
Definition 3 (Block Structure). A block MDP is an MDP where each context x ∈ X uniquely
determines its generating state u ∈ U , i.e. there is a decoding function f∗ : S 7→ U such that q(· | u)
is supported on (f∗)−1(u).
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Any partition Xoff ,Xon induces a partition on the latent state-action space X̄off = {(f∗(s), a, h) :
(s, a, h) ∈ Xoff} and X̄on = {(f∗(s), a, h) : (s, a, h) ∈ Xon}, and the offline behavior policy and a
given policy π induce measures µ̄h and d̄πh on U × A. Then, Proposition 3 shows that the offline
and online learning complexities are determined by the cardinalities of the induced partitions of the
latent state space. This bound is also dependent on β, but we omit it in the main text for brevity.
Proposition 3. In a block MDP, coff(F ,Xoff) ≤ supπ sup(u,a,h)∈X̄off

d̄πh(u,a)
µ̄π
h

(u,a) and con(F ,Xon, T ) =
O(maxh |X̄on,h| log(Non)) if F is Bellman-complete. Then, with probability at least 1− δ,

Reg(Non) = Õ


 inf

Xon,Xoff



√√√√H4Non

(
Non
Noff

)
sup
π

sup
(u,a,h)∈X̄off

d̄πh(u, a)
µ̄πh(u, a) +

√
H4Non max

h
|X̄on,h|




 .

6 A Recipe for General Algorithms

The analysis and techniques used above are by no means applicable only to DISC-GOLF. In Proposi-
tion 4 below, we provide a general recipe that can be used to analyze how a general online algorithm
L can benefit from being initialized with access to an offline dataset.

We define d(t)
h to be the measure over S × A induced by running algorithm L for t iterations at

horizon h. This bound depends on a set of error terms δth, which for example is (1) the Bellman
error f th − Thf th+1 in the case of general function approximation with DISC-GOLF, (2) the sum
of upper confidence bonus terms, estimation errors, and two martingale terms with UCBVI (Azar
et al., 2017) for the tabular setting, and (3) the gap multiplied by the probability each arm is pulled
in the bandit case with UCB (Auer, 2003). We then have the following result below that provides
a guarantee for the procedure of “hybridifying” general online algorithms by initializing them with
offline datasets. We defer the proof of Proposition 4 to Appendix D.
Proposition 4. Let L be a general online learning algorithm that satisfies the following conditions:

1. L admits the regret decomposition RegL(T ) ≤∑T
t=1
∑H
h=1 E(s,a)∼d(t)

h

[δth(s, a)] for some col-
lection of random functions7 (δth)Hh=1 with each δth a mapping from X 7→ R;

2.
∑T
t=1
∑H
h=1

(
NoffE(s,a)∼µh [δth(s, a)2] +

∑t−1
i=1 E(s,a)∼di

h
[δth(s, a)2]

)
≤ β(δ,H) w.p. 1− δ;

3. there exists a function con : P(X )×N such that for any X ′ ⊂ X , it holds with a probability at
least 1− δ that

∑T
t=1
∑H
h=1 E(s,a)∼d(t)

h

[δth(s, a)1(x, a, h) ∈ X ′] = O(con(X ′, T )Hγβ(δ,H)T )ξ,
for some ξ ∈ (0, 1), γ ∈ Z≥0, and where β : (0, 1) 7→ R is some measure of complexity of the
algorithm and its dependence on the probability of failure δ;

4. a coverage measure on any X ′ ⊂ X of coff(X ′) := suph∈[H] supπ
Edπ
h

[δth(s,a)1(s,a,h∈X ′)]
Eµh [δt

h
(s,a)1(s,a,h∈X ′)]

8.

Then, the algorithm L satisfies the following regret bound w.p. at least 1− δ:

RegL(T ) = O


 inf

Xon,Xoff
(con(Xon, T )β(δ,H)HγT )ξ +H

√
β(δ,H) · coff(Xoff) · N

2
on

Noff


 .

Informally, Proposition 4 states that given (1) a regret decomposition over the errors at each
timestep, (2) a bound on the in-sample error (or just the error under the behavior policy measure),
(3) an online-only regret bound for the original algorithm, and (4) an offline coverage measure, we
can provide a similar guarantee to what we showed for DISC-GOLF in Theorem 1. We anticipate
that one can use this or similar arguments to improve upon the minimax-optimal online-only and
offline-only regret bounds when analyzing more specialized algorithms.

7This is often the Bellman error in the case of MDPs.
8We set 0/0 as 0.
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Figure 1: Coverage of the online samples averaged over 30 trials, with 1.96σ̂ confidence intervals.
Hybrid RL explores more of the online partition and less of the offline partition than online RL
when the behavior policy is poor, and vice-versa when the behavior policy is good. Lower is better.

7 Numerical Experiments

To illustrate the notion that appending the offline dataset to the experience replay buffer can encour-
age sufficient exploration for the portion of the state-action space that does not have good coverage,
we perform two simulation studies in the tabular and linear MDP settings respectively.9

7.1 Forest, Tabular MDP.

We used a simple forest management simulator from the pymdptoolbox package of Cordwell et al.
(2015). This environment has 4 states and 2 actions, and we used a horizon of 20 years. Every year,
the agent can choose to wait and let the forest grow, earning a reward of 4 if the forest is 3 years old
and 0 otherwise, or cut the forest down, earning a reward of 1 if the forest is between 1 − 2 years
old, 2 if the forest is 3 years old, and 0 otherwise. The forest burns down with 0.1 probability each
year (making it 0 years old).

We examine how an optimistic model-based algorithm, UCBVI (Azar et al., 2017), behaves when
warm-started with an offline dataset. We considered three behavior policies – adversarial, uniform,
and optimal. The adversarial behavior policy does the opposite of the optimal policy 60% of the
time, and takes a random action 40% of the time. Each offline dataset consisted of 100 trajectories.
The offline partition was chosen to be the state-action pairs with occupancy at least 1/SA, and the
online partition was defined as its complement. In Figure 1, we plot the full and partial single-policy
concentrability coefficients from running UCBVI on each partition and for each behavior policy.
Between this and Figure 3 in Appendix F, which depicts the cumulative visits to each partition,
we see that when the behavior policy is poor or middling, hybrid RL explores more of the online
partition to fill in the gaps in the offline dataset than online RL does. However, when the behavior
policy is optimal, hybrid RL sticks to the online partition due to the warm-started model estimation.
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Figure 2: Plot of the full and partial all-policy concentrability coefficients of the online samples from
100 online episodes. The solid line represents the mean over 30 trials, and the shaded areas represent
confidence intervals generated by 1.96 times the sample standard deviation. We see that hybrid RL
takes fewer online episodes than online-only RL to achieve a lower concentrability coefficient.

7.2 Tetris, Linear MDP.

In another experiment, we consider a scaled-down version of Tetris with pieces of shape at most
2 × 2, where the game board has a width of 6. The agent can take four actions, corresponding to
the degree of rotation in 90 degree intervals, at each timestep. The reward is the negative of any
additional increase in the height of the stack beyond 2. We examine the extent to which an optimistic
RL algorithm, LSVI-UCB from Jin et al. (2020), explores the feature space more effectively when
initialized with an offline dataset of 200 trajectories of length 40 from a uniform behavior policy.

Due to combinatorial blowup, this environment is rather difficult to explore. We therefore chose to
focus on the portion of the environment that was covered by the uniform behavior policy within
the 8000 simulated timesteps in the offline dataset. This was accomplished through projecting the
640-dimensional one-hot state-action encoding into a 60-dimensional subspace estimated through
performing SVD on the offline dataset. The offline partition was chosen to be the span of the top 5
eigenvectors, while the online partition was the span of the remaining 55. Without the projection,
the results are qualitatively similar to what we have observed, except with concentrability coefficients
that are orders of magnitudes higher.

In Figure 2, we plot the all-policy concentrability coefficients from n = 1, ..., Non, given by the largest,
k-th largest, and d− k-th largest eigenvalues of the data covariance matrix and its projections onto
the offline and online partitions respectively. We see that the concentrability coefficients on the entire
space, as well as the offline and online partitions, decrease much faster with the hybrid algorithm
than that of the online-only algorithm. This further confirms that an online algorithm initialized
with a precollected offline dataset can explore more effectively.

8 Conclusion and Discussion

We have answered through theoretical results and numerical simulations that simply appending
the offline dataset to the experience replay buffer can (1) lead to an improvement when the offline
dataset is of poor quality, and (2) encourage sufficient exploration for the portion of the state-action
space without good coverage. This yields a general recipe for modifying existing online algorithms to
incorporate offline data, and we propose DISC-GOLF, a modification of an existing optimistic online
algorithm, as an example, with promising theoretical guarantees demonstrating provable gains over
both offline-only and online-only learning.
Limitations and Future Work. Due to our desire to work with the simple procedure of ap-
pending the offline dataset to the experience replay buffer with general function approximation,
our regret bound depends on partial all-policy concentrability. This is not bad, as the best partial

9All code can be found at https://github.com/hetankevin/hybridcov.

1261



RLJ | RLC 2024

all-policy concentrability coefficient is always finite (as we can always take Xoff = ∅) even when
the single-policy concentrability coefficient is unbounded. Still, improving this to a guarantee based
on partial single-policy concentrability would be valuable. Potential approaches include the clipped
single policy concentrability coefficient of Amortila et al. (2024) and the analysis in Theorem 3.1 of
Xie et al. (2023). In particular, it is possible that instantiating the result in Theorem F.6 of Amortila
et al. (2024) in our setting will lad to a similar tradeoff between the error on analogues of the offline
and online partitions discussed in our analysis, though we leave such an approach to future work.

As GOLF, and therefore DISC-GOLF, uses the squared Bellman error, we (1) require completeness
(Xie et al., 2022a), and (2) incur a total H4 dependence before any additional penalties from the
log-covering number of the function class.10 We and Xie et al. (2022a) use this instead of the average
Bellman error to facilitate change-of-measure arguments. If one could work with the average Bellman
error without a change-of-measure, one could potentially reduce the dependence to H3 while only
requiring realizability, but it is not clear whether this can be accomplished.

Practical and computationally tractable adaptations of DISC-GOLF can be developed in the same
sense as (Cheng et al., 2022; Nakamoto et al., 2023), including approaches to optimism in deep RL
such as the optimistic actor-critic of Ciosek et al. (2019). One could extend the theoretical analyses
in this paper to practical algorithms in deep RL.

Hybrid RL poses a unique opportunity to bypass the pitfalls of offline reinforcement learning. We
address the issue of coverage in this work, but strategically collected online data may also help to
solve other pertinent issues in offline RL such as distribution shift (Song et al., 2023; Cheng et al.,
2022; Kumar et al., 2020), or confounding and partial observability (Wang et al., 2020; Kausik et al.,
2023; Bruns-Smith & Zhou, 2023; Lu et al., 2023).

Finally, while DISC-GOLF uses optimistic online exploration, previous work and our general recipe
in Proposition 4 shows it is possible to be pessimistic (Nakamoto et al., 2023), or neither (Song et al.,
2023). We conjecture that in the presence of single-policy concentrability, or any other situation
where the agent does not need to explore any unseen actions online beyond what was already
observed in the collected dataset, as in Song et al. (2023); Nakamoto et al. (2023); Amortila et al.
(2024), exploration during online learning, and therefore optimism, is not necessary. Otherwise,
optimism can be helpful in aiding exploration. Further analysis on the relative merits of each, or
even switching between them as Moskovitz et al. (2022) do, is welcomed.
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Abstract

Reinforcement-learning agents seek to maximize a reward signal through environ-
mental interactions. As humans, our job in the learning process is to design reward
functions to express desired behavior and enable the agent to learn such behavior
swiftly. However, designing good reward functions to induce the desired behav-
ior is generally hard, let alone the question of which rewards make learning fast.
In this work, we introduce a family of a reward structures we call Tiered Reward
that addresses both of these questions. We consider the reward-design problem in
tasks formulated as reaching desirable states and avoiding undesirable states. To
start, we propose a strict partial ordering of the policy space to resolve trade-offs
in behavior preference. We prefer policies that reach the good states faster and
with higher probability while avoiding the bad states longer. Next, we introduce
Tiered Reward, a class of environment-independent reward functions and show it is
guaranteed to induce policies that are Pareto-optimal according to our preference
relation. Finally, we demonstrate that Tiered Reward leads to fast learning with
multiple tabular and deep reinforcement-learning algorithms.

1 Introduction

Reinforcement learning (Sutton & Barto, 1998) (RL) is concerned with the problem of learning
to behave to maximize a reward signal. In biological systems, this reward signal is considered to
be the organism’s motivational system, using pain and pleasure to modulate behavior (Porreca &
Navratilova, 2017; Leknes & Tracey, 2010; Navratilova & Porreca, 2014). In engineered systems, how-
ever, rewards must be selected by the system designer (Nagpal et al., 2020; Dewey, 2014). We view
rewards as a kind of programming language—a specification of the agent’s target behavior (Littman
et al., 2017; Zhou & Li, 2022). As arbiters of behavior correctness in the learning process, humans
bear the responsibility of authoring this program. This is referred to as the reward-design prob-
lem (Dewey, 2014; Devidze et al., 2021; Sorg et al., 2010; Sowerby et al., 2022): given a set of desired
behavior, what kind of reward functions would efficiently express these behavior? In this paper, we
look at rewards that can correctly and efficiently express desirable states (goals and subgoals) and
undesirable states (obstacles).

There are two essential steps in designing reward functions. First, one must decide what kind of
behavior is desirable and should be conveyed. Then, there’s the choice of reward function that
induces such behavior. The first step is hard because there is no universal preference over behavior
and having to explicitly write down all possible trade-offs is challenging. Even if the reward designer
has a way of expressing preferences for all possible exchanges, it can be difficult, or even impossible,
to design a reward function that captures them without prior knowledge of the environment.

First, let us consider the question of how to specify preference over a set of policies (Roy et al., 2021).
In the goal–obstacle class of tasks we consider, preferences over policies are simple in deterministic

∗Correspondence to: zhiyuan_zhou@berkeley.edu. Code for the paper can be found at https://github.com/
zhouzypaul/tiered-reward
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environments. We imagine all states are either goal states, obstacle states, or neither (background
states), and all goals and obstacles are absorbing. Preferences in deterministic environments form
a total order: reaching goals is better than reaching obstacles; if the policy reaches goals, faster is
better; if the policy reaches obstacles, avoiding them longer is better. However, even in this simple
setting, providing such precise trade-offs is difficult in stochastic environments. Is it better for an
agent to increase the chance of getting to the goal by 5% if it also incurs 8% higher probability
of hitting an obstacle? Is it better to increase by 50% the probability of getting to a goal if the
expected time of getting there also increases by 20%? Preferences are less clear in a stochastic setting
because there can be trade-offs between different outcomes and their probabilities. However, some
comparisons are arguably clear cut. Informally, if one policy induces uniformly better outcomes
than another—being more likely to reach a goal and doing so faster, being less likely to reach an
obstacle and getting there more slowly—we prefer such a policy. If the policies can’t be directly
compared, we propose to be indifferent between them. Thus, we replace the standard reinforcement-
learning notion of optimality with Pareto-optimality (Mornati, 2013) which is commonly adopted
in multiobjective RL (Vamplew et al., 2011; Van Moffaert & Nowé, 2014); we seek a policy that is
either preferred or incomparable to every other policy.

Even after resolving the issue of specifying behavior preference, policies are hard to express through
reward functions in general (Zhang et al., 2009; Amodei & Clark, 2016), and some are even impossible
to convey with a Markov (state–action-based) reward (Abel et al., 2021). Even when policies are
expressible, designing bad reward functions can lead to undesirable or dangerous actions (Amodei
& Clark, 2016), easy reward hacking (Amodei et al., 2016; Skalse et al., 2022), and more. We
seek to design good reward functions, which can be characterized by many properties, such as
interpretability and learning speed (Devidze et al., 2021). But the most important property a
reward function must have is to guarantee the adoption of a desired policy. As we will show later in
Section 5, even intuitively correct reward designs can lead to suboptimal policies. To hedge against
this, we introduce a tiered reward structure that is guaranteed to induce Pareto-optimal policies.
Intuitively, we partition the state space into several tiers, or goodness levels. States in the same
tier are associated with the same reward, while states in a more desirable tier are associated with
an exponentially higher reward. We prove that these tiered reward structures, with the proper
constraints between reward values, induce Pareto-optimal behavior and empirically show that they
can lead to fast learning.

In this paper, we propose Tiered Reward as a way to design reward functions that can correctly
and swiftly express desired behavior. Our contribution is threefold: First, we define a preference
over the entire policy space via a strict partial ordering on outcomes using the notion of Pareto-
optimality. This addresses the question of behavior preference in stochastic environments. Then, we
introduce a class of environment-independent tiered reward structure that provably induce Pareto-
optimal policies with respect to this preference ordering. Finally, we demonstrate these tiered reward
functions can lead to fast learning in both tabular and deep RL settings and is invariant to the choice
of RL algorithms.

2 Related Work

Specifying behavior through rewards: Preference-based RL methods (Wirth et al., 2017;
Brown et al., 2019; Liu et al., 2022) learn a reward function based on a dataset of preferences
over trajectories. But, as we have argued, preferences over trajectory probabilities can be very diffi-
cult to specify. In addition, our reward scheme relieves the need for environment-specific preference
datasets created by human experts. Multi-objective RL (Vamplew et al., 2011; Toro Icarte et al.,
2018; Hayes et al., 2022) allows for different tasks to be specified through a set of reward functions.
Our work proceeds in the orthogonal direction by designing a single reward function to trade off
among multiple behaviors, instead of incentivizing all of them. Reward machines (Icarte et al., 2018;
2022) are finite state machines that compose reward functions and allow different rewards to be de-
livered dependent on the agent’s trajectory. They reveal the structure of the reward function to the
RL agent to support decomposition of complex tasks. Our focus on how to provide incentives for
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specific outcomes is complementary and the two approaches can be used in concert. Temporal logic
based languages (Littman et al., 2017; Camacho et al., 2017; Li et al., 2017; Camacho et al., 2019)
have been used to specify behavior. Though these methods can be more expressive, they often lead
to intractable planning and learning problems due to state-space explosion issues (Wongpiromsarn
et al., 2010). We offer a different expressibility–tractability tradeoff.

Reward Design for fast learning: Mataric (1994) proposed to accelerate learning by incorporat-
ing domain knowledge and using a progress estimator, but does not provide a principled method of
designing a reward function. Sowerby et al. (2022) showed that reward functions that maximize the
action gap given a measure of horizon length lead to fast learning. However, designing such reward
functions requires solving an optimization problem with detailed knowledge of the environment,
making this approach impractical. Similarly, Devidze et al. (2021) formulated the reward-design
problem as an optimization problem to maximize informativeness and sparsity. However, their
method requires solving the MDP with ground truth transition dynamics and a reference reward
function, which is often not available in practice.

3 Problem Setting

We view an RL environment as a Markov Decision Process (MDP), with state space S, action space
A, transition model T , reward function R, and discount factor γ. A policy π : S × A → [0, 1]
is a mapping from the current state to a probability distribution of the action to be taken. The
optimal policy starting from some initial state s0 in the MDP is defined as any reward-maximizing
policy π∗ ∈ argmaxπ E[

∑
t γtrt|s0, π]. To make the reward-design problem as simple as possible for

designers, we limit the reward function R : S → R to be defined solely on states. In goal–obstacle
tasks, we consider the goal states and obstacle states to be absorbing.

We are interested in the reward-design problem. In the common RL framework, tasks are specified
by the reward function and the agent’s objective is to maximize cumulative rewards. We take an
alternative perspective: We specify tasks by prescribing a set of desirable policies and seek reward
functions such that maximizing the reward will lead to the desirable policies. Formally, given a set
of desirable (Pareto-optimal) policies Π, the reward-design problem is to create a reward function
R : S → R such that the optimal policy π∗

R ∈ Π.

We imagine the state space S as exhibiting a tiered structure, where higher tiers are more desirable
than lower tiers, and states within the same tier are equally desirable. Formally, we define:
Definition 3.1. k-Tier Markov Decision Process: A Tier MDP is an MDP with state space S, action
space A, transition model T : S×A×S → R, reward function R : S → R, and discount factor γ. The
state space is partitioned into k tiers, where S = S1 ·∪S2 ·∪ . . . ·∪Sk and Si ∩Sj = ∅, ∀i ̸= j ∈ 1, 2, ..., k.
The reward function has the form R(s) = ri, ∀s ∈ Si, i = 1, 2, ..., k. In addition, r1 < r2 < . . . < rk.

As an example, the grid world from Russell & Norvig (2010), as illustrated in Figure 1a, could be
formulated as a 3-Tier MDP—the goal state is one tier (S3), the lava state one tier (S1), and all
other states reside in the background tier (S2). It is important to note that we put no constraints on
how many states could be in each tier, nor how many tiers there can be. Therefore, the framework
has a high degree of generality: any finite MDP with reward defined on states could be formulated
as a Tier MDP by placing states with the same reward in the same tier. However, the Tier MDP
is most useful when there are clear good and bad states in the state space, such as when there are
goal and obstacle states, or even states of intermediate desirability such as subgoal states. In the
following sections, we will show how to perform reward design in Tier MDPs.

4 Policy Ordering with Pareto-optimality

A policy induces a probability distribution over an infinite set of outcomes (specifically the proba-
bility of reaching each of the states after t steps, for all t). In goal–obstacle tasks, policies can be
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(a) Russell/Norvig grid world. Objective
is to reach the goal (green) without first
visiting lava (orange) (γ = 0.9). (b) A Tiered Reward in a grid world with 6 tiers. Start

state in bottom left, goal state in top right. Darker
colors correspond to more negative reward values.

Figure 1

characterized by statistics such as probability of reaching the goal and probability of avoiding the
obstacle for each possible horizon length. Using these statistics, we will show below how the entire
policy space can form a strict partial ordering to specify which policies are preferable.

We define ot to be the probability of being in S1 at timestep t, and gt that of S3. Given two policies
πA and πB , we say πA dominates πB when both of these inequalities hold (and not both being
strictly equal at all times):

t∑

i=0
oA

i ≤
t∑

i=0
oB

i ,

t∑

i=0
gA

i ≥
t∑

i=0
gB

i , ∀t = 0, 1, 2, ..., ∞.

In words, one policy dominates another if it gets to the goal faster, while delaying encountering
obstacles longer. The set of policies that are not dominated by any other policy is the set of Pareto-
optimal policies. Because there is a finite number of policies and domination is transitive, the set of
Pareto-optimal policies is non-empty. See a visualization of Pareto-optimal policies in Appendix C.

Pareto-optimal policies are interesting to consider for two main reasons. First, Pareto-optimal
behavior always exists, even when policies that achieve other reasonable things do not. Secondly,
Pareto-optimality addresses the preference problem by defining a strict partial ordering over the
entire policy space. Although the policies on the Pareto frontier are incomparable among themselves,
they are all better than the set of Pareto-dominated policies. We simply deem the set of Pareto-
optimal policies to be the desirable behavior, and all others undesirable. Next, we show how to
design rewards that guarantee Pareto-optimal policies.

5 Tiered Reward

In this section, we seek a sufficient condition on the reward function so that optimizing expected
discounted reward will result in a Pareto-optimal policy with respect to our preference relation.
Definition 5.1. Pareto-optimal rewards: A reward function R(s) is called Pareto-optimal if the
policy it induces, πR ∈ argmaxπ E[

∑
t γtrt|s0, π], is Pareto-optimal.

Even some reasonable-sounding reward functions need not be Pareto-optimal. Going back to the
Russell/Norvig grid example, an intuitive reward design would be requiring rlava < rbackground <
rgoal. Consider three example reward functions in Table 1 that satisfy this constraint: Both R and
G are Pareto-optimal, while B is Pareto-dominated (see Figure 8 in Appendix). Roughly, B doesn’t
encourage getting to the goal but is also not good at avoiding lava.

In fact, many of the reward functions that satisfy rlava < rbackground < rgoal are not Pareto-optimal.
Out of 1000 such rewards that we sampled randomly, 90.5% were Pareto-dominated (See Figure 11 in
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Policy rlava rbackground rgoal

R −1 −0.1 +1
G −1 0 +0.5
B −1 −0.9 0

Table 1: Three intuitive reward functions of Russell/Norvig grid world. B is Pareto-dominated.

Appendix). Next, we present a simple rule that is sufficient to guarantee environment-independent
Pareto-optimal reward functions.

5.1 The 3 Tiers Case

To facilitate understanding, we limit the problem space to 3-Tier MDPs for now, and generalize to
k-Tier MDPs in Section 5.2. In a 3-Tier MDP, we will call the 3 tiers obstacles (S1), background
(S2), and goals (S3), in order of increasing desirability. States in S1 and S3 are absorbing.
Definition 5.2. Tiered Reward: In a 3-Tier Markov Decision Process with discount factor γ ∈ (0, 1),
a reward function defined by

R(s) =





robs if s ∈ S1

rbackground if s ∈ S2

rgoal if s ∈ S3

is considered a Tiered Reward if

robs <
1

1 − γ
rbackground < rgoal.

and states in S1 and S3 are absorbing.
Theorem 5.3 (Pareto-optimal rewards in 3-Tier MDP). In a 3-Tier Markov Decision Process, a
Tiered Reward is Pareto-optimal.

We leave the proof in Appendix A but provide some intuition for Tiered Reward here. The middle
term in Definition 5.2, 1

1−γ rbackground, is equal to the cumulative discounted return for infinitely
getting a reward in the background tier ((1 + γ + γ2 + ...)rbackground). So, in a gross simplification,
as long as the reward at the goal is more appealing than infinitely wandering in background states,
and the obstacle less appealing, the reward induces behavior that arrives at the goal early and
avoids the obstacles. Following this simple constraint, we as reward designers can easily create
Pareto-optimal reward functions without requiring knowledge of the transition probabilities in the
environment. Though environment-specific knowledge is needed partition the state space into tiers,
Tiered Reward is generally applicable and environment-independent in the sense that the reward
structure remain the same and the reward values for each tier are shared across different MDPs.

5.2 Generalizing to k Tiers

MDPs with more than 3 tiers can usefully model important problems such as those with well-defined
subgoal states. Specifically, each subgoal region could be its own tier, instead of being grouped into
one big background tier. Even though these problems could still be solved as a 3-Tier MDP, more
knowledge about the environment could help design better reward functions and accelerate learning.
Definition 5.4. Tiered Reward: In a k-Tier(k > 3) Markov Decision Process with discount factor
γ ∈ (0, 1) where the goal tier (k) is absorbing, the reward function R is a Tiered Reward if R(s) =
ri, ∀s ∈ Si, i = 1, 2, ..., k, for reward values r1, r2, ..., rk ∈ R, that satisfy

r1 < ( 1
1 − γ

)r2 < ( 1
1 − γ

)2r3 < · · · < ( 1
1 − γ

)k−1rk ≤ 0.
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One such reward is visualized in Figure 1b. Notice that the k-Tiered Reward (Definition 5.4) uses a
stricter condition than that of 3-Tiered Reward (Definition 5.2). In fact, Definition 5.4 is a sufficient
condition for Definition 5.2 because 3 tiers is a special case with only one non-absorbing tier. One
can also design a stricter 3-Tiered Reward with Definition 5.4 with k = 3. Definition 5.4 is stricter
in that: first, all reward values are non-positive. This is a sufficient but not necessary condition to
guarantee Pareto-optimality. We enforce this constraint not only to make it a sufficient condition,
but also because step-wise penalty has been proved to support faster learning (Koenig & Simmons,
1993; Sowerby et al., 2022). Specifically, with a zero-initialized value function, step penalties create
an incentive for the agent to try state–action pairs it has never experienced before, resulting in rapid
exploration. Secondly, the reward values of higher tiers are exponentially greater than the lower
ones. For adjacent tiers i and i + 1, The reward values always satisfy ri < 1

1−γ ri+1 < 0.

This definition can be understood as a generalization of the 3-Tiered Reward. When the agent
resides within tier i ∈ {2, 3, ..., k − 1}, the k tiers could be partitioned into 3 groups to construct
a 3-Tier MDP. In particular, S1 will include tiers 1 through i − 1, S2 is just tier i, and S3 is tiers
i + 1 to k. Note that we can generalize Theorem 5.3 to allow states in S1 and S3 to have any reward
values as long as they satisfy the inequality in Definition 5.2 for a fixed reward value in S2. Namely,
denote rlow = max{r1, ..., ri−1} and rhigh = min{ri+1, ..., rk}, and as a k-Tiered Reward they satisfy
rlow < ( 1

1−γ )ri < ( 1
1−γ )2rhigh And since γ ∈ (0, 1), rlow < ( 1

1−γ )ri < ( 1
1−γ )2rhigh ≤ rhigh. That

is, (rlow, ri, rhigh) is a Tiered Reward function in the 3-Tier MDP with tiers S1, S2, and S3, and
therefore induces Pareto-optimal policies (Theorem 5.3). So, at tier i, the policy that optimizes the
k-Tiered Reward will push agents to higher tiers as fast as possible and avoid lower tiers, as if they
were goals and obstacles, respectively. In the special case that the agent resides within tier i = 1,
the constraint from Definition 5.4 will treat tiers 2 through k as if they are all goals, pushing the
agent towards them. In the case that i = k, the agent is already in the “goal tier". So overall,
k-Tiered Reward will induce in a ratchet-like policy—go to the higher tiers as fast as possible while
not fall back to the lower tiers—that makes learning fast. In fact, it has been shown that a similar
increasing reward profile (Sowerby et al., 2022) leads to fast learning. Okudo & Yamada (2021) and
Zhai et al. (2022) have also shown that intermediate rewards can accelerate learning and provably
improve sample efficiency in goal–reaching tasks.

Besides encouraging early visitation of good tiers, using Tiered Reward also guarantees maximum
total visitation of all good tiers. This property is formalized in Theorem 5.5.
Theorem 5.5 (Tiered Reward and Cumulative Tier Visitation). In a k-Tier Markov Decision
Process that has Tiered Reward R(s), the induced optimal policy is π∗. Let p∗

t
d ∈ [0, 1] be the

probability of being in tier d ∈ {1, 2, ..., k} for the first time at timestep t following policy π∗. Then,
there is no policy π, along with its induced probability distribution pd

t , that satisfies both:

t∑

i=0
p1

i ≤
t∑

i=0
p∗

i
1, ∀t = 0, 1, 2, ..., ∞

t∑

i=0
pd

i ≥
t∑

i=0
p∗

i
d, ∀d = [2..k], ∀t = 0, 1, 2, ..., ∞.

The proof is similar to that of Theorem 5.3 and can be found in Appendix B. To state the theorem
in words, if a k-Tier MDP has a Tiered Reward structure, then the resulting policy will visit the
worst tier (S1) for as few times as possible, while visiting all the other good tiers (S2, ..., Sk) as
often as possible, respectively.

6 Experiments

Guaranteeing Pareto-optimal behavior is not the sole benefit of using Tiered Rewards; we find that it
also leads to fast learning compared to two baseline reward functions. The first one, following Koenig
& Simmons (1993), we call action penalty. This reward penalizes each step with −1, until the goal
state is reached and the agent is awarded +1. To reiterate, such step-wise negative reinforcement
encourages directed exploration assuming only knowledge about position of the goal. The second
one uses reward shaping as Ng et al. (1999) showed that subgoals can be leveraged through shaping
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(a) Flag Grid. The
state space is the
location of the
agent plus the flag
it has collected.

(b) Q Learning curves for Flag Grid. The two plots use different initial Q-values.
γ ∈ {0.99, 0.95, 0.90, 0.85} and Qinit ∈ {1010, 105, 103} all had similar performances,
so we only report γ = 0.90, Qinit = 105 here. Error bar show standard deviation
from 30 seeds.

Figure 2: Tiered Reward leads to fast learning on the Flag Grid.

rewards to guide the learning process. Reward shaping using an optimal value function is not a
fair comparison both because it contains more information about the environment than tiers and it
requires solving the environment with a pre-specified ground truth reward function, which induces
a circular logic in reward design. For direct comparability, we use the Tiered Reward as a potential
function Φ(s) = Rtier(s) to shape the action-penalty reward, resulting in what we call tier-based
shaping reward: Rtbs(s, a, s′) = Rpenalty(s) + γΦ(s′) − Φ(s).

There are many ways to design a Tiered Reward because it is a class of reward functions that is only
constrained by an inequality (Definition 5.4), and not by specific reward values. In this section, for
simplicity and clarity we use k-Tiered Reward defined by:

ri =
{

0 if i = k
1

1−γ ri+1 − δ if i < k

where δ is a small constant used to satisfy the strict inequality constraint.

Empirically, we show Tiered Reward provides faster learning on multiple tabular domains. We
further extend our results to environments with high-dimensional image inputs and deep RL algo-
rithms. Finally, we also explore the influence of the number of tiers and find that having more tiers
can induce faster learning.

6.1 Fast Learning with Tiered Reward

The “Flag Grid” from Ng et al. (1999) is a natural 6-Tier MDP to study Tiered Reward. In this grid
world (Figure 2a), the agent begins in the bottom-left corner and must learn to pick up four flags
in sequence before reaching the goal. The agent can move in 4 directions with an 80% success rate,
while acting randomly 20% of the time. All states in which the agent possesses the same number of
flags constitute a tier, totaling 5 tiers. The goal constitutes the sixth and final tier.

We evaluate all three reward functions with Q-Learning (Watkins & Dayan, 1992), arguably the
most well-understood and widely applicable RL algorithm. As Figure 2b (left) shows, Tiered Reward
learns fastest of the three. Perhaps surprisingly, Tier Based Shaping performs orders of magnitudes
worse than even action penalty. That is because, with discounting, the shaping function F (s, a, s′) =
γΦ(s′) − Φ(s) becomes positive when s and s′ belong to the same tier. As a result, zero-initialized
Q-values are not optimistic with respect to these rewards, and so exploration with Rtbs is undirected
and slow. For a fairer comparison, we also plot the learning curves where all Q-values are initialized
to some arbitrary large value so that Rtbs also enjoys directed exploration as the two other rewards
(Figure 2b, right). There is a noticeable spike in time taken to reach the goal early on during
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Figure 3: Illustration of EmptyGrid, FourRooms, and DoorKey from left to right. The agent is in
red, and the goal in green. The objective is to navigate to the goal; in FourRooms, the agent has
to find the gaps in the wall; in DoorKey, the agent must first pick up the key and unlock the yellow
door. All three environments use visual observations.

Figure 4: Learning curves of three reward functions on EmptyGrid, FourRooms, and DoorKey.
Each agent is trained with the reward function labeled on the plot, but evaluated using the original
MiniGrid reward (1 − 0.9 ∗ step count/max steps for success, and 0 for failure). Error bars show
standard deviation from 30 random seeds.

training. It is the result of optimistic Q-value initialization, which leads to more exploration and
thus slower learning. Regardless of this trade off, Tiered Reward still consistently outperforms the
two baselines.

It is important to note that our goal here is not to argue shaping is ineffective, nor to determine how
to initialize Q-values for fast learning, but solely to demonstrate the usefulness of Tiered Reward
in various different settings. To start, it makes learning faster than tier-based shaping reward and
action penalty for different discount factors and Q-value initialization schemes. Moreover, it is simple
to design and implement; there is no need to engineer environment-specific reward structures and
initial Q-values to accelerate learning.

6.2 Tiered Reward in Deep RL

We further show that Tiered Reward also make learning faster in Deep RL with image observations.
We choose three goal–obstacle environments from MiniGrid (Chevalier-Boisvert et al., 2023): Emp-
tyGrid, FourRooms, and DoorKey. In all three environments (Figure 3), the agent aims to learn a
policy to navigate to the goal using image observations. FourRooms is a long-horizon problem; the
DoorKey environment has a complicated transition function and action space, and is hard to solve
using classical RL algorithms with a sparse reward. In all three environments, we design Tiered Re-
ward with three tiers. For EmptyGrid and FourRooms, tiers are assigned based on each state’s L1
distance to the goal; for DoorKey, tiers are assigned based on the sub-goals the agent has completed
(getting key, opening door, and reaching goal).

We use Proximal Policy Optimization (Schulman et al., 2017) (PPO) as the RL algorithm. To
provide numerical stability, deep RL methods often employ reward scaling and clipping (Henderson
et al., 2018). To follow, we linearly scale the tiered reward values to be between −1 and 0. More
experiment details are included in Appendix F.
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(a) Top: Frozen
lake environment
with holes in dark
blue.
Bottom: Wall Grid
environment with
walls in black and
lava in orange. (b) Q-Learning results with γ = 0.9. Since there are 3 types of states in the latter

two environments, we start at 3 tiers instead of 2. Error bar show standard deviation
from 300 seeds.

Figure 5: Influence of more tiers on four grid worlds with Q learning. RMAX results in Figure 9.

For evaluation, we plot the episodic return with respect to the original reward function from Min-
iGrid (Chevalier-Boisvert et al., 2023). The original reward functions in MiniGrid are designed by
human experts and express the task of reaching the goal quickly and avoiding obstacles. Thus,
performance on the original reward function shows how quickly the agent has learned the specified
behavior. Figure 4 shows the learning performance of PPO trained on different reward functions
on MiniGrid. Across the three environments, Tiered Reward show the fastest learning, outperform-
ing the Action Penalty and Tier Based Shaping baselines. Tier Based Shaping performs differently
according to how hard the exploration problem is: as discussed before, when s and s′ are in the
same tier, the shaping function F (s, a, s′) = γΦ(s′) − Φ(s) > 0, and therefore encourages the agent
to exploit rather than explore. For FourRooms, Tiered Reward initially learns slower than Tier
Based Shaping, but later catches on and eventually outperforms its counterpart. All three reward
functions suffer from large standard deviation in FourRooms likely because this environment is a
hard exploration problem; different exploration during learning leads to wildly different outcomes.

6.3 Influence of More Tiers

Finally, we explore Tiered Reward with a varying number of tiers. First, we choose for simplicity
and clarity four grid-world domains with absorbing goals and obstacles that are suited to a flexible
number of tiers:

1. Chain: a 90–state 1D environment with left and right actions. Starting from one end, the
agent tries to reach the other end with actions of success rate 80%; failed actions transition
to the opposite direction.

2. Grid: a 9 × 9 grid where the agent starts in one corner and aims for the opposite corner.
The agent can move in four cardinal directions with a 80% success rate, while slipping to
either side with a 10% chance.

1273



RLJ | RLC 2024

3. Frozen Lake: a slippery grid with holes that will swallow the agent (Figure 5a top). The
objective is to reach the goal without falling into any holes. Each of the 4 directional actions
succeed 1/3 of the time, and slip to either side with probability 1/3.

4. Wall Grid: a grid world with multiple lava states and wall states (Figure 5a bottom). The
agent has to circle around the walls while avoiding the lava to get to the goal. Transition
dynamics same as Grid.

For Chain and Grid, tiers are decided based on their L1 distance to the goal; for Frozen Lake and
Wall Grid, tiers are based on the sum of L1 distance to the goal and start state, weighted 2 : 1.

In absence of a “correct" reward function that expresses the tasks, we measure the learning speed by
recording the steps required for the agent to reach the goal for the first time. For fair comparison,
we optimistically initialize Qinit = 105 so that Rtbs also enjoys the benefit of directed exploration.
The results are presented in Figure 5b. We repeat the same experiments with a model-based RL
algorithm, RMAX (Brafman & Tennenholtz, 2002). The results are similar to that of Q-learning
(Figure 9 in Appendix E). As expected, Tiered Reward makes learning faster as the number of
tiers increases because more information about the environment aids reward design. Tiered Reward
consistently beats action penalty and is at least as good as tier-based shaping reward, and often
much better. Even when Tiered Reward performs the same as shaped reward, it provides the added
benefit of simplicity and better interpretability—it is based only on states, and not (s, a, s′) triples.

Figure 6: Learning curves on EmptyGrid, FourRooms, and DoorKey with different number of tiers
in Tiered Reward. Error bars show standard deviation from 30 random seeds.

Adding more tiers achieves similar effects in deep RL settings under numerical constraints. Figure 6
shows the learning performance of Tiered Reward with 3, 5, 7, and 9 tiers on MiniGrid environments.
In EmptyGrid, having more tiers makes learning faster and more stable. In DoorKey, 7 and 9 tiers
produce similar results, both significantly faster than 3 or 5 tiers. In FourRooms, 5 tier leads to the
fastest learning result, and using more than 5 tiers monotonically decreases learning performance.
We believe this is because of numerical issues during scaling of Tiered Reward: we scale reward
values to [−1, 0] for stability in learning, but it also decreases the difference of reward value among
tiers, especially among higher (more desirable) tiers. Reward values for all states in tiers higher
than 3 gets normalized to very close to 0 (in the range 10−6 to 10−15), and therefore tiers become
indistinguishable under some numerical accuracy. Having more tiers suffers more from this problem
because more states become indistinguishable, and as a result have worse performance. 1 We
hypothesize that this issue can be resolved with a smarter reward scaling or clipping method, and
leave that for future work. In practice, the optimal number of tiers can be determined a priori with
MDP-specific information or empirically. Though more tiers sometimes leads to slower learning than
3 tiers, all Tiered Rewards provide faster learning than the two reward baselines in Figure 4.

1To alleviate the numerical issues caused by scaling, we set discount factor to 0.5 in these experiments to obtain
smaller original Tiered Reward. See Appendix H for further details
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7 Conclusion

In contrast to standard reward-design solutions that are environment-dependent, we presented Tiered
Rewards—a class of environment-independent reward structures that provably leads to (Pareto)
optimal behavior and empirically leads to fast learning. Tiered Reward can be defined in both
tabular and high dimensional environments, and is RL-algorithm agnostic. Interesting future work
includes getting theoretical guarantees that Tiered Reward lead to asymptotically faster learning
and addressing the numerical issues with more tiers.
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A Proof of Theorem 5.3

Proof. Let π∗ be the optimal policy induced with Tiered Reward R(s). Suppose, for the sake of
contradiction, there exists some policy π that dominates π∗. Then, by our definition of Pareto
dominance,

t∑

i=0
oi ≤

t∑

i=0
o∗

i , ∀t = 0, 1, 2, ..., ∞,

t∑

i=0
gi ≥

t∑

i=0
g∗

i , ∀t = 0, 1, 2, ..., ∞,

where ot and gt are the probabilities of reaching obstacles and goals in exactly t steps following π,
and o∗

t and g∗
t are the same for π∗. We can write the value function (of π being evaluated on R(s))

as

V =
∞∑

t=0
gt(γtrgoal +

t−1∑

j=0
γjrback) + ot(γtrobs +

t−1∑

j=0
γjrback).

The value of π∗ (V ∗) can be written similarly. Denote

fg
t = γtrgoal +

t−1∑

j=0
γjrback, and

fo
t = γtrobs +

t−1∑

j=0
γjrback.

That is, f t
g is the reward obtained on a trajectory that reaches a goal in t steps and f t

o is the reward
obtained on a trajectory that reaches an obstacle in t steps. With robs < 1

1−γ rback < rgoal, we show
below that fg

t is strictly decreasing and fo
t strictly increasing with respect to t.

Proof that fg
t is strictly decreasing:

fg
t+1 − fg

t = γt+1rgoal +
t∑

j=0
γjrback − γtrgoal −

t−1∑

j=0
γjrback

= γt(γ − 1)rgoal + γtrback

= γt(1 − γ)( 1
1 − γ

rback − rgoal)

< 0

because 0 < γ < 1 and 1
1−γ rback < rgoal.

Proof that fo
t is strictly increasing:

fo
t+1 − fo

t = γt+1robs +
t∑

j=0
γjrback − γtrobs −

t−1∑

j=0
γjrback

= γt(γ − 1)robs + γtrback

= γt(1 − γ)( 1
1 − γ

rback − robs)

> 0

because 0 < γ < 1 and robs < 1
1−γ rback.

1278



RLJ | RLC 2024

Then,

V − V ∗ =
∞∑

t=0
(gt − g∗

t )fg
t +

∞∑

t=0
(ot − o∗

t )fo
t

=
∞∑

t=0
(

t∑

j=0
gj − g∗

j )(fg
t − fg

t+1) +
∞∑

t=0
(

t∑

j=0
oj − o∗

j )(fo
t − fo

t+1) (∗)

> 0 + 0
= 0.

The pass from the first equality to the second (*) is justified as follows:

∞∑

t=0
(gt − g∗

t )fg
t =

∞∑

t=0

t∑

j=0
(gj − g∗

j )fg
t −

∞∑

t=0

t−1∑

j=0
(gj − g∗

j )fg
t

=
∞∑

t=0

t∑

j=0
(gj − g∗

j )fg
t −

∞∑

t=1

t−1∑

j=0
(gj − g∗

j )fg
t

=
∞∑

t=0

t∑

j=0
(gj − g∗

j )fg
t −

∞∑

t′=0

t′∑

j=0
(gj − g∗

j )fg
t′+1

=
∞∑

t=0
(

t∑

j=0
gj − g∗

j )(fg
t − fg

t+1)

Similarly,
∞∑

t=0
(ot − o∗

t )fo
t =

∞∑

t=0
(

t∑

j=0
oj − o∗

j )(fo
t − fo

t+1)

We have shown, through the value function, that π is strictly better than π∗ with respect to the
reward function R. But π∗ was chosen to optimize R, so that’s a contradiction. Since no such π can
exist, that means π∗ is not dominated by any policy, and is therefore Pareto-optimal.
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B Proof of Theorem 5.5

Proof. The proof is similar to that of Theorem 5.3. Suppose, for the sake of contradiction, that
there exists some such policy π. We can express the value functions as

V =
∞∑

t=0
γt

k∑

m=1
rm · pm

t , and

V ∗ =
∞∑

t=0
γt

k∑

m=1
rm · p∗

t
m.

Denote fm
t = γtrm. Then, fm

t − fm
t+1 = rmγt(1 − γ) ≤ 0, ∀m. It’s easy to see fm

t − fm
t+1 is strictly

increasing in m, so

V − V ∗ =
∞∑

t=0
γt

k∑

m=1
rm(pm

t − p∗
t

m)

=
k∑

m=1

∞∑

t=0
fm

t (pm
t − p∗

t
m)

=
k∑

m=1

∞∑

t=0
(fm

t − fm
t+1)(

t∑

j=0
pm

j − p∗
j

m)

>
k∑

m=1

∞∑

t=0
(f1

t − f1
t+1)(

t∑

j=0
pm

j − p∗
j

m) (∗∗)

=
∞∑

t=0
(f1

t − f1
t+1)

k∑

m=1
(

t∑

j=0
pm

j − p∗
j

m)

=
∞∑

t=0
(f1

t − f1
t+1) ·

t∑

j=0
(

k∑

m=1
pm

j −
k∑

m=1
p∗

j
m)

=
∞∑

t=0
(f1

t − f1
t+1) ·

t∑

j=0
(1 − 1)

= 0

Note that the (∗∗) step is justified only because
∑t

j=0 pm
j −p∗

j
m ≥ 0, ∀m = [2..k], ∀t. The inequalities

show that π achieves higher reward than the optimal policy, which is a contradiction. No such π
exists.
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C Visualization of Pareto-optimal Policies

Going back to the example of the Russell/Norvig grid, we can visualize how the probability of
reaching the goal (gt) and reaching lava (ot) changes over time for different policies. Consider two
simple policies on the Russell/Norvig grid—(1) going left from all states (“always left”) and (2)
going right from all states (“always right”).

Figure 7: Visualization of the policies of always going left and always going right in the (stochastic)
Russell/Norvig grid. The policy R is the same as R in Figure 8. To avoid color overlapping, we
separated each policy into disjoint regions visualized by distinct colors. Each colored region in the
figure represent the probability-region of one or more policies, joined by ∩. For example, the policy
“always right” covers the areas in brown and orange.

We visualize each policy as a shaded area upper bounded by
∑

t gt and lower bounded by −1+
∑

t ot

in Figure 7. This visualization can be understood as separating the probability space into two, with
the goal-reaching probability on the top half of the y-axis in [0, 1] and obstacle-hitting probability
in the bottom half of the y-axis in [−1, 0]. With this visualization, a Pareto-dominated policy
will cover an area that is entirely enclosed by that of a dominating policy because of lower goal-
reaching probabilities on the top half and higher obstacle-hitting probabilities on the bottom half. As
Figure 7 shows, “always right" and “always left" do not cover each other, so they are incomparable.
Specifically, “always right" has a slightly higher probability of reaching the goal (brown), but “always
left’ has a lower probability of reaching the lava (purple and teal).

For comparison, we plot another policy, which we call R, that is state-dependent and moves in
the direction of the goal. For policy R, the probability of reaching the target increases with time
because each step has a 20% slip probability; agents could slip early on and take longer to reach the
goal. Note that area covered by R (red, brown, orange, and purple) completely subsumes that of
“always right” (brown and orange), demonstrating that “always right" is dominated by R. “Always
left”, on the other hand, is not dominated by R because it has a lower probability of reaching lava
(teal). However, “always left” is not Pareto-optimal of course, because it is dominated by policy G
in Table 1.

In Figure 8, we visualize the three policies R, G, and B in Table 1. Both R and G are Pareto-optimal,
while B is Pareto-dominated because B’s areas are entirely enclosed by that of R and of G.
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Figure 8: Visualization of three different policies (R, G, B) on Russell/Norvig grid. Visualization
scheme is the same as described in Figure 7.
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D Tabular Grid Worlds Experiment Details

The implementation of many tabular environments and algorithms is based on the MSDM library
by Ho et al. (2021). All MSDM experiments are run on an Ubuntu 18.04 system with an Intel Core
i7-9700K CPU and 32G of RAM.

Following Koenig & Simmons (1993), we use a greedy policy for action selection and initialize the
Q-values optimistically to exploit directed exploration. Since all reward values are non-positive,
it is sufficient to initialize the Q-values to 0. We use a learning rate of α = 0.90 (tuned from
α ∈ {0.95, 0.90, 0.85}, all of which performed similarly). We set the small constant δ = 0.1.

E RMAX results

We set maximal reward rmax = 105 , use the first m = 3 transition samples to model the MDP
(tuned from m ∈ {2, 3, 5, 7, 10} and selected based on good resulting policy while taking similar
learning time to Q-Learning), and did 200 iterations of value iteration during each update.

Figure 9: RMAX results with γ = 0.9. Each experiment was run with 300 seeds.
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F MiniGrid Experiment Details

The DeepRL experiments on MiniGrid environment were run on an Ubuntu 18.04 system using a
single 6GB GPU (NVIDIA GeForce GTX 980 Ti) and took between 40-60min per seed, depending
on the environment.

A Proximal Policy Optimization (PPO) agent was trained on the three MiniGrid environments using
the following hyperparameters:

Hyperparameter Paramter Value Note

Epochs 4
Batch Size 256
Learning Rate (α) 1 × 10−3

Total Env Steps 200000 Total training steps in each environment
Discount Factor (γ) 0.5 See Appendix H
Small Constant (δ) 5 Used to satisfy the strict inequality in Tiered Reward
GAE λ 0.95 λ coefficient in the GAE formula
Entropy Coefficient 0.01
Value Loss Coefficient 0.5
Max Grad Norm 0.5 Maximum norm of gradient
Clipping ϵ 0.2

Table 2: PPO hyperparameters on MiniGrid experiments.

The PPO agent used an ImpalaCNN architecture (Espeholt et al., 2018) for the policy and value
network. The architecture of the policy network is as follows:

Layer Name Layer Type Output Dimension

Conv Sequence 1 Convolutional Layers 16
Conv Sequence 2 Convolutional Layers 32
Conv Sequence 3 Convolutional Layers 32

Hidden Layer Linear Layer 256
Logit Layer Linear Layer 256
Value Layer Linear Layer 256

Table 3: Architecture of the policy network of the Proximal Policy Optimization agent used in
MiniGrid experiments.

Each Conv Sequence in Table 4 is a sequence of convolutional and pooling layers with residual
connections. Each convolutional and pooling layer in the conv sequence has the same number of
output channels, as specified in the output dimension in Table 4. The architecture of a Conv
Sequence is as follows:

There are two residual connections: one between layers 3 and 6, and another between layers 7 and
10.
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Layer # Layer Type Kernel Size Stride Padding

1 Conv 3 1 1
2 Max Pool 3 2 1
3 Relu
4 Conv 3 1 1
5 Relu
6 Conv 3 1 1
7 Relu
8 Conv 3 1 1
9 Relu
10 Conv 3 1 1

Table 4: Architecture of a Conv Sequence.
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G Visualizing Additional Tiers on Empty Grid

To aid the understanding of Tiered Reward, we provide below visualizations of Tiered Reward on a
grid world with different number of Tiers. In this grid world, the agent starts at the bottom right
corner, and the goal is the top left corner. We assign the tiers based on a state’s L1 distance to the
goal.

Figure 10: A visualization of Tiered Reward for 3 (top left), 5 (top right), 7 (bottom left), and
9 (bottom right) tiers on a grid world. Each color in the plot represents one single tiers, and the
numbers represent the tier number.
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H Scaled Tiered Reward for Different Tiers

We provide here the numerical values of the Tiered Reward after scaling it to be between [−1, 0].
This provides intuition on how using smaller discount values can reduce the numerical problems
during reward scaling because big values of γ (for example, γ = 0.99 or γ = 0.9) will make scaled
reward values numerically equal for different tiers, especially the higher tiers.

Tier γ = 0.99 γ = 0.5

Tiered
Reward

5 0 0
4 −5 −5
3 −505 −15
2 −50505 −35
1 −5050505 −75

Scaled
Tiered
Reward

5 0 0
4 −9.9 × 10−7 −0.06
3 −9.9 × 10−5 −0.2
2 −9 × 10−3 −0.4667
1 −1 −1

Table 5: Comparing scaled and unscaled reward values using a total of 5 tiers and delta = 5. Reward
values for two discount factors (γ) are provided.

tier γ = 0.99 γ = 0.5

Tiered
Reward

9 0 0
8 −5 −5
7 −505 −15
6 −50505 −35
5 −5050505 −75
4 −505050505 −155
3 −50505050505 −315
2 −5050505050505 −635
1 −505050505050505 −1275

Scaled
Tiered
Reward

9 0 0
8 −9 × 10−15 −0.0039
7 −9 × 10−13 −0.0118
6 −9 × 10−11 −0.2258
5 −9 × 10−9 −0.0588
4 −1 × 10−6 −0.1216
3 −9 × 10−5 −0.2471
2 −0.01 −0.4980
1 −1 −1

Table 6: Comparing scaled and unscaled reward values using a total of 9 tiers and delta = 5. Reward
values for two discount factors (γ) are provided.

1287



RLJ | RLC 2024

I Additional Figure: Pareto-optimal Rewards

Figure 11: 1000 policies that are induced by random reward functions that satisfy rlava < rback <
rgoal from the Russell/Norvig grid. Each point in the scatter plot represents one policy’s probability
of success (reaching the goal) and failure (reaching the lava), showing that the majority (90.5%) of
policies in the policy space are Pareto-dominated.
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Abstract

Large language models (LLMs) encode a vast amount of world knowledge acquired
from massive text datasets. Recent studies have demonstrated that LLMs can assist
an embodied agent in solving complex sequential decision making tasks by providing
high-level instructions. However, interactions with LLMs can be time-consuming.
In many practical scenarios, it requires a significant amount of storage space that
can only be deployed on remote cloud servers. Additionally, using commercial LLMs
can be costly since they may charge based on usage frequency. In this paper, we
explore how to enable intelligent cost-effective interactions between a down stream
task oriented agent and an LLM. We find that this problem can be naturally formu-
lated by a Markov decision process (MDP), and propose When2Ask, a reinforcement
learning based approach that learns when it is necessary to query LLMs for high-
level instructions to accomplish a target task. On one side, When2Ask discourages
unnecessary redundant interactions, while on the other side, it enables the agent to
identify and follow useful instructions from the LLM. This enables the agent to halt
an ongoing plan and transition to a more suitable one based on new environmental
observations. Experiments on MiniGrid and Habitat environments that entail plan-
ning sub-goals demonstrate that When2Ask learns to solve target tasks with only
a few necessary interactions with the LLM, significantly reducing interaction costs
in testing environments compared with baseline methods. Our code is available at:
https://github.com/ZJLAB-AMMI/LLM4RL.

1 Introduction

To empower embodied agents with the capability to effectively handle demanding sequential decision-
making tasks, it is essential for them to possess reasoning abilities that enable them to plan for
the long-term consequences of their actions Deitke et al. (2022). Reinforcement learning (RL),
particularly deep RL, has emerged as a popular paradigm for addressing these challenges. Deep
RL involves agents interacting with the environment and learning from feedback to improve their

∗Equal contributions
†Y. Yang did this work during internship at Zhejiang Lab.
‡Corresponding author
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Figure 1: A general framework of using LLMs for solving complex embodied tasks. The LLMs
provide high-level instructions based on state descriptions, and the agent generates low-level actions
following these instructions and interacts with the target environment to collect further feedback.

decision-making over time. Despite recent advancements, several challenges still remains and limits
its vast applications in real world scenarios. For instance, solving complex problems using deep RL
often requires significant computational resources. Additionally, safety concerns can arise during
the learning phase, especially in scenarios where the agent’s exploration might interact with the
real world or other sensitive environments Das et al. (2018); Chevalier-Boisvert et al. (2018). As
an alternative, the emergence of large language models (LLMs) has shown promise in tackling
these issues. Previous studies have demonstrated that LLMs possess reasoning capabilities Radford
et al. (2019); Brown et al. (2020); Wei et al. (2022). Researchers have explored leveraging LLMs’
reasoning abilities to solve various embodied tasks, including robot manipulation tasks Ahn et al.
(2022); Huang et al. (2022); Jiang et al. (2022) and playing video games Dasgupta et al. (2023);
Wang et al. (2023a;c). As depicted in Fig. 1, the embodied agent interacts with the environment,
gathering information ralated to the target task, and utilizes LLMs as explicit reasoners to make
high-level plans using natural language instructions, such as instructing a robot to “pick up a can
of coke” or “place an apple on the table”.

While the integration of pre-trained LLMs as explicit planners in embodied agents has demonstrated
promising results, enabling efficient interaction between these agents and LLMs to solve real-world
problems remains challenging. Frequent queries to LLMs can result in unnecessary resource wastage,
including fees (if a commercial LLM is used), communication overhead and reasoning time. Whereas
insufficient queries to LLMs prevent the agent from obtaining useful instructions in time to adjust
its plan to respond to the complex and changing environment.

Determining an appropriate guideline for querying LLMs requires expert knowledge of the target
task. Consider a scenario where a robot is instructed to collect a can of coke but encounters a
locked door on its way to the kitchen. Ideally, the agent should recognize this incident and adjust its
plan accordingly by consulting the LLM on how to deal with the locked door. In such cases, timely
decision-making regarding when to consult the LLM planner becomes crucial. Failure to interrupt
the ongoing action plan and request a new one in time can hinder task completion progress or even
lead to safety issues, such as damaging the door or the robot itself. Conversely, frequent requests for
plans from the LLM can be time-consuming and costly, particularly when using commercial LLMs
deployed on remote cloud servers that charge based on usage frequency.

In this paper, we propose When2Ask, a general approach that trains the agent to make intelligent
cost-effective interactions between itself and an LLM remotely deployed. Our objective is to facilitate
effective completion of a target task while reducing unnecessary non-informative interactions with
the LLM. Specifically, we adopt a Planner-Actor-Mediator framework, similar to Dasgupta et al.
(2023), where the planner is a pre-trained LLM used for making plans, the actor contains policies for
executing the plans, and the mediator serves as an interface in between by deciding when to request
a new plan and generating observation representations for the planner (which are text descriptions).
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With a focus on optimizing interacting timings, we use RL to learn an asking policy that instructs
the agent to either adhere to the current plan or request a new plan from the LLM.

To summarize, our main contributions include:

• We propose an RL approach termed When2Ask to coordinate the interaction between
a downstream task oriented agent and a pre-trained LLM based on the Planner-Actor-
Mediator framework Dasgupta et al. (2023). Specifically, we propose to introduce an explicit
asking policy in the mediator and train it using an RL approach to determine when to query
the LLM planner.

• We conducted a comprehensive evaluation of When2Ask against baseline methods based
on simulation platforms MiniGrid Chevalier-Boisvert et al. (2023) and Habitat Szot et al.
(2021). The results demonstrate that the learned asking policy is able to make intelligent
decisions on when to query LLMs, resulting in high success rates with only a few necessary
LLM interactions in the testing phase. In contrast to conventional interaction strategies
that rely on predetermined termination criteria, When2Ask offers a significant advantage by
enabling the interruption of an ongoing plan in favor of a new plan that addresses emerging
observations.

2 Preliminary

2.1 The Options Framework

We consider sequential decision-making in embodied environments, which is commonly formalized
as a Markov decision process (MDP), denoted as M = ⟨S, A, p, r, γ⟩. Here S represents the state
space, A represents the action spaces, p(s′|s, a) denotes the state transition probability function,
r(s, a) represents the reward function, and γ is the discount factor. The objective is to learn an
optimal policy that maximizes the cumulative reward over time

∑
t γtr(st, at), where t denotes the

time index.

The options framework extends the traditional notion of action in an MDP to include options,
which are essentially closed-loop policies that encompass a sequence of actions over a period of time
Sutton et al. (1999); Precup (2000). Options can range from higher-level tasks such as picking up
an object or going to lunch, to more primitive actions like muscle twitches and joint torques. The
introduction of options allows for the incorporation of temporally abstract knowledge and action
within the RL framework in a natural and general manner, thus provides a flexible and intuitive
approach to handle complex tasks with varying levels of granularity. Formally, an option ω is defined
as a 3-tuple ⟨Iω, πω, βω⟩, where Iω represents the initial state set, πω denotes the acting policy, and
βω represents the termination condition for this option. Given a state s, a policy-over-options would
select an option ω from the set of available options Ω. The agent would then plan low-level actions
by following its current option policy a ∼ π(·|s, ω) until the termination condition βω is satisfied. In
our work, we use pre-defined skills as options and a pre-trained LLM as the policy-over-options to
generate high-level options.

2.2 LLM as a Planner

Recent research has shown that LLMs have achieved significant success in various tasks within em-
bodied environments Wang et al. (2023b;c); Ahn et al. (2022). Taking inspiration from these works,
we employ a pre-trained LLM to act as a planner, generating a sequence of options using descrip-
tions of observations and tasks. The generated plan, represented as a list of options [ωk]k=1,...,K ,
is then executed by following the corresponding option policies. Formally, with text descriptions
as input prompts, the LLM outputs a plan in the form of a sequence of options. An actor module
subsequently generates low-level actions at each time step, following the option policy π(a|s; ωk).
The policies for the actor module, πω, can either be hard-coded or learned from data.
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3 Related work

LLMs have emerged as powerful tools for plan generation. There are some research works focusing
on designing effective interfaces between planners and actors. In Ahn et al. (2022), LLMs are
employed to plan the entire sequence of options at the beginning of each task, enabling the agent to
complete the task without further interaction with the planner. In Wang et al. (2023c), the authors
introduce a feedback system where the agent requests the LLM to generate an updated plan based on
environmental feedback when the execution of the previous plan fails. This approach enhances the
robustness of the acting agent in the face of environmental uncertainties. However, these methods
often rely on hard-coded failure detectors or apply a threshold to limit the number of permissible
MDP state-transition timesteps for an option. In Ren et al. (2023), a framework is proposed for
measuring and aligning the uncertainty of LLM-based planners, allowing them to seek assistance
from humans when necessary. In addition, Dasgupta et al. (2023) introduce the Planner-Actor-
Reporter framework, which includes a reporter module to enhance information exchange between
the actor and the LLM-based planner. In this framework, the agent interacts with the LLM at each
timestep, regardless of whether new information is acquired or not. While this approach eliminates
the need for hard-coded termination conditions and reduces uncertainties during option execution, it
leads to excessive resource consumption, especially when utilizing a large-scale and expensive LLM
as the planner.

In this paper, we propose learning an interaction policy that enables the agent to interact with a
remote LLM in an autonomous and “smarter” way. We empirically demonstrate that our approach
overcomes the limitations of previously mentioned hard-coded rule-based interaction protocols or
protocols that entail querying the LLM at each timestep.

4 Our Approach When2Ask

We design When2Ask based on the Planner-Actor-Mediator framework Dasgupta et al. (2023). In
particular, we enhance this framework by incorporating an mediator model that learns to facilitate
intelligent and cost-effective interactions between the agent and the LLM using RL.

4.1 The Planner-Actor-Mediator Framework

This framework consists of three components, as illustrated in Fig. 2: the planner, the actor and the
mediator. The planner component is responsible for providing high-level instructions to guide the
agent’s actions. The actor component generates low-level actions based on these instructions. Lastly,
the mediator acts as an interface between the planner and the actor, facilitating communication and
coordination between them.

Planner The planner component reads text-based descriptions of the current state and generates
a plan for the next high-level option or a sequence of options to perform. In our framework, we utilize
a pre-trained LLM as the planner. The LLM receives the descriptions of the current observation and
is asked to generate high-level skill instructions for the actor. Whenever the planner is activated, the
LLM generates an option plan given the descriptions provided with appropriately designed prompts.

Actor The actor component is responsible for planning the low-level actions that align with the
instructed option, such as “go to the red door” or “pick up the yellow key”. In our approach, we
consider these option policies to be hard-coded using human expert knowledge. It is also possible to
pre-train these policies using option-conditioned reward functions to achieve more complex skills.

Mediator In this work, our primary focus is on designing an intelligent mediator component
within the Planner-Actor-Mediator framework. Our approach involves training an explicit asking
policy using RL to determine when to interact with the planner. The mediator component consists of
two sub-components: an asking policy that decides whether to request a new plan from the planner
based on observations and the current option, and a translator module that converts observations
into text descriptions readable by the LLM. Following Ahn et al. (2022); Carta et al. (2023), we
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Figure 2: An overview of the Planner-Actor-Mediator paradigm and an example of the interactions.
At each time step, the mediator takes the observation ot as input and decides whether to ask the
LLM planner for new instructions or not. When the asking policy decides to ask, as demonstrated
with a red dashed line, the translator converts ot into text descriptions, and the planner outputs a
new plan accordingly for the actor to follow. On the other hand, when the mediator decides to not
ask, as demonstrated with a green dashed line, the mediator returns to the actor directly, telling it
to continue with the current plan.

assume the availability of an expert translator here. In our experiments, the translator is designed
with two stages. Firstly, we extract the IDs of objects, such as keys, doors, and boxes, observed
within the field of view of the agent using the built-in interface of the simulation platform. Next, we
input this information into our predefined prompt template and output it to LLM in a fixed format.
An example of the format can be seen in the green box of Fig.4. The translator can also be learned
from data Wang et al. (2023c); Dasgupta et al. (2023).

4.2 Learning asking policy with RL

Here we introduce our proposed approach to learn an asking policy for use in the mediator compo-
nent.

As mentioned earlier, interacting with the LLM can be costly. Ideally, the asking policy should be
trained to enable the agent to request a new plan from the LLM only when it discovers new and
informative observations. The expectation is that the LLM will provide a different plan in response
to these new observations. To address this, we formulate the problem as an MDP, where the state
includes information about the agent’s observation and current option in action. The action space
consists of two actions: “Ask” and “Not Ask”. In this formulation, the LLM planner is considered as
part of the environment that can influence state transitions. The reward function consists of both
the task-related return, denoted as r, and an additional penalty term that penalizes unnecessary
interactions. Specifically, when the asking policy decides to ask the LLM for a new plan, but the
plan provided by the LLM remains the same as the current one, the agent incurs a penalty. This
penalty encourages the asking policy to avoid unnecessary interactions and ensures that requesting
a new plan is primarily motivated by the discovery of new informative observations.

Denote the asking policy as πask with its parameters represented by θ. We train this policy using
standard on-policy RL methods, specifically Proximal Policy Optimization (PPO) Schulman et al.
(2017). The objective function for training the asking policy is defined as follows:

max
θ

∑

t=1

[
γtrt − λ1(yt == Ask ∧ ωt == ωt−1)

]
, (1)
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where yt ∈ {Ask, Not Ask} represents the decision made by the asking policy at timestep t, rt denotes
the task reward obtained at t, and ωt is the planned option provided by the LLM at t. The penalty
factor λ is used to balance the importance of avoiding unnecessary interactions. Note that if the
decision made by the asking policy is “Not Ask” (yt == Not Ask), we set ωt to be the plan executed
at the previous timestep, namely let ωt = ωt−1. This ensures that if the agent decides not to ask for
a new plan, it continues executing the same plan as before. During each iteration, data is collected
on-policy using the model πask

θ .

5 Experiments

We seek to address the following questions by experiments, : can our agent effectively reduce inter-
action costs while maintaining a high target task completion rate, compared with baseline methods?
Can our agent proactively seek assistance from an LLM in exploratory environments? The experi-
mental results indicate that the answer to both questions is yes. As a byproduct, we find that our
approach is able to tolerate the imperfection of a crucial component, the translator in the mediator
module, which is used to convert observed images into textual descriptions (refer details to the Ap-
pendix). We employ two versions of the Vicuna model (Vicuna-7b and Vicuna-13b) Touvron et al.
(2023) as LLM planners.

5.1 Baselines

In our experiments, we considered four baseline interaction methods as follows:

Hard-coded The timing and conditions for requesting new instructions from LLMs are manually
determined by human experts for each option Wang et al. (2023c). The agent will only request a
new plan from the LLM planner when specific termination conditions for the option are met. These
conditions involve a goal-finishing detector and a constraint on the maximum number of allowed
timesteps. For example, let’s consider the option “go to the red door.” The termination condition
for this option specifies that the agent should reach the target door location or exceed 100 timesteps
spent on this option.

Always The agent queries the LLM planner at every timestep, ensuring that any newly acquired
information is immediately relayed to the planner Dasgupta et al. (2023). This strategy theoretically
leads to better task performance as there is no delay between gathering new information and re-
questing a re-plan. However, it comes with the drawback of consuming significantly more interaction
resources.

Random At each timestep, the agent has a fixed probability of 50% to query the LLM for
instructions.

Never The agent never interacts with the LLM. Instead, the policy-over-options (i.e., the planner)
is learned using RL techniques based on data collected during interactions with the environment
Sutton et al. (1999); Precup (2000). This means that the agent learns to make decisions and
generate plans without actively querying the LLM in real-time decision-making. By comparing this
method with other approaches, we can assess the contribution of using an LLM as the planner. This
comparison helps evaluate the effectiveness and advantages of incorporating a pre-trained LLM into
the planning process.

5.2 MiniGrid Experiments

The MiniGrid environment consists of a collection of 2D grid-world environments with goal-oriented
tasks Chevalier-Boisvert et al. (2023). In these environments, the agent must navigate within a 2D
grid room and interact with specific objects to complete various tasks, such as “open the red door”
or “put the green ball next to the yellow box”.
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Figure 3: An illustrative example of the partial observations and their corresponding text descrip-
tions in environment SimpleDoorKey. The agent is illustrated with a red triangle, and the path
it takes is illustrated with red dots. At the start of each episode, the agent is provided with only
limited information, with the unexplored area masked (light grey). As the agent progresses in this
room, it reveals more information about the room layout for the planner, until it successfully opens
the locked door.

One important characteristic of this environment is that the agent’s view range is limited. This means
that the agent needs to explore the environment and gather useful information to plan its actions
effectively. The environment returns observations in the form of a full grid, but with unexplored areas
occluded, similar to the concept of “fog of war” in games like StarCraft. Technically, the observation
returned by the environment has a shape of o ∈ RW ×H×4, where W and H represent the width and
height of the grid, respectively. For an unexplored grid at location [w, h], the observation returns
the vector [−1, −1, −1, −1]. For an explored grid, the corresponding 4D vector contains information
about the object ID, color ID, state ID (e.g., closed or locked for a door), and the agent’s direction
ID (indicating the agent’s orientation if it is present at this location, or 4 otherwise). This design
allows us to focus on the agent’s reasoning ability and exclude potential influences from factors like
memorization. Fig. 3 provides an example of the environment setup in the SimpleDoorKey scenario.

In our experiments, we focus on the task of opening a locked door in five distinct environments:
SimpleDoorKey, KeyInBox, RandomBoxKey, ColoredDoorKey, and MovingObstacle. All of these
environments are procedurally generated, i.e., the grid layout (including room size, key and door
locations) is randomly determined each time the environment is reset. To evaluate generalization, a
held-out test set consisting of 100 randomly selected seeds is predefined for each environment. Refer
to the Appendix for more details.

We use the Vicuna-7b model for the SimpleDoorKey, KeyInBox, RandomBoxKey, and MovingObsta-
cle environments, while for the more complex ColoredDoorKey environment we use the Vicuna-13b
model. As demonstrated in previous work Min et al. (2022), language models like LLMs require
carefully designed prompts and few-shot demonstrations to generalize to different tasks. In our
experiments, we provide task instructions and few-shot examples as in-context prompts for each
environment. These prompts serve to guide the LLM to understand the task. For the challenging
reasoning task in the ColoredDoorKey environment, we utilize Chain-of-Thought prompts proposed
by Wei et al. (2022). These prompts help the LLM to deal with complex reasoning tasks specific
to the ColoredDoorKey environment. The few-shot examples in the prompts are used to constraint
the output formats. The LLM planner must utilize its ability to generalize and reason in order to
comprehend the target task and adjust to situations that deviate from the few-shot examples, such
as variations in objects’ colors. Fig. 4 provides an example of the prefix prompts and an interaction
example in the ColoredDoorKey environment. It shows the effective performance of the LLM planner
in producing an accurate plan in response to new observations.
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Figure 4: An example of the prefix prompt and one interaction for the ColoredDoorKey environ-
ment. Prefix prompt consists of task instruction and few-shot examples. In Chain-of-Thought-style
prompts, we add inference processes within the examples. Note that these few-shot examples are
only provided for grounding a few but not all task-related knowledge to, and constraining the output
formats, of the LLM. We do not need to exhaustively enumerate all knowledge and rules to construct
prompts, as a qualified LLM can do logical reasoning based on a limited number of prompts, then
provide proper plans (instructions) that are adaptable to new scenarios encountered in the environ-
ment.

5.2.1 Can our agent complete target tasks with less interaction costs?

We compare our approach When2Ask with baseline methods to evaluate its effectiveness. We analyze
the learning curves for both interaction costs (Fig. 5) and task performances (Fig. 6) across all five
environments. Additionally, we provide asymptotic performances in Table 1. As is shown, our
approach successfully reduces the number of interactions with the LLM while maintaining task
performance across all environments. This reduction in interaction cost indicates that our method
effectively learns to reduce non-informative interactions with the LLM. Furthermore, our approach
maintains consistently high success rates throughout the learning process. This observation indicates
that the asking policy learns to filter out unnecessary interactions while still engaging in essential
ones to achieve successful task completion.

5.2.2 Can our agent proactively seek assistance from an LLM in exploratory
environments?

Upon analyzing the agent’s performance in situations where it is expected to ask the LLM planner
for help, we observe that the baseline method with a hard-coded asking policy exhibited signifi-
cantly lower success rates compared to other approaches. This discrepancy occurs because the agent
continues executing every option until its termination condition is met, even when it has already
gathered sufficient information to complete the task. Consequently, this inefficient approach results
in wasted time on each option and ultimately leads to failure in completing the task within the
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Figure 5: The number of interactions with the LLM vs. the number of RL iterations used for
learning the asking policy. It shows that, for every environment, the more thoroughly the asking
policy is trained, the fewer interactions with the LLM planner (i.e., the less interaction costs) are
required to complete the task. The shaded areas within the curves represent confidence intervals
based on three standard errors.
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Figure 6: Success rate of completing target tasks vs. the number of RL iterations used for learning
the asking policy. It demonstrates that our approach consistently maintains a high success rate
across all environments, and outperforms baseline methods in ColoredDoorKey.

given time limit. In contrast, When2Ask, along with other baseline methods, demonstrates the
ability to early-stop options when necessary. As a result, they achieve 100 percent success rates in
SimpleDoorKey and KeyInBox.
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Table 1: Asymptotic performance comparison on five MiniGrid environments. The performance
metrics include the total number of interactions with the LLM, the number of MDP state-transition
timesteps, and the success rate for completing a task. These results show that our approach achieves
competitive task performance in terms of success rate while significantly reducing interaction costs
(indicated by the number of interactions) compared to Always and Random. Hard-coded requires the
fewest LLM interactions but often fails to complete tasks. All results are averaged over 500 test
trials (We use 5 training seeds to initialize the policy network, and conduct 100 independent tests
per seed).

Environment Performance metric Hard-Coded Always Random Our approach

SimpleDoorKey
Number of interactions ↓ 1.58 25.78 12.75 4.24
Number of timesteps ↓ 64.9 25.78 26.55 29.20
Task success rate ↑ 59% 100% 100% 100%

KeyInBox
Number of interactions ↓ 1.58 26.78 15.3 4.33
Number of task timesteps ↓ 65.49 26.78 27.46 29.01
Task success rate ↑ 59% 100% 100% 100%

RandomBoxKey
Number of interactions ↓ 1.93 30.26 16.09 3.61
Number of task timesteps ↓ 61.71 30.26 30.2 34.41
Task success rate ↑ 56% 94% 95% 95%

ColoredDoorKey
Number of interactions ↓ 2.01 61.96 23.75 3.29
Number of timesteps ↓ 75.54 61.96 44.64 47.87
Task success rate ↑ 43% 49% 81% 83%

MovingObstacle
Number of interactions ↓ 2.29 39.49 20.70 6.94
Number of timesteps ↓ 82.36 39.49 44.90 48.63
Task success rate ↑ 43% 94% 93% 92%

Table 2: Success rate of each stage completions and total number of interactions with the LLM
planner in the Habitat during testing.

Performance metric Hard-Coded Random Our approach
Stage1 success rate↑ 10.8% 7.6% 53.6%
Stage2 success rate↑ 2.4% 1.6% 46.4%
Stage3 success rate↑ 2.0% 1.2% 35.6%

Total # of interactions↓ 1.00 295.60 7.99

In a specific scenario within the ColoredDoorKey environment, as illustrated in Fig. 7a, we see an
interesting phenomenon. The agent has chosen to take the Explore option and acquired information
about the location of the yellow key (frame 2). With use of the Hard-coded baseline approach, the
agent shall continue with the Explore option until it has fully explored the entire room. In contrast,
using our proposed approach, the agent can recognize the value of asking the LLM planner for
guidance given the current information, and immediately propose querying the LLM planner for an
updated plan while ceasing further exploration. The LLM would instruct the agent to efficiently
pick up the yellow key without wasting additional time. This example highlights the effectiveness
of our approach in recognizing when to seek assistance from the LLM planner and making more
efficient decisions based on the available information. By leveraging the power of the LLM planner,
our approach enables the agent to make informed choices that expedite task completion and improve
overall performance.

5.3 Habitat Experiments

We further evaluate our approach with the Habitat environment Szot et al. (2021). The results
indicate the potential of our approach to function effectively in visually realistic domains. The
details on the experiment setting are referred to the Appendix.
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(a) An example scenario where the agent discov-
ers new information during option explore.

(b) An example scenario where the hard-coded
translator fails to encode all information.

Figure 7: Two example scenarios where the agent is expected: (a) to ask the LLM planner for help
as it has collected useful information for the planner to adjust its plan; and (b) to not ask the LLM,
as the LLM may propose wrong options due to an imperfect translator.
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Figure 8: The number of interactions with the LLM (left) and the stage success rates (right) vs. the
number of training iterations used for learning the asking policy on the Pick&Place task.

We compare our approach against baselines on the Pick&Place task. To ensure reliability of ex-
perimental results, we utilize 10 training seeds to initialize the policy network. This allows us to
explore different initializations and avoid biased results. Subsequently, we select the best policy
obtained from these training runs to run 250 independent testing trials. As presented in Table 2
and Fig. 8, our approach significantly outperforms baselines across all three stages. Particularly,
compared to the hard-coded baseline where the preset plan is executed step-by-step, our approach
is significantly better at addressing the “hand-off problem” Szot et al. (2021) that can arise when
the preceding option terminates at a state that makes it challenging for the succeeding option to
initiate. This issue is depicted in Fig. 9, where the robot stops at an unfavorable location at the end
of the Navigate option, resulting in a failure to execute the subsequent Pick option. Our approach
effectively bypasses this problem by seeking guidance from the LLM planner.

The obtained results demonstrate that the RL learned asking policy effectively establishes a con-
nection between the world knowledge embedded within the LLMs and the downstream fine-grained
knowledge embedded within the agent. This connection leads to a superior overall performance
of our approach compared to the baselines that do not involve any learning. These findings align
with the main observations from our experiments associated with the MiniGrid environments, par-
ticularly in the ColoredDoorKey scenario, where the RL learned asking policy enables the agent to
outperform all baselines in terms of task completion success rate.
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Figure 9: An illustrative example demonstrating the “hand-off” problem in Habitat. The robot’s
objective is to navigate to the living room and pick up the apple from the table. With the Hard-
Coded baseline in use (left), according to preset hard-coded rules, the agent must first complete the
Navigate option before executing the Pick option. Consequently, the agent stops at a location where
the apple is not visible at the end of Navigate, resulting in its future failure in the Pick option.
With our approach (right), in the middle of Navigate, the agent finds itself at a suitable location
where the apple can be spotted. The learned mediator interrupts the ongoing Navigate and query
the LLM planner, which returns the Pick option. This helps the agent subsequently pick up the
apple successfully. This example demonstrates the effectiveness of our approach in bypassing the
“hand-off” issue.

6 Concluding Remarks

We examine the application of RL in acquiring “mediator” policies for instruction-following agents
powered by LLMs. Prior research has indicated that LLMs, when coupled with well-constructed
prompts, can effectively generate high-level instructions conditional on state descriptions to devise
detailed plans for task completion. Recent frameworks for LLM-driven planning have explored two
primary strategies: 1) generating an updated plan at each timestep, and 2) requesting an update
only after each plan (option) concludes based on predefined termination criteria. The former method
is computationally intensive due to the expense of generating a new response from the LLM, while
the latter may encounter challenges as an ongoing plan executed cannot be interrupted in time to
respond to new observations.

To this end, we propose When2Ask, which involves training a mediator policy to determine when
to prompt the LLM to generate an appropriate plan for the present moment. When2Ask trains
the mediator policy to optimize task-oriented rewards while penalizing cases where the planner was
invoked but returned the same plan the agent was already following. Experiment results across
different embodied environments illustrate that the learned mediator policies achieve comparable
task success rates to fixed policies that query the LLM at each timestep, while significantly reducing
the number of queries to the LLM and consequently lowering the computational burden on the agent.

The utilization of LLMs to furnish robots and other autonomous agents with general-purpose rea-
soning and planning capabilities has shown great potential. However, this potential is somewhat
limited by the quality of the mapping between low-level observations and actions, and the high-level
LLM-based planner. A long-term goal would be to learn this mapping in an end-to-end way. In the
interim, however, it is worth to investigate how different elements of this mapping can be learned,
and how much benefit can be gained from such an endeavor, as demonstrated in this study.
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A Appendix

A.1 Experimental settings on MiniGrid

In the basic setups of SimpleDoorKey and KeyInBox, each room contains only one key and one
locked door. In SimpleDoorKey, the key is placed on the floor, while in KeyInBox, the key is inside
a box. The agent needs to explore the room to locate the target door and the key/box, pick up the
key, and finally use the key to unlock the target door.

In the RandomBoxKey environment, the placement of the key is randomized, either on the floor
or inside a box. The agent needs to actively plan its actions based on the feedback from the
environment, adjusting its plan depending on whether it observes a key or a box.

ColoredDoorKey introduces multiple keys and only one exit door. Each key and its corresponding
door are color-coded, requiring a matching-colored key to unlock the door. This environment tests
the agent’s ability to identify and utilize color information for successful task completion.

MovingObstacle adds another layer of complexity by introducing obstacles that move randomly
within the room, potentially blocking the agent’s path. The agent needs to navigate in this dynam-
ically changing environment and adapt its plans accordingly based on new observations.

A.1.1 More details on the design of our agent

Actor In our experiments, the actor comprises a set of pre-defined option policies. The available
options are as follows:

1302



RLJ | RLC 2024

• Explore: This option is implemented using preset rules. The specific procedure is as follows:
first, the agent is instructed to move to the top-left corner of the task environment, and
then proceed to traverse each row alternately while scanning, until all information within
the environment becomes visible. This option enables the agent to uncover unexplored areas
for discovering new information.

• Go to [an object]: With this option, the agent can navigate to an object within the envi-
ronment. The object can be any interactable element, such as a key, box, or door.

• Pickup [an object]: This option enables the agent to pick up a specified object. It is useful
when the agent needs to acquire an item to progress in the task, like grabbing a key to
unlock a door.

• Toggle [an object]: Using this option, the agent can the state of a particular object. Exam-
ples include opening or closing a door, use a key to unlock a door or open a box.

These pre-defined options provide the agent with a repertoire of high-level actions to choose from
during its decision-making process. By selecting the appropriate option based on its current objective
and observations, the agent can efficiently navigate and interact with the environment to accomplish
the given task. For more details, refer to the supplement materials.

How to train the asking policy? In our experiments, we train a neural network to serve as the
asking policy. Specifically, this neural network receives observations from the current and previous
frames as input. Before passing these observations to the network, we compute the difference between
the two frames. This encourages the asking policy to generate an “ask" action only when there are
noticeable changes in the environment compared to the previous frame. The network architecture
for the asking policy comprises three convolutional neural network (CNN) layers followed by two
multilayer perceptron (MLP) layers. The output of the network consists of logits for each option,
indicating the probability of selecting the “ask" or “not ask" action for each option. Therefore, the
dimensionality of the network’s output is 2 × K, where the (2k-1)-th and 2k-th entries collectively
determine the action distribution for option k. Here, K represents the size of the option set used in
our approach. By training the asking policy network with this architecture, we enhance the agent’s
ability to make informed decisions regarding whether it should pose a query to the LLM planner or
not, based on changes observed in the environment between consecutive frames.

A.2 Our approach can tolerate the imperfection of the translator in the mediator
module

In the complex environment of ColoredDoorKey in MiniGrid, the baseline interaction method Al-
ways has been observed to fail in certain corner cases due to flaws of other components within the
framework. Fig. 7b presents an example scenario in ColoredDoorKey that showcases such a case. In
the first frame, the agent is instructed to go to then pick up the key. After taking a left turn to drop
the carried purple key (frame 2), the LLM instructs the agent once again with go to then pick up the
key, where the agent should proceed to pick up the yellow key. However, the Always baseline fails in
this case because the translator does not encode information about the relative position between the
agent and the target object accurately. Consequently, the translator returns the same observation
[observed yellow key, observed yellow door, carrying purple key] for both frames 1 and 2. In contrast,
our approach learns “not to ask" for assistance in this particular case, allowing the agent to com-
plete the action of picking up the yellow key before requesting further instructions. This highlights
a significant advantage of our approach over baseline methods: it can adapt to situations where
the translator’s translation process loses a lot of information. The learned asking policy enables
the agent to make more informed decisions based on its observations and context, leading to robust
performance in scenarios where baseline methods may fail due to flaws of the translator.
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A.3 Experimental setting on Habitat

Habitat is a simulation platform specifically designed for end-to-end development of embodied AI
Szot et al. (2021). It provides a framework for defining various embodied AI tasks such as naviga-
tion, object rearrangement, and question answering. Additionally, it allows for the configuration of
embodied agents with specific physical forms and sensors. Agents can be trained using either imi-
tation or reinforcement learning techniques. In our experiments, we demonstrate that our approach
can generalize effectively to visually realistic domains by conducting experiments within the Habitat
environment.

In our experiments, we focus on the manipulation task known as Pick&Place. In this task, the robot
agent’s objective is to pick up an object from a desk and precisely place it into a designated target
receptacle, which in this case is the kitchen sink. The task setting is the same as in the Habitat
experiment in Zhou et al. (2024).

The robot agent is equipped with a wheeled base, a 7-degree-of-freedom (DoF) arm manipulator,
and a parallel-jaw gripper. Additionally, it features a camera mounted on its “head" that provides
a field of view of 90◦ and captures visual data at a resolution of 256 × 256 pixels. As a result, the
observation space of the environment comprises a visual observation denoted as ov ∈ R256×256×1

from the depth camera. It also includes a sensor observation os ∈ R24 sourced from various sensors
such as joint sensors, gripping sensors, the end effector of the arm, object and target GPS sensors,
among others. The action space in our setup is 11-dimensional, consisting of 3 actions controlling
the robot positions, 7 actions controlling the robot arm and one action indicating termination.
This action space enables the agent to execute precise movements and manipulations necessary for
accomplishing the target task.

To effectively train each option, we design the rewards based on rearrangement measures. These
measures take into account various factors such as the force exerted by the articulated agent, the
distance between the object and the goal, and the angle between the agent and the goal. The specific
details of these measures can be found in the Habitat documentations Szot et al. (2021).

In the Pick&Place environment, as solving the task requires progressively achieving several sub-
goals, we use a composite stage reward system. More specifically, picking up the object successfully
is referred to as Stage1 Completion and rewards a value of 1. Achieving navigation to the sink with
the object is referred to as Stage2 Completion and also rewards a value of 1. Finally, successfully
placing the apple into the target sink is referred to as Stage3 Completion and grants a higher reward
value of 5. It is important to note that if any of the high-level options exceed their designated time
limit, the task may terminate prematurely.

A.3.1 Implementation details of our approach on Habitat

Planner We employ the pre-trained Vicuna-7b model as the LLM planner in our approach. In
terms of prompt design, we begin by furnishing a concise instruction that conveys information about
the target task. Subsequently, we provide a description of the current observation in the form of a
Python list. An example of the dialogue generated by the LLM planner can be found in Fig. 10.

Actor In our experiments, we use three high-level options: {Navigate, Pick, Place}, each pre-
trained with RL independently. Whenever there is a transition between these options, an automatic
execution of the default action Reset Arm occurs. To ensure effective training of these options, we use
32 distinct training environment specifications with different object locations and target locations.
Additionally, the agent’s initial positions are randomly generated each time the environment is reset,
guaranteeing variability in training scenarios. For each option, we employ a ResNet18 backbone
combined with a 2-layer LSTM architecture to train the corresponding models. During testing, the
success rates of Navigate, Pick, and Place are 84%, 92%, and 91% respectively. These pre-trained
models remain fixed throughout the task, ensuring consistency and stability during execution.
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Figure 10: An example of the prompts and interactions for the habitat environment. Prefix prompt
only contains a short task instruction.

Training of the asking policy Similar to our Minigrid experiment, we stack five consecutive
frames of observations as inputs to the asking policy. This enables the network to capture temporal
information and make informed decisions based on past observations. The network architecture for
the asking policy consists of three CNN layers for embedding visual observations, one MLP layer for
embedding sensor observations, and two additional MLP layers to output the logits for the binary
question of whether to ask or not ask.
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Abstract

Many reinforcement learning algorithms are built on an assumption that an agent
interacts with an environment over fixed-duration, discrete time steps. However,
physical systems are continuous in time, requiring a choice of time-discretization
granularity when digitally controlling them. Furthermore, such systems do not wait
for decisions to be made before advancing the environment state, necessitating the
study of how the choice of discretization may affect a reinforcement learning al-
gorithm. In this work, we consider the relationship between the definitions of the
continuous-time and discrete-time returns. Specifically, we acknowledge an idiosyn-
crasy with naively applying a discrete-time algorithm to a discretized continuous-
time environment, and note how a simple modification can better align the return
definitions. This observation is of practical consideration when dealing with envi-
ronments where time-discretization granularity is a choice, or situations where such
granularity is inherently stochastic.

1 Introduction

Reinforcement learning provides a framework for solving sequential decision making problems based
on evaluative feedback (Sutton and Barto, 2018). It remains a promising approach for robot learn-
ing as it can allow for real-time adaptation of behavior. Many reinforcement learning algorithms
assume that the agent-environment interaction occurs at synchronous, discrete time steps, where
the environment waits for an action before advancing. In contrast, real-world physical systems are
continuous in time, and do not wait for an agent’s input. As such, time-discretization becomes a
necessary and important consideration, as evidenced by Mahmood et al. (2018a).

Prior work suggests that current reinforcement learning algorithms are sensitive to the choice of
discretization. Tallec et al. (2019) emphasize that action-values converge to state-values as the
discretization interval approaches zero, creating degenerate cases for algorithms like Q-learning.
Similarly, Munos (2006) showed that the variance of policy gradients can be infinite under the same
limit. Zhang et al. (2023) characterize a fundamental bias-variance trade-off with the degree of
discretization while Mahmood et al. (2018a) detail another trade-off between having fine-grained
control and being able to discern the changes between subsequent states. Finally, Farrahi and Mah-
mood (2023) provide guidelines for time-discretization-aware parameter selection by acknowledging
how changes in discrete-time parameters influence the underlying continuous-time objective.

In this work, we explicitly view the discrete-time objective as a discrete approximation of the
continuous-time objective. By considering when rewards occur, particularly in existing continuous-
control environment setups, we identify an idiosyncratic dependence on the choice of discretization
beyond those listed by Tallec et al. (2019) and Farrahi and Mahmood (2023). Specifically, the
discrete-time return can be viewed as mixing two Riemann sums. We characterize and demonstrate
that this is a relatively poor integral approximation in comparison with a conventional Riemann
sum and provide a simple modification to the definition of the return to better align the objectives.
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The contributions of this work are as follows:

• We acknowledge and characterize an issue with naively applying a discrete-time reinforce-
ment learning algorithm to a discretized continuous-time environment in terms of a discrep-
ancy between the discrete-time and continuous-time definitions of the return.

• Based on an integral approximation perspective, we propose a simple modification to the
definition of the return to alleviate this idiosyncratic dependence on time-discretization.

• We characterize when the modification will have a modest impact and support our claim
with empirical evaluation in both continuous-time prediction and control.

2 Definitions of the Return

In discrete-time reinforcement learning, the discounted return from time step t onward is defined as:

Gt =
T −1∑

k=t

γk−tRk+1, (1)

where T is the final time step of an episodic task, or∞ in an infinite-horizon setting. In continuous-
time reinforcement learning (e.g., Doya, 2000; Mehta and Meyn, 2009; Frémaux et al., 2013; Lee and
Sutton, 2021; Tallec et al., 2019), we instead define the integral return from time step t onward:

G̃t =
∫ T

t

γτ−tRτ dτ. (2)

This formulation is pertinent to applications with real-time interaction (e.g., robotics). Despite being
continuous in time, robots are often digitally controlled, necessitating understanding the impact of
the choice of time-discretization and how it relates these two objectives.

3 When Rewards Occur

There are notational differences in the literature with respect to time indices in the discrete time
return (Equation 1). Some define it to start from Rt+1 (e.g., Sutton, 1988; Precup et al., 2000; van
Seijen et al., 2009; Barreto et al., 2017), as presented in this document, while some would start from
Rt (e.g., Watkins, 1989; van Hasselt, 2010; Mnih et al., 2015; Wang et al., 2016). This inconsistency
is inconsequential when solely considering the discrete-time setting as the rewards occur at the same
locations in an agent’s stream of experience. However, it has implications when viewed as a discrete
approximation to an underlying integral return. Thus, it is worth considering when rewards occur.

We emphasize the focus on a setting where there is an underlying continuous-time objective of which
a digital learning agent samples at an arbitrary (and potentially variable) frequency. Despite the
discrete-time notational differences, it is often agreed upon that from the agent’s perspective, the
reward and next state are jointly observed. This is reflected in environment step calls in relatively
standard reinforcement learning APIs (e.g., Brockman et al., 2016), agent-environment interaction
diagrams (e.g., Sutton and Barto, 2018), or explicit acknowledgement that reward can be a function
of state, action, and next state (e.g., Puterman, 1994). In real-time settings that do not wait for an
agent’s input, meaningful evaluative feedback must come after time t as actions take time to execute
and to have a causal influence. Hardware limitations on sampling rates further delay when a system
can receive feedback for an action. In many existing robotics environments, where the considered
setting is especially pertinent, rewards are often explicitly computed based on the next time step’s
state information. For example, rewards based on distance traveled in some direction between two
time steps, or distance between an end-effector and a desired setpoint at the subsequent time step,
as done by Todorov et al. (2012), Brockman et al. (2016), and Mahmood et al. (2018b).

Of note, semi-MDPs and options (Sutton et al., 1999; Precup, 2000) address the problem of when
rewards occur, but under the assumption that one has access to higher-frequency interaction with the
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environment to integrate the discounted sum of rewards within the discretization interval. It is akin
to the agent being aware of and able to time when each component of a temporally-extended reward
occurs. Here, we consider when one does not have access to these higher-frequency samples but is
aware of how much time has elapsed between discrete decision points. Acquiring such information
may not be possible due to hardware limitations, and highlights a nuance that arises when naively
applying a discrete-time algorithm to a discretized continuous-time environment.

4 Implications for Time Discretization

If we consider rewards jointly arriving with the next state, at least from the agent’s perspective,
then there is an idiosyncrasy with respect to approximating an underlying integral return. While
definitions of the discrete-time return may differ in their use of reward time indices, they are consis-
tent on when discounting begins: the first reward is given weight γ0 = 1, with subsequent rewards
weighted by increasing powers of γ. We can view the integral return in Equation 2 to be of the form:

∫ T

t

f(τ)g(τ)dτ, (3)

where f(τ) is the discounting term and g(τ) is the reward signal. A right-point Riemann sum
approximation to this would yield:

n−1∑

i=0
f(τi)g(τi)∆, (4)

where ∆ = T −t
n and τ = {t + ∆, t + 2∆, ..., T}. The right-point Riemann sum beginning with t + ∆

aligns with an agent jointly receiving a reward with the observation of the next state. However,
this sum would weight the first reward by γ∆ ̸= γ0. This highlights that if one naively applies a
discrete-time reinforcement learning algorithm to a discretized continuous-time environment, it is
akin to a left-point Riemann sum for discounting and a right-point Riemann sum for rewards:

n−1∑

i=0
f(τi)g(τi+1)∆, (5)

where τ ∈ {t, t + ∆, t + 2∆, ..., T}. See Figure 1 for a visualization of this Riemann sum. This
sum still converges to the correct integral as n → ∞ as Bliss’s Theorem (1914) shows that each
function may be evaluated anywhere in the interval. However, for the specific case where a left-
point Riemann sum is used for discounting, we expect this to perform worse than committing to a
right-point Riemann sum. If one draws a rectangle with opposite corners at any two points of an
exponential decay, the area above and below the curve represents the approximation errors of left-
and right-point Riemann sums, respectively. There will always be more area above the curve than
below due to the curvature of exponential decay, implying that an underestimate (right-point) has
strictly lower error than an overestimate (left-point). This is visualized in Figure 2.

To rectify this discrepancy and commit to a right-point Riemann sum approximation, we simply
multiply the discrete-time return by a factor of γ. For example, with ∆ = 1:

γGt = γRt+1 + γ2Rt+2 + · · · . (6)

For a fixed, pre-specified action cycle-time ∆, there is no loss of generality, as the discrete-time return
is proportional by a factor of γ∆∆. However, this is not the case when ∆ may vary over time, for
example, due to an adaptive algorithm (e.g., Karimi et al., 2023) or inherent stochasticity. These
concerns similarly apply to a variable γ and may extend toward tuning fixed-∆ or γ in practice in
terms of an unintuitive dependence on discretization. To emphasize the dependence on ∆, we note
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Figure 1: The resulting sum when applying a discrete-time algorithm to a discretized continuous-
time domain. Note how rectangle heights may fall out of the function’s range within an interval.

Figure 2: A visualization of the left-point and right-point Riemann sum approximation errors for
an exponential decay. Due to curvature, a right-point Riemann sum will always have lower error.

the more explicit definition of the right-point Riemann sum return:

GRP
t

def=
T −1∑

k=t

γ
∑k

i=t
∆i+1Rk+1∆k+1 (7)

= γ∆t+1Rt+1∆t+1 + γ∆t+1+∆t+2Rt+2∆t+2 + · · · .

Tallec et al. (2019) and Farrahi and Mahmood (2023) have acknowledged the modifications of scaling
rewards by ∆ and exponentiating γ by ∆ in terms of improving robustness to time-discretization.
The key difference and contribution in Equation 7 being the earlier discounting.

5 Comparison with Standard Riemann Sums

To see how the discrete-time return (DTR) in Equation 5 compares with a right-point Riemann
sum, we use them to numerically integrate random continuous-time signals. Inspired by robotics,
we consider periodic signals and Gaussian mixtures. Periodic signals are comparable to signals
pertaining to robot locomotion, while Gaussian mixtures instead resemble both sparse and distance-
based rewards depending on the spread of each Gaussian. We fix the signal length to 3 seconds,
with no loss of generality due to being continuous in time. Each signal generator is detailed below:

Random Periodic Signals - This signal sums 6 sinusoids
∑5

i=0 Ai sin(ωit + ϕi) with angular
frequencies ω ∈ { 2π

4 , 2π
2 , 2π, 4π, 8π, 16π}, amplitudes Ai ∼ N (0, 1), and phase shifts ϕi ∼ U(0, 2π).

Random Gaussian Mixtures - This signal sums 6 Gaussians
∑5

i=0N (µi, σi) with means µi ∼
U(0, 3) and standard deviations σi ∼ U(0, 3

2 ).
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For each method, we varied the number of intervals n ∈ {5, 10, 25, 50, 100}, the discount factor
γ ∈ {0.5, 0.75, 0.875}, and measured the absolute error of the integral approximation relative to a
fine-grained mid-point Riemann sum with 104 intervals. The values of γ used may appear small
and unrepresentative of typical values. We however note that the discount is per second and that
for a robot sampling every 30 ms, γ = 0.5 is effectively γ∆ = 0.50.03 ≈ 0.98 per discrete time step.
Averaged across 106 randomly generated signals of each type, the results can be seen in Figure 3.

Figure 3: Numerical integration approximation error on discounted random signals. Results are
averaged over 106 signals and shaded regions represent one standard error.

As expected, the errors generally increase as ∆ ∝ 1
n increases. There is a consistent dip in error with

the periodic signals which is likely due to the intervals coincidentally aligning with the pre-specified
frequencies. Across all settings, DTR had larger absolute error and is consistent with our hypothesis
that DTR would perform worse than right-point when integrating discounted signals. The gap closes
as γ → 1 as the sums are equivalent at this extreme.

We then considered stochastic intervals to simulate variable time-discretization. This was imple-
mented by sampling, sorting, and re-scaling a set of n + 1 uniform random points to represent
interval endpoints. This is particularly pertinent as DTR is no longer proportional to right-point
and reflects the variability in applications on real-time systems. Fixing γ = 0.75, Figure 4 shows re-
sults averaged across 106 randomly generated signals of each type plotted against average ∆. Errors
generally increased, with DTR maintaining larger approximation error across every setting.

Lastly, to see whether results hold beyond exponential discounting, we considered the product of each
pair of the signal generators. This evaluates each sum in a more general numerical integration setting,
while resembling transition-dependent γ as White (2016) has advocated for in reinforcement learning.
Averaged across 106 randomly generated signal pairs, the results can be seen in Figure 5. Perhaps
surprisingly, the gap between DTR and the right-point Riemann sum widens dramatically. This
suggests that beyond the structure of discounting, DTR is a generally worse integral approximation.
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Figure 4: Numerical integration approximation error on discounted random signals, with stochastic
discretization intervals. Results are averaged over 106 signals and shaded regions represent one
standard error.

Figure 5: Numerical integration approximation error on undiscounted products of random signals.
Results are averaged over 106 signals and shaded regions represent one standard error.

A key takeaway from these results is that shifting the discount factor in the discrete-time return
yields a better prediction target (e.g., in value-based methods) in terms of error between the integral
return. To reiterate, in the fixed ∆ case, the sums are proportional despite the gaps in approximation
error. This suggests that the improvement is inconsequential for control. However, in the variable
∆ setting, we expect that learning from estimates which better approximate the underlying integral
return should improve the capability to maximize it. We explore this further in the next section.

6 Discretized Continuous-time Control

To evaluate the right-point Riemann sum in a continuous-time control setting, we build off of the
REINFORCE algorithm (Williams, 1992). Such a choice is due to the algorithm’s simplicity, al-
lowing for more confidence in attributing differences in performance. We specifically use online
REINFORCE with eligiblity traces (Kimura et al., 1995) and dropped the γt term:

z← z +∇θ log π(At|St)
θ ← θ + αReff z
z← γ∆t+1z,

where ∆t+1 is the elapsed time between time steps t and t + 1, Reff = Rt+1∆t+1 for the discrete-
time return, and Reff = γ∆t+1Rt+1∆t+1 for the right-point Riemann sum. The above algorithm
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employs the recommendations of Farrahi and Mahmood (2023) for making algorithms more robust
to time-discretization, emphasizing that the proposed right-point modification is complimentary.

We designed a simulated Servo Reacher environment based on the setup by Mahmood et al. (2018b),
with physical parameters sourced from a Dynamixel MX-28AT data sheet. This custom environment
allows for fine-grained computation of the integral return, and flexibility in the discretization intervals
an agent can sample at. Full environment specification can be found in Appendix A. To simulate
the inherent stochasticity of a real robot, Gaussian noise was added to the target discretization
interval, ∆t ∼ N (∆µ, 10 ms), with a hard minimum interval of 1 ms. We additionally included a
1% chance to sample the interval from N (1000 ms, 10 ms) to simulate “catastrophic” events akin
to communication errors. Of note, in less-exhaustive experiments not presented, such catastrophic
events did not strongly impact or change the conclusions of the results.

Each agent’s policy used a two-hidden-layer fully-connected network with tanh activations, with its
output being treated as the mean of a Gaussian with an initial (bias unit) standard deviation of 1.
We fixed γ = 0.25, which when using an interval of 40 ms, corresponds with γ0.04 ≈ 0.95 per discrete
time step. We considered target discretization intervals ∆µ ∈ {40, 80, 120} ms with a 4 second time
limit and measured the episodic integral return. Averaged over 100 runs of 25 (simulation) minutes,
Figure 6 shows parameter sensitivity curves and the best parameters’ learning curves.

(a) Parameter Sensitivity (∆µ = 40 ms) (b) Parameter Sensitivity (∆µ = 80 ms)

(c) Parameter Sensitivity (∆µ = 120 ms) (d) Learning Curves (∆µ = 120 ms)

Figure 6: Servo Reacher results for REINFORCE using the discrete-time return (DTR) and right-
point Riemann sum (RP), averaged over 100 runs. Shaded regions represent one standard error.

An initial observation is a systematic lag between the sensitivity curves of the two algorithms at low
α. This is due to the return magnitudes being roughly proportional by a factor of E[γ∆t ]. If one
absorbs this factor into the step-size, the right-point Riemann sum can be viewed as using a smaller
effective α in the policy gradient update. Scaling the figure to use this effective α can be found to
align the curves at low α. Nevertheless, we find that after accounting for this shift, REINFORCE
with the right-point Riemann sum never performed worse and can significantly outperform the
discrete-time return with both algorithms properly tuned. The right-point Riemann sum is seen to
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improve with increasing ∆µ, in line with the approximation error results in Section 5. Acknowledging
that the two returns are roughly proportional by E[γ∆t ], the results support that improvements are
expected as this term deviates from 1 (i.e., decreasing γ or increasing ∆µ).

7 Conclusions and Future Work

In this work, we identified and characterized an idiosyncrasy of time-discretization in reinforcement
learning. Specifically, a nuance between the definitions of the discrete-time and continuous-time
returns when viewing one as a discretization of the other. Our results suggest that when one does
not have access to evaluating the integral return via options, one can better align the objectives
by shifting the discount factor to begin discounting sooner. This provides unification in that the
discrete-time return becomes a relatively straight-forward discretization of the integral return. We
strongly emphasize the simplicity of the modification and how apart from the γ = 0 extreme, such
a modification has no loss of generality in discrete-time or with fixed discretization intervals due to
proportionality with the conventional discrete-time return. The returns are equivalent as γ∆ → 1,
but as γ∆ deviates from 1, the right-point return is a better prediction target in terms of integral
approximation error and improves control performance with variable time-discretization. Beyond
integral approximation, the modification has intuitive appeal in that results from catastrophically
long delays are attenuated in the return, rather than fully crediting an action for that outcome.

This work assumed that rewards better align with the subsequent time-step, as is often the case in
the setups of existing continuous-time environments. However, should there be domain knowledge
suggesting that an environment’s rewards align with some other point in an interval, the ideas
generalize in that discounting should be properly exponentiated to reflect this information.

Regarding avenues for future work, the integral approximation perspective suggests opportunity
to explore return modifications corresponding to other integral approximation techniques. If one
were to additionally track predecessor rewards, it opens up the possibility of interpolation-based
approximations like the trapezoidal rule. Notably, Ayoub et al. (2024) concurrently considered
trapezoidal approximations of the Monte Carlo return while exploring when to discretize. For the
case of exponential discounting, however, we could further leverage that term’s closed-form integral.
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A Servo Reacher Environment Details

The environment state x is a column vector containing the DC motor’s angular velocity [rad/s], the
DC motor’s current [A], the output shaft’s angle [rad], the output shaft’s angular velocity [rad/s],
and the output shaft’s target angle [rad], respectively. The state vector is updated as follows:

ẋt ←




− bm

Jm

Kt

Jm
0 0 0

−Kt

La
−Ra

La
0 0 0

0 0 0 1 0
− bm

JmNη
Kt

JmNη 0 0 0
0 0 0 0 0




xt +




0
1

La

0
0
0




At

xt+1 ← xt + ẋt∆s

where ∆s = 10−4 [s] is the simulation discretization granularity, and At is an input voltage with
built-in saturation limits of ∈ [−12, 12] [V]. The output shaft angle is clamped ∈ [−1.306, 1.306]
[rad] in accordance with Mahmood et al. (2018b). The physical parameters used are detailed below:

La Armature Inductance 2.05× 10−3 [H]
Ra Armature Resistance 8.29 [Ohm]
Jm Rotor Inertia 8.67× 10−8 [kg ·m2]
bm Rotor Friction 8.87× 10−8 [N ·m · s]
Kt Torque Constant 0.0107 [ N·m

A ]
N Gear Ratio 200
η Gear Efficiency 0.836

Given a target discretization interval > 10−4 [s], the above updates are repeated until the target
elapsed time is reached, keeping track of any overshoot and compensating accordingly in the next
time interval. As a reinforcement learning environment, an agent observes the output shaft’s angle,
angular velocity, and target angle. The initial output shaft angle, θ0, and target angle, θtarget, are
uniformly sampled ∈ [−1.306, 1.306] at the start of each episode, and an episode terminates when
|θt+1− θtarget| < 0.1 [rad] with angular velocity θ̇t+1 < 0.1 [rad/s]. An agent provides a continuous-
valued action as a voltage, and receives a reward |θt+1−θtarget|, computed and received jointly with
the next observation.
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Abstract

Zero-shot generalization (ZSG) to unseen dynamics is a major challenge for creating
generally capable embodied agents. To address the broader challenge, we start with
the simpler setting of contextual reinforcement learning (cRL), assuming observabil-
ity of the context values that parameterize the variation in the system’s dynamics,
such as the mass or dimensions of a robot, without making further simplifying as-
sumptions about the observability of the Markovian state. Toward the goal of ZSG
to unseen variation in context, we propose the contextual recurrent state-space
model (cRSSM), which introduces changes to the world model of Dreamer (v3)
(Hafner et al., 2023). This allows the world model to incorporate context for in-
ferring latent Markovian states from the observations and modeling the latent dy-
namics. Our approach is evaluated on two tasks from the CARL benchmark suite,
which is tailored to study contextual RL. Our experiments show that such system-
atic incorporation of the context improves the ZSG of the policies trained on the
“dreams” of the world model. We further find qualitatively that our approach allows
Dreamer to disentangle the latent state from context, allowing it to extrapolate its
dreams to the many worlds of unseen contexts. The code for all our experiments is
available at https://github.com/sai-prasanna/dreaming_of_many_worlds.

1 Introduction

Model-Based Reinforcement Learning (MBRL) promises to be one of the most data-efficient frame-
works for learning control. With this data efficiency, MBRL could significantly impact real-world
applications, such as robotics and autonomous systems, for which efficient learning and generaliza-
tion are paramount. Recent MBRL approaches are capable of achieving performance comparable
to model-free reinforcement learning (MFRL) algorithms while only requiring a fraction of the data
(see, e.g., Chua et al., 2018; Hafner et al., 2020; 2021; 2023; Wu et al., 2022; Hansen et al., 2024).

A key challenge in MBRL is the ability to generalize to unseen environments, particularly in a zero-
shot setting, where an agent must perform effectively in novel scenarios without prior experience.
Although MBRL has shown great improvement in recent years, both MBRL and MFRL algorithms
remain susceptible to small changes in environment dynamics (Kirk et al., 2023). This can be
attributed in part to the complexity of the (MB)RL pipeline (Zhang et al., 2021b; Parker-Holder
et al., 2022) but also to a lack of understanding, as zero-shot generalization (ZSG) remains an
understudied domain for MBRL (Kirk et al., 2023).

An influential family of MBRL algorithms is Dreamer (Hafner et al., 2020; 2021; 2023). Dreamer-
like algorithms learn a latent representation of the world from which plausible trajectories can
be imagined that can be used to improve decision-making. The family of Dreamer algorithms
has achieved impressive results in various domains in both learned policy performance and sample
efficiency during learning. However, Dreamer-like algorithms have not yet been studied in the zero-
shot generalization setting.

∗equal contribution
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Here, we propose to use the contextual reinforcement learning paradigm (Kirk et al., 2023; Benjamins
et al., 2023) to study Dreamers’ learning capabilities within and across many worlds. To this end,
we assume that we have access to privileged information about how the transition dynamics of
the underlying Markov decision process (MDP) is parameterized, i.e., the context(Hallak et al.,
2015). We use tasks from the Contextual and Adaptive Reinforcement Learning benchmark (CARL;
Benjamins et al., 2023) where the context defines some physical properties that affect the dynamics
and that an RL agent can observe while trying to solve a given task. Examples of such properties
are gravity or the mass of a load that a robot might lift. We assume the context parameters are
continuous and hence can be studied meaningfully for interpolation and extrapolation, unlike discrete
parameters where generalization to unseen values is not well-defined.

We analyze Dreamer’s ZSG capabilities, in- and out-of-distribution (OOD), when naively integrating
context, and we propose an improved Dreamer variant that integrates context more intelligently and
demonstrates improved generalization abilities. In particular, our contributions are as follows.

• We provide the first principled study in understanding Dreamer’s generalization capabilities
for in- as well as out-of-distribution (OOD) tasks on two tasks from CARL;

• We propose a novel approach for conditioning the Dreamer architecture on context and show
how it improves Dreamer’s zero-shot generalization ability on the given tasks; and

• We show in a case study how our approach to context-conditioning shapes and improves
Dreamer’s imagination capabilities.

2 Related Work

Our approach aims to improve the ZSG of MBRL agents. As such, in this section, we discuss related
works from meta-RL, an area aimed at improving few- and zero-shot generalization, followed by
MBRL and ZSG in MBRL.

Meta-RL Meta-reinforcement learning (meta-RL) (Beck et al., 2023) has been proposed as a
promising approach to address the challenge of generalization in RL. Meta-RL aims to learn an RL
agent that can adapt to new tasks in a sample-efficient manner. Meta-RL algorithms (see, e.g.,
Duan et al., 2016; Wang et al., 2017; Nagabandi et al., 2019; Rakelly et al., 2019; Melo, 2022; Wen
et al., 2023) are designed to quickly adapt to new and unseen settings with limited access to new
experiences (i.e., few-shot adaptation) generated by the RL agent. In contrast, our work focuses on
zero-shot generalization (ZSG) for RL (Kirk et al., 2023), where we aim to learn policies that are
capable of zero-shot adaptation to new settings without assuming access to further training or the
reward signal.

Model-Based RL MBRL is believed to be one of the most promising directions to improve the
sample efficiency of RL algorithms. Young et al. (2023) make the case that algorithms that use
experience with a model can generalize to unseen environments better than those that rely purely
on value-function generalization and experience replay.

Empirically, MBRL algorithms, such as Dreamer (Hafner et al., 2020; 2023) and TD-MPC2 (Hansen
et al., 2024) pipelines, achieve state-of-the-art sample efficiency. While Dreamer’s focus was on
achieving a high return in a variety of individual environments, our focus is to study and improve
generalization capabilities in contextual variants of environments and we evaluate our work on
currently available environments tailored for this. Based on Dreamer’s success, we build our approach
on it and study its zero-shot generalization capabilities before suggesting an improved approach.
Dreamer has recently been studied in the meta-RL case for a few-shot generalization (Wen et al.,
2023). However, this work still requires many interactions with the target domain for the agent to
learn to adapt to a test task successfully.
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Zero-Shot Generalization in MBRL Studies on zero-shot generalization (ZSG) have mainly
focused on the model-free case (Kirk et al., 2023). The few works that have studied zero-shot
generalization in MBRL assume that the context is not observable by an agent and would need to
be inferred for agents to adapt (Lee et al., 2020; Perez et al., 2020; Zhang et al., 2021a; Ball et al.,
2021; Guo et al., 2022; Sodhani et al., 2022; Wen et al., 2023). In contrast, our work is more similar
to the study of Benjamins et al. (2023), which assumes that the context is observable and accessible
by an agent. Benjamins et al. (2023) evaluated multiple model-free agents for ZSG. Beukman et al.
(2023) build on this approach and propose to learn a hypernetwork to adapt a SAC (Haarnoja et al.,
2018) agent policy based on the observed context. We believe that the observable context setting
holds a lot of merit, as, on the one hand, various physical contexts that can be sensed by a real
robot, such as the mass of a load it carries, could be used to improve its policy in different contexts
(Escontrela et al., 2020). On the other hand, insights gained in this observable context setting will
likely be useful for the more challenging setting where context is hidden and needs to be inferred.

Furthermore, while our work assumes an observable context, it still tackles the challenging setting of
partial observability in the underlying latent Markovian state. Our work contrasts previous work in
ZSG that operates under the assumption that the latent state is observable or can be decoded from
purely high-dimensional observations (Du et al., 2019). To tackle such partial observability, we design
a systematic method to use context to estimate latent states when the context is visible. An early
work in this direction learns policies for helicopter control under partial observability (Koppejan &
Whiteson, 2009). They estimate the latent state (wind) from the known context parameters thereby
improving their policy performance.

3 Background

Zero-Shot Generalization in Contextual Markov Decision Processes To empirically study
ZSG in a partially observable setting, we use a definition of the contextual MDP (cMDP; Hallak
et al., 2015; Modi et al., 2018) similar to the one proposed by Kirk et al. (2023). A cMDP is a
tuple M := (S,A,O,R, T, C, ϕ, p(s0 | c), p(c)) where S is the state space, A is the action space, O is
the observation space, R : S × C × A → R is the reward function, T : S × A × C → dist(S) is the
stochastic Markov transition function over the states. C is the context space. ϕ : S × C → O is the
observation emission function, p(s0 | c) is the initial state distribution for a given context, and p(c)
is the context distribution with c ∈ C. For the commonly used discrete-time case, the timesteps are
t ∈ [0, H], with H as the horizon per episode. Context remains the same during an episode, but
may change across episodes.

For a given cMDP, we can train a policy π : p(at | o≤t, a<t, c) that is trained with the objective of
maximizing the expected sum of rewards Eπ(

∑H
t=0 rt) in the distribution of the training contexts

ptrain(c). We can then study the generalizability of this policy in the zero-shot setting by evaluating
transfer on an evaluation context distribution peval(c).

Importance of Context We often face partial observability of latent Markovian states in real-
world RL tasks. Providing context to an agent may help infer such latent Markovian states. Gener-
ally, context refers to an aspect of the environment or the agent that remains constant for a certain
period and affects its behavior. In our work, we focus on context that remains unchanged throughout
the entire episode.

As a motivating example, consider a wheeled robot that has to deliver goods to various locations,
encountering varying terrains along the way, including rough terrains that may damage the robot’s
wheels and, ultimately, the robot. Now, assume that the robot has a sensor to measure its velocity.
If the robot must navigate without damaging itself, it may be useful to estimate the coefficient of
friction of the surface on which it moves. This coefficient of friction is a non-stationary latent state
variable that changes within an episode. Here, the mass of the load on the robot (context), the
coefficient of friction of the terrain (latent state), and the torque applied to the wheels (action)
causally affect the velocity (observation) of the robot. The robot must use its context, observations,
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and actions to infer the friction. The robot could then use this estimate of the friction to improve
its policy and decide whether to apply more or less torque. This example, though oversimplified,
gives us an idea of how effective the context might be to infer latent states and improve the policy
in partially observable settings. It motivates the design of our contextual Dreamer agent.

4 Method

We now discuss how we incorporate context into the Dreamer (v3) (Hafner et al., 2023) algorithm.
We first introduce our novel approach to contextual dreaming and then contrast it with naive ways
of learning from and with context information.

4.1 Contextual Dreamer

We employ a novel contextual recurrent state space model (cRSSM) that builds on Dreamer’s RSSM
world model and systematically introduces context. Here, we discuss how it can be used to imagine
trajectories in the contextual RL setting and describe how we alter Dreamer’s actor-critic policy
network to use the context and the latent states inferred by the contextual world model.

4.1.1 Contextual Recurrent State-Space Model (cRSSM)

o1, r1 o2, r2 o3, r3

s1 s2 s3

a1 a2c

(a) Generative Model for a cMDP

o1, r1 o2, r2 o3, r3

z1 z2 z3

h1 h2 h3

a1 a2c

(b) cRSSM

Figure 1: Latent dynamics models. The models shown observe the first two time steps and predict
the third. Circles represent stochastic variables, and squares represent deterministic variables. Solid
lines denote the generative process, and dashed lines denote the inference model. The context node
and edges are highlighted in red. (a) The generative model for a cMDP. (b) Our cRSSM.

We first define a non-linear latent space model (see Figure 1a) for the general formulation of a cMDP
(see Section 3) with partial observability. This defines the generative process of observations {ot}Ht=1
and rewards {rt}Ht=1 from latent states {st}Ht=1, actions {at}Ht=1, and context c. This generative
model describes the influence of context on the transition dynamics, rewards, and observations.

World Model Objective To perform inference of the latent states for this non-linear model,
we cannot directly compute the posterior (Hafner et al., 2019). Instead, we learn an encoder
q(s1:H | o1:H , a1:H , c) =

∏H
t=1 qθ(st | st−1, at−1, ot, c). This encoder incorporates context to esti-

mate latent states from observations and actions. Using the encoder, we follow Hafner et al. (2019)
in constructing a variational bound on the data log-likelihood. Here, we write the objective for
predicting only the observations; a similar derivation applies for the rewards and the prediction of
the continuation flag1 of the episode nt ∈ 0, 1. The evidence lower bound (ELBO) obtained using

1Continuation flag indicates whether the state is terminal.
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Jensen’s inequality is then

ln p(o1:T | a1:T , c) ≜ ln
∫ ∏

t

p(st | st−1, at−1, c)p(ot | st, c) ds1:T

≥
T∑

t=1

(
Eq(st|o≤t,a<t)[ln p(ot | st, c)]

reconstruction

− E
q(st−1|o≤t−1,a<t−1,c)

[
KL[q(st | o≤t, a<t, c) ∥ p(st | st−1, at−1, c)]

]

complexity

)
.

We mainly extend the steps in Hafner et al. 2019 for constructing the lower bound with context
(derivation in Appendix A). The expectations in this objective can be optimized with gradient ascent
on samples drawn from the encoder using the reparameterization trick (Kingma & Welling (2014)).

Models We follow the Dreamer (v3) algorithm’s (Hafner et al. (2023)) choice to split each latent
state st into a deterministic state ht and a stochastic state zt. This defines the cRSSM model (see
Figure 1b), which can be split into the following models:

Deterministic state model: ht = fθ(ht−1, zt−1, at−1, c)
Stochastic state model: ẑt ∼ pθ(ẑt | ht)
Encoder zt ∼ qθ(zt | ht, ot)
Observation model: ôt ∼ pθ(ôt | ht, zt, c)
Reward model: r̂ ∼ pθ(r̂t | ht, zt, c)
Continue model: n̂ ∼ pθ(n̂t | ht, zt, c).

Refer to Appendix D for an intutive explanation of how the RSSM and cRSSM work.

Parameterizing the Models We do not change Dreamer’s neural network architecture choices to
parameterize these models. To train the objective, the Dreamer algorithm uses the past experiences
of the agent (an actor-critic policy), which is trained concurrently with the cRSSM.

4.1.2 Dreaming of Many Worlds

Starting from a state sτ , inferred at some timestep τ from an observation sequence o1:τ and actions
a1:τ−1 and the true or factual context cF for that sequence, we can use the cRSSM to sample
trajectories in the latent state space.

The cRSSM also allows for imagining trajectories for counterfactual contexts, or “dreaming of many
worlds”. We can do so by switching the context cF , which governs the episode where the observations
(o1:τ ) used to infer the start state of the imagination sτ were generated and dreaming further from
that point in a different counterfactual context cCF .

4.1.3 Actor-Critic Policy

We largely follow Dreamer(v3) regarding training an actor-critic policy on imagined trajectories.
However, we introduce context into policy learning by conditioning the actor and critic networks with
the context. The actor is optimized to maximize the expected return on the imagined trajectories.

Actor: aτ ∼ πϕ(aτ | sτ , c)
Critic: vψ(st, c) ≈ Eπ(·|sτ ,c)[

∑H−t
τ=0 γ

τrt+τ ].

4.2 Naive Use of Context in Dreamer

As discussed previously, Dreamers ZSG capabilities have not been explored in an observable context
setting, nor, to the best of our knowledge, has this setting been explored in MBRL in general. Thus,
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we propose and discuss naive learning variants from and within the contextual setting and contrast
them with our proposed cRSSM. The naive variants are then used as baselines in our experiments.

4.2.1 Context as an Observation

A commonly adopted approach to incorporate the inferred or true context into an algorithm is to
concatenate it with the state or observation (Perez et al., 2020; Biedenkapp et al., 2022; Sodhani
et al., 2022; Benjamins et al., 2023). We study applying this approach to vanilla Dreamer. Vanilla
Dreamer optimizes all the objectives defined in Section 4.1, but it does so without incorporating
context in those objectives. To incorporate context naively, we provide it concatenated with the
observation to the stochastic state encoder. qθ(zt | ht, xt) where xt=̇[ct, ot]. Note that only the
encoder gets the observation (or here the observation with context) as an input. The decoder then
has to learn to reconstruct the context as it is part of the observation. The latent dynamics predictor
used for imagination does not condition on observations. For a consistent imagination, the RSSM
is burdened with retaining the context value (provided as an observation) which got encoded into
the latent state, from which imagination begins. Since we only provide the latent state inferred by
the encoder to the actor-critic model in this setting, if the context is not retained, then the actor-
critic network will also not have access to the context information to learn accurate policies. This
could make it hard to generalize OOD. Still, the simplicity of directly using context as part of the
observation is appealing, which has led to it being the predominant approach in model-free cRL.

4.2.2 Hidden Context

The cMDP is a sub-class of POMDP (Kirk et al. (2023)). As the vanilla Dreamer algorithm applies
to POMDPs, we can use it without modification in the cRL setting without providing the context
but training on episodes drawn from a training distribution over contexts.

This is similar to the domain randomization (Tobin et al., 2017; Peng et al., 2018; Andrychowicz
et al., 2020) where the aim is to train the policy on a context distribution, usually inside the
simulator, to aid generalization to some target context, usually on the real world. While applying
domain randomization, most approaches aim to cover the target context distribution upon which
they aim their policies to generalize. While studying ZSG, we also care about OOD contexts.

Unlike context-unaware model-free domain randomization approaches that learn representations
purely from the reward signal, Dreamer’s world modeling objective provides a useful inductive bias
that could allow the model’s observation encoder to learn how to infer the context implicitly more
efficiently. With the clear disadvantage of not using context information when it is available, this
approach might not be able to learn to distinguish which exact context setting it properly is dealing
with. Consequently, the resulting policies might act for a spurious context and thus behave sub-
optimally or even fail catastrophically. However, providing a training distribution of contexts might
already be enough for the world model to infer the context, especially if the context is implicitly
encoded in the observations (e.g., the pole length in CartPole with pixel observations). Thus, this
style of context handling can be viewed as a simple context-inference approach. In this setting,
similar to treating context as an observation, we only use the latent state inferred by the encoder as
the input to the policy network.

5 Experiments and Discussion

In this section, we assess the performance of Dreamer in achieving generalization under observed
contexts. We compare various context conditioning approaches, following the evaluation protocols
outlined in (Kirk et al., 2023). In particular, our findings highlight the effectiveness of our cRSSM
method, showcasing quantitative and qualitative results in terms of zero-shot generalization (ZSG),
particularly in scenarios involving changes to context parameters affecting the dynamics.
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Environments: Our experiments leverage CARL, tailored for our investigation into ZSG. In
CARL we pick the following environments and contexts.

• CartPole (Barto et al., 1983): pole length and gravity.
• DMC Walker Walk (Tassa et al., 2018): actuator strength and gravity.

As these environments are good examples of the desired continuous contextual settings, they provide
a suitable benchmark for our study. CartPole serves as a simple problem, while DMC Walker presents
a more complex challenge. This approach aligns with prior works, such as Sodhani et al. (2022) and
Zhang et al. (2021a), which evaluate generalization on DMControl tasks to changes in context.

For each environment, we use two modalities of observation, namely (1) Featurized: This uses
featurized observations, which are generally easier to learn policies as they exhibit the least or no
partial observability depending on the environment; (2) Pixel: Image observations which are more
difficult as the model has to infer the latent states from it.

Training Pipeline We use Dreamer (v3) default hyperparameters for all experiments, with 50k
steps for CartPole and 500k for DMC Walker (10 seeds). We also show DMC Walker results with 10
seeds and 100k steps in Appendix F to analyze performance with fewer samples. Refer Appendix E
for exact hyperparameter values.

The CARL benchmark provides default context values (i.e., those commonly used in the literature
for single-environment training) for the two context dimensions we consider for each environment.
For each context type, we define training and evaluation ranges. The default value, training ranges,
and evaluation context values are provided in Appendix B. We train our three methods, namely the
cRSSM, concat-context and hidden-context, in the following training settings:

1. Single context variation: We sample 100 context values uniformly for one context di-
mension in its training range, keeping the other fixed to its default value and vice versa.

2. Dual context variation: We sample 100 context values uniformly in the training range
of both context dimensions.

Evaluation Protocol Following Kirk et al. (2023) we evaluate our agents on the following eval-
uation settings (visualized in fig. 2):

1. Interpolation (I): Evaluation contexts are selected fully within the training range.
2. Inter+Extrapolation (I+E): Evaluation contexts are selected to be within the training

distribution for one context dimension and out-of-distribution (OOD) for another. This
evaluation setting only applies to agents trained in the dual context variation setting.

3. Extrapolation (E): Evaluation contexts are fully OOD, as they are selected outside the
training context set limits.

To gain insights into Dreamers’ basic generalization capabilities, we also train context-unaware
agents on the single default context (default-context) per environment. We evaluate these hidden
context default agents in the same context values used for the three evaluation settings to compare
each of our methods trained in the two training settings.

In the evaluation protocol, each context could constitute a task of different difficulty. For example,
learning to control an agent in a context where it carries lighter loads might be easier than the
one with heavier loads. Following Benjamins et al. (2023), to obtain an upper bound of the policy
returns, we train expert agents for selected contexts that broadly cover our ranges of training and
evaluation contexts. Expert agent performances are the best mean return over 50 episodes among
five seeds. This gives an approximate upper bound on the returns achievable if Dreamer is trained
in a particular context. We used the best random policy mean return on 50 episodes over five seeds
to define a lower bound. See Appendix C.1 for the detailed expert and random agents performance.
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Inter+Extrapolation
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Figure 2: Training contexts and evaluation regions for single and dual context variation.

Evaluation Metric We use the performance of the expert and random policies to normalize our
evaluation performance. A normalized score of 1.0 would indicate the expert performance of an agent
in that setting, and 0.0 performance equal to a random policy. Since we evaluate our approaches on
more contexts than the number of experts, we pick the nearest context (normalized to account for
different scales of contexts) for which an expert is available and use it as reference.

Following the recommendation of Agarwal et al. (2021), we report the interquartile mean (IQM) of
the normalized aggregated scores across contexts in different regions for each experiment.
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Figure 3: Generalization capabilities of Dreamer with pixel-observations when varying the pole
length in CartPole. The y-axis indicates the gained reward, and the x-axis the pole length. The
blue bars shows vanilla Dreamers performance when only training on the default length (0.50) and
extrapolating to other settings. The shaded are gives the training range for the methods using
context. Expert and random policies give upper and lower bound for performances in each context.

5.1 Results

In this section, we analyze our results to answer three key research questions that motivate our
study of ZSG and our method of context conditioning. To help answer the first two questions, we
first provide the results on the representative Cartpole with pixel observations setting, comparing
the mean evaluation returns across our methods in Figure 3. To compare the overall performance of
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(a) Feature based IQM
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Figure 4: Aggregated comparison (across contexts & tasks) across cRSSM, concat-context, hidden-
context, and default-context for the evaluation settings: Interpolation, Extrapolation, and In-
ter+Extrapolation using IQM over expert normalized scores for both input modalities. Intervals
shown are stratified bootstrap 95% confidence intervals over seeds & aggregated contexts.

Table 1: Results for different evaluation settings, in featurized and pixel modality. Each de-
scribed by three variables: context, method, and mode. Context takes values from {c1, c2}
where c1 is gravity for both CartPole and Walker environments, c2 is pole length for Cart-
Pole and Actuator Strength for Walker. c1+2 indicating multiple contexts; and method from
{d : default-context, h : hidden-context, c : concat-context, cR : cRSSM}

Setting I E I+E I E I+E I E I+E I E I+E
CartPole Walker

Featurized Pixel
(c1 d) 1.000 1.000 - 1.000 0.938 - 0.903 0.561 - 0.940 0.546 -
(c1 h) 1.000 1.000 - 1.000 0.995 - 0.967 0.764 - 0.945 0.708 -
(c1 c) 1.000 1.000 - 1.000 0.997 - 0.966 0.769 - 0.966 0.733 -
(c1 cR) 1.000 1.000 - 1.000 1.000 - 0.985 0.806 - 0.959 0.710 -
(c2 d) 1.000 0.995 - 0.677 0.059 - 0.885 0.479 - 0.959 0.461 -
(c2 h) 1.000 0.996 - 1.000 0.169 - 0.959 0.571 - 0.947 0.571 -
(c2 c) 1.000 0.987 - 1.000 0.210 - 0.926 0.597 - 0.983 0.635 -
(c2 cR) 1.000 1.000 - 1.000 0.374 - 0.998 0.674 - 0.994 0.623 -
(c1+2 d) 1.000 0.945 0.998 0.901 0.038 0.210 0.842 0.520 0.595 0.915 0.503 0.570
(c1+2 h) 1.000 0.989 1.000 1.000 0.149 0.701 0.966 0.764 0.843 0.952 0.666 0.772
(c1+2 c) 1.000 0.970 1.000 1.000 0.257 0.779 0.972 0.727 0.830 0.965 0.724 0.823
(c1+2 cR) 1.000 0.997 1.000 1.000 0.334 0.826 0.982 0.677 0.820 0.988 0.691 0.843

our different modalities for our four methods, in Figure 4, we provide the aggregated IQM over nor-
malized return along with stratified bootstrap 95% confidence intervals Agarwal et al. (2021) across
different contexts, single/dual-variation training paradigms, and environments. We also present the
aggregated probability of improvement for cRSSM compared to other methods in Appendix C.4.
Individual results comparing the raw returns of all agents in different contexts, modalities, and con-
text variation settings are available in Appendix C. We also report the aggregated IQM scores for
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different context regions for each individual setting in Table 1. Refer Appendix C.5 plots for these
individual IQMs and 95% confidence intervals.

5.1.1 How Effective is Domain Randomization for Dreamer’s ZSG?

To answer this, we compare the two approaches default-context, with the agent trained on the default
context cd, and the hidden-context, which involves training with domain randomization of contexts.

As a motivating example to compare these methods, we first present a representative result in
Figure 3 for the different methods trained on the Cartpole environment with pixel observations and
varying the pole length. We observe that the hidden-context agent significantly outperforms the
default-context agent, especially in the extrapolation setting. The performance of default-context
agent drops noticeably when it moves away from its familiar default context. The aggregated results
across the interpolation and extrapolation regime for this setting are available in the pixel column
under the rows (l d/h/c/cR) for the Cartpole group in Table 1.

The aggregated metrics in Figure 4 show that hidden-context outperforms default-context in all
settings. The improvement is more pronounced in the pixel-based modality (Figure 4b). This
highlights the impact of domain randomization for generalization to unseen contexts in the more
complex pixel modality, as this exhibits increased partial observability.

In summary, domain randomization benefits the ZSG of the Dreamer algorithm, and the improve-
ment is striking for the pronounced pixel modality on the evaluated tasks.

5.1.2 Does Explicit Context Conditioning Aid ZSG?

Having established the benefits of domain randomization through hidden-context for Dreamer’s ZSG
on the given tasks, our focus shifts to evaluating the impact of explicit context conditioning methods,
namely cRSSM, our principled way to incorporate context into Dreamer’s world model; and concat-
context where we augment the observations with the context.

In the Cartpole environment, for the pixel modality observations (Figure 3), both explicit condition-
ing methods, cRSSM and concat-context, demonstrate superior performance over hidden-context,
particularly in scenarios with longer pole lengths. Here, cRSSM emerges as the frontrunner.

To extend this analysis to all of our settings, we again turn to the aggregated IQM scores. For
the featurized modality (Figure 4a), the cRSSM significantly outperforms both hidden-context and
concat-context. In contrast, concat-context trails behind hidden-context in inter+extrapolation and
extrapolation settings. In the more challenging pixel modality (refer to Figure 4b), explicit context
conditioning techniques demonstrate significant improvements over the hidden-context across all
evaluation scenarios, highlighting the importance of context conditioning for generalization.

Between the explicit context conditioning methods, cRSSM performs best in all evaluation regions
on aggregate. The improvements are particularly pronounced in the more challenging extrapolation
and inter+extrapolation scenarios. Following Agarwal et al. (2021), we provide the probability of
improvement of cRSSM over other methods in Appendix C.4, solidifying our claims.

For a detailed breakdown of each task, context variation, and evaluation protocol, we consult Table 1.
In the Cartpole environment, in the featurized case, all methods perform similarly in all settings and
evaluation regions. In dual context variation, default-context lags behind other approaches which
shows benefit of varying context during training even in this simple setting. In the pixel modality
the differences among methods are most discernible, context conditioning methods outperform do-
main the hidden-context. And among context-conditioning the cRSSM outperforms concat-context
context, particularly excelling in variations of pole length and combinations of length and gravity.

In the DMC Walker environment, context conditioning methods perform better than hidden-context.
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Within the featurized category, cRSSM takes the top spot. However, in the pixel modality, concat-
context leads, with cRSSM slightly behind, except for the inter+extrapolation setting where cRSSM
demonstrates a better understanding of the meaning of each context separately.

In summary, explicit context conditioning aids ZSG. cRSSM showcases improved generalization
across all modalities in the Cartpole environment and delivers substantial generalization improve-
ments in the featurized modality of DMC Walker, albeit lagging slightly behind in the pixel modality.

5.1.3 Beyond Task Performance, Does Context-Conditioning Impact the Latent
States?

We qualitatively assess the ability of different methods to understand context and its impact on latent
representations to help explain differences in performance and shortcomings of different approaches.

To evaluate how the methods use context, we visually investigate Dreamer’s reconstruction of visu-
ally observable OOD contexts, which are either encoded into the latent state in concat-context or
conditioned separately cRSSM. We choose the visually observable context to be the pole length in
Cartpole, evaluating lengths shorter and longer than what it has seen in the training distribution
(labeled short and long in Figure 5). A model capable of generating images conditioned on novel
context demonstrates a semantic understanding of the context that is well grounded in the image
space. In cases involving context-conditioned models, we also provide counterfactual visual expla-
nations, exploring how the reconstructed pixel observation ôt inferred from the original observation
that encodes the factual context (cF ) differs if conditioned on a counterfactual context (cCF ).

Concat cRSSM

Obs: short
Context: short

Concat cRSSM

Obs: long
Context: long

(a) Extrapolated Contexts

Concat cRSSM

Obs: short
Context: long

Concat cRSSM

Obs: long
Context: short

(b) Counterfactual Contexts

Figure 5: Qualitative results for the model generative ability of novel context. In each image, we have
the true observation, followed by the one reconstructed by the decoder with context conditioning
from the latent encoded from the true image, and lastly the difference between the two images. The
short refers to a length of 0.1 units, and long is the OOD length of 1.0 units. In the extrapolation
case, ideally, the difference should be minimal and, in the counterfactual case maximal.

Extrapolation In the extrapolation case depicted in Figure 5a, we encode observations from the
OOD pole length context (short: 0.1 or long: 1.0) and also condition on the true OOD context value.
It can be seen that the cRSSM predicted observation is more faithful to the OOD contexts compared
to other methods. In the case of short length, cRSSM generates a slightly blurred and shorter pole,
while concat-context is confined to the shortest in-distribution pole. For the longer pole, cRSSM
exhibits more realistic behavior by attempting to add additional pixels on top of the longest pole
it has seen, demonstrating a better semantic understanding of the context by the world model. In
contrast, concat-context falls short and instead decodes the longest in-distribution pole length.
We attribute the bottleneck that confines concat-context to the bounds of the context seen during
training to the discretization of the latent states (containing the context). Notably, the decoder’s
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ability to decode shorter-length poles for shorter inputs and vice versa suggests that the encoder of
both methods has learned the scale of pole lengths meaningfully.

Why Can Assessing Disentanglement Help? Although we see a meaningful extrapolation,
the length and pole position could also have been encoded into the latent state. This would defeat
the purpose of conditioning on the context. Ideally, we want the system to interpret our context
as the source of truth and not redundantly encode it from observations. The “sparse mechanism
shift” hypothesis (Schölkopf et al., 2021) states that such disentanglement of causal mechanisms in
representations enables OOD generalization.

Counterfactual Assessment of Disentanglement To test for disentanglement and faithfulness
to the conditioning context, we use the ability of our cRSSM world model to dream of many worlds
by taking observations generated from the factual context cF and encoding them to the latent state
while conditioning the model in the counterfactual context cCF . Then, we decode the image to
see how counterfactual conditioning influences image generation. From Figure 5b, we can see that
cRSSM uses the context value more faithfully than concat-context. This demonstrates the capability
of cRSSM to extrapolate and combine the conditioning context with the latent state to generate
semantically meaningful counterfactual images. In contrast to the context-disentangled latent space
of cRSSM, the concat-context approach encodes both context information and observations jointly
into the latent state, hindering its ability to generalize effectively.

Our investigation reveals clear evidence of extrapolation capabilities in our proposed principled
cRSSM approach compared to the vanilla concat-context strategy. Furthermore, through our visual
counterfactual explanations, we observe indications that the latent state in cRSSM appears disen-
tangled from the context, which explains the observed gains in generalization using this approach.

6 Conclusion and Future Work

We studied zero-shot generalization in Dreamer-style model-based reinforcement learning through
the lens of contextual reinforcement learning. We discussed naive ways to incorporate contextual
information into the MBRL learning pipeline and formulated the novel cRSSM for Dreamer. Our
cRSSM provides a systematic approach to using context in the world modelling objectives under par-
tial observability. Our experiments, using a rigorous evaluation protocol for zero-shot generalization,
showed that naive approaches, such as domain randomization improve generalization performance.
However, more principled methods such as our cRSSM are required to perform significantly better
in-distribution and out-of-distribution. Our study opens the door to future work on zero-shot gener-
alization for MBRL approaches such as Dreamer. Creating contextual benchmarks for environments
such as Atari (Bellemare et al., 2013), DMLab (Beattie et al., 2016), ProcGen (Anand et al., 2021),
and Minecraft (Guss et al., 2019) would be an interesting avenue for future research into ZSG, as
contextual changes in these benchmarks would necessitate more pronounced changes in policies. We
discuss this in more detail in Appendix G.

Our current cRSSM formulation assumes that context is observable, meaning it is directly available
as input. We plan to extend the cRSSM formulation to cases where context is not directly observable
and must be inferred along with the latent states. While we show qualitative results for counter-
factual dreams, the next step would be to use this to generate dreams for counterfactual contexts
during training and study the effect on ZSG and sample efficiency.

Acknowledgments

S.P. and K.F. acknowledge funding by the Konrad Zuse School of Excellence in Learning and Intel-
ligent Systems (ELIZA) grant. R.R. and A.B. acknowledge funding from the Carl Zeiss Foundation
through the research network “Responsive and Scalable Learning for Robots Assisting Humans”
(ReScaLe) of the University of Freiburg.

1328



RLJ | RLC 2024

References
R. Agarwal, M. Schwarzer, P. Samuel Castro, A. C. Courville, and M. G. Bellemare. Deep reinforce-

ment learning at the edge of the statistical precipice. In M. Ranzato, A. Beygelzimer, K. Nguyen,
P. Liang, J. Vaughan, and Y. Dauphin (eds.), Proceedings of the 35th International Conference
on Advances in Neural Information Processing Systems (NeurIPS’21). Curran Associates, 2021.

Ankesh Anand, Jacob C Walker, Yazhe Li, Eszter Vértes, Julian Schrittwieser, Sherjil Ozair, Theo-
phane Weber, and Jessica B Hamrick. Procedural generalization by planning with self-supervised
world models. In International Conference on Learning Representations, 2021.

M. Andrychowicz, B. Baker, M. Chociej, R. Józefowicz, B. McGrew, J. Pachocki, A. Petron, M. Plap-
pert, G. Powell, A. Ray, J. Schneider, S. Sidor, J. Tobin, P. Welinder, L. Weng, and W. Zaremba.
Learning dexterous in-hand manipulation. International Journal of Robotics Research, 39(1),
2020.

P. J. Ball, C. Lu, J. Parker-Holder, and S. Roberts. Augmented world models facilitate zero-shot
dynamics generalization from a single offline environment. In M. Meila and T. Zhang (eds.),
Proceedings of the 38th International Conference on Machine Learning (ICML’21), volume 139 of
Proceedings of Machine Learning Research, pp. 619–629. PMLR, 2021.

A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuronlike adaptive elements that can solve difficult
learning control problems. IEEE Transactions on Systems, Man, and Cybernetics, SMC-13:834–
846, 1983.

Charlie Beattie, Joel Z. Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich Küttler,
Andrew Lefrancq, Simon Green, Víctor Valdés, Amir Sadik, Julian Schrittwieser, Keith Anderson,
Sarah York, Max Cant, Adam Cain, Adrian Bolton, Stephen Gaffney, Helen King, Demis Hassabis,
Shane Legg, and Stig Petersen. Deepmind lab. ArXiv, abs/1612.03801, 2016. URL https:
//api.semanticscholar.org/CorpusID:3221395.

J. Beck, R. Vuorio, E. Z. Liu, Z. Xiong, L. Zintgraf, C. Finn, and S. Whiteson. A survey of meta-
reinforcement learning. arXiv:2301.08028 [cs.LG], 2023.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

C. Benjamins, T. Eimer, F. Schubert, A. Mohan, S. Döhler, A. Biedenkapp, B. Rosenhan, F. Hutter,
and M. Lindauer. Contextualize me – the case for context in reinforcement learning. Transactions
on Machine Learning Research, 2023.

M. Beukman, D. Jarvis, R. Klein, S. James, and B. Rosman. Dynamics generalisation in rein-
forcement learning via adaptive context-aware policies. In Proceedings of the 37th International
Conference on Advances in Neural Information Processing Systems (NeurIPS’23). Curran Asso-
ciates, 2023.

A. Biedenkapp, D. Speck, S. Sievers, F. Hutter, M. Lindauer, and J. Seipp. Learning domain-
independent policies for open list selection. In M. Katz, H. Palacios, and V. Gómez (eds.), Work-
shop on Bridging the Gap Between AI Planning and Reinforcement Learning (PRL@ICAPS’22),
2022.

K. Chua, R. Calandra, R. McAllister, and S. Levine. Deep reinforcement learning in a handful of
trials using probabilistic dynamics models. In S. Bengio, H. Wallach, H. Larochelle, K. Grau-
man, N. Cesa-Bianchi, and R. Garnett (eds.), Proceedings of the 31st International Conference
on Advances in Neural Information Processing Systems (NeurIPS’18), pp. 4759–4770. Curran
Associates, 2018.

1329



RLJ | RLC 2024

S. Du, A. Krishnamurthy, N. Jiang, A. Agarwal, M. Dudik, and J. Langford. Provably efficient RL
with rich observations via latent state decoding. In K. Chaudhuri and R. Salakhutdinov (eds.),
Proceedings of the 36th International Conference on Machine Learning (ICML’19), volume 97,
pp. 1665–1674. Proceedings of Machine Learning Research, 2019.

Y. Duan, J. Schulman, X. Chen, P. Bartlett, I. Sutskever, and P. Abbeel. RL$ˆ2$: Fast reinforcement
learning via slow reinforcement learning. arXiv:1611.02779 [cs.AI], 2016.

A. Escontrela, G. Yu, P. Xu, A. Iscen, and J. Tan. Zero-shot terrain generalization for visual
locomotion policies. arXiv:2011.05513 [cs.RO], 2020.

J. Guo, M. Gong, and D. Tao. A relational intervention approach for unsupervised dynamics gen-
eralization in model-based reinforcement learning. In Proceedings of the International Conference
on Learning Representations (ICLR’22), 2022. Published online: iclr.cc.

William H Guss, Cayden Codel, Katja Hofmann, Brandon Houghton, Noboru Kuno, Stephanie
Milani, Sharada Mohanty, Diego Perez Liebana, Ruslan Salakhutdinov, Nicholay Topin, et al.
The minerl 2019 competition on sample efficient reinforcement learning using human priors. arXiv
preprint arXiv:1904.10079, 2019.

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In J. Dy and A. Krause (eds.), Proceedings
of the 35th International Conference on Machine Learning (ICML’18), volume 80. Proceedings of
Machine Learning Research, 2018.

D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson. Learning latent
dynamics for planning from pixels. In K. Chaudhuri and R. Salakhutdinov (eds.), Proceedings of
the 36th International Conference on Machine Learning (ICML’19), volume 97, pp. 2555–2565.
Proceedings of Machine Learning Research, 2019.

D. Hafner, T. P. Lillicrap, J. Ba, and M. Norouzi. Dream to control: Learning behaviors by
latent imagination. In Proceedings of the International Conference on Learning Representations
(ICLR’20), 2020. Published online: iclr.cc.

D. Hafner, T. P. Lillicrap, M. Norouzi, and J. Ba. Mastering atari with discrete world models.
In Proceedings of the International Conference on Learning Representations (ICLR’21), 2021.
Published online: iclr.cc.

D. Hafner, J. Pasukonis, J. Ba, and T. P. Lillicrap. Mastering diverse domains through world models.
arXiv:2301.04104 [cs.AI], 2023.

A. Hallak, D. Di Castro, and S. Mannor. Contextual markov decision processes. arXiv:1502.02259
[stat.ML], 2015.

N. Hansen, H. Su, and X. Wang. TD-MPC2: Scalable, robust world models for continuous control.
In International Conference on Learning Representations (ICLR’24), 2024. Published online:
iclr.cc.

D. Kingma and M. Welling. Auto-encoding variational bayes. In Proceedings of the International
Conference on Learning Representations (ICLR’14). CBLS, 2014.

R. Kirk, A. Zhang, E. Grefenstette, and T. Rocktäschel. A survey of zero-shot generalisation in deep
reinforcement learning. Journal of Artificial Intelligence Research (JAIR), 76:201–264, 2023.

R. Koppejan and S. Whiteson. Neuroevolutionary reinforcement learning for generalized helicopter
control. In G. Raidl et al (ed.), Proceedings of the 11th Genetic and Evolutionary Computation
Conference (GECCO’09). Morgan Kaufmann Publishers, 2009.

1330



RLJ | RLC 2024

K. Lee, Y. Seo, S. Lee, H. Lee, and J. Shin. Context-aware dynamics model for generalization
in model-based reinforcement learning. In H. Daume III and A. Singh (eds.), Proceedings of
the 37th International Conference on Machine Learning (ICML’20), volume 98, pp. 5757–5766.
Proceedings of Machine Learning Research, 2020.

L. C. Melo. Transformers are meta-reinforcement learners. In K. Chaudhuri, S. Jegelka, L. Song,
C. Szepesvári, G. Niu, and S. Sabato (eds.), Proceedings of the 39th International Conference
on Machine Learning (ICML’22), volume 162 of Proceedings of Machine Learning Research, pp.
15340–15359. PMLR, 2022.

A. Modi, N. Jiang, S. Singh, and A. Tewari. Markov decision processes with continuous side infor-
mation. In Algorithmic Learning Theory (ALT’18), volume 83, pp. 597–618, 2018.

A. Nagabandi, I. Clavera, S. Liu, R. S. Fearing, P. Abbeel, S. Levine, and C. Finn. Learning to
adapt in dynamic, real-world environments through meta-reinforcement learning. In Proceedings
of the International Conference on Learning Representations (ICLR’19), 2019. Published online:
iclr.cc.

J. Parker-Holder, R. Rajan, X. Song, A. Biedenkapp, Y. Miao, T. Eimer, B. Zhang, V. Nguyen,
R. Calandra, A. Faust, F. Hutter, and M. Lindauer. Automated reinforcement learning (AutoRL):
A survey and open problems. Journal of Artificial Intelligence Research (JAIR), 74:517–568, 2022.

X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel. Sim-to-real transfer of robotic con-
trol with dynamics randomization. In International Conference on Robotics and Automation,
(ICRA’18), pp. 1–8. IEEE, 2018.

C. Perez, F. P. Such, and T. Karaletsos. Generalized hidden parameter mdps: Transferable model-
based rl in a handful of trials. In F. Rossi, V. Conitzer, and F. Sha (eds.), Proceedings of the
AAAI Conference on Artificial Intelligence, pp. 5403–5411. Association for the Advancement of
Artificial Intelligence, AAAI Press, 2020.

K. Rakelly, A. Zhou, C. Finn, S. Levine, and D. Quillen. Efficient off-policy meta-reinforcement
learning via probabilistic context variables. In K. Chaudhuri and R. Salakhutdinov (eds.), Pro-
ceedings of the 36th International Conference on Machine Learning (ICML’19), volume 97, pp.
5331–5340. Proceedings of Machine Learning Research, 2019.

B. Schölkopf, F. Locatello, S. Bauer, N. R. Ke, N. Kalchbrenner, A. Goyal, and Y. Bengio. Towards
causal representation learning. arXiv:2102.11107 [cs.LG], 2021.

S. Sodhani, F. Meier, J. Pineau, and A. Zhang. Block contextual mdps for continual learning.
In R. Firoozi, N. Mehr, E. Yel, R. Antonova, J. Bohg, M. Schwager, and M. J. Kochenderfer
(eds.), Learning for Dynamics and Control Conference, (L4DC’22), volume 168 of Proceedings of
Machine Learning Research, pp. 608–623. PMLR, 2022.

Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. L. Casas, D. Budden, A. Abdolmaleki, J. Merel,
A. Lefrancq, T. Lillicrap, and M. Riedmiller. Deepmind control suite. arXiv preprint arXiv:
1801.00690, 2018.

J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel. Domain randomization for
transferring deep neural networks from simulation to the real world. In International Conference
on Intelligent Robots and Systems (IROS’17), pp. 23–30, 2017.

J. Wang, Z. Kurth-Nelson, H. Soyer, J. Leibo, D. Tirumala, R. Munos, C. Blundell, D. Kumaran,
and M. Botvinick. Learning to reinforcement learn. In G. Gunzelmann, A. Howes, T. Tenbrink,
and E. Davelaar (eds.), Proceedings of the 39th Annual Meeting of the Cognitive Science Society.
cognitivesciencesociety.org, 2017.

L. Wen, S. Zhang, H. E. Tseng, and H. Peng. Dream to adapt: Meta reinforcement learning by
latent context imagination and MDP imagination. arXiv:2311.06673 [cs.LG], 2023.

1331



RLJ | RLC 2024

P. Wu, A. Escontrela, D. Hafner, P. Abbeel, and K. Goldberg. Daydreamer: World models for
physical robot learning. In K. Liu, D. Kulic, and J. Ichnowski (eds.), Conference on Robot Learning
(CoRL’22) 2022, volume 205 of Proceedings of Machine Learning Research, pp. 2226–2240. PMLR,
2022.

K. J. Young, A. Ramesh, L. Kirsch, and J. Schmidhuber. The benefits of model-based generaliza-
tion in reinforcement learning. In A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato,
and J. Scarlett (eds.), Proceedings of the 40th International Conference on Machine Learning
(ICML’23), volume 202 of Proceedings of Machine Learning Research, pp. 40254–40276. PMLR,
2023.

A. Zhang, S. Sodhani, K. Khetarpal, and J. Pineau. Learning robust state abstractions for hidden-
parameter block MDPs. In Proceedings of the International Conference on Learning Representa-
tions (ICLR’21), 2021a. Published online: iclr.cc.

B. Zhang, R. Rajan, L. Pineda, N. Lambert, A. Biedenkapp, K. Chua, F. Hutter, and R. Calandra.
On the importance of Hyperparameter Optimization for model-based reinforcement learning. In
A. Banerjee and K. Fukumizu (eds.), Proceedings of the 24th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS’21), pp. 4015–4023. Proceedings of Machine Learning
Research, 2021b.

1332



RLJ | RLC 2024

A cRSSM Bound Derivation

The variational bound for contextual latent dynamics models p(o1:H , s1:H | a1:H , c) =
∏
t p(st |

st−1, at−1, c)p(ot | st, c) and a variational posterior q(s1:H | o1:H , a1:H , c) =
∏
t q(st | o≤t, a<t, c)

follows from importance weighting and Jensen’s inequality as shown,

ln p(o1:H | a1:H , c) ≜ ln Ep(s1:H |a1:H ,c)

[ H∏

t=1
p(ot | st, c)

]

= ln Eq(s1:H |o1:H ,a1:H ,c)

[ H∏

t=1
p(ot | st, c)p(st | st−1, at−1, c)/q(st | o≤t, a<t, c)

]

≥ Eq(s1:H |o1:H ,a1:H ,c)

[ H∑

t=1
ln p(ot | st, c) + ln p(st | st−1, at−1, c) − ln q(st | o≤t, a<t, c)

]

=
H∑

t=1

(
E
q(st|o≤t,a<t,c)
[ln p(ot | st, c)]

reconstruction

− E
q(st−1|o≤t−1,a<t−1,c)

[
KL[q(st | o≤t, a<t, c) ∥ p(st | st−1, at−1, c)]

]

complexity

)
.

B Train and Evaluation Context Ranges

Context Gravity Length
Default 9.8 .5
Training Range [4.9, 14.7] [.35, .75]
Single Evaluation Values .98, 17.15, 2.45, 3.92, 4.9, 7.35,

9.8, 12.25, 14.7, 15.68, 16.66,
17.64, 18.62, 19.6

.1, .15, .2, .25, .3, .4, .5, .6, .7,

.8, .85, .9, .95, 1.0

Dual Evaluation Values .98, 2.45, 3.92, 15.68, 17.64,
19.6

.1, .2, .3, .5, .7, .8, .9, 1.0

Table 2: CartPole Context Values

Context Gravity Actuator Strength
Default 9.8 .5
Training Range [4.9, 14.7] [.5, 1.5]
Single Evaluation Values .98, 17.15, 2.45, 3.92, 4.9, 7.35,

9.8, 12.25, 14.7, 15.68, 16.66,
17.64, 18.62, 19.6

.1, .2, .3, .4, .5, .75, 1.0, 1.25,
1.5, 1.6, 1.7, 1.8, 1.9, 2.0

Dual Evaluation Values .98, 2.45, 3.92, 15.68, 17.64,
19.6

.1, .3, .5, 1.0, 1.5, 1.6, 1.8, 2.0

Table 3: DMC Walker Context Values
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C Agent Performances

C.1 Expert and Random agent performance

0.1 0.2 0.3 0.5 0.7 0.8 0.9 1.0
Length

19
.6

17
.6

4
15

.6
8

14
.7

9.
8

4.
9

3.
92

2.
45

0.
98

Gr
av

ity

500

500 500 500

500

500

500 500 500 500 500 500 500 500

500

500

500 500 500

500

Cartpole - Expert Agent - Return

0

100

200

300

400

500

0.1 0.2 0.3 0.5 0.7 0.8 0.9 1.0
Length

19
.6

17
.6

4
15

.6
8

14
.7

9.
8

4.
9

3.
92

2.
45

0.
98

Gr
av

ity

20

13 20 30

22

23

9 12 15 22 29 30 29 33

28

25

16 26 39

26

Cartpole - Random Agent - Return

0

100

200

300

400

500

0.1 0.3 0.5 1.0 1.5 1.6 1.8 2.0
Actuator Strength

19
.6

17
.6

4
15

.6
8

14
.7

9.
81

4.
9

3.
92

2.
45

0.
98

Gr
av

ity

25 899 963

55 952 966

954

952

30 194 781 951 963 963 976 977

955

967

924 960 966

819 944 958

dmc Walker - Expert Agent - Return

0

200

400

600

800

1000

0.1 0.3 0.5 1.0 1.5 1.6 1.8 2.0
Actuator Strength

19
.6

17
.6

4
15

.6
8

14
.7

9.
81

4.
9

3.
92

2.
45

0.
98

Gr
av

ity
23 30 42

24 30 41

30

30

25 27 28 33 48 54 62 75

51

60

29 92 169

28 141 274

dmc Walker - Random Agent - Return

0

200

400

600

800

1000

Figure 6: The best performing random policy and expert trained on each context over 5 seeds. We
use featurized modality with less partial observability compared to pixels, to get an optimistic upper
bound of expert returns.
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C.2 Varying single context
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Figure 7: CartPole - Featurized Observations - The mean and standard error of the average evalu-
ation returns are computed across 10 seeds, for 50 evaluation episodes each
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Figure 8: CartPole Pixel Observations - The mean and standard error of the average evaluation
returns are computed across 10 seeds, for 50 evaluation episodes each
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Figure 9: DMC Walker - Featurized Observations - The mean and standard error of the average
evaluation returns are computed across 10 seeds, for 50 evaluation episodes each
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Figure 10: DMC Walker - Pixel Observations - The mean and standard error of the average evaluation
returns are computed across 10 seeds, for 50 evaluation episodes each
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C.3 Varying two contexts
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Figure 11: CartPole - Featurized - The mean and standard error of the average evaluation returns
are computed across 10 seeds, for 50 evaluation episodes each
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Figure 12: CartPole - Pixel - The mean and standard error of the average evaluation returns are
computed across 10 seeds, for 50 evaluation episodes each
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Figure 13: DMC Walker - Featurized - The mean and standard error of the average evaluation
returns are computed across 10 seeds, for 50 evaluation episodes each
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Figure 14: DMC Walker - Pixel - The mean and standard error of the average evaluation returns
are computed across 10 seeds, for 50 evaluation episodes each
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C.4 Probability of Improvement for cRSSM

In assessing the robustness of an algorithm’s improvement over another, considering the average
probability of improvement emerges as a valuable metric. Specifically, it calculates the probability
of Algorithm X surpassing Algorithm Y on a randomly chosen task, disregarding the magnitude of
improvement. Identifying the optimal aggregate metric remains an ongoing inquiry, and presenting
multiple metrics, which circumvent the pitfalls of prevalent metrics, ensures reliability and efficiency
in decision-making processes.
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Figure 15: Aggregate probability of improvement for pixel modality.
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Figure 16: Aggregate probability of improvement for the featurized modality.

C.5 Expert Normalized IQM Plots for Individual Settings

The IQM plots corresponding to the settings in 1. For some settings in the Cartpole environment,
since we reach optimal expert performance across all seeds, the plots look empty.
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Figure 17: Cartpole - Featurized - Gravity: Expert normalized IQM with 95% confidence interval
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Figure 18: Cartpole - Featurized - Length: Expert normalized IQM with 95% confidence interval
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Figure 19: Cartpole - Featurized - Gravity + Length: Expert normalized IQM with 95% confidence
interval
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Figure 20: Cartpole - Pixel - Gravity: Expert normalized IQM with 95% confidence interval
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Figure 21: Cartpole - Pixel - Length: Expert normalized IQM with 95% confidence interval
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Figure 22: Cartpole - Pixel - Gravity + Length: Expert normalized IQM with 95% confidence
interval
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Figure 23: DMC Walker - Featurized - Gravity: Expert normalized IQM with 95% confidence
interval
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Figure 24: DMC Walker - Featurized - Actuator Strength: Expert normalized IQM with 95%
confidence interval
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Figure 25: DMC Walker - Featurized - Gravity + Actuator Strength: Expert normalized IQM with
95% confidence interval
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Figure 26: DMC Walker - Pixel - Gravity: Expert normalized IQM with 95% confidence interval
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Figure 27: DMC Walker - Pixel - Actuator Strength: Expert normalized IQM with 95% confidence
interval
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Figure 28: DMC Walker - Pixel - Gravity + Actuator Strength: Expert normalized IQM with 95%
confidence interval
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D Intuitive Interpretation of the RSSM & cRSSM

We can use a video game analogy to gain an intuitive understanding of the RSSM and cRSSM. The
context is the game settings, such as difficulty, which do not change while playing the game. The
deterministic state is the memory of the game engine. The stochastic state models the aleatoric
uncertainty used by the game engine, i.e. whenever the game samples from a random number
generator and certain variables of the current game state, it is the same as sampling from the
stochastic state model. After this sampling is done and the user inputs the action, the deterministic
state model is akin to the game’s logic, which uses the context of the current game memory state and
the sampled stochastic state to compute the next game memory state. The observation model is the
game engine’s visual renderer that maps the game memory to the pixels you see on your monitor. It
can also use context to render things differently. Finally, the reward model is the score, a distribution
conditioned on the state and context, as the context (say, difficulty setting) can influence how many
points you get for a given state.
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E Hyperparameters

We choose the small variant of DreamerV3 with all hyperparameters taken from Hafner et al. (2023).

Name Value
General
Replay capacity (FIFO) 106

Batch size 16
Batch length 64
Activation LayerNorm + SiLU
World Model
Deterministic State model (GRU) units 512
MLP layers 2
MLP units 512
Number of latents 32
Classes per latent 32
Reconstruction loss scale 1.0
Dynamics loss scale 0.5
Representation loss scale 0.1
Learning rate 10−4

Adam epsilon 10−8

Gradient clipping 1000
Actor Critic
MLP layers 2
MLP units 512
Imagination horizon 15
Discount horizon 333
Return lambda 0.95
Critic EMA decay 0.98
Critic EMA regularizer 1
Return normalization scale Per(R, 95) − Per(R, 5)
Return normalization limit 1
Return normalization decay 0.99
Actor entropy scale 3 · 10−4

Learning rate 3 · 10−5

Adam epsilon 10−5

Gradient clipping 100

Table 4: DreamerV3 hyper parameters. The same values are used across all experiments.
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F Results for DMC Walker - 100k Steps

For comprehensive evaluations, we conducted intermediate assessments on the DMC walker envi-
ronment, using 10 seeds for 100k environment steps in each generalization setting. Normalized IQM
scores, detailed in Table 5, demonstrate superior performance in the most challenging featurized
cases with both contexts. However, within some settings, particularly for the pixel modality, we
observed a notable lag in performance. This discrepancy, especially in the interpolation region,
where the evaluation distribution aligns closely with the training distribution, indicates the need for
additional samples to facilitate effective learning. We present the complete training (500k steps) in
Table 1.

Walker - 100k steps
Featurized Pixel

(g d) 0.737 0.551 - 0.549 0.376 -
(g h) 0.682 0.547 - 0.697 0.489 -
(g c) 0.864 0.684 - 0.656 0.520 -
(g cR) 0.779 0.661 - 0.565 0.450 -
(a d) 0.824 0.406 - 0.634 0.305 -
(a h) 0.833 0.437 - 0.674 0.376 -
(a c) 0.741 0.402 - 0.732 0.409 -
(a cR) 0.947 0.456 - 0.819 0.391 -
(g+a d) 0.749 0.411 0.537 0.574 0.326 0.372
(g+a h) 0.722 0.401 0.521 0.649 0.396 0.469
(g+a c) 0.652 0.357 0.470 0.658 0.406 0.494
(g+a cR) 0.884 0.447 0.632 0.606 0.333 0.423

Table 5: Expert normalized IQM over 10 seeds for different evaluation settings, in featurized and
pixel modality. Each described by three variables: context, method, and mode. Context takes
values from {g : gravity, a : actuator strength, l : pole length} with + indicating multiple contexts;
and method from {d : default-context, h : hidden-context, c : concat-context, cR : cRSSM}
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Figure 29: The best expert trained on each context over 5 seeds for 100k steps on DMC walker.
We use featurized modality with less partial observability compared to pixels, to get an optimistic
upper bound of expert returns.
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G Discussion on More Comprehensive Benchmarks

Creating contextual benchmarks for environments such as Atari, DMLab, ProcGen, and Minecraft
presents an important opportunity for further research into ZSG. Unlike our current tasks focusing
on motor control in environments like Walker and CartPole, some of these benchmarks emphasize
different aspects such as navigation and exploration while others such as procedurally generated or
open-ended worlds offer dynamic objectives and high variability, requiring strategic planning and
adaptability to diverse challenges. These complexities necessitate pronounced policy adjustments
with changing contexts. However, creating variants in such benchmarks is challenging due to their
inherent intricacies and lack of easily accessible interfaces. By addressing these complexities, future
work could unlock critical insights into the adaptability of reinforcement learning agents in diverse
and changing conditions.
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Abstract

Policy gradient (PG) is a reinforcement learning (RL) approach that optimizes a
parameterized policy model for an expected return using gradient ascent. While
PG can work well even in non-Markovian environments, it may encounter plateaus
or peakiness issues. As another successful RL approach, algorithms based on Monte
Carlo Tree Search (MCTS), which include AlphaZero, have obtained groundbreak-
ing results, especially in the game-playing domain. They are also effective when ap-
plied to non-Markov decision processes. However, the standard MCTS is a method
for decision-time planning, which differs from the online RL setting. In this work,
we first introduce Monte Carlo Tree Learning (MCTL), an adaptation of MCTS for
online RL setups. We then explore a combined policy approach of PG and MCTL to
leverage their strengths. We derive conditions for asymptotic convergence with the
results of a two-timescale stochastic approximation and propose an algorithm that
satisfies these conditions and converges to a reasonable solution. Our numerical
experiments validate the effectiveness of the proposed methods.

1 Introduction

Reinforcement learning (RL) attempts to learn a policy model so as to maximize the average of
cumulative rewards (Sutton & Barto, 2018). Policy gradient (PG) algorithms employ gradient ascent
on policy parameters (Gullapalli, 1990; Williams, 1992; Baxter & Bartlett, 2001). They can benefit
much from recent advances in neural network models and have been applied in various challenging
domains, such as robotics (Peters & Schaal, 2008), text generation (Rennie et al., 2017; Ouyang
et al., 2022), and speech recognition (Zhou et al., 2018).

Monte Carlo Tree Search (MCTS) is another successful RL approach, combining Monte Carlo sam-
pling with an optimistic tree search that balances exploration and exploitation (Kocsis & Szepesvári,
2006; Coulom, 2006; Browne et al., 2012). Notably, when integrated with deep learning, as in Al-
phaZero (Silver et al., 2017b;a) and MuZero (Schrittwieser et al., 2020), MCTS algorithms have
achieved groundbreaking results in board games (Silver et al., 2016).

Ordinary RL assumes the environment has the Markov property, i.e., the reward process and system
dynamics of the underlying process are Markovian. More specifically, they depend only on the
current state (and action); in other words, given the current state, they are independent of the
past states. It enables computationally effective dynamic programming techniques to learn policy
models (Puterman, 1994; Bertsekas, 1995). However, in many real-world RL tasks, it is difficult to
determine in advance a good state set or space that satisfies the Markov property (Yu et al., 2011;
Friedrich et al., 2011; Berg et al., 2012; Clarke et al., 2015; Rennie et al., 2017; Paulus et al., 2018;
Zhou et al., 2018; You et al., 2018).

There are at least two typical scenarios where the Markov property is violated. The first is related to
the observation. If observations are limited and partial, the dynamics and rewards are not Markovian
and need to be modeled with functions of the past observation sequence or functions of a latent state.
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Figure 1: Overview of the proposed approach; PG guided by Monte Carlo Tree Learning (PG-MCTL).
Unlike MCTS, which requires a simulator to generate possible future states and rewards, MCTL
builds a tree based on real trajectories experienced by an agent while still inheriting core MCTS
properties. PG and MCTL have fundamentally different properties. PG-MCTL takes advantage of
them.

Typical examples are dialog systems (Young et al., 2013) and robot navigation (Berg et al., 2012).
The other case is when only the reward function is not Markovian. Generation tasks, such as text
(Yu et al., 2017) and molecular graphs (You et al., 2018), are a typical examples since generated
objects are usually evaluated not only from a local but also from a global perspective, such as an
ad-quality score in the domain of text generation for search engine advertising (Kamigaito et al.,
2021). The former scenario is often formulated as a partially observable Markov decision process
(POMDP) (Kaelbling et al., 1996; Sondik, 1971), while the latter is a decision process with non-
Markovian reward (Bacchus et al., 1996). The stochastic process that includes both is called a
non-Markovian decision process (NMDP) or history-based decision process (HDP) (Whitehead &
Lin, 1995; Bacchus et al., 1997; Majeed & Hutter, 2018), which is the focus of this paper.

Notably, both PG and MCTS algorithms are applicable to HDP-modeled tasks (Kimura et al., 1997;
Aberdeen, 2003; Rennie et al., 2017; Browne et al., 2012), as they are less reliant on the Bellman
optimality equation under the Markov assumption, unlike Q learning. Moreover, PG algorithms
can effectively utilize function approximators like neural networks. However, PGs are known to
occasionally get trapped on plateaus, slowing down learning (Kakade, 2002; Morimura et al., 2014;
Ciosek & Whiteson, 2020). Furthermore, PGs can face the ’peakiness’ issue, where the initially
most probable actions will gain probability mass, even if they are not the most rewarding (Choshen
et al., 2020; Kiegeland & Kreutzer, 2021). Meanwhile, MCTS-based algorithms aim for a global
optimum through optimistic search, balancing exploration and exploitation (Kocsis & Szepesvári,
2006; Lattimore & Szepesvári, 2020; Świechowski et al., 2021). Yet, compared to PGs, they struggle
with state generalization, often lacking information on states outside of their tree. Furthermore,
while PGs do not require a simulator for action selection, MCTSs do. That is, they are decision-
time planning (Sutton & Barto, 2018), in which planning is launched and completed for every action
selection.

Based on the above, we believe that PG and MCTS can complement each other’s difficulties, and
their combination is a promising way to solve problems in HDPs. Specifically, even when PG is suf-
fering from plateaus or the peakiness issue, MCTS is likely to be able to continue improving because
its exploration strategy is fundamentally different from PG’s. In addition, PG with an appropriately
parameterized model would be able to cover the inefficiency in the state generalization of MCTS. It
is also generally known that a combination of models can have a positive effect (Kuncheva, 2014).

This paper considers an online model-free RL problem in HDPs, where the environment will not be
estimated. That is, no simulator is available. We adapt MCTS to the online RL setup and propose
Monte Carlo Tree Learning (MCTL) that selects an action without a simulator. We then consider
an approach that uses a mixture of PG and MCTL policies and adjusts its mixing probability
through learning. We call this approach a policy gradient guided by MCTL (PG-MCTL) (Figure
1). We derive conditions for asymptotic convergence and find that naive mixing of PG and MCTL
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will not work in asymptotic convergence. We propose an algorithm that satisfies the conditions for
convergence.

This paper is structured as follows: Section 2 covers the background of RL in HDPs, PG, and
MCTS. In Section 3, we introduce the PG-MCTL approach, detail its convergence conditions using a
two-timescale stochastic approximation, and present an implementation that meets these conditions.
This is our main contribution. Section 4 reviews relevant literature. The effectiveness of the proposed
approach is validated through experiments in Section 5, and Section 6 offers concluding remarks.

2 Preliminaries

We define our problem setting of RL in HDPs in Section 2.1. PG and MCTS algorithms are briefly
reviewed in Sections 2.2 and 2.3, respectively.

2.1 Problem setting of RL in HDP

While problems of RL are usually formulated on a Markov decision process (MDP) for ease of learn-
ing (Sutton & Barto, 2018), as described in Section 1, it is difficult to define Markovian states in many
real-world tasks. Here, we consider a discrete-time episodic HDP (Whitehead & Lin, 1995; Majeed &
Hutter, 2018) as a general decision process without assuming the Markovian property. It is defined
by a tuple HDP ≜ {O, A, T, pini, po, fr}, where O and A are finite sets of observations and actions,
respectively. T is the length of each episode, pini : O → [0, 1] is a probability function of the initial
observation, pini(o0) ≜ Pr(o0)1, and po : O×Ht×A → [0, 1] is a history-dependent observation proba-
bility function at each time step t∈{0, 1, . . . , T−1}, po(ot+1| ht, at)≜Pr(Ot+1=ot+1| Ht =ht, At =at),
where ht≜ [o0, a0, . . . , ot−1, at−1, ot]=[ht−1, at−1, ot] is a history up to a time step t, and
Ht ≜ (O × A)t × O is a set of histories at a time step t. For brevity, we notate the total his-
tory set H ≜

⋃T
t=0 Ht and the history transition probability function ph : Ht+1 × Ht × A → [0, 1]

such as ph(ht+1 = [ht, at, ot+1] | ht, at) ≜ po(ot+1|ht, at). The function fr : H × A → R is a history-
dependent bounded reward function, which defines an immediate reward rt = fr(ht, at) at time step
t ∈ {0, . . . , T}.

A learning agent chooses an action according to a policy model π : A × H → [0, 1], which is a con-
ditional action probability function π(a|ht) ≜ Pr(a | ht, π) at each time step t. Without loss of
generality, we assume that the agent can take any action a ∈ A in any ht ∈ Ht at any t ∈ {0, . . . , T}.

Here, we consider a standard online RL problem, where pini, po, and fr are unknown to the agent.
The agent learns the policy model π by experiencing episodes repeatedly. The objective function
that the agent seeks to maximize is the expected return

Υ(π) ≜ Eπ[G0], (1)

where Eπ[ · ] ≜ E[ · | HDP, π] is the expectation operator and Gt ≜
∑T

κ=t Rκ =
∑T

κ=t fr(Hκ, Aκ) is a
random variable of the return at time step t.

2.2 Policy gradient

We assume that the policy model πθ to be optimized by PG algorithms is parameterized by a
parameter θ ∈ Rd and πθ is differentiable with respect to θ. Examples of πθ include a neural
network for sequence modeling. The PGs are based on the gradient method of the following update
rule with a small learning rate α ≥ 0,

θ := θ + α∇θΥ(πθ),

1Although it should be Pr(O0 = o0) for the random variable O0 and realization o0 to be precise, we write Pr(o0)
for brevity. The same rule is applied to the other probability functions if there is no confusion.
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where := is the right-to-left substitution operator and ∇θΥ(πθ) ≜ [∂Υ(πθ)/∂θ1, ..., ∂Υ(πθ)/∂θd]⊤ is
the gradient of Υ(πθ) with respect to θ. Because the analytical evaluation of ∇θΥ(πθ) is generally
intractable, a PG method, called REINFORCE (Williams, 1992), updates θn after every episode n
of experience [o0, a0, r0, . . . , oT , aT , rT ] according to a stochastic gradient method as follows:

θn+1 = θn + αn

T∑

t=0
∇θ log πθn(at|ht) (gt − b(ht)), (2)

since the gradient ∇θΥ(πθ) is written as

∇θΥ(πθ) = Eπθ

[
T∑

t=0
∇θ log πθ(At, Ht) (Gt − b(Ht))

]
,

where gt is the realized value of the return Gt and b : H → R is an arbitrary baseline function. The
baseline function b is used for reducing the variance of the stochastic gradient, and does not induce
any bias to the gradient because of Eπθ[∇θ log πθ(At|h) b(h)] = b(h)∇θ

∑
a∈Aπθ(a|h) = b(h)∇θ1 = 0.

2.3 Monte Carlo tree search

Monte Carlo tree search (MCTS) is developed to identify the best action in a given situation for
decision processes (Kocsis & Szepesvári, 2006; Coulom, 2006; Browne et al., 2012). It is typically
employed for decision-time planning, where planning is initiated and completed per action selection.

It is typically employed for decision-time planning, where planning is initiated and completed per
action selection with a simulator. Here, a simulator is an environment model that can generate
possible future states and rewards given a current state and action. This allows the algorithm to
simulate different action sequences to plan the optimal policy. In planning, MCTS iteratively runs
an episode from a given situation and stores its result in a tree by expanding the tree and updating
statistics in nodes of the tree. After a certain number of iterations, it estimates the best action in
the situation by using statistics of the root node and terminates the planning.

In single-agent learning in a stochastic system, the tree usually has two kinds of nodes, a history node
and a history-action node, alternating in the depth direction. A history node represents a history and
does not store additional information. At a history node, the tree-search policy determines which
child history-action node to transition to, based on the statistics in its child nodes. In contrast, the
transition from a history-action node to a history node follows the transition probability ph.

Each history-action node holds a return estimate q and the number of visits m as the statistics.
Here, we notate those statistics in each history-action node (h, a) with a tabular representation, as
q(h, a) and m(h, a), for simplicity. The tree policy at a history node h, often utilizing the Upper
Confidence Bounds applied for Trees (UCT) formula (Kocsis & Szepesvári, 2006), decides an action
based on the statistics of its child nodes:

arg max
a

{
q(h, a) + C

√
log(

∑
b m(h, b))

m(h, a)

}
, (3)

where C ≥ 0 is a hyper-parameter to control the balance between exploration and exploitation.

Each iteration of the MCTS consists of four consecutive phases:
( i ) selection of child nodes from the root to a leaf node in the tree,
(ii) tree expansion by creating new child nodes that are initialized as m :=1, q :=0,
(iii) simulation from one of the new nodes according to a default policy to sample a return,
(iv) backpropagation of the results until the root node.

Note that (ii) and (iii) are skipped if the leaf node reached is a terminal node, and (iii) is the “Monte
Carlo” part of the algorithm. The default policy in (iii) is usually a uniform random policy.
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In the backpropagation phase of (iv), the statistics of the node visited at each depth t of iteration
n ∈ {1, 2, . . . } are updated as follows:

{
mn+1(ht, at) = mn(ht, at) + 1,

qn+1(ht, at) = qn(ht, at) + 1
mn(ht,at) (gt − qn(ht, at)).

(4)

Note that many other update rules have been proposed, such as the TD(λ) learning type (Browne
et al., 2012; Vodopivec et al., 2017).

3 Policy gradient guided by MCTL

In Section 3.1, we introduce Monte Carlo Tree Learning (MCTL) as an MCTS variant for online
RL. We then outline our approach, PG guided by MCTL (PG-MCTL), in Section 3.2. Convergence
analysis is discussed in Section 3.3, followed by a convergent implementation proposal in Section 3.4.

3.1 Monte Carlo tree learning (MCTL)

Our focus is an online model-free RL problem in HDPs, where no simulator is available. An agent
learns through interactions with an unknown environment without estimating it. The standard
MCTS, however, typically necessitates a simulator. In response, we propose a variant of MCTS that
inherits its key features but eliminates the need for a simulator. This is referred to as a lazy MCTS
or simply, MCTL.

MCTL gradually grows a tree according to the trajectories experienced by the agent interacting
with an unknown environment. Unlike MCTS, MCTL maintains and updates a tree over multiple
episodes.2 Specifically, after experiencing an episode, the tree is updated according to MCTS’s tree
expansion and backpropagation procedures (e.g. Eq. (4)). Depending on the presence of a node for
the current situation h in the tree, the MCTL policy adjusts its action selection. If an MCTL policy
is queried on a history h that the tree contains, it selects an action according to the node selection
procedure of MCTS (e.g. Eq. (3)). Otherwise, it selects an action randomly.

By design, an MCTL tree will have nodes for states near the initial state and/or frequently visited
states. The presence of a node h implies that the history h is somewhat known to an MCTL policy.
In contrast, the absence of a node h′ implies that the history h′ is unknown and the policy should
select an action for exploration at h′. This is analogous to a common class of algorithms, knows
what it knows (KWIK), for efficient exploration (Li et al., 2011).

We will notate an MCTL policy as πω, whose parameter is ω. Specific implementations, including
update rules, are described in Section 3.4.

3.2 General approach

As discussed in the introduction, combining PG and MCTL aims to leverage the strengths and
mitigate the weaknesses of each individual method. Our proposed approach, PG guided by MCTL
(PG-MCTL), integrates them by randomly selecting a policy of either PG or MCTL at each time
step. Specifically, we consider the following mixture of policies πθ and πω:

πθ,ω(a|h) ≜ (1 − λ(h))πθ(a|h) + λ(h)πω(a|h), (5)

where λ is a mixing probability. The λ may be constant or depend on an observation o, history h,
and parameters θ, ω. The parameters θ and ω are updated with modified update rules of a PG and
MCTL, respectively, which are proposed in Section 3.4 by using the results in Section 3.3.

2In MCTS, the search tree is built and used within a single episode, often requiring a simulator to generate
possible future states. In contrast, MCTL continuously updates a single tree over multiple episodes using only the
states experienced by the agent. This allows MCTL to function without a simulator, as it relies solely on real-world
interactions.
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3.3 Convergence analysis

We present the convergence conditions of PG-MCTL on a few settings of the mixing probability λn

in Eq. (5). Proofs are shown in Appendix A.

We will validate our assumptions in the next section. For now, let’s assume the updates of parameters
θ ∈ Rd for a PG policy and ω ∈ Re for an MCTL policy can be rewritten as follows:

θn+1 = θn + αn[ k(θn, ωn) + M
(1)
n+1 + ϵ(1)

n ], (6)
ωn+1 = ωn + ηn[ l(θn, ωn) + M

(2)
n+1 + ϵ(2)

n ], (7)

where k : Rd × Re → Rd and l : Rd × Re → Re are the expected update functions, M (1) ∈ Rd and
M (2) ∈ Re are noise terms, and ϵ(1) ∈ Rd and ϵ(2) ∈ Re are bias terms.
We make the following assumptions about the noise and bias terms, which are common in the
stochastic approximation (Borkar, 2008).
Assumption 1. The stochastic series {M

(i)
n } for i = 1, 2 is a martingale dierence sequence, i.e.,

with respect to the increasing σ-elds, Fn ≜ σ(θm, ωm, M
(1)
m , M

(2)
m , m ≤ n), for some constant K > 0,

the following holds for all n ∈ {1, 2, . . . },

E[ M
(i)
n+1 | Fn] = 0,

E[ ∥M
(i)
n+1∥2 | Fn] ≤ K(1 + ∥θn∥2 + ∥ωn∥2).

Assumption 2. The bias {ϵ
(i)
n } for i = 1, 2 is a deterministic or random bounded sequence which

is o(1), i.e., limn→∞ ϵ
(i)
n = 0.

In our problem setting, the size of the history set H is bounded, which ensures that the assumptions
regarding the noise and bias terms in Eqs. (6) and (7) are realistic and not overly restrictive.

For our analysis, we use the ordinary dierential equation (ODE) approach for the stochastic approx-
imation (Bertsekas & Tsitsiklis, 1996; Borkar, 2008). The limiting ODEs that Eqs.(6) and (7) might
be expected to track asymptotically is, for τ ≥ 0,

θ̇(τ) = k(θ(τ), ω(τ)), (8)
ω̇(τ) = l(θ(τ), ω(τ)). (9)

We also make the assumption about the expected update functions k and l.
Assumption 3. The functions k and l be Lipschitz continuous maps.

Assumption 4. The ODE of Eq. (9) has a globally asymptotically stable equilibrium φ(θ), where
φ : Rd → Re is a Lipschitz map.
Assumption 5. supn(∥θn∥ + ∥ωn∥) < ∞.

We first show the convergence analysis result for the case of that the mixing probability λ is a
constant or a fixed function such as λ : H → [0, 1].
Proposition 1. Assume Assumptions 1–5 hold. Let the mixing probability function λ : H → [0, 1]
be invariant to the number of episodes n, and the learning rates αn and ηn satisfying





limN→∞
∑N

n=0 αn = limN→∞
∑N

n=0 ηn = ∞,

limN→∞
∑N

n=0
(
α2

n + η2
n

)
< ∞,

limN→∞
αN

ηN
= 0.

(10)

Then, almost surely, the sequence {(θn, ωn)} generated by Eqs. (6) and (7) converges to a compact
connected internally chain transitive invariant set of Eqs. (8) and (9), respectively.
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The above results indicate how the learning rates αn and ηn should be set for convergence. Since
ηn in an MCTL policy is basically proportional to 1

n , an obvious choice of αn will be 1
1+n log n .

Note that, if a deterministic policy such as UCT (Eq. (3)) is used, k and l will not be the Lipschitz
maps and thus the above convergence results cannot be applied. Therefore, we will use the softmax
function (Sutton & Barto, 2018) in the implementation in Section 3.4.

The invariant condition of λ can be relaxed.
Proposition 2. Let λθn

: H → [0, 1] be a function parameterized by a part of θ and a Lipschitz
continuous map with respect to θ. Assume that all the conditions of Proposition 1 are satisfied except
for λ. The consequence of Proposition 1 still holds.

Finally, we consider a specific scenario that λn is a decreasing function of the number of episodes n,
where an MCTL policy πω is just used for guiding the PG. The goal, in this case, will be to obtain a
parameterized policy πθ that demonstrates good performance by itself. In the case of λn decreasing,
the convergence condition can be significantly relaxed as follows.
Proposition 3. Assume Assumptions 1 and 2 only for i = 1 hold, k is Lipschitz continuous map,
and supn(∥θn∥) < ∞ holds. Let the mixing probability λn be o(1) and satisfy 0 ≤ λn ≤ 1 − ε for all
n and a constant ε > 0, and the learning rate of a PG policy satisfy

lim
N→∞

N∑

n=0
αn = ∞, lim

N→∞

N∑

n=0
α2

n < ∞.

Then, almost surely, the sequence {θn} generated by Eqs. (6) and (7) converges to a compact con-
nected internally chain transitive invariant set of the ODE, θ̇(τ) = ∇θΥ(πθ(τ)).

This proposition shows that, unlike the previous cases, the convergence property is guaranteed even
if a deterministic policy like UCT is used for an MCTL policy.

3.4 Implementation

We present an implementation of PG-MCTL that satisfies the convergence conditions and converges
to a reasonable solution.

First, we consider revising the update of a PG policy πθ. Since the goal is to maximize the expected
return of Eq. (1), the following update at each episode n will be appropriate, instead of the ordinary
one of Eq. (2):

θn+1 = θn + αn

T∑

t=0
∇θ log πθn,ωn(at|ht)(gt − b(ht))

= θn + αn

T∑

t=0
ρt∇θ log πθn(at|ht)(gt − b(ht)), (11)

where we assume πθn,ωn is the behavior policy of episode n. The ρt is a scaled probability ratio or
a kind of importance weight (Sutton & Barto, 2018),

ρt ≜
(1 − λ(ht))πθ(at|ht)

πθ,ω(at|ht)
. (12)

Note that according to Proposition 2, learning the mixture probability λ via this PG update, rather
than assuming λ is predefined and fixed, still ensures convergence. When adopting this approach,
termed PG-MCTL-adpt, we assume that λθ is parameterized by a subset of parameters within θ.
The update rule of θ is derived as

θn+1 = θn+αn

T∑

t=0

{
ρt∇θ log πθn(at|ht) + (πωn(at|ht) − πθn(at|ht))

πθn,ωn(at|ht)
∇θλθn

(ht)
}

(gt − b(ht)). (13)
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From here on, we will only consider the case where the mixing probability λ is constant, but the
results presented here will be straightforwardly applied to other settings of λ.
Next, we consider an implementation of an MCTL policy πω. The update rule of MCTS that MCTL
follows differs from the general stochastic approximation in Eq.(7). In particular, the learning rate in
the MCTS update of Eq. (4) varies among nodes. On the other hand, the stochastic approximation
assumes a global learning rate ηn as seen in Eq. (7). Furthermore, although Assumption 5, vital
for convergence, states that parameters should remain bounded, the parameter m, the number of
visits, could diverge. To reconcile these differences, we introduce a tree-inclusion probability and
reformulate the MCTS update by replacing m(h, a) with u :H×A → [0, 1] so that m(h, a)=1/u(h, a).
Consequently, the parameter of the MCTL policy πω becomes ω ≜ {u, q}. With a learning rate of
ηn = 1/n and initializing u :=1 and q :=0, the conventional MCTS update in Eq.(4) can be rewritten
as:





un+1(ht, at)= un(ht, at) + ηnκn,t
−un(ht,at)
un(ht,at)+1 ,

qn+1(ht, at)= qn(ht, at) + ηnκn,t(gt − qn(ht, at)),
(14)

where κn,t is the following and can be regarded as an adjustment term for the learning rate per
node,

κn,t ≜ pn,t
un(ht, at)

ηn
,

and pn,t is the following tree-inclusion probability,

pn,t ≜
{

1, if t = 0,

min
(

1
un(ht−1,at−1) − 1, 1

)
, otherwise.

(15)

If un(ht−1, at−1) = 1, the tree-inclusion probability pn,t is zero, and thus the values of (ht, at) are not
updated. It corresponds to the case where the tree does not have a node (ht, at), indicating that this
node hasn’t been expanded. If un(ht−1, at−1) ≤ 0.5, the values of a node (ht, at) are updated with
probability 1. The equivalence of the original MCTS update and Eq. (14) is shown in Appendix A.5.

We next investigate Assumption 3 about Lipschitz continuity of the expected update functions k
and l. The PG update of Eq. (11) is based on the gradient ascent, and thus the expected update
functions k with an ordinary implementation will satisfy Lipschitz continuity. However, the update
of Eq. (14) does not allow l to have Lipschitz continuity since κn,t diverges as ηn → 0. This problem
can be solved by modifying κn,t with a large value M > 0 as follows:

κ̄n,t ≜ min(κn,t, M). (16)

Theorem 1. Let the PG-MCTL update the parameterized policy πθ by Eq. (11) and the MCTL
policy πω by the rule in which κ in Eq. (14) is replaced by κ̄ of Eq. (16), and the learning rates satisfy
the conditions of Eq. (10). Also let πθ be defined on a compact parameter space and have always
bounded first and second partial derivatives, and πω be a softmax policy with hyper-parameters β ≥ 0
and C ≥ 0,

πω(a|h) ∝ exp
(

β
{

q(h, a) + C
√

u(h, a) log
∑

b
1

u(h,b)

})
. (17)

Then, limn→∞ ∇θΥ(πθn,ωn) = 0 holds.

Finally, we propose a heuristic to avoid a vanishing gradient problem of the PG update of Eq. (11).
By the definition of ρt in Eq. (12), if πθ and πθ,ω are significantly different, ρt can be close to zero
and thus the stochastic gradient at time t can vanish. In order to avoid this problem, we modify ρt

to ρ
t

as, with υ ∈ [0, 1],
ρ

t
≜ max(υ, ρt). (18)
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Algorithm 1 A PG-MCTS implementation
1: given:
2: - an initialized PG policy πθ(a|h) and mixing probability function λθ(h) 3

3: - an initialized MCTL policy πω(a|h), e.g., Eq. (17)
4: - hyper-parameters for the PG and MCTS policies
5: while within computational budget do
6: // interaction with environment HDP
7: observe an initial observation h0 ∼ pini
8: empty a memory M and store h0 in M
9: for t = 0 to T do

10: choose a policy π ∈ {πθ, πω}, using λ(ht) (see Eq. (5))
11: choose and execute an action at ∼ π( · |ht)
12: observe a reward rt := fr(ht, at)
13: observe a new history ht+1 ∼ ph( · |ht, at)
14: store rt and ht+1 in the memory M
15: end for
16: // update of policies πθ, πω and mixing probability λθ with M
17: compute the return gt, ∀t ∈ {0, . . . , T}
18: update πθ and λθ by the PG update of Eqs. (11) and (13) with (18)
19: update πω by the MCTL update of Eq. (14) with (16)
20: end while
21: return the learned policy πθ,ω ≜ λπθ + (1 − λ)πω

When υn = o(1), the convergence property in Theorem 1 still holds because υn is absorbed into ϵn

in Eq. (6). Note also that ρt is upper bounded by 1. Thus there is no need to care about ρt taking
a large value. The entire PG-MCTL implementation is shown in Algorithm 1.

It should be noted that the memory size may continue to grow over time as more episodes are
experienced. Additionally, the maximum memory usage of the MCTL policy is on the order of the
tree size, O(|H|). While this can be significant, it is generally not expected to explore all trajectories
and construct a complete tree, resulting in a smaller memory consumption.

4 Related work

Numerous studies integrate MCTS and RL algorithms. Most of them are based on the standard
MCTS setting (decision time planning) and propose to use value-based RL (Vodopivec et al., 2017;
Jiang et al., 2018; Efroni et al., 2019) or supervised learning (Guo et al., 2014; Silver et al., 2017b;
Anthony et al., 2017; Schrittwieser et al., 2020; Dam et al., 2021), where deep neural networks are
trained from targets generated by the MCTS iterations. The latter approach is also known as expert
iteration (Anthony et al., 2017). AlphaZero and MuZero are prominent algorithms adopting this
approach. The key distinction between expert iteration and PG-MCTL lies in their policy updates.
While the PG-MCTL is weighting the experiences with the return gt and importance weight ρt

(see Eq. (11)), the standard expert iteration does not, assuming that all instances are positive
examples since they are the result of MCTS iteration. Another difference pertains to the type of
learning. Specifically, the expert iteration is classified as decision-time planning or model-based RL.
In contrast, PG-MCTL is model-free and doesn’t rely on a simulator. Grill et al. (2020) also extend
AlphaZero or MuZero with the notion of PG, which is also model-based RL.
Several studies, among others, combine PG and MCTS. Soemers et al. (2019) runs MCTS to compute
a value function that PG uses. Guo et al. (2016) uses PG to design reward-bonus functions to improve
the performance of MCTS. Anthony et al. (2019) uses PG for updating local policies and investigates

3The mixing probability function λ may be given as a hyper-parameter instead of parameterizing it with θ. In
that case, the update λ of line 18 by Eq. (13) is skipped.
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planning without an explicit tree search. Dieb et al. (2020) uses PG in the tree expansion phase to
choose a promising child node to be created, assuming a situation where the number of actions is
huge.
From another perspective, the PG-MCTL can be regarded as using MCTS for PG to enhance the
efficiency of exploration. Most exploration approaches in PG focus on designing reward functions,
often incorporating a bonus of intrinsic motivation or curiosity to explore unknown states (Bellemare
et al., 2016; Tang et al., 2017; Zheng et al., 2018; Burda et al., 2019). Haarnoja et al. (2018)
demonstrates remarkable success using an entropy bonus to aid exploration in benchmark control
tasks. Unlike many approaches, PG-MCTL does not modify the objective function, however, it
remains compatible with most of them.
For RL in an HDP or NMDP, there are two major directions. The first one assumes the existence of
latent dynamics and considers the identification of the dynamics (Thiébaux et al., 2006; Poupart &
Vlassis, 2008; Silver & Veness, 2010; Singh et al., 2012; Doshi-Velez et al., 2015; Brafman & Giacomo,
2019). A POMDP (Kaelbling et al., 1998) serves as a widely-recognized mathematical model for
this purpose. Doshi-Velez et al. (2015) identifies an environment as a POMDP with Bayesian non-
parametric methods and then compute a policy by solving the POMDP. The other direction is
to use a function approximator whose output depends not only on a current observation but also
on past observations (Loch & Singh, 1998; Hernandez-Gardiol & Mahadevan, 2000; Bakker, 2002;
Hausknecht & Stone, 2015; Rennie et al., 2017; Qin et al., 2023). One of the successful approaches
uses a neural network for sequence learning as a policy model and optimizes it by PG (Wierstra
et al., 2010; Rennie et al., 2017; Paulus et al., 2018; Kamigaito et al., 2021), as corresponds to the
PG policy in our proposed PG-MCTL.
While the proposed implementation of PG-MCTL integrates standard PG and MCTS algorithms in
a well-designed way, there are a lot of studies on enhancing those algorithms, such as stabilization of
PG by a conservative update (Kakade, 2002; Schulman et al., 2015; 2017), the entropy regularization
for explicitly controlling the exploration-exploitation trade-off (Haarnoja et al., 2017; 2018; Xiao
et al., 2019; Grill et al., 2020), and extensions of MCTS to continuous spaces (Couëtoux et al., 2011;
Mansley et al., 2011; Kim et al., 2020; Mao et al., 2020). Incorporating these technologies, including
the expert iteration, into the PG-MCTL is an interesting avenue for future work.

5 Numerical Experiments

We apply the PG-MCTL algorithm to two different tasks in HDPs. The first task is a randomly
synthesizing task, which does not contain domain-specific structures and is not overly complex.
Therefore, this task will help investigate the primary performance of algorithms. The second task
is the long-term dependency T-maze, which is known as a standard benchmark for learning a deep-
memory POMDP (Bakker, 2002; Wierstra et al., 2010). Details of the experimental setup are given
in Appendix B.

The goal here is not to nd the best model for the above two tasks, but to investigate if/how combining
the PG and MCTL (MCTS variant) by the PG-MCTL is effective. Therefore, the applied algorithms
here are simple, not state-of-the-art algorithms. In this regard, model-based RLs including MuZero
(Schrittwieser et al., 2020) are also out of the scope of this work. We used REINFORCE with a
baseline (Williams, 1992) for the PG and MCTL for the original MCTS, which are introduced in
Sections 2.2 and 3.2, respectively. Note that REINFORCE, although it is classic, is still appealing
due to its good empirical performance and simplicity (Grooten et al., 2022; Zhang et al., 2021).
It and its variants are used in many applications (Rennie et al., 2017; Paulus et al., 2018; Chen
et al., 2019; Xia et al., 2020; Wang et al., 2021; Liu et al., 2022). Thus, we believe that improving
REINFORCE itself is still important in the practical implementation of RL.

While our focus is on fundamental algorithms, we also included the proximal policy optimization
(PPO) (Schulman et al., 2017), a modern and practical variation of the PG algorithm, to provide
a comparative perspective on performance. Additionally, we utilized a simple version of AlphaZero
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(Silver et al., 2017b), termed lazy AlphaZero. It employs the same adaptation to the online RL
setting as MCTL (also called lazy MCTS). The parameterized policy model, serving as the prior
policy in lazy AlphaZero, is updated based on online experiences according to likelihood maximiza-
tion. Furthermore, we also implemented a naive mixture of the PG and MCTL that follows Eq. (5)
but uses the learning rules of the standalone REINFORCE and MCTL. For fair evaluation, we first
tuned the hyper-parameters of standalone algorithms and then used them for the PG-MCTL and
the naive mixture model.

5.1 Randomly synthesized task

This task is a randomly synthesized non-Markovian model. It is analogous to generation tasks such
as text generation and compound synthesis, presenting as a simple yet challenging HDP. There are
five observations and ten actions. The observation probability function po was synthesized to depend
on the time-step, observation, and action. The reward function fr was composed of the sum of the
per-step sub-reward function rlocal and the history-based sub-reward function rglobal. The function
rglobal was synthesized by using a Gaussian process, such that the more similar the histories, the
closer their rewards tend to be. This reward function fr can be interpreted in the context of text
generation as follows: rlocal represents the quality of local word connections, and rglobal represents
the quality of the generated text. The policy πθ was a softmax and parameterized by using the
reward structure. We set T =15. Thus, there are an enormous number of variations in the histories
(∼ 1025).

Figure 2 (a) shows the results of ten independent runs, where ’PG-MCTL’ and ’PG-MCTL-adpt’ are
the proposed methods. PG-MCTL uses a fixed mixing probability λn, while PG-MCTL-adpt learns
λθ with the PG update of (13). In each run, an HDP environment was independently generated, as
described above.

The results indicate that REINFORCE learned most quickly but often fell into sub-optimal policies.
In contrast, the MCTL and lazy AlphaZero methods continued to improve but was slow to learn.
This slowness is probably due to the lack of the ability to learn state representation, more concretely,
if trajectories are even slightly different, the nodes differ from each other, and thus information is not
shared among them. Whereas, the proposed PG-MCTL methods were able to continuously improve
and was not slow to learn. It implies that the PG-MCTL approach can successfully incorporate the
advantages of both the PG and MCTL. Specifically, while PG offers rapid learning, MCTL provides
continuous improvement without easily falling into sub-optimal policies.

However, it is worth noting that the poor performance of the naive mixture indicates that the simple
mixing approach of the PG and MCTL policies cannot work. Also, note that their performances
of PG-MCTL and PG-MCTL-adpt were similar. This similarity suggests that in this task, learning
the mixing probability λ did not provide a significant advantage over the fixed probability approach
in PG-MCTL. However, it is important to consider the potential benefits of adaptive methods in
more structured tasks, as explored in Section 5.2.

5.2 T-maze task

The T-maze task of Figure 3 is non-Markovian and designed to test the ability to identify associations
between events with long-time lags (Bakker, 2002; Wierstra et al., 2010). An agent has to remember
an observation made at the first time step until the episode ends. We use a long short-term memory
(LSTM) as a policy model. Since the original setting with the initial position s0 = 0 is not so
difficult, we prepared a more difficult setting, where initial position s0 is the center of the corridor.
In this setting, a policy that chooses the left or right action with probability 0.5 can be sub-optimal.
Note that this is not true in the original setting (s0 = 0) because going left occurs a negative reward.

The results are shown in Figure 2 (b) and indicate the effectivity of the proposed methods. In this
experiment, the performance of PPO and REINFORCE showed only marginal differences, suggesting
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Figure 2: Performance comparison by ten independent runs, where the error bar represents the
standard error of the mean: (a) the randomly synthesized task (T = 15). (b) T-maze task; the plot
on the left is the result of an easy setting (the length of corridor L = 30 and the initial position
s0 = 0). The plot on the right is for a more difficult setting, where there exist more sub-optimal
policies (the length of corridor L = 100 and the initial position s0 = 50).
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Figure 3: Long-term dependency T-maze task: an agent starts at the position S. Only at the initial
time step t = 0, it can observe a signal ’up’ or ’down’ that indicates it should go north or south at
the T-junction in this episode.

that using PPO as the PG module in PG-MCTL would offer limited benefits. The significant
superiority of our approach over PPO, however, underscores the effectiveness of combining PG
with MCTS. Moreover, PG-MCTL-adpt outperformed PG-MCTL, demonstrating that adjusting
the mixing probability through learning, especially at T-junctions, was effective in this task.

6 Conclusion

This paper focused on online reinforcement learning problems in history-based decision processes
(HDPs). We investigated the PG-MCTL approach, a mixture policy approach for the PG and online
MCTS variant (MCTL) that takes advantage of the features of the PG and MCTS algorithms. We
provided the convergence analysis and then proposed an implementation that converges to a reason-
able solution. Through the numerical experiments on two HDP tasks with different characteristics,
we confirmed the significant effect of the proposed approach for the mixture of the PG and MCTL
policies.

In future work, we will apply our algorithms with state-of-the-art neural networks for sequence
data to more practical and challenging domains, such as advertising text generation and incomplete
information games. Also, the analysis of convergence points is crucial because the PG is a local
optimization while MCTS is a global optimization method. For example, guidance from MCTS
may help PGs overcome a bad local optimum and a learning plateau. Another exciting direction
will incorporate state-of-the-art PG and MCTS techniques, such as entropy regularization and the
natural gradient.
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A Proofs

A.1 Preliminaries

We first introduce the basic results of the ordinary differential equation (ODE) based approach for
the stochastic approximation (Borkar, 2008). We consider the following update rule of θ ∈ Rd with
an initial value θ0 ∈ Rd for all n ∈ [0, 1, . . . ] = N≥0,

θn+1 = θn + αn[ k(θn) + Mn+1 + ϵn]. (19)

To take the ODE approach, we extend the above discrete-time stochastic process of θn to a con-
tinuous, piecewise-linear counterpart θ̄ : R≥0 → Rd as follows: Define a time-instant function
t : N≥0 → R≥0 such as

t(n) ≜
{

0 if n = 0,∑n−1
m=0 αm otherwise,
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and set θ̄(t(n)) := θn, ∀n ∈ N≥0. Then, for any n ∈ N≥0, we derive the following linear interpolation,

θ̄(τ) ≜ θn + (θn+1 − θn) τ − t(n)
t(n + 1) − t(n) , τ ∈ In, (20)

where In ≜ [t(n), t(n+1)]. As we will show later, the key result of the ODE approach to the analysis
of Eq. (19) is that θ̄(τ) asymptotically almost surely approaches the solution set of the following
ODE,

θ̇(τ) = k(θ(τ)), τ ∈ R≥0. (21)

For this purpose, we need to make the following assumptions.
Assumption 6. The learning rates {αn} are positive scalars satisfying

lim
N→∞

N∑

n=0
αn = ∞, lim

N→∞

N∑

n=0
α2

n ≤ ∞. (22)

Assumption 7. The function k : Rd → Rd is a Lipschitz continuous map, i.e., for some constant
0 < L < ∞,

∥k(θ) − k(θ′)∥ ≤ L∥θ − θ′∥, ∀(θ, θ′) ∈ Rd × Rd.

Assumption 8. The stochastic series {Mn} is a martingale difference sequence with respect to the
increasing family of σ-fields

Fn ≜ σ(θi, Mi, ϵi, i ≤ n).

That is, the following holds,

E[Mn+1 | Fn] = 0 a.s., ∀n ≥ 0.

Furthermore, Mn is always square-integrable with

E[ ∥Mn+1∥2 | Fn] = K(1 + ∥θn∥2) a.s., ∀n ≥ 0, (23)

for some constant K ≥ 0.

Assumption 9. The series of bias {ϵn} is a deterministic or random bounded sequence which is o(1).

Assumption 10. The updates of Eq. (19) remain bounded almost surely, i.e.,

sup
n

∥θn∥ < ∞, a.s.

Lemma 1. Assume Assumptions 6–10 hold. Let θs(τ), τ ≥ s ≥ 0, denote the trajectory of Eq. (21)
starting at time s ∈ R≥0:

θ̇s(τ) = k(θs(τ)), ∀τ ∈ R≥s,

with θs(s) = θ̄(s). Then, for any ν > 0, the following holds almost surely,

lim
s→∞

sup
τ∈[s,s+ν]

∥θ̄(τ) − θs(τ)∥ = 0,

lim
s→∞

sup
τ∈[s−ν,s]

∥θ̄(τ) − θs(τ)∥ = 0.

Proof: This lemma is a simple extension of Lemma 1 in Section 2 of (Borkar, 2008) with a bias
term ϵn, and this proof mostly follows from it. We will only prove the first claim since the same
applies to the proof of the second claim.
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For n ∈ N≥0 and m ∈ N≥1, by the construction, θ̄ can be written down as follows:

θ̄(t(n + m)) = θ̄(t(n)) +
m−1∑

i=0
αn+i k(θ̄(t(n + i))) + δn,n+m. (24)

where

δn,n+m ≜ ξn+m − ξn +
m−1∑

i=0
αn+i ϵn+i,

ξn ≜
{

0, if n = 0,∑n−1
i=0 αiMi+1, if n ∈ N≥1.

We will show supm≥0∥δn,n+m∥ = 0 as n → ∞. By Assumptions 8 and 10, the series {ξn} is a zero
mean, square-integrable martingale with respect to the σ-fields Fn. Furthermore, by Assumptions
6, 8, and 10, we have

∞∑

n=0
E[ ∥ξn+1 − ξn∥2 | Fn] =

∞∑

n=0
α2

n E[ ∥Mn+1∥2 | Fn] < ∞, a.s.

From the above and the martingale convergence theorem (Theorem 11 of Appendix in (Borkar,
2008)), it can be said that {ξn} converges. The third term of δn,n+m also converges to zero as
n → ∞ because {ϵn} is o(1) by Assumption 9. Thus, the following holds,

lim
n→∞

∥δn,n+m∥ = 0, a.s. (25)

Next, we will look into θs. It can be written down as follows:

θt(n)(t(n + m)) = θ̄(t(n)) +
∫ t(n+m)

t(n)
k(θt(n)(τ))dτ

= θ̄(t(n)) +
m−1∑

i=0
αn+i k(xt(n)(t(n + i))) +

∫ t(n+m)

τ=t(n)

(
k(θt(n)(τ)) − k(θt(n)(τ̃))

)
dτ,

(26)

where

τ̃ ≜ max{t(n) | t(n) ≤ τ, n ∈ N≥0}.

We investigate the integral on the right-hand side in Eq. (26). Let C0 ≜ supn∥θn∥. Note that
C0 < ∞ a.s. by Assumption 10. By Assumption 7, ∥k(θ) − k(0)∥ ≤ L∥θ∥, and so

∥k(θ)∥ ≤ ∥k(0)∥ + L∥θ∥. (27)

Therefore, the following holds, for τ ∈ [s, s + ν],

∥θs(τ)∥ ≤ ∥θ̄(s)∥ +
∫ τ

x=s

(
∥k(0)∥ + L∥θs(x)∥

)
dx

≤ C0 + ∥k(0)∥ν + L

∫ τ

x=s

∥θs(x)∥dx.

By Gronwall’s inequality (Lemma 6 of Appendix in (Borkar, 2008)), we obtain

∥θs(τ)∥ ≤
(
C0 + ∥k(0)∥ν) exp(Lν), ∀τ ∈ [s, s + ν]. (28)
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Thus, from Eq. (27), we have the following bound,

Cν ≜ ∥k(0)∥ + L(C0 + ∥k(0)∥ν) exp(Lν) < ∞, a.s.

such that, for all τ ∈ [s, s + ν],

∥k(θs(τ))∥ ≤ Cν . (29)

Here we assume ν is larger than t(n + m) − t(n) without loss of generality. For i ∈ {0, . . . , m − 1}
and τ ∈ [t(n + i), t(n + i + 1)], the bound Ct gives

∥θt(n)(τ) − θt(n)(t(n + i))∥ ≤
∥∥∥∥∥

∫ τ

ι=t(n+i)
k(θt(n)(ι))dι

∥∥∥∥∥
≤ Cν(τ − t(n + i))
≤ Cναn+i.

The inequality gives the bound of the integral in Eq. (26) as follows: because
∥∥∥∥∥

∫ t(n+m)

τ=t(n)

(
k(θt(n)(τ)) − k(θt(n)(τ̃))

)
dτ

∥∥∥∥∥ ≤
∫ t(n+m)

τ=t(n)
L∥θt(n)(τ) − θt(n)(τ̃)∥

= L
m−1∑

i=0

∫ t(n+i+1)

τ=t(n+i)
∥θt(n)(τ) − θt(n)(t(n + i))∥dτ

≤ CνL

m−1∑

i=0
α2

n+i

Thus, by Assumption 6, we have

lim
n→∞

∥∥∥∥∥

∫ t(n+m)

τ=t(n)

(
k(θt(n)(τ)) − k(θt(n)(τ̃))

)
dτ

∥∥∥∥∥ ≤ CνL
m−1∑

i=0
lim

n→∞
α2

n+i = 0, a.s. (30)

By subtracting Eq. (24) from Eq. (26) and taking a norm, we have

∥θ̄(t(n + m)) − θt(n)(t(n + m))∥ ≤ L
m−1∑

i=0
αn+i∥θ̄(t(n + i)) − θt(n)(t(n + i))∥ + Kn,ν ,

where

Kn,ν ≜ CνL

ḿn,ν −1∑

i≥0
α2

n+i + ∥δn,n+ḿn,ν
∥,

ḿn,ν ≜ max{m | t(n + m)−t(n)≤ν, m ∈ N≥0}.

Note that

lim
n→∞

Kn,ν = 0, a.s. (31)

holds by Eqs. (25) and (30). By applying the discrete Gronwall lemma (Lemma 8 of Appendix in
(Borkar, 2008)) to the above inequality, we have

sup
i∈{0,...,m}

∥θ̄(t(n + i)) − θt(n)(t(n + i))∥ ≤ Kn,ν exp(Lν), a.s. (32)

Let τ ∈ [t(n + i), t(n + i + 1)] for 0 ≤ i ≤ m − 1. Then we have

θ̄(τ) = λθ(t(n + i)) + (1 − λ)θ̄(t(n + i + 1))
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for some λ ∈ [0, 1], and thus the following inequality is obtained,

∥θ̄(τ) − θt(n)(τ)∥ = ∥λ(θ̄(t(n + i)) − θt(n)(τ)) + (1 + λ)(θ̄(t(n + i + 1)) − θt(n)(τ))∥

≤ λ

∥∥∥∥∥θ̄(t(n + i)) − θt(n)(t(n + i)) −
∫ τ

ι=t(n+i)
k(θt(n))dι

∥∥∥∥∥

+ (1 − λ)
∥∥∥∥∥θ̄(t(n + i + 1)) − θt(n)(t(n + i + 1)) +

∫ t(n+i+1)

ι=τ

k(θt(n))dι

∥∥∥∥∥

≤ λ∥θ̄(t(n + i)) − θt(n)(t(n + i))∥ + (1 − λ)∥θ̄(t(n + i + 1)) − θt(n)(t(n + i + 1))∥

+
∫ t(n+i+1)

ι=t(n+i)
∥k(θt(n)(ι))∥dι

≤ Kn,ν exp(Lν) + Cναn+i, a.s.,

where the last inequality is derived by using Eqs. (32) and (29). The above inequality is easily
generalized to, with some constant C ≥ 0

sup
τ∈[s,s+ν]

∥θ̄(τ) − θt(n)(τ)∥ ≤ CKs̃,ν exp(Lν) + Cναs̃,

where s̃ ≜ max{t(n) | t(n) ≤ s, n ∈ N≥0}. As s → ∞, we have the first claim in this lemma.

By applying Lemma 1 to Theorem 2 of Section 2 and Theorem 2 of Section 6 in (Borkar, 2008), we
instantly obtain the following lemmas.
Lemma 2. Assume Assumptions 6–10 hold. Then, the sequence {θn} generated by Eq. (19) almost
surely converges to a (possibly sample path dependent) compact connected internally chain transitive
invariant set of Eq. (23).

Lemma 3. Let the sequence {(θn, ωn)} is generated by

θn+1 = θn + αn[ k(θn, ωn) + M
(1)
n+1 + ϵ(1)

n ], (6)

ωn+1 = ωn + ηn[ l(θn, ωn) + M
(2)
n+1 + ϵ(2)

n ], (7)

where k : Rd × Re → Rd and l : Rd × Re → Re are the expected update functions, M (1) ∈ Rd and
M (2) ∈ Re are noise terms, and ϵ(1) ∈ Rd and ϵ(2) ∈ Re are bias terms. Also, let the learning rates
αn and ηn of Eqs. (6) and (7) satisfying





lim
N→∞

N∑

n=0
αn = lim

N→∞

N∑

n=0
ηn = ∞,

lim
N→∞

N∑

n=0

(
α2

n + η2
n

)
< ∞,

lim
N→∞

αN

ηN
= 0.

Assume Assumptions Assumptions 1–5 hold. Then, the sequence {(θn, ωn)} almost surely converges
to a (possibly sample path dependent) compact connected internally chain transitive invariant set A
of the following ODEs

θ̇(τ) = k(θ(τ), ω(τ)), (8)
ω̇(τ) = l(θ(τ), ω(τ)). (9)

Any pair (θ, ω) ∈ A has the relation ω = φ(θ), where φ(θ) is defined in Assumption 4 and denotes
the globally asymptotically stable equilibrium of the ODE (9) of ω given θ.
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A.2 Propositions 1 and 2

By applying Lemma 3 to the update rule of the proposed PG-MCTL algorithm (Eqs. (6) and (7)),
we immediately obtain Propositions 1 and 2.

Proposition 1. Assume Assumptions 1–5 hold. Let the mixing probability function λn : H → [0, 1]
be invariant to the number of episodes n and the learning rates αn and ηn satisfying





lim
N→∞

N∑

n=0
αn = lim

N→∞

N∑

n=0
ηn = ∞,

lim
N→∞

N∑

n=0

(
α2

n + η2
n

)
< ∞,

lim
N→∞

αN

ηN
= 0.

(13)

Then, almost surely, the sequence {(θn, ωn)} generated by Eqs. (6) and (7) converges to a compact
connected internally chain transitive invariant set of Eqs. (8) and (9).

Proposition 2. Let λn : H → [0, 1] be a function parameterized by a part of θ (and be a Lipschitz
continuous map with respect to its parameter). Assume that all the conditions of Proposition 1 are
satisfied expect for λn. Still, the consequence of Proposition 1 holds.

A.3 Proposition 3

Proposition 3. Assume Assumptions 1 and 2 only for i = 1 hold, k is Lipschitz continuous map,
and supn(∥θn∥) < ∞ holds. Let the mixing probability λn be o(1) and satisfy 0 ≤ λn ≤ 1 − ε for all
n and a constant ε > 0, and the learning rate of the PG policy satisfy

lim
N→∞

N∑

n=0
αn = ∞, lim

N→∞

N∑

n=0
α2

n < ∞.

Then, almost surely, the sequence {θn} generated by Eqs. (6) and (7) converges to a compact con-
nected internally chain transitive invariant set of the ODE, θ̇(τ) = ∇θΥ(πθ(τ)).

Proof: The update rule of θ (Eq. (6) ) is rewritten as

θn+1 = θn + αn

T∑

t=0
∇θ log πθn,ωn(at|ht)(gt − b(ht))

= θn + αn

(
T∑

t=0
∇θ log πθn(at|ht)(gt − b(ht)) − λt

T∑

t=0
πωn(at|ht)∇θ log πθn(at|ht)(gt − b(ht))

)

(33)

By the definition of the PG-MCTL policy (Eq. (5))

πθn,ωn(a|h) ≜ (1 − λn)πθn(a|h) + λnπωn(a|h)

and the assumption of the proposition, 1 − λn ≥ ε, n ≥ 0, the expected value of the second terms
of the right side of Eq. (33) is

Eπθn,ωn

[
T∑

t=0
∇θ log πθn(At|Ht)(Gt − b(Ht)) − λt

T∑

t=0
πωn(At|Ht)∇θ log πθn(At|Ht)(Gt − b(Ht))

]

= εTEπθn

[
T∑

t=0
∇θ log πθ(At, Ht) (Gt − b(ht))

]
+ ϵ′

t,

1372



RLJ | RLC 2024

where the sequence {ϵ′
n} is o(1). Thus, Eq. (33) can be rewritten as

θn+1 = θn + αn(k̃(θn) + M ′
n + ϵ′

n),

where k̃ : Rd → Rd is the expected update function

k̃(θ) ≜ εT

[
T∑

t=0
∇θ log πθ(At, Ht) (Gt − b(ht))

]
= εT ∇θΥ(πθ(τ)),

and {M ′
n} is a zero mean, square-integrable martingale difference sequence with respect to Fn.

From the above, we can apply Lemma 2 and so the claim follows.

A.4 Theorem 1

Theorem 1. Let the PG-MCTL update the parameterized policy πθ by Eq. (11) and the MCTL
policy πω by the rule in which κ in Eq. (14) is replaced by κ̄ of Eq. (16), and the learning rates satisfy
the conditions of Eq. (10). Also let πθ be defined on a compact parameter space and have always
bounded first and second partial derivatives, and πω be a softmax policy with hyper parameters β ≥ 0
and C ≥ 0 as

πω(a|h) ∝ exp
(

β

{
q(h, a) + C

√
u(h, a) log

(∑

b

1
u(h, b)

)})
. (17)

Then, limn→∞ ∇θΥ(πθn,ωn) = 0 holds.

Proof: The proof consists of two major steps. First, we will show that the parameter {(θn, ωn)}
converges to a compact connected internally chain transitive invariant set. Then we will prove that
any element in that set satisfies the properties claimed in the theorem.

To apply Lemma 3, we will investigate whether the conditions of Lemma 3 are satisfied. By the
construction of the sequence {ωn} of the parameter of the MCTL policy,

sup
n

∥ωn∥ < ∞

holds. It means that Assumption 5 holds, taking into account the condition supn∥θn∥ < ∞, and also
ensures that πω always has bounded first and second derivatives, as well as πθ. In order to check
Lipschitz continuity of the expected update functions k(θ, ω) and l(θ, ω) (Assumption 3), we define
them as

k(θ, ω) ≜ Eπθ,ω

[
T∑

t=0
∇θ log πθ,ω(At|Ht)(Gt − b(Ht))

]
= ∇θΥ(πθ,ω), (34)

and




[l(θ, ω)]u(ht,a) ≜ −dθ,ω(ht, a) κ̄ω(ht, a)u(ht, a)
u(ht, a) + 1 , ∀(ht, a) ∈ Ht × A, ∀t ∈ {0, . . . , T},

[l(θ, ω)]q(ht,a) ≜ dθ,ω(ht, a)κ̄ω(ht, a)
(
Eπθ,ω

[Gt | Ht =ht, At =a] − q(ht, a)
)
,

∀(ht, a) ∈ Ht × A, ∀t ∈ {0, . . . , T},

(35)

where [l(θ, ω)]x denotes the output corresponding to the parameter x in ω, the function dθ,ω(ht, a)
is the experiencing probability of (ht, a) under πθ,ω,

dθ,ω(ht, a) ≜ Pr(Ht =ht, At =a | HDP, πθ,ω),

and κ̄ω is the counterpart to κ̄n,t defined in Eq. (16). Thus, with the above properties and the
boundedness of the reward function, we can see that k and l are Lipschitz continuous maps, i.e.,
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Assumption 3 holds. The above observations also indicate that Assumptions 1 and 2 hold. Further-
more, since the second term in the MCTL policy (Eq. (17)) is asymptotically negligible, our task
is episodic, and θ is basically updated with a naive Monte Carlo method, the ODE corresponding
to l has a globally asymptotically stable equilibrium φ(θ), which will depend on θ, i.e., Assumption
4 holds. From the above results, Lemma 3 can be applied to this setup. Thus, it is proven that
{(θn, ωn)} converges to a compact connected internally chain transitive invariant set S of the ODEs
corresponding to Eqs. (34) and (35), and ω = φ(θ) holds for all (θ, ω) ∈ S.

With the above observations, we can instantly prove limn→∞ ∇θΥ(πθn,ωn) = 0 by contradiction.
(This is because θn converges to a compact connected internally chain transitive invariant set of the
ODE ∇θΥ(πθ,ω) and Υ(πθ,ω) is bounded by the HDP definition.)

A.5 Equivalence of the standard MCTS update and Eq. (14)

By construction of u(h, a) in Eq. (14), the initial value u is 1 for all (h, a). If u is updated once or
more than once at (h, a), u(h, a) is equal to or less than 0.5. Thus, by the definition of the tree-
inclusion probability pn,t in Eq. (15), if u(ht−1, at−1) has been updated even once in past episodes,
the tree-inclusion probability pn,t(ht, at) is one, otherwise it is zero. It indicates that in addition to
the case t = 0, as long as a node corresponding to (ht−1, at−1), t ∈ N≥1, would be included in a tree
if the standard MCTS update were used, the tree-inclusion probability pn,t(ht, at) is 1, and thus u
and q of (ht, at) will be updated with probability 1. Otherwise, Eq. (14) will not change u and q of
(ht, at) at all. The above is the same as the standard MCTS update.

All that remains is to show that the update rule in Eq. (14) can be derived from the standard MCTS
update rule in Eq.(4) when pn,t = 1. Because of ηn ≜ 1/n and κn,t ≜ pn,tun(ht, at)/ηn = nun(ht, at),
the update of m in Eq. (4) can be transformed as

mn+1(ht, at) = mn(ht, at) + 1

⇔ 1
un+1(ht, at)

= 1
un(ht, at)

+ 1

⇔ un+1(ht, at) = un(ht, at)
1 + un(ht, at)

= un(ht, at)(1 + un(ht, at)) − un(ht, at)2

1 + un(ht, at)

= un(ht, at) − un(ht, at)2

1 + un(ht, at)

= un(ht, at) − 1
n

nun(ht, at)
un(ht, at)

1 + un(ht, at)

= un(ht, at) + ηnκn,t
−un(ht, at)

1 + un(ht, at)
.

The update of q in Eq. (4) can also be transformed into

qn+1(ht, at) = qn(ht, at) + 1
mn(ht, at)

(gt − qn(ht, at)),

= qn(ht, at) + un(ht, at)(gt − qn(ht, at)),

= qn(ht, at) + 1
n

nun(ht, at)(gt − qn(ht, at)),

= qn(ht, at) + ηnκn,t(gt − qn(ht, at)).

Eq. (14) is derived.
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B Experimental setup

B.1 Randomly synthesized task

The first test problem is a non-Markovian task that is a simple but illustrative HDP. It is randomly
synthesized to be analogous to a generation task such as text generation and compound synthesis.
There are 5 observations and 10 actions, i.e., |O| = 5 and |A| = 10. The observation probability
function po, which corresponds to the history transition probability ph, was synthesized to depend
on the time-step, observation, and action. Specifically, a probability vector for the observation was
generated by the Dirichlet distribution Dir(α = [0.2, . . . , 0.2]) independently for each (t, o, a). The
reward function fr was synthesized to have the following structure:

fr(ht, at) =
{

1
T x(ot, at) if t < T,

y(ht) + 10z(o0, o1, . . . , ot) otherwise,

where x and y are the per-step reward function and the history-based reward function, respectively.
Each value of those functions was initialized independently by the normal distribution N (µ=0, σ2 =
1). The values of the function z were set by using a Gaussian process so that the more similar
the observation series (o0, . . . , oT ) and (o′

0, . . . , o′
T ) were, the closer z(o0, . . . , oT ) and z(o′

0, . . . , o′
T )

tended to be. Its covariance function was defined with Hamming distance, and the variance was
equal to 1.

This reward function fr can be interpreted in the context of text generation as follows. The function
z, which is a dominant part in fr, represents the quality of the generated text, x represents the
quality of local word connections, and y is like noise.

The policy πθ was a softmax and parameterized to have the same structure as the reward function.
It will correspond to using domain knowledge and will be a usual setting since the reward function
is often predefined by the user. Specifically, πθ had a parameter for each (ot, at), (o0, o1, .., ot, at),
and (ht, at)), though it was a redundant parameterization. The hyper-parameters of the applied
algorithms are shown in Table 1. As described in Section 5, for fair evaluation, we rst tuned the
hyper-parameters of the REINFORCE and MCTL algorithms and then used them for the PG-
MCTL and the naive mixture algorithms. The hyper-parameters of the lazy AlphaZero were tuned
independently.

It should be noted that the experiments here were conducted on an ordinary Laptop, and the
computation time was only a few days.

Table 1: Hyper-parameters used in the randomly synthesized task.

Algorithm α C λ β M

REINFORCE 0.01 - - - -
Naive mixture 0.01 5 0.2 - -
MCTL - 5 - - -
Lazy AlphaZero 0.0067 15 - - -
PG-MCTL 0.01 5 0.2 100 50000
PG-MCTL-adpt 0.01 5 100 50000

B.2 T-maze task

There are four possible actions: moving north, east, south, or west. At the initial time step t = 0,
the agent starts at position S and perceives a signal X ∈ {1000, 0100}, indicating whether the goal
position G is situated on either the north or south side of the T-junction. At each subsequent time
step t ∈ {1, 2, . . . }, the agent observes its current location type. In the corridor, the observation is
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Table 2: Hyper-parameters used in the T-maze task.

L = 30, s0 = 0 L = 100, s0 = 50
Algorithm α C λ β M epoch clip α C λ β M epoch clip
REINFORCE 0.2 - - - - - - 0.1 - - - - - -
PPO 0.06 - - - - 3 0.2 0.03 - - - - 3 0.2
MCTL - 0.3 - - - - - - 0.3 - - - - -
Lazy AlphaZero 0.02 1 - - - - - 0.01 1 - - - - -
PG-MCTL 0.2 0.1 0.2 100 3000 - - 0.1 0.1 0.2 100 5000 - -
PG-MCTL-adpt 0.2 0.1 - 100 3000 - - 0.1 0.1 - 100 5000 - -

0010. At the T-junction, the observation is 0001, lacking any information about the goal’s position.
Therefore, the agent must memorize the initial observation to navigate effectively.

The reward settings are as follows. If the correct action is chosen at the T-junction, e.g., move north
if X is 1000 and south if 0100, the agent receives a reward of 4.0, otherwise a reward of −0.1. In
both cases, the episode ends. When it is in the corridor and chooses to move north or south, it stays
there and receives a reward of −0.1. Otherwise, the reward will be zero.

The settings for our model are as follows: The LSTM network, following standard architectures used
in reinforcement learning (Bakker, 2002; Wierstra et al., 2010), takes four input units corresponding
to the observation dimensions and processes them through a hidden layer with eight memory cells.
The LSTM’s output is concatenated with the original observation, to form a feature vector. This
feature vector is subsequently utilized in linear layers to compute the action values q and the baseline
b. This design aims to capture temporal dependencies and learn effective representations for HDPs.

The hyper-parameters of the applied algorithms are listed in Table 2. The discount rate for cumula-
tive rewards was set to γ = 0.98. The means of selecting the hyper-parameters is the same as for the
randomly synthesized task (see B.1). However, while it was necessary to reduce the hyper-parameter
C to 0.1 for MCTL to obtain the optimal policy, this setting required a large number of episodes.
We therefore set C to a slightly larger value of 0.3 to balance the learning accuracy and speed. On
the other hand, for both PG-MCTL and PG-MCTL-adpt, the hyper-parameter C remained at 0.1,
as these methods did not necessitate an excessive number of episodes with this configuration.

It is noteworthy that these experiments were conducted on a public cloud, utilizing a single NVIDIA
Tesla T4 GPU, with the total computation time being approximately one week.
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Abstract

There has been significant recent progress in the area of unsupervised skill discovery, uti-
lizing various information-theoretic objectives as measures of diversity. Despite these ad-
vances, challenges remain: current methods require significant online interaction, fail to
leverage vast amounts of available task-agnostic data and typically lack a quantitative mea-
sure of skill utility. We address these challenges by proposing a principled offline algorithm
for unsupervised skill discovery that, in addition to maximizing diversity, ensures that each
learned skill imitates state-only expert demonstrations to a certain degree. Our main ana-
lytical contribution is to connect Fenchel duality, reinforcement learning, and unsupervised
skill discovery to maximize a mutual information objective subject to KL-divergence state
occupancy constraints. Furthermore, we demonstrate the effectiveness of our method on
the standard offline benchmark D4RL and on a custom offline dataset collected from a 12-
DoF quadruped robot for which the policies trained in simulation transfer well to the real
robotic system.1

Figure 1: Diverse Offline Imitation (DOI) maximizes a variational lower bound on the mutual information between
latent skills z and states s visited by associated skill-conditioned policies πz , subject to a KL-divergence constraint to
limit the deviation of the state occupancy dz(s) of each latent skill z from that of an expert dE(s).

1Project website with videos: https://tinyurl.com/diversity-via-duality
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1 Introduction

Recent advancements in reinforcement learning (RL) have included substantial progress in unsupervised skill
discovery, aiming to empower autonomous agents with the capability to acquire a diverse set of skills directly
from their environment, without relying on predefined human-engineered rewards or demonstrations. These
methods have the potential to revolutionize the way RL agents learn to solve complex tasks. The growing in-
terest in unsupervised skill discovery has led to various approaches, typically rooted in information-theoretic
concepts, including empowerment (Klyubin et al., 2005; Mohamed & Jimenez Rezende, 2015; Eysenbach
et al., 2019), information bottleneck (Tishby et al., 1999; Goyal et al., 2019; Kim et al., 2021a) and informa-
tion gain (Houthooft et al., 2016; Strouse et al., 2022; Park & Levine, 2023). Despite these advancements,
there remains a significant challenge. Current methods demand substantial online interaction with the environ-
ment, making exploration in high-dimensional state-action spaces inefficient. Although Zahavy et al. (2022)
introduced constraints to enhance skill performance and narrow the exploration space by incentivizing diverse
skills to meet a certain utility measure, their approach does not eliminate the need for considerable online in-
teraction with the environment. Meanwhile, there have been significant recent advances in large-scale data
collection (Rob, 2020; Walke et al., 2023; Brohan et al., 2023) and in the development of scalable and sample-
efficient offline RL algorithms that leverage diverse behaviors of pre-collected experience. However, these
approaches struggle with well-known challenges, including off-policy evaluation and the out-of-distribution
problem, which have been studied extensively in previous work (Levine et al., 2020; Prudencio et al., 2022).

In this work, we address the aforementioned challenges by introducing a novel problem formulation and com-
plementing it with the first principled offline RL algorithm for unsupervised skill discovery that, in addition
to maximizing diversity, ensures that each learned skill imitates state-only expert demonstrations to a certain
degree. More specifically, we consider a problem formulation with two datasets: a large one with diverse
state-action demonstrations and another much smaller one with state-only expert demonstrations. This set-
ting is particularly valuable in robotics scenarios where expert demonstrations are limited and the domain of
the expert may be different from that of the agent, such as in human demonstrations. Another potential appli-
cation is to enhance the realism of computer games by creating an immersive experience of interacting with
non-player characters, each behaving in a slightly different style, while all partially imitating the behavior of
a human expert.

We formulate the problem as a Constrained Markov Decision Process (CMDP) (Altman, 1999; Szepesvári,
2020) that seeks to maximize diversity through a mutual information objective, subject to Kullback-Leibler
(KL) divergence state occupancy constraints ensuring that each skill imitates state expert demonstrations to a
certain degree. The resulting CMDP has convex objective and constraints, making the optimization problem
intractable. We adopt a tractable relaxation approach consisting of an alternating scheme that maximizes a
variational lower bound on mutual information, and to handle the constraints it applies Lagrange relaxation.
Our method, Diverse Offline Imitation (DOI), overcomes the off-policy evaluation by leveraging the Fenchel-
Rockafellar duality in RL (Nachum & Dai, 2020; Kim et al., 2022; Ma et al., 2022) to connect a dual optimal
value solution (computed using offline samples) with primal optimal state-action occupancy ratios. These
ratios serve as importance weights for offline training of a skill-conditioned policy, skill-discriminator, KL-
divergence estimators, and Lagrange multipliers. We demonstrate the effectiveness of our method on the
standard offline benchmark D4RL (Fu et al., 2020) and on a custom offline dataset collected from a 12-DoF
quadruped robot Solo12 (Léziart et al., 2021). In addition, we show that DOI trained on simulation data
transfers well to a real robot system.

2 Related Work

In the context of skill discovery Achiam et al. (2018) and Campos et al. (2020) showed that methods like
DIAYN (Eysenbach et al., 2019) can struggle to learn large numbers of skills and have a poor coverage of the
state space. Strouse et al. (2022) observed that when a novel state is visited, the discriminator lacks sufficient
training data to accurately classify skills, which results in a low intrinsic reward for exploration. They address
this by introducing an information gain objective (involving an ensemble of discriminators) as a bonus term.
Kim et al. (2021b) gave a skill discovery approach based on an information bottleneck that leads to disentan-
gled and interpretable skill representations. Park et al. (2022; 2023) proposed a Lipschitz-constrained skill
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discovery method based on a distance-maximizing and controllability-aware distance function to overcome
the bias toward static skills and to allow the agent to learn complex and far-reaching behaviors. Sharma et al.
(2020) developed a method that simultaneously discovers predictable skills and learns their dynamics. In a
follow-up work, Park & Levine (2023) addresses the problem of errors in predictive models by learning a
transformed MDP, whose action space contains only easy to model and predictable actions. These works
provide RL algorithms for unsupervised skill discovery that require online interaction with the environment
and do not impose utility measures on the learned skills. In contrast, DOI gives a principled offline algorithm
for maximizing diversity under imitation constraints.

A large body of research has focused on successor features (Dayan, 1993; Barreto et al., 2016), a powerful
technique in RL for transfer of knowledge across tasks by capturing environmental dynamics, particularly
promising for skill discovery when coupled with variational intrinsic motivation (Gregor et al., 2017; Barreto
et al., 2018; Hansen et al., 2020) to enhance feature controllability, generalization, and task inference. In
contrast to our work, these approaches do not impose performance constraints on the learned skills. Zahavy
et al. (2022) cast the task of learning diverse skills, each achieving a near-optimal performance with respect
to a given reward, into a constrained MDP setting with a physics-inspired diversity objective based on a
minimum ℓ2 distance between the successor features of distinct skills. However, this approach requires
significant online interaction with the environment to learn the skills.

Numerous practical algorithms for offline RL have been proposed (Levine et al., 2020; Prudencio et al.,
2022), including methods based on advantage-weighted behavioral cloning (Nair et al., 2020; Wang et al.,
2020), conservative strategies to stay close to the original data distribution (Kumar et al., 2020; Cheng et al.,
2022) and using only on-data samples (Kostrikov et al., 2022; Xu et al., 2023). While these methods excel
at learning a policy that maximizes a fixed reward, they are not directly applicable in our setting, which
has a non-stationary reward that depends on: i) the log-likelihood of a skill discriminator, and ii) Lagrange
multipliers. In addition, these techniques cannot be used to i) train a skill discriminator and ii) estimate a KL
divergence offline.

Naive importance sampling approaches for off-policy estimation are known to suffer from unbounded vari-
ance in the infinite horizon setting, a problem known in the literature as “the curse of horizon”. Liu et al.
(2018); Mousavi et al. (2020) addressed this challenge by providing theoretical foundations and a principled
off-policy algorithm, using a backward Bellman operator, that avoids exploding variance by applying impor-
tance sampling to state-visitation distributions, and by providing practical solutions in Reproducing Kernel
Hilbert Spaces. An alternative research direction in off-policy estimation, referred to as “Distribution Cor-
rection Estimation (DICE)”, has introduced innovative techniques, with Nachum et al. (2019a) mitigating
variance with importance sampling, Nachum et al. (2019b) enabling policy gradient from off-policy data
without importance weighting, Kim et al. (2022) stabilizing offline imitation learning with imperfect demon-
strations, Zhang et al. (2020) improving density ratio estimation, Dai et al. (2020) providing high-confidence
off-policy evaluation. Subsequently, Xu et al. (2021) applied this approach to offline RL and demonstrated
its effectiveness in continuous control tasks. Our work uses a DICE-based off-policy approach similar to Op-
tiDICE (Lee et al., 2021; 2022) for estimating importance ratios, while considering a constrained formulation
with a mutual information objective and KL-divergence imitation constraints.

3 Preliminaries

We utilize the framework of Markov decision processes (MDPs) (Puterman, 2014), where an MDP is defined
by the tuple (S,A,R,P, ρ0, γ) denoting the state space, action space, reward mapping R : S × A 7→ R,
stochastic transition kernel P(s′|s, a), initial state distribution ρ0(s) and discount factor γ. A policy π : S 7→
∆(A) defines a probability distribution over the action space A conditioned on the state, where ∆(·) stands
for the probability simplex.

Given a policy π, the corresponding state-action occupancy measure is defined by

dπ(s, a) := (1 − γ)
∞∑

t=0
γtPr[st = s, at = a | s0 ∼ ρ0, at ∼ π(·|st), st+1 ∼ P(·|st, at)]
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and its associated state occupancy dπ(s) is given by marginalizing over the action space
∑
a∈A d

π(s, a).

In the skill discovery setting, z ∼ p(Z) denotes a fixed latent skill on which we condition a policy πz :
S × Z 7→ ∆(A). We will treat p(Z) as a categorical distribution over a discrete set Z of |Z| many distinct
indicator vectors in R|Z|. The skill-conditioned policy πz induces a state occupancy denoted by dz(s) :=
dπz (s), and when it is clear from the context we will refer to dz(s) as a “skill”.

We consider an offline setting with access to the following datasets: i) DE sampled from an expert state
occupancy dE(S); and ii) DO sampled from a state-action occupancy dO(S,A) generated by a mixture
of behaviors. Similar to Ma et al. (2022), our analysis makes the following assumption, which requires
that the offline state occupancy dO sufficiently covers the expert’s state occupancy dE , a prerequisite for
successful imitation learning. Although this assumption is not required in practice, it ensures well-defined
state occupancy measures (i.e., avoiding division by zero).

Assumption 3.1 (Expert coverage). We assume that dE(s) > 0 implies dO(s) > 0.

4 Method

Given an expert and a coverage dataset as above, we aim to solve offline the constrained optimization problem

max
{dz(S)}z∈Z

I(S;Z) (1)

subject to DKL (dz(S)||dE(S)) ≤ ϵ ∀z, (2)

where I(S;Z) denotes the mutual information between states and skills. The identity I(S;Z) =
Ep(z)KL(dz(S)||Ez′dz′(S)) shows an important geometric perspective that maximizing mutual information
is equivalent to finding a set of |Z| skills whose state occupancies dz(S) correspond as points on a probabil-
ity simplex such that these points are positioned on the boundary of an ellipsoid and the pairwise distance
between each point and the ellipsoid center is maximized (Zahavy et al., 2021; Eysenbach et al., 2022).

Henceforth, we shall make use of color coding to highlight the diversity signal in blue and the imitation
signal in orange. The preceding problem formulation and our algorithmic framework can be easily extended
to capture: i) objectives in (1) that combine conditional mutual information (c.f. DADS in (Sharma et al.,
2020)) and information gain (c.f. DISDAIN in (Strouse et al., 2022)); and ii) general f -divergence constraints
in (2), see Nachum & Dai (2020); Ma et al. (2022). We leave the study of these variants for future work.

Since maximizing the mutual information is generally intractable, in line with previous work (Eysenbach
et al., 2019) we assume that the latent skills are sampled uniformly at random, i.e., p(z) = 1

|Z| , and as a
trackable surrogate we consider instead the following variational lower bound

I (S;Z) ≥ Ep(z),dz(s) [log q(z|s)] + H (p(z)) =
∑

z

Edz(s)

[
log (|Z|q(z|s))

|Z|

]
. (3)

Here with q(z|s) we denote a skill-discriminator tasked with distinguishing between latent skills.

Ma et al. (2022) proposed an offline algorithm (SMODICE) that on input an expert dataset DE ∼ dE(S) and
a coverage dataset DO ∼ dO(S,A) such that DE ⊂ States[DO], trains a policy π

Ẽ
which optimizes the

problem
min
π

DKL (dπ(S)||dE(S)) , (4)

and outputs the associated expert ratios η
Ẽ

(s, a) = d
Ẽ

(s, a)/dO(s, a) for every state-action pair (s, a) ∈ DO,
where d

Ẽ
(s, a) denotes the state-action occupancy induced by the recovered expert policy π

Ẽ
.

An important observation is that given the expert ratios η
Ẽ

(s, a), the state constraints (2) can be relaxed
to constraints with respect to the recovered expert state-action occupancy d

Ẽ
(s, a). While in theory this

relaxation restricts the imitation to the state-action occupancy of a specific expert, it also admits a simpler
estimator (see Lemma 4.3) that is more stable to compute, yields faster runtime performance in practice, and
simultaneously provides enough capacity for diversity by increasing the level ϵ. More specifically, for each

1380



RLJ | RLC 2024

latent skill z we replace the state constraint (2) with the following state-action constraint

DKL

(
dz(S,A)||d

Ẽ
(S,A)

)
≤ ϵ. (5)

We focus on a reduction of CMDPs to MDPs using gradient-based techniques, known as Lagrangian meth-
ods (Borkar, 2005; Bhatnagar & Lakshmanan, 2012; Tessler et al., 2019). In contrast to prior work on CMDP,
which has focused primarily on linear objectives and constraints, we consider the nonlinear setting with con-
vex objectives and constraints. More specifically, we seek to maximize the right-hand side of eq. (3) subject
to eq. (5). Solving this problem is equivalent to

max
dz(s,a)
q(z|s)

min
λ≥0

∑

z

Edz(s)

[
log (|Z|q(z|s))

|Z|

]
+
∑

z

λz

[
ϵ− DKL

(
dz(S,A)||d

Ẽ
(S,A)

)]
, (6)

where with λz we denote the Lagrange multiplier corresponding to latent skill z.

4.1 Approximation Scheme

Figure 2: Illustration of Algorithm 1. We compute expert importance ratios η
Ẽ

(s, a) by running SMODICE on the
offline datasets DE and DO . These expert ratios are then used in the alternating scheme described in Subsec. 4.1 to
obtain the importance ratios ηz(s, a) (with support in DO) for each skill z. Specifically, the skill-ratios ηz(s, a) are
computed by a DICE-like offline policy evaluation algorithm on input a reward Rµz (s, a) that balances skill diversity
(skill-discriminator q(z|s)) and expert imitation (importance ratios η

Ẽ
(s, a)).

We use a popular heuristic, known in the literature as alternating optimization, to approximately compute a
local optimum of Problem (6). More precisely, the method alternates between optimizing each model while
holding all others fixed, and iteratively refines the solution until convergence is reached or a stopping criterion
is met. Furthermore, as we can guarantee in practice that the Lagrange multipliers λ are always positive, we
consider Problem (6) with λ > 0, that is

max
dz(s,a)
q(z|s)

min
λ>0

∑

z

λz

{
ϵ+ Edz(s,a)

[
Rλz (s, a)

]
− DKL (dz(S,A)||dO(S,A))

}
, (7)

where

Rλz (s, a) := 1
λz︸︷︷︸

Constraint Violation

log (q(z|s)|Z|)
|Z|︸ ︷︷ ︸

Skill Diversity

+ log η
Ẽ

(s, a)
︸ ︷︷ ︸
Expert Imitation

. (8)

The reward in (8) is derived in Supp. C and relies on the following equality (see Supp. D.3)
DKL(dz(S,A)||d

Ẽ
(S,A)) = DKL(dz(S,A)||dO(S,A)) − Edz(s,a)[ log(d

Ẽ
(s, a)/dO(s, a))] and the defi-

nition of η
Ẽ

(s, a) = d
Ẽ

(s, a)/dO(s, a).

Intuitively, the reward Rλz (s, a) balances between diversity and KL-closeness to the expert state-action occu-
pancy. The Lagrange multiplier λz scales down the log-likelihood of the skill-discriminator q(z|s), effectively

1381



RLJ | RLC 2024

reducing the diversity signal, when the state-action occupancy dz(S,A) violates the KL-divergence constraint
(5), and vice versa. Each term in the reward (8) involves a separate optimization procedure, which will be
described in the next section.

4.2 Approximation Phases

Using the alternating optimization scheme, Algorithm 1 decomposes into the following three optimization
phases. In PHASE 1, we train a value function V ⋆z , ratios ηz(s, a) and a skill-conditioned policy πz . In
PHASE 2, we train a skill-discriminator q(z|s). Then in PHASE 3, we compute a KL constraint estimator
ϕz and update accordingly the Lagrange multipliers λz . In addition, we perform a preprocessing phase to
compute the expert ratios η

Ẽ
(s, a) by invoking the SMODICE algorithm.

4.2.1 Phase 1

With fixed skill-discriminator q(z|s) and Lagrange multipliers λ > 0, Problem (7) becomes

max
{dz(s,a)}z∈Z

∑

z

λz

{
Edz(s,a)

[
Rλz (s, a)

]
− DKL (dz(S,A)||dO(S,A))

}
, (9)

or equivalently for every skill z:

max
dz(s,a)≥0

Edz(s,a)
[
Rλz (s, a)

]
− DKL (dz(S,A)||dO(S,A))

subject to
∑
a dz(s, a) = (1 − γ)ρ0(s) + γT d(s) ∀s, (10)

where we denote with T the transition operator: T d(s′) =
∑
s,a P(s′|s, a)d(s, a).

Assumption 4.1 (Strict Feasibility). We assume there exists a solution such that the constraints (10) are
satisfied and d(s, a) > 0 for all states-action pairs (s, a) ∈ S × A.

Using Lagrange duality, Assum. 4.1 (which implies strong duality) and the Fenchel conjugate (see Supp. B),
Nachum & Dai (2020, Sec. 6) and Ma et al. (2022, Theorem 2) showed that Problem 10 shares the same
optimal value as the following optimization problem

V ⋆ = arg min
V (s)

(1 − γ)Es∼ρ0 [V (s)] + logEdO(s,a) exp
{
Rλz (s, a) + γT V (s, a) − V (s)

}
, (11)

where T V (s, a) := EP(s′|s,a)V (s′). Moreover, the primal optimal solution is given by

ηz(s, a) := d⋆z(s, a)
dO(s, a) = softmaxdO(s,a)

(
Rλz (s, a) + γT V ⋆z (s, a) − V ⋆z (s)

)
, (12)

where softmaxp(x)(g(x)) = exp{g(x)}
/
Ep(x′)[exp{g(x′)}]. These ratios ηz(s, a) are then used to design

an offline importance-weighted sampling procedure that, for an arbitrary function f , satisfies

Ep(z)Ed⋆z(s,a)[f(s, a, z)] = Ep(z)EdO(s,a)[ηz(s, a)f(s, a, z)]. (13)

Afterwards, the optimal skill-conditioned policy π⋆z is trained offline using a weighted behavioral cloning,
which is obtained by setting f(s, a, z) = log(πz(a|s)) and maximizing the RHS of eq. (13) over all skill-
conditioned policies πz . In practice, gradient descent is used for optimization.

4.2.2 Phase 2

We now give an offline procedure for training a skill-discriminator q(z|s), which takes as input ratios ηz(s, a)
of a skill-conditioned policy π⋆z . The proof is presented in Supp. D.2.

Lemma 4.2. Given ratios ηz(s, a), using eq. (13) applied with f(s, a, z) = log(q(z|s)), we can compute
offline an optimal skill-discriminator q⋆(z|s). In particular, we optimize by gradient descent the following
optimization problem maxq(z|s) Ep(z)EdO(s,a) [ηz(s, a) log (q(z|s))].
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The skill-conditioned policy π⋆z (PHASE 1) and the skill-discriminator q⋆ (PHASE 2), allow us to maximize
offline the variational lower bound in eq. (3) and thus skill diversity. It remains to estimate possible constraint
violations in eq. (5) and to update the Lagrange multipliers accordingly.

4.2.3 Phase 3

With fixed skill-discriminator q⋆(z|s) and skill-conditioned policy π⋆z(s), Problem (7) reduces to
minλ>0

∑
z λz[ϵ − DKL(d⋆z(S,A)||d

Ẽ
(S,A))]. We optimize the Lagrange multipliers by gradient descent.

To this end, we now give an offline estimator of the KL-divergence term. The proof is presented in Supp. D.3.

Lemma 4.3. Given skill-conditioned policy ratios ηz(s, a) and expert ratios η
Ẽ

(s, a), using eq. (13) applied
with f(s, a, z) = log(ηz(s, a)/η

Ẽ
(s, a)), we can compute offline an estimator of DKL(d⋆z(S,A)||d

Ẽ
(S,A))

which is given by ϕz := EdO(s,a)[ηz(s, a) log(ηz(s, a)/η
Ẽ

(s, a))].

We note that the ratios ηz(s, a) and η
Ẽ

(s, a) are computed only on state-action pairs within the offline dataset
DO. Furthermore, in practice, we ensure that these ratios are strictly positive, so that the KL estimator ϕz is
well defined and bounded.

5 Algorithm

Our optimization method consists of three phases, each of which optimizes a specific model and fixes the
remaining ones. It is important to emphasize that in contrast to prior work, our problem formulation considers
an optimization problem with constraints. Furthermore, the reward function in eq. (8) is non-stationary,
since it depends on the bounded Lagrange multipliers that balance diversity (log q(z|s)) and expert imitation
(log η

Ẽ
(s, a)). This has significant algorithmic implications, as it requires solving a sequence of standard RL

problems, each of which admits offline policy evaluation.

To smooth the transition of the reward signal between successive iterations, we enforce a slow change of the
Lagrange multipliers. More specifically, we use the technique of bounded Lagrange multipliers (Stooke et al.,
2020; Zahavy et al., 2022), which applies a Sigmoid transformation λ = σ(µ) component-wise to unbounded
variables µ ∈ R|Z|, so that the effective reward is a convex combination of a diversity term and an expert
imitation term. In practice, this transformation ensures that λ > 0. Hence, the reward for each latent skill z
becomes

Rµz (s, a) := (1 − σ(µz))
log (q⋆(z|s)|Z|)

|Z| + σ(µz) log η
Ẽ

(s, a). (14)

We now present the resulting multi-phase optimization procedure in Algorithm 1. For the offline training of
the policy (in Phase 1), the skill-discriminator (in Phase 2), and the estimation of the KL divergence value (in
Phase 3), we use importance sampling eq. (13) and give the corresponding empirical estimators in Supp. E.
Our practical implementation leverages the power of neural networks and deep learning techniques for ac-
curate function approximation. More specifically, we train an expert policy π

Ẽ
, a skill-conditioned policy

{πz}z∈Z and a value function {Vz}z∈Z . While practically convenient, this means that each phase of Algo-
rithm 1 is only approximately solved. In particular, we do not solve the optimization problem to optimality
in each phase, but rather perform a few gradient descent steps.

We have found that fitting the skill-discriminator q(z|s) is prone to collapse to the uniform distribution. To
alleviate this issue, in addition to the variational lower bound objective (3), we add the DISDAIN information
gain term, proposed in (Strouse et al., 2022). This bonus term is an entropy-based disagreement penalty that
estimates the epistemic uncertainty of the skill-discriminator, and is implemented in practice by an ensemble
of randomly initialized skill-discriminators. Due to the high initial disagreement on unvisited states, this
intrinsic reward provides a strong exploration signal and leads to the discovery of more diverse behaviors.
Intuitively, for states with small epistemic uncertainty, the skill-discriminator (averaged over the ensemble
members) should reliably discriminate between latent skills, thus making the intrinsic reward of the skill-
discriminator’s log-likelihood more accurate.
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Algorithm 1 Diverse Offline Imitation (DOI)
Input: a state-only expert dataset DE ∼ dE(S) and an offline dataset DO ∼ dO(S,A) such that DE ⊂ States[DO].
Pre-compute a state-discriminator c⋆ : S → (0, 1) via optimizing the following objective with the gradient penalty
in (Gulrajani et al., 2017) minc EdE(s)[log c(s)] + EdO(s)[log(1 − c(s))]
Apply Phase 1 with reward R(s, a) = log c⋆(s)

1−c⋆(s) to compute ratios η
Ẽ

(s, a) = d
Ẽ

(s, a)/dO(s, a) for all s, a ∈ DO

Repeat until convergence:
Phase 1. (Fixed Lagrange multipliers σ(µ) and skill-discriminator values q⋆(z|s))
For each latent skill z:

compute a value function V ⋆z optimizing eq. (11) with reward Rµz (s, a) in eq. (14)
compute ratios ηz(s, a) = softmaxdO(s,a) (Rµz (s, a) + γT V ⋆z (s, a) − V ⋆z (s)) for all s, a ∈ DO

train a skill-conditioned policy π⋆z = arg maxπz EdO(s,a)[ηz(s, a) log πz(a|s)]

Phase 2. (Fixed ratios ηz(s, a) and bounded Lagrange multipliers σ(µ))
Train a skill-discriminator q⋆ = arg maxq(·|s) Ep(z)EdO(s,a)[ηz(s, a) log q(z|s)]

Phase 3. (Fixed ratios η
Ẽ

(s, a) and ηz(s, a))
Compute for each latent skill z an estimator ϕz := EdO(s,a)[ηz(s, a) log(ηz(s, a)/η

Ẽ
(s, a))]

Optimize the loss minµ
∑

z
σ(µz)(ϵ− ϕz)

6 Experiments

For evaluation of our method we consider 12 degree-of-freedom quadruped robot SOLO12 (Grimminger et al.,
2020), on a simple locomotion task in both the simulation and the real system. We complement this with
an obstacle navigation task, in simulation, and demonstrate that some of the learned diverse skills robustly
reach a target position while the expert fails. Furthermore, we provide evaluation on the ANT, WALKER2D,
HALFCHEETAH and HOPPER environments from the standard D4RL benchmark (Fu et al., 2020).

6.1 Locomotion

Data collection. For the SOLO12 evaluation, we collected domain-randomized offline and expert data from
simulation in the Isaac Gym (Makoviychuk et al., 2021), using pretrained policy checkpoints obtained by
training the robot to track a certain speed of the base with the on-policy diversity maximization algorithm
DOMiNiC (Cheng et al., 2024). We defer the data collection procedure to the Supp. G. The expert dataset
was collected by using the best deterministic policy from the last checkpoint of the training procedure, which
was trained to track forward velocity only without diversity objective. In contrast, the offline dataset was
acquired by employing stochastic policies gathered from various checkpoints throughout the training of the
expert, featuring multiple latent skills. More than half of the offline dataset was collected by a random
Gaussian policy. In line with previous approaches by Kim et al. (2022) and Ma et al. (2022), our practical
implementation aims to fulfill the expert coverage Assum. 3.1. To achieve this, we create the coverage dataset
DO by adding a small number of expert trajectories to the offline dataset, resulting in an unlabeled expert
fraction of 1/160 in DO. We discard expert actions from the expert dataset to ensure that our algorithm does
not have labeled access to them. The resulting expert dataset DE is used to learn a state classifier c(s). Then
the SMODICE is executed to compute the importance ratios η

Ẽ
(s, a), see Sec. 4. We trained the policy for

350 steps, where each step involves the stages described in Sec. 5. In each stage, we execute 200 epochs of
batched training over the data.

Here with DOIϵ we denote an execution of Algorithm 1 with constraint threshold set to ϵ. We proceed by
analyzing the learned DOI skills in three evaluation settings: i) over the fixed offline datasets; ii) a Monte
Carlo on-policy evaluation in the simulator; and iii) the resulting clustering structure involving the offline and
expert datasets, as well as the DOI skills and the SMODICE expert evaluated in the simulation.

1384



RLJ | RLC 2024

Skills

(a)

DOI4 DOI2 DOI1 SMODICE†

0 50 100 150 200 250 300 350

# steps

0.0

0.5

1.0

1.5

2.0

E‖
η z

1
−
η z

2
‖ 1

(b)

Figure 3: Data points separation by importance ratios ηz(s, a), given different levels of ϵ in SOLO12. (a) Distribution
of importance ratios ηz(s, a) over the offline dataset DO for distinct skills with DOI4 (ϵ = 4) (upper) and a skill-
conditioned variant of SMODICE (lower). (b) Average ℓ1 distance of ratios ηz belonging to distinct skills, depending on
ϵ. The higher the value of ϵ, the greater the ℓ1 distance. The shaded areas show the interval between the 0.25 and 0.75
quantiles, computed over 3 seeds.

Importance ratios distance. In Figure 3, we measure the state-action occupancy dz(s, a) for each latent
skill z through the proxy of importance ratios ηz(s, a),2 for different values of ϵ. As expected, a higher
value of ϵ increases diversity, resulting in different importance ratios per skill for individual data points. This
difference is then aggregated by computing an expected ℓ1 distance between importance ratios of distinct
skills, i.e., E‖ηzi − ηzj‖1, and is reported in Figure 3. We note that the looser the constraint (lighter color),
the easier it is to diversify in the sense of ηz . Figure 3b shows the average ℓ1 distance between skill importance
vectors ηz over the dataset for ϵ ∈ {0.0, 1.0, 2.0, 4.0} (lighter color indicates higher ϵ). Moreover, the tighter
the constraint (smaller ϵ), the smaller the difference between the distinct skill importance ratios.

To analyze the influence of the diversity objective on the learned skills, we consider as a baseline a skill-
conditioned variant of (Ma et al., 2022), denoted SMODICE†, which does not have access to the skill dis-
criminator q(z|s). This is equivalent to DOI with fixed σ(µz) = 1 in the reward eq. (14). We defer further
experiments with fixed Lagrange multipliers to Supp. N. In Figure 3a, we observe diversification across the
dataset assignment to skills when using DOI, whereas training an ensemble of skills with only expert imitation
reward (i.e., σ(µz) = 1) collapses to nearly the same importance ratios per skill per data point.

Successor features distance. We have further evaluated diversity on the Monte Carlo estimates of the
expected successor features over the initial state, based on 30 policy rollouts per skill. The γ-discounted suc-
cessor features (SFs) for state s are defined as ψz(s) = Edz(s)[ϕ(s)], where dz(s) is the γ-discounted state
occupancy for a skill policy πz . With slight abuse of notation, we define ψz = Eρ0(s)[ψz(s)], the expected
SFs over the initial state distribution. As a diversity metric, we take the expected ℓ2 distance between the SFs
of distinct skills, i.e., E‖ψz1 − ψz2‖2. The results are presented in Figure 4 and are consistent with the proxy
diversity metric. In particular, there is a correspondence between the offline data separation induced by the
importance ratios ηz (see Figure 3a), and a higher distance between the expected SFs ψz (see Figure 4a). In
terms of performance, DOI achieves a forward velocity comparable to the expert (see Figure 4a) while learn-
ing diverse skills with respect to base height h (see Figure 4b). We also observed that the multipliers σ(µz)
are non-zero for all skills, indicating that the constraint is active. In addition, they stabilize at reasonable
levels as training progresses, which we show in Supp. I for both the SOLO12 and ANT.

DOI skills form well-separated clusters. Here we conduct a controlled experiment with full trajectory
information, which remains hidden to the DOI algorithm. In Figure 5, the Successor Features of each trajec-
tory in the expert dataset are transformed by UMAP (McInnes et al., 2018) algorithm into 2D space. This

2For the computation of the skill-ratios ηz(s, a), we choose a projection Π of the expert state (see Supp. K) that yields 3-dimensional
planar and angular velocities of the robot’s base in the base frame.
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Figure 4: (a) Average ℓ2 distance between Monte Carlo estimates of successor features ψz of distinct skills; (b) return
r as % of expert return and standard deviation of base height stdz(h). Both depend on ϵ for the SOLO12. The shaded
areas show the interval between the 0.25 and 0.75 quantiles, computed over 3 seeds.

transformation is then used to map the SFs of each trajectory into 2D space for: i) the offline dataset, ii) the
SMODICE expert evaluated in simulation, and iii) the learned DOI skills (red, green, blue, purple, cyan) also
evaluated in simulation. The diversity of learned DOI skills is reflected in a well-separated cluster structure.

UMAP Projection Zoom-in Offline Dataset

Figure 5: Successor Features projection onto 2D space using the UMAP algorithm.

6.2 Robust Obstacle Navigation

Data collection. Similarly to the locomotion task in Subsec. 6.1, both expert dataset and offline dataset
were generated from pretrained policy checkpoints from training a robot to navigate in the terrain of obsta-
cles with fixed time limit using the DOMiNiC (Cheng et al., 2024) algorithm. Unlike the previous task, the
expert dataset was collected using the best deterministic skill-conditioned policy from the last checkpoint of
the training procedure, which exhibits diverse strategies to navigate the obstacle terrain, including bypassing
it from both sides or climbing over it. The offline dataset was acquired through rolling out stochastic poli-
cies gathered from multiple checkpoints with multiple skills. Both expert dataset and offline dataset were
collected in a terrain of a single obstacle of a fixed height of 0.2 meters. Similar to Subsec. 6.1, we create
the coverage dataset DO by adding a small number of expert trajectories to the offline dataset. For details on
collecting the dataset for the obstacle navigation task, we refer interested readers to the Supp. G.

Multi-modal expert limitations. Deriving a single policy by SMODICE from expert demonstrations, even
in the setting when the dataset was collected from diverse expert strategies, may lack robustness to distribution
shifts. This observation emphasizes the need for diverse policy extraction. To illustrate this with a concrete
example, consider a scenario where a SOLO12 robot navigates around a single box obstacle to reach a target
position behind it. The target position can be reached either from the sides (left or right) of the box or
by climbing over it (the less robust path). In our experiments, the expert dataset DE contains all of the
above strategies. As shown in Figure 6, for boxes with a height of at least 0.3 meters, the SMODICE expert
consistently positions itself in front of the box and thus fails to robustly reach the target position.
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Extracting robust policies. In Figure 6, we analyze return distributions and sampled trajectories for box
heights of {0.3, 0.6} meters. The SMODICE expert predominantly fails to reach the target position, due to
a bias towards climbing over the box. In contrast, a DOI skill consistently chooses the left side, which leads
robustly to the target position and achieves a superior return distribution. However, it is important to note that
not all learned DOI skills are robust. Hence, a subsequent selection process is required. Further details about
all learned DOI skills, their return distributions and sampled trajectories, different box heights, and additional
experimental information are presented in Supp. M.
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Figure 6: Return distributions and sampled trajectories of SMODICE and a DOI skill for terrains with box height (a) 0.3
and (b) 0.6. The heights of the boxes are out-of-distribution for the SMODICE, which tends to get stuck in front of the
box due to a bias towards climbing over it. In contrast, the robust DOI skill takes a detour to the left side of the box.

6.3 Standard D4RL Environments

We consider the case where we have offline data generated from a random policy mixed with a small amount
of expert trajectories.3 Figure 7 shows the results for both the expected ℓ2 distance between the SFs or the
importance ratios ηz of distinct skills. We normalize the state feature ϕ(s) when comparing SFs ψz across
environments in Figure 7a. In most cases, we report a trade-off between the average skill return and the imi-
tation level ϵ. The larger the imitation slack ϵ, the more diverse the skills become, but at the cost of lowering
the average return, and vice versa. Nevertheless, in Figure 7a we show that ϵ retains some controllability over
diversity. The WALKER2D is particularly sensitive to relaxation of the occupancy constraint with respect to
performance. We hypothesize that this is due to the fact that the space of policies that achieve a stable gait is
very restrictive, resulting in a significant loss of task return for even a small amount of skill diversity. In con-
trast, the ANT exhibits high stability, with several skills achieving close to expert performance in terms of r.
These results are also consistent with SMODICE expert policies used for computing η

Ẽ
(s, a) (see Supp. H).

7 Conclusion

We proposed DOI, a principled offline RL algorithm for unsupervised skill discovery that, in addition to max-
imizing diversity, ensures that each learned skill imitates state-only expert demonstrations to a certain degree.
Our main analytical contribution is to connect Fenchel duality, reinforcement learning, and unsupervised skill
discovery to maximize a mutual information objective subject to KL-divergence state occupancy constraints.
We have shown that DOI can diversify offline policies for a 12-DoF quadruped robot (in simulation and in
reality) and for several environments from the standard D4RL benchmark in terms of both ℓ2 distance of
expected successor features and ℓ1 distance of importance ratios, which is visible from the data separation
induced by ηz(s, a) among skills. The importance ratio distance, computed offline, is a robust indicator of
diversity, which aligns with the online Monte Carlo diversity metric of expected successor features. The re-
sulting skill diversity naturally entails a trade-off in task performance. We can control the amount of diversity
via an imitation level ϵ, which ensures that distinct skills remain close to the expert in terms of state-action

3The same setting was considered by Ma et al. (2022).
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Figure 7: Results on D4RL environments with offline data collected from a random policy for ϵ = 0.0, 0.5, 1.0, 2.0, 4.0.
In figure (a) we observe the tradeoff between average skill return and average successor features distance over skills. In
figure (b), we report the tradeoff w.r.t. average ℓ1 distance of importance ratios ηz . The lines indicate the standard
deviation computed over 3 seeds.

occupancy, which also indirectly controls task performance loss. A promising direction for future research is
to impose constraints on the value function of each skill to ensure near-optimal task performance.

Limitations

Our approach, while promising, is not without limitations. The diversity objective, which is given by a
variational lower bound on the mutual information between states and skills, necessitates the training of a
skill-discriminator. This design choice, however, presents several practical challenges: i) the single-step
policy and skill-discriminator update in the offline setting does not provide as accurate a policy estimate as
sampling a Monte Carlo trajectory in the online setting (Eysenbach et al., 2019); ii) this inaccuracy, when
combined with the non-stationary reward (bounded Lagrange multipliers and skill-discriminator), could result
in a skill-discriminator that fails to accurately discriminate among skills; and iii) while the introduction of
an additional information gain term, as in Strouse et al. (2022), can alleviate this issue, its effect could fade
quickly and serve only as an initial diversity boost in the offline setting. Furthermore, the current paradigm is
well-suited for a discrete number of skills, leaving open the important questions of extending our framework
to infinitely many skills and addressing in a principled way the practical challenges surrounding the skill-
discriminator training. We leave these important open questions for future work.
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Supplementary for Diverse Offline Imitation Learning

A Reproducibility

For implementation of DOI we have used the PyTorch autograd framework. For the SOLO12 training we
made use of Isaac Gym for data collection and evaluation of the learned skill policies. For the D4RL experi-
ments we evaluated the policies using the Mujoco v2.1 rigid body simulator. The training of the skill policies
with evaluation and pre-training of the SMODICE expert ratios takes about 4 hours on an NVIDIA GeForce
RTX 4080 graphics card with a batch size of 512. We plan on opensourcing the code and the SOLO12 data
post conference acceptance. The SOLO12 robot has been developed as part of the Open Dynamic Robot
Initiative (Grimminger et al., 2020), and a full assembly kit is available at a cheap price in order to reproduce
the real system experiments from Supp. J.

B Fenchel Conjugate

The Fenchel conjugate f⋆ of a function f : Ω → R is given by

f⋆(y) = sup
x∈Ω

〈x, y〉 − f(x), (S1)

where 〈·, ·〉 denotes the inner product defined on a space Ω. For any proper, convex and lower semi-continuous
function f the following duality statement holds f⋆⋆ = f , that is

f(x) = sup
y∈Ω⋆

〈x, y〉 − f⋆(y), (S2)

where Ω⋆ denotes the domain of f⋆. For any probability distributions p, q ∈ ∆(S) with p(s) > 0 implying
q(s) > 0, we define for convex continuous functions f the family of f -divergences

Df (p||q) = Eq
[
f

(
p(x)
q(x)

)]
. (S3)

The Fenchel conjugate of an f divergence Df (p||q) at a function y(s) = p(s)/q(s) is, under certain condi-
tions4, given by

D⋆,f (y) = Eq(s) [f⋆(y(s))] . (S4)

Furthermore, its maximizer satisfies
p⋆(s) = q(s)f ′

⋆(y(s)). (S5)

In the important special case where f(x) = x log(x), we obtain the well-known Kullback-Leibler (KL)
divergence

DKL(p||q) =
∑

s

p(s) log p(s)
q(s) . (S6)

The Fenchel conjugate D⋆,KL of the KL-divergence at a function y(s) = p(s)/q(s) has a closed-form (Boyd
& Vandenberghe, 2004, Example 3.25)

D⋆,KL(y) = logEq(s)[exp y(s)], (S7)

and its maximizer p⋆ satisfies

p⋆(s) = q(s)softmaxq(y(s)), where softmaxq(y(s)) = exp y(s)
Eq(s′)[exp y(s′))] (S8)

4f needs to satisfy certain regularity conditions (Dai et al., 2017)
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C Lagrange Relaxation

The Lagrange relaxation is given by

max
dz(s,a),q(z|s)

min
λ>0

∑

z

Edz(s)

[
log (|Z|q(z|s))

|Z|

]
+
∑

z

λz

[
ϵ− DKL

(
dz(S,A)||d

Ẽ
(S,A)

)]
.

By combining Lem. D.4 and the definition of η
Ẽ

(s, a) = d
Ẽ

(s, a)/dO(s, a), we have

DKL

(
dz(S,A)||d

Ẽ
(S,A)

)
= DKL (dz(S,A)||dO(S,A)) − Edz(s,a)

[
log η

Ẽ
(s, a)

]

and thus
max

dz(s,a),q(z|s)
min
λ>0

∑

z

λz
[
ϵ+ Edz(s,a)

[
Rλz (s, a)

]
− DKL (dz(S,A)||dO(S,A))

]
, (S9)

where the reward is given by

Rλz (s, a) := log (|Z|q(z|s))
λz|Z| + log η

Ẽ
(s, a).

D Algorithmic Phases

D.1 Value Function Training

With fixed skill-discriminator q(z|s) and Lagrange multipliers λ > 0, the Problem S9 becomes:

max
{dz(s,a)}z∈Z

∑

z

λz
{
Edz(s,a)

[
Rλz (s, a)

]
− DKL (dz(s, a)||dO(s, a))

}

or equivalently for every skill z:

max
dz(s,a)≥0

Edz(s,a)
[
Rλz (s, a)

]
− DKL (dz(S,A)||dO(S,A))

s.t.
∑
a dz(s, a) = (1 − γ)ρ0(s) + γT d(s) ∀s.

(S10)

We note that the preceding problem formulation involves state-action occupancy.

The strict feasibility in Assumption 4.1 implies strong duality, and thus Problem (S10) shares the same opti-
mal value as the following dual minimization problem (for details see (Nachum & Dai, 2020, Section 6) and
(Ma et al., 2022, Theorem 2)):

V ⋆ = arg minV (s)(1 − γ)Es∼ρ0 [V (s)]
+ logEdO(s,a) exp

{
Rλz (s, a) + γT V (s, a) − V (s)

}
,

(S11)

where
T V (s, a) = EP(s′|s,a)V (s′).

Moreover, the optimal primal solution reads

d⋆z(s, a)
dO(s, a) = softmaxdO(s,a)

(
Rλz (s, a) + γT V ⋆z (s, a) − V ⋆z (s)

)
. (S12)

D.2 Skill Discriminator Training

With fixed skill-conditioned policy π⋆z and Lagrange multipliers λ > 0, the Problem S9 becomes

max
q(z|s)

∑

z

{
Edz(s,a)

[
Rλz (s, a)

]
− DKL (dz(S,A)||dO(S,A))

}

and reduces to
max
q(z|s)

Ep(z)Edz(s,a) log q(z|s).
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Lemma D.1. Given ratios ηz(s, a), using weighted-importance sampling, we can train offline an optimal
skill-discriminator q(z|s). In particular, we optimize by gradient descent the following optimization problem

max
q(z|s)

Ep(z)EdO(s,a) [ηz(s, a) log q(z|s)] .

Proof. The statement follows by combining Lem. D.2 and Lem. E.1.

Lemma D.2 (Discriminator Gradient). It holds that

∇ϕEp(s) [DKL (p(Z|s)||qϕ(Z|s))] = −Ep(z)Ep(s|z) [∇ϕ log qϕ(z|s)] .

Proof. Observe that

∇ϕDKL (p(Z|s)||q(Z|s)) = ∇ϕEp(z|s) log p(z|s)
qϕ(z|s)

= −Ep(z|s)∇ϕ log qϕ(z|s),

where the second equality follows by

∇ϕ log p(z|s)
qϕ(z|s) = −qϕ(z|s)

p(z|s) p(z|s)
∇ϕqϕ(z|s)
[qϕ(z|s)]2 = −∇ϕqϕ(z|s)

qϕ(z|s) = −∇ϕ log qϕ(z|s).

D.3 KL-divergence Constraint Violation

Lemma D.3 (State-Action KL Estimator). Suppose we are given offline datasets DO(S,A) ∼ dO, DE(S) ∼
dE and optimal ratios ηz(s, a) = dz(s,a)

dO(s,a) and η
Ẽ

(s, a) =
d
Ẽ

(s,a)
dO(s,a) for all (s, a) ∈ DO, where the state-action

occupancy d
Ẽ

is induced by a policy π
Ẽ

agreeing on the state occupancy of an expert πE , i.e.

π
Ẽ

∈ arg min
π

DKL (dπ(S)||dE(S)) .

Then, we can compute offline an estimator of DKL

(
dz(S,A)||d

Ẽ
(S,A)

)
which is given by

ϕz = EdO(s,a)

[
ηz(s, a) log ηz(s, a)

η
Ẽ

(s, a)

]
.

Proof. By Lemma D.4 we have

DKL

(
dz(S,A)||d

Ẽ
(S,A)

)
= DKL (dz(S,A)||dO(S,A)) − Edz(s,a)

[
log

d
Ẽ

(s, a)
dO(s, a)

]
.

For the first term, we have

DKL (dz(S,A)||dO(S,A)) = Edz(s,a) log dz(s, a)
dO(s, a)

= EdO(s,a) [ηz(s, a) log ηz(s, a)] .

The second term reduces to

Edz(s,a)

[
log

d
Ẽ

(s, a)
dO(s, a)

]
= EdO(s,a)

[
ηz(s, a) log η

Ẽ
(s, a)

]
.
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Lemma D.4 (Structural). Suppose 0 < ηz(s, a), η
Ẽ

(s, a) < ∞ for all (s, a) ∈ DO. Then, we have

DKL

(
dz(S,A)||d

Ẽ
(S,A)

)
= DKL (dz(S,A)||dO(S,A)) − Edz(s,a)

[
log

d
Ẽ

(s, a)
dO(s, a)

]
.

Proof. By definition of KL-divergence, we have

DKL

(
dz(S,A)||d

Ẽ
(S,A)

)
= Edz(s,a)

[
log
(
dz(s, a)
dO(s, a) · dO(s, a)

d
Ẽ

(s, a)

)]

= DKL (dz(S,A)||dO(S,A)) − EdZ(s,a)

[
log

d
Ẽ

(s, a)
dO(s, a)

]
.

E Importance Sampling

Lemma E.1 (Importance Sampling). Given ratios ηz(s, a), it holds for any function f(s, a) that

Ed⋆z(s,a) [f(s, a)] = EdO(s,a) [ηz(s, a)f(s, a)] .

In particular, for any function g(s) we have

Ed⋆z(s) [g(s)] = EdO(s,a) [ηz(s, a)g(s)] .

Proof. The first conclusion follows by definition of ηz(s, a) = dz(s, a)/dO(s, a), whereas the second uses

Ed⋆z(s) [g(s)] = Ed⋆z(s,a)π⋆z (a|s) [g(s)] = Ed⋆z(s,a) [g(s)] = EdO(s,a) [ηz(s, a)g(s)] .

E.1 Empirical Estimators

Recall that the primal optimal solution satisfies

ηz(s, a) := d⋆z(s, a)
dO(s, a) = softmaxdO(s,a)

(
Rλz (s, a) + γT V ⋆z (s, a) − V ⋆z (s)

)
,

where

softmaxp(x)(g(x)) = exp{g(x)}
Ep(x′)[exp{g(x′)}] . (S13)

In the rest of this section, we denote the above TD-error term by

δz(s, a) = Rµz (s, a) + γT V ⋆z (s, a) − V ⋆z (s).

By assumption, the offline dataset DO is sampled u.a.r. from a state-action occupancy distribution dO(s, a).
Let {wz(s, a)}(s,a)∈DO be a discrete probability distribution, computed by a softmax, over the offline dataset
DO, namely

wz(s, a) = softmaxDO (δz(s, a)) = exp{δz(s, a)}∑
(s′,a′)∈DO exp{δz(s′, a′)} .

We are now ready to state the main result of this section.
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Lemma E.2 (KL-divergence Estimator). The following expression
∑

(s,a)∈DO
wz(s, a)[ logwz(s, a) − logw

Ẽ
(s, a)]

is an empirical estimator of the KL-divergence DKL

(
dz(S,A)||d

Ẽ
(S,A)

)
.

Proof. We estimate the expectation EdO(s,a) exp{δ(s, a)} using an empirical estimate
1

|DO|
∑

(s,a)∈DO exp{δz(s, a)} over the offline-dataset DO. By definition of softmaxdO(s,a), see eq. (S13),
the following expression

η̃z(s, a) = exp{δz(s, a)}
1

|DO|
∑

(s′,a′)∈DO exp{δz(s′, a′)} = |DO|wz(s, a)

is an empirical estimator of the importance weight ηz(s, a). Similarly, η̃
Ẽ

(s, a) = |DO|w
Ẽ

(s, a) is an esti-
mator of η

Ẽ
(s, a). Then, the statement follows by combining Lemma Lem. D.3, the definition of importance

ratios ηz(s, a) = dz(s, a)/dO(s, a), η
Ẽ

(s, a) = d
Ẽ

(s, a)/dO(s, a) and

DKL

(
dz(S,A)||d

Ẽ
(S,A)

)
= EdO(s,a)

[
ηz(s, a) log ηz(s, a)

η
Ẽ

(s, a)

]

≈ 1
|DO|

∑

(s,a)∈DO
η̃z(s, a) log η̃z(s, a)

η̃
Ẽ

(s, a)

=
∑

(s,a)∈DO
wz(s, a) log

(
wz(s, a)
w
Ẽ

(s, a)

)
.

Lemma E.3 (Off-Policy Expectation Estimator). For any function f(s, a) the following expression
∑

(s,a)∈DO
wz(s, a)f(s, a)

is an empirical estimator of the expectation Ed⋆z(s,a) [f(s, a)].

Proof. By combining Lem. E.1 and similar arguments as in the proof of Lem. E.2, we have

Ed⋆z(s,a) [f(s, a)] = EdO(s,a) [ηz(s, a)f(s, a)]

≈ 1
|DO|

∑

(s,a)∈DO
η̃z(s, a)f(s, a)

=
∑

(s,a)∈DO
wz(s, a)f(s, a).
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F Unconstrained Formulation

SMODICE (Ma et al., 2022) minimizes a KL-divergence between the policy state occupancy and the expert
state occupancy, expressed as

min
d(S)

DKL (d(S)||dE(S)) . (S14)

A naive approach to extend the above problem formulation to the unsupervised skill discovery setting, is to
consider an additional diversity term in the objective. In particular, adding a scaled mutual information term
I(S;Z) and maximizing over a set of skill-conditioned state occupancies {dz(S)}z∈Z , namely

max
{dz(S)}z∈Z

αI(S;Z) −
∑

z∈Z
DKL (dz(S)||dE(S)) . (S15)

Here, the level of diversity is controlled by a hyperparameter α. However, α is arbitrary, and no constraint
on closeness to the expert state occupancy is enforced. We proceed by using the variational lower bound in
eq. (3) and assuming a categorical uniform distribution p(z) over the set of latent skills Z, which consists of
|Z| distinct indicator vectors in R|Z|. This reduce the optimization problem to

max
dz(s),q(z|s)

∑

z∈Z

{
αEdz(s)

[
log (q(z|s)|Z|)

|Z|

]
− DKL (dz(S)||dE(S))

}
. (S16)

Theorem F.1. (Ma et al., 2022) Suppose Assum. 3.1 holds. Then, we have

DKL (dz(S)‖dE(S)) ≤ Edz(s)

[
log dO(s)

dE(s)

]
+ DKL(dz(S,A)‖dO(S,A)).

By Thm. F.1 and linearity of the objective, Problem (S16) reduces to optimizing separately for each latent
skill z the following optimization problem

max
dz(s),q(z|s)

Edz(s) [Rαz (s, a)] − DKL(dz(S,A)‖dO(S,A)), (S17)

where Rαz (s, a) is defined as

Rαz (s, a) := log dE(s)
dO(s)︸ ︷︷ ︸

Expert Imitation

+α
log (q(z|s)|Z|)

|Z|︸ ︷︷ ︸
Skill Diversity

. (S18)

The ratios dE(s)
dO(s) can be computed by training a discriminator c(s) tasked to distinguish between samples

from dE(s) and dO(s). More specifically, since the optimal Bayesian discriminator satisfies c⋆(s) =
dE(s)/(dE(s) + dO(s)), in practice we can use an estimator c(s)/(1 − c(s)) ≈ dE(s)

dO(s) .

Similar to the DOI, we can apply the alternating optimization scheme, here with two phases:(i) fixed skill-
discriminator (similarly to Subsec. 4.2.1); and (ii) fixed importance ratios and policy π⋆z , where we train the
skill-discriminator q(z|s) (see Supp. D.2). For the first phase, we use the importance ratios ηz(s, a) computed
by optimizing the dual-value problem and then applying softmax to the corresponding TD error terms (see
eq. (12) and Nachum & Dai (2020); Ma et al. (2022)).

G Solo-12 Dataset Collection

As shown in Figure S1, both expert dataset and offline dataset are collected in parallelized GPU-based en-
vironments in Isaac Gym (Makoviychuk et al., 2021). The policies from both locomotion task and obstacle
navigation tasks with SOLO12 are trained using the DOMiNiC (Cheng et al., 2024) algorithm to exhibit di-
verse behaviors while maintaining a certain level of task completion. For details on the algorithm used to
train the data collection policies, we refer interested readers to (Cheng et al., 2024).
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Figure S1: Solo-12 datasets are collected with 4000 environments in parallel using IsaacGym.

Locomotion task. The collecting policies are trained to track randomly sampled velocity commands on the
flat ground. The state space consists of the linear and angular base velocity vectors, projected gravity vector,
joint position, and velocity and commanded velocity. The actions contain the joint target angles, which will be
taken by a PD controller to generate applied torque for each motor. During collecting, the policies are fed with
a fixed forward velocity command of 1 m/s, and zeros for side velocity and yaw rate. As mentioned in Sec. 6,
the policy used for collecting the expert dataset is the last and best checkpoint (iteration 2000) and trained
without diversity objective, which exhibits a stable mid-height trotting gait pattern. The policies for collecting
the offline dataset are different stochastic checkpoints throughout the training of the skill-conditioned policy.
The intrinsic reward is designed to maximize the ℓ2 distance of the successor features (Barreto et al., 2016)
between distinct skills, where in this setting the feature space includes: the base height velocity, base roll and
pitch velocities, and feet height velocities. The offline dataset is composed of 1/2 data from checkpoint 0,
1/4 data from checkpoint 50, 1/8 data from checkpoint 100, 1/16 data from checkpoint 500, 1/32 data from
checkpoint 1500 and 1/32 data from checkpoint 2000. For each policy checkpoint, we collect data from the
5 corresponding skills, including the target skill. It is worth noting that more than half of the data from the
offline dataset comes from the nearly random policies from the start of the training (checkpoints 0 and 50).
Both datasets contain 4000 trajectories with an episode length of 250 steps, or 1 million transitions each.

Obstacle navigation task. The policies are trained to track the target position in a terrain of random ob-
stacles of various heights of {0.0, 0.05, . . . , 0.25} meters within a fixed time horizon. The state space of
the agent contains the linear and angular base velocity vectors, projected gravity vector, joint position and
velocity, a surrounding height map of the robot and time information, while the actions remain the same as
the locomotion task. During data collection, the policies are tasked with tracking the target 3.0 meter away
in the front direction while confronting a 1.0 × 1.0 meter square obstacle of 0.2 meter height. The intrinsic
reward for training the policy is designed to diversify the base velocity direction such that distinct skills ex-
hibit diverse strategies. For the expert dataset, the used policy is the last and best checkpoint (iteration 2000)
trained with diversity objective. The expert dataset is multi-modal in nature, as the dataset contains diverse
strategies for navigating in front of the obstacle, either avoiding it from both sides or climbing it. On the
other hand, the policies for collecting the offline dataset are the skill-conditioned checkpoints from iterations
{0, 50, 100, 150, 200, 250, 500, 1000, 1500, 2000}. Both datasets contain 2000 trajectories with an episode
length of 500 steps, or 1 million transitions each.

Sim-to-Real transfer. In addition, we use domain randomization during training and data collection, in
order to tackle the sim-to-real transfer and to simulate more diverse environment interaction. Specifically,
we randomize the friction coefficient between [0.5, 1.5], additional base mass between [−0.5, 0.5] kg, and
simulate the observation noise and an actuator lag of 15 ms.
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H SMODICE Expert Return

In table S1 we show the performance of the evaluated policies trained by SMODICE(Ma et al., 2022) on
the WALKER2D and HALFCHEETAH. The results are consistent with the performance that we obtain with
DOI in Figure 7. We also note here the importance of having expert state coverage in the offline data that is
reflected in the performance of the policies.

Environment dataset N r

halfcheetah medium-expert 25 81.25
50 80.47
200 73.56

medium-replay 25 29.28
50 36.73
200 60.67

random 25 10.89
50 27.71
200 78.94

walker2d medium-expert 25 3.98
50 19.22
200 4.10

medium-replay 25 15.09
50 3.60
200 0.95

random 25 52.62
50 103.52
200 108.20

Table S1: Expected return for SMODICE-learned expert policies in the WALKER2D and ANT environments
for N expert trajectories mixed-in.

I Lagrange Multiplier Stability

In Figure S2 we observe the behavior of the Lagrange multipliers for different levels of ϵ for a specific skill
z in the SOLO12 experiment. In case of ϵ ∈ {1.0, 2.0}, the multipliers fluctuate around a specific level
that strikes the balance between diversity and expert imitation. This can also be validated when observing
the violation level in Figure S2b of the constraint given estimator ϕz , which is for ϵ ∈ {1.0, 2.0} around 0.
On the other hand, if we introduce a strong constraint on the KL-divergence (ϵ = 0.0), which is constantly
violated, hence σ(µz) = 1. Similarly, if the constraint is too weak, only diversity is optimized, in which case
there is a significant degradation in performance (see figure Figure 4).

In Figure S3 we show the bounded lagrange multiplier values for three skills and the resulting violations for
different ϵ levels for the ANT experiment. Again, the multiplier values fluctuate around appropriate levels
ensuring the the violation of the constraint remains close to 0.

J Real Robot Deployment

For the locomotion task, we successfully deployed policies exhibiting diverse skills extracted from the of-
fline dataset while being able to track a certain velocity similar to the expert on real hardware. Our skill-
conditioned policy exhibits different walking behaviors with diverse base motions. Snapshots of these diverse
behaviors can be seen in Figure S4.
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Figure S2: Behavior of Lagrange multipliers. (a) Evolution of σ(λz) for one skill (z = 1 chosen arbitrarily), (b)
violation of the constraint for different ϵ. Negative ϕz − ϵ indicates no violation. Means and standard deviation across
restarts. The shaded areas show the interval between the 0.25 and 0.75 quantiles, computed over 3 seeds.

DOI4 DOI2 DOI1 DOI.5 SMODICE†

0 200 400 600 800 1000 1200

# steps

0.0

0.2

0.4

0.6

0.8

1.0

σ
(µ

z
)

(a)

0 200 400 600 800 1000 1200

# steps

−2

−1

0

1

2
φ
z
−
ε

(b)

0 200 400 600 800 1000 1200

# steps

0.0

0.2

0.4

0.6

0.8

1.0

σ
(µ

z
)

(c)

0 200 400 600 800 1000 1200

# steps

−3

−2

−1

0

1

2

φ
z
−
ε

(d)

0 200 400 600 800 1000 1200

# steps

0.0

0.2

0.4

0.6

0.8

1.0

σ
(µ

z
)

(e)

0 200 400 600 800 1000 1200

# steps

−3

−2

−1

0

1

φ
z
−
ε

(f)

Figure S3: Behavior of Lagrange multipliers. (a) Evolution of σ(λz) for one skill (z = 1 chosen arbitrarily), (b)
violation of the constraint for different ϵ. Negative ϕz − ϵ indicates no violation. Means and standard deviation across
restarts. The shaded areas show the interval between the 0.25 and 0.75 quantiles, computed over 3 seeds.
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(a) Trot locomotion with wave trunk motion and low base height.

(b) Trot locomotion with middle base height.

(c) Trot locomotion with high base height.

Figure S4: Snapshots of the trained policy exhibiting distinct skills on hardware. From above to bottom, the policy has
low, middle and high base positions while moving forward.

K Observation Projection

Imitation learning is of particular interest when the agent’s and the target expert policy’s state spaces do
not necessarily match, but overlap in certain parts, as is often the case when learning from demonstrations.
Our framework naturally accounts for this. If we consider S ′ to be the state space of the expert and S the
state space of the agent, we assume that there exists a simple projection mapping Π : S ′ 7→ O, where
O := {o : o ⊂ s, s ∈ S} is the power set of observations, allowing us to potentially imitate beyond expert
policies with the same state space as the agent. Note that the agent still observes its full state s, however
the projected state Π(s) is observed by the expert classifier and skill discriminator. The projection Π can
be selected to specify which parts of the state we want to diversify and constrain in terms of occupancy,
depending on the task at hand.

L Limitations

The DOI method also comes with certain caveats. Maximizing the mutual information, as a diversity objec-
tive, poses a hard optimization problem due to its convexity. Thus, designing alternative diversity objectives
can be beneficial. Furthermore, closeness in state-action occupancy can be quite restrictive in terms of avail-
ability of diverse behaviors that satisfy the constraint. Replacing this with constraints on the return of the
policy would allow more freedom to optimize diversity in cases where the optimal policy may be multimodal.
The above challenges are promising directions for future work.
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M Robust Obstacle Navigation

When the expert data is multi-modal, some modes might be more robust to distribution shift than others.
However, using a uni-modal algorithm such as SMODICE, which tries to match the expert’s state occupancy
distribution, may not result in a robust policy. In contrast, each learned DOI skill recovers a particular mode,
and as shown in this experiment, at least one DOI skill is robust against a distribution shift.

We consider the task of navigating across a box obstacle to a target position behind it, for the SOLO12 robot.
For training the DOI skills, we choose the feature vector ϕ(s) with linear and angular velocity as input to
the skill-discriminator q(z|ϕ(s)). The agent used to collect the expert dataset can go over or around the box
obstacle from the left or right side to reach the target position in the traversable obstacle terrain. The box
has a height of 0.2 meters and a square size of 1.0 × 1.0 meters. As a result, the collected expert data is
multi-modal and consists of trajectories over and from the sides of the box obstacle to the target position.

It is important to emphasize that the less direct route to the target position (left or right side of the box) is
always the more robust choice, since the agent runs into the risk of slipping or falling while climbing the box.
We evaluate the learned DOI skills and SMODICE expert on 6 different heights: {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}
meters. The {0.3, 0.4, 0.5, 0.6} meters boxes are out-of-distribution and increasingly difficult to traverse from
above the box. In Figure S5, we observe the trajectory distributions of the DOI skills and SMODICE expert
collected in simulation. The arrows indicate the yaw angle of the robot at the trajectory points.

As we can see from the return distributions in Figure S7, the performance of the SMODICE expert is strongly
affected by the height of the box, as it is biased towards climbing over the box (this also depends on the initial
state of the agent), which becomes increasingly difficult and may not be feasible. This can be observed from
the trajectory distribution shown in the right-most column of Figure S5; the trajectories of the SMODICE
expert become increasingly concentrated in front of the box as its height increases. On the other hand, the
three DOI skills (learned with a fixed Lagrange multiplier σ(µ) = 0.5) recover diverse behaviors and robustly
reach the goal. Here it is DOI-Skill 3, which is the most robust in reaching the target position and gives the
highest return (see Figure S5 and Figure S7).

In Figure S5, each row corresponds to a box with a fixed height H ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6} meters.
Each of the first three columns is associated with a fixed DOI skill (red, green, and blue) and the last column
represents the SMODICE expert. Each cell shows every 10th step of 60 randomly initialized trajectories, all
computed in simulation. This experiment demonstrates that although SMODICE expert is multimodal, it gets
stuck in front of the box and fails to robustly reach the target position already at a box height of 0.4 meters.
In contrast, the DOI-Skill 3 robustly reaches the target position by bypassing the box from the left side. The
fraction of randomly initialized trajectories stuck in front of the box is significantly smaller for the DOI-Skill
3 than the SMODICE expert. This is reflected in the return distribution shown in Figure S7, which has the
same row and column structure as Figure S5.

N Additional Experiments

Instead of learning the Lagrange multipliers λz via KL estimators ϕz , we can also fix λz at a certain level,
making it a hyperparameter. In our setting, this also works well, and we demonstrate a tradeoff between
diversity and task reward optimization, see Figures S8 and S9. However, in this case we lose the possibility
to enforce a certain constraint on the KL-divergence between the skill state-action occupancy and expert
state-action occupancy.

We further provide results of applying DOI to different levels of expert trajectory mix-in to the medium-replay
and random datasets of WALKER2D and HALFCHEETAH in tables S2 and S3.
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Figure S5: A performance benchmark of the DOI skills and the SMODICE expert on an obstacle navigation
task, where the SOLO12 is initialized in front of a box and tries to reach a target position behind the box. The
task consists of six levels of increasing difficulty depending on the height of the box.
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Skill 1

Skill 2

Skill 3

Figure S6: Frames from rollout videos of the learned DOI skills for the highest box task, skills 1 and 3 go
from the side of the boxes to the goal, and skill 2 reimains in front of the box since it mostly tries to climb it.
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Figure S7: Return distributions for DOI skills and SMODICE, we see in particular that the SMODICE policy
return distribution is greatly affected by increasing the height of the box.
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Figure S8: (a) Average ℓ2 distance between Monte Carlo estimated successor representations ψz of distinct skills, (b)
return r as % of expert return and standard deviation of base height stdz(h), depending on a fixed σ(λz) (see legend).
The shaded areas show the interval between the 0.25 and 0.75 quantiles, computed over 3 seeds.
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Figure S9: Divergence estimate and ηz distance for the case of fixed σ(λz). (a) Value of divergence estimator ϕz for a
specific skill over the course of training (z = 1 chosen arbitrarily), (b) average ℓ1 distance of ηz’s of skills. Means and
standard deviation across restarts. The shaded areas show the interval between the 0.25 and 0.75 quantiles, computed
over 3 seeds.
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dataset # expert mixin ϵ E‖ηz1 − ηz2‖ r E‖ψz1 − ψz2‖
medium-replay 25 0.0 0.00 ± 0.00 46.00 ± 1.46 6.16 ± 0.30

0.5 0.21 ± 0.08 0.33 ± 0.48 3.54 ± 2.14
1.0 1.40 ± 0.05 2.33 ± 0.51 6.09 ± 2.40
2.0 1.30 ± 0.03 0.64 ± 0.11 7.67 ± 4.27
4.0 1.54 ± 0.08 2.30 ± 1.64 19.26 ± 2.29

50 0.0 0.00 ± 0.00 54.29 ± 2.13 5.53 ± 0.14
0.5 0.82 ± 0.28 31.31 ± 7.03 14.13 ± 1.86
1.0 1.21 ± 0.15 4.33 ± 0.75 0.42 ± 0.05
2.0 1.37 ± 0.03 1.61 ± 0.41 13.85 ± 2.50
4.0 1.48 ± 0.12 1.11 ± 0.36 22.02 ± 1.33

200 0.0 0.00 ± 0.00 98.33 ± 0.44 2.67 ± 0.26
0.5 0.45 ± 0.11 74.59 ± 8.96 6.22 ± 1.17
1.0 1.20 ± 0.09 2.52 ± 1.50 12.97 ± 4.33
2.0 1.30 ± 0.03 2.07 ± 0.65 3.23 ± 2.02
4.0 1.59 ± 0.06 1.43 ± 0.64 19.48 ± 1.43

random 25 0.0 0.00 ± 0.00 36.49 ± 11.54 15.70 ± 0.48
0.5 0.93 ± 0.02 20.48 ± 7.90 16.81 ± 3.14
1.0 1.30 ± 0.12 3.72 ± 1.38 8.16 ± 5.43
2.0 1.45 ± 0.09 1.22 ± 0.32 20.47 ± 3.08
4.0 1.27 ± 0.05 0.60 ± 0.26 20.60 ± 4.17

50 0.0 0.00 ± 0.00 103.16 ± 0.69 3.32 ± 0.07
0.5 1.03 ± 0.13 33.60 ± 6.64 18.27 ± 2.50
1.0 1.37 ± 0.09 5.05 ± 2.66 20.16 ± 3.05
2.0 1.46 ± 0.06 0.77 ± 0.29 10.46 ± 3.77
4.0 1.23 ± 0.09 0.26 ± 0.11 14.33 ± 1.97

200 0.0 0.00 ± 0.00 107.43 ± 0.26 1.84 ± 0.08
0.5 1.29 ± 0.07 103.29 ± 1.38 6.75 ± 0.77
1.0 1.26 ± 0.22 2.43 ± 0.30 7.30 ± 4.86
2.0 1.46 ± 0.10 0.47 ± 0.15 15.39 ± 1.56
4.0 1.29 ± 0.01 1.91 ± 0.57 19.66 ± 3.36

Table S2: WALKER2D metrics across random and medium-replay variants with varying number of mixed-in trajectories
of the expert to satisfy the coverage assumption.
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dataset # expert mixin ϵ E‖ηz1 − ηz2‖ r E‖ψz1 − ψz2‖
medium-replay 25 0.0 0.00 ± 0.00 37.64 ± 0.30 3.22 ± 0.06

0.5 0.83 ± 0.12 36.95 ± 0.63 3.02 ± 0.10
1.0 1.36 ± 0.09 24.30 ± 6.28 13.34 ± 4.84
2.0 1.44 ± 0.06 6.73 ± 3.65 22.09 ± 8.15
4.0 1.27 ± 0.09 2.68 ± 0.72 21.68 ± 1.87

50 0.0 0.01 ± 0.01 45.40 ± 0.22 3.26 ± 0.27
0.5 1.14 ± 0.02 42.89 ± 0.19 2.94 ± 0.12
1.0 1.41 ± 0.12 37.28 ± 2.41 6.18 ± 1.21
2.0 1.32 ± 0.11 8.60 ± 4.66 13.66 ± 1.97
4.0 1.24 ± 0.16 1.72 ± 0.18 28.74 ± 7.84

200 0.0 0.00 ± 0.00 73.60 ± 0.39 3.65 ± 0.09
0.5 1.16 ± 0.08 69.91 ± 1.14 3.67 ± 0.10
1.0 1.28 ± 0.13 23.74 ± 12.94 13.47 ± 1.73
2.0 1.49 ± 0.10 15.52 ± 4.29 32.03 ± 0.56
4.0 1.42 ± 0.07 2.16 ± 0.04 11.92 ± 2.28

random 25 0.0 0.00 ± 0.00 2.80 ± 0.36 5.55 ± 1.18
0.5 1.12 ± 0.04 3.03 ± 0.28 4.30 ± 0.85
1.0 1.14 ± 0.12 2.24 ± 0.09 10.45 ± 3.30
2.0 1.24 ± 0.08 1.73 ± 0.33 25.01 ± 8.78
4.0 1.44 ± 0.03 1.60 ± 0.30 35.08 ± 8.27

50 0.0 0.00 ± 0.00 31.89 ± 1.14 9.97 ± 0.58
0.5 1.14 ± 0.11 10.29 ± 3.13 17.90 ± 6.01
1.0 1.42 ± 0.15 6.45 ± 2.95 23.30 ± 0.96
2.0 1.41 ± 0.08 2.73 ± 0.43 23.91 ± 6.98
4.0 1.68 ± 0.06 1.44 ± 0.27 35.07 ± 8.08

200 0.0 0.00 ± 0.00 68.35 ± 1.25 5.20 ± 0.31
0.5 1.30 ± 0.08 50.85 ± 17.30 9.80 ± 3.68
1.0 1.21 ± 0.12 15.06 ± 5.58 29.57 ± 4.26
2.0 1.03 ± 0.10 2.10 ± 1.99 10.84 ± 7.57
4.0 1.20 ± 0.20 2.16 ± 0.05 16.90 ± 5.95

Table S3: HALFCHEETAH metrics across random and medium-replay variants with varying number of mixed-in trajec-
tories of the expert to satisfy the coverage assumption.
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Abstract

Humans perceive the world through multiple senses, enabling them to create a
comprehensive representation of their surroundings and to generalize information
across domains. For instance, when a textual description of a scene is given, hu-
mans can mentally visualize it. In fields like robotics and Reinforcement Learning
(RL), agents can also access information about the environment through multiple
sensors; yet redundancy and complementarity between sensors is difficult to exploit
as a source of robustness (e.g. against sensor failure) or generalization (e.g. transfer
across domains). Prior research demonstrated that a robust and flexible multimodal
representation can be efficiently constructed based on the cognitive science notion
of a ‘Global Workspace’: a unique representation trained to combine information
across modalities, and to broadcast its signal back to each modality. Here, we
explore whether such a brain-inspired multimodal representation could be advan-
tageous for RL agents. First, we train a ‘Global Workspace’ to exploit information
collected about the environment via two input modalities (a visual input, or an
attribute vector representing the state of the agent and/or its environment). Then,
we train a RL agent policy using this frozen Global Workspace. In two distinct
environments and tasks, our results reveal the model’s ability to perform zero-shot
cross-modal transfer between input modalities, i.e. to apply to image inputs a policy
previously trained on attribute vectors (and vice-versa), without additional train-
ing or fine-tuning. Variants and ablations of the full Global Workspace (including
a CLIP-like multimodal representation trained via contrastive learning) did not
display the same generalization abilities.

1 Introduction

Humans gather information from the world through multiple sources, leading to a rich and robust
representation of their environment. Similarly, non-human agents should also learn to establish
meaningful connections between information from different modalities. Such multimodal represen-
tation learning offers distinct advantages for decision-making and in particular in Reinforcement
Learning. The benefits are evident when considering scenarios where one sensory input is noisy or

1410



RLJ | RLC 2024

unavailable. For instance, humans will be able to navigate in a room with subdued lighting where
vision is compromised, as they can rely on other senses (hearing, touch...) to gather information
about their environment. In decision-making the ability to establish links between modalities allows
more efficient problem-solving, because information from one sense can be leveraged to complete or
verify data from another.

For these reasons, it seems advantageous to take inspiration from human multimodal integration and
apply this to embodied RL agents, e.g. for robotics. A popular theory in cognitive science about
how the brain handles multimodal information is the ‘Global Workspace Theory’ (Baars, 1988;
Dehaene et al., 1998). According to this theory, different specialized modules compete to encode
their information into a shared space called the Global Workspace. The shared representation is then
broadcast back to all modules, leading to a unified interpretation of the environment. According
to the theory, this last step corresponds to our inner experience. Importantly, compared to the
unimodal representations in each specialized module, the shared representation enables multimodal
grounding (Silberer & Lapata, 2012; Kiela & Clark, 2015; Pham et al., 2019), by linking objects and
their properties across modalities. A deep learning-compatible adaptation of this theory has been
proposed by VanRullen & Kanai (2021). The suggested model must meet several criteria (Fig 2):
an alignment of the different latent representations and the capacity to translate from one modality
to the other and to broadcast signals from the Global Workspace back to each module; ideally, the
model can be trained in a semi-supervised setting with unsupervised cycle-consistency objectives.
An initial implementation was reported in Devillers et al. (2023), and shown to provide reliable
multimodal representations that could be leveraged advantageously for downstream classification
tasks, all with minimal supervision.

In this work, we explore the use of a similar multimodal representation, inspired by the Global
Workspace Theory, in the context of RL tasks. In particular, we show that this model is capable of
zero-shot cross-modal policy transfer, in two different environments (see section 4), each with two
modalities (vision: RGB images; attributes: a vector description of the agent and its environment).
The first environment is called Factory, a virtual factory environment simulated in Webots; the sec-
ond one is called Simple Shapes and made of simple geometric shapes. We chose attributes and RGB
images as our two modalities because they share common information without completely overlap-
ping, particularly in the Factory environment (see section 4). Each modality must independently
provide enough information to inform a unimodal policy, and subsequently allow us to measure the
potential advantages of a multimodal representation (such as a Global Workspace).

2 Related Work

Representation learning for Reinforcement Learning is a vast and evolving field. Sutton & Barto
(1998) already discussed the importance of compact representations for an RL agent. Deep Gen-
erative models, such as Variational Autoencoders (VAEs), have the capability to encode raw data
into a compact and disentangled latent space. Pioneering work by Watter et al. (2015) and Finn
et al. (2016) used this approach to encode representations for Reinforcement Learning, enhancing
learning efficiency from high-resolution images. Compact representations are also crucial for algo-
rithms relying on a World Model, such as the one introduced by Ha & Schmidhuber (2018). Further
studies (Wang et al., 2023; Friede et al., 2023; Higgins et al., 2017) showed that learning disentangled
environmental representations from a VAE enables agents to develop policies robust to some shifts in
the original domain. Additionally, encoding observations in a well-structured space can be achieved
through contrastive learning (Laskin et al., 2020; Du et al., 2021). With this method, Gupta et al.
(2017) were even able to measure policy transfer between robots having different numbers of joints.

Representation learning has now extended to multimodal RL setups. Lee et al. (2019) use fusion
mechanisms with Deep Neural Networks to handle multiple sources of observations. Singh et al.
(2023) align visual latent representations with graphs using a contrastive loss, while Hafner et al.
(2023) extend the work of Ha & Schmidhuber (2018) by using concatenated multimodal inputs for
a world model. In a similar vein, Silva et al. (2020) extend DARLA’s work (Higgins et al., 2017)
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to two modalities: sound and vision. They employ a multimodal VAE (Yin et al., 2017) and align
representations through an additional KL loss between the two modality-specific latent spaces. This
AVAE model, like ours, allows zero-shot cross-modal policy transfer, e.g. training the policy with
visual inputs and using audio inputs during inference. Thus, we will use this model as a baseline to
compare against our approach.

Other multimodal representation learning models like CLIP (Radford et al., 2021) have been pro-
posed to align two (or more) latent representations, and therefore to create a common space that
can be used for downstream tasks. However such models require very large amounts of paired data
between modalities to learn the aligned representation in a supervised way; in a robotic context, such
paired data can be difficult to obtain. In addition, it has been shown that the contrastive alignment
objective of CLIP tends to discard potentially important modality-specific information (Devillers
et al., 2021). In our study, these two factors are investigated through ablation studies. First, we
remove cycle-consistency objectives and train the model in a fully-supervised way. Second, we also
remove the broadcast property (the ability to project global-workspace information back to each
specialized module), leading to a contrastive-alignment version of our model similar to CLIP. As
will be described below, both manipulations severely impair our model’s ability to transfer policies
between modalities.

3 Problem Formulation

Let E represent an environment, whose state at time t leads to an observation ot ∈ O, described as
either a latent feature vector ov

t computed from an RGB image, or an attribute vector oattr
t . Based

on these observations, the agent executes actions at ∈ A and receives a resulting reward rt+1.

In this study, we first train a model to learn a representation zt ∈ Z with two encoders zattr
t =

eattr(oattr
t ) and zv

t = ev(ov
t ). This step follows the approach previously described by Devillers et al.

(2023), leading to a shared representation across modalities, i.e. a Global Workspace (GW). In a
second step, with GW frozen, a policy π is trained to map GW-encoded observations from a specific
training source o ∈ Otrain, with train ∈ {attr, v}, to actions a ∈ A. During inference, the policy can
potentially be transferred to another observation source Otest, where test ∈ {attr, v}, test ̸= train.
The process is illustrated in Figure 1A, and the two training steps are further detailed below.

3.1 GW for multimodal Representation Learning

We closely follow the training setup described in Devillers et al. (2023). That study evaluated
the properties of a multimodal GW for low-resource semi-supervised training, and for downstream
classification tasks; here, we are interested in applying such a system to train an RL agent. As
in this previous study, we consider a setting where matched training data across modalities can
be scarce or difficult to obtain, yet we have access to potentially large amounts of unimodal data
(without matching labels in the other modality). Thus, we sample unimodal observations from two
sets Uattr and Uv, and paired multimodal observations from the subset M = Uattr ∩ Uv, composed
of observations that are paired across both unimodal sets. The training datasets Uv and Uattr are
collected by uniformly sampling the environment in Simple Shapes; for Factory we sampled with a
constraint that the table should be at least partially visible from the robot’s viewpoint.

As proposed in VanRullen & Kanai (2021); Devillers et al. (2023), we do not use raw images or
attributes as inputs to the GW, but encoded representations into a unimodal latent space. For
images, we use a Variational Autoencoder (VAE), pretrained using the set Uv (see Appendix A and
B for details) ; for attributes, we simply normalize them between -1 and 1. Then, we train the GW
itself, composed of a set of encoders for each modality {ev, eattr} with their corresponding decoders
{dv, dattr} (Figure 2A). The role of the encoders is to project the two unimodal latent representations
onto a shared one (the GW), where they should be aligned. The role of the decoders is to allow
broadcast from GW back to the unimodal representations.

1412



RLJ | RLC 2024

Figure 1: A: Overview of the general approach. Raw attributes are encoded in their latent repre-
sentation thanks to pre-trained models (VAE for images and Normalization for attributes). Latent
image or attribute representations can be encoded into a shared space z ∈ Z (the Global Workspace
or GW) via encoders ev and eattr (respectively). The policy is trained (solid arrows) with obser-
vations from a given modality (here vision), with GW frozen. At inference time the policy can be
tested with observations from a different modality (here attributes, dashed arrow); this is defined
as zero-shot cross-modal transfer. B: Illustration of the two environments and tasks: Factory (left)
and Simple Shapes (right). Example images and attributes are presented for each. For Factory, the
agent must reach the table by rotating and moving forward or backward. For Simple Shapes, the
agent must place the object at the center and pointing upwards, by moving to the right, left, top or
down and rotating.

To train the network, four different losses are used (Devillers et al., 2023) (see Supplementary
Material for losses definitions). The translation (Ltr) and contrastive alignment (Lcont) losses are
supervised losses, optimized using the set M. The full-cycle (Lcy) and demi-cycle (Ldcy) consistency
losses are optimized using the full sets Uattr and Uv. Figure 2B illustrates how these losses are
computed using the encoders and decoders of the GW. The total loss is a weighted sum of these
four. Devillers et al. (2023) described implicit relations between the different losses, such that
optimizing a subset of the losses can indirectly improve the others. By combining the four losses,
the GW model optimizes the desired criteria of multimodal representation alignment and broadcast,
while taking full advantage of unsupervised training data.

3.2 Policy Learning and cross-modal transfer

We use Proximal Policy Optimization (PPO), a widely adopted Reinforcement Learning algorithm
introduced by Schulman et al. (2017). We also tested Advantage Actor Critic (A2C) introduced
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Figure 2: A: A generic view of the architecture of the Global Workspace where ov and oattr are
encoded representations of the two modalities (vision, attributes). ev, eattr are feed-forward encoders
into the GW representation, and dv, dattr are feed-forward decoders. Encoded representations of
the two modalities ev(ov) and eattr(oattr) are separate in the architecture, but can be aligned by
virtue of the training objectives (illustrated in B), resulting in a shared GW. B: Illustration of the
losses used during training of the encoders and decoders. The arrows represent the path used by
the data to compute the losses. Ltr and Lcont are supervised losses for translation and contrastive
alignment, respectively; they require paired training samples across the two modalities. In contrast,
Ldcy and Lcy are self-supervised losses for demi-cycle and full-cycle consistency, respectively; they
can be trained with unpaired samples from each modality.

by Mnih et al. (2016), to validate our results on another algorithm (see Supplementary Materials).
These two algorithms were implemented with the Stable-baselines3 library (Raffin et al., 2021).

To obtain an upper baseline for cross-modal transfer, we train two policies in a more classical way
using only unimodal information (the two policies’ inputs are the unimodal representations of images
ov or attributes oattr). This is compared with policies trained from GW-encoded representations of
the observations, and tested either with observations from the same modality or from the opposite
modality (i.e. zero-shot cross-modal transfer).

While our main test relies on a GW trained using all four losses (Figure 2B), we also trained policies
from GW models optimized with fewer losses, serving as ablations of the full model. A GW trained
in a fully supervised way (without the cycles losses Lcy and Ldcy) serves to assess the impact of
semi-supervision, especially in low-data regimes (i.e., with few paired data in M). We also trained
a policy using a GW trained only with a contrastive loss Lcont. This ablation evaluates the impact
of “broadcast” on the performance, and serves as a CLIP-like baseline because it is trained with
the same alignment objective as CLIP (Radford et al., 2021). Finally, we compare our GW to an
adaptation of the AVAE model used in Silva et al. (2020). We modify their visual VAE to match
the architecture of our own visual VAE in each environment; we also replace their audio VAE by
an attribute VAE, with an architecture adapted to match the dimensions of our attribute vectors
(see Supplementary Material for architecture details). This transition from audio to attribute VAE
also leads to a change in the reconstruction loss: we use the same attribute reconstruction loss as
the one used in the GW (see Supplementary Material). Apart from these architectural changes, the
AVAE model is trained in a supervised way (on the paired multimodal set M), as described in the
original paper (Silva et al., 2020).
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For both environments, we evaluate policies based on multimodal systems (GW, GW without cycles,
CLIP-like, AVAE) trained with two data regimes: either a large amount of matched data (500 000
samples for Simple Shapes and 200 000 for Factory), M ≡ Uattr ≡ Uv (full data regime), or a small
amount of paired data (low data regime: M contains 1/4th of the full dataset for Factory, 1/100th
of the full dataset for Simple Shapes). This assesses the impact of the unsupervised cycle-consistency
losses, and the performance of fully supervised models in a low data regime.

4 Environments

We evaluate our approach on two different environments. Each one captures observations across
the same two modalities: attributes describing the state of the agent, or an RGB image. The first
environment, called ‘Factory’ is a simulated factory shop floor in a robotic simulator: Webots. The
second environment, named ‘Simple Shapes’ because it depicts a 2D shape on a dark background,
is simulated directly using a Python-based Gymnasium environment (Towers et al., 2023).

4.1 Factory Environment

Simulated in Webots, this environment represents a factory-like shop floor with a Tiago robot and a
table. The agent receives RGB images (128x128 pixels) from the robot’s viewpoint, or a set of seven
attributes describing the robot and table states (Figure 1B). Robot state attributes include position
(xr, yr) and rotation θr. Table state attributes include position (xt, yt), rotation θt, and color ht.
The color is defined only by the Hue of HSV, with saturation and value set to 1 to retain high-
contrast colors. The final attribute state vector concatenates attribute transformations: applying
cosine and sine to angles, normalizing all attributes between -1 and 1, and decomposing the table’s
Hue into a cosine-sine vector.

This environment displays an asymmetry between modalities, whereby images only provide partial
information while attribute vectors offer exact information, even when the robot is not facing the
table. At the beginning of each episode, table attributes are randomly sampled within their domains.
The robot is placed near the center with a random angle, and the agent’s goal is for the robot to
reach the table. The agent directly controls the position and rotation of the robot. The robot
can move forward/backward and rotate (by a maximum of 5cm and π

16 radians during each step).
Collisions with simulation objects (e.g. walls) lead to episode termination with a penalty of −10000.
At each timestep, the reward is equal to minus the distance between the robot and the table (in
meters) minus 10× the angle (in radians) between the robot orientation and the robot-table vector,
thus penalizing the agent for not facing the table. This approach aims to guide the robot to first
locate the table by rotating and then move towards it, dividing the learning into two distinct goals
and enhancing performance in scenarios where the agent relies solely on the robot’s vision. When
the robot reaches the table, the episode concludes with no additional reward.

4.2 Simple Shapes Environment

The second environment, called ‘Simple Shapes’, was introduced in Devillers et al. (2023). The agent
can receive two types of observations: 32 × 32 pixel RGB images of a 2D shape on a black back-
ground, or a set of eight attributes directly describing the environment’s state (Figure 1B). There
are three different types of shapes, an egg-like shape, an isosceles triangle, and a diamond. They are
represented by the variable shape ∈ {0, 1, 2}. The shape possesses a size s ∈ [smin, smax], a position
(x, y) ∈ [ smax

2 , 32 − smax

2 [2, a rotation θ ∈ [0, 2π[ and an HSL color (ch, cs, cl) ∈ [0, 1]2 × [lmin, 1].
The final attribute state vector concatenates transformations of these attributes: decomposing the
rotation angle θ into (cθ, sθ) = (cos(θ), sin(θ)); translating HSL colors to the RGB domain, express-
ing the shape variable as a one-hot vector of size three, and normalizing all the variables between
-1 and 1.

At the beginning of each episode, attributes are randomly sampled within their respective domains.
The agent’s goal is to move the shape to the center of the image at (x, y) = (16, 16) and align it
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to point to the top, θ = 0. Actions available to the agent include moving the shape by one pixel
in cardinal directions (left, right, up, or down) and rotating the shape by an angle of π

32 clockwise
or anti-clockwise. The reward is initialized at zero. At each timestep, the reward is equal to minus
the current distance (in pixels) between the shape’s position and the image center minus 10× the
smallest angle (in radians) between the shape’s orientation and the null angle. The episode ends
when the shape reaches the goal state, with no additional reward.

5 Results

The performance (average episode return) of policies trained (via the PPO algorithm) using latent
representations from different models (GW and its baselines) and in different test settings is shown
in Figure 3. Results for the Factory environment are shown in the top panels, and in the bottom
panels for the Simple Shapes environment. In each case, models trained with a Full data regime are
plotted on the left, and with a Low data regime on the right.

We first focus on the performance of PPO trained directly on unimodal representations, visible on
the left part of each plot in Figure 3. As expected, unimodal PPO acts as an upper baseline in the
Simple Shapes environment, which is fully observable from each input modality. This is not the case
in Factory, where PPO trained from attributes performs better than from vision; this highlights the
asymmetry between visual inputs (partial observation) and attributes (entire state observation) in
this environment.

The performance of PPO trained and tested on multimodal latent representations obtained in a Full
data regime are reported in the middle part of the two left plots in Figure 3. In both environments,
GW and GW without cycles yield similar rewards as the upper baseline (PPO trained directly from
attributes). AVAE achieves similar performance in Simple Shapes, but degraded performance in
Factory. Finally, the CLIP-like model performs poorly in both environments. We can also highlight
that in Factory, policies trained from GW and (to some extent) GW w/o cycles are able to bridge
the performance asymmetry between vision and attribute inputs. This is an example of multimodal
grounding in the GW, whereby the learned multimodal latent representation of visual inputs is richer
and more informative for a downstream decision task than the unimodal visual latent representation.
The difference with results from the CLIP-like model reveals the importance of adding broadcast
objectives in addition to contrastive alignment.

In the Full data regime scenario, both supervised and semi-supervised GW models (with and without
cycles) perform near-optimally when trained and tested on the same multimodal latent representa-
tions. However, the GW cycles are particularly important when we consider the Low data regime
scenario (middle part of the plots on the right in Figure 3). Here, we actually observe a drop in
PPO performance for all the models in at least one input modality, except for the full GW. The
decreased performance of GW w/o cycles highlights the crucial role played by the unsupervised
cycle-consistency objectives in maintaining broadcast and alignment properties when the amount of
multimodal paired data is low.

Finally, the zero-shot cross-modal policy transfer capabilities are shown on the right part of each
plot of Figure 3. In both the full and low data regimes, and for both environments, the full GW
allows for nearly optimal zero-shot transfer between modalities: a policy trained and tested on GW
latent representations of attributes performs equally well when tested on GW latent representations
of images (green bars), and vice-versa (red bars). The AVAE model is the only other model that
permits a similar zero-shot transfer, but only in one of the four experimental settings—Simple Shapes
in the Full data regime. In the Low data regime of Simple Shapes and in both regimes of Factory,
the policy trained in one AVAE modality does not transfer well to the other. This is also the case
for the CLIP-like baseline and for the GW w/o cycles ablation, in all four experimental settings.

In summary, policies learned from a GW latent representation are particularly efficient, and in
some cases (e.g., Factory) can even surpass policies trained from unimodal representations. In
addition, only policies trained from GW latents could systematically generalize to the opposite
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Figure 3: Performance (average episode return) of PPO trained using different latent representations
and tested in different settings. A fixed value was subtracted from the episode return, corresponding
to the performance of a fully-random policy in each environment; thus the random policy perfor-
mance (chance level) is equal to zero in all plots (negative values reflect a defective strategy, e.g.
systematically hitting walls and receiving penalties). All results are averaged across five different
runs (different random seeds for policy training), and the error bars reflect 95% confidence intervals
computed via bootstrapping. Models trained in the Factory environment are plotted in the top row,
and in the bottom row for the Simple Shapes environment. Multimodal networks trained with all
paired data are plotted in the left column (Full data regime); in the right column, the networks only
have access to a subset of multimodal paired data (Low data regime). Each plot is divided into three
parts: PPO trained directly from a unimodal latent representation; PPO trained and tested on the
same multimodal latent representation; PPO trained on one multimodal latent representation and
tested on the other (zero-shot cross modal policy transfer). In any given plot, bars sharing the same
color depict the same trained model, tested in different settings.

modality (zero-shot cross-modal transfer). We found that relying only on a contrastive alignment
objective to establish a multimodal space (like CLIP) was insufficient. The introduction of broadcast
objectives (supported by the GW decoders, see Figure 2) compels the GW encoders to retain most
information present in the original unimodal latents, so that they can be accurately reconstructed
by the broadcast operation. Such a GW can be trained in a purely supervised way (GW w/o
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cycles) when both modalities provide fully-observable information (Simple Shapes) and when large
amounts of paired multimodal data are available for supervised training (Full data regime). In all
other scenarios, the inclusion of unsupervised cycle-consistency objectives (full GW model) proves
beneficial in preserving information and maintaining alignment between multimodal representations.

6 Conclusion

Our study applied a multimodal representation learning approach previously proposed by Devillers
et al. (2023) (an adaptation of the Global Workspace Theory from Cognitive Science) to the train-
ing of an RL agent. The implemented model enables the construction of a multimodal latent space,
allowing the encoding of unimodal information and exploiting the synergies between the differ-
ent modalities. We demonstrated the capability of a GW to enable zero-shot cross-modal policy
transfer, illustrating the adaptability and generalization of the learned policies across diverse modal-
ities. Additionally, we highlighted the potential advantages of employing a semi-supervised learning
framework, as seen in GW with cycle-consistency, especially in scenarios where data collection can
be costly. Using a GW to generate multimodal representations, instead of other existing methods
such as CLIP (Radford et al., 2021) or AVAE (Silva et al., 2020), was found to improve policy per-
formance as well as zero-shot policy transfer across modalities. This approach not only showcases
the potential of the Global Workspace Theory in enhancing the performance of RL agents, but also
opens avenues for the development of more robust and versatile artificial intelligence systems ca-
pable of seamlessly transferring knowledge between different sensory domains. One important step
towards generalizing our findings to real-world environments will be to test other modalities than
vision and attributes, such as textual descriptions or proprioception (joint positions of the robot).
Using sentences instead of attributes to describe the agent’s state may not have a strong impact
in our very controlled environments, but it could present a more significant challenge in real-world
settings.
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A Model Parameters

In this Appendix, we provide details about our models’ implementation, starting with the β-VAE
used in both visual environments: Simple Shapes (Table 1) and Factory (Table 2). In the VAE
encoder, all convolutions have a padding of 1, a stride of 2, and a kernel-size of 4. For the decoders,
in Simple Shapes (Table 1), the transposed convolutions have a padding of 1, a stride of 2, and a
kernel size of 4, except the first one which has a stride of 1. The final convolution has a stride of 1
and a kernel size of 4. In Factory (Table 2), the transposed convolutions have a padding of 2, a stride
of 2, and a kernel size of 5, except the first one which has a stride of 1 and a kernel size of 8 without
padding. The final convolution has a stride of 1 and a kernel size of 5. For both environments the
β value was set to 0.1. The β-VAE was always trained with the entire set Uv in both environments
(500 000 images in Simple Shapes and 200 000 images in Factory)

VAE encoder (2.8M params) VAE decoder (3M params)
x ∈ R3×32×32 z ∈ R12

Conv128 − BN − ReLU FC8×8×1024
Conv256 − BN − ReLU ConvT512 − BN − ReLU
Conv512 − BN − ReLU ConvT256 − BN − ReLU
Conv1024 − BN − ReLU ConvT128 − BN − ReLU
Flatten − FC2×12 Conv1 − Sigmoid

Table 1: Architecture and number of parameters of the VAE used in the Simple Shapes environment.

VAE encoder (2.8M params) VAE decoder (5M params)
x ∈ R3×128×128 z ∈ R10

Conv128 − BN − ReLU FC8×8×512
Conv256 − BN − ReLU ConvT256 − BN − ReLU
Conv512 − BN − ReLU ConvT128 − BN − ReLU
Conv1024 − BN − ReLU ConvT64 − BN − ReLU
Flatten − FC10 Conv1 − Sigmoid

Table 2: Architecture and number of parameters of the VAE used in the Factory environment.

Table 3 and Table 4 present details about the Global Workspace architecture for respectively Simple
Shapes and Factory. The tables show the architecture for the encoder and decoder of only one
modality, since they are nearly identical across modalities. Only the last Fully Connected layer of
the decoders is different, outputting a vector of the original size of each domain.

GW encoder (35K params) GW decoder (50K params)
FC128 − ReLU FC128 − ReLU
FC128 − ReLU FC128 − ReLU
FC128 − ReLU FC128 − ReLU
FC FC

Table 3: Architecture and number of parameters for the encoder and decoder in the GW of one
modality in Simple Shapes

The implementation details for AVAE are presented in Table 5 for Simple Shapes and Table 6 for
Factory. In both environments the parameters for the Conv and ConvT layers in the image VAE
are the same as the ones used in their respective VAE in Tables 1 and 2. For Simple Shapes, the
input layer of the attributes side is divided in two Fully Connected layers: one for the category of
the shape (one-hot vector) and one for the rest of the attributes (continuous values).
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GW encoder (1.3M params) GW decoder (1.3M params)
FC512 − ReLU FC512 − ReLU
FC512 − ReLU FC512 − ReLU
FC512 − ReLU FC512 − ReLU
FC512 − ReLU FC512 − ReLU
FC512 − ReLU FC512 − ReLU
FC FC

Table 4: Architecture and number of parameters for the encoder and decoder in the GW of one
modality in Factory

AVAE vision (6M params) AVAE attributes (0.6M params)
x ∈ R3×32×32 x ∈ {0, 1}3 × R8

Conv128 − BN − ReLU FC128 − ReLU
Conv256 − BN − ReLU FC128 − ReLU
Conv512 − BN − ReLU FC12 − ReLU
Conv1024 − BN − ReLU
Flatten − FC2×12 FC2×12
z ∈ R12 z ∈ R12

FC8×8×1024
ConvT512 − BN − ReLU FC128 − ReLU
ConvT256 − BN − ReLU FC128 − ReLU
ConvT128 − BN − ReLU [FC3, FC8 − Tanh]
Conv1 − Sigmoid

Table 5: Architecture and number of parameters of the visual and attributes VAEs of the AVAE for
the Simple Shapes environment.

AVAE vision (11M params) AVAE attributes (2M params)
x ∈ R3×128×128 x ∈ R10

Conv128 − BN − ReLU FC512 − ReLU
Conv256 − BN − ReLU FC512 − ReLU
Conv512 − BN − ReLU FC40 − ReLU
Conv1024 − BN − ReLU
Flatten − FC2×40 FC2×40
z ∈ R40 z ∈ R40

FC8×8×1024
ConvT512 − BN − ReLU FC512 − ReLU
ConvT256 − BN − ReLU FC512 − ReLU
ConvT128 − BN − ReLU FC10 − Tanh
Conv1 − Sigmoid

Table 6: Architecture and number of parameters of the visual and attributes VAEs of the AVAE for
the Factory environment.

B VAE exploration

Figures 4 and 5 illustrate the generation capabilities of each VAE in Factory and Simple Shapes. To
produce these Figures an image was encoded to obtain a latent vector. Each dimension of this vector
(rows) was modified by adding the value reported on top of each column, keeping the rest frozen.
The modified vector was then decoded to obtain a resulting image. The image in the middle column
in both Figures represents the initial image encoded in the VAE (because the change applied to
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Figure 4: Latent traversal of the VAE used in Factory. The rows represent the modified dimension
and the columns the value added to the initial before decoding the latent vector.

the vector was null). This technique allows us to visualize the information captured by each latent
dimension. The VAE from Factory captures the robot’s position and rotation well, as we can see
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Figure 5: Latent traversal of the VAE used in Simple Shapes. The rows represent the modified
dimension and the columns the values added to the initial before decoding the latent vector.

how the background changes with different dimensions and values. For the table, the color, position
and rotation are also well captured, as we can guess these information from the reconstruction. In
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the Simple Shapes VAE, all attribute information is captured since Figure 5 shows different shapes
with varying colors, positions.

C GW losses details

As explained in 3, the Global Workspace (GW) is trained with four different losses. Here we provide
details of their implementation, following Devillers et al. (2023).

Ltr = 1
2[Lattr(dattr(ev(oi

v)), oj
attr) + Lv(dv(eattr(oj

attr)), oi
v)]

Lcont = CONT [ev(oi
v), eattr(oj

attr)]

Ldcy = 1
2[Lv(dv(ev(oi

v)), oi
v) + Lattr(dattr(eattr(oj

attr)), oj
attr)]

Lcy = 1
2[Lv(dv(eattr(dattr(ev(oi

v)))), oi
v) + Lattr(dattr(ev(dv(eattr(oj

attr)))), oj
attr)]

Where CONT () is the contrastive loss used in the CLIP model (Radford et al., 2021). Lattr repre-
sents the reconstruction loss used on the attributes side, which differs between the two environments.
In Factory (where all attributes have continuous values), it is computed with an MSE; in Simple
Shapes it is a combination of a negative log-likelihood for shape classes (discrete one-hot encoded
values) and MSE for the other (continuous) attributes. Lv represents the reconstruction loss on
the visual side, computed with an MSE in both environments. The total loss is then computed as
follows :

LGW = α · Ltr + β · Lcont + γ · Ldcy + θ · Lcy

Where α, β, γ, θ are hyperparameters giving more or less importance to each loss. The following
table contains the hyperparameters for all Global Workspace models (and ablations) in the Full
data regime in both environments.

GW GW w/o cycles CLIP-like
Factory α = 1 α = 1 α = 0

β = 0.1 β = 0.1 β = 1
γ = 1 γ = 0 γ = 0
θ = 1 θ = 0 θ = 0

Simple Shapes α = 1 α = 1 α = 0
β = 0.1 β = 0.1 β = 1
γ = 5 γ = 0 γ = 0
θ = 5 θ = 0 θ = 0

The table below shows the hyperparameters used in the Low data regime in both environments.

GW GW w/o cycles CLIP-like
Factory α = 1 α = 1 α = 0

β = 0.1 β = 0.1 β = 1
γ = 5 γ = 0 γ = 0
θ = 5 θ = 0 θ = 0

Simple Shapes α = 1 α = 1 α = 0
β = 0.1 β = 0.1 β = 1
γ = 10 γ = 0 γ = 0
θ = 10 θ = 0 θ = 0
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D Reward details

The reward in the Factory environment is given by a combination of the distance between the robot
and the table, and the angle between the orientation of the robot and the table (this is meant to
encourage the policy to turn the robot facing the table, regardless of its original location):

r = −distance − 10 × angle

r = −
√

(xr − xt)2 + (yr − yt)2 − 10 × | arccos([cθr
, sθr

], [xt − xr, yt − yr]
||[xt − xr, yt − yr]||2

)|

The reward in the Simple Shapes environment is given by a combination of the distance between
the position of the shape and the center of the image, and the angle of the shape:

r = −distance − 10 × angle
r = −

√
(x − 16)2 + (y − 16)2 − 10 × | arccos([cθ, sθ], [1, 0])|
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Figure 6: Performance of A2C in the Simple Shapes environment. Notations and conventions as in
Figure 3.

An additional experiment was performed in the Simple Shapes environment to verify that our results
were robust to the choice of policy training algorithm. For this, we used A2C, introduced by Mnih
et al. (2016). Figure 6 shows that the results are reproducible with this alternative algorithm
(compare with Figure 3, bottom). A2C trained from a Global Workspace performs as well as when
trained on unimodal representations, both in terms of absolute performance and in terms of zero-
shot cross-modal transfer. AVAE performs similarly in the Full data regime, but poorly in the Low
data regime. The two other models (Global Workspace without cycles and CLIP-like ablation), give
worse performance in both regimes, as in the case of PPO.
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Abstract

In offline reinforcement learning, in-sample learning methods have been widely used
to prevent performance degradation caused by evaluating out-of-distribution actions
from the dataset. Extreme Q-learning (XQL) employs a loss function based on the
assumption that Bellman error follows a Gumbel distribution, enabling it to model
the soft optimal value function in an in-sample manner. It has demonstrated strong
performance in both offline and online reinforcement learning settings. However,
issues remain, such as the instability caused by the exponential term in the loss
function and the risk of the error distribution deviating from the Gumbel distribu-
tion. Therefore, we propose Maclaurin Expanded Extreme Q-learning to enhance
stability. In this method, applying Maclaurin expansion to the loss function in XQL
enhances stability against large errors. This approach involves adjusting the mod-
eled value function between the value function under the behavior policy and the
soft optimal value function, thus achieving a trade-off between stability and opti-
mality depending on the order of expansion. It also enables adjustment of the error
distribution assumption from a normal distribution to a Gumbel distribution. Our
method significantly stabilizes learning in online RL tasks from DM Control, where
XQL was previously unstable. Additionally, it improves performance in several
offline RL tasks from D4RL.

1 Introduction

Deep reinforcement learning has demonstrated good performance in many tasks, including robotics
(Schulman et al., 2017; Haarnoja et al., 2018) and games (Mnih et al., 2013; 2015; Silver et al.,
2016). During learning, the goal is to acquire the optimal policy by learning a value function, and
the learning of the value function involves the Bellman update. Recently, Garg et al. (2023) proposed
that based on the Extreme Value Theorem, the Bellman error follows a Gumbel distribution rather
than the normal distribution assumed by traditional least squares methods. Consequently, they
proposed an algorithm called Extreme Q-learning (XQL), which employs Gumbel Regression, a
maximum likelihood estimation assuming a Gumbel error distribution. This method demonstrated
excellent performance, primarily in offline RL. However, a significant issue with Gumbel Regression
is its instability. The loss function contains an exponential term that can lead to too large or too
small gradients, resulting in divergence or slow convergence. As a remedy, they used stabilization
measures such as clipping and the max-normalization trick, but it was still unstable, particularly
in online RL. Another problem is that the error distribution may not exactly match the Gumbel
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distribution. Garg et al. (2023) demonstrated that based on the i.i.d. among state-action pairs and
time steps, it becomes a Gumbel distribution, but in reality, the independence is not guaranteed due
to the use of the same neural network for all states and actions. Additionally, in the actual Bellman
updates of algorithms, many elements such as entropy maximization, target networks, and Clipped
Double Q-learning are incorporated, which also affect the error distribution. As suggested in Garg
et al. (2023), the resulting distribution may resemble a mix of normal and Gumbel distributions.

Thus, in this study, we propose a both simple and practical algorithm, Maclaurin Expanded Extreme
Q-learning (MXQL), which not only stabilizes the Gumbel loss but also allows for the adjustment
of the error distribution assumption from normal to Gumbel. The proposed method uses Expanded
Gumbel loss, which is a Maclaurin expansion of the Gumbel loss. By reducing the order of expansion
n, this loss, as shown to the left of Figure 1, mitigates excessively large or small gradients compared
to the Gumbel loss.

As n increases, the loss function converges to the Gumbel loss, while for n = 2, it becomes the
L2 loss. With the Gumbel loss, the estimated value function becomes a soft optimal value, and
with the L2 loss, it becomes the value function under the behavior policy. These learning methods
correspond to soft Q-learning (Haarnoja et al., 2017) and SARSA, respectively. By adjusting n
between 2 and ∞, the method of estimating the value function can be adjusted between soft Q-
learning and SARSA. In other words, a larger n leads to an unstable but optimal value function
estimation, while a smaller n results in a stable but non-maximizing estimation, offering a trade-off
between stability and optimality. This is analogous to adjusting the parameter τ in IQL’s expectile
loss from 1 to a smaller value for stabilization. IQL adjusts between SARSA and Q-learning using
the parameter τ , while MXQL adjusts between SARSA and soft Q-learning using the parameter n.

The assumed error distribution follows a normal distribution when n = 2 because the loss is the
L2 loss. When n is large, it follows a Gumbel distribution. Therefore, by adjusting n between 2
and a larger value, the assumed error distribution can be adjusted between the normal and Gumbel
distributions. In practice, the Bellman error is influenced by various factors such as the target
network and double Q-learning, which suggests that, according to the central limit theorem, it may
approximate a normal distribution. The assumed error distribution is illustrated to the right of
Figure 1, showing that as n increases, the distribution transitions from normal to Gumbel.

In the experiments, similar to Garg et al. (2023), we compared performance using DM Control tasks
(Tassa et al., 2018; Tunyasuvunakool et al., 2020) for online RL and D4RL tasks (Fu et al., 2020)
for offline RL. In online RL scenarios, where XQL was previously unstable, we observed improved
stability. Furthermore, in offline RL, our method demonstrated superior performance compared to
existing methods, including XQL, across several tasks.

The contributions of this study are as follows:

• Verifying XQL’s instability through preliminary experiments and demonstrating its insta-
bility when the data distribution significantly deviates from the assumed error distribution.

• Proposing a novel loss function, the Expanded Gumbel loss, by applying a Maclaurin ex-
pansion to the Gumbel loss in XQL, aimed at stabilizing XQL.

• Demonstrating improved stability and performance by using Maclaurin Expanded Extreme
Q-learning, which incorporates the Expanded Gumbel loss into XQL, across numerous tasks
in both online RL and offline RL.

2 Background

2.1 Reinforcement Learning

We address the reinforcement learning (RL) problem within the framework of a Markov decision
process (MDP) represented by (S, A, P, r, γ, d). Here, S represents the state space, where s denotes
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Figure 1: Left: Illustration of Gumbel loss (β = 1) alongside Expanded Gumbel loss derived from it.
When n = 2, the loss aligns identically with the L2 loss. Right: Depiction of the error distribution
assumed by Gumbel loss and Expanded Gumbel loss. Specifically, when n = 2 (corresponding to L2
loss), a normal distribution is assumed.

a specific state. A represents the action space, with a denoting a specific action. P(st+1|st, at)
defines the transition probability from one state to another given an action. r(s, a) is the reward
function, representing the reward received after taking action a in state s. γ represents the discount
rate. Lastly, d(s0) represents the initial state’s probability density. The policy π(a|s) is defined as
the probability of taking a specific action given the state. The objective in RL is to discover the
policy that maximizes the expected sum of discounted rewards, denoted as E[R0|π]. The return Rt

is calculated as Rt =
∑T

k=t γk−tr(sk, ak), representing the total discounted rewards from time t.

2.2 Extreme Q-learning

In this section, we explain XQL, which forms the foundation of this research. First, based on the
Gumbel Error Model, we explain how the Bellman error follows the Gumbel distribution. Then,
we outline the Gumbel Regression for learning the value function, effective for addressing the error
distribution of the Gumbel distribution. Subsequently, we examine the role of the hyperparameter
β and discuss the inherent limitations of XQL.

2.2.1 Gumbel Error Model

The Gumbel Error Model suggests that the Bellman error follows a Gumbel distribution. Given
multiple instances of Q̂, each representing a different simulation of the model, the target defined by
the Bellman optimal operator is given as:

B̂∗Q̂t = r + γ max
a′

Q̂t(s′, a′) = r + γ max
a′

(Q̄t(s′, a′) + ϵt(s′, a′)) (1)

Here, Q̂t(s, a) = Q̄t(s, a) + ϵt(s, a). The error ϵt, an i.i.d. variable with zero mean, is combined with
the mean value Q̄t. Thus, the mean value Q̄t+1 for the estimated value Q̂t+1 is given by:

Q̄t+1(s, a) = r + γEs′|s,a[Eϵt
[max

a′
(Q̄t(s′, a′) + ϵt(s′, a′))]] (2)

Despite ϵt having a zero mean, the maximization operation introduces a positive expectation bias into
Q̄t+1, resulting in an overestimation bias in Q-learning, specifically when using function approxima-
tors. Furthermore, if ϵt is uncorrelated with st, at, and across different time steps, according to the
Extreme Value Theorem, ϵt will converge to a Gumbel distribution over time. The error distribution
violates the least squares method’s assumption that the error follows a normal distribution.
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2.2.2 Gumbel Regression

Based on the properties of the Gumbel Error Model, they proposed Gumbel Regression, a maximum
likelihood estimation assuming a Gumbel distribution as the error distribution. The loss function
in Gumbel Regression is as follows:

L(h) = Exi∼D[e(xi−h)/β − (xi − h)/β − 1] (3)

where xi is the samples and h is the parameter to be estimated. By minimizing this loss function,
the estimated parameters h are found as h = β logExi∼D[exi/β ]. This expression is analogous to the
log-partition function (LogSumExp), where the summation is replaced by an expectation.

In XQL, this property is applied to Q-learning, directly estimating the soft-value function (V ∗(s) =
β log

∑
a µ(a | s)exp(Q(s, a)/β)) in maximum entropy RL. The loss function becomes:

L(V ) = Es,a∼µ[e(Q(s,a)−V (s))/β − (Q(s, a) − V (s))/β − 1] (4)

where µ is the behavior policy that generated the sampled state-action pairs. As the estimation of
the value function eliminates the need for samples from the current policy, it avoids the computation
of Q-values using out-of-distribution actions, thereby enhancing performance, particularly in offline
RL scenarios. In practical online RL applications, the last policy is used for µ, and a trust region
update (Schulman et al., 2015) is performed.

The Q-function is learned using the least squares method as follows:

L(Q) = Es,a,s′∼D[(r(s, a) + γV (s′) − Q(s, a))2] (5)

2.2.3 Role of β

The soft optimal value estimated in Eq. (4) is derived from the following objective function in
Maximum Entropy RL.

J(π) = Es,a∼π [Q(s, a)] − βDKL(π||µ) (6)

Here, βDKL(π||µ) serves as a conservative term against deviations from the behavior policy, with β
modulating the level of conservatism. As can be seen from Eq. (4), this parameter, β, also impacts
learning stability: small β values can increase gradients, risking divergence, while large β values may
reduce gradient magnitudes, decelerating convergence. Therefore, while β modifies conservatism, it
does not ensure stability across all values.

2.2.4 Limitations

The first limitation concerns instability, which complicates the adjustment of conservatism through
the parameter β. Techniques such as clipping and max normalization were employed to achieve
stabilization:

def gumbel_loss (pred , label , beta , clip ):
z = (label - pred )/ beta
z = torch.clamp(z, -clip , clip)
max_z = torch.max(z)
max_z = torch.where(max_z < -1.0, torch . tensor ( -1.0) , max_z )
max_z = max_z. detach ()
loss = torch.exp(z - max_z ) - z* torch .exp(- max_z ) - torch.exp(- max_z)
return loss.mean ()
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Nevertheless, instability persists, and in certain tasks, learning can collapse, necessitating a restart
(Garg et al., 2023). This instability is demonstrated in the following section through preliminary
experiments.

The second limitation is that the error distribution may not be a Gumbel distribution. The Gumbel
Error Model assumes independence between state-action pairs and steps; however, maintaining
this independence becomes challenging when the same network is utilized for all training samples.
Moreover, practical algorithms integrate techniques such as target networks and Clipped Double
Q-learning, which additionally influence the error distribution. Plots in the appendix of Garg et al.
(2023) demonstrate distributions that deviate from the Gumbel distribution. They also suggest that
the error distribution might combine normal and Gumbel elements. We hypothesize that this mixed
distribution, influenced by various factors and the Central Limit Theorem, resembles an intermediate
between normal and Gumbel distributions.

3 Maclaurin Expanded Extreme Q-learning

As mentioned above, XQL has limitations; it can be unstable, and its assumptions regarding the
error distribution may not be met. Therefore, we propose a method named Maclaurin Expanded
Extreme Q-learning (MXQL), which stabilizes XQL and facilitates adjustment between normal and
Gumbel distributions in the error distribution assumption.

3.1 Instability related to β

In Extreme Q-learning, β was adjusted for conservatism, learning efficiency, and stability. In other
words, even if one aims to adjust the level of conservatism using β, certain β values may prove
unstable and unusable depending on the data. To illustrate this, we conducted a simple preliminary
experiment.

For scalar data represented as xi, parameter h, and Gumbel noise ϵi, we perform Gumbel Regression
using Eq. (3) as xi = h + ϵi where ϵi ∼ −G(0, βreg), xi ∼ −G(0, βdata). This implies that when βreg

and βdata are equal, the assumptions concerning the error distribution in Gumbel Regression are fully
met. We varied the β of the data (βdata) and the β used in Gumbel Regression (βreg) respectively,
estimated them, and analyzed how differences between βdata and βreg affected the estimation results.
The estimated h was assessed based on its deviation from the true value (log

∑
exi/βreg ). The results

are presented in Figure 2.

When βdata and βreg are equal, that is, when the distribution of the data assumed in Gumbel
Regression is the same as the distribution of the data used for estimation, the accurate estimation
can be achieved with fewer updates. When βdata and βreg are different, the required number of
updates increases. Furthermore, if βreg is too small relative to βdata, the gradient diverges and
learning collapses. Similar outcomes have been noted in higher-dimensional and online RL tasks,
demonstrated by Garg et al. (2023), with learning collapse requiring restarts in specific scenarios.

These results suggest that in Gumbel Regression, it is necessary to choose a β that approximates the
distribution of the learning data closely, thereby narrowing the range within which conservativity
can be adjusted. Therefore, we propose a method to stabilize Gumbel Regression adaptable to
diverse β values.

3.2 Expanded Gumbel Loss

We introduce the Expanded Gumbel loss, which applies a Taylor (Maclaurin) expansion to the
Gumbel loss at the point where the residual (xi − h) equals zero.

L(h) = Exi∼D




n∑

j=2

(xi − h)j

j!βj


 (7)
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Figure 2: Results of Gumbel Regression with varying parameters βdata and βreg set to (0.5, 2, 10).
The absolute error refers to the absolute difference between the estimated parameter h and the
true value, defined as log

∑
exi/βreg . This error was measured at update counts of [10, 100, 500,

1000 2000]. The experiment was conducted 100 times to obtain average values, and the standard
deviation is depicted as shaded areas.

where n is the order of expansion. As shown on the left side of Figure 1, the Expanded Gumbel loss
exhibits a less steep gradient on the right side and a steeper gradient on the left side compared to
the traditional Gumbel loss. This modification resolves issues such as the collapse of learning and
slow convergence observed in the preliminary experiments. Moreover, by adjusting the expansion
order n, the degree of stabilization can be altered: smaller values of n lead to greater deviation from
the Gumbel loss but enhance stability. It should be noted that n is selected from even numbers to
ensure the loss remains positive. In MXQL, similar to XQL, the Expanded Gumbel loss is employed
for estimating the value function, and the loss function is defined as follows:

L(V ) = Es,a∼µ




n∑

j=2

(Q(s, a) − V (s))j

j!βj


 (8)

Learning the Q-function uses Eq. (5) in the same manner as in XQL.

As shown in Eq. (8), when n = 2, the loss function becomes the L2 loss. The V-function represents
the expected value of Q for actions taken under the behavior policy. In other words, the learning
of the value function follows a SARSA-based approach, and the estimated value function is the
value under the behavior policy rather than the optimal policy. When n approaches ∞, Eq. (8)
transforms into the Gumbel loss. The value function estimated by the Gumbel loss corresponds to
the soft optimal value in maximum entropy RL. Thus, the learning of the value function follows a
soft Q-learning-based approach. This indicates a trade-off between stability and optimality: when
n is large, the estimated value function is more optimal but less stable, whereas when n is small,
the value function is more stable but but does not fully maximize.

This trade-off is similar to the parameter τ in IQL (Kostrikov et al., 2022), which adjusts the expectile
loss. In IQL, when τ = 0.5, the loss becomes the L2 loss, corresponding to n = 2 in MXQL, while
τ = 1 in IQL corresponds to n = ∞ in MXQL. IQL adjusts between SARSA and Q-learning using
the parameter τ , while MXQL adjusts between SARSA and soft Q-learning using the parameter n.
Since IQL typically uses values of τ less than 1, such as 0.7 or 0.9, this suggests the necessity of
stabilizing the loss in XQL towards the L2 loss.

In the following section, we present the analysis of the error distribution from the perspective of the
Expanded Gumbel loss.

3.3 Perspective of Error Distribution

The Gumbel loss was derived from the maximum likelihood estimation that assumes a Gumbel
distribution for the error distribution. Next, we consider the error distribution assumed by the
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proposed Expanded Gumbel loss. The error distribution for each n is shown on the right side of
Figure 1. When n is large, the Expanded Gumbel loss approaches the Gumbel loss due to the
nature of the Taylor expansion, and consequently, the assumed error distribution also approaches
the Gumbel distribution. When n = 2, which is the smallest value, the Expanded Gumbel loss takes
a form equivalent to L2 loss. This loss corresponds to the least squares method, which assumes a
normal distribution for the error distribution. As n increases, the error distribution shifts from a
normal to a Gumbel distribution. In other words, by adjusting the expansion order, it is possible to
modulate the error distribution between a normal and a Gumbel distribution. It is conceivable that
error distributions influenced by various factors tend to have properties close to a normal distribution
due to the Central Limit Theorem. Moreover, preliminary experiments confirmed the importance
of the closeness between the assumed error distribution and the data distribution, suggesting that
adjusting the distribution using n is likely to be effective.

We name our method, which substitutes XQL’s Gumbel loss with Expanded Gumbel loss, Maclaurin
Expanded Extreme Q-learning (MXQL). Our approach is based on XQL, simply changing the loss
function for V-function. The implementation details are provided in the appendix. In MXQL, the
expansion order n is a hyperparameter. However, it should be noted that the clipping size is also a
hyperparameter in XQL, and the number of hyperparameters has not changed compared to XQL.

4 Experiments

In our experiments, we assessed the stability and performance of Maclaurin Expanded Extreme Q-
learning (MXQL) in comparison with Extreme Q-learning (XQL) across both online RL and offline
RL scenarios for various β values. The implementation is based on the official XQL framework,
and we adhered to the same hyperparameters as those used in the XQL setup. Further details are
provided in the appendix.

4.1 Online RL

In online RL, experiments were conducted using five tasks from the DM control suite. These tasks in-
clude Quadruped-run, Hopper-hop, Walker-run, Cheetah-run, as experimented in Garg et al. (2023),
in addition to Humanoid-walk. Both XQL and MXQL used SAC (Haarnoja et al., 2018) as the base
algorithm. Experiments were conducted with a range of β values ([0.1, 0.5, 1, 2, 5]), which includes
additional smaller values ([0.1, 0.5]) not used in the experiments by Garg et al. (2023) ([1, 2, 5]).
In Garg et al. (2023), when XQL became unstable, it was restarted, but in this study, no restarts
were performed for a fair comparison. The plot of average returns when the expansion order is 8 is
shown in Figure 3.

In most tasks, MXQL demonstrated superior performance compared to XQL. Particularly in cases
of small β, XQL often failed to learn adequately. This implies that XQL could not learn with a small
trust region, whereas MXQL was able to stabilize learning even for small β. In other words, MXQL
allows for a wider range of β selections. The scores averaged across all tasks are shown in Table 2.
Experiments were conducted with n = 4, 8, 12, and stable learning was achieved across all values.
The final average scores and standard deviations for each task when using the best β in XQL and
MXQL (n = 8) are shown in Table 3, demonstrating improved performance with the tuned β.

4.2 Offline RL

To ensure a fair comparison with XQL, experiments were conducted on the same Gym locomotion,
AntMaze, and Franka Kitchen tasks as those reported in Garg et al. (2023). The scores are displayed
in Table 1 and are compared with those from Brandfonbrener et al. (2021); Fujimoto & Gu (2021);
Kumar et al. (2020); Kostrikov et al. (2022); Garg et al. (2023). The proposed method, MXQL,
demonstrated the best scores in several tasks compared to the scores of existing methods reported in
Kostrikov et al. (2022); Sikchi et al. (2024), and outperformed XQL in most tasks. In the AntMaze
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Figure 3: Performance comparison of MXQL (n=8) and XQL on DM Control tasks for online RL.

medium and large tasks, MXQL underperforms compared to IQL, suggesting that the soft optimal
value estimated in both XQL and MXQL may not be well-suited for these particular tasks.

Dataset BC Onestep RL TD3+BC CQL IQL XQL MXQL
halfcheetah-med 42.6 48.4 48.3 44.0 47.4 47.4 46.5 ± 0.3
hopper-med 52.9 59.6 59.3 58.5 66.3 68.5 68.3 ± 7.3
walker2d-med 75.3 81.8 83.7 72.5 78.3 81.4 71.9 ± 3.9
halfcheetah-med-rep 36.6 38.1 44.6 45.5 44.2 44.1 44.1 ± 0.3
hopper-med-rep 18.1 97.5 60.9 95.0 94.7 95.1 98.2 ± 3.2
walker2d-med-rep 26.0 49.5 81.8 77.2 73.9 58.0 57.9 ± 8.8
halfcheetah-med-exp 55.2 93.4 90.7 91.6 86.7 90.8 88.2 ± 4.4
hopper-med-exp 52.5 103.3 98.0 105.4 91.5 94.0 105.1 ± 10.1
walker2d-med-exp 107.5 113.0 110.1 108.8 109.6 110.1 109.9 ± 0.1
antmaze-umaze 54.6 64.3 78.6 74.0 87.5 47.7 88.3 ± 2.1
antmaze-umaze-div 45.6 60.7 71.4 84.0 62.2 51.7 53.2 ± 9.7
antmaze-med-play 0.0 0.3 10.6 61.2 71.2 31.2 50.8 ± 2.7
antmaze-med-div 0.0 0.0 3.0 53.7 70.0 0.0 52.2 ± 6.6
antmaze-large-play 0.0 0.0 0.2 15.8 39.6 10.7 18.7 ± 5.9
antmaze-large-div 0.0 0.0 0.0 14.9 47.5 31.3 14.3 ± 6.4
kitchen-complete 65.0 - - 43.8 62.5 56.7 64.2 ± 10.3
kitchen-partial 38.0 - - 49.8 46.3 48.6 47.1 ± 8.7
kitchen-mixed 51.5 - - 51.0 51.0 40.4 71.9 ± 3.6

Table 1: Average normalized scores on Gym locomotion, AntMaze and Kitchen tasks. Highlighted
results are within one performance point of those achieved by the best-performing algorithm, and
the standard deviation across six seeds is displayed as ± for MXQL.

5 Related Work

XQL (Garg et al., 2023) has evolved based on MaxEnt RL (Bloem & Bambos, 2014; Haarnoja et al.,
2017; 2018) and allowed for the estimation of soft-values through Gumbel loss without access to
entropy, similar to Heess et al. (2015); Haarnoja et al. (2017). XQL has been successfully combined
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β XQL MXQL
n=4 n=8 n=12

0.1 38.9 619.0 648.0 642.9
0.5 319.2 665.4 634.8 598.9
1 432.1 653.9 669.9 622.8
2 474.1 626.5 643.3 643.6
5 638.7 654.3 674.7 642.0

Table 2: Average scores of XQL and MXQL with various n
values for five tasks from DM Control in online RL. Scores
underlined with dashes represent significant differences be-
tween XQL and MXQL, as determined by a t-test with a
significance level of 0.05.

with existing methods widely used in online RL, such as Fujimoto et al. (2018); Haarnoja et al. (2018).
However, its instability and sensitivity to the value of β necessitate careful tuning. In MXQL, the
loss function has been stabilized through Maclaurin expansion. Bas-Serrano et al. (2021); Hui et al.
(2023) have also used loss functions different from L2.

In offline RL, some methods regularize through conservatism (Wu et al., 2019; Kumar et al., 2019;
Fujimoto et al., 2019; Kumar et al., 2020; Fujimoto & Gu, 2021; Nair et al., 2021) and others
that directly model the greedy policy (Peng et al., 2019; Brandfonbrener et al., 2021; Chen et al.,
2021). XQL was able to learn without direct access to the current policy, similar to Kostrikov
et al. (2022); Xu et al. (2023), while introducing conservatism. Similar to online RL, methods
for stabilization have been employed in offline RL; notably, the stabilization in MXQL has shown
performance improvements in certain offline RL tasks. Recently, there have been methods that have
led to performance improvements by using Diffusion Models (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Song et al., 2021) as the policy (Wang et al., 2023; Hansen-Estruch et al., 2023), and applying
this approach in MXQL could be a future direction.

6 Conclusion

A recent study (Garg et al., 2023) suggested that the Bellman error might follow a Gumbel distribu-
tion, challenging traditional least squares methods. In response, XQL, utilizing Gumbel Regression,
was proposed but encountered stability issues in online RL due to extreme gradient values and
the often incorrect assumption that state-action pairs are i.i.d.. The study introduces Maclaurin
Expanded Extreme Q-learning (MXQL), stabilizing Gumbel loss and allowing adjustment between
normal and Gumbel error distributions using Expanded Gumbel loss. This modification offers a
practical solution to the instability and error distribution assumption issues seen in XQL, showing
improved performance and stability in both online and offline RL scenarios.
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A Experiments

A.1 Online RL

In the experiments of MXQL and XQL, the implementation is based on the official implementation
of (Garg et al., 2023), with only the loss function changed. The hyperparameters are the same as
in (Garg et al., 2023). In all experiments on online RL, 5 seeds are used, and the 95% confidence
interval is shown as a shaded area. The results of changing the order n of expansion in MXQL are
shown in Figure 4 and Figure 5.
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Figure 4: Performance of MXQL (n=4) in the online RL tasks from DM Control.
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Figure 5: Performance of MXQL (n=12) in the online RL tasks from DM Control.

Task XQL MXQL
β Score β Score

QuadrupedRun-v0 5 730.2 ± 303.8 1 896.0 ± 51.4
HopperHop-v0 2 287.4 ± 9.1 1 362.7 ± 115.7
HumanoidWalk-v0 5 487.1 ± 60.3 5 546.1 ± 45.0
WalkerRun-v0 0.5 826.0 ± 19.4 1 837.2 ± 5.3
CheetahRun-v0 5 890.0 ± 16.9 1 887.6 ± 7.6

Table 3: The final average score and standard deviation when using the best β in XQL and MXQL
(n=8).

A.2 Offline RL

In offline RL, the official implementation is also used, and the hyperparameters are the same as in
Garg et al. (2023). In Gym tasks, "-v2" was used, while in AntMaze and Kitchen tasks, "-v0" was
employed. The batch size and the update frequency of the V-function, which were tuned in (Garg
et al., 2023), are not tuned. In XQL, the β and the size of clipping, and in MXQL, the β and the
order n of expansion have been tuned, and a common value for each domain has been used. The
range for tuning β is the same as for Garg et al. (2023), which is [0.6, 0.8, 1, 2, 5]. The n was selected
from [4, 8, 12, 16, 20]. These values are shown in Table 4. In Garg et al. (2023), the evaluation was
based on the best score during the learning process rather than the final score, and therefore, the
XQL scores in Table 1 are cited from Sikchi et al. (2024). The experiments are conducted using 6
random seeds.

Dataset XQL MXQL
β Clip β n

Gym 2 7 2 20
AntMaze 0.6 7 1 8
Kitchen 5 7 1 4

Table 4: Hyperparameters in offline RL tasks from D4RL. The hyperparameters for XQL are the
same as those used in (Garg et al., 2023).
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B Details of the Figures

In the calculation of the error distribution in the right of Figure 1, the loss function, which is the log-
likelihood, is applied with "-exp", and a coefficient for normalization is multiplied. This coefficient
is calculated to ensure that the integral of the distribution equals one, using "scipy.integrate.quad"
(Virtanen et al., 2020).

In the preliminary experiments of Gumbel Regression in Figure 2, the estimation was performed
using stochastic gradient descent with 10,000 data. The learning rate was set at 0.02, and the batch
size was 32. The mean and standard deviation were calculated across 100 experiments.
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Abstract

There has been significant progress in deep reinforcement learning (RL) in recent
years. Nevertheless, finding suitable hyperparameter configurations and reward
functions remains challenging even for experts, and performance heavily relies on
these design choices. Also, most RL research is conducted on known benchmarks
where knowledge about these choices already exists. However, novel practical appli-
cations often pose complex tasks for which no prior knowledge about good hyperpa-
rameters and reward functions is available, thus necessitating their derivation from
scratch. Prior work has examined automatically tuning either hyperparameters or
reward functions individually. We demonstrate empirically that an RL algorithm’s
hyperparameter configurations and reward function are often mutually dependent,
meaning neither can be fully optimised without appropriate values for the other.
We then propose a methodology for the combined optimisation of hyperparame-
ters and the reward function. Furthermore, we include a variance penalty as an
optimisation objective to improve the stability of learned policies. We conducted
extensive experiments using Proximal Policy Optimisation and Soft Actor-Critic
on four environments. Our results show that combined optimisation significantly
improves over baseline performance in half of the environments and achieves com-
petitive performance in the others, with only a minor increase in computational
costs. This suggests that combined optimisation should be best practice.

1 Introduction

Deep reinforcement learning (RL) has successfully been applied to various domains, including Silver
et al. (2017); Akkaya et al. (2019); Kaufmann et al. (2023); Bi & D’Andrea (2023). Despite successes
in these and other challenging applications, configuring RL algorithms remains difficult. This is
due to the algorithms typically having several hyperparameter and reward configurations, critically
determining learning speed and the general outcome of the training process. For each task, there
usually is a final objective one wants to achieve. Defining the RL rewards in terms of this objective
is typically insufficient; instead, augmenting the reward with additional intermediate rewards, sub-
goals, and constraints is necessary for effective training. This augmentation of a reward signal is
referred to as reward shaping, and performance and learning speed can crucially depend on it (Ng
et al., 1999). Next, RL algorithms require the optimisation of hyperparameters, such as learning rate
or discount factor. Effective hyperparameter tuning requires an effective reward signal, and effective
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reward shaping depends on good hyperparameter configurations. This circular dependency becomes
particularly relevant when applying RL to novel environments beyond commonly used benchmarks,
for which neither effective reward shapes nor good hyperparameter settings are available.

In the area of Automatic RL (AutoRL) (Parker-Holder et al., 2022), different data-driven approaches
have been developed in recent years to automatically approach hyperparameter optimisation (Parker-
Holder et al., 2020; Falkner et al., 2018) and reward shaping (Wang et al., 2022; Zheng et al., 2018).
However, these methods approach each problem individually without considering their interdepen-
dency. Therefore, they require the availability of high-performing configurations of the non-optimised
component. To the best of our knowledge, ours is the first study to thoroughly investigate the effec-
tiveness and broader applicability of jointly optimising hyperparameters and reward shape by using
multiple and different environments and systematically evaluating the benefit thus obtained.

We examine the combined optimisation of hyperparameters and reward shape using two state-
of-the-art RL algorithms: Proximal Policy Optimisation (PPO) (Schulman et al., 2017) and Soft
Actor-Critic (SAC) (Haarnoja et al., 2018). We performed experiments on Gymnasium LunarLander
(Towers et al., 2023), Google Brax Ant and Humanoid (Freeman et al., 2021), and Robosuite Wipe
(Zhu et al., 2020). The Wipe environment is a robot task representing contact-rich interactions
inspired by modern production tasks, which has not been well studied in the literature yet. We
compare the combined optimisation results against baselines from the literature and, in particular,
to individual optimisation of only hyperparameters and reward shape. We employ the state-of-the-
art black-box hyperparameter optimisation algorithm DEHB (Awad et al., 2021) for our experiments,
which recently showed to outperform other optimisation methods in RL (Eimer et al., 2023).

Our key contributions can be summarised as follows:

1. We illustrate the advantage of joint optimisation by showing complex dependencies between
hyperparameters and reward signals in the LunarLander environment. We use an existing
hyperparameter optimisation framework and extend it with additional hyperparameters that
control reward shaping. We show that combined optimisation can match the performance
of individual optimisation with the same compute budget despite the larger search space;
furthermore, we show that it can yield significant improvement in challenging environments,
such as Humanoid and Wipe.

2. We demonstrate that including a variance penalty for multi-objective optimisation can ob-
tain hyperparameter settings and reward shapes that substantially improve performance
variance of a trained policy while achieving similar or better expected performance.

2 Background

We begin with some background on RL, define the optimisation of hyperparameters and reward
shape, and present the selected algorithm applicable to these optimisation problems.

2.1 Reinforcement Learning and Reward-Shaping

In RL, an agent learns to optimise a task objective through interaction with an environment (Sutton
& Barto, 2018). The environment is represented as a discounted Markov Decision Process (MDP)
M := (S, A, p, r, ρ0, γ), with state space S, action space A, an unknown transition probability
distribution p : S × A × S → R, reward function r : S × A → R, distribution of the initial
state ρ : S → R, and discount rate γ ∈ (0, 1). A policy π : S × A → R selects an action with
a certain probability for a given state. The agent interacts with the MDP to collect episodes
τ = (s0, a0, r1, s1, . . . , sT ), i.e., sequences of states, actions, and rewards over time steps t = 0, . . . , T .

In applications, RL algorithms are very sensitive to the rewards in a given MDP to infer policies
achieving the desired objective. To ease the policy search, reward shaping is the practice of designing
a reward function r̃α,w := α ·(r+fw) based on the original reward r of M, where the reward shaping
function fw : S × A → R denotes the change in reward (Ng et al., 1999) parameterised by reward
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weights w ∈ Rn and scaled by α ∈ R+. The shaped reward essentially yields the modified MDP
Mα,w := (S, A, p, r̃α,w, ρ0, γ). The function fw is commonly designed by identifying key terms or
events that should be rewarded or penalised and combining these as a weighted sum.

To obtain policies, there are now two hierarchical objectives for measuring performance. The outer
task objective measures success in terms of the overall goal one wants to solve, and the inner objective
in terms of maximising the collected shaped rewards when interacting with Mα,w. We formalise the
overall task objective as ogoal, measuring the success of a task in the trajectory τ by assigning it a
score ogoal(τ) ∈ R. Examples of such goals are achieving a certain objective or minimising time to
perform a task. In addition to this outer task objective, we have the inner objective of maximising
the expected return of the shaped rewards given by J(π) = Eτ∼π[

∑T
t=1 γt · r̃t ]. The common

approach of RL is to maximise performance with regard to the task’s objective ogoal by finding the
policy π that maximizes the expected return J(π). This typically involves tuning the parameters α
and w of the shaped reward to obtain reward signals that facilitate finding policies in RL training
that perform well with regard to ogoal. The task objective ogoal is not used during RL training and
only measures success for a full trajectory τ . This allows measuring success much sparser than the
shaped reward. Such sparse task objectives are commonly straightforward to define.

2.2 Combined Hyperparameter and Reward Shaping Optimisation

Black-Box
 Parameter Optimiser 

(e.g. DEHB)

RL algorithm 

Figure 1: Illustration of the
two-level optimisation pro-
cess. Outer loop: hyper- and
reward parameter optimisa-
tion; inner loop: RL training.
In each iteration, the parame-
ter optimiser chooses parame-
ters and receives their perfor-
mance measured by Ogoal(π).

In practical RL applications, both the algorithm’s hyperparameters
and the environment’s reward shape require tuning. For an environ-
ment Mα,w with task objective ogoal, we can approach the refine-
ment of hyper- and reward parameters as a two-level optimisation
process. In the outer loop, an optimisation algorithm selects hyper-
and reward parameters for the algorithm and environment. In the
inner loop, these parameters are used for RL training, yielding a pol-
icy π. This policy is then assessed against a task performance metric
Ogoal based on ogoal, and its score is returned to the optimisation
algorithm to determine the next parameter configuration.

To evaluate a policy’s performance with regard to ogoal, differ-
ent metrics can be used. The single-objective performance metric
Oso

goal(π) := Eτ∼π[ogoal(τ)] is exclusively concerned with optimis-
ing the average task score. The multi-objective metric Omo

goal(π) :=
Eτ∼π[ogoal(τ)]−στ∼π[ogoal(τ)] includes an additional variance-based
penalty, as described by Garcıa & Fernández (2015), preferring poli-
cies with low-performance variance and therefore consistent out-
comes. Figure 1 illustrates the two-level optimisation process. To
formally introduce the optimisation problems, we adopt the defini-
tion of algorithm configuration by Eggensperger et al. (2019) and
adapt it to our RL context. Consequently, our focus is on optimising
the hyperparameters of the RL algorithm, represented by θ, as well
as the reward shaping, represented by α and w.
Definition. Consider an environment Mα,w := (S, A, p, r̃α,w, ρ0, γ) with reward parameters consist-
ing of reward scaling α ∈ A and reward weights w ∈ W . Further, given an RL algorithm Aθ(Mα,w)
parametrised by hyperparameters θ ∈ Θ. This algorithm interacts with the environment Mα,w and
returns a policy π. For performance metric Ogoal(π), we define the following optimisation problems:

Hyperparameter optimisation: For fixed reward parameters α̂ and ŵ, find θ∗ ∈ Θ, s.t.

θ∗ ∈ arg max
θ∈Θ

Ogoal(Aθ(Mα̂,ŵ)).

Reward parameter optimisation: For fixed hyperparameters θ̂, find (α∗, w∗) ∈ A × W , s.t.

(α∗, w∗) ∈ arg max
(α,w)∈A×W

Ogoal(Aθ̂(Mα,w)).
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Combined optimisation: Find (θ∗, w∗, α∗) ∈ Θ × W × A, s.t.

(θ∗, w∗, α∗) ∈ arg max
(θ,α,w)∈Θ×A×W

Ogoal(Aθ(Mα,w)).

2.3 DEHB

Among the many optimisation methods for RL, DEHB has recently demonstrated superior perfor-
mance (Eimer et al., 2023) and can be utilised for all three optimisation problems introduced in
Section 2.2. DEHB is a black-box, multi-fidelity hyperparameter optimisation method combining
differential evolution (Storn, 1996) and HyperBand (Li et al., 2018). Its multi-fidelity approach in-
volves running numerous parameter configurations with a limited budget (e.g., a fraction of training
steps) and advancing promising configurations to the next higher budget. This strategy allows for
efficient exploration of the parameter space by testing a large number of configurations while avoid-
ing wasteful evaluations on suboptimal configurations. The best-performing parameter configuration
observed during optimisation is called the incumbent configuration.

3 Related Work

Our work aims to optimise RL algorithms by focusing jointly on hyperparameters and reward shapes
to consistently obtain policies with high performance. The critical importance of hyperparameter
tuning in deep RL is well-established (Andrychowicz et al., 2020; Henderson et al., 2018; Islam*
et al., 2017). Similarly, reward shaping is recognised as important for fast and stable training (Ng
et al., 1999; Gupta et al., 2022). The development of stable and reliable policies has been explored
in risk-averse, multi-objective RL (Garcıa & Fernández, 2015; La & Ghavamzadeh, 2013), employing
a straightforward variance-based performance penalty among many possible methods.

For black-box hyperparameter and reward shape optimisation, several methods have already been
developed in the framework of AutoRL (Parker-Holder et al., 2020), a data-driven approach for sys-
tematically optimising RL algorithms through automated machine learning. However, these methods
only target either the hyperparameter or reward-shape optimisation problem. Black-box methods
optimising hyperparameters comprise population-based (Jaderberg et al., 2019; Parker-Holder et al.,
2020; Wan et al., 2022) and multi-fidelity methods (Falkner et al., 2018; Awad et al., 2021). A re-
cent study (Eimer et al., 2023) highlights the effectiveness of the multi-fidelity DEHB procedure for
RL. Black-box methods for optimising reward shapes have been studied using evolutionary methods
(Zheng et al., 2018; Faust et al., 2019; Wang et al., 2022). None of the mentioned works for AutoRL
consider joint optimisation of hyperparameters and reward parameters.

The differences in performance achieved by separate hyperparameter optimisation and reward weight
optimisations have been discussed by Faust et al. (2019), showing that reward parameters alone can
improve performance and search efficiency compared to hyperparameter tuning. To the best of our
knowledge, no comprehensive investigation has been conducted into whether combined reward and
hyperparameter optimisation is generally possible and examined its potential in depth. Moving
beyond this, Jaderberg et al. (2019) provided initial evidence that joint optimisation of hyperparam-
eters and reward shape can outperform standard hyperparameter optimisation with manual reward
shaping. However, their findings were limited to a single environment and presented as a custom
solution, focusing solely on solving one specific environment. Furthermore, they did not thoroughly
investigate the effects of a combined optimisation approach.

4 Setup of Experiments

In this section, we describe the setup of our experiments, the results of which will be discussed
in Section 5. The experiments detailed in Section 4.1 aim to examine the relationship between
specific hyperparameters and reward weights to better understand their interdependencies and the
necessity of joint optimisation. Subsequently, the experiments in Section 4.2 empirically investigate

1444



RLJ | RLC 2024

the performance of joint optimisation compared to individual optimisation to analyse differences in
performance and cost. We trained PPO and SAC agents in four environments, each with a specific
task objective: in Gymnasium’s continuous LunarLander (Towers et al., 2023), a probe aims to
minimise landing time; in Google Brax Ant and Humanoid (Freeman et al., 2021), a walking robot
aims to maximise travel distance; and in Robosuite Wipe (Zhu et al., 2020), a simulated robot arm
seeks to maximise the amount of dirt wiped from a table. All environments were chosen for non-
trivial reward structures and for posing difficult hyperparameter optimisation problems. Specifically,
Humanoid is notoriously difficult to solve, and the Wipe environment has a large reward parameter
space that needs to be optimised. The Wipe environment represents a task that has not yet been
extensively studied in the literature and is closely related to real-world applications. This allows
us to test the applicability of our combined optimisation approach to environments that are less
well-established in the field, yet of high practical interest. More information about the environments
and their reward structure can be found in Appendix A. For training with LunarLander and Wipe,
we employed the stable-baseline’s Jax PPO and SAC implementation (Raffin et al., 2021), while for
the Google Brax environments, we utilised the Google Brax GPU implementations. Implementation
details can be found in the supplementary code repository https://github.com/ADA-research/
combined_hpo_and_reward_shaping.

4.1 Interdependency of Hyperparameters and Reward Parameters

We conducted an exhaustive landscape analysis for PPO training on LunarLander, exploring pairwise
combinations of a hyper- and reward parameter to better understand their interdependencies and
substantiate the intuition that both components should be optimised jointly. The parameters not
considered in each pair were fixed to their baseline value. A resolution of 100 values per parameter
was applied, and the training performance of each pair was measured by the single-objective task
performance and averaged over 10 seeds. In terms of hyperparameters, we considered the discount
factor γ, generalised advantage estimation λ, and learning rate η, and in terms of reward parameters,
the tilting, distance, and velocity weight. A logarithmic grid was applied to the discount factor and
learning rate, with points positioned at equidistant logarithms. A uniform grid of equidistant points
was applied to all other hyper- and reward parameters. Both choices were also used in our later
optimisation experiments.

4.2 Optimisation of Hyperparameters and Reward Parameters

We conducted optimisation experiments to empirically compare the performance of joint optimi-
sation with individual optimisation of hyperparameters and reward parameters; our goal was to
understand the practicality of joint optimisation in finding well-performing hyperparameters and
reward parameters without requiring any manual tuning.

We used the black-box algorithm DEHB for the three optimisation problems introduced in Section
2.2. The hyperparameter search spaces for PPO and SAC consist of four and seven parameters,
respectively, that are commonly optimised and known to impact performance significantly. In par-
ticular, learning rate and discount factor were optimised for PPO and SAC. The hyperparameters
not included in the search space were fixed at the baseline values of each training. For the reward
function, we adjusted the weight parameters of each environment’s reward shape. LunarLandar has
four reward parameters, Ant and Humanoid three, and Wipe seven. The hyperparameters not opti-
mised in reward-weight-only optimisation were set to the algorithm’s training baseline values for the
respective environment. The reward parameters not optimised in the case of hyperparameter-only
optimisation were set to the default values of the respective environments. In the combined optimi-
sation approaches, all hyperparameters and reward parameters in the search space were optimised
from scratch. The search spaces and baseline values for hyperparameters are detailed in Appendix
C, while the search spaces and default values for reward parameters are provided in Appendix A.
DEHB has been demonstrated to outperform random search for hyperparameter optimisation (Awad
et al., 2021). To analyse its effect on the optimisation of reward parameters, we used a random search

1445



RLJ | RLC 2024

approach for the combined optimisation task, where the hyperparameters are optimised with DEHB,
but the reward parameters are chosen randomly in each optimisation step.

In our setup, we set the fidelity of DEHB to equal the number of RL training steps. DEHB evaluates
parameter configurations during the optimisation using three training step budgets, each increasing
by a factor of three, with the largest matching the baseline’s training steps. The fitness of each
configuration is determined by the average performance metric after training with the designated
steps over three random seeds. We performed experiments using the single- and multi-objective
task objective performance metrics introduced in Section 2.2. Each optimisation experiment was
conducted with five random seeds, and each resulting final incumbent configuration was evaluated
by training using ten additional random seeds and evaluating performance on the corresponding
task objective.

SAC is particularly sensitive to the scaling of the reward signal, since it influences the agent’s
exploration behaviour (Haarnoja et al., 2018). The reward scale α has only been optimised as part
of the SAC baseline for Humanoid and Ant. Thus, we separately optimised the reward scale α only
for Humanoid and Ant and kept the reward scale fixed to α = 1 for the other environments. Details
on how reward scaling was performed can be found in Appendix E.

The overall optimisation budget for DEHB with PPO and SAC equals 133 and 80 full training
step budgets, respectively. Due to its computational demands, for the Wipe environment, we only
considered SAC. The wall-clock times for the PPO and SAC optimisations are about 4 h and 60 h for
LunarLander, 12 h and 15 h for Ant, 36 h and 60 h for Humanoid, and 120 h for Wipe. An overview
of our execution environment and the overall computational cost can be found in Appendix G.

5 Empirical Results

We now present the results from our experiments. First, we show the complex interdependencies
between hyperparameters and reward weights. Second, we demonstrate that joint optimisation can
match or outperform individual optimisation and produce policies with substantially lower variance.

5.1 Interdependency between Hyperparameters and Reward Parameters

The parameter landscapes for LunarLander with PPO are shown in Figure 2. We observe an
interdependency of varying strength between the hyperparameters and reward parameters. In all
cases, the behaviour of specific reward parameters changes with different hyperparameter values. The
ranges for reward parameters that lead to successful training vary depending on the hyperparameter
and exhibit sharp boundaries in some cases. In particular, we observed ranges of reward parameters
where performance deteriorates across all possible hyperparameter values.

Regarding the relation between hyperparameters and best-performing reward parameters (indicated
by the blue lines in the plot), we observed a strong dependency for the distance weight and weaker
dependencies for the velocity weights. In particular, we see a non-convex region of successful train-
ing parameters for the distance weight. Furthermore, we see large changes of the distance weight
in its optimisation space. The tilting weight shows almost no dependency on the hyperparameters.
Finally, our landscapes suggest that optimal value of the tilting weight is mostly near zero, which
suggests that it is mostly irrelevant to RL training. In addition, we observed that the incumbent
configurations in the joint optimisation experiments for LunarLander, presented in Section 5.2 (in-
dicated by the black dots in the plot), are often not fully located in high-performing regions. We
believe this is due to the larger search space during optimisation, which introduces additional de-
pendencies on other parameters that impact performance in these regions. This further highlights
the interdependencies of the parameters within the context of the full search space. In Appendix B,
we report landscapes showing the optimal hyperparameters with respect to the reward parameters,
showing similar dependencies.
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Overall, our results indicate that hyperparameters and reward parameters are interdependent and
that finding high-performing hyperparameters necessitates well-chosen reward parameters and vice
versa. This confirms the intuition this work is based on: optimising the hyperparameters and reward
shape should not be considered independently but instead approached jointly.

5.2 Joint Optimisation Performance

10.0
8.5
7.0
5.5
3.9
2.4
0.9

w
til

tin
g

10.0
8.5
7.0
5.5
3.9
2.4
0.9

w
di

st

 0
.8

 0
.9

3
 0

.9
8

 0
.9

9
 0

.9
9

 0
.9

99
3

 0
.9

99
8

Discount 

10.0
8.5
7.0
5.5
3.9
2.4
0.9

w
ve

l

0.
80

0.
83

0.
86

0.
89

0.
92

0.
95

0.
98

GAE 

1e
-5

3e
-5

9e
-5

2e
-4

7e
-4

2e
-3

6e
-3

Learning Rate 

Optimal Reward Weight
Optimisation Incumbent
Baseline Value

Figure 2: Landscapes depicting the average return on Lu-
narLander for pairwise hyperparameters and reward weights
over ten PPO trainings. Lower values (lighter) correspond
to faster landing (better performance). Yellow lines mark
each parameter’s default value. Blue lines denote the best-
performing reward weights for each hyperparameter value.
The black dots mark the incumbent configurations found in
the joint optimisation experiments in Section 5.2.

Table 1 reports the results of our op-
timisation experiments. Performance
is shown in terms of single-objective
task performance and the coefficient
of variation (in percent). As outlined
in Section 4.2, each experiment con-
sists of five optimisation runs, with
the incumbent parameter configura-
tion of each run evaluated through ten
RL training runs. The performance
results in Table 1 are derived by
calculating the median performance
for each optimisation run across its
ten evaluations and then computing
the median of these five values for
each experiment. The median co-
efficients of variation are calculated
analogously. We chose the median
over the mean to present our results,
as it is more robust to outliers. To
gain further insights into the statis-
tical differences between the optimi-
sation experiments, we employed lin-
ear mixed-effects model analysis (Gel-
man & Hill, 2006). For each combi-
nation of environment and algorithm,
we performed pairwise comparisons of
the aggregated 50 evaluation runs of
the best-performing experiment with
those of the related optimisation ex-
periments. The mixed-effects model allows us to test for statistically significant differences in the
results of two optimisation experiments, using all available data, while correctly handling the de-
pendencies between optimisation runs. We show the best performance and all results that show no
statistically significant differences (at significance level 0.05) to it in boldface. Details on how the
test was conducted and its assumptions can be found in Appendix H. Boxplots of the median perfor-
mance from the five optimisation runs for each experiment as well as boxplots of the 50 aggregated
evaluations across all optimisation and training runs are presented in Appendix D.2.

Our results show that simultaneously optimising hyperparameters and reward parameters consis-
tently matches or outperforms individual optimisation, without depending on tuned baseline param-
eters for non-optimised components. The only outlier is the single-objective PPO Ant optimisation.
Significant performance gains are observed in the complex Humanoid and Wipe environments, while
the simpler Ant and LunarLander environments, which are mostly solved using baseline parame-
ter settings, generally show no additional improvements from joint optimisation. However, even if
performance only matches the baseline parameters, joint optimisation still offers the advantage of
not requiring hand-tuning, while addressing the mutual dependencies of hyperparameter and reward
parameters.
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Environment HPO RPO
Task Performance Eτ∼π[ogoal(τ)] (100 · CVτ∼π[ogoal(τ)])

PPO SAC
Single Obj. Multi Obj. Single Obj. Multi Obj.

Gymnasium
LunarLander
(minimise)

base 273 (11%) 208 (27%)
base DEHB 287 (31%) 223 (10%) 175 (14%) 174 (13%)

DEHB base 265 (27%) 277 (11%) 194 (23%) 186 (15%)
DEHB RS 262 (38%) 252 (24%) 171 (15%) 193 (18%)

DEHB (ours) 234 (25%) 227 (15%) 177 (23%) 182 (21%)

Google Brax
Ant

(maximise)

base 6785 (16%) 8054 (28%)
base DEHB 6706 (17%) 6663 (14%) 7927 (32%) 7994 (29%)

DEHB base 8111 (14%) 7842 (6%) 8282 (21%) 8216 (13%)
DEHB RS 8013 (16%) - 8064 (21%) -

DEHB (ours) 8049 (12%) 7923 (6%) 8199 (23%) 8169 (18%)

Google Brax
Humanoid
(maximise)

base 4196 (<1%) 3273 (11%)
base DEHB 4464 (<1%) 4472 (<1%) 5284 (11%) 5208 (8%)

DEHB base 4826 (1%) 4719 (<1%) 4881 (18%) 4466 (15%)
DEHB RS 5112 (2%) - 5913 (17%) -

DEHB (ours) 5433 (7%) 5485 (1%) 6033 (12%) 6103 (1%)

Robosuite
Wipe

(maximise)

base

-

101 (24%)
base DEHB 108 (24%) 114 (20%)

DEHB base 132 (10%) 131 (11%)
DEHB RS 134 (10%) -

DEHB (ours) 136 (8%) 130 (10%)

Table 1: Median performance for our optimisation experiments. HPO and RPO show the optimisa-
tion method for hyper- and reward parameters: base for fixing to baseline values, DEHB and RS for
optimisation with DEHB or random search. Each environment’s first row is baseline performance,
followed by optimising reward-, hyperparameters, or both. Best performance are highlighted in bold
for each environment and column (multiple bold entries mark statistically insignificant differences).

In LunarLander, Ant, and Humanoid, the optimised incumbent of our joint optimisation on the re-
spective default reward function generally achieves performance considered to solve the environment.
For Robosuite Wipe, the average objective score comes close to the maximum of 142. Especially in
our experiments with LunarLander, Humanoid and Wipe, the policy improvements could be seen
not only in the improved average objective score, but also in qualitative improvements in the agents’
behaviour (representative videos can be found in the supplementary material). Therefore, combined
optimisation shows competitive performance for already well-studied environments as well as the
less-studied Wipe environment. We do not observe a clear pattern in Table 1 that indicates whether
optimising solely hyperparameters or reward parameters consistently outperforms the other. This
underscores the necessity of joint optimisation to automatically determine which component requires
more optimisation, especially for novel environments, where prior knowledge about the dynamics
is lacking. Unsurprisingly, DEHB outperforms random search in almost all our experiments. We
report the best hyperparameter and reward parameter values for each environment and algorithm
in Appendix F. Appendix D.1 provides the results of policies obtained for each configuration when
evaluated using the default shaped reward function of the respective environment.

In Figure 3, we show median incumbent performance during our SAC experiments at each opti-
misation time step. The speed of the combined optimisation is comparable to that of the indi-
vidual optimisation approaches, despite involving much larger search spaces. In all environments
except multi-objective Wipe, combined optimisation already matches the performance of the best-
performing individual optimisation after roughly a third of the total optimisation steps and continues
to improve. For multi-objective Wipe, this is achieved after two-thirds of the total optimisation steps.
Similar trends are observed for the PPO results, shown in Appendix F. This indicates that combined
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Figure 3: Incumbent performance in terms of median optimisation objective across the five optimi-
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The performance drop in the multi-objective experiments is due to the weighted penalty term.

optimisation, despite the larger search space, requires minimal additional computational effort in
terms of optimisation time.

5.3 Single- vs Multi-objective Optimisation

From Table 1, we conclude that multi-objective optimisation can improve policy stability by including
a penalty for large standard deviation in performance. These improvements come with only marginal
performance loss and sometimes even achieve slight gains; this is the case for Ant, Humanoid and
LunarLander, where, in particular, for Humanoid and PPO LunarLander, improved performance is
achieved. Only for Wipe, we observed that stability is not further improved compared to the single-
objective training. RL is notoriously sensitive to hyperparameter settings. Therefore, optimising
hyperparameters using a variance penalty for newly developed algorithms or novel scenarios can lead
to increased stability and thus greatly facilitate research and applications.

6 Conclusions and Future Work

In this work, we have demonstrated the importance of jointly optimising hyperparameters and re-
ward parameters. We illustrated dependencies in a simple environment, highlighting the circular
dependency encountered in optimising hyperparameters and reward parameters and underscoring
the need for simultaneous optimisation. Our empirical results indicate that this joint optimisation
is feasible and can match or surpass the performance of individual optimisation approaches without
requiring separate parameter tuning for the non-optimised component. Additionally, we demon-
strated that this approach requires minimal extra computational effort and is applicable to practical
environments, not yet extensively studied. We conclude that combined optimisation should be the
best practice for RL optimisation. While we have focused on optimising specific reward parameters
within a predefined reward structure, future work should explore a broader range of reward function
combinations. Such an extension could consider further aspects of the reward function, including
metrics, exponentiation, or specific functional choices, such as nonlinear transformations.

Our results further indicate that including a variance penalty in a multi-objective optimisation can
substantially enhance the performance variance of a given policy, with little or no reductions in per-
formance. This emphasises the value of combined optimisation in achieving a good balance between
a high average objective score and achieving this performance consistently. This improvement in
stability is often a crucial requirement in reinforcement learning, enhancing reproducibility and the
reliability of results in varying environments. Future research should investigate more sophisticated
risk-averse metrics and thoroughly assess the trade-off between a policy’s performance and stability.
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Reward Weight LunarLander Ant Humanoid Wipe
Default
Value

Search
Space

Default
Value

Search
Range

Default
Value

Search
Space

Default
Value

Search
Space

wdist 100 [0, 1000] 1 [0, 10] 1.25 [0, 10] 5 [0, 10]
wdist_th -

- -

5 [0, 10]
wvel 100 [0, 1000] 0 [0, 1]
wtilting 100 [0, 1000] -
wcontact 10 [0, 100] 0.01 [0, 1]
whealthy

-

1 [0, 10] 5 [0, 10] -
wunhealthy - - −10 [−100, 0]
wforce 0.5 [0, 1] 0.1 [0, 1] 0.05 [0, 1]
wwiped - - 50 [0, 100]

Table 2: Default reward weights for each environment and the corresponding search spaces of our
optimisation experiments.

Figure 4: Illustrations from left to right of the environments Gymnasium LunarLander, Google Brax
Ant and Humanoid, and Robosuite Wipe.

A Environments and Reward Parameter Search Spaces

In this section, we give a detailed overview of the environments used in our experiments and the
reward parameters we are optimising in each environment’s reward function. The default values
and respective search spaces of the reward parameters can be found in Table 2. We opted not to
optimise the terminal rewards r for the LunarLander and Wipe environments, as these constitute
the sparse rewards that are addressed through the optimisation of the reward shape.

For mapping a reward weight wi to its search space, we always used the mapping wi 7→ [0, 10n],
where n ∈ N0 is the smallest integer such that wi < 10n; we chose this approach, since it preserves
the general magnitude of the reward parameters, while relying less on their initial ratios. We believe
that practitioners typically have a rough idea about the importance of different components but find
it difficult to obtain the exact ratios between them.

A.1 Gymnasium LunarLander:

The objective of the environment is to navigate a probe to a designated landing platform safely. We
considered the environment’s variant with continuous control inputs. In the shaped reward, positive
rewards are given for moving closer to the landing platform and negative rewards for moving further
away. A positive reward is granted for making successful contact with the platform using the
probe’s legs. Negative rewards are imposed for high velocities and tilting the probe excessively.
Fuel consumption by the probe’s engine, when activated, results in negative rewards. However, we
considered fuel consumption as a constant physical attribute of the probe and did not consider it in
our optimisations. The overall shaped reward function is given by

r̃α,w := α · (wdist · r̃dist + wcontact · r̃contact − wvel · r̃vel − wtilting · r̃tilting − r̃fuel + rterminal),

with rterminal being the environment’s sparse reward signal of successful landing or crashing.
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A.2 Google Brax Ant and Humanoid:

The task in both environments is to train a robot to walk forward in a specified direction. In Ant, the
robot is designed to resemble a four-legged ant and is human-like in Humanoid. The environment’s
rewards consist of positive rewards for staying healthy (being able to continue walking) and a reward
for the distance travelled in each timestep. A negative reward for exercising large forces on the robot’s
joints is obtained. The overall shaped reward function is given by

r̃α,w := α · (wdist · r̃dist + whealthy · r̃healthy − wforce · r̃force).

A.3 Robosuite Wipe:

The task is to wipe a table of dirt pegs with a simulated robot arm equipped with a sponge. Positive
rewards are obtained for the sponge’s distance to the dirt pegs, having contact with the table and
exercising appropriate pressure on the table. Negative rewards are obtained for applying excessive
force on the table, large accelerations while moving or arm-limit collisions resulting in an unhealthy
state. The overall shaped reward function is given by

r̃α,w := α · (wwiped · r̃wiped + wdist · (1 − tanh(wdist_th · r̃dist)) + wcontact · r̃contact

− wforce · r̃force − wvel · r̃vel + wunhealthy · r̃unhealthy + rterminal),

with rterminal being the environment’s sparse reward for wiping the table clean or not.

B Interdependecy between Hyperparameters and reward parameters

In Figure 5, we present the same landscapes as in Figure 2 but mark the best-performing hyperpa-
rameter value for each reward weight (shown as the blue lines).
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Figure 5: Landscapes depicting the average return on Gymnasium LunarLander for pairwise hyper-
and reward parameters over ten PPO trainings. Lower values (lighter) correspond to faster landing
time and, thus, better performance. The yellow lines mark the default values for each parameter.
The blue line denotes the best-performing hyperparameter value for each specific reward value. The
black dots mark the incumbent configurations found in the joint optimisation experiments in Section
5.2
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Hyperparameter Baseline Values Search Space
LunarLander Ant Humanoid Range Log-Scale

learning rate 3 · 10−4 [1e−6, 0.01] Yesdiscounting 0.999 0.97 [0.001, 0.02]
gae 0.98 0.95 [0.8, 1.0]

No
clipping rate 0.2 0.3 [0.1, 0.4]
entropy coef 0.01 0.001 [0.0, 0.1]
value coef 0.5 [0.3, 0.7]
batch size 64 2048 1024 {b/2, b, 2b}
training steps 1e6 5242880

-

episode length 1000
num envs 1 256 64
unroll length 1024 5 10
num minibatches - 32
epochs 4 8

Table 3: PPO baseline parameters for each environment. Due to differences in the implementation
of stable baselines 3 JAX and Google Brax PPO, there is no hyperparameter for the number of
minibatches in the case of LunarLander. The search space for the batch size is always a categorical
choice over the power of two below and above the baseline value.

Hyperparameter Baseline Values Search Space
LunarLander Ant Humanoid Wipe Range Log-Scale

learning rate 3 · 10−4 [1e−6, 0.01]
Yesdiscounting 0.99 0.95 0.99 [0.001, 0.02]

tau 0.01 0.005 0.005 [0.001, 0.1]
batch size 256 512 1024 256 {b/2, b, 2b} No
training steps 500000 5242880 5242880 1250000

-

episode length 1000 500
num envs 1 256 64 5
training freq 1
gradient steps 1 64 8 2
min replay buffer size 10000 8192 100
max replay buffer size 106 1038576 106

Table 4: SAC baseline parameters for each environment. The search space for the batch size is
always a categorical choice over the power of two below and above the baseline value.

We can again observe strong dependencies and large changes in the best-performing hyperparam-
eters for the discount factor and the generalised advantage estimate regarding the distance reward
parameter. Only for the learning rate, we see almost no dependency on the reward parameters.

C Hyperparameter Baselines and Search Spaces

In Table 3 and Table 4, we present the baselines and search spaces for PPO and SAC, respectively.
We reproduced all baselines in our setup and, in some cases, made slight modifications to improve
their performance when possible. The baselines for continuous LunarLander PPO and SAC have
both been obtained from the stable-baselines 3 Zoo (Raffin, 2020). The Google Brax Ant and
Humanoid baselines are obtained from Brax’s GitHub repository. For PPO, hyperparameters have
been shared via a Google Colab notebook in the Google Brax GitHub repository. For SAC, we utilise
the performance results of a published hyperparameter sweep. In the case of Humanoid, we made
small adjustments to the reported best-performing parameters in order to obtain the best results in
our setup. Our adjustments align with the considered search space of their hyperparameter sweep.
We utilised the published baseline in Zhu et al. (2020) for Robosuite Wipe with small adjustments
to the training frequency and gradient steps to obtain better performance in our setup.
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Environment HPO RPO
Default Shaped Reward Return

PPO SAC
Single Obj. Multi Obj. Single Obj. Multi Obj.

Gymnasium
LunarLander
(maximise)

base 274 (8%) 276 (7%)

base DEHB 266 (10%)
(p = 2.3 · 10−04) 283 (7%) 286 (7%)

(p = 3.4 · 10−02) 287 (7%)

DEHB base 275 (7%)
(p = 5.7 · 10−04)

272 (7%)
(p = 3.1 · 10−04)

280 (7%)
(p = 1.0 · 10−20)

283 (7%)
(p = 5.2 · 10−09)

DEHB RS 275 (8%)
(p = 1.7 · 10−02)

276 (8%)
(p = 1.7 · 10−03) 287 (7%) 283 (7%)

(p = 7.0 · 10−07)

DEHB (ours) 234 (25%) 283 (7%) 287 (7%) 285 (7%)
(p = 2.2 · 10−02)

Google Brax
Ant

(maximise)

base 7293 (17%) 8065 (30%)

base DEHB 7235 (18%)
(p = 3.1 · 10−114)

7236 (17%)
(p = 3.4 · 10−52)

7600 (34%)
(p = 5.9 · 10−19)

7814 (32%)
(p = 1.0 · 10−03)

DEHB base 8379 (17%) 8127 (10%) 8169 (25%) 8037 (19%)
DEHB RS 8063 (18%)

(p = 3.6 · 10−09) - 7636 (24%)
(p = 2.2 · 10−10) -

DEHB (ours) 8254 (16%)
(p = 4.0 · 10−03)

8124 (9%)
(p = 3.9 · 10−02)

7717 (28%)
(p = 1.0 · 10−09)

7866 (19%)
(p = 2.1 · 10−03)

Google Brax
Humanoid
(maximise)

base 10016 (<1%) 3273 (11%)

base DEHB 10256 (<1%)
(p = 6.6 · 10−24)

10439 (<1%)
(p = 5.9 · 10−23)

10509 (11%)
(p = 2.3 · 10−07)

10695 (11%)
(p = 6.4 · 10−13)

DEHB base 10850 (2%)
(p = 1.1 · 10−07)

10726 (<1%)
(p = 2.1 · 10−22)

10317 (19%)
(p = 7.5 · 10−17)

9763 (17%)
(p = 2.6 · 10−64)

DEHB RS 11204 (<1%)
(p = 6.3 · 10−03) - 11746 (17%)

(p = 4.3 · 10−01) -
DEHB (ours) 11599 (7%) 11562 (<1%) 12141 (11%) 12292 (8%)

Robosuite
Wipe

(maximise)

base

-

108 (38%)

base DEHB 77 (57%)
(p = 1.7 · 10−98)

78 (58%)
(p = 1.3 · 10−159)

DEHB base 134 (20%) 131 (20%)
(p = 9.7 · 10−1)

DEHB RS 126 (21%)
(p = 4.7 · 10−11) -

DEHB (ours) 127 (25%)
(p = 2.3 · 10−23) 132 (20%)

Table 5: Results of the trained policies for each optimisation experiment evaluated on each envi-
ronment’s default shaped reward function and the coefficients of variations in parenthesis. Columns
HPO and RPO indicate the respective optimisation methods: base for baseline values, DEHB and
RS for optimisation with DEHB or random search. Hence, the first row of each environment is the
baseline performance, followed by rows optimising reward parameters, hyperparameters, or both.
Each experiment’s performance is computed similarly as in Table 1. Performances without signifi-
cant statistical differences to the best-performing optimisation experiment, are highlighted in bold
for each environment. We reported the test’s p-values of the comparison in each cell.

D Additional Optimisation Results and Visualisations

In the following sections, we present additional plots and tables on the performance distributions of
our different optimisation experiments.

D.1 Default Shaped Reward Function Evaluation

In Table 5, we present the returns of the obtained policies for each optimisation experiment, evaluated
on the corresponding environment’s default-shaped reward function. Our observations indicate that
for LunarLander and Humanoid, the combined optimisation consistently matches or outperforms
the best performance, except for multi-objective SAC training for LunarLander. This suggests that
the benefits on the task performance effectively transfer to the default shaped reward function, even
though the policies were not specifically optimised for it.
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Figure 6: The median optimisation objective’s incumbent performance across the five optimisation
runs for the PPO experiments at each time step. The min and max are given as error bars.

In the case of Ant, the performance is slightly lower than that achieved through hyperparameter-
only optimisation, yet qualitative analysis shows that the environment is still clearly solved. For
the Robosuite Wipe environment, however, the combined optimisation performs significantly worse
than the hyperparameter-only optimisation, which starkly contrasts with the evaluation of the en-
vironment’s task performance.

Further analysis reveals that this discrepancy is due to the default shaped reward function’s inade-
quate representation of the environment’s task objective. Specifically, policies that do not completely
clean the table but maintain contact with it until the end of an episode can accumulate a higher
overall return compared to those that quickly complete the cleaning task. Consequently, the policies
resulting from combined optimisation, which prioritise rapid table cleaning, achieve lower returns
despite better performance in wiping the table.

D.2 Optimisation Performance Boxplots

In addition to the results presented in Table 1, we provide an overview of the full dataset as boxplots.
Figures 7 and 8 display boxplots for the median performances of each experiment’s five optimisation
runs. For each experiment’s optimisation run, we calculate the median performance across its ten
evaluation trainings and present boxplots for the resulting five values per experiment. Figures 9 and
10 showcase boxplots for the combined 50 evaluation training performances, obtained by aggregating
all ten evaluation training performances for each of the five optimisation runs per experiment. In
each boxplot, the baseline’s median performance is marked with a red line.

Consistent with our analysis in Section 4.2, we observe that combined optimisation can match
or surpass the individual optimisations of hyperparameters and reward parameters. Furthermore,
multi-objective optimisation substantially enhances stability with minimal or no reductions in per-
formance.

D.3 Incumbent Performance during Optimisation

Figure 6 depicts the median incumbent performance during each PPO optimisation experiment.
We note that the optimisation steps necessary to surpass the baselines generally occur much earlier
than the complete duration of the optimisation, similar to the findings of Eimer et al. (2023).
However, we also observe that continuous improvement is still achieved after exceeding the baseline
performance. Moreover, the combined optimisation does not seem to be significantly slower than
optimising hyperparameters or reward parameters alone, suggesting that the combined optimisation
can enhance results without additional costs, similar to the SAC results presented in Figure 3.
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Figure 7: Boxplots for the PPO optimisation of the five median performances of each experiment’s
optimisation runs. We denote by DEHB, rs and base if hyperparameters (hpo) or reward parameters
(rpo) were optimised with DEHB, random search or fixed to their baseline values. The red line
denotes the baseline performance.
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Figure 8: Boxplots for the SAC optimisation of the five median performances of each experiment’s
optimisation runs. We denote by DEHB, rs and base if hyperparameters (hpo) or reward parameters
(rpo) were optimised with DEHB, random search or fixed to their baseline values. The red line
denotes the baseline performance.
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Figure 9: Boxplots for the PPO optimisation experiments over all 50 evaluation trainings of each
experiment. We denote by DEHB, rs and base if hyperparameters (hpo) or reward parameters (rpo)
were optimised with DEHB, random search or fixed to their baseline values. The red line denotes
the baseline performance.
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Figure 10: Boxplots for the SAC optimisation experiments over all 50 evaluation trainings of each
experiment. We denote by DEHB, rs and base if hyperparameters (hpo) or reward parameters (rpo)
were optimised with DEHB, random search or fixed to their baseline values. The red line denotes
the baseline performance.
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Reward Weight Explicit Scaling Implicit Scaling
Ant Humanoid Ant Humanoid

wdist [0, 10] [0, 25] [0, 63.5]
whealthy [0, 10] [0, 25] [0, 63.5]
wforce [0, 1] [0, 2.5] [0, 6.35]
α [0, 10] 1 1

Table 6: The different search spaces of explicit and implicit reward scaling. In the case of ex-
plicit reward scaling, the reward weights are normalised to one and scaled by ∥ŵant∥1 = 2.5 and
∥ŵhumanoid∥1 = 6.35 before applying the reward scale α for Ant and Humanoid, respectively.
Thereby, the search spaces in the explicit and implicit scaling have the same upper and lower
bounds.

Environment HPO RPO Task Performance
Implicit Scaling Explicit Scaling

Google Brax
Ant

(maximise)

base DEHB 7741 (28%)
(p = 2.8 · 10−03) 7927 (32%)

DEHB 7625 (23%)
(p = 1.0 · 10−12) 8199 (23%)

Google Brax
Humanoid
(maximise)

base DEHB 5124 (12%)
(p = 4.0 · 10−01) 5284 (11%)

DEHB 5846 (12%)
(p = 8.8 · 10−01) 6033 (12%)

Table 7: Results for the different single-objective optimisation experiments with explicit and implicit
reward scaling. Performances in each row without significant statistical differences to the best scaling
experiment, as determined by a linear mixed-effects model analysis, are highlighted in bold. We
reported the test’s p-values of the comparison in each cell.

E Reward Scaling

We examined two alternative methods to perform reward scaling for the Google Brax experiments
denoted as explicit and implicit scaling:

Explicit reward scaling aims to disentangle effects between the chosen scaling α and the reward
weights w during the optimisation by normalising the reward weights. Formally, the optimiser’s
selected weights w are normalised by

w′ = ∥ŵ∥1 · w

∥w∥1
,

where ŵ are the default reward weights of the given environment. The resulting reward function
r̃α,w′ was then used for RL training as described in Section 5.2. In contrast, implicit reward scaling
is done by keeping the reward scale fixed as α = 1 and instead optimising reward parameters with
search spaces multiplied by the upper bound of the explicit scaling. The detailed search spaces are
given in Table 6.

In Table 7, we report the results of the two scaling approaches. Explicit scaling statistically sig-
nificantly outperforms implicit scaling for Ant, whereas, for Humanoid, the median performance is
better but not significant. Overall, this hints to explicit scaling being a better choice in cases where
scaling matters to the algorithm. Due to its better performance, we used the explicit scaling method
for performing experiments in Section 5.2.

F Best performing Hyperparameter and Reward Weight Configurations
per Algorithm and Environment

We present the best-performing configurations we found for each training algorithm and environment
based on median external objective performance across ten evaluation trainings. Table 8 and Table
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Hyperparameter LunarLander Ant Humanoid
learning rate 3e−4 0.00112 0.000359
discounting 0.999 0.964 0.962
gae lambda 0.98 0.8378 0.966
clipping rate 0.2 0.276 0.156
entropy coef 0.01 0.345 0.00657
value coef 0.5 0.469 0.35
batch size 64 1024 512
Reward Parameter
wdist 3.078 1.0 9.28
wvel 0.989

- -wtilting 0.222
wleg 4.53
whealthy - 1.0 2.82
wforce 0.5 0.938
α 1.0 1.0 1.0
Performance
external objective 207 (4%) 8213 (0.1%) 6068 (0.001%)
default shaped return 286 (2%) 8378 (0.2%) 12440 (0.003%)

Table 8: Best performing configurations obtained by our optimisations for PPO training selected by
their external objective performance. For each configuration, we report the achieved performance
measured by the external objective and the default-shaped reward function with the coefficients of
variations in parenthesis.

Hyperparameter LunarLander Ant Humanoid Wipe
learning rate 0.000998 0.000703 0.00078 0.00031
discounting 0.988 0.982 0.968 0.83
tau 0.0771 0.00444 0.0297 0.00601
batch size 256 512 1024 256
Reward Parameter
wdist 5.901 2.253 7.61 7.745
wdist_th -

- -

2.60
wvel 2.691 0.888
wtilting 1.102

-wleg 5.465
whealthy

-

0.136 2.99
wforce 0.109 0.916 0.030
wwiped

- -
82.3

wcontact 0.594
wcollision -83.0
α 1.0 7.44 7.40 1.0
Performance
external objective 160 (6%) 8469 (0.2%) 6583 (0.1%) 137 (5%)
default shaped return 288 (2%) 7903 (0.3%) 12670 (0.07%) 126 (14%)

Table 9: Best performing configurations obtained by our optimisations for SAC training selected by
their external objective performance. For each configuration, we report the achieved performance
measured by the external objective and the default-shaped reward function with the coefficients of
variations in parenthesis.

9 display the parameters for PPO and SAC, respectively, and additionally report the performance on
the external objective and default shaped reward. We hope the configurations can help as baselines
and for future research. The hyperparameter configuration and reward parameters must be used
together in training for each environment to achieve the best performance.
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G Execution Environment

All experiments were conducted on a high-performance cluster running the Rocky Linux operating
system, release 8.9. The Gymnasium LunarLander and Robosuite Wipe optimisations were executed
on CPU nodes, while the Google Brax optimisations utilised GPU nodes.

The CPU-based optimisations were carried out on nodes equipped with Intel Xeon Platinum 8160 2.1
GHz processors, each equipped with 24 cores each and 33 792 KB cache, with approximately 3.75 GB
of RAM per core. The GPU-based optimisations utilised NVIDIA Volta 100 GPUs (V100-SXM2)
with 16 GB of memory.

During the optimisation process, the LunarLander and Wipe environments, on average, employed
25 and 32 CPU cores in parallel, respectively. For LunarLander, each RL training run used 4 cores,
while Wipe training utilised 5 cores per run. During optimisation, the Google Brax environments
required an average of 6 parallel GPUs, with each RL training run conducted on a single GPU.

H Linear Mixed Effects Regression Analysis

To thoroughly analyse the differences between our optimisation experiments, we employed a linear
mixed effects regression with a Wald test to analyse the difference in performance between experi-
ments. We conducted the test based on the introduction of Brown (2021), using the Wald test as a
commonly used approximation of the likelihood-ratio test. The linear mixed-effects model analysis
enables us to compare the performance of two optimisation experiments across their respective 50
evaluation runs while accounting for the dependencies induced by the seed of an optimisation run
to which an evaluation belongs. Therefore, we can compare the full extent of our data and avoid
collapsing it by summarising each optimisation run’s performance by the median performance of its
10 evaluation trainings.

For each environment and algorithm, we always pick the best-performing optimisation experiment
based on its median performance presented in Table 1. We then compare this optimisation experi-
ment pairwise to the other corresponding optimisation experiments and test whether the performance
is statistically significantly different. Hence, the value to be predicted by the linear mixed-effects
model is evaluation performance, with the fixed effect being the two compared experiments. The
different evaluations are grouped by their corresponding optimisation seed as the model’s random
effect. Using the Wald test, we then check if removing the fixed experiment effect from the model
would substantially harm the prediction performance of the model. Hence, small p-values of the
test indicate that the model with the fixed experiment effect provides a better fit, and therefore,
the experiments’ performances are statistically significantly different. We applied a commonly used
significance level of 0.05 to test for significance.

For preprocessing the 100 evaluation data points of two experiments, we normalised mean perfor-
mance to 0 and standard deviation to 1. Afterwards, we fit a mixed-effects model on the data and
remove all points as outliers with residuals deviating more than two times the standard deviation
from the mean. We then fit a model on the cleaned data and perform the Wald test to check for
significance in the fixed effect, hence the difference between the two experiments.

The assumptions underlying the test are (a) independence of the random effects and (b) homoskedas-
ticity of the residuals of the fitted linear mixed-effects model. The normality of the residuals is an
assumption of minor importance, as mixed-effect models have been shown to be robust to violations
of this distributional assumption (Schielzeth et al., 2020); Gelman & Hill (2006) even suggest not
to test for normality of the residuals. The independence of the optimisation runs as the random
effect is ensured by using different random seeds. To check the homoskedasticity assumption, we
performed White’s Lagrange multiplier test on the residuals. The null hypothesis of White’s test
is homoskedasticity, and hence, large p-values suggest that the assumption of homoskedasticity is
fulfilled. Further, we can reasonably assume that the evaluations of our experiments follow a normal
distribution, and we further tested normality of the residuals using the Shapiro-Wilk test.
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Test Statistics
PPO SACEnvironment HPO RPO

Single Obj. Multi Obj. Single Obj. Multi Obj.

base DEHB
p = 8.1 · 10−06

phw = 0.006
|xout| = 4

best
p = 1.6 · 10−01

phw = 0.526
|xout| = 2

best

DEHB base
p = 4.5 · 10−08

phw = 0.623
|xout| = 2

p = 5.1 · 10−06

phw = 0.485
|xout| = 5

p = 3.4 · 10−15

phw = 0.185
|xout| = 2

p = 2.1 · 10−05

phw = 0.498
|xout| = 2

DEHB RS
p = 2.9 · 10−07

phw = 0.106
|xout| = 5

p = 8.0 · 10−04

phw = 0.254
|xout| = 4

best
p = 1.1 · 10−08

phw = 0.276
|xout| = 5

Gymnasium
LunarLander
(minimise)

DEHB (ours) best
p = 9.2 · 10−01

phw = 0.994
|xout| = 4

p = 3.4 · 10−01

phw = 0.612
|xout| = 4

p = 7.8 · 10−02

phw = 0.612
|xout| = 4

base DEHB
p = 4.0 · 10−243

phw = 0.004
|xout| = 5

p = 4.0 · 10−80

phw = 0.937
|xout| = 9

p = 1.8 · 10−08

phw = 0.079
|xout| = 6

p = 3.4 · 10−03

phw = 0.191
|xout| = 6

DEHB base best
p = 9.3 · 10−03

phw = 0.056
|xout| = 8

best best

DEHB RS
p = 6.8 · 10−04

phw = 0.051
|xout| = 6

-
p = 7.7 · 10−02

phw = 0.109
|xout| = 5

-

Google Brax
Ant

(maximise)

DEHB (ours)
p = 1.7 · 10−02

phw = 0.894
|xout| = 2

best
p = 7.7 · 10−01

phw = 0.978
|xout| = 6

p = 6.4 · 10−01

phw = 0.170
|xout| = 5

base DEHB
p = 1.1 · 10−27

phw = 0.123
|xout| = 7

p = 2.2 · 10−26

phw = 0.797
|xout| = 6

p = 1.0 · 10−04

phw = 0.293
|xout| = 6

p = 3.5 · 10−06

phw = 0.773
|xout| = 4

DEHB base
p = 3.8 · 10−10

phw = 0.086
|xout| = 7

p = 4.8 · 10−23

phw = 0.780
|xout| = 8

p = 1.6 · 10−14

phw = 0.025
|xout| = 7

p = 3.1 · 10−51

phw = 0.018
|xout| = 6

DEHB RS
p = 1.5 · 10−02

phw = 0.094
|xout| = 4

-
p = 9.9 · 10−01

phw = 0.132
|xout| = 5

-

Google Brax
Humanoid
(maximise)

DEHB (ours) best best best best

base DEHB
p = 2.1 · 10−45

phw = 0.001
|xout| = 3

p = 3.5 · 10−82

phw = 0.003
|xout| = 5

DEHB base
p = 4.8 · 10−13

phw = 0.278
|xout| = 3

best

DEHB RS
p = 4.4 · 10−06

phw = 0.022
|xout| = 5

-

Robosuite
Wipe

(maximise)

DEHB (ours)

-

best
p = 3 · 10−1

phw = 0.296
|xout| = 4

Table 10: We show the p-values for significance in the difference of each experiment to the best-
performing optimisation corresponding to the results presented in Table 1. Additionally, pwh gives
the p-values of White’s test for heteroskedasticity and |xout| the number of removed outliers from the
100 data points for each comparison. We require homoskedasticity of the residuals and hence values
of pwh > 0.05. Highlighted cells do not perform significantly differently from the best corresponding
optimisation experiment.

In Table 10, we present the p-values of the Wald and White tests, as well as the number of outliers
removed for the pairwise comparisons detailed in Table 1. The values correspond to comparisons
against the cell identified as the best performer. Entries that do not exhibit a significant difference
from the best-performing cells are highlighted. The assumption of homoskedasticity is satisfied in
the majority of cases, as indicated by p-values greater than 0.05. This is particularly true in sce-
narios where the performance of the experiment is not significantly different from that of the best
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optimisation. Moreover, the p-values from the Wald test are generally well above the significance
threshold of 0.05 when there is no significant difference. In our comparisons, the normality assump-
tion was met in 18 out of 35 cases. Given the mixed-effect models’ resilience to deviations from
the normality assumption and the large number of cases where this assumption was satisfied, we
conclude that our test results are reliable for comparing the outcomes of our experiments.
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Abstract

In offline reinforcement learning (RL), the absence of active exploration calls for
attention on the model robustness to tackle the sim-to-real gap, where the discrep-
ancy between the simulated and deployed environments can significantly undermine
the performance of the learned policy. To endow the learned policy with robust-
ness in a sample-efficient manner in the presence of high-dimensional state-action
space, this paper considers the sample complexity of distributionally robust linear
Markov decision processes (MDPs) with an uncertainty set characterized by the
total variation distance using offline data. We develop a pessimistic model-based
algorithm and establish its sample complexity bound under minimal data coverage
assumptions, which outperforms prior art by at least Õ(d), where d is the feature
dimension. We further improve the performance guarantee of the proposed algorithm
by incorporating a carefully-designed variance estimator.

1 Introduction

In reinforcement learning (RL), agents aim to learn an optimal policy that maximizes the expected
total rewards, by actively interacting with an unknown environment. However, online data collection
may be prohibitively expensive or potentially risky in many real-world applications, e.g., autonomous
driving (Gu et al., 2022), healthcare (Yu et al., 2021), and wireless security (Uprety and Rawat, 2020).
This motivates the study of offline RL, which leverages existing historical data (aka batch data)
collected in the past to improve policy learning, and has attracted growing attention (Levine et al.,
2020). Nonetheless, the performance of the learned policy invoking standard offline RL techniques
could drop dramatically when the deployed environment shifts from the one experienced by the
historical data even slightly, necessitating the development of robust RL algorithms that are resilient
against environmental uncertainty.

In response, recent years have witnessed a surge of interests in distributionally robust offline RL
(Zhou et al., 2021b; Yang et al., 2022; Shi and Chi, 2022; Blanchet et al., 2024). In particular, given
only historical data from a nominal environment, distributionally robust offline RL aims to learn a
policy that optimizes the worst-case performance when the environment falls into some prescribed
uncertainty set around the nominal one. Such a framework ensures that the performance of the
learned policy does not fail drastically, provided that the distribution shift between the nominal and
deployment environments is not excessively large.

Nevertheless, most existing provable algorithms in distributionally robust offline RL only focus on
the tabular setting with finite state and action spaces (Zhou et al., 2021b; Yang et al., 2022; Shi
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and Chi, 2022), where the sample complexity scales linearly with the size of the state-action space,
which is prohibitive when the problem is high-dimensional. To expand the reach of distributionally
robust offline RL, a few latest works (Ma et al., 2022; Blanchet et al., 2024) attempt to develop
sample-efficient solutions by leveraging linear function approximation (Bertsekas, 2012), which is
widely used in both theoretic (Jin et al., 2020; 2021; Xiong et al., 2023) and practical (Prashanth and
Bhatnagar, 2010; Bellemare et al., 2019) developments of standard RL. However, the existing sample
complexity is still far from satisfactory and notably larger than the counterpart of standard offline
RL (Jin et al., 2021; Xiong et al., 2023) with linear function approximation, especially in terms of
the dependency on the dimension of the feature space d. Therefore, it is natural to ask:

Can we design a provably sample-efficient algorithm for distributionally robust offline
RL with linear representations?

1.1 Main contribution

To answer this question, we focus on learning a robust variant of linear Markov decision processes
in the offline setting. Throughout this paper, we consider a class of finite-horizon distributionally
robust linear MDPs (Lin-RMDPs), where the uncertainty set is characterized by the total variation
(TV) distance between the feature representations in the latent space, motivated by its practical
(Pan et al., 2024) and theoretical appeals (Shi et al., 2023). The highlights of our contributions can
be summarized as follows.

• We propose a distributionally robust variant of pessimistic least-squares value iteration,
referred to as DROP, which incorporates linear representations of the MDP model and devises
a data-driven penalty function to account for data scarcity in the offline setting. We also
establish the sub-optimality bound for DROP under the minimal offline data assumption
(cf. Theorem 1).

• We introduce a clipped single-policy concentrability coefficient C⋆
rob ≥ 1 tailored to character-

ize the partial feature coverage of the offline data in Lin-RMDPs, and demonstrate that DROP
attains ϵ-accuracy (for learning the robust optimal policy) as soon as the sample complexity
is above Õ(C⋆

robd2H4/ϵ2) (cf. Corollary 1). Compared with the prior art (Blanchet et al.,
2024), DROP improves the sample complexity by at least Õ(d).

• We further develop a variance-weighted variant of DROP by integrating a carefully designed
variance estimator, dubbed by DROP-V. Due to tighter control of the variance, DROP-V exhibits
an improved sub-optimality gap under the full feature coverage assumption (see Section 4).

See Table 1 for a summary of our results in terms of the sub-optimality gap.

1.2 Related works

In this section, we mainly discuss works that study sample complexity of linear MDPs and robust
RL, which are closely related to this paper.

Finite-sample guarantees for linear MDPs. Considering linear function approximation in RL,
a significant body of works study linear MDPs with linear transitions and rewards. Focusing on
offline settings, Jin et al. (2021) proposed Pessimistic Value Iteration (PEVI) for offline RL with
finite-horizon linear MDPs, which incorporated linear function approximation together with the
principle of pessimism (Rashidinejad et al., 2021; Shi et al., 2022; Yan et al., 2023; Woo et al., 2024;
Li et al., 2024). However, the temporally statistical dependency arising from backward updates leads
to an O(

√
d) amplification in the sub-optimality gap with comparison to the lower bound (Zanette

et al., 2021). Subsequently, Min et al. (2021) and Yin et al. (2022) attempted to address this gap. The
near-optimal sample complexity in Xiong et al. (2023) is achieved by applying variance estimation
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Algorithm Coverage Sub-optimality gap

Blanchet et al. (2024) partial
√

C⋆
1 d4H4

K

DROP (this work) partial
√

C⋆
robd2H4

K

DROP (this work) arbitrary
√

dH
∑d

i=1
∑H

h=1 max
P ∈Pρ(P 0)

Eπ⋆,P ∥ϕi(s, a)1i∥(Λh)−1

DROP-V (this work) full
√

d
∑d

i=1
∑H

h=1 max
P ∈Pρ(P 0)

Eπ⋆,P ∥ϕi(s, a)1i∥(Σ⋆
h

)−1

Table 1: Our results and comparisons with prior art (up to log factors) in terms of sub-optimality
gap, for learning robust linear MDPs with an uncertainty set measured by the TV distance. Here, d
is the feature dimension, H is the horizon length, K is the number of trajectories, C⋆

1 , C⋆
rob ∈ [1,∞)

are some concentrability coefficients (defined in Section 3.3.1) satisfying C⋆
rob ≤ dC⋆

1 . In addition,
Pρ(P 0) denotes the uncertainty set around the nominal kernel P 0, ϕi(s, a) is the i-th coordinate of
the feature vector given any state-action pair (s, a) ∈ S ×A, Λh and Σ⋆

h are some sort of cumulative
sample covariance matrix and variance-weighted cumulative sample covariance matrix, satisfying
HΛ−1

h ⪰ (Σ⋆
h)−1.

techniques, motivating us to explore variance information for robust offline RL. Beyond these works,
there are many offline RL works that investigate model-free algorithms or the infinite-horizon setting
that deviates from our focus (Zanette et al., 2021; Uehara and Sun, 2021; Xie et al., 2021). In addition
to the offline setting, linear MDPs are also widely explored in other settings such as generative model
or online RL (Yang and Wang, 2020; Jin et al., 2020; Agarwal et al., 2023; He et al., 2023).

Distributionally robust RL with tabular MDPs. To promote robustness in the face of
environmental uncertainty, a line of research known as distributionally robust RL incorporates
distributionally robust optimization tools with RL to ensure robustness in a worst-case manner
(Iyengar, 2005; Xu and Mannor, 2012; Wolff et al., 2012; Kaufman and Schaefer, 2013; Tamar et al.,
2014; Ho et al., 2018; Smirnova et al., 2019; Derman and Mannor, 2020; Ho et al., 2021; Badrinath
and Kalathil, 2021; Goyal and Grand-Clement, 2022; Ding et al., 2024). Recently, a surge of works
focus on understanding/improving sample complexity and computation complexity of RL algorithms
in the tabular setting (Wang and Zou, 2021; Zhou et al., 2021b; Dong et al., 2022; Yang et al.,
2022; Panaganti and Kalathil, 2022; Liu et al., 2022; Li et al., 2022; Xu et al., 2023; Wang et al.,
2023a;c; Liang et al., 2023; Wang et al., 2023b; Li and Lan, 2023; Yang et al., 2023; Zhang et al.,
2023; Kumar et al., 2024; Blanchet et al., 2024; Shi et al., 2024). Among them, Zhou et al. (2021b);
Yang et al. (2022); Shi and Chi (2022); Blanchet et al. (2024) consider distributionally robust RL in
the offline setting, which are most related to us. Different from the sample complexity achieved in
the tabular setting that largely depends on the size of state and action spaces, this work advances
beyond the tabular setting and develops a sample complexity guarantee that only depends on the
feature dimension based on the linear MDP model assumption.

Distributionally robust RL with linear MDPs. The prior art (Blanchet et al., 2024) studies
the same robust linear MDP (Lin-RMDP) problem as this work, while the sample complexity
dependency on the feature dimension d is still worse than that of standard linear MDPs in offline
setting (Jin et al., 2021; Xiong et al., 2023), highlighting gap for potential improvements. Besides
TV distance considered herein, Ma et al. (2022); Blanchet et al. (2024) consider the Kullback-Leibler
(KL) divergence for the uncertainty set. Moreover, Liu and Xu (2024a) explores Lin-RMDPs with an
additional structure assumption in the online setting, which diverges from our focus on the offline
context. We also note that a concurrent work (Liu and Xu, 2024b) studies offline Lin-RMDPs,
which aligns with our interest. However, their focus is limited to the well-explored data coverage
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assumption. In addition to linear representations for robust MDPs, Badrinath and Kalathil (2021);
Ramesh et al. (2024) consider other classes of function for model approximation.

Notation. Throughout this paper, we define ∆(S) as the probability simplex over a set S, [H] :=
{1, . . . , H} and [d] := {1, . . . , d} for some positive integer H, d > 0. We also denote 1i as the vector
with appropriate dimension, where the i-th coordinate is 1 and others are 0. We use Id to represent
the identity matrix of the size d. For any vector x ∈ Rd, we use ∥x∥2 and ∥x∥1 to represent its l2
and l1 norm, respectively. In addition, we denote

√
x⊤Ax as ∥x∥A given any vector x ∈ Rd and any

semi-definite matrix A ∈ Rd×d. For any set D, we use |D| to represent the cardinality (i.e., the size)
of the set D. Additionally, we use min{a, b}+ to denote the minimum of a and b when a, b > 0, and
0 otherwise. We also let λmin(A) to denote the smallest eigenvalue of any matrix A.

2 Problem Setup

In this section, we introduce the formulation of finite-horizon distributionally robust linear MDPs
(Lin-RMDPs), together with the batch data assumptions and the learning objective.

Standard linear MDPs. Consider a finite-horizon standard linear MDP M = (S,A, H, P =
{Ph}H

h=1, r = {rh}H
h=1), where S and A denote the state space and action space respectively, and H

is the horizon length. At each step h ∈ [H], we denote Ph : S ×A → ∆(S) as the transition kernel
and rh : S ×A → [0, 1] as the deterministic reward function, which satisfy the following assumption
used in Yang and Wang (2019); Jin et al. (2020).
Assumption 1 (Linear MDPs). A finite-horizon MDP M = (S,A, H, P, r) is called a linear MDP
if given a known feature map ϕ : S ×A → Rd, there exist d unknown measures µP

h = (µP
h,1, · · · , µP

h,d)
over the state space S and an unknown vector θh ∈ Rd at each step h such that

rh(s, a) = ϕ(s, a)⊤θh, Ph(s′ | s, a) = ϕ(s, a)⊤µP
h (s′), ∀(h, s, a, s′) ∈ [H]× S ×A× S. (1)

Without loss of generality, we assume ∥ϕ(s, a)∥2 ≤ 1 and ϕi(s, a) ≥ 0 for any (s, a, i) ∈ S ×A× [d],
and max{

∫
S ∥µP

h (s)∥2ds, ∥θh∥2} ≤
√

d for all h ∈ [H].

In addition, we denote π = {πh}H
h=1 as the policy of the agent, where πh : S → ∆(A) is the action

selection probability over the action space A at time step h. Given the policy π and the transition
kernel P , the value function V π,P

h and the Q-function Qπ,P
h at the h-th step are defined as: for any

(s, a) ∈ S ×A,

V π,P
h (s) = Eπ,P

[ H∑

t=h

rt(st, at) | sh =s

]
, Qπ,P

h (s, a) = rh(s, a)+Eπ,P

[ H∑

t=h+1
rt(st, at) | sh = s, ah = a

]
,

where the expectation is taken over the randomness of the trajectory induced by the policy π and
the transition kernel P .

Lin-RMDPs: distributionally robust linear MDPs. In this work, we consider distributionally
robust linear MDPs (Lin-RMDPs), where the transition kernel can be an arbitrary one within an
uncertainty set around the nominal kernel — an ensemble of probability transition kernels, rather
than a fixed transition in standard linear MDPs (Jin et al., 2021; Yin et al., 2022; Xiong et al., 2023).
Formally, we denote it by Mrob = (S,A, H,Pρ(P 0), r), where P 0 represents a nominal transition
kernel and then Pρ(P 0) represents the uncertainty set (a ball) around the nominal P 0 with some
uncertainty level ρ ≥ 0. For notational simplicity, we denote µ0

h := µP 0

h and according to (1), we let

∀(h, s, a, s′) ∈ [H]× S ×A× S : P 0
h,s,a(s′) := P 0

h (s′ | s, a) = ϕ(s, a)⊤µ0
h(s′).

In this work, we consider the total variation (TV) distance (Tsybakov, 2008) as the divergence
metric for the uncertainty set Pρ and we assume that Lin-RMDPs satisfy the following d-rectangular
assumption (Ma et al., 2022; Blanchet et al., 2024).
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Assumption 2 (Lin-RMDPs). In Lin-RMDPs, the uncertainty set Pρ(P 0) is d-rectangular, i.e.,
µ0

h,i ∈ ∆(S) for any (h, i) ∈ [H]× [d] and

Pρ(P 0) := ⊗[H],S,APρ(P 0
h,s,a), with Pρ(P 0

h,s,a) :=
{

ϕ(s, a)⊤µh(·) : µh ∈ Uρ(µ0
h)
}

,

where Uρ(µ0
h) := ⊗[d]Uρ(µ0

h,i), with Uρ(µ0
h,i) :=

{
µh,i : DTV

(
µh,i ∥ µ0

h,i

)
≤ ρ and µh,i ∈ ∆(S)

}
.

Here, DTV(µh,i ∥ µ0
h,i) represents the TV-distance between two measures over the state space, i.e.

DTV(µh,i, µ0
h,i) = 1

2∥µh,i − µ0
h,i∥1,

where ⊗[d] (resp. ⊗[H],S,A) denotes Cartesian products over [d] (resp. [H], S, and A).

Assumption 2 indicates that the uncertainty set can be decoupled into each feature dimension i ∈ [d]
independently, so called d-rectangularity. Note that by letting d = SA and ϕi(s, a) = 1i for any
(i, s, a) ∈ [d] × S × A, the Lin-RMDP is instantiated to the tabular RMDP and d rectangularity
becomes the (s, a)-rectangularity commonly used in prior literatures (Yang et al., 2022; Shi et al.,
2023). Moreover, when the uncertainty level ρ = 0, Lin-RMDPs reduce to a subclass of standard
linear MDPs satisfying Assumption 1.

Robust value function and robust Bellman equations. Considering Lin-RMDPs with any
given policy π, we define robust value function (resp. robust Q-function) to characterize the worst-case
performance induced by all possible transition kernels over the uncertainty set, denoted as

∀(h, s, a) ∈ [H]× S ×A : V π,ρ
h (s) := inf

P ∈Pρ(P 0)
V π,P

h (s), Qπ,ρ
h (s, a) = inf

P ∈Pρ(P 0)
Qπ,P

h (s, a).

They satisfy the following robust Bellman consistency equations:

∀(h, s, a) ∈ [H]× S ×A : Qπ,ρ
h (s, a) = Bρ

hV π,ρ
h+1(s, a), where V π,ρ

h (s) = Ea∼πh(·|s)[Qπ,ρ
h (s, a)], (2)

and the robust linear Bellman operator and transition operator for any function f : S → R is defined
by

[Bρ
hf ](s, a) := rh(s, a) + [Pρ

hf ](s, a), (3)

[Pρ
hf ](s, a) := inf

µh∈Uρ(µ0
h

)

∫

S
ϕ(s, a)⊤µh(s′)f(s′)ds′. (4)

Note that under Assumption 2, the robust Bellman operator inherits the linearity of the Bellman
operator in standard linear MDPs (Jin et al., 2020, Proposition 2.3), as shown in the following lemma.
The proof is postponed to Appendix A.1.
Lemma 1 (Linearity of robust Bellman operators). Suppose that the finite-horizon Lin-RMDPs
satisfies Assumption 1 and 2. There exist weights wρ = {wρ

h}H
h=1, where wρ

h := θh +
infµh∈Uρ(µ0

h
)
∫

S µh(s′)f(s′)ds′ for any h ∈ [H], such that Bρ
hf(s, a) is linear with respect to the

feature map ϕ, i.e., Bρ
hf(s, a) = ϕ(s, a)⊤wρ

h.

In addition, conditioned on some initial state distribution ζ, we define the induced occupancy
distribution w.r.t. any policy π and transition kernel P by

∀(h, s, a) ∈ [H]×S ×A : dπ,P
h (s) := dπ,P

h (s; ζ) = P(sh = s | ζ, π, P ), dπ,P
h (s, a) = dπ,P

h (s)πh(a | s).
(5)

To continue, we denote π⋆ = {π⋆
h}H

h=1 as a deterministic optimal robust policy (Iyengar, 2005). The
resulting optimal robust value function and optimal robust Q-function are defined as:

V ⋆,ρ
h (s) := V π⋆,ρ

h (s) = max
π

V π,ρ
h (s), ∀(h, s) ∈ [H]× S,

Q⋆,ρ
h (s, a) := Qπ⋆,ρ

h (s, a) = max
π

Qπ,ρ
h (s, a), ∀(h, s, a) ∈ [H]× S ×A.
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Accordingly, we also have the following robust Bellman optimality equation:

Q⋆,ρ
h (s, a) = [Bρ

hV ⋆,ρ
h+1](s, a), ∀(h, s, a) ∈ [H]× S ×A. (6)

Similar to (5), we also denote the occupancy distribution associated with the optimal robust policy
π⋆ and some transition kernel P by

∀(h, s, a) ∈ [H]× S ×A : d⋆,P
h (s) := dπ⋆,P

h (s; ζ), d⋆,P
h (s, a) := dπ⋆,P

h (s)π⋆
h(a | s). (7)

Offline data. Suppose that we can access a batch dataset D = {(sτ
h, aτ

h, rτ
h, sτ

h+1)}h∈[H],τ∈[K],
which consists K i.i.d. trajectories that are generated by executing some (mixed) behavior policy
πb = {πb

h}H
h=1 over some nominal linear MDP M0 = (S,A, H, P 0, r). Note that D contains KH

transition-reward sample tuples in total, where each sample tuple (sτ
h, aτ

h, rτ
h, sτ

h+1) represents that
the agent took the action aτ

h at the state sτ
h, received the reward rτ

h = rh(sτ
h, aτ

h), and then observed
the next state sτ

h+1 ∼ P 0
h (· | sh = sτ

h, ah = aτ
h). To proceed, we define

D0
h = {(sτ

h, aτ
h, rτ

h, sτ
h+1)}τ∈[K],

which contains all samples at the h-th step in D. For simplicity, we abuse the notation τ ∈ D0
h to

denote (sτ
h, aτ

h, rτ
h, sτ

h+1) ∈ D0
h. In addition, we define the induced occupancy distribution w.r.t. the

behavior policy πb and the nominal transition kernel P 0 at each step h by

∀(h, s, a) ∈ [H]× S ×A : db
h(s) := dπb,P 0

h (s; ζ) and db
h(s, a) := dπb,P 0

h (s, a; ζ), (8)

which is conditioned on the initial distribution ζ.

Learning goal. Given the batch dataset D, the goal of solving the Lin-RMDP Mrob with a given
initial state distribution ζ is to learn an ϵ-optimal robust policy π̂ such that the sub-optimality gap
satisfies

SubOpt(π̂; ζ,Pρ) := V ⋆,ρ
1 (ζ)− V π̂,ρ

1 (ζ) ≤ ϵ, (9)
using as few samples as possible, where ϵ is the targeted accuracy level,

V ⋆,ρ
1 (ζ) = Es1∼ζ [V ⋆,ρ

1 (s1)] and V π̂,ρ
1 (ζ) = Es1∼ζ [V π̂,ρ

1 (s1)].

3 Algorithm and Performance Guarantees

In this section, we propose a model-based approach referred to as Distributionally Robust Pessimistic
Least-squares Value Iteration (DROP), by constructing an empirical Bellman operator for Lin-RMDPs
in an offline fashion. Then we analyze the sub-optimality bound of the robust policy learned from
DROP and discuss the sample complexity under different historical data quality scenarios.

3.1 Empirical robust Bellman operator and strong duality

Recalling the robust Bellman operator in (3) gives that for any value function V : S → [0, H],

(Bρ
hV )(s, a) = rh(s, a) + inf

µh∈Uρ(µ0
h

)

∫

S
ϕ(s, a)⊤µh(s′)V (s′)ds′,

which can be equivalently rewritten as its dual form:

(Bρ
hV )(s, a) = ϕ(s, a)⊤(θh + νρ,V

h

)
, (10)

from the views of strong duality (Iyengar, 2005; Shi et al., 2023) (see the detailed proof in Appendix
B.1). Here, νρ,V

h = [νρ,V
h,1 , νρ,V

h,2 . . . , νρ,V
h,d ]⊤ ∈ Rd and its i-th coordinate is defined by

νρ,V
h,i := max

α∈[mins V (s),maxs V (s)]

{
Es∼µ0

h,i
[V ]α(s)−ρ(α−min

s′
[V ]α(s′))

}
, with [V ]α(s) =

{
α, if V (s) > α,

V (s), otherwise.

(11)
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However, notice that we cannot directly apply the above robust Bellman operator and perform value
iterations since we cannot have access to the ground-truth nominal linear MDP M0 (i.e., θh and µ0

h).
Therefore, for each time step h, we incorporate ridge regression to obtain the estimator θ̂h ∈ Rd and
ν̂ρ,V

h ∈ Rd, based on the batch dataset D0
h that contains all the samples at h-th step collected in D0.

In particular, for any value function V : S → [0, H] and any time step h ∈ [H], the estimator θ̂h and
the i-th coordinate of ν̂ρ,V

h are defined by

θ̂h = arg min
θ∈Rd

∑

τ∈D0
h

(
ϕ(sτ

h, aτ
h)⊤θ − rτ

h

)2 + λ0∥θ∥2
2 = Λ−1

h

( ∑

τ∈D0
h

ϕ(sτ
h, aτ

h)rτ
h

)
, (12)

ν̂ρ,V
h,i = max

α∈[mins V (s),maxs V (s)]

{
ν̄V

h,i(α)− ρ
(
α−min

s′
[V ]α(s′)

)}
, ∀i ∈ [d], (13)

where λ0 > 0 is the regularization coefficient, ν̄V
h,i(α) is the i-th coordinate of ν̄V

h (α) defined by

ν̄V
h (α) = arg min

ν∈Rd

∑

τ∈D0
h

(
ϕ(sτ

h, aτ
h)⊤ν − [V ]α(sτ

h+1)
)2 + λ0∥ν∥2

2 = Λ−1
h

( ∑

τ∈D0
h

ϕ(sτ
h, aτ

h)[V ]α(sτ
h+1)

)
,

(14)

and the cumulative sample covariance matrix is denoted as

Λh =
∑

τ∈D0
h

ϕ(sτ
h, aτ

h)ϕ(sτ
h, aτ

h)⊤ + λ0Id. (15)

Then following the linearity of the robust Bellman operator shown in Lemma 1, we construct the
empirical robust Bellman operator B̂ρ

h to approximate Bρ
h, using the estimators obtained from (12)

and (13): for any value function V : S → [0, H],

(B̂ρ
hV )(s, a) = ϕ(s, a)⊤(θ̂h + ν̂ρ,V

h ), ∀(s, a, h) ∈ S ×A× [H]. (16)

3.2 DROP: distributionally robust pessimistic least-squares value iteration

To compute (16) for all time steps h ∈ [H] recursively, we propose a distributionally robust pessimistic
least-squares value iteration algorithm, referred to as DROP and summarized as Algorithm 1.

In Algorithm 1, we first construct a dataset D0 by subsampling from D by Two-fold-subsampling
(cf. Algorithm 2), inspired by Li et al. (2024) to tackle the statistical dependency between different
time steps h ∈ [H] in the original batch dataset D. As the space is limited, we defer the details
of Two-fold-subsampling and the corresponding statistical independence property to Section B.2.
With D0 in hand and initializations Q̂H+1(·, ·) = 0 and V̂H+1(·) = 0, the updates at time step h
in DROP can be boiled down to the following two steps. The first one is to construct the empirical
robust Bellman operator via (12)-(16) conditioned on a fixed V̂h+1 from the previous iteration (see
the line 3-8 in Algorithm 1). Then we can estimate the robust Q-function from the pessimistic value
iteration as below:

Q̄h(s, a) = B̂ρ
h(V̂h+1)(s, a)− γ0

d∑

i=1
∥ϕi(s, a)1i∥Λ−1

h

︸ ︷︷ ︸
penalty function Γh:S×A→R

, ∀(s, a) ∈ S ×A,

where γ0 > 0 is the coefficient of the penalty term.

The above pessimistic principle is widely advocated in both standard and robust offline RL (Jin et al.,
2021; Xiong et al., 2023; Shi and Chi, 2022). When dealing with the uncertainty set characterized by
TV distance, previous penalty designs tailored for standard linear MDPs (Jin et al., 2021; Xiong
et al., 2023) and robust linear MDPs specifically addressing KL divergence (Ma et al., 2022), are
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Algorithm 1 Distributionally Robust Pessimistic Least-Squares Value Iteration (DROP)
Input: Dataset D; feature map ϕ(s, a) for (s, a) ∈ S ×A; parameters λ0, γ0 > 0.

1: Construct a temporally independent dataset D0 = Two-fold-subsampling(D) (Algorithm 2).
Initialization: Set Q̂H+1(·, ·) = 0 and V̂H+1(·) = 0.

2: for step h = H, H − 1, · · · , 1 do
3: Λh =

∑
τ∈D0

h
ϕ(sτ

h, aτ
h)ϕ(sτ

h, aτ
h)⊤ + λ0Id.

4: θ̂h = Λ−1
h

(∑
τ∈D0

h
ϕ(sτ

h, aτ
h)rτ

h

)
.

5: for feature i = 1, · · · , d do
6: Update ν̂ρ,V̂

h,i via (13).
7: end for
8: ŵρ,V̂

h = θ̂h + ν̂ρ,V̂
h .

9: Q̄h(·, ·) = ϕ(·, ·)⊤ŵρ,V̂
h − γ0

∑d
i=1 ∥ϕi(·, ·)1i∥Λ−1

h
.

10: Q̂h(·, ·) = min
{

Q̄h(·, ·), H − h + 1
}

+.
11: π̂h(·) = arg maxa∈A Q̂h(·, a).
12: V̂h(·) = Q̂h(·, π̂h(·)).
13: end for
Ouput: V̂ := {V̂ }H+1

h=1 , π̂ := {π̂h}H
h=1.

no longer applicable. To this end, we carefully devise the penalty function, denoted as Γh, for
Lin-RMDPs with TV distance. Compared to the prior art (Blanchet et al., 2024) which promotes
pessimism by solving an inner constrained optimization problem, our proposed penalty function
efficiently addresses the uncertainty in every feature dimension i ∈ [d], which plays a crucial role in
improving the sub-optimality gap.

3.3 Performance guarantees of DROP

Next, we provide the theoretical guarantees for DROP, under different assumptions on the batch data
quality. We start without any coverage assumption on the batch dataset D, where the proof is
postponed to Appendix B.3.
Theorem 1. Consider any δ ∈ (0, 1). Suppose that Assumption 1 and 2 hold. By setting

λ0 = 1, γ0 = 6
√

dξ0H, where ξ0 = log(3HK/δ),

one has with the probability at least 1− 3δ, the policy π̂ generated by Algorithm 1 satisfies

SubOpt(π̂; ζ,Pρ) ≤ Õ(
√

dH)
H∑

h=1

d∑

i=1
max

P ∈Pρ(P 0)
Eπ⋆,P

[
∥ϕi(sh, ah)1i∥Λ−1

h

]
. (17)

Since we do not impose any coverage assumption on the batch data, Theorem 1 demonstrates an
“instance-dependent” sub-optimality gap, which can be controlled by some general term (the right
hand side of (17)) and the confidence level δ. The sub-optimality gap largely depends on the quality
of the batch data — specifically, how well it explores the feature space within Rd. Building upon
the above foundational result, we proceed to examine the sample complexity required to achieve an
ϵ-optimal policy, considering different data qualities in the subsequent discussion.

3.3.1 The case of partial feature coverage

We first consider the partial feature coverage, which only compares the behavior policy with the
optimal policy, in terms of the ability to explore each feature dimension. To accommodate with our
Lin-RMDPs, we propose a tailored partial data coverage assumption, which depicts the worst-case
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dissimilarity between the optimal robust policy π⋆ in any transition kernel P ∈ Pρ(P 0) and the
behavior policy πb in the nominal kernel P 0 over every feature space dimension i ∈ [d], as follows.
Assumption 3 (Robust single-policy clipped concentrability). The behavior policy of the batch
dataset D satisfies

max
(u,h,i,P )∈Rd×[H]×[d]×Pρ(P 0)

u⊤
(

min{Ed⋆,P
h

ϕ2
i (s, a), 1/d} · 1i,i

)
u

u⊤
(
Edb

h
[ϕ(s, a)ϕ(s, a)⊤]

)
u

≤ C⋆
rob
d

, (18)

for some finite quantity C⋆
rob ∈ [1,∞). In addition, we follow the convention 0/0 = 0.

The quantity C⋆
rob measures the expected quality of batch data, by comparing to the desired dataset

associated with the optimal robust policy. Intuitively, C⋆
rob decreases as the batch dataset contains

more expert data, and increases when the quality of the dataset is poorer — generated from
some policy far from the optimal policy. Note that prior knowledge of C⋆

rob is not required when
implementing DROP in practice. Here, we assume C⋆

rob <∞, which requires that the behavior policy
is able to explore the same feature dimensions as the optimal robust policy. Under Assumption 3, the
following corollary provides the provable sample complexity of DROP to achieve an ϵ-optimal robust
policy. The proof is postponed to Appendix B.4.
Corollary 1 (Partial feature coverage). With Theorem 1 and Assumption 3 hold and consider any
δ ∈ (0, 1). Let db

min = minh,s,a{db
h(s, a) : db

h(s, a) > 0}. With probability exceeding 1− 4δ, the policy
π̂ returned by Algorithm 1 achieves

SubOpt(π̂; ζ,Pρ) ≤ 96
√

d2H4C⋆
rob log(3HK/δ)

K

as long as K ≥ c0 log(KH/δ)/db
min for some sufficiently large universal constant c0 > 0. In other

words, the learned policy π̂ is ϵ-optimal if the total number of sample trajectories satisfies

K ≥ Õ
(C⋆

robd2H4

ϵ2

)
. (19)

Notice that Corollary 1 implies the sub-optimality bound of DROP is comparable to that of the prior
art in standard linear MDPs (Jin et al., 2021, Corollary 4.5), in terms of the feature dimension d and
the horizon length H.

Comparisons to prior art for Lin-RMDPs. With high probability, the existing Assumption
6.2 proposed in Blanchet et al. (2024) can be transferred into the following condition (see (66)-(68)
in Appendix B.4):

max
(u,h,i,P )∈Rd×[H]×[d]×Pρ(P 0)

u⊤
(
Ed⋆,P

h
ϕ2

i (s, a) · 1i,i

)
u

u⊤
(
Edb

h
[ϕ(s, a)ϕ(s, a)⊤]

)
u
≤ C⋆

1 ∈ [1,∞). (20)

Thanks to the clipping operation in (18), C⋆
rob ≤ d · C⋆

1 for any given batch dataset D. Notice that
both C⋆

rob and C⋆
1 are lower bounded by 1. The proposed algorithm in Blanchet et al. (2024) can

achieve ϵ-accuracy provided that the total number of sample trajectories obeys

K ≥ Õ
(C⋆

1 d4H4

ϵ2

)
.

It shows that the sample complexity (19) of DROP improves the one in Blanchet et al. (2024) by at
least Õ(d).
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3.3.2 The case of full feature coverage

Then, we introduce the following full feature coverage assumption that is also widely used in standard
offline linear MDPs (Jin et al., 2021; Xiong et al., 2023; Yin et al., 2022; Ma et al., 2022), which
requires the behavior policy exploring the feature space uniformly well.
Assumption 4 (Well-explored data coverage). We assume κ = minh∈[H] λmin(Edb

h
[ϕ(s, a)ϕ(s, a)⊤]) >

0.

Compared to Assumption 3, Assumption 4 necessitates the behavior policy to be more exploratory
to reach every feature dimension, which is a stronger assumption requiring full coverage of all feature
dimensions. The following corollary provides the sample complexity guarantee of DROP under the full
feature coverage, where the proof is postponed to Appendix B.5.
Corollary 2 (Full feature coverage). With Theorem 1 and Assumption 4 hold and consider any
δ ∈ (0, 1). Let db

min = minh,s,a{db
h(s, a) : db

h(s, a) > 0}. With probability at least 1− 5δ, the policy π̂
returned by Algorithm 1 achieves

SubOpt(π̂; ζ,Pρ) ≤ 96
√

dH4 log(3HK/δ)
κK

,

as long as K ≥ max{c0 log(2Hd/δ)/κ2, c0 log(KH/δ)/db
min} for some sufficiently large universal

constant c0. In other words, the learned policy π̂ is ϵ-optimal if the total number of sample trajectories
satisfies

K ≥ Õ
(dH4

κϵ2

)
. (21)

Notice that the sample complexity in (21) matches the prior arts in standard linear MDPs (Yin
et al., 2022; Xiong et al., 2023) when robustness is not considered. A careful reader may observe that
(21) has better dependency on d compared to (19). While noting that the upper bound of κ is 1/d

(Wang et al., 2021), the sample complexity of DROP (cf. (21)) is at least Õ(d2H4/ϵ2).

4 Tightening the Sample Complexity by Leveraging Variance Estimation

To tighten our results, we further explore the variance information to reweight the ridge regression
in DROP and develop its variance-aware variant called DROP-V. The key idea is to design a tighter
penalty term with the estimated variance, which is widely used in standard linear MDPs (Zhou et al.,
2021a; Min et al., 2021; Yin et al., 2022; Xiong et al., 2023) to achieve near-optimal results.

4.1 DROP-V: a variance-aware variant of DROP

We first highlight the design features of DROP-V that are different from DROP, which can boiled down
to the following two steps.

Constructing a variance estimator. First, we run the Algorithm 1 on a sub-dataset D̃0 ∈ D
to obtain the estimated value function {Ṽh}H+1

h=1 . Then with {Ṽh}H+1
h=1 at our hands, we design the

variance estimator σ̂2
h : S ×A → [1, H2] by

σ̂2
h(s, a) = max{[ϕ(s, a)⊤νh,1][0,H2] −

(
[ϕ(s, a)⊤νh,2][0,H]

)2
, 1}, ∀(s, a, h) ∈ S ×A× [H], (22)

where νh,1 and νh,2 are obtained from ridge regression as follows:

νh,1 = arg min
ν∈Rd

∑

τ∈D̃0
h

(
ϕ(sτ

h, aτ
h)⊤ν − (Ṽh+1(sτ

h+1))2)2 + ∥ν∥2
2, (23)

νh,2 = arg min
ν∈Rd

∑

τ∈D̃0
h

(
ϕ(sτ

h, aτ
h)⊤ν − Ṽh+1(sτ

h+1)
)2 + ∥ν∥2

2. (24)
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Notice that the technique of variance estimation is also used in Xiong et al. (2023); Yin et al. (2022)
for standard linear MDPs, while we address the temporal dependency via a carefully designed
three-fold subsampling approach detailed in Appendix C.2.

Variance-weighted ridge regression. Incorporating with the variance estimator σ̂2
h computed

on D̃0, we replace the ridge regression updates (i.e. (12) and (14)) by their variance-weighted
counterparts as follows:

θ̂σ
h = arg min

θ∈Rd

∑

τ∈D0
h

(
ϕ(sτ

h, aτ
h)⊤θ − rτ

h

)2

σ̂2
h(sτ

h, aτ
h) + λ1∥θ∥2

2 = Σ−1
h

( ∑

τ∈D0
h

ϕ(sτ
h, aτ

h)rτ
h

σ̂2
h(sτ

h, aτ
h)

)
, (25)

ν̄ρ,σ,V
h (α) = arg min

ν∈Rd

∑

τ∈D0
h

(
ϕ(sτ

h, aτ
h)⊤ν − [V ]α(sτ

h+1)
)2

σ̂2
h(sτ

h, aτ
h) +λ1∥ν∥2

2 = Σ−1
h

( ∑

τ∈D0
h

ϕ(sτ
h, aτ

h)[V ]α(sτ
h+1)

σ̂2
h(sτ

h, aτ
h)

)
,

(26)

for any value function V : S → [0, H] and h ∈ [H], where

Σh :=
∑

τ∈D0
h

ϕ(sτ
h, aτ

h)ϕ(sτ
h, aτ

h)⊤

σ̂2
h(sτ

h, aτ
h) + λ1Id

with the regularization coefficient λ1 and D0 is another sub-dataset of D that is independent of D̃0.
Accordingly, DROP-V constructs an empirical variance-aware robust Bellman operator as

(B̂ρ,σ
h V )(s, a) = ϕ(s, a)⊤(θ̂σ

h + ν̂ρ,σ,V
h ), (27)

where the i-th coordinate of ν̂ρ,σ,V
h is defined as

ν̂ρ,σ,V
h,i = max

α∈[mins V (s),maxs V (s)]

{
ν̄ρ,σ,V

h,i (α)− ρ(α−min
s′

V (s′))
}

. (28)

Similar to DROP, we also perform the pessimistic value iterations, where the estimated Q function is
updated by

Q̄h(s, a) = B̂ρ,σ
h (V̂h+1)(s, a)− γ1

d∑

i=1
∥ϕi(s, a)1i∥Σ−1

h

︸ ︷︷ ︸
penalty function Γσ

h
:S×A→R

, ∀(s, a, h) ∈ S ×A× [H],

with a fixed, estimated V̂h+1 obtained from previous iteration and some coefficient γ1 > 0.

The rest of DROP-V follows the procedure described in Algorithm 1. To avoid redundancy, the detailed
implementation of DROP-V is provided in Appendix C.1.

4.2 Performance guarantees of DROP-V

Then, we are ready to present our improved results, where the proof is postponed to Appendix C.3.
Theorem 2. Suppose that Assumption 1, 2, and 4 hold and consider any δ ∈ (0, 1). In DROP-V, we
set

λ1 = 1/H2, γ1 = ξ1
√

d, where ξ1 = 66 log(3HK/δ).

Provided that
√

d ≥ H and K ≥ Õ
(

H4+H6dκ
κ2 + 1

db
min

)
, then with probability exceeding 1− δ, the robust

policy π̂ learned by DROP-V satisfies

SubOpt(π̂; ζ,Pρ) ≤ Õ(
√

d)
H∑

h=1

d∑

i=1
max

P ∈Pρ(P 0)
Eπ⋆,P

[
∥ϕi(sh, ah)1i∥(Σ⋆

h
)−1

]
, (29)
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where the variance-weighted cumulative sample covariance matrix Σ⋆
h is defined by

Σ⋆
h =

∑

τ∈D0
h

ϕ(sτ
h, aτ

h)ϕ(sτ
h, aτ

h)⊤

max{1, VarP 0
h
[V ⋆,ρ

h+1](sτ
h, aτ

h)} + 1
H2 Id, (30)

and VarP 0
h
[V ](s, a) =

∫
S P 0

h,s,a(s′)V 2(s′)ds′ − (
∫

S P 0
h,s,a(s′)V (s′)ds′)2 represents the conditional vari-

ance for any value function V : S → [0, H] and any (s, a, h) ∈ S ×A× [H].

Compared to the instance-dependent sub-optimality bound of DROP (cf. Theorem 1), the above
guarantee for DROP-V is tighter since H2Λ−1

h ⪰ (Σ⋆
h)−1. The underlying reason for the improvement

is the use of the variance estimator to control the conditional variance and the tighter penalty
function designed via the Bernstein-type inequality, while that of DROP depends on the Hoeffding-type
counterpart.

5 Conclusion

In this paper, we investigate the sample complexity for distributionally robust offline RL when the
model has linear representations and the uncertainty set can be characterized by TV distance. We
develop a robust variant of pessimistic value iteration with linear function approximation, called
DROP. We establish the sub-optimality guarantees for DROP under various offline data assumptions.
Compared to the prior art, DROP notably improves the sample complexity by at least Õ(d), under
the partial feature coverage assumption. We further incorporate DROP with variance estimation to
develop an enhanced DROP, referred to as DROP-V, which improves the sub-optimality bound of DROP.
In the future, it will be of interest to consider different choices of the uncertainty sets and establish
the lower bound for the entire range of the uncertainty level.
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A Technical Lemmas

A.1 Proof of Lemma 1

For a Lin-RMDP satisfying Assumption 2, the robust linear transition operator defined in (4) obeys:
for any time step h ∈ [H],

(Pρ
hf)(s, a) = inf

µh∈Uρ(µ0
h

)

∫

S
ϕ(s, a)⊤µh(s′)f(s′)ds′

= inf
µh∈Uρ(µ0

h
)

d∑

i=1
ϕi(s, a)

∫

S
µh,i(s′)f(s′)ds′

=
d∑

i=1
ϕi(s, a) inf

µh,i∈Uρ(µ0
h,i

)

∫

S
µh,i(s′)f(s′)ds′

= ϕ(s, a)⊤
(

inf
µh∈Uρ(µ0

h
)

∫

S
µh(s′)f(s′)ds′

)
,

where the penultimate equality is due to ϕi(s, a) ≥ 0,∀(i, s, a) ∈ [d]×S×A and Uρ(µ0
h) := ⊗[d]Uρ(µ0

h,i).
Therefore, the robust linear Bellman operator defined in (3) is linear in the feature map ϕ: for
(h, s, a) ∈ [H]× S ×A,

(Bρ
hf)(s, a) = rh(s, a) + [Pρ

hf ](s, a)

= ϕ(s, a)⊤θh + ϕ(s, a)⊤
(

inf
µh∈Uρ(µ0

h
)

∫

S
µh(s′)f(s′)ds′

)

= ϕ(s, a)⊤
(

θh + inf
µh∈Uρ(µ0

h
)

∫

S
µh(s′)f(s′)ds′

)

︸ ︷︷ ︸
:=wρ

h

,

where the second equality is due to Assumption 1.

A.2 Preliminary facts

A.2.1 Useful concenrtation inequalities

Lemma 2 (Hoeffding-type inequality for self-normalized process (Abbasi-Yadkori et al., 2011)).
Let {ηt}∞

t=1 be a real-valued stochastic process and let {Ft}∞
t=0 be a filtration such that ηt is Ft-

measurable. Let {xt}∞
t=1 be an Rd-valued stochastic process where xt is Ft−1 measurable and xt ≤ L.

Let Λt = λId +
∑t

s=1 xsx⊤
s . Assume that conditioned on Ft−1, ηt is mean-zero and R-sub-Gaussian.

Then, for any δ > 0, with probability at least 1− δ, for all t > 0, we have

∥
t∑

s=1
xsηs∥Λ−1

t
≤ R

√
d log(1 + tL/λ) + 2 log(1/δ).
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Lemma 3 (Bernstein-type inequality for self-normalized process (Zhou et al., 2021a)). Let {ηt}∞
t=1

be a real-valued stochastic process and let {Ft}∞
t=0 be a filtration such that ηt is Ft-measurable.

Let {xt}∞
t=1 be an Rd-valued stochastic process where xt is Ft−1 measurable and xt ≤ L. Let

Λt = λId +
∑t

s=1 xsx⊤
s . Assume that

|ηt| ≤ R, E[ηt|Ft−1] = 0, E[η2
t |Ft−1] ≤ σ2.

Then for any δ > 0, with probability at least 1− δ, for all t > 0, we have

∥
t∑

s=1
xsηs∥Λ−1

t
≤ 8σ

√
d log

(
1 + tL2

λd

)
log(4t2

δ
) + 4R log(4t2

δ
).

Lemma 4 (Lemma H.5, Min et al. (2021)). Let ϕ : S × A → Rd be a bounded function
such that ∥ϕ(s, a)∥2 ≤ C for all (s, a) ∈ S × A. For any K > 0 and λ > 0, define
ḠK =

∑K
k=1 ϕ(sk, ak)ϕ(sk, ak)⊤ + λId where (sk, ak) are i.i.d. samples from some distribution

ν over S ×A. Let G = Ev[ϕ(s, a)ϕ(s, a)⊤]. Then for any δ ∈ (0, 1), if K satisfies that

K ≥ max{512C4∥G−1∥2 log(2d/δ), 4λ∥G−1∥}.

Then with probability at least 1− δ, it holds simultaneously for all u ∈ Rd that

∥u∥Ḡ−1
k
≤ 2√

K
∥u∥G−1 .

Lemma 5 (Lemma 5.1, Jin et al. (2021)). Under the condition that with probability at least 1− δ,
the penalty function Γh : S ×A → R in Algorithm 1 and satisfying

|(B̂ρ
hV̂h+1)(s, a)− (Bρ

hV̂h+1)(s, a)| ≤ Γh(s, a), ∀(s, a, h) ∈ S ×A× [H], (31)

we have
0 ≤ ιh(s, a) ≤ 2Γh(s, a), ∀(s, a, h) ∈ S ×A× [H].

A.2.2 Useful facts

Lemma 6. For any function f1 : C ⊆ R→ R and f2 : C ⊆ R→ R, we have

max
α∈C

f1(α)−max
α∈C

f2(α) ≤ max
α∈C

(f1(α)− f2(α)) .

Proof. Let α⋆
1 = arg maxα∈C f1(α). Then,

max
α∈C

f1(α)−max
α∈C

f2(α) ≤ f1(α⋆
1)−max

α∈C
f2(α)

≤ f1(α⋆
1)− f2(α⋆

1)
≤ max

α∈C
(f1(α)− f2(α)) .

Lemma 7. For any positive semi-definite matrix A ∈ Rd×d and any constant c ≥ 0, we have

Tr
(
A(I + cA)−1) ≤

d∑

i=1

λi

1 + cλi
, (32)

where {λi}d
i=1 are the eigenvalues of A and Tr(·) denotes the trace of the given matrix.
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Proof. Note that

A(I + cA)−1 = A(I + cA)−1 + 1
c

(I + cA)−1 − 1
c

(I + cA)−1

= 1
c

I − 1
c

(I + cA)−1.

In addition, the eigenvalues of (I + cA)−1 are { 1
1+cλi

}d
i=1. Therefore,

Tr
(
A(I + cA)−1) =

d∑

i=1

λi

1 + cλi
.

Lemma 8 (modified Lemma 4, Shi et al. (2023)). Consider any probability vector µ0 ∈ ∆(S), any
fixed uncertainty level ρ and the uncertainty set Uρ(µ0) satisfying Assumption 2. For any value
function V : S → [0, H], recalling the definition of [V ]α in (11), one has

inf
µ∈Uρ(µ0)

∫

S
µ(s′)V (s′)ds′ = max

α∈[mins V (s),maxs V (s)]
{Es′∼µ0 [V ]α(s′)− ρ(α−min

s′
[V ]α(s′))}. (33)

B Analysis for DROP: Algorithm 1

B.1 Proof of equation (10)

Recall that for any (s, a, h) ∈ S ×A× [H], one has

(Bρ
hV )(s, a) = rh(s, a) + inf

µh∈Uρ(µ0
h

)

∫

S
ϕ(s, a)⊤µh(s′)V (s′)ds′

= ϕ(s, a)⊤θh +
d∑

i=1
ϕi(s, a) inf

µh,i∈Uρ(µ0
h,i

)

∫

S
µh,i(s′)V (s′)ds′.

According to Lemma 8, for any value function V : S → [0, H] and any uncertainty set
Uρ(µ0

h,i),∀(h, i) ∈ [H]× [d] that satisfies Assumption 2, one has

inf
µh,i∈Uρ(µ0

h,i
)

∫

S

µh,i(s′)V (s′)ds′ = max
α∈[mins V (s),maxs V (s)]

{∫

S
µh,i(s′)[V ]α(s′)ds′ − ρ(α−min

s′
[V ]α(s′))

}
.

Denote νρ,V
h = [νρ,V

h,1 , νρ,V
h,2 . . . , νρ,V

h,d ]⊤ ∈ Rd, where νρ,V
h,i =

maxα∈[mins V (s),maxs V (s)]
{ ∫

S µh,i(s′)[V ]α(s′)ds′ − ρ(α−mins′ [V ]α(s′))
}

for any i ∈ [d]. Therefore,

(Bρ
hV )(s, a) = ϕ(s, a)⊤(θh + νρ,V

h

)
.

B.2 Two-fold subsampling method

To tackle the temporal dependency in batch dataset D, we apply the insights from the subsampling
approach inspired by Li et al. (2024). The key idea is to utilize half of the data to establish a valid
lower bound of the number of samples, which is employed to achieve the statistical independence in
the remaining half of the dataset. The detailed implementation of the two-fold subsampling can be
summarized in the Algorithm 2.

Recall that we assume the sample trajectories in D are generated independently. Then, the following
lemma shows that (34) is a valid lower bound of Nmain

h (s) for any s ∈ S and h ∈ [H], which can be
obtained by a slight modification on Lemma 3 and Lemma 7 in Li et al. (2024)
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Algorithm 2 Two-fold-subsampling
Input: Batch dataset D;

1: Split Data: Split D into two haves Dmain and Daux, where |Dmain| = |Daux| = Nh/2. Denote
Nmain

h (s) (resp. Naux
h (s)) as the number of sample transitions from state s at step h in Dmain

(resp. Daux).
2: Construct the high-probability lower bound N trim

h (s) by Daux: For each s ∈ S and
1 ≤ h ≤ H, compute

N trim
h (s) = max{Naux

h (s)− 10
√

Naux
h (s) log KH

δ
, 0}. (34)

3: Construct the almost temporally statistically independent Dtrim: Let Dmain
h (s) denote

the dataset containing all transition-reward sample tuples at the current state s and step h from
Dmain. For any (s, h) ∈ S × [H], subsample min{N trim

h (s), Nmain
h (s)} transition-reward sample

tuples randomly from Dmain
h (s), denoted as Dmain,sub.

Ouput: D0 = Dmain,sub.

Lemma 9. With probability at least 1− 2δ, if N trim
h (s) satisfies (34) for every s ∈ S and h ∈ [H],

then D0 := Dmain,sub contains temporally statistically independent samples and the following bound
holds simultaneously, i.e.,

N trim
h (s) ≤ Nmain

h (s), ∀(s, h) ∈ S × [H].

In addition, with probability at least 1− 3δ, the following lower bound also holds, i.e.,

N trim
h (s, a) ≥ Kdb

h(s, a)
8 − 5

√
Kdb

h(s, a) log(KH

δ
), ∀(s, a, h) ∈ S ×A× [H].

Proof. Let SD be the collection of all the states appearing in any batch dataset D, where |SD| ≤ K.
By changing the union bound over S to SD in the proof of Li et al. (2024, Lemma 3), the remaining
proof still holds, since N trim

h (s) = Nmain
h (s) = 0,∀s /∈ SD. Together with Li et al. (2024, Lemma 7), D0

contains temporally statistically independent samples if N trim
h (s) ≤ Nmain

h (s),∀(s, h) ∈ S × [H].

B.3 Proof of Theorem 1

Notations. Before starting the proof of Theorem 1, we introduce several notations for the conve-
nience of the following analysis. First, we use

ιh(s, a) = Bρ
hV̂h+1(s, a)− Q̂h(s, a), ∀(h, s, a) ∈ [H]× S ×A, (35)

to represent the model evaluation error at the h-th step of DROP. In addition, we denote the estimated
weight of the transition kernel at the h-th step by

∀(s, h) ∈ S × [H] : µ̂h(s) = Λ−1
h


∑

τ∈D0
h

ϕ(sτ
h, aτ

h)1(sτ
h+1 = s)


 ∈ Rd, (36)

where 1(·) is the indicator function. Accordingly, it holds that ν̄V̂
h (α) =

∫
S µ̂h(s′)[V̂h+1(s′)]αds′ ∈ Rd.

We denote the set of all the possible state occupancy distributions associated with the optimal policy
π⋆ and any P ∈ Pρ(P 0) as

D⋆
h =

{[
d⋆,P

h (s)
]

s∈S
: P ∈ Pρ(P 0)

}
=
{[

d⋆,P
h (s, π⋆

h(s))
]

s∈S
: P ∈ Pρ(P 0)

}
, (37)

for any time step h ∈ [H].
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B.3.1 Proof sketch for Theorem 1

We first claim that Theorem 1 holds as long as the following theorem can be established.
Theorem 3. Consider δ ∈ (0, 1). Suppose that the dataset D0 in Algorithm 1 contains Nh < K
transition-reward sample tuples at every h ∈ [H]. Assume that conditional on {Nh}h∈[H], all the
sample tuples in D0

h are statistically independent. Suppose that Assumption 1 and 2 hold. In DROP,
we set

λ0 = 1, γ0 = 6
√

dξ0H, where ξ0 = log(3HK/δ). (38)
Here, δ ∈ (0, 1) is the confidence parameter and K is the upper bound of Nh for any h ∈ [H]. Then,
{π̂h}H

h=1 generated by Algorithm 1, with the probability at least 1− δ, satisfies

SubOpt(π̂; ζ,Pρ) ≤ Õ(
√

dH)
H∑

h=1

d∑

i=1
max

d⋆
h

∈D⋆
h

Ed⋆
h

[
∥ϕi(sh, ah)1i∥Λ−1

h

]
.

As the construction in Algorithm 2, {N trim
h (s)}s∈S,h∈[H] is computed using Daux that is independent

of D0. From Lemma 14, N trim
h (s) is a valid sampling number for any s ∈ S and h ∈ [H] such that

|D0
h| =

∑
s∈S N trim

h (s) ≤ K, and D0
h can be treated as containing temporally statistically independent

samples with probability exceeding 1− 2δ. Therefore, by invoking Theorem 3 with Nh := |D0
h|, we

have

SubOpt(π̂; ζ,Pρ) ≤ Õ(
√

dH)
H∑

h=1

d∑

i=1
max

d⋆
h

∈D⋆
h

Ed⋆
h

[
∥ϕi(sh, ah)1i∥Λ−1

h

]
,

with probability exceeding 1− 3δ.

B.3.2 Proof of Theorem 3

The proof of Theorem 3 can be summarized as following key steps.

Step 1: establishing the pessimistic property. To substantiate the pessimism, we heavily
depend on the following lemma, where the proof is postponed to Appendix B.3.3.
Lemma 10. Suppose all the assumptions in Theorem 3 hold and follow all the parameters setting in
(38). Then for any (s, a, h) ∈ S ×A× [H], with probability at least 1− δ, the value function {V̂ }H

h=1
generated by DROP satisfies

|(B̂ρ
hV̂h+1)(s, a)− (Bρ

hV̂h+1)(s, a)| ≤ Γh(s, a) := γ0

d∑

i=1
∥ϕi(s, a)1i∥Λ−1

h
. (39)

In the following, we will show that the following relations hold:

Q⋆,ρ
h (s, a) ≥ Qπ̂,ρ

h (s, a) ≥ Q̂h(s, a) and V ⋆,ρ
h (s) ≥ V π̂,ρ

h (s) ≥ V̂h(s), ∀(s, a, h) ∈ S×A×[H], (40)

if the condition (39) holds. It implies that Q̂h(s, a) and V̂h(s) is the pessimistic estimates of Qπ̂,ρ
h (s, a)

and V π̂,ρ
h (s) for any s ∈ S, respectively. Notice that if Qπ̂,ρ

h (s, a) ≥ Q̂h(s, a) for all (s, a) ∈ S × A,
one simultaneously has the following relation:

V π̂,ρ
h (s) = Qπ̂,ρ

h (s, π̂h(s)) ≥ Q̂h(s, π̂h(s)) = V̂h(s), ∀(s, h) ∈ S × [H].

Therefore, we shall verify that

Qπ̂,ρ
h (s, a) ≥ Q̂h(s, a), ∀(s, a) ∈ S ×A, (41)

by induction, and V π̂,ρ
h (s) ≥ V̂h(s) will spontaneously hold for s ∈ S.
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• At step h = H + 1: From the initialization step in Algorithm 1, we have Qπ̂,ρ
H+1(s, a) =

Q̂H+1(s, a) = 0, for any (s, a) ∈ S ×A, and (41) holds.

• For any step h ≤ H: Suppose Qπ̂,ρ
h+1(s, a) ≥ Q̂h+1(s, a). From (40), we have V π̂,ρ

h+1(s) ≥
V̂h+1(s). Therefore, if Q̂h(s, a) = 0, Qπ̂,ρ

h (s, a) ≥ 0 = Q̂h(s, a), for any (s, a) ∈ S × A.
Otherwise,

Q̂h(s, a) ≤ (B̂ρ
hV̂h+1)(s, a)− Γh(s, a)

= (Bρ
hV̂h+1)(s, a) + (B̂ρ

hV̂h+1)(s, a)− (Bρ
hV̂h+1)(s, a)− Γh(s, a)

≤ (Bρ
hV̂h+1)(s, a) + |(B̂ρ

hV̂h+1)(s, a)− (Bρ
hV̂h+1)(s, a)| − Γh(s, a)

≤ (Bρ
hV̂h+1)(s, a) + Γh(s, a)− Γh(s, a)

≤ (Bρ
hV̂h+1)(s, a)

≤ (Bρ
hV π̂,ρ

h+1)(s, a) = Qπ̂,ρ
h (s, a),

where the first inequality is from the definition of Q̂h(s, a) (cf. Line 10 in Algorithm 1), and
third inequality is based on the condition (39).

Combining these two cases, for any h ∈ [H + 1], we could verify the pessimistic property, i.e. the
equation (40).

Step 2: bounding the suboptimality gap. Notice that for any h ∈ [H] and any s ∈ S,

V ⋆,ρ
h (s)− V π̂,ρ

h (s) = V ⋆,ρ
h (s)− V̂h(s) + V̂h(s)− V π̂,ρ

h (s)
≤ V ⋆,ρ

h (s)− V̂h(s), (42)

where the inequality is due to the pessimistic property in (40).

In the following, we will control the value difference, i.e., V ⋆,ρ
h (s)− V̂h(s), for any (s, h) ∈ S × [H].

First, recall the definition of V̂h (cf. Line 12 in Algorithm 1) and the robust Bellman consistency
equation (2). For all s ∈ S,

V ⋆,ρ
h (s)− V̂h(s) = Q⋆,ρ

h (s, π⋆
h(s))− Q̂h(s, π̂h(s))

≤ Q⋆,ρ
h (s, π⋆

h(s))− Q̂h(s, π⋆
h(s)), (43)

where the last inequality is from π̂h is the greedy policy with respect to Q̂h (cf. Line 11 in Algorithm
1.) From the definition of the model evaluation error (i.e., equation (35)) and the robust Bellman
optimality equation (6), we have

Q̂h(s, a) = (Bρ
hV̂h+1)(s, a)− ιh(s, a), ∀(s, a) ∈ S ×A,

Q⋆,ρ
h (s, a) = (Bρ

hV ⋆,ρ
h+1)(s, a) ∀(s, a) ∈ S ×A,

which leads to

Q⋆,ρ
h (s, π⋆

h(s))−Q̂h(s, π⋆
h(s)) = (Pρ

hV ⋆,ρ
h+1)(s, π⋆

h(s))−(Pρ
hV̂h+1)(s, π⋆

h(s))+ιh(s, π⋆
h(s)), ∀s ∈ S. (44)

Denote

P inf,V̂
h,s,π⋆

h
(s)(·) := arg min

P (·)∈Pρ(P 0
h,s,π⋆

h
(s))

∫

S

P (s′)V̂h+1(s′)ds′. (45)
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Therefore, (44) becomes

Q⋆,ρ
h (s, π⋆

h(s))−Q̂h(s, π⋆
h(s)) ≤

∫

S
P inf,V̂

h,s,π⋆
h

(s)(s
′)
(

V ⋆,ρ
h+1(s′)− V̂h+1(s′)

)
ds′+ιh(s, π⋆

h(s)), ∀(s, a) ∈ S×A.

(46)
Substituting (46) into (43), one has

V ⋆,ρ
h (s)− V̂h(s) ≤

∫

S
P inf,V̂

h,s,π⋆
h

(s)(s
′)
(

V ⋆,ρ
h+1(s′)− V̂h+1(s′)

)
ds′ + ιh(s, π⋆

h(s)). (47)

For any h ∈ [H], define P̂ inf
h,s : S → S and ι⋆

h ∈ S → R by

P̂ inf
h (s) = P inf,V̂

h,s,π⋆
h

(s)(·) and and ι⋆
h(s) := ιh(s, π⋆(s)), ∀s ∈ S. (48)

By telescoping sum, we finally obtain that for any s ∈ S,

V ⋆,ρ
h (s)− V̂h(s) = ⟨1s, V ⋆,ρ

h − V̂h⟩ ≤
(

H∏

t=h

P̂ inf
j

)(
V ⋆,ρ

H+1 − V̂H+1

)
(s) +

H∑

t=h




t−1∏

j=h

P̂ inf
j


 ι⋆

t (s)

=
H∑

t=h




t−1∏

j=h

P̂ inf
j


 ι⋆

t (s),

where the equality is from V ⋆,ρ
H+1(s) = V̂H+1(s) = 0 and

(∏t−1
j=t P̂ inf

j

)
(s) = 1s.

Step 3: finishing up. For any d⋆
h ∈ D⋆

h, denote

d⋆
h:t = d⋆

h




t−1∏

j=h

P̂ inf
j


 ∈ D⋆

t .

Together with (42), the sub-optimality gap defined in (9) satisfies

SubOpt(π̂; ζ,Pρ) ≤ Es1∼ζV ⋆,ρ
1 (s1)− Es1∼ζ V̂1(s1) ≤

H∑

t=1
Est∼d⋆

1:t
ι⋆
t (st). (49)

For any h ∈ [H], we let Γ⋆
h : S → R satisfy

Γ⋆
h(s) = Γh(s, π⋆

h(s)), ∀s ∈ S. (50)

Combining Lemma 5 together with Lemma 10 will lead to

SubOpt(π̂; ζ,Pρ) ≤ 2
H∑

h=1
Esh∼d⋆

1:h
Γ⋆

h(sh).

Note that Γ⋆
h(s) = γ0

∑d
i=1 ∥ϕi(s, π⋆

h(s))1i∥Λ−1
h

for any (s, h) ∈ S × [H]. Following the definition
(37), we have d⋆

1:h ∈ D⋆
h and correspondingly,

SubOpt(π̂; ζ,Pρ) ≤ 2
H∑

h=1
Esh∼d⋆

1:h
Γ⋆

h(sh)

≤ 2γ0

H∑

h=1
max

d⋆
h

∈D⋆
h

E(sh,ah)∼d⋆
h

[
d∑

i=1
∥ϕi(sh, ah)1i∥Λ−1

h

]
,

with probability exceeding 1− δ.
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B.3.3 Proof of Lemma 10

To control |(B̂ρ
hV̂h+1)(s, a)−(Bρ

hV̂h+1)(s, a)| for any (s, a, h) ∈ S×A× [H], we first show the following
lemma, where the proof can be found in Appendix B.3.4.
Lemma 11. Suppose Assumption 1 and 2 hold. Then, for any (s, a, h) ∈ S ×A× [H], the estimated
value function V̂h+1 generated by DROP satisfies

|(B̂ρ
hV̂h+1)(s, a)− (Bρ

hV̂h+1)(s, a)|

≤




√
λ0dH + max

α∈[mins V̂h+1(s),maxs V̂h+1(s)]
∥
∑

τ∈D0
h

ϕ(sτ
h, aτ

h)ϵτ
h(α, V̂h+1)∥Λ−1

h

︸ ︷︷ ︸
T1,h




d∑

i=1
∥ϕi(s, a)1i∥Λ−1

h
,

(51)
where ϵτ

h(α, V ) =
∫

S P 0
h (s′|sτ

h, aτ
h)[V ]α(s′)ds′ − [V ]α(sτ

h+1) for any value function V : S → [0, H],
α ∈ [mins V (s), maxs V (s)] and τ ∈ D0

h.

We observe that the second term (i.e., T1,h) in (51) will become dominating, as long as λ0 is sufficiently
small. In the following analysis, we will control T1,h via uniform concentration and the concentration
of self-normalized process.

Notice that α and V̂h+1 are coupled with each other, which makes controlling T1,h intractable. To
this end, we propose the minimal ϵ0-covering set for α. Since V̂h+1(s) ∈ [0, H] for any s ∈ S, we
construct N (ϵ0, H) as the minimal ϵ0-cover of the [0, H] whose size satisfies |N (ϵ0, H)| ≤ 3H

ϵ0
. In

other words, for any α ∈ [0, H], there exists α† ∈ N (ϵ0, H), we have

|α− α†| ≤ ϵ0. (52)

Then we can rewrite T 2
1,h as

T 2
1,h = max

α∈[mins V̂h+1(s),maxs V̂h+1(s)]
∥
∑

τ∈D0
h

ϕ(sτ
h, aτ

h)
(

ϵτ
h(α, V̂h+1)− ϵτ

h(α†, V̂h+1) + ϵτ
h(α†, V̂h+1)

)
∥2

Λ−1
h

≤ max
α∈[0,H]

2∥
∑

τ∈D0
h

ϕ(sτ
h, aτ

h)
(

ϵτ
h(α, V̂h+1)− ϵτ

h(α†, V̂h+1)
)
∥2

Λ−1
h

+ 2∥
∑

τ∈D0
h

ϕ(sτ
h, aτ

h)ϵτ
h(α†, V̂h+1)∥2

Λ−1
h

≤ 8ϵ2
0K2/λ0 + 2∥

∑

τ∈D0
h

ϕ(sτ
h, aτ

h)ϵτ
h(α†, V̂h+1)∥2

Λ−1
h

︸ ︷︷ ︸
T2,h

, (53)

for some α† ∈ N (ϵ0, H), where the proof of the last inequality is postponed to Appendix B.3.5.
Alternatively,

T2,h ≤ sup
α∈N (ϵ0,H)

∥
∑

τ∈D0
h

ϕ(sτ
h, aτ

h)ϵτ
h(α, V̂h+1)∥2

Λ−1
h

. (54)

Noted that the samples in D0 are temporally statistically independent, i.e., V̂h+1 is independent of
D0

h, or to say, µ̂h. Therefore, we can directly control T2,h via the following lemma.
Lemma 12 (Concentration of self-normalized process). Let V : S → [0, H] be any fixed vector that
is independent with µ̂h and α ∈ [0, H] be a fixed constant. For any fixed h ∈ [H] and any δ ∈ (0, 1),
we have

PD


∥

∑

τ∈D0
h

ϕ(sτ
h, aτ

h)ϵτ
h(α, V )∥2

Λ−1
h

> H2 (2 · log(1/δ) + d · log(1 + Nh/λ0))


 ≤ δ.
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The proof of Lemma 12 is postponed to Appendix B.3.6. Then applying Lemma 12 and the union
bound over N (ϵ0, H), we have

PD


 sup

α∈N (ϵ0,H)
∥
∑

τ∈D0
h

ϕ(sτ
h, aτ

h)ϵτ
h(α, V̂h+1)∥2

Λ−1
h

≥ H2(2 log(H|N (ϵ0, H)|/δ) + d log(1 + Nh/λ0))




≤ δ/H,

for any fixed h ∈ [H]. According to Vershynin (2018), one has |N (ϵ0, H)| ≤ 3H
ϵ0

. Taking the union
bound for any h ∈ [H], we arrive at

sup
α∈N (ϵ0,H)

∥
∑

τ∈D0
h

ϕ(sτ
h, aτ

h)ϵτ
h(α, V̂h+1)∥2

Λ−1
h

≤ 2H2 log(3H2

ϵ0δ
) + H2d log(1 + K

λ0
), (55)

with probability exceeding 1− δ, where we utilize Nh ≤ K for every h ∈ [H] on the right-hand side.

Combining (53), (54) and (55), we have

T 2
1,h ≤ 8ϵ2

0K2/λ0 + 4H2 log(3H2

ϵ0δ
) + 2H2d log(1 + K

λ0
),

with probability at least 1− δ. Let ϵ0 = H/K and λ0 = 1. Then,

T 2
1,h ≤ 8H2 + 4H2 log(3HK

δ
) + 2H2d log(1 + K)

≤ 8H2 + 4H2 log(3HK/δ) + 2dH2 log(2K).

Let ξ0 = log(3HK/δ) ≥ 1. Note that log(2K) ≤ log(3HK/δ) = ξ0. Then, we have

T 2
1,h ≤ 8H2 + 4H2ξ0 + 2dH2ξ0 ≤ 16dH2ξ0.

Therefore, with probability exceeding 1− δ, one has

|(B̂ρ
hV̂h+1)(s, a)− (Bρ

hV̂h+1)(s, a)| ≤
(√

dH + 4
√

dξ0H
) d∑

i=1
∥ϕi(s, a)∥Λ−1

h

≤ γ0

d∑

i=1
∥ϕi(sh, ah)∥Λ−1

h
= Γh(s, a),

where γ0 = 6
√

dξ0H and the above inequality satisfies (31).

B.3.4 Proof of Lemma 11

It follows Lemma 1 and (16) that

|(B̂ρ
hV̂h+1)(s, a)− (Bρ

hV̂h+1)(s, a)| = |ϕ(s, a)⊤(ŵρ,V̂
h − wρ,V̂

h )|

= |ϕ(s, a)⊤
(

θ̂h − θh

)
|

︸ ︷︷ ︸
(i)

+ |ϕ(s, a)⊤
(

ν̂ρ,V̂
h − νρ,V̂

h

)
|

︸ ︷︷ ︸
(ii)

, ∀(s, a, h)× S ×A× [H]. (56)

We first bound the term (i), for any h ∈ [H]. By the update (12), we have

(i) = |ϕ(s, a)⊤Λ−1
h


∑

τ∈D0
h

ϕ(sτ
h, aτ

h)rτ
h


− ϕ(s, a)⊤θh|

= |ϕ(s, a)⊤Λ−1
h (Λh − λ0I) θh − ϕ(s, a)⊤θh|

= |λ0ϕ(s, a)⊤Λ−1
h θh|,
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where the second equality is from Assumption 1 and (15). Applying the Cauchy-Schwarz inequality
leads to

(i) ≤ λ0 ∥ϕ(s, a)∥Λ−1
h
∥θh∥Λ−1

h
≤
√

dλ0

d∑

i=1
∥ϕi(s, a)1i∥Λ−1

h
, (57)

where the last inequality is ∥θh∥ ≤
√

d and ∥Λ−1
h ∥ ≤ 1/λ0 such that

∥θh∥Λ−1
h
≤ ∥Λ−1

h ∥1/2∥θh∥ ≤
√

d/λ0, ∀h ∈ [H].

Next, to bound the term (ii), we define the following notations for simplicity. Let ϵτ
h(α, V ) =∫

S P 0
h (s′|sτ

h, aτ
h)[V ]α(s′)ds′ − [V ]α(sτ

h+1) for any V : S → [0, H] and α ∈ [mins V (s), maxs V (s)].
Also, we define two auxiliary functions:

ĝh,i(α) =
∫

S
µ̂h,i(s′)[V̂h+1]α(s′)ds′ − ρ(α−min

s′
[V̂h+1]α(s′)),

g0
h,i(α) =

∫

S
µ0

h,i(s′)[V̂h+1]α(s′)ds′ − ρ(α−min
s′

[V̂h+1]α(s′)).

With the new notations in hand, we can bound (ii) by

(ii) =
∣∣∣∣∣

d∑

i=1
ϕi(s, a)

(
ν̂ρ,V̂

h,i − νρ,V̂
h,i

)∣∣∣∣∣

≤
d∑

i=1
ϕi(s, a) max

α∈[mins V̂h+1(s),maxs V̂h+1(s)]

∣∣ĝh,i(α)− g0
h,i(α)

∣∣

≤
d∑

i=1
ϕi(s, a) max

α∈[mins V̂h+1(s),maxs V̂h+1(s)]

∣∣∣∣
∫

S

(
µ̂h,i(s′)− µ0

h,i(s′)
)

[V̂h+1]α(s′)ds′
∣∣∣∣

≤
d∑

i=1
max

α∈[mins V̂h+1(s),maxs V̂h+1(s)]

∣∣∣∣ϕi(s, a)
∫

S

(
µ̂h,i(s′)− µ0

h,i(s′)
)

[V̂h+1]α(s′)ds′
∣∣∣∣ , (58)

where the first inequality is due to (11), (13) as well as Lemma 6, and the last inequality is based on
ϕi(s, a) ≥ 0 for any (s, a) ∈ S ×A from Assumption 1. Moreover,
∣∣∣∣
∫

S
µ0

h,i(s′)[V̂h+1]α(s′)ds′ −
∫

S
µ̂h,i(s′)[V̂h+1]α(s′)ds′

∣∣∣∣

=

∣∣∣∣∣∣

∫

S
µ0

h,i(s′)[V̂h+1]α(s′)ds′ − 1⊤
i Λ−1

h


∑

τ∈D0
h

ϕ(sτ
h, aτ

h)[V̂h+1]α(sτ
h+1)



∣∣∣∣∣∣

=

∣∣∣∣∣∣
1

⊤
i Λ−1

h


Λh

∫

S
µ0

h(s′)[V̂h+1]α(s′)ds′ −
∑

τ∈D0
h

ϕ(sτ
h, aτ

h)[V̂h+1]α(sτ
h+1)



∣∣∣∣∣∣

=

∣∣∣∣∣∣
1

⊤
i Λ−1

h


λ0

∫

S
µ0

h(s′)[V̂h+1]α(s′)ds′ +
∑

τ∈D0
h

ϕ(sτ
h, aτ

h)
(∫

S
P 0

h (s′|sτ
h, aτ

h)[V̂h+1]α(s′)ds′ − [V̂h+1]α(sτ
h+1)

)

∣∣∣∣∣∣

=

∣∣∣∣∣∣
1

⊤
i Λ−1

h


λ0

∫

S
µ0

h(s′)[V̂h+1]α(s′)ds′ +
∑

τ∈D0
h

ϕ(sτ
h, aτ

h)ϵτ
h(α, V̂h+1)



∣∣∣∣∣∣

(59)

where the first equality is from (36), the third one is due to (15) and we let

ϵτ
h(α, V ) =

∫

S
P 0

h (s′|sτ
h, aτ

h)[V ]α(s′)ds′ − [V ]α(sτ
h+1),
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for any V : S → [0, H] and α ∈ [mins V (s), maxs V (s)]. Then, we have
∣∣∣ϕi(s, a) · (µ̂h,i − µ0

h,i)[V̂h+1]α
∣∣∣

≤

∣∣∣∣∣∣
ϕi(s, a)1⊤

i Λ−1
h


λ0

∫

S
µ0

h(s′)[V̂h+1]α(s′)ds′ +
∑

τ∈D0
h

ϕ(sτ
h, aτ

h)ϵτ
h(α, V̂h+1)



∣∣∣∣∣∣

≤ ∥ϕi(s, a)1i∥Λ−1
h


λ0

∥∥∥
∫

S
µ0

h(s′)[V̂h+1]α(s′)ds′
∥∥∥

Λ−1
h︸ ︷︷ ︸

(iii)

+
∥∥∥
∑

τ∈D0
h

ϕ(sτ
h, aτ

h)ϵτ
h(α, V̂h+1)

∥∥∥
Λ−1

h


 , (60)

where the last inequality holds due to the Cauchy-Schwarz inequality.

Moreover, the term (iii) in (60) can be further simplified to

(iii) ≤ λ0∥Λ−1
h ∥

1
2 ∥
∫

S
µ0

h(s′)[V̂h+1]α(s′)ds′∥ ≤
√

λ0H,

since |V̂h+1(s)| ≤ H for any s ∈ S and ∥Λ−1
h ∥ ≤ 1/λ0. Then we have

(ii) ≤


√λ0H + max

α∈[mins V̂h+1(s),maxs V̂h+1(s)]
∥
∑

τ∈D0
h

ϕ(sτ
h, aτ

h)ϵτ
h(α, V̂h+1)∥Λ−1

h




d∑

i=1
∥ϕi(s, a)1i∥Λ−1

h
,

(61)
for any (s, a, h) ∈ S ×A× [H]. Combining (61) with (57) finally leads to (51), which completes our
proof.

B.3.5 Proof of (53)

Since ϵτ
h(α, V ) is 2-Lipschitz with respect to α for any V : S → [0, H], i.e.

|ϵτ
h(α, V )− ϵτ

h(α†, V )| ≤2|α− α†| ≤ 2ϵ0.

Therefore, for any α ∈ [0, H], one has

∥
∑

τ∈D0
h

ϕ(sτ
h, aτ

h)
(
ϵτ

h(α, V )− ϵτ
h(α†, V )

)
∥2

Λ−1
h

=
∑

τ,τ ′∈D0
h

ϕ(sτ
h, aτ

h)⊤Λ−1
h ϕ(sτ ′

h , aτ ′
h )
[(

ϵτ
h(α, V )− ϵτ

h(α†, V )
) (

ϵτ ′
h (α, V )− ϵτ ′

h (α†, V )
)]

≤
∑

τ,τ ′∈D0
h

ϕ(sh, aτ
h)⊤Λ−1

h ϕ(sτ ′
h , aτ ′

h ) · 4ϵ2
0

≤4ϵ2
0N2

h/λ0,

where the last inequality is based on ∥ϕ(s, a)∥ ≤ 1 and λmin(Λh) ≥ λ0 for any (s, a, h) ∈ S ×A× [H]
such that

∑

τ,τ ′∈D0
h

ϕ(sτ
h, aτ

h)⊤Λ−1
h ϕ(sτ ′

h , aτ ′
h ) =

∑

τ,τ ′∈D0
h

∥ϕ(sτ
h, aτ

h)∥2 · ∥ϕ(sτ ′
h , aτ ′

h )∥2 · ∥Λ−1
h ∥ ≤ N2

h/λ0. (62)

Thus,

max
α∈[0,H]

∥
∑

τ∈D0
h

ϕ(sτ
h, aτ

h)
(

ϵτ
h(α, V̂h+1)− ϵτ

h(α†, V̂h+1)
)
∥2

Λ−1
h

≤ 4ϵ2
0N2

h/λ0 ≤ 4ϵ2
0K2/λ0,

due to the fact Nh ≤ K for any h ∈ [H], which completes the proof of (53).
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B.3.6 Proof of Lemma 12

For any fixed h ∈ [H] and τ ∈ D0
h, we define the σ-algebra

Fh,τ = σ({(sj
h, aj

h)}(τ+1)∧|Nh|
j=1 , {rj

h, sj
h+1}τ

j=1).

As shown in Jin et al. (2021, Lemma B.2), for any τ ∈ D0
h, we have ϕ(sτ

h, aτ
h) is Fh,τ−1-measurable and

ϵτ
h(α, V ) is Fh,τ−1-measurable. Hence {ϵτ

h(α, V )}τ∈D0
h

is stochastic process adapted to the filtration
{Fh,τ}τ∈D0

h
. Then, we have

ED0
h
[ϵτ

h(α, V )|F ] =
∫

S
P 0

h (s′|sτ
h, aτ

h)[V ]α − ED0
h

[
[V (sτ

h+1)]α|{(sj
h, aj

h)}(τ)∧Nh

j=1 , {rj
h, sj

h+1}τ−1
j=1

]

=
∫

S
P 0

h (s′|sτ
h, aτ

h)[V ]α − ED0
h

[
[V (sτ

h+1)]α
]

= 0.

Note that ϵτ
h(α, V ) =

∫
S P 0

h (s′|sτ
h, aτ

h)[V ]α − [V (sτ
h+1)]α for any V ∈ [0, H]S and α ∈ [0, H]. Then,

we have

|ϵτ
h(α, V )| ≤ H.

Hence, for the fixed h ∈ [H] and all τ ∈ [H], the random variable ϵτ
h(α, V ) is mean-zero and

H-sub-Gaussian conditioning on Fh,τ−1. Then, we invoke the Lemma 2 with ητ = ϵτ
h(α, V ) and

xτ = ϕ(sτ
h, aτ

h). For any δ > 0, we have

PD


∥

∑

τ∈D0
h

ϕ(sτ
h, aτ

h)ϵτ
h(α, V )∥2

Λ−1
h

> 2H2 log( det(Λ1/2
h )

δ det(λ0Id)1/2 )


 ≤ δ.

Together with the facts that det(Λ1/2
h ) = (λ0 + Nh)d/2 and det(λ0Id)1/2 = λ

d/2
0 , we can conclude the

proof of Lemma 12.

B.4 Proof of Corollary 1

Before continuing, we introduce some additional notations that will be used in the following analysis.
For any (h, i) ∈ [H]× [d], define Φ⋆

h,i : S → Rd×d and b⋆
h,i : S → R by

Φ⋆
h,i(s) = (ϕi(s, π⋆

h(s))1i)(ϕi(s, π⋆
h(s))1i)⊤ ∈ Rd×d, (63)

b⋆
h,i(s) = (ϕi(s, π⋆

h(s))1i)⊤Λ−1
h (ϕi(s, π⋆

h(s))1i). (64)

With these notations in hand and recalling (17) in Theorem 1, one has

V ⋆,ρ
1 (ζ)− V π̂,ρ

1 (ζ) ≤ 2γ0

H∑

h=1

d∑

i=1
sup

d⋆
h

∈D⋆
h

Es∼d⋆
h

√
b⋆

h,i(s)

≤ 2γ0

H∑

h=1

d∑

i=1
sup

d⋆
h

∈D⋆
h

√
Es∼d⋆

h
b⋆

h,i(s)

= 2γ0

H∑

h=1
sup

d⋆
h

∈D⋆
h

d∑

i=1

√
Es∼d⋆

h
b⋆

h,i(s), (65)

where the second inequality is due to the Jensen’s inequality and concavity.

In the following, we will control the key term
∑d

i=1

√
Es∼d⋆

h
b⋆

h,i(s) for any d⋆
h ∈ D⋆

h. Before continuing,
we first denote

Cb
h = {(s, a) : db

h(s, a) > 0}.
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Considering any (s, a) s.t. db
h(s, a) > 0 and from Lemma 9, the following lower bound holds with

probability at least 1− 3δ, i.e.,

Nh(s, a) ≥ Kdb
h(s, a)
8 − 5

√
Kdb

h(s, a) log(KH

δ
) ≥ Kdb

h(s, a)
16 , (66)

as long as
K ≥ c0

log(KH/δ)
db

min
≥ c0

log(KH/δ)
db

h(s, a)
(67)

for some sufficiently large c0 and db
min = minh,s,a{db

h(s, a) : db
h(s, a) > 0}. Therefore,

Λh =
∑

(s,a)∈Cb
h

Nh(s, a)ϕ(s, a)ϕ(s, a)⊤ + Id

⪰
∑

(s,a)∈Cb
h

Kdb
h(s, a)
16 ϕ(s, a)ϕ(s, a)⊤ + Id

⪰ K

16Edb
h
[ϕ(s, a)ϕ(s, a)⊤] + Id.

From Assumption 3,

Edb
h
[ϕ(s, a)ϕ(s, a)⊤] ⪰ max

P ∈Pρ(P 0)

d ·min{Ed⋆,P
h

ϕ2
i (s, a), 1/d}

C⋆
rob

1i,i, ∀i ∈ [d]

Thus, for any i ∈ [d],

Λh ⪰ Id +
Kd ·min{Ed⋆

h
ϕ2

i (s, π⋆
h(s)), 1/d}

16C⋆
rob

· 1i,i. (68)

Here, 1i,j represents a matrix with the (i, j)-th coordinate as 1 and all other elements as 0. Conse-
quently,

Es∼d⋆
h
b⋆

h,i(s) = Es∼d⋆
h

Tr(Φ⋆
h,i(s)Λ−1

h ) = Tr(Es∼d⋆
h
Φ⋆

h,i(s)Λ−1
h )

≤
Ed⋆

h
ϕ2

i (s, π⋆
h(s))

1 + Kd ·min{Ed⋆
h
ϕ2

i (s, π⋆
h(s)), 1/d}/16C⋆

rob
, (69)

where the second equality is because the trace is a linear mapping and the last inequality holds by
Lemma 7. We further define Eh,larger = {i : E(s,a)∼d⋆

h
ϕ2

i (s, a) ≥ 1
d}. Due to Assumption 1, we first

claim that
|Eh,larger| ≤

√
d, (70)

where the proof can be found at the end of this subsection.

By utilizing Assumption 3, we discuss the following three cases.

• If E(s,a)∼d⋆
h
ϕ2

i (s, a) = 0 (i /∈ Eh,larger), it is easily observed that (69) can be controlled by
⟨d⋆

h, b⋆
h,i⟩ ≤ 0.

• If 0 < E(s,a)∼d⋆
h
ϕ2

i (s, a) ≤ 1
d (i /∈ Eh,larger),we have

(69) ≤
16C⋆

rob · Ed⋆
h
ϕ2

i (s, π⋆
h(s))

Kd · Ed⋆
h
ϕ2

i (s, π⋆
h(s)) = 16C⋆

rob
Kd

. (71)

• If i ∈ Eh,larger, i.e., 1
d ≤ E(s,a)∼d⋆

h
ϕ2

i (s, a) ≤ 1, we have

(69) ≤
16C⋆

rob · Ed⋆
h
ϕ2

i (s, π⋆
h(s))

K
≤ 16C⋆

rob
K

, (72)

where the last inequality holds due to ϕ2
i (s, π⋆

h(s)) ≤ 1.
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Summing up the above three cases and (70), we have

d∑

i=1

√
Es∼d⋆

h
b⋆

h,i(s) ≤
∑

i∈Eh,larger

√
Es∼d⋆

h
b⋆

h,i(s) +
∑

i/∈Eh,larger

√
Es∼d⋆

h
b⋆

h,i(s)

≤ |Eh,larger|
√

16C⋆
rob

K
+ |d− Eh,larger|

√
16C⋆

rob
Kd

≤ 8
√

C⋆
rob

√
d

K
.

Together with (65) and setting γ0 = 6
√

dH
√

log(3HK/δ), one obtains

V ⋆,ρ
1 (ζ)− V π̂,ρ

1 (ζ) ≤ 2γ0

H∑

h=1
sup

d⋆
h

∈D⋆
h

d∑

i=1

√
Es∼d⋆

h
b⋆

h,i(s)

≤ 96dH2
√

C⋆
rob/K

√
log(3HK/δ),

with probability at least 1− 4δ, as long as K ≥ c0
log(KH/δ)

db
min

for some universal constant c0.

Proof of (70). Let Ẽh,larger = {i : E(s,a)∼d⋆
h
ϕi(s, a) ≥ 1√

d
}.

• We first show that |Ẽh,larger| should be no larger than
√

d by contradiction. Suppose |Ẽh,larger| >√
d. Then, there are more than

√
d coordinates of E(s,a)∼d⋆

h
ϕ(s, a) ∈ Rd that is larger than

1/
√

d. In other words, ∑

i∈Ẽh,larger

E(s,a)∼d⋆
h
ϕi(s, a) > 1, (73)

which is equivalent to

max
(s,a)∈S×A

∥ϕ(s, a)∥1 ≥ E(s,a)∼d⋆
h
∥ϕ(s, a)∥1 ≥ E(s,a)∼d⋆

h

∑

i∈Ẽh,larger

ϕi(s, a) > 1, (74)

where the last inequality is from the linearity of the expectation mapping. It contradicts to
our Assumption 2, which implies ∥ϕ(s, a)∥1 = 1 for any (s, a) ∈ S ×A× [H].

• Then, we show that Ẽh,larger ⊆ Eh,larger: For every element i ∈ Ẽh,larger, we have

1
d
≤ (E(s,a)∼d⋆

h
ϕi(s, a))2 ≤ E(s,a)∼d⋆

h
ϕ2

i (s, a),

where the second inequality is due to the Jensen’s inequality. Thus, Ẽh,larger ⊆ Eh,larger.

Combining these two arguments, we show that |Eh,larger| ≥
√

d.

B.5 Proof of Corollary 2

We first establish the following lemma to control the sub-optimality, under the full feature coverage.
Lemma 13. Consider δ ∈ (0, 1). Suppose Assumption 2, Assumption 4 and all conditions in Lemma
4 hold. For any h ∈ [H], if Nh ≥ max{512 log(2Hd/δ)/κ2, 4/κ}, we have

d∑

i=1
∥ϕi(s, a)1i∥Λ−1

h
≤ 2√

Nhκ
, ∀(s, a) ∈ S ×A,

with probability exceeding 1− δ.
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Proof. From Lemma 4 and Assumption 4, one has

∥ϕi(s, a)1i∥Λ−1
h
≤ 2ϕi(s, a)√

Nhκ
, ∀(i, s, a) ∈ [d]× S ×A,

as long as Nh ≥ max{512 log(2Hd/δ)/κ2, 4/κ}. In addition,

1 =
∫

S
P 0

h (s′|s, a)ds′ =
∫

S
ϕ(s, a)⊤µ0

h(s′)ds′ =
d∑

i=1
ϕi(s, a)

∫

S
µ0

h,i(s′)ds′ =
d∑

i=1
ϕi(s, a), (75)

where the last equality is implied by Assumption 2. Therefore,

d∑

i=1
∥ϕi(s, a)1i∥Λ−1

h
≤

d∑

i=1

2ϕi(s, a)√
Nhκ

≤ 2√
Nhκ

.

From (66), we have Nh ≥ K
16 with probability exceeding 1− 3δ, as long as K obeys (67). Together

will Lemma 13, with probability exceeding 1− 4δ, one has

d∑

i=1
∥ϕi(s, a)1i∥Λ−1

h
≤ 8√

Kκ
,∀(s, a, h) ∈ S ×A× [H],

as long as K ≥ max{c0 log(2Hd/δ)/κ2, c0 log(KH/δ)/db
min} for some sufficiently large universal

constant c0. It follows Theorem 1 that

SubOpt(π̂; ζ,Pρ) ≤ 96
√

dH2
√

log(3HK/δ)
Kκ

,

which completes the proof.

C Analysis for DROP-V: Algorithm 3

C.1 The implementation of DROP-V

The implementation of DROP-V is detailed in Algorithm 3, which can be divided into three steps.
First, we carefully design Three-fold-subsampling (cf. Algorithm 4), to generate two almost
temporally statistically independent datasets, D̃0,D0, which are also independent from each other.
The theoretical analysis of Three-fold-subsampling is postponed to Appendix C.2. The second
step is to construct a variance estimator σ̂2

h for any h ∈ [H] via D̃0, which is independent of D0
h. The

key idea is to utilize the intermediate results {Ṽh}H+1
h=1 of running DROP on D̃0 to approximate the

variance as (22). With the variance estimator at our hands, the last step is to apply the weighted
ridge regression to construct the empirical variance-aware robust Bellman operator via (25)-(28),
which is slightly different from DROP.

C.2 Theoretical guarantee for Three-fold-subsampling

As the three-fold subsampling method presented in Appendix C.1, it is slightly different from the
two-fold variant. Thus, we establish the following lemma to show that (76) is a valid high-probability
lower bound of Nmain(s) for any s ∈ S and h ∈ [H], which follows the proof of Lemma 3 in Li et al.
(2024).
Lemma 14. Consider δ ∈ (0, 1). With probability at least 1− 3δ, if N trim

h (s) satisfies (76) for every
s ∈ S and h ∈ [H], then the following bounds hold, i.e.,

N trim
h (s) ≤ Nmain

h (s), N trim
h (s) ≤ Nvar

h (s), ∀(s, h) ∈ S × [H]. (77)
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Algorithm 3 Distributionally Robust Pessimistic Least-Squares Value Iteration with Variance
Estimation (DROP-V)

Input: Datasets D̃0,D0 ← Three-fold-subsampling(D); feature map ϕ(s, a) for (s, a) ∈ S × A;
γ1, λ1 > 0.

Construct the variance estimator: Obtain (Ṽ , π̃)← DROP(D̃0, ϕ)
1: For every h ∈ [H], compute Λ̃h =

∑
τ∈D0

h
ϕ(sτ

h, aτ
h)ϕ(sτ

h, aτ
h)⊤ + Id and

νh,1 = (Λ̃h)−1
( ∑

τ∈D̃0
h

ϕ(sτ
h, aτ

h)Ṽ 2
h+1(sτ

h+1)
)

, νh,2 = (Λ̃h)−1
( ∑

τ∈D̃0
h

ϕ(sτ
h, aτ

h)Ṽh+1(sτ
h+1)

)
.

2: Update σ̂2
h(s, a) via (22), for any (s, a) ∈ S ×A.

Initialization: Set Q̂H+1(·, ·) = 0 and V̂H+1(·) = 0.
3: for step h = H, H − 1, · · · , 1 do
4: Σh =

∑
τ∈D0

h

ϕ(sτ
h,aτ

h)ϕ(sτ
h,aτ

h)⊤

σ̂2
h

(sτ
h

,aτ
h

)
+ λ1Id.

5: θ̂σ
h = Σ−1

h

(∑
τ∈D0

h

ϕ(sτ
h,aτ

h)rτ
h

σ̂2
h

(sτ
h

,aτ
h

)

)
.

6: for feature i = 1, · · · , d do
7: Update ν̂ρ,σ,V̂

h,i via (28).
8: end for
9: ŵρ,σ,V̂

h = θ̂h + ν̂ρ,σ,V̂
h .

10: Q̄h(·, ·) = ϕ(·, ·)⊤ŵρ,σ,V̂
h − γ1

∑d
i=1 ∥ϕi(·, ·)1i∥Σ−1

h
.

11: Q̂h(·, ·) = min
{

Q̄h, H − h + 1
}

+.
12: π̂h(·) = arg maxa∈A Q̂h(·, a).
13: V̂h(·) = Q̂h(·, π̂h(·)).
14: end for
Ouput: π̂ := {π̂h}H

h=1

Algorithm 4 Three-fold-subsampling
Input: Batch dataset D;

1: Split Data: Split D into three haves Daux, Dmain and Dvar, where |Daux| = |Dmain| = |Dvar| =
K/3. Denote Nmain

h (s) (resp. Naux
h (s) or Nvar

h (s)) as the number of sample transitions from
state s at step h in Dmain (resp. Daux or Dvar).

2: Construct the high-probability lower bound N trim
h (s) by Daux: For each s ∈ S and

1 ≤ h ≤ H, compute

N trim
h (s) = max{Naux

h (s)− 6
√

Naux
h (s) log KH

δ
, 0}. (76)

3: Construct the almost temporally statistically independent Dmain,sub and Dvar,sub: Let
Dmain

h (s) (resp. Dvar
h (s)) be the set of all transition-reward sample tuples at state s and step h

from Dmain (resp. Dvar). For any (s, h) ∈ S × [H], subsample min{N trim
h (s), Nmain

h (s)} (resp.
min{N trim

h (s), Nvar
h (s)}) sample tuples randomly from Dmain

h (s) (resp. Dvar
h (s)), denoted as

Dmain,sub (resp. Dmain,sub).
Ouput: Dmain,sub, Dvar,sub.

In addition, with probability at least 1− 4δ, the following bound also holds:

N trim
h (s, a) ≥ Kdb

h(s, a)
12 −

√
6Kdb

h(s, a) log KH

δ
,∀(s, a, h) ∈ S ×A× [H]. (78)
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Proof. We begin with proving the first claim (77). Let SDaux ⊂ S be the collection of all the states
appearing for the dataset Daux, where |SDaux | ≤ K/3. Without loss of generality, we assume that
Daux contains the first K/3 trajectories and satisfies

Naux
h (s) =

K/3∑

k=1
1(sk

h = s), ∀(s, h) ∈ S × [H],

which can be viewed as the sum of K/3 independent Bernoulli random variables. By the union bound
and the Bernstein inequality,

P

(
∃(s, h) ∈ SDaux × [H] :

∣∣∣∣Naux
h (s)− K

3 db
h(s)

∣∣∣∣ ≥ t

)
≤

∑

s∈SDaux ,h∈[H]

P

(∣∣∣∣Naux
h (s)− K

3 db
h(s)

∣∣∣∣ ≥ t

)

≤ 2KH

3 exp
(
− t2/2

vs,h + t/3

)
,

for any t ≥ 0, where

vs,h = K

3 Var[1(sk
h = s)] ≤ Kdb

h(s)
3 .

Here, we abuse the notation Var to represent the variance of the Bernoulli distributed 1(sk
h = s).

Then, with probability at least 1− 2δ/3, we have
∣∣∣∣Naux

h (s)− K

3 db
h(s)

∣∣∣∣ ≤
√

2vs,h log(KH

δ
) + 2

3 log(KH

δ
)

≤
√

Kdb
h(s) log(KH

δ
) + log(KH

δ
), ∀(s, h) ∈ S × [H]. (79)

Similarly, with probability at least 1− 2δ/3, we have
∣∣∣∣Nmain

h (s)− K

3 db
h(s)

∣∣∣∣ ≤
√

Kdb
h(s) log(KH

δ
) + log(KH

δ
), ∀(s, h) ∈ S × [H]. (80)

Therefore, combining (79) and (80) leads to

∣∣Nmain
h (s)−Naux

h (s)
∣∣ ≤ 2

√
Kdb

h(s) log(KH

δ
) + 2 log(KH

δ
), ∀(s, h) ∈ S × [H], (81)

with probability at least 1− 4δ/3. Then, we consider the following two cases

• Case 1: Naux
h (s) ≤ 36 log KH

δ . One has

N trim
h (s) = max{Naux

h (s)− 6
√

Naux
h (s) log HK

δ
, 0} = 0 ≤ Nmain

h (s).

• Case 2: Naux
h (s) > 36 log KH

δ . From (79), we have

K

3 db
h(s) +

√
Kdb

h(s) log(KH

δ
) + log(KH

δ
) ≥ Naux

h (s) ≥ 36 log KH

δ
,

implying
Kdb

h(s) ≥ 72 log KH

δ
.

Also from (79),

Naux
h (s) ≥ K

3 db
h(s)−

√
Kdb

h(s) log(KH

δ
)− log(KH

δ
) ≥ K

6 db
h(s).
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Therefore, with probability exceeding 1− 4δ/3

N trim
h (s) = Naux

h (s)− 6
√

Naux
h (s) log HK

δ
≤ Naux

h (s)−
√

6
√

Kdb
h(s) log HK

δ

≤ Naux
h (s)− 2

√
Kdb

h(s) log HK

δ
− 1

3

√
Kdb

h(s) log HK

δ

≤ Naux
h (s)− 2

√
Kdb

h(s) log HK

δ
− 2 log HK

δ

≤ Nmain
h (s),

where the last inequality is from (81).

Following the same arguments, we also have

|Nvar
h (s)−Naux

h (s)| ≤ 2
√

Kdb
h(s) log(KH

δ
) + 2 log(KH

δ
), ∀(s, h) ∈ S × [H]. (82)

holds, with probability at least 1− 4δ/3. Therefore, we can also guarantee that N trim
h (s) ≤ Nvar

h (s)
with probability at least 1− 4δ/3, for any (s, h) ∈ S × [H].

Putting these two results together, we prove the first claim (77).

Next, we will establish the second claim (78). To begin with, we claim the following statement holds
with probability exceeding 1− 2δ/3,

N trim
h (s, a) ≥ N trim

h (s)πb
h(a|s)−

√
2N trim

h (s)πb
h(a|s) log(KH

δ
)− log KH

δ
, ∀(s, a, h) ∈ S ×A× [H],

(83)
conditioned on the high-probability event that the first part (77) holds. In the sequel, we discuss the
following two cases, provided that the inequality (83) holds.

• Case 1:Kdb
h(s, a) = Kdb

h(s)πb
h(a|s) > 864 log KH

δ . From (79), with probability exceeding
1− 2δ/3, one has

Naux
h (s) ≥ K

3 db
h(s)−

√
Kdb

h(s) log(KH

δ
)− log(KH

δ
) ≥ K

6 db
h(s) ≥ 144 log KH

δ
.

Together with the definition (76), we have

N trim
h (s) ≥ Naux

h (s)− 6
√

Naux
h (s) log KH

δ
≥ 1

2Naux
h (s) ≥ K

12db
h(s).

Therefore,
N trim

h (s)πb
h(a|s) ≥ K

12db
h(s)πb

h(a|s) ≥ 72 log KH

δ
.

Combining with (83), one can derive

N trim
h (s, a) ≥ Kdb

h(s, a)
12 −

√
1
6Kdb

h(s, a) log(KH

δ
)− log KH

δ

≥ Kdb
h(s, a)
12 −

√
6Kdb

h(s, a) log KH

δ
.

with probability exceeding 1− 4δ/3

• Case 2: Kdb
h(s, a) ≤ 864 log KH

δ . From (76), one has

N trim
h (s, a) ≥ 0 ≥ Kdb

h(s, a)
12 −

√
6Kdb

h(s, a) log KH

δ
.
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By integrating these two cases, we can claim (78) is valid with probability exceeding 1− 4δ/3, as
long as the inequality (83) holds under the condition of the high-probability event described in the
the first part (77). Thus, the second claim (78) holds with probability at least 1− 4δ.

Proof of inequality (83). First, we can observe that the inequality (83) holds if N trim
h (s)πb

h(s, a) ≤
2 log KH

δ . Thus, we focus on the other case that N trim
h (s)πb

h(s, a) > 2 log KH
δ . Denote that

E = {(s, a, h) ∈ S ×A× [H]| N trim
h (s)πb

h(a|s) > 2 log(KH

δ
)}.

Noticed that from Algorithm 4, one has that |E| ≤ KH
3 . Supposing that the first claim (77) holds,

one has N trim
h (s) = min{N trim

h (s), Nmain
h (s), Nvar

h (s)}. Therefore, N trim
h (s, a) can be viewed as the

sum of N trim
h (s) independent Bernoulli random variables, where each is with the mean πb

h(a|s). Then,
by the union bound and the Bernstein inequality,

P
(
∃(s, a, h) ∈ E :

∣∣N trim
h (s, a)−N trim

h (s)πb
h(a|s)

∣∣ ≥ t
)

≤
∑

(s,a,h)∈E
P
(∣∣N trim

h (s, a)−N trim
h (s)πb

h(a|s)
∣∣ ≥ t

)
≤ 2KH

3 exp
(
− t2/2

vs,h + t/3

)
,

for any t ≥ 0, where

vs,h = N trim
h (s) Var[1((sk

h, ak
h) = (s, a))] ≤ N trim

h (s)πb
h(a|s)

A little algebra yields that with probability at least 1− 2δ/3, one can obtain

∣∣N trim
h (s, a)−N trim

h (s)πb
h(a|s)

∣∣ ≤
√

2vs,h log(KH

δ
) + 2

3 log(KH

δ
)

≤
√

2N trim
h (s)πb

h(a|s) log(KH

δ
) + log(KH

δ
), ∀(s, h) ∈ S × [H].

(84)

Therefore, with probability 1− 2δ/3, one can obtain

N trim
h (s, a) ≥ N trim

h (s)πb
h(a|s)−

√
2N trim

h (s)πb
h(a|s) log(KH

δ
)− log(KH

δ
),

for any (s, a, h) ∈ E , conditioned on the first claim (77) holds.

In addition, the following lemma guarantees that the samples in Dmain,sub and Dvar,sub are statistically
independent with probability exceeding 1− 3δ. Before continuing, we denote Di.i.d. as the dataset
containing N trim

h (s) independent transition-reward sample tuples for every (s, h) ∈ S × [H], following
πb

h and P 0
h .

Lemma 15 (Modified Lemma 7, Li et al. (2024)). With probability exceeding 1− 3δ, Dmain,sub and
Dvar,sub generated by Algorithm 4 as well as Di.i.d. have the same distributions.

C.3 Proof of Theorem 2

To show that Theorem 2 holds, we first establish the following theorem that considers the temporally
independent dataset, where the proof is deferred to the next subsection.
Theorem 4. Consider the dataset D0 and D̃0 used for constructing the variance estimator in DROP-V
and δ ∈ (0, 1). Suppose that both D0 and D̃0 contain Nh < K sample tuples at every h ∈ [H]. Assume
that conditional on {Nh}h∈[H], the sample tuples in D0 and D̃0 are statistically independent, where

Nh(s, a) ≥ Kdb
h(s, a)
24 , ∀(s, a, h) ∈ S ×A× [H].
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Suppose that Assumption 1, 2, and 3 hold. In DROP-V, we set

λ1 = 1/H2, γ1 = ξ1
√

d, where ξ1 = 66 log(3HK/δ). (85)

Then, with probability at least 1− 7δ, {π̂h}H
h=1 generated by DROP-V satisfies

SubOpt(π̂; ζ,Pρ) ≤ Õ(
√

d)
H∑

h=1

d∑

i=1
max

d⋆
h

∈D⋆
h

Ed⋆
h

[
∥ϕi(sh, ah)1i∥(Σ⋆

h
)−1

]
,

if
√

d ≥ H and K ≥ max{Õ(H4/κ2), Õ(H6d/κ)}, where Σ⋆
h is defined in (30).

As the construction in Algorithm 4, {N trim
h (s)}s∈S,h∈[H] is computed using Daux that is independent

of D0 := Dmain,sub and D̃0 := Dvar,sub. Moreover, from Lemma 14 and Lemma 15 in the Section
C.2, {N trim

h (s)}s∈S is a valid sampling number and D0
h and D̃0

h can be treated as being temporally
statistically independent samples and

∑

s∈S
N trim

h (s) ≥ K/24,

with probability exceeding 1− 4δ, as long as K ≥ c1 log KH
δ /db

min for some sufficiently large c1.

Therefore, by invoking Theorem 3 with Nh :=
∑

s∈S N trim(s), we have

SubOpt(π̂; ζ,Pρ) ≤ Õ(
√

d)
H∑

h=1

d∑

i=1
max

d⋆
h

∈D⋆
h

Ed⋆
h

[
∥ϕi(sh, ah)1i∥(Σ⋆

h
)−1

]
,

with probability exceeding 1− 11δ, if
√

d ≥ H and K ≥ max{Õ(H4/κ2), Õ(H6d/κ), Õ(1/db
min)}.

C.4 Proof of Theorem 4

Before starting, we first introduce some notations that will be used in the following analysis. First,
we use

ισ
h(s, a) = Bρ,σ

h V̂h+1(s, a)− Q̂h(s, a), ∀(s, a, h) ∈ S ×A× [H], (86)

to represent the model evaluation error at the h-th step of our proposed Algorithm 3. In addition,
For any h ∈ [H], we let Γ⋆,σ

h : S → R satisfy

Γ⋆,σ
h (s) = Γσ

h(s, π⋆
h(s)), ∀s ∈ S. (87)

Also, denote VP 0
h
V (s, a) = max{1, VarP 0

h
[V ](s, a)} for any V : S → [0, H] and any (s, a, h) ∈

S ×A× [H]. Similar to Lemma 10, we have the following key lemma, where the proof can be found
in Appendix C.5.
Lemma 16. Suppose all the assumptions in Theorem 4 hold and follow all the parameters setting in
(85). In addition, suppose that the number of trajectories K ≥ max{Õ(H4/κ2), Õ(H6d/κ)}.Then for
any (s, a, h) ∈ S ×A× [H], with probability at least 1− 7δ, one has

|(B̂ρ,σ
h V̂h+1)(s, a)− (Bρ

hV̂h+1)(s, a)| ≤ Γσ
h(s, a) := γ1

d∑

i=1
∥ϕi(s, a)1i∥Σ−1

h
. (88)

In addition,

γ1

d∑

i=1
∥ϕi(s, a)1i∥Σ−1

h
≤ 2γ1

d∑

i=1
∥ϕi(s, a)1i∥(Σ⋆

h
)−1 .
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Next, following the same steps in Appendix B.3.2, with probability exceeding 1− 7δ, one has

SubOpt(π̂; ζ,Pρ) ≤ 2γ1

H∑

h=1

d∑

i=1
max

d⋆
h

∈D⋆
h

Ed⋆
h

[
∥ϕi(sh, ah)1i∥Σ−1

h

]

≤ 4γ1

H∑

h=1

d∑

i=1
max

d⋆
h

∈D⋆
h

Ed⋆
h

[
∥ϕi(sh, ah)1i∥(Σ⋆

h
)−1

]
.

C.5 Proof of Lemma 16

Similar to Lemma 11, we first establish the following lemma, which proof is postponed to Appendix
C.5.1.
Lemma 17. Suppose the Assumption 1 and 2 hold. Then, for any (s, a, h) ∈ S ×A× [H] and any
Vh+1 : S → [0, H], we have

|(B̂ρ,σ
h Vh+1)(s, a)− (Bρ

hVh+1)(s, a)|

≤


2
√

λ1dH + max
α∈[mins Vh+1(s),maxs Vh+1(s)]

∥
∑

τ∈D0
h

ϕ(sτ
h, aτ

h)
σ̂h(sτ

h, aτ
h)ϵτ,σ

h (α, Vh+1)∥Σ−1
h




d∑

i=1
∥ϕi(s, a)1i∥Σ−1

h
,

(89)

where ϵτ,σ
h (α, V ) =

∫
S

P 0
h (s′|sτ

h,aτ
h)[V ]α(s′)ds′−[V ]α(sτ

h+1)

σ̂h(sτ
h

,aτ
h

)
for any V : S → [0, H], any τ ∈ D0

h and
α ∈ [mins V (s), maxs V (s)].

Letting λ1 = 1/H2 in (89), then Lemma 17 becomes

|(B̂ρ,σ
h V̂h+1)(s, a)− (Bρ,σ

h V̂h+1)(s, a)|

≤




2
√

d + max
α∈[mins V̂h+1(s),maxs V̂h+1(s)]

∥
∑

τ∈D0
h

ϕ(sτ
h, aτ

h)
σ̂(sτ

h, aτ
h)ϵτ,σ

h (α, V̂h+1)∥Σ−1
h

︸ ︷︷ ︸
M1,h




d∑

i=1
∥ϕi(s, a)1i∥Σ−1

h
.

(90)
Due to the correlation between α and V̂h+1, we also apply the uniform concentration with the minimal
ϵ1-covering set N (ϵ1, H) for α defined in (52). Similar to (53), there exists α† ∈ N (ϵ1, H) s.t.

M2
1,h ≤ 8ϵ2

1H2K2 + 2

∥∥∥∥∥∥
∑

τ∈D0
h

ϕ(sτ
h, aτ

h)
σ̂h(sτ

h, aτ
h)ϵτ,σ

h (α†, V̂h+1)

∥∥∥∥∥∥

2

Σ−1
h︸ ︷︷ ︸

M2,h

≤ 8 + 2M2,h, (91)

where the second inequality holds if ϵ1 ≤ 1
HK . Without the loss of generality, we let ϵ1 = 1

HK in the
following analysis. The detailed proof of (91) is postponed to Appendix C.5.2.

Next, we will focus on bound the term M2,h. Before proceeding, we first define the σ-algebra

Fh,τ = σ({(sj
h, aj

h)}(τ+1)∧Nh

j=1 , {rj
h, sj

h+1}τ
j=1),

for any fixed h ∈ [H] and τ ∈ D0
h. Noted that the samples in D0 are temporally statistically

independent, i.e., V̂h+1 is independent of D0
h for any h ∈ [H]. In addition, {σ̂2

h}h∈[H] is constructed
using an additional dataset D̃0, which is also independent of D0. Thus, for any h ∈ [H] and τ ∈ D0

h,
we have ϕ(sτ

h,aτ
h)

σ̂h(sτ
h

,aτ
h

)
is Fh,τ−1-measurable and | ϕ(sτ

h,aτ
h)

σ̂h(sτ
h

,aτ
h

)
| ≤ 1. Also, ϵτ,σ

h (α†, V̂h+1) is Fh,τ -measurable,

E[ϵτ,σ
h (α†, V̂h+1)|Fh,τ−1] = 0, |ϵτ,σ

h (α†, V̂h+1)| ≤ H,
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It follows the independence between σ̂2
h and D0

h that

VarP 0
h

[∫
S P 0

h (s′|sτ
h, aτ

h)[V̂h+1]α(s′)ds′ − [V̂h+1]α(s)
σ̂h(sτ

h, aτ
h)

]
(sτ

h, aτ
h) =

VarP 0
h
[V̂h+1]α(sτ

h, aτ
h)

σ̂2
h(sτ

h, aτ
h)

≤
VP 0

h
V̂h+1(sτ

h, aτ
h)

σ̂2
h(sτ

h, aτ
h) , (92)

for any h ∈ [H] and τ ∈ D0
h, where the inequality is from VP 0

h
V̂h+1(sτ

h, aτ
h) =

max{1, VarP 0
h
[V̂h+1](sτ

h, aτ
h)}.

The analysis of the improvement on sample complexity heavily relies on the following lemma about
the variance estimation error, where the proof is deferred to Appendix C.5.3.
Lemma 18. Suppose that D0 and D̃0 satisfy all the conditions imposed in Theorem 4. Assume the
Assumption 1, 2 and 3 hold . For any h ∈ [H] and given the nominal transition kernel P 0

h : S×A → S,
the V̂h+1 generated by the DROP-V on D0 and σ̂2

h generated by DROP on D̃0 satisfies

∣∣∣VP 0
h
V ⋆,ρ

h+1(sτ
h, aτ

h)− σ̂2
h(sτ

h, aτ
h)
∣∣∣ ≤ 70cbH3√d√

Kκ
, ∀τ ∈ D0

h, (93)

∣∣∣VP 0
h
V̂h+1(sτ

h, aτ
h)− VP 0

h
V ⋆,ρ

h+1(sτ
h, aτ

h)
∣∣∣ ≤ 320cbH3√d√

Kκ
, ∀τ ∈ D0

h, (94)

where cb = 12 log(3HK/δ) and K ≥ c1 log(2Hd/δ)H4/κ2 for some sufficiently large universal
constant c1, with probability at least 1− 6δ.

Notice that 1 ≤ σ̂2
h(s, a) ≤ H2 for any (s, a, h) ∈ S ×A× [H]. Invoking the Lemma 18, we have

VP 0
h
V̂h+1(sτ

h, aτ
h)

σ̂2
h(sτ

h, aτ
h) =

VP 0
h
V ⋆,ρ

h+1(sτ
h, aτ

h)
σ̂2

h(sτ
h, aτ

h) +

∣∣∣VP 0
h
V̂h+1(sτ

h, aτ
h)− VP 0

h
V ⋆,ρ

h+1(sτ
h, aτ

h)
∣∣∣

σ̂2
h(sτ

h, aτ
h)

≤ 1 +
70cbH3√

d√
Kκ

σ̂2
h(sτ

h, aτ
h) + 320cbH3√d√

Kκ · σ̂2
h(sτ

h, aτ
h)
≤ 1 + 400cbH3√d√

Kκ
≤ 2

where the penultimate inequality uses 1 ≤ σ̂2
h(s, a) for any (s, a, h) ∈ S × A × [H] and the last

inequality holds as long as K ≥ ckH6d/κ for some sufficiently large universal constant ck. Therefore,
combining with (92) leads to Var[ϵτ,σ

h (α†, Vh+1)|Fh,τ−1] ≤ 2.

Suppose that
√

d ≥ H. From Vershynin (2018), one has |N (ϵ1, H)| ≤ 3H
ϵ1

= 3H2K. By the union
bound and invoking Lemma 3, we have

sup
α∈N (ϵ1,H)

∥∥∥∥∥∥
∑

τ∈D0
h

ϕ(sτ
h, aτ

h)
σ̂(sτ

h, aτ
h)ϵτ,σ

h (α, V̂h+1)

∥∥∥∥∥∥
Σ−1

h

≤ 16
√

d log(1 + H2K/d) log(12H3K3/δ) + 4H log(12H3K3/δ)

≤ c1
√

d

with probability 1− 7δ and for a fixed α ∈ N (ϵ1, V̂h+1), for c1 = 40 log(3HK/δ). Then, the equation
(89) becomes

|(B̂ρ,σ
h V̂h+1)(s, a)− (Bρ

hV̂h+1)(s, a)| ≤ (2
√

d + 2
√

2 +
√

2c1
√

d)
d∑

i=1
∥ϕi(s, a)1i∥Σ−1

h

= γ1

d∑

i=1
∥ϕi(s, a)1i∥Σ−1

h
:= Γσ

h(s, a).
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Moreover, from (93), we have

∑

τ∈D0
h

ϕτ
h(sτ

h, aτ
h)ϕτ

h(sτ
h, aτ

h)⊤

σ̂2
h(sτ

h, aτ
h) ⪰

∑

τ∈D0
h

ϕτ
h(sτ

h, aτ
h)ϕτ

h(sτ
h, aτ

h)⊤

VP 0
h
V ⋆,ρ

h+1(sτ
h, aτ

h) + 70cbH3d√
Kjiκ

⪰
∑

τ∈D0
h

ϕτ
h(sτ

h, aτ
h)ϕτ

h(sτ
h, aτ

h)⊤

2VP 0
h
V ⋆,ρ

h+1(sτ
h, aτ

h)

where the last inequality is from 70cbH3√
d√

Kκ
≤ 1

2 . Then, we obtain Σh ⪰ 1
2 Σ⋆

h for any h ∈ [H], which
completes the proof.

C.5.1 Proof of Lemma 17

Following (56)-(58), we have

|(B̂ρ,σ
h Vh+1)(s, a)− (Bρ

hVh+1)(s, a)|

≤
√

dλ1

d∑

i=1
∥ϕi(s, a)1i∥Σ−1

h
+

d∑

i=1
max

α∈[mins Vh+1(s),maxs Vh+1(s)]

∣∣∣∣ϕi(s, a)
∫

S
(µ̂σ

h,i(s′)− µh,i(s′))[Vh+1]α(s′)ds′
∣∣∣∣

︸ ︷︷ ︸
(i)

,

for ∀(s, a, h)× S ×A× [H], where µ̂σ
h,i(s) is the i-th coordinate of

µ̂σ
h(s) = Σ−1

h


∑

τ∈D0
h

ϕ(sτ
h, aτ

h)1(s = sτ
h+1)

σ̂2
h(sτ

h, aτ
h)


 ∈ Rd

such that ν̄V̂
h (α) =

∫
S µ̂σ

h(s′)[V̂h+1(s′)]αds′ defined in the update (26). Similar to (59), by let-

ting ϵτ,σ
h (α, V ) =

∫
S

P 0
h (s′|sτ

h,aτ
h)[V ]α(s′)ds′−[V ]α(sτ

h+1)

σ̂(sτ
h

,aτ
h

)
for any V : S → [0, H], any τ ∈ D0

h and
α ∈ [mins V (s), maxs V (s)], we have
∣∣∣∣
∫

S
µ0

h,i(s′)[Vh+1]α(s′)ds′ −
∫

S
µ̂σ

h,i(s′)[Vh+1]α(s′)ds′
∣∣∣∣

=

∣∣∣∣∣∣
1

⊤
i Σ−1

h


λ1

∫

S
µ0

h(s′)[Vh+1]α(s′)ds′ +
∑

τ∈D0
h

ϕ(sτ
h, aτ

h)
σ̂2

h(sτ
h, aτ

h)

(∫

S
P 0

h (s′|sτ
h, aτ

h)[Vh+1]α(s′)ds′ − [Vh+1]α(sτ
h+1)

)

∣∣∣∣∣∣

=

∣∣∣∣∣∣
1

⊤
i Σ−1

h


λ1

∫

S
µ0

h(s′)[Vh+1]α(s′)ds′ +
∑

τ∈D0
h

ϕ(sτ
h, aτ

h)
σ̂h(sτ

h, aτ
h)ϵτ,σ

h (α, Vh+1)



∣∣∣∣∣∣

Then, we obtain
∣∣∣∣ϕi(s, a)

∫

S
(µ̂σ

h,i(s′)− µh,i(s′))[Vh+1]α(s′)ds′
∣∣∣∣

≤

∣∣∣∣∣∣
ϕi(s, a)1⊤

i Σ−1
h


λ1

∫

S
µ0

h(s′)[Vh+1]α(s′)ds′ +
∑

τ∈D0
h

ϕ(sτ
h, aτ

h)
σ̂(sτ

h, aτ
h)ϵτ,σ

h (α, Vh+1)



∣∣∣∣∣∣

≤ ∥ϕi(s, a)1i∥Σ−1
h


λ1∥

∫

S
µ0

h(s′)[Vh+1]α(s′)ds′∥Σ−1
h︸ ︷︷ ︸

(ii)

+ ∥
∑

τ∈D0
h

ϕ(sτ
h, aτ

h)
σ̂(sτ

h, aτ
h)ϵτ,σ

h (α, Vh+1)∥Σ−1
h


 , (95)
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where the last inequality follows Cauchy-Schwarz inequality. Moreover, the term (ii) in (95) can be
further simplified

(ii) ≤ λ1∥Σ−1
h ∥

1
2 ∥
∫

S
µ0

h(s′)[Vh+1]α(s′)ds′∥ ≤
√

λ1H,

since V (s) ≤ H for any s ∈ S and ∥Σ−1
h ∥ ≤ 1/λ1. Then we have

(i) ≤


√λ1H + max

α∈[mins Vh+1(s),maxs Vh+1(s)]
∥
∑

τ∈D0
h

ϕ(sτ
h, aτ

h)
σ̂(sτ

h, aτ
h)ϵτ,σ

h (α, Vh+1)∥Σ−1
h




d∑

i=1
∥ϕi(s, a)1i∥Σ−1

h
,

(96)
which concludes our proof of (89).

C.5.2 Proof of (91)

Due to the semi-positiveness of Σ−1
h , one can control M2

1,h for any h ∈ [H] as

max
α∈[mins V̂h+1(s),maxs V̂h+1(s)]

∥
∑

τ∈D0
h

ϕ(sτ
h, aτ

h)
σ̂h(sτ

h, aτ
h)ϵτ,σ

h (α, V̂h+1)∥2
Σ−1

h

≤ max
α∈[0,H]

2∥
∑

τ∈D0
h

ϕ(sτ
h, aτ

h)
σ̂h(sτ

h, aτ
h)

(
ϵτ,σ

h (α, V̂h+1)− ϵτ,σ
h (α†, V̂h+1)

)
∥2

Σ−1
h

+ 2∥
∑

τ∈D0
h

ϕ(sτ
h, aτ

h)
σ̂h(sτ

h, aτ
h)ϵτ,σ

h (α†, V̂h+1)∥2
Σ−1

h

,

for some α† ∈ N (ϵ1, H). Note that ϵτ,σ
h (α, V ) is 2-Lipschitz w.r.t. α for any V : S → [0, H], i.e.,

|ϵτ,σ
h (α, V )− ϵτ,σ

h (α†, V )| ≤2|α− α†| ≤ 2ϵ1.

Therefore, for any α ∈ [0, H], we have

∥
∑

τ∈D0
h

ϕ(sτ
h, aτ

h)
σ̂h(sτ

h, aτ
h)
(
ϵτ,σ

h (α, V )− ϵτ,σ
h (α†, V )

)
∥2

Σ−1
h

=
∑

τ,τ ′∈D0
h

ϕ(sτ
h, aτ

h)
σ̂h(sτ

h, aτ
h)

⊤
Σ−1

h

ϕ(sτ ′
h , aτ ′

h )
σ̂h(sτ ′

h , aτ ′
h )

[(
ϵτ,σ

h (α, V )− ϵτ,σ
h (α†, V )

) (
ϵτ ′,σ

h (α, V )− ϵτ ′,σ
h (α†, V )

)]

≤
∑

τ,τ ′∈D0
h

ϕ(sτ
h, aτ

h)
σ̂h(sτ

h, aτ
h)

⊤
Σ−1

h

ϕ(sτ ′
h , aτ ′

h )
σ̂h(sτ ′

h , aτ ′
h )
· 4ϵ2

1

≤4ϵ2
1N2

h/λ1,

where the last inequality is based on ∥ϕ(s, a)∥2 ≤ 1, σ̂h(s, a) ≥ 1 for any (s, a, h) ∈ S ×A× [H] and
λmin(Σh) ≥ λ1 = 1

H2 for any h ∈ [H] such that
∑

τ,τ ′∈D0
h

ϕ(sτ
h, aτ

h)⊤Σ−1
h ϕ(sτ ′

h , aτ ′
h ) =

∑

τ,τ ′∈D0
h

∥ϕ(sτ
h, aτ

h)∥2 · ∥ϕ(sτ ′
h , aτ ′

h )∥2 · ∥Σ−1
h ∥ ≤ N2

h/λ1. (97)

Due to the fact Nh ≤ K for nay h ∈ [H], we conclude that

M2
1,h ≤ 8ϵ2

1H2K2 + 2

∥∥∥∥∥∥
∑

τ∈D0
h

ϕ(sτ
h, aτ

h)
σ̂h(sτ

h, aτ
h)ϵτ,σ

h (α†, V̂h+1)

∥∥∥∥∥∥

2

Σ−1
h︸ ︷︷ ︸

M2,h

≤ 8 + 2M2,h, (98)

where the second inequality holds if ϵ1 ≤ 1
HK .
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C.5.3 Proof of Lemma 18

Recall that in Section 4.1, {σ̂2
h}H

h=1 is constructed via {Ṽh+1}H
h=1 generated by DROP on D̃0. Before

starting, we define

V̂arhṼh+1(s, a) = [ϕ(s, a)⊤νh,1][0,H2] −
(
[ϕ(s, a)⊤νh,2][0,H]

)2
, ∀(s, a, h) ∈ S ×A× [H],

such that σ̂2
h(s, a) = max{1, V̂arhṼh+1(s, a)}. In addition, recall that VP 0

h
V (s, a) =

max{1, VarP 0
h

V (s, a)} for any value function V : S → [0, H] and any (s, a, h) ∈ S × A × [H].
Then, we can decompose the target terms by

∣∣∣VP 0
h
V ⋆,ρ

h+1(sτ
h, aτ

h)− σ̂2
h(sτ

h, aτ
h)
∣∣∣

≤
∣∣∣VP 0

h
Ṽh+1(sτ

h, aτ
h)− σ̂2

h(sτ
h, aτ

h)
∣∣∣+
∣∣∣VP 0

h
V ⋆,ρ

h+1(sτ
h, aτ

h)− VP 0
h
Ṽh+1(sτ

h, aτ
h)
∣∣∣

≤
∣∣∣VarP 0

h
Ṽh+1(sτ

h, aτ
h)− V̂arhṼh+1(sτ

h, aτ
h)
∣∣∣

︸ ︷︷ ︸
(a)

+
∣∣∣VarP 0

h
V ⋆,ρ

h+1(sτ
h, aτ

h)−VarP 0
h

Ṽh+1(sτ
h, aτ

h)
∣∣∣

︸ ︷︷ ︸
(b)

,

for every h ∈ [H], where the last inequality is based on the non-expansiveness of max{1, ·}. Similarly,
∣∣∣VP 0

h
V̂h+1(sτ

h, aτ
h)− VP 0

h
V ⋆,ρ

h+1(sτ
h, aτ

h)
∣∣∣ ≤

∣∣∣VarP 0
h

V ⋆,ρ
h+1(sτ

h, aτ
h)−VarP 0

h
V̂h+1(sτ

h, aτ
h)
∣∣∣

︸ ︷︷ ︸
(c)

.

In the sequel, we will control (a), (b) and (c) respectively.

Step 1: controlling (a). For each τ ∈ D0
h, we decompose the term (a) by

(a) =
∣∣∣V̂arhṼh+1(sτ

h, aτ
h)−VarP 0

h
Ṽh+1(sτ

h, aτ
h)
∣∣∣

≤
∣∣∣∣[ϕ(sτ

h, aτ
h)⊤νh,1][0,H2] −

∫

S
P 0

h,sτ
h

,aτ
h
(s′)Ṽ 2

h+1(s′)ds′
∣∣∣∣

+
∣∣∣∣∣
(
[ϕ(s, a)⊤νh,2][0,H]

)2 −
[∫

S
P 0

h,sτ
h

,aτ
h
(s′)Ṽh+1(s′)ds′

]2
∣∣∣∣∣

≤
∣∣∣∣ϕ(sτ

h, aτ
h)⊤

(
νh,1 −

∫

S
µ0

h(s′)Ṽ 2
h+1(s′)ds′

)∣∣∣∣
︸ ︷︷ ︸

(a1)

+ 2H

∣∣∣∣ϕ(sτ
h, aτ

h)⊤
(

νh,2 −
∫

S
µ0

h(s′)Ṽh+1(s′)ds′
)∣∣∣∣

︸ ︷︷ ︸
(a2)

,

where the last inequality is based on a2− b2 = (a+ b)(a− b) for any a, b ∈ R. In the sequel, we control
(a1) and (a2), respectively. Before continuing, we first define µ̃h,i : S → R is the i-th coordinate of

µ̃h(s) = (Λ̃h)−1


 ∑

τ ′∈D̃0
h

ϕ(sτ ′
h , aτ ′

h )1(s = sτ ′
h+1)


 ∈ Rd

such that νh,1 =
∫

S µ̃h(s′)Ṽ 2
h+1(s′)ds′ ∈ Rd and νh,2 =

∫
S µ̃h(s′)Ṽh+1(s′)ds′. With this new notation,

we reformulate (a1) as

(a1) = |ϕ(sτ
h, aτ

h)
∫

S
(µ̃h(s′)− µ0

h(s′))Ṽ 2
h+1(s′)ds′|.
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Following the steps in Lemma 11, i.e., the equations (59)-(61) with λ0 = 1, we can obtain

(a1) ≤


H + max

α∈[mins Ṽh+1(s),maxs Ṽh+1(s)]
∥
∑

τ ′∈D̃0
h

ϕ(sτ ′
h , aτ ′

h )ϵτ ′
h (α, Ṽ 2

h+1)∥(Λ̃h)−1




d∑

i=1
∥ϕi(sτ

h, aτ
h)1i∥Λ̃−1

h

≤


H + 2

√
2H +

√
2 sup

α∈N (ϵ0,H)
∥
∑

τ ′∈D̃0
h

ϕ(sτ ′
h , aτ ′

h )ϵτ ′
h (α, Ṽ 2

h+1)∥(Λ̃h)−1




d∑

i=1
∥ϕi(sτ

h, aτ
h)1i∥Λ̃−1

h
,

(99)

where ϵτ
h(α, V ) =

∫
S P 0

h (s′|sτ
h, aτ

h)[V ]α(s′)ds′ − [V ]α(sτ
h+1) for any V : S → [0, H], τ ′ ∈ D̃0

h and
α ∈ [mins V (s), maxs V (s)]. Since Ṽh+1 is independent of D̃0

h, we can directly apply Lemma 2
following the same arguments in Lemma 12. Therefore, with probability exceeding 1− δ, we have

sup
α∈N (ϵ0,H)

∥
∑

τ ′∈D̃0
h

ϕ(sτ ′
h , aτ ′

h )ϵτ ′
h (α, Ṽ 2

h+1)∥(Λ̃h)−1 ≤ H2√2 log(3HK/δ) + d log(1 + K) ≤ caH2√d,

(100)
where ca = 3 log(3HK/δ). Therefore, with probability exceeding 1− δ,

(a1) ≤ 6caH2√d
d∑

i=1
∥ϕi(sτ

h, aτ
h)1i∥Λ̃−1

h
.

Similarly, with probability exceeding 1− δ, one has

(a2) = |ϕ(sτ
h, aτ

h)
∫

S
(µ̃h(s′)− µ0

h(s′))Ṽh+1(s′)ds′| ≤ 6caH
√

d
d∑

i=1
∥ϕi(sτ

h, aτ
h)1i∥Λ̃−1

h
. (101)

Combining (99), (100), and (101), we can obtain

(a) ≤ (a1) + 2H(a2) ≤ 12caH2√d
d∑

i=1
∥ϕi(sτ

h, aτ
h)1i∥Λ̃−1

h

with probability exceeding 1− 2δ.

Step 2: controlling (b). Then,

(b) =
∣∣∣VarP 0

h
V ⋆,ρ

h+1(sτ
h, aτ

h)−VarP 0
h

Ṽh+1(sτ
h, aτ

h)
∣∣∣

≤
∣∣∣∣
∫

S
Ph,sτ

h
,aτ

h
(s′)

(
V ⋆,ρ

h+1(s′)− Ṽh+1(s′)
) (

V ⋆,ρ
h+1(s′) + Ṽh+1(s′)

)
ds′
∣∣∣∣

+
∣∣∣∣
∫

S
Ph,sτ

h
,aτ

h
(s′)

(
V ⋆,ρ

h+1(s′)− Ṽh+1(s′)
)

ds′
∣∣∣∣
∣∣∣∣
∫

S
Ph,sτ

h
,aτ

h
(s′)

(
V ⋆,ρ

h+1(s′) + Ṽh+1(s′)
)

ds′
∣∣∣∣

≤ 4H

∣∣∣∣
∫

S
Ph,sτ

h
,aτ

h
(s′)

(
V ⋆,ρ

h+1(s′)− Ṽh+1(s′)
)

ds′
∣∣∣∣ ≤ 4H max

s∈S
V ⋆,ρ

h+1(s)− Ṽh+1(s).

Denote ι̃h(s, a) = Bρ
hṼh+1(s, a)− Q̃h(s, a), for any (s, a) ∈ S ×A and

P inf,Ṽ
h,s,π⋆

h
(s)(·) := arg min

P (·)∈Pρ(P 0
h,s,π⋆

h
(s))

∫

S
P (s′)Ṽh+1(s′)ds′. (102)

For any h ∈ [H], define P̃ inf
h : S → S and ι̃⋆

h ∈ S → R by

P̃ inf
h (s) = P inf,Ṽ

h,s,π⋆
h

(s)(·) and and ι̃⋆
h(s) := ι̃h(s, π⋆(s)), ∀s ∈ S. (103)
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Following the step 1 and 2 in Section B.3.2, we have

V ⋆,ρ
h (s)− Ṽh(s) ≤

(
H∏

t=h

P̃ inf
j

)
(
V ⋆,ρ

H+1 − ṼH+1
)

(s) +
H∑

t=h




t−1∏

j=h

P̃ inf
j


 ι̃⋆

t (s)

=
H∑

t=h




t−1∏

j=h

P̃ inf
j


 ι̃t

⋆(s)

for any s ∈ S and h ∈ [H], where the equality is from V ⋆,ρ
H+1(s) = ṼH+1(s) = 0 for any s ∈ S and we

denote



t−1∏

j=t

P̃ inf
j


 (s) = 1s and d̃⋆

h:t = d⋆
h




t−1∏

j=h

P̃ inf
j


 ∈ D⋆

t .

for any d⋆
h ∈ D⋆

h. Therefore,

max
s∈S

V ⋆,ρ
h+1(s)− Ṽh+1(s) ≤

H∑

t=h+1
max
s∈S

Ed̃⋆
h:t

ι̃⋆
t ≤

H∑

h=1
max

(s,a)∈S×A
ι̃h(s, a). (104)

Note that for any (s, a, h) ∈ S ×A× [H]

|ι̃h(s, a)| ≤ |(B̂ρ
hṼh+1)(s, a)− (Bρ

hṼh+1)(s, a)|+ Γh(s, a) ≤ 2Γh(s, a)

≤ cbH
√

d

d∑

i=1
∥ϕi(s, a)1i∥Λ̃−1

h
, (105)

where cb = 12 log(3HK/δ). Substituting (105) into (104), we have

max
s∈S

V ⋆,ρ
h+1(s)− Ṽh+1(s) ≤ max

(s,a)∈S×A
cbH2√d

d∑

i=1
∥ϕi(s, a)1i∥Λ̃−1

h
.

Therefore,

(b) ≤ max
(s,a)∈S×A

4cbH3√d
d∑

i=1
∥ϕi(s, a)1i∥Λ̃−1

h

with probability exceeding 1− δ.

Step 3: controlling (c). Similarly,

(c) ≤ 4H max
s∈S

V ⋆,ρ
h+1(s)− V̂h+1(s) ≤

H∑

t=h+1
sup

(s,a)∈S×A
|ισ

t (s, a)| (106)

where

|ισ
h(s, a)| ≤ |(B̂ρ,σ

h V̂h+1)(s, a)− (Bρ
hV̂h+1)(s, a)|+ Γσ

h(s, a). (107)

Following (90) and (91), we have

|(B̂ρ,σ
h V̂h+1)(s, a)− (Bρ

hV̂h+1)(s, a)| ≤
(

5
√

d +
√

2M3,h

) d∑

i=1
∥ϕi(s, a)1i∥Σ−1

h
, (108)
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where M3,h := supα†∈N (ϵ1,H)

∥∥∥∥
∑Nh

τ=1
ϕ(sτ

h,aτ
h)

σ̂h(sτ
h

,aτ
h

)
ϵτ,σ

h (α†, V̂h+1)
∥∥∥∥

Σ−1
h

. Since σ̂h and V̂h+1 are independent

of D0
h, then we can directly apply Lemma 2 following the same arguments in Lemma 12. Therefore,

with probability exceeding 1− δ, we have

M3,h ≤ H

√
2 log(3H2

ϵ1δ
) + d log(1 + Nh/λ1)

≤ H
√

2 log(3H3K/δ) + d log(2H2K) ≤ cbH
√

d/
√

2, (109)

where cb = 12 log(3HK/δ). Substituting (109) into (108) and combining with (107) result in

|ισ
h(s, a)| ≤ (5 + cb + ξ1)H

√
d

d∑

i=1
∥ϕi(s, a)1i∥Σ−1

h
,

≤ 8cbH
√

d

d∑

i=1
∥ϕi(s, a)1i∥Σ−1

h
, ∀(s, a, h) ∈ S ×A× [H].

Therefore,

(c) ≤ 4H max
s∈S

V ⋆,ρ
h+1(s)− V̂h+1(s) ≤ sup

(s,a)∈S×A
32cbH3√d

d∑

i=1
∥ϕi(s, a)1i∥Σ−1

h

with probability at least 1− δ.

Step 4: finishing up. Then, with probability at least 1− 3δ, we have

∣∣∣VP 0
h
V ⋆,ρ

h+1(sτ
h, aτ

h)− σ̂2
h(sτ

h, aτ
h)
∣∣∣ ≤ sup

(s,a)∈S×A
7cbH3√d

d∑

i=1
∥ϕi(s, a)1i∥Λ̃−1

h
, (110)

since cb = 4ca. With probability at least 1− δ,

∣∣∣VP 0
h
V̂h+1(sτ

h, aτ
h)− VP 0

h
V ⋆,ρ

h+1(sτ
h, aτ

h)
∣∣∣ ≤ sup

(s,a)∈S×A
32cbH3√d

d∑

i=1
∥ϕi(s, a)1i∥Σ−1

h
. (111)

Recall that from Lemma 13, we can control the term
∑d

i=1 ∥ϕi(s, a)1i∥Λ̃−1
h

for any (s, a, h) ∈
S ×A× [H], as long as Nh is sufficiently large. Similar to Lemma 13, we also employ Lemma 4 to
control the term

∑d
i=1 ∥ϕi(s, a)1i∥Σ−1

h
for any (s, a, h) ∈ S ×A× [H] as follows, where the proof is

deferred to Appendix C.5.4.
Lemma 19. Consider δ ∈ (0, 1). Suppose Assumption 2, Assumption 4 and all conditions in Lemma
4 hold. For any h ∈ [H], if Nh ≥ 512 log(2Hd/δ)H4/κ2, we have

d∑

i=1
∥ϕi(s, a)1i∥Σ−1

h
≤ 2√

Nhκ
, ∀(s, a) ∈ S ×A,

with probability exceeding 1− δ.

From Lemma 13, Lemma 19 and the fact Nh ≥ K
24 , with probability exceeding 1− 2δ, we have

d∑

i=1
∥ϕi(s, a)1i∥Λ̃−1

h
≤ 2√

Nhκ
≤ 10√

Kκ
, ∀(s, a, h) ∈ S ×A× [H], (112)

d∑

i=1
∥ϕi(s, a)1i∥Σ−1

h
≤ 2√

Nhκ
≤ 10√

Kκ
, ∀(s, a, h) ∈ S ×A× [H], (113)
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as long as K ≥ c1 log(2Hd/δ)H4/κ2 for some sufficient large universal constant c1. Substituting
(112) and (113) into (110) and (111) respectively, we finally arrive at

∣∣∣VP 0
h
V ⋆,ρ

h+1(sτ
h, aτ

h)− σ̂2
h(sτ

h, aτ
h)
∣∣∣ ≤ 70cbH3√d√

Kκ
, (114)

∣∣∣VP 0
h
V̂h+1(sτ

h, aτ
h)− VP 0

h
V ⋆,ρ

h+1(sτ
h, aτ

h)
∣∣∣ ≤ 320cbH3√d√

Kκ
, (115)

for any (s, a, h) ∈ S ×A× [H], with probability at least 1− 6δ, which completes the proof as long as
K ≥ c1 log(2Hd/δ)H4/κ2 for some sufficient large universal constant c1.

C.5.4 Proof of Lemma 19

From Assumption 4, one has λmin(Edb
h
[ ϕ(s,a)ϕ(s,a)⊤

σ̂2
h

(s,a)
]) ≥ κ

H2 for any (s, a, h) ∈ S ×A× [H]. Following
Lemma 4, we can obtain

∥ϕi(s, a)1i∥Σ−1
h
≤ 2ϕi(s, a)√

Nhκ
, ∀(i, s, a) ∈ [d]× S ×A,

as long as Nh ≥ max{512H4 log(2Hd/δ)/κ2, 4/κ}. In addition,

1 =
∫

S
P 0

h (s′|s, a)ds′ =
∫

S
ϕ(s, a)⊤µ0

h(s′)ds′ =
d∑

i=1
ϕi(s, a)

∫

S
µ0

h,i(s′)ds′ =
d∑

i=1
ϕi(s, a), (116)

where the last equality is implied by Assumption 2. Therefore,

d∑

i=1
∥ϕi(s, a)1i∥Σ−1

h
≤

d∑

i=1

2ϕi(s, a)√
Nhκ

≤ 2√
Nhκ

.
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PASTA: Pretrained Action-State Transformer Agents
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InstaDeep

Abstract

Self-supervised learning has brought about a revolutionary paradigm shift in var-
ious computing domains, including NLP, vision, and biology. Recent approaches
involve pretraining transformer models on vast amounts of unlabeled data, serv-
ing as a starting point for efficiently solving downstream tasks. In reinforcement
learning, researchers have recently adapted these approaches, developing models
pretrained on expert trajectories. However, existing methods mostly rely on intri-
cate pretraining objectives tailored to specific downstream applications. This paper
conducts a comprehensive investigation of models, referred to as pre-trained action-
state transformer agents (PASTA). Our study covers a unified framework and cov-
ers an extensive set of general downstream tasks including behavioral cloning, of-
fline Reinforcement Learning (RL), sensor failure robustness, and dynamics change
adaptation. We systematically compare various design choices and offer valuable
insights that will aid practitioners in developing robust models. Key findings high-
light improved performance of component-level tokenization, the use of fundamental
pretraining objectives such as next token prediction or masked language modeling,
and simultaneous training of models across multiple domains. In this study, the
developed models contain fewer than 7M parameters allowing a broad community
to use these models and reproduce our experiments. We hope that this study will
encourage further research into the use of transformers with first principle design
choices to represent RL trajectories and contribute to robust policy learning.

1 Introduction

Reinforcement Learning (RL) has emerged as a robust framework for training efficient agents to learn
optimal decision-making policies. This approach has led to remarkable achievements in diverse fields,
including gaming and robotics (Silver et al., 2014; Schulman et al., 2016; Lillicrap et al., 2016). These
algorithms often comprise multiple components that are essential for training and adapting neural
policies. For example, model-based RL involves learning a model of the world (Racanière et al.,
2017; Hafner et al., 2019; Janner et al., 2019; Schrittwieser et al., 2020) while most model-free policy
gradient methods train a value or Q-network to control the variance of the gradient update (Mnih
et al., 2013; Schulman et al., 2017; Haarnoja et al., 2018; Hessel et al., 2018). Training these
multifaceted networks poses challenges due to their nested nature (Boyan & Moore, 1994; Anschel
et al., 2017) and the necessity to extract meaningful features from state-action spaces, coupled
with assigning appropriate credit in complex decision-making scenarios. Consequently, these factors
contribute to fragile learning procedures, high sensitivity to hyperparameters, and limitations on
the network’s parameter capacity (Islam et al., 2017; Henderson et al., 2018; Engstrom et al., 2020).

To address these challenges, various auxiliary tasks have been proposed, including pretraining differ-
ent networks to solve various tasks, such as forward or backward dynamics learning (Ha & Schmid-
huber, 2018; Schwarzer et al., 2021) as well as using online contrastive learning to disentangle feature

∗Equal Contribution
†Corresponding author: t.pierrot@instadeep.com
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extraction from task-solving (Laskin et al., 2020; Nachum & Yang, 2021; Eysenbach et al., 2022).
Alternatively, pretraining agents from a static dataset via offline RL without requiring interaction
with the environment also enables robust policies to be deployed for real applications. Most of these
approaches rely either on conservative policy optimization (Fujimoto & Gu, 2021; Kumar et al., 2020)
or supervised training on state-action-rewards trajectory inputs where the transformer architecture
has proven to be particularly powerful (Chen et al., 2021; Janner et al., 2021).

Recently, self-supervised learning has emerged as a powerful paradigm for pretraining neural net-
works in various domains including NLP (Chowdhery et al., 2022; Brown et al., 2020; Touvron et al.,
2023), computer vision (Dosovitskiy et al., 2020; Bao et al., 2021; He et al., 2022) or biology (Lin
et al., 2023; Dalla-Torre et al., 2023), especially when combined with the transformer architecture.
Inspired by impressive NLP results using transformer neural networks, most self-supervised tech-
niques use tokenization, representing input data as a sequence of discrete elements called tokens.
Once the data is transformed, simple objectives such as mask modeling (Devlin et al., 2018) or next
token prediction (Brown et al., 2020) can be used for self-supervised training of the model. In RL,
recent works have explored the use of transformer networks with expert data. While these investi-
gations have yielded exciting outcomes, such as zero-shot capabilities and transfer learning between
environments, methods such as MTM (Wu et al., 2023) and SMART (Sun et al., 2023) often rely on
highly specific masking techniques and masking schedules (Liu et al., 2022a), and explore transfer
learning across a limited number of tasks. Hence, further exploration of this class of methods is
warranted. In this paper, we provide a general study of the different self-supervised objectives and
tokenization schemes. In addition, we outline a standardized set of downstream tasks for evaluating
the transfer learning performance of pretrained models, ranging from behavioral cloning to offline
RL, robustness to sensor failure, and adaptation to changing dynamics.

Our contributions. The PASTA study, which stands for pretrained action-state transformer
agents, provides comprehensive comparisons including 4 pretraining objectives, two tokenization
techniques, 5 pretraining datasets (from Brax and Atari), and 7 downstream tasks. In addition to
imitation learning and standard RL, we explore scenarios involving 4 physical regime changes and
11 observation alterations to assess the robustness of the learned representations. Finally, we assess
the zero-shot performance of the models for predictions related to decision-making. We summarize
the key findings of our study below:

1. Tokenize trajectories at the component level. Tokenization at the component level sig-
nificantly outperforms tokenization at the modality level. In other words, it is more effective
to tokenize trajectories based on the individual components of the state and action vectors,
rather than directly tokenizing states and actions as is commonly done in existing works.

2. Prefer first principle objectives over convoluted ones. First principle training ob-
jectives, such as random masking or next-token prediction with standard hyperparameters
match or outperform more intricate and task-specific objectives carefully designed for RL,
such as those considered in MTM or SMART.

3. Pretrain the same model on datasets from multiple domains. Simultaneously
pretraining the model on datasets from all environments leads to enhanced performance
across all tasks compared to training separate models for each individually.

4. Generalize with a small parameter count. All of the examined models have fewer
than 7M parameters. Hence, while these approaches are both affordable and practical even
on limited hardware resources, the above results are corroborated by experimentation with
4 transfer learning scenarios: a) probing (the pretrained models generate embeddings and
only the policy head is trained to address downstream tasks), b) last layer fine-tuning (only
the pretrained model’s last layer is fine-tuned), c) full fine-tuning and d) zero-shot transfer.
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Figure 1: Illustration of the PASTA study. Left: State-action trajectories are collected from
multiple environments and tokenized. Middle: A transformer model learns latent representations
T (s) of the environments’ states. In this study, we compare different masking patterns, e.g., random
tokens prediction (BERT) or next token prediction (GPT). Right: The learned representations
T (s) serve as surrogate states for the policy and are evaluated on multiple downstream tasks.

2 Related Work

Self-supervised Learning for RL. Self-supervised learning trains models using unlabeled data
and has been successful in various control domains (Liu & Abbeel, 2021; Yuan et al., 2022; Laskin
et al., 2022). One effective approach is contrastive self-prediction (Chopra et al., 2005; Le-Khac et al.,
2020; Yang & Nachum, 2021; Banino et al., 2021) which has proven valuable in data augmentation
strategies, enabling downstream task solving through fine-tuning, particularly in RL tasks (Laskin
et al., 2020; Nachum & Yang, 2021). Our study aligns with this trend, focusing on domain-agnostic
self-supervised mechanisms that leverage masked predictions to pretrain RL policy networks.

Offline RL and Imitation Learning. Offline learning for control involves leveraging historical
data from a fixed behavior policy πb to learn a reward-maximizing policy in an unknown environment.
Offline RL methods are typically designed to restrict the learned policy from producing out-of-
distribution actions (Kumar et al., 2019; Fujimoto & Gu, 2021; Fakoor et al., 2021; Dong et al., 2023)
or constrain the learning process within the support of the dataset via importance sampling (Sutton
et al., 2016; Nair et al., 2020; Liu et al., 2022b). In contrast, Imitation learning (IL) focuses on
learning policies by imitating expert demonstrations. Behavior cloning (BC) involves training a
policy to mimic expert actions directly while Inverse RL (Ng et al., 2000) aims to infer the underlying
reward function to train policies that generalize well to new situations. In contrast, the models
investigated in PASTA focus on learning general reward-free representations that can accelerate
and facilitate the training of any off-the-shelf offline RL or IL algorithm.

Masked Predictions and Transformers in RL. Recently, self-supervised learning techniques
based on next token prediction (Brown et al., 2020) and random masked predictions (Devlin et al.,
2018) have gained popularity. Transformer-based models, notably the decision transformer (Chen
et al., 2021) and trajectory transformer (Janner et al., 2021), have proven effective in offline RL by
implementing a causal transformer structure for direct reward-conditioned policy fitting, inspiring
further developments (Zheng et al., 2022; Yamagata et al., 2022; Liu et al., 2022a; Lee et al., 2023;
Badrinath et al., 2023). Notably, GATO (Reed et al., 2022) is a multi-modal behavioral cloning
method that directly learns policies. These work contrast with PASTA which studies pretrained
self-supervised representations learned from different masking patterns and objectives. MTM (Wu
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Figure 2: Interquartile Mean (IQM) of the expert-normalized scores, aggregated over all 4 envi-
ronments, computed with stratified bootstrap confidence intervals (95% CI) over 5 seeds and 256
rollouts. ↑ (resp. ↓) indicates that higher (resp. lower) is better. (a) Representation learning and
(b) Zero-shot transfer tasks.

et al., 2023) and SMART (Sun et al., 2023) are relevant to this study: MTM uses modality-level
masking for single-domain pretraining whereas SMART uses a comprehensive objective involving
forward and inverse predictions in addition to “random masked hindsight control” for cross-domain
generalization with real-valued visual observations.

3 The PASTA Study

3.1 Preliminaries

Self-supervised Learning. In this paper, we study self-supervised learning (Balestriero et al.,
2023) techniques to pretrain models on a large corpus of static (offline) datasets from interactions
with simulated environments, as done in Shah & Kumar (2021); Schwarzer et al. (2023). By solving
pretraining objectives, such as predicting future states or filling in missing information, the models
learn to extract meaningful features that capture the underlying structure of the data. We focus our
study on the use of the transformer architecture due to its ability to model long-range dependencies
and capture complex patterns in sequential data. In addition, the attention mechanism is designed
to consider the temporal and intra-modality (position in the state or action vectors) dependencies.
After pretraining the models, we evaluate their capabilities to solve downstream tasks. This analysis
is done through the lenses of 3 mechanisms: (i) probing, (ii) fine-tuning, and (iii) zero-shot transfer.
The goal of the study is to investigate which pretraining process makes the model learn the most
generalizable representations to provide a strong foundation for adaptation and learning in specified
environments. An illustration of the approach adopted in PASTA is given in Figure 1.

Reinforcement Learning. We place ourselves in the Markov Decision Processes (Puterman,
1994) framework. A Markov Decision Process (MDP) is a tuple M = {S, A, P, R, γ}, where S is the
state space, A is the action space, P is the transition kernel, R is the bounded reward function and
γ ∈ [0, 1) is the discount factor. Let π denote a stochastic policy mapping states to distributions over
actions. In the infinite-horizon setting, we seek a policy that optimizes J(π) = Eπ[

∑∞
t=0 γtr (st, at)].

3.2 Component-level Tokenization

A key focus of this study is the component-level representation of the states and actions, i.e., their
vector components are dissected into individual tokens, as depicted in the middle panel of Figure 1,
rather than at the modality-level where one state corresponds to one token. Most previous work,
including SMART (Sun et al., 2023) and MTM (Wu et al., 2023) use the modality-level and consider
a trajectory as a sequence of state-action (often -return) tuples. Instead, in this study, we break
the sequences down to individual state and action components and exclude the return to allow
applicability to reward-free settings and the learning of representations not tied to task-specific
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Figure 3: (a) Performance profile of models after full, last layer and no fine-tuning (probing), and
MLP policies trained from raw observations. Shaded areas show bootstrapped CI over 5 seeds and
256 rollouts. (b) Evaluation in all downstream tasks with multi- and single-domain pretraining,
no-pretraining and training from raw observations. Remarkably, multi-domain pretraining performs
better or on par with single-domain pretraining, despite being trained on the same amount of data.

rewards (Stooke et al., 2021; Yarats et al., 2021). Based on our experimental results (Section 4), we
argue that component-level level tokenization allows capturing better dynamics and dependencies at
different space scales. As a result, more generalizable representations are learned that improve the
performance of downstream tasks across different robotic structures.

3.3 Pretraining

Trajectory modeling. The PASTA study includes different types of self-supervised learning
strategies, each using different combinations of random token masking and/or next token prediction.
Next token prediction uses autoregressive masking, while random masked prediction aims to learn
from a sequence of trajectory tokens denoted as τ = (s0

0, ..., sK
0 , a0

0, ..., aL
0 , ..., s0

T , ..., sK
T ). The model’s

task is to reconstruct this sequence when presented with a masked version τ̂ = Tθ(Masked(τ)),
where K is the observation space size, L is the action space size and T is an arbitrary trajectory
size. Here, Tθ refers to a bi-directional transformer, and Masked(τ) represents a modified view
of τ where certain elements in the sequence are masked. For instance, a masked view could be
(s0

0, ..., sK
0 , a0

0, ..., aL
0 , ..., _, ..., _), where the underscore “_” symbol denotes a masked element.

Pretraining objectives. Our study explores various masking strategies for pretraining. First, the
C-GPT masking pattern mimics GPT’s masking mechanism and uses causal (backward-looking)
attention to predict the next unseen token in RL trajectories. Second, the C-BERT masking
pattern is derived from BERT and uses random masks to facilitate diverse learning signals from
each trajectory by enabling different combinations. Figure 1 (middle) illustrates C-BERT’s and C-
GPT’s masking mechanisms. Third, the MTM masking scheme (Wu et al., 2023) combines random
masking (similar to BERT) and causal prediction of the last elements of the trajectory. This latter
aims to prevent the model from overly relying on future token information. While MTM operates at
the modality level, we adapt it to operate directly on components by masking random tokens within
the trajectory and a certain proportion of the last tokens. We refer to this method as C-MTM,
i.e., component-level MTM. Finally, SMART uses 3 different masking patterns (Sun et al., 2023):
forward prediction, inverse prediction and “random masked hindsight control”. Similarly, we derive
C-SMART, where instead of masking an entire modality at each stage, we mask a random fraction
of the tokens within that modality. See Appendix C for additional details.
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Table 1: Expert-normalized returns obtained with representations learned from modality-level tok-
enization, component-level tokenization, and from an MLP policy network in the 4 representation
learning downstream tasks. We include the maximum performance obtained using modality- or
component-level tokenization. (↑) indicates higher is better and [11] means 11 variations per task.
We trained all methods with 5 different random seeds and evaluated them using 256 rollouts.

Domain Task MLP
(raw observations)

Modality-level
tokenization

Component-level
tokenization

HalfCheetah

IL (↑) [1] 1.132 ± 0.003 1.151 ± 0.003 1.154 ± 0.003
Offline-RL (↑) [1] 0.571 ± 0.030 1.152 ± 0.004 1.154 ± 0.003
Sensor failure (↑) [11] 0.896 ± 0.003 1.006 ± 0.002 1.048 ± 0.002
Dynamics change (↑) [4] 0.251 ± 0.003 0.339 ± 0.003 0.369 ± 0.004

Hopper

IL (↑) [1] 0.898 ± 0.022 0.847 ± 0.019 1.078 ± 0.021
Offline-RL (↑) [1] 0.890 ± 0.022 0.812 ± 0.020 0.971 ± 0.022
Sensor failure (↑) [11] 0.307 ± 0.005 0.554 ± 0.006 0.584 ± 0.007
Dynamics change (↑) [4] 0.169 ± 0.035 0.290 ± 0.035 0.290 ± 0.038

Walker2d

IL (↑) [1] 0.736 ± 0.010 1.128 ± 0.029 1.178 ± 0.031
Offline-RL (↑) [1] 0.911 ± 0.025 0.923 ± 0.025 1.046 ± 0.023
Sensor failure (↑) [11] 0.339 ± 0.003 0.419 ± 0.003 0.511 ± 0.003
Dynamics change (↑) [4] 0.000 ± 0.000 0.004 ± 0.001 0.005 ± 0.001

Ant

IL (↑) [1] 0.876 ± 0.032 1.203 ± 0.008 1.209 ± 0.005
Offline-RL (↑) [1] 0.846 ± 0.030 0.907 ± 0.035 1.213 ± 0.021
Sensor failure (↑) [11] 0.082 ± 0.004 0.615 ± 0.007 0.717 ± 0.007
Dynamics change (↑) [4] 0.015 ± 0.001 0.065 ± 0.001 0.068 ± 0.001

3.4 Downstream evaluation

In this study, we evaluate the learned representations from two perspectives: (i) their ability to
generate high-quality representations through probing, full fine-tuning, and last layer fine-tuning
(4 Representation learning tasks), and (ii) their capability to solve new tasks in a zero-shot
transfer setting (3 Zero-shot transfer tasks). Representation learning tasks: We use Imitation
Learning, Offline RL, Sensor Failure, and Dynamics Change. First, we evaluate the quality of raw
representations learned by pretrained agents using probing, i.e., the pretrained models weights are
frozen and the final attention layer’s embeddings are fed into a single dense layer network. Second,
we assess the quality of the representations through full fine-tuning and last layer fine-tuning, i.e.,
the weights of the pretrained agents are further updated to solve the downstream tasks. Fine-tuning
just the last layer updates only a small fraction of the total weight volume (<1M parameters),
enhancing efficiency and computational cost. In all settings, a held-out dataset is used for training
on the downstream tasks, and in the Sensor Failure and Dynamics Change tasks, the alterations
are only introduced when evaluating the learned policies in the environments. Zero-shot transfer
tasks: These tasks entail Action Prediction (AP), Forward Prediction (FP), and Inverse Prediction
(IP). They evaluate the pretrained models’ ability to directly predict states or actions based on
trajectory information. Specifically, the prediction problems can be expressed as follows; AP:
(τt−1, st → at), FP: (τt−1, st, at → st+1) and IP: (τt−1, st, st+1 → at), where the input to the model
is shown on the left side of the parentheses, and the prediction target is shown on the right side. For
each category, we examine both component prediction and modality (state or action) prediction.

4 Experimental Analysis

In this section, we present the experimental study of the impact of pretraining objectives, tokeniza-
tion, and dataset preparation on the generalization capabilities of pretrained PASTA models.
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4.1 Experimental Setup

Domains. To assess the effectiveness of our approach, we select tasks from the Brax library (Free-
man et al., 2021a), which provides environments designed to closely match (Freeman et al., 2021b)
the original MuJoCo versions (Todorov et al., 2012) while offering a highly flexible and scalable
framework for simulating robotic systems. More information about the environments is given in Ap-
pendix D.2. The pretraining datasets consist of trajectories collected from 4 environments: HalfChee-
tah, Hopper, Walker2d and Ant. Following the protocols used in previous work (Fu et al., 2020; Sun
et al., 2023), we trained 10 Soft Actor-Critic (SAC) (Haarnoja et al., 2018) agents initialized with
different seeds and collected single- and multi-domain datasets composed of 680M tokens in total.
For details about the pretraining datasets, we refer the reader to Appendix D.3.

To assess the reproducibility of our findings and compare the performance of multi-domain versus
single-domain pretrained models, we provide 7 downstream tasks across 4 environments, totaling 28
tasks, with further details in Appendix D.4.

Furthermore, we validate the generalization of our findings on a different domain with experiments
on Atari 2600 (Bellemare et al., 2013). We refer the reader to Appendix E for details and results.

Implementation details. In this study, we focus on reasonably sized and efficient models, typi-
cally consisting of around 7M parameters. To capture positional information effectively, we incorpo-
rate a learned positional embedding layer at the component level. Additionally, we include a rotary
position encoding layer following the approach in Su et al. (2021) to account for relative positional
information. More details are provided in Appendix B. To convert state or action components into
tokens, we adopt a tokenization scheme similar to Reed et al. (2022). Continuous values are mu-law
encoded to [-1, 1] and discretized into 1024 uniform bins. The sequence order follows observation
tokens then action tokens with transitions arranged in timestep order. Finally, we put in perspective
the performance of the different pretrained models by comparing them to an agent learning directly
from raw observations without pretraining. For fairness, its hyperparameters have been tuned by
taking the best performance for each domain and downstream task.

4.2 Results

Component-level Tokenization. Our initial analysis probes the influence of tokenization, how
finely we dissect the data (component- or modility-level), on the models’ performance. We train
models using both the SMART and MTM protocols at two levels of granularity: modality-level
(predicting entire observations and actions) for SMART and MTM, and component-level (pre-
dicting individual observation and action elements) for C-SMART and C-MTM. Despite sharing
identical architectures and training conditions, and being trained on the same multi-domain dataset,
the models’ fine-tuning performance vary. As depicted in Figure 2 (a), component-level tokenization
markedly enhances performance across a spectrum of tasks, including Imitation Learning, Offline
RL, variations of Sensor Failure, and Dynamics Change tasks. Furthermore, Table 1 provides a
breakdown of performance for both tokenization techniques across different domains. Our exper-
iments on the Atari domain in Appendix E reveal the same conclusion, i.e., transitioning from
modality-level to component-level tokenization improves performance.

Masking objectives. In the light of the previous section demonstrating the advantages of using
component-level tokenization, we design C-BERT for masked language modeling and C-GPT for
next token prediction. In this section, we compare these two fundamental masking approaches
against the state-of-the-art methods C-MTM and C-SMART which incorporate more tailored
design choices. These models are trained on the multi-domain dataset and we systematically fine-
tune all models for all downstream tasks and domains. Figure 2 (a) reveals that C-BERT exhibits
on average higher performance on the considered downstream tasks compared to other masking
schemes and training objectives. Based on C-BERT showing the best performance among other
models, it is selected for further analysis within this study. Our experiments on Atari shown in
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Figure 6 in Appendix E reveal that C-GPT and C-BERT outperform all other models, confirming
that simpler masking objectives are sufficient to achieve robust generalization performance.

Multi-domain representation. Our exploration of learning multi-domain representations via
component-level tokenization reveals that models pretrained in this manner outperform those that
are specialized and trained on single-domain data. Multi-domain representations also surpass models
randomly initialized, confirming the positive impact of pretraining on model performance, and vanilla
MLP policy networks. These findings, illustrated in Figure 3(b), underscore the benefits of leveraging
diverse domain knowledge, thereby enhancing the model’s ability to generate useful representations
across various tasks and domains. This suggests that multi-domain models effectively consolidate the
representation knowledge from various domains into a unified model. To ensure a fair comparison, all
models were trained on an equal amount of tokens and possess equivalent representation capabilities
in terms of architecture and learned parameters. Detailed results for each specific task can be found
in the appendices, specifically in Appendix A.1.

Fine-tuning and Zero-shot. Figure 3 (a) presents the performance profiles for various fine-
tuning strategies: probing (the transformer’s parameters are frozen), last layer fine-tuning (only
the last layer’s parameters are trained) and full fine-tuning (all the parameters are trained). Full
fine-tuning results in a higher fraction of runs achieving near-expert scores, followed by last-layer
fine-tuning, MLP, and probing. This shows that fine-tuning appears to bridge the gap between the
generic representations and the specialized requirements of the downstream tasks. We further study
the zero-shot capabilities of the pretrained models which we evaluate on an additional suite of tasks,
outlined in Section 3.4, originally introduced in MTM (He et al., 2022). Figure 2 (b) reveals that the
errors in Action Prediction (AP), Forward Prediction (FP), and Inverse Prediction (IP) for C-GPT
and C-BERT are on par with those of more sophisticated models like C-MTM or C-SMART. This
suggests that even simple pretraining objectives are well-aligned with the inference tasks, despite the
models not being explicitly trained for these tasks. Such findings reinforce our conclusion that simple
objective functions and masking patterns combined with component-level tokenization are sufficient
to produce good performance. Importantly, we note that the masking strategy of C-BERT and
C-GPT allows the emergence of competitive Action Prediction (AP) performance, which, according
to the results in Figure 2 (a) is sufficient and indicative of strong downstream performance.

Robust representations. Here, we focus on resilience to sensor failure and adaptability to dy-
namics change. These factors play a crucial role in real-world robotics scenarios, where sensor
malfunctions and environmental variations can pose risks and impact decision-making processes.
We used BC as the training algorithm and during evaluation, we systematically disabled each of
the 11 sensors individually by assigning a value of 0 to the corresponding coordinate in the state
vector. In Table 2 in Appendix A.2, multi-domain models exhibit higher performance compared to
the baselines, demonstrating their enhanced robustness in handling sensor failures. Furthermore,
we introduced 4 gravity changes during the inference phase, and the results reaffirm the resilience
of multi-domain learning in adapting to dynamics change, corroborating our previous findings.

5 Discussion

This paper introduces the PASTA study which investigates self-supervised pretrained transformers
for RL applications. The study contributes analyses across 4 training objectives, 2 tokenization
methods, 5 training datasets and 7 downstream tasks. PASTA evaluates the efficacy of different
design choices in probing, fine-tuning, and zero-shot evaluation in the Brax and the Atari domains.

Key findings include the effectiveness of simple self-supervised objectives such as random masking
or next token prediction over more complex ones. Component-level tokenization proved superior to
modality-level, underscoring the importance of finer tokenization for richer representations. Addi-
tionally, multi-domain pretraining led to better performance than domain-specific training, demon-
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strating the value of cross-domain knowledge transfer. Finally, results highlighted these models’
adaptability to sensor failure or dynamic change, mitigating risks in robotics applications.

We hope PASTA will provide valuable guidance to researchers interested in leveraging self-
supervised learning for RL in complex decision-making tasks. The models studied are relatively
lightweight, enabling the replication of both pretraining and fine-tuning experiments on readily
available hardware. In future work, we anticipate further exploration of self-supervised objectives,
tokenization methods, and a broader spectrum of tasks to evaluate adaptability to online learning.
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A Brax additional results

A.1 Detailed Breakdown of Downstream Tasks Results

We present in Figure 4 the detailed results per-downstream task on the Brax domain.

Figure 4: Detailed breakdown of the Mean, Interquartile Mean (IQM) and Median expert normal-
ized scores, computed with stratified bootstrap confidence intervals, obtained in the 4 fine-tuning
downstream tasks for the 4 environments HalfCheetah, Hopper, Walker2d and Ant. We repeatedly
trained all methods with 5 different random seeds and evaluated them using 256 rollouts.

A.2 Robust Representations

We present in Table 2 the results for different pretraining settings on the task of Sensor Failure and
Dynamics Change.

B Sequence Modeling Details

Positional encoding We use two positional-embedding methods to account for the inherent causal
nature of the RL trajectories. The first positional embedding is at the component-level, similarly
to Reed et al. (2022) we assing an arbitrary order to the components within one state vector or
one action vector, and we learn associated representations with a learned embedding layer. For
example, in Hopper, one observation consists in 11 components, these components will be indexed
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Table 2: Breakdown of expert-normalized returns in the Sensor Failure and Dynamics Change tasks.
(↑) indicates that higher is better.

Model Sensor Failure (↑) Dynamics Change (↑)

Multi-domain pretraining 0.69 ± 0.01 0.17 ± 0.01
Single-domain pretraining 0.66 ± 0.01 0.18 ± 0.01
MLP (raw observations) 0.41 ± 0.02 0.11 ± 0.01
No pretraining 0.55 ± 0.01 0.16 ± 0.01

from 0 to 10 and passed to the positionnal embedding layer, then these embeddings are added
to the tokens embeddings. The second embedding layer is a Rotary Embedding Layer (Su et al.,
2021) that accounts for relative positions insisde the sequence, capturing both within-timestep and
between-timestep dependencies.

Handling action-spaces in the Brax domain In the sequence tokenization phase, we do not use
return conditioning but since the representation models are pretrained on multiple environments and
tasks, we use environment conditioning, i.e., du ring training, an environment token is appended
at the beginning of the sequences in each batch, providing the model with additional contextual
information. In practice, the length of the last two modalities (state and action concatenated)
varies across different environments. Therefore, the maximum portion of masked tokens at the end
of the sequence differs depending on the environment. For instance, in the Hopper environment
with 3 actions and 11 observation tokens, the maximum portion of masked tokens is 14, while in
HalfCheetah with 6 actions and 18 observation tokens, it is 24. Additionally, as we maintain a fixed-
size context window of 128, the sequences’ starting points will have varying truncations for different
environments, ensuring a non-truncated state at the end of the window. Another design choice is the
embedding aggregation, i.e., how to come from a context_window x embedding_dimension tensor
to a 1 x embedding_dimension tensor. We decided to use take the embedding from the last observed
token.

Computational Cost. A significant advantage of the component-level sequencing approach is its
reduced input dimension, allowing cheaper computational costs. By capturing the components of
states and actions at different time steps, the input space expands linearly rather than quadratically
mitigating the challenges associated with the curse of dimensionality. To illustrate this, consider a
simple example of a 2-dimensional state space with a discretization size of 9. With a component-level
granularity, the input size becomes 2 × 9 = 18. In contrast, a state-level granularity results in an
input size of 9 × 9 = 81. The former exhibits linear growth within the observation space, while
the latter demonstrates quadratic growth. Moreover, while it effectively multiplies the length of the
input sequence by the average number of components in a state, this drawback is absorbed by the
increased context window of transformer models. Lastly, for an equal number of trajectories, the
number of tokens is also trivially larger than that with a state- and action-level granularity.

C Masking Patterns

In this section, we provide further details on the masking patterns and schedule used in the
SMART (Sun et al., 2023) and MTM (Wu et al., 2023) baselines. In C-GPT or C-BERT, we
focused on reducing the technicalities to their minimum: a simple masking pattern, i.e., GPT-like
or BERT-like, and no masking schedule.

In SMART, the objective involves 3 components: forward prediction, inverse prediction, and “ran-
dom masked hindsight control”. The masking schedule involves two masking sizes, k and k′, which
determine the number of masked actions and observations during pretraining. The masking sched-
ule for actions (k) is designed to gradually increase the difficulty of the random masked hindsight
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control task. It starts with k = 1, ensuring the model initially predicts masked actions based on a
single observed action. As training progresses, the value of k is increased in a curriculum fashion.
The masking schedule for observations (k′) ensures that the model learns to predict masked actions
based on a revealed subsequence of observations and actions, rather than relying solely on local
dynamics. Similar to the action masking schedule, k′ starts at 1 and gradually increases during
training. SMART’s paper suggests that the masking schedule is essential for effective pretraining
in control environments. By gradually increasing the masking difficulty, the model is exposed to
a range of training scenarios, starting with simple local dynamics and gradually transitioning to
complex long-term dependencies.

In MTM, the masking pattern is implemented by requiring at least one token in the masked sequence
to be autoregressive, which means it must be predicted based solely on previous tokens, and all future
tokens are masked. In addition, MTM uses a modality-specific encoder to elevate the raw trajectory
inputs to a common representation space for the tokens. Finally, MTM is trained with a range
(between 0.0 and 0.6) of randomly sampled masking ratios.

Note that in order to accurately compare different design choice and training objectives, we developed
our own implementation of the methods presented in this study.

D Brax Experimental Details and Hyperparameters

In this section, we provide more details about the experiments, including hyperparameter configu-
ration and details of each environment (e.g., version). For all experiments, we run 256 rollouts with
5 different random seeds and report the mean and stratified bootstrap confidence intervals.

D.1 Fair Comparison

To ensure a fair comparison between the representation models using an MLP or a transformer
architecture, we made sure to have a comparable number of parameters. Both models consist of
a minimum of 3 layers with a size of 256 for the baseline, while transformer models use a single
layer with a hidden size of 512 for the policy. We tested bigger architecture for the MLP without
performance gain.

Moreover, we choose to fine-tune the MLP baselines to achieve the best performance in each environ-
ment. In contrast, we use the same set of hyperparameters for all domains involving PASTA models.
This approach puts PASTA models at a slight disadvantage while holding the promise of potentially
achieving even better performance with the PASTA methods with further hyperparameter tuning.

Finally, when a pretrained model is involved, we always select the final checkpoint after the fixed 3
epochs done over the pretraining dataset.

D.2 Environment Details

Figure 5: Continuous Control Downstream Tasks.

For all experiments, we use the 0.0.15 version of Brax (Freeman et al., 2021a). Each environment
in Brax, illustrated in Figure 5, provides a realistic physics simulation, enabling agents to interact
with objects and the environment in a physically plausible manner. The tasks studied in this paper
feature (i) a HalfCheetah robot (Wawrzyński, 2009) with 9 links and 8 joints. The objective is to
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apply torques on the joints to make the cheetah run forward as fast as possible. The action space
for the agents consists of a 6-element vector representing torques applied between the different links;
(ii) a Hopper robot (Erez et al., 2011) which is a two-dimensional one-legged figure consisting of
4 main body parts: the torso, thigh, leg, and foot. The objective is to make hops in the forward
direction by applying torques on the hinges connecting the body parts. The action space for the
agent is a 3-element vector representing the torques applied to the thigh, leg, and foot joints; (iii)
a Walker robot (Erez et al., 2011) which is a two-dimensional two-legged figure comprising a single
torso at the top, two thighs below the torso, two legs below the thighs, and two feet attached to
the legs. The objective is to coordinate the movements of both sets of feet, legs, and thighs to
achieve forward motion in the right direction. The action space for the agent is a 6-element vector
representing the torques applied to the thigh, leg, foot, left thigh, left leg, and left foot joints; (iv) an
Ant robot (Schulman et al., 2016) which is a one torso body with 4 legs attached to it with each leg
having two body parts. The objective is to coordinate the movements of the 4 legs to achieve forward
motion in the right direction. The action space for the agent is an 8-element vector representing the
torques applied at the hinge joints.

D.3 Dataset Details

In this section, we provide further detail on the collection of the datasets. We trained 10
SAC (Haarnoja et al., 2018) agents for a total of 5M timesteps in each of the 4 environments.
From each, we select the 20% latest trajectories of size 1000. This choice aims to explore the poten-
tial of self-supervised learning in leveraging “expert” knowledge. Future explorations will investigate
the impact of diverse data qualities, including suboptimal or exploratory behaviors. This results in
a combined total of 40M transitions. With each environment comprising different observation and
action sizes, the overall multi-domain dataset is composed of 680M tokens. We also have one dataset
for each domain.

Next, we give the hyperparameters of the SAC agents used to collect the pretraining trajectories.
These are given in Table 3.

Table 3: Hyperparameters used in SAC.

Hyperparameter Value

Adam stepsize 3 · 10−4

Discount (γ) 0.99
Replay buffer size 106

Batch size 256
Nb. hidden layers 2
Nb. hidden units per layer 256
Nonlinearity ReLU
Target smoothing coefficient (τ) 0.005
Target update interval 1
Gradient steps per timestep 1
Training steps 20,000

We also provide a concrete example of the state and action components with their corresponding
properties for the simplest robot structure, Hopper. The number of components for each property
is given in parentheses. In this case, the action space consists of torques applied to the rotors (3),
while the observation space includes the following components: z-coordinate of the top (1), angle
(4), velocity (2), and angular velocity (4).
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D.4 Downstream Tasks Details

In this section, we provide the hyperparameters used in the training of the imitation learning algo-
rithm Behavioural Cloning (BC) (Table 4) and the offline RL algorithm TD3-BC (Table 5).

Table 4: Hyperparameters used in the BC downstream task.

Hyperparameter Value
Horizon T 1000
Batch Size 1024
Non-Linearity GELU (Hendrycks & Gimpel, 2016)
Nb. hidden layers 1
Nb. hidden units per layer 512
Adam stepsize 3 · 10−4

Training steps 80,000

Table 5: Hyperparameters used in the TD3-BC downstream task.

Hyperparameter Value
Horizon T 1000
Batch Size 1024
Discount γ 0.99
Non-Linearity GELU (Hendrycks & Gimpel, 2016)
Nb. hidden layers 1
Nb. hidden units per layer 512
Adam stepsize (actor) 1 · 10−4

Adam stepsize (critic) 3 · 10−4

Target update rate 5 · 10−3

Policy noise 0.2
Policy noise clipping (-0.5, 0.5)
Policy update frequency 2
Conservatism coefficient α 2.5
Training steps 140,000

Then, we give additional details about the Sensor Failures downstream task. In Table 6, 7, 8 and 9 we
include the correspondence between each sensor number and its associated name in all environments.
In the 11 variations of the Sensor Failure downstream task, we switch off each one of these sensors.

Finally, to implement the Dynamics Change downstream task we use the GravityWrapper for Brax
environments of the QDax library (Chalumeau et al., 2023) and similarly to Chalumeau et al. (2022)
we train the policies with a gravity multiplier of 1 and we vary this coefficient at inference by the
following constant values: 0.1, 0.25, 4, and 10.
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Table 6: Sensor name / Sensor number in Halfcheetah.

Sensor name Sensor number

z-coordinate of the center of mass 1
w-orientation of the front tip 2
y-orientation of the front tip 3
angle of the back thigh rotor 4
angle of the back shin rotor 5
angle of the back foot rotor 6
velocity of the tip along the y-axis 7
angular velocity of front tip 8
angular velocity of second rotor 9
x-coordinate of the front tip 10
y-coordinate of the front tip 11

Table 7: Sensor name / Sensor number in Hopper.

Sensor name Sensor number

z-coordinate of the top (height of hopper) 1
angle of the top 2
angle of the thigh joint 3
angle of the leg joint 4
angle of the foot joint 5
velocity of the x-coordinate of the top 6
velocity of the z-coordinate (height) of the top 7
angular velocity of the angle of the top 8
angular velocity of the thigh hinge 9
angular velocity of the leg hinge 10
angular velocity of the foot hinge 11

Table 8: Sensor name / Sensor number in Walker2d.

Sensor name Sensor number

z-coordinate of the top (height of hopper) 1
angle of the top 2
angle of the thigh joint 3
angle of the leg joint 4
angle of the foot joint 5
angle of the left thigh joint 6
angle of the left leg joint 7
angle of the left foot joint 8
velocity of the x-coordinate of the top 9
velocity of the z-coordinate (height) of the top 10
angular velocity of the angle of the top 11
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Table 9: Sensor name / Sensor number in Ant.

Sensor name Sensor number

z-coordinate of the torso (centre) 1
x-orientation of the torso (centre) 2
y-orientation of the torso (centre) 3
z-orientation of the torso (centre) 4
w-orientation of the torso (centre) 5
angle between torso and first link on front left 6
angle between the two links on the front left 7
angle between torso and first link on front right 8
angle between the two links on the front right 9
angle between torso and first link on back left 10
angle between the two links on the back left 11

D.5 Hyperparameters

In Table 10, we show the shared hyperparameters for all transformer backbones used during the
pretraining phase as well as C-BERT specific parameters.

Table 10: Hyperparameters and configuration details for transformer backbones.

Hyperparameter Value

Shared

Transformer Layers 10
Transformer Heads 8
Non-Linearity GELU (Hendrycks & Gimpel, 2016)
Learning Rate 3e − 4
Num Epochs 3
Batch Size 4096
Num Quantization Tokens 1024
Embedding Dimension 256

C-BERT specific

Noising Ratio 0.15
Masking Probability 0.8
Random Token Probability 0.1

E Atari experiments

In this section we present the details of the additional experiments we conducted on the Atari
domain.

E.1 Implementation details

The Atari benchmark (Bellemare et al., 2013) offers a playground for agents across 60 Atari 2600
games. Within this domain, the DQN Replay Dataset, as proposed by Agarwal et al. (2020), com-
prises a collection of five logged training trajectories of models trained using deep Q-learning for
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each of the 60 Atari 2600 environments. Each of these training trajectories consists of 50, 000, 000
transitions. This large dataset allows for reproducible benchmarks of proposed offline RL algo-
rithms (Gulcehre et al., 2020).

We use the DQN Replay Dataset in our experiments on the Atari domain. Since the dataset’s
observations are images, we choose to encode them using a VQ-VAE (Van Den Oord et al., 2017).
This approach follows the methodology outlined by Micheli et al. (2022), and we train the auto-
encoder by minimizing a combination of the reconstruction loss and a perceptual loss (Johnson et al.,
2016). Additional hyperparameters for the VQ-VAE model are described in Table 13. The discrete
encodings of these images are then used as tokens for the transformer model.

For the pretraining phase, we closely follow the settings used for the Brax domain, and use the 20%
last trajectories to construct the pretraining dataset. See Table 11 for detailed hyperparameters.

For the downstream tasks, we limit ourselves to the Imitation Learning setting. To construct the
BC dataset, we follow Gulcehre et al. (2020) and we use all the 50M transitions for each of the 5
seeds in the dataset, resulting in a dataset with 250M transitions equating to about 4.25B tokens.

E.2 Results

Figure 6 compares the performance of different pretraining objectives for the task of Imitation Learn-
ing in the Ms-Pacman environment. Consistently with the observations made for the Brax domain,
the methods with component-level masking show higher performance than the modality-level ones.
Additionally, C-GPT and C-BERT exhibit the best overall performance across Mean, Interquartile
Mean (IQM), and Median scores, which strengthen the claim that simple but foundational pretrain-
ing objectives can foster the learning of strong representations for RL downstream tasks.

Figure 6: Detailed breakdown of the Median, Interquartile Mean (IQM) and Mean expert-normalized
scores, computed with stratified bootstrap 95% confidence intervals, obtained in the fine-tuning
downstream task for the Ms-Pacman environment. We repeatedly trained all methods with 3 dif-
ferent random seeds and evaluated them using 128 rollouts.

E.3 Hyperparameters

Table 11 shows the hyperparameters for the pretraining, Table 12 for the Imitation Learning down-
stream task, Table 13 for the training on the VQ-VAE model used for the Atari domain.
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Table 11: Hyperparameters and configuration details shared across all methods for the pretraining
in the Atari domain.

Hyperparameter Value

Transformer Layers 4
Transformer Heads 8
Non-Linearity GELU (Hendrycks & Gimpel, 2016)
Learning Rate 3e − 4
Num Epochs 4
Batch Size 1024
Num Quantization Tokens 1024
Embedding Dimension 256

Table 12: Hyperparameters used in the BC downstream task.

Hyperparameter Value
Horizon T (in frames) 108K
Frame skip 4
Batch Size 256
Non-Linearity GELU (Hendrycks & Gimpel, 2016)
Nb. hidden layers 2
Nb. hidden units per layer 256
Adam stepsize 3 · 10−4

Training steps 1M

Table 13: Hyperparameters for the VQVAE model.

Hyperparameter Value

Frame dimensions 80 × 80
Layers 4
Channels in convolutions 64
Codebook size 1024
Embedding Dimension 512
Tokens per frame 16
Self-attention layers at resolution [10, 20, 40]
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Abstract

In this paper, we study a best arm identification problem with dual objects. In
addition to the classic reward, each arm is associated with a cost distribution and the
goal is to identify the largest reward arm using the minimum expected cost. We call
it Cost Aware Best Arm Identification (CABAI), which captures the separation of
testing and implementation phases in product development pipelines and models the
objective shift between phases, i.e., cost for testing and reward for implementation.
We first derive a theoretical lower bound for CABAI and propose an algorithm called
CTAS to match it asymptotically. To reduce the computation of CTAS, we further
propose a simple algorithm called Chernoff Overlap (CO), based on a square-root
rule, which we prove is optimal in simplified two-armed models and generalizes well
in numerical experiments. Our results show that (i) ignoring the heterogeneous
action cost results in sub-optimality in practice, and (ii) simple algorithms can
deliver near-optimal performance over a wide range of problems.

1 Introduction

The stochastic multi-armed bandit (MAB) (Thompson, 1933; Robbins, 1952) is a classic model
which has widespread applications, from content recommendation (Kohli et al., 2013), resource
allocation (Liu et al., 2020), clinical trials (Villar et al., 2015), to efficient ad placement. A multi-
armed bandit problem involves an agent and an environment, which is represented by a set of actions
(arms) with distinct underlying reward distributions. At each round, the agent will choose one of the
arms and then obtain a random reward generated from the associated distribution. Most existing
studies formulate MAB either as the best arm identification (BAI) problem (Kaufmann et al., 2016;
Garivier & Kaufmann, 2016) where the agent intends to identify the highest reward arm as quickly as
possible or as a regret minimization problem (Auer, 2002; Garivier & Cappé, 2011) where the goal is
to maximize the cumulative reward over a time-horizon. Both formulations have been well-developed
and successful in balancing the trade-off between exploration and exploitation.

However, unlike the classic MAB model, most real-world product development pipelines are usually
separated into two phases: testing (survey) and implementation (release). Here, testing refers to
the process where one intends to find the best product among a set of potential candidates through
sequential trials, e.g., A/B testing for clinical decisions. The implementation phase refers to the
selected best product being used in a wider population after testing, usually involving mass produc-
tion. Different performance measures are emphasized in different phases. For example, the cost of
prototype medicine may be of primary concern in testing while the efficacy is more important in
implementation since the production cost is either decreased via mass production or covered through
insurance. Similarly, when choosing the best platform for online advertising, the total payment to
different platforms for advertising may be of essential concern in testing, while the click-through and
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conversion rate are what matters in implementation after the best platform is selected. Unfortu-
nately, neither BAI nor regret minimization captures the aforementioned differences, which makes
algorithms developed for traditional MAB not directly applicable. Moreover, trying out different
candidates during testing may require different costs, which again is not captured in classic MAB.

Cost Aware Best Arm Identification: in this paper, we propose a new MAB problem called
Cost Aware Best Arm Identification (CABAI), where besides reward (the main object for implemen-
tation), each arm is in addition associated with a cost distribution to model the object for testing.
Each time the agent chooses an arm, it will observe a random reward-cost pair, which is indepen-
dently generated from the reward distribution and cost distribution respectively. The goal in CABAI
is to identify the highest reward arm using the minimum cost possible, which breaks down to the
following questions: (1) how should we sample arms during testing with unknown cost, and how
does the rule differ from BAI (sampling rule)? (2) when is the best arm identifiable (stopping
rule)? (3) which arm should we choose for implementation (decision rule)? We will show that
the design of algorithms for CABAI is related to BAI, but have fundamental differences so that
BAI optimal algorithms do not necessarily achieve good performance in CABAI. This also implies
that directly applying BAI algorithms and neglecting the heterogeneous nature of arms in practice
will result in sub-optimality. We address the following questions in our paper: (1) What are the
fundamental limits of CABAI? (2) How should we design efficient algorithms to achieve the limit?

Our Contributions: We propose CABAI and show that traditional BAI algorithms no longer per-
form well. As summarized in Table 1, the optimal proportions of arm pulls have essential differences
between traditional BAI and CABAI, i.e., TAS (Garivier & Kaufmann, 2016), which is optimal in
BAI, allocates almost the same amount of pulls to the first two arms, while the optimal proportion
of arm pulls for CABAI emphasize more on the low-cost arm, as achieved by our proposed CTAS
algorithm. We first prove a non-asymptotic lower bound on the minimum cumulative cost required
to identify the best arm. Then, we propose an algorithm called Cost-Aware Track and Stop (CTAS)
to match the lower bound asymptotically. However, the CTAS algorithm is required to solve a bilevel
optimization problem at each time step, which exerts relatively high computational complexity and
prevents its direct use in practice. To overcome this issue, we further propose a low-complexity al-
gorithm called Chernoff Overlap (CO) which exhibits desirable empirical performance and remains
theoretically optimal in simplified bandit models.

Algorithm Optimal? w1(t) (1.5, 1) w2(t) (1, 0.1) w3(t) (0.5, 0.01)
TAS × 0.46 0.46 0.08

CTAS ✓ 0.23 0.72 0.05

Table 1: The expected rewards are µ = [1.5, 1, 0.5] and the expected costs are c = [1, 0.1, 0.01]. For
arm i, wi(t) is the proportion of arm pulls up to time t, i.e., wi(t) = Ni(t)/t where Ni is the number
of pulls. Noticeably, CABAI emphasizes more on low-cost arms to complement high-cost arms.

1.1 Related Work

We review existing MAB results most relevant to our paper. A detailed discussion is in the appendix.

BAI with Fixed Confidence: BAI has been studied for many years and was originally proposed
in Bechhofer (1958). In this paper, we consider a subset known as the fixed confidence setting, where
the agent aims to minimize the sample complexity while ensuring the best arm is identified with
probability at least 1− δ. Here, δ is a pre-specified confidence level, and such algorithms are called
δ-PAC. In Kaufmann et al. (2016), the authors introduce a non-asymptotic lower bound for this
setting. Subsequently, they propose the Track and Stop algorithm (TAS) that matches this lower
bound asymptotically. The TAS algorithm has since been extended to various other settings (Jour-
dan et al., 2023; Garivier & Kaufmann, 2021; Kato & Ariu, 2021). Before it, researchers proposed
“confidence-based” algorithms, e.g., KL-LUCB (Kaufmann & Kalyanakrishnan, 2013), UGapE (Gabil-
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lon et al., 2012), which rely on constructing high-probability confidence intervals. They are more
computationally feasible than TAS inspired algorithms, but with few theoretical guarantees.

BAI with Safety Constraints: A formulation similar to our paper is BAI with safety con-
straints (Wang et al., 2022). As a motivating example, they consider the clinical trial setting, where
each drug is associated with a dosage and the dosage has an associated safety level. They attempt
to identify the best drug and dosage for fixed confidence without violating the safety level. Similarly,
Hou et al. (2023) attempts to identify the best arm subject to a constraint on the variance. Our
formulation is distinct from them because the agent is free to perform any action. In Chen et al.
(2022b;a), they formulate safety constraints as a constrained optimization problem. They explore
and show that allowing minimal constraint violations can provide significant improvement in the
regret setting. This is distinct from the BAI setting explored in this paper.

Multi-fidelity BAI: An alternative formulation that considers cost is the multi-fidelity formulation
introduced in Kandasamy et al. (2016) and recently considered in the best arm identification regime
(Poiani et al., 2022; Wang et al., 2023). In this setting, along with choosing an arm, the agent
chooses the desired fidelity or “level of accuracy” of the mean estimate. Each fidelity incurs a cost,
where higher fidelity incurs a larger cost but provides more accurate estimate. This setting clearly
differs from ours because the cost of each fidelity is known a priori and is controllable through choice
of fidelity.

2 Preliminaries

We study a model similar to the fixed-confidence BAI in stochastic K-armed bandits. We denote
the set of arms as A := {1, 2, · · · , K}. Each arm a is associated with a reward distribution νµ =
{νµ1 , . . . , νµK

} with expectations µ := {µ1, µ2, · · · , µK}. We assume νµ are independent and make
the natural exponential family assumption standard in BAI literature (Kaufmann et al., 2016):
Assumption 1 (Natural Exponential Family). For any a, νµa

belongs to family P which can be
parameterized by the expectation with finite moment generating function, i.e.,

P = {νµ|µ ∈ [0, 1], νµ = h(x) exp(θµx− b(θµ))},

where θµ is a function of µ, and b(θ) is convex and twice differentiable.

For two different expectations µ and µ′ with the same exponential family, we use d (µ, µ′) to denote
the KL-divergence from νµ to νµ′ . Note that Assumption 1 is very general and includes a large class
of distributions such as Gaussian (with known variance), Bernoulli, and Poisson distributions by
considering the following choice of parameters:

Bernoulli : θµ = log
(

µ

1− µ

)
, b(θµ) = log

(
1 + eθµ

)
, h(x) = 1

Poisson : θµ = log(µ), b(θµ) = eθµ , h(x) = 1
x!e

−x

Gaussian : θµ = µ

σ2 , b(θµ) =
σ2θ2

µ

2 , h(x) = 1√
2π

e−x2/2σ2

Unique to this work, we assume that each arm has a cost with distribution νc := {νc1 , . . . , νcK
} and

expectations c := {c1, . . . , cK}. We assume they satisfy the positivity assumption, which is natural
in our motivating examples in real world such as ad placement or clinical trials, where the cost of
each action is always bounded and all actions are not free.
Assumption 2 (Bounded Positivity). For any arm a, we assume the support of the cost distribution
νca is positive and bounded away from 0, i.e., supp(νca) ∈ [ℓ, 1], where ℓ is a positive constant.

Problem Formulation: We define the best arm a∗(µ) to be the action which has the highest
expected reward, i.e., a∗(µ) = arg maxa∈A µa, and we assume there is a unique best arm. The
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results can be generalized to scenarios with multiple best arms given the number of best arms. At
each round (time) t ∈ N+, we interact with the environment by choosing an arm At ∈ A. After that,
a (reward, cost) signal pair (Rt, Ct) is independently sampled from the joint distribution νµAt

×νcAt

of the action that we choose. For any time t, we use Na(t) to denote the number of times that arm
a has been pulled, and we use µ̂a(t) and ĉa(t) to denote the empirical average reward and cost:

µ̂a(t) = 1
Na(t)

t∑

k=1
Rk · 1{Ak=a}, ĉa(t) = 1

Na(t)

t∑

k=1
Ck · 1{Ak=a}.

For any policy π, it consists of three components: (1) a sampling rule (At)t≥1 to select arms to
interact at each round; (2) a stopping time τδ which terminates the interaction; and (3) an arm
decision rule â to identify the best arm. As a convention of BAI with fixed confidence, we require
our policy π to be δ-PAC (Probably Approximately Correct) (Kaufmann et al., 2016), which means
the algorithm should terminate in finite time and the probability of choosing the wrong best arm
should be lower than the confidence level δ. The definition of δ-PAC is as follows:
Definition 1. An algorithm π is δ-PAC if for any reward and cost instances (µ, c), it outputs the
best arm a∗(µ) with probability at least 1− δ and in finite time almost surely, i.e.,

Pµ×c(â ̸= a∗(µ)) ≤ δ, Pµ×c(τδ <∞) = 1.

For any time t, define the cumulative cost as J(t) :=
∑t

k=1 Ck. For any fixed δ, let Πδ denote the
set of all δ-PAC best arm identification policies. The goal of this work is to find π ∈ Πδ, such that
π = arg minπ∈Πδ

Eµ×c [J(τδ)]. We use boldface x to denote vectors and instances, and calligraphy X
to denote sets. We use the subscript Pµ×c, Eµ×c to denote the probability measure and expectation
with respect to a specific instance (µ, c).

3 Lower Bound

We first characterize the theoretical limits of this cost minimization problem. Denote byM a set of
exponential bandit models such that each bandit model µ = (µ1, . . . , µK) in M has a unique best
arm a∗(µ). Let ΣK =

{
w ∈ Rk

+ : w1 + · · ·+ wK = 1
}

to be the set of probability distributions on
A, then we present the following theorem which characterizes the fundamental lower bound.
Theorem 1. Let δ ∈ (0, 1). For any δ-PAC algorithm and any bandit model µ ∈M, we have:

Eµ×c [J(τδ)] ≥ T ∗(µ) log 1
δ

+ o

(
log 1

δ

)
.

where T ∗(µ) is the instance dependent constant satisfying:

T ∗(µ)−1 = sup
w∈ΣK

inf
λ∈{a∗(λ)̸=a∗(µ)}

∑

a

wa

ca
d(µa, λa).

The proof of Theorem 1 is deferred to the appendix but primarily relies on the “transportation”
lemma proposed in Kaufmann et al. (2016), which characterizes the theoretical hardness to distin-
guish the bandit model µ from any other models λ where a∗(λ) ̸= a∗(µ). Theorem 1 suggests that
O(log(1/δ)) cumulative cost is inevitable to identify the optimal arm, and it also characterizes the
asymptotic lower bound constant T ∗(µ).

Instance Dependent Constant T ∗(µ): The instance dependent constant T ∗(µ) obtained in our
Theorem. 1 is different from classic best arm identification lower bounds, e.g., T ∗(µ) in Theorem
1 of Garivier & Kaufmann (2016). Even though it captures the hardness of this instance in terms
of the cumulative cost, T ∗(µ) is still a vague notion in the sense that the relationship between the
theoretical cumulative cost J(τδ) and model parameters, µ, c, is still unclear. To better understand
this mysterious constant T ∗(µ), we present Theorem. 1 in the simple case of 2 armed Gaussian
bandits with unit variance, where T ∗(µ) has a closed-form expression.

1536



RLJ | RLC 2024

Algorithm 1: Cost-adapted Track And Stop (CTAS)
Input: confidence δ; α ≥ 1; sufficiently large B; oracle function ComputeProportions(µ, c).
pull each arm a ∈ A once as initialization;
for t ≥ K + 1 do

forced exploration set Ut = {a | Na(t) <
√

t} ;
w∗ = ComputeProportions(µ̂(t), ĉ(t)) ; // compute optimal proportion
if Ut ̸= ∅ then // Sampling Rule

pull the least-pulled arm: at ∈ argmin
a∈A

Na(t)

else
at ∈ argmax

a∈A
J(t)w∗

a − ĉa(t)Na(t) ; // pull the arm with largest deficit

if Z(t) > log
(

Btα

δ

)
then // Stopping Rule

break;
return â = argmax

a∈A
µ̂a(t) ; // Decision Rule

Corollary 1. Let δ ∈ (0, 1). For any δ-PAC algorithm and any 2-armed Gaussian bandits with
reward expectations {µ1, µ2} and unit variance such that µ1 > µ2 , we have:

Eµ×c [J(τδ)] ≥ 2
(√

c1 +√c2
)2

(µ1 − µ2)2 log 1
δ

+ o

(
log 1

δ

)
.

It is noticeable that the dependence on cost is non-trivial but somehow involves the square root√
ca for each action. This inspires our low-complexity algorithm Chernoff Overlap (CO) based on a

square-root rule. The lower bound of a slightly more general setting is provided in the appendix.

The Optimal Weight w∗ : Let w∗ = {w∗
a}a∈A be the solution of the sup-inf problem in the

definition of T ∗(µ) in Theorem 1. The weight w∗ is essential in designing efficient algorithms to
match the lower bound, as it characterizes the optimal proportion of the total cumulative cost from
pulling arm a. Concretely, any algorithm which matches the lower bound should satisfy:

lim
δ→0

caEµ×c [Na(τδ)]
Eµ×c [J(τδ)] = w∗

a, ∀a ∈ A (1)

This differs from Garivier & Kaufmann (2016), where wa is the proportion of rounds that arm a is
pulled. Like T ∗(µ), there is no closed-form expression for w∗ in general bandit models with K ≥ 3.
In the appendix, we show that one can compute the desired quantities such as T ∗(µ) and w∗ by
similarly solving K continuous equations to Garivier & Kaufmann (2016). Therefore, we can readily
apply iterative methods such as bisection to compute these values. We summarize this procedure in
the ComputeProportions Algorithm (Algorithm. 3 in the Appendix), which will be called regularly
as a sub-routine in our proposed algorithms (Algorithm. 1).

4 Asymptotically Cost Optimal Algorithm

In this section, we propose a BAI algorithm called Cost-aware Track And Stop (CTAS) whose cumu-
lative cost performance asymptotically matches the lower bound in Theorem 1 both in expectation
and almost surely. We discuss each of the sampling, stopping and decision rules for CTAS:

Sampling Rule: From (1), a necessary condition for the optimal algorithm is derived. Our sampling
rule in Algorithm 1 strives to match the proportion of the cost of each arm to the optimal proportion
w∗(µ). First, we force the empirical proportions ŵa = ĉaNa(t)/J(t) to not differ too greatly from
the empirically optimal weights w∗(µ̂) using a largest-deficit-first like arm selection policy. We will
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show that as the empirical mean µ̂ → µ, we will have w∗(µ̂) → w∗(µ), and the empirical cost
proportion will also converge and concentrate along the optimal proportion w∗(µ).

Forced Exploration: Also present in Algorithm 1 is the forced exploration, which pulls the least-
pulled arm when U(t) is not empty (Line 6). This ensures each arm is pulled at least Ω(

√
t) times, and

makes sure that our plug-in estimate of w∗ is sufficiently accurate. The
√

t rate of forced exploration
is carefully chosen to balance the sample complexity and the convergence rate of the empirical mean.
If chosen too small, the fraction of cost from different arms will concentrate along the inaccurate
estimation which results in sub-optimality. If chosen too large, the forced exploration will dominate
the sampling procedure, leading to an almost uniform exploration which is sub-optimal.

Stopping Rule and Decision Rule: We utilize the Generalized Likelihood Ratio statistic (Cher-
noff, 1959) between the observations of arm a and arm b Za,b(t). For an arbitrary exponential family,
Za,b(t) has a closed-form expression as follows:

Za,b(t) = Na(t)d (µ̂a(t), µ̂a,b(t)) + Nb(t)d (µ̂b(t), µ̂a,b(t)) ,

where µ̂a,b(t) = µ̂b,a(t) is defined:

µ̂a,b(t) := Na(t)
Na(t) + Nb(t) µ̂a(t) + Nb(t)

Na(t) + Nb(t) µ̂b(t).

In particular, the Chernoff statistics Z(t) = maxa∈A minb∈A,b ̸=a Za,b(t) measures the distance be-
tween an instance where the current empirical best arm is indeed the best arm, and the “closest”
instance where the current empirical best arm is not the true best arm, both reflected through re-
ward observations. So, the larger Z(t) is, the more confident that the empirical best arm is indeed
the best arm. The proposition below ensures the δ-PAC guarantee of CTAS.
Proposition 1 (δ-PAC). Let δ ∈ (0, 1) and α ≥ 1. There exists a constant Bα

1 such that for all
B ≥ Bα the CTAS algorithm in Algorithm. 1 is δ-PAC, i.e.,

Pµ×c (τδ <∞, âτδ
̸= a∗) ≤ δ.

The cost bandit setting also encourages the algorithm to stop as early as possible, so the same
stopping rules from traditional BAI (Garivier & Kaufmann, 2016) can be used. A more refined
threshold can be found in Kaufmann & Koolen (2021). However, we will use the threshold in
Algorithm 1 for the rest of the paper for simplicity. Our Proposition. 1 combines Theorem 10 and
Proposition 11 from Garivier & Kaufmann (2016), and the proof will be provided in the appendix.

Asymptotic Optimality for CTAS: In Theorem. 2, we provide provable cost guarantees for the
CTAS algorithm. Namely, the algorithm asymptotically achieves the lower bound in Theorem 1 in
expectation as the confidence level δ decreases to 0.
Theorem 2 (Expected Upper Bound). Let δ ∈ [0, 1) and α ∈ [1, e/2]. Using Chernoff’s stopping
rule with β(t, δ) = log(O(tα)/δ), the CTAS algorithm ensures:

lim sup
δ→0

Eµ×c [J(τδ)]
log(1/δ) ≤ αT ∗(µ).

For optimality, we can simply take α = 1 and choose B ≥ 2K from Proposition 1. The proof of the
theorem along with a weaker almost sure cost upper bound result (Theorem. 6) will be provided in
the appendix. The major difference of the expected upper bound and the weaker version is the rate
of exploration, where Theorem. 2 requires O(

√
t) forced exploration rate while the weaker version

suffice with o(t). We first show the empirical proportion of the cost for each arm converges to
the optimal proportion (Theorem. 5), with the help of forced exploration rate. Then, the Chernoff
stopping time ensures our algorithm stops early to guarantee δ-PAC and to minimize the cost.

1Bα satisfies Bα ≥ 2K for α = 1, or
∑∞

t=1
eK+1

KK

(log2(Bαtα) log t)K

tα ≤ Bα for α > 1.
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µ̂1 µ̂2∆µ0

−4 −3 −2 −1 0 1 2 3 4

pulled arm 2

µ̂1 µ̂2∆µ1

−4 −3 −2 −1 0 1 2 3 4

Figure 1: Change in overlap upon pulling arm 2, where the ellipsoids stand for confidence intervals.
Left: wider confidence interval for µ2. Right: reduced confidence interval upon pulling arm 2.

5 Low Complexity Algorithm

Even though CTAS achieves asymptotically optimal cost performance, this algorithm suffers from
the heavy computation time of computing w∗. As shown in Table 2 in Section 6, the CTAS and
TAS algorithm requires much more time to compute the sampling rule at each time step. This
leads to the desire for a “model-free” algorithm that does not require us to compute w∗. In this
section, we propose a low-complexity algorithm called Chernoff-Overlap (CO) which is summarized
in Algorithm 2. CO is based on action elimination. The main idea behind these algorithms is to
sample each arm uniformly and then eliminate arms that can be declared sub-optimal with high
probability. However, it is easy to see that sampling uniformly would not be a good idea in the case
of heterogeneous costs. This requires that the sampling rule take into account the proper ratio of
information gained from pulling an arm concerning the cost of that arm.

Sampling Rule: To gain maximum information on the remaining uncertainty of reward, it is
desirable to pull the arm with the largest decrease in “overlap” as shown in Fig. 1, which results in
the arm with minimum pulls Nt(a). However, we also need to consider the cost of arms and weigh
the decrease of overlap with cost. Through analysis of the two-armed Gaussian setting, this leads
to our choice of sampling rule which weighs Na(t) with √ca, called the square-root rule.

Stopping Rule: Our stopping rule will still rely on the generalized likelihood ratio. For any time
t, Let a∗(t) be the empirical best arm, i.e., a∗(t) = arg maxa µ̂a(t). The Chernoff statistics we adopt
in CO is instead the pairwise statistic Za∗(t),a(t). When it is large, the empirical reward µ̂a(t) of
arm a is significantly lower than the empirical reward of a∗(t), which gives us high confidence to
eliminate this arm. Naturally, we then stop when only one arm remains. The following proposition
ensures that by the choice of a proper threshold, CO is δ-PAC. The proof will be in the appendix.
Proposition 2 (δ-PAC). Let δ ∈ (0, 1) and α ≥ 1. There exists a large enough constant B2 such
that the Chernoff-Overlap algorithm in Algorithm. 2 is δ-PAC, i.e.,

Pµ×c (τδ <∞, âτδ
̸= a∗) ≤ δ.

Cost Upper Bound for Chernoff-Overlap: It is difficult to relate an algorithm to the general
cost lower bound in Theorem 1 without direct tracking. Therefore, we must resort to relating the
cost upper bound of Chernoff-Overlap to the lower bound in cases where there is a closed-form
solution. We consider the two-armed Gaussian bandits setting and show that Chernoff-Overlap is
asymptotically cost-optimal for this special case, resulting in the following Theorem.
Theorem 3. Let δ ∈ (0, 1) and α ∈ (1, e/2). For any 2-armed Gaussian bandit model with rewards
{µ1, µ2} and costs {c1, c2}, under the CO algorithm in Algorithm 2 we have with probability 1:

lim sup
δ→0

J(τδ)
log(1/δ) ≤

2α
(√

c1 +√c2
)2

(µ1 − µ2)2 .

The proof of Theorem. 3 will be delayed to the appendix. The key to the proof is to show that under
our sampling rule balanced by

√
ĉa(t) for each arm, the empirical cost proportion ŵ(t) converges

2B can be chosen the same as Proposition 1.
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Algorithm 2: Chernoff-Overlap Algorithm
Input: confidence level δ; α ≥ 1; sufficiently large constant B
pull each arm a ∈ A once as initialization;
for t ≥ K + 1 do

if |R| ≤ 1 then // Stopping Rule
break;

eliminate all arms a from R if Za∗(t),a(t) > log
(

Btα

δ

)
, where a∗(t) = arg maxa µ̂a(t);

pull arm at ∈ argmin
a∈R

√
caNa(t) ; // Sampling Rule

return â ∈ R

to the optimal proportion ŵ∗. Then, we can apply a similar argument as the weaker version of
Theorem 2 to prove the upper bound. Comparing it to Corollary. 1, we show our low-complexity
algorithm is optimal in this setting. It is an important observation that in the homogeneous cost
case, this algorithm reduces to a racing algorithm. It is well known that racing algorithms cannot be
optimal on a general MAB model. However, we will show that it enjoys surprisingly good empirical
performance over a wide range of bandit models with multiple arms in the next section. Establishing
a provable suboptimality gap is an interesting future research problem.

6 Numerical Experiments

As shown before, CO does not inherit the strong theoretical guarantees of CTAS. However, the main
appeal of the algorithm comes from both its simplicity and the much more efficient computation time.
As shown in Table 2, CO takes significantly less time to run while maintaining good performance.

CO CTAS TAS d-LUCB
Gaussian 85 1712 2410 82
Bernoulli 58 1995 2780 60
Poisson 96 3260 4633 101

Table 2: The process time (seconds) of each of the algorithms over 1000 trajectories for Gaussian,
Bernoulli, and Poisson distributed rewards with µ = [1.5, 1.0, 0.5] and c = [1, 0.1, 0.01].

Discussion: Our square-root sampling rule of CO comes from reverse-engineering the optimal
proportion in the two-armed Gaussian case and then separating the multi-arm problem into pairs
of two-armed problems using action elimination. However, an interesting empirical result shown in
Fig. 2 is how well it generalizes to other reward distributions. This is illustrated in Figure 2(b). We
see that the change in reward distribution does not drastically impact performance. From this, we
can deduce that the cost factor of

√
c generalizes beyond Gaussian distributions. This is partially

because when the shrinkage of confidence interval overlap is small, the exponential distribution
family is locally Gaussian, and therefore can be approximated by Gaussian bandits. More evidence
for this cost factor is shown in Figure 2(a). Here we see that CO is approximately able to match the
optimal proportions of arm pulls. The main distinction is that CO is more willing to pull the low-cost
arm to eliminate it early on. This results in similar performance because the additional pulls are
inexpensive relative to the other arms. Another interesting observation is CO sometimes performs
better than CTAS. This is in part because of the elimination rule in CO. While the same proof as
CTAS can be utilized to show that CO is δ-PAC, the theory does not utilize the full “tightness” of
the CTAS stopping rule. The CO event of error lives in between the event of error for CTAS and
the event bounded by theory, causing earlier stopping with less confidence. Empirically, we also had
to do more exploration by a constant factor of

√
t due to the added variance from random costs.
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(a) Arm pull trajectories (b) Total costs.

Figure 2: Results averaged over 1000 trajectories with fixed confidence level δ = 10−6. In (a), we
have the average number of arm pulls at each time t. In (b) we have the statistics regarding total
cost for these trajectories. This figure was generated with µ1 = [1.5, 1, .5] and µ2 = [.9, .6, .3] with
c = [1, .1, .01], where µ1 and µ2 follow a Bernoulli and Poisson distribution respectively.

Lastly, the TAS family algorithms are very sensitive to good initial starts, meaning that the results
are also obfuscated by these extraordinarily long trajectories due to insufficient exploration.

7 Conclusion

In this work, we introduced a new MAB problem: Cost-Aware Best Arm Identification. We pro-
vided a new lower bound and an asymptotically optimal cost-adapted BAI algorithm. Finally, we
introduced a low-complexity algorithm with promising empirical results. As a future direction, it
may be interesting to explore how this algorithm can be adapted to the regret setting in either the
cost adapted setting (Sinha et al., 2021), or as an ETC algorithm for carefully chosen costs.
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Abstract

We present ICU-Sepsis, an environment that can be used in benchmarks for evalu-
ating reinforcement learning (RL) algorithms. Sepsis management is a complex task
that has been an important topic in applied RL research in recent years. Therefore,
MDPs that model sepsis management can serve as part of a benchmark to evalu-
ate RL algorithms on a challenging real-world problem. However, creating usable
MDPs that simulate sepsis care in the ICU remains a challenge due to the complex-
ities involved in acquiring and processing patient data. ICU-Sepsis is a lightweight
environment that models personalized care of sepsis patients in the ICU. The en-
vironment is a tabular MDP that is widely compatible and is challenging even for
state-of-the-art RL algorithms, making it a valuable tool for benchmarking their per-
formance. However, we emphasize that while ICU-Sepsis provides a standardized
environment for evaluating RL algorithms, it should not be used to draw conclusions
that guide medical practice.

1 Introduction

In this paper, we present ICU-Sepsis—an easy-to-use environment that can be used in benchmarks
for reinforcement learning (RL) algorithms. This environment is a Markov decision process (MDP)
that models the problem of providing personalized care to sepsis patients, constructed using real-
world medical records. The environment exhibits a level of complexity that challenges state-of-the-
art RL algorithms, making it a suitable domain to include when benchmarking and evaluating RL
algorithms. Its tabular nature makes it a lightweight and portable MDP that is compatible with
many RL algorithms and which can be quickly incorporated into any benchmark suite.

Sepsis is a life-threatening condition that arises when the body’s response to infection causes injury to
its own tissues and organs, and requires personalized care based on a sequence of clinical decisions.
This sequence of decisions results in evaluative feedback—information about whether or not the
patient survived. However, this feedback does not specify what the optimal decisions would have
been in retrospect, i.e., it does not provide the instructive feedback required for supervised learning
(e.g., what the optimal dosages of each medicine would have been). The evaluative nature of this
feedback and the potential for delays in its availability make reinforcement learning methods a
natural choice for this problem.

Following the work of Komorowski et al. (2018), sepsis management has emerged as a prominent use
case in applied RL research (Raghu, 2019; Yu & Huang, 2023), where historical patient data obtained
from large medical record databases is used to model sepsis as an MDP. One of the most common
sources of patient records is the MIMIC-III database (Johnson et al., 2023), which contains health-
related data for over forty thousand ICU patients, collected between 2001 and 2012. Recognizing
the widespread interest and importance of this topic, a dedicated RL environment that emulates the
environments used in applied RL research for sepsis treatment in the ICU can serve as a valuable
tool for evaluating the efficacy of RL algorithms for a real-world problem of interest.
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Figure 1: Illustration of one episode in the ICU-Sepsis environment. The clinician treats the patient
through actions, which affect how their state evolves over time, until the patient is discharged (and
a positive reward is received), or the patient dies (and no reward is received).

Various researchers have developed MDPs that simulate sepsis, as described in detail in Section 2.3.
However, constructing such an MDP is a complex process of querying, cleaning, and filtering patient
data from a medical database. Slight differences in the design and implementation of these proce-
dures by different researchers have resulted in slightly different MDPs. Consequently, a standardized
version of the sepsis MDP, essential for establishing a benchmark, has yet to be defined. Moreover,
although the MIMIC-III database is openly available, researchers must formally request access, a
process that entails completing a data protection course and signing a data use agreement. While
these measures are crucial for upholding patient privacy, they, in conjunction with the complex and
varying MDP creation processes, pose significant challenges for RL researchers seeking to include
sepsis treatment in their benchmark suites.

ICU-Sepsis addresses these issues by presenting users with a readily deployable environment, de-
signed for evaluating the efficacy of most RL algorithms. The MDP is a standalone environment
built with the MIMIC-III database that does not require any querying, cleaning, or filtering from
the user and can be used or modified without restriction (i.e., users need not complete courses or
sign a data use agreement) while maintaining patient privacy (see Section 4.5 for details).

Following the precedent set by Komorowski et al. (2018), the status of a patient at any given time is
discretized into a set of 716 states,1 balancing the granularity of the state set with the amount of data
available for modeling each state transition probability. Similarly, following prior work (Komorowski
et al., 2018), the possible medical interventions by clinicians are discretized into 25 possible actions.
The discount factor γ is set to 1 to reflect the goal of maximizing each patient’s chance of survival.
At the end of each episode, patient survival results in a reward of +1, while death corresponds to
a reward of 0, with all intermediate rewards also being 0. Figure 1 shows an illustration of one
episode in the ICU-Sepsis environment. An agent selecting actions uniformly randomly achieves an
expected return (probability of patient survival) of 0.78, while an optimal policy computed using
value iteration (Bellman, 1957) achieves an expected return of 0.88.

The ICU-Sepsis MDP is provided in a GitHub repository.2 To allow researchers to quickly implement
the environment in the software of their choice, the environment is provided as a set of CSV files
containing the transition, reward, and initial state distribution matrices, as well as open-source
Python implementations in OpenAI Gym (Brockman et al., 2016) and Gymnasium (Towers et al.,
2023). See Section 3 for details.

1Komorowski et al. (2018) constructed an MDP with roughly 750 states. After removing some problematic states
(as discussed later), and introducing additional states to model termination, the ICU-Sepsis MDP that we present
contains 716 states.

2https://github.com/icu-sepsis/icu-sepsis
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2 Background

In this section we present the notation and terminology that we use for RL, provide background
regarding sepsis management, and review prior work that models sepsis treatment as an RL problem.

2.1 Technical setting

RL problems are often modeled as an agent interacting with a discrete-time Markov decision process
(MDP) (Sutton & Barto, 2018; Fürnkranz et al., 2011). Formally, an MDP is a tuple of the form
(S, A, p, R, d0), where the state set S contains all possible states of the environment, and the set of
actions available to the agent in state s ∈ S is denoted by A(s). The set of all possible actions in
any state is denoted by

A+ .=
⋃

s∈S
A(s).

In this work we consider MDPs where A+ and S are finite, unless stated otherwise. The transition
function p : S × A+ × S → [0, 1] defines the probabilities of transitioning from one state to the next
after taking an action: p(s, a, s′) .= Pr(St+1=s′|St=s, At=a). The function R : S × A+ × S → [0, 1]
gives the reward when transitioning from one state to another after taking an action. In general,
this reward can be stochastic, but in our case, it is a deterministic function of St, At and St+1,
written as Rt = R(St, At, St+1). The initial-state distribution function d0 : S → [0, 1] characterizes
the distribution of the initial state: d0(s) .= Pr(S0 = s).

At any given integer time t ≥ 0, the agent is in a state St ∈ S, and the agent-environment interaction
takes place by the agent taking action At ∈ A(St), transitioning to the next state St+1 ∼ p(St, At, ·),
and receiving a reward Rt = R(St, At, St+1). A policy π : S × A+ → [0, 1] defines the probability of
taking each action given a state: π(s, a) .= Pr(At=a|St=s). A trajectory H of length L can be defined
as a sequence of L (state, action, reward) tuples: H

.= (S0, A0, R0, S1, . . . , SL−1, AL−1, RL−1). A
dataset D is defined as a collection of such trajectories: D

.= {H(0), H(1), . . . , H(N−1)}.

The return of a trajectory is the discounted sum of rewards G(H) .=
∑∞

t=0 γtRt, where γ ∈ [0, 1] is the
discount factor that determines the relative weight of future and immediate rewards. The objective
function J(π) is the performance measure of a policy π, defined as the expected return when the
agent uses the policy π to select actions: J(π) .= E

[ ∑∞
t=0 γtRt

]
. The goal of an RL agent is to find

an optimal policy π∗, which is a policy that maximizes the expected return: π∗ ∈ arg maxπ J(π).

2.2 Sepsis management

Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection
(Singer et al., 2016), and is implicated in approximately 1 in every 5 deaths worldwide (Rudd et al.,
2020). It is a severe multisystem disease with high mortality rates, and it is challenging to determine
the correct treatment strategy for its various manifestations (Polat et al., 2017).

Sepsis management is a sequential decision-making problem, wherein clinicians make a series of med-
ical interventions based on the state of the patients, to provide treatments that maximize the chances
of patient survival. Guidelines such as those published by the Surviving Sepsis Campaign (Evans
et al., 2021) provide valuable frameworks for early recognition and key interventions. However, ow-
ing to the complex nature of the condition, there are ongoing efforts to further refine guidelines and
individualize treatment approaches (Kissoon, 2014; Kalil et al., 2017). In the event of a patient’s
death, it is generally not possible to determine the precise steps in their care that, if changed, would
have resulted in their survival. Likewise, figuring out how to modify policies to enhance survival
prospects for future patients remains an ongoing and critical challenge.
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2.3 RL for sepsis treatment

There has been significant interest recently in the healthcare domain in using historical patient
data to learn new policies for patient care, such as for diabetes (Bastani, 2014), epilepsy treatment
(Pineau et al., 2009), cancer trials (Humphrey, 2017), radiation adaptation for lung cancer (Tseng
et al., 2017), and many others as shown by Yu et al. (2020). In the context of sepsis management,
datasets like MIMIC-III (Johnson et al., 2023) and e-ICU (Pollard et al., 2018) have been used to
create tabular MDPs to find better treatment methods for sepsis (Komorowski et al., 2018; Oberst
& Sontag, 2019; Tsoukalas et al., 2015; Lyu, 2020) and more specialized cases, such as pneumonia-
related sepsis (Kreke, 2007), as well as optimizing the initial response to sepsis (Rosenstrom et al.,
2022). Nanayakkara et al. (2022) combined distributional deep reinforcement learning (Bellemare
et al., 2023) with mechanistic physiological models (Hodgkin & Huxley, 1952; Bezzo & Galvanin,
2018) to devise personalized sepsis treatment strategies. Raghu et al. (2017) studied the use of deep
reinforcement learning with continuous states for optimizing sepsis treatments.

RL researchers may want to ensure that the algorithms that they develop are effective for important
real-world problems like sepsis treatment. However, different (but similar) environment models are
used in the applied RL research described above, and recreating these environment models can be
challenging. Our work therefore seeks to provide a standardized RL environment that simulates
sepsis treatment in the ICU. This environment is designed to be an easy-to-use environment within
RL algorithm benchmarks, which is also representative of an important real problem. Although
ICU-Sepsis is built from real data, and follows procedures from prior work intended to guide medical
practice, the environment that we present is only intended for use as a standardized MDP to evaluate
RL algorithms, not as a tool for studying sepsis treatment or guiding medical practice.

3 Software and Data

The dynamics of the ICU-Sepsis environment are available to download as .csv tables from the
GitHub repository.3 The use of .csv files allows for development with different libraries and pro-
gramming languages. We also provide Python code compatible with the widely-used frameworks
OpenAI Gym (Brockman et al., 2016) and Gymnasium (Towers et al., 2023).

3.1 The environment parameters and implementation

The states S = {0, 1, . . . ,715} and actions A+ = {0, 1, . . . , 24} are both represented by integers. The
transition tensor table has |S| × |A+| = 17,900 rows and |S| columns. The value p(s, a, s′) is present
in the (s′)th column of the (s · |A+| + a)th row. The centroids of the state clusters are provided in
an optional table that has |S| rows and 47 columns, with the sth row containing the 47-dimensional
centroid of state s in the normalized feature space.

The table representing the initial state distribution as a vector has 1 row and |S| columns. The
value of d0(s) is present in the sth column. The reward table also has 1 row and |S| columns, with
the value of R(s, a, s′) present in the (s′)th column. Details of reproducing these parameters from
the MIMIC-III dataset are given in Appendix A.

4 The ICU-Sepsis Environment

Hospitals systematically monitor various patient statistics and vitals, documented in their electronic
health records (EHRs) (Shabo, 2017), during the course of patient care. Clinicians prescribe appro-
priate medication using the collected data, adjusting dosages as the patient’s condition evolves. In
recent years, a growing number of hospitals have taken to recording detailed patient treatment in-
formation within their EHR systems. This rich dataset allows for the extraction of valuable insights,
enabling the development of informed policies geared towards enhancing patient care.

3https://github.com/icu-sepsis/icu-sepsis

1549



RLJ | RLC 2024

4.1 Formulating sepsis management as a reinforcement learning problem

Based on the statistics collected by the hospital, at any given point in time, a patient’s health can be
described by a vector representing different features of the patient, such as their demography, vitals,
body fluid levels, etc. After discretizing time into uniform chunks, these features can be clustered
into a finite set S, thus representing the evolution of the status of a patient in the hospital as a
sequence of discrete states across discrete time steps. The different types and dosages of medications
administered to the patient can similarly be represented as a finite set of discrete actions A+. The
number of different medications dA and number of dosage levels nA of each medication determines
the size of the action set: |A+| = (nA)dA .

The EHR data for |D| patients can be represented as a dataset D, where each trajectory describes
the hospitalization of one patient. The reward associated with each time step is R = 0, except for
the last time step, where the reward is R = +1 if the patient survives. This design choice causes
the expected return to correspond to the probability of a randomly selected patient surviving.

4.2 The ICU-Sepsis dataset

The dataset D is created by using real patient data describing approximately 17,000 sepsis patients
from version 1.4 of the MIMIC-III dataset (Johnson et al., 2023). Following the procedure by
Komorowski et al. (2018), time is discretized into 4-hour blocks, and the states are clustered using
the K-means clustering algorithm (MacQueen et al., 1967) with K-means++ initialization (Arthur
& Vassilvitskii, 2007). Three additional states are added to model termination—two corresponding
to survival and death, based on 90-day mortality, and the third as the terminal absorbing state s∞.
Actions specify the dosages of intravenous fluids and vasopressors (two different interventions) with
similar discretization thresholds as used by Komorowski et al. (2018).

In many states, not all actions are seen enough times to enable accurate estimation of the transition
probabilities p(s, a, ·). Therefore, for any given state-action pair (s, a), the action a is considered an
admissible action for state s if and only if it occurs at least τ times in state s within the dataset,
and the parameter τ is called the transition threshold. The set of all such admissible actions for any
given state s is denoted by A(s) ⊆ A+. Based on this definition of admissible actions, some states
have no admissible actions at all, and such states are removed from the MDP.

4.3 Constructing the ICU-Sepsis MDP

Given a dataset D of trajectories, the indicator for state-action-next-state tuple (s, a, s′) at time-step
t in trajectory h is given by

ID(h, t, s, a, s′) .=
{

1 if s=S
(h)
t , a=A

(h)
t , s′=S

(h)
t+1

0 otherwise,

for s, s′ ∈ S2, a ∈ A+, t ∈ {0, 1, . . . , }, and h ∈ D. This indicator is used to define the set of
admissible actions A(s) in a given state s ∈ S as

A(s) .=
{

a ∈ A+ :
∑

h∈D,s′∈S

|h|−1∑

t=0
ID(h, t, s, a, s′) > τ

}
.

We estimate the transition probability from a state s ∈ S, to another state s′ ∈ S, after taking
an admissible action a ∈ A(s) by dividing the number of times this transition took place by the
total number of times the action a was taken while in state s. Formally, the count of the number of
times the transition took place is defined as C(s, a, s′) .=

∑
h∈D

∑|h|−1
t=0 ID(h, t, s, a, s′) and the total

number of times the action was taken is defined as C(s, a) .=
∑

s′∈S C(s, a, s′). Thus, we can define
an intermediate to the transition function ζ : S × A+ × S → [0, 1] as ζ(s, a, s′) = C(s, a, s′)/C(s, a)
for any admissible action a ∈ A(s), and ζ(s, a, s′) = 0 otherwise.

For the sake of completeness, the ICU-Sepsis environment allows every action a ∈ A+ in every state
s ∈ S by defining the transition probability distribution of any inadmissible action a /∈ A(s) to be
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the average distribution for all the admissible actions in that state. The transition function for the
MDP is therefore defined as

p(s, a, s′) =





ζ(s, a, s′) if a ∈ A(s)
1

|A(s)|
∑

a′∈A(s)

ζ(s, a′, s′) if a /∈ A(s).

This effectively means that the MDP still only allows the admissible actions to be taken, since
taking an inadmissible action is equivalent to choosing one of the admissible actions at random and
transitioning accordingly. Therefore, all optimal policies for the restricted-action setting remain
optimal, and all policies that take inadmissible actions in some states can be mapped to equivalent
policies that only use admissible actions (by spreading the probability of inadmissible actions across
the admissible actions). This design decision enables the use of RL algorithm implementations that
are only compatible with MDPs that allow all actions in all states, without giving them access to
inadmissible actions. We discuss this decision of how inadmissible actions are handled in more detail
in Appendix B.

An episode ends when the agent reaches the state corresponding to survival or death, after which it
can be considered to always transition to s∞ with probability 1 regardless of action taken. Therefore,
the states corresponding to survival and death are called terminal states.

The policy used by the clinicians during the treatment of patients can also be estimated as
πexpert(s, a) .= C(s, a)/

∑
a∈A+ C(s, a). The initial-state distribution d0 is defined to be d0(s) .=

1
|D|

∑
h∈D

∑
a∈A+

∑
s′∈S I(h, 0, s, a, s′). The rewards are determined by the state being transitioned

into, with a positive reward (R = +1) for transitioning into the terminal state corresponding to
survival and zero reward for every other transition.

4.4 Computing the final parameters

The process of clustering the continuous state vectors into a finite set of discrete states (as mentioned
in Section 4.2) introduces a source of stochasticity in the MDP parameter creation process. We
investigated the effect of different seeds on the resulting MDP by creating 30 environments with
different seeds (but which are otherwise identical) and analyzing their properties. We found that
the different environments did not have significantly different properties, so we fixed the seed and
defined the resulting MDP to be the ICU-Sepsis MDP.

The result is the transition function T represented as a tensor of shape |S|×|A+|×|S|, and the reward
and initial-state distribution functions vectors R and d0, respectively, both represented as vectors of
length |S|. While we have largely followed the work of Komorowski et al. (2018) in the formulation
of the MDP, we have made two important changes. First, the discount factor γ has been set to 1
instead of 0.99 to prioritize patient survival over treatment speed. Secondly, the transition threshold
τ has been increased from 5 to 20 to enable more accurate estimation of transition probabilities.
The effects of these changes are examined in Appendix C. The values for all the parameters are
shown in Table 1.

|S| dA nA |A+| τ
716 2 5 25 20

Table 1: Parameters for creating the ICU-Sepsis MDP. The values are chosen based on work by
Komorowski et al. (2018), except for τ , where the value has been increased from 5 to 20, to remove
actions that are taken very rarely.

4.5 Additional environment details

The development and release of this environment has prioritized the preservation of patient privacy.
The MDP parameters offer only overarching statistical summaries of patient data, which was pre-
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viously de-identified during the creation of the MIMIC-III dataset. Consequently, the Institutional
Review Board (IRB) review at our institution determined that the MDP and this project are exempt
from IRB approval, as the research qualifies as no risk or minimal risk to subjects. Additionally,
the creators of the MIMIC-III dataset affirmed the precedent of model publication derived from the
dataset, provided that no straightforward method exists for reconstituting individual patient data.
Therefore, the ICU-Sepsis MDP can be responsibly released, modified, and redistributed for the
purposes of RL research without any substantial risk of patient harm.

Random Expert Optimal Dataset
Average return 0.78 0.78 0.88 0.77

Average episode length 9.45 9.22 10.99 13.27

Table 2: Average return and episode lengths for three baseline policies in the ICU-Sepsis MDP—a
policy that takes actions uniformly randomly over all actions, the estimated expert policy, and an
optimal policy computed by value iteration. The average return and episode lengths in the dataset
used to create the ICU-Sepsis MDP are also shown.

Table 2 shows the baseline properties of the environment and how they compare to the MIMIC-III
dataset. Since the data contains actions selected by trained physicians on real ICU patients, there
are relatively few instances of poor decisions in the original dataset. This, combined with our removal
of actions that were not taken at least τ times in the dataset, means that the MDP is limited to
simulating reasonable treatments. If the agent selects poor or unknown treatments (actions that
are inadmissible), they are mapped to a uniform distribution over the admissible (i.e., frequently
selected) treatments. Hence, even an agent that selects actions uniformly randomly achieves a
performance similar to that of the expert policy. However, the optimal policy computed using value
iteration (Bellman, 1957) indicates that there is still room for improvement over the expert policy,
which can be achieved while only taking actions that clinicians have taken in the real world.

The various design choices involved in the construction of the ICU-Sepsis environment were made
with the goal of creating an easy-to-use MDP that is familiar to the RL research community. Notably,
while several follow-up works have suggested improvements in the MDP creation process, like time
discretization and fluid dose thresholds (see, for example, the work of Futoma et al., 2020; Tang et al.,
2023), we have tried to stay generally faithful to the original design decisions made by Komorowski
et al. (2018).

5 Experiments

The evaluation of RL algorithms often focuses on their ability to learn high-performing policies
quickly and reliably. Hence, a good benchmark environment is one that not only resembles a
real problem of interest, but one that is also challenging enough for modern algorithms that some
algorithms are more effective (learn faster, converge to better policies, or learn more robustly) than
others. To test the ICU-Sepsis MDP, we therefore evaluate several commonly used RL algorithms,
including both value function and policy gradient methods, and analyze their learning characteristics.

Specifically, we conducted experiments to answer two research questions: 1) How close to optimal
are the policies learned using common RL algorithms? 2) How many episodes do common RL
algorithms require to find policies that perform nearly optimally?

We conduct experiments using five algorithms that represent a diverse range of approaches commonly
used in RL research: Sarsa (Rummery & Niranjan, 1994), Q-Learning (Watkins & Dayan, 1992),
Deep Q-Network (Mnih et al., 2013), Soft Actor-Critic (SAC) (Haarnoja et al., 2018), and Proximal
Policy Optimization (PPO) (Schulman et al., 2017). We use tabular representations for the policies
and value functions in all of these algorithms.
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5.1 Methodology

Hyperparameter tuning is performed using a random search, where each algorithm runs for 300,000
episodes, averaged over eight random seeds for each hyperparameter setting, to maximize expected
returns for the last 10% of the episodes. After approximating the best set of hyperparameters
through the random search, each algorithm is run for 500,000 episodes averaged over 1,000 random
seeds to ensure robustness in results. More details about the search and the final hyperparameter
values are given in Appendix D. We say that an algorithm has converged if the average return over
the last 1,000 episodes are within 0.1% of the average return over the last 10,000 episodes. Since the
goal is to find policies with a high expected return in the environment, the returns are not evaluated
on a separate MDP built with held-out data, as ICU-Sepsis acts as the ground truth in this case,
and generalization of policies to other environments or the real world is not being tested.

5.2 Results and analysis

0           100k        200k        300k        400k        500k
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Figure 2: (Left) The learning curves for five algorithms on the ICU-Sepsis MDP. (Right) Average
episode lengths during the learning process. Each curve is averaged over 1,000 random seeds, where
the error bars represent one unit of standard error.

Figure 2 shows the learning curves with the average returns and average episode lengths for all five
algorithms in the ICU-Sepsis environment. Table 3 shows the average number of episodes and time
steps needed for each algorithm to converge.

Algorithm Episodes (K) Steps (M) Average Return
Sarsa 105.3 0.99 0.79

Q-Learning 285.8 3.04 0.84
Deep Q-Network 241.5 2.60 0.86

SAC 324.0 4.01 0.83
PPO 386.9 3.59 0.86

Table 3: The number of episodes and time steps for each algorithm to converge, as well as the average
return over the last 1,000 time steps. It can be observed that the algorithms require a large number
of episodes to converge, and not every algorithm is able to achieve near-optimal performance.

With respect to the first research question, we observe that while some algorithms are able to achieve
near-optimal performance, not all algorithms show significant improvement in performance for the
learned policy, and notably, the performance of Sarsa is only marginally better than a random agent.
Concerning the second research question, we observe that even after extensive parameter tuning, all
of these algorithms take hundreds of thousands of episodes (i.e., millions of steps) to converge. The
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average episode lengths are shown in Figure 2 (Right), which are roughly in line with the episode
lengths seen in the MIMIC-III dataset, where the episodes had 13.27 steps on average.

6 Limitations

We would like to reiterate that the ICU-Sepsis MDP is designed to model a real-world problem,
presenting a level of difficulty for policy search that makes it an excellent environment to evaluate
RL algorithms. However, it is not intended to be a comprehensive medical simulation of sepsis and
should not be used for drawing conclusions about treatments for actual patients.

Sepsis treatment requires careful consideration of numerous factors that are beyond the scope of
this MDP. For example, the vasopressor dosage should change gradually, as abrupt changes can
lead to hypertension or cardiac arrhythmia (Fadale et al., 2014; Allen, 2014), but basing the optimal
action solely on the current state may result in policies with numerous sudden changes in vasopressor
dosages, deviating from clinically accepted strategies (Jia et al., 2020). Moreover, the generalizability
of the learned policies across different scenarios has not been tested, and these policies might perform
suboptimally if treatment standards change over time (Gottesman et al., 2019).

7 Future Work

While ICU-Sepsis is designed to be a standardized MDP with broad compatibility with many RL
algorithms, it can also serve as the base for another, more medically accurate version of the MDP
that incorporates, among others things, the considerations mentioned in Section 6, making it more
useful for applied RL research in the healthcare domain.

The choice of creating ICU-Sepsis as a tabular MDP is motivated by the goal of creating an MDP with
broad compatibility that also reflects how RL is used in many real-world applications. As mentioned
in Section 3, the normalized values of the state centroids are provided with the MDP, even though the
transitions are still modeled in a tabular fashion. However, an additional continuous-state version
of the MDP would further broaden the spectrum of RL algorithms that would be suitable to be
evaluated on the ICU-Sepsis environment.

8 Conclusion

This work introduces the ICU-Sepsis MDP and demonstrates its potential to serve as an environ-
ment within benchmarks for RL algorithms. It is lightweight and easy to set up and use, yet the
inherent complexity of the sepsis management task proves to be a significant challenge to modern
RL algorithms. These qualities position the ICU-Sepsis MDP as a strong candidate for inclusion in
RL benchmark suites, offering researchers an indicator of the performance of RL algorithms on an
important real-world problem.
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A Reproducing the ICU-Sepsis Parameters

The Python code for reproducing the ICU-Sepsis parameters is available in GitHub repository4

released with this paper. Reproducing these parameters would require the researchers to download
the MIMIC-III dataset from their website.5 The initial steps for identifying patients with sepsis
and extracting their features from the MIMIC-III dataset can be performed using the MATLAB
code provided in the GitHub repository6 by Komorowski et al. (2018). These steps have also been
translated by Subramanian & Killian (2020) into Python scripts that produce equivalent results with
minor differences. After creating the patient features, estimating the MDP parameters and creating
the list of admissible actions can be done using the scripts provided in our GitHub repository. Figure
3 shows the distribution of the number of admissible actions in the states set for ICU-Sepsis.

0 5 10 15 20 25
Number of admissible actions

100

101

102

Nu
m

be
r o

f s
ta

te
s

Figure 3: Distribution of the number of admissible actions for different states in the ICU-Sepsis
environment.

B Handling Inadmissible Actions

Recall from Section 4.3 that state-action pairs that occur τ or fewer times in the dataset (where τ is
a hyperparameter) are inadmissible (that is, they cannot be taken) since the subsequent transition
distribution is unknown. This presents a problem: many implementations of RL algorithms do not
allow for different action sets in each state. This may present a challenge for researchers hoping to
compare to baselines that lack this functionality. We therefore opted to design ICU-Sepsis to be
compatible with two different perspectives.

In the first perspective, inadmissible actions cannot be taken in the states where they are inadmis-
sible. A list of admissible actions for each state is provided in the extras/admissibleActions.txt
file provided with the CSV files containing the dynamics, as well as under the admissible_actions
key in the info dictionary provided by the Gym/Gymnasium API. Furthermore, the entries in the
transition probability table and reward function that correspond to inadmissible state-action pairs
can be ignored. This perspective is ideal, simulating a setting where inadmissible actions do not
exist as options for the agent to consider.

4https://github.com/icu-sepsis/icu-sepsis
5https://physionet.org/content/mimiciii/1.4/
6https://github.com/matthieukomorowski/AI_Clinician
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In the second perspective, we ensure that ICU-Sepsis is compatible with software that requires all
actions to be admissible in all states. A key goal under this perspective is to avoid the fabrication
of artificial environment behavior if inadmissible actions are chosen by the agent (e.g., defining
inadmissible actions to cause a transition to a state representing death to discourage the selection
of inadmissible actions). Such artificial transitions are undesirable because they can alter various
performance metrics (e.g., performance improvement and learning curve plots could be dominated
by the speed with which agents learn not to take inadmissible actions, which is not the important
part of the ICU-Sepsis simulation). Instead we view inadmissible actions as being truly inadmissible
(they cannot be taken by the agent, and hypothetical transitions that result from these actions
should not be considered). To achieve this, we consider how ICU-Sepsis could be designed so that
when RL software selects inadmissible actions, these inadmissible actions are automatically modified
to correspond to admissible actions, thereby ensuring that inadmissible actions are never chosen by
the agent.

The key insight to enable this is the creation of a mapping from any policy that allows all actions
to a corresponding policy that only selects admissible actions. Although the agent can learn and
reason using a policy that can select all actions, the interactions with the environment (including
evaluations of expected return) are equivalent to a corresponding policy that only selects admissible
actions.

The most straightforward way to achieve these desired properties would be to define inadmissible
actions to instead represent any one of the admissible actions. If there is only one inadmissible
action, this essentially gives the agent two different ways to select one of the admissible actions.
Critically, this does not mean that the inadmissible action is actually chosen and the simulated
result is the outcome of the inadmissible action. Instead, this means that inadmissible actions can
never be chosen and instead a redundant policy representation is used (a policy representation that
allows for multiple ways of selecting one or more of the admissible actions).

However, this straightforward approach introduces a different issue: in standard RL implementations
that require all actions to be allowed in all states, there may not be a mechanism to tell the agent
that in some states two different actions actually correspond to a single action. When the agent
selects one of two equivalent actions, it may not recognize that the outcome of the action provides
information about both of the actions. That is, the agent will not necessarily generalize properly.
This raises questions regarding the significance of the choice of which action inadmissible actions
map to. To avoid these complexities, we opt to map inadmissible actions to a distribution over the
admissible actions.

Specifically, we define inadmissible actions in a given state to be equivalent to a uniform random
selection of the admissible actions in that state. This means that if an agent that requires all
actions to be allowed in all states selects a inadmissible action, its policy is implicitly modified to
uniformly randomly select an action from the admissible set of actions. This achieves the desired
goals: it is realistic in that it completely disallows actions that it would be irresponsible to allow an
RL agent to take (it does not provide hypothetical simulations of the outcomes of these uncertain
and risky actions) and it avoids skewing performance metrics because the agent cannot achieve a
significant initial increase in expected discounted return by simply learning to avoid inadmissible
actions (a uniform random policy over all actions is now equivalent to a uniform random policy over
the admissible actions). However, it is worth noting the limitation that agents selecting inadmissible
actions may still fail to properly generalize, possibly resulting in slower learning than agents that
properly handle admissible action sets.

1560



RLJ | RLC 2024

C Examining the Effect of the Transition Threshold

As explained in Section 4.4, the transition threshold has been increased from 5 (as set by Komorowski
et al. 2018) to 20 to ensure that each admissible action is seen enough times in the dataset to provide
a reasonable estimate of the transition probabilities. To examine the effects of this change on the
resulting environment, we create a Variant environment with τ = 5 that is otherwise identical to the
ICU-Sepsis environment in its creation process, and ask the following research questions about the
policies in this new environment: 1) What is the highest survival rate possible in the Variant MDP?
2) How close to the optimal performance are the policies learned by common RL algorithms? 3)
How do the average episode lengths change during the learning process for common RL algorithms?

C.1 Baseline results

Table 4 shows the baseline results for the Variant MDP and how they compare to ICU-Sepsis. We
observe that an optimal policy in the Variant MDP has an expected return of 0.96, which means
that 96% of sepsis patients will survive when treated using this policy, compared to the 77% survival
rate seen in the MIMIC-III dataset. Thus, with respect to the first research question, the highest
possible survival rate in the Variant MDP appears to be unreasonably high compared to the real
data. Table 4b also shows that an episode running under this optimal policy will have an expected
24.8 steps in an episode, much higher that the 13.27 steps seen in the dataset.

Agent ICU-Sepsis Variant
Random 0.78 0.74
Expert 0.78 0.77

Optimal 0.88 0.96
(a) Average return

Agent ICU-Sepsis Variant
Random 9.45 12.6
Expert 9.22 9.8

Optimal 10.99 24.8
(b) Average episode lengths

Table 4: (a) Average return and (b) average episode lengths for ICU-Sepsis and the Variant MDP
for three baseline policies: A random policy taking each action uniformly randomly in each state, the
expert policy estimated from the dataset, and an optimal policy computed using value iteration. The
average return and episode lengths seen in the MIMIC-III dataset were 0.77 and 13.27 respectively.

C.2 Performance of various algorithms

The number of episodes and steps required for convergence and expected returns after convergence
are shown in Table 5. Figure 4 shows the learning curves and average episode lengths for the five
algorithms described in Section 5 when run on the Variant MDP, using the same methodology as
explained in Section 5.1 for the experiments with ICU-Sepsis.

Algorithm Episodes (K) Steps (M) Average Return
Sarsa 125.5 1.42 0.79

Q-Learning 188.3 3.48 0.89
Deep Q-Network 283.3 7.82 0.91

SAC 273.3 4.20 0.87
PPO 235.5 2.35 0.95

Table 5: This table shows the number of episodes and time steps for each algorithm to converge,
along with the average return over the last 1,000 time steps.

Therefore, with respect to the second and third research questions, we see that the expected returns
and average episode lengths in the learned policies are unusually high, which do not reflect the
numbers seen in the dataset. We posit that this might be happening because the agent has learned
to exploit some rare actions in certain states which happened to result in good outcomes by chance.
Since increasing the transition threshold removes such actions from the set of admissible actions,
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this behavior is not observed in the ICU-Sepsis MDP which has a higher transition threshold but
is otherwise identical in the creation process to the Variant MDP. To further validate this theory,
in Appendix C.3 we test the robustness of the three baseline policies: a random policy, the expert
policy, and the optimal policy learned using value iteration for both ICU-Sepsis and the Variant.

0           50        100      150      200       250       300  k k k k k k

1.0 

0.9 

0.8 

0.7 

0.6

Number of Episodes

Average Return

Sarsa

PPO

Q-Learning
SAC

DQN

Random Policy 

Optimal Policy

0           50        100      150      200       250       300  k k k k k k

40 

35 

30 

25 

20 

15 

10 

5

Number of Episodes

Average Episode Length 

Figure 4: (Left) The learning curves for five algorithms on the Variant MDP. (Right) A plot
depicting the average episode lengths during the learning process. Each curve is averaged over 20
random seeds, where the error bars represent one unit of standard error.

C.3 Effect of perturbations on the environments

To illustrate the robustness of different policies in the ICU-Sepsis and the Variant MDP, we eval-
uate the performance of the baseline policies after making some perturbations in the environment
dynamics. Each environment (ICU-Sepsis and the Variant) is first perturbed in the following way:

1. Among all the admissible actions, each of them is made inadmissible with some probability
σ ∈ [0, 1] independently of each other.

2. If all of the actions for some state are made inadmissible, one of the previously admissible
actions for that state is randomly chosen and made admissible again. Thus, every state will
always have at least one admissible action.

3. As explained in Section 4.3, any inadmissible action taken by the agent is equivalent to
randomly choosing one of the admissible actions (according to the new list of admissible
actions after the perturbation process) and taking that action.

Figure 5 shows an illustration of this process, which is repeated 32 times for each policy in each
environment. If a policy is over-reliant on a few transitions, then their removal should result in
a large performance drop. Therefore, such policies should have higher variance across runs, where
some runs would not allow the actions that are being exploited to obtain unrealistically high returns.
Figure 6 shows that the variance is indeed higher for the Variant compared to ICU-Sepsis, where the
average return and episode lengths stay more stable as actions are progressively made inadmissible.
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Figure 5: Illustration of the perturbation process. (a) Admissible actions for different states. Each
row has a state (in bold) followed by the list of admissible actions in that state. (b) Some admissible
actions are randomly chosen and made inadmissible. (c) Remaining admissible actions. This can
cause some states (in this case S3) to have no admissible actions left. (d) For states where there are
no admissible actions left, a previously admissible action is chosen and reintroduced as an admissible
action. Thus, every state still has at least one admissible action after the perturbation process.

(a) Return

(b) Number of steps per episode

Figure 6: Effects of removing some actions from the set of admissible actions on the learned policies
as the probability of removing actions (σ) increases from 0 to 1. Each perturbation was done 32
times for each environment and the average and standard error of the results are shown. (a) The
average return for different policies. (b) The average lengths of episodes for different policies.
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D Hyperparameters Search

The algorithms have been implemented as modifications on top of the CleanRL7 library (Huang
et al., 2022).

D.1 Random search setting

Hyperparameter Value(s) / Range Distribution
Number of Seeds 8 -
Learning Rate [10−5, 0.01] Log Uniform
Number of Environments 1 -
Buffer Size [13, 106] Integer Log Uniform
Discount Factor (γ) 1.0 -
Polyak Averaging Coefficient (τ) [0.001, 1.0] Log Uniform
Target Network Update Frequency [1, 1000] Integer Uniform
Batch Size [1, 256] Integer Uniform
Start Exploration Rate (ϵstart) [0.01, 1.0] Uniform
End Exploration Rate (ϵend) [0.01, 0.1] Log Uniform
Exploration Fraction [0.0, 1.0] Uniform
Learning Starts 10,000 -
Training Frequency 10 -

Table 6: Hyperparameter settings and distribution types for the DQN hyperparameter search.

Hyperparameter Value(s) / Range Distribution
Number of Seeds 8 -
Learning Rate [10−5, 0.01] Log Uniform
Number of Environments 1 -
Number of Steps [100, 500] Integer Uniform
Number of Mini-batches [1, 6] Integer Uniform
Discount Factor (γ) 1.0 -
GAE Lambda [0.0, 1.0] Uniform
Update Epochs [1, 8] Integer Uniform
Normalize Advantage True -
Clipping Coefficient [0.1, 0.5] Uniform
Clip Value Loss True/False -
Entropy Coefficient [10−2, 1.0] Log Uniform
Value Function Coefficient [0.2, 1.0] Uniform
Maximum Gradient Norm [0.1, 1.0] Uniform
Target KL [Null , 0.01, 0.05, 0.1] Uniform

Table 7: Hyperparameter settings and distribution types for the PPO hyperparameter search.

Weights & Biases (Wandb)8 (Biewald, 2020) was utilized for performing the random search over
hyperparameters. The ranges and distributions used for the searches across different algorithms are
detailed in Tables 6, 7, 8, and 9. To ensure equitable compute resources across different methods,
each was allocated 72 CPUs and a maximum duration of 4 days for the search, with the process
concluding at that time. The number of hyperparameters explored for each method is listed in Table
10, highlighting that slower methods were limited to fewer parameter searches. Altogether, ≥ 11,000
parameters were searched across all methods.

7https://github.com/vwxyzjn/cleanrl
8https://wandb.ai/
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Hyperparameter Value(s) / Range Distribution
Number of Seeds 8 -
Learning Rate [10−5, 0.01] Log Uniform
Number of Environments 1 -
Buffer Size 1 -
Discount Factor (γ) 1.0 -
Batch Size 1 -
Start Exploration Rate (ϵstart) [0.01, 1.0] Uniform
End Exploration Rate (ϵend) [0.01, 0.1] Log Uniform
Exploration Fraction [0.0, 1.0] Uniform

Table 8: Hyperparameter settings and distribution types for the Q-learning and Sarsa hyperparam-
eter search.

Hyperparameter Value(s) / Range Distribution
Number of Seeds 8 -
Buffer Size [103, 106] Integer Log Uniform
Polyak Averaging Coefficient (τ) [10−3, 1.0] Log Uniform
Batch Size [1, 256] Integer Uniform
Learning Starts [104, 2 × 104] -
Policy Learning Rate [10−5, 0.01] Log Uniform
Q-function Learning Rate [10−5, 0.01] Log Uniform
Update Frequency [1, 6] Integer Uniform
Target Network Update Frequency [100, 104] Integer Uniform
Temperature Coefficient (α) [0.01, 1.0] Uniform
Automatic Entropy Tuning False/True -
Target Entropy Scale [0.01, 1.0] Uniform
Number of Environments 1 -
Discount Factor (γ) 1.0 -

Table 9: Hyperparameter settings and distribution types for the SAC hyperparameter search.

Method Name Number of Hyperparameters
Q Learning 2263

Sarsa 2501
SAC 1162
PPO 3224
DQN 2632

Table 10: Number of runs for different methods.
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D.2 Best set of approximated hyperparameters

Table 11 lists the best hyperparameters for each method found during the random search. These
hyperparameters were used in the experiments, with results shown in Figure 2.

Hyper-parameter DQN PPO Q-Learning SAC Sarsa
Learning Rate 0.001 0.005 0.0025 π: 0.025, Q: 0.025 0.0025
Optimizer Adam Adam Adam Adam Adam
Buffer Size 10,000 1 10,000 1
Batch Size 64 1 64 1
Start Exploration Rate (ϵ start) 1.0 1.0 1.0
End Exploration Rate (ϵ end) 0.001 0.001 0.001
Exploration Fraction 0.25 0.1 0.25
Learning Starts 10,000 10,000
Training Frequency 10
Number of Steps for Rollout 500
Number of Minibatches 1
GAE Lambda 0.4
Update Epochs 6
Normalize Advantage Yes
Clipping Coefficient 0.5
Clip Value Loss No
Entropy Coefficient 0.005
Value Function Coefficient 0.3
Maximum Gradient Norm 0.4
Target KL Divergence 0.001
Polyak Average (τ) 0.01 0.01
Target Network Update Frequency 512 500
Update Frequency 1
Alpha 0.25
Autotune No
Target Entropy Scale 0.2

Table 11: Hyper-parameters used in DQN, PPO, Q-Learning, SAC, and Sarsa to solve ICU-Sepsis.
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Abstract

We investigate the impact of auxiliary learning tasks such as observation reconstruc-
tion and latent self-prediction on the representation learning problem in reinforce-
ment learning. We also study how they interact with distractions and observation
functions in the MDP. We provide a theoretical analysis of the learning dynamics of
observation reconstruction, latent self-prediction, and TD learning in the presence
of distractions and observation functions under linear model assumptions. With
this formalization, we are able to explain why latent-self prediction is a helpful
auxiliary task, while observation reconstruction can provide more useful features
when used in isolation. Our empirical analysis shows that the insights obtained
from our learning dynamics framework predicts the behavior of these loss functions
beyond the linear model assumption in non-linear neural networks. This reinforces
the usefulness of the linear model framework not only for theoretical analysis, but
also practical benefit for applied problems.

1 Introduction

Since the emergence of deep learning, techniques for deep supervised learning have been success-
fully incorporated into reinforcement learning (RL) agents (Mnih et al., 2013; Lillicrap et al., 2016).
However, the RL setting contains additional complications such as non-stationary optimization tar-
get and the reliance on bootstrapping. These hurdles generally add instability to the RL training
process, and recent work has identified the failure to learn good features as a central problem in deep
RL (Lyle et al., 2022; Nikishin et al., 2022b; Kumar et al., 2021).

To mitigate this failure, one common approach is to add auxiliary tasks to the learning objective
(Jaderberg et al., 2017). Popular examples include predicting next state observations (Jaderberg
et al., 2016) and predicting functions of the next state (Schwarzer et al., 2021; Ni et al., 2024). To
understand the performance of these approaches, recent literature (Tang et al., 2022; Le Lan et al.,
2023) considers the learning dynamics of auxiliary task learning in simple linear surrogate models
(Saxe et al., 2014). One hypothesis in the literature is that observation reconstruction should provide
better features than latent self-prediction (Behzadian et al., 2019; Tang et al., 2022). However, this
causes a theory-practice gap as empirical work has found that latent self-prediction outperforms
observation reconstruction across many benchmarks (Schwarzer et al., 2021; Ni et al., 2024).

To address this gap, we pose two questions: (a) How do auxiliary losses behave when combined
with a TD loss? Tang et al. (2022); Le Lan et al. (2022); Tang & Munos (2023) have studied
the learning dynamics of auxiliary tasks alone, evaluating their performance without addressing
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Figure 1: Diagram of the considered loss functions and the different use cases. In latent self-
prediction, the aim is to predict next state features given by a embedding function ϕ(x′) using the
states features ϕ(x) and a latent prediction model F . In observation reconstruction, the aim is to
match next state ground truth observations x′ via the use of a decoder function ψ(F (ϕ(x))). In the
auxiliary task setup, both the gradients from the feature learning loss and value function learning
are propagated to the encoder, while in the stand-alone scenario, only the gradients from the feature
learning loss are used to update Φ.

the interaction between the auxiliary task and the main goal, to learn a (correct) value function.
(b) How can we describe the behavior of auxiliary losses in the presence of distractions (states and
transition dynamics irrelevant for the reward) and observation functions (different ways to measure
the underlying state)? MDP structures like distractions have been hypothesized to lead to differing
performance between different auxiliary tasks (Ni et al., 2024), but to our knowledge no theoretical
study has been established.

In Section 3, we present a formalization of distractions and observation functions. We use the frame-
work of factored MDPs (Boutilier et al., 2000) with Kronecker products (Mahadevan, 2009) to repre-
sent a common class of distractions. To model observation functions, we use linear reparametrization
as a tractable way to go beyond one-hot representations.

In Section 4 and Section 5 we analyze the features learned with observation prediction and latent
self-prediction alone and in combination with TD learning. We also show how these stationary
features change with the introduction of distractions and observation functions. From this analysis
we find that latent self-prediction is a strong auxiliary task, while observation prediction is a strong
feature learning method when used alone. The differences are highlighted in Figure 1. This bridges
one of the biggest gaps between previous analysis of learning dynamics and empirical results.

In Section 6 we test the predictions derived from our theoretical framework by evaluating feature
learning losses in the MinAtar suite (Young & Tian, 2019). 1 We design ablations that mirror both
our formalization and previous approaches to test distraction robustness in empirical environments.
The theory partially predicts the performance differences in the test suite, validating that the insights
we obtain from the simple linear surrogate models used for analysis are useful for practitioners.
However, we also find surprising deviations from our predictions on some environments, suggesting
that there is need for additional research to fully bridge the theory-practice gap.

2 Background

We briefly introduce the standard formalism of reinforcement learning and linear value function ap-
proximations to clarify the notation used. Following this, we briefly introduce the training dynamics
framework of Tang et al. (2022); Le Lan et al. (2023). We frame all losses analyzed in this work
with the same models to highlight similarities and differences.

1All code for our experiments is available at https://github.com/adaptive-agents-lab/understanding_
auxiliary_tasks.
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Reinforcement Learning. We consider a discounted Markov decision process (MDP) (Puterman,
1994; Sutton & Barto, 2018) (X ,A,P, r, γ), with state space X , action space A, transition kernel
P : X × A × X → R, reward function r : X × A → R, and discount factor γ ∈ [0, 1). Given a policy
π : X × A → R, the value function is defined as the expected return conditioned on a state x

V π(x) = Eπ


∑

t≥0
γtrt|x0 = x


 ,

where rt = r(xt, at) is the reward at time t. The goal of an agent is to maximize its value at each
state, using the (approximate) value function of its policy V π.

In finite state spaces (|X | = n for some integer n), the policy induced transition kernel Pπ(x′|x) =∫
P(x′|x, a)dπ(a|x) can be represented as a stochastic matrix Pπ, and the reward function as a

vector rπ. This permits the compact notation V π = (I − γPπ)−1rπ. We review several additional
properties of stochastic matrices in Subsection C.1.

Value function approximation. A finite state value function can always be expressed as a table
or vector, but it is often infeasible to do so, due to limited storage capacity or resources once the state
space becomes sufficiently large. Therefore, function approximations need to be introduced, which
commonly take the form of a feature function ϕ(x) and a weight vector V̂ , with V π(x) ≈ ϕ(x)⊤V̂ .
These features can be pre-specified or learned, i.e. using neural networks. Since we are interested in
finite state spaces and linear models, we will assume that ϕ(x) : Rn → Rk with k < n represented
by a matrix Φ ∈ Rn×k and V̂ ∈ Rk.

2.1 Two-layer linear networks as analytical models for training dynamics

Rigorously analyzing the effect of different loss functions on neural networks is challenging due to
non-linearities in the networks, shifting data distributions, and policy updates. Therefore, we have to
resort to studying simplified models to obtain quantitative and qualitative results, and only consider
the fixed policy case in our analysis2. Studying feature learning dynamics using linear networks was
popularized by Saxe et al. (2014) and has proven to be a valuable tool to analyze diverse objectives
such as TD learning (Tang & Munos, 2023; Le Lan et al., 2023), latent self-prediction (Tian et al.,
2021; Tang et al., 2022), and linear autoencoders (Pretorius et al., 2018; Bao et al., 2020).

We rewrite the feature learning algorithms using two to three matrices in lieu of more complex
functions. Furthermore, we use several assumptions throughout the paper that are listed here for
clarity.

Assumption 1. Let Φ ∈ Rn×k be an encoder mapping to a k dimensional embedding space, F ∈
Rk×k a latent model mapping to the next state’s latent embedding, V̂ ∈ Rk and r̂ ∈ Rk value and
reward weights, and Ψ ∈ Rk×n a decoder. Let the sampling distribution of state samples D be
uniform and fixed throughout learning.

Using this notation, we study four important loss functions for RL: observation reconstruction, where
the aim is to fit the next state observation x⊤ΦFΨ ≈ x′, latent reconstruction x⊤ΦF ≈ x′Φ, where
the aim is to predict learned features of the next state, and TD learning x⊤ΦV̂ ≈ x⊤(rπ +γx′⊤ϕV̂ ).
To clarify the differences, we show a diagram explaining the losses and training setups in Figure 1.
Following common notation, [·]sg signifies a stop-gradient operation; no gradient is taken with regard
to terms in the parenthesis.

2We discuss these and other assumptions and their implications in detail in Appendix G.
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Formally, these are written as

Reconstruction: Lrec(Φ, F,Ψ) =Ex∼D
[∥∥x⊤ΦFΨ − x⊤Pπ

∥∥2
2

]
,

Latent self-prediction: Llat(Φ, F ) =Ex∼D

[∥∥∥x⊤ΦF −
[
x⊤PπΦ

]
sg

∥∥∥
2

2

]
,

TD Learning: Ltd(Φ, V̂ ) =Ex∼D

[∥∥∥∥x⊤ΦV̂ −
[
x⊤
(
rπ + γPπΦV̂

)]
sg

∥∥∥∥
2

2

]
.

Following the nomenclature of Farahmand et al. (2017), we call the first two losses as decision-
agnostic, and TD-learning as decision-aware as it depends on information specific to decision prob-
lem. To analyze the discrete-time learning dynamics, we study the analogous continuous-time gra-
dient flow, which allows us to use the toolkit of dynamical systems theory. Writing αΦ and αF for
the representation and model learning rates, i.e., the latent self-prediction dynamics are

d
dtΦt = −αΦ∇ΦtLlat(Φt, Ft) = −2αΦ(ΦtFt − PπΦt)F⊤

t ,

d
dtFt = −αF∇FtLlat(Φt, Ft) = −2αFΦ⊤

t (ΦtFt − PπΦt).

We primarily consider the two-timescale regime, under the assumption that αF → ∞ (Tang et al.,
2022). Intuitively, this describes a learning setup in which the latent model is learned “much faster”
than the latent mapping. This results in the following dynamics for self-predictive learning:

F ∗
t =

(
Φ⊤
t Φt

)−1 Φ⊤
t P

πΦt,
d

dt
Φt =

(
I − Φt

(
Φ⊤
t Φt

)−1 Φ⊤
t

)
PπΦtF ∗

t
⊤.

3 Formalizing the impact of distractions and observation functions

To bridge the theory-practice gap in feature learning, we formalize two structures found in MDPs
found in Deep RL benchmarks that have, to the best of our knowledge, not appeared in work
analyzing feature learning: observation functions and distractions. To allow a close comparison with
previous work, our changes to the formalism are minimal on purpose, while still highlighting the
important role these changes play in different loss functions.

3.1 Observation functions

Previous literature (Tang et al., 2022; Tang & Munos, 2023; Le Lan et al., 2022) has eschewed the
underlying observation of states in their analysis of representation dynamics. The correctness of the
dynamical system in Assumption 2.1 hinges on the fact that E[xx⊤] = I, which implies uncorrelated
state representations for each state x and a uniform distribution over states. The simplest form
of such a representation would be a one-hot vector, a representation for the i-th state in which all
entries are 0, except the i-th, which is 1.

This leads to an assumption that the features for the underlying states can be learnt independently.
With a one-hot representations, the features of x are simply x⊤Φ = Φ[i], the i-th row of Φ. A more
realistic setting, which we focus on, is considering observation functions acting on the underlying
states. This allows for representing systems where some states have correlated observations, which
may be helpful or harmful for the RL problem. We provide a motivating example and a more exten-
sive discussion regarding the effect observation functions on the learning process in Subsection A.1.

We briefly state this for reference later.
Assumption 2. Let an observation function for a finite state space MDP be an invertible matrix
O ∈ Rn×n.
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Formalization: To introduce an observation function while remaining in the regime of analyzing
linear networks and finite state problems, each one of n states is mapped to a unique n−dimensional
observation vector by an invertible observation matrix O ∈ Rn×n.3 Invertibility is assumed to ensure
the Markov property with linear function approximation.

This change from one-hot vectors to arbitrary vectors allows us to account for similarity. For
example, if two states have almost identical observation vectors, they will be mapped to similar
points in the latent representation space unless the features directly counteract this. We study the
impact of changing the observations with a linear reparameterization in Subsection 4.2 by replacing
x with x̄ = OTx.

3.2 Distracting state dynamics

In addition to observation functions, another common problem that many reinforcement learning
algorithms face are distractions. While distractions have been a focus of empirical work studying
the relative efficacy of different auxiliary tasks (Ni et al., 2024), a simple formalism whose effect on
learning dynamics can be analyzed has not been presented. We propose to model an MDP with
distractions using factored MDPs (Boutilier et al., 2000).
Definition 1 (A factored MDP model of a distraction). Let M = (M, PM , RM ), N = (N , PN , RN )
be a pair of Markov decision processes. The product process M ⊗ N is a MDP with state space
M × N , transition kernel PM ⊗PN (where ⊗ signifies the Kronecker product), and reward function
RM ⊗ 1 + 1 ⊗R⊤

N .

If RN = 0, we refer to N as a distracting process, as it does not contribute to the reward.

This process models a common occurrence: two non-interacting processes unfold simultaneously,
with the states being a combination of the two. Such a process can model a well-studied form of
distraction, the background distractions in Stone et al. (2021) or the random observation dimension
in Nikishin et al. (2022a); Voelcker et al. (2022). In this case, the foreground process M is assumed
to carry the reward information, while the reward vector of the background process N is 0. We
review important properties of the Kronecker product in Subsection C.1.

Note that our formalizations of observation functions and distracting processes is distinct from the
assumptions in linear MDPs (Jin et al., 2020). Concretely we do not assume that the processes are
low-rank compressible, just that they are factorizable.

4 Reconstruction and self-prediction losses

In this section and the next, we present an analysis of the stability conditions of reconstruction and
self-prediction losses with linear networks. Using this analysis, we obtain several insights, qualitative
predictions about how we expect the studied losses to behave in more complicated scenarios. These
insights present the basis for our empirical comparison in Section 6.

4.1 Case 1: Orthogonal state representations

Tang et al. (2022) show that for symmetric MDPs, latent self-prediction converges to subspaces
spanned by eigenvectors of Pπ. We extend this result in the following sense: if Pπ has positive real
eigenvalues, invariant sub-spaces which are not spanned by the top-k eigenvectors are unstable for
gradient descent.4 It is interesting to note that the resulting features are identical to those obtained
using the multi-reward approach described by Le Lan et al. (2023) (albeit under slightly different

3We could also consider projection into higher dimensional spaces O ∈ Rn×d with d > n, without violating the
Markov assumption, but this leads to additional complications (working with pseudo-inverses instead of inverses)
which do not contribute meaningfully to the insights in this work.

4The assumption of real positive eigenvalues is both more and less restrictive than the symmetry assumption made
by Tang et al. (2022). An extension of our result to negative eigenvalues is presented in Appendix D, together with
an extended comparison to the results obtained by Tang et al. (2022) and Le Lan et al. (2023).
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technical conditions), which highlights the close connection between the self-predictive approach
and bootstrapped generalized value function learning. This furthermore suggests that using random
rewards as auxiliary objectives (Farebrother et al., 2023) could result in very similar features as
using self-prediction, which presentes an interesting avnue for further empirical study.
Assumption 3. Assume a two-timescale scenario and F0 being initialized with full rank, and hence
the non-collapse property (Φ⊤

t Φt = Φ⊤
0 Φ0) (Tang et al., 2022) holds.

When referring to eigenvectors and singular vectors, we mean the right vectors of the corresponding
matrices unless stated otherwise. We now present our first theoretical result.
Proposition 1 (Stationary points of latent self-prediction). Assume Assumption 1 and Assump-
tion 2 hold. Furthermore, suppose Pπ is real diagonalizable. If the columns of Φt span an invariant
subspace of Pπ, Φt is a stationary point of the dynamical system. Furthermore, if Pπ is real-
diagonalizable with positive eigenvalues, all invariant subspaces not spanned by the top-k eigenvectors
sorted by eigenvalue are asymptotically unstable for gradient descent.

This implies that even without the assumptions of symmetry of Pπ required by Tang et al. (2022),
the dynamics of latent self-prediction will tend to converge to invariant subspaces spanned by eigen-
vectors with large eigenvalues as other invariant subspaces are unstable. This is important as we
expect these to be more important for representing potential reward functions in the environment
(Le Lan et al., 2023).

We can contrast this with the features learned by a reconstruction loss. We write span(A) for both
the span of the column vectors of A or for the span of a set of vectors A, depending on context.
Proposition 2 (Stationary points of reconstruction). Assume Assumption 1 and Assumption 2 hold.
Write (u1, . . . , un), (v1, . . . , vn) for the left and right singular vectors of Pπ sorted in descending
order by singular value. Any stationary point (Φ∗, F ∗,Ψ∗) of Lrec under the two timescale scenario
satisfies span (Φ∗) = span ({u1, . . . , uk}), span (Ψ∗⊤) = span ({v1, . . . , vk}).

Features of this form have been studied extensively and the convergence properties of linear auto-
encoders are well understood (Baldi & Hornik, 1989; Pretorius et al., 2018; Bao et al., 2020).

Proposition 1 and Proposition 2 together show that there is a subtle but important difference between
latent self-prediction and observation reconstruction: the features will converge to eigenspaces in the
former case, and to singular space in the latter case. Note that if Pπ is a symmetric matrix, then the
singular spaces and the eigen-spaces coincide and latent self-prediction and reconstruction converge
to the same features (Tang et al., 2022).

Behzadian et al. (2019) show that top k singular vectors are optimal low-rank linear features when
making no assumptions on the reward, meaning observation reconstruction should lead to the best
features when considering every possible bounded (or unknown) reward. Behzadian et al. (2019) and
Le Lan et al. (2023) both highlight that if eigenvectors and singular vectors differ, singular vectors
often lead to better performing features.

Insight 1 (Optimality of observation prediction). The features learned by observation predic-
tion are in general superior to those of latent self-prediction, when using solely one of these as
the loss function.

4.2 Case 2: Observation function dependence

Recall that the gradient dynamics presented in (2.1) and analyzed in Proposition 1 and Proposition 2
rely on the assumption that E[xx⊤] = I (see Assumption 1). We now introduce the observation
matrix O, which leads to correlations between different features. To do this, we simply replace
every occurence of x⊤ in the losses presented in Subsection 2.1 with x⊤O. We assume that x is a
one-hot vector as discussed before and the coverage is still uniform (Assumption 1 still holds), so all
correlation between states arise as E[O⊤xx⊤O] = O⊤O.
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It is important to note that for BYOL and TD this rewriting leads to a linear basis change of Φ
compared to the original loss, as each occurrence of O is multiplied by Φ. The only loss for which
this is not the case is the reconstruction approach.
Proposition 3. Assume Assumption 1, Assumption 2, and Assumption 3 hold. Let {Φ∗

lat/td} be
the set of critical points of Llat or Ltd respectively. Then O−1Φ∗

lat/td are stationary points for the
reparameterized losses LO

lat and LO
td.5 Furthermore, if Φ∗

lat/td is an asymptotically stable point of
Llat/td that has a Jacobian with all negative eigenvalues, O−1Φ∗

lat/td is an asymptotically stable
point of LO

lat/td.

Note that while the stationary points and asymptotic stability conditions of the gradient flow might
be unaffected by the introduction of observation distortions, the same might not be true for the
dynamics of descent with finite step sizes. The numerical conditioning of the involved matrices
change depending on O and so the impact of discretization due to finite step sizes changes the
resulting dynamical system.
Proposition 4. Assume Assumption 1, Assumption 2, and Assumption 3 hold. Let (u1, . . . , un),
(v1, . . . , vn) be the left and right singular vectors of O−1PπO. Any stationary point (Φ∗, F ∗,Ψ∗) of
LO

rec satisfies span (Φ∗) = span ({u1, . . . , uk}), span (Ψ∗⊤) = span ({v1, . . . , vk}).

The singular value decomposition of O−1PπO will in general not have a clearly interpretable rela-
tionship to that of Pπ and r, so the optimality result obtained by Behzadian et al. (2019) do not
hold in this case. However this does not mean that different observation functions will always harm
the ability of the reconstruction loss to obtain good features. Consider for example an observation
transformation that maps states directly to value and reward function. This would clearly be an
example of a helpful observation transformation. However, in general we conjecture that arbitrarily
changing the observation function will harm the reconstruction loss approach. A more detailed anal-
ysis involving the reward function of the problem being solved and its connections to the observation
model are an exciting avenue for future work.

Insight 2 (Observation dependence of autoencoder models). Due to the invariance properties
of latent self-prediction, we expect the performance of latent self-prediction to suffer less than
the performance of observation reconstruction when perturbing the observation space arbitrarily.

5 Understanding the effects on value function learning

The optimality of a representation for value estimation depends non-trivially on the structure of
the reward structure of the MDP. Previous works (Behzadian et al., 2019; Bellemare et al., 2019;
Le Lan et al., 2022) attempted to reason about the optimality of representations without relying on
the reward structure, by arguing that certain subspaces (such as the span of top-k eigenvectors or
top-k singular vectors) are optimal given reward agnosticism.

Now we take a differing approach by taking the value function structure into account. Furthermore,
we argue that the top-k eigenspaces (resp. singular spaces) are not always optimal. Indeed, we
demonstrate in Appendix A.2 that with distractions, these subspaces can be particularly poor.

We begin by formalizing the reward function structure we will analyze. Let us write w1, . . . , wn for
the eigenvectors of Pπ. We will assume that rπ has a low-dimensional structure in the following
sense:
Assumption 4. ∃i1, . . . , im ∈ {1, . . . , |X |} such that rπ ∈ span(wi1 , . . . , wim), and m ≤ k. Let
furthermore {wi1, . . . , wim} be a minimal basis in the sense that winwin⊤rπ ̸= 0 for all n.

We now write the summed losses

Lrec+td(Φ, F, ψ, r̄) = Lrec(Φ, F, ψ) + Ltd(Φ, r̄)
5Due to space constraints, we present the full equations in the proof.
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and
Llat+td(Φ, F, r̄) = Llat(Φ, F ) + Ltd(Φ, r̄).

Proposition 5. Suppose that Pπ is real diagonalizable, and that Assumption 1, Assumption 3, and
Assumption 4 hold. There exists a non-trivial critical point Φ∗ of the two-timescale TD loss Ltd
such that span(rπ) ⊆ span(Φ∗). Furthermore, Φ∗ is a critical point of the two-timescale joint loss
Ltd+lat. Therefore combining LTD and LLat does not exclude the existence of a stationary point with
0 value function approximation error.

We leave the extension of the stability result for TD learning to the joint loss case open for future
work. Note that without the addition of TD learning, the latent loss would stabilize the top-
k eigenspace representation, but we hypothesize that this behavior changes when combining the
losses.
Proposition 6. Let Assumption 1, Assumption 2, and Assumption 4 hold. If the reward span-
ning eigenvectors do not lie within the span of the top-k singular vectors, span (wi1 , . . . , wim) ̸⊆
span (u1, . . . , uk), the critical points of the two-timescale joint loss Ltd+rec are guaranteed to not be
minimizers of the value function approximation error.

Contrasting these propositions suggests that when combined with TD learning losses, latent self-
prediction can be a more helpful auxiliary task. Indeed, when combining it with TD learning we
can still guarantee that there exists an optimal combined solution. This does not hold for the
reconstruction loss, where we can construct cases in which the joint loss leads to worse TD error.

Insight 3 (Latent self-prediction as an auxiliary task). For good performance across a wide
variety of tasks, latent self-prediction needs to be combined with TD learning as an auxiliary
task. It is a preferable auxiliary task to observation prediction in most scenarios, but especially
in scenarios with distracting processes.

6 Empirical study of theoretical results in deep learning based settings

We aim to empirically verify the statements marked as “Insights” throughout the paper: superiority
of observation prediction as a standalone feature learning loss (Insight 1), impact of the observation
function on the different loss functions (Insight 2), and the relative strength of latent-self prediction
as an auxiliary loss compared to reconstruction (Insight 3). As our theory addresses the simpli-
fied setting of policy evaluation with linear models, we seek to test if the insights transfer to the
more common setting of control with neural networks. Across all experiments, we report mean
performance over 30 seeds and shaded 95 bootstrapped confidence interval.

To test these hypotheses, we use the MinAtar suite of five Atari inspired videogames (Young & Tian,
2019) and the DMC 15 suite (Tunyasuvunakool et al., 2020).6 Both are small enough to perform
thorough investigations, while providing non-trivial observation spaces and dynamics. Detailed
information about the implementation and hyperparameters can be found in Appendix E.

Auxiliary task learning vs general purpose feature learning (Figure 2 and Figure 3):
First, we compare both the auxiliary task and stand-alone feature learning scenarios. As expected
from prior work (Jaderberg et al., 2016; Schwarzer et al., 2021; Farebrother et al., 2023), in all cases
using an auxiliary loss performs no worse (and often better) than vanilla DQN. We find that as
expected from Insight 3, latent self-prediction is a stronger auxiliary loss function than observation
reconstruction in three out of five environments. However, when using the decision-agnostic losses
alone, we clearly see observation reconstruction performing significantly better than latent self-
prediction, which fails to learn any relevant features in several cases. This verifies Insight 1.

Curiously, in the case of the Seaquest environment, we find that using observation prediction alone
outperforms using it as an auxilliary task strongly, and performs on par with the auxiliary task

6DMC experiments are presented in the appendix due to space constraints.
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variant of the latent self prediction loss. Seaquest also has the sparsest reward structure in the test
suite, which can make it a challenging environment for DQN. In this case, features based purely on
the observed transition might allow for better policy learning.

This highlights that no algorithm is clearly superior in all settings and the reward and observation
structure is very relevant for the performance of each loss.

Observation space distortions (Figure 4): To test the impact of changing the observation
function, we sample a random binary matrix and multiply it to the flattened observation vector. We
then reshape the observation to the original shape again.

All algorithms show themselves to be strongly impacted by this random observation distortions,
which suggests that our claim of invariance of self-prediction relies too strongly on the linear gradient-
flow limit. This can in part be explained by the use of a convolutional layer in the standard baseline
implementation of DQN which we adapted. However, we still find that at least on two environments
(Seaquest and Freeway), the latent self-prediction auxiliary task is able to recover more of the original
performance than either observation prediction or DQN. Interestingly, the DQN baseline seems to
suffer the most from the introduction of the observation change, which suggests that correlations of
the existing observation space play an important role in learning correct value function prediction.

Overall, we find that Insight 2 does not fully translate to the more complex test setting. In part, this
may be explained by the fact that the original observation spaces of the test environments already
violate our assumptions for the one-hot encoding. In addition, introducing linear correlation might
not impact non-linear model learning in the same way it would impact linear models. This highlights
the need for more in-depth research on the interplay between given observation space and feature
learning.

Distractions (Figure 5 and Figure 6): As our results are dependent on the spectral structure of
the environment, different distraction models can be assumed to have differing impact on the efficacy
of the tested losses. This behavior is dependent on the structure of the noise. If the distraction does
not strongly change the top-k singular or eigenspaces, it will be less problematic for the auxiliary
tasks, especially for observation reconstruction. Testing the impact of different distraction models
on the top-k spaces is out of scope for this work, but we conjecture that fully random noise has less
structure than distractions following clear patterns.

Therefore, we consider two simple distraction models in our experiments. The distractions are
concatenated to the original observations along the channel dimension. First, we use random noise
sampled independently for each state from a Bernoulli distribution. As there is no predictable
structure in this noise, we expect all algorithms to be able to deal with this distraction better.
Second, we choose one of the environments at random (Freeway-v1) and concatenate two copies to
the observation space of each environment. The dynamics are obtained by sampling a random action
at each timestep independent from the policy and stepping the distraction environment with it.
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1Figure 2: Auxiliary task setup: Performance of all losses on the observation space as given without
changes to the environment.
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1Figure 3: Stand-alone setup: Performance of all losses on the observation space as given without
changes to the environment. The DQN baseline is using random features, which are not updated,
to verify that learning features is indeed superior to a random feature baseline.

0 200 400

0

5

10

15

M
ea
n
ep
is
o
d
e
re
w
ar
d

Asterix-v1

0 200 400

0

5

10

15

20
Breakout-v1

0 200 400

Environment steps (×10000)

0

20

40

Freeway-v1

0 200 400

0.0

2.5

5.0

7.5

10.0

Seaquest-v1

0 200 400

0

20

40

60

80

100

SpaceInvaders-v1

Llat + LTD (random observation) Lobs + LTD (random observation) LTD (random observation)

1Figure 4: Distorted observation function with a random transformation.

We find a small advantage in some environments to using the latent self-prediction loss and using
random noise, and no clear advantage from any algorithm in the structured noise case. Structured
noise poses a much larger challenge to most algorithms, completely preventing learning in several
cases. This partially validates that not only the presence or absence of noise matters, but also how
it changes relevant quantities, e.g. the eigenvalues of the transition kernel.

In the continuous control experiments presented in Appendix F, we find that the self-prediction loss
performs generally better than in the MinAtar suite. As the observation and reward structure differs
between these two benchmark suite, this obvservation lends more credibility to our claims that the
observation structure impacts the performance of algorithms.

7 Conclusions

When choosing an RL approach to use, practitioners are overwhelmed with a variety of loss func-
tion choices, without clear indication which one will be preferable in what scenario. In our work,
we introduce analytically tractable notions of distractions and observation functions. With these
we predict the performance of latent self-prediction and observation reconstruction as stand-along
feature learning methods and auxiliary tasks, and study our theoretical insights empirically. Our
evaluation lends credibility to the use of simple surrogate models to obtain practically relevant in-
sights into algorithmic performance. However, in several cases we also find deviations between our
predictions and more complex benchmarks. Therefore, while we claim that our experiments have
the ability to guide the choice of algorithms for applied settings, there is still a sizeable gap between
theory and practice that remains to be bridged in future work.

We also note that our experiments showed substantial differences in behavior of auxiliary losses
both within and across benchmarks and different noise distractions. Previous work that studied the
effect of distraction (Nikishin et al., 2022a; Voelcker et al., 2022; Ni et al., 2024) did not discuss their
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1Figure 5: Appending random noise channels.
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1Figure 6: Appending structured noise channels using the Freeway environment.

distraction model in further details. In light of our results, we suggest that empirical research should
be careful about the choice of benchmark and experimental setup and discuss the implications of
the empirical setup explicitely.

One of the most important gaps between the work presented in this paper and the behavior of online
algorithms is the restrictive assumption of the fixed policy evaluation case. Therefore one of the most
exciting avenues for future work is analysing policy improvement, where the underlying dynamics of
the environment change due to the policy updates. On the empirical side the surprising effectiveness
of the observation prediction loss on the Seaquest environment highlights the fact that even within
benchmark suites, differences in the reward functions and observation models can lead to differing
rankings between algorithms. This further highlights the necessity of studying the structure of MDPs
and to design algorithms that are robust to different structures, or adapt to them automatically.
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A Motivating examples

A.1 Motivating example for observation spaces

To further motivate our focus on observation models, consider the common problem of representing
rotational angles. As these are continuous values, discretized one-hot representations may introduce
errors that may harm efficient control. When choosing a continuous representation, designers are
faced with the choice between representing the angle as ω ∈ [−π, π) (the exclusion of the right end-
point is arbitrary), or by a decomposition into [sin(ω), cos(ω)] ∈ [0, 1]2. The choice of representation
has measurable impact on the ease of learning: the former is 1D instead of 2D, which can reduce
the size of networks needed when dealing with many angles. However a complication with the first
representation is it is discontinuous at the right endpoint, in the sense that limx→π x = −π (this is
generally due to the structure of R/2πZ). This creates a peculiar continuity condition for functions
on this representation space: for a function f to be continuous, it must be continuous and also satisfy
the boundary condition limx→π f(x) = f(−π). Without explicitly enforcing this, the majority of
functions learned on this domain (such as estimated value functions) will be discontinous, leading
to additional difficulties in the learning process. On the other hand, this issue does not exist for the
second representation, potentially making learning much easier.

The important question is that of similarity and continuity: in our pendulum example, the more com-
pact representation breaks the intuitive notion that states that behave similariy should be mapped
to close representations.

A.2 Distractions

The optimality of features can be measured in how close the projection of the true value function
onto their span is to the ground truth, i.e. in the L2 norm. This raises the question under what
conditions the top k eigenvectors or singular vectors would not span the value function well. For
this, we turn to our notion of an MDP with distractions.
Proposition 7 (Suboptimality of top k eigenspaces with distractions). Assume an MDP with
distraction composed of two independent processes M and N according to Definition 1. Let
v1, . . . , vn and u1, . . . , um be the eigenvectors of M and N respectively, with associated real eigen-
values λj and µi ordered. Assume ∀i < k : µi > λ2 and rN = 0. Let Uk be an orthonor-
mal basis for the top-k eigenspace of M ⊗ N . Then span(Uk) = span({1 ⊗ vi|∀i ≤ k}) and
projUk(rM ⊗ 1) = (

∑m
i=0 ri/n)1n·m.

This means that there is a natural notion of a process in which the top-k eigenvectors do not
span the reward function well. In this case, the distracting process has larger eigenvalues than the
reward-relevant process. As the eigenvector basis is composed of Kronecker products of the individ-
ual eigenvectors, the top-k eigenspace contains redundant copies of the reward relevant processes
eigenvectors. By Lemma 5, this directly implies suboptimal value function approximation. Note
that our assumptions here are restrictive as we consider a worst case distraction for clarity, but the
problem emerges whenever the distracting process has several large eigenvalues.

B Related work

In this work, we take inspiration from the work of Tang et al. (2022) and Le Lan et al. (2023), which
present analyses of representation dynamics under various losses. The main purpose of our work is
to take a closer look at the implicit assumptions on the MDP structure underlying previous work to
obtain a better picture of the empirical behavior of the analyzed algorithms.

Bellemare et al. (2019) shows how the space of linear features relates to optimal value functions.
Building on this, Le Lan et al. (2022) analyzes the optimality of, while Le Lan et al. (2021) focus on
the topological properties of representation functions. Our work expands on these by focusing on the
properties of features learned by common approaches instead of reasoning about optimal features.
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Lyle et al. (2021) and Farebrother et al. (2023) analyse the impact of random cumulants and auxiliary
value function prediction on the loss dynamics. As Le Lan et al. (2023) show, the induced gradients
are similar to those we analyze for latent self-prediction, adding another avenue for understanding
the design of auxiliary tasks. As latent self-prediction and auxiliary tasks lead to similar stationary
points, it is an exciting avenue for future work to use the spectral properties of existing reward
functions to design better auxiliary rewards, i.e. in environments with distractions.

Tomar et al. (2023) asks a closely related question to ours ("What matters for reinforcement learning
from pixels?") and provide an extensive empirical study. Many of their findings are corroborated
in our experiments and strengthened by our theoretical analysis. They finding only limited benefit
for latent self-prediction, which is different from our finding, however they focused on more complex
visual observation spaces, which might highlight that the benefits of this approach are more strongly
observed in smaller representation spaces.

Linear features have also been studied in the context of the graph Laplacian (Petrik, 2007; Mahade-
van, 2009; Wu et al., 2019) and successor features Dayan (1993); Barreto et al. (2017), which result
in feature construction methods that closely resemble those learned by current methods. Our work
directly relates modern deep learning methods to these classic approaches for feature construction.
Furthermore, Machado et al. (2023) uses explicit graph drawing objectives to extract eigenvector
representations from transition matrices. Comparing the stability and synergy of these approaches
in terms of the training dynamics with auxiliary objectives such as those discussed here is a fruitful
direction for future work.

Finally, Ni et al. (2024) recently published an analysis on the relative performance of different aux-
iliary tasks in deep reinforcement learning. Our analysis is orthogonal and complimentary to theirs.
While they focus on highlighting the benefits of latent self-prediction in the idealized limit of perfect
predictions, we analyse the case where trade-offs have to be made due to compression. In addition,
while they highlight the noise robustness of latent self-prediction, they show no formalization or
theoretical justification. Our analysis on the other hand shows the strong impact that the form of
the distracting dimensions have on the problem solution.

C Helpful definitions and lemmata

This section contains helpful lemmata that are used for our proofs. Where we took these from
existing work, we provide references, otherwise the proofs are our own, although probably also
known in the literature.

C.1 Linear Algebra

As before, for matrices V we write span(V ) to denote the span of their column vectors.
Definition 2 (Top-k singular vectors). Let Pπ = U⊤ΣV be the singular value decomposition, and
assume that the diagonal of Σ is arranged in decreasing order. The first k rows of U⊤ and the first
k columns of V are called the top-k left and right singular vectors, respectively.
Lemma 1 (Spectrum of Kronecker product matrix). Consider two non-singular matrices M and
N . Let λi be the eigenvalues of M and µj be the eigenvalues of N , with eigenvectors ui and vj
respectively. Then the eigenvalues of M ⊗N are λiµj with eigenvectors ui ⊗ vj respectively.

Proof. For any eigenvector ui of M and vj of N , we have

(M ⊗N) (ui ⊗ vj) = (Mui) ⊗ (Nvj) = (λiui) ⊗ (µjvj) = λiµj (ui ⊗ vj) .

So ui ⊗ vj is an eigenvector of M ⊗N with eigenvalue λiµj
Lemma 2 (Orthogonalized bases and the Kronecker product). Let V ∈ Rn×m be a matrix. Let
orth(V ) be a matrix of any orthonormal basis vectors for the column vectors of V . Then span(V ⊗
1) = span(orth(V ) ⊗ 1). Furthermore (1/k)orth(V ) ⊗ 1 is an orthonormal basis of span(V ⊗ 1).
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Proof. Let Vi ⊗ 1k be any column vector of V ⊗ 1k. Let α1, . . . , αm be coefficients so that Vi =∑m
j=1 αjorth(V )j . Then

m∑

j=1
αj
(
orth(V )j ⊗ 1k

)
=




m∑

j=1
αjorth(V )j


⊗ 1k = Vi ⊗ 1k,

following the standard associative and distributive properties of the Kronecker product.

As every vector in the original span can be represented in the orthogonalized span, the two are
equivalent.

Finally note that

1
k

(orth(V ) ⊗ 1)⊤
i (orth(V ) ⊗ 1)i = 1

k

k∑

j=1

(
orth(V )⊤

i orth(V )⊤
i

)
= 1, and

1
k

(orth(V ) ⊗ 1)⊤
j (orth(V ) ⊗ 1)i = 1

k

k∑

t=1

(
orth(V )⊤

j orth(V )⊤
i

)
= 0.

Lemma 3 (Reduced rank regression). Let C,D ∈ Rn×n, A ∈ Rn×k, and B ∈ Rk×n be full rank
matrices with n ≥ k. Let A∗, B∗ = minA,B∥CAB − DC∥2

F . Let u1, . . . , uk and v1 . . . , vk be the
top-k singular vectors of C−1DC according to Definition 2. Then span(A∗) = span(u1, . . . , uk) and
span(B) = span(v1, . . . , vk).

This is a reduced rank regression problem (Izenman, 1975) or low-rank matrix approximation prob-
lem.

The unconstrained solution to the problem is given by ÂB̂ = C−1DC. From the Eckhart-Young
theorem, we know that the optimal low-rank approximation to C−1DC is given by the top-k singular
vectors. Therefore A and B span top-k left and right singular vectors respectively. For a more
extensive proof, please refer to Izenman (1975).

C.2 Stochastic matrices

Lemma 4 (Spectrum of a resolvent matrix). Let A be an invertible matrix with unique real eigen-
values and −1 ≤ λmin ≤ λmax ≤ 1. Let γ ∈ (0, 1). The matrices A and (I − γA)−1 have the same
eigenvectors and the ordering of the corresponding eigenvalues remains the same.

Proof. Let e be an eigenvector of A and λ the corresponding eigenvalue. Then

(I − γA)−1e =
n∑

i=0
γnAne =

n∑

i=0
(γλ)ne = 1

1 − γλ
e.

As (1 − γλ)−1 is a monotonic function for −1 ≤ λ ≤ 1 and γ ∈ [0, 1], the ordering of the eigenvalues
remains the same.

Lemma 5 (Basis equivalence of linear reward and value function). Let r be the vector representation
of the reward function and V of the value function respectively for an MDP with fixed policy and
transition matrix Pπ. Let U = {u1, . . . , un} be the set of eigenvectors of Pπ, and let Ur ⊆ U be a
minimal set of eigenvectors so that r ∈ span(Ur). Then V ∈ span(Ur).

Proof. Let r =
∑k
i=1 αi u

r
i be the reward representation in the basis Ur. Then, by Lemma 4

V π = (I − γPπ)−1r =
k∑

i=1

α

1 − λiγ
uri .
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C.3 Ordinary differential equations

For describing the stability of ODEs, we use the notion of asymptotic stability, with the condition
ℜ(λi) < 0 for all eigenvalues λi of the Jacobian at a critical point.
Lemma 6 (Linear reparameterization of an autonomous ODE). Let y′ = f(y) be an autonomous
ordinary differential equation. Let y∗ be any critical point for which f(y∗) = 0. Let furthermore
x′ = f(Ax) be a reparameterized autonomous ODE for any invertible matrix A. Then the x∗ is a
critical point with f(Ax) = 0 iff x∗ = A−1y∗. Furthermore, the eigenvalues of the Jacobian of y′ at
y∗ are equal to the eigenvalues of the Jacobian of x′ at x∗ = A−1y∗.

Proof. The direction x = A−1y∗ ⇒ f(Ax) = 0 is clear by direct evaluation. We now focus on the
direction f(Ax) = 0 ⇒ x = A−1y∗. Assume that f(Ax) is 0 and x = A−1y for a y which is not a
point satisfying f(y) = 0. But then 0 = f(AA−1y) = f(y) ̸= 0, a contradiction.

For stability, note that

d
dty = f(y)

=⇒ d
dtx = d

dyx
d
dty

= A−⊤f(y)

=⇒ d
dx

d
dtx = A−⊤ d

dxf(Ax)

= A−⊤ d
dy f(y) d

dxAx

= A−⊤ d
dy f(y)A⊤.

This shows that the Jacobian d
dxf(Ax)|x=A−1y0 is similar to the Jacobian d

dyf(y)|y=y0 , which means
their spectra are identical.

C.4 MDP representation and TD learning

Lemma 7 (Lemma 5 of Tang et al. (2022)). Suppose Pπ is real-diagonalizable, and write u1, . . . , un
for its eigenvectors. Then any orthonormal matrix Φ which has the same span as a set of k eigen-
vectors is a minimizer of Llat.

The next three statements are taken from Ghosh & Bellemare (2020). They address the TD loss
wrt to the learned weights V̂ and fixed Φ (compare Subsection 2.1). We changed the notation of the
statements to fit our notation here, we have denoted the diagonal matrix of the state distribution
as D and assume that D = I in Assumption 1, while Ghosh & Bellemare (2020) uses Ξ. They use θ
for the value function weights while we use V̂ . They also uses Spec(A) to denote the spectrum, the
set of all eigenvalues of a matrix A.

The notion of stability used in Ghosh & Bellemare (2020) is that of convergence to the unique fixed
point of the projected Bellman update of the linear ODE induced by the LTD loss when fixing Φ.
In the two-timescale scenario considered in this paper, this corresponds to the “inner” ODE over V̂ .
Lemma 8 (Proposition 3.1 of Ghosh & Bellemare (2020)). TD(0) is stable if and only if the
eigenvalues of the implied iteration matrix AΦ = Φ⊤D(I − γPπ)Φ have positive real components,
that is

Spec (AΦ) ⊂ C+ := {z : Re(z) > 0}.

We say that a particular choice of representation Φ is stable for (Pπ, γ,D) when AΦ satisfies the
above condition.
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Lemma 9 (Proposition 3.2 of Ghosh & Bellemare (2020)). An orthogonal representation Φ is stable
if and only if the real part of the eigenvaluse of the induced transition matrix ΠPπΠ where Π = ΦΦ⊤

is bounded above, according to

Spec (ΠPπΠ) ⊂ {z ∈ C : Re(z) < 1
γ

}.

In particular, Φ is stable if ρ(ΠPπΠ) < 1
γ .

Lemma 10 (Theorem 4.1 of Ghosh & Bellemare (2020)). An orthogonal invariant representation
Φ (meaning span(PπΦ) ⊆ span(Φ)) satisfies

Spec (ΠPπΠ) ⊆ Spec(Pπ) ∪ {0}

and is therefore stable.

As a corollary of their proof we have that
Lemma 11 (Corollary of Ghosh & Bellemare (2020)). Let Φ be an orthogonal (but not necessarily
square) invariant representation of Pπ. Then the spectral radius ρ(Φ⊤PπΦ) ≤ 1.

The proof follows directly from Lemma 10 by the cyclicality of the spectrum.

The following two results are our own, although closely related results exist in the literature.
Lemma 12 (Lossless approximation of V ). Let Φ be an orthonormal basis of an invariant subspace
of Pπ and let Assumption 4 hold. Let V = (I − γPπ)−1r be the value function of Pπ and rπ. Then

Φ(I − γΦ⊤PπΦ)−1Φ⊤rπ = V.

Proof. By Assumption 4 we can find a matrix A so that rπ = ΦA and ΦΦ⊤rπ = rπ, and by the
invariant subspace assumption, we can find a matrix B so that PπΦ = ΦB. Writing the inverted
matrix as an infinite sum, which is valid as the spectrum of Φ⊤PπΦ is bounded by 1 following from
Lemma 11 and Carl Neumann’s theorem over power series, we obtain

Φ(I − γΦ⊤PπΦ)−1Φrπ = Φ
∞∑

n=0
γn(Φ⊤PπΦ)nΦrπ

= Φ
∞∑

n=0
γnBnΦ⊤rπ (PπΦ = ΦB) and (Φ⊤Φ = I)

=
∞∑

n=0
γnΦBnΦ⊤rπ

=
∞∑

n=0
γnPπnΦΦ⊤rπ (ΦB = PπΦ) iterated

=
∞∑

n=0
γnPπnrπ (ΦΦ⊤rπ = rπ)

= V

Lemma 13 (Critical points of LTD). Let Assumption 1, Assumption 3, and Assumption 4 hold.
Assume Φ∗ ∈ Rn×k is an orthonormal invariant representation for Pπ in the sense that Φ∗⊤Φ∗ = I
and span(Φ∗) = span(PπΦ∗). Let furthermore rπ ∈ span(Φ∗) and let V be the corresponding value
function. Then Φ∗ is a critical point of LTD and for the corresponding weights V̂ ∗ we have Φ∗V̂ ∗ =
V .
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Proof. By Lemma 8, Lemma 9, and Lemma 10 and the stated assumptions the weights V̂ converge.
Therefore, we can analyze the induced dynamical system with V̂ ∗.

Find V̂ ∗ as the stationary point of ∇V̂ LTD

∇V̂

∥∥∥∥Φ∗V̂ −
[
rπ + γPΦ∗V̂

]
sg

∥∥∥∥
2

2

∣∣∣∣
V̂=V̂ ∗

= Φ∗⊤
(

Φ∗V̂ ∗ −
[
rπ + γPΦ∗V̂ ∗

])
= 0

⇔ Φ∗⊤Φ∗V̂ ∗ − Φ∗T rπ − γΦ∗⊤Φ∗BV̂ ∗ = (Φ∗⊤Φ∗ − γΦ∗⊤PπΦ∗)V̂ ∗ − Φ∗⊤rπ = 0
⇔ V̂ ∗ = (Φ∗⊤Φ∗ − γΦ∗⊤PπΦ∗)−1Φ∗⊤rπ = (I − γΦ∗⊤PπΦ∗)−1Φ∗⊤rπ

The invertibility of (I − γΦ⊤PπΦ) = ΦTD(I − γPπ)Φ = AΦ is guaranteed as all eigenvectors are
nonzero.

We now show that Φ∗ is a stationary point by showing that

∇ΦLTD|Φ=Φ∗ = 0.

We note that as Φ∗ spans an invariant subspace of Pπ there exists an invertible matrix B so that
PπΦ∗Φ∗B. Therefore (I − γΦ∗⊤PπΦ∗) = (I − γB).

∇ΦLTD|Φ=Φ∗ = ∇Φ

∥∥∥∥ΦV̂ ∗ −
[
rπ + γPΦV̂ ∗

]
sg

∥∥∥∥
2

2

∣∣∣∣∣
Φ=Φ∗

=
(

ΦV̂ ∗ − rπ − γPΦV̂ ∗
)

(V̂ ∗)⊤
∣∣∣∣∣
Φ=Φ∗

=
(

Φ∗(I − γB)V̂ ∗ − rπ
)

(V̂ ∗)⊤ (substitute first occurrence of) V̂ ∗

=
(

Φ∗Φ∗⊤rπ − rπ
)

(V̂ ∗)⊤

= (rπ − rπ)︸ ︷︷ ︸
=0

(V̂ ∗)⊤ = 0

The final line is due to the fact that the columns of Φ∗ are orthonormal, which means that Φ∗Φ∗⊤

is an orthogonal projection onto the span of Φ∗. To verify, note that
(

Φ∗Φ∗⊤
)2

=
(

Φ∗ Φ∗⊤Φ∗
︸ ︷︷ ︸

=I

Φ∗⊤
)

=
(

Φ∗Φ∗⊤
)
.

Furthermore, by Assumption 4, rπ ∈ span(Φ∗), which means Φ∗Φ∗⊤rπ = rπ for an orthogonal
projection Φ∗Φ∗⊤. Moreover, by Lemma 12, Φ∗V̂ ∗ = V , which concludes the proof.

This proof closely follows related statements by Ghosh & Bellemare (2020), Tang et al. (2022),
and Le Lan et al. (2022). We repeated the argument here for easier legibility with all assumptions
necessary for our work.

D Proofs of main results

Proofs for Section 4

Proposition 1 (Stationary points of latent self-prediction). Assume Assumption 1 and Assump-
tion 2 hold. Furthermore, suppose Pπ is real diagonalizable. If the columns of Φt span an invariant
subspace of Pπ, Φt is a stationary point of the dynamical system. Furthermore, if Pπ is real-
diagonalizable with positive eigenvalues, all invariant subspaces not spanned by the top-k eigenvectors
sorted by eigenvalue are asymptotically unstable for gradient descent.
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Proof. At any stationary point the gradient d
dtΦt must be equal to 0, which from Section 2.1 means

that we must have
(

Φt
(
Φ⊤
t Φ
)−1 Φ⊤

t − I
)
PπΦtΦ⊤

t P
π⊤Φt

(
Φ⊤
t Φ
)−⊤ = 0.

Assume that the column vectors of Φ∗ spans an invariant subspace of Pπ. This implies that there
exists a full rank matrix A so that PπΦ∗ = Φ∗A. Then

(
Φ∗
(

Φ∗⊤Φ∗
)−1

Φ∗⊤ − I

)
PπΦ∗F ∗ =

(
Φ∗
(

Φ∗⊤Φ∗
)−1

Φ∗⊤Φ∗

︸ ︷︷ ︸
=I

−Φ∗
)
AF ∗ = 0.

This proves the first part of the proposition.

There are additional critical points of the differential equation, as discussed by Tang et al. (2022).
In the analysis of stability, we first show the case of critical points corresponding to the claim in the
proposition. We then briefly discuss other cases after the proof.

Case 1: Φt spans an invariant subspace of Pπ Invariant subspaces correspond to subspaces
spanned by right eigenvectors of Pπ.

We write P for Pπ to reduce notational clutter. Let e1, . . . , ek be the eigenvectors corresponding to
the k largest eigenvalues of P . Let Φ∗ correspond to any set of k eigenvectors of P . Then

d
dtΦ

∗ = − (Φ∗F ∗ − PΦ∗)F ∗⊤ = 0.

To show that all non top-k eigenspaces are asymptotically unstable critical points of the differential
equation defined by the gradient flow of Φ. To show this, we aim to show that there exists an
eigenvector of the Jacobian with an eigenvalue larger than 0. For this, we construct the directional
derivative at the critical point. The directional derivative is the Jacobian vector product, which
allows us to circumvent the need to work with higher order tensor derivatives. We then proceed to
show that there exists a direction which corresponds to the eigenvector of the Jacobian with positive
eigenvalue. This concludes the proof. This technique closely follows the one used by Le Lan et al.
(2023).

Assume span{Φ∗} ≠ span{e1, . . . , ek}. This implies that there exists at least one eigenvector ej ∈
{e1, . . . , ek} and ej /∈ span{Φ∗}, with corresponding eigenvalues λj .

Let D∆ be the directional derivative of d
dtΦ|Φ=Φ∗ in the direction ∆. We construct the directional

derivative using the product rule (terms colored for ease of reading),

D∆
d
dtΦ|Φ=Φ∗ = −D∆

(
(ΦF ∗ − PΦ)F ∗⊤

)
|Φ=Φ∗

= −D∆ (ΦF ∗ − PΦ) |Φ=Φ∗F ∗⊤ − (Φ∗F ∗ − PΦ∗)D∆F
∗|Φ=Φ∗ ⊤.

For the directional derivative, we only consider directions that are orthogonal to Φ∗, so Φ∗⊤∆ = 0.
Then PΦ∗ = Φ∗A︸ ︷︷ ︸

subspace condition

=⇒ ∆⊤PΦ∗ = 0. For the derivative with regard to F ∗, we have

D∆F
∗|Φ=Φ∗ =D∆

(
Φ⊤Φ

)−1 Φ⊤PΦ

=
(
D∆

(
Φ⊤Φ

)−1)Φ∗⊤PΦ∗ +
(

Φ∗⊤Φ∗
)−1 (

D∆Φ⊤PΦ
)

= − (∆⊤Φ∗ + Φ∗⊤∆)︸ ︷︷ ︸
=0

(
Φ∗⊤Φ∗

)−2
Φ∗⊤PΦ∗ +

(
Φ∗⊤Φ∗

)−1 (
∆⊤PΦ∗
︸ ︷︷ ︸

=0

+Φ∗⊤P∆
)

=
(

Φ∗⊤Φ∗
)−1 (

Φ∗⊤P∆
)
.

Therefore, the first term in the second line is dropped, as well as the first term of the final summand.
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Note that F ∗ =
(

Φ∗⊤Φ∗
)−1

Φ∗⊤PπΦ∗ =
(

Φ∗⊤Φ∗
)−1

Φ∗⊤Φ∗

︸ ︷︷ ︸
=I

diag(Λi) = diag(Λi), where Λi is the

set of eigenvalues corresponding to the eigenvectors in Φ∗ and diag(Λi) is the diagonal matrix of
eigenvalues corresponding to those eigenvectors spanned by Φ∗.

This allows us to compute the remaining derivative,

D∆ (ΦF ∗ − PΦ) |Φ=Φ∗ diag(Λi)
= (∆ diag(Λi) + Φ∗D∆F

∗ − P∆) diag(Λi)

=
(

∆ diag(Λi) + Φ∗
(

Φ∗⊤Φ∗
)−1

Φ∗⊤P∆ − P∆
)

diag(Λi),

where we use the fact that D∆PΦ∗ = PD∆Φ∗ = P∆.

Finally, as Φ∗F ∗ = Φ∗diag(Λi) = PπΦ∗, we obtain

D∆
d
dtΦ|Φ=Φ∗ = −

(
∆ diag(Λi) + Φ∗

(
Φ∗⊤Φ∗

)−1
Φ∗⊤P∆ − P∆

)
diag(Λi) − (Φ∗F ∗ − PΦ∗)︸ ︷︷ ︸

=0 as shown

(
Φ∗⊤P∆

)⊤
.

By the definition of the directional derivative as the Jacobian-vector product, we can now assert
(

d
dΦ

d
dtΦ|Φ=Φ∗

)
∆ = −

(
∆diag(Λi) +

(
Φ∗
(

Φ∗⊤Φ∗
)−1

Φ∗⊤ − I

)
P∆

)
diag(Λi).

What remains to be shown is that there exist a direction which corresponds to a positive eigenvalue
of the Jacobian of the dynamics.

Choose ∆ = vju
⊤. Let vj be an eigenvector not in the span of Φ∗ but in the top-k eigenvectors. Let

λj be the corresponding eigenvalue. By our assumption before, there exist at least one eigenvalue
λi ∈ Λi so that λj > λi.

Note that
(

Φ∗
(

Φ∗⊤Φ∗
)−1

Φ∗⊤ − I

)
Pvj =

(
Φ
(

Φ∗⊤Φ∗
)−1

Φ∗⊤vj︸ ︷︷ ︸
0 by construction

−Ivj
)
λj = −λjvj and

therefore
(

Φ∗
(

Φ∗⊤Φ∗
)−1

Φ∗⊤ − I

)
P∆ = −∆λjI.

To simplify notation, we will write Λi for diag(Λi) from now on as there is no risk of confusion.

−
(

∆Λi +
(

Φ∗
(

Φ∗⊤Φ∗
)−1

Φ∗⊤ − I

)
P∆

)
Λi = − ∆ (Λi − λjI) Λi

= − ∆
(
Λ2
i − λjΛi

)

=∆
(
λjΛi − Λ2

i

)
.

We can now choose u so that it is any eigenvector of
(
λjΛi − Λ2

i

)
. As this is a diagonal matrix, it

is easy to see that if λj > λi for any λi, the matrix will have a positive eigenvalue, meaning there
exists a direction in which the critical point is unstable.

Case 2: Non-invariant subspace cases: Not all critical points lie in invariant subspaces. One
such an alternative critical point is the case of Φ⊤PΦ = 0, and more generally, for each set of
column vectors ϕi in Φ, they needs to either be mapped to an invariant or an orthogonal subspace
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by Pπ to be stable. In the orthogonal case, the Jacobian at the critical point becomes 0, meaning
no conclusion about stability can be drawn from this analysis.

We leave further analysis of non invariant subspace critical points open for future work. We do
however conjecture that the non invariant subspace critical points are also saddle-points or unstable
solutions of the ODE, following the experimental analysis by Tang et al. (2022).

Negative eigenvalues: In case the matrix has negative eigenvalues, the stability conditions in
the final step of the proof change. The matrix λjΛi − Λ2

i will not have negative eigenvalues if λi is
negative but λj is positive. The ranking of stable points follows this slightly un-intuitive ordering: all
negative eigenvalues sorted by absolute value followed by all positive eigenvalues sorted by absolute
value.
Proposition 2 (Stationary points of reconstruction). Assume Assumption 1 and Assumption 2 hold.
Write (u1, . . . , un), (v1, . . . , vn) for the left and right singular vectors of Pπ sorted in descending
order by singular value. Any stationary point (Φ∗, F ∗,Ψ∗) of Lrec under the two timescale scenario
satisfies span (Φ∗) = span ({u1, . . . , uk}), span (Ψ∗⊤) = span ({v1, . . . , vk}).

Proof. We first show that under the two timescale scenario, F is stationary and therefore does not
change the span of the critical points.

Due to the assumption of the two-timescale scenario, we compute Ψ∗ by solving the linear regression
problem,

d
dΨ∗ ∥ΦFΨ∗ − P∥2

F = F⊤Φ⊤(ΦFΨ∗ − P )

0 = F⊤Φ⊤(ΦFΨ∗ − P )

⇔ B∗ =
(
F⊤Φ⊤ΦF

)−1
F⊤Φ⊤P = F−1 (Φ⊤Φ

)−1 Φ⊤P.

Plugging this solution back into the original equation,

∥ΦFΨ∗ − P∥2
F = ∥ΦFF−1 (Φ⊤Φ

)−1 Φ⊤P − P∥2
F

= ∥Φ
(
Φ⊤Φ

)−1 Φ⊤P − P∥2
F ,

we notice that F cancels. Therefore, the optimality conditions for A follow from the Eckart-Young
theorem, as presented in Lemma 3

Proposition 3. Assume Assumption 1, Assumption 2, and Assumption 3 hold. Let {Φ∗
lat/td} be

the set of critical points of Llat or Ltd respectively. Then O−1Φ∗
lat/td are stationary points for the

reparameterized losses LO
lat and LO

td.7 Furthermore, if Φ∗
lat/td is an asymptotically stable point of

Llat/td that has a Jacobian with all negative eigenvalues, O−1Φ∗
lat/td is an asymptotically stable

point of LO
lat/td.

Proof. We first write out all losses with the observation matrix O. The reward function is assumed
to not change under the introduction of O, therefore we do not multiply O to x⊤r.

Lrec(Φ, F,Ψ) =Ex∼D
[∥∥x⊤OΦFΨ − x⊤PπO

∥∥2
2

]
= ∥OΦFΨ − PπO∥2

2,

Llat(Φ, F ) =Ex∼D

[∥∥∥x⊤OΦF −
[
x⊤PπOΦ

]
sg

∥∥∥
2

2

]
=
∥∥∥OΦF − [PπOΦ]sg

∥∥∥
2

2

Ltd(Φ, F ) =Ex∼D

[∥∥∥∥x⊤OΦV̂ −
[
x⊤
(
r + γPπOΦV̂

)]
sg

∥∥∥∥
2

2

]
=
∥∥∥∥OΦV̂ −

[(
r + γPπOΦV̂

)]
sg

∥∥∥∥
2

2
.

7Due to space constraints, we present the full equations in the proof.
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Note that in the cases of Llat and LTD, all occurrences of O are multiplied by Φ. Therefore the
corresponding gradient flows are reparameterizations as defined in Lemma 6, and the proof follows
directly.

Proposition 4. Assume Assumption 1, Assumption 2, and Assumption 3 hold. Let (u1, . . . , un),
(v1, . . . , vn) be the left and right singular vectors of O−1PπO. Any stationary point (Φ∗, F ∗,Ψ∗) of
LO

rec satisfies span (Φ∗) = span ({u1, . . . , uk}), span (Ψ∗⊤) = span ({v1, . . . , vk}).

Proof. As before, note that LO
rec is of the form ∥OAXB − PO∥2

F , with A ∈ Rn×k, X ∈ Rk×k, and
B ∈ Rk×n.

Due to the assumption of the two-timescale scenario, we compute Ψ∗ by solving the linear regression
problem,

d
dψ ∥OΦFΨ − PO∥2

F = F⊤Φ⊤O⊤(OΦFΨ − P )

0 = F⊤Φ⊤O⊤(OΦFΨ∗ − P ) = 0

⇔ Ψ∗ =
(
F⊤Φ⊤O⊤OΦF

)−1
F⊤Φ⊤O⊤P.

Substituting into LO
rec, we obtain

∥OΦFΨ − PO∥2
F = ∥OΦF

(
F⊤Φ⊤O⊤OΦF

)−1
F⊤Φ⊤O⊤P − PO∥2

F

= ∥OΦ
(
Φ⊤O⊤OΦ

)−1 Φ⊤O⊤P − PO∥2
F ,

which again implies that F is stationary.

We note that ∥OΦΨ − PO∥2
F is the reduced rank regression problem solved in Lemma 3 which

solution is given by the top-k left and right singular vectors of O−1PO.

Proofs for Section 5

Proposition 5. Suppose that Pπ is real diagonalizable, and that Assumption 1, Assumption 3, and
Assumption 4 hold. There exists a non-trivial critical point Φ∗ of the two-timescale TD loss Ltd
such that span(rπ) ⊆ span(Φ∗). Furthermore, Φ∗ is a critical point of the two-timescale joint loss
Ltd+lat. Therefore combining LTD and LLat does not exclude the existence of a stationary point with
0 value function approximation error.

Proof. By Assumption 4 there exists a set of k vectors ϕ1, . . . , ϕk such that rπ ∈ span(ϕ1, . . . , ϕk)
and ϕ1, . . . , ϕk span an invariant subspace of Pπ. We can choose this set of vectors to orthonormal,
e.g. by applying the Gram Schmidt procedure to the eigenvectors (wi1, . . . wim). By Lemma 7 the
matrix Φ ∈ Rn×k whose columns are ϕ1, . . . , ϕk is a critical point for Llat and spans an invariant
subspace of Pπ. In addition, by Lemma 5, Φ forms a complete basis for the value function V π. By
Lemma 13, Φ is also a critical point of LTD, with 0 value function approximation error. As Φ is a
critical point for both LTD and LLat, it is a critical point of LTD + LLat.

Proposition 6. Let Assumption 1, Assumption 2, and Assumption 4 hold. If the reward span-
ning eigenvectors do not lie within the span of the top-k singular vectors, span (wi1 , . . . , wim) ̸⊆
span (u1, . . . , uk), the critical points of the two-timescale joint loss Ltd+rec are guaranteed to not be
minimizers of the value function approximation error.

Proof. Following from Assumption 4 and Lemma 5, we have that any critical point Φ∗ of Ltd with
perfect value function approximation fulfils span(rπ) ⊆ span(Φ∗), as without this condition, Φ would
not have all necessary basis vectors to represent V π. Under our low-dimensionality assumption
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Parameter MinAtar DMC
Initial steps (Random policy) 5000 5000

Env steps per update step 4 1
Batch size 512 512

Exploration ϵ 0.05 0.01
RL learning rate 0.0003 0.0003

Model/decoder learning rate 0.0003 0.0003
Encoder learning rate 0.0001 0.0001

Target network update interval 1000 n/a
Soft update τ n/a 0.995

Discount factor γ 0.99 0.99
Model forward prediction steps 4 4

Table 1: Hyper-parameters the RL experiments

rπ ∈ span(wi1 , . . . , wim), this condition implies that span(wi1 , . . . , wim) ⊆ span(Φ∗). From Propo-
sition 2 we know that any critical point Φ∗ of Lrec satisfies span (Φ∗) = span ({u1, . . . , uk}), where
u1, . . . , uk are the top k left singular vectors of Pπ. Under the assumption that span(wi1 , . . . , wim) ̸⊆
span(u1, . . . , uk) these conditions cannot happen simultaneously, and hence no critical point of the
joint loss achieves perfect value function reconstruction.

Proposition 7 (Suboptimality of top k eigenspaces with distractions). Assume an MDP with
distraction composed of two independent processes M and N according to Definition 1. Let
v1, . . . , vn and u1, . . . , um be the eigenvectors of M and N respectively, with associated real eigen-
values λj and µi ordered. Assume ∀i < k : µi > λ2 and rN = 0. Let Uk be an orthonor-
mal basis for the top-k eigenspace of M ⊗ N . Then span(Uk) = span({1 ⊗ vi|∀i ≤ k}) and
projUk(rM ⊗ 1) = (

∑m
i=0 ri/n)1n·m.

Proof. We first note that span(Vk) = span({vi ⊗ u1|∀i ≤ k}) follows directly from Lemma 1 and
Lemma 2. The eigenvector u1 = 1 as M is a stochastic matrix.

As Vk is an orthogonal basis, write the projection operation as

VkV
⊤
k (rM ⊗ 1) = 1

m
(1 ⊗ orth(V ))

(
1 ⊗ orth(V )⊤) (rM ⊗ 1)

= 1
m

(
(1 ⊗ 1) ⊗ (orth(V ) orth(V )⊤)

)
(rM ⊗ 1)

= 1
m

(1 ⊗ 1)rM ⊗ (orth(V ) orth(V )⊤)1

=
m∑

i=1

ri
m

1.

E Implementation details for the experiments

For the Minatar experiments, we use a simple Double DQN architecture (Van Hasselt et al., 2016).
We find that our implementation performs roughly on par with those reported by Young & Tian
(2019), however we changed the network architecture slightly to allow a clear "encoder" and "pre-
diction head" split.

We implement the latent self-prediction loss using a periodically updated copy of the encoder net-
work. This hard update of the encoder target is synchronized with the Q target network update.

Our networks are parameterized as presented in Table 2
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ConvLayer channels=16, kernel=(3, 3), padding=0, stride=(1, 1)
Encoder Φ ELU activation –

Dense Layer out_size=100
ELU activation –

Dense Layer out_size=256
Latent Model F ELU activation –

Dense Layer out_size=100
Dense Layer out_size=10 · 10 · 16

Decoder Ψ ELU activation –
ConvTranspose Layer kernel=(3, 3), padding=1, stride=(1, 1)

Dense Layer out_size=256
Q head V̂ ELU activation –

Dense Layer out_size=action_space

Table 2: Network architecture for the MinAtar experiments.

Dense Layer out_size=256
Encoder Φ ELU activation –

Dense Layer out_size=256
ELU activation –

Dense Layer out_size=256
Latent Model F ELU activation –

Dense Layer out_size=100
Dense Layer out_size=10 · 10 · 16

Decoder Ψ ELU activation –
Dense Layer out_size=obs_dim
Dense Layer out_size=256

Q head V̂ ELU activation –
Dense Layer out_size=1
Dense Layer out_size=256

Actor head ELU activation –
Dense Layer out_size=action_dim

Table 3: Network architecture for the DMC experiments.

Relevant hyper-parameters are shown in Table 1.

The random noise matrix is sampled from a Bernoulli distribution with p(1) = 0.1. The distortion
matrix was created using a random matrix of size 10 · 10 · channels × 10 · 10 · channels with entries
independently sampled from a Bernoulli distribution with p(1) = 0.2. This was chosen to have a
similar sparsity in the distraction as in the main observation channels. Additionally, we verified that
the matrix was invertible and ∥O∥1 < 255 to ensure that the replay buffer implementation would
not overflow.

The DMC results were obtained using the TD3 algorithm (Fujimoto et al., 2018) with constant
Gaussian noise with standard deviation of 0.01 added for exploration following Yarats et al. (2021).
In addition to the Q function network, TD3 also requires an actor network. We do not propagate
any gradients from the actor network into the encoder, following standard practice in actor-critic
learning.

Networks for the DMC implementation are shown in Table 3.

In the DMC experiments, we used isotropic Gaussian noise for the distracting noise, and a copy of
the humanoid environment as the distraction.
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Full code is available at https://github.com/adaptive-agents-lab/understading_auxilliary_
tasks.

F DMC results

The DMC environments have a very different observation structure and transition dynamics com-
pared to those of the MinAtar games. The observation spaces are dense and often contain topological
discontinuities such as those outlined in Subsection A.1.

All experiments are repeated across 10 seeds.

We find slightly different results in these environments compared to MinAtar, especially about
the efficacy of the latent self-prediction and observation reconstructions in the stand-alone setting
(Figure 8 and Figure 9). Overall, latent self-prediction performs much more strongly in these
environments compared to the MinAtar experiments, especially when using it as a stand-alone loss.
Curiously, in the only environment where observation prediction shines (quadruped-walk), stand-
alone latent self-prediciton and reward prediction seems to outperform all other test settings. This
highlights the second important difference between the MinAtar games and the DMC suite: dense
rewards. We conjecture that most of the differences between observation prediction and latent self-
prediction in the DMC suite comes from dense rewards and different topological continuity, but a
precise investigation is needed in future work.

Finally, our assumptions about the impact of noise distortions on the efficacy of different loss func-
tions seems to be much more clearly apparent in DMC than in MinAtar. This suggests that the
differing primary observation spaces also change how the learning process interacts with the noise,
i.e. because the spectral properties of the underlying environments might differ. Especially in the
challenging distraction setting of structured noise, non trivial policies (as measured by a strong
performance improvement over a random baseline) can only be observed in 7 out of the 15 envi-
ronemnts. Of these 7, latent self prediction seems to outperform the other baselines in 3 cases, only
falling behind in 1. However, we observed that the pendulum environment has a strong bimodal
distribution with some runs completely failing to perform for each experimental scenario, so the
number of seeds might be insufficient to disambiguate performance here, as evidenced by the large
confidence interval at the 95% level.

Overall, 10 seeds, even though widely used in the community, might not be sufficient to fully represent
the performance in the DMC suite, suggesting that more work is needed on the inherent variations
of these environments. We do not present aggregate performance over the environments, as the
different reward scales makes a comparison prone to be driven by outliers such as the humanoid
environments, in which several algorithms fail to learn at all at 10 seeds.

G Limitations

While our paper aims to minimize the theory-practice gap with careful experimentation, we nonethe-
less need to make several assumptions that are both limitations and also potential for additional
analysis in future work. As our aim is to make theory useful and accessible for practitioners, we aim
to be very open and clear about our limitations here.

Limitations of the analytical framework: From previous work (Tang et al., 2022; Le Lan et al.,
2023) we inherit the limitation of studying deterministic models in potentially stochastic environ-
ments. This is a necessary limitation, as considering the stochastic equivalents of e.g. the observation
prediction loss would render the model and their gradients non-linear due to the introduction of a
softmax or similar constraint. As other works carry the same limitation, we believe that this does
not render our work inapplicable, but it does suggest the need for more powerful mathematical tools
in future work.
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1Figure 7: DMC: Auxiliary task scenario
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1Figure 8: DMC: Stand alone scenario
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1Figure 9: DMC: Auxiliary loss + reward prediction, not TD
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1Figure 10: DMC: Random noise distraction
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1Figure 11: DMC: Structured distraction

0 200 400

0

100

200

M
ea
n
ep
is
o
d
e
re
w
ar
d

acrobot-swingup

0 200 400

0

250

500

750

cheetah-run

0 200 400

0

200

400

600

finger-turn hard

0 200 400

200

400

fish-swim

0 200 400

0

50

100

hopper-hop

0 200 400

0

250

500

750

M
ea
n
ep
is
o
d
e
re
w
ar
d

hopper-stand

0 200 400

1.0

1.5
humanoid-run

0 200 400

4

6

8
humanoid-stand

0 200 400

0

25

50

75

humanoid-walk

0 200 400

0

500

1000
pendulum-swingup

0 200 400

0

200

400

M
ea
n
ep
is
o
d
e
re
w
ar
d

quadruped-run

0 200 400

0

250

500

750
quadruped-walk

0 200 400

Environment steps (×1000))

0

500

1000
reacher-hard

0 200 400

200

400

swimmer-swimmer6

0 200 400

0

200

400

walker-run

Self prediction (random observation) Observation prediction (random observation) DQN (random observation)

1Figure 12: DMC: Observation space distortion
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We also conduct all of our theoretical work in the on-policy policy evaluation regime, while our
empirical study includes both off-policy policy estimation and policy improvement. Again, this is
a limitation inherited from all related work. As our theoretical predictions are still validated, we
consider this an acceptable limitation, but studying the impact of off-policy samples and shifting
policies is an important step for future work.

Limitations of the formalism: Our notion of observation distortion requires unnaturally large
observation spaces. Again, this stems from our adherence to a linear framework. While the ob-
servation space of e.g. the MinAtar games is relatively large, depending on the game a 300-1000
dimensional vector, this is still substantially smaller than the total number of states. Studying these
kinds of nonlinear image transformations in more detail would require deviating farther from the
previous literature.

In this paper, we aim to (re-)introduce the notion of distraction into the learning dynamics liter-
ature, and so we use a relatively simplistic notion of distraction. Going beyond the independence
assumption in the distraction model (due to the Kronecker formulation) and analysing more com-
plex forms of distractions e.g. processes in which the reward-relevant process causally influences the
distracting process but not vice versa is an exciting direction for future work.
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Abstract

Experience replay serves as a key component in the success of online reinforcement
learning (RL). Prioritized experience replay (PER) reweights experiences by the
temporal difference (TD) error empirically enhancing the performance. However,
few works have explored the motivation of using TD error. In this work, we provide
an alternative perspective on TD-error-based reweighting. We show the connec-
tions between the experience prioritization and occupancy optimization. By using
a regularized RL objective with f−divergence regularizer and employing its dual
form, we show that an optimal solution to the objective is obtained by shifting
the distribution of off-policy data in the replay buffer towards the on-policy op-
timal distribution using TD-error-based occupancy ratios. Our derivation results
in a new pipeline of TD error prioritization. We specifically explore the KL di-
vergence as the regularizer and obtain a new form of prioritization scheme, the
regularized optimal experience replay (ROER). We evaluate the proposed priori-
tization scheme with the Soft Actor-Critic (SAC) algorithm in continuous control
MuJoCo and DM Control benchmark tasks where our proposed scheme outper-
forms baselines in 6 out of 11 tasks while the results of the rest match with or do
not deviate far from the baselines. Further, using pretraining, ROER achieves
noticeable improvement on difficult Antmaze environment where baselines fail,
showing applicability to offline-to-online fine-tuning. Code is available at https:
//github.com/XavierChanglingLi/Regularized-Optimal-Experience-Replay.

1 Introduction

Deep reinforcement learning (RL) have shown wide applications in various domains (Mnih et al.,
2015; Levine et al., 2016; Koert et al., 2019; Li et al., 2022; Hong et al., 2024). One key factor
for its success is the integrated structure of experience replay (Zhang & Sutton, 2017). Experience
replay (Lin, 1992) allows RL algorithms to use collected experience to compute updates for the
current policy. It significantly increases the data efficiency and allows RL to be applied to fields
where online data collection is expensive. On the other hand, sampling from experience replay
buffer breaks the temporal correlations among experiences and stabilizes the gradient update (Mnih
et al., 2013). However, past work shows that not all samples are equally informative in updating
policy (Katharopoulos & Fleuret, 2018). To enhance the performance, techniques of weighted ex-
perience replay (Schaul et al., 2015; Kumar et al., 2020a; Liu et al., 2021; Sinha et al., 2022) are
proposed to perform importance sampling and shape the distribution of the data in the replay buffer.

Among the proposed reweighting frameworks, prioritized experience replay (PER) is most commonly
utilized for its simplicity and empirically good performance (Hessel et al., 2018). PER attempts to
accelerate learning by assigning experiences with the temporal-difference (TD) error to enable higher
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sampling frequency for transitions with high error. However, PER inherits several shortcomings.
First, experience replay reuses experiences from the past iterations to update the current policy. The
resulted distribution shift between the data distribution of the replay buffer and the distribution of
the current policy can cause incorrect TD error estimations which is detrimental to the performance
of PER. On the other hand, it has been empirically shown that staying on policy (Schulman et al.,
2015) or maintaining an on-policy sample distribution can be beneficial to the performance (Sutton
& Barto, 2018; Fu et al., 2019; Novati & Koumoutsakos, 2019). Second, even though the motivation
of using TD error is intuitive, limited works have explored the theoretical foundation (Fujimoto
et al., 2020; Lahire et al., 2021).

In this work, we revisit the prioritization scheme and attempt to tackle the aforementioned problems.
We provide a new perspective on the TD error prioritization by making connection to the occupancy
optimization. We leverage the dual function of the regularized RL objective with f -divergence
regularizer between off-policy and on-policy data distributions (Nachum et al., 2019b) and show
that an optimal solution (occupancy ratio) to the objective is obtained by shifting the off-policy
distribution towards the on-policy optimal distribution which results in a TD error prioritization.
The form of TD error prioritization is closely associated with the regularized objective which implies
that using simple TD error alone may not work best for every RL objectives. On the other hand,
introducing regularizer into the objective penalizes TD-error estimation when the distribution of the
data from the replay buffer differs too much from the distribution induced by the current policy and
thus, gives a smaller priority to mitigate the bias induced by the distribution shift. Together, our
derivation provides an alternative perspective on PER and results in a new pipeline of TD-error-
based prioritization scheme whose form depends on the choice of the regularizer. Similar to PER,
the new framework can be easily integrated with existing RL algorithms by using an additional value
network with the regularized objective.

We specifically focus on KL-divergence as a regularizer and derive its corresponding objective. From
this objective, we obtain a new form of prioritized experience replay, the regularized optimal expe-
rience replay (ROER). We combine our proposed ROER with Soft Actor-Critic (SAC) (Haarnoja
et al., 2018) algorithm and evaluate on continuous control MuJoCo and DM control benchmark
tasks. ROER outperforms baselines in 6 out of 11 tasks while the rest match with or do not deviate
far from the best performance. Especially, ROER shows performance improvements on environments
where PER and LaBER (Lahire et al., 2021) fails. Further evaluation on the value estimations shows
that the performance improvement of ROER attributes to the more accurate value estimation by
mitigating the underestimation bias of SAC with double critics (Li et al., 2021; Zhou et al., 2022) and
thus ROER can obtain or converge to the optimal solutions much faster than baselines. Further, we
consider the setting of online with pretraining and ROER achieves noticeable improvement on dif-
ficult Antmaze environment whereas the baselines fail, showing the applicability to offline-to-online
fine-tuning.

2 Preliminaries

Online RL. Online reinforcement learning concerns optimizing an agent’s policy in a Markov deci-
sion process (MDP) (Puterman, 2014). The MDP is defined by a tuple M = (S,A, P, r, ρ0, γ) where
S and A represent the state space and action space respectively, P (s′|s, a) denotes the dynamic
model, r(s, a) the reward function, ρ0 the initial state distribution, and γ ∈ (0, 1) the discount factor.
The agent’s behavior is described by its policy π : S → ∆A. The performance of a given policy can
be measured by the state-action value function Qπ(s, a) = E[

∑∞
t=0 γ

tr(st, at)|s0 = s, a0 = a, st+1 ∼
P (·|st, at), at ∼ π(·|st)]. The corresponding value function is V π(s) := E[Qπ(s, a)|a ∼ π(·|s)]. The
goal is to learn a policy that maximizes the γ-discounted expected cumulative return (Sutton &
Barto, 2018):

max
π

JP (π) := (1 − γ)Es0∼ρ0,a0∼π(·|s0)[Qπ(s0, a0)] (1)
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For a fixed policy π, we can rewrite the expected return in terms of its state-action distribution
(Wang et al., 2007; Puterman, 2014) as

max
π

JD(π) := E(s,a)∼dπ [r(s, a)] (2)

where dπ(s, a) = (1 − γ)
∑∞
t−0 γ

tPr[st = s, at = a|s0 ∼ ρ0, at ∼ π(·|st), st+1 ∼ P (·|st, at)].
In actor critic methods, one alternates between updating policy π (the actor) and Q-approximator
Qθ (the critic)(Konda & Tsitsiklis, 1999). The policy updates according to the policy gradient
theorem (Sutton et al., 1999) as

∂

∂π
JP (π) = E(s,a)∼dπ [Qπ(s, a)∇logπ(a|s)] (3)

The critic is learned via TD learning based on Bellman equation (Bellman, 1966) BπQπ := r(s, a) +
γEs′,a′Qπ(s′, a′) where Bπ denotes the expected Bellman operator. Given some experience replay
buffer D collected in the same MDP but by potentially different policies, the Q-approximator is
learned via a variation of the following form

minQθJ (Qθ) := 1
2E(s,a)∼D[(BπQθ −Qθ)(s, a)2]. (4)

In practice, we generally cannot access the true target value BπQθ and thus, we use an estimation
B̂πQθ to fit Qθ(s, a).

Prioritization in Experience Replay. Prioritization in experience replay applies weighted sam-
pling to the experiences by assigning weights to individual state-action which is equivalent to the
weighted objective. We define the weight for a experience with state s and action a as w(s, a) which
is positive. Then, under the sampling distribution d ∈ P (S × A), we have the weighted learning
objective:

minQθJ (Qθ) := 1
2Ed[w(s, a)(BπQθ −Qθ)(s, a)2]. (5)

In practice, w(s, a) can be in various forms such as likelihood (Sinha et al., 2022). TD error is
the most commonly considered and it forms prioritized experience replay (PER) which samples
transitions proportional to their TD errors (Schaul et al., 2015). We denote TD error as δ and at
time step t, it is defined as

δt = rt+1 + γV (st+1) − V (st). (6)
Even though PER shows heuristically good results, the motivation of using TD error is under
explored. In addition, using the TD error estimated by the Q-function induced by the current policy
can be sub-optimal as the estimation of TD error can be inaccurate especially on the states that are
infrequently visited under the current policy.

3 Experience Prioritization as Occupancy Optimization

The goal of using prioritization is to accelerate learning and obtain an optimal policy which induces
an optimal on-policy distribution. We reverse this process and motivate our formulation by the
problem of obtaining an optimal policy by finding the optimal on-policy distribution d∗, given access
to an off-policy distribution dD. Here, d∗ is unknown and we assume to only have samples from
dD which is the distribution of the experience replay buffer. For an MDP with a reward function
r, there exists a unique d∗. We consider the following regularized objective with an f -divergence
regularizer to include dD (Nachum et al., 2019a)

max
dD

JD,f (d∗, dD) := E(s,a)∼d∗ [r(s, a)] − βDf

(
d∗∥dD)

(7)

where β > 0 and Df denotes the f -divergence induced by a convex function f :

Df (d∗||dD) = E(s,a)∼dD [f(w∗/D(s, a))] (8)
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where w∗/D := d∗(s,a)
dD(s,a) . The regularizer encourages conservative estimation and serves as a penalty

when the off-policy distribution deviates too much from the on-policy distribution. Note that the
strength of regularization can be controlled by β. The above objective J is maximized for dD = d∗,
where it becomes the unconstrained RL problem.

The regularized objective (Equation 7) can be transformed to the following dual problem (Nachum
et al., 2019b; Nachum & Dai, 2020). Let x : S ×A → R. We have the dual function of J :

J̃D,f (d∗, dD) = min
x

E(s,a)∼d∗ [r(s, a)] + βE(s,a)∼dD [f∗(x(s, a))] − βE(s,a)∼d∗ [x(s, a)]] (9)

where f∗ is the convex conjugate of f . Note that the optimal x∗(s, a) w.r.t the dual objective satisfies
f ′

∗(x∗) = d∗/dD. We apply the change of variable. Let Q(s, a)−γV ∗(s′) = −βx(s, a)+ r(s, a) where
Q(s, a) is a fixed point of a variant of Bellman equation (Nachum et al., 2019a) and γV ∗(s′)+r(s, a) =
B∗Q(s, a). We obtain the new objective which is independent of d∗:

J̃D,f (d∗, dD) = min
Q

β · E(s,a)∼dD [f∗ ((B∗Q(s, a) −Q(s, a))/β)] + (1 − γ)Es0∼µ0,a0∼π∗(s0) [Q (s0, a0)]
(10)

Using δQ := B∗Q(s, a) − Q(s, a) to denote the TD error, we obtain a solution Q∗ to the objective
satisfying:

f ′
∗(δQ∗/β) = d∗/dD, (11)

which gives the TD-error based occupancy ratio between the optimal distribution and the current
distribution. We point out two key observations:

• Using the property of convex conjugate: f ′
∗(f ′(x)) = x and f ′′(x) ≥ 0, we can rewrite

B∗Q∗(s, a) −Q∗(s, a) = βf ′(d∗/dD). By absorbing the term βE(s,a)∼d∗ [x(s, a)]] of the dual
objective into the reward, we have that Q∗ is the optimal Q-function for the augmented
reward r̃ = r − βf ′(d∗/dD).

• When d∗ = dD, as f ′(1) = 0, Q∗ is the optimal Q-function to the reward r and solves the
unregularized RL problem of maximizing r.

Thus, in theory, the above problem has a unique saddle point solution where dD = d∗ and Q∗ is
the optimal Q-function, which can be found by shaping dD towards d∗ using the following weighting
formulation:

d∗ = f ′
∗(δQ∗/β) · dD. (12)

We include the details of derivation in Appendix A. In practice, we have a changing distribution of
dD for online reinforcement learning due to the collection of the new data and update to the policy.
However, we solve the optimization problem in many steps. We show that the distribution can
still asymptotically converge to the optimal d∗ by empirically showing that our proposed method
mitigates the value underestimation bias of Soft-Actor Critic with double q-learning and converges
to the true value in section 5.2.

4 Regularized Optimal Experience Replay

In this section, we discuss our choice of using Kullback-Leibler (KL) divergence as the regularizer
and proceed to the practical implementation of the prioritization scheme with the KL-divergence
regularizer which forms our proposed method, the regularized optimal experience replay (ROER).
Other forms of f -divergence can also be suitable candidates and we provide further discussions in
Appendix B.

4.1 KL Divergence as Regularizer

f -divergence consists of numerous forms and past works have explored the application of it in the
policy update rules of RL (Belousov & Peters, 2017; Kumar et al., 2020b). Particularly, many
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works focus on KL-divergence as it improves the efficiency and performance of RL algorithms such
as Trust Region Policy Optimization (Schulman et al., 2015) and Maximum a Posteriori Policy
Optimization (Abdolmaleki et al., 2018). Theoretical exploration also shows the advantage of KL
regularization (Vieillard et al., 2020). Thus, we consider KL-divergence as the regularizer in our
formulation for it penalizing the off-policy distribution being too far from the on-policy distribution
and the later-on derived objective.

Recall that the function of KL-divergence has the form f(x) = x log(x) and its convex conjugate
has the form f∗(y) = ey − 1. Let y = (B∗Q(s, a) −Q(s, a))/β, we follow the derivation in section 3
and obtain the following objective:

min
Q

E(s,a)∼dD

[
e(B∗Q(s,a)−Q(s,a))/β

]
− E(s,a,s′)∼dD [B∗Q(s, a) −Q(s, a)] − 1 (13)

We note that this objective is reminiscent to the loss function of Extreme-Q learning (Garg et al.,
2023) which leverages Extreme Value Theory to avoid computing Q-values using out of distribution
actions and thus, mitigate the estimation error. This allows for obtaining a more accurate TD error
for priority calculation. We note that our method differs from extreme q-learning as we only uses
this loss to obtain TD error to shape the data distribution towards an optimal on-policy distribution.
Using this objective, the occupancy ratio has the form

d∗/dD = f ′
∗(δQ/β) = eδQ/β (14)

which gives our proposed regularized optimal experience replay formulation.

4.2 Practical Implementation

Algorithm 1 Actor Critic with Regularized Optimal Experience Replay
1: Initialize Qθ, πψ, value network Vϕ, training start step τ
2: Let D be the empty replay buffer or filled with offline data with d(s, a) = 1
3: for step t in 1, ..., N do
4: Update (s, a, r, s’) to D with d(s, a) = 1
5: if t ≥ τ then
6: Update d(s, a) with d′ from Eq. 16
7: Train Qθ with J(Qθ) from Eq. 5 using d(s, a) as w(s, a)
8: Train Vϕ with L(V ) from Eq. 15
9: Update πψ

10: end if
11: end for
12: return Q∗, π∗

Note that the form of occupancy ratio is derived from a regularized objective which can be different
from the objective of the applied algorithm. For smooth integration to the existing algorithms,
we propose to incorporate a separate value network using the regularized objective for TD error
estimation and priority calculation. The above KL divergence gives the value network the following
objective of the ExtremeV loss (Garg et al., 2023)

L(V) = E(s,a)∼dD

[
e(B∗Q(s,a)−V (s))/β

]
− E(s,a,s′)∼dD [Q(s, a) − V (s)] − 1. (15)

We then use the TD error obtained from the value network to calculate the priority. Since the
distribution of dD is changing, we consider a stable convergence and solve the optimization problem
in many steps. We introduce a convergence parameter λ and formulate the following priority update
function

d′ = [λeδQ∗/β + (1 − λ)] · dD with λ ∈ (0, 1]. (16)
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where dD is the current priority of the samples and d′ is the updated priority (used as w). In an online
setting, we start by assigning each sample in replay buffer D with priority d = 1 and use the above
update function to update the priority after each Q-iteration step. The loss temperature β here
controls the scale of TD-error and thus, the scale of the priority. We note that exponential function
is sensitive to outliers. Thus, we use mean normalization and clip the exponential of TD error
and the priority to control the range and avoid outliers. The general procedure of our approach
is summarized in Algorithm 1 and more implementation details are listed in Appendix C. The
proposed priority update function slowly improves the current distribution d′ towards the optimal
policy distribution d∗, and ultimately maximizes the objective J .

5 Experimental Evaluation

We combine our proposed prioritization scheme ROER with Soft-Actor Critic (Haarnoja et al., 2018)
algorithm for evaluation. We compare our method with two state-of-art prioritization schemes
namely uniform experience replay (UER) and the initial TD error prioritized experience replay
(PER) (Schaul et al., 2015), and one additional baseline namely large batch experience replay
(LaBER) (Lahire et al., 2021) across a wide set of MuJoCo continuous control tasks interfaced
through OpenAI Gym (Brockman et al., 2016) and DM Control tasks (Tunyasuvunakool et al.,
2020) in an online setting. Additionally, we consider a suite of more difficult environment Antmaze
with pretraining using the data from D4RL (Fu et al., 2020) to show that ROER can achieve good
performance in settings where both UER and PER fail. To allow for reproducibility, we use the orig-
inal set of tasks without modification to the environment or rewards. For a fair comparison between
baselines and our approach, our implementations are all based on JAXRL (Kostrikov, 2021).

Compared to the initial PER, even though our proposed method ROER has four more hyperparam-
eters namely the architecture of value network, loss temperature (β), Gumbel loss clip (Grad Clip),
and maximum exponential of TD-error clip (Max Exp Clip), we note that β and Grad Clip are not
new and they come from the objective of Extreme Q-Learning. Grad Clip is shown to affect the
results lightly and the value network can use the default parameters as the critic network. A set of
values works well for multiple environments. We provide more details of implementation, ablations
and hyperparameters in Appendix C.

5.1 Online

Env SAC SAC+PER SAC+LaBER SAC+ROER (ours)
Ant-v2 1153.1 ± 335.5 1654.1 ± 342.9 1006.0 ± 546.0 2275.5 ± 598.6
HalfCheetah-v2 9017.4 ± 172.5 9240.4 ± 276.5 7962.8 ± 304.5 10695.5 ± 183.4
Hopper-v2 2813.0 ± 481.2 2937.7 ± 334.3 2330.8 ± 514.3 3010.2 ± 299.0
Humanoid-v2 5026.8 ± 154.1 4993.4 ± 198.0 5000.9 ± 319.5 5257.0 ± 153.2
Walker2d-v2 4344.3 ± 177.7 4003.9 ± 318.7 4033.1 ± 375.7 4328.5 ± 311.4
Fish-swim 247.7 ± 59.6 234.6 ± 63.6 178.3 ± 49.9 301.9 ± 54.9
Hopper-hop 134.4 ± 34.2 147.2 ± 31.3 146.7 ± 29.8 125.7 ± 35.2
Hopper-stand 521.1 ± 120.1 384.7 ± 94.9 475.5 ± 111.0 798.5 ± 89.2
Humanoid-run 130.3 ± 21.7 116.3 ± 18.7 144.8 ± 18.1 137.3 ± 12.3
Humanoid-stand 733.4 ± 53.9 765.0 ± 38.8 827.8 ± 40.9 691.6 ± 57.8
Quadruped-run 761.2 ± 89.4 606.2 ± 114.7 796.3 ± 82.6 772.1 ± 77.7

Table 1: Average evaluation performance attained over the last 10 evaluations over 1 million time
steps for MuJoCo and DM Control tasks. Average performance and 95% confidence interval (±) are
attained over 20 random seeds. Maximum average value for each task is highlighted as bold

In the online setting, the empirical results demonstrate that our proposed ROER outperforms state-
of-the-arts on 6 out of 11 continuous control tasks in terms of the average evaluation while do not
deviate far from the baselines for the rest 3 environments as shown in Table 1. We find that ROER
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with SAC achieves noticeable improvement on HalfCheetah-v2, Ant-v2, Humanoid-v2 from MuJoCo
and Fish-Swim, Hopper-stand from DM Control. Especially for Hopper-stand environment, our
proposed ROER with SAC nearly doubles the performance of UER or PER with SAC. We attribute
the improvements to the more accurate TD error estimation using a separate value network with
divergence regularized objective and the associated priority update form. Within the five under-
performed tasks, ROER obtains a similar performance as the UER in Walker2d-v2 and outperforms
PER and LaBER.

In contrast, PER only shows slight improvement on limited number of continuous control tasks
compared to UER including HalfCheetah-v2, Hopper-v2, Hopper-hop, and Humanoid-stand. In
many tasks, PER even worsens the performance such as Walker2d, Hopper-stand, Humanoid-run
and Quadruped-run whereas our proposed method can maintain a similar or achieve much better
performance. We consider the reasons for PER failing to be the biased priority induced by the
inaccurate TD error estimation and the less stable priority update scheme. We note that LaBER
achieves better results in Humanoid-run, Humanoid-stand and Quadruped-run but in the cost of
much longer training time due to the larger batch required by the algorithm. The hyperparameter
selection for LaBER can be found in Appendix C.

We notice that all three prioritization schemes under perform in Ant-v2. Our proposed ROER
with SAC, even though achieves higher average performance in Ant-v2, has a very large confidence
interval. This requires additional tuning to hyperparameters of SAC and training steps. We keep
our current results for a fair comparison across tasks. Evaluation curves and additional discussion
of results can be found in Appendix D.

5.2 Value Estimation Analysis
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Figure 1: Measuring underestimation bias in the value estimates of SAC, SAC with PER and SAC
with ROER of continuous control tasks in MuJoCo by the difference between the true values and
the value estimates. True value is obtained by Monte Carlo returns. Value estimates and true values
are averaged over 20 random seeds and the error bar represents 95% confidence interval.

The better performance can be empirically confirmed by the faster convergence to the true value.
Besides the derivation that shows our proposed prioritization scheme results in the optimal solution,
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ROER also demonstrates empirically more accurate value estimation and faster convergence than the
baselines. We compare the value estimation with the true value for each algorithm trained online over
tasks in MuJoCo as shown in Fig. 1. SAC with double critics tends to underestimate the value (Li
et al., 2021; Zhou et al., 2022). Compared to the baselines, ROER reduces the underestimation biases
and converge to the true values much faster especially in Hopper-v2, Humanoid-v2 and Walker2d-v2.
We note that ROER reaches the true value in reward saturated cases such as Hopper-v2 while the
baselines still show the underestimation bias. This result serves as an empirical evidence that our
proposed prioritization scheme reshapes the replay buffer towards the optimal on-policy distribution
and results in the optimal Q∗ which is the solution to the objective.

5.3 Online with Pretraining

Our proposed ROER prioritization scheme can benefit from pretraining using offline data and show
significant performance improvement over more difficult environment Antmaze-Umaze and Antmaze-
Medium as revealed in Table 2. We recognize that using the average performance over the last 200
evaluations may not be the most suitable metric here due to the sparsity of rewards and the difficulty
of the environments. Thus, we also include the learning curves to illustrate the results as in Fig. 2.
We found that SAC with ROER can obtain good performance at a very early stage in Antmaze-
Umaze environment using both Antmaze-Umaze-v2 dataset and Antmaze-Umaze-diverse-v2 dataset.
Especially with Antmaze-Umaze-diverse-v2 dataset, SAC with ROER achieved a significantly better
performance compared to the state-of-art prioritization schemes while PER and LaBER are shown to
be detrimental to the learning process. We also note that for a more difficult environment Antmaze-
Medium, our proposed method can obtain rewards at an early stage and shows improvement over
training steps as in Fig. 2c and Fig. 2d. In contrast, SAC with UER, SAC with PER and SAC with
LaBER completely fail to obtain any reward signal. This implication is crucial to improve training
efficiency and safety by using offline data and correct the distribution to obtain a good performance
online. It shows the potential applicability of our method in offline-to-online finetuning.
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Figure 2: Learning curves for the Antmaze tasks in Gym-Robotics with data from D4RL. Curves are
averaged over 10 random seeds, where the shaded area represents the standard error of the average
evaluation.

Env SAC SAC+PER SAC+LaBER SAC+ROER (ours)
antmaze-umaze-v2 99.6 ± 0.4 99.6 ± 0.5 99.45 ± 0.5 99.9 ± 0.2
antmaze-umaze-diverse-v2 57.8 ± 22.7 9.5 ± 13.5 0.0 92.7 ± 1.9
antmaze-medium-play-v2 0.0 0.0 0.0 31.3 ± 17.3
antmaze-medium-diverse-v2 0.0 0.0 0.0 26.3 ± 14.0

Table 2: Average evaluation performance attained over the last 200 evaluations over 2e6 time steps
after Antmaze environments. Average performance and 95% confidence interval (±) are attained
over 10 random seeds.
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6 Related Work

Our approach builds upon regularized RL objective and weighted experience replay.

Regularized RL. Regularization is commonly utilized in offline reinforcement learning to constrain
the behavior policy and action selection (Kumar et al., 2020b; Wu et al., 2019; Kumar et al., 2019).
Other works have considered regularized Q-function of the behavior policy (Shi et al., 2023) and
state-action value offset (Kostrikov et al., 2021). Adapting such regularizers in online setting can
achieve more stable performance (Fujimoto et al., 2019; Schulman et al., 2015). Maximizing the
regularizer as a way to encourage exploration also shows improvement in performance and forms
the framework of max entropy RL (Ziebart et al., 2008; Haarnoja et al., 2017; 2018). Our work
builds upon the line of work that utilizes the dual function of the regularized objective (Belousov &
Peters, 2017; Nachum & Dai, 2020; Nachum et al., 2019b) which allows to express the max-return
optimization by an expectation over an arbitrary behavior-agnostic and off-policy data distribution.
We extend this approach and formulate the prioritization scheme that allows the data distribution
in replay buffer gradually converge to the optimal distribution which gives the optimal Q-function.
Theoretical analysis of the regularized RL shows that despite its non-convexity, this problem has
zero duality gap and can be solved exactly in the dual domain (Geist et al., 2019; Neu et al., 2017;
Paternain et al., 2019).

Weighted experience replay. Experience replay is crucial to the success of deep RL for improv-
ing the data efficiency by using off-policy data (Lin, 1992; Hessel et al., 2018). Various frameworks
have been proposed to change the sampling strategy to achieve superior performance than uniform
sampling. Prioritized experience replay (PER) weights the experiences by their TD errors and
shows empirical improvement when applying to deep RL (Schaul et al., 2015; Fujimoto et al., 2020).
However, few works have explored the theoretical motivation of using TD-error based reweighting
scheme. Lahire et al. (2021) suggest that PER can be considered as an importance sampling scheme
using approximated per-sample gradient norms and prioritizing stochastic gradient descent variance
reduction. Our work, on the other hand, uses dual function of the regularized RL objective to
provide an alternative perspective on TD-error-based prioritization. Other considerations of priori-
tization scheme include loss value (Hessel et al., 2018), accuracy of the TD-error estimation (Sinha
et al., 2022), regret minimization (Liu et al., 2021), and leveraging neural network for experience
selection (Zha et al., 2019). We note that Kumar et al. (2020a) shares similarity to our work in
correcting the replay buffer towards optimal distribution. However, they consider optimizing cor-
rective feedback while our work builds on dual function of regularized RL objective. Another work
that shares slight similarity with our method is ReF-ER (Novati & Koumoutsakos, 2019) where
they ignore the updates from experiences that deviates significantly from the current policy. Our
work focuses on penalizing the TD errors of the samples that deviate from the current policy which
leads to smaller priority instead of completely ignoring those experiences. In addition, our proposed
method forms a new pipeline of TD-error-based prioritization scheme.

7 Conclusion

By leveraging the regularized RL objective and its dual function, we propose a new pipeline of TD-
error-based prioritization scheme that is more robust towards distribution shift between off-policy
data and current policy. By considering KL-divergence as the reuglarizer, we formulated a new
prioritized experience replay, namely regularized optimal experience replay (ROER). Our proposed
ROER when applied to SAC empirically demonstrates the ability of mitigating the underestimation
bias and shows faster convergence to the true value. It outperforms baselines in 6 out of 11 continu-
ous control tasks in the online setting and significantly improves the performance in Antmaze with
pretraining. However, we recognize the tuning of additional hyperparameters can limit the appli-
cation. Future work can explore an adaptive loss temperature to dynamically adjust the strength
of the regularization. Additionally, it would be valuable to extend the application of the proposed
method to offline setting and further explore the applicability to offline-to-online fine tuning.
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Limitations. Although our method provides theoretical motivations and empirically shows perfor-
mance improvement and convergence to the optimal solutions over various environments, we lack
theoretical guarantees to ensure the convergence. Few works have provided the theoretical ground
of analyzing convergence using f -divergence regularizer (Paternain et al., 2019). More exploration
is required to understand the convergence in online setting.
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A Derivation Details

In this section, we provide the detailed derivation of our method for completeness. We reference
Nachum et al. (2019b) for the derivation. We start by using the regularized max-return objective
with divergence term between the on-policy optiaml distribution d∗ and off-policy distribution dD

maxπJD,f (π) := E(s,a)∼d∗ [r(s, a)] − βDf (d∗||dD), (17)

where β > 0 and Df denotes the f -divergence induced by a convex function f :

Df (d∗||dD) = E(s,a)∼dD [f(w∗/D(s, a))], (18)

where w∗/D := d∗(s,a)
dD(s,a) .

We then transform the f -divergence to its variational form using a dual function x : S × A → R
that is bounded which gives the following expressions

J̃D,f (π, x) : = min
x

E(s,a)∼d∗ [r(s, a)] + β · E(s,a)∼dD [f∗(x(s, a))] − β · E(s,a)∼d∗ [x(s, a)]

= min
x

E(s,a)∼d∗ [r(s, a) − β · x(s, a)] + β · E(s,a)∼dD [f∗(x(s, a)]. (19)

Here, f∗ is the convex conjugate of f . Recall the definition of convex conjugate: the convex conjugate
of f(x) is defined as f∗(x) = supx∈domf{⟨y, x⟩ − f(x)}, where ⟨y, x⟩ denotes the dot product (Boyd
& Vandenberghe, 2004).

To eliminate the dependence on d∗, we use change of variables and let Q(s, a)−γV ∗(s′) = −βx(s, a)+
r(s, a). Applying the change of variable to Eq.19, we obtain:

JD,f (π,Q) := min
Q

E(s,a)∼d∗ [r(s, a) +Q(s, a) − γV ∗(s′) − r(s, a)]

+ β · E(s,a)∼dD [f∗(γV ∗(s′) −Q(s, a) + r(s, a))/β]. (20)

Note that B∗Q(s, a) = r(s, a) + γV ∗(s′). We simplify the above as

JD,f (π,Q) := min
Q

E(s,a)∼d∗ [Q(s, a) − γV ∗(s′)] + β · E(s,a)∼dD [f∗(B∗Q(s, a) −Q(s, a))/β]. (21)

Since x(s, a) is bounded and γ < 1, Q(s, a) is also bounded. Define

Ωt(s) := Pr(s = st|s ∼ Ω, ak ∼ π∗(sk), sk+1 ∼ P (·|sk, ak) for 0 ≤ k ≤ t), (22)
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as the state visitation probability at step t following policy π∗ (Nachum et al., 2019a). Then by
telescoping, we have the following process for E(s,a)∼d∗ [Q(s, a) − γV ∗(s′)] (denoting this term as ∗)

∗ = E(s,a)∼d∗ [Q(s, a) − γEs′∼P (·|s,a),a′∼π∗(s′)[Q(s′, a′)]]

= (1 − γ)
∞∑

t=0
γtEs∼Ωt,a∼π∗(s)[Q(s, a) − γEs′∼P (·|s,a),a′∼π∗(s′)[Q(s′, a′)]]

= (1 − γ)
∞∑

t=1
γtEs∼Ωt,a∼π∗(s)[Q(s, a)] − (1 − γ)

∞∑

t=1
γt+1Es∼Ωt,a∼π∗(s)[Q(s, a)]

= (1 − γ)Es∼Ω,a∼π∗(s)[Q(s, a)]. (23)

Applying the above result to the dual objective, we obtain the final objective:

JD,f (π,Q) := min
Q

β ·E(s,a)∼dD [f∗(B∗Q(s, a) −Q(s, a))/β] + (1 −γ)Es0∼µ0,a0∼π∗(s0)[Q(s0, a0)] (24)

which completes the derivation.

B Other divergence

In this section, we firstly show the connection between the dual objective and the actor-critc ob-
jective. Then we give another consideration of regularizer which results in a different form of
prioritization.

B.1 Derivation Details of ROER

KL-divergence has the form f(x) = x log(x) and its convex conjugate has the form f∗(y) = ey − 1.
Let y = (B∗Q(s, a) −Q(s, a))/β, we follow the derivation in section 3 and obtain the following dual
objective:

min
Q

E(s,a)∼dD

[
e(B∗Q(s,a)−Q(s,a))/β

]
+ (1 − γ)Es0∼µ0 [V ∗ (s0)] − 1 (25)

which can be expanded to:

min
Q

E(s,a)∼dD

[
e(B∗Q(s,a)−Q(s,a))/β

]
+ E(s,a,s′)∼dD [V ∗(s) − γV ∗(s′)] − 1. (26)

Recall that γV ∗(s′) = B∗Q(s, a)−r(s, a). We substitute the expression of γV ∗(s′) back to the above
objective and obtain

min
Q

E(s,a)∼dD

[
e(B∗Q(s,a)−Q(s,a))/β

]
+ E(s,a,s′)∼dD [V ∗(s) − B∗Q(s, a) + r(s, a)] − 1, (27)

and we can further simplify the expression and obtain

min
Q

E(s,a)∼dD

[
e(B∗Q(s,a)−Q(s,a))/β

]
− E(s,a,s′)∼dD [B∗Q(s, a) −Q(s, a)] − 1 (28)

which completes the derivation. This objective corresponds to ExtremeQ loss as in Garg et al.
(2023). It has a corresponding ExtremeV loss in the following form:

L(V) = E(s,a)∼dD

[
e(B∗Q(s,a)−V (s))/β

]
− E(s,a,s′)∼dD [Q(s, a) − V (s)] − 1 (29)

which is the objective of our value network.
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B.2 Connection to Actor Critic

Recall that the dual function of the regularized RL objective with the change of variable has the
following form

JD,f (π,Q) = min
Q

β · E(s,a)∼dD [f∗ ((B∗Q(s, a) −Q(s, a))/β)] + (1 − γ)Es0∼µ0,a0∼π∗(s0) [Q (s0, a0)]
(30)

We consider a convex function of the form f(x) = 1
2x

2. Its convex conjugate has the same form as
itself f∗(y) = 1

2y
2. Let y := B∗Q(s, a) −Q(s, a). The above function can be expressed as below:

JD,f (π,Q) = min
Q

1
2β ·E(s,a)∼dD

[
(B∗Q(s, a) −Q(s, a))2

]
+(1−γ)Es0∼µ0,a0∼π∗(s0) [Q (s0, a0)] (31)

which transforms the off-policy actor-critic to an on-policy actor-critic by introducing the second
term. This unifies the two separate objectives of value and policy into a single objective and both
functions are trained with respect to the same off-policy objective (Nachum et al., 2019b).

B.3 Pearson χ2 Divergence

A variety of f -divergence can be suitable candidates for the dual objective and prioritization deriva-
tion. Here, we provide a list of f -divergences f(x), its corresponding convex conjugates f∗(y) and
the potential priority forms f ′

∗(y) in Table 3. We note that the forms presented are theoretical forms
and they may vary when applying to the RL objectives.

Divergence f(x) f∗(y) f ′
∗(y)

KL x log x ey − 1 dy

Reverse KL − log x − log(1 − y) 1
1−y

Pearson χ2 1
2 (x− 1)2 1

2y
2 + y y + 1

Neyman χ2 (x−1)2

2x −√
1 − 2y + 1 1√

1−2y

Total variation 1
2 |x− 1| y 1

Squared Hellinger 2(
√
x− 1)2 2y

2−y
4

(2−y)2

Table 3: List of f -divergence functions f(x), convex conjugates f∗(y) and the potential priority
forms f ′

∗(y).

We use Pearson χ2 divergence as an example as the resulting objective has a particular implication.
Pearson χ2 divergence has the form f(x) = 1

2 (x− 1)2 and its convex conjugate has the form f∗(y) =
1
2y

2 + y. Again, let y := B∗Q(s, a) −Q(s, a). We can obtain the following dual objective:

min
Q

1
2β ·E(s,a)∼dD

[
(B∗Q(s, a) −Q(s, a))2

]
+E(s,a)∼dD [B∗Q(s, a) −Q(s, a)]+(1−γ)Es0∼µ0 [V ∗ (s0)]

(32)
Using γV ∗(s′) + r(s, a) = B∗Q(s, a), the objective can be further simplified to:

min
Q

1
2β · E(s,a)∼dD

[
(B∗Q(s, a) −Q(s, a))2

]
+ E(s,a)∼dD [V ∗(s) −Q(s, a)] (33)

We note that this corresponds to the learning objective of conservative Q-learning (Kumar et al.,
2020b). This objective is optimized when d∗/dD = f ′

∗(δ∗
Q/β) = δQ/β + 1 which gives a new form of

priority calculation. We address that even though this form is almost identical to PER, the source
of δ is different. We derive this priority form from the conservative Q-learning objective and thus, it
requires the value network to use the corresponding loss function. In addition, the loss temperature
β here also controls the scale of the TD error and the strength of the regularizer which we expect
to give better performance than the naive PER.
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C Experiments

In this section, we provide details of the implementation and the experiments with further discussion
on hyperparameter ablation and selection.

C.1 Experimental Details

Environment

In the online setting, our agents are evaluated in MuJoCo via OpenAI gym interface using the v2
environments (Brockman et al., 2016) and DM Control tasks (Tunyasuvunakool et al., 2020). For
the MuJoCo environment, we do not modify or preprocess the state space, action space and reward
function for easy reproducibility. For the DM Control tasks, we adapt to the gym environment
interface. In the online with pretraining settings, our agents are evaluated in the environment with
D4RL datasets (Fu et al., 2020). We shaped the reward of Antmaze by subtracting 1 as suggested in
Kumar et al. (2020b) which shows to largely benefit the performance in Antmaze. Each environment
runs for a maximum of 1000 time steps which is the default setting or until a termination state is
reached.

Value estimation

Value estimates are averaged over mini-batches of 256 and sampled every 2000 iterations. The
true value is estimated by sample 256 state-action pairs from the replay buffer and compute the
discounted return by running the episode following the current policy until termination.

Reward Evaluation

In the online setting, we evaluate the current policy over 10 episodes for every 5000 training steps.
The evaluation reward takes the average over the 10 episodes. In the online with pretraining setting,
we evaluate the current policy over 100 episodes for every 10000 training steps due to the difficulty
of the environments. The evaluation reward takes the average over the 100 episodes.

Algorithm implementation

We base our implementation of SAC off Kostrikov (2021). It uses one target critic, double critics,
a single actor network and a single network for temperature adjustment for maximum entropy. We
add an additional value network with extreme q-learning loss for ROER TD error estimation and
priority calculation. We use the default hyperparameters and network architectures for the SAC
algorithms for all of our experiments. The hyperparameters and the network architecture are shown
in Table 4.

Parameter Value
optimizer Adam
learning rate 3 × 10−3

actor, critic, and value network arch (256, 256)
non-linearity ReLU
value network noise 0.1
batch size 256
buffer size 1,000,000 , 2,000,000(antmaze)
discount 0.99
target smoothing coefficient 5 × 10−3

gradient penalty coefficient 1

Table 4: Hyperparameters of SAC and network architecture.

We adapt the code in Lahire et al. (2021) into JAX implementation for LaBER. We adapt the
proposed method in Fujimoto et al. (2020) for PER implementation and uses the loss adjusted
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version of PER as it shows similar or even better performance than the original implementation.
Loss adjusted PER (LAP) uses Huber loss for critic objective which has the following form (Huber,
1992)

LHuber(δ(i)) =
{

0.5δ(i)2 if |δ(i)| ≤ k

k(|δ(i)| − 0.5k) otherwise
(34)

where k is the bound for the Huber loss transformation and the default value is 1. We also uses
Huber loss for our proposed ROER in the same idea as LAP. For SAC with uniform experience
replay, we keep the original loss form which uses mean square loss. To stabilize the performance of
all algorithms used in this study, we apply an additional gradient penalty to the critic loss inspired
by Petzka et al. (2017) which penalizes gradient with norm great than 1. The penalty κ has the
following form

κ = max(∥∇Qθ − 1∥, 0)2 (35)

We note ROER uses exponential function in the formulation and it is sensitive to outliers. Thus, we
lower clip the immediate weight with value 1 and use batch mean normalization on the immediate
weight eδQ/β as following

e
δQ/β
normalized = eδQ/β

ēδQ/β
(36)

where ēδQ/β denotes the batch mean. To further stabilize the performance and prevent the outliers,
we clip the immediate weight and add minimum clip on the final priority which are further discussed
in the following section of ablation study and hyperparameter selections.

C.2 Hyper-parameter Selection

Online

For the value of parameter of PER, we use Fujimoto et al. (2020) as a reference for MuJoCo envi-
ronment where they show that a weight scale α = 0.4 works best for the set of tasks. As to DM
Control, we search over the set [0.1, 0.2, 0.4, 0.6, 0.8] for individual task. The final choice of the value
for each task is shown in Table 5.

For the value of parameter large batch of LaBER, we search over the set [768, 1024, 1280, 1536] for
individual task in both MuJoCo and DM Control environment. The final choice of the value for
each task is shown in Table 5.

For our proposed method ROER, we have 5 parameters, namely convergence rate (λ), gumbel loss
clip (Grad Clip), loss temperature (β), immediate weight clip (Max Exp Clip), and minimum priority
clip (Min Clip) that require tuning. However, we discover that only β and the clip range requires
tuning for each specific environment while we can use a set of values for the rest. We use the set
of value used in Garg et al. (2023) as a reference and search over the set [0.005, 0.01, 0.05] for λ,
[5, 7, 10] for the Grad Clip, [0.4, 1, 4] for β, [25, 50, 100] for the Max Exp Clip, and [1, 5, 10] for the Min
Priority Clip. The final choice of the value for each task is shown in Table 5. We take HalfCheetaah-
v2 from MuJoCo and Hopper-Stand from DM Control as examples to show the hyper-parammeter
ablations for the online experiments. We show the effect of each parameter by fixing the rest as
the default values. The default parameter values for HalfCheetah-v2 is λ = 0.01,Grad Clip =
7, β = 4,Max Exp Clip = 50,Min Clip = 10. The default parameter values for Hopper-Stand is
λ = 0.01,Grad Clip = 7, β = 1,Max Exp Clip = 100,Min Clip = 1. The performance comparisons
of the two task for varying each parameter are plotted in Fig. 3 and Fig. 4 respectively.

According to Fig. 3a and Fig. 4a, λ = 0.01 achieves the best performance for the two environments.
We note that a too big λ can results in divergence as in Fig. 4a where λ = 0.05 achieves bad
performance due to the too quick priority update which results in numerical instability. A small λ
gives stable convergence but too small λ may slow down the convergence in some cases as in Fig. 4a.
We discover that generally β = 0.01 works well across a wide domain and we use this value for all
environments in our study.
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ROER PER LaBER
Env λ β Grad Clip Min Priority Clip Max Exp Clip α Min Priority Clip Large Batch
Ant-v2 0.01 1 7 10 100 0.4 1 1280
HalfCheetah-v2 0.01 4 7 10 50 0.4 1 1024
Hopper-v2 0.01 0.4 7 10 100 0.4 1 1536
Humanoid-v2 0.01 4 7 10 50 0.4 1 768
Walker2d-v2 0.01 4 7 10 50 0.4 1 1024
Fish-swim 0.01 1 7 1 100 0.4 1 768
Hopper-hop 0.01 1 7 1 50 0.6 1 1024
Hopper-stand 0.01 1 7 1 100 0.2 1 1280
Humanoid-run 0.01 4 7 1 100 0.4 1 1536
Humanoid-stand 0.01 4 7 1 100 0.4 1 1280
Quadruped-run 0.01 1 7 10 100 0.4 1 1024

Table 5: Hyperparameters for ROER, PER and LaBER in online setting
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Figure 3: Convergence rate (λ), Gumbel loss clip (Grad Clip), loss temperature (β), Maximum
exponential clip (Max Exp Clip), and minimum priority clip (Min Clip) Ablation for HalfCheetah-v2
over 5 random seeds. One parameter is changing while the rest are fixed. The default combination
is [0.01, 7, 4, 50, 10] which is the set used in our final results. All curves are smoothed with
Savitzky–Golay filter for visual clarity. The shaded region represents standard error which is favored
in this case to separate the curves.
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Figure 4: Convergence rate (λ), Gumbel loss clip (Grad Clip), loss temperature (β), Maximum
exponential clip (Max Exp Clip), and minimum priority clip (Min Clip) Ablation for Hopper-stand
over 5 random seeds. One parameter is changing while the rest are fixed. The default combination
is [0.01, 7, 1, 10, 1] which is the set used in our final results. All curves are smoothed with Sav-
itzky–Golay filter for visual clarity. The shaded region represents standard error which is favored in
this case to separate the curves.

Grad Clip is initially leveraged to prevent the outliers in gumbel loss of extreme q-learning (Garg
et al., 2023). In our case, we found that varying its value has negligible effect on the final result. As
shown in Fig. 3b and Fig. 4b, all three values give similar performance. We use 7 as the value for
all environments in our study.

The loss temperature β controls the strength of the penalization from the KL regularizer on the
distributions between the on-policy data and off-policy data in replay buffer. It also scales the TD
error and thus affect the value of the priority. Theoretically, a small β is beneficial for datasets with
lots of random noisy actions and far from the on-policy distributions while a high β works well for
datasets close to the on-policy distribution. In practice, we note that using a fixed value requires
tuning for specific environments due to the different dynamics. β = 4 works well for most tasks in
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MuJoCo while β = 1 works well for most tasks in DM Control. The affect of β is more obvious and
easier to interpret in online with pretraining setting which is discussed in the following subsection.
We recognize the difficulty of deciding the value for β and a solution to this can be using adaptive
loss temperature. As the off-policy data in replay buffer converges to the on-policy distribution, we
increase the value of β.

The Max Exp Clip and Min Priority Clip serve to prevent outliers and control the range of priority
distribution. In most cases, a Max Exp Clip of value 50 or 100 works well. Min Clip requires tuning
for each environment but we find Min Priority Clip = 10 works well for all MuJoCo tasks and Min
Priority Clip = 1 works well for most of DM Control tasks except quadruped-run which uses value
10. A lower Max Exp Clip and a higher Min Priority Clip reduce the range of distribution and
tend to stabilize the performance but may give sub-optimal performance. In addition, a higher Min
Priority Clip can also prevent experience forgetting as the downweighted samples do not differ too
much from the rest.

Online with Pretraining

To select the appropriate value of α for PER, we searched over [0.1, 0.2, 0.4, 0.6, 0.8, 1]. To select the
appropriate value of large batch for LaBER, we search over [768, 1024, 1280, 1536]. The final choices
for each environment are listed in Table 6.

To select the appropriate parameter values for ROER, we searched over the same sets of values for λ,
Grad Clip, Max Exp Clip, and Min Priority Clip as in the online setting. For the loss temperature
β, we consider a slightly larger set [0.4, 0.8, 2, 4] to better demonstrate the effect of β. Similar to
the online setting, we also found that a set of values work well across different environments and
the final choices are shown in Table 6. We take Antmaze-Umaze with pretraining using antmaze-
umaze-diverse-v2 dataset as an example to ablate the hyperparameters. While varying the value
of one parameter, we fix the rest as the default values. The default parameter values for antmaze-
umaze-diverse-v2 is λ = 0.01,Grad Clip = 7, β = 0.4,Max Exp Clip = 50,Min Clip = 1.

ROER PER LaBER
Env λ β Grad Clip Min Priority Clip Max Exp Clip α Priority Clip Large Batch
antmaze-umaze-v2 0.01 0.4 7 10 50 0.1 1 1024
antmaze-umaze-diverse-v2 0.01 0.4 7 1 50 0.4 1 1024
antmaze-mediumm-play-v2 0.01 0.4 7 1 50 0.4 1 1536
antmaze-medium-diverse-v2 0.01 0.4 7 1 50 0.4 1 1024

Table 6: Hyperparameters for ROER, PER, and LaBER in online with pretraining setting
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Figure 5: Gumbel loss clip (Grad Clip), loss temperature (β), and minimum priority clip (Min Clip)
Ablation for Antmaze with Antmaze-umaze-diverse-v2 dataset over 5 random seeds. One parameter
is changing while the rest are fixed. The default combination is [0.01, 7, 0.4, 50, 1] which is the set
used in our final results. The shaded region represents standard error which is favored in this case
to separate the curves.

Similar to the online setting, λ = 0.01 shows good performance and the value of Grad Clip only
slightly affect the final performance. We choose the values for the two parameters same as before.
Varying β shows that a smaller value results in early performance improvement while bigger value
only shows improvement after the on-policy data overweight in the replay buffer as demonstrated in
Fig. 5c. This confirms our previous discussion that a small β is beneficial for datasets that differ from
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the on-policy distribution while a high β favors datasets close to the on-policy distribution. The
behavior of varying Max Exp Clip and Min Priority Clip also corresponds to our previous discussion
that a smaller range of priority distribution gives a stable but potentially sub-optimal performance
while a wider range can benefit the agent to explore and potentially learn faster.

D Additional Results

In this section, we present the additional results and discussions of our experiments. The learn-
ing curves in the online setting are shown in Fig. 6 for tasks in MuJoCo and Fig. 7 for tasks in
DM Control. Besides the better performance, we note that our proposed ROER also shows faster
improvement in Ant-v2, HalfCheetah-v2, Hopper-v2, Humanoid-v2, Fish-Swim and Hopper-Stand.
This implies that ROER can obtain better data efficiency than the baselines. We additionally
evaluate our proposed ROER in comparison to baselines in MuJoCo over 3 million steps to better
illustrate the advantage of our proposed method as shown in Fig. 8. ROER shows consistently
better performance as in the evaluation over 1 million steps and outperforms baselines in Ant-v2,
HalfCheetah-v2, and Humanoid-v2 with very little or without overlapping shaded region. We did
not include LaBER for this comparison due to the long training time it takes. We note that the per-
formance of ROER gets worse in Hopper-v2 for longer steps as it reaches the reward saturation very
early and the extra training can be harmful for the policy update due to over-fitting and additional
updates on Q-functions with weights that causes loss explosion.
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Figure 6: Learning curves for continuous control tasks in MuJoCo over 1 million steps. Curves are
averaged over 20 random seeds, where the shaded area represents the 95% confidence interval of the
average evaluation. All curves are smoothed with Savitzky–Golay filter for visual clarity.
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Figure 7: Learning curves for continuous control tasks in DM Control over 1 million steps. Curves
are averaged over 20 random seeds, where the shaded area represents the 95% confidence interval of
the average evaluation. All curves are smoothed with Savitzky–Golay filter for visual clarity.
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Figure 8: Learning curves for continuous control tasks in MuJoCo over 3 million steps. Curves are
averaged over 10 random seeds, where the shaded area represents the 95% confidence interval of the
average evaluation. All curves are smoothed with Savitzky–Golay filter for visual clarity.
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Abstract

Learning self-supervised representations using reconstruction or contrastive losses
improves performance and sample complexity of image-based and multimodal rein-
forcement learning (RL). Here, different self-supervised loss functions have distinct
advantages and limitations depending on the information density of the underlying
sensor modality. Reconstruction provides strong learning signals but is susceptible
to distractions and spurious information. While contrastive approaches can ignore
those, they may fail to capture all relevant details and can lead to representa-
tion collapse. For multimodal RL, this suggests that different modalities should be
treated differently based on the amount of distractions in the signal. We propose
Contrastive Reconstructive Aggregated representation Learning (CoRAL), a unified
framework enabling us to choose the most appropriate self-supervised loss for each
sensor modality and allowing the representation to better focus on relevant aspects.
We evaluate CoRAL’s benefits on a wide range of tasks with images containing
distractions or occlusions, a new locomotion suite, and a challenging manipulation
suite with visually realistic distractions. Our results show that learning a multi-
modal representation by combining contrastive and reconstruction-based losses can
significantly improve performance and solve tasks that are out of reach for more
naive representation learning approaches and other recent baselines.

1 Introduction

Most representation learning approaches for reinforcement learning (RL) (Hafner et al., 2020; 2021;
2023; Laskin et al., 2020; Lee et al., 2020; Yarats et al., 2021b; Zhang et al., 2020; Zhu et al., 2023;
Deng et al., 2022) focus on images. Here, the challenge lies in compressing relevant information
while not getting distracted by potentially irrelevant aspects. Yet, most agents in realistic scenarios
can directly observe their internal states using sensors in the actuators, inertial measurement units,

Code: https://github.com/pbecker93/CoRAL/, Project Page: https://pbecker93.github.io/coral_pp/
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Environment

q = [q1 · · · qn]T

Proprioception

Egocentric Vision

zt zt+1

State Space Representation Policy

Reconstruction
(log-likelihood)

Contrastive
(mutual information)

Figure 1: Contrastive Reconstructive Aggregated representation Learning (CoRAL) learns multi-
modal state space representations of all available sensors using a combination of reconstruction-based
and contrastive objectives. Building on the insight that we can exchange likelihood-based recon-
struction with contrastive approaches using mutual information, allows us to choose an appropriate
loss function for each modality. Motivated by both a variational and predictive coding viewpoint,
CoRAL helps model-free and model-based agents to excel in challenging tasks that require informa-
tion fusion from sensors with different properties such as images and proprioception.

and force and torque sensors. Including this low-dimensional and concise proprioceptive sensing
in representation learning can improve representation quality and downstream RL performance.
For such multimodal representations, State Space Models (Murphy, 2012) are a natural choice as
they lend themselves to accumulating information across multiple sensors and time. Previous works
suggest using either reconstruction (Hafner et al., 2019; 2021) or contrastive methods (Hafner et al.,
2020; Ma et al., 2020; Nguyen et al., 2021; Srivastava et al., 2021), both with their individual strengths
and weaknesses. While reconstruction provides an informative learning signal, it may fail to learn
good representations if observations are noisy or contain distracting elements (Zhang et al., 2020;
Ma et al., 2020; Deng et al., 2022). In such cases, contrastive methods can ignore irrelevant parts of
the observation and still learn valuable representations. However, they are prone to representation
collapse and often struggle to learn accurate dynamics (Ma et al., 2020). We argue that the different
properties of sensors, such as images and proprioception, suggest using different self-supervised loss
functions for each modality.

We propose Contrastive Reconstructive Aggregated representation Learning (CoRAL) to combine
contrastive and reconstruction-based approaches. CoRAL builds on state space representations and
allows us to select the best-suited loss function for each modality, for example, reconstruction-
based loss functions for concise, low-dimensional proprioception and contrastive losses for images
with distractions. Learning such state space representations can be theoretically motivated using a
variational inference (Hafner et al., 2019; Ma et al., 2020) or a predictive coding (Oord et al., 2018;
Nguyen et al., 2021; Srivastava et al., 2021) viewpoint, which results in two instances of CoRAL. For
both paradigms, CoRAL relies on the insight that we can replace likelihood-based reconstruction
terms with contrastive losses based on mutual information, which allows for a principled combination
of the two (Hafner et al., 2020; Ma et al., 2020). Fig. 1 provides an overview of the approach.

We integrate CoRAL into model-free and model-based RL to systematically assess the effects of
learning multimodal representations by selecting appropriate losses. We evaluate on DeepMind
Control (DMC) Suite (Tassa et al., 2018) tasks which we make more difficult by adding Video
Backgrounds (Zhang et al., 2020; Nguyen et al., 2021) and Occlusions. Furthermore, we use a
new Locomotion suite where agents must fuse proprioception and egocentric vision to move while
navigating obstacles. Finally, we consider a novel challenging Manipulation suite consisting of static
and mobile manipulation tasks with varying object geometries, built on ManiSkill2 (Gu et al.,
2023). Here, the agents must combine proprioception and different visual modalities, such as color
and depth, to move, navigate, and interact with varying objects in visually realistic environments.
These experiments show that learning multimodal representations using the best-suited loss for each
modality improves over other methods combining both modalities, such as representation learning
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with a single loss and concatenating image representations with proprioception. CoRAL tends to
work better than recent baselines on the Video Background and Occlusion tasks and allows significant
performance gains in the challenging Locomotion and Manipulation tasks. Furthermore, CoRAL
significantly improves model-based approaches with contrastive image representations, which are
known to perform worse than reconstruction-based approaches (Hafner et al., 2020; Ma et al., 2020).
Finally, we show the strengths of both instances of CoRAL. Variational CoRAL excels in tasks
where the main challenge is filtering out irrelevant distractions from images, while Predictive CoRAL
performs better in tasks that require propagating information over many timesteps.

To summarize our contributions: (i) We propose CoRAL, a general framework for multimodal rep-
resentation learning for RL which allows using the best-suited self-supervised loss for each modality
using the interchangeability of likelihood-based reconstruction and contrastive losses based on mutual
information. (ii)We instantiate two versions of CoRAL using state space representations, namely
Variational-CoRAL and Predictive-CoRAL, which are inspired by variational and contrastive pre-
dictive coding viewpoints, respectively. (iii) We systematically show their effectiveness on a diverse
set of 26 tasks, across the Video Backgrounds, Occlusions Locomotion, and Manipulation suites.

2 Related Work

Representations for Reinforcement Learning. Many recent approaches use ideas from genera-
tive (Wahlström et al., 2015; Watter et al., 2015; Banijamali et al., 2018; Lee et al., 2020; Yarats et al.,
2021b) and self-supervised representation learning (Zhang et al., 2020; Laskin et al., 2020; Yarats
et al., 2021a; Stooke et al., 2021; You et al., 2022) to improve performance, sample efficiency, and
generalization of RL from images. Those based on Recurrent State Space Models (RSSMs) (Hafner
et al., 2019) are particularly relevant for this work. When proposing the RSSM, Hafner et al. (2019)
used a generative approach. They formulated their objective as auto-encoding variational infer-
ence (Kingma & Welling, 2013), which trains the representation by reconstructing observations.
Such reconstruction-based approaches have limitations with observations containing noise or many
task-irrelevant details. As a remedy, Hafner et al. (2020) proposed a contrastive alternative based
on mutual information and the InfoNCE estimator (Poole et al., 2019). Ma et al. (2020) refined
this approach and improved results by modifying the policy learning mechanism. Using a different
motivation, namely contrastive predictive coding (Oord et al., 2018), Okada & Taniguchi (2021);
Nguyen et al. (2021); Srivastava et al. (2021); Okada & Taniguchi (2022) proposed alternative con-
trastive learning objectives for RSSMs. In this work, we leverage the variational and predictive
coding paradigms and show that CoRAL improves performance for both. Fu et al. (2021); Wang
et al. (2022) propose further factorizing the RSSM ’s latent variable to disentangle task-relevant and
task-irrelevant information. However, unlike contrastive approaches, they explicitly model the task-
irrelevant parts instead of ignoring them, which can impede performance if the distracting elements
become too complex to model. Zhu et al. (2023) propose a relaxed variational information bottle-
neck (Alemi et al., 2016) approach which trains RSSMs solely by predicting rewards and enforcing
posterior predictability using a KL term. Other recent approaches for learning RSSMs include using
prototypical representations (Deng et al., 2022) or masked reconstruction (Seo et al., 2022).

Sensor Fusion in Reinforcement Learning. Many application-driven approaches to visual RL
for robots use proprioception to solve their specific tasks (Finn et al., 2016; Levine et al., 2016;
Kalashnikov et al., 2018; Xiao et al., 2022; Fu et al., 2022). Yet, they usually do not use explicit
representation learning or concatenate image representations and proprioception. Several notable
exceptions use RSSMs with images and proprioception (Wu et al., 2022; Becker & Neumann,
2022; Hafner et al., 2022; 2023). Furthermore, Seo et al. (2023) learn world models using multiple
images from different viewpoints. However, all these approaches focus on purely reconstruction-
based representation learning. Srivastava et al. (2021) use images and proprioceptive information
using contrastive predictive coding for both modalities. Opposed to all of these works, we propose
combining contrastive approaches with reconstruction.
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Multimodal Representation Learning. Representation learning from multiple modalities has
widespread applications in general machine learning, where methods such as CLIP (Radford et al.,
2021) combine language concepts with the semantic knowledge of images and allow language-based
image generation (Ramesh et al., 2022). For robotics, Brohan et al. (2022); Mees et al. (2022); Driess
et al. (2023); Shridhar et al. (2022; 2023) combine language models with the robot’s perception for
natural language-guided manipulation tasks using imitation learning. In contrast, CoRAL assumes
an online RL setting and focuses on different modalities, namely images and proprioception.

3 Combining Contrastive Approaches and Reconstruction for State
Space Represntations

Given trajectories of observations o1:T = {ot}t=1:T and actions a1:T = {at}t=1:T we aim to learn a
state representation that is well suited for RL. We assume the observations stem from K different
sensors, ot = {o(k)

t }k=1:K , where the individual o(k)
t only contain partial information about the state.

Further, even ot may not contain all necessary information for optimal acting, i. e., the environment
is partially observable, and the representation has to accumulate information over time. Our goal
is to learn a concise, low dimensional representation ϕ(o1:t,a1:t−1) that accumulates all relevant
information until time step t. We provide this representation to a policy π(at|ϕ(o1:t,a1:t−1)) which
aims to maximize the expected return in a given RL problem. In this setting, the policy’s final return
and the sample complexity of the entire system determine what constitutes a good representation.

State Space Models (SSMs) (Murphy, 2012) naturally lend themselves to sensor fusion and infor-
mation accumulation problems. We assume a latent state variable, zt, which evolves according to a
Markovian dynamics p(zt+1|zt,at) given an action at. Furthermore, we assume the K observations
at each time step are conditionally independent given the latent state, resulting in an observation
model p(ot|zt) =

∏K
k=1 p

(k)(o(k)
t |zt). The initial state is distributed according to p(z0). Here, the

belief over the latent state, taking into account all previous actions as well as previous and current
observations p(zt|a1:t−1,o1:t) can be used as the representation. Yet, computing p(zt|a1:t−1,o1:t)
analytically is intractable for models of relevant complexity and we use a variational approximation
ϕ(o1:t,a1:t−1)=̂q(zt|a1:t−1,o1:t). This variational approximation also plays an integral part during
training and is thus readily available as input for the policy.

We instantiate the generative SSM and the variational distribution using a Recurrent State Space
Model (RSSM) (Hafner et al., 2019), which splits the latent state zt into a stochastic and a deter-
ministic part. Following Hafner et al. (2019; 2020), we assume the stochastic part of the RSSM ’s
latent state to be Gaussian. While the original RSSM only has a single observation model p(ot|zt),
we extend it to K models, one for each observation modality. The variational distribution takes the
deterministic part of the state together with the K observations ot = {o(k)

t }k=1:K and factorizes as
q(z1:t|o1:t,a1:t−1) =

∏T
t=1 q(zt|zt−1,at−1,ot). To account for multiple observations instead of one,

we first encode each observation individually using a set of K encoders, concatenate their outputs,
and provide the result to the RSSM. Finally, we also learn a reward model p(rt|zt) to predict the
reward from the representation. Following the findings of Srivastava et al. (2021) and Tomar et al.
(2023) we also include reward prediction to learn the representations for model-free agents.

3.1 Learning the State Space Representation

We propose to combine reconstruction-based and contrastive approaches to train our representations.
Training RSSMs can be based on either a variational viewpoint (Hafner et al., 2020; Ma et al., 2020)
or a contrastive predictive coding (Oord et al., 2018) viewpoint (Nguyen et al., 2021; Srivastava
et al., 2021). We investigate both approaches, as neither decisively outperforms the other.

Originally, Hafner et al. (2019) proposed leveraging a fully generative approach for RSSMs. Building
on the stochastic variational autoencoding Bayes framework (Kingma & Welling, 2013; Sohn et al.,
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2015), they derive a variational lower-bound objective

Ep(o1:T ,a1:T ) [log p(o1:T |a1:T )] ≥
T∑

t=1
Eq̂(·) [log p(ot|zt) − KL [q(zt|zt−1,at−1,ot) ∥ p(zt|zt−1,at−1)]] ,

where q̂(·) = q(zt−1:t|o1:t,a1:t)p(o1:t,a1:t), i. e.,the variational distribution and sub-trajectories from
a replay buffer. After inserting our assumption that each observation factorizes into K independent
observations, i.e., log p(ot|zt) =

∑K
k=1 log p(k)(o(k)

t |zt),and adding a term for reward prediction, this
results in

T∑

t=1
Eq̂(·)

[
K∑

k=1
log p(k)(o(k)

t |zt) + log p(rt|zt) − KL [q(zt|zt−1,at−1,ot) ∥ p(zt|zt−1,at−1)]
]
. (1)

Optimizing this bound using the reparameterization trick (Kingma & Welling, 2013; Rezende et al.,
2014) and stochastic gradient descent simultaneously trains the variational distribution and all
parts of the generative model. While this approach can be highly effective, reconstructing high-
dimensional, noisy observations can also cause issues. First, it requires introducing large observation
models. These observation models are unessential for the downstream task and are usually discarded
after training. Second, the reconstruction forces the model to capture all details of the observations,
which can lead to highly suboptimal representations if images contain task-irrelevant distractions.

Contrastive Variational Learning (CV) can remedy these problems. To introduce contrastive
terms, we replace the individual reconstruction terms in Equation 1 with mutual information (MI)
terms I(o(k)

t , zt) by adding and subtracting log p(k)(o(k)) (Hafner et al., 2020; Ma et al., 2020)

Eq̂(·)
[
log p(k)(o(k)

t |zt)
]

= Eq̂(·)

[
log p

(k)(o(k)
t |zt)

p(o(k)
t )

+ log p(o(k)
t )
]

= I(o(k)
t , zt) + c. (2)

Intuitively, the MI measures how informative a given latent state is about the corresponding ob-
servations. Thus, maximizing it leads to similar latent states for similar sequences of observations
and actions. While we cannot analytically compute the MI, we can estimate it using the InfoNCE
bound (Oord et al., 2018; Poole et al., 2019). Doing so eliminates the need for generative reconstruc-
tion. It instead only requires a discriminative approach based on a score function f (k)

v (o(k)
t , zt) 7→ R+.

This score function measures the compatibility of pairs of observations and latent states. It shares
large parts of its parameters with the RSSM. We refer to Appendix B for details on the exact param-
eterization. This methodology allows the mixing of reconstruction and mutual information terms
for the individual sensors, resulting in a generalization of Equation 1,

T∑

t=1

K∑

k=1
L(k)
v (o(k)

t , zt) + Eq̂(·) [log p(rt|zt) − KL [q(zt|zt−1,at−1,ot) ∥ p(zt|zt−1,at−1])] . (3)

Here L(k)
v is either Eq̂(·)

[
log p(o(k)

t |zt)
]

or I(o(k)
t , zt). As we show in Section 4 choosing the terms

corresponding to the properties of the corresponding modality can often improve performance.

Contrastive Predictive Coding (CPC) (Oord et al., 2018) provides an alternative to the vari-
ational approach. The idea is to maximize the MI between the previous latent variable zt−1 and
the observation o(k), i. e., I(o(k)

t , zt−1). While this approach seems similar to contrastive variational
learning, we use the previous latent state zt−1 instead of the current zt to estimate the MI. Thus, we
explicitly predict one time step ahead to compute the loss. As we use the RSSM’s dynamics model
for the prediction, this formalism provides a training signal to the dynamics model. However, Levine
et al. (2019); Shu et al. (2020); Nguyen et al. (2021) discuss how this signal alone is insufficient for
model-based RL. Srivastava et al. (2021) show that similar ideas also benefit model-free RL and we
follow their approach by regularizing the objective using KL-term from Equation 1 weighted with a
small factor β. Additionally, we can turn individual contrastive MI terms into reconstruction terms
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for suitable sensor modalities by reversing the principle of Equation 2. Including reward prediction,
this results in the following maximization objective

T∑

t=1

K∑

k=1
L(k)
p (o(k)

t+1, zt) + Eq̂(·) [log p(rt|zt) − βKL [q(zt|zt−1,at−1,ot) ∥ p(zt|zt−1,at−1)]] , (4)

where L(k)
p is either the one-step ahead likelihood Eq̂(·)

[
log p(o(k)

t |zt−1)
]

or an InfoNCE estimate of

I(o(k)
t , zt−1) using a score function f

(k)
p (o(k)

t , zt−1) 7→ R+. From an implementation viewpoint, the
resulting approach differs only slightly from the variational contrastive one. For CPC approaches, we
use a sample from the RSSM’s dynamics p(zt|zt−1,at−1) and for contrastive variational approaches
we use a sample from the variational distribution q(zt|zt−1,at−1,ot) as input to the score function
or decoder.

Estimating Mutual Information with InfoNCE. We estimate the mutual information (MI)
using b mini-batches of sub-sequences of length l. After computing the latent estimates, we get
N = b · l pairs (oi, zi), i. e., we use both samples from the elements of the batch as well as all the
other time steps within the sequence as negative samples. Using those, the symmetry of MI, the
InfoNCE bound (Poole et al., 2019), and either f = f

(k)
v or f = f

(k)
p , we can estimate the MI as

I(oi, zi) ≥ 0.5
(

N∑

i=1
log f(oi, zi)∑N

j=1 f(oi, zj)
+ log f(oi, zi)∑N

j=1 f(oj , zi)

)
.

3.2 Learning to Act Based on the Representation

Our representations are amenable to both model-free and model-based reinforcement learning. For
the former, we use Soft Actor-Critic (SAC) (Haarnoja et al., 2018) on top of the representation by
providing the deterministic part of the latent state and the mean of the stochastic part as input to
both the actor and the critic. For the latter, we use latent imagination (Hafner et al., 2020), which
propagates gradients through the learned dynamics model to optimize the actor. In both cases, we
alternatingly update the RSSM, actor, and critic for several steps before collecting a new sequence
in the environment. The RSSM uses only the representation learning loss and gets neither gradients
from the actor nor the critic.

4 Experiments

Building on the previously introduced methodology, we build two versions of Contrastive Recon-
structive Aggregated representation Learning (CoRAL) differing in the state space representation
objective. Variational CoRAL (V-CoRAL), using the variational objective (Equation 3) and Pre-
dictive CoRAL (P-CoRAL), using the predictive coding objective (Equation 4). We evaluate the
performance of CoRAL by using it for downstream online RL and assessing the average expected
return or success rate.

To show the benefits of combining contrastive and reconstruction-based objectives, we compare with
ablative variants that use the same loss for both modalities (Same-Loss), the naive approach of
concatenating proprioception to image representations (Concat) and using only the image (Img-
Only). We consider the contrastive variational (CV) and the contrastive predictive coding (CPC)
paradigm for each of these approaches. For reference, we also include reconstruction-based (Re-
con.) approaches (Equation 1). Furthermore, we use SAC (Haarnoja et al., 2018) on only the
proprioception (ProprioSAC ), to show that proprioception alone is insufficient to solve the tasks.
Finally, we consider the model-free DrQ-v2 (Yarats et al., 2022) and model-based RePo (Zhu et al.,
2023) as baselines to demonstrate the competitiveness of our approach. We extend both to also use
proprioception and refer to the resulting approaches as DrQ-v2(I+P) and RePo(I+P) respectively.

Evaluation Protocol. We run 5 seeds for each task in each suite and build our analysis on the
aggregated results across the entire suite. This process results in 35 runs for each method on Video
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Figure 2: Aggregated performance after 106 environment steps on the 7 tasks from the Video Back-
ground suite (IQM and 95% CIs). For both model-free and model-based RL, V-CoRAL performs
best among all considered methods, with the model-free performance being better than the model-
based one. While some of the model-free ablations are competitive, they perform considerably worse
in the model-based case. From the baselines, only DrQ-v2 with additional proprioception, RePo
(with and without proprioception), and DreamerPro get a final return of over 200. These results
demonstrate how including readily available proprioception with appropriate losses for each modal-
ity helps to learn accurate dynamics required by model-based RL and provides a simple alternative
to more tailored approaches.
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Figure 3: Aggregated performance after 106 environment steps on the 7 tasks from the Occlusion
suite (IQM and 95% CIs). For both, model-free and model-based RL, P-CoRAL performs best
among all considered methods, with the model-free version again outperforming its model-based
counterpart. While all approaches handle Occlusions worse than VideoBackgorund, the performance
drop is generally larger for the ablations and baselines. In particular, the Concat and model-based
Same-Loss ablations suffer and no approach using only a single modality achieves an expected return
of over 200. This indicates the importance of learning a multimodal representation using tailored
losses over naively integrating proprioception.

Background and Occlusions and 30 runs for each method in the Locomotion and Manipulation suites.
For aggregating the results over a suite, we follow Agarwal et al. (2021) and provide Interquartile
Means (IQMs), which they found to be more meaningful and robust than alternatives such as mean
or median in related scenarios. Similarly, we follow Agarwal et al. (2021) and provide 95% Stratified
Bootstrapped Confidence Intervals (CIs) for the entire suite to quantify the statistical uncertainty
in results. We indicate those with black bars in bar charts or shaded areas in reward curve plots.

Appendix A provides details for all tasks. Appendix B lists all hyperparameters of our approach
and Appendix C provides further details on the baselines. Appendix D shows learning curves for all
representation learning paradigms on all tasks, performance profiles, and per-environment results.
Code for running CoRAL and ablations on all tasks is available1.

4.1 Modified Deep Mind Control Suite Tasks

We use 7 tasks from the DeepMind Control Suite (DMC) (Tassa et al., 2018) that cover a wide
range of challenges, namely Ball-in-Cup Catch, Cartpole Swingup, Cheetah Run, Reacher Easy,
Walker Walk, Walker Run, and Quadruped Walk. We split their states into proprioceptive and non-
proprioceptive entries, where the proprioception only contains partial information about the state.

1https://github.com/pbecker93/CoRAL/
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Figure 4: Left: Saliency Maps showing on which pixels the respective representation learning
approaches focus in an example from Video Prediction. V-CoRAL focuses better on the task-relevant
cheetah, while the corresponding contrastive variational Img-Only approach is more distracted by
the video background. Right: For this Occlusion task, we train a separate decoder to reconstruct
the occlusion-free ground truth from the (detached) latent representation. For Cartpole Swingup
only the cart position is part of the proprioception. Still, P-CoRAL can capture both cart position
and pole angle, while the contrastive predictive Img-Only approach fails to do so.

The remaining information has to be inferred from images. For example, in Ball-in-Cup Catch the
cup’s state is proprioceptive while the ball’s state is not. Table 1 lists the splits for the remaining
tasks. We create two suites by adding Video Backgrounds or Occlusions for all seven tasks. For
Video Backgrounds, we follow (Nguyen et al., 2021; Deng et al., 2022) and render videos from the
Kinetics400 dataset (Kay et al., 2017) behind the agent. For Occlusions, we add slowly moving disks
in front of the agent. The upper row of Fig. 4 shows examples. For both suites, the challenge is
to learn representations that filter out irrelevant visual details while focusing on relevant aspects.
Occlusions also tests the approaches’ capabilities to maintain a consistent representation across time
under partial observability, considerably increasing the task’s difficulty.

For these tasks, we consider the model-free and model-based versions of V-CoRAL, P-CoRAL, and
all ablative variants. Note that the Concat ablations are inapplicable in the model-based setting,
as the proprioception is not available during latent imagination (Hafner et al., 2020). Besides the
DrQ-v2 and RePo based baselines, we include several other visual RL approaches tailored for images
with distractions to show the competitiveness of CoRAL. Those are the model-based Task Informed
Abstractions (TIA) (Fu et al., 2021) and DreamerPro (Deng et al., 2022), the model-free Deep
Bisimulation for Control (DBC) (Zhang et al., 2020) approach, and DenoisedMDP (Wang et al.,
2022), which has both a model-free and model-based variant.

Fig. 2 and Fig. 3 show the results for the Video Background and Occlusion tasks respectively. We
also include results for the Standard Images without any distractors or occlusions for reference and
refer to Appendix D for those results. On Natural Videos V-CoRAL yields the best results among
all approaches. However, the margin to some of the ablations is small with all of them closing in on
the performance of the best approaches on images without background videos (Fig. 9). For model-
based RL the results show clearer benefits of learning a multimodal representation by appropriately
combining multiple losses. This difference is also much more pronounced for the more difficult
Occlusions (Fig. 3) suite. Here, no image-only approach learns reasonable behavior or manages
to outperform ProprioSAC, indicating a higher difficulty for representation learning. Our method
P-CoRAL tends to perform best in this suite, achieving a return of around 750, and closing in on
the best approaches on Standard Images which get around 900. Furthermore, using readily available
proprioception for representation learning in a principled manner provides a simple alternative to
the strong baselines listed above and also tends to outperform the naive Concat ablation that does
not consider proprioception for representation learning but only for RL.

Variational vs. Predictive Approaches. Variational approaches tend to work better than pre-
dictive ones on Video Backgrounds, where the challenge is to focus on the relevant aspects while
ignoring distractions. Yet, the predictive approaches work better on Occlusions, where information
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Figure 5: Left: Exemplary egocentric (upper row) and external example images (lower row) for
the Hurdle Cheetah Run, Hurdle Walker Run, Ants Walls, and Quadruped Escape tasks of the
Locomotion suite. Only the egocentric images are given to the agents, while the external images are
solely for visualization of the tasks. Right: Aggregated performance on model-free agents and RePo
after 106 environment steps on the 6 tasks of the Locomotion suite (IQM and 95% CIs). P-CoRAL
significantly outperforms all ablative variants and baselines, highlighting how combining contrastive
methods and reconstruction can form effective multimodal representations. It also outperforms
purely reconstruction-based approaches, even with no distraction in the images.

has to be propagated over time. As the underlying tasks are identical, this highlights the benefits
of considering both paradigms, depending on the perception challenges.

Visualization of Learned Representations. We qualitatively investigate some of the learned
representations in Fig. 4, which illustrates how CoRAL helps the representation to focus on relevant
aspects and extract all necessary information from an image.

Model Quality and Model-Based Approaches. While model-free and model-based agents
perform similarly well for approaches that reconstruct images, model-based agents perform worse
than their model-free counterparts for contrastive image losses (Fig. 2, Fig. 3, Fig. 9, Fig. 10). In line
with previous findings (Hafner et al., 2020; Ma et al., 2020), this shows how contrastive approaches
struggle to learn suitable long-term dynamics for model-based RL. However, this gap is larger for the
Same-Loss and Img-Only ablations than for CoRAL, which almost closes the gap between model-
free and model-based for V-CoRAL (Fig. 2, Fig. 3). This result demonstrates how CoRAL allows
learning more precise long-term dynamics that enable more successful model-based RL.

4.2 Locomotion Suite

Building on the DeepMind Control Suite Tassa et al. (2020), we introduce a novel Locomotion
suite consisting of six tasks: Hurdle-Cheetah Run, Hurdle-Walker Walk, Hurdle-Walker Run,
Ant-Empty, Ant-Walls and Quadruped Escape. All tasks include obstacles that have to be localized
through egocentric vision to be avoided. As the agents cannot observe themselves from the egocentric
perspective, they additionally need proprioception. The left side of Fig. 5 provides some examples
and Appendix A.2 provides further illustrations and specifications of all tasks. These tasks test the
representations’ ability to combine information from both sources to enable successful navigation
and movement. For this more challenging suite, we focus on model-free RL for all representations
due to the known performance gap for model-based RL with contrastive image losses (Hafner et al.,
2020; Ma et al., 2020), (Fig. 2, Fig. 3). We include the model-based RePo for reference.

The results on the right side of Fig. 5 show that P-CoRAL excels in the Locomotion suite and has a
significant edge over reconstruction or the pure CPC-based approach while V-CoRAL outperforms
the related variational approaches. While highly relevant to the task, the obstacles appear at
random and have random colors for some tasks, which makes reconstruction harder. The contrastive
methods’ advantage is pronounced in tasks with random colored obstacles (Fig. 21).

4.3 Manipulation Suite

For the Manipulation suite, we design 6 tasks based on ManiSkill2 (Gu et al., 2023), i.e.,
LiftCube, PushCube, TurnFaucet, OpenCabinetDrawer(RGB), OpenCanbinetDrawer(Depth), and
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Figure 6: Left: Exemplary images of the LiftCube, TurnFaucet, OpenCabinetDrawer(Depth), and
OpenCabinetDoor(RGBD) tasks. For the last one, we only show the RGB part of the image and we
provide two images per task to showcase the visual diversity and different geometries of the target
objects. Right: Aggregated performance on model-free agents and RePo after 2 × 106 environment
steps on the Manipulation suite (IQM and 95% CIs). Overall, V-CoRAL achieves the best average
success rate by a significant margin, followed by P-CoRAL. While they achieve about 68% and
58% success respectively, no ablation gets over 42%. In particular, both fully contrastive Same-Loss
ablations fail to succeed, which again highlights the importance of choosing an appropriate loss for
each modality. While both RePo and DrQ-v2 can utilize the additional proprioception, they are
not competitive with CoRAL or even SAC trained solely on the proprioception.

OpenCabinetDoor(RGBD). The first three are static manipulation tasks where the target object has
to be localized (cube) or identified (faucet) for successful manipulation. The latter three are mobile
manipulation tasks where the robot navigates to a cabinet and interacts with it using egocentric
vision and proprioception. They also use different visual modalities, i.e., standard RGB images,
depth only, or RGBD. For all tasks, we add visually realistic backgrounds using diverse scenes from
the ReplicaCAD Dataset (Straub et al., 2019) and randomize the ambient lighting. The task’s
complexity stems from the visual realism of the background and the diverse geometry of the target
objects, which require that the representations allow identification and precise localization. The left
side of Fig. 6 provides example images showing the tasks’ visual diversity and Appendix A.3 further
examples and specifications for all tasks. We again focus on model-free RL and RePo.

The right sight of Fig. 6 shows the results. The Manipulation suite is the hardest set of tasks we
consider and here the benefits of CoRAL are most obvious. Here, most of the considered base-
lines fail while only V-CoRAL and P-CoRAL achieve over 50% success rate, averaged over all
tasks, with V-CoRAL giving the best result of 68%. In particular, the corresponding contrastive
same-loss approaches fail almost completely, which puts additional emphasis on the importance of
using appropriate losses for each modality. Using different image types for the 3 mobile manipula-
tion tasks shows how CoRAL is beneficial across different visual modalities. Using depth images,
OpenCabinetDrawer(Depth) effectively removes the lighting variations for this task which allows
several approaches to achieve higher performance but has only minor effects on the ranking.

4.4 Discussion

Considering all task suites and the full results presented in Appendix D, we see the benefits of CoRAL
compared to the ablations and a large selection of model-free and model-based baselines. Especially
for the harder tasks, i.e., Occlusions (Fig. 3), Locomotion (Fig. 5), and Manipulation (Fig. 6), CoRAL
can significantly outperform other methods working on the same observations, which shows that
different modalities require distinct self-supervised loss functions while simply using the additional
proprioception by concatenation or using the same self-supervised loss is often insufficient.

Variational vs. Predictive Approaches. While either V-CoRAL or P-CoRAL generally provides
the best results on the considered tasks and both outperform the corresponding ablations, neither
consistently outperforms the other across all task suites. While this prevents conclusive decisions
about whether variational or predictive methods work generally better, we can observe a trend. The
variational approaches appear more suited for tasks requiring the filtering out of visual distractions,
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such as in Video Background and Manipulation scenarios, while predictive approaches perform better
in tasks needing information to be carried over time, like Occlusions and Locomotion.

Baselines. Contrary to the results presented in the respective original works, DBC (Zhang et al.,
2020), TIA (Fu et al., 2021), DenoisedMDP (Wang et al., 2022) and RePo (Zhu et al., 2023) un-
derperform on the Video Backgrounds task. The discrepancy in performance is due to us using a
more difficult experimental setup proposed by Deng et al. (2022), which features colored videos of
greater diversity. We detail the differences and their effects in Appendix C. Furthermore, RePo
fails in the Manipulation suite which seems to contradict results presented by Zhu et al. (2023) on
three static manipulation tasks, similar to those in that suite. Again there are subtle differences in
the task specification: While Zhu et al. (2023) only randomize the visual background we randomize
both the visual background and the task’s initial condition (cube position or faucet model) creating
considerably more challenging scenarios.

Consistency Across Tasks. The additional result visualizations in Appendix D show that the
aggregated performance underlying our analysis is mostly representative of the per-task performance,
i.e., if an approach outperforms another when considering the aggregated performance, it generally
also does so on a large majority of the individual tasks and runs. Furthermore, performance is
consistent across the different observation types for the DMC tasks, i.e., Occlusions are more difficult
than Video Background, which are more difficult than Standard Images (Fig. 9, Fig. 10).

5 Conclusion

We consider the problem of Reinforcement Learning (RL) from multiple sensors, in particular im-
ages and proprioception. We propose Contrastive reconstructive Aggregated Representation Learning
(CoRAL), an approach to learning multimodal state space representations for RL by combining con-
trastive and reconstruction losses. CoRAL builds on the insight that we can replace likelihood-based
reconstruction terms with contrastive mutual information terms and vice-versa and is applicable for
variational and predictive coding paradigms. We evaluate on modified versions of the DeepMind
Control Suite and novel Locomotion and Manipulation suites. Our results show a consistent ben-
efit of CoRAL due to the combination of contrastive approaches for images with reconstruction
for low-dimensional, concise signals. These benefits are most pronounced for the hardest tasks we
consider, i.e., the Manipulation suite, where CoRAL, allows us to solve complex tasks with realistic
background scenes and varying target object geometries.

Limitations. Depending on the task, either V-CoRAL or P-CoRAL performs better. While our
evaluation provides some insights about when to use either, further research into understanding their
advantages and disadvantages and finding a unified approach that excels in all tasks is required. Ad-
ditionally, even with CoRAL, model-free agents outperform their model-based counterparts when
using contrastive image losses. We thus believe that contrastive learning of state space representa-
tions can be further improved, especially with regard to learning accurate system dynamics.
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Table 1: Splits of the entire system state into proprioceptive and non-proprioceptive parts for the
DeepMind Control Suite environments.

Environment Proprioceptive Non-Proprioceptive
Ball In Cup cup position and velocity ball position and velocity
Cartpole cart position and velocity pole angle and velocity
Cheetah joint positions and velocities global pose and velocity
Reacher reacher position and velocity distance to target
Quadruped joint positions and velocities global pose + velocity, forces
Walker orientations and velocities of links global pose and velocity, height above ground

Table 2: Splits of the entire system state into proprioceptive and non-proprioceptive parts for the
Locomotion Suite. Some of the agents (Cheetah, Walker, Quadruped) require more proprioceptive
information for the locomotion tasks with an egocentric vision than for the standard tasks with
images from an external perspective.

Environment Proprioceptive Non-Proprioceptive
Ant joint position and velocity wall positions

global velocities global position
Hurdle Cheetah joint positions and velocities hurdle positions and heights

global velocity global position
Hurdle Walker orientations and velocities of links hurdle positions and height

global position and velocity
Quadruped (Escape) joint positions and velocities, Information about terrain

torso orientation and velocity,
imu, forces, and torques at joints

A Environments

A.1 DeepMind Control Suite Tasks

Table 1 states how we split the states of the original DeepMind Control Suite (DMC) (Tassa
et al., 2018) tasks into proprioceptive and non-proprioceptive parts. For the model-based agents, we
followed common practice (Hafner et al., 2020; Fu et al., 2021; Wang et al., 2022; Deng et al., 2022)
and use an action repeat of 2 for all environments. We do the same for the model-free agents except
for: Ball In Cup Catch (4), Cartpole Swingup (8), Cheetah Run (4) and Reacher Easy (4). All
environments in the locomotion suite also use an action repeat of 2, this includes Hurdle Cheetah
Run which requires more fine-grained control than the normal version to avoid the hurdles.

Natural Background. Following (Zhang et al., 2020; Fu et al., 2021; Nguyen et al., 2021; Deng
et al., 2022; Wang et al., 2022; Zhu et al., 2023) we render videos from the driving car class of
the Kinetics400 dataset (Kay et al., 2017) behind the agents to add a natural video background.
However, previous works implement this idea in two distinct ways. Nguyen et al. (2021) and Deng
et al. (2022) use color images as background and pick a random sub-sequence of a random video
for each environment rollout. They adhere to the train-validation split of the Kinetcs400 dataset,
using training videos for representation and policy learning and validation videos during evaluation.
Zhang et al. (2020); Fu et al. (2021); Wang et al. (2022); Zhu et al. (2023), according to the official
implementations, instead work with gray-scale images and sample a single background video for the
train set once during initialization of the environment. They do not sample a new video during the
environment reset, thus all training sequences have the same background video.

We follow the first approach, as we believe it mimics a more realistic scenario of always changing
and colored natural background.
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Figure 7: The environments in the Locomotion Suite are (from left to right) Hurdle Cheetah
Run, Hurdle Walker Walk / Run, Ant Empty, Ant Walls, and Quadruped Escape. Upper Row:
Egocentric vision provided to the agent. Lower Row: External image for visualization.

Occlusions. Following (Becker & Neumann, 2022), we render slow-moving disks over the original
observations to occlude parts of the observation. The speed of the disks makes memory necessary,
as they can occlude relevant aspects for multiple consecutive timesteps.

A.2 Locomotion Suite

The 6 tasks in the locomotion suite are Ant Empty, Ant Walls, Hurdle Cheetah Run, Hurdle
Walker Walk, Hurdle Walker Run, and Quadruped Escape. Table 2 shows the splits into pro-
prioceptive and non-proprioceptive parts. Fig. 7 displays all environments in the suite.

Both Ant tasks build on the locomotion functionality introduced into the DeepMind Control suite
by (Tassa et al., 2020). For Ant Empty, we only use an empty corridor, which makes this the easiest
task in our locomotion suite. For Ant Walls, we randomly generate walls inside the corridor, and
the agent has to avoid those to achieve its goal, i.e., running through the corridor as fast as possible.

For the Hurdle Cheetah and Hurdle Walker tasks we modified the standard Cheetah Run,
Walker Walk, and Walker Run tasks by introducing "hurdles" over which the agent has to step to
move forward. The hurdles’ positions, heights, and colors are reset randomly for each episode, and
the agent has to perceive them using egocentric vision. For this vision, we added a camera in the
head of the Cheetah and Walker. Note that the hurdle color is not relevant to avoid them and thus
introduces irrelevant information that needs to be captured by reconstruction-based approaches.

The Quadruped Escape task is readily available in the DeepMind Control Suite. For the egocentric
vision, we removed the range-finding sensors from the original observation and added an egocentric
camera.

A.3 Manipulation Suite

The Manipulation Suite builds on Maniskill2 (Gu et al., 2023) and comprises 6 tasks, i.e.,
LiftCube, PushCube, TurnFaucet, OpenCabinetDrawer(RGB), OpenCabinetDrawer(Depth) and
OpenCabinetDoor(RGBD). The first three involve table-top manipulation and are harder variations
of some tasks considered by Zhu et al. (2023). The latter three are mobile manipulation tasks using
different image modalities. For all tasks, we use scenes from the Replica Dataset Straub et al. (2019)
(specifically: ReplicaCAD_baked_lighting2) to place the robot in a visually realistic scene. At the
beginning of each episode, we randomly pick one of 80 curated scenes and randomly sample the
ambient lighting to place the task in a varying and visually realistic scenery.

2https://huggingface.co/datasets/ai-habitat/ReplicaCAD_baked_lighting/
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Figure 8: 4 Example images for each of the environments in the Manipulation Suite, showing the vi-
sual and geometric diversity within each task. The tasks are, from left to right, LiftCube, PushCube,
TurnFaucet, OpenCabinetDrawer(RGB), OpenCabinetDrawer(Depth), OpenCabinetDoor(RGBD).
For the last, we visualize only the RGB part of the image.

We use delta joint position control, no action repeat, and dense normalized rewards for all tasks. For
the depth images we use the depth camera functionality provided by ManiSkill2 and clip to values
between 0 and 4 meters. Figure Fig. 8 shows example images for all environments.

LiftCube builds on Maniskill2’s LiftCube task and involves picking up a cube and lifting it to a
fixed target position. The proprioception includes the robot’s joint positions, velocities, and end-
effector pose, while the cube has to be localized and tracked via an image of an external camera.
Opposed to Zhu et al. (2023) we randomize the initial cube position, requiring the agents to first
localize the cube based on the representation, which makes the task considerably more difficult.

PushCube builds on the PushCube task introduced by Zhu et al. (2023), but we again randomize
the initial cube position. Like in LiftCube, the proprioception includes the robot’s joint positions,
velocities, and end-effector pose, while the cube has to be localized and tracked via an image of an
external camera.

TurnFaucet extends Maniskill2’s TurnFaucet task and involves opening various faucets by turning
the handle. The proprioception includes the robot’s joint positions, velocities, and end-effector pose,
while all information regarding the faucet has to be inferred from an image of an external camera.
We sample one out of 15 different faucets at the beginning of each episode. As their geometry
and opening mechanism vary any representation needs to capture detailed information about the
faucet and allow the policy to identify it. This makes our task considerably more difficult than that
proposed by Zhu et al. (2023), who use the same faucet model for all episodes.

OpenCabinetDrawer(RGB) is based on the mobile manipulation OpenCabinetDrawer task from
ManiSkill2, where a mobile robot with a single arm has to navigate towards and then open a drawer
one of 25 cabinets. We disable the rotation of the robot base, which prevents the robot from turning
away from the cabinet during initial exploration and significantly speeds up learning for all considered
approaches. This results in a 10 dimensional action space, consisting of the x and y velocities of the
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base, desired changes for the 7 robot joints, and the gripper. Images are egocentric from the top of
the robot base and the proprioception includes the entries from the ManiSkill2 "state dict".

OpenCabinetDrawer(Depth) is equivalent to OpenCabientDrawer(RGB) but the agent only
receives an egocentric depth image instead of a color image. This effectively removes the variation
in lighting from the environment.

For OpenCabinetDoor(RGBD) we build on the Maniskill2 task of the same name, use 25 dif-
ferent cabinet models, and the same action space as for OpenCabientDrawer(RGB). The sensory
observations are also equivalent to the Drawer tasks, but we provide both color and depth informa-
tion. While conceptually similar to the Drawer tasks opening the Door is considerably harder, as it
requires coordination with the base not just to reach the handle, but also to pull back on it.

B Architecture Details and Training

We use the same hyperparameters for all experiments based on the DeepMind Control Suite (DMC),
i.e., the standard tasks with the different observation types (Video Background, Occlusions and also
Standard Images) as well as, the Locomotion Suite. For the ManiSkill2-based Manipulation Suite,
we use a larger model and a more conservative update scheme for actors and critics. We use the
ELU activation function unless otherwise mentioned.

B.1 Recurrent State Space Model

We denote the deterministic part of the RSSM ’s state by ht and the stochastic part by st. The
base-RSSM model without parts specific to the objective consists of:

• Encoders: ψ
(k)
obs(ot), where ψobs is the convolutional architecture proposed by (Ha &

Schmidhuber, 2018) and used by (Hafner et al., 2019; 2020) for image observations. For
the low-dimensional proprioception, we used 3 × 400 fully connected layers for the DMC
tasks and 4 × 512 fully connected layers Manipulation Suite.

• Deterministic Path: ht = g(zt−1,at−1,ht−1) = GRU(ψdet(zt−1,at−1),ht−1) (Cho et al.,
2014), where ψdet is a 2×400 fully connected NN and the GRU has a memory size of 200 for
the DMC tasks. For the Manipulation Suite ψdet has 2 × 512 units and the GRU a memory
size of 400

• Dynamics Model: p(zt+1|zt,at) = ψdyn(ht), where ψdyn is a 2×400 units fully connected
NN for the DMC tasks and a 2 × 512 units fully connected NN for the Manipulation Suite.
The network learns the mean and standard deviation of the distribution.

• Variational Distribution q(zt|zt−1,at−1,ot) = ψvar

(
ht,Concat

(
{ψ(k)

obs(o
(k)
t )}k=1:K

))
,

where ψvar is a 2 × 400 units fully connected NN for the DMC tasks and a 2 × 512 units
fully connected NN for the Manipulation Suite. Again, the network learns the mean and
standard deviation of the distribution.

• Reward Predictor p(rt|zt): 2×128 units fully connected NN for model-free agents. 3×300
units fully connected NN with ELU activation for model-based agents. The network only
learns the mean of the distribution. The standard deviation is fixed at 1. The model-based
agents use a larger reward predictor as they rely on it for learning the policy and the value
function. Model-free agents use the reward predictor only for representation learning and
work with the ground truth rewards from the replay buffer to learn the critic.

B.2 Objectives

Image Inputs and Augmentation. Whenever we use a contrastive image loss, we randomly crop
a 64 × 64 pixel image from the original image of size 76 × 76 pixels during training. Cropping is
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temporally consistent, i.e., the same crop is used for all time steps in a sub-sequence. For evaluation,
we corp at the center. For the ablations that reconstruct images, we downsize them directly to 64×64
pixels.

KL. For the KL terms in Equation 1 and Equation 3 we follow Hafner et al. (2023) and combine
the KL-Balancing technique introduced in Hafner et al. (2021) with the free-nats regularization used
in Hafner et al. (2019; 2020). Following Hafner et al. (2021) we use a balancing factor of 0.8. We
give the algorithm 1 free nat for the DMC Tasks and 3 for the Manipulation Suite.

Contrastive Variational Objective. The score function for the contrastive variational objective
is given as

f (k)
v (o(k)

t , zt) = exp
(

1
λ
ρo

(
ψ

(k)
obs(o

(k)
t )
)T

ρz(zt)
)
,

where ψ(k)
obs is the RSSM ’s encoder and λ is a learnable inverse temperature parameter. ρo and ρz

are projections that project the embedded observation and latent state to the same dimension, i.e.,
50. ρo is only a single linear layer while ρz is a 2 × 256 fully connected NN. Both use LayerNorm
(Ba et al., 2016) at the output.

Contrastive Predictive Objective. The score function of the contrastive predictive objective
looks similar to the one of the contrastive variational objective. The only difference is that the
latent state is forwarded in time using the RSSMs transition model to account for the predictive
nature of the objective,

f (k)
p (o(k)

t , zt−1) = exp
(

1
λ
ρo

(
ψ

(k)
obs(o

(k)
t )
)T

ρz(ϕdyn(g(zt−1, ·))
)
.

We use the same projections as in the contrastive variational case.

Following Srivastava et al. (2021) we scale the KL term using a factor of β = 0.001.

Reconstruction Objectives. Whenever we reconstruct images we use the up-convolutional ar-
chitecture proposed by (Ha & Schmidhuber, 2018) and used by (Hafner et al., 2019; 2020). For
low-dimensional observations, we use 3 × 400 units fully connected NN for the DMC tasks and a
4 × 512 Units fully connected NN for the Manipulation Suite. In all cases, only the mean is learned.
We use a fixed variance of 1 for all image losses and the proprioception for the DMC tasks. For the
Manipulation Suite, we set the variance for the proprioception to 0.04.

Optimizer. We used Adam Kingma & Ba (2015) with α = 3 × 10−4, β1 = 0.99, β2 = 0.9 and
ε = 10−8 for all losses. We clip gradients if the norm exceeds 10.

B.3 Soft Actor Critic

Table 3 lists the hyperparameters used for model-free RL with SAC Haarnoja et al. (2018).

We collected 5, 000 initial steps at random. During training, we update the RSSM, critic, and
actor in an alternating fashion for d steps before collecting a new sequence by directly sampling
from the maximum entropy policy. Here, d is set to be half of the environment steps collected per
sequence (after accounting for potential action repeats). Each step uses 32 subsequences of length
32, uniformly sampled from all prior experience.

B.4 Latent Imagination

Table 4 lists the hyperparameters used for model-based RL with latent imagination. They follow to
a large extent those used in Hafner et al. (2020; 2021).

We again collect 5, 000 initial steps at random. During training, we update the RSSM, value function,
and actor in an alternating fashion for 100 steps before collecting new sequences. Each step uses 50
subsequences of length 50, uniformly sampled from all prior experience. For collecting new data, we
use constant Gaussian exploration noise with σ = 0.3.
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Table 3: Hyperparameters used for policy learning with the Soft Actor-Critic.

Hyperparameter DMC and Locomotion Manipulation
Actor Hidden Layers 3 × 1, 024 Units 3 × 1, 024 Units
Actor Activation ELU ELU + LayerNorm
Critic Hidden Layers 3 × 1, 024 Units 3 × 1, 024 Units
Critic Activation Tanh ELU + LayerNorm
Discount 0.99 0.85
Actor Learning Rate 0.001 0.0003
Actor Gradient Clip Norm 10 10
Critic Learning Rate 0.001 0.0003
Critic Gradient Clip Norm 100 100
Target Critic Decay 0.995 0.995
Target Critic Update Interval 1 1
α learning rate 0.001 0.0003
initial α 0.1 1.0
target entropy - action dim - action dim

Table 4: Hyperparameters used for policy learning with Latent Imagination.

Hyperparameter Value
Actor Hidden Layers 3 × 300 Units
Actor Activation ELU
Critic Hidden Layers 3 × 300 Units
Critic Activation ELU
Discount 0.99
Actor Learning Rate 8 × 10−5

Actor Gradient Clip Norm 100
Value Function Learning Rate 8 × 10−5

Value Gradient Clip Norm 100
Slow Value Decay 0.98
Slow Value Update Interval 1
Slow Value Regularizer 1
Imagination Horizon 15
Return lambda 0.95

C Details on Baselines and Ablations.

For Dreamer-v3 (Hafner et al., 2023) we use the raw reward curve data provided with the official
implementation3. For DreamerPro (Deng et al., 2022)4, Task Informed Abstractions (Fu et al.,
2021)5, Deep Bisumlation for Control (Zhang et al., 2020)6, DenoisedMDP (Wang et al., 2022)7

and DrQ-v2 (Yarats et al., 2022)8 we use the official implementations provided by the respective
authors.

3https://github.com/danijar/dreamerv3/blob/main/scores/data/dmcvision_dreamerv3.json.gz
4https://github.com/fdeng18/dreamer-pro
5https://github.com/kyonofx/tia/
6https://github.com/facebookresearch/deep_bisim4control/
7https://github.com/facebookresearch/denoised_mdp
8https://github.com/facebookresearch/drqv2
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DrQ-(I+P) builds on the official implementation and uses a separate encoder for the proprioception
whose output is concatenated to the image encoder’s output and trained using the critics’ gradients.

We implemented RePo and RePo(I+P) in our framework, reused the Hyperparameters form Zhu
et al. (2023), and ensured the results of our implementation match the official implementation’s9

result on the DMC tasks with standard images. RePo(I+P) encodes the proprioception using a
separate encoder and both the embedded image and proprioception are given to the RSSM.

Ablations that are Similar to related Approaches. Some of our ablations are very similar to
related approaches. The model-based Img-Only ablation with reconstruction loss, is very similar to
Dreamer-v1 (Hafner et al., 2020). It differs from the Dreamer-v1 (Hafner et al., 2020) in using the
KL-balancing introduced in (Hafner et al., 2021) and in regularizing the value function towards its
own exponential moving average, as introduced in (Hafner et al., 2023).

However, there are considerable differences between the contrastive version of Dreamer-v1(Hafner
et al., 2020) and the contrastive variational Img-Only ablation. In particular, those regard the exact
form of mutual information estimation and the use of image augmentations.

The model-free contrastive predictive Img-Only and Same-Loss ablations are similar to the approach
of Srivastava et al. (2021). The main difference is that Srivastava et al. (2021) includes the critic’s
gradients when updating the representation while in our setting no gradients flow from the actor
or the critic to the representation. Furthermore, we did not include the inverse dynamics objective
used by Srivastava et al. (2021) as we did not find it to be helpful. Additionally, we adapted some
hyperparameters to match those of our other approaches.

C.1 Hyperparameters of Abltions and Baselines.

Ablations. All Same-Loss, Concat, and Img-Only use the hyperparameters listed in Appendix B.
They are merely missing certain parts of the model or use a different loss for one or both modalities.
For the Concat baseline, we project the proprioception to the RSSMs latent state size (stochastic +
deterministic) using a single linear layer before concatenation.

ProprioSAC uses the hyperparameters listed in Table 3, except for the learning rates. We reduced
those to the SAC default values of 0.0003 for all environments, as we found the more aggressive
updates used for CoRAL on Video Background, Occlusions and Locomotion can lead to instabilities
when training directly on the proprioception.

Baselines. All our baselines were originally evaluated on standard DeepMind Control Suite tasks,
modified DeepMind Control Suite tasks, or both. They were designed for problems very similar to
Occlusions and, in particular, Video Background and we thus reuse the Hyperparameters originally
proposed by the respective authors. For baselines using an RSSM, (TIA, DreamerPro, Denoised-
MDP, and RePo) these are generally very similar and follow Hafner et al. (2020; 2021).

For the Locomotion suite all approaches, including CoRAL and the ablations, use the same Hyper-
parameters as they use for Video Backgrounds and Occlusions.

For the Manipiluation suite we increased the model sizes of RePo following those of CoRAL. For
both the DrQ-v2 -based and the RePo-based baselines we tried a discount factor of 0.85 and 0.99 to
ensure the performance differences to CoRAL is not an artifact of the low discount of 0.85. However,
the lower discount worked better for all methods.

C.2 On the Performance of Some Baselines in our Setting.

As described in Section A.1, there are distinct ways how to select and use the Kinetics400 videos in
the existing literature. Nguyen et al. (2021), who first introduced the more challenging setting we
use, already found DBC (Zhang et al., 2020) to struggle in this setting and our results align with
those findings.

9https://github.com/zchuning/repo
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TIA (Fu et al., 2021) and DenoisedMDP (Wang et al., 2022) factorize the latent variable into 2
distinct parts and formulate loss functions that force one part to focus on task-relevant aspects and
the other on task-irrelevant aspects. However, the part responsible for the task-irrelevant aspects
still has to model those explicitly. In the more complicated setting with randomly sampled, colored
background videos, the TIA and DenoisedMDP world models underfit and thus fail to learn a good
representation or policy. Contrastive approaches, such as our approach and DreamerPro (Deng
et al., 2022), do not struggle with this issue, as they do not have to model task-irrelevant aspects
but can learn to ignore them.

RePo (Zhu et al., 2023) was also evaluated on the simpler setting and Zhu et al. (2023) report an im-
proved performance over TIA and DenoisedMDP. In the more challenging setting, this improvement
persists and RePo performs similarly to DreamerPro (Fig. 2).

Furthermore, Zhu et al. (2023) presents results on ManiSkill2 environments similar to LiftCube,
PushCube, and TurnFaucet of our Manipulation Suite. However, as detailed in Appendix A.3 our
Manipulation Suite tasks randomize initial conditions (i.e., cube position or faucet model) which
results in significantly more challenging tasks, in which RePo seems to struggle.

D Complete Results

The following pages list the aggregated results and performance profiles for all tasks, representation-
learning approaches, and both model-free and model-based RL. We compute inter-quartile means
and stratified bootstrapped confidence intervals, as well as the performance profiles according to the
recommendations of Agarwal et al. (2021) using the provided library10. For each task in the suites,
we ran 5 seeds per method, i.e., the results for Standard Images, Video Backgrounds, and Occlusions
are aggregated over 35 runs, and those for Locomotion over 30 runs. For OpenCabinetDrawer we run
20 seeds per method. Fig. 9 lists the aggregated results for all model-free agents on the DeepMind
Control (DMC) Suite tasks and Fig. 11 lists the corresponding performance profiles. Fig. 10 lists
the aggregated results for all model-based agents on the DeepMind Control Suite tasks and Fig. 12
lists the corresponding performance profiles. Fig. 13 shows aggregated results and performance
profiles for the Locomotion suite. Fig. 14 shows aggregated results and performance profiles for the
Manipulation suite. We also list the per-task results for all task suits:

• Fig. 15: Model-free agents on DMC tasks with Standard Images

• Fig. 16: Model-free agents on DMC tasks with Video Background.

• Fig. 17: Model-free agents on DMC tasks with Occlusions.

• Fig. 18: Model-based agents on DMC tasks with Standard Images.

• Fig. 19: Model-based agents on DMC tasks with Video Background.

• Fig. 20: Model-based agents on DMC tasks with Occlusions.

• Fig. 21: Per Environment Results for the Locomotion suite.

• Fig. 22: Per Environment Results for the Manipulation suite.

10https://github.com/google-research/rliable
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Figure 9: Aggregated results for all model-free agents on the DeepMind Control Suite environ-
ments with Standard Images, Video Background, and Occlusions. As expected, reconstruction-based
approaches do not work on Video Background and Occlusions. Out of all considered approaches V-
CoRAL achieves the highest performance on Video Background and P-CoRAL achieves the highest
performance on Occlusions.
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Figure 10: Aggregated results for all model-based agents on the DeepMind Control Suite envi-
ronments with Standard Images, Video Background, and Occlusions. Compared to their model-free
counterparts (Fig. 9), model-based agents perform worse, except if a reconstruction-based represen-
tation is used. Yet, the performance gap is larger for image-only and fully contrastive approaches.
Especially V-CoRAL still achieves high performance on Video Background, almost matching the per-
formance of Dreamer-v3 on Standard Images. This further highlights the benefits of using CoRAL,
which can significantly improve over tailored approaches such as DreamerPro or RePo.
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Figure 11: Performance profiles for all model-free agents on the DeepMind Control Suite tasks
with Standard Images, Video Background, and Occlusions. They show that performance is largely
consistent across the tasks. The sole exception is V-CoRAL and the contrastive variational approach
with the same loss for both modalities on Occlusions. Here, the former fails for Ball-in-Cup Catch
and Cartpole Swingup, while the latter underperforms for Cheetah Run (Fig. 17).
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Figure 12: Performance profiles for all model-based agents on the DeepMind Control Suite environ-
ments with Standard Images, Video Background, and Occlusions. They indicate that performance
is largely consistent across the environments.
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Figure 13: Aggregated results and performance profiles for the Locomotion suite. Both V-CoRAL
and P-CoRAL outperform reconstruction and P-CoRAL gives the best results of all approaches by a
significant margin Fig. 21 shows that the performance difference is larger in environments with ran-
domly colored obstacles (Hurdle Cheetah Run, Hurdle Walker Walk, Hurdle Walker Run. The
color is not relevant to avoid the obstacles but seems to hinder reconstruction.
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Figure 14: Aggregated results and performance profiles for the Manipulation Suite. V-CoRAL
performs best by a significant margin, followed by P-CoRAL No approach that uses solely images,
i.e., Img Only-ablations, RePo and DrQ-v2, or uses both modalities but has a fully constrastive
objective achieves any notable success.
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Figure 15: Per environment results for model-free agents on the DeepMind Control Suite with
Standard Images.
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Figure 16: Per environment results for model-free agents on the DeepMind Control Suite with Video
Background.
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Figure 17: Per environment results for model-free agents on the DeepMind Control Suite with
Occlusions.

1650



RLJ | RLC 2024

Contrastive Variational Representations
V-CoRAL Same-Loss Img-Only Dreamer-v3
DreamerPro RePo(I+P) RePo

0
200
400
600
800

1,000

Ex
pe

ct
ed

Re
tu

rn

Cup Catch Cartpole Swingup Cheetah Run

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

Reacher Easy

0.0 0.2 0.4 0.6 0.8 1.0
0

200
400
600
800

1,000

Environment Steps (×106)

Ex
pe

ct
ed

Re
tu

rn

Quadruped Walk

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

Walker Walk

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

Walker Run

Contrastive Predictive Coding Representations
P-CoRAL Same-Loss Img-Only Dreamer-v3
DreamerPro RePo(I+P) RePo

0
200
400
600
800

1,000

Ex
pe

ct
ed

Re
tu

rn

Cup Catch Cartpole Swingup Cheetah Run

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

Reacher Easy

0.0 0.2 0.4 0.6 0.8 1.0
0

200
400
600
800

1,000

Environment Steps (×106)

Ex
pe

ct
ed

Re
tu

rn

Quadruped Walk

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

Walker Walk

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

Walker Run

Reconstruction-Based Representation
Same-Loss) Img-Only Dreamer-v3
RePo(I+P) RePo DreamerPro

0
200
400
600
800

1,000

Ex
pe

ct
ed

Re
tu

rn

Cup Catch Cartpole Swingup Cheetah Run

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

Reacher Easy

0.0 0.2 0.4 0.6 0.8 1.0
0

200
400
600
800

1,000

Environment Steps (×106)

Ex
pe

ct
ed

Re
tu

rn

Quadruped Walk

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

Walker Walk

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

Walker Run

Figure 18: Per environment results for model-based agents on the DeepMind Control Suite with
Standard Images.
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Figure 19: Per environment results for model-based agents on the DeepMind Control Suite with
Video Background.
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Figure 20: Per environment results for model-based agents on the DeepMind Control Suite with
Occlusions.
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Figure 21: Per environment results for the Locomotion suite.
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Figure 22: Per environment results for the Manipulation suite.
Reconstruction-Based Representation
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Abstract

Reinforcement learning (RL) has improved guided image generation with diffusion
models by directly optimizing rewards that capture image quality, aesthetics, and
instruction following capabilities. However, the resulting generative policies inherit
the same iterative sampling process of diffusion models that causes slow generation.
To overcome this limitation, consistency models proposed learning a new class of
generative models that directly map noise to data, resulting in a model that can
generate an image in as few as one sampling iteration. In this work, to optimize
text-to-image generative models for task specific rewards and enable fast training
and inference, we propose a framework for fine-tuning consistency models via RL.
Our framework, called Reinforcement Learning for Consistency Model (RLCM),
frames the iterative inference process of a consistency model as an RL procedure.
Comparing to RL finetuned diffusion models, RLCM trains significantly faster, im-
proves the quality of the generation measured under the reward objectives, and
speeds up the inference procedure by generating high quality images with as few as
two inference steps. Experimentally, we show that RLCM can adapt text-to-image
consistency models to objectives that are challenging to express with prompting,
such as image compressibility, and those derived from human feedback, such as
aesthetic quality. Our code is available at https://rlcm.owenoertell.com.

1 Introduction

Diffusion models have gained widespread recognition for their high performance in various tasks,
including drug design (Xu et al., 2022) and control (Janner et al., 2022). In the text-to-image
generation community, diffusion models have gained significant popularity due to their ability to
output realistic images via prompting. Despite their success, diffusion models in text-to-image tasks
face two key challenges. First, generating the desired images can be difficult for downstream tasks
whose goals are hard to specify via prompting. Second, the slow inference speed of diffusion models
poses a barrier, making the iterative process of prompt tuning computationally intensive.
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Figure 1: Reinforcement Learning for Consistency Models (RLCM). We propose a new
framework for finetuning consistency models using RL. On the task of optimizing aesthetic scores of
a generated image, comparing to a baseline which uses RL to fine-tune diffusion models (DDPO),
RLCM trains (left) and generates images (right) significantly faster, with higher image quality
measured under the aesthetic score. Images generated with a batch size of 8 and RLCM horizon set
to 8.

To enhance the generation alignment with specific prompts, diffusion model inference can be framed
as sequential decision-making processes, permitting the application of reinforcement learning (RL)
methods to image generation (Black et al., 2024; Fan et al., 2023). The objective of RL-based
diffusion training is to fine-tune a diffusion model to maximize a reward function directly that
corresponds to the desirable property.

Diffusion models also suffer from slow inference since they must take many steps to produce com-
petitive results. This leads to slow inference time and even slower training time. Even further, as a
result of the number of steps we must take, the resultant Markov decision process (MDP) possesses
a long time horizon which can be hard for RL algorithms optimize. To resolve this, we look to
consistency models. These models directly map noise to data and typically require only a few steps
to produce good looking results. Although these models can be used for single step inference, to
generate high quality samples, there exits a few step iterative inference process which we focus on.
Framing consistency model inference, instead of diffusion model inference, as an MDP admits a
much shorter horizon. This enables faster RL training and allows for generating high quality images
with just few step inference.

More formally, we propose a framework Reinforcement Learning for Consistency Models (RLCM),
a framework that models the inference procedure of a consistency model as a multi-step Markov
Decision Process, allowing one to fine-tune consistency models toward a downstream task using
just a reward function. Algorithmically, we instantiate RLCM using a policy gradient algorithm as
this allows for optimizing general reward functions that may not be differentiable. In experiments,
we compare to the current more general method, DDPO (Black et al., 2024) which uses policy
gradient methods to optimize a diffusion model. In particular, we show that on an array of tasks
(compressibility, incompressibility, prompt image alignment, and LAION aesthetic score) proposed
by DDPO, RLCM outperforms DDPO in tested compression, incompression, and aesthetic tasks in
training time, inference time, and sample complexity (i.e., total reward of the learned policy versus
number of reward model queries used in training) (Section 5).

Our contributions in this work are as follows:

• In our experiments, we find that RLCM has faster training and faster inference than
existing methods.

• Further, that RLCM, in our experiments, enjoys better performance on most tasks under
the tested reward models than existing methods.
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2 Related Works

Diffusion Models Diffusion models are a popular family of image generative models which pro-
gressively map noise to data (Sohl-Dickstein et al., 2015). Such models generate high quality images
(Ramesh et al., 2021; Saharia et al., 2022) and videos (Ho et al., 2022; Singer et al., 2022). Recent
work with diffusion models has also shown promising directions in harnessing their power for other
types of data such as robot trajectories and 3d shapes (Janner et al., 2022; Zhou et al., 2021).
However, the iterative inference procedure of progressively removing noise yields slow generation
time.

Consistency Models Consistency models (Song et al., 2023) are another family of generative
models which directly map noise to data via the consistency function . Such a function provides
faster inference generation as one can predict the image from randomly generated noise in a single
step. Consistency models also offer a more fine-tuned trade-off between inference time and generation
quality as one can run the multistep inference process (Algorithm 2, in Appendix A) which is
described in detail in Section 3.2. Prior works have also focused on training the consistency function
in latent space (Luo et al., 2023) which allows for large, high quality text-to-image consistency model
generations. Sometimes, such generations are not aligned with the downstream for which they will
be used. The remainder of this work will focus on aligning consistency models to fit downstream
preferences, given a reward function.

RL for Diffusion Models Popularized by Black et al. (2024); Fan et al. (2023), training diffusion
models with reinforcement learning requires treating the diffusion model inference sequence as a
Markov decision process. Then, by treating the score function as the policy and updating it with
a modified PPO algorithm (Schulman et al., 2017), one can learn a policy (which in this case is a
diffusion model) that optimizes for a given downstream reward. Further work on RL fine-tuning has
looked into entropy regularized control to avoid reward hacking and maintain high quality images
(Uehara et al., 2024). Another line of work uses deterministic policy gradient methods to directly
optimize the reward function when the reward function is differentiable (Prabhudesai et al., 2023).
Note that when reward function is differentiable, we can instantiate a deterministic policy gradient
method in RLCM as well. We focus on REINFORCE (Williams, 1992) style policy gradient methods
for the purpose of optimizing a black-box, non-differentiable reward functions.

3 Preliminaries

We provide some preliminary information on reinforcement learning, diffusion and consistency mod-
els, and discuss the application of reinforcement learning to diffusion models. Also note that we
abuse notation and use t to mean one of two things: the timestep along the diffusion trajectory or
the timestep corresponding to the RL trajectory.

3.1 Reinforcement Learning

We model our sequential decision process as a finite horizon Markov Decision Process (MDP),
M = (S,A, P, R, µ, H). In this tuple, we define our state space S, action space A, transition
function P : S × A → ∆(S), reward function R : S × A → R, initial state distribution µ, and
horizon H. At each timestep t, the agent observes a state st ∈ S, takes an action according to the
policy at ∼ π(at|st) and transitions to the next state st+1 ∼ P (st+1|st, at). After H timesteps, the
agent produces a trajectory as a sequence of states and actions τ = (s0, a0, s1, a1, . . . , sH , aH). Our
objective is to learn a policy π that maximizes the expected cumulative reward over trajectories
sampled from π,

JRL(π) = Eτ∼p(·|π)

[
H∑

t=0
R(st, at)

]
.
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3.2 Diffusion and Consistency Models

Generative models are designed to match a model with the data distribution, such that we can
synthesize new data points at will by sampling from the distribution. Diffusion models belong to a
novel type of generative model that characterizes the probability distribution using a score function
rather than a density function. Specifically, it produces data by gradually modifying the data
distribution and subsequently generating samples from noise through a sequential denoising step.
More formally, we start with a distribution of data pdata(x) and noise it according to the stochastic
differential equation (SDE) (Song et al., 2020):

dx = µ(xt, t)dt + σ(t)dw

for a given t ∈ [0, T ], fixed constant T > 0, and with the drift coefficient µ(·, ·), diffusion coefficient
σ(·), and {w}t∈[0,T ] being a Brownian motion. Letting p0(x) = pdata(x) and pt(x) be the marginal
distribution at time t induced by the above SDE, as shown in Song et al. (2020), there exists an
ODE (also called a probability flow) whose induced distribution at time t is also pt(x). In particular:

dxt =
[
µ(xt, t)− 1

2σ(t)2∇ log pt(xt)
]

dt.

The term ∇ log pt(xt) is also known as the score function (Song & Ermon, 2019; Song et al., 2020).
When training a diffusion models in such a setting, one uses a technique called score matching (Dinh
et al., 2016; Vincent, 2011) in which one trains a network to approximate the score function and then
samples a trajectory with an ODE solver. Once we learn such a neural network that approximates
the score function, we can generate images by integrating the above ODE backward in time from
T to 0, with xT ∼ pT which is typically a tractable distribution (e.g., Gaussian in most diffusion
model formulations).

This technique is clearly bottle-necked by the fact that during generation, one must run a ODE
solver backward in time (from T to 0) for a large number of steps in order to obtain competitive
samples (Song et al., 2023). To alleviate this issue, Song et al. (2023) proposed consistency models
which aim to directly map noisy samples to data. The goal becomes instead to learn a consistency
function on a given probability flow. The aim of this function is that for any two t, t′ ∈ [ϵ, T ], the
two samples along the probability flow ODE, they are mapped to the same image by the consistency
function: fθ(xt, t) = fθ(xt′ , t′) = xϵ where xϵ is the solution of the ODE at time ϵ. At a high level,
this consistency function is trained by taking two adjacent timesteps and minimizing the consistency
loss d(fθ(xt, t), fθ(xt′ , t′)), under some image distance metric d(·, ·). To avoid the trivial solution of
a constant, we also set the initial condition to fθ(xϵ, ϵ) = xϵ.

Inference in consistency models After a model is trained, one can then trade inference time
for generation quality with the multi-step inference process given in Appendix A, Algorithm 2. At
a high level, the multistep consistency sampling algorithm first partitions the probability flow into
H + 1 points (T = τ0 > τ1 > τ2 . . . > τH = ϵ). Given a sample xT ∼ pT , it then applies the
consistency function fθ at (xT , T ) yielding x̂0. To further improve the quality of x̂0, one can add
noise (x ∼ N (0, 1)) back to x̂0 using the equation x̂τn

← x̂0 +
√

τ2
n − τ2

Hz, and then again apply
the consistency function to (x̂τn

, τn), getting x̂0. One can repeat this process for a few more steps
until the quality of the generation is satisfied. For the remainder of this work, we will be referring
to sampling with the multi-step procedure. We also provide more details when we introduce RLCM
later.

3.3 Reinforcement Learning for Diffusion Models

Black et al. (2024) and Fan et al. (2023) formulated the training and fine-tuning of conditional diffu-
sion probabilistic models (Sohl-Dickstein et al., 2015; Ho et al., 2020) as an MDP. Black et al. (2024)
defined a class of algorithms, Denoising Diffusion Policy Optimization (DDPO), that optimizes for
arbitrary reward functions to improve guided fine-tuning of diffusion models with RL.
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Diffusion Model Denoising as MDP Conditional diffusion probabilistic models condition on
a context c (in the case of text-to-image generation, a prompt). As introduced for DDPO, we
map the iterative denoising procedure to the following MDP M = (S,A, P, R, µ, H). Let r(s, c)
be the task reward function. Also, note that the probability flow proceeds from xT → x0. Let
T = τ0 > τ1 > τ2 . . . > τH = ϵ be a partition of the probability flow into intervals:

st =∆ (c, τt, xτt) π(at|st) =∆ pθ

(
xτt+1 |xτt , c

)
P (st+1|st, at) =∆ (δc, δτt+1 , δxτt+1

)

at =∆ xτt+1 µ =∆ (p(c), δτ0 ,N (0, I)) R(st, at) =
{

r(st, c) if t = H

0 otherwise

where δy is the Dirac delta distribution with non-zero density at y. In other words, we are mapping
images to be states, and the prediction of the next state in the denosing flow to be actions. Further,
we can think of the deterministic dynamics as letting the next state be the action selected by the
policy. Finally, we can think of the reward for each state being 0 until the end of the trajectory
when we then evaluate the final image under the task reward function.

This formulation permits the following loss term:

LDDPO = ED

T∑

t=1

[
min

{
r(x0, c) pθ(xt−1|xt, c)

pθold(xt−1|xt, c) , r(x0, c)clip
(

pθ(xt−1|xt, c)
pθold(xt−1|xt, c) , 1− ε, 1 + ε

)}]

where clipping is used to ensure that when we optimize pθ, the new policy stay close to pθold
, a trick

popularized by the well known algorithm Proximal Policy Optimization (PPO) (Schulman et al.,
2017). However, one could easily replace this with other policy gradient optimizers like Gao et al.
(2024).

In diffusion models (and in our experiments for DDPO), horizon H is usually set as 50 or greater
and time T is set as 1000. A small step size is chosen for the ODE solver to minimize error, ensuring
the generation of high-quality images as demonstrated by Ho et al. (2020). Due to the long horizon
and sparse rewards, training diffusion models using reinforcement learning can be challenging.

4 Reinforcement Learning for Consistency Models

To remedy the long inference horizon that occurs during the MDP formulation of diffusion models,
we instead frame consistency models as an MDP. We let H also represent the horizon of this MDP.
Just as we do for DDPO, we partition the entire probability flow ([0, T ]) into segments, T = τ0 >
τ1 > . . . > τH = ϵ. In this section, we denote t as the discrete time step in the MDP, i.e.,
t ∈ {0, 1, . . . , H}, and τt is the corresponding time in the continuous time interval [0, T ]. We now
present the consistency model MDP formulation.

Consistency Model Inference as MDP We reformulate the multi-step inference process in a
consistency model (Algorithm 2) as an MDP:

st =∆ (xτt , τt, c) π(at|st) =∆ fθ (xτt , τt, c) + Z P (st+1|st, at) =∆ (δxτt+1
, δτt+1 , δc)

at =∆ xτt+1 µ =∆ (N (0, I), δτ0 , p(c)) RH(sH) = r(fθ(xτH
, τH , c), c)

where is Z =
√

τ2
t − τ2

Hz which is noise from Line 5 of Algorithm 2. Further, where r(·, ·) is the
reward function that we are using to align the model and RH is the reward at timestep H. At other
timesteps, we let the reward be 0. We can visualize this conversion from the multistep inference in
Fig. 2.

Modeling the MDP such that the policy π(s) =∆ fθ(xτt , τt, c) + Z instead of defining π(·) to be the
consistency function itself has a major benefit in the fact that this gives us a stochastic policy instead
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Data
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Multi-Step Inference as MDP

Consistency
Models

Figure 2: Consistency Model As MDP: In this instance, H = 3. Here we first start at a
randomly sampled noised state s0 ∼ (N (0, I), δτ0 , p(c)). We then follow the policy by first plugging
the state into the the consistency model (red line) and then noising the image back to τ1 (green line).
This gives us a0 which, based off of the transition dynamics becomes s1 (green circle). We then
transition from s1 by applying π(·), which applies the consistency function to x̂0 and then noises up
to τ2. To calculate the end of trajectory reward, we apply the consistency function one more time
(yellow line) to get a final approximation of x̂0 and apply the given reward function to this image.
Note that the red and green lines on both sides of the diagram represent the same thing.

of a deterministic one. This allows us to use a form of clipped importance sampling like Black et al.
(2024) instead of a deterministic algorithm (e.g. DPG (Silver et al., 2014)) which we found to be
unstable and in general is not unbiased. Thus a policy is made up of two parts: the consistency
function and noising with Gaussian noises. The consistency function takes the form of the red arrows
in Fig. 2 whereas the noise is the green arrows. In other words, our policy is a Gaussian policy whose
mean is modeled by the consistency function fθ, and covariance being (τ2

t −ϵ2)I (here I is an identity
matrix). Notice that in accordance with the sampling procedure in Algorithm 2, we only noise part
of the trajectory. Note that the final step of the trajectory is slightly different. In particular, to
calculate the final reward, we just apply the consistency function (red/yellow arrrow) and obtain
the final reward.

Policy Gradient RLCM We can then instantiate RLCM with a policy gradient optimizer, in
the spirit of Black et al. (2024); Fan et al. (2023). Our algorithm is described in Algorithm 1. In
practice we normalize the reward per prompt. That is, we create a running mean and standard
deviation for each prompt and use that as the normalizer instead of calculating this per batch. This
is because under certain reward models, the average score by prompt can vary drastically.

5 Experiments

In this section, we hope to investigate the performance and speed improvements of training consis-
tency models rather than diffusion models with reinforcement learning. We compare our method to
DDPO (Black et al., 2024), a state-of-the-art policy gradient method for finetuning diffusion models.
First, we test how well RLCM is able to both efficiently optimize the reward score and maintain
the qualitative integrity of the pretrained generative model. We show both learning curves and
representative qualitative examples of the generated images on tasks defined by Black et al. (2024).
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Algorithm 1 Policy Gradient Version of RLCM
1: Input: Consistency model policy πθ = fθ(·, ·) + Z, finetune horizon H, prompt set P, batch

size b, inference pipeline P
2: for i = 1 to M do
3: Sample b contexts from C, c ∼ C.
4: x0 ← P (fθ, H, c) ▷ where x0 is the batch of images
5: Normalize rewards r(x0, c) per context
6: Split x0 into k minibatches.
7: for minibatch m = 0 to ceil(length(x0)/minibatch_size) do
8: for t = 0 to H do
9: Update θ using rule:

∇θ

[
min

{
r(x0,m, c) · πθm+1(at|st)

πθm
(at|st)

, r(x0,m, c) · clip
(

πθm+1(at|st)
πθm

(at|st)
, 1− ε, 1 + ε

)}]

10: end for
11: end for
12: end for
13: Output trained consistency model fθ(·, ·)

Next we show the speed and compute needs for both train and test time of each finetuned model
to test whether RLCM is able to maintain a consistency model’s benefit of having a faster inference
time. We then conduct an ablation study, incrementally decreasing the inference horizon to study
RLCM’s tradeoff for faster train/test time and reward score maximization. Finally, we qualitatively
evaluate RLCM’s ability to generalize to text prompts and subjects not seen at test time to showcase
that the RL finetuning procedure did not destroy the base pretrained model’s capabilities.

For fair comparison, both DDPO and RLCM finetune the Dreamshaper v71 and its latent consistency
model counterpart respectively2 (Luo et al., 2023). Dreamshaper v7 is a finetune of stable diffusion
(Rombach et al., 2022). For DDPO, we used the same hyperparameters and source code3(Black
et al., 2024) provided by the authors. We found that the default parameters performed best when
testing various hyperparamters. Please see Appendix B.2 for more details on the parameters we
tested.

Compression The goal of compression is to minimize the filesize of the image. Thus, the reward
received is equal to the negative of the filesize when compressed and saved as a JPEG image. The
highest rated images for this task are images of solid colors. The prompt space consisted of 398
animal categories.

Incompression Incompression has the opposite goal of compression: to make the filesize as large
as possible. The reward function here is just the filesize of the saved image. The highest rated mages
for this task are random noise. Similar to the comparison task, this task’s prompt space consisted
of 398 animal categories.

Aesthetic The aesthetic task is based off of the LAION Aesthetic predictor (Schumman, 2022)
which was trained on 176,000 human labels of aesthetic quality of images. This aesthetic predictor
is a MLP on top of CLIP embeddings (Radford et al., 2021). The images which produce the highest
reward are typically artwork. This task has a smaller set of 45 animals as prompts.

Prompt Image Alignment We use the same task as Black et al. (2024) in which the goal is to
align the prompt and the image more closely without human intervention. This is done through a

1https://huggingface.co/Lykon/dreamshaper-7
2https://huggingface.co/SimianLuo/LCM_Dreamshaper_v7
3https://github.com/kvablack/ddpo-pytorch
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procedure of first querying a LLaVA model (Liu et al., 2023) to determine what is going on in the
image and taking that response and computing the BERT score (Zhang et al., 2019) similarity to
determine how similar it is to the original prompt. This values is then used as the reward for the
policy gradient algorithm.

5.1 RLCM vs. DDPO Performance Comparisons

Following the sample complexity evaluation proposed in Black et al. (2024), we first compare DDPO
and RLCM by measuring how fast they can learn based on the number of reward model queries. As
shown in Fig. 4, RLCM has better performance on three out of four of our tested tasks in terms of
number of reward queries. Note that for the prompt-to-image alignment task, the initial consistency
model finetuned by RLCM has lower performance than the initial diffusion model trained by DDPO.
RLCM is able to close the performance gap between the consistency and diffusion model through
RL finetuning4. Fig. 3 demonstrates that similar to DDPO, RLCM is able to train its respective
generative model to adapt to various styles just with a reward signal without any additional data
curation or supervised finetuning.

5.2 Train and Test Time Analysis

To show faster training advantage of the proposed RLCM, we compare to DDPO in terms of training
time in Fig. 5. Here we experimentally find that RLCM has a significant advantage to DDPO in terms
of the number of GPU hours required in order to achieve similar performance. On all tested tasks
RLCM reaches the same or greater performance than DDPO, notably achieving a x17 speedup in

4It is possible that this performance difference on the compression and incompression tasks are due to the consis-
tency models default image being larger. However, in the prompt image alignment and aesthetic tasks, we resized the
images before reward calculation.

Figure 3: Qualitative Generations: Representative generations from the pretrained models,
DDPO, and RLCM. Across all tasks, we see that RLCM is able to finetune output of the model
to fit specific reward functions. Due to the lack of regularization to the pretrained model, some
artifacts (seen in the compression task) and significant similarity in output are indeed seen).
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Figure 4: Learning Curves: Training curves for RLCM and DDPO by number of reward queries
on compressibility, incompressibility, aesthetic, and prompt image alignment. We plot three random
seeds for each algorithm and plot the mean and standard deviation across those seeds. RLCM seems
to produce either comparable or better reward optimization performance across these tasks.

0 50 100

GPU Hours (A6000)

−150

−75

N
e
g

F
il
e
s
iz

e
(
k
b
)

Compression

0 50 100

GPU Hours (A6000)

300

600

F
il
e
s
iz

e
(
k
b
)

Incompression

0 50 100

GPU Hours (A6000)

6

7

8

L
A
IO

N
A
e
s
t
h
e
t
ic

Aesthetic

0 100 200 300

GPU Hours (A6000)

0.76

0.77

0.78

L
L
a
V
A

1
3
B

Prompt-Image Alignment

RLCM DDPO

Figure 5: Training Time: Plots of performance by runtime measured by GPU hours. We report
the runtime on four NVIDIA RTX A6000 across three random seeds and plot the mean and standard
deviation. We observe that in all tasks RLCM noticeably reduces the training time while achieving
comparable or better reward score performance.
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Figure 6: Inference Time: Plots showing the inference performance as a function of time taken
to generate. For each task, we evaluated the final checkpoint obtained after training and measured
the average score across 100 trajectories at a given time budget on 1 NVIDIA RTX A6000 GPU.
We report the mean and std across three seeds for every run. Note that for RLCM, we are able
to achieve high scoring trajectories with a smaller inference time budget than DDPO. Final reward
values may differ from previous plots due to random selection of prompts used for measurement.

training time on the Aesthetic task. This is most likely due to a combination of factors – the shorter
horizon in RLCM leads to faster online data generation (rollouts in the RL training procedure) and
policy optimization (e.g., less number of backpropagations for training the networks).

Fig. 6 compares the inference time between RLCM and DDPO. For this experiment, we measured
the average reward score obtained by a trajectory given a fixed time budget for inference. Similar to
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training, RLCM is able to achieve a higher reward score with less time, demonstrating that RLCM
retains the computational benefits of consistency models compared to diffusion models. Note that
a full rollout with RLCM takes roughly a quarter of the time for a full rollout with DDPO.

5.3 Ablation of Inference Horizon for RLCM
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Figure 7: Inference time vs Generation Quality: We
measure the performance of the policy gradient instantiation
of RLCM on the aesthetic task at 3 different values for the
number of inference steps (left) in addition to measuring the
inference speed in seconds with varied horizons (right). We
report the mean and std across three seeds.

We further explore the effect of fine-
tuning a consistency model with dif-
ferent inference horizons. That is we
aimed to test RLCM’s sensitivity to
H. As shown in Fig. 7 (left), in-
creasing the number of inference steps
leads to a greater possible gain in the
reward. However, Fig. 7 (right) shows
that this reward gain comes at the
cost of slower inference time. This
highlights the inference time vs gen-
eration quality tradeoff that becomes
available by using RLCM. Neverthe-
less, regardless of the number of in-
ference steps chosen, RLCM enjoys
faster inference time than diffusion
model based baselines.

5.4 Qualitative Effects on Generalization

We now test our trained models on new text prompts that do not appear in the training set.
Specifically, we evaluated our trained models on the aesthetic task. As seen in Fig. 8 which consists
of images of prompts that are not in the training dataset, the RL finetuning does not influence the
ability of the model to generalize. We see this through testing a series of prompts (“bike”, “fridge”,
“waterfall”, and “tractor”) unseen during training.

Figure 8: Prompt Generalization: We observe that RLCM is able to generalize to other prompts
without substantial decrease in aesthetic quality. The prompts used to test generalization are “bike”,
“fridge”, “waterfall”, and “tractor”.
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5.5 Convergence Results of Tasks

To compare fairly to Black et al. (2024), we only train for only the same number of reward queries
which means that in two tasks (Aesthetic and Prompt Image Alignment) convergence of the tasks
is not shown.

We trained DDPO and RLCM for longer on the aesthetic task and observed that RLCM asymptoti-
cally arrived at the approximate maximum reward value (value 10 is the maximum reward available
in the training dataset for the reward model). For DDPO, when it runs longer (after 72 hours), it
reaches a reward around 9.5, but unfortunately crashes.

We also attempted to run the text-image alignment task longer for DDPO, unfortunately we observed
the same crashing behavior. We suspect that it is due to the fixed learning rate schedule used in the
original DDPO codebase (note that for fair comparison, we use the original DDPO codebase with
the default hyperparameters proposed by the authors of DDPO). Applying strategies like learning
rate decay may stabilize DDPO, but it would require additional hyperparameter tuning for DDPO.

5.6 Known Limitations

The main known limitation observed throughout the use of RLCM is overfitting to the reward
function. Indeed, as seen in Fig. 3, unrealistic generations as seen in the compression task or
extremely similar backgrounds like in the aesthetic task do arise. In cases where such overfitting
is undesirable, a KL regularized loss which incorporates some measure of divergence between the
currently trained model and the initial model will improve generations. However, this was not a
focus of this work.

6 Conclusion and Future Directions
We present RLCM, a fast and efficient RL framework to directly optimize a variety of rewards to
train consistency models. We empirically show that RLCM achieves better performance than a
diffusion model RL baseline, DDPO, on most tasks while enjoying the fast train and inference time
benefits of consistency models. Finally, we provide qualitative results of the finetuned models and
test their downstream generalization capabilities.

There remain a few directions unexplored which we leave to future work. In particular, the specific
policy gradient method presented uses a sparse reward. It may be possible to use a dense reward
using the property that a consistency model always predicts to x0. Another future direction is the
possibility of creating a loss that further reinforces the consistency property, further improving the
inference time capabilities of RLCM policies.

7 Social Impact
We believe that it is important to urge caution when using such fine-tuning methods. In particular,
these methods can be easily misused by designing a malicious reward function. We therefore urge
this technology be used for good and with utmost care.

Code References
We use the following open source libraries for this work: NumPy (Harris et al., 2020), diffusers (von
Platen et al., 2022), and PyTorch (Paszke et al., 2017)
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A Consistency Models

We reproduce the consistency model algorithm from Song et al. (2023).

Algorithm 2 Consistency Model Multi-step Sampling Procedure (Song et al., 2023)
1: Input: Consistency model π = fθ(·, ·), sequence of time points τ1 > τ2 > . . . > τN−1, initial

noise x̂T

2: x← f(x̂T , T )
3: for n = 1 to N-1 do
4: z ∼ N (0, I)
5: x̂τn

← x +
√

τ2
n − ϵ2z

6: x← f(x̂τn
, τn)

7: end for
8: Output: x

B Experiment Details

B.1 Hyperparameters

Parameters Compression Incompression Aesthetic Prompt Image Alignment
Advantage Clip Maximum 10 10 10 10
Batches Per Epoch 10 10 10 6
Clip Range 0.0001 0.0001 0.0001 0.0001
Gradient Accumulation Steps 2 2 4 20
Learning Rate 0.0001 0.0001 0.0001 0.0001
Max Grad Norm 5 5 5 5
Pretrained Model Dreamshaper v7 Dreamshaper v7 Dreamshaper v7 Dreamshaper v7
Number of Epochs 100 100 100 118
Horizon (Number of inference steps) 8 8 8 16
Number of Sample Inner Epochs 1 1 1 5
Sample Batch Size (per GPU) 4 4 8 8
Rolling Statistics Buffer Size 16 16 32 32
Rolling Statistics Min Count 16 16 16 16
Train Batch Size (per GPU) 2 2 2 2
Number of GPUs 4 4 4 3
LoRA rank 16 16 8 16
LoRA α 32 32 8 32
Consistency Model Time Horizon 1000 1000 1000 1000

Table 1: Hyperparameters for all tasks (Compression, Incompression, Aesthetic, Prompt Image
Alignment)

We note that a 4th gpu was used for Prompt Image Alignment as a sever for the LLaVA (Liu et al.,
2023) and BERT models (Zhang et al., 2019) to form the reward function.

B.2 Hyperparameter Sweep Ranges

These hyperparameters were found via a sweep. In particular we swept the learning rate for values
in the range [1e-5,3e-4]. Likewise we also swept the number of batches per epoch and gradient
accumulation steps but found that increasing both of these values led to greater performance, at the
cost of sample complexity. We also swept the hyperparameters for DDPO, our baseline, but found
that the provided hyperparameters provided the best results. In particular we tried lower batch
size to increase the sample complexity of DDPO but found that this made the algorithm unstable.
Likewise, we found that increasing the number of inner epochs did not help performance. In fact, it
had quite the opposite effect.

1670



RLJ | RLC 2024

B.3 Details on Task Prompts

We followed (Black et al., 2024) in forming the prompts for each of the tasks. The prompts for
incompression, compression, and aesthetic took the form of [animal]. For the prompt image align-
ment task, the prompt took the form of a [animal] [task] where the a was conjugated depending
on the animal. The prompts for compression and incompression were the animal classes of Imagenet
(Deng et al., 2009). Aesthetic was a set of simple animals, and prompt image alignment used the
animals from the aesthetic task and chose from the tasks: riding a bike, washing the dishes,
playing chess.

C Statistical Testing on Results

Following Agarwal et al. (2021), we compute 95% stratified bootstrap confidence intervals of the
IQM, Mean, Median, and Optimality gap over the 4 tasks tested. We find that there is a statistically
significant difference in rewards favoring RLCM for the mean, median, and optimality gap. There
is slight overlap in the confidence intervals for the IQM.

0.60 0.75 0.90
RLCM
DDPO

Median

0.60 0.75 0.90

IQM

0.60 0.75 0.90

Mean

0.15 0.30 0.45

Optimality Gap

Figure 9: Statistical Tests: Stratified bootstrap confidence intervals and establish statistically
significant difference in reward favoring RLCM.
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D Additional Samples from RLCM

We provide random samples from RLCM at the end of training on aesthetic and prompt image
alignment. Images from converged compression and incompression are relatively uninteresting and
thus omitted.

D.1 Aesthetic Task
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D.2 Prompt Image Alignment
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Abstract

Racing autonomous cars faster than the best human drivers has been a longstanding
grand challenge for the fields of Artificial Intelligence and robotics. Recently, an
end-to-end deep reinforcement learning agent met this challenge in a high-fidelity
racing simulator, Gran Turismo. However, this agent relied on global features that
require instrumentation external to the car. This paper introduces, to the best of
our knowledge, the first super-human car racing agent whose sensor input is purely
local to the car, namely pixels from an ego-centric camera view and quantities
that can be sensed from on-board the car, such as the car’s velocity. By leveraging
global features only at training time, the learned agent is able to outperform the best
human drivers in time trial (one car on the track at a time) races using only local
input features. The resulting agent is evaluated in Gran Turismo 7 on multiple
tracks and cars. Detailed ablation experiments demonstrate the agent’s strong
reliance on visual inputs, making it the first vision-based super-human car racing
agent.

1 Introduction

Autonomous car racing is a challenging task for intelligent artificial agents, where performance gaps
in milliseconds can be the difference between winning and losing a race. To effectively perform
this task, agents must be able to (i) process high-dimensional sensor data to estimate the state of
the autonomous vehicle, (ii) continuously plan optimal driving lines while avoiding obstacles and
other vehicles, and (iii) control the vehicle, while accounting for its nonlinear behavior and the
conditions of the road (Betz et al., 2022). Recently, deep reinforcement learning (RL) methods have
shown great promise in learning racing behavior through trial-and-error interaction with the race
track environment, without the need for extensive domain knowledge (Jaritz et al., 2018; Imamura
et al., 2021; Cai et al., 2021; Remonda et al., 2021; Herman et al., 2021). Despite their ability to
consistently drive around the track, most learned policies still perform slower than median human
racers (Cai et al., 2021; Herman et al., 2021).

In this work, we focus on learning RL (Sutton & Barto, 2018) agents that are able to achieve
super-human performance in autonomous racing tasks, i.e., they are able to outperform (in terms
of lap time) the best human drivers on a given track. Recently, two RL methods have reported
super-human performance in Gran Turismo, a high-fidelity racing simulator (Fuchs et al., 2021;

∗Equal contribution.
†Work done during his internship at Tokyo Laboratory, Sony AI.
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Wurman et al., 2022). However, during execution these methods rely on global features, such as
forward looking course shape information, that require instrumentation external to the vehicle. In
contrast, human drivers rely on car-centric local features to race, such as visual information and
propriocentric features that can be estimated from on-board the vehicle (e.g. velocity of the car).
In this work, we ask the question: can we train RL agents that are able to consistently achieve
super-human performance when provided only with local features at execution time?

Learning optimal racing behavior requires information that might not be possible to access only
through local features at each time step: for example, in a tight corner the agent might be unable to
see the apex and the end of the curve, which are fundamental to select an optimal driving trajectory.
To overcome this challenge, and motivated by recent works on reinforcement learning with partial
observability (Pinto et al., 2017; Salter et al., 2021; Sinha & Mahajan, 2023; Baisero et al., 2022), we
leverage a distributed asymmetric actor-critic architecture that provides global features to the critic
during training. The policy (actor) is provided only with local features, i.e., image and propriocentric
features, allowing the agent to race without global information at execution time.

We evaluate our agent in Gran Turismo 7 (GT7), a high-fidelity driving simulator for PlayStation®.
We show that our agent consistently achieves faster lap times than all human reference drivers (over
130K per scenario) across multiple time trial races, in which the goal is to complete a lap around the
track in the minimum amount of time. Additionally, we conduct an extensive ablation study that
shows the significant contribution of local features and of the asymmetric training scheme to the
agent’s overall performance. Furthermore, we perform a qualitative study on the learned policy and
highlight novel driving lines, in comparison with the best human reference drivers, and demonstrate
the strong reliance on image features for the agent’s decision-making. To the best of our knowledge,
we present the first vision-based super-human car racing agent.

In summary, our contributions are three-fold: (i) we contribute a vision-based RL agent for au-
tonomous racing that employs an asymmetrical actor-critic training scheme; (ii) our agent consis-
tently outperforms all human reference drivers (over 130K) across multiple time trial races in Gran
Turismo 7, while having access only to local features, and performs on par with other super-human
racing agents that rely on global features during execution; (iii) we conduct an extensive evaluation
study that highlights the importance of the asymmetrical training scheme, novel driving behavior
in comparison with the best human reference drivers, and the strong dependence on image features
for the decision-making of our agent.

2 Related Work

Autonomous Racing (AR) is a subfield of autonomous driving research that concerns autonomous
vehicles that operate at their dynamical and power limits within racing environments (such as racing
circuits) (Betz et al., 2022). Research in autonomous racing can traditionally be categorized into
perception (Massa et al., 2020; Peng et al., 2021), planning (Herrmann et al., 2020; Vázquez et al.,
2020) and control (Williams et al., 2018; Hao et al., 2022). In our paper, instead, we employ end-
to-end RL that combines perception, planning, and control into a single process, in particular with
vision inputs, and is able to achieve super-human performance. For an extended version of the
related work, including a discussion on asymmetrical training in RL, please refer to Appendix A.

Vision-based Reinforcement Learning for AR: RL has been shown to be a promising approach
to learn competitive racing behavior (O’Kelly et al., 2019; Herman et al., 2021; Rong et al., 2020;
Dosovitskiy et al., 2017). Jaritz et al. (2018) explore vision-based RL for driving agents in the
context of a rally game. However, the authors find that their method does not achieve optimal
racing trajectories, “lacking anticipation”, and is unable to complete the racing tracks without
colliding several times with obstacles. Cai et al. (2021) described an approach that merges imitation
learning and model-based RL to learn racing behavior. However, their method requires expert-level
demonstrations to pretrain the policy. The racing performance of current vision-based methods is
still sub-optimal. Some works lack a performance comparison against humans (Remonda et al., 2021;
Jaritz et al., 2018) or, when such comparison is made, the methods still under perform significantly
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Figure 1: Our vision-based RL agent for autonomous car racing. (Left) We exploit an asymmetric
actor-critic architecture to train our agent: the policy network πϕ is provided with propriocentric
information op and image features hi, encoded with a convolutional neural network qθ, to output
actions a. The critic network Qψ is provided with local propriocentric observations and global
observations og (i.e., course shape information) to predict quantiles of future returns. (Right)
During execution, our agent only receives local features from the Gran Turismo 7 simulator.

against median human users (Cai et al., 2021; Herman et al., 2021). Imamura et al. (2021) also
explores vision-based RL for racing agents using a pretrained image encoder on random observations
of the track environment. The authors report that they are unable to outperform the best human
players. To the best of our knowledge, we contribute the first vision-based agent that is able to
consistently outperform all human reference drivers across multiple time trial races.

Super-human Performance in AR: Recently, Fuchs et al. (2021) and Wurman et al. (2022) have
reported super-human performance by autonomous racing RL agents in time-trial and actual racing,
respectively. Fuchs et al. (2021) introduced a model-free RL approach and designed a novel proxy
reward that considers the progress of the agent in the course. Their method is able to achieve super-
human performance in time trial races in Gran Turismo Sport, a highly realistic racing simulation.
Wurman et al. (2022) introduced Gran Turismo Sophy (GT Sophy), an RL agent that is able to
achieve super-human performance both in time trial and racing scenarios with multiple opponents.
To achieve super-human performance both approaches require global features (e.g., forward looking
course shape information) at execution time.

3 Methodology

To train a vision-based autonomous racing RL agent that achieves super-human performance without
global features at execution time, we design a distributed asymmetric actor-critic architecture and
employ Quantile Regression Soft Actor-Critic (QR-SAC), a recently introduced distributional RL
algorithm (Wurman et al., 2022). Our method is depicted in Figure 1.

3.1 Observation Space

We build the multimodal observations o of our racing agent at time step t, following,

ot = (olt,o
g
t ),

where olt corresponds to local (to the car) features and ogt ∈ R531 corresponds to the global features
(i.e., course shape information). As local features olt = (oit,o

p
t ) we consider an image oit ∈ R64×64×3

and propriocentric information opt ∈ R17.

Image features (oit): At each time step we extract an image directly from the game, considering
a first-person view of the track ahead (a camera view denoted by Normal view in the game), from
the front of the vehicle. The image is scaled from 1920×1080 (the native resolution of the game)
to 64×64, with RGB information. Empirically we found this resolution to be sufficient to allow the
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agent to race at super-human speeds, as we show in Section 5.1. Given the low resolution of the
image observation, we turned off all extra information on the screen like the heads-up-display (HUD).
As an artifact of the simulator, the image observation also includes the car’s rear-view mirror. In
Appendix C.3 we show that our agent can still consistently achieve super-human lap times without
any rear-view mirror information. We provide examples of image observations in Figure 2 and in
Appendix B.

Propriocentric features (opt ): We select features for opt that can be easily accessible in a real-world
autonomous racing scenario,

opt = [vt, v̇t,vrt , ct,hat ,hdt ],

where vt ∈ R3 corresponds to the linear velocity of the car in its local coordinate system, v̇t ∈ R3

corresponds to the linear acceleration of the car, vrt ∈ R3 corresponds to the angular velocity of the
car, ct ∈ R3 corresponds to the current steering, throttle and brake vector, hat ∈ R3 corresponds to
a short history of the steering angles in the last three steps and hdt ∈ R2 corresponds to the delta
steering changes in the last three steps. The velocity and acceleration features can be estimated
using inertial measurement units (IMU), which are often included in real autonomous vehicles (Betz
et al., 2022), and the steering features can be easily extracted from the car’s guidance system.

Global features (ogt ): Following Wurman et al. (2022), we explore course point information as
global features. Course points are built using the shape of the track, including track limits of the
left and right, and a center line of the track. At each time step, the range of the course points is a
function of the current velocity of the vehicle: we consider the 3D relative coordinates of the course
points ahead of the agent from 0.1 sec up to 6 sec ahead (maintaining the current velocity), equally
spaced on 0.1 sec intervals. This results in 59 course points for each course line (left, center and
right). In Appendix C, we evaluate the effect of course point range on the performance of our agent.

3.2 Action Space

Similarly to Fuchs et al. (2021); Wurman et al. (2022), we define the actions of our agent at ∈ R2,
consisting of a delta steering angle and a combined throttle and brake value. The delta steering angle
at a single time step is limited within [−3◦,+3◦] to prevent steering changes from exceeding human
limitations. The combined throttle and brake is represented by a normalized scalar in [−1,+1].
Values in the positive range represent throttle and ones in the negative range correspond to brake.
The gear shift of the vehicle is controlled by automatic transmission. We set the control frequency
to 10 Hz and the game, running at 60 Hz, linearly interpolates the steering angle between steps.

Due to technical constraints when retrieving images from the game in real-time, we utilized a syn-
chronous communication process between the game and our agent, instead of asynchronous commu-
nication. This mode ensures alignment between the image and propriocentric features. In this mode
our agent does not execute its policy in real-time during training due to the synchronicity of the
simulator. However, we show in Appendix C.2 that executing the trained policies asynchronously,
i.e., in real-time, still allows our agent to achieve super-human performance. In Appendix I, we
provide more details regarding our communication configuration.

3.3 Reward Function

Following Wurman et al. (2022), we designed the reward function of the agent as the weighted
combination of multiple components,

rt = rpt + λorot + λwrwt + λsrst + λhrht .

Course progress (rp): We formulate the lap time minimization problem as a course progress
maximization problem: we compute the progress of the vehicle position, projected onto the center
line of the track, since the last step;
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Table 1: Time trial scenarios for the evaluation of our vision-based racing agent. We evaluate our
approach across different tracks, cars and track conditions. We also consider different tire settings:
racing soft (RS), sport soft (SS) and sport medium (SM). We compare our agent against over 130K
human players in each scenario.

Scenario Track Condition Car Tire Number of participants

Monza Autodromo Nazionale Monza, Italy Day, Clear Ferrari 330 P4 ’67 RS 138,306
Tokyo Tokyo Expressway - Central Clockwise, Japan Night, Clear NISMO 400R ’95 SS 131,598
Spa Circuit de Spa-Francorchamps, Belgium Day, Cloudy Alfa Romeo 4C Launch Edition ’14 SM 144,308

Off-course penalty (ro): We define a shortcut penalty to prevent the agent from violating racing
rules by cutting corners, rot = −(sot − sot−1)|vt|, where so is the total time that the vehicle had (at
least) three tires outside the track limits.

Wall penalty (rw): We define a wall-hit penalty to prevent the agent from exploiting walls to
quickly change its direction of movement, rwt = −(swt − swt−1)|vt|, where sw is the total time the
vehicle was in contact with a wall in the track.

Steering change penalty (rs): To discourage large changes of steering angles in a single step, we
define a steering change penalty, rst = −|θst − θst−1| where θst is the steering angle in radian at time
step t;

Steering history penalty (rh): We additionally define a steering history penalty to discourage
the agent to make inconsistent decisions in a short period of time,

rht = −mt · 1/(1 + exp(−cs · (∆t − co))),

where ∆t = |δt| + |δt−1|, δt = θst − θst−1, mt = Iδt>cd · Iδt−1>cd · Isgn(δt )̸=sgn(δt−1), cd is a threshold
angle, cs is a sensitivity factor and co is an offset value. In Appendix J we provide the reward
function parameter values used in our evaluation.

3.4 Training Architecture

We train our agent using QR-SAC, a distributional RL extension to Soft Actor-Critic (Haarnoja
et al., 2018) with multi-step TD error. In QR-SAC, critic functions are represented with a quantile
distribution function (Dabney et al., 2018) that estimates quantiles of returns.

To achieve super-human performance at execution time, inspired by recent works in RL under partial
observability (Pinto et al., 2017; Salter et al., 2021; Sinha & Mahajan, 2023; Baisero et al., 2022), we
consider an asymmetric actor-critic architecture for QR-SAC training, as shown in Figure 1. During
training, the critic functions are provided with global features og, instead of image observations oi,
allowing them to learn accurate returns. The policy is only provided with image and propriocentric
features op. Since the policy does not depend on the course points to predict actions, the agent is
able to race at execution time only with local observations. We detail our model architecture in
Appendix I and our training hyperparameters in Appendix J.

4 Evaluation

Figure 2: Examples of 64×64 image observations
in (left) Monza, (middle) Tokyo, and (right) Spa.

We evaluate our agents in time trial tasks, where
the goal is to complete a lap across the track in
the minimum time possible. In this section we
cover the track and car scenarios used for test-
ing, the racing baselines, and the human player
data used for comparisons.
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Method Monza Tokyo Spa

Built-in AI 107.828 ± — 87.905 ± — 168.280 ± —

Fastest Human 104.378 ± — 80.782 ± — 157.796 ± —

GT Sophy (Wurman et al., 2022) 104.281 ±0.061 80.227 ±0.047 157.424 ±0.038

Our Agent 104.300 ±0.050 80.401 ±0.091 157.554 ±0.055
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Figure 3: (Top) Lap time across all scenarios. We consider five randomly-seeded training runs and
average the results over 500 evaluation laps, with 100 laps executed by the fastest policy in each
training run. We highlight results that are significantly faster than the fastest human time (using
a Wilcoxon signed-rank test, with p < 0.001); (Bottom) Distribution of lap times in Monza (left),
Tokyo (middle) and Spa (right).

4.1 Scenarios

We evaluate our agent in three scenarios in GT7 with different combinations of cars, tracks, and
conditions (track time and weather): Monza, Tokyo, and Spa, modeled after real-world circuits and
roads. These scenarios were selected based on past GT7 online race events, where human players
joined time trial races using the exact same car setup as our approach1.We provide a more detailed
description of the evaluation scenarios in Table 1 and image observations of the different scenarios
in Figure 2 and in Appendix B.

4.2 Baselines

GT Sophy (Wurman et al., 2022): We use GT Sophy, a recently introduced super-human racing
agent for Gran Turismo, as a baseline in our experiments. As this baseline was shown to be able to
outperform the best human drivers and exploits global features to act, we consider its performance
as an upper-bound to the performance of our method. We modify the action space of GT Sophy,
which originally outputs absolute steering angles rather than delta angles, to match the action space
of our agent. Moreover, we use the same training hyperparameters and reward function as our
method. We train this baseline for GT7 using the same training method described in Wurman et al.
(2022).

Human Players: Human player data was provided by Polyphony Digital Inc., the development
studio of Gran Turismo. For each scenario we collected over 130K lap times and trajectories. We
consider our agent to have super-human performance if it is able to achieve a faster lap time than
the one achieved by the fastest human player in each scenario.

Built-in AI: The built-in AI of GT7 follows a pre-defined human expert trajectory using a rule-
based tracking approach, similar to MPC methods, and serves as a traditional control-based baseline.
We report the minimum lap time of the built-in AI after executing 4 laps in each scenario.

1For more details regarding the online race events, refer to https://www.gran-turismo.com/us/gt7/sportmode/.
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Figure 4: Performance study of our racing agent in the Monza scenario in relation to the training
architecture (left), local features (middle) and the image feature (right). We consider five randomly-
seeded training runs and show the distribution of 500 evaluation laps, with 100 laps executed by
the fastest policy in each training run. We highlight the lap time of the fastest human player (black
line). One symmetric run failed to learn meaningful behavior and we exclude it from the analysis.

5 Results

We show the minimum lap times achieved by the different agents in Figure 3. In all three scenarios,
our agent achieves super-human performance, with lap times that significantly surpass the perfor-
mance of the best human player. Our agent also achieves comparable performance to GT Sophy,
despite not having any global features at execution time. Our agent achieves this level of perfor-
mance consistently, with small variation across the randomly-seeded runs, as shown in the training
curves in Appendix D, and across the different evaluation laps: for Monza we outperform the fastest
human player in 94.0% of the laps, for Tokyo in 99.8% of the laps and in Spa in all the laps. We
note that the distribution in lap times is a result of the high-fidelity physics engine of the simulator,
where small numerical differences can result in different behaviors, thus preventing the agent from
repeating the same trajectory across multiple laps.

5.1 Ablation Study

We define ablated versions of our method to evaluate the contribution of different architectural
and training choices to the performance of our method, in particular regarding (i) the train-
ing architecture, (ii) local features, and (iii) the image feature. For (i) we employ a symmet-
ric training scheme, where we replace the course points in the critic’s input with image obser-
vations (symmetric training). For (ii) we remove acceleration features, (no acceleration) and
velocity features (no velocity) from op, and remove image features (no image) from ol. For
(iii) we remove color from the image observation (grayscale) and reduce the size of the image
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Figure 5: (Left) Trajectory comparison in the
Monza track between our agent and the fastest hu-
man player in a chicane section. (Right) Gap of
our agent to the human driver. Lower is better.

observation to 32×32 (small image).

We present the results of our ablation study in
Figure 4. Regarding (i) the results show that
providing the critic with global features during
training is fundamental for the performance of
our agent as it mitigates the partial observabil-
ity of the environment, allowing for a better es-
timate of the returns of the policy. Regarding
(ii) we observe that removing velocity features
results in a decrease in the performance of our
agent as, naturally, velocity information is fun-
damental to racing at a consistently high level
around the track. Regarding (iii), the results
highlight that both color and a larger size of
the image helps improve the performance of our
method. Additionally, we found that the no im-
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age agent is unable to drive. As such, we do not present this condition in Figure 4. This result
further highlights the importance of visual information for our agent. In Appendix C we report on
additional studies regarding the range of course points for the critic’s input, revealing that we can
further improve the performance of our agent by fine-tuning this parameter; and on the synchronous
communication of our training pipeline, highlighting that we can execute our trained policies in an
asynchronous (i.e., real-time) version of our simulator without significant loss in performance.

5.2 Qualitative Policy Study

We qualitatively evaluate the policy of our agent with regards to its trajectory against the best
human drivers and the importance of visual features for the decision-making of our agent.

Trajectory Analysis: In Figure 5 we compare the trajectories of our agent and of the best human
player in a chicane section. Our agent takes a driving line closer to the track limits, slowing down
only 16.5% of what the human driver slows down in the section, thus gaining 0.24 seconds. The
novel racing behavior exhibited by our agent motivates its use as a training tool for human drivers.
We note that while the agent is able to achieve super-human lap times, it is not faster than the
best human player across all segments of the track. We present an extended version of this study,
including comparisons to GT Sophy, across all scenarios in Appendix E.

Visual Analysis: We employ Guided Gradient-weighted Class Activation Mapping (GGC) (Sel-
varaju et al., 2017), a visual analysis tool for image-based classification tasks (Arrieta et al., 2020;
Linardatos et al., 2020), to understand what high-level features in the input image are relevant to
the decision-making of our agent. We modify the original algorithm for RL tasks, as described in
Appendix G. In Figure 6, we present GGC visualizations for the steering action of our agent in the
Monza track.

The results show a distinct pattern of behavior for different sections in the track. In long straights,
far-away visual features, such as horizon of the track or the tree line, are more significant for the
policy of our agent than close visual features, such as the curb of the track. Naturally, in these
sections, the agent is travelling at high-speeds and mostly needs to focus on identifying where the
straight ends. However, in chicanes and tight curves, our agent focuses on the closer curbs of the
track which are fundamental to successfully change its direction without going off-track and incurring
on a penalty. This gaze-like behaviour echoes the one exhibited by human drivers (Rito Lima et al.,
2020; Van Leeuwen et al., 2017): during straight segments, the human eye gaze focuses straight
ahead, with a stable distance in the horizon, and during curves the eye gaze is focused on the inner
tangent (apex) of the curve. Additionally, our agent uses the uniqueness of the visual features in
the track to localize itself: we see that it considers both forward features (track limits and horizon)
and backward features (rear-view mirror) in its decision-making. We consider that the focus on the
rear-view mirror indicates that the trained policy exploits the static track layout for localization.
We provide additional visualizations for all scenarios in Appendix H.

5.3 Perturbation Study

We conduct an extensive evaluation of the robustness of our agent to input perturbations and differ-
ent track/car conditions in Appendix F. Amongst other results, the study highlights the importance
of visual information for our agent: (i) changes in the lighting conditions of the environment (due
to racing at a different time of the day) degrade significantly the performance of our agent; (ii)
adversarial perturbations to the image observation, in particular to the image features computed
using GGC, also degrade significantly the performance of our agent.

6 Conclusions

In this paper we presented the first super-human, vision-based reinforcement learning agent for
autonomous car racing. To achieve this level of performance, we leverage an asymmetric actor-critic
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Figure 6: GGC visualization of our racing agent for two sections of the Monza track: (left) a straight
section; (right) a chicane section. (Top) We show in pink the positive gradients for the delta steering
angle action computed using the policy of our agent. We show the top 80% of the gradients in the
visualization, to reduce noise. We highlight two different behaviors: in straight sections, our agent
focuses on far-away visual features, such as tree lines (Left: 1, 2) and distinct far-away shades (Left:
3); in chicane sections, our agent focuses on close elements that are fundamental to effectively change
direction, changing its focus from the apex of the immediate curve (Right: 1, 2) to the curb on the
opposite side (Right: 3). Best viewed with color and zoomed in.

architecture that uses global features from the simulator to train accurate critic functions, while
the policy function only uses local features to output actions at execution time. We demonstrated
that our approach surpassed the fastest human lap time in three time trial scenarios and showed
comparable performance to super-human methods that require global features for its policy. We
hope our proposed approach helps to build the foundations for a novel research field on competitive
autonomous racing agents with car-centric input features.

For future work, we consider three research threads to address the limitations of this paper. First,
we plan on extending our approach to racing scenarios with multiple vehicles in the track, in order
to allow vision-based autonomous agents to race against human drivers in the same track. Second,
although we showed that our asymmetric architecture allows us to train super-human agents with
a simple deep RL training setup, we still use propriocentric information as inputs of our agent. To
relax this necessity, we will explore incorporating recurrent neural networks, similarly to Wadekar
et al. (2021). Finally, we plan to add generalization capabilities to our agent, which deals with
conditions unseen during training. We can extend our training setup to include various tracks and
car models with additional image data augmentations (Kostrikov et al., 2020) to mitigate this issue,
and eventually transfer the trained agent to real-world racing vehicles.

Broader Impact Statement

We focused on evaluating our agent in a high-fidelity simulator in this paper. However, our research
can also contribute to the development of real-world end-to-end autonomous race cars. Using car-
centric inputs, agents can control vehicles without using external localization systems that usually
require domain knowledge beforehand or expensive engineering costs to design. By extending our
agent to real world setups, we could simplify the pipeline of autonomous vehicles.
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A Extended Related Work

Autonomous Racing (AR) is a subfield of autonomous driving research (Yurtsever et al., 2020)
that concerns autonomous vehicles that operate at their dynamical and power limits within racing
environments (such as racing circuits) (Betz et al., 2022).

Classical Approaches for AR Research in autonomous vehicle racing can traditionally be catego-
rized into three different sub-areas: perception, planning and control. In perception, the overarching
goal is to enable high-frequency object detection, mapping and localization while the vehicle is
driving around the track at high-speeds: Massa et al. (2020) propose a LIDAR-based localization
system that exploits a previously built map of the track environment to provide localization, achiev-
ing an accuracy of two meters when the car is moving at 200 km/h; Peng et al. (2021) contributes
a multimodal odometry method (image, LIDAR, IMU) using factor-graph optimization to localize
the vehicle in the track; Strobel et al. (2020) use YOLOV3 (Redmon & Farhadi, 2018) to detect
light cones in the limits of the racing track for Formula Student competitions. In planning, the
overarching goal is to plan spatial and velocity trajectories (global and local) that minimize lap
time across the track: Herrmann et al. (2020) formulate an optimization-based velocity planner as a
multi-parametric sequential quadratic problem that can handle a spatial and time variable friction
coefficient; Vázquez et al. (2020) propose a hierarchical controller for autonomous racing, where
the high-level controller computes the optimal trajectory in the race track (raceline) and the low-
level controller attempts to follow the precomputed optimal trajectory; other approaches attempt
to plan high-level behavior (such as overtaking maneuvers, or energy management during a race)
either by assigning plans to a specific cost function and selecting the plan with the lowest overall
cost (Liniger & Lygeros, 2015; Sinha et al., 2020; O’Kelly et al., 2020) or by combining the planner
with game theoretical methods (Notomista et al., 2020; Schwarting et al., 2021; Liniger & Lygeros,
2019). In control, the overarching goal is to develop methods that are able to maintain the vehicle
as close as possible to the planned spatial trajectory and speed profile. For this purpose, model
predictive control (MPC) methods are widely employed: Williams et al. (2018) propose a robust
sampling-based MPC framework based on a combination of model predictive path integral control
and nonlinear Tube-MPC (Mayne et al., 2005), highlighting the framework’s robustness in a real-
world autonomous racing task; Gandhi et al. (2021) contribute a novel architecture for robust model
predictive path integral control (RMPPI) and investigate its performance guarantees, highlighting
its applicability in a real-world off-road navigation task; Li et al. (2021) propose a nonlinear MPC
model under a minimum time objective, which integrates the opponent vehicle’s trajectory as a
collision-avoidance constraint, to allow racing tasks with opponents. In our paper, contrary to all
previous works, we explore end-to-end RL for autonomous racing vehicles that combines the pipeline
of perception-planning-control into a single process.

Deep Neural Networks for AR Recent developments in deep neural networks (DNN) have
allowed the development of end-to-end methods that are able to learn to race directly from observa-
tions. Wadekar et al. (2021) explore different types of data collection techniques to train DNNs to
output steering and throttle actions in a supervised learning manner. Mahmoud et al. (2020) high-
light that reducing the image size in CNN-based networks leads to an increase in the performance of
a DNN-based racing method both in simulation and in the real-world. Contrary to these works, we
focus in RL approaches that learn to perform racing tasks through trial-and-error interaction with
the environment.

Reinforcement Learning for AR RL has also been shown to be a promising approach to learn
suitable racing behavior, motivated in part by the development of realistic driving simulators that
are able to model the dynamics of the car and of the track (O’Kelly et al., 2019; Herman et al.,
2021; Rong et al., 2020; Dosovitskiy et al., 2017). Methods that employ RL to train racing agents
often provide both image observations and additional features, that can be either propriocentric
(e.g., velocity, acceleration) or related to the track (e.g., center line of the track). Jaritz et al. (2018)
explore vision-based RL for driving agents in the context of a rally game. The propose an Asyn-
chronous Advantage Actor-Critic (A3C) (Mnih et al., 2016) architecture that exploits both visual
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information (first-person camera images) and propriocentric features (velocity and acceleration) to
learn to race in the game environment. The authors show that their approach is able to general-
ize to unseen tracks and highlight the importance of initializing the agents at random checkpoints
during training for the performance of the method. However, the authors state that their method
does not achieve optimal racing trajectories, “lacking anticipation”, and is unable to complete the
racing tracks without colliding several times with obstacles. Recently, Cai et al. (2021) described
an approach that merges imitation learning and model-based reinforcement learning to learn au-
tonomous racing agents. Central to their contribution is the Reveries-Net architecture to learn a
probabilistic world model (Ha & Schmidhuber, 2018). The authors propose an iterative training
procedure after pretraining the policy with expert demonstrations: (i) learn the world model with
the current dataset of experiences, (ii) refine the policy using rollouts from the world model and (iii)
collect new data using the refined policy in the environment. The authors evaluate their approach
in simulation and real-world racing environments and demonstrate that their method outperforms
previous imitation learning and RL methods in sample efficiency and performance. However, their
method requires expert-level demonstrations to pretrain the policy and cannot be trained only from
interaction with the environment. Despite their reported ability to consistently drive around the
track, the racing performance of these methods is still sub-optimal: some works lack a performance
comparison against humans (Remonda et al., 2021; Jaritz et al., 2018) or, when such comparison is
made, the methods still under perform significantly against median human users (Cai et al., 2021;
Herman et al., 2021): for example, Cai et al. (2021) reports a 10 second gap to the lap time of a
normal human user. Imamura et al. (2021) also explores vision-based RL for racing agents. The
authors propose to pretrain an image encoder on observations of the track environment collected by
a random policy and, subsequently, use the frozen encoder during policy training. However, their
method can only achieve expert-level performance in time trial tasks, still reporting a three second
difference to the best human players. In this work, we contribute a novel vision-based RL agent that
consistently outperforms the best human drivers in a racing task.

Super-human Racing Performance in AR Recently, super-human performance of autonomous
racing RL agents have been reported by Fuchs et al. (2021) and Wurman et al. (2022). Fuchs et al.
(2021) introduced a model-free RL approach and designed a novel proxy reward that considers the
progress of the agent in the course. The method is able to achieve super-human performance in time
trial tracks in Gran Turismo Sport (GTS), a highly realistic racing simulation. Moreover, the authors
show that their approach generates trajectories that are qualitatively similar to the ones recorded by
the best human drivers, highlighting high-level racing behavior (such as in-out driving along curves).
More recently, Wurman et al. (2022) introduced Gran Turismo Sophy (GT Sophy) agent, a RL agent
that is able to achieve super-human performance both in time trial and racing tasks with multiple
opponents in GTS. To achieve this level of performance, the authors contribute a novel asynchronous
distributional actor-critic algorithm (QR-SAC) using multiple training scenarios (e.g., with different
number of opponents, with randomized positions and speeds). Furthermore the authors designed a
novel reward function that accounts for track-related behavior (e.g., progress in the course, off-course
racing) and for event-related behavior (e.g., overtaking opponents or being overtaken, colliding with
opponents). The authors show that GT Sophy is able to exhibit tactical skills that allow it to
beat expert humans in head-to-head racing. However, to achieve super-human performance both
approaches require global features, such as forward looking course shape information. In this work,
we contribute the first RL agent that is able to achieve super-human performance in a racing task
using only car-centric local features during execution.

Asymmetric Reinforcement Learning Recent works have explored asymmetrical training ar-
chitectures for reinforcement learning to mitigate partial observability during execution time (Pinto
et al., 2017; Salter et al., 2021; Kamienny et al., 2020; Sinha & Mahajan, 2023; Baisero et al., 2022).
Pinto et al. (2017) explored asymmetrical training in the context of learning policies in simulation
for robotic systems that are transferable to real-world setups. To do so, the authors design an asym-
metrical actor-critic training scheme in which the critic is provided with the state of the simulation
environment and the policy is provided with RGBD information. Furthermore, the authors introduce
domain randomization during training in the simulator, showing that it improves the robustness of
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Figure 7: Description of the tracks, cars and examples of image observations used to train and
evaluate our racing agent. We rescale all images to 64×64, without any modification. We turn off
all HUD information. The top notch in images is a rear mirror view of the vehicle.

the learned policy to distractor elements during execution in real-world experiments. However, do-
main randomization can often lead to an increase the complexity of the learning process, impacting
the overall performance of the agent. To address this issue Salter et al. (2021) propose to train two
actor-critic agents that share experiences: one that is provided with state information and another
that is provided with image information. Furthermore, the authors introduce an attention mecha-
nism in each agent that is aligned throughout training. The authors show that the attention-based
asymmetrical training scheme improves the efficiency and the robustness of the learning process.
In contrast to prior work, Kamienny et al. (2020) explores providing privileged information (PI) to
both the critic and the policy networks using dropout. In particular, the authors evaluate the use of
PI-Dropout (Lambert et al., 2018) in the context of RL and show how it outperforms other methods
to exploit privileged information, such as distillation or auxiliary losses, in scenarios with partial
observability. In the previous works the asymmetrical training scheme is posited experimentally,
without theoretical guarantees on the convergence of the algorithms. Recent works have studied the
theoretical properties of asymmetrical reinforcement learning: Baisero et al. (2022) introduced an
asymmetrical version of policy iteration and of the Q-learning algorithm with convergence guaran-
tees; Sinha & Mahajan (2023) proposed an asymmetrical version of the actor-critic algorithm and
derive performance bounds on their algorithm. Asymmetric training has also been explored in the
context of multi-agent reinforcement learning (MARL), in part to deal with the decentralized nature
of executing policies for multiple agents (Oliehoek et al., 2008; Rashid et al., 2020; Sunehag et al.,
2017; Lyu et al., 2023). Approaches in cooperative MARL often exploit the paradigm of Centralized
Training with Decentralized Execution (CTDE): during training, agents have access to a centralized
critic that exploits the joint observation of all agents; at execution time each agent can only exploit
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its own observation to run their policy (Oliehoek et al., 2008; Sunehag et al., 2017; Rashid et al.,
2020).

In this work, we also explore an asymmetrical actor-critic training scheme, where we provide global
features to the critic, allowing the execution of the policy only with local features. We show how
our approach enables learning super-human racing agents.

B Additional Details of the Evaluation Scenarios

In this section we present additional details regarding our evaluation scenarios. In Figure 7 we
present the track layouts, the cars employed and examples of image observations across the three
scenarios. We highlight that our agent achieves super-human performance across a wide variety of
car dynamics, track layouts and conditions.

C Additional Ablation Studies

C.1 Course Point Range

We evaluate how the range of the course point feature affects the performance of our agent. We
reduce the range to 2 seconds and 4 seconds, denoted as low and medium course points respectively.
Figure 8 shows the result of comparing our agent to the variations with different range of course
points. We observe that the shorter range of course points makes performance unreliable. On
the other hand, using medium course point range slightly improves the performance of our agent.
In this paper, we used the same range of course points as the one described in Wurman et al.
(2022). However, this result indicates that tuning this hyperparameter could provide an additional
performance improvement to our agent. We leave the tuning of this parameter for future work.

C.2 Synchronous Training and Execution

As discussed in Appendix I, to train our agents we employ a synchronous training and testing scheme,
similar to other simulators such as OpenAI Gym (Brockman et al., 2016), where the simulator
only executes simulation steps after receiving the next action commands sent by a rollout worker.
However, by default, GT7 executes its simulation asynchronously in real time. We evaluate the
feasibility of learning and executing policies in an asynchronous setting. Figure 8 shows the result
of comparing our agent, which trains and executes only on an synchronous mode, to the variations
which: (i) train in synchronous mode and executes in asynchronous mode (Sync/Async) and (ii)
train and executes in asynchronous mode (Async/Async). The results highlight the importance
of the synchronous training, as training our agent with asynchronous mode results in a significant
decrease in performance: this variation is only able to outperform the best human drivers only in
7.45% of the laps. However, the performance of the policy of the agents that train in synchronous
mode and execute asynchronously does not decrease significantly and is still able to outperform the
best human drivers in 69.3% of the laps. For future work, we plan on exploring parameter-efficient
neural networks and optimizing hardware setups to mitigate the effect of latency on the control of
our agents.

C.3 Training with Masked Rear-view Mirror

In Section 5.2 we show that our agent considers information in the rear-view mirror section of
the image observation to race across the task. To understand whether the rear-view mirror is
fundamental to achieve the super-human performance, we additionally train our agents without
rear-view mirror information, by masking this section with black pixels. Figure 8 shows that our
agent can still consistently achieve the super-human lap time even without the rear-view mirror.
Based on this experimental result, we conclude that the attention to the rear-view mirror is an
artifact of our end-to-end training scheme on a track with a static layout.
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Figure 8: Performance study of our racing agent in the Monza scenario in regards to (top left)
different range of course points, (top right) different training/test synchronicity conditions and
(bottom) different setups in the rear-view mirror. Additionally, we highlight the lap time of the
fastest human player (black dashed line). We consider five randomly-seeded training runs and show
the distribution of 500 evaluation laps, with 100 laps executed by the fastest policy in each training
run. Lower is better.

D Training Curves

We present in Figure 9 the overall training curves of our agent across all scenarios. The results show
that our agent quickly exceeds top 1% human performance and is able to consistently surpass the
fastest human lap time. At the end of training, our agent also achieved comparable performance to
GT Sophy. We also present the overall training curves of our agent across all ablation conditions of
Section 5.1 and Appendix C in Figure 10.

E Additional Trajectory Analysis

E.1 Comparison to Fastest Human Driver

We qualitatively compare the trajectories of our agent and of the best human player across all
scenarios: Monza in Figure 11, Tokyo in Figure 12 and Spa in Figure 13.

The results show, across multiple sections of the tracks, that our agent does not simply follow the
trajectory of the fastest human player but, in fact, exhibits novel racing behavior: in Monza, in
straights our agent drives much closer to the curb, while the human player takes a more center
line along the track, and in curves and chicanes it takes different driving lines; in Tokyo we once
again see that our agent takes driving lines much closer to the curb than the fastest human; in Spa
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Figure 9: Training curves of our agent across all scenarios. We present the lap time per training
epoch averaged over five randomly-seeded runs, with 95% confidence interval. We compare our agent
against human performance (10%, 1% and fastest) and GT Sophy. Training curves are smoothed
for visual clarity.
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Figure 10: Training curves of our agent across all ablation conditions of Section 5.1 and Appendix C.
We present the lap time per training epoch averaged over five randomly-seeded runs, with 95%
confidence interval. Training curves are smoothed for visual clarity.

1693



RLJ | RLC 2024

Figure 11: Trajectory comparison between our agent and the fastest human player in the Monza
track. We highlight this comparison on (1, 3) straight sections approaching a curve, (2) a chicane
section and (4) a curve section. We show in the figure the course progression of each segment as
well as the time gained (negative values) or lost (positive values) to the best human driver. Best
viewed zoomed in.
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Figure 12: Trajectory comparison between our agent and the fastest human player in the Tokyo
track. We highlight this comparison on (1, 2) straight sections and (3) a curve section. We show in
the figure the course progression of each segment as well as the time gained (negative values) or lost
(positive values) to the best human driver. Best viewed zoomed in.
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Figure 13: Trajectory comparison between our agent and the fastest human player in the Spa track.
We highlight this comparison on (1) a U-turn section, (2) a straight section and (3) a chicane section.
We show in the figure the course progression of each segment as well as the time gained (negative
values) or lost (positive values) to the best human driver. Best viewed zoomed in.
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Figure 14: Time difference between our agent and the best human reference driver as a function of
the progression in the track. We identify the trajectory sections highlighted in the Monza (Figure 11),
Tokyo (Figure 12) and Spa (Figure 13) tracks. Lower is better.
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Figure 15: Trajectory comparison between our agent and GT Sophy (Wurman et al., 2022) in the
Monza track. We highlight this comparison on sections that our trajectory is significantly different
from Sophy’s (1, 3) and sections where our agent loses time to Sophy (2). Best viewed in color and
zoomed in.
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Figure 16: Trajectory comparison between our agent and GT Sophy (Wurman et al., 2022) in the
Tokyo track. We highlight this comparison on sections where our trajectory is significantly different
from GT Sophy’s (1, 3) and sections where our agent loses time to Sophy (2, 4). Best viewed in
color and zoomed in.
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Figure 17: Trajectory comparison between our agent and GT Sophy (Wurman et al., 2022) in the
Spa track. We highlight this comparison on sections where our trajectory is significantly different
from GT Sophy’s (1) and sections where our agent loses time to Sophy (2, 3). Best viewed in color
and zoomed in.
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Figure 18: Time difference between our agent and GT Sophy as a function of the progression in the
track. We identify the trajectory sections highlighted in the Monza (Figure 15), Tokyo (Figure 16)
and Spa (Figure 17) tracks. Lower is better.
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the results show that our agent takes different driving lines in both straights and curves. These
significant differences in driving behavior raise the potential to use super-human racing agents as a
training tool for human drivers, as previously identified in (Wurman et al., 2022).

We also present the time difference between our agent and the fastest human reference driver along
the progression of the track in Figure 14. The results show the competitive nature and challenge of
our task: our agent does not simply outperforms the human driver from the beginning of the lap,
but gains and loses time against the human driver throughout the whole track. However, by the end
of the track, our agent is able to outperform the fastest human driver.

E.2 Comparison to GT Sophy

We qualitatively compare the trajectories of our agent and of GT Sophy (Wurman et al., 2022)
across all scenarios: Monza in Figure 15, Tokyo in Figure 16 and Spa in Figure 17. The results show
that overall the trajectory of our agent follows that of Sophy, despite our agent not having access to
global features. However, the results show that often in long straights, for example Figure 15 (1, 3),
our agent takes a different racing line to Sophy, due to the absence of long-range information about
the track in our agent’s input.

Additionally, in Figure 18 we present the time difference between our agent and GT Sophy along
the progression of the track, to understand where our agent actively loses time. The results show
that, despite the similarity of the trajectories in these sections, our agent mostly loses time in curve
sections, for example Figure 17 (2, 4). This result hints that GT Sophy, having access to long-range,
precise information about the forward track limits, can approach the curve with a better velocity
profile, leading to the sudden increase in the time difference between our agent and GT Sophy.

F Perturbation Study

To identify the limitations of our agent, we conducted an additional evaluation under various per-
turbation conditions. In this section, we select the top five agents from each Monza trial, for all
evaluation. Note that training an agent able to generalize to unseen conditions during training is
outside the scope of this work. For completeness, we present here a robustness evaluation and leave
the further improvement of the generalization of our agent to future work.

Noise in propriocentric observations: We evaluated our agent under different levels of noise in
the propriocentric observations by following the same procedure of Fuchs et al. (2021). All agents
completed laps with 2% noise and 33% of the agents completed laps with 4% noise. However, the
agents are no longer able to drive with more than 6% noise. Figure 19a shows the average lap times
of the completed laps, which suggests that the agent loses racing performance with increased noise
levels in the propriocentric observation.

Noise in image observations: We evaluated our agent under different levels of noise in the image
observations. The noise level is defined as the percentage of randomly selected pixels from the
complete image that are replaced by black pixels at each time step. We additionally evaluated the
same type of noise applied to the pixels highlighted by GGC analysis, as described in Section 5.2,
which we denote as GGC. Note that GGC, on average, highlights up to 5% of the total number
of pixels of the image in our setting. Figure 19b shows the course progression achieved by the
agents with each noise level. The agents consistently completed laps with up to 10% noise and
didn’t complete any laps at 20% noise. Interestingly, the agents dropped performance significantly
with GGC-based noise even though GGC only highlights 5% of pixels at most. This result further
indicates that the pixels highlighted by GGC are vital for our agent to control the vehicle.

Generalization to different time-of-the day conditions: GT7 allows us to change the time of
the race, resulting in a change in environmental elements, such as position and number of clouds,
but also on the lighting conditions of the track. We then use the time of the race as a feature to
evaluate the robustness of our agent against image perturbations. We observe that evaluating our
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Figure 19: Results of the perturbation study of our agent in the Monza scenario: (a) Completed
lap times of agents with noise in the propriocentric features added during evaluation; (b) Course
coverage of agents with noise in the image features added during evaluation; (c) Course coverage of
agents with different car models during evaluation.
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agents at different times than the one of training results in their inability to complete laps around
the track.

Generalization to different cars: To test the robustness of our agent to unseen dynamics, we
evaluate it with different car models from the one used during training. We sorted all car models
available in GT7 by horsepower and selected four neighbor car models (two slower cars and two faster
cars)2. Figure 19c shows the course progression achieved by each car model. The result suggests that
executing our policy in cars with increasingly higher horsepower leads to the worse generalization
capability: due to their higher performance (e.g. in terms of velocity), the agent may experience
dynamical states not experienced during training (e.g., high velocities in straight sections). On the
other hand, the results show that our agent is comparably better in driving lower-performance cars.

G Guided Grad-CAM for Visual Analysis of Policies

We adapt the basic Guided Gradient-weighted Class Activation Mapping (GGC) (Selvaraju et al.,
2017) algorithm to RL scenarios, following:

1. During execution, we perform a forward pass given image and propriocentric observations
(oi,op). The policy network outputs an action-specific average value a, from a truncated
Gaussian distribution N (a, aσ).

2. We compute the gradient of the mean a with respect to the feature maps Ak in the last
convolutional layer of the image encoder (Conv4 in Table 2):

∂a

∂Ak
.

3. We apply a global average pooling to the Grad-CAM gradient to obtain neuron importance
weights wka for each feature map:

wka = 1
Z

∑

i

∑

j

∂a

∂Akij
,

where Z = W ×H is the normalization factor for the spatial dimensions of the feature map,
W is the weight of the feature map and H is the height of the feature map.

4. We obtain the Grad-CAM activation map, LGrad-CAM by performing a weighted combination
of the feature maps followed by a ReLU function:

LGrad-CAM
a = ReLU

(∑

k

wkaA
k

)
.

5. We perform a separate backpropagation step to compute the gradient of the action value a
with respect to the input image observation oi:

∂a

∂oi .

Furthermore, we filter out negative values from this gradient, in order to consider only
features that have a positive influence on the action.

6. We multiply the Grad-CAM activation map with the guided backpropagation result to
obtain the Guided Grad-CAM visualization:

LGuided Grad-CAM
a = LGrad-CAM

a × ∂a

∂oi .

7. Finally, we normalize the GGC visualization and, possibly, clip the result by a predefined
noise threshold value.

2The selected car models are Porsche 959 ’87, Peugeot 205 Turbo 16 Evolution 2 ’86, Dodge Viper GTS ’02, and
Lamborghini Countach 25th Anniversary ’88, in ascending order of horsepower.
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H Additional Guided Grad-CAM visualizations

We present additional GGC visualizations for the action delta steering angle for our agent across all
tracks: Monza (Figure 20), Tokyo (Figure 21) and Spa (Figure 22). Once again, the results shows
that our agent focuses on different features depending on the track section: in long straights, our
agent focuses on far-away visual features, such as horizon of the track or tree lines in the distance,
while in chicanes and tight curves, our agent focuses on the curbs of the track, which are fundamental
to successfully change its direction without going off-track.

I Implementation Details

Model Architecture: We provide the detailed architecture of our agent in Table 2.

Data collection: At the beginning of every episode, the initial position of the agent is uniformly
sampled from in-course areas as well as left and right off-course areas within 5% of track width. The
agent faces towards a center line 30m ahead and the launch speed is uniformly sampled from 0 to
104.607km/h. We reset the episode every 150 seconds.

Distributed training: Unlike widely used RL simulators that can execute faster with powerful
computing resources (e.g., MuJoCo (Todorov et al., 2012)), GT7 executes its simulation in real
time. To compensate for the simulation speed, we use an asynchronous distributed training scheme
by following Wurman et al. (2022). In this work, we consider 20 rollout workers for data collection
and policy evaluation, each assigned to a different PlayStation® 4 system connecting to rollout
workers via ethernet. However, the game screen retrieval via ethernet induces additional latency,
which makes it difficult to train agents in real time. Therefore, we configured the simulator to block
simulation steps until the simulator receives the next action commands sent by the rollout worker.
We applied this setting to all experiments including the baseline GT Sophy. We evaluate the impact
of the synchronous communication scheme on the performance of our agent in Appendix C.2.

J Reward and Training Hyperparameters

We present in Table 3 the reward function parameters used in our work, selected empirically. More-
over, we present in Table 4 the list of training hyperparameters used by our approach. We keep the
same hyperparameters across all scenarios, except for the number of training epochs: in Monza we
use 4000 training epochs and in both Tokyo and Spa we use 2000 epochs, where an epoch consists
of 6000 gradient steps. We use a higher number of training epochs in Monza because in this scenario
we employ a faster racing car, which requires a more precise maneuver to achieve a higher level of
performance.

K Additional Details on Image Resolution

To highlight how image compression affects the elements in the observation of our agent, we provide
examples of game images with different resolutions in Figure 23: the original 1920 × 1080 image,
a 64 × 64 image used by our agent and a reduced 32 × 32 image used in our ablation study in
Section 5.1. The figure shows that across all resolutions we can identify critical elements of the
environment to perform the task (such as the track limits), yet with decreasing level of precision.

The choice of resolution also affects the total parameter count of our model: since we keep the same
architecture for both our agent and the small image ablated version, the size of feature maps for
the latter version in each convolutional layers is half the size of values of the former, described in
Table 2. It may be possible to improve the performance of the small image ablation by optimizing
the convolutional encoder architecture for input images of 32 × 32, but we leave this exploration to
future work.
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(a) Straight section (150-539 m)

(b) Chicane section (899-993 m)

Figure 20: Guided Grad-CAM (GGC) visualization of our racing agent for two sections of the Monza
track: (Top) a straight section; (Bottom) a chicane section. We show in pink the positive gradients
for the delta steering angle action computed using the policy of our agent. We show the top 80% of
the gradients in the visualization, to reduce noise. Best viewed with color and zoomed in.
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(a) Straight outdoor section (625-898 m)

(b) Straight tunnel section (3499-3787 m)

Figure 21: Guided Grad-CAM (GGC) visualization of our racing agent for two sections of the Tokyo
track: (Top) a straight outdoor section; (Bottom) a straight indoor section. We show in pink the
positive gradients for the delta steering angle action computed using the policy of our agent. We
show the top 80% of the gradients in the visualization, to reduce noise. Best viewed with color and
zoomed in.

1707



RLJ | RLC 2024

(a) Chicane section (2296-2484 m)

(b) Straight section (2741-2963 m)

Figure 22: Guided Grad-CAM (GGC) visualization of our racing agent for two sections of the Spa
track: (Top) a chicane section; (Bottom) a straight section. We show in pink the positive gradients
for the delta steering angle action computed using the policy of our agent. We show the top 80% of
the gradients in the visualization, to reduce noise. Best viewed with color and zoomed in.

(a) 1920 × 1080 (Native screen resolution) (b) 64 × 64 (Our Agent) (c) 32 × 32 (Small Image)

Figure 23: Example observations with three different resolutions: in images with 64 × 64 resolution
we can still observe some level of detail in most objects; However, in images with 32 × 32 we are
able to recognize only basic elements of the environment (e.g., track limits, sky, background).
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Table 2: Model architecture of our racing agent.

Layer Description Input Dimensions Output Dimensions

Actor Network
Conv1: 64 filters, 4x4, stride 2, ReLU 64x64x3 32x32x64
Conv2: 128 filters, 4x4, stride 2, ReLU 32x32x64 16x16x128
Conv3: 256 filters, 4x4, stride 2, ReLU 16x16x128 8x8x256
Conv4: 512 filters, 4x4, stride 2, ReLU 8x8x256 4x4x512
FC, 128 units, ReLU 4x4x512 128

MLP FC1: 2048 units, ReLU 145 (128 + 17) 2048
MLP FC2: 2048 units, ReLU 2048 2048
MLP FC3: 2048 units, ReLU 2048 2048
MLP FC4: 2048 units, ReLU 2048 2048
MLP FC Output: 4 units, Tanh 2048 4

Critic Network
MLP FC1: 2048 units, ReLU 531 2048
MLP FC2: 2048 units, ReLU 2048 2048
MLP FC3: 2048 units, ReLU 2048 2048
MLP FC4: 2048 units, ReLU 2048 2048
MLP FC Output: 32 units, linear 2048 32

Table 3: Reward parameters of our racing agent.

Parameter Value

λo 10
λw 10
λs 3
λh 5
cd 0.014
cs 182.883569
co 0.034
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Table 4: Training hyperparameters of our racing agent.

Hyperparameter Value

Activation function ReLU
Optimizer Adam (Kingma & Ba, 2014)
Batch size 512
Policy learning rate 2.5 × 10−5

Critic learning rate 2.5 × 10−5

Global norm of critic gradient clipping 10
Discount factor 0.9896
SAC entropy temperature (Haarnoja et al., 2018) 0.01
Number of quantiles 32
Multi-step 7
Replay buffer size 2.5M
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Abstract

Reinforcement learning agents tend to develop habits that are effective only under
specific policies. Following an initial exploration phase where agents try out dif-
ferent actions, they eventually converge onto a particular policy. As this occurs,
the distribution over state-action trajectories becomes narrower, leading agents to
repeatedly experience the same transitions. This repetitive exposure fosters spurious
correlations between certain observations and rewards. Agents may then pick up
on these correlations and develop simplistic habits tailored to the specific set of
trajectories dictated by their policy. The problem is that these habits may yield
incorrect outcomes when agents are forced to deviate from their typical trajectories,
prompted by changes in the environment. This paper presents a mathematical
characterization of this phenomenon, termed policy confounding, and illustrates,
through a series of examples, the circumstances under which it occurs.

1 Introduction

This morning, I went to the kitchen for a coffee. When I arrived,
I forgot why I was there, so I got myself a coffee.—

How often do you do something without paying attention to your actions? Have you ever caught
yourself lost in thought while washing the dishes, making coffee, or cycling? Acting out of habit is a
crucial human skill as it enables us to focus on more important matters while executing routine tasks.
You can commute to work while thinking about how to persuade your boss to give you a salary raise
or prepare dinner while daydreaming about your next holiday in the Alps. However, habits can also
lead to unintended consequences when we fail to recognize that the context has changed. You might
hop in your car and drive toward work even though it is a Sunday and you want to go to the grocery
store, or you might flip the switch when leaving a room even though the lights are already off.

Surprisingly, reinforcement learning (RL) agents also struggle with this same issue. This is due to a
phenomenon we term policy confounding, which reflects how policies, as a result of influencing past
and future observation variables, can inadvertently induce spurious correlations. These correlations
can lead to the development of seemingly sensible but incorrect habits, such as flipping the switch
upon leaving a room, without confirming whether the lights are on. The problem here is that these
habits can produce incorrect results when agents are forced to deviate from their usual trajectories
due to changes in the environment; a problem we refer to as out-of-trajectory (OOT) generalization.

Contributions This paper introduces and characterizes the phenomenon of policy confounding.
To do so, we provide a mathematical framework that helps us describe the different types of state
representations, and reveal how, as a result of policy confounding, the agent may learn representations
based on spurious correlations that do not guarantee OOT generalization. Moreover, we include a
series of clarifying examples that illustrate how this occurs. Unfortunately, we do not have a complete
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Figure 1: Left: An illustration of the Frozen T-Maze environment. Right: Learning curves when
evaluated in the Frozen T-Maze environment with (blue curve) and without (red curve) ice.

answer for how to prevent policy confounding. However, we suggest a few off-the-shelf solutions that
may help mitigate its effects. We hope this paper will create awareness among the RL community
about the risks of policy confounding and inspire further research on this topic.

2 Example: Frozen T-Maze

We now provide an example to illustrate the phenomenon and motivate the need for careful analysis.
Figure 1 shows a variant of the popular T-Maze environment (Bakker, 2001). In this environment,
the agent receives a binary signal, green or purple, at the starting location. The task for the agent
is to navigate to the right and reach the correct goal at the end of the maze. The agent obtains a
reward of +1 for moving to the green (purple) goal when having received the green (purple) signal
and a penalty of −1 otherwise. Additionally, there is a −0.1 penalty per timestep to incentivize the
agent to take the most direct path to the goal. At every timestep, the agent can observe its location
within the maze, but the signal is only observed at the starting location. Importantly, the agent has
the capability to remember past observations.

At first glance, it might seem crucial for the agent to remember the initial signal at every cell along
its trajectory. After all, how else would it determine the correct goal? However, once the agent
figures out the shortest path to each of the two goals (depicted by the green and purple arrows),
the agent may safely forget the initial signal. The agent knows that whenever it is on the green
(purple) path, it must have received the green (purple) signal. Hence, it can simply navigate toward
the correct goal based solely on its current location. Sticking to this habit is optimal so long as the
agent commits to these two paths. It is also essential that the environment dynamics remain the
same as any changes in the agent’s trajectories could erase the spurious correlation (Pearl et al.,
2016) induced by the policy between the agent’s location and the correct goal.1

To demonstrate that this occurs in practice, we trained agents with PPO (Schulman et al., 2017) in
the original environment (train env) and evaluated them in a modified version (eval env), where there
is an icy surface (depicted in blue) in the middle of the maze. The ice causes the agent to slip from
the upper cell to the bottom cell and vice versa.2 The plot on the right of Figure 1 shows the return
averaged over 10 trials. The performance drop in the evaluation environment (blue curve) suggests
that the agents’ policies fail to generalize to alternative trajectories within the same environment.
The ice confuses the agents, who, after being pushed away from their preferred trajectories, can no
longer choose the correct goal. More details about this experiment are provided in Section 7.

3 Related Work

The presence of spurious correlations in the training data is a well-studied problem in machine
learning. These correlations often provide convenient shortcuts that a model can exploit to make

1Note that the two paths highlighted in Figure 1 are not the only optimal paths. However, for the agent to be able
to ignore the initial signal, the paths must not overlap.

2The ice compels the agent to take alternate trajectories by causing it to move down twice from the top cell or up
twice from the bottom cell. Importantly, these trajectories are feasible within the original environment.
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predictions (Beery et al., 2018). However, a model relying on these shortcuts may experience significant
performance degradation when faced with different data distributions (Quionero-Candela et al., 2009).
Langosco et al. (2022) show that RL agents may use certain environment features as proxies for
choosing their actions. These features are intentionally introduced in the training environments to
artificially correlate with the agent’s objectives. In contrast, our work demonstrates that agents, due
to policy confounding, may actively contribute to the formation of spurious correlations.

Previous studies have reported empirical evidence of specific forms of policy confounding, revealing
that in deterministic environments, agents can utilize information that correlates with their progress
in an episode to determine optimal actions. This strategy is effective because, under fixed policies,
features like timers (Song et al., 2020), agent postures (Lan et al., 2023), or previous action sequences
(Machado et al., 2018) can be directly mapped to the agent’s state. While these studies offer various
hypotheses to explain their experimental observations, we contribute an overarching theory that
explains the underlying causes and mechanisms behind these results, along with a series of examples
illustrating other types of policy confounding.

Out-of-trajectory (OOT) generalization is a particular instance of the more general problem of out-
of-distribution (OOD) generalization in RL (Kirk et al., 2023). The objective of OOT generalization
is not to generalize to environments with different rewards (Taylor & Parr, 2009), observations
(Mandlekar et al., 2017; Zhang et al., 2020), and transitions (Higgins et al., 2017) but simply to
alternative trajectories within the same environment. In our experiments, agents are evaluated
in altered environments with different dynamics. These alterations are only intended to force the
agent to take alternative trajectories within the same environment. Importantly, these alternative
trajectories are both possible and probable in the original environment. Example 5 illustrates the
distinction between OOT and OOD. Please refer to Appendix C for more details on related work.

4 Preliminaries

4.1 Notation

We denote random variables with capital letters (e.g., S), their corresponding values with lowercase
letters (e.g., s), and their domains with calligraphic letters (e.g., S). To denote the domain of a
set of random variables F = {F 1, . . . , F |F |}, we use ×F as a shorthand for the Cartesian product
F1 × · · · × F |F |. This notation represents all possible combinations of values for the variables in F .

4.2 Problem formulation

Definition 1 (MDP). A Markov decision process (MDP) is a tuple ⟨S, A, T, R⟩, where S represents
the set of states, A denotes the set of actions available to the agent, T : S × A → ∆(S) is the
transitions function, and R : S × A → R is the reward function.

In particular, we focus on problems where states are represented by a set of observation variables, or
factors (Boutilier et al., 1999). This representation is common when modeling policies and value
functions using function approximators (Sutton & Barto, 2018). These observation variables typically
describe features of the agent’s state in the environment.
Definition 2 (FMDP). A Factored Markov decision process (FMDP) is an MDP where the set of
states is defined by a set of observation variables, or factors, F = {F 1, . . . , F |F |}. Each variable F i

can take any of the values in its domain F i. Consequently, each state s corresponds to a unique
combination of values for the variables in F , s = ⟨f1, . . . , f |F |⟩ ∈ ×F = S.

While, for simplicity, we employ the MDP formulation, the insights presented here are not exclusive
to fully observable environments. In cases where the current observation variables F do not satisfy
the Markov property, F is considered to be the history of action and observation variables, which is
guaranteed to satisfy the Markov property (Kaelbling et al., 1998).
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5 State representations

The agent’s objective is to learn a policy π : S → ∆(A) that maximizes the expected discounted sum
of rewards (Sutton & Barto, 2018). However, learning a policy that conditions on every observation
variable might be impractical, particularly in scenarios with a large number of variables. Fortunately,
in many problems, not all variables are strictly essential, and compact state representations can be
found that are sufficient for solving the task at hand (McCallum, 1995). This is where function
approximators, such as neural networks, come into the picture (François-Lavet et al., 2018; Ni
et al., 2024). If we use them to model policies and value functions, they will learn to ignore certain
observation variables in F if they are deemed unnecessary for estimating values and optimal actions.

As we shall see, the phenomenon of policy confounding plays a fundamental role in this quest for
simpler state representations, tricking the function approximator into forming state representations
that are based on mere spurious correlations. Before delving into these intricacies, let us establish
some key definitions regarding state representations. To enhance clarity, we will use the environment
introduced in Section 2 as a running example throughout this and the next section.
Example 1. Refer to the first paragraph of Section 2 for a description of the environment. We
denote the agent’s location by L. The variable G indicates whether the goal is to reach the green or
purple cell. G is sampled at the beginning and its value remains constant throughout the episode.
The value of G is hidden and only passed to the agent at the starting location through the variable X,
representing the signal. At any other location, X takes a dummy value, rendering the environment
partially observable. Consequently, the set Ft is the history of actions, locations, and signal variables,
Ft = {L0, X0, A0, . . . , At−1, Lt, Xt}. Each unique combination of values defines a state st. Here, the
subscript t is used to denote that the number of variables in F depends on t.
Definition 3 (State representation). A state representation is a function Φ : S → S̄, where S = ×F ,
S̄ = ×F̄ , and F̄ ⊆ F .

Intuitively, a state representation Φ(st) is a state-specific projection of a state s ∈ S = ×F
onto a lower-dimensional space S̄ = ×F̄ defined by a subset of its variables, F̄ ⊆ F . We use
{s}Φ = {s′ ∈ S : Φ(s′) = Φ(s)} to denote the equivalence class of s under Φ. In Example 1, a
potential state representation could be Φ(st) = ⟨l0, x0⟩ for all st ∈ S. This representation retains
only L0 and X0, ignoring all other variables in F . Hence, all states that share the same values for L0
and X0 belong to the same equivalence class.

5.1 Markov state representations

Not all state representations are sufficient to learn the optimal policy; some, like the one discussed in
the above paragraph, may exclude variables that carry valuable information for the task at hand.
Definition 4 (Markov state representation). A state representation Φ(st) is said to be Markov if,
for all st, st+1 ∈ S, at ∈ A,

R(st, at) = R(Φ(st), at) and
∑

s′
t+1∈{st+1}Φ

T (s′
t+1 | st, at) = Pr(Φ(st+1) | Φ(st), at),

where R(Φ(st), at) denotes the reward R(s′
t, at) at any s′

t ∈ {st}Φ.

The above definition is analogous to the notion of bisimulation (Dean & Givan, 1997; Givan et al.,
2003) or model-irrelevance state abstraction (Li et al., 2006). Representations satisfying these
conditions are guaranteed to be behaviorally equivalent to the original representation. That is, for
any given policy and initial state, the expected return (i.e., cumulative reward; Sutton & Barto,
2018) is the same when conditioning on the full set of observation variables F or on the Markov state
representation Φ.
Definition 5 (Minimal state representation). A state representation Φ∗ : S → S̄∗ with S̄∗ = ×F̄∗ is
said to be minimal, if all other state representations Φ : S → S̄ with S̄ = ×F̄ and F̄ ⊂ F̄ ∗, for some
s ∈ S, are not Markov.
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In simpler terms, Φ∗ is minimal when none of the remaining variables can be removed while the
representation remains Markov. Hence, we say that a minimal state representation Φ∗ is a sufficient
statistic of the full set of observation variables F . In Example 1, representations like Φ(st) = ⟨x0, at, lt⟩
or Φ(st) = ⟨x0, xt, lt⟩ are valid Markov state representations. However, only representations that
exclusively retain the initial signal X0 and the agent’s current location Lt (i.e., Φ∗(st) = ⟨x0, lt⟩) are
considered minimal, as only these two variables are necessary to capture rewards and transitions.
Definition 6 (Superfluous variable). Let {F̄ ∗}∪Φ∗ be the union of variables in all possible minimal
state representations. A variable F i ∈ F is said to be superfluous, if F i /∈ {F̄ ∗}∪Φ∗ .

In Example 1, any variable other than the signal and the current location, F \{X0, Lt}, is superfluous.

5.2 π-Markov state representations

Considering that the agent’s policy will rarely visit all states, the notion of Markov state representation
might be overly strict. We now introduce a relaxed version that guarantees the representation is
Markov when following specific policy π.
Definition 7 (π-Markov state representation). A state representation Φπ(ht) is said to be π-Markov
if, for all st, st+1 ∈ Sπ, at ∈ supp(π(· | st)),

R(st, at) = Rπ(Φπ(st), at) and
∑

s′
t+1∈{st+1}Φ

π

T (s′
t+1 | st, at) = Prπ(Φπ(st+1) | Φπ(st), at),

where Sπ ⊆ S denotes the set of states visited under π, Rπ(Φπ(st), at) is the reward R(s′
t, at) at any

s′
t ∈ {st}Φ

π , with {s}Φ
π = {s′ ∈ Sπ : Φπ(s′) = Φπ(s)}, and Prπ is probability under π.

Definition 8 (π-minimal state representation). A state representation Φπ∗ : Sπ → S̄π∗ with
S̄π∗ = ×F̄π∗ is said to be π-minimal, if all other state representations Φ : Sπ → S̄π with S̄π = ×F̄
and F̄ ⊂ F̄ π∗, for some s ∈ Sπ, are not π-Markov.

The next result demonstrates that a π-Markov state representation Φπ requires at most the same
variables, and in some cases fewer, than a minimal state representation Φ∗, while still satisfying the
Markov conditions for those states visited under π, s ∈ Sπ.
Proposition 1. Let Φ∗ be the set of all possible minimal state representations, where every Φ∗ ∈ Φ∗

is defined as Φ∗ : S → S̄∗ with S̄∗ = ×F̄∗. For all π and all Φ∗ ∈ Φ∗, there exists a π-Markov state
representation Φπ : Sπ → S̄π with S̄π = ×F̄π such that for all s ∈ Sπ, F̄ π ⊆ F̄ ∗. Moreover, there
exist cases where F̄ π is a proper subset, F̄ π ⊂ F̄ ∗.

It is clear that Φπ will never require more variables than the corresponding minimal state representa-
tion Φ∗ because, as per Definition 4, Φ∗ captures all the essential information. The situation where
F̄ π ⊂ F̄ ∗ arises with particular policies that exclusively visit a subset of states. In such cases, the
agent may require fewer variables within that subset to accurately capture rewards and transitions.
Take, for instance, a policy that makes the agent stay put. The π-minimal representation under
such a policy is the empty set, Φ(st) = ∅ for all st ∈ Sπ, as the agent consistently receives the same
reward and does not move from the initial state.

6 Policy Confounding

Judging from the previous example, it might be tempting to assume that having F̄ π ⊂ F̄ ∗ is merely
an incidental outcome of following a policy π that visits a subset of states, where some variables
coincidentally happen to be unnecessary. Moreover, considering that F̄ ∗ is constructed to capture
the essential variables necessary for the task, one may further conclude that a policy π inducing
representations such that F̄ π ⊂ F̄ ∗ can never be optimal. However, as demonstrated by the following
example, it turns out that the states visited by a particular policy, especially if it is the optimal
policy, tend to contain a lot of redundant information. This is particularly true in environments
where future states are heavily influenced by past actions.
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Figure 2: Two DBNs representing the dynamics of the Frozen T-Maze environment, when actions are
sampled at random (left), and when they are determined by the optimal policy (right). The green
circles highlight the π-mininal state representation in each of the two cases.

Let us revisit Example 1. Figure 2 shows two dynamic Bayesian networks (DBNs) describing
the environment’s dynamics: one with random action sampling (left) and the other with actions
determined by the optimal policy (right). Both networks are unrolled from t = 0 to t = 8,
with intermediate nodes omitted for simplicity. Suppose we aim to predict the reward R8 given
s8 = ⟨l0, x0, a0, . . . , a7, l8, x8⟩. In the case of random action sampling (left DBN), to predict R8, one
needs X0 and L8. This is because ⟨A0, . . . , A7⟩ appear as exogenous and can take any possible value.
Hence, the reward could be either −0.1 (per timestep penalty), −1 (wrong goal), or +1 (correct
goal) depending on the actual values of X0 and L8. As established in Section 5.1, we know that
Φ∗(st) = ⟨x0, lt⟩ is a minimal state representation.

Conversely, when actions are determined by the optimal policy π∗ (right DBN), knowing L8 alone
suffices to determine R8. The reason is that, under π∗, the agent always takes the action ’move up’ at
the starting location when receiving the green signal or ’move down’ when receiving the purple signal
and then follows the shortest path toward each of the goals. As shown by the diagram, this makes the
action A0, and thus all future agent locations, dependent on the initial signal X0. Hence, the agent’s
location Lt becomes a proxy for X0, allowing the agent to ignore X0 and still predict transitions
and rewards. Consequently, from t = 1 onward, Φπ∗(st) = lt is a π-minimal state representation
(Definition 8) as it constitutes a sufficient statistic of the state st under π∗. For the same reason,
from t = 1, actions may also condition only on Lt.

Figure 3: A DBN illustrating the
phenomenon of policy confounding.
The policy opens a backdoor path
that can affect conditional relations
between the variables in Ft and Ft+1.

The phenomenon highlighted by the previous example results
from a spurious correlation induced by the optimal policy
between the initial signal X0 and the agent’s future locations
⟨L1, . . . , L8⟩. Generally speaking, this occurs because policies
act as confounders, opening backdoor paths between future
observation variables Ft+1 and the variables in the current
state Ft (Pearl et al., 2016). This is illustrated by the DBN
depicted in Figure 3, where the policy influences both the
variables in Ft and the variables in Ft+1, potentially altering
their correlations.
Definition 9 (Policy Confounding). A state representation
Φ : S → S̄ is said to be confounded by a policy π if, for some
st, st+1 ∈ S, at ∈ A,

Rπ(Φ(st), at) ̸= Rπ(do(Φ(st)), at) or Prπ(Φ(st+1) | Φ(st), at) ̸= Prπ(Φ(st+1) | do(Φ(st)), at).

The operator do(·) is known as the do-operator, and it is used to represent physical interventions in
a system (Pearl et al., 2016). These interventions are meant to distinguish cause-effect relations from
mere statistical associations. In our case, do(Φ(st)) means setting the variables forming the state
representation Φ(st) to a particular value and considering all possible states in the equivalence class,
s′

t ∈ {st}Φ, (i.e., all states that share the same value for the observation variables that are ‘selected’
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by Φ; independently of whether these are visited by the policy being followed). For instance, in the
above example, Rπ∗(L8 = ‘green goal’) = +1 when following π∗ since we know that X0 = ‘green’,
while Rπ∗(do(L8 = ‘green goal’)) = ±1 since X0 can be either ‘green’ or ‘purple’.

It is easy to show that the underlying reason why a π-Markov state representation may require fewer
variables than the minimal state representation is indeed policy confounding.
Theorem 1. Let Φ∗ : S → S̄∗ with S̄∗ = ×F̄∗ be a minimal state representation. If, for some π,
there is a π-Markov state representation Φπ : Sπ → S̄π with S̄π = ×F̄π, such that F̄ π ⊂ F̄ ∗ for some
s ∈ S, then Φπ is confounded by policy π.

Finally, it is worth noting that even though, in Example 1, the variables included in the π-minimal
state representation are a subset of the variables in the minimal state representation, F̄ π∗ ⊂ F̄ ∗,
this is not always the case, as F̄ π∗ may contain superfluous variables (Definition 6). An example
illustrating this situation is provided in Appendix B (Example 4).
Proposition 2. Let {F̄ ∗}∪Φ∗ be the union of variables in all possible minimal state representations.
There exist cases where, for some π, there is a π-minimal state representation Φπ∗ : Sπ → S̄π∗ with
S̄π∗ = ×F̄π∗ such that F̄ π∗ \ {F̄ ∗}∪Φ∗ ̸= ∅.

6.1 Why should we care about policy confounding?

Leveraging spurious correlations to develop simple habits can be advantageous when resources such
as memory, computing power, or data are limited. Agents can exclude variables from the state
representation if they are redundant under their policy. However, the challenge is that some of these
variables may be crucial to ensure that the agent behaves correctly when the context changes. In
the Frozen T-Maze example from Section 2, we observed how the agent could no longer find the
correct goal when the ice pushed it away from the optimal trajectory. This is a specific case of a
well-researched issue known as out-of-distribution (OOD) generalization (Quionero-Candela et al.,
2009; Arjovsky, 2021). We refer to it as out-of-trajectory (OOT) generalization to highlight that the
problem here is that the agent is unable to generalize to alternative trajectories within the same
environment. This is in contrast to previous works (Kirk et al., 2023) that address generalization
to environments that differ in some way from the training environment. Example 5 illustrates the
distinction between OOT and OOD.

Ideally, the agent should aim to learn representations that enable it to predict future rewards and
transitions even when experiencing slight variations in its trajectory. Based on Definition 4, we know
that, in general, only a Markov state representation satisfies these requirements. However, computing
such representations is typically intractable (Ferns et al., 2006), and thus most standard RL methods
usually learn representations by maximizing an objective function that depends on the distribution
of trajectories P b(τ) visited under a behavior policy b (e.g., expected return, Eτ∼P b(τ) [G(τ)]; Sutton
& Barto, 2018). The problem is that b may favor certain trajectories over others, which may lead to
the exploitation of spurious correlations in the learned representation.

6.2 When should we worry about OOT generalization in practice?

Function approximation Function approximation has enabled traditional RL methods to scale
to high-dimensional problems, where storing values in lookup tables is infeasible (François-Lavet
et al., 2018). Using parametric functions (e.g., neural networks) to model policies and value functions,
agents can learn abstractions by grouping together states if these yield the same transitions and
rewards. As mentioned before, abstractions occur naturally when states are represented by a set
of variables since the functions simply need to ignore some of these variables. However, this also
implies that value functions and policies are exposed to spurious correlations. If a particular variable
becomes irrelevant due to policy confounding, the function may learn to ignore it and remove it from
its representation (Example 1). This is in contrast to tabular representations, where, every state
takes a separate entry, and even though there exist algorithms that perform state abstractions in
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tabular settings (Andre & Russell, 2002; Givan et al., 2003), these abstractions are normally formed
offline before learning the policy, hence avoiding the risk of policy confounding.

Narrow trajectory distributions In practice, agents are less prone to policy confounding when
the trajectory distribution P b(τ) is broad (i.e., when b encompasses a wide set of trajectories) than
when it is narrow. This is because the spurious correlations present in certain trajectories are less
likely to have an effect on the learned representations. On-policy methods (e.g., SARSA, Actor-Critic;
Sutton & Barto, 2018) are particularly troublesome for this reason since the same policy being
updated must also be used to collect the samples. Yet, even when the trajectory distribution is
narrow, there is no reason why the agent should pick up on spurious correlations while its policy is
still being updated. Only when the agent commits to a particular policy should we start worrying
about policy confounding. At this point, lots of the same trajectories are being used for training, and
the agent may ‘forget’ (French, 1999) that, even though certain variables may no longer be needed
to represent the states, they were important under previous policies. This generally occurs at the
end of training when the agent has converged to a particular policy. However, if policy confounding
occurs earlier during training, it may prevent the agent from further improving its policy (Nikishin
et al., 2022; please refer to Appendix C for more details).

6.3 What can we do to improve OOT generalization?

As mentioned in the introduction, we do not have a complete answer to the problem of policy
confounding. Yet, here we offer a few off-the-shelf solutions that, while perhaps limited in scope, can
help mitigate the problem in some situations. These solutions revolve around the idea of broadening
the distribution of trajectories to dilute the spurious correlations introduced by certain policies.

Off-policy methods We already explained in Section 6.2 that on-policy methods are particularly
prone to policy confounding since they are restricted to using samples coming from the same policy.
A rather obvious solution is to instead use off-policy methods, which allow using data generated from
previous policies. Because the samples belong to a mixture of policies it is less likely that the model
will pick up the spurious correlations present on specific trajectories. However, as we shall see in
the experiments, this alternative works only when replay buffers are large enough. This is because
standard replay buffers are implemented as queues, and hence the first experiences coming in are the
first being removed. This implies that a replay buffer that is too small will contain samples coming
from few and very similar policies. Since there is a limit on how large replay buffers are allowed to
be, future research could explore other, more sophisticated, ways of deciding what samples to store
and which ones to remove (Schaul et al., 2016).

Exploration and domain randomization When allowed, exploration may mitigate the effects
of policy confounding and prevent agents from overfitting their preferred trajectories. Exploration
strategies have already been used for the purpose of generalization; to guarantee robustness to
perturbations in the environment dynamics (Eysenbach & Levine, 2022), or to boost generalization
to unseen environments (Jiang et al., 2022). The goal for us is to remove, to the extent possible,
the spurious correlations introduced by the current policy. Unfortunately, though, exploration
is not always without cost. Safety-critical applications require the agent to stay within certain
boundaries (Altman, 1999; García & Fernández, 2015). When training on a simulator, an alternative
to exploration is domain randomization (Tobin et al., 2017; Peng et al., 2018; Machado et al., 2018).
The empirical results reported in the next section suggest that agents become less susceptible to
policy confounding when adding enough stochasticity. Yet, there is a limit on how much noise can be
added to the environment or the policy without altering the optimal policy (Sutton & Barto, 2018,
Example 6.6: Cliff Walking).
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Figure 4: Illustrations of the Key2Door (left) and Diversion (right) environments.

7 Experiments

The experiments aim to (1) validate the occurrence of policy confounding as described by the theory,
(2) identify the conditions under which agents are most susceptible to the effects of policy confounding
and fail to generalize, and (3) assess the effectiveness of strategies proposed in the previous section in
mitigating these effects. To achieve this, a series of simple grid-world environments has been devised
as pedagogical examples to highlight the issue and clarify the theory. We would like to emphasize
that our primary contribution lies in characterizing the phenomenon of policy confounding. The
extent to which this phenomenon manifests in more realistic settings is beyond the scope of this
paper. However, we believe that the failure of standard RL methods in these simplistic environments
raises important concerns. Moreover, we refer the reader to Appendix C for a review of prior works
reporting evidence of particular forms of policy confounding in high-dimensional environments.

7.1 Experimental setup

Agents are trained with an off-policy method, DQN (Mnih et al., 2015) and an on-policy method,
PPO (Schulman et al., 2017). We represent policies and value functions as feedforward neural
networks and use a stack of past observations as input in the environments that require memory.
We report the mean return as a function of the number of training steps. Training is interleaved
with periodic evaluations on the original environments and variants thereof used for validation. The
results are averaged over 10 random seeds. Refer to Appendix F for more details about the setup.

7.2 Environments

We run our experiments on three grid-world environments: the Frozen T-Maze from Section 2,
and the below described Key2Door, and Diversion environments.
Example 2. Key2Door. Here, the agent needs to collect a key placed at the beginning of the
corridor in Figure 4 (left) and then open the door at the end. The current observation variables do
not show whether the key has already been collected. The states are thus given by the history of past
locations st = ⟨l0, . . . , lt⟩. This is because to solve the task in the minimum number of steps, the
agent must remember that it already got the key when going to the door. Yet, since during training,
the agent always starts the episode at the first cell from the left, when moving toward the door, the
agent can forget about the key (i.e., ignore past locations) once it has reached the third cell. As in
the Frozen T-Maze example, the agent can build the habit of using its own location to tell whether it
has or has not got the key yet. This, can only occur when the agent consistently follows the optimal
policy, depicted by the purple arrow. Otherwise, if the agent moves randomly through the corridor,
it is impossible to tell whether the key has or has not been collected. In contrast, in the evaluation
environment, the agent always starts at the second to last cell, this confuses the agent, which is used
to already having the key by the time it reaches said cell. A DBN is provided in Appendix D.

Example 3. Diversion. Here, the agent must move from the start state to the goal state in Figure 4
(right). The observations are length-8 binary vectors. The first 7 elements indicate the column where
the agent is located. The last element indicates the row. This environment aims to show that policy
confounding can occur not only when the environment is partially observable, as was the case in
the previous examples, but also in fully observable scenarios. After the agent learns the optimal
trajectory depicted by the green arrow, it can disregard the last element in the observation vector.
This is because, if the agent does not deviate, the bottom row is never visited. Rather than forgetting
past information, the agent ignores the last element in the current observation vector for being
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Figure 5: DQN vs. PPO in the train and evaluation variants of Frozen T-Maze (left), Key2Door
(middle), and Diversion (right).
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Figure 6: Frozen T-Maze. Left: DQN small vs. large buffer sizes. Right: PPO and DQN when
adding stochasticity.

irrelevant when following the optimal trajectory. We train the agent in the original environment and
evaluate it in a version with a yellow diversion sign in the middle of the maze that forces the agent
to move to the bottom row. A DBN is provided in Appendix D.

7.3 Results

On-policy vs. off-policy The results in Figure 5 consistently reveal a common trend across all
three environments. PPO struggles with generalization beyond the agent’s preferred trajectories.
After an initial phase where the average returns on the training and evaluation environments increase
(‘PPO train’ and ‘PPO eval’), the return on the evaluation environments (‘PPO eval’) starts decreasing
when the agent commits to a particular trajectory, as a result of policy confounding. In contrast,
since the training samples come from a mixture of policies, DQN performs optimally in both variants
of the environment (‘DQN train’ and ‘DQN eval’) long after converging to the optimal policy. A
visualization of the state representations learned with PPO, showing that the policy does ignore
necessary variables, is provided in Appendix E.1.

Large vs. small replay buffers We mentioned in Section 6.3 that the effectiveness of off-policy
methods against policy confounding depends on the size of the replay buffer. The results in Figure 6
(left) confirm this claim. The plot shows the performance of DQN in the Frozen T-Maze environment
when the size of the replay buffer contains 100K experiences and when it only contains the last 10K
experiences. We see that in the second case, the agents performance in the evaluation environment
decreases (red curve left plot). This is because, after the initial exploration phase, the distribution of
trajectories becomes too narrow, and the spurious correlations induced by the latest policies dominate
the replay buffer. Similar results for the other two environments are provided in Appendix E.2.

Exploration and domain randomization The last experiment shows that if sufficient exploration
is allowed, DQN may still generalize to different trajectories, even when using small replay buffers
(blue curve right plot on Figure 6). In the original configuration, the exploration rate ϵ for DQN
starts at ϵ = 1 and decays to ϵ = 0.0 after 20K steps. For this experiment, we set the final rate
ϵ = 0.1. In contrast, since exploration in PPO is controlled by the entropy bonus, which makes
it hard to ensure fixed exploration rates, we add noise to the environment instead. The red curve
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in Figure 6 (right) shows that when the agent’s actions are overridden by a random action with
20% probability, the performance of PPO in the evaluation environment does not degrade after the
agent has converged to the optimal policy. This suggests that the added noise prevents spurious
correlations from dominating training batches. However, it may also happen that random noise is
insufficient to remove the spurious correlations, as occurs in the Key2Door environment (Figure 13;
Appendix E.2). Similar results for Diversion are provided in Appendix E.2.

8 Conclusion

This paper described the phenomenon of policy confounding. We demonstrated both theoretically
and empirically how, as a result of following certain trajectories, agents may pick up on spurious
correlations and develop habits that are not robust to trajectory deviations. We also identified the
circumstances under which policy confounding is most likely to occur in practice and suggested
a few ad hoc solutions that may mitigate its effects. We view this paper as a stepping stone to
exploring more sophisticated solutions. An interesting avenue for future research is the integration of
tools from the field of causal inference (Hernán & Robins, 2010; Peters et al., 2017) to assist the
agent in forming state representations grounded in causal relationships rather than mere statistical
associations (Lu et al., 2018; Zhang et al., 2020; Sontakke et al., 2021; Saengkyongam et al., 2023).
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A Proofs

Lemma 1. Let Φπ1∗ be the set of all possible π-minimal state representations under π1, where every
Φπ1∗ ∈ Φπ1∗ is defined as Φπ1∗ : Sπ1 → S̄π1∗ and S̄π1∗ = ×F̄π1∗ , and let π2 be a second policy such
that for all st ∈ Sπ1 ∩ Sπ2 ,

supp (π2(· | st)) ⊆ supp (π1(· | st)) .

For all Φπ1∗ ∈ Φπ1∗, there exists a π-Markov state representation under policy π2, Φπ2 : Sπ2 → S̄π2

with S̄π2 = ×F̄π2 , such that F̄ π2 ⊆ F̄ π1∗ for all st ∈ Sπ1 ∩ Sπ2 . Moreover, there exist cases where
F̄ π2

t ̸= F̄ π1∗
t .

Proof. First, it is easy to show that

∀st ∈ S, supp (π2(· | st)) ⊆ supp (π1(· | st)) ⇐⇒ Sπ2 ⊆ Sπ1 ,

and
∀st ∈ S, supp (π2(· | st)) = supp (π1(· | st)) ⇐⇒ Sπ2 = Sπ1 .

In particular, Sπ2 ⊂ Sπ1 if there is at least one state s′
t ∈ Sπ1 ∩ Sπ2 such that

supp (π2(· | s′
t)) ⊂ supp (π1(· | s′

t))

while
supp (π2(· | st)) = supp (π1(· | st))

for all other st ∈ Sπ1 ∩ Sπ2 .

In such cases, we know that there is at least one action a′ for which π2(a′
t | s′

t) = 0 but π1(a′
t | s′

t) ̸= 0.
Hence, if there was a state (or group of states) that could only be reached by taking action a′

t at s′
t,

π2 would never visit it and thus Sπ2 ⊂ Sπ1 .

Further, if Sπ2 ⊂ Sπ1 , we know that, for every Φπ1∗ ∈ Φπ1∗, there must be a Φπ2∗ that requires,
at most, the same number of variables, F̄ π2

t ⊆ F̄ π1∗
t and, in some cases, fewer, F̄ π1∗

t ≠ F̄ π2∗
t (e.g.,

Frozen T-Maze example).

Proposition 1. Let Φ∗ be the set of all possible minimal state representations, where every Φ∗ ∈ Φ∗

is defined as Φ∗ : S → S̄∗ with S̄∗ = ×F̄∗. For all π and all Φ∗ ∈ Φ∗, there exists a π-Markov state
representation Φπ : Sπ → S̄π with S̄π = ×F̄π such that for all s ∈ Sπ, F̄ π ⊆ F̄ ∗. Moreover, there
exist cases where F̄ π is a proper subset, F̄ π ⊂ F̄ ∗.

Proof. The proof follows from Lemma 1. We know that, in general, Sπ ⊆ S, and if π(a′
t|s′

t) = 0 for at
least one pair a′

t ∈ A, s′
t ∈ S for which there is a state (or group of states) that can only be reached

by taking action a′
t at s′

t, then Sπ ⊂ S. Hence, for every Φ∗ there is a Φπ such that F̄ π ⊆ F̄ ∗, and in
some cases, we may have F̄ π ⊂ F̄ ∗ (e.g., Frozen T-Maze example).

Theorem 1. Let Φ∗ : S → S̄∗ with S̄∗ = ×F̄∗ be a minimal state representation. If, for some π,
there is a π-Markov state representation Φπ : Sπ → S̄π with S̄π = ×F̄π, such that F̄ π ⊂ F̄ ∗ for some
s ∈ S, then Φπ is confounded by policy π.

Proof. Proof by contradiction. Let us assume that F̄ π ⊂ F̄ ∗, and yet there is no policy confounding.
I.e., for all st, st+1 ∈ S, at ∈ A,

Rπ(Φπ(st), at) = Rπ(do(Φπ(st)), at)
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and

Prπ(Φπ(st+1) | Φπ(st), at) = Prπ(Φπ(st+1) | do(Φπ(st)), at)

First, note that the do-operator implies that the equality must hold for all s′
t in the equivalence of st

class under Φπ, s′
t ∈ {st}Φπ = {s′

t ∈ S : Φ(s′
t) = Φ(st)}, i.e., not just those s′

t that are visited under
π,

Rπ(Φπ(st), at) = Rπ(do(Φπ(st)), at) = R(s′
t, at) for all s′

t ∈ {st}Φ

which is precisely the first condition in Definition 4,

R(st, at) = R(Φπ(st), at) (1)

for all st ∈ S and at ∈ A.

Analogously, we have that,

Prπ(Φπ(st+1) | Φπ(st), at) = Prπ(Φπ(st+1) | do(Φπ(st)), at)
= Pr(Φπ(st+1) | Φπ(st), at)

where the second equality reflects that the above must hold independently of π. Hence, we have that
for all st, st+1 ∈ S and s′

t ∈ {st}Φ,

Pr(Φπ(st+1) | Φπ(st), at) = Pr(Φπ(st+1) | Φπ(s′
t), at),

which means that, for all st, st+1 ∈ S and st ∈ A,

Pr(Φπ(st+1) | Φπ(st), at) = Pr(Φπ(st+1) | st, at)

=
∑

s′
t+1∈{st+1}Φπ

T (s′
t+1 | st, at), (2)

which is the second condition in Definition 4.

Equations (1) and (2) reveal that if the assumption is true (i.e., Φπ is not confounded by the policy),
then Φπ is not just π-Markov but actually strictly Markov (Definition 4). However, we know that
Φ∗(st) is the minimal state representation, which contradicts the above statement, since, according
to Definition 5, there is no proper subset of F̄ ∗, for all st ∈ S, such that the representation remains
Markov. Hence, F̄ π ⊂ F̄ ∗ implies policy confounding.

Proposition 2. Let {F̄ ∗}∪Φ∗ be the union of variables in all possible minimal state representations.
There exist cases where, for some π, there is a π-minimal state representation Φπ∗ : Sπ → S̄π∗ with
S̄π∗ = ×F̄π∗ such that F̄ π∗ \ {F̄ ∗}∪Φ∗ ̸= ∅.

Proof (sketch). Consider a deterministic MDP with a deterministic policy. Imagine there exists a
variable X that is perfectly correlated with the episode’s timestep t, but that is generally irrelevant
to the task. The variable X would constitute in itself a valid π-Markov state representation since it
can be used to determine transitions and rewards so long as a deterministic policy is followed. At the
same time, X would not enter the minimal Markov state representation because it is useless under
stochastic policies. Example 4 below illustrates this situation.

B Example: Watch the Time

Example 4. (Watch the Time) This example is inspired by the empirical results of Song et al.
(2020). Figure 7 shows a grid world environment. The agent must go from the start cell to the goal
cell. The agent must avoid the pink cells; stepping on those yields a −0.1 penalty. There is a +1
reward for reaching the goal. The agent can observe its own location within the maze L and the
current timestep t. The two diagrams in Figure 8 are DBNs describing the environment dynamics.
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START GOAL

Figure 7: An illustration of the watch-the-time environment.

...

...

...

...

Figure 8: Two DBNs representing the dynamics of the watch-the-time environment, when actions
are sampled at random (left), and when they are determined by the optimal policy (right).

When actions are considered exogenous random variables (left diagram), the only way to estimate the
reward at t = 10 is by looking at the agent’s location L10. In contrast, when actions are determined
by the policy (right diagram), t becomes a proxy for the agent’s location. This is because the start
location and the sequence of actions are fixed. This implies that t is a perfectly valid π-Markov
state representation under π∗. Moreover, as shown by the DBN on the right, the optimal policy may
simply rely on t to determine the optimal action.

C Further Related Work

Early evidence of policy confounding Although to the best of our knowledge, we are the first
to bring forward and describe mathematically the idea of policy confounding, a few prior works have
reported evidence of particular forms of policy confounding. In their review of the Arcade Learning
Environment (ALE; Bellemare et al., 2013), Machado et al. (2018) explain that because the games are
fully deterministic (i.e., initial states are fixed and transitions are deterministic), open-loop policies
that memorize good action sequences can achieve high scores in ALE. Clearly, this can only occur if
the policies themselves are also deterministic. In such cases, policies, acting as confounders, induce a
spurious correlation between the past action sequences and the environment states. Similarly, Song
et al. (2020) show, by means of saliency maps, how agents may learn to use irrelevant features of the
environment that happen to be correlated with the agent’s progress, such as background clouds or
the game timer, as clues for outputting optimal actions. In this case, the policy is again a confounder
for all these, a priori irrelevant, features. Zhang et al. (2018b) provide empirical results showing how
large neural networks may overfit their training environments and, even when trained on a collection
of procedurally generated environments, memorize the optimal action for each observation. Zhang
et al. (2018a) show how, when trained on a small subset of trajectories, agents fail to generalize to a
set of test trajectories generated by the same simulator. Ostrovski et al. (2021) empirically show
that agents passively trained on observational data generated by other agents tend to perform poorly
due to extrapolation errors caused by some of the state-action pairs being underrepresented in the
data. Lan et al. (2023) report evidence of well-trained agents failing to perform well on Mujoco
environments when starting from trajectories (states) that are out of the distribution induced by
the agent’s policy. We conceive this as a simple form of policy confounding. Since the Mujoco
environments are also deterministic, agents following a fixed policy can memorize the best actions to
take for each state instantiation, potentially relying on superfluous features. Hence, they can overfit
to unnatural postures that would not occur under different policies. Finally, Nikishin et al. (2022)
describe a phenomenon named ‘primacy bias’, which prevents agents trained on poor trajectories
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from further improving their policies. The authors show that this issue is particularly relevant when
training relies heavily on early data coming from a fixed random policy. We hypothesize that one of
the causes for this is also policy confounding. The random policy may induce spurious correlations
that lead to the formation of rigid state (state) representations that are hard to recover from.

Generalization Generalization is a hot topic in machine learning. The promise of a model
performing well in contexts other than those encountered during training is undoubtedly appealing. In
the realm of reinforcement learning, the majority of research focuses on generalization to environments
that, despite sharing a similar structure, differ somewhat from the training environment (Kirk et al.,
2023). These differences range from small variations in the transition dynamics (e.g., sim-to-real
transfer; Higgins et al., 2017; Tobin et al., 2017; Peng et al., 2018; Zhao et al., 2020), changes
in the observations (i.e., modifying irrelevant information, such as noise: Mandlekar et al., 2017;
Ornia et al., 2022, or background variables: Zhang et al., 2020; Stone et al., 2021), to alterations
in the reward function, resulting in different goals or tasks (Taylor & Stone, 2009; Lazaric, 2012;
Muller-Brockhausen et al., 2021). Instead, we address the problem of OOT generalization, where the
objective is to generalize to different trajectories within the same environment.

Example 5. To illustrate the difference between OOD generalization and OOT generalization, let
us consider a robot trained via RL to go from our office to the coffee machine, get coffee, and come
back, as well as from our office to the printer, make copies, and come back. There are two possible
routes to the coffee machine: either through the printer room or through a corridor directly leading
to the coffee machine. The path through the printer room is longer, so the robot typically avoids
it when coffee is ordered. However, one day, when we order coffee and the corridor is blocked, the
robot attempts to go through the printer room and returns with a copy of a new paper titled ‘Bad
Habits’ instead of the coffee. This serves as an example of out-of-trajectory generalization. Since
the robot is accustomed to obtaining copies in the copy room, it disregards the coffee order. An
example of the more general problem of OOD generalization could involve instructing the robot to
navigate the office when the floor is wet or to fetch something different, like a glass of water. The
crucial distinction is that, in these last two examples, the states the robot visits or the rewards it
receives differ. The robot has not been trained on a wet floor, and it has never retrieved a glass of
water before. However, in the first example, we would expect the robot to recognize that being in
the copy room does not necessarily imply getting copies. To be fair, the blocked corridor represents
a change in the environment; nevertheless, this change is intended to prompt the agent to choose
an alternative path. It is worth noting that this alternative path was also feasible in the original
environment.

State abstraction State abstraction is concerned with removing from the representation all
that state information that is irrelevant to the task. In contrast, we are worried about learning
representations containing too little information, which can lead to state aliasing. Nonetheless, as
argued by McCallum (1995), state abstraction and state aliasing are two sides of the same coin. That
is why we borrowed the mathematical frameworks of state abstraction to describe the phenomenon
of policy confounding. Li et al. (2006) provide a taxonomy of the types of state abstraction and
how they relate to one another. Givan et al. (2003) introduce the concept of bisimulation, which is
equivalent to our definition of Markov state representation (Definition 4). Ferns et al. (2006) propose
a method for measuring the similarity between two states. Castro (2020) notes that this metric is
prohibitively expensive and suggests using a relaxed version that computes state similarity relative to
a given policy. This is similar to our notion of π-Markov state representation (Definition 7). While
the end goal of this metric is to group together states that are similar under a given policy, here we
argue that this may lead to poor OOT generalization.

D Dynamic Bayesian Networks

Figures 9 and 10 show the DBNs for the Key2Door and Diversion environments, respectively.
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Figure 9: Two DBNs representing the dynamics of the Key2Door environment, when actions are
sampled at random (left), and when they are determined by the optimal policy (right). The nodes
labeled as L represent the agent’s location, while the nodes labeled as X represent whether or not
the key has been collected. The agent can only see L. Hence, when actions that are sampled are
random (left), the agent must remember its past locations to determine the reward R7. Note that
only L1 and L7 are highlighted in the left DBN. However, other variables in ⟨L2, . . . , L6⟩ might be
needed, depending on when the key is collected. In contrast, when following the optimal policy, only
L7 is needed. In this second case, knowing the location is sufficient to determine whether the key has
been collected.

...

...

...

...

Figure 10: Two DBNs representing the dynamics of the Diversion environment, when actions are
sampled at random (left), and when they are determined by the optimal policy (right). The nodes
labeled as X indicate the row where the agent is located; the nodes labeled as Y indicate the column.
We see that when actions are sampled at random, both X6 and Y6 are necessary to determine R6.
However, when actions are determined by the optimal policy, Y6 is sufficient, as the agent always
stays at the top row.

E Experimental Results

E.1 Learned state representations

The results reported in Section 7 show that the OOT generalization problem exists. However, some
may still wonder if the underlying reason is truly policy confounding. To confirm this, we compare the
outputs of the policy at every state in the Frozen T-Maze when being fed the same states (observation
stack) but two different signals. That is, we permute the variable containing the signal (X in the
diagram of Figure 2) and leave the rest of the variables in the observation stack unchanged. We then
feed the two versions to the policy network and measure the KL divergence between the two output
probabilities. This metric is a proxy for how much the agent attends to the signal in every state.
The heatmaps in Figure 11 show the KL divergences at various points during training (0, 10K, 30K,
and 100K timesteps) when the true signal is ‘green’ and we replace it with ‘purple’. We omit the two
goal states since no actions are taken there. We see that initially (top left heatmap), the signal has
very little influence on the policy (note the scale of the colormap is 10−6), after 10K steps, the agent
learns that the signal is very important when at the top right state (top right heatmap). After this,
we start seeing how the influence of the signal at the top right state becomes less strong (bottom
left heatmap) until it eventually disappears (bottom right heatmap). In contrast, the influence of
the signal at the initial state becomes more and more important, indicating that after taking the
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first action, the agent ignores the signal and only attends to its own location. The results for the
alternative case, ‘purple’ signal being replaced by ‘green’ signal, are shown in Figure 12.

Figure 11: A visualization of the learned state representations. The heatmaps show the KL divergence
between the action probabilities when feeding the policy network a stack of the past 10 observations
and when feeding the same stack but with the value of the signal being switched from green to purple,
after 0 (top left), 10K (top right), 30K (bottom left), and 100K (bottom right) timesteps of training.

Figure 12: A visualization of the learned state representations. The heatmaps show the KL divergence
between the action probabilities when feeding the policy network a stack of the past 10 observations
and when feeding the same stack but with the value of the signal being switched from purple to green,
after 0 (top left), 10K (top right), 30K (bottom left), and 100K (bottom right) timesteps of training.

E.2 Buffer size and exploration/domain randomization

Figures 13 and 14 report the results of the experiments described in Section 7 (paragraphs 2 and 3)
for Key2Door and Diversion. We see how the buffer size also affects the performance of DQN in the
two environments (left plots). We also see that exploration/domain randomization does improve
OOT generalization in Diversion but not in Key2Door.
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Figure 13: Key2Door. Left: DQN small vs. large buffer sizes. Right: PPO and DQN when adding
stochasticity.
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Figure 14: Diversion. Left: DQN small vs. large buffer sizes. Right: PPO and DQN when adding
stochasticity.

F Further Experimental Details

We ran our experiments on an Intel i7-8650U CPU with 8 cores. Agents were trained with Stable
Baselines3 (Raffin et al., 2021). Most hyperparameters were set to their default values except for
the ones reported in Tables 1 (PPO) and 2 (DQN), which worked better than the default values for
these particular environments.

Table 1: PPO hyperparameters.

Rollout steps 128
Batch size 32
Learning rate 2.5e-4
Number epoch 3
Entropy coefficient 1.0e-2
Clip range 0.1
Value coefficient 1
Number Neurons 1st layer 128
Number Neurons 2nd layer 128
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Table 2: DQN hyperparameters.

Buffer size 1.0e5
Learning starts 1.0e3
Learning rate 2.5e-4
Batch size 256
Initial exploration bonus 1.0
Final exploration bonus 0.0
Exploration fraction 0.2
Training frequency 5
Number Neurons 1st layer 128
Number Neurons 2nd layer 128
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Abstract

General-purpose agents require fine-grained controls and rich sensory inputs to
perform a wide range of tasks. However, this complexity often leads to intractable
decision-making. Traditionally, agents are provided with task-specific action and
observation spaces to mitigate this challenge, but this reduces autonomy. Instead,
agents must be capable of building state-action spaces at the correct abstraction
level from their sensorimotor experiences. We leverage the structure of a given set
of temporally-extended actions to learn abstract Markov decision processes (MDPs)
that operate at a higher level of temporal and state granularity. We characterize
state abstractions necessary to ensure that planning with these skills, by simulating
trajectories in the abstract MDP, results in policies with bounded value loss in the
original MDP. We evaluate our approach in goal-based navigation environments that
require continuous abstract states to plan successfully and show that abstract model
learning improves the sample efficiency of planning and learning.

1 Introduction

Reinforcement learning (RL) is a promising framework for embodied intelligence because of its
flexibility, generality, and online nature. Recently, RL agents have learned to control complex control
systems: stratospheric balloons (Bellemare et al., 2020), nuclear fusion reactors (Degrave et al., 2022)
and drones (Kaufmann et al., 2023). They have also mastered long-horizon decision-making problems
such as the game of Go and chess (Silver et al., 2016; 2018). To achieve these results, each agent’s
state representation and action spaces were engineered to make learning tractable: the state space
was designed to contain only relevant information for decision-making and the actions were restricted
to task-relevant decisions to be made at every time step. This is in conflict with the state-action
space required for versatile, general-purpose agents (e.g., robots), which must possess broad sensory
data and precise control capabilities to handle a wide variety of tasks, such as playing chess, folding
clothes or navigating a maze. Abstractions alleviate this tension: action abstractions enable agents to
plan at larger temporal scales and state abstractions reduce the complexity of learning and planning;
a combination of action and state abstraction results in a new task model that can capture the
natural complexity of the task, instead of the complexity of the agent (Konidaris, 2019).

For instance, in model-based RL (MBRL; Sutton (1991); Deisenroth and Rasmussen (2011)), there is
a long line of research that focuses on learning transition and reward models to plan by simulating
trajectories. Many modern methods learn abstract state spaces (Ha and Schmidhuber, 2018; Zhang
et al., 2019; Silver et al., 2018; Hafner et al., 2019; 2021; 2023) to handle complex observation spaces.
However, they learn models for the primitive action spaces and work within the single-task setting.
Recently, there has been interest in using MBRL for skill discovery: Hafner et al. (2022) learn a
model in an abstract state space and learn a further abstraction over it to discover goals in a Feudal
RL manner (Dayan and Hinton, 1992). Bagaria and Konidaris (2020) and Bagaria et al. (2021a;b),
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Figure 1: An agent needs to solve a task using its actuators and sensors (on the right). However, it
requires an abstract model of the task (on the left) to reason at long time scales. This can be con-
structed by combining temporally-extended actions ā with a compatible abstract state representation
s̄ that contains the minimal information necessary for planning with those actions.

instead, assume that the abstract state space is a graph and learn skills that connect nodes in that
graph, effectively building a model that is both abstract in state and in actions. These approaches
are ultimately limited because they assume a discrete abstract state space.

On the other hand, in robotics, high-level planning searches for sequences of temporally-extended
actions (motor skills) to achieve a task. However, the agents needs a model to compute plans
composed of their motor skills and this is typically given to the agent. To enable the agent to
learn a model compatible with its motor skills from sensor data, Konidaris et al. (2018) propose
novel semantics to automatically learn logical predicates from the agent observation space that
support task planning with PDDL (Planning Domain Definition Language; Fox and Long (2003);
Younes and Littman (2004)). Moreover, they provide theoretical guarantees for learning predicates
that support sound task planning. In a similar vein, Ugur and Piater (2015a;b) and Ahmetoglu
et al. (2022) propose to cluster the effects of motor skills to build discrete symbols for planning.
Similarly, Asai et al. (2022) introduce a discrete VAE (Variational Auto-encoder; Kingma and Welling
(2013)) approach to leverage modern deep networks for grounding PDDL predicates and action
operators from complex observations. While these approaches consider temporally-extended actions
and are promising for planning problems where the appropriate state abstractions are discrete, they
are not applicable when planning with the available high-level actions requires a continuous state
representation.

Instead, we are interested in learning state abstractions that are continuous, compatible with modern
deep learning methods, and that guarantee value-preserving planning with a set of given skills.
Specifically, we focus on building abstract world models in the form of Markov decision processes
(MDPs) that have abstract state and action spaces and, in contrast to previous approaches, provide a
principled approach to characterize the abstract state space that ensures that planning in simulation
with this abstract model produces a policy with expected value equal to that we would get by planning
if we had access to the real MDP. In summary, we (1) introduce the necessary and sufficient conditions
for constructing an abstract Markov decision process sufficient for value-preserving planning for a
given set of skills; (2) introduce an information maximization approach compatible with contemporary
deep learning techniques, ensuring a bounded value loss when planning using the abstract model;
and finally, (3) provide empirical evidence that these abstract models support effective planning with
off-the-shelf deep RL algorithms in goal-based tasks (Mujoco Ant mazes (Fu et al., 2020) and Pinball
(Konidaris and Barto, 2009) from pixels).

2 Background and Notation

Markov Decision Processes A continuous state, continuous action Markov decision process (MDP)
(Puterman, 2014) is defined as the tuple M = (S,A, T, R, p0, γ) where S ⊆ Rds is the state space
and A ⊆ Rda is the action space (ds, da ∈ N), T : S × A → ∆(S)1 denotes is the transition kernel

1∆(·) indicates the set of probability measures over a given set.
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that represent the dynamics of the environment, R : S ×A → R is the reward function bounded by
RMax ∈ R, γ ∈ [0, 1) is the discount factor and p0 ∈ ∆(S) is the initial state distribution.

Planning and Bellman Equation A solution to an MDP is a policy π : S → ∆(A) that
maximizes the expected return J(π) = E [

∑∞
t=0 γtR(St, At)|S0 ∼ p0, π, T ]. An important family

of solution methods for MDPs are based on the Bellman optimality principle and the Bellman
equation. For a given policy π, the state-value function vπ : S → R is defined as vπ(s) :=
E [

∑∞
t=0 γtR(St, At)|S0 = s, π]. The state-value function represents the expected discounted return

when following the policy π from state s. Importantly, the value function satisfy the following
recursion, known as the Bellman equation, which is used in many current planning and learning
methods for MDPs: vπ(s) = E

[
R(s, a) + γ

∫
S T (s′|s, a)vπ(s′)ds′] .

Action Abstractions Options (Sutton et al., 1999) are a formalization of temporally-extended
actions, or skills, that are used by the agent to plan with a longer temporal scope than that allowed
by primitive actions. An option o is defined by the tuple (Io, πo, βo) where Io : S → {0, 1} is the
initiation set, that is, the set of states in which the option can start execution; πo is the policy
function, and βo : S → [0, 1] is the termination probability function that indicates the probability of
terminating the option execution at state s.

Expected-length Model of Options Generally, options are used to plan in Semi-Markov decision
processes (SMDP; Sutton et al. (1999)), in which modelling jointly the option’s dynamics T and
duration τ as Tγ(s′|s, o) =

∑∞
τ=0 γτ Pr(Sτ = s′, β(sτ )|S0 = s, o) and its reward as R(s, o) =

Eτ

[∑τ−1
t=0 γtR(St, At)|s, o

]
, result in the Multi-time model of options. However, we will use a simpler

and more practical model of option’s dynamics: the expected-length model of options (Abel et al.,
2019). In this case, the option’s duration is modeled independently from the next-state distribution.
More precisely, let τ̃o be the average number of timesteps taken to execute the option o, then
Tγ(s′|s, o) = γ τ̃op(s′|s, o) where p(s′|s, o) is the probability density function over the next-state
observed when the option is executed as a black-box skill.

State Abstractions and Probabilistic Groundings State abstractions (or state aggregation)
have commonly been defined in the form of non-injective functions f : S → S̄ where S̄ is an abstract
state space. Recently, Konidaris et al. (2018) propose probabilistic groundings to define a new class of
state abstractions. These groundings are defined by G : S̄ → ∆(S) and, contrary to state aggregation
approaches, these can have overlapping support. That is, for a state s and abstract states s̄1 and s̄2,
we can have that Gs̄1(s) > 0 and Gs̄2(s) > 0. In state aggregation methods, one state has just one
abstract state to map to. Therefore, this provides a more expressive framework to build abstractions.

3 Value-preserving Abstract MDPs

To plan with a set of options, we must build a model of their effects. In this section, we formalize this
model as an MDP with the following characteristics: (1) Action Abstraction, the action space is the
set of task-relevant temporally-extended skills (i.e., the ground actions are not used for planning); (2)
State Abstraction, because the set of skills operate at a higher-level of abstraction, the observation
space will contains more information than required to plan with the skills; (3) Sufficient for
Planning, the model must support computing a plan with the option set for task-specific rewards.
In the case of abstract MDPs, the abstract model must guarantee accurate trajectory simulations to
leverage the planning and RL algorithms developed for MDPs.

3.1 Ground and Abstract MDPs

We start by defining the ground MDP M , the environment that the agent observes by only executing
the options.
Definition 3.1 (Ground MDP). Let O be a set of options defined over the agent’s state-action
space. The ground MDP is M = (S,O, T, R, γ, τ, p0). T (s′|s, o) is the next-state probability density
function seen by the agent when executing option o at s and its accumulated discounted reward is
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R(s, o) = Eτ [
∑τ

t=1 γtR(St, At)|s, o], and τ : S ×O → [0,∞) is the expected option’s execution time
of option o when initiated at state s.2

Definition 3.2 (Abstract MDP). The abstract MDP is M̄ = (S̄,O, T̄ , R̄, γ, τ̄ , p̄0) where S̄ is the
abstract state space, T̄ : S̄ × O → ∆(S̄) is the abstract transition kernel, R̄ : S̄ × O → R is the
abstract reward function, γ is the discount factor, τ̄ : S̄ × O → [0,∞) is the option’s duration model
and p̄0 is the initial abstract state distribution.

Given that the objective is to compute plans in the abstract model, we will only consider policies of
the form π : S̄ → O in the rest of the paper. Moreover, to connect the abstract MDP to the ground
MDP, we use a grounding function defined in terms of probability density functions, as introduced
by Konidaris et al. (2018). The grounding of an abstract state s̄ is defined by the probability of the
agent being in a state s.
Definition 3.3 (Grounding function). Let M be a ground MDP and M̄ be an abstract MDP. A
grounding function G : S̄ → ∆(S) maps s̄ to probability measures over S of M . Given an abstract
state s̄, we denote by Gs̄ its grounding probability density. We will denote the tuple (M, M̄, G) as a
grounded abstract model.

3.2 The Dynamics Preserving Abstraction

Our goal is to build an abstract model that enables the agent to simulate trajectories as though it
had access to a simulator of the ground model. To achieve this, we establish two key distributions:
the future state distribution and the grounded future state distribution.
Definition 3.4 (Future State Distribution). Let the tuple (M, M̄, G) be a grounded abstract model.
Let the future state distribution be Bt, and defined recursively as follows,

B0(s0) = p0(s0);
Bt(st, ..., s0|o0, ..., ot−1) = T (st|st−1, ot−1)Bt−1(st−1, ..., s0|o0, ..., ot−2);

and the grounded future state distribution B̄t is the estimate obtained by grounding the estimate
obtained by simulating trajectories in the abstract model M̄

P (st, s̄t, ..., s0, s̄0|o0, ..., ot−1) = Gs̄t
(st)T̄ (s̄t|s̄t−1, ot−1)Pt−1(st−1, s̄t−1, ..., s0, s̄0|o0, ..., ot−2);

B̄t(st, ..., s0|o0, ..., ot−1) =
∫

P (st, s̄t, ..., s0, s̄0|o0, ..., ot−1)ds̄0...s̄t;

Hence, we say that when Bt(st, . . . , s0|o0, ..., ot−1) = B̄t(st, . . . , s0|o0, ..., ot−1), then simulating a
trajectory in the abstract model is the same as in the ground model. To satisfy this, we can build an
abstract model based on dynamics-preserving abstractions.3

Definition 3.5 (Dynamics Preserving Abstraction). Let ϕ be a mapping ϕ : S → Z ⊆ Rdz for some
dimension dz ∈ N, typically with dz ≪ ds. If for all o ∈ O and all s ∈ S that are reachable with
probability greater than 0, the following holds,

T (s′|s, o) = T (s′|ϕ(s), o); (1)
Pr(Io = 1|s) = Pr(Io = 1|ϕ(s)); (2)

where, Io is an indicator variable corresponding to the option’s initiation set. Then, we say that ϕ is
dynamics-preserving. That is, the information in ϕ(s) is sufficient to predict the option’s effect and
determine if an option is executable.

This is similar to model-preserving abstractions (Li et al., 2006) and bisimulation (Givan et al., 2003;
Ferns et al., 2004). However, 1) it is stronger in the sense that z must be a sufficient statistic for
next-state prediction, and more importantly, 2) this does not impose a condition over the ground

2The ground MDP would be an SMDP if we used the multi-time model of options (Sutton et al., 1999).
3We defer all proofs to Appendix A.1.
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reward function. Because we want to build an abstract model to be re-used for task-specific rewards
(as we will see in Section 4.3), the ground reward function is considered as a way to measure the cost
(negative reward) of executing a skill—retaining Markovianity with respect to the ground reward
function would limit how much information can potentially be abstracted away.

We will now build a sensible abstract MDP M̄ , as follows. Let ϕ : S → Z be a dynamics-preserving
abstraction. Given that T (s′|s, o) = T (s′|z, o), where ϕ(s) = z, then we can build a transition
function in Z-space, T (z′|z, o), and a grounding function G, that can let us reconstruct T (s′|z, o).

p0(z) =
∫

p0(s)1[ϕ(s) = z]ds;

T (z′|z, o) =
∫

T (s′|z, o)1[ϕ(s′) = z′]ds′;

G(s′|z, o, z′) =
{

p0(s′)1[ϕ(s′)=z′]
p0(z′) if z′is an initial state (there is not previous (z, o))

T (s′|z,o)1[ϕ(s′)=z′]
T (z′|z,o) otherwise

;

Given that just knowing z is not enough to determine its grounding distribution, we can build an
abstract state space S̄ ≜ Z × O × Z of transition tuples—with special values z⊥ and o⊥ to form
s̄0 = (z⊥, o⊥, z0) for initial abstract states. Let s̄ = (ẑ, ô, ẑ′) and s̄′ = (z, o, z′) be two abstract states
in S̄, we define the abstract MDP functions in this new S̄, as follows.

Gs̄(·) = G(·|ẑ, ô, ẑ′);

T̄ (s̄′|s̄, o) =
{

T (z′|z, o) if ẑ′ = z

0 otherwise
;

R̄(s̄, o) = Es∼Gs̄
[R(s, o)] ; τ̄(s̄, o) = Es∼Gs̄

[τ(s, o)] ;

That is, if the tuples corresponding to s̄ and s̄′ are not compatible, we define its transition probability
as 0, and we define the abstract reward and abstract option’s execution length as their corresponding
expected values under the grounding function. Finally, the following theorem formally states that
this construction is sound.
Theorem 3.6. Let the tuple (M, M̄, G) be a grounded abstract model and a function ϕ : S → Z ⊆ Rdz .
The model satisfies that Bt(· | o0, ..., ot−1) = B̄t(· | o0, ..., ot−1) if and only if ϕ is dynamics-preserving.

This theorem states that if we learn a dynamics-preserving abstraction, we can simulate accurate
trajectories in the abstract model. Therefore, planning in the abstract model is accurate, in the
sense, that the value of an abstract state vπ(s̄) computed using the abstract model is the same as
the one would get by generating trajectories in the ground MDP and computing the expected value
under grounding G, Es∼Gs̄ [vπ(s)]].
Corollary 3.7. Let the tuple (M, M̄, G) be a grounded abstract model. If the dynamics preserving
property holds then the value of policy π computed in abstract model M̄ satisfies that vπ(s̄) =
E[vπ(s)|s ∼ Gs̄]. That is, the grounded abstract model preserves the expected value under the
grounding G.

Proof. Given that we have that, by definition, T (s′|s, o) = T (s′|s̄, o) = Es̄′∼T̄ (·|s̄,o)[Gs̄′(s)]. It follows
that

Es∼Gs̄
[vπ(s)] = Es∼Gs̄

[
Eo∼π

[
R(s, o) + Es′∼T (s′|s,o) [γτ vπ(s′)]

]]

= Eo∼π

[
Es∼Gs̄

[R(s, o)] + Es∼Gs̄,s′∼T (s′|s,o) [γτ vπ(s′)]
]

= Eo∼π

[
R̄(s̄, o) + Es̄′∼T̄ (·|s̄,o)Es′∼Gs̄ [γ̄vπ(s′)]

]

= Eo∼π

[
R̄(s̄, o) + Es̄′∼T̄ (·|s̄,o) [γ̄vπ(s̄′)]

]
= vπ(s̄).
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The Skills to Symbols framework (Konidaris et al., 2018) introduces the strong subgoal property to
build grounded discrete symbols for sound classical planning. The next corollary proves that the
strong subgoal is a special case of the dynamics preserving property when the appropriate abstraction
function has finite co-domain. Therefore, we can build discrete dynamics preserving models if and
only if the strong subgoal property holds.
Corollary 3.8. Let the tuple (M, M̄, G) be a grounded abstract model. Let the strong subgoal property
(Konidaris et al., 2018) for an option o be defined as, Pr(s′|s, o) = Pr(s′|o). The dynamics preserving
property holds with a finite abstract state space Z = [N ] for some N ∈ N if and only if the strong
subgoal property holds.

4 Learning the Abstract Model

4.1 Information Maximization to Learn a Dynamics-Preserving ϕ

The mutual information (MI) between random variables X and Y , MI(X; Y ), measures the infor-
mation that each variable holds about the other. We are interested in finding a function ϕ that is
dynamics-preserving such that we can build our abstract MDP. By Definition 3.5, we want to learn
ϕ(s) that is maximally predictive of the effect of o when executed in s and to predict if option o is
executable. That is, we want to maximize the following:

max
ϕ∈Φ

MI(S′, I; ϕ(S), O) ≡ max
ϕ∈Φ

MI(S′; ϕ(S), O) + MI(I; ϕ(S)), (3)

where Φ is a class of functions that map the high-dimensional ground states to lower-dimensional
space. I is binary random variable for the initiation set prediction. S′, S, O are random variables
over the ground states S and the options set O.

In general, by the data processing inequality, MI(S′; ϕ(S), O) is upper-bounded by MI(S′; S, O).
Therefore, we can show that optimizing the above objective results in a bounded value loss when
using the abstract model to plan. To see this, we first note that by compressing through ϕ, we
lose information ∆MI ≜ MI(S′; S, O)−MI(S′; Z, O), where Z = ϕ(S), in the transition dynamics
simulation. We show that,

∆MI
(a)= Ep(s)

[
DKL

(
T (s′|s, o)||T̃ (s′|z, o)

)] (b)
≥ 2 ln 2 · Ep(s)

[
∥T (s′|s, o)− T̃ (s′|z, o)∥2

1
]

.

where p(s) is a distribution over s that will depend on the data collection policy and (a) follows from
the definition of the KL divergence and (b) from the well-known bound relating the KL divergence
and L1 norm4. Therefore, the error in the learned transition dynamics is minimized by our objective
and this implies, by the following theorem, that this objective also minimizes the value loss resulting
from the approximation.
Theorem 4.1 (Value Loss Bound). Let (M, M̄, G) be a grounded abstract model and T̃ (s′|s̄, o) =∫

Gs̄′(s′)T̄ (s̄′|s̄, o)ds̄′ be the approximate transition dynamics from the grounded model. If the following
conditions hold for all o ∈ O and all s ∈ S with Gs̄(s) > 0: (1) ∥T (s′|s, o)− T̃ (s′|s̄, o)∥2

1 ≤ ϵT , and
(2)|R(s, o)− R̄(s̄, o)|2 ≤ ϵR; then, for any policy π,

|Qπ(s, o)−Qπ(s̄, o)| ≤
√

ϵR + γVMax
√

ϵT

1− γ
.

4.2 Contrastive Abstract Model Learning

We maximize the previous Infomax objective (3) as follows. The term MI(I; Z) reduces to a
cross entropy loss, so we will focus on estimating the term MI(S′; Z, O): we can prove that
maximizing both sides of the identity MI(Z ′; Z, O) = (MI(S′; Z ′) −MI(S′; Z ′|Z, O)) implicitly

4DKL(P, Q) ≥ 2 ln 2 · ∥P −Q∥2
1
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maximizes MI(S′; Z, O) (see extended derivation details in Appendix A.2). Intuitively, the first
term MI(Z ′; Z, O) makes z′ predictable from knowing the option executed and the previous z. The
second term avoids collapsing ϕ to a trivial solution: maximizing MI(S′; Z ′) −MI(S′; Z ′|Z, O)
makes ϕ retain information about the ground state s (avoiding collapse of the representation) that is
maximally predicted by the previous (z, o).

Algorithm 1 Planning and Learning with an Ab-
stract Model
Require: Agent π, Ground Environment M,

Abstract Model M̄ , Goal G
1: Initialize dataset D by rolling out N trajecto-

ries
2: M̄ ← PretrainAbstractMDP(D)
3: M̄ ← MakeTaskMDP(M̄ , G)
4: while true do
5: D ← Roll out for L steps.
6: if H steps have passed then
7: M̄ ← TrainModel(M̄ ,D)
8: π ← TrainAgentImagination(M̄ , π)
9: end if

10: end while

We choose to maximize these mutual informa-
tion terms contrastively using InfoNCE (Oord
et al., 2018) to avoid making assumptions about
tractable density models (other MI estimators
(Poole et al., 2019; Alemi et al.; Belghazi et al.,
2018) can be used). Using these estimators
allows the model to implicitly learn complex
grounding functions that improve the quality of
the abstract state space. Note that by using
InfoNCE for the terms above, this algorithm cor-
responds to Temporal Predictive Coding (TPC;
Nguyen et al. (2021)) which proposes abstract
states without reconstruction objectives. There-
fore, our formulation corresponds to the TPC
algorithm in the degenerate case of options being
the primitive actions.5

In practice, we assume that we have ac-
cess to a dataset of transition samples D =
{(si, oi, rγ

i , s′
i, τi, Ii)}N

i=1 that correspond to the execution of option oi from state si, terminating in
s′

i with a duration of τi and accumulated return rγ
i =

∑τi−1
t=0 γtrt. Ii corresponds to the initiation

sets of all options in state si. This dataset might be initialized by rolling out trajectories with a
random agent and further enhanced during the agent’s learning (see Algorithm 1).

We propose to learn the abstract model Mϕ
θ = (T ϕ

θ , Rθ, Iϕ
θ , τθ) based on the abstraction ϕ parameter-

ized by a function approximator fϕ. Notice, that because we need to guarantee good initiation sets
by MI(I; ϕ(S)), the initiation set loss also affects the learning of fϕ:

Lϕ = −MIϕ(Z ′; Z, O)−MIϕ(S′; Z ′);
LI

θ,ϕ = − log Iϕ
θ (Ii|fϕ(si));

LT
θ,ϕ = − log T̄θ(fϕ(s′

i)|fϕ(si), oi);

Therefore, Lϕ, LI
θ,ϕ and LT

θ,ϕ are used to learn the abstraction function fϕ. Moreover, to compensate
for any imbalances in the data, we use a weighted negative log-likelihood loss for the initiation loss to
learn an initiation classifier to be used during planning. To learn the rest of the model, we consider
fϕ fixed and minimize the following losses and consider samples of the form (si−1, oi−1, si, oi, rγ

i , τi)
which can be obtained by slicing trajectories appropriately. We map them considering fϕ and
minimize the following,

LR
θ = (Rθ(zi−1, oi−1, zi, oi)− rγ

i )2; Lτ
θ = (τθ((zi−1, oi−1, zi, oi)− τi)2;

Finally, we minimize Lθ,ϕ = βinfoLϕ + βILI
θ,ϕ + βTLT

θ + βRLR
θ + βτLτ

θ . In our experiments, all
constants were βinfo = βI = βT = βR = βτ = 1.

4.3 Goal-based Planning with an Abstract Model

Consider a goal set G ⊂ S and Gϕ ⊂ Z, its mapping to Z. In order to define the task MDP MG
(Algorithm 1, Line 3) for the agent to plan in, we define the task reward function for abstract state

5Extended discussion in Appendix A.2
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(a) Pinball (b) Medium Antmaze

Figure 3: MI matrix: ground features s are in the vertical axis and abstract features z are in the
horizontal axis. High MI (first two rows) corresponds to the position of the ball or the ant.

s̄ = (ẑ, ô, z) as RG(s̄, o) = Rθ(s̄, o) + Rtask1[z ∈ Gϕ] where Rtask is the goal reward. The first term
can be interpreted as the base cost/reward of executing a skill while the second term indicates to the
agent the task-specific rewarding states. Moreover, we augment the transition dynamics and set all
z ∈ Gϕ as terminating states by setting T̄G(zdone|z, o) = 1[z ∈ Gϕ]. The agent uses the task MDP M̄G
to simulate trajectories and improves its policy (Algorithm 1, Line 8) and it can rollout the policy in
the environment to collect new data (Algorithm 1, Line 7) that further improves the abstract model.

5 Experiments

Pinball environment (Konidaris and Barto, 2009) This domain has a continuous state space
with position vector (x, y) ∈ [0, 1]2 and velocities (ẋ, ẏ) ∈ [−1, 1]2. As opposed to its original
formulation, we consider a variant with continuous actions that decrease or increase the veloc-
ity by ∆(ẋ, ẏ) ∈ [−1, 1]2. Moreover, we also consider the top view pixel observation of the
environment as the agent’s observation. As options, we handcrafted position controllers imple-
mented as PID controllers that move the ball in the coordinate directions by a fixed step size.

Figure 2: Medium Antmaze. 2D MDS projec-
tion of the learned ϕ: it learns to represent the
position in the maze. The average grounding shows
possible configurations of the ant joints when it is
in the represented position.

Antmaze We consider the problem of control-
ling a Mujoco (Todorov et al., 2012; Fu et al.,
2020) Ant to navigate through a maze. The state
space is a 29-dimensional vector that contains
the position of the ant in the maze and the ant’s
proprioception. We consider the Medium Play
maze as defined by Fu et al. (2020). We use
8 options learned using TD3 (Fujimoto et al.,
2018) that move the ant in the coordinate direc-
tions (north, south, east, west and the diagonal
directions) in the maze by a fixed step size.

5.1 Abstract State Space Preserves
Relevant Information for Planning

Our main hypothesis is that abstract actions
drive state abstraction because the information
needed to plan with a structured option set will
be less than the ground perception space of the
agent. To quantify this, we measure the infor-
mation contained in the abstract state space about the ground features by estimating the MI using
non-parametric methods based on k-nearest neighbors (Kozachenko and Leonenko, 1987). We use
Scikit-learn implementation (Pedregosa et al., 2011). In Figure 3a, we show the MI matrix between
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Pinball’s ideal features (position and velocities) and the learned features from the pixel observations.
For Antmaze (Figure 3b), we purposely over-parameterized the abstract space to give enough capacity
to learn the full observation, if necessary. However, we can see that features that are not necessary
for planning with the skills are effectively abstracted away. In the case of Pinball only the first two
dimensions corresponding to the ball position have high MI. In the Antmazes, similarly, the first 7
dimensions have the highest MI which corresponds to position in the maze (first two dimensions)
and orientation of the ant’s torso. Qualitatively, we can visualize the learned abstract state space
using Multidimensional Scaling (MDS; Borg and Groenen (2005)). Figure 2 shows the abstract state
space learned for the Antmaze and it reveals the pattern of the coordinate positions of the ant in the
maze. Additionally, we show grounded observations that correspond to an abstract state: the ant at
the represented position in the maze with many different configurations of the joints and torso.

5.2 Planning with an Abstract MDP

To evaluate the effectiveness of these models for multiple goal-based tasks, we pretrained abstract
models and use them to plan in imagination using Double DQN (Van Hasselt et al., 2016): the
DDQN agent rolls out imagined trajectories to improve its policy and then rolls it out in the ground
environment to collect new data that is used to learn the task reward function (we keep fix the rest
of the model). As our baseline, we use DDQN tuned to learn a policy with the same options but
interacting with the ground MDP. In Figure 4, we show learning curves (success rate vs. ground
environment steps) averaged over different goals and seeds. The error areas represent one standard
deviation.

For the pinball domain we use pixel observations as input. In Figure 4a, we compare learning curves
averaged over 8 goals and 5 seeds where the gray area represent the number of samples used for
pretraining phase of the model. These curves show that planning in the abstract model achieves
similar performance to the same agent learning directly in the ground MDP which showcases the
gain obtained in terms of sample efficiency.

Figure 4b shows an analogous plot for Antmaze (9 goals and 5 seeds). In this domain we provide
additional results for state-of-the-art model-based RL methods: DreamerV2 and DreamerV3 (Hafner
et al., 2021; 2023). These methods have been shown to work in diverse domains by building (discrete)
latent states based on reconstruction losses. However, their performance is limited in comparison
to our abstract model: (1) notice that after the gray area our abstract model collects data only to
improve the goal reward prediction, whereas the baselines continuously collect data that further
improves their models which shows the sample efficiency afforded by our skill-driven abstraction, and
(2) our simple DDQN agent learns faster in imagination that the more sophisticated planning agents
of the baselines.

(a) Pinball (b) Antmaze

Figure 4: Planning with an abstract model. Success rate v. Environment steps averaged over goals
and 5 seeds. The gray area represents the offset for the steps needed to pre-train the model.
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6 Related Works
Grounded Classical Planning Konidaris et al. (2018) present a skill-driven method for constructing
PDDL predicates (Fox and Long, 2003; Younes and Littman, 2004) for classical planning. This
family of work formally bridges the options framework to classical planning, and recent work have
extended this framework to work with portable skills (James et al., 2020) and object-centric skills
(James et al., 2022), and to ground natural language in robotics (Gopalan et al., 2017). Importantly,
this framework offers guarantees that the learned grounded symbols support sound planning. A
related body of work bridges deep learning with classical planning. Asai and Fukunaga (2018); Asai
(2019); Asai et al. (2022) learn abstract binary representations to ground PDDL predicates and action
operators from complex observations. Similarly, Ugur and Piater (2015a;b) approach the grounding
problem by clustering action effects to create discrete symbols for planning, and Ahmetoglu et al.
(2022) extends this approach to leverage deep learning methods. While these approaches manage to
empirically work with complex observations, they do not offer formal guarantees that the symbols
learned are sufficient for planning. Our approach, while not applied to classical planning, generalizes
abstract state learning to continuous cases, it is compatible with the deep learning toolbox and it is
theoretically principled.

Model-based RL and State Abstractions Learning MDP models from experience has been
extensively studied (Sutton, 1991; Deisenroth and Rasmussen, 2011) for their benefits in generalization,
sample efficiency, and knowledge transfer. Recent successful approaches use deep networks to handle
complex observations spaces and long-term reasoning (Krishnan et al., 2015; Ha and Schmidhuber,
2018; Silver et al., 2018; Gregor et al., 2018; Buesing et al., 2018; Zhang et al., 2019; Hansen et al.,
2022; 2023). An important challenge of this approach is learning an effective abstract state space
and, most of them, have focused in learning abstract representations of complex observations based
on reconstruction losses (Gregor et al., 2018; Buesing et al., 2018; Zhang et al., 2019; Hafner et al.,
2019; 2021; 2023). In contrast, recent approaches have moved away from this idea and focused in
minimal abstract state spaces relevant for acting such as value prediction (Silver et al., 2018; Grimm
et al., 2020; Yue et al., 2023), Markov states (Gelada et al., 2019; Zhang et al., 2020; Allen et al.,
2021; Nguyen et al., 2021), and controllability (Lamb et al., 2022). In fact, many of these explicitly
use information maximization and information bottleneck approaches that are theoretically justified
by our work.

From a theoretical point of view, there is extensive research to characterize the types of state
abstractions (or state aggregation) (Li et al., 2006; Ferns et al., 2004; Castro and Precup, 2010) that
are useful for RL. More recent work characterizes approximate state abstractions (Abel et al., 2016;
2018) that guarantee bounded value loss and the type of options that are compatible with a given
state abstraction to guarantee value preservation (Abel et al., 2020).

Temporally-extended Models MDP models with skills have been recently considered in skill
discovery research. Some work approach the problem assuming that the abstract state space is a
graph and options are learned to reach the initiation set of another option (Bagaria and Konidaris,
2020; Bagaria et al., 2021a;b). Hafner et al. (2022) approaches the problem by building on the
Dreamer algorithm (Hafner et al., 2019; 2021; 2023) and discover goals by abstracting over the learned
abstract state. Similarly, Nair and Finn (2019) use generative models for subgoal generation and
skill learning, and plan with a learned model in observation space. Other approaches learn forward
dynamics models for skills discovered from an offline set of trajectories but do not abstract the state
based on these skills (Freed et al., 2023; Shi et al., 2023; Zhang et al., 2023). While our method
assumes that the options are given, it does not impose discrete constraints to the abstract state
space, does not need to model the state dynamics at the finest time step, and it builds a principled
abstract state space.

7 Conclusion

We introduce a method for learning abstract world models, designed to have agents with effective
planning capabilities for goal-oriented tasks. Our core premise is that an agent must be capable of
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building a reusable abstract model for planning with a given skill set. We do this in a principled
manner by characterizing the state abstraction that guarantees that planning in simulation guarantees
bounded value loss. In other words, planning with a learned abstract model is sufficient to compute
a policy for the real-world environment.
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A Appendix

A.1 Proofs

Theorem A.1. Let the tuple (M, M̄, G) be a grounded abstract model and a function ϕ : S → Z ⊆
Rdz . The model satisfies that Bt(· | o0, ..., ot−1) = B̄t(· | o0, ..., ot−1) if and only if ϕ is dynamics
preserving.

Proof. Let ϕ−1(z) = {s ∈ S | ϕ(s) = z}. We construct T̄ and G such that it satisfies that,

T̄ (z′|z, o) =
∫

s′∈ϕ−1(z′)
T (s′|z, o)ds′;

G(s′|z, o, z′) = T (s′|z, o)1[ϕ(s′) = z′]
T̄ (z′|z, o)

If the dynamics preserving property holds, we have that there exists a mapping ϕ such that
T (s′|s, o) = T (s′|ϕ(s), o). Hence, by defining that abstract state as s̄ = (z, o, z′), we can build the
grounded abstract model such that it follows that Bt = B̄t, by construction.

To prove the converse, we assume that Bt = B̄t.

Hence, by construction, we have that P (st, ..., s0|o0, z0, ..., ot−1, zt−1) =
∏

t P (st|o0, z0, ..., ot−1, zt−1).
Therefore, we have that

B̄t(st, ..., s0|o0, ..., ot−1) =
∫ t∏

i=0
P (si|o0, z0, ..., oi−1, zt−1)P (zi, ..., z0|o0, ..., oi−1)dz0...zt

=
∫ t∏

i=0
P (si|zi, oi−1)P (zi, ..., z0|o0, ..., oi−1)dz0...zt

=
∫ t∏

i=0
G(si|zi−1, oi−1, zi)P (zi, ..., z0|o0, ..., oi−1)dz0...zt

=
t∏

i=0

∫
G(si|zi−1, oi−1, zi)P (zi, zi−1|o0, ..., oi−1)dzizi−1

=
t∏

i=0

∫
G(si|zi−1, oi−1, zi)T̄ (zi|zi−1, oi−1)P (zi−1|o0, ..., oi−2)dzizi−1

=
t∏

i=0

∫
T̃ (si|zi−1, oi−1)P (zi−1|o0, ..., oi−2)dzi−1

Bt(st, ..., s0|o0, ..., ot−1) = p0(s0)
t∏

i=1
T (si|si−1, oi−1)

=
t∏

i=1
T (si|si−1, oi−1)P (si−1|o0, ..., ot−2)

Hence, we must have that for all si−1 ∈ zi−1 and all i ∈ [t] and t ≥ 0

∫
T (si|si−1, oi−1)P (si−1|o0, ..., ot−2)dsi−1 =

∫
T̃ (si|zi−1, oi−1)P (zi−1|o0, ..., oi−2)dzi−1

1748



RLJ | RLC 2024

That is,
{

P (s0) = p0(s0) =
∫

G(s|z0)p0(z0)ds for t = 0
P (s1|o0) =

∫
T (s1|s0, o0)p0(s0)ds0 =

∫
T̃ (s0|z0, o0)p0(z0)dz0 for t = 1

By definition, t = 0 holds. For t = 1, we have

P (s1|o0) =
∫

T (s1|s0, o0)p0(s0)ds0

=
∫

T (s1|s0, o0)G(s0|z0)p0(z0)dz0ds0

=
∫

T̃ (s1|z0, o0)p0(z0)dz0

which follows from the equation at t = 0. Hence, it must be true that for any s0 ∈ ϕ−1(z0), for any
z0 with p0(z0) > 0.

T̃ (s1|z0, o0) =
∫

T (s1|s0, o0)G(s0|z0)ds0

We can see that for any s0 ∈ ϕ−1(z0) such that T (s1|s0, o0) ̸= T̃ (s1|z0, o0), the abstract model would
commit a non-zero error in its prediction. Hence, it must be that T (s1|s0, o0) = T̃ (s1|z0, o0) for
s0 ∈ ϕ−1(z0).

Let the equations at time t = i− 1 and t = i− 2 hold, then

P (si|o0, ..., oi−1) =
∫

T (si|si−1, oi−1)pi−1(si−1|o0, ...oi−2)dsi−1

=
∫

T (si|si−1, oi−1)T̃ (si−1|zi−2, oi−2)pi−2(zi−2|o0, ..., oi−3)dsi−1dzi−1dzi−2

=
∫

T (si|si−1, oi−1)G(si−1|zi−2, oi−2, zi−1)T̄ (zi−1|zi−2, oi−2)pi−2(zi−2|o0, ..., oi−3)dsi−1dzi−1dzi−2

=
∫

T̃ (si|zi−1, oi−1)pi−1(zi−1|o0, ..., oi−2)dzi−1

Because pi−1(zi−1|o0, ..., oi−2) =
∫

T̄ (zi−1|zi−2, oi−2)pi−2(zi−2|o0, ..., oi−3)dzi−2 hold by construction
of the abstract MDP, we need the following to hold.

T̃ (si|zi−1, oi−1) =
∫

T (si|si−1, oi−1)G(si−1|zi−2, oi−2, zi−1)dsi−1. (4)

Therefore, as in the base case, we need that T̃ (si|zi−1, oi−1) = T (si|si−1, oi−1) for all si−1 ∈ ϕ−1(zi−1)
that have G(si−1|zi−2, oi−2, zi−1) > 0. Then, ϕ must be dynamics preserving.

Corollary A.2. Let the tuple (M, M̄, G) be a grounded abstract model. Let the strong subgoal
property (Konidaris et al., 2018) for an option o be defined as, Pr(s′|s, o) = Pr(s′|o). The dynamics
preserving property holds with a finite abstract state space Z = [N ] for some N ∈ N if and only if the
strong subgoal property holds.
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Proof. If the strong subgoal property holds, we have that Pr(s′|s, o) = Pr(s′|o). Then, for any
function ϕ : S → Z, it holds that P (s′|ϕ(s), o) = P (s′|s, o).

Therefore, it is only important to be able to know if a given option is executable in a given abstract
state. Therefore, we can construct the function IO(s) = [I0(s), ..., I|O|(s)] that returns a binary
vector that indicates which options are executable in s.

Define the equivalence relation s0 ∼O s1 iff IO(s1) = IO(s2). We can define the abstract state space
as Z ≜ S/ ∼O, that is, the set of equivalent classes. Given that there at most 2|O| ∈ N classes, then
the abstract MDP is finite.

We assume that the dynamics preserving property holds and that the abstract state space Z is
finite to prove the converse. Then, there exists ϕ : S → Z such that P (s′|ϕ(s), o) = P (s′|s, o) and
P (Io = 1|s) = P (Io = 1|ϕ(s)).

We can construct a factored ϕ(s) = [ϕD(s), ϕI(s)], such that, P (s′|ϕ(s), o) = P (s′|ϕD(s), o) and
P (Io = 1|ϕ(s)) = P (Io = 1|ϕI(s)).

If we define ϕI based on the function IO, as before, then ϕI maps to a set of at most 2|O| elements.
As Z = ZD ×ZI is finite, then ZD is also finite. Thus, we construct ZD = [M ] and for each option o
and equivalence class m ∈ [M ] options from each option o such that Pr(s′|om) ≜ Pr(s′|m, o). Then,
the strong subgoal property holds for every om.

Proposition A.3. Let ϕ be a dynamics-preserving abstraction and s̄ = (ẑ, ô, z). For ϵ > 0, if
∥Gz(s)−Gs̄(s)∥2

1 ≤ ϵ, then there exists ϵT > 0 and ϵR > 0 such that ∥T (s′|s, o)− T̃ (s′|z, o)∥2
1 ≤ ϵT

and ∥R(s, o)− R̃(z, o)∥2
1 ≤ ϵR.

Proof. First, we prove that the bounded grounding error implies bounded transition distribution error.
If ϕ is a dynamics abstraction, then we can learn T̃ (z′|z, o) and we have that T (s′|s, o) = T (s′|z, o) =∫

Gs̄(s)T̄ (z′|z, o)dz′ and its corresponding approximation T̃ (s′|z, o) =
∫

Gz′(s)T̄ (z′|z, o)dz′

∥T (s′|s, o)− T̃ (s′|z, o)∥1 =
∣∣∣∣
∫ (

G′
s̄(s)T̄ (z′|z, o)−Gz′(s)T̄ (z′|z, o)

)
dz′

∣∣∣∣

≤
∫

T̄ (z′|z, o)|Gs̄′(s)−Gz′(s)|dz′ds

≤ √ϵ

Analogously, we can bound the error of the reward function.

∥R̄(z′, o)− R̃(z′, o)∥1 =
∣∣∣∣
∫

Gs̄′(s)R(s, o)ds−
∫

Gz′(s)R(s, o)ds

∣∣∣∣

≤
∫
|Gs̄′(s)−Gz′(s)| |R(s, o)| ds

≤ RMax

∫
|Gs̄′(s)−Gz′(s)| ds

≤ RMax
√

ϵ

Then, it follows from Minkowski’s inequality that

∥R(s, o)− R̄(z′, o)∥1 = ∥R(s, o)− R̃(z′, o) + R̃(z′, o)− R̄(z′, o)∥1

≤ ∥R(s, o)− R̃(z′, o)∥1 + ∥R̃(z′, o)− R̄(z′, o)∥1

≤ √ϵ + RMax
√

ϵ = √ϵR
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Theorem A.4 (Value Loss Bound). Let (M, M̄, G) be a grounded abstract model and T̃ (s′|s̄, o) =∫
Gs̄′(s′)T̄ (s̄′|s̄, o)ds̄′ be the approximate transition dynamics from the grounded model. If the following

conditions hold for all o ∈ O and all s ∈ S with Gs̄(s) > 0: (1) ∥T (s′|s, o)− T̃ (s′|s̄, o)∥2
1 ≤ ϵT , and

(2)|R(s, o)− R̄(s̄, o)|2 ≤ ϵR; then, for any policy π,

|Qπ(s, o)−Qπ(s̄, o)| ≤
√

ϵR + γV Max
√

ϵT

1− γ
.

Proof. We proceed by induction on Qπ
n(s̄, o), where

vπ
0 (s̄) = Es∼s̄ [vπ(s)] , (5)

Qπ
1 (s̄, o) =

∫

s∈S
P (s) (R(s, o) + γτ vπ

0 (s̄′)) ds, (6)

=
∫

s∈S
P (s)

(
R(s, o) + γτ

∫

s′∈S
T s,o,s′

vπ(s′)ds′
)

ds, (7)

Qπ
i (s̄, o) =

∫

s∈S
P (s)

(
R(s, o) + γτ vπ

i−1(s̄′)
)

ds, (8)

with s̄′ = T (· | s, o). I use P (s) as shorthand for P (s ∼ s̄) and T s,o,s′ for T (s′ | s, o), and let

ϵQ,n =
n∑

i=0

√
ϵR + γi (VMax√ϵT ) . (9)

Base Case: Qπ ≈ Qπ
1 .

Qπ(s, o)−Qπ
1 (s̄, o) (10)

= R(s, o) + γτ

∫

s′
T s,o,s′

vπ(s′)ds′ −
∫

s

P (s) (R(s̄, o)− γτ vπ
0 (s̄′)ds) , (11)

= R(s, o)−R(s̄, o)︸ ︷︷ ︸
≤√

ϵR

+γτ

∫

s′
T s,o,s′

vπ(s′)ds′ −
∫

s

P (s)γτ vπ
0 (s̄′)ds, (12)

≤ √ϵR + γτ

∫

s′
T s,o,s′

vπ(s′)ds′ − γτ

∫

s

P (s)Es′∼s̄′ [vπ(s′)]ds (13)

≤ √ϵR + γτ

∫

s′
T s,o,s′

vπ(s′)ds′ − γτ

∫

s

P (s)
∫

s′
P (s′ ∼ s̄′)vπ(s′)ds′ ds, (14)

≤ √ϵR + γτ

∫

s′
T s,o,s′

vπ(s′)ds′ − γτ

∫

s

P (s)
∫

s′
T s,o,s′

vπ(s′)ds′ ds, (15)

≤ √ϵR + γτ VMax
∫

s′
T s,o,s′ −

∫

s

P (s)T s,o,s′
ds ds′

︸ ︷︷ ︸
≤√

ϵT

, (16)

≤ √ϵR + γτ VMax√ϵT . (17)

This concludes the base case.

Inductive Case: Qπ ≈ Qπ
n =⇒ Qπ ≈ Qπ

n+1. We assume that, for every s ∈ S and any o,

Qπ(s, o)−Qπ
n(s̄, o) ≤ ϵQ,n, (18)

and prove that
Qπ(s, o)−Q∗

n+1(s̄, o) ≤ ϵQ,n+1. (19)

1751



RLJ | RLC 2024

By algebra,

Qπ(s, o)−Qπ
n+1(s̄, o) (20)

= R(s, o) + γτ

∫

s′
T s,o,s′

vπ(s′)ds′ −
∫

s

P (s) (R(s, o) + γτ vπ
n(s̄′)) ds, (21)

= R(s, o)−R(s̄, o)︸ ︷︷ ︸
≤√

ϵR

+γτ

∫

s′
T s,o,s′

vπ(s′)ds′ − γτ

∫

s

P (s)vπ
n(s̄′)ds, (22)

≤ √ϵR + γτ

∫

s′
T s,o,s′

vπ(s′)ds′ − γτ

∫

s

P (s)vπ
n(s̄′)ds, (23)

= √ϵR + γτ

∫

s′
T s,o,s′

vπ(s′)ds′ − γτ

∫

s

P (s) vπ
n(s̄′)︸ ︷︷ ︸

≥Es′∼s̄′ [vπ(s′)]−ϵQ,n

ds, (24)

≤ √ϵR + γτ

∫

s′
T s,o,s′

vπ(s′)ds′ − γτ

∫

s

P (s) (Es′∼s̄′ [vπ(s′)]− ϵQ,n) ds, (25)

= √ϵR + γτ

∫

s′
T s,o,s′

vπ(s′)ds′ − γτ

∫

s

P (s)
∫

s′
T s,o,s′

vπ(s′)ds′ ds + γτ ϵQ,n, (26)

= √ϵR + γτ

∫

s′
T s,o,s′

vπ(s′)ds′ − γτ

∫

s′

∫

s

P (s)T s,o,s′

︸ ︷︷ ︸
=T s̄,o,s′

vπ(s′)ds ds′ + γτ ϵQ,n, (27)

≤ √ϵR + γτ VMax
∫

s′
T s,o,s′ − T s̄,o,s′

ds′

︸ ︷︷ ︸
≤√

ϵT

+γτ ϵQ,n, (28)

≤ √ϵR + γτ VMax√ϵT + γτ ϵQ,n, (29)
≤ √ϵR + γVMax√ϵT + γϵQ,n, (30)
= ϵQ,n+1. (31)

This concludes the inductive case.

Thus, by induction and the convergence of the geometric series, for any s, o, π, we conclude that

Qπ(s, o)−Qπ(s̄, o) ≤
√

ϵR + γVMax√ϵT

1− γ
. (32)

A.2 TPC is Dynamics Preserving

We start by considering that by learning an abstract state space such that MI(S′; Z, O) is maximized.
The following decomposition based on the mutual information chain rule corresponds to the TPC
algorithm (Nguyen et al., 2021). In the original paper, they work at the primitive action level and all
actions available always, hence, there’s no need to consider initiation sets.

MI(S′, Z ′; Z, O) (a)= MI(S′; Z, O) + MI(Z ′; Z, O|S′)︸ ︷︷ ︸
=0

;

(b)= MI(Z ′; Z, O) + MI(S′; Z, O|Z ′)︸ ︷︷ ︸
(1)

;

(c)= MI(Z ′; Z, O) + MI(S′; Z, A)−MI(S′; Z ′) + MI(S′; Z ′|Z, O);
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where (a) follows from the fact that give s′ we can determine z′, (b) follows from decomposing the
term on the left-hand size and (c) from decomposing term (1).

The above implies that MI(Z ′; Z, O) = MI(S′; Z ′)−MI(S′; Z ′|Z, O). Therefore, if we maximize
both sides of this identity, we must have a latent space that preserve only the information of the
state s′ that is predictable from the previous (z, a) pair. MI(Z ′; Z, O) ensures that the next abstract
state is predictable from the (z, o) tuple. MI(S; Z) ensures that the abstract state has information
about the ground state which is measured by g(s|z).

MI(S; O) =
∫

p(s, z) log g(s|z)
p(s) dsdz (33)

The following decomposition shows the two extra terms required by the TPC algorithm to estabilize
the optimization. Term (a) is the (differential) entropy of ϕ which tends to infinity for a deterministic
function. This is solved by smoothing it with Gaussian noise of 0 mean and fixed standard deviation,
as done in TPC. The second term (b) corresponds to the consistency term, that is, the transition
function p(z′|z, a) must have low entropy, which ensures that the abstract dynamics are learnt.

M(S′; Z ′|Z, O) =
∫

p(s′, z′, z, o) log p(s′, z′|z, o)
p(s′|z, o)p(z′|z, o)ds′dz′dzdo

=
∫

p(s′, z′, z, o) log p(z′|s′)
p(z′|z, o)

=
∫

p(s′, z′) log p(z′|s′)ds′dz′

︸ ︷︷ ︸
(a)

−
∫

p(z′, z, o) log p(z′|z, o)dz′dzdo

︸ ︷︷ ︸
(b)

By maximizing MI(Z ′; Z, O) and MI(S′; Z ′) using InfoNCE (Oord et al., 2018), we obtain the TPC
algorithm.

B Experiments

For all our planning experiments we use DDQN (Van Hasselt et al., 2016) modified to consider
initiation sets for action selection and target computation to make it compatible with options. We
use Adam (Kingma and Ba, 2014) as optimizer. As exploration, we use linearly decaying ϵ-greedy
exploration.

B.1 Experiments

B.1.1 Environments

Pinball Domain (Konidaris and Barto, 2009) We use a continuous action variant of the
original environment. The state space s = (x, y, ẋ, ẏ) with (x, y) ∈ [0, 1]2 and (ẋ, ẏ) ∈ [−1, 1]. The
action space is the ball acceleration expressed in the form of ∆(ẋ, ẏ ∈ [−1, 1]2. The layout of the
obstacles is as in the original environment, show in Figure 8. The reward function takes −5 per unit
of acceleration. The discount factor is γ = 0.9997.

Pinball Options Pinball options were designed to the agent in the coordinate dimensions by step
size 0.04. The initiation set are all the position in which the ball would not hit an obstacle by moving
in the desired direction. The termination probability is determined by a Gaussian centered in the
goal position with standard deviation as 0.01. For the policy, we handcrafted PI controllers for the
position with constants Kp = 50 and Ki = 8.
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Figure 5: Pinball from pixels. Ground baseline vs Abstract planning. Each goal learning curve is
averaged over 5 seeds and 1 standard deviation shown in the shaded area of each curve. The gray
area corresponds to the offset that corresponds to samples used to pre-train the model. Although is
shown in every plot, it is common to all goals.
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Figure 6: Medium Play Antmaze. Ground baseline vs Abstract planning. Each goal learning
curve is averaged over 5 seeds and 1 standard deviation shown in the shaded area of each curve.
The gray area corresponds to the offset that corresponds to samples used to pre-train the model.
Although is shown in every plot, it is common to all goals.

Figure 7: U-Maze Antmaze.
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Figure 8: U-Maze Antmaze.

(a) U-Maze (b) Medium Play Maze (c) Pinball Domain

Figure 9: Ground truth visualization of possible positions of the agent in the evaluation Environments

Antmazes We consider the U-Maze and Medium-Play mazes implemented by D4RL (Fu et al.,
2020) with the Mujoco ant. In Figure 9 we show diagrams of the considered mazes. The state space
is S ∈ R29, where the first two dimensions corresponds to the position of the ant in the maze and the
rest is proprioception for the ant controls. The action space is A ⊂ [−1, 1]8 to control the ant joints.

Antmaze Options We consider options that move the ant in the 8 directions (North, South,
East, West, North-East, North-West, South-East, South-West) by a distance of 1 unit. For the
position controller, we train a goal-conditioned policy using Hindsight Experience Replay (HER;
Andrychowicz et al. (2017)) and TD3 (Fujimoto et al., 2018) that would take a goal position in an
drive walk the ant to it. This is generally hard for arbitrary goals given the separation between
the current position and the goal, however, we only needed the policy to become accurate for short
distances, so we sampled initial positions within 1.5 of the desired goal. The goals were sampled
uniformly over the possible positions in the maze. Then we learned the initiation sets as classifiers
were the option execution would be successful. The termination condition is a threshold of 0.5
distance to the goal.

B.1.2 Network Architectures

Pixel Observations As encoder for pixel observation, we use ResNet Convolutional Networks, as
used in Dreamer (Hafner et al., 2021). The ResNet starts with an initial 24 depth and doubles in
depth until reaching the minimal resolution. See Table 1.
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Table 1: ResNet CNN Configuration

Parameter Value
in width 50
in height 50
color channels 1
depth 24
cnn blocks 2
min resolution 4
mlp layers [256, ]
outdim 4
mlp activation silu
cnn activation silu

MLP Architectures For all other models, we use MLPs with the relevant input and output
dimensions. This includes encoder, initiation classifiers, transition function, reward function and
duration. For the reward function we use the symlog transformation (Hafner et al., 2021) and a log
transformation for the option duration network.

Table 2: MLP Configuration

Parameter Value
hidden dims [128, 128]
activation relu

Density Estimation We use mixture of Gaussians with 4 components and Gaussians with diagonal
covariance matrices. We use the reparameterization trick (Kingma and Welling, 2013) to optimize
the mean and variance functions.

B.1.3 Agent Hyperparameters

To train our baseline DDQN agent with the following parameters that we tune by doing grid search
for 5 goal positions and 2 seeds, we use all these parameters to learn for all goals.

Pinball Domain For pixel observations we use the same architecture as described before for the
world model encoder. For simpler observation, we use an MLP as before.

Dreamer Baselines We use the publicly available implementations for the Dreamer baselines.
For the DreamerV2 (Hafner et al., 2021) baseline, we used the hyperparameters recommended for
DeepMind Control environments with (only) proprioception inputs. Instead, for the DreamerV3
(Hafner et al., 2023) baseline we used the recommended hyperparameters.

B.1.4 World Model Hyperparameters
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Table 3: Pinball ground DDQN parameters

Parameter Value
final exploration steps 500000
final epsilon 0.1
eval epsilon 0.001
replay start size 10000
replay buffer size 500000
target update interval 10000
steps 1250000
update interval 5
num step return 1
learning rate 10−5

γ 0.9997

Table 4: Ground DDQN Parameters for the Antmazes

Parameter Value
final exploration steps 350, 000
final epsilon 0.1
eval epsilon 0.001
replay start size 1, 000
replay buffer size 100, 000
target update interval 1, 000
steps 1, 000, 000
update interval 5
num step return 1
learning rate 5× 10−4

γ 0.995

Table 5: U-Maze Imagination DDQN Parameters

Parameter Value
final exploration steps (proportion) 30% of agent training steps
final epsilon 0.1
eval epsilon 0.001
replay start size 1000
replay buffer size 100000
target update interval 10000
update interval 5
num step return 1
learning rate 1× 10−4

rollout length 100

Table 6: World Model Parameters

Parameter Value
buffer size 100, 000
batch size 16
learning rate 1× 10−4

train every 8
max rollout length 64
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Abstract

In recent years, Deep Reinforcement Learning (DRL) has emerged as an effective
approach to solving real-world tasks. However, despite their successes, DRL-based
policies suffer from poor reliability, which limits their deployment in safety-critical
domains. Various methods have been put forth to address this issue by providing
formal safety guarantees. Two main approaches include shielding and verification.
While shielding ensures the safe behavior of the policy by employing an external
online component (i.e., a “shield”) that overrides potentially dangerous actions,
this approach has a significant computational cost as the shield must be invoked
at runtime to validate every decision. On the other hand, verification is an offline
process that can identify policies that are unsafe, prior to their deployment, yet,
without providing alternative actions when such a policy is deemed unsafe. In this
work, we present verification-guided shielding — a novel approach that bridges the
DRL reliability gap by integrating these two methods. Our approach combines both
formal and probabilistic verification tools to partition the input domain into safe
and unsafe regions. In addition, we employ clustering and symbolic representation
procedures that compress the unsafe regions into a compact representation. This, in
turn, allows to temporarily activate the shield solely in (potentially) unsafe regions,
in an efficient manner. Our novel approach allows to significantly reduce runtime
overhead while still preserving formal safety guarantees. We extensively evaluate
our approach on two benchmarks from the robotic navigation domain, as well as
provide an in-depth analysis of its scalability and completeness.

1 Introduction

Deep reinforcement learning (DRL) is gaining popularity due to its recent success in solving complex
decision-making problems across various domains and settings (Mnih et al., 2013; Kober et al., 2013;
Rolf et al., 2023; Karamzade et al., 2024). However, upon formal and rigorous analysis, even policies
generated by state-of-the-art algorithms exhibit a significant drawback: they can not ensure the
correctness of the DRL policy for every possible input (Katz et al., 2019b; Corsi et al., 2021). This
limitation hinders the full integration of DRL agents in safety-critical scenarios, such as autonomous
navigation systems (Tai et al., 2017), robotic controllers (Aractingi et al., 2023), healthcare (Pore
et al., 2021), and decision support in regulated industries (Singh et al., 2022) in which even a
single mistake can have dire consequences. This setback emphasizes the need for ensuring the
absolute compliance of DRL policies with user-specified safety and behavioral requirements (Ray
et al., 2019; Ma et al., 2024). To this end, the DRL community has recently made significant

∗Both authors contributed equally.
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efforts to generate more reliable agents. These attempts include online training methods such as
constrained optimization (Yang et al., 2022a; Zhang et al., 2020) and safe exploration (Simão et al.,
2021; Kamran et al., 2022). However, despite promising results, these approaches are heuristic in
nature and are unable to guarantee the absolute correctness of the DRL policy in question. This
limitation is observed even when the policy is generated with state-of-the-art algorithms, and for
performing relatively simple tasks (Corsi et al., 2024).

An alternative family of approaches tackles the DRL safety problem from a different perspective, by
decoupling the safety requirements from the training procedure. These techniques typically involve
a formal analysis of the neural network function or the integration of various types of domain
expert knowledge into the policy. Two of the most promising approaches in this context are formal
verification (Liu et al., 2019) and shielding (Bloem et al., 2015). Unlike training-based methods, these
techniques are indeed able to provide rigorous guarantees, but they suffer from various limitations.
Formal verification, for example, is computationally hard (Katz et al., 2017), and its applicability
to various use cases is thus limited (e.g., it is not clear how to verify large language models). In
addition, formal verification tools typically return a binary answer, indicating whether the safety
requirement holds or not, without providing any alternative solution when the latter occurs, and the
policy is deemed unsafe. On the other hand, shielding techniques introduce an external component
(i.e., a “shield”), that can override the original unsafe decisions, hence providing a safe action when
encountering an unsafe input. However, although shielding affords safety certifications, there is still
no guarantee that the proposed action is optimal (Alshiekh et al., 2018) and, crucially, the external
shield must be invoked in every time step, resulting in significant overhead. This issue is critical,
because in many real-time applications such an overhead may be infeasible in practice.

In this work, we begin bridging this gap, and present verification-guided shielding, a novel method
that combines both these aforementioned techniques. Our approach consists of two main stages.
First, we employ a combination of different formal methods to identify all the regions in the input
space where the agent is guaranteed to behave correctly. In these regions, we can rely on the original
policy, without invoking the external shield to validate the agent’s decisions (we note that this is
possible only due to the rigorous guarantee provided by the formal verification process). Then, in
the remaining (unsafe) input region, we activate the shield, which can potentially override the unsafe
decision, when encountered. Our approach significantly reduces the overall overhead of “traditional
shielding”, while still preserving the formal guarantees regarding the policy’s safety. Implementing
our approach poses several challenges, ranging from scalability to the soundness of the algorithm,
which we thoroughly analyze in the following sections. Finally, to demonstrate the effectiveness of
our approach, we extensively evaluate it on two popular DRL benchmarks: (i) Particle World,
where an agent is trained to navigate in a two-dimensional grid, and (ii) Mapless Navigation, a
real-world task in robotics, where a robot learns to navigate in an unknown arena and reach a given
target (Pore et al., 2021; Corsi et al., 2021). We use expressive shields for such tasks (Rodriguez
et al., 2024).

The rest of the paper is organized as follows. Sec. 2 contains background on safe DRL, formal
verification, and shielding. We formalize our problem in Sec. 3. In Sec. 4, we present our novel
method for verification-guided shielding, and empirically evaluate it in Sec. 5. Related work is
covered in Sec. 6, and we conclude in Sec. 7.

2 Preliminaries

Deep reinforcement learning algorithms typically aim to optimize the expected cumulative reward,
which represents the main objective of the agent (Sutton & Barto, 2018). However, in safety-critical
tasks, it is common to introduce an additional function that represents the safety constraints that
should be met as part of the optimization process. Finding a successful policy under these multiple
objectives has emerged as a challenging problem (Ma et al., 2024). Moreover, it is important to note
that DRL training algorithms are designed to fulfill requirements only in expectation, without any
formal guarantee on the behavior of the policy during deployment.
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2.1 Formal Verification

In recent years, various methods have been put forth to formally verify the correctness of deep
neural networks (DNNs). These approaches rigorously verify whether a given DNN adheres to a
safety specification, for every possible input. More formally, the DNN verification problem (Katz
et al., 2017) is defined as follows:
Definition 1 (The DNN-Verification Problem).

Input: R = ⟨N ,P,Q⟩, where N is a DNN, P is a precondition on the DNN’s inputs, and Q is a
postcondition on the DNN’s outputs.
Output: SAT if ∃ x | P(x) ∧Q(N (x)), and UNSAT otherwise.

The precondition P usually encodes domain-specific knowledge on the input space, e.g., it can limit
the inputs to represent a specific dangerous situation. The postcondition Q encodes the negation
of the desired behavior when the agent’s current state belongs to P. Hence, when a verification
algorithm (the “verifier”) answers UNSAT, i.e., that there does not exist a satisfying assignment, this
indicates that the DNN behaves correctly on all inputs in our domain of interest. On the other hand,
when the verification algorithm returns SAT, this indicates that a satisfying assignment is found, and
at least a single input x adheres to P(x)∧Q(N (x)), and triggers the unwanted behavior. The DNN
verification problem is computationally hard and has been proven to be NP-complete (Katz et al.,
2017), hence, such techniques are usually applied only in safety-critical tasks, in which the safety of
the DRL in question must be rigorously guaranteed, and classic testing techniques are inadequate.

DNN Verification Example. DNN verification can be employed in many real-world problems.
For instance, it has been shown that DNNs are susceptible to adversarial inputs, i.e., small input
perturbations that can cause even the best DNNs to fail miserably (Szegedy et al., 2013; Huang et al.,
2017a; Ma et al., 2020; Ferhat & Yildirim-Yayilgan, 2020; Gongye et al., 2020). The resilience, or
robustness, of a DNN to such perturbations can directly be assessed using off-the-shelf verifiers (Tjeng
et al., 2017; Zhang et al., 2018; Gopinath et al., 2018; Casadio et al., 2022) by encoding as a
precondition an ϵ-ball around a given input x (P(x) := x ∈ Bϵ(x)), and as a postcondition a case
in which the DNN misclassifies a given input x′ ∈ Bϵ(x). In the context of deep reinforcement
learning, the verified properties are typically safety constraints, that are also encoded (by domain
experts) as input-output relations. For additional details, see Appendix D.

2.2 LTL Synthesis and Shielding

Linear temporal logic (LTL) is a type of logic pertaining to modalities referring to linear time (Pnueli,
1977; Manna & Pnueli, 1995). In LTL, it is possible to encode formulae regarding the various states
and actions throughout multiple time-steps, e.g., there are no three consecutive states in which a
given action is chosen. More formally, the LTL syntax is recursively defined as follows:

φ ::= ⊤
∣∣ a

∣∣ φ ∨ φ
∣∣¬φ

∣∣φ
∣∣φ

∣∣ φ U φ,

where a ∈ AP is an atomic proposition, {∧,¬} are the common Boolean operators of conjunction and
negation, respectively, and {,U ,} are the next, until and always temporal operators, respectively.
Reactive LTL synthesis (Piterman et al., 2006; Thomas, 2008) is the task of automatically producing
a system that satisfies a given LTL specification φ, where atomic propositions in φ are split into
variables assigned by an uncontrollable environment (input variables I) and variables assigned by
a controllable system (output variables O). We refer the reader to Appendix B for an in-depth
description of LTL semantics and synthesis.

DRL Shielding. Recently, it has been shown that a given LTL formula φ represents a desired
specification that can be used to automatically synthesize shields (Bloem et al., 2015; Alshiekh
et al., 2018), i.e., generate external components that are coupled with the agent, and force it
to behave safely according to the specification φ. More formally, given an LTL specification φ,
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Figure 1: A shielding architecture scheme for a
DRL agent (Alshiekh et al., 2018).

it is possible to generate a shield S with respect
to a given system D (controlled by a DRL agent,
in our case). S guarantees that all behaviors of
the DRL-controlled system D satisfy φ as fol-
lows: when S encounters an input I that trig-
gers an erroneous output (i.e., D(I) := O for
which φ(I,O) does not hold), the original ac-
tion O is corrected, and replaced with another
actionO′, ensuring that φ(I, O’) does hold. This
scheme, depicted in Fig. 1, guarantees that the combined system D ◦ S never violates φ.

Example. Given the atomic proposition COLLIDE (indicating that the agent collided), the LTL
formula ϕ := (¬COLLIDE) encodes the safety property in which for all steps (“always”), no collision
occurs. Given this requirement, and given that a DRL-controlled agent D observes an input I
representing an obstacle to the left — an action O := TURN LEFT will cause a collision in the
next step (hence violating ϕ). Thus, a shield S may override O with an alternative action (e.g.,
O′ := TURN RIGHT), satisfying ϕ and hence maintaining safety.

3 Motivation, Benchmarks, and Problem Formulation

Benchmarks. In our evaluation, we focused on two popular DRL benchmarks: (i) Particle World,
in which an agent moves in a simple two-dimensional grid trying to reach a target position while
avoiding collisions with obstacles; and (ii) Mapless Navigation, a real-world robotic navigation
task, in which a robotic agent navigates in an unknown arena by relying only on local sensors. Both
benchmarks are extensively studied in the context of safe DRL (Marchesini et al., 2022; Amir et al.,
2023a; Corsi et al., 2024) given their straightforward safety requirements (e.g., collision avoidance).
For a more detailed description of the environment and training setup, see Appendix A.

Experimental Setting. We extensively trained more than 250 agents on each of these tasks, with
the state-of-the-art PPO algorithm (Schulman et al., 2017) for 500 episodes. All agents shared the
same architecture and differed solely in the random seed used to generate their initial parameters.
As can be seen in Fig. 2, in both benchmarks, the trained policies reached an average success rate
(i.e., number of successful trajectories) of over 90%. Next, we selected per each benchmark, the five
best-performing models and analyzed their performance from a safety perspective, as summarized
in Tab. 1.

Motivation. All five models attained an average success rate of approximately 95%, and also a
(seemingly) safe decision-making policy: in 100 randomly generated trials, not a single collision was
recorded. However, when analyzed through the lens of formal verification, we identified that all the
selected models had input configurations in which the policies can indeed behave unsafely and collide
with a wall (see the rightmost column of Tab. 1). We believe this further motivates our work —

0 100 200 300 400 500
episode

0.0

0.5

1.0 Particle World

0 100 200 300 400 500
episode

0.0

0.5

1.0 Mapless Navigation

Figure 2: The environments analyzed in our evaluation: Particle World (left) and Mapless
Navigation (right). The plot displays the number of episodes on the x-axis and the corresponding
success rate on the y-axis.
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Seed Empirical Success (%) Empirical Collisions (%) Verification Output
12 95.6 0.0 SAT
66 97.3 0.0 SAT
239 91.3 0.0 SAT
251 95.3 0.0 SAT
258 94.2 0.0 SAT

Table 1: Results of the formal analysis for the top five models trained on the Particle World
environment. A SAT verification output indicates the existence of unsafe behaviors.

although the models were extensively trained with a state-of-the-art algorithm to solve a (relatively)
simple task, and although they seemed to behave safely in empirical evaluation, this was indeed not
the case, as formal methods were able to uncover input configurations in which they fail miserably.

3.1 Model Selection via Verification

The well-known susceptibility of DNNs in general, and DRL agents in particular, to adversarial
inputs renders it unlikely to find models that always behave safely across the whole input domain,
even when trained for relatively simple tasks (Casadio et al., 2022; Amir et al., 2023a; Corsi et al.,
2024). This phenomenon has also been confirmed by our evaluation reported in Tab. 1: even
when formally analyzing hundreds of trained models with near-perfect empirical performance, not
a single model was found to be safe throughout the entire input domain. Moreover, as discussed in
Sec. 2, formal verification algorithms can detect (offline) whether a DNN is unsafe or not, however,
once a DNN is deemed unsafe, it is not clear what practitioners should do. We believe that both
aforementioned limitations further motivate the need for shielding.

3.2 Shielding Policies in Particle Domain

Shield synthesis is the logic-based procedure of generating a shield corresponding to an LTL specifi-
cation φ, as explained briefly in Sec. 2. This process builds upon encoding Boolean predicates that
represent the various input variables, and hence, shield synthesis is usually geared towards a finite
state space. However, in most DRL use cases, including the ones covered here, there is an infinite
input domain, for example, the continuous input space of Particle World. Still, it has very recently
been proven that the task of synthesizing shields for such cases (formally known as LTL modulo
first-order theories), is decidable (Rodriguez & Sánchez, 2023; 2024b) for various cases pertaining
to the temporal logic encodings of φ. Building upon these results, Rodriguez & Sánchez (2024a)
presents a novel technique that can be leveraged to synthesize shields in such scenarios (Rodriguez
et al., 2024), which we use in this paper. We also note that the shield synthesis procedure can be
expedited in various cases. For example, many specifications of interest are in the form φ := φ′,
where φ′ is free of temporal operators. In such cases, the synthesis process can be significantly
optimized and computed with alternative runtime enforcement methods (Cassandras & Lafortune,
1999; Falcone et al., 2012). Note that the shield both checks the correctness of the original action
and provides the corrected action, when necessary.

Seed w/o Shield Collisions (%) w/ Shield Collisions (%) Interventions (%) Overhead
12 0.33 0.0 9.6 40.0×
66 0.21 0.0 5.6 32.5×
239 0.27 0.0 5.3 36.3×
251 0.41 0.0 11.0 31.1×
258 0.62 0.0 10.9 35.5×

Table 2: Overhead due to standard shielding; the first two columns demonstrate how the shield can
prevent collisions while introducing a significant overhead, even though fewer than 9% of the actions
are overridden on average across seeds. Data is collected from the Particle World environment.
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Tab. 2 summarizes the safety of five trained DRL policies, with and without shielding. Although the
shield’s soundness indeed guarantees absolute safety (see the third column indicating no collisions),
our results demonstrate the main limitations of current shielding approaches: the shield is activated
online in every time-step throughout the whole input domain, resulting in a significant overhead
during deployment. From our preliminary analysis, we found that in most cases the shield does not
override the original action (i.e., no interventions; see fourth column), demonstrating the safety of
the original behavior in the majority of cases. However, even in such situations, the overhead remains
due to the constant shield execution. In the following section, we propose an approach that takes
advantage of this and drastically reduces the number of calls to the shield while still guaranteeing
safety throughout the entire input domain.

4 Verification-Guided Shielding

Next, building on the previous findings, we present our novel verification-driven shielding approach.
We devised this method using recent advances in formal verification, shielding, and symbolic repre-
sentation. Our approach incorporates five steps: (1) domain splitting, after which we perform (2)
safe-region verification, and (3) clustering. Subsequently, we (4) encode a symbolic representation
of the input domain, which finally allows (5) shielding the agent only on potentially unsafe regions.

(1) Domain Splitting. In the first step, our method employs an off-the-shelf verification algo-
rithm to identify all the regions of the state space in which a given DRL agent behaves correctly.
This process mainly relies on the concept of All-DNN-Verification (Marzari et al., 2023). In essence,
this includes pruning the input region in search of all regions in which the trained agent is provably
safe, with respect to a set of given requirements. More formally, we search for regions in which the
negated (safety) property is UNSAT. An exact solution to this problem would provide the complement
of the regions where the agent potentially requires a shield.

However, given that this problem is #P-hard (Marzari et al., 2023), the authors proposed ϵ-ProVe,
an algorithm that computes an underapproximation of these safe regions. In more detail, ϵ-ProVe
divides the input domain into regions, effectively generating a search tree where each node represents
a partition of the input domain; these regions are then analyzed using a sampling approach that
provides an estimated probability that the region is safe. The algorithm iteratively splits regions
into subregions, until it cannot find any counterexamples (i.e., UNSAT assignments to the negated
property), in which case the region is approximated as safe. Otherwise, the algorithm heuristically
decides whether to declare the entire region as unsafe or continue with the splitting procedure. For
a detailed description of ϵ-ProVe, and a discussion regarding the probabilistic guarantees provided,
we refer the reader to (Marzari et al., 2023).

(2) Formal Verification of Safe Regions. Subsequently, we are left with a division of the input
domain into regions, with each region approximated as either safe or unsafe. Although ϵ-ProVe
typically provides tight results with high confidence, the approximated nature of the approach is not
enough to guarantee absolute correctness, which is the subject matter of this work. To address this
gap, we complement the approximated regions by formally verifying the regions previously approx-
imated as safe. Toward this end, we employ Marabou, a sound and complete verification tool (Katz
et al., 2019b; Wu et al., 2024), which is used to formally certify the safety of the agent only in the
regions that are previously approximated as safe. In this second, fined-tuned verification procedure,
if a counterexample (SAT) is found in a (mistakenly approximated) safe region, we reclassify the
region as unsafe. On the other hand, regions that have already been found to violate the property
(ϵ-ProVe returned SAT in the first step), are left untouched, as a valid counterexample was already
found. A pseudocode describing this procedure can be found in Appendix E.

(3) Clustering. After these first two steps, we are left with a sound division of the input space
into regions in which the agent is provably safe and regions in which there is at least one input
configuration that causes the agent to behave unsafely. Next, we would like to apply our synthesized

1764



RLJ | RLC 2024

shield solely on these potentially unsafe regions. However, this presents a new challenge as the set S of
unsafe regions includes, in practice, a large number of compact regions (e.g., we observed an average
cardinality of ≈ 60, 000 in Particle World). While this does not compromise the correctness of
our strategy, it raises another problem — checking whether the current input belongs to the set S
introduces significant overhead, potentially mitigating the benefits of our approach. To address this
limitation, we employ an additional step in which we cluster the set of unsafe regions and reduce
their overall cardinality. Specifically, we employ agglomerative clustering (Ackermann et al., 2014),
to concatenate unsafe regions and produce an overapproximation of the unsafe regions. As we later
demonstrate, this significantly reduces the number of unsafe regions and, consequently, the overhead
for checking whether the current state belongs to S. It is important to emphasize that, although
the clustering step has the potential to overapproximate safe regions as unsafe (see Fig. 3), it does
not compromise the overall soundness of our approach. At most, the shield may be activated more
than strictly necessary.

(4) Symbolic Representation. Next, we make use of symbolic representation (Hoffmann et al.,
2007), i.e., an encoding of all the states in order to obtain a succinct formula for all unsafe regions.
Due to our focus on fully observable input domains, we can use propositional logic formulas to
symbolically encode the regions of interest (in our case, unsafe regions). Furthermore, this formula
can be reduced to a succinct equivalent formula, e.g., by using off-the-shelf solvers (De Moura
& Bjørner, 2008; Barrett & Tinelli, 2018). This, in turn, could potentially reduce the overhead
of checking online whether the agent is in an unsafe region. We elaborate further on symbolic
representation in Appendix C.

(5) Shield Synthesis and Execution. Finally, we are left with a set of (relatively) few approx-
imated unsafe regions. First, we can synthesize a shield that, when activated, guarantees safety
with respect to the safety property ψ. Next, we can couple the shield with the agent, and at each
time-step: (i) efficiently identify if the current input belongs to the potentially unsafe regions, and if
so, (ii) temporarily activate the synthesized shield and guarantee the safety, as previously described
in Sec. 3. In the remaining (provably) safe regions, the shield can remain inactive while preserving
the formal guarantees, as we already verified that any original decision that the agent makes is safe.

(2a) Formal 
Verification

(1) Domain 
Splitting

(2b) Computing 
SAT Set

(3) Clustering (4) Symbolic
Representation

Safe 
Region

Figure 3: An overview of verification-guided shielding. In step (1) we employ ϵ-ProVe to split the
input domain into approximated safe (green) and unsafe regions; (2a) these can be further validated
with a formal verification tool, (2b) which complements the set of approximated unsafe regions with
the ones formally found as such. (3) To reduce the cardinality of this set we employ a clustering
algorithm and (4) further simplify the encoded results by using symbolic representation.

5 Empirical Evaluation

Our experimental evaluations comprise two components: the offline procedures for generating the
shield and identifying safe regions, and the online execution of the system, where the goal is to
minimize the computational overhead resulting from invoking the shield.

Experimental Setup. The offline evaluation was conducted on a distributed cluster with 160
CPUs and 448GB RAM. For each verification query, we employ 1 CPU, 1GB RAM, and a runtime
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Seed Splitting (s) Verification (hr) Clustering (s) Synthesis (s) Reduction (s)
12 251.7 1.44 12.28

2.69

22.48
66 239.1 2.01 14.02 29.12
239 458.0 2.17 120.84 38.67
251 451.2 2.26 139.30 38.93
258 485.4 2.23 248.55 43.62

Table 3: Particle World: the overall time required for the offline components of our approach.

limit of three hours. We also note that in the case of the verification queries, Marabou internally
used the Guorobi LP solver (Anand et al., 2017) as a backend engine. Data related to the overhead
was collected on a commercial laptop to align with the limited hardware typically used to operate
autonomous robotic systems.

Offline Procedures. Tab. 3 summarizes the time measured for each of the offline steps with respect
to the Particle World benchmark. The most time-consuming component is the formal verification
(step 2), taking an average of over two hours; this is not surprising, as in this step the verifier
is required to solve many NP-complete problems, per each policy. However, we believe this is a
reasonable price as (i) this is an offline step that is executed once; and (ii) this is the step that provides
the formal guarantees. On the other hand, ϵ-ProVe (i.e., the splitting procedure in step 1) runs
significantly faster but provides only probabilistic assurances. Both stages are complementary and
represent a simulated annealing-like optimization (Kirkpatrick et al., 1983): at first, we approximate
and reduce the number of regions on which we can rule out correct behavior, and then, we run a
more expensive, formal verification procedure that fine-tunes the remaining regions. The column
representing the clustering demonstrates a high variance among the different policies, as there can
be significant differences in the number of unsafe regions identified in the previous steps. Still, it
is worth noting that even in the worst-case measurement, the time required by this procedure is
negligible when compared to the formal verification step. Finally, the table reports the results of
the shield synthesis and the formula reduction steps, which were not particularly time-demanding
(i.e., step 4). These results also align with the hypothesis raised in the previous sections, i.e., that
the heavy computational cost of shielding is not related to the offline synthesis time, but rather to
the cost of invoking the shield online, before each decision.

Online Invocation. Our main results are presented in Tab. 4. Specifically, we compare the
overhead introduced by the shield in two cases: the classic fully-activated shielding approach and our
verification-guided approach. The first half of the table reports the analysis on the Particle World
environment, while the second one reports the results for Mapless Navigation. In general, both
benchmarks demonstrate the merits of our approach in reducing significant overhead, confirming

Seed Full Shield Verification-Guided Shield Gain (%)
Active Time (%) Overhead Active Time (%) Overhead

12 100 40.0× 28.6 14.1× 64.8
66 100 32.5× 32.4 13.1× 59.7
239 100 36.3× 44.5 21.5× 40.7
251 100 31.1× 37.6 13.2× 57.6
258 100 35.5× 33.8 13.9× 60.1
104 100 4.8× 61.7 3.6× 25.1
225 100 4.4× 53.1 3.5× 20.5
239 100 4.5× 2.1 1.8× 60.0
243 100 4.5× 1.3 1.6× 71.1
310 100 4.6× 3.4 1.5× 67.4

Table 4: Final results; the first block presents the results for the Particle World benchmark and
the second block represents the results for the Mapless Navigation benchmark.
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the general environment nature of our methodology. In more detail, per each environment and seed,
we compare the portion of time in which the shield was activated during execution. This value is
computed by normalizing the number of shield invocations by the total number of actions. While
in the first column, the (full) shield is trivially always active, we observe a drastic reduction when
our approach has been applied, especially in some Mapless Navigation seeds. We also note that
there is not necessarily a direct correlation between the size of the unsafe regions and the number of
interventions, as the interventions were measured with respect to stochastic executions. Finally, we
report the average computational time overhead as a relative value compared to an episode with the
shield deactivated, i.e., decisions made without invoking any external components. Not surprisingly,
our results show a clear correlation between the active time and the overhead introduced, further
motivating this work. In the last column, we summarize the time gain provided by our method with
respect to invoking the shield at every time-step. Note that the gain is not always proportional to
the active time; the resulting value also depends on the actual number of steps required to complete
a single episode, i.e., the absolute number of calls to the shield.

Note. Per each benchmark, we encoded 1, 000 LTL formulas for our shield. We emphasize that this
number does not affect the relative gain of our verification-guided shield, but only affects the absolute
value of the overhead compared to a single forward propagation. We also emphasize that the formal
verification was skipped in Mapless Navigation, in order to expedite the procedure, and hence
we relied only on the probabilistic guarantees afforded by ϵ-ProVe. In addition, we note that our
evaluation included the first three steps, while excluding the fourth step, i.e., symbolic representation,
as this step ran slightly slower than when using the complete set of input regions. Still, we executed
this step and reported the overall time that it took, while successfully demonstrating that symbolic
representations can be encoded for environments including thousands of states. Since the efficiency
of this step highly depends on the task in question and the underlying SMT solver, improving
symbolic representations is beyond the scope of this work.

Limitations. Although these results are encouraging, it is important to acknowledge certain lim-
itations of our approach, mainly inherited from the backend shielding and verification techniques.
First, our approach requires a valid encoding of the required properties of interest. This, in turn,
assumes access to the environment dynamics and the agent’s transition model, as well as the prac-
titioner’s ability to encode the relevant properties in a logic-based form. In addition, when relying
on shielding in unsafe regions, it is important to note that although the shield guarantees adherence
to the given requirements, it does not necessarily select the optimal action, among the safe ones.
Furthermore, there are some limitations due to the backend DNN verification tools. Specifically, our
approach relies on Marabou, which affords only limited support to some activation functions, hence
restricting its applicability to some advanced DNN architectures. However, we believe that these
limitations can serve as a foundation for future research.

6 Related Work

In recent years, the formal methods community has put forth a wide range of approaches and tools for
formally verifying the correctness of deep learning models (Tjeng et al., 2017; Lomuscio & Maganti,
2017; Huang et al., 2017b; Wang et al., 2018; Gehr et al., 2018; Kuper et al., 2018; Gopinath et al.,
2018; Singh et al., 2019; Lyu et al., 2020; Katz et al., 2021; Wu et al., 2024). In addition, there
has recently been ample research on formally verifying DRL systems (Fulton & Platzer, 2018; Dutta
et al., 2018; 2019; Sun et al., 2019; Vasić et al., 2022; Mandal et al., 2024), in particular in the context
of safety (Kazak et al., 2019; Amir et al., 2021a; Eliyahu et al., 2021) and explainability (Bassan
& Katz, 2023; Bassan et al., 2023). Other work focused on enhancing DRL safety by inducing
Scenario-Based Programming (SBP) (Corsi et al., 2022; Yerushalmi et al., 2022; 2023).

Classic shielding approaches (Alshiekh et al., 2018; Pranger et al., 2021a;b) focus on properties
expressed in Boolean LTL and are incompatible with systems pertaining to richer data domains.
However, more recently, Wu et al. (2019) presented the concept of (incomplete) shields for linear
arithmetic. To address these limitations, the work of Rodriguez & Sánchez (2023; 2024a) proves
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that, under certain conditions, LTL synthesis with data specifications is decidable via abstraction
methods, which can be used for reactive synthesis of expressive shields with e.g., numerical informa-
tion (Rodriguez et al., 2024). Additional techniques, such as runtime enforcement and supervisory
control (Cassandras & Lafortune, 1999; Schneider, 2000; Ligatti et al., 2009; Falcone et al., 2012),
share similarities with shielding, however, such methods are incompatible with DRL and general
reactive systems, but rather, focus solely on checking software invariants.

We also note that in addition to formal verification and shielding, there exist other popular ap-
proaches for improving the safety of DRL agents. These methods are typically applied during
training and rely on constrained optimization (Stooke et al., 2020; Liu et al., 2020; Roy et al., 2021),
safe exploration (Srinivasan et al., 2020; Yang et al., 2022b), and various alternative solutions (Gar-
cıa & Fernández, 2015; Achiam et al., 2017; Tessler et al., 2019). However, although popular, these
techniques are heuristic in nature and do not afford any formal guarantees regarding the safety of
the DRL agent in question (Brunke et al., 2021).

7 Conclusion

In this paper, we combine verification and shielding and propose a novel technique that leverages
the advantages of both these formal approaches. Specifically, we demonstrate how to use formal
methods to prune the input space and divide it into safe and (potentially) unsafe regions. While
in the first case, we can safely employ the original, shield-less model, in the latter we activate the
shield online, and override any potential unsafe action. We extensively evaluate our approach in
multiple experiments, and demonstrate that it drastically reduces the overhead of shielding, while
maintaining guaranteed safety throughout the whole input domain.

Moving forward, our approach can be extended along various axes. Currently, we employ clustering
algorithms to approximate unsafe regions, however, we plan to investigate additional strategies that
attain more compact descriptions and reduce the use of shielding even further. Additionally, we plan
to incorporate our approach also into the DRL training phase to iteratively robustify the agents prior
to deployment. Finally, we plan to explore alternative strategies, such as deep ensembles, to further
reduce the need for shield interventions. We believe this work is another step towards the reliable
use of DRL in safety-critical domains.
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A Training Details

This appendix provides additional information regarding the described benchmarks, training setups,
and safety requirements. Both analyzed benchmarks are navigation tasks with varying degrees of
complexity and realism.

A.1 Particle World

Our first environment is depicted in Fig. 2 (left). The goal of the agent (black square) is to reach
the target position (yellow square) while avoiding collisions with walls and obstacles; the map is
randomly selected from five different configurations. The agent does not have access to the full map
of the environment but only to local information, and this makes this task an abstraction of the
well-studied robotic mapless navigation task (Tai et al., 2017; Corsi et al., 2024). The action and
observation spaces are continuous and hence, the agent could move to any possible position in the
arena; the agent is equipped with four proximity sensors that detect the distance from the closest
obstacle in the respective directions, i.e., Left, Right, Up, Down. Although the action space is
continuous, at each step, the agent is allowed to move only in one of the aforementioned directions,
e.g., at time-step t0 the agent performs a translation on the left of 0.321 units.

State/Action Spaces and DNN Topology. The structure of the neural network is inspired by
recent work in the literature demonstrating that this task can be learned by a simple multi-layer
perceptron (MLP) encompassing relatively few nodes and hidden layers (Marchesini & Farinelli,
2020). Next, we present a more detailed description of the MLP’s structure:

• The input layer constitutes 8 neurons: the first 4 neurons represent the distance from the
closest obstacle in each direction, the following 2 neurons encode the current position of the
agent (x and y coordinates), while the last 2 neurons encode the target’s position. All these
values are normalized in the interval [0, 1] and can take on any continuous values within this
interval.

• Two fully-connected hidden layers of 16 neurons each, with ReLU activation functions.
• An output layer of 4 neurons, each representing the translation action in one of the possible

directions (i.e., Left, Right, Up, Down); the values are continuous as the agent can trans-
late any distance in a given direction. Crucially, the agent is constrained to move in only
one direction at each time-step, hence, we always select the action with the highest value
among the four options.

Training. We trained our agents with the state-of-the-art Proximal Policy Optimization (PPO)
algorithm (Schulman et al., 2017), which is widely considered the state-of-the-art. For this first task
we employed a discrete reward function, that provides a positive reward when reaching the target
and a negative reward for each collision; formally:

Rt =
{

+5 target reached
−1 collision with obstacle

where both conditions represent a terminal state. Following is a list of hyperparameters employed
during training:

• training episodes: 500
• number of hidden layers: 2
• size of hidden layers: 16
• parallel environments: 1
• gamma (γ): 0.995
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• learning rate: 0.0013
• memory limit: None
• update frequency: 4096 steps
• trajectory reduction strategy: sum
• epochs: 50
• batch number : 64
• critic network size: 2x256
• PPO clip: 0.2
• GAE lambda: 0.99
• target kl-divergence: 0.02
• max gradient normal: 0.5

Safety Requirements. As mentioned, Particle World is an abstraction of a real-world naviga-
tion problem; therefore, the crucial safety requirement is collision avoidance. Given the state and
action space of the benchmark, the safety requirements involve only the first 4 inputs (pertaining
to the presence of obstacles) and the selected action. For more details regarding the encoding of
the verification queries, see Appendix D. From a high-level perspective, the safety requirements can
be formalized as follows: “for any possible combination of agent and target position, the agent must
not move towards an obstacle with a step-size larger than the distance to the closest obstacle in that
direction".

A.2 Mapless Navigation

Our second environment is depicted in Fig. 2 (right). Mapless navigation is a popular and well-
studied task in the DRL literature (Tai et al., 2017; Ray et al., 2019; Marchesini & Farinelli, 2020).
This task is considered quite difficult due to the agent solely relying on local observations. For
our experiments, we follow the same configuration presented in previous work in the field (Pore
et al., 2021; Amir et al., 2023a). In particular, the agent is equipped with a lidar sensor for obstacle
detection, and with GPS and compass inputs for localization. A significant difference between
Mapless Navigation and Particle World is the degree of freedom for the agent. Specifically, in
Mapless Navigation, the agent can simultaneously perform a linear step and a rotation, which
provides additional movement options.

State/Action Spaces and DNN Topology. The structure of the neural network is similar to
the one we employed for Particle World, with the additional features derived from the sensors and
actuators (Ray et al., 2019). Following is a more detailed description of the structure:

• The input layer constitutes of 9 neurons, the first 7 neurons represent lidar sensor readings,
that indicate the distance from an obstacle in a given direction (from left to right, with a
step of 30◦). The final two input neurons indicate the target’s position relative to the agent
(i.e., polar coordinates of the target), calculated in real-time using GPS and compass data.

• 2 fully-connected hidden layers of 32 neurons each, with ReLU activation functions.
• An output layer of 2 neurons, the first neuron indicates the linear velocity (i.e., the speed of

the robot), and the second one provides the angular velocity (i.e., a single value indicating
the rotation). These two actions can be executed simultaneously, providing the agent with
richer movement options.

Training. The training of agents on this benchmark was also based on PPO (Schulman et al.,
2017). However, unlike the previous case, here we employed a continuous reward function, given the
increased complexity of this task:

Rt =





1 the goal is reached
−1 the agent collides
(distt−1 − distt) · η − β otherwise
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where distk is the distance from the target at time-step k; η is a normalization factor; and β is
a penalty, intended to encourage the robot to reach the target quickly (in our experiments, we
empirically set η = 3 and β = 0.001). Following is a list of hyperparameters employed during
training:

• training episodes: 500
• number of hidden layers: 2
• size of hidden layers: 32
• parallel environments: 1
• gamma (γ): 0.99
• learning rate: 0.0003
• memory limit: None
• update frequency: 1024 steps
• trajectory reduction strategy: sum
• epochs: 10
• batch number : 32
• critic network size: 2x256
• PPO clip: 0.2
• GAE lambda: 0.95
• target kl-divergence: 0.02
• max gradient normal: 0.5

Safety Requirements. The safety requirements for Mapless Navigation aim at guaranteeing
the same objectives as the ones described for the Particle World environment. However, there is
a crucial difference in this context: the consequences of an action may not always be predictable
because the agent’s increased degree of freedom results in a set of possible collision situations that
cannot be detected by observation alone. For example, there may be an obstacle between two
lidar scans that the agent cannot detect. Therefore, we cannot ensure the safety of the agent in
any possible configuration, even if it meets all requirements. Our objective is thus to guarantee
the agent’s safety against the specified set of requirements, which may not encompass all potential
collisions.

B Reactive Synthesis

In continuation to the temporal operators described in Sec. 2, additional temporal operators include
R (release), (finally), and W (weak until) which can also be derived from the recursive syntax,
e.g., φ0Rφ1 ≡ ¬(¬φ0 U ¬φ0). In addition, we note that equivalences are also well defined, i.e.,
distribuitivity properties (e.g.,(φ0∧φ1) ≡ (φ0)∧(φ1)), negation properties (e.g., ¬φ ≡ ¬φ)
and other temporal-specific properties (e.g., φ ≡ φ).

Let ω denote infinite words (Wolfgang, 1990), then the semantics of LTL formulas associates traces
σ ∈ Σω with LTL fomulae (where σ |= ⊤ always holds, and ∨ and ¬ are standard):

σ |= a iff a ∈ σ(0)
σ |= φ iff σ1 |= φ
σ |= φ1 U φ2 iff for some i ≥ 0 σi |= φ2, and for all 0 ≤ j < i, σj |= φ1

A safety formula φ is such that for every failing trace σ ̸|= φ there is a finite prefix u of σ, such that
all σ′ extending u also falsify φ, i.e., σ′ ̸|= φ. In this paper, we only synthesize models for safety
formulae, which are indeed the most interesting ones for our problem and the fully monitorable ones.

Reactive LTL synthesis (Piterman et al., 2006; Thomas, 2008) is the task of producing a system
that satisfies a given LTL specification φ, where atomic propositions in φ are split into variables
controlled by the environment (“input variables”) and by the system (“output variables”). Synthesis
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corresponds to a game where, in each turn, the environment player produces values of the input
propositions, and the system player responds with values of the output propositions. A play is an
infinite sequence of turns, i.e., an infinite interaction of the system with the environment. A strategy
for the system is said to be winning for the system if all the possible plays played according to the
strategy satisfy the LTL formula φ.

C Symbolic Representation: Additional Details

In fully observable domains, it is possible to encode the environment with symbolic representations.
This includes a representation of the arena as a formula ψ in propositional logic, which implies that
its states can be precisely characterized as models of ψ. In other words, models M = {...,mk, ...} ≠ ∅
of ψ is a precise encoding of the arena, which means that each model can be obtained by performing
classic Boolean satisfiability (SAT) queries over ψ, i.e., there exists a SAT encoding of the set of
states.

As a toy example, let us consider an arena with four states that correspond to coordinates north-
south and west-east: {NE,NW,SE,SW}. A formula ϕ = NE ∨ NW ∨ SE ∨ SW encodes the whole
arena, and a model of the formula is a concrete state. Moreover, we can encode groups of states
of the arena using conjunctions. In the example above, the north group is encoded precisely by
ϕ = ψ ∧ ¬(SE ∨ SW). These observations are very relevant for verification-guided shielding due to
our ability to use such symbolic representations in order to precisely encode and represent disjunct
safe and unsafe regions. .

Note that, since we are in a continuous domain, the amount of states is infinite, so this representation
is not encoded with propositional logic, but rather with first-order logic modulo appropriate theories
(in our case, linear real arithmetic (Monniaux, 2008)). Thus, we can obtain models from satisfiability
modulo theory (SMT) queries, i.e., there is an SMT encoding of the set of states. We can modify
the example above to show the difference. Consider the state is characterized by two input values
of the environment, x1 and x2: south is represented by x1 : [0, 1) (respectively, x1 : [1, 2] represents
north) and west is represented by x2 : [0, 1) (respectively, x2 : [1, 2] represents east). Then, the
formula ∃x1, x2.(0 ≤ x1 ≤ 2)∧ (0 ≤ x2 ≤ 2) encodes all the infinite states in a succinct manner, i.e.,
states are models of this formula. Again, we can encode groups easily, e.g., it is possible to represent
south-east with models of ∃x1, x2.(0 ≤ x1 < 1) ∧ (1 ≤ x2 ≤ 2), etc.

In summary, with symbolic encodings, we can compactly represent states (or regions) and sets
of states and also simplify them. Note that these encodings are especially succinct if states have
overlapping regions, i.e., share models in the SMT formula, since this allows the formula to be further
simplified. In our empirical evaluation, we used Z3’s (De Moura & Bjørner, 2008) simplify(phi)
primitive for this step.

D Verification Example and Property Encodings
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Figure 4: A toy DNN.

1778



RLJ | RLC 2024

Suppose we wish to verify that the toy DNN depicted in Fig. 4 outputs, for any given input, a value
strictly larger than 30, i.e., for any input x = ⟨v1

1 , v
2
1⟩, the property N(x) = v1

4 > 30 always holds.
It is straightforward to encode this property as a verification query by using a precondition that
does not restrict the inputs, i.e., P = (true), and also, by setting Q = (v1

4 ≤ 30) as a postcondition.
Hence, for the verification query P (x0)∧Q(N(x0)), a sound verification engine will return SAT, along
with a feasible counterexample, e.g., x = ⟨1, 0⟩, which produces v1

4 = 24 ≤ 30. Hence, proving that
this property does not hold.

In this work, we used Marabou (Katz et al., 2019a; Wu et al., 2024) as our verification engine.
Marabou is sound and complete and has recently been used in various applications (Elboher et al.,
2020; Amir et al., 2021a;b; 2022; Refaeli & Katz, 2022; Elboher et al., 2022; Amir et al., 2023b;c).

Note. We note that similarly to previous work (Amir et al., 2023a), we typically considered vio-
lations of the required property, if the “wrong” action won by a given margin.

D.1 Verification Queries for Particle World

The general idea behind these properties is to ensure that if an obstacle is detected in one of the 4
possible directions, the agent will not take a step in that direction, and have the step size greater
than the measured distance. The operator argmax encodes the fact that the agent can only move in
one direction at a time, i.e., the one with the highest value; the constant 0.055 indicates the linear
speed of the agent, which should be multiplied by the DNN’s output action to obtain the actual
step size. For example, if the DNN outputs Y = [0.3, 0.2, 0.8, 0.0], the agent will move Up (i.e., the
action associated to the third node) by 0.8 · 0.055 = 0.044 units. Below we report the complete
formalization of the properties, where X is the input, Y is the output, Dx is the domain of the input
space, and N is the neural network function; all inputs are normalized to the interval [0, 1]. Finally,
we note that if the expression returns true (SAT), it means that there is an assignment that violates
the properties, and the network is deemed unsafe.

• Particle World 1 (G1): avoid collision with an obstacle on the right of the agent.

– (argmax(Y)== 0) and (Y [0] · 0.055 > X[0]) and (Y = N (X)) ∀X ∈ Dx
• Particle World 2 (G2): avoid collision with an obstacle on the left of the agent.

– (argmax(Y)== 1) and (Y [1] · 0.055 > X[1]) and (Y = N (X)) ∀X ∈ Dx
• Particle World 3 (G3): avoid collision with an obstacle above the agent.

– (argmax(Y)== 2) and (Y [2] · 0.055 > X[2]) and (Y = N (X)) ∀X ∈ Dx
• Particle World 4 (G5): avoid collision with an obstacle below the agent.

– (argmax(Y)== 3) and (Y [3] · 0.055 > X[3]) and (Y = N (X)) ∀X ∈ Dx

D.2 Verification Queries for Mapless Navigation

The properties for the Mapless Navigation environment follow the same structure as explained for
the previous benchmark. A crucial difference to note, which we already discussed in Appendix A,
is that given the complex nature of the problem and the agent’s high degree of freedom, we cannot
guarantee the absolute safety of the agent. Hence, in this scenario, we settle instead on guaranteeing
adherence to the following set of constraints.

• Mapless Navigation 1 (M1): avoid collision with an obstacle in front of the robot.

– (X[3]− 0.17 < Y [0] · 0.015) and (Y = N (X)) ∀X ∈ Dx
• Mapless Navigation 2 (M2): avoid collision with an obstacle on the left of the robot.

1779



RLJ | RLC 2024

– (X[1]− 0.17 < Y [0] · 0.015) and (Y [1] < −0.2) and (Y = N (X)) ∀X ∈ Dx
• Mapless Navigation 3 (M3): avoid collision with an obstacle slightly on the left of the

robot.

– (X[2]− 0.17 < Y [0] · 0.015) and (Y [1] < −0.15) and (Y = N (X)) ∀X ∈ Dx
• Mapless Navigation 4 (M4): avoid collision with an obstacle on the right of the robot.

– (X[5]− 0.17 < Y [0] · 0.015) and (Y [1] > 0.2) and (Y = N (X)) ∀X ∈ Dx
• Mapless Navigation 5 (M5): avoid collision with an obstacle slightly on the right of the

robot.

– (X[4]− 0.17 < Y [0] · 0.015) and (Y [1] > 0.15) and (Y = N (X)) ∀X ∈ Dx

E Formal Verification of Safe Regions

Algorithm 1 reports the pseudocode for step (2) of our approach, as described in Sec. 4. This
subprocedure takes as input the approximated set of SAT regions S̃ (i.e., validated unsafe regions),
and the approximated set of UNSAT regions Ũ (i.e., potentially safe regions). The algorithm iterates
over Ũ , while verifying the regions with a formal verification tool (e.g., Marabou (Katz et al., 2019a)),
to formally ensure that these regions are actually safe. If the result is SAT, we relabel the region in
question as unsafe. After the process, all regions in the UNSAT set are formally safe. This ensures
that decisions made by the policy in these regions are reliable without the need for shielding.

Algorithm 1 Formal verification of safe regions.
Require: S̃, Ũ
Ensure: S, U

1: y ← 1, S ← ∅, U ← ∅
2: for region in Ũ do
3: if formal-verificaiton(region) is SAT then ▷ call a verification tool backend
4: remove(region, Ũ)
5: add(region, S)
6: end if
7: U ← Ũ , S ← S̃ ∪ S
8: end for
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Abstract

For many sequential decision making problems, planning is often necessary to find
solutions. However, for domains such as those encountered in robotics, the transi-
tion function, also known as the world model, is often unknown. While model-based
reinforcement learning methods learn world models that can then be used for plan-
ning, such approaches are limited by errors that accumulate when the model is
applied across many timesteps as well as the inability to re-identify states dur-
ing planning. To solve these problems, we introduce DeepCubeAI, an algorithm
that learns a world model that represents states in a discrete latent space, uses
reinforcement learning to learn a heuristic function that generalizes over start and
goal states using this learned model, and combines the learned model and learned
heuristic function with heuristic search to solve problems. Since the latent space is
discrete, we can prevent the accumulation of small errors by rounding and we can
re-identify states by simply comparing two binary vectors. In our experiments on
a pixel representation of the Rubik’s cube, Sokoban, IceSlider, and DigitJump, we
find that DeepCubeAI is able to apply the model for thousands of steps without ac-
cumulating any error. Furthermore, DeepCubeAI solves over 99% of test instances
in all domains, generalizes across goal states, and significantly outperforms a greedy
policy that does not plan with the learned world model.

1 Introduction

Planning requires a state-transition function, also known as a world model, that can accurately map
states and actions to next states. While it is often convenient to manually construct a world model
for environments with symbolic representations, this approach becomes impractical for environments
with sub-symbolic representations, such as pixels. On the other hand, using machine learning
techniques to learn a model from observed transitions offers the promise of a domain-independent
approach to model construction. Reinforcement learning can then be used with these learned models
to learn a policy or heuristic function without needing to collect any additional real-world data.
Furthermore, at test time, the learned model can be used with search to improve performance.
However, there are two major hindrances to this approach: 1) many learned models suffer from model
degradation, thus rendering them ineffective for long-horizon planning; 2) many learned models do
not have the ability to re-identify states during search, resulting in loops in the search-tree and,
thus, inefficient planning.

Model degradation happens when small errors in the model’s prediction accumulate over timesteps,
resulting in decreasingly reliable predictions over long horizons. Model degradation has been ob-
served in domains such as the Atari Learning Environment (Oh et al., 2015), Sokoban (Racanière
et al., 2017), and robot manipulation tasks (Finn et al., 2016). Since this limits the usage of learned
models to short horizon tasks, if such a learned model is used to learn a heuristic function, the agent
will be limited to exploring states close to states observed in the real-world, which can lead to poor

1781



RLJ | RLC 2024

generalization. While this can be remedied by more real-world exploration, real-world exploration
is often many times more time-consuming than using a learned model that simulates the real-world.
When planning with a model that degrades, only states that are relatively close to the starting state
will be able to be considered. This can result in poor plans and the need for frequent re-planning
(Tian et al., 2021). State re-identification is the ability to know when two latent embeddings rep-
resent the same state. This is crucial to planning because, without state re-identification, the same
state will be visited multiple times during the search process. In the worst case, this leads to an
exponential increase in computation time and memory as the depth of the search tree increases.

To address these problems, we will learn a mapping from states to a discrete latent space and learn a
model that captures state transitions in this discrete latent space. This will allow us to combat model
degradation because errors that are less than 0.5 can be readily fixed by rounding. This will allow
the model to be used across thousands of timesteps without accumulating any errors. Furthermore,
this discrete representation makes state re-identification a simple comparison between two binary
vectors. Once the model is learned, a heuristic function represented by a deep neural network (DNN)
(Schmidhuber, 2015), namely a deep Q-network (DQN) (Mnih et al., 2015), will be learned using
Q-learning (Watkins & Dayan, 1992; Sutton & Barto, 2018). Since the goals that will be specified
at test time are not assumed to be known beforehand, the heuristic function will be trained with a
method inspired by hindsight experience replay (Andrychowicz et al., 2017) to allow it to generalize
over goals. This results in a domain-independent algorithm for training domain-specific heuristic
functions that generalize across problem instances. This heuristic function will then be used with
Q* search (Agostinelli et al., 2024b), a variant of A* search (Hart et al., 1968) for DQNs, to solve
problems. Since this method builds on the DeepCubeA algorithm (Agostinelli et al., 2019), which
combines deep reinforcement learning and search to solve classical planning problems, we will call
our method DeepCubeA-Imagination (DeepCubeAI), where imagination is in reference to the ability
to use a learned model to “imagine” future scenarios (Racanière et al., 2017).

2 Related Work

Model-based reinforcement learning (RL) methods seek to leverage learned models to reduce the
amount of real-world training data needed to learn a policy or value function as well as to do
policy improvement at test time. One of the earliest instances of this is the Dyna architecture
(Sutton, 1991). The Dyna architecture approach, which is similar to many approaches today, is to
use observed transitions to train a model that can be subsequently used for learning and planning.
Although strong results were demonstrated in the tabular setting, reliable results in large state spaces
that cannot be represented by tables were not obtained and remain elusive to this day. An example
of a modern model-based RL approach is Model-Based RL with Offline Learned Distance (MBOLD)
(Tian et al., 2021). MBOLD presents an approach for using offline data to train a model to predict
the pixels of the next state. It uses this offline data and model to train a heuristic function to
estimate the cost-to-go. However, the model operates in a continuous latent space and accumulates
error. Therefore, it is limited in how training data for the heuristic function is generated, cannot
plan until the goal is reached, and does not re-identify states.

Work conducted by Bagatella et al. (2021) introduces a method named Planning from Pixels through
Graph Search (PPGS), which learns to represent the states in a continuous latent space. State re-
identification is done by comparing the distance between two vectors and setting a threshold for
re-identification. By leveraging state re-identification, they create a latent graph and deploy graph
search algorithms to solve classical planning problems. This architecture incorporates an encoder,
a forward model, and an inverse model, the latter of which is employed to ensure the latent states
contain relevant information that the model will need to use. Subsequently, they introduce two
new environments, IceSlider and DigitJump, with an underlying combinatorial structure in which
they verify the superior performance of PPGS in comparison to model-free methods, such as PPO
(Schulman et al., 2017). However, the learned model accumulates errors and requires re-planning
when the predicted latent states do not match what is observed. Furthermore, PPGS does not learn

1782



RLJ | RLC 2024

a heuristic function, so it relies on breadth-first search to solve problems, which will not scale to
more complex problems.

DreamerV3 (Hafner et al., 2023) uses a Recurrent State-Space Model (RSSM) (Hafner et al., 2019)
to model states in a discrete latent space. They use this model and actor-critic methods to train a
policy function. DreamerV3 is able to collect diamonds in Minecraft from scratch without human
data. However, DreamerV3 only uses the learned model for training and not for planning at test
time; as a result, it has not shown the ability to plan until a goal is reached or to re-identify states.

Instead of learning black-box models that operates in a latent space that is not readily understood
by humans, research has been done on learning models that can be explicitly represented in Planning
Domain Definition Language (PDDL) format (Asai & Fukunaga, 2018; Asai et al., 2022). Given
such a representation, domain-independent planners can be employed to solve problems. However,
these domain-independent planners may often fail when solving problems such as the Rubik’s cube
(Muppasani et al., 2023; Agostinelli et al., 2024a). Furthermore, since learning a PDDL model from
data is not always feasible, a learned black-box model and domain-independent heuristics that work
with black-box models, such as the goal-count heuristic, may have to be used.

3 Preliminaries

In this work, we are designing an algorithm capable of learning a discrete world model in determin-
istic, fully-observable domains. A domain, D, can be represented as a deterministic un-discounted
Markov decision process (MDP) (Puterman, 2014), which is a tuple < S, A, T, G >, where S is the
set of all states, A is the set of all actions, and T is the state-transition function that maps states
and actions to next states, and G, the transition cost function that maps states, actions, and next
states to a transition cost. It can also be represented as a weighted directed graph (Pohl, 1970)
whose nodes represent states, edges represent transition between states, and edge weights represent
transition costs. Goals correspond to a set of states that are considered goal states. Given a start
state, the objective is to then find a sequence of actions that transforms the start state into a goal
state while attempting to minimize the path cost, which is the sum of transition costs. The state-
transition function and the transition cost function comprise the world model. When the transition
costs are uniform, then learning a model is simplified to just learning the state transition function.

4 Methods

4.1 Learning a Discrete World Model
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Figure 1: Overview for training the au-
toencoder and discrete world model.

We seek to learn a model, m, that represents the state-
transition function, T , in some latent space. In this set-
ting, we assume that all transition costs are one. Similar
to Tian et al. (2021), we will learn a model from offline
data collected from random exploration. This dataset will
contain a set of tuples, (s, a, s′), of states, actions, and
next states. An enconder will be trained to project a given
state to a state in a latent space. The encoder will use a
logistic function at its output layer which will be rounded
to be either 0 or 1. A straight-through gradient estimator
(Bengio et al., 2013) will be used during gradient descent
to account for the fact that the derivative of a rounding
function with respect to its input is zero. A decoder will
then map the latent space back to the state space. A mean
squared error will be used as the reconstruction error to
encourage the output of the decoder to be as close to the input of the encoder as possible. This
ensures that the encoding captures what is present in the state. The reconstruction error is shown
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in Equation 1 where N is the batch size, ŝ is the output of the decoder, and θ are the parameters of
the autoencoder and model.

Lr(θ) = 1
N

N∑

i=1

1
2 ||si − ŝi||22 + 1

2 ||s′
i − ŝ′

i||22 (1)

Simultaneously, a model will be trained to map latent states and actions to next latent states. A
loss will be used to encourage the output of the model and the output of the encoder to be as
close to each other as possible. In our experiments, we found that the best way to train the model
together with the autoencoder was to encourage the output of the model to match the output of
the encoder while simultaneously encouraging the output of the encoder to match the output of
the model. However, we only round the output of the model when encouraging the output of the
encoder to match the output of the model and the output of the encoder is always rounded. This is
shown below in Equation 2, where r() is the rounding function that uses a straight-through estimator
during gradient descent and .detach() removes the tensor from the computation graph.

Lm(θ) = 1
N
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i=1
(1
2∥r(s̃′

i) − r( ˆ̃
s′

i).detach()∥2
2 + 1

2∥r(s̃′
i).detach() − ˆ̃

s′
i∥2

2) (2)

In our experiments, we observed that first training the autoencoder, then the model, resulted in an
imperfect model, meaning that it was not able to predict the next latent state with 100% accuracy.
Therefore, we saw the need to train the autoencoder and model together to ensure that the param-
eters of the autoencoder are encouraged to learn a representation that the model can also learn.
However, the loss functions in Equation 1 and Equation 2 can conflict with one another because Lr

does not consider the ability of the model to predict the latent state and Lm does not consider the
reconstruction error. Therefore, we use a weight ω to first weight the Lr loss higher than Lm and
gradually adjust ω to be 0.5 to weight them equally. The loss is shown in Equation 3.

L(θ) = (1 − ω)Lr(θ) + ωLm(θ) (3)

The training process is summarized in Figure 1. After training, every time the model is applied, a
rounding operation is applied to its output to correct errors and prevent error accumulation.

4.2 Learning a Heuristic Function

Given a trained model and offline data, training data consisting of pairs of start and goal states
can then be generated to train a heuristic function that generalizes over both start and goal states.
For each training example, a real-world state is sampled from the offline data. The encoder is then
used to obtain the corresponding latent state. A start state is then obtained by starting from the
sampled latent state and using the model to randomly take ts steps in the latent space, where ts is
uniform randomly distributed between 0 and Ts. A goal state is then obtained by starting from the
start state and taking tg steps, where tg is randomly distributed between 0 and Tg. From this data,
a DQN is trained with reinforcement learning to map start states and goal states to the cost-to-go
of every action.

A DQN is a neural network that maps states to a vector of size |A|, where each element at index
a represents the expected cost-to-go when starting in a given state and taking action a, denoted as
Q(s, a). In the un-discounted deterministic setting, the estimate of Q(s, a) is iteratively updated to
be G(s, a, s′) + mina′ Q(s′, a′). However, since Q is represented as a DQN with parameters ϕ, qϕ,
bootstrapping from itself will lead to problems due to the non-stationary target. To address this,
following previous work (Mnih et al., 2015), a target network with parameters ϕ− is maintained
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and periodically updated to be ϕ during training. The loss function used is L(ϕ) = (G(s, a, s′) +
mina′ qϕ−(s′, a′, sg) − qϕ(s, a, sg))2, where sg is the goal state.

To select an action to update for Q-learning, we prioritize more promising actions over less promising
actions because, in many environments, the majority of actions in a given state are not on a shortest
path, resulting in bias. Therefore, we select actions according to a Boltzmann distribution where
each action a is selected with probability according to Equation 4, where τ is the temperature.

e(−qϕ(s,a,sg)/τ)
∑|A|

a′=1 e(−qϕ(s,a′,sg)/τ)
(4)

4.3 Planning with a Learned Model and Learned Heuristic Function

Given a learned model and heuristic function, planning can be done in the form of state-space
search. While the DQN can be used with A* search by setting the heuristic function, h(s, sg), to
mina′ qϕ(s, a′, sg), A* search requires that the model be used |A| times per iteration. Given that
the model is a computationally expensive DNN, we would like to minimize the number of times we
use it. Therefore, we instead use Q* search (Agostinelli et al., 2024b), a modification of A* search
that takes advantage of the fact that Q* search can compute the heuristic values for all next states
with a single pass through a DQN. In practice, Q* search has been shown to perform similar to
A* search while being orders of magnitude faster and more memory efficient. To take advantage of
GPU parallelism and speed up search, we also use a batched and weighted (Pohl, 1970) version of
Q* search as DeepCubeA did with A* search.

5 Experiments

We test our approach on the Rubik’s cube, Sokoban, IceSlider, and DigitJump. For the Rubik’s
cube, states are represented by two 32 by 32 RGB images, where each image shows three faces of the
Rubik’s cube. For Sokoban, states are represented by one 40 by 40 RGB image showing the agent,
walls, and boxes. IceSlider and DigitJump (introduced by Bagatella et al. (2021)), are represented
as one 64 by 64 RGB image representing a two dimensional 8 by 8 grid. In IceSlider, the agent
must slide across the ice, where only a rock or environment boundary stops its movement, to reach a
given cell. In our work, we indicate the goal cell using the agent as an indicator instead of a purple
square, as used in previous work. In DigitJump, the agent starts from the top left corner, and the
goal is to reach the bottom right corner. The number of cells an agent will jump in a given cell is
denoted by the MNIST (LeCun et al., 1998) digit in the given cell, where digits range from 1 to 6.
Examples of states are shown in Figure 3.

In our experiments, we generate an offline dataset by observing transitions across episodes where,
in each episode, the agent takes random actions1. For the Rubik’s cube and Sokoban, we generate
300,000 transitions across 10,000 episodes, with 30 random actions taken in each episode. For
IceSlider and DigitJump, we generate offline data in a similar manner to that of Bagatella et al.
(2021). Specifically, we generate 400,000 transitions across 20,000 episodes, with 20 random actions
taken in each episode. For the Rubik’s cube, starting states for each episode are obtained by
randomly scrambling the goal state between 100 and 200 times. For Sokoban, starting states for
each episode are randomly sampled from training examples provided by Guez et al. (2018). For
IceSlider and DigitJump, starting states for each episode are obtained from the same 1,000 levels
used by Bagatella et al. (2021). For the Rubik’s cube and Sokoban, 90% of the generated data is
used for training the model and 10% is used for validation. For IceSlider and DigitJump, validation
data is generated by repeating the procedure with 20 random actions across 5,000 episodes, using
another set of 1,000 distinct levels, resulting in a total of 100,000 transitions. During training and
search, two latent states are considered equal if 100% of the bits in the latent state are equal.

1Future work could use intrinsic motivation (Barto et al., 2004) to encourage the exploration of diverse states.
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For the Rubik’s cube, the autoencoder architecture is a fully connected neural network where both
the encoder and decoder have one hidden layer and an encoding dimension of size 400. The encoder
uses a logistic activation function while the decoder uses a linear activation function. Though the
RGB values are bounded between 0 and 1, we found that a linear layer in the last layer of the decoder
performed better. The discrete world model is a fully connected neural network with four layers
of size 500, 500, 500, and 400. It uses batch normalization in all layers, excluding the last layer.
Additionally, rectified linear units (ReLU) (Glorot et al., 2011) are utilized in all layers, except for
the last layer, which uses a logistic activation function. The model uses a one-hot representation for
the action which is concatenated with the latent state.

For Sokoban, the autoencoder architecture uses a convolutional encoder and decoder, both with two
layers with 16 channels, a kernel size of 2, a stride of 2, and batch normalization in the first layer.
The decoder uses an additional convolutional layer with a kernel size of 1 and a linear activation
function. The discrete world model is a convolutional neural network with three layers with channel
sizes of 32, 32, and 16, all with kernel sizes of 3, strides of 1, batch normalization in the first two
layers, rectified linear units in the first two layers, and a logistic activation function in the last layer.
The model represents the actions with a one-hot representation that is extended into a tensor with
a length and width the size of the latent representation and number of channels that equals the
number of actions. This is then concatenated with the latent state along the channel dimension.

For IceSlider, the autoencoder architecture is similar to that of Sokoban, utilizing a two-layer con-
volutional encoder with 32 channels in the first layer and 3 channels in the last layer. The decoder
utilizes transposed convolutional layers with 32 channels. The convolutional layers have kernel sizes
of 4 and 2, and strides of 4 and 2, respectively. Batch normalization and activation functions are the
same as Sokoban. The decoder also includes an additional layer with a linear activation function.
In the discrete world model, we follow Sokoban’s concatenation process. Initially, a convolutional
layer with a kernel size of 1 and a stride of 1, processes the input. This is then given to four residual
blocks, maintaining the same number of channels as the input. The output from the last residual
block is passed to a convolutional layer with a kernel size of 1 and a stride of 1. Finally, an ad-
ditional layer with a kernel size of 1 serves as the output layer. Batch normalization and rectified
linear units are applied in all layers except for the first layer, which uses layer normalization, and
the last layer, which uses a logistic activation function without normalization. DigitJump shares the
same architectural layers as IceSlider, with the encoder having an output of 12 channels, and the
residual blocks utilizing 47 channels.

All models are trained with gradient descent with the ADAM optimizer (Kingma & Ba, 2014) with
a learning rate of 0.001, a decay rate of 0.9999993, and a batch size of 100. ω is initialized to
0.0001 and is gradually shifted to 0.5 by iteration 120,000. The neural network is then trained until
iteration 180,000 and the learning rate is reduced by a factor of 10 every 20,000 iterations.

Q-learning is then used to train the heuristic function. To generate start and goal pairs, both Ts

and Tg are set to be 30 for the Rubik’s cube and Sokoban, and 20 for IceSlider and DigitJump.
The heuristic function is trained with Q-learning with the ADAM optimizer, with a learning rate
of 0.001, a decay rate of 0.9999993, and a batch size of 10,000 for 1 million iterations. Actions are
selected according to Equation 4 with τ set to 3.0. To better explore the state space during learning,
new states are also generated by behaving greedily with respect to the DQN for up to 30 steps for
the Rubik’s cube and Sokoban, and for up to 20 steps for IceSlider and DigitJump. The DQN is
tested with a greedy policy every 5,000 iterations and the target network’s parameters are updated
if the greedy policy has improved.

The respective batch size and weight on the path cost for Q* is 10,000 and 0.6 for the Rubik’s cube,
100 and 0.8 for Sokoban, and 1 and 0.7 for IceSlider and DigitJump. To specify a goal state, an
image of the goal is given, encoded to the latent space, and given to the heuristic function. For
Sokoban, goals are specified by an image of where the boxes should be with the agent randomly
selected to be placed next to a box. We will discuss more robust goal specification in the Future
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Work Section. We compare DeepCubeAI to DeepCubeA, as well as a domain-specific PDB that
leverages group-theory knowledge (Rokicki, 2016; Rokicki et al., 2014).

5.1 Model Performance
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Figure 2: Mean squared reconstruction error as
a function of timestep. For the Rubik’s cube,
the continuous model accumulates error over time
while, for Sokoban, IceSlider, and DigitJump, nei-
ther model accumulates error.

To determine how well the model performs, we
test it on 10 sequences of 10,000 steps where ac-
tions are selected randomly. We obtain ground-
truth images for each step as well as take steps in
the latent space and obtain reconstructions from
the decoder. Furthermore, we compare to a con-
tinuous model that has the same architecture
and training procedure as the discrete model,
but without the discretization. Results from
this comparison are shown in Figure 2. The
figure shows that, while the continuous model
does not accumulate errors for Sokoban, IceS-
lider and DigitJump, it accumulates a signifi-
cant amount of error for the Rubik’s cube. Fig-
ure 3a shows an example for the Rubik’s cube
where the continuous model makes significant
errors but the discrete model does not. Figures
3b, 3c, and 3d show examples for Sokoban, IceS-
lider and DigitJump, where both the continuous
and discrete models do not make significant er-
rors. This may be attributed to theses environ-
ments being easier to reconstruct across many
timesteps. In Sokoban, for instance, the boxes
quickly get pushed up against walls and, there-
fore, become immovable thereafter, with only the location of the agent changing between transitions.
Similarly, in IceSlider and DigitJump, actions only affect the agent’s position and there are states
for which the agent cannot move, such as in Figure 3d.

5.2 Problem Solving Performance

We evaluate DeepCubeAI on 1,000 test instances for the Rubik’s cube and Sokoban obtained from the
DeepCubeA repository (Agostinelli et al., 2020), and on the 100 test instances for each of IceSlider
and DigitJump used to evaluate PPGS (Bagatella et al., 2021). To determine the importance of
planning when solving these test instances, we also use them to evaluate a greedy policy obtained by
behaving greedily with respect to the trained DQN for 100 steps. To test DeepCubeAI’s ability to
generalize to new goal states, we include a test set where the start and goal state are reversed for the
Rubik’s cube. As a result, each test instance has a different goal state. We note that DeepCubeAI
was not told of the test goal states during training.

A detailed comparison of DeepCubeAI to DeepCubeA, PDBs, and the greedy policy is shown in Table
1. The results show that DeepCubeAI solved 100% of all test instances for the Rubik’s cube with the
canonical goal state as well as for Sokoban, IceSlider, and DigitJump. For the reversed start and goal
states, DeepCubeAI solved 99.9% (only missing 1) of all test cases and had similar performance to
the canonical goal test instances. We note that DeepCubeA and PDBs cannot be readily applied to
this test set because they are specific to the canonical goal state. To apply DeepCubeA to different
goal states, we would have to train a new DNN for each of the 1,000 goal states. The greedy policy
does not solve any problem instances for the Rubik’s cube and solves 41.9%, 46.0%, and 90.0% of
problem instances for Sokoban, IceSlider, and DigitJump, respectively. This shows that planning
with a learned world model is crucial to solving these problems. DeepCubeAI has a longer path cost
than DeepCubeA. This could be because DeepCubeAI is learning a more complex heuristic function
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Figure 3: A visualization of the reconstructions for models with continuous and discrete latent states
at different timesteps. For the Rubik’s cube, the discrete model accurately represents the ground
truth while the continuous model makes errors. For Sokoban, IceSlider, and DigitJump both the
discrete and continuous models accurately reconstruct the ground truth image after thousands of
timesteps.

that generalizes over goals, while DeepCubeA is trained for a pre-determined goal. However, for
the Rubik’s cube, despite processing fewer nodes a second due to the fact the learned model is
more computationally expensive than a hand-coded model, DeepCubeAI generates fewer nodes and
takes less time when finding solutions. This may be partially due to the speedup provided by Q*
search. However, for Sokoban, we found that a batch size of 100 for DeepCubeAI was necessary
when performing Q* search, while DeepCubeA used a batch size of 1 for A* search, so the number
of nodes generated for DeepCubeAI is still larger than DeepCubeA.

6 Future Work

In the one case where DeepCubeAI was not able to find a path, we saw that it was not able to
correctly identify the latent goal state. This could be that an error of greater than 0.5 was made
by the model during search, meaning rounding was unable to correct it. Future work could address
these rare mistakes by training a DNN to correct slightly corrupted latent states.

Similar to research in model-based reinforcement learning (Tian et al., 2021), we specify goals
with a goal image. While this may be feasible for some environments, this becomes impractical
in environments where goal images are difficult to generate. Furthermore, if one only knows high-
level information about a goal without knowing the low-level details, a goal image will be impossible
to generate. To solve this, research has been done to use formal logic to specify goals, where a goal
can be a set of states (Agostinelli et al., 2024a). This approach can be extended to learned models
and allow one to specify goals without having to generate any goal images.
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Domain Solver Len Opt Nodes Secs Nodes/Sec Solved

RC

PDBs+ 20.67 100.0% 2.05E+06 2.20 1.79E+06 100%
DeepCubeA 21.50 60.3% 6.62E+06 24.22 2.90E+05 100%
Greedy - 0% - - - 0%
DeepCubeAI 22.85 19.5% 2.00E+05 6.21 3.22E+04 100%

RCrev
Greedy - 0% - - - 0%
DeepCubeAI 22.81 21.92% 2.00E+05 6.30 3.18+04 99.9%

Sokoban

LevinTS 39.80 - 6.60E+03 - - 100%
LevinTS (*) 39.50 - 5.03E+03 - - 100%
LAMA 51.60 - 3.15E+03 - - 100%
DeepCubeA 32.88 - 1.05E+03 2.35 5.60E+01 100%
Greedy 29.55 - - 1.68 - 41.9%
DeepCubeAI 33.12 - 3.30E+03 2.62 1.38E+03 100%

IceSlider
PPGS - - - - - 97.0%
Greedy 9.83 84.78% - 0.03 - 46.0%
DeepCubeAI 9.85 100% 31.84 0.09 3.50E+02 100%

DigitJump
PPGS - - - - - 99.0%
Greedy 5.72 88.89% - 0.04 - 90.0%
DeepCubeAI 5.83 96.0% 8.97 0.06 1.40E+02 100%

Table 1: Comparison of DeepCubeAI (ours) with a greedy policy (ours), DeepCubeA, and PDBs
along the dimension of solution length, percentage of optimal solutions, number of nodes generated,
time taken to solve the problem (in seconds), number of nodes generated per second, and percentage
solved. RC is the Rubik’s cube and RCrev is the Rubik’s cube with the start and goal states reversed.
Note that DeepCubeA cannot be applied to RCrev since it is only trained on the canonical goal state.
PDBs+ refers to domain-specific PDBs for the Rubik’s cube that leverage knowledge of group theory
(Rokicki, 2016; Rokicki et al., 2014), DeepCubeA refers to work by Agostinelli et al. (2019), LevinTS
and LAMA refer to work by Orseau et al. (2018), PPGS refers to work by Bagatella et al. (2021).

For certain robotic manipulation tasks, given enough sensors and enough experience in the environ-
ment, the domain can be thought of as deterministic and fully-observable. However, many tasks
in robotics are stochastic due inherit characteristics of the domain or lack of knowledge of the en-
vironment dynamics and partially observable due to limited sensing. Research has been done on
learning models in stochastic environments by training DNNs to sample possible next states (Kaiser
et al., 2020; Hafner et al., 2021). Sequence models, such as recurrent neural networks (Hochreiter
& Schmidhuber, 1997), have been used to learn to embed belief states (Hausknecht & Stone, 2015;
Cassandra et al., 1994) on which we can plan. The benefits of discrete models could extend to these
domains, as well, allowing for the model to be applied over long horizons to improve exploration for
training and to obtain more lookahead during search.

7 Conclusion

We introduce DeepCubeAI, a domain-independent method for learning a model that operates on
discrete latent states. This learned model is then used to learn a heuristic function that generalizes
over problem instances. The learned model and learned heuristic function are then combined with
search to solve problems. In the case of the Rubik’s cube, results show that having a discrete model is
crucial to preventing error accumulation. In the case of all the Rubik’s cube, Sokoban, IceSlider, and
DigitJump, results show that DeepCubeAI solves over 99% of test cases and effectively generalizes
across goal states.
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Abstract

We study the problem of Distributionally Robust Constrained RL (DRC-RL), where
the goal is to maximize the expected reward subject to environmental distribution
shifts and constraints. This setting captures situations where training and testing
environments differ, and policies must satisfy constraints motivated by safety or
limited budgets. Despite significant progress toward algorithm design for the sep-
arate problems of distributionally robust RL and constrained RL, there do not yet
exist algorithms with end-to-end convergence guarantees for DRC-RL. We develop
an algorithmic framework based on strong duality that enables the first efficient and
provable solution in a class of environmental uncertainties. Further, our framework
exposes an inherent structure of DRC-RL that arises from the combination of dis-
tributional robustness and constraints, which prevents a popular class of iterative
methods from tractably solving DRC-RL, despite such frameworks being applicable
for each of distributionally robust RL and constrained RL individually. Finally, we
conduct experiments on a car racing benchmark to evaluate the effectiveness of the
proposed algorithm.

1 Introduction

In many real-world decision-making tasks, policies must not only be reward-maximizing but also be
robust to environmental distribution shifts while satisfying application constraints. Environmental
distribution shifts occur in scenarios where there is a mismatch between the training and testing
environments, such as due to environment changes (Maraun, 2016), modeling errors (Chen et al.,
1996), or adversarial disturbances (Pioch et al., 2009). Constraints are imposed in tasks that require
adherence to safety factors (Haddadin et al., 2012; Weidemann et al., 2023), budgets in strategy
games (Vinyals et al., 2019), diverse interests in advertisement recommendations (KRM et al., 2021;
Bagenal et al., 2023), and so on. This motivates us to tackle both challenges simultaneously, inspiring
the study of problems called distributionally robust constrained RL (DRC-RL) (Russel et al., 2020;
Wang et al., 2022).

∗This work was initiated during the visiting undergraduate research program at the California Institute of Tech-
nology.
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The goal of DRC-RL is to learn a policy that simultaneously optimizes the expected reward and
satisfies the constraints in the worst-case scenario when the deployed environment deviates from the
nominal one within a prescribed uncertainty set. DRC-RL has received growing attention in recent
years and is typically modeled as a constrained optimization problem. As it is unknown if the strong
duality holds for the DRC-RL problems, most recent works either use different formulations (e.g.,
risk-averse) to consider environmental uncertainty (Queeney & Benosman, 2024; Kim et al., 2024),
or simply focus on one of the primal (Sun et al., 2024) and the dual problem (Wang et al., 2022;
Bossens, 2023), such that an end-to-end guarantee is still absent. More broadly, there has been
significant progress in developing rigorous algorithms that address the two challenges that make up
DRC-RL individually: distributionally robust RL (DR-RL) (Iyengar, 2005; Wiesemann et al., 2013;
Li et al., 2022; Panaganti et al., 2022) and constrained RL (C-RL) (Le et al., 2019; Miryoosefi et al.,
2019; Efroni et al., 2020; Ding et al., 2021). Many of these works have focused on a simple, intuitive,
greedy policy induced by taking the greedy (best) action with respect to the current learned value
functions. This raises the question of whether a similar greedy approach can be effective in DRC-RL
or if additional challenges arise from the combination of distributional robustness and constraints.

To address this question, in this paper, we develop a general framework that transfers the policy
learning problem to a game-theoretic formulation with a constructed strong duality, where the dual
problem is treated as a player’s objective. In DR-RL and C-RL, targets similar to this dual function
are solved via greedy policies (Iyengar, 2005; Le et al., 2019). Mathematically, one can think of such
a procedure as applying an operator efficiently and greedily, and convergence depends on proving
that this operator is a contraction. While such a greedy approach works for DR-RL (Iyengar, 2005)
and C-RL (Miryoosefi et al., 2019) in isolation, we show that only with further assumptions can
one apply this approach to DRC-RL, e.g., for R-contamination uncertainty sets (Huber, 1965; Wang
& Zou, 2022). We prove that, in general, no such operator exists for the joint DRC-RL problem,
implying an impossibility result for a commonly applied class of algorithms.

In summary, this paper makes the following main contributions:

• We propose a multi-level systematic framework to solve DRC-RL for general uncertainty
sets in Section 3. We show that guarantees for subroutines combine to ensure end-to-end
guarantees for DRC-RL.

• Focusing on the R-contamination uncertainty set, we instantiate our framework to provide
the first provable efficient solution for DRC-RL in Section 4. Our solution uses a shortened
horizon in subroutines to ensure distributional robustness. We verify its effectiveness with
an experiment using a high-dimensional car-racing task.

• We consider general uncertainty sets in Section 5 and show that the combination of con-
straints and distributional robustness requirements yields that DRC-RL cannot be solved by
considering greedy policies, which is the key of a popular class of iteration methods proposed
previously for standard RL, DR-RL, and C-RL problems (Iyengar, 2005; Le et al., 2019).

Notation. For any set S, ∆(S) denotes the set of probability distribution over S. We use ⊗iXi to
denote a product space of spaces Xi’s. We use ⟨x, y⟩ to denote the inner product of two same-sized
vectors. We claim f(T ) is o(T ) if f(T )/T → 0 as T →∞. f(x) ≤ O(g(x)) denote f(x) ≤ Cg(x) for
some positive constant C.

2 Preliminaries and Problem Formulation

Robust Markov Decision Process. A robust Markov decision process (MDP) with infinite
horizon can be specified by a tuple (S,A,P, r, γ, µ), where S denotes the finite state space1, A
denotes the finite action space, r : S × A → [0, R̄] is the known deterministic reward function
with some positive maximal magnitude R̄, γ ∈ [0, 1) is the discount factor, and µ is the initial

1We study the finite state space here for simplicity sake, while all theoretical and empirical results in the main
text should hold for any bounded and closed finite-dimensional state space as well.
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state distribution. In this paper, we focus on (s, a)-rectangularity uncertainty set for the transition
kernel P (Nilim & Ghaoui, 2003; Iyengar, 2005), i.e. P = ⊗(s,a)∈S×APs,a, where Ps,a = {Ps,a ∈
∆(S)|D(Ps,a, P o

s,a) ≤ βs,a}, describing a neighborhood of the nominal model P o = (P o
s,a, (s, a) ∈

S × A) by some measurement function D : ∆(S)×∆(S)→ R and robustness level β ∈ RS×A. We
consider any policy π : S → A in the class of deterministic policies Π. The robust value function of
a policy π is then defined as the worst-case accumulated reward following the policy π over MDPs
within the uncertainty set as below (Iyengar, 2005, Sec.3):

V π
r (s) := min

K∈⊗t≥0P
EK[

∞∑

t=0
γtr(st, at)|s0 = s, π]. (1)

Here K is a sequence of transition kernels within the same uncertainty set P over each time step.
Moreover, for any policy π, the robust value function V π

r is the unique stationary point of the robust
Bellman consistency operator (Iyengar, 2005),

T π
r,robv(s) := r(s, π(s)) + γ min

P ∈P
⟨Ps,π(s), v⟩. (2)

The ultimate goal of distributionally robust RL is to find the optimal robust policy π∗ that attains
maximized robust value function V ∗

r = maxπ V π
r . To attain the optimal robust value V ∗

r , we have
various dynamic programming procedures (Iyengar, 2005), e.g. iterations vk+1 = T ∗

r,robvk converge
to V ∗

r , where the optimality operator T ∗
r,robv(s) := maxπ T π

r,robv(s) = T G(v)
r,rob v(s) using the greedy

policy G(v)[s] := arg maxa{r(s, a) + γ minP ∈P⟨Ps,a, v⟩}. Typically, such problems that are usually
solved by greedy policy G(v)[s] = arg maxπ T π

r,robv(s) has the name of policy improvement step.

Distributionally Robust Constrained RL (DRC-RL). We formulate the distributionally
robust constrained MDP as a tuple (S,A,P, r, g, τ, γ, µ), where S,A,P, r, γ, µ are identical to that in
robust MDPs. Here, g := [g1, g2, · · · gm] with gi : S ×A → [0, τi] for all i ∈ 1, 2, · · · , m, representing
the aggregation vector of m known deterministic reward-based constraint functions based on the
constraint thresholds τ = [τ1, · · · , τm]. We aim to learn a policy π within the deterministic policy
class denoted as Π. As environmental distribution shifts can be applied to constraints and the
objective independently, e.g. estimation errors, we formulate the goal of distributionally robust
constrained RL (DRC-RL) as solving the following constrained optimization problem:

max
π∈Π

V π
r (µ) s.t. V π

gi
(µ) ≥ τi, 1 ≤ i ≤ m, (3)

where V π
r , V π

gi
is the robust value functions (1) corresponding to the objective reward function r and

constraint functions gi’s, and their corresponding expected robust values according to the initial
state distributions are V π

r (µ) = ⟨V π
r , µ⟩ and V π

gi
(µ) = ⟨V π

gi
, µ⟩. For brevity sake, we denote the

constraint vector as V π
g := [V π

g1 , V π
g2 , · · · , V π

gm
]⊤ ∈ Rm.

3 DRC-RL with General Uncertainty Sets

In this section, we develop a general framework and meta algorithm for DRC-RL with an arbitrary
uncertainty set in Section 3.1 and introduce the subroutines of the framework in Section 3.2.

3.1 A Meta Algorithm for DRC-RL

Constrained RL can be viewed as a constrained optimization problem that has been proven to have
strong duality generally by Paternain et al. (2019). However, it is currently not known whether
DRC-RL maintains strong duality. To show strong duality of DRC-RL problem (3), we consider
a class of mixed policies denoted as Conv(Π), defined as below (Miryoosefi et al., 2019; Le et al.,
2019):

{
πα,{πi}T

i=1
∼ Categorical

(
{πi}T

i=1, α
)

: 0 < T <∞, πi ∈ Π,∀i; α = [α1, · · · , αT ] ∈ ∆(T )
}

, (4)

1795



RLJ | RLC 2024

Algorithm 1 Meta Algorithm for DRC-RL
1: for each round t do
2: πt ← BestResponse(λt) ▷ Non-trivial for DRC-RL problems
3: π̂t ← 1

t

∑t
t′=1 πt′ , λ̂t ← 1

t

∑t
t′=1 λt′ ▷ Mixed policy π̂t

4: Lmax = L(BestResponse(λ̂t), λ̂t)
5: Lmin = minλ L(π̂t, λ)
6: if Lmax − Lmin < ω then ▷ Calculating current duality gap
7: return π̂t

8: end if
9: λt+1 ← OnlineAlgo(π1, ..., πt−1, πt)

10: end for

where Categorical({πi}T
i=1, α) is a categorical distribution such that P(πα,{πi}T

i=1
= πi) = αi for

all i = 1, 2, · · · , T . To execute any mixed policy πα,{πi}T
i=1
∈ Conv(Π), at the beginning of each

episode, a deterministic policy π is sampled independently from Categorical({πi}T
i=1, α) and serve as

the action selection rule for the entire episode. Thus, the robust value function of a mixed policy
V

π
α,{πi}T

i=1
r is defined as V

π
α,{πi}T

i=1
r := Eπ∼Categorical({πi}T

i=1,α)[V π
r ] =

∑T
i=1 αiV

πi
r .

Proposition 3.1. When substituting Π with its convex hull Conv(Π) in the DRC-RL problem (3),
strong duality holds if Slater’s condition holds.

The proof of the above proposition and other results of this section are postponed to Appendix A.

We assume the DRC-RL problem (3) is feasible and that Slater’s condition (Boyd & Vandenberghe,
2004) holds, where the latter only requires the existence of an interior solution upon feasibility. The
problem considering the augmented solution class Conv(Π) has a solution no worse than the original
problem (3), and the convexification itself does not pose any restriction on deterministic policies.
As such, we directly denote the convex hull Conv(Π) as Π in the rest of the paper, and always treat
π as a mixed policy unless specified.

The Lagrangian of (3) is L(π, λ) := V π
r (µ) − λ⊤(V π

g (µ) − τ) for some λ ∈ Rm
+ . Strong duality

indicates maxπ∈Π minλ∈Rm
+

L(π, λ) = minλ∈Rm
+

maxπ∈Π L(π, λ). By the definition of mixed polices,
V π

r (µ) and V π
g (µ) are all linear to policy π (see Appendix A.1). Therefore, L(π, λ) is linear to

both λ and π, and a game-theoretic perspective can be applied. That is, we view the problem as
a two-player game between a π-player and a λ-player (Freund & Schapire, 1999; Miryoosefi et al.,
2019).

Algorithm 1 describes this repeated game, where both players seek to decrease the duality gap. The
π-player runs Best-response to maximize Lagrangian L(π, λt) given the current λt,

πt := Best-response(λt) ∈ argmaxπL(π, λt). (5)

The λ-player then employs any no-regret Online-Algorithm (Shalev-Shwartz, 2007) to minimize
L(πt, λ), which satisfies:

∑

t

(−L)(πt, λt) ≥ max
λ

∑

t

(−L)(πt, λ)− o(T ). (6)

Algorithm 1 terminates when the estimated primal-dual gap is below a threshold w.
Proposition 3.2. Algorithm 1 is guaranteed to converge if (i) Best-response gives the best
deterministic policy in the deterministic policy class (ii) Lmax and Lmin in Algorithm 1 are precisely
evaluated. Additionally, the exact convergence rate depends on the regret of Online-Algorithm.

3.2 The Online-Algorithm and Best-response Subroutines

Given Proposition 3.2, the remaining task is to instantiate the Online-Algorithm and Best-
response subroutines. The requirements for Online-Algorithm are standard. Any no-regret
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(6) online optimization algorithm is valid. Examples include Online Gradient Descent (Zinkevich,
2003), Exponentiated Gradient (Kivinen & Warmuth, 1997), and Follow-the-Regularized-Leader
(Shalev-Shwartz, 2007). The Best-response subroutine, which corresponds to the dual function
of the DRC-RL problem (3), is more difficult to instantiate and currently has no provable method for
any specific uncertainty set among related works (Mankowitz et al., 2020; Wang et al., 2022; Bossens,
2023). Therefore, the key challenge is to efficiently and provably solve Best-response problem
(5).

In detail, the Best-response problem with a given λt corresponds to the maximization problem
of value functions of a form that often occurs in RL, e.g. maxπ V π

r in DR-RL, where

πt ∈ argmax
π∈Π

L(π, λt) = argmax
π∈Π

V π
r (µ)− λ⊤

t V π
g (µ). (7)

With a finite action space, similar maximization problems can be efficiently solved using iterative
methods over greedy policies using some operators in various popular RL problems, such as standard
RL (Scherrer et al., 2015), distributionally robust RL (Iyengar, 2005; Derman et al., 2021; Panaganti
et al., 2022), constrained RL (Le et al., 2019; Miryoosefi et al., 2019), and regularized RL (Geist
et al., 2019). Using a similar approach, for any policy π, we propose a consistency operator T π :
v ∈ RS 7→ T πv ∈ RS so that for any given λt,

[T πv](s) = (r − λ⊤
t g)(s, π(s)) + γ⟨P o

s,π(s), v⟩+ γ min
P ∈P
⟨Ps,π(s) − P o

s,π(s), V π
r ⟩ (8)

− γλ⊤
t min

P ∈P
⟨Ps,π(s) − P o

s,π(s), V π
g ⟩.

where (r − λ⊤
t g)(s, π(s)) := r(s, π(s)) − λ⊤

t g(s, π(s)) for the brevity sake.2 Correspondingly, an
optimality operator T ∗ with a fixed state s can be defined as [T ∗v](s) = maxπ∈Π[T πv](s).
Proposition 3.3. The consistency and optimality operators, i.e., T π and T ∗, satisfy:
(1) Monotonicity: let v1, v2 ∈ RS such that v1 ≥ v2, then T πv1 ≥ T πv2 and T ∗v1 ≥ T ∗v2.
(2) Transition Invariance: for any c ∈ R, we have T π(v + c1) = T πv + γc1 and T ∗(v + c1) =
T ∗v + γc1.
(3) Contraction: The operator T π and T ∗ are γ-contractions. Further, V π

r − λ⊤
t V π

g is the unique
stationary points of operator T π.

The properties summarized in Proposition 3.3 allow us to apply the consistency operator in an ap-
proximate modified policy iteration (AMPI) scheme (Scherrer et al., 2015) to solve Best-response.
AMPI scheme generalizes both value iteration (as used in Section 2) and policy iteration methods
and is widely used for other RL problems (Scherrer et al., 2015; Geist et al., 2019; Panaganti et al.,
2022). The procedure of AMPI can be described as follows:

πk+1 = arg max
π

ϵ′
k+1T πvk and vk+1 = (T πk+1

)mvk + ϵk+1, (9)

where ϵk ∈ RS , ϵ′
k ∈ RS are some optimization errors in the k-th iteration. Here, we assume the

operator maxϵ′
k+1

π T πvk guarantees maxπ[T πvk](s) ≤ [T πk+1
vk](s) + ϵ′

k+1(s) for all s ∈ S for now.

In words, the two update rules in (9) correspond to approximate policy improvement and approxi-
mate policy evaluation, respectively. In RL literature, those two steps can be solved by some oracles.
Especially, the approximate policy improvement step is often represented as πk+1 = Gϵk+1(vk), being
the greedy policy with respect to vk and an error term ϵk+1 (Munos & Szepesvári, 2008; Lazaric
et al., 2012; Scherrer et al., 2015; Geist et al., 2019). In these RL problems, such formulations, while
being nominally different, coincide with ours in (9) as the greedy policy T G(vk)vk = maxπ T πvk is
optimal for the policy improvement step. Inspired by the literature, we first assume two oracles to
execute these two steps for now, leading to the following assumption:

2Here V π
r and V π

g are the robust value functions that are fixed given π, making T π in (8) not a practical operator
yet until further specification.
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Assumption 3.4. There exist oracles that approximately solve (i) the policy improvement step with
errors {ϵk}, and (ii) the policy evaluation step in AMPI (9) with error {ϵ′

k}.

Assumption 3.4 also requires the existence of an ϵ′-approximated policy for policy improvement,
which is not obviously valid as T ∗ may correspond to different best policies for different states. This
issue is resolved if the greedy policy is optimal (as in Section 4) and is further discussed in Section
5. We also provide a standalone solution for this issue in Appendix D.1.

Now, under Assumption 3.4, for any k-th iteration, we are ready to control the loss lk := vπt − vπk

via AMPI, where πt is the solution to Best-response problem with respect to λt, vπ represents
the unique stationary point of T π for any policy π whose uniqueness is guaranteed by contraction
in Proposition 3.3. The analysis is analogous to that in Scherrer et al. (2015).
Theorem 3.5. Under Assumption 3.4, applying (9) for k-th iterations, the loss lk satisfy,

lk ≤ O(γk) + (2ϵ̄(γ − γk) + ϵ̄′(1− γk))/(1− γ)2 k→∞−−−−→ (2ϵ̄γ + ϵ̄′)/(1− γ)2, (10)

where ϵ̄ ∈ RS is the upperbound of errors {ϵk}, i.e. ∀k, ϵk ≤ ϵ̄, and ϵ̄′ ∈ RS is similarly defined as
the upper bound of {ϵ′

k}.

Theorem 3.5 shows that, when errors are relatively small, our AMPI (9) guarantees convergence to
the solution of Best-response under Assumption 3.4. Combining this with a no-regret online
algorithm, we complete the general framework for the DRC-RL problem as in Algorithm 1.

Finally, while the oracle for the approximate policy evaluation step can be implemented for several
popular uncertainty sets (Shi et al., 2023; Clavier et al., 2023), the greedy policy solution for the ap-
proximate policy improvement step does not work, at least for our consistency operator T π. This is
due to its dependency on the whole policy in its definition (8). Moreover, there is currently no prov-
able efficient instantiation for general uncertainty set to enable the approximate policy improvement
step in DRC-RL problems. Given the fact that Best-response corresponds to the fundamental
dual function of (3), and that the policy improvement step consists of a popular class of iteration
methods for Best-response type problems, we wonder:

(Q1) Can we design a specific uncertainty set for our operator T π that enables solving DRC-RL
without oracles, e.g. using greedy policies?

(Q2) Is it possible to design a better consistency operator that makes greedy policies optimal that
in turn provably solves DRC-RL with our framework?

We address these two questions in the next two sections, respectively.

4 DRC-RL with R-Contamination Uncertainty Sets

In this section, we address (Q1) via a focus on the R-contamination uncertainty sets Ps,a := {(1 −
β)P o

s,a + βq | q ∈ △(S)} with a scalar robust level β ∈ R. This uncertainty set has been studied in
distributionally robust RL recently (Wang et al., 2022; Li & Lan, 2023). Considering this, we can
simplify our consistency operator T π without any loss in solving Best-response as

[T πv](s) = (r − λ⊤
t g)(s, π(s)) + γ(1− β)⟨P o

s,π(s), v⟩+ γβ(min
s′

V π
r (s′)− λ⊤

t min
s′

V π
g (s′)). (11)

Please refer to Appendix B for detailed proof. Additionally, we adopt the following fail-state as-
sumption (Panaganti et al., 2022).
Assumption 4.1 (fail-state). There is a fail state sf for all the RMDPs, such that r(sf , a) =
0, gi(sf , a) = 0 and Psf ,a(sf ) = 1, for all a ∈ A and P ∈ P.

The fail-state assumption is commonly satisfied in practice as it corresponds to an end-game state
in the simulator or real-world systems, in which all constraints are violated and the reward is zero.
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Under this fail-state assumption, we always have mins′ V π
r (s′) = mins′ V π

g (s′) = 0, which makes the
operator T π correspond to a standard bellman consistency operator with shortened discount factor,

[T πv](s) = (r − λ⊤
t g)(s, π(s)) + γ(1− β)⟨P 0

s,π(s), v⟩. (12)

Given that T π takes the form of a standard consistency operator, the greedy policy is available for
the policy improvement step. Thus, any instantiation of AMPI (9), such as simple value iteration
or policy iteration, can efficiently and provably solve Best-response problem under small errors.
The distributionally robust constrained problem therefore has a provable solution in the case of the
R-contamination uncertainty set. The details of an instantiation of Best-response and Online-
Algorithm are discussed in Appendix D.2.

Our result for the R-contamination uncertainty set indicates that a smaller discount factor, i.e. a
smaller effective horizon, gives higher distributional robustness. However, as this smaller discount
factor is a consequence of the robustness objective, the discount factor should remain unchanged,
when designing constraints threshold τ and testing in shifted environments. Such an unchanged
discount factor in thresholds and tests differs our solution from simply scaling the problem.

Finally, it is worth noting that the case of no constraints, e.g. g = τ = 0, implies that our analysis also
gives a provable solution to the distributionally robust RL problem on R-contamination uncertainty
sets.

5 On the Intractability of Greedy Policies for DRC-RL

In this section, we answer question (Q2) with a negative result showing that the combination of
constraints and distributional robustness requires different algorithmic tools than either robust RL
or constrained RL do alone. In detail, we show that for any ‘good’ consistency operator, the greedy
policies are not generally optimal for the policy improvement step in (9). This, in turn, prevents any
algorithm from a popular class of iteration methods from tractably solving the DRC-RL problem.

To begin, we formally define the optimality of greedy policy and connect it to the operator. We
assume policy π ∈ RS×A includes both deterministic and stochastic policies.
Definition 5.1 (Greedy Policy Enabling). We state an consistency operator T π enables the greedy
policy if there exist a function g : RS × A → RS such that ∀v ∈ RS , s ∈ S, maxa∈A g(v, a)[s] =
maxπ∈Π[T πv](s), i.e. greedy policies are optimal.
Definition 5.2 (Operator Linearity). The consistency operator T π, that takes policy π as an input,
is linear if there exists a function f : RS → RS×A that is independent of π, such that ∀v ∈ RS , s ∈ S,
we have [T πv](s) = ⟨π[s, ·], f(v)[s, ·]⟩ = ⟨π, f(v)⟩s.

Take distributional robust RL as an example, its robust consistency operator (2): [T π
r,robv](s) =

⟨π[s, ·], f(v)[s, ·]⟩ is linear where f(v)[s, a] = rs,a + minP ∈P⟨Ps,a, v⟩. Thus, one only needs to treat
f(v)[s, a] as g(v, a)[s] in Definition 5.1 to enable the greedy policy. It is not hard to find that a linear
operator naturally enables the greedy policy as in the above example, and we generalize this in the
following result. All proofs for this section are presented in Appendix C.
Lemma 5.3. The linear operator is equivalent to greedy policy-enabled operators in Definition 5.1
in the following ways: (i) If a consistency operator is a linear operator, then it enables the greedy
policy. (ii) If a consistency operator T π enables the greedy policy, then there always exists a linear
operator T π

linear that can substitute T π without any loss in policy improvement step, i.e. ∀v ∈ RS , s ∈
S, maxπ∈Π[T πv](s) = maxπ∈Π[T π

linearv](s).

However, the following shows that it is impossible to have a consistency operator that simultaneously
converges as a contraction to our target in Best-response and enables the greedy policy.
Theorem 5.4. There is no consistency operator T π, that takes any policy π as an input, simultane-
ously satisfies for given γ and every λt: (i) Linearity. (ii) γ-Contraction to our target: the operator
T π is a contraction such that for every policy π ∈ Π, V π

r − λ⊤
t V π

g is the unique stationary point of
T π.
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(a) Constraints Satisfaction under Shifts (b) Performance under Steering Shift

Figure 1: The four bar graphs denote the constraints satisfaction (green means satisfied) when shifts
of power, inertia, braking magnitude, and steering angle occur. The lower right figure indicates the
value of the objective (higher is better) when the steering angle is shifted. All evaluations are based
on the value function (accumulated rewards) of mixture policy π̂.

Corollary 5.5. There is no consistency operator T π that enables greedy policy while retaining as a
γ-contraction to V π

r − λ⊤
t V π

g .

Theorem 5.4 and Corollary 5.5 highlight the additional difficulty of DRC-RL as compared to robust or
constrained RL, where iterative methods can be successful. Our proof (Appendix C.2) demonstrates
how this difficulty arises from the combination of constraints and distributional robustness.

Comparing our previous success in the case of R-contamination sets (Section 4) to these impossible
results, it becomes evident that the additional fail-state assumption is critical. This assumption
restricts the possible value function space and provides an additional transition structure that avoids
the challenges underlying Theorem 5.4.

Following the fail-state assumption, we believe it is possible to design additional conditions for other
forms of uncertainty sets that resolve such impossibilities. Although we have not yet found clear and
rigorous guidance, we tentatively acknowledge that the absence of linearity in worst-case transition
kernels is essential for Theorem 5.4. Therefore a structured value function space or an augmented
state space (such as in Sootla et al. (2022)) might be helpful to give tractable solutions with our
framework in Section 3.

6 Experiments and Evaluation

In this section, we present a focused experiment to validate our solution in Section 4. This solution
specializes to the case of constrained RL in Le et al. (2019) when setting the robustness level to 0.
We present critical settings here and refer to Appendix E for more details.

Task Setting. We choose the high-dimensional Car Racing task (Towers et al., 2023) where the
agents must traverse as far as possible on track, with each reward for a passed tile of track and a
small negative reward for each second. Two constraints are designed: slow driving and edge driving.
States off the track excessively are considered fail-states.

Algorithms Design and Baseline. We adopt Fitted Q Iteration (Ernst et al., 2005) and Expo-
nentiated Gradient (Kivinen & Warmuth, 1997) for Best-response and Online-Algorithm.
Evaluations are executed using the simulator and meet the requirements of Proposition 3.2. We
choose γ = 0.95 as the initial discount factor for the baseline, since in this case our solution retrieves
the constrained RL algorithm in Le et al. (2019) and is considered as zero robustness level. We select
two robustness levels β for evaluation. These result in discount factors γ(1 − β) = {0.90, 0.925},
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and correspond to a maximized 50% decrease of the effective horizon. All other hyperparameters,
including random seeds, do not change across γ.

Procedure and Criteria. For each γ, 25 rounds are executed, which guarantees a duality gap of
less than .01. The mixture policy π̂ =

∑25
t=1

1
25 πt is then tested in the shifted environments. When

testing with a shifted environment, the objective and two constraints for each mixture policy are
measured with value function and initial discount factor γ = 0.95. All results in shifted environments
are smoothed as the mean of 3 random seeds and a 1% shift window. We regard constraints as hard
and prioritize constraint satisfaction as the main criterion for robustness, with the value of the
objective as the secondary criterion.

Results. Our experiments verify that smaller γ learns a more robust policy in the car-racing
example. Results are shown in Figure 1: In the left plot, we present constraint satisfaction under
shifts of power, inertia, and brake magnitude. Our learned policies with smaller discount factors
perform better. In the right plot, we present a full set of evaluations when the steering angle is
shifted. Here the learned policies with smaller discount factors not only satisfy more constraints but
may also have better objective value when a certain shift occurs.

7 Related Works

Constrained RL. Constrained RL aims at maximizing expected cumulative reward while adhering
to specified constraints. Applications of Constrained RL cover a wide array of topics, such as resource
allocation for numerous users in grid systems (Wang et al., 2020; De Nijs et al., 2021; Mo et al., 2023),
human satisfaction in human-robot interaction (El-Shamouty et al., 2020; Liu et al., 2023), and the
safety level of robotic agents (Wachi & Sui, 2020; Zhang et al., 2020; Brunke et al., 2022; Tambon
et al., 2022). The underlying decision-making problem in constrained RL can be represented as a
constrained Markov decision process (Altman, 2021) that has a bilevel structure with strong duality
(Miryoosefi et al., 2019; Paternain et al., 2019). Most works in constrained RL employ model-based
methods (Efroni et al., 2020; Bura et al., 2022). To develop model-free and policy gradient methods,
many additional constrained RL algorithms, involving online (Ding et al., 2021; Wachi et al., 2021)
or offline (Le et al., 2019) interactions, embrace a primal-dual methodology.

Distributionally Robust RL. Distributionally robust RL tackles the challenge of formulating a
policy resilient to shifts between training and testing environments by using robust Markov decision
process (Nilim & Ghaoui, 2003; Iyengar, 2005) as the underlying decision-making problem. Prior
works (Xu & Mannor, 2010; Wiesemann et al., 2013; Yu & Xu, 2015; Mannor et al., 2016; Russel
& Petrik, 2019) have shown that distributional robustness is essential when the environment shifts.
Recently, work has also started to provide a concrete theoretical understanding of distributionally
robust RL about the convergence of algorithms and sample complexity (Yang et al., 2021b; Panaganti
& Kalathil, 2021b; Zhou et al., 2021; Shi & Chi, 2022; Wang et al., 2023a; Blanchet et al., 2023; Liu
et al., 2022; Wang et al., 2023c; Liang et al., 2023; Shi et al., 2023; Wang & Zou, 2021; Xu et al.,
2023; Dong et al., 2022; Ramesh et al., 2023; Panaganti et al., 2022; Ma et al., 2022; Wang et al.,
2023b; Li et al., 2022; Kumar et al., 2023; Clavier et al., 2023; Yang et al., 2023; Zhang et al., 2023;
Li & Lan, 2023; Wang et al., 2024; Yang et al., 2021a; Panaganti & Kalathil, 2022; Shi et al., 2024).
Additionally, other recent work (Panaganti & Kalathil, 2021a; Wang & Zou, 2021; Panaganti et al.,
2022; 2024) has employed general function approximation to devise model-free online and offline
robust RL algorithms.

Related work on DRC-RL. The study of DRC-RL can be traced back to at least Russel et al.
(2020) and Mankowitz et al. (2020), where the basic formulation is proposed and first-order methods,
such as Robust Constrained Policy Gradient (RCPG), are studied. More recently, Wang et al.
(2022) focuses on the dual problem and proposes a first-order method that achieves the convergence
guarantee to a stationary point with additional approximation, and Bossens (2023) extends RCPG
to Lagrangian or adversarial updates for the dual problem of a different formulation. A simultaneous
work of ours is Sun et al. (2024), where they proposed a projected gradient descend style algorithm
that guarantees per-step improvement and constraints violation. However, these existing works do
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not provide provable guarantees for an end-to-end framework of DRC-RL, which instead makes
relaxations for devising tractable objectives.

Beyond the distributional robustness we studied, a variety of relaxations quantifying robustness,
such as assuming a stochastic setting with uncertainty on the distribution of kernels (Queeney
& Benosman, 2024) or considering risk-averse constraints (Kim et al., 2024), are studied. Such
relaxation provides a more informative structure to avoid the minimax formulation, and is therefore
beyond the scope of this paper.

8 Limitations and Future Directions

This paper is initiated from the primal-dual framework upon mixed policies, and derives algorithmic
and theoretical results that hold independently for every DRC-RL problem. While we highlight these
results mainly presented in Section 4 and Section 5, we consider our framework immature and has
certain limitations. In specific, the use of mixed policies may be inefficient and has a large variance
under resource limitation. Any single policy inside the resulting mixed policies, on the other hand,
might not satisfy the constraints when executed consistently. Moreover, the intractability of greedy
policies indicates that the primal-dual paradigm might not fit with DRC-RL problems.

As per, we regard applying other methods, such as epi-graph methods, as a future direction to fully
solve DRC-RL problems. Another interesting direction is to study additional structures, as provided
by the fail-state assumption, to encompass both distributional robustness and constraint satisfaction
upon the proposed framework. Because of the fundamental role of iterative methods in RL, such
structures should be significant despite the context and may correspond to other findings in related
fields such as neuroscience.

9 Conclusion

In this paper, we present a primal-dual algorithmic framework for the distributionally robust con-
strained RL problem (DRC-RL). Our framework provides the first efficient provable solution for
R-contamination uncertainty sets. We additionally prove the intractability of greedy policies for
general uncertainty sets, which prevents the use of popular iterative methods unless the uncertainty
sets and additional assumptions maintain additional structures. In the case of R-contamination un-
certainty sets, a simple rule relating the discount factor and distributional robustness is discovered.
We view this paper as a stepping stone to explore the theoretical and algorithmic understanding of
distributional robustness and constraints in RL, and anticipate future research stemming from our
framework and results.
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A Proof for Section 3: DRC-RL with General Uncertainty Sets

A.1 Proof of Proposition 3.1

We assume πα,{πi}T
i=1

, π′
α′,{πi}T

i=1
∈ Conv(Π) are two mixed policies defined in Section 3.1 with

the same candidate deterministic policy set without loss of generality (Otherwise we could simply
combine two sets and set zero to new candidate policy for each categorical distribution). For brevity,
we use πα and πα′ to denote them.

First, by the definition of mixed policy in Section 3.1, Conv(Π) is indeed a convex hull that linear
combination of policies over c ∈ [0, 1] satisfies,

πcα+(1−c)α′ = cπα + (1− c)πα′ ∈ Conv(Π). (13)

Then we show that the robust value function is linear to mixed policy, with c ∈ [0, 1],

V
πcα+(1−c)α′

r =
∑

π

(cα(π) + (1− c)α′(π))V π
r (14)

= c
∑

π

α(π)V π
r + (1− c)

∑

π

α′(π)V π
r (15)

= cV πα + (1− c)V πα′ . (16)

where the first equality comes from the definition of the robust value function of a mixed policy in
Section 3.1.

Naturally, the robust value function for rewards of constraints V π
g is also linear to mixed policy.

Therefore, the constrained optimization problem (3) becomes convex, and hence the strong duality
holds with Slater’s condition (Boyd & Vandenberghe, 2004).

A.2 Proof of Proposition 3.2

First, as proved in A.1, Lagrangian L(π, λ) = V π
r − λT V π

g is linear to both policy π and multiplier
λ. (We are treating Π as its convex hull Conv(Π) now.)

When Online-Algorithm is chosen as a no-regret online learning algorithm with the negative
Lagrangian −L(π, λ) as loss (Kivinen & Warmuth, 1997; Zinkevich, 2003), we have

∑

t

(−L)(πt, λt) ≥ max
λ

∑

t

(−L)(πt, λ)− o(T ) (17)

Then, recalling that πt is the Best-response (5) given current λt, we have

min
λ

L(π̂T , λ) = min
λ

1
T

∑

t

L(πt, λ) (18)

= −max
λ

1
T

∑

t

−L(πt, λ) (19)

(i)
≥ 1

T

∑

t

L(πt, λt)−
o(T )

T
(20)

(ii)
≥ 1

T

∑

t

L(π, λt)−
o(T )

T
, ∀π ∈ Π (21)

= L(π, λ̂T )− o(T )
T

, ∀π ∈ Π (22)

where the first and the last equalities come from the linearity of the Lagrangian w.r.t. the policy and
the Lagrange multiplier, and the definition of π̂T and λ̂T in meta algorithm 1; (i) holds by Eq.(17),
and (ii) arises from the fact that πt is the Best-response (5)
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Additionally, inserting the fact maxπ L(π, λ̂T ) ≥ L(π̂T , λ̂T ) ≥ minλ L(π̂T , λ) one has

max
π

L(π, λ̂T ) ≥ min
λ

L(π̂T , λ) ≥ max
π

L(π, λ̂T )− o(T )
T

. (23)

Finally, recalling that Lmax = maxπ L(π, λ̂T ) and Lmin = minλ L(π̂T , λ) in meta algorithm 1. The
duality gap Lmax −Lmin is bound to smaller than positive threshold ω. The exact convergence rate
of Algorithm 1 will depend on the choice of Online-Algorithm. For example, the algorithm will
terminate after O( 1

ω2 ) rounds if online algorithms with regret scaling as Ω(
√

T ) are chosen (such as
online gradient descent with regularizer).

A.3 Proof for Proposition 3.3

Through out this proof, we denote P o
π as the vector [P o

s,π(s)]⊤s∈S , and v1, v2 ∈ RS , s ∈ S.

Monotonicity. By the definition of T π , we have with v1 ≥ v2,

T πv1 − T πv2 = γ⟨P o
π , v1 − v2⟩ ≥ 0. (24)

Then for T ∗, we denote πs
1 := argmaxπ∈Π T πv1(s) and similar for πs

2, we then have for every state
s,

T ∗v1(s)− T ∗v2(s) = T πs
1

s v1(s)− T πs
2

s v2(s) ≥ T πs
1

s v1(s)− T πs
1

s v2(s) ≥ 0. (25)
The last inequality comes from the monotonicity of T π, which completes the proof.

Transition Invariance. From the definition of T π in (8), we have

T π(v1 + c1) = T πv1 + γ⟨P o
π , c1⟩ = T πv1 + γc1. (26)

Then similar for T ∗, we have,

T ∗(v1 + c1) = T ∗v1 + γ⟨P o
π , c1⟩ = T ∗v1 + γc1. (27)

Contraction. we first show the γ-contraction property of T π by its definition in (8),

|[T πv1](s)− [T πv2](s)| = |γ⟨P 0
s,π(s), v1 − v2⟩| ≤ γ∥v1 − v2∥∞. (28)

where the last inequality comes from the distribution nature of P 0
s,π(s).

Then for T ∗ and state s, we assume v1(s) ≥ v2(s) without losing generality,

|[T ∗v1](s)− [T ∗v2)](s)| = [T πs
1

s ]v1(s)− [T πs
2

s ]v2(s)
(i)
≤ [T πs

1
s v1](s)− [T πs

1
s v2](s) (29)

≤ |[T πs
1

s v1](s)− [T πs
1

s v2](s)| (30)
(ii)
≤ γ∥v1 − v2∥∞ (31)

where the first equality comes from the definitions of πs
1 and πs

2, inequality (i) comes from the
fact that [T πs

2
s ]v2(s) = [maxπ T πv2](s) ≥ [T πs

1
s v2](s), and inequality (ii) comes from the contraction

property of T π in (28).

Finally, We apply T π on our objective V π
r − λ⊤

t V π
g , which yields

[T π(V π
r − λ⊤

t V π
g )](s) = (r − λ⊤

t g)(s, π(s)) + γ⟨P o
s,π(s), V π

r − λ⊤
t V π

g )⟩ (32)
+ γ min

P ∈P
⟨Ps,π(s) − P o

s,π(s), V π
r ⟩ − γλ⊤

t min
P ∈P
⟨Ps,π(s) − P o

s,π(s), V π
g ⟩

= r(s, π(s)) + γ⟨P o
s,π(s), V π

r ⟩+ γ min
P ∈P
⟨Ps,π(s) − P o

s,π(s), V π
r ⟩ (33)
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− λ⊤
t

(
g(s, π(s)) + γ⟨P o

s,π(s), V π
g ⟩+ γ min

P ∈P
⟨Ps,π(s) − P o

s,π(s), V π
g )⟩

)

= r(s, π(s)) + γ min
P ∈P
⟨Ps,π(s), V π

r ⟩ (34)

− λ⊤
t

(
g(s, π(s)) + γ min

P ∈P
⟨Ps,π(s), V π

g )⟩
)

= [T π
r,robV π

r ](s)− λ⊤
t [T π

g,robV π
g ](s) (35)

= (V π
r − λ⊤

t V π
g )(s) (36)

where the first equality comes from the definition of consistency operator T π in (8), the second
equality is a simple rearrangement, the third equality comes from the fact that ⟨P o

s,π(s), V π
g ⟩ is

independent of P ∈ P, the fourth equality comes from the definition of robust consistency operator
in 2, and the last equality comes from the contraction property of robust consistency operator
(Iyengar, 2005).

Combine with the fact that operator T π is a γ-contraction, V π
r − λ⊤

t V π
g is the only stationary point

of T π, the proof is complete.

A.4 Proof for Theorem 3.5

A.4.1 Preliminary

To start with, we introduce two preliminary propositions from Scherrer et al. (2015) where Propo-
sition A.3 builds three relations, and Proposition A.1 is a direct application of these three relations.
Definition A.2 is used to simplify notation in proposition A.1.
Proposition A.1 (Lemma 2, Scherrer et al. (2015)). Consider approximate modified policy iteration
scheme with standard bellman operator T π

st .
{

πk+1 = argmaxϵ′
k+1

π T π
st vk = Gϵ′

k+1vk

vk+1 = (T πk+1

st )mvk + ϵk+1
(37)

where πk+1 is the greedy policy with respect to vk with some error ϵ′
k+1, e.g. ∀π ∈ Π, T πk+1

st vk+ϵ′
k+1 ≥

T π
st vk.

Let v∗ denote the optimal value function, dk := v∗ − (T πk

st )mvk−1, sk := (T πk

st )mvk−1 − vπk and
bk := vk − T πk+1

st vk, then for k ≥ 1, we have,
bk ≤ (γPπk )mbk−1 + xk (38)

dk+1 ≤ γPπ∗dk + yk +
m−1∑

j=1
(γPπk+1)jbk (39)

sk = (γPπk )m(I − γPπk )−1bk−1 (40)
where xk := (I − γPπk )ϵk + ϵ′

k+1 and yk := −γPπ∗ϵk + ϵ′
k+1.

Definition A.2 (Γ-matrix (Scherrer et al., 2015)). For a positive integer n, we define Pn as the
smallest set of discounted transition kernels that are defined as (i) for any set of n policies {πi},
(γP o

π1)(γP o
π2) · · · (γP o

πn) ∈ Pn, where P o
π(s, s′) = P o

s,π(s)(s′). (ii) for any α ∈ (0, 1) and (P1, P2) ∈
Pn × Pn, αP1 + (1− α)P2 ∈ Pn. With slight abuse of notation, Γn is used to denote any element of
Pn.
Proposition A.3 (Lemma 4, Scherrer et al. (2015)). After k iterations of approximate modified
policy iteration scheme with standard bellman operator T π

st , the losses lk := v∗ − vπk satisfy

lk ≤ 2
k−1∑

i=1

∞∑

j=i

Γj |ϵk−i|+
k−1∑

i=0

∞∑

j=i

Γj |ϵ′
k−i|+ h(k) (41)

where h(k) := 2
∑∞

j=k Γj |d0| or h(k) := 2
∑∞

j=k Γj |b0|.
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A.4.2 Proof pipelne of Theorem 3.5

We first prove a technical result for our losses lk := vπt
− vπk that is similar to Proposition A.3.

Lemma A.4. Under assumption 3.4, after k iterations of scheme (9), our losses satisfy

lk ≤ 2
k−1∑

i=1

∞∑

j=i

Γj |ϵk−i|+
k−1∑

i=0

∞∑

j=i

Γj |ϵ′
k−i|+ h(k), (42)

where h(k) := 2
∑∞

j=k Γj |l0| or h(k) := 2
∑∞

j=k Γj |b0|, with b0 = T π1
v0 − v0 that is related to the

choice of the starting point.

Proof. Similar to the proofs in Scherrer et al. (2015) for Proposition A.3, we first derive three
relations that are identical to those in Proposition A.1, then apply these relations to bound our
losses lk := vπt

− vπk .

To start with, we define

bk := vk − T πk+1
vk, sk := (T πk

)mvk−1 − vπk , dk := vπt
− (T πk

)mvk−1. (43)

Bounding bk With the definitions of ϵk and ϵ′
k, and the property that

(T π)mv − (T π)mv′ = (γP o
π)m(v − v′), (44)

we have,

bk = vk − T πk

vk + T πk

vk − T πk+1
vk (45)

(i)
≤ vk − T πk

vk + ϵ′
k+1 (46)

= vk − ϵk − T πk

vk + P o
πk ϵk + ϵk − P o

πk ϵk + ϵ′
k+1 (47)

(ii)= vk − ϵk − T πk

(vk − ϵk) + (I − γP o
πk )ϵk + ϵ′

k+1 (48)

= vk − ϵk − T πk

(vk − ϵk) + xk, (49)

where xk := (I − γP o
πk )ϵk + ϵ′

k+1, inequality (i) comes from the definition of ϵ′
k+1 in (9), equality (ii)

comes from property (44).

bk ≤ vk − ϵk − T πk

(vk − ϵk) + xk (50)
(i)= (T πk

)mvk−1 − T πk

(T πk

)mvk−1 + xk (51)

= (T πk

)mvk−1 − (T πk

)m(T πk

vk−1) + xk (52)
(ii)
≤ (γP o

πk )m(vk−1 − T πk

vk−1) + xk (53)
= (γP o

πk )mbk−1 + xk, (54)

where equality (i) comes from the definition of ϵ in (9), and equality (ii) comes from property (44).

Bounding sk With the property that ∀v, vπk = (T πk )∞v, we have

sk = (T πk

)mvk−1 − (T πk

)∞vk−1 (55)
= (γP o

πk )m(I − γP o
πk )−1bk−1, (56)

where the last equality comes from property (44).
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Bounding dk Define yk := −γP o
πt

ϵk + ϵ′
k+1, then

dk+1 = vπt
− (T πk+1

)mvk (57)
(i)= T πtvπt

− T πtvk + T πtvk − T πk+1
vk + T πk+1

vk − (T πk+1
)mvk (58)

(i)
≤ γP o

πt
(vπt
− vk) + ϵ′

k+1 + T πk+1
vk − (T πk+1

)mvk (59)

= γP o
πt

(vπt
− vk) + γP o

πt
ϵk − γP o

πt
ϵk + ϵ′

k+1 + T πk+1
vk − (T πk+1

)mvk (60)

= γP o
πt

dk + yk + T πk+1
vk − (T πk+1

)mvk (61)

(iii)= γP o
πt

dk + yk +
m−1∑

j=1
(γP o

πk+1)jbk, (62)

where equality (i) comes from vπt
= T πtvπt

, inequality (ii) comes from T πtvπt
−T πtvk = γP o

πt
(vπt
−

vk) and the definition of ϵ′
k+1, and equality (iii) comes from iteratively applying property of (T π)jv−

(T π)jv′ = (γP o
π)j(v − v′).

After bounding all three elements, using the notation introduced in Definition A.2, we may rewrite
(56) as

sk = Γm
∞∑

j=0
Γjbk−1, (63)

And by induction from Eq.(54) and (62), we obtain

bk ≤
k∑

i=1
Γm(k−i)xi + Γmkb0, (64)

dk ≤
k−1∑

j=1
Γk−1−j(yj +

m−1∑

l=1
Γlbj) + Γkd0. (65)

Combine with the fact of lk = sk + dk, now we recover exactl the same expression of sk, bk, and
dk as in the proof of proposition A.3. All the rest are therefore standard as in theirs except for the
relation between b0 and d0,

b0 = v0 − T π1
v0 (66)

= v0 − vπt
+ T πtvπt

− π⊔v0 + π⊔v0 − T π1
v0 (67)

≤ (I − γP o
πt

)(−d0) + ϵ′
1, (68)

where the fact of ϵ0 = 0 is used and we again recover the same relation.

Finally we finish the proof of theorem 3.5 by noticing that Γn ≤ γn in Definition A.2. Therefore,
we have

lk ≤ 2
k−1∑

i=1

∞∑

j=i

Γj |ϵk−i|+
k−1∑

i=0

∞∑

j=i

Γj |ϵ′
k−i|+ h(k) (69)

≤ 2ϵ̄(γ − γk) + ϵ̄′(1− γk)
(1− γ)2 + O(γk) (70)

k→∞−−−−→ 2ϵ̄γ + ϵ̄′

(1− γ)2 . (71)
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B Derivation of Section 4 : DRC-RL with R-Contamination
Uncertainty Sets

There exist a variety class of operators of our proposed operator T π in (8), that keep properties as
in Proposition 3.3. We present one of them and upon which derive the exact consistency operator
(11) used for R-contamination uncertainty set in Section 4.

Formally, ∀λt ∈ R+, s ∈ S, v ∈ RS , we define a class of consistency operators [T π
1 v](s) := [T πv](s)−

γh⟨P o
s,π(s), v−V π

r +λ⊤
t V π

g ⟩ controlled by coefficient h ∈ [0, 1). We use P o
π to denote vector [P o

s,π(s)]⊤s∈S .
Proposition B.1. The consistency operator T π

1 satisfies the following :

(1) Monotonicity: let v1, v2 ∈ RS such that v1 ≥ v2, then T π
1 v1 ≥ T π

1 v2.

(2) Transition Invariance: for any c ∈ R, we have T π
1 (v + c1) = T π

1 v + γ(1− h)c1.

(3) Contraction: The operator T π
1 is a γ(1−h)-contraction. Further, V π

r −λ⊤
t V π

g is the unique
stationary point.

Proof. Monotonicity. By the definition of T π
1 , we have ∀v1, v2 ∈ RS such that v1 ≥ v2,

T π
1 v1 − T π

1 v2 = γ(1− h)⟨P o
π , v1 − v2⟩ ≥ 0. (72)

Transition Invariance. By the definition of T π
1 , we have ∀v1 ∈ RS , c ∈ R

T π
1 (v1 + c1) = T π

1 v1 + γ(1− h)⟨P o
π , c1⟩ = T π

1 v1 + γ(1− h)c1. (73)

Contraction. We first show that T π
1 is a γ(1 − h) contraction by its definition, that we have

∀v1, v2 ∈ RS , s ∈ S,

|[T π
1 v1](s)− [T π

1 v2](s)| = |γ(1− h)⟨P 0
s,π(s), v1 − v2⟩| ≤ γ(1− h)∥v1 − v2∥∞. (74)

Finally, we apply T π
1 on V π

r − λ⊤
t V π

g ,

[T π
1 (V π

r − λ⊤
t V π

g )](s) = [T π(V π
r − λ⊤

t V π
g )](s)− γh⟨P o

s,π(s), V π
r − λ⊤

t V π
g − V π

r + λ⊤
t V π

g ⟩ (75)
= [T π(V π

r − λ⊤
t V π

g )](s) (76)
= V π

r (s)− λ⊤
t V π

g (s), (77)

where the first equality comes from the definition of T π
1 , the last equality comes from the contraction

property of T π in Proposition 3.3.

By setting h = β and specifying the uncertainty set as R-contamination uncertainty set Ps,a =
{(1−β)P o

s,a +βq | q ∈ △(S)} with a scalar robust level β ∈ R, we have for T π
1 defined in Proposition

B.1 and s ∈ S, v ∈ RS ,

[T π
1 v](s) = [T πv](s)− γβ⟨P o

s,π(s), v − V π
r + λ⊤

t V π
g ⟩ (78)

(i)= (r − λ⊤
t g)(s, π(s)) + γ⟨P o

s,π(s), v⟩+ γ min
P ∈P
⟨Ps,π(s) − P o

s,π(s), V π
r ⟩ (79)

− γλ⊤
t min

P ∈P
⟨Ps,π(s) − P o

s,π(s), V π
g ⟩ − γβ⟨P o

s,π(s), v − V π
r + λ⊤

t V π
g ⟩

(ii)= (r − λ⊤
t g)(s, π(s)) + γ⟨P o

s,π(s), v⟩+ γ min
q∈∆(S)

⟨β(q − P o
s,π(s)), V π

r ⟩ (80)

− γλ⊤
t min

q∈∆(S)
⟨β(q − P o

s,π(s)), V π
g ⟩ − γβ⟨P o

s,π(s), v − V π
r + λ⊤

t V π
g ⟩

= (r − λ⊤
t g)(s, π(s)) + γ(1− β)⟨P o

s,π(s), v⟩+ γβ( min
q∈∆(S)

⟨q, V π
r ⟩ − λ⊤

t min
q∈∆(S)

⟨q, V π
g ⟩) (81)
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= (r − λ⊤
t g)(s, π(s)) + γ(1− β)⟨P o

s,π(s), v⟩+ γβ(min
s′

V π
r (s′)− λ⊤

t min
s′

V π
g (s′)). (82)

where equality (i) comes from the definition of consistency operator T π in (8), and equality (ii)
comes from the definition of R-contamination uncertainty set.

Now we have obtained the same consistency operator as in (11) that is derived from proposed
consistency operator T π in (8), so we use the same notation as T π in the main text for brevity sake
(and one can certainly proof everything in Section 3 as they mostly depend on these three properties,
but it is no need to do that as following).

In the following content of Section 4, we will further simplify to obtain a standard consistency
operator, thus the convergence result is standard from Scherrer et al. (2015), such as in Proposition
A.3.

C Proof of Section 5: On the Intractability of DRC-RL

C.1 Proof of Lemma 5.3

For brevity, we denote policy as π ∈ ∆(A)S ⊆ RA×S which includes both the class of stochastic and
deterministic policies. We therefore use π[s, a] to denote the probability of action a given state s,
and use π(s) to denote the whole probability simplex given state s.

When an operator is linear, by the definition of linearity, there exists a function f : R|S| → R|S||A|,
such that for every value function v ∈ R|S| and state s ∈ S,

max
π∈Π

[T πv](s) = max
π∈Π
⟨π, f(v)⟩s (83)

= max
π∈Π
⟨π[s, ·], f(v)[s, ·]⟩ (84)

= max
π(s)∈∆(A)

⟨π(s), f(v)[s, ·]⟩ (85)

= max
a

f(v)[s, a] (86)

The greedy policy can be set as g(v, a)s = f(v)[s, a], which completes the proof for the first part.

When an operator T π enables the greedy policy, by its definition, there exists a function g : R|S| ×
A → R|S| such that ∀v ∈ R|S|, s ∈ S, maxπ∈Π[T πv](s) = maxa∈A g(v, a)s. Therefore, when defining
the linear operator T π

linear := ⟨π(s), g(v, ·)⟩, we complete the proof by showing:

max
π∈Π

[T πv](s) = max
a∈A

g(v, a)s (87)

= max
π(s)∈∆(A)

⟨π(s), g(v, ·)⟩ (88)

= max
π∈Π
⟨π(s), g(v, ·)⟩ (89)

= max
π∈Π

[T π
linearv](s). (90)

C.2 Proof for Theorem 5.4

Throughout this proof, for convenience, we denote vπ := V π
r − λT

t V π
g for any policy π ∈ Π and any

λt.

To start with, we suppose that there exists a consistency operator denoted as T ′ that satisfies both
conditions in Theorem 5.4 for all policy π, namely, ∀s ∈ S, π1, π2 ∈ Π, we have:

|[T ′π1vπ1 ](s)− [T ′π2vπ2 ](s)| = |[T ′π1vπ1 ](s)− [T ′π1vπ2 ](s) + [T ′π1vπ2 ](s)− [T ′π2vπ2 ](s)| (91)
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(i)
≤ |[T ′π1vπ1 ](s)− [T ′π1vπ2 ](s)|+ |[T ′π1vπ2 ](s)− [T ′π2vπ2 ](s)| (92)

(ii)
≤ γ ∥vπ1 − vπ2∥∞ + | ⟨π1(s)− π2(s), f(vπ2)[s, ·]⟩ |, (93)

where inequality (i) uses the triangle inequality, inequality (ii) comes from the contraction property
in Proposition 5.4 and the linearity property defined in definition 5.2.

Moreover, as vπ is the stationary point of consistency operator T ′π, we arrive at an inequality that
is independent of any operator,

|vπ1(s)− vπ2(s)| = |[T ′π1vπ1 ](s)− [T ′π2vπ2 ](s)| (94)
≤ γ ∥vπ1 − vπ2∥∞ + | ⟨π1(s)− π2(s), f(vπ2)[s, ·]⟩ |, (95)

where the last inequality holds by applying (93).

For the rest of the proof, we will construct an example that contradicts with (95), which shows that
there is no such operator T ′ that satisfies two conditions introduced in Theorem 5.4.

Figure 2: A two states, two actions Markov decision process used in example C.1 : the left and the
right figures present the transition probabilities for actions a0 and a1.

Example C.1. Consider Markov decision process as in figure 2, where state space S = {s0, s1},
action space A = {a0, a1}, discount factor γ = 0.95. The transition kernel for state s0 and action a0
is parameterized by ξ that indicates the probability to state s1, i.e. Ps0,a0 = {[1 − ξ, ξ]|ξ ∈ [0.9, 1]}.
For other state action pairs, the only consequence is staye at the current state, i.e. Ps1,a0 = Ps1,a1 =
{[0, 1]},Ps0,a1 = {[1, 0]}.
We assume there is one additional constraint, and design the rewards r and g for the objective and
the constraint respectively,

rs,a =





1, if s = s0, a = a0

0, if s = s0, a = a1

1, if s = s1, a = a0

2, if s = s1, a = a1

gs,a =





1, if s = s0, a = a0

0, if s = s0, a = a1

0, if s = s1, a = a0

1, if s = s1, a = a1

(96)

The derived inequality (95) should hold for any choice of policies π1 and π2, we thus choose

π1(s) =
{

a0, if s = s0

a0, if s = s1
π2(s) =

{
a0, if s = s0

a1, if s = s1
(97)

The derived inequality (95) then becomes,

|vπ1(s0)− vπ2(s0)| ≤ γ ∥vπ1 − vπ2∥∞ + | ⟨π1(s0)− π2(s0), f(vπ2)[s0, ·]⟩ | (98)
= γ ∥vπ1 − vπ2∥∞ (99)

where the second equation comes from the fact that π1(s0)− π2(s0) = 0.

One can then calculate the robust value function V π1
r ,

V π1
r (s1) =

rs1,π1(s1)

1− γ
= 20 (100)
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V π1
r (s0) = [T π1

r,robV π1
r ](s0) (101)

= rs0,π1(s0) + γ min
P ∈Ps0,π1(s0)

⟨P, V π1
r ⟩ (102)

= 1 + γ min
ξ∈[0.9,1]

{(1− ξ)V π1
r (s0) + ξV π1

r (s1)} (103)

= 1 + γ min
ξ∈[0.9,1]

{(1− ξ)V π1
r (s0) + 20ξ} (104)

= 1 + γ

{
20, V π1

r (s0) ≥ 20
0.1V π1

r (s0) + 18, V π1
r (s0) < 20

(105)

where the first two equations in calculating V π1
r (s0) comes from the fact that V π1

r is the stationary
point of consistency operator T π1

r,rob in (2), and the last equation illustrates the solution of the inner
minimization problem in (104).

One can easily calculate both cases in (105) and find that V π1
r (s0) = 20. Similarly, we can calculate

other robust value functions,

V π1
g (s1) =

gs1,π1(s1)

1− γ
= 0 (106)

V π1
g (s0) = gs0,π1(s0) + γ min

ξ∈[0.9,1]
{(1− ξ)V π1

g (s0) + ξV π1
g (s1)} = 1 (107)

V π2
r (s1) =

rs1,π2(s1)

1− γ
= 40 (108)

V π2
r (s0) = rs0,π2(s0) + γ min

ξ∈[0.9,1]
{(1− ξ)V π2

r (s0) + ξV π2
r (s1)} (109)

= 0 + γ

{
40, V π1

r (s0) ≥ 40
0.1V π1

r (s0) + 36, V π1
r (s0) < 40

(110)

= 6840
181 ≈ 37.79 (111)

V π2
g (s1) =

gs1,π2(s1)

1− γ
= 20 (112)

V π2
g (s0) = gs0,π2(s0) + γ min

ξ∈[0.9,1]
{(1− ξ)V π2

g (s0) + ξV π2
g (s1)} = 20 (113)

Therefore, we have

vπ1 = V π1
r − λtV

π1
g =

[
20
20

]
− λt

[
1
0

]
=

[
20− λt

20

]
(114)

vπ2 = V π2
r − λtV

π2
g =

[ 6840
181
40

]
− λt

[
20
20

]
=

[ 6840
181 − 20λt

40− 20λt

]
(115)

Finally, for every λt ∈ [0.969, 2.209], we have

|vπ1(s0)− vπ2(s0)| = ∥vπ1 − vπ2∥∞ > γ ∥vπ1 − vπ2∥∞ (116)

which gives a clear contradiction to derived inequality (99).

Remark C.2. The simplified derived inequality (99) is true to the non-robust or non-constrained
counterparts of DRC-RL.
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D Additional Discussions

D.1 Discussions about Assumption 3.4

We start from the definitions of our consistency operator T π in (8) and the corresponding optimality
operator T ∗,

[T πv](s) = (r − λ⊤
t g)(s, π(s)) + γ⟨P o

s,π(s), v⟩+ γ min
P ∈P
⟨Ps,π(s) − P o

s,π(s), V π
r ⟩

− γλ⊤
t min

P ∈P
⟨Ps,π(s) − P o

s,π(s), V π
g ⟩

[T ∗v](s) = max
π∈Π

[T πv](s)

Given that consistency operator T π does not have linearity defined in definition 5.2, the optimality
operator T ∗ cannot take greedy policy as proved in lemma 5.3. Further, for a fixed value function
v and different states s and s′, there might not exist a single policy that can be returned by the
optimality operator T ∗ acting on both states, i.e. maximize T πv(s) and T πv(s′) at the same time.
Therefore, assumption 3.4 for the policy improvement step actually consists of two statements : (1)
There exists a policy that can be ϵ′-approximate to the optimality operator. (2) There exists a solver
that efficiently finds this policy.

In this discussion, we will introduce a modified operator that guarantees the existence
of a ϵ′-approximate policy to the optimality operator. Then further build the related
AMPI scheme to solve distributionally robust constrained RL.. To start with, we first
denote v(µ) := ⟨v, µ⟩ for any vector v ∈ RS . We then define the µ-consistency operator T π

µ : R→ R,

T π
µ v(µ) = [T πv](µ) (117)

and its corresponding µ-optimality operator is,

T ∗
µ v(µ) = max

π∈Π
T π

µ v(µ) = max
π∈Π
{[T πv](µ)} (118)

As µ-optimality operator now gives a scalar, for any value function v ∈ RS , there always exist a
policy πv such that T ∗

µ v(µ) = T πv
µ v(µ). And the existence of ϵ′-approximate policy in the policy

improvement step is automatically proved, and we further have the existence of optimal policy
π∗ = πt.
Proposition D.1. The µ-consistency operator T π

µ and the optimality operator T ∗ have the following
properties,

1. Monotonicity: let v1, v2 ∈ R|S| such that v1(µ) ≥ v2(µ), then T π
µ v1(µ) ≥ T π

µ v2(µ) and
T ∗

µ v1(µ) ≥ T ∗
µ v2(µ) .

2. Transition Invariance: for any c ∈ R, we have T π
µ (v + c1)(µ) = T π

µ v(µ) + γc1(µ) and
T ∗

µ (v + c1)(µ) = T ∗
µ v(µ) + γc1(µ)

3. Contraction: The operator T π
µ and T ∗

µ are γ-contractions, whose unique stationary points
are (V π

r − λ⊤
t V π

g )(µ) and (V πt
r − λ⊤

t V πt
g )(µ) respectively.

Proof. By the definition of the µ-consistency operator T π
µ v(µ) = [T πv](µ), it is straightforward that

the monotonicity, transition invariance, and contraction properties hold for µ-consistency operator.
And that the unique stationary point of µ-consistency operator is (V π

r − λ⊤
t V π

g )(µ).

We then consider µ-optimality operator T ∗
µ v(µ).

Monotonicity Let π1 satisfies T ∗
µ v1(µ) = T π1

µ v1(µ) and similar to π2, we have

T ∗
µ v1(µ)− T ∗

µ v2(µ) = max
π
T π

µ v1(µ)− T π2
µ v2(µ) ≥ T π2

µ v1(µ)− T π2
µ v2(µ) ≥ 0 (119)
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Transition Invariance

T ∗
µ (v1 + c1)(µ) = max

π
T π

µ (v1 + c1)(µ) = max
π
T π

µ v1(µ) + γc1(µ) (120)

Contraction We first assume T ∗
µ v1(µ) > T ∗

µ v2(µ) without loss of generality,

|T ∗
µ v1(µ)− T ∗

µ v2(µ)| = T π1
µ v1(µ)−max

π
T π

µ v2(µ) ≤ T π1
µ v1(µ)− T π1

µ v2(µ) ≤ γ|v1(µ)− v2(µ)| (121)

Then as (V πt
r − λ⊤

t V πt
g )(µ) is the unique stationary point of T πt

µ , we have (V πt
r − λ⊤

t V πt
g )(µ) ≤

T π∗
µ (V πt

r − λ⊤
t V πt

g )(µ) ≤ (V π∗
r − λ⊤

t V π∗
g )(µ) where π∗ is the stationary policy of T π∗

µ .

At the same time, by the definition of πt, we have,

(V πt
r − λ⊤

t V πt
g )(µ) ≥ (V π∗

r − λ⊤
t V π∗

g )(µ) (122)

Therefore, (V πt
r − λ⊤

t V πt
g )(µ) is the unique stationary point of T π∗

µ .

Now consider the related AMPI scheme, with which the assumption 3.4 only assumes the availability
of approximate solvers, {

πk+1 = argmaxϵ′
k+1,µ

π T π
µ vk(µ)

vk+1 = (T πk+1)mvk + ϵk+1
(123)

Unlike AMPI scheme (9), the error for policy improvement step ϵ′
µ ∈ R is a scalar that guarantees

maxπ T π
µ vk(µ) ≤ T πk+1

µ vk(µ) + ϵ′
k+1,µ. We then define the non-negative scalar loss lk,µ = vπt

(µ)−
vπk (µ) and finally obtain its absolute error bounds.
Theorem D.2. Under assumption 3.4, after k iterations of scheme (123), the losses satisfy

|lk,µ| ≤ 2
k−1∑

i=1

∞∑

j=i

Γj |ϵk−i(µ)|+
k−1∑

i=0

∞∑

j=i

Γj |ϵ′
k−i,µ|+ h(k) (124)

where h(k) := 2
∑∞

j=k Γj |l0,µ| or h(k) := 2
∑∞

j=k Γj |b0,µ|, with b0,µ = (T π1
v0 − v0)(µ) that is related

to the choice of the starting point.

Proof. Given the relation of T π
µ v(µ) = [T πv](µ) and the properties in proposition D.1, one can

define bk,µ = bk(µ) and similar for sk,µ and dk,µ. Similar to proof for theorem 3.5, we have

bk,µ ≤
k∑

i=1
Γm(k−i)xi(µ) + Γmkb0,µ (125)

dk,µ ≤
k−1∑

j=1
Γk−1−j(yj(µ) +

m−1∑

l=1
Γlbj,µ) + Γkd0,µ (126)

sk,µ = Γm
∞∑

j=0
Γjbk−1,µ (127)

and the relation between b0,µ and d0,µ,

b0,µ ≤ (I − γP o
πt

)(−d0,µ) + ϵ′
1,µ (128)

Then follow with the proof in proposition A.3, we complete by noticing lk,µ is non-negative given
the definition of Best-responseπt.
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Algorithm 2 DRC-RL with Contamination Set
Input : Dataset D = {xi, ai, x′

i, ri, gi}n
i=1. Online algorithm parameters: ℓ1 norm bound B, learning

rate η. Robust level β. Initial discounted horizon γ0.

1: Initialize λ1 = ( B
m+1 , . . . , B

m+1 ) ∈ Rm+1

2: Initialize γ = (1− β)γ0
3: for each round t do do
4: Learn πt ← FQI(r − λ⊤

t g)
5: Evaluate R̂(πt)← FQE(πt, r), Ĝ(πt)← FQE(πt, g)
6: π̂t ← 1

t

∑t
t′=1 πt′ , λ̂t ← 1

t

∑t
t′=1 λt′

7: R̂(π̂t)← 1
t

∑t
t′=1 R̂(πt′)

8: Ĝ(π̂t)← 1
t

∑t
t′=1 Ĝ(πt′)

9: Learn π̃ ← FQI(r − λ̂⊤
t g)

10: Evaluate R̂(π̃)← FQE(π̃, r), Ĝ(π̃)FQE(π̃, g)
11: L̂max = R̂(π̃)− λ̂⊤

t

[
(Ĝ(π̃)− τ)⊤, 0

]⊤

12: L̂min = min
λ,∥λ∥1=B

(
R̂(π̂t)− λ̂⊤

t [(Ĝ(π̂t)− τ)⊤, 0]⊤
)

13: if L̂max − L̂min ≤ ω then
14: return π̂t

15: end if
16: Set zt ←

[
(τ − Ĝ(πt))⊤, 0

]⊤
∈ Rm+1

17: λt+1[i]← B λt[i]e−ηzt[i]∑
j

λt[j]e−ηzt[j] ∀i
18: end for

D.2 An Instantiation of the Solution with Contamination Set

In this section, we give a specific instantiation for our solution to distributionally robust constrained
RL (DRC-RL) with R-contamination uncertainty sets. In short, as our solution simplified to the
non-robust counterpart of DRC-RL with asmaller discount factor, we use the same subroutines as
in Le et al. (2019) and get the theoretical results with generalization needs.

In specific, Best-response is instatiated with fitted Q iteration (FQI) (Ernst et al., 2005),
Online-Algorithm is chosen as exponentiated gradient (EG) (Kivinen & Warmuth, 1997). The
EG algorithm requires bounded λ, we thus force ∥λ∥1 ≤ B. When evaluating Lagrangian, e.g. Lmax
and Lmin in meta algorithm 1, fitted Q evaluation (FQE) (Le et al., 2019) is used. We represent the
resulting instantiation in algorithm 2, which has its true performance that could be arbitrarily close
to the optimal policy for DRC-RL.
Proposition D.3 (Theorem 4.4, Le et al. (2019)). Let π∗ be the optimal policy to (3). Denote
V̄ = R̄ + BḠ. Let K be the number of iterations of FQE and FQI, π̂ be the policy returned by
algorithm 2, with termination threshold ω and robust level β. For ϵ > 0 and δ ∈ (0, 1), when
n = O( V̄ 4

ϵ2 (log K(m+1)
δ + dimF log V̄ 2

ϵ2 + log dimF )), we have with probability at least 1− δ:

V π̂
r (µ) ≥ V π∗

r (µ)− ω − (4 + B)(1− β)γ
(1− (1− β)γ)3 (

√
βµϵ + 2((1− β)γ)K/2V̄ ), (129)

and
V π̂

g (µ) ≥ τ − 2 V̄ + ω

B
− ((1− β)γ)1/2

(1− (1− β)γ)3/2 (
√

βµϵ + 2((1− β)γ)K/2V̄

(1− (1− β)γ)1/2 ) (130)

where dimF is the pseudo-dimension (Hastie et al., 2009) for function approximation class F used in
FQI and FQE , βµ is the concentration coefficient of future state-action distribution (Munos, 2007;
Le et al., 2019).

Proof. The proof is standard as in Le et al. (2019) up to a different discount factor.
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E Experiments

In this section, we illustrate the detailed setting of our verification for a solution with R-
contamination uncertainty set as in Section 4. Notably, the resulting operator (12) for Best-
response subroutine coincides with the standard consistency operator, which is used for Best-
response subroutine in Constrained RL (Le et al., 2019), up to a discount factor difference. We
thus focus on the joint constrained-robustness comparison as our target, and refer to constrained
RL literature (Miryoosefi et al., 2019; Le et al., 2019) for broader comparisons.

Algorithm Design. We adopt the same choices of Best-response and Online-
Algorithm with a shortened discount factor in subroutines as in Le et al. (2019). In specific,
the Best-response algorithm is instantiated with Fitted Q Iteration (FQI) (Ernst et al., 2005),
a model-free off-policy learning approach on the well-collected dataset from Le et al. (2019) with
modifications on constraints. And we use multi-layered CNNs. The Online-Algorithm is chosen
as Exponentiated Gradient (EG) algorithm (Kivinen & Warmuth, 1997), a variant of online mirror
descent. The EG algorithm requires bounded λ, we thus force ∥λ∥1 ≤ B which has minor harm on
the theoretical analysis as shown in proposition D.3. To meet the requirement of proposition 3.2,
we use the simulator to precisely evaluate value functions of specific policies and Lagrangians, as
shown in Algorithm 2. We set the initial position of our car as fixed, i.e. µ = {s0}, for the accuracy
of all the evaluations.

E.1 Car Racing

Figure 3: Car Racing environment

The environment is chosen as the car racing environment, a high-dimensional domain from Gym-
nasium (Towers et al., 2023), as shown in figure 3. This environment is a racetrack, where each
state s ∈ S is a 96 × 96 × 3 tensor of raw pixels. Given each state, the agent has 12 actions
a ∈ A = {(i, j, k)|i ∈ {−1, 0, 1}, j ∈ {0, 1}, k ∈ {0, .2}}, corresponding to steering angle, amount of
gas applied and amount of brake applied, respectively. In each episode, the goal is to traverse over
95% of the track, measured by the number of tiles which amount to 281 tiles in total. The agent
receives a reward of 1000

281 for passing each single tile and no reward if off-track. A small positive cost
of .1 applies at every time step with a maximum horizon of 1000. We further utilize the popular
frame-stacking option that is common in practice in online RL for Atari and video games.

We describe the two constraints we studied as slow driving and edge driving. In slow driving
constraint, the agent receives a reward g0(s, a) = 1 if a contains braking action and 0 otherwise.
In edge driving, the agent receives its normalized Euclidean distance of the closest point between
the track and the agent from the lane center as its reward g1(s, a) ∈ [0, 10]. Both constraints may
intervene with the primary goal of track traversing. Let Nt be the number of tiles that are traversed
by the agent, then the distributionally robust constrained reinforcement learning problem is :

max
π∈Π

min
K∈⊗t≥0P

EK[
∞∑

t=0
γt(1000

281 (Nt+1 −Nt)− .1)|s0 = s, π] (131)
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s.t. min
K∈⊗t≥0P

EK[
∞∑

t=0
γtI(at ∈ Abraking)|s0 = s, π] ≥ τ0

min
K∈⊗t≥0P

EK[
∞∑

t=0
γt 10d(st)

dmax
|s0 = s, π] ≥ τ1.

We finally set the thresholds τ = [τ0, τ1] = [2, 4] being close to the constraints satisfaction of
baseline (γ = 0.95), such that the slow driving constraint is satisfied and the edge driving constraint
is violated.

E.2 Full Results

In figure E.2, the full results of our car racing experiments are presented.

(a) Shift of Braking Magnitude

(b) Shift of Steering Angle

(c) Shift of Power

(d) Shift of Inertia of Wheel

Figure 4: Full results with Four different shifts: Higher is better, Left two are constraints and the
right one is the objective. The bar graphs of constraints satisfaction are directly produced from
these results.
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Abstract

We study the problem of cross-embodiment inverse reinforcement learning, where
we wish to learn a reward function from video demonstrations in one or more em-
bodiments and then transfer the learned reward to a different embodiment (e.g.,
different action space, dynamics, size, shape, etc.). Learning reward functions that
transfer across embodiments is important in settings such as teaching a robot a
policy via human video demonstrations or teaching a robot to imitate a policy from
another robot with a different embodiment. However, prior work has only focused
on cases where near-optimal demonstrations are available, which is often difficult
to ensure. By contrast, we study the setting of cross-embodiment reward learning
from mixed-quality demonstrations. We demonstrate that prior work struggles to
learn generalizable reward representations when learning from mixed-quality data.
We then analyze several techniques that leverage human feedback for representation
learning and alignment to enable effective cross-embodiment learning. Our results
give insight into how different representation learning techniques lead to qualita-
tively different reward shaping behaviors and the importance of human feedback
when learning from mixed-quality, mixed-embodiment data.

1 INTRODUCTION

Inverse reinforcement learning (IRL) (Arora & Doshi, 2021) seeks to learn a reward function from
observed agent behavior. However, the field of imitation learning (Hussein et al., 2017) has developed
numerous techniques for direct policy learning from observed agent behavior. So why learn a reward
function? From the earliest days of IRL research, Ng et al. (2000) and others have argued that
reward functions provide a succinct description of behavior. Indeed, Ng et al. (2000) notes that
the field of reinforcement learning (RL) is based on the idea that the reward function is “the most
succinct, robust, transferable definition of a task.” Thus, if we can learn a reward function from
observing an agent in one task, it should be the case that we can use that reward function to help
teach the same task to agents with different embodiments (e.g., different action space, dynamics,
size and shape, etc.). The idea of allowing agents with different embodiments to learn from each
other is typically called cross-embodiment (Zakka et al., 2022) or cross-domain (Niu et al., 2024)
learning. In this paper we focus on cross-embodiment IRL, with the goal of learning robust reward
functions that can transfer across different embodiments.

Cross-embodiment reward learning would enable robots to learn rewards from watching humans
perform tasks and would allow robots and other AI agents to learn by watching other agents. How-
ever, given an embodiment mismatch between the demonstrator and the learner, we cannot simply

∗Equal contribution.
Videos and code available at https://sites.google.com/view/cross-irl-mqme/home
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imitate the actions of the demonstrator since the action spaces may be completely different. Fur-
thermore, the actions are typically unavailable when learning only from video observations (Torabi
et al., 2019). Learning an embodiment-independent reward function is a compelling solution to the
problem of cross-embodiment policy learning as it should allow an agent of any embodiment to learn
how to perform the desired task via reinforcement learning. However, prior work has shown that
reward functions learned from demonstrations are often entangled with the dynamics, making cross
embodiment transfer difficult (Fu et al., 2017).

Recently, Zakka et al. (2022) developed XIRL, a novel approach for cross-embodiment reward
learning from video demonstrations. Using near-optimal demonstrations across several differ-
ent embodiments they first learn an embodiment-invariant representation using temporal cycle-
consistency (Dwibedi et al., 2019). The base assumption this method uses is that there is a temporal
similarity between the data it is trained on, i.e., there are similar frames or checkpoints that each
video demonstration will share with another. The reward is then formulated as the distance be-
tween the current state embedding to that of a goal embedding and this learned reward is optimized
via RL to achieve generalization to an unseen embodiment. However, one of the main limitations
of this recent breakthrough by Zakka et al. (2022) is that, in order to ensure temporal similarity
when performing representation learning, the approach requires near-optimal demonstrations across
each embodiment. Prior work has shown that human demonstrations and other interactions with
AI systems can be noisy (Chuck et al., 2017; Mandlekar et al., 2022), irrational (Chan et al., 2021;
Ghosal et al., 2023), and sometimes adversarial (Wolf et al., 2017; Jagielski et al., 2018; Oravec,
2023). Thus, assuming that demonstration data is near-optimal is unlikely to be true in practice.

We study several different approaches for performing cross-embodiment reward learning from mixed-
quality demonstrations: (1) Cross-Embodiment Reinforcement Learning from Human Feedback where
we learn a reward function end-to-end from preferences over demonstrations from different embodi-
ments in our training dataset and use this learned reward function to perform reinforcement learn-
ing (Christiano et al., 2017); (2) Cross-Embodiment Representation Learning from Preferences: We
explore techniques that seek to use human preference labels to learn a state representations (Tian
et al., 2024) and then formulate the reward as the distance between the learned state embeddings and
a goal embedding; and (3) XIRL-Buckets: A method that seeks to apply a temporal cycle-consistency
representation learning to mixed-quality, mixed-embodiment data by leveraging high-level knowl-
edge of the relative goodness of demonstrations by first binning the demonstrations into several
"buckets" or groups based on ordinal labels denoting their goodness and then performing temporal
cycle-consistency representation learning within each bucket.

The primary contributions of this work are: (1) We propose and formalize the new problem of
cross-embodiment reward learning from mixed-quality data; (2) We study a range of algorithmic
approaches for this problem setting that build on and combine ideas from representation learning
and alignment from human feedback; (3) We empirically study the RL performance, learned rewards
and learned representations when learning with mixed data and show that prior approaches fail to
perform well in this setting; (4) We provide empirical evidence that approaches that leverage human
feedback information about the relative quality of the data are often able to learn transferable
representations and corresponding rewards that transfer across embodiments even when learning
from mixed-quality demonstrations. However, these methods still fail to achieve the performance of
methods that learn only from high-quality demonstrations, showing that there is a need for further
research into how to best learn from mixed-quality, mixed embodiment data.

2 PRIOR WORK

Imitation Learning from Observation Our work seeks to leverage video observations from one
embodiment and learn to transfer these policies to new embodiments. Thus, our work falls within the
general area of imitation learning from observation (Torabi et al., 2019). Early work on inverse rein-
forcement learning learned reward functions based on state observations of demonstrations (Abbeel
& Ng, 2004; Ziebart et al., 2008). Other work proposed imitation learning from state observations
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via model-based behavioral cloning (Torabi et al., 2018a) by learning an inverse dynamics model and
subsequent work proposed to explicitly minimize inverse dynamics disagreement (Yang et al., 2019).
However, these prior works focused on learning from low-dimensional state observation sequences.
More recent work studies cases where the goal is to learn from video observations (Torabi et al.,
2018b; Liu et al., 2018; Salimans & Chen, 2018; Goo & Niekum, 2019; Kidambi et al., 2021).

Cross-Embodiment Reward and Policy Learning Much prior work has focused on cross-
embodiment learning (Niu et al., 2024) when given full access to the demonstrating agent’s states-
pace. Fu et al. (2017) demonstrate that learned reward functions are often entangled with em-
bodiment dynamics and propose an adversarial reward learning approach that seeks to learn an
unshaped, state-only reward and Fickinger et al. (2021) perform cross-domain imitation learning
based on optimal transport but both methods are restricted to low-dimensional state spaces rather
than video observations. Recently, researchers have proposed methods that can scale to settings with
partial observability, where only video observations of demonstrations are available. Zakka et al.
(2022) propose a method for cross-embodiment inverse reinforcement learning from videos by finding
correspondences across time across multiple videos. Xu et al. (2023) consider an alternative approach
that leverages optimal human and robot demonstrations to learn resuable skills from videos. Tian
et al. (2024) propose using human triplet preferences to align representations in one embodiment
and show that these representations can transfer to new embodiments. Other work seeks to train
robot foundation models that can then be fine-tuned on arbitrary robot embodiments (Padalkar
et al., 2023). Most prior work on imitation learning from observations and cross-embodiment re-
ward and policy learning focuses on learning from near-optimal demonstrations. By contrast, we
seek to perform cross-embodiment learning from mixed-quality data.

Learning from Suboptimal Demonstrations: When ground-truth rewards are known, it is
common to initialize a policy using demonstrations and then improve this policy using reinforcement
learning (Hester et al., 2018; Gao et al., 2018; Wilcox et al., 2022). However, these methods typically
do not consider embodiment mismatches and rely on designing a reward design which can easily lead
to unintended behaviors (Ng et al., 1999; Amodei et al., 2016; Booth et al., 2023). Other work learns
from demonstrations that are labeled good or bad (Grollman & Billard, 2011; Shiarlis et al., 2016) or
are robust to a small number of unlabeled, poor demonstrations (Zheng et al., 2014; Choi et al., 2019).
However, these prior works do not consider embodiment mismatch and require low-dimensional state
observations. Prior work has considered learning reward functions from pairwise preferences over
trajectories (Wirth et al., 2017; Christiano et al., 2017) and has shown the ability of these methods
to extrapolate beyond the performance of suboptimal demonstrations (Brown et al., 2019; 2020).
While there has been substantial progress recently in learning from pairwise preferences (Lee et al.,
2021; Park et al., 2021; Bobu et al., 2023; Rafailov et al., 2024; Myers et al., 2022; Shin et al., 2023;
Liu et al., 2023; Wilde et al., 2021; Ouyang et al., 2022; Karimi et al., 2024), prior work does not
consider the cross-embodiment setting that we explore in this paper.

3 PROBLEM FORMULATION

Our problem setting is inspired by Zakka et al. (2022), who consider cross-embodiment IRL. However,
in contrast to Zakka et al. (2022), we seek to learn from mixed-quality, mixed-embodiment data.
We investigate the problem of learning an agent-agnostic representation of a task, T , given a dataset
of videos depicting agents performing the task. Formally, we define a dataset D as a collection of
state-only video demonstrations D = {v0, v1, . . . , vi}, where each video contains a sequence of frames
(2D images), vi = {v0

i , v1
i , · · · , vj

i } that depict the agent executing the task. In contrast to prior
work (Zakka et al., 2022), we consider a set of mixed-quality demonstrations, where it is no longer
guaranteed that agents will reach the goal state at the end of every demonstration. We refer to
the demonstration set as mixed-embodiment if it contains demonstrations from more than one agent
embodiment performing the same task.

Problem Statement: Given a task, T , and a mixed-quality, mixed-embodiment (MQME) demon-
stration dataset, D, can we learn an embodiment-agnostic approximation, r̂, of the ground truth
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reward function? Furthermore, can this learned reward function be used to successfully accomplish
task T by performing RL on r̂ with an unseen embodiment?

4 PRELIMINARIES

In this section we describe in detail the XIRL algorithm, an unsupervised method of learning
embodiment-agnostic representations of tasks proposed by Zakka et al. (2022). XIRL assumes
access to a video dataset, D = {v0, v1, . . . , vi}, of successful video demonstrations, vi, for a task.
Each video demonstration is an observation-only video (demonstrator actions are unobserved) con-
taining a sequence of video frames, vi = {v1

i , v2
i , · · · , vj

i }. XIRL assumes that D contains video
demonstrations from multiple agent embodiments, all performing the same task.

To learn from multi-embodiment data, Zakka et al. (2022) seek to learn a useful representation for
cross-embodiment learning that aligns task progress in one embodiment to task progress in a different
embodiment. To address this, XIRL relies on temporal cycle-consistency (TCC) (Dwibedi et al.,
2019) learning to establish task-aligned feature representations of cross embodiment demonstrations
that captures information about the task itself, rather than the agent executing the task. The goal
of TCC is to train an encoder, ϕ, that takes as input a video frame image, vs, corresponding to state
s, and outputs an embedding vector ϕ(vs). One of the primary benefits of XIRL’s use of TCC is that
it does not require embodiment labels and is completely unsupervised. First, random mini-batches
of video trajectories are sampled from D. Given ϕ, each video trajectory can be represented as a
sequence of embedded images, Vi = {ϕ(v1

i ), ϕ(v2
i ), · · · , ϕ(vLi

i )}, where Li = |vi|. Given a mini-batch
of embedded videos, ϕ is updated by taking pairs of sequences Vi and Vj and computing a TCC Loss
which aligns a random frame index, t, in Vj to the corresponding soft-nearest-neighbor frame, t′, in
Vi by minimizing the mean-squared error between the frame indices, Lt

ij = (t′ − t)2 (Zakka et al.,
2022).

Following the self-supervised training of the encoder ϕ, XIRL grounds an embodiment-agnostic
reward function to the demonstration set by computing a goal embedding. Because XIRL assumes
that the demonstrations provided are always near-optimal, the last frame of every sequence, vLi

i ,
can be assumed to represent a state where the agent successfully completed the task. Therefore,
the average of these final frames’ embeddings are averaged to create a goal state embedding, g =
1
N

∑N
i=1 ϕ(vLi

i ). Finally, both the encoder and the goal embedding are used to provide a reward
signal during reinforcement learning. Specifically, the reward is the negative signed distance to goal,

r(s) = − 1
κ

· ∥ϕ(s) − g∥2
2, (1)

where κ is a scaling parameter.

In the following sections, we build on the foundational work of Zakka et al. (2022) to study cross-
embodiment learning when multi-embodiment demonstrations are of mixed quality and may not
always successful complete the desired task.

5 METHODS

We seek to learn reward representations that generalize to unseen agent embodiments, In contrast to
XIRL (Zakka et al., 2022), we assume that our dataset is MQME: mixed-quality, where the quality
of the demonstration with respect to task success varies and also mixed-embodiment (i.e. demon-
strations will be given by agents with various physical embodiments and action spaces). Dealing
with mixed-quality data poses a challenge for two of the main components of the XIRL pipeline: (1)
XIRL pretrains the video frame encoder ϕ with TCC which assumes that temporal alignment exists
between all demonstrations, e.g., each demonstration starts in a similar start state configuration
and is assumed to end at state that corresponds to task success, with several key corresponding
intermediate steps. However, if some demonstrations are of mixed quality, this temporal alignment
may not exist between pairwise samples of videos. (2) The reward formulation for XIRL depends on
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a reliable goal approximation, g, which is the average embedding from the final frame of all videos
in the dataset. By removing the guarantee that all demonstrations successfully complete the task,
the XIRL reward function may not guide the agent towards task completion as the goal embedding
may no longer be reliable. In the following sections, we address these concerns and propose and
discuss different approaches for performing cross-embodiment reward learning from MQME data.

5.1 Cross-Embodiment Reinforcement Learning From Human Feedback (X-RLHF)

The simplest way to address the issues of mixed-quality data in XIRL is to try learning a reward
end-to-end with using reinforcement learning from human feedback (RLHF) (Christiano et al., 2017;
Ouyang et al., 2022), by having a human provide preference labels over an offline dataset of tra-
jectories (Shin et al., 2023). In this approach, the demonstration dataset is augmented by a set of
pairwise preference labels over the data. For a pair of demonstrations, (vi, vj), the notation vi ≻ vj

indicates a preference of demonstration j over demonstration i. The final form of the data is the
triple (vi, vj , µ), where µ ∈ {(1, 0), (0, 1)} represents the human’s preference label. For our prob-
lem, it is worth noting that the preferences include mixed-embodiment preferences, i.e., vi may be
demonstrated by one embodiment and vj may be from a different embodiment.

Using these labels, we follow prior work by employing a deep neural network, namely a reward
predictor, r̂, that maps video frames into a single real-valued reward that can be trained via back-
propagation using the standard Bradley-Terry (Bradley & Terry, 1952) and Luce-Shepperd (Luce,
2005; Shepard, 1957) model,

P (vi ≻ vj) =
exp

∑
s∈vi

r̂(s)

exp
∑

s∈vi

r̂(s) + exp
∑

s∈vj

r̂(s)

where P is the softmax probability that vi ≻ vj based on r̂. The learned reward function, r̂, is then
optimized using a Cross Entropy Loss between the predicted value of P and the preference labels:

L(r̂) = −
∑

(vi,vj ,µ)∈D

µ1 log P (vi ≻ vj) + µ2 log P (vi ≻ vj) .

While prior work has focused on single-embodiment RLHF, we seek to study cross-embodiment
RLHF (X-RLHF). The benefit of using X-RLHF is that it directly learns the reward end-to-end,
with no intermediate latent representation or goal embedding used to manually compute the reward.
It is a natural choice for MQME data since the only requirement is to have preference labels over
trajectories and these trajectories do not need to be optimal nor come from the same embodiment.
Although X-RLHF requires more human burden compared to XIRL, using human supervision can
lead to better and more human-aligned representations (Bobu et al., 2023; Mattson & Brown, 2023;
Tian et al., 2024) than purely unsupervised representation learning approaches.

5.2 Representation Learning from Preferences

An alternative approach to learning a reward function end-to-end from preferences is to use human
feedback to explicitly learn the representation ϕ(s) (Bobu et al., 2023; Mattson & Brown, 2023; Tian
et al., 2024). When provided with MQME data, we hypothesize that representation learning via
TCC will fail to learn a correct embedding because both videos may not share the same task-relevant
keyframes. Thus, we propose the use of preferences to learn a better latent embedding that can be
used to guide RL via the same reward function used in XIRL (Equation (1)). However, Equation (1)
requires a known or calculated goal embedding, g. We assume that in addition to the MQME
dataset, we have direct and privileged access to a known set of goal states, G∗ = {g∗

1 , g∗
2 , · · · , g∗

N }.
Note that these could be supplied by the user as a set of states, disjoint from any actual trajectories.
Alternatively, these goal states can come from suboptimal trajectories that eventually reach the
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goal state. Our goal embedding is simply the average embedding over all goals in G∗, resulting in
g = 1

|G∗|
∑

g∗
i

∈G∗
ϕ(g∗

i ).

One deceptively simple approach is to combine preference learning with the inductive bias in XIRL
by using the same underlying architecture and reward function as XIRL, but with supervised learning
from pairwise preferences. We call this approach Cross Preference Learning (XPrefs). To do this,
we could use the preference data to optimize the representation ϕ(s) by maximizing the likelihood
of the preference labels, where

P (vi ≻ vj) =
exp

∑
s∈vi

−∥ϕ(s) − g∥2
2

exp
∑

s∈vi

−∥ϕ(s) − g∥2
2 + exp

∑
s∈vj

−∥ϕ(s) − g∥2
2

.

However, we now have a non-stationary goal embedding, resulting in an “chicken-and-egg” cyclic
dependency where both the embedding of the demonstration, ϕ(s), and g, which is a function of
ϕ, will change every time the model updates. In Appendix A we explore both dynamic and static
goal representations in Appendix A and show that a static goal representation results in the best
performance for reward learning. However, upon closer inspection, it can be seen that XPrefs is
nearly identical to X-RLHF. Indeed, the effect of the goal embedding is lost when ϕ(s) = ϕ′(s) + g,
where ϕ′(s) is an arbitrary function of state. Thus, XPrefs is simply X-RLHF with a non-positive
reward function. Indeed, in Appendix A we empirically compare the performance of X-RLHF and
XPrefs and find they are nearly identical.

The crux of the problem with XPrefs is that we are still trying to learn the reward function and
representation simulataneously. Instead, motivated by recent work (Tian et al., 2024), we seek to
first learn an aligned representation using human feedback and then use this fixed representation as
the representation ϕ using the same reward function as XIRL (Equation (1)). This eliminates the
chicken-and-egg problem since the goal embedding is not calculated until after the representation is
learned. Tian et al. (2024) propose the use of triplet preference queries as a way to learn an aligned
representation. We follow their approach and seek a representation that is aligned with human’s
preferences. We obtain ranked triplets over MQME data vi ≻ vj ≻ vk where we assume rankings
are based on the human’s internal reward function. We then learn a representation ϕ using the
Bradley-Terry model Bradley & Terry (1952)

P (vi ≻ vj ≻ vk) = exp −d(ϕ(vi), ϕ(vj))
exp −d(ϕ(vi), ϕ(vj)) + exp −d(ϕ(vj), ϕ(vk))

where d is a distance metric and where we treat vi as an anchor and vj as a positive and vk as
a negative in a contrastive loss. Given triplet preferences we can directly backpropagate into the
representation ϕ to maximize the likelihood of the preference labels.

We call this approach Cross-Embodiment Triplet Representation Learning (XTriplets). We note
some differences between our work and Tian et al. (2024). Tian et al. (2024) use a differentiable
optimal transport-based distance metric d, but do not investigate using a simple distance metric such
as the L2 norm that was proposed by Zakka et al. (2022). Tian et al. (2024) also do not consider
training across multiple embodiments, where as we learn from MQME data. To better compare
across different representation learning approaches, including XIRL, we use the L2 norm and the
reward function in Equation (1) for all representation learning methods including XTriplets.

5.3 XIRL-Buckets

The third method we study, takes advantage of the unsupervised nature of XIRL but also adapts
the algorithm for a MQME dataset. We propose XIRL-Bucket, which partitions the dataset into
a number of “buckets” or bins based on ordinal labels provided by the user. We assume that a
human labeller categorically assigns the trajectories into a bucket based on perceived performance.
For example, the human could rate trajectories based on a 5-point Likert scale and then have a
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bucket for each ordinal rating 1 through 5. We then train a representation by applying a TCC loss
only amongst trajectories within the same bucket and use this representation as a reward function
following the same procedure as XIRL. Compared to X-RLHF, XPrefs, and XTriplets which require
preference labels over a dataset, XIRL-Buckets only requires ordinal categorization which can be far
less burdensome in terms of the number of times human queries.

6 EXPERIMENTS

In this section, we seek to answer the following questions: (1) How does the quality of demonstrations
degrade the learned reward and XIRL? (2) Can we leverage different types of human feedback to
learn good reward representations from MQME data? (3) How do the different methods described
above perform when learning from MQME data?

6.1 Experimental Setup

Domain We conduct a series of experiments targeted at answering the aforementioned questions.
For our experiments we use the X-MAGICAL imitation learning benchmark from Zakka et al. (2022).
An example of this task is shown in Figure 2. The task involves pushing a set of blocks into the
pink endzone using an agent of four possible embodiments: shortstick, mediumstick, longstick and
gripper. The three stick embodiments all have the same action space but differ in their length,
making the task easier for the longer embodiments and leading to qualitatively different optimal
policies depending on the embodiment. Gripper not only has a different shape, but also has an
extra action it can use to grip blocks with the pair of pincers on the agent.

MQME Data To simulate a mixed-quality, mixed-embodiment dataset for our experiments, we
took policies trained via RL on the ground-truth reward (number of blocks pushed to the goal
divided by 3) for each of the embodiments listed above and then degraded these pretrained oracle
policies by iteratively adding randomness to the action selection. This type of noise injection is
inspired by prior work that found it resulted in diverse suboptimal behaviors (Brown et al., 2020;
Tien et al., 2022). There are a total of 600 trajectories for each embodiment (200 training and
400 testing trajectories). The dataset is evenly partitioned based on the number of blocks that are
pushed in by the agent. By contrast, the X-MAGICAL dataset provided by Zakka et al. (2022) has
the same embodiments as our MQME dataset but consists of approximately 1000 trajectories per
embodiment (877 training and 98 testing trajectories), more than 4 times the amount of training
data as our MQME dataset, all of which are exclusively successful demonstrations of the task.

We trained the reward model for X-RLHF using 5000 preference labels, all of which were obtained
by sampling them from a larger set of procedurally generated preferences by comparing all the pairs
of trajectories in our MQME dataset. The preferences were generated according to which trajectory
in a pair of trajectories from the dataset has the higher average ground truth environment reward
per step over the length of the trajectory. The reason the average reward per step was used is due
to the longstick embodiment having a shorter time horizon for the task as it is significantly easier
to complete the task with that particular embodiment. The synthetic preferences were meant to
loosely mimic how a human would provide preferences observing the task. In a similar manner, we
trained XTriplets for 4000 iterations with 32 triplets per batch where each triplet was formed by
sampling with replacement from the MQME dataset and using the oracle synthetic labeler to order
the triplets. We used much more training data than X-RLHF in an attempt to improve performance,
but as we show later, we were not able to get performance comparable to X-RLHF even with the
additional triplet feedback (see Appendix C for more details).

For XIRL-Buckets, we started with the same dataset of MQME 600 trajectories (200 for each training
embodiment). We then simulated human ordinal ratings using the ground truth reward to partition
the data into 18 buckets containing 32 trajectories each. This allowed us to pass an entire bucket into
TCC as one batch, matching the batch size of Zakka et al. (2022) for consistency across methods.
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6.2 Baselines

In this section we describe the three baselines we compare against. All these baselines and methods
use the same Soft Actor Critic code (Zakka et al., 2022) used in the original XIRL work: (1) Rein-
forcement Learning on Ground Truth Reward. As an oracle, we run RL on the ground-truth
reward from Zakka et al. (2022). At each step, the ground truth reward describes the fraction of
total available blocks that are currently in the goal zone. (2) XIRL Trained on X-MAGICAL.
This method uses the full pipeline of XIRL as described in Section 4 trained on the dataset of
200 successful demonstrations for each embodiment. This acts as an oracle since it provides the
current-state-of-the-art performance for cross-embodiment IRL, but assumes access to near-optimal
demonstrations for each embodiment. (3) XIRL Trained on Mixed Data. This method follows
the XIRL pipeline but uses MQME data for TCC representation learning. The second step of the
XIRL pipeline, goal embedding computation, is done with the same set of positive goal state exam-
ples we assume we have access to for the other methods studied in this paper. Thus, this baseline
allows us to test the effect of mixed-quality data on XIRL and provides the main, non-oracle, base-
line which we hope to significantly outperform. (4) Goal Classifier (Vecerik et al., 2019). We
train a binary classifier where frames in the goal set (G∗) are positive examples and frames from
the MQME dataset are negative examples. Following Zakka et al. (2022), the reward signal is the
probability outputs of the model.

6.3 Cross-Embodiment Learning from Mixed-Quality, Mixed-Embodiment Data
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Figure 1: Policy evaluations. Shading denotes stan-
dard error bars. Compared with the Ground Truth re-
ward and XIRL (optimal demonstrations) oracles, we find
that XIRL using mixed quality data suffers a significant
performance drop, while X-RLHF and XIRL-Buckets per-
form much better. Simply training a goal classifier is in-
sufficient and pretraining a representation based on triplet
queries also fails to perform well.

To study how well our proposed ap-
proaches and baselines compare when
evaluated on MQME data, all the re-
ward models (except the oracle ground-
truth RL baseline) were trained on 3 out
of the 4 embodiments. We then evalu-
ated the down-stream RL performance
on the medium-stick held-out embodi-
ment. To evaluate generalization per-
formance, we took the average cumula-
tive ground truth reward over 50 policy
rollouts every 5000 RL training steps.
These evaluation statistics were aver-
aged over 5 seeds to account for ran-
domness when learning a policy.

Figure 1 summarizes the results. From
this graph we can infer a few key find-
ings of this experiment. Firstly, XIRL
when trained on only successful tra-
jectories, noticeably outperformed the
other approaches by consistently push-
ing all three blocks in quickly and ef-
ficiently. Interestingly, XIRL actually
outperforms the ground truth reward
function by learning a good representa-
tion that successfully shapes the reward
function, enabling efficient RL. On the other hand, XIRL Mixed, which was the same as XIRL, but
trained on an MQME dataset, appears to completely collapse, unable to get a single block close
to the goal zone. We hypothesize that this is because the mixed-quality data violates many of the
strong assumptions that XIRL is founded on, in particular, the use of TCC to learn the latent video
embedding.
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XIRL XIRL Mixed Goal Classifier X-RLHF XTriplets XIRL-Buckets
Kendall’s Tau 0.78 0.61 0.61 0.80 0.44 0.52
Pairwise Acc. 0.84 0.75 0.76 0.85 0.67 0.71

Table 1: Accuracy Measures for Reward Learning. Six reward representation methods are
evaluated using a withheld set of 400 mediumstick mixed-quality demonstrations. Kendall’s Tau
measures the ordinal alignment between the cumulative ground truth rewards (oracle) and the
cumulative learned rewards for each pair of demonstrations. Pairwise accuracy evaluates all

(400
2

)

pairs of trajectories and assigns each pair a score in {0, 1} based on the learned reward alignment
with the ground truth reward.

Figure 1 also shows that X-RLHF and XIRL-Buckets are both quite similar quantitatively with X-
RLHF appearing to perform slightly better and XIRL-Buckets appearing to perform slightly worse.
Interestingly, we find that XTriplets, despite training with more data than X-RLHF and XIRL-
Buckets, fails to lead to good performance with performance similar to the goal classifier. This
is surprising given the good performance reported in prior work. We hypothesize that the poor
performance may be the result of the MQME data or the fact that we use an L2 norm distance
metric rather than an optimal transport distance metric used in prior work (Tian et al., 2024).
Future work should investigate these differences further and examine the performance of all of the
studied methods when using different distance metrics such as optimal transport (Cuturi, 2013). We
conclude that X-RLHF and XIRL-Buckets successfully leverage mixed-quality, mixed-embodiment
data, achieving much better performance than the prior state-of-the-art XIRL, when also evaluated
on this data. However, there still is a noticeable gap between the XIRL on near-optimal data
and the MQME methods. Thus, while mixed-quality data can be used to successfully transfer a
policy to a new embodiment, it also appears to somewhat limit performance when compared with
the performance achieved when training on near-optimal data. There are further insights that can
be gained by quantitatively and qualitatively analyzing the learned rewards from these algorithms
which will be discussed in the following sections.

It is also important to note that quantitatively and qualitatively, the human effort differs across
these methods. The human effort required for XIRL on X-MAGICAL for example, assumes perfect
or optimal demonstrations which can be burdensome to obtain. X-RLHF on the other hand, is
trained on 5000 preference labels. The number of times a human would be queried for XIRL-
Buckets however, would be far fewer, equal to the total size of the dataset: approximately only
600 ordinal categorizations. The fact that XIRL-Buckets performs well despite using an order of
magnitude fewer human labels is promising and future work should explore more of the design space
for XIRL-Buckets. Finally, we note that XTriplets requires triplet preference queries which are likely
more burdensome than preference queries. We leave it as an interesting area of future work to study
the human factors involved in these different labeling schemes.

6.4 Reward Accuracy Analysis

To analyze the performance of each reward model, we evaluate the alignment of reward model outputs
with the ordinal ground truth rankings of a withheld demonstration set. For each embodiment, we
evaluate 400 test demonstrations of mixed quality. Each trajectory is then represented as the ordered
pair (r, r̂) representing the trajectory’s cumulative ground truth reward (r) and the cumulative
predicted reward (r̂). The results of the withheld mediumstick embodiment for two accuracy metrics
are shown in Table 1. For brevity in the main body, we include correlation plots and performance
for all reward learning embodiments in Appendix B.

First, we use Kendall Rank Correlation Coefficient (also known as Kendall’s Tau) (Abdi, 2007), a
statistical measure of determining correlation between two measured quantities. In our case, we
wish to measure the alignment between r and r̂ for all

(400
2

)
demonstration pairs. Measurements

for Kendall’s Tau lie within the range [−1, 1], where the agreement between the two quantities is in
perfect agreement at 1, and perfect disagreement at -1. Second, using the same set of demonstration
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(a) Learned Reward (Failed Trajectory)

 t = 0  t = 20  t = 40  t = 60  t = 80  t = 100

(b) Learned Reward (Successful Trajectory)

Figure 2: Qualitative Analysis of Learned Rewards and Representations. We compare the
true reward with the predicted rewards across a failed (a) and successful (b) trajectory.

pairs, we evaluate the pairwise accuracy of the pairs by scoring a pair of trajectories ((ri, r̂i), (rj , r̂j))
as "correct" if the ordering of ri, rj is the same as the ordering of r̂i, r̂j and "incorrect" otherwise.

Interestingly, we find that higher alignment scores between the cumulative estimated reward and the
cumulative ground truth reward does not necessarily lead to better RL performance during policy
training, a phenomenon reported in other work on preference learning (Tien et al., 2022). Both
Goal Classifier and XIRL trained on MQME data score better on both reward learning metrics
when compared with XIRL-Buckets and XTriplets, yet the latter approaches far outperform the
former methods during RL training (Figure 1). Furthermore, our results indicate that X-RLHF
has the best Kendall correlation and accuracy on the validation set, surpassing even XIRL which
was trained on X-Magical (near-optimal demonstrations). These findings suggest that quantifying
the alignment between rewards is not necessarily a good indicator of down-stream RL performance.
For example, such metrics could indicate a strong correlation between learned and oracle rewards
even if a small and critical region of the state space is misidentified during training. Instead, in the
following section, we examine more carefully the qualitative indicators of RL success.

6.5 Qualitative Analysis of Learned Representations and Rewards

We next performed a qualitative analysis of the learned representations and reward functions for the
different methods. Figure 2 depicts the learned reward plotted against the timestep over the course
of both a failed trajectory and a successful trajectory. This figure helps us visualize what reward
signals and representations different approaches are learning.

Observing the shape of the learned reward for the unsuccessful trajectory, we can see that every
learned reward except for XIRL trained on MQME has learned to associate actions that do not result
in blocks being pushed with a low and near constant reward. The shaped reward for the successful
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demonstrations proves to be more informative with what these models are learning. XIRL trained on
X-MAGICAL has the most shaped and dense reward, giving positive signals to the agent consistently
throughout the task, even when it is moving away from the goal-zone to head back and gather more
blocks. Interestingly, even XIRL on MQME has a surprisingly dense and informative signal, however
this does not translate to final policy performance as it had the lowest average cumulative reward
across all models. This can be explained by the fact that XIRL (MQME) likely assigns all end
states as having high reward since the TCC alignment across mixed demonstrations will push the
end frames of the videos are aligned to be considered successful. We can see evidence of this in the
curve for XIRL (MQME) for the failed trajectory, where the predicted reward still spikes upward.
Finally, XTriplets poorly predicts the reward for the failed trajectory and incorrectly attributes
relatively high reward to states that do not progress the task, which is supported by XTriplets’ poor
RL performance.

X-RLHF appears to learn a similarly shaped reward to that of the ground truth reward (a step
function representing the fraction of total available blocks that are currently in the goal zone). It
gives clear spikes in reward signals when blocks are pushed in, but fail to provide information in
between these key states. On closer inspection of the policies learned by the X-RLHF reward we
found they learned a greedy strategy to get as many blocks as possible into the goal zone with a
single push. The learned models do not appear to associate a strong reward signal for actions that
occur after getting 2 blocks in. Leveraging online queries to refine the reward representation could
overcome this problem and is an interesting area for future work.

7 CONCLUSION

In this paper we introduce the novel problem setting of cross-embodiment learning from mixed-
quality data. Collecting near-optimal demonstrations in complex environments is challenging and
human demonstrations are often noisy or suboptimal. We propose and evaluate X-RLHF, XTriplets,
and XIRL-Buckets as three potential algorithms to help address these shortcomings. Our empirical
results demonstrate that, XIRL (Zakka et al., 2022), the prior state-of-the-art approach to cross-
embodiment IRL suffers a large degradation in performance when not all demonstrations are near-
optimal. By contrast, X-RLHF and XIRL-Buckets both showcase the ability to leverage human
feedback over mixed-quality, mixed-embodiment data to learn a reward function that is embodiment
independent and enables the ability to generalize this reward to out-of-distribution embodiments.
An exciting area of future work is to explore a combination of some of our proposed methods. For
example, X-RLHF and XIRL-Buckets appear to have somewhat complimentary reward shapes, could
a linear combination of the two lead to a more informative reward? Similarly, we could leverage
our goal embedding calculation and training as a finetuning step after a run of a TCC algorithm.
Another area of future work is to study the human factors involved in different forms of human
feedback as they relate to representation alignment and cross-embodiment learning. Finally, using
active preference learning could enable more label-efficient algorithms (Biyik & Sadigh, 2018; Wilde
et al., 2020; Shin et al., 2023).
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Figure 3: XPrefs Performance. (a) Static vs. Dynamic Goal Embeddings for XPrefs. We find
that using dynamic goal embeddings that were periodically updated every X steps during training
leads to training instabilities, hindering good representation learning. By contrast, using a static
goal embedding leads to a convergent training loss. (b) The RL performance of XPrefs and XPrefs
with the goal representation (g) hard-coded as the origin. In both cases, XPrefs obtains very similar
results to X-RLHF

A Further Analysis of XPrefs

One of the design choices mentioned in the section describing Xprefs, is whether to use a static
or dynamic goal embedding. At first glance, a dynamic embedding seemed to be the best way to
ensure the guarantee of a global minima so we performed a preliminary experiment with varying
frequencies of goal embedding updates in the training process. Figure 3a showcases the training
losses over training steps we observed for the various frequencies of updating the goal embedding g
described in the XIRL preliminaries. We experimented with frequencies of 4, 8, 400 and 1000 and
compared the results with using static goal embedding frozen before training. Our results provide
evidence that periodically updating the goal embedding causes instabilities since it induces a moving
target during learning.

In Figure 3a, the loss curve when training XPrefs and updating the goal embedding every 1000 steps
is particularly interesting as there is a clear spike in loss every time the goal embedding is updating,
leading to an intuition that the updates lend to an instability and make it more difficult to settle in a
local minimum. Our results provide evidence that periodically updating the goal embedding causes
instabilities since it induces a moving target during learning. We settled on using a static embedding
model which resulted in a much more stable and meaningful learned reward, as shown by the clear
convergence of the loss in Figure 3a when using a static goal embedding. We theorize that fixing
an arbitrary point in the embedding space as our goal state is appropriate and in fact beneficial
to learning an embodiment-independent state representation as it is akin to fixing an origin for the
space and fitting the state distribution around it in a way that is locally optimal.

In section 5.2, we theorized that XPrefs is simply X-RLHF with a non-positive reward function.
To emperically support this notion, we trained two reward models and compared RL performance
to X-RLHF (Figure 3b). The first model is XPrefs with a static goal embedding that utilizes the
goal set (g∗), as described in the previous paragraph. The second model (notated "Xprefs (g=0)"
in Figure 3b), tests our hypothesis that the goal embedding is an arbitrary bias that does not
help reward learning. As predicted, the performance of both XPrefs methods does not show any
improvement to RL training compared to X-RLHF. Therefore, there is no empirical evidence to
support that XPrefs with static goal embeddings leads to improved cross-embodiment learning.
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B Reward Correlation Analysis

XIRL XIRL Mixed Goal Classifier X-RLHF XTriplets XIRL-Buckets
Gripper

Kendall’s Tau 0.72 0.57 0.46 0.79 0.54 0.58
Pair Accuracy 0.79 0.72 0.67 0.83 0.71 0.73

Longstick
Kendall’s Tau 0.81 0.69 0.75 0.81 0.65 0.53
Pair Accuracy 0.83 0.77 0.80 0.83 0.75 0.69

Shortstick
Kendall’s Tau 0.76 0.57 0.47 0.80 0.22 0.60
Pair Accuracy 0.82 0.72 0.68 0.84 0.55 0.74

Mediumstick
Kendall’s Tau 0.78 0.61 0.61 0.80 0.44 0.52
Pair Accuracy 0.84 0.75 0.76 0.85 0.67 0.71

Table 2: Accuracy Measures for Reward Learning (Full Table). An expanded version of
Table 1 that includes quantitative reward metrics for all 4 embodiments. Reward learning is trained
on demonstrations from the gripper, longstick, and shortstick embodiments. The withheld medi-
umstick embodiment is used to evaluate whether the learned reward correctly generalizes to new
embodiments.

In addition to analyzing the reward accuracy for the withheld mediumstick embodiment (Section
6.4), we also evaluate the quality of the learned reward on the validation sets for the in-distribution
embodiments. Table 2 contains the Kendall’s Tau (Abdi, 2007) and Pairwise Accuracy scores for all
4 embodiments and all evaluated methods.

In Figure 4, we include the scatter plots for the data used to calculate these metrics by plotting each
trajectory’s cumulative ground truth reward (r) and cumulative learned reward (r̂).

Notably, despite withholding mediumstick data at training time, Table 2 indicates that there is
almost no degradation in performance when comparing the testing demonstrations for the in-
distribution embodiments compared to the testing demonstrations for the out-of-distribution em-
bodiment. Given mixed embodiment data, we would expect this to be the case as our reward models
should not be overfitting to the features of any one agent model.

The correlation plots are also a helpful visualization for understanding how well reward learning
correlates with the ground truth reward, which is the quantity we used to synthetically generate
preferences. For each emoboiment, we would expect to see a positive linear correlation between the
ground truth (x-axis) and learned reward (y-axis). In almost all methods and embodiments, it is
clear that some notion of correct representation was encoded at training time as shown in the largely
positive trends shown in each plot.

Many of the methods have a wide distribution of points at x=0. This is indicative of a learned
reward signal that differentiates between states that have zero ground truth reward. Because the
ground truth reward function is sparse (reward signal only increases after a block is pushed to the
goal region), therefore several models have learned something more dense than the ground truth
reward. If the reward model learned incorrectly to attribute high reward to poor trajectories, as we
suspect is the case for XIRL Mixed, this almost certainly has a detrimental effect on downstream
RL. As shown in XIRL, some distribution at x=0 is likely helping the performance of the policy,
rather than hurting it, as the XIRL policy outperforms the Ground Truth reward during RL.
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Learned and GT Reward Correlation For XMagical Demonstrations
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Figure 4: Correlation Plots. The correlation between ground truth reward (r) and learned reward
(r̂, normalized to range of r) for the reward learning test demonstration set. Rewards shown are
cumulative rewards over full trajectories. Reward learning trains on the XMagical gripper, long-
stick, and shortstick embodiments (Columns 1-3) and then is tested on the withheld mediumstick
embodiment (Column 4).
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C Experiment Hyperparameters

For reproducibility, we include the technical details of experimentation and model training below.
For access to our source code, we refer you to our project website at https://sites.google.com/
view/cross-irl-mqme/home.

C.1 Reward Learning

All reward learning uses a pretrained Resnet18 with a linear projection head to embed 3x112x122
images into either a 32 dimensional latent space (XIRL, XIRL Mixed, XTriplets, XPrefs, XIRL-
Buckets) or a single real-valued output (X-RLHF, Goal Classifier). All networks use a batch size of
32 and use the Euclidean (L2) distance as the embedding similarity metric.

XIRL, XIRL Mixed, and XIRL-Buckets all use the TCC Loss with the exact same configuration
as Zakka et al. (2022). Goal Classifier uses BCELossWithLogits Loss and XTriplets, XPrefs, and
X-RLHF use a Cross Entropy Loss. All networks use the Adam optimizer with learning rate 1e-5.

We trained XTriplets for 4000 iterations with 32 triplets per batch where each triplet was formed
by sampling with replacement from a dataset of 600 offline video trajectories. We allow for many
more triplets than the 5,000 pairwise preferences that X-RLHF is allotted and still observe poor
performance from XTriplets.

C.2 Reinforcement Learning (Soft Actor-Critic)

All of our learned representation methods use the exact same RL parameters to ensure comparability.
Our RL parameters are consistent with the original XIRL work (Zakka et al., 2022). We train RL
for 250,000 training steps, where the first 5,000 steps are randomly taken to populate a replay buffer
with capacity 1e6. Performance is measured by evaluating 50 episodes every 5,000 steps. The actor
and critic both share the same MLP architecture with 2 hidden layers of 1024 nodes each. We use
γ = 0.99 for the discount factor, 1e-4 for the learning rate of both actor and critic, and a batch size
of 1024.
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Abstract

Many real-world robot learning problems, such as pick-and-place or arriving at a
destination, can be seen as a problem of reaching a goal state as soon as possible.
These problems, when formulated as episodic reinforcement learning tasks, can
easily be specified to align well with our intended goal: −1 reward every time step
with termination upon reaching the goal state, called minimum-time tasks. Despite
this simplicity, such formulations are often overlooked in favor of dense rewards due
to their perceived difficulty and lack of informativeness. Our studies contrast the
two reward paradigms, revealing that the minimum-time task specification not only
facilitates learning higher-quality policies but can also surpass dense-reward-based
policies on their own performance metrics. Crucially, we also identify the goal-hit
rate of the initial policy as a robust early indicator for learning success in such sparse
feedback settings. Finally, using four distinct real-robotic platforms, we show that
it is possible to learn pixel-based policies from scratch within two to three hours
using constant negative rewards. Our video demo can be found here.1

1 Introduction

In Reinforcement Learning (RL), the task designer implicitly specifies the desired behavior using
the reward signal. In order to guide the learning agent to a reasonable solution, task designers often
rely on task-specific domain knowledge to hand-craft a dense reward function with state-to-state
differences that facilitate faster learning. Since guiding rewards reflect the task designer’s preferred
behaviors, they could bias the solutions that the agent finds, potentially leading to sub-optimal
outcomes (Riedmiller et al. 2018). For most goal-reaching problems, there is a simpler alternative
that is easy to specify but still incorporates our intended goal accurately: a constant negative
reward every time step, with termination upon reaching the goal state. We call this the minimum-
time specification since maximizing the undiscounted sum of these rewards leads to reaching the
goal state as soon as possible. This specification avoids biasing the final solution, focusing solely on
recognizing task success. This approach is also suitable for specifying unforeseen goal-reaching tasks
where a human instructor may be unable to provide domain knowledge beforehand.

1Video demo: https://youtu.be/a6zlVUuKzBc
Code for simulation experiments: https://github.com/gauthamvasan/rl_suite
Code for robot experiments: https://github.com/rlai-lab/relod
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(a) Create-Reacher (b) UR5-VisualReacher

(c) Vector-ChargerDetector (d) Franka-VisualReacher

Figure 1: Real World Robot Tasks

An alternative and simple specification of rewards is to give a discounted positive reward upon “suc-
cess” and zero everywhere else. Such a reward is often considered a sparse reward, as a differentiating
reward signal is available only sparsely. The minimum-time reward can be seen as an extreme form
of sparse reward, where the reward value never changes and the differentiating signal only comes
from episodic accumulated rewards, called the return. However, minimum-time specification has the
advantage of being simpler as it does not require discounting as part of the problem.

Despite its simplicity and ease of specification, minimum-time tasks are generally thought to be
hard to solve (Andrychowicz et al. 2017). Guiding reward formulations offer state-by-state reward
differences, which can be informative for quick policy improvement. This can provide early signs
of learning, allowing us to determine whether learning can occur quickly. Sparse-reward tasks may
take much longer to show any signs of learning, as informative signals are given only sparsely; a
robot may only rarely stumble upon the goal via trial-and-error interactions (Kober et al. 2013).

In this paper, we conduct a series of carefully designed studies to compare dense-reward and
minimum-time formulations in RL. Our research confirms the popular notion that dense-reward
formulations facilitate faster learning in comparison to sparse-reward formulations. However, our
findings also demonstrate that agents trained with minimum-time specification outperform those
trained with dense rewards, even in terms of dense-reward performance metrics. In particular, we
establish the superiority of the minimum-time formulation over the guiding reward formulation on
tasks involving reaching with simulated and industrial robotic arms, both in terms of ease of speci-
fication and its ability to attain the desired final behavior. We identify that RL agents can quickly
and reliably solve complex vision-based tasks in the minimum-time formulation if the agent can
reach the goal often enough using its initial policy. Leveraging our insights, we successfully set up
vision-based reaching tasks with sparse rewards on four distinct real robots and demonstrate their
ability to learn a pixel-based control policy from scratch within two to three hours (see Fig. 1).

2 Related Work
Reward shaping Learning with sparse rewards can be challenging since the agent has to explore
the environment extensively to discover the right set of actions that lead to the reward. Hence,
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task designers often manually craft a reward function through trial-and-error such that it maximizes
both the task performance metric and enables fast learning (Vasan and Pilarski 2017, Mahmood
et al. 2018, Lee et al. 2019, Knox et al. 2023). Ma et al. (2023) proposed using a large language
model to automate reward design in various tasks using task-specific prompts, reward templates and
evolutionary search. Recent work by Rocamonde et al. (2023) and Wang et al. (2024) explores using
large pre-trained vision-language models (VLMs) to design reward functions for RL tasks. These
approaches, akin to neural architecture search, incur high computational costs. VLMs face challenges
like sensitivity to visual realism, hallucinations, scalability issues, and mis-alignments between visual
and language modalities. They often struggle to provide precise, task-relevant feedback necessary
for effective RL, especially in tasks requiring detailed spatial understanding or abstract reasoning.

Ad hoc reward design often leads to reward shaping, where the reward function is used to commu-
nicate the underlying performance metric and to steer the agent’s learning towards a desired policy
(Ng et al. 1999). For example, Mataric (1994) proposed rewarding the agent for taking steps up the
gradient rather than just for achieving the final goal to speed up learning. However, it is also widely
recognized that ad hoc reward shaping is unsafe as it may alter the optimal solution for a particular
RL task (Amodei et al. 2016, Knox et al. 2023).

Although guiding reward design seems like a sound approach, Booth et al. (2023) show that relying
on trial-and-error to design guiding rewards can result in over-fitting, where reward functions are
inadvertently excessively tailored for use with a specific algorithm. Rewards should only commu-
nicate to the agent what we want achieved rather than detailing how we want it achieved (Sutton
and Barto 2018). In this work, we adhere to this principle and sidestep the complexities of reward
function (mis)-design, thus focusing solely on making learning with sparse rewards tractable.

Learning from sparse rewards Riedmiller et al. (2018) introduced SAC-X, a method for learning
from sparse rewards, which learns policies for auxiliary tasks concurrently with the main task to
explore the observation space efficiently. Hertweck et al. (2020) extended this by proposing agent-
internal auxiliary tasks to enhance exploration in sparse reward settings, particularly for tasks like
Ball-in-Cup, using only raw sensor data. Andrychowicz et al. (2017) presented Hindsight Experience
Replay (HER) for learning from failed episodes by treating seen states as pseudo-goals, applicable to
environments with multiple goal states but limited in vision-based tasks. Nair et al. (2018) expanded
HER for vision-based tasks like Reaching and Pushing but with constraints on camera setup and
applicability to 2D plane environments. Korenkevych et al. (2019) use autoregressive processes for
smoother exploration compared to Gaussian policies. While these approaches use novel strategies to
improve exploration in sparse reward scenarios, our work differs by predicting whether a minimum-
time task can be effectively learned from scratch based on initial policy performance.

Minimum time problems in optimal control aim to transfer a system from an initial to a final
state in the shortest time, with the cost function being the time taken between steps (Chui and Chen
2012, Chapter 9). For example, Penicka et al. (2022) combines classical path planning with model-
free deep RL to optimize a neural network policy for minimum-time flight of a quadrotor through
a sequence of waypoints with obstacles. Control benchmarks in RL like MountainCar (Sutton and
Barto 2018) and DotReacher (Garg et al. 2022) also use the minimum-time formulation with a
reward of −1 each step until termination.

3 How to Specify Goal-Reaching Tasks in RL?

In this section, we explore various formulations of goal-reaching tasks as discussed in the literature.
We use the classic Reacher problem as an illustrative example (Fig. 2). The reaching task using
a two-link robot arm aims to move the fingertip of a planar arm with two degrees of freedom to a
random spherical target on a 2D plane (Tassa et al. 2018). In this scenario, we hold an abstract
concept wherein the objective is for the robot arm to swiftly reach a designated target state and remain
there. The difficulty of the Reacher task is conditional on the size of the target.
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Background A Markov Decision Process (MDP) is used to model the agent-environment inter-
action, where an agent interacts with its environment at discrete timesteps. The agent takes an
action At ∈ A at state St ∈ S every timestep t using a probability distribution π called a pol-
icy: At ∼ π(·|St). After executing the action, the agent receives the next state St+1 at the sub-
sequent timestep t + 1 and a reward Rt+1 according to a transition probability density function
St+1, Rt+1 ∼ p(·, ·|St, At). We use continuous state space S and action space A for all our tasks.

The observation space consists of the position and velocity of the fingertip, and the vector from the
fingertip to the target. The action space is the torques to be applied to the two joints. We now
introduce three specifications based on the choice of reward function and termination.

Guiding Reward Formulation Contact Reward Formulation Minimum-Time Formulation

Rt =
{

1 if in target,
−||xgoal − xpos|| otherwise.

Rt =
{

1 if in target,
0 otherwise.

Rt = −1 (until reaching the target)

Fixed length episodes (T = 1000) Fixed length episodes (T = 1000) Varying length episodes; Termination upon
reaching the goal with near zero velocity

Table 1: Task Formulations: Choices for reward function and termination conditions

Figure 2: Reacher-Easy (left)
and Reacher-Hard (right)
from DeepMind Control Suite

Guiding reward formulation The reward function is inspired by
Brockman et al. (2016), where reacher is incentivized to get as close
to the target as possible. We also include a commonly used preci-
sion reward term previously used on a real robot reacher task using
the UR5 industrial arm (Lan et al. 2022, Farrahi and Mahmood
2023, Che et al. 2023, Elsayed et al. 2024). The reward function
has two components: (i) penalty term calculated as the negative of
the Euclidean distance between the fingertip and the target, and (ii)
precision term where the agent receives +1 reward when the finger-
tip is inside the target (see Table 1). Each episode has a time limit
of 1000. The time limit is set long enough to incentivize the agent
to remain at the goal once reached.

Contact Reward Formulation The agent will receive a reward of +1 whenever it is within the
target sphere and 0 otherwise (see Table 1). Each episode has a time limit of 1000. This choice of
reward and timeout follows the dm_control suite (Tassa et al. 2018).

Minimum-Time formulation Shorter episodes are encouraged by imposing a reward of −1 for
each step until termination. The episode terminates when the fingertip of the arm reaches the target
with near-zero velocity. An episode is completed only when the agent reaches the goal state. If the
agent exceeds the time limit, we reset the environment such that the goal state remains the same,
but the robot arm moves to a different starting state. Note that, unlike the previous formulations,
we get rid of the fixed time limit horizon, where all episodes have a uniform episode length.

Since resetting the agent has an associated time cost in the real world, we also penalize the agent
when it fails to reach the goal state within the time limit (e.g., −K where K timesteps is required to
reset the agent). The episodic returns and lengths are adjusted appropriately. For example, consider
a task where the reward is −1 each timestep, the time limit is 100 steps, and reset penalty = −20. If
an agent times out thrice consecutively and finally reaches the goal in 25 steps since the last timeout,
then the return of the episode, in this case, is −100 − 20 − 100 − 20 − 100 − 20 − 25 = −385, and the
length of the episode is 385. Our learning curves use undiscounted returns estimated in this manner.

4 Which Formulation Achieves the Desired Reaching Behavior?

We use a state-of-the-art RL method— Soft Actor-Critic (SAC) to to solve each formulation of the
Reacher task (Haarnoja et al. 2018). We use the same hyper-parameters (listed in A.1) to train all
variants. From Fig. 3a, it is clear that both Reacher-Easy and Reacher-Hard agents learn fast with
the guiding reward formulation. While the speed of learning is not as rapid, it is still fast with the
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Figure 3: Each solid learning curve is an average of 30 independent runs. The shaded regions
represent a 95% confidence interval

contact reward formulation (see Fig. 3c). In contrast, when utilizing the minimum-time formulation
(see Figure 3b), the learning curves exhibit a slower progression and more pronounced variability.

Guiding Reward
Formulation

Contact Reward
Formulation

Minimum-Time
Formulation

Ease of
specification × ✓ ✓

Fast
Learning ✓ ∼ ×

Superior Final
Performance × × ✓

Figure 4: Evaluating each task specification

Evaluating the final learned behaviours
For a fair comparison of the three task speci-
fications, we evaluate the final learned policies
using three metrics (see Table. 4): 1) Ease of
specification: Do you require any domain knowl-
edge to craft a reward function? 2) Fast learn-
ing: Is learning quick and robust during train-
ing? 3) Superior Final Performance: Once the
training phase concludes, which version demon-
strates the most desirable final learned behavior, as intended by the task designer?

To answer which formulation achieves superior final performance, we measure: 1) the number of time
steps needed to reach the target (termed “steps to goal”), and 2) the duration the agent remains
at the target once reached (termed “steps on goal”). We evaluate all 30 learned policies from each
formulation (90 runs in total) on 500 episodes, lasting 5K timesteps each (2.5M steps in total).
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Figure 5: Comparison of the three formulations of the reaching task using the number of steps it
requires to reach the goal (5a, 5b) and the number of steps it stays within the target sphere upon
reaching it (5c, 5d). The standard error is estimated over 30 independent runs. In bar charts 5a &
5b, a lower value signifies better performance. In 5c & 5d, a higher value signifies better performance.

While the guiding reward formulation achieves faster learning compared to guiding reward and
minimum-time formulation (Fig. 3), it is not easy to specify. Despite slower learning and less
visually appealing learning curves, the final learned performance shows surprisingly superior quality
and robustness when using the minimum-time formulation (Fig. 5): ∼ 3X faster on Reacher-Easy
and ∼ 2X faster on Reacher-Hard (Fig. 5a & 5b). The minimum-time policy also stays inside the
target area longer, resulting in over 500 higher accrued rewards (Fig. 5c & 5d).

Do the learned policies achieve superior performance in their own formulations? We
evaluate policies trained using contact reward and minimum-time formulations on the guiding reward
task by assessing policies trained on other formulations every 10K timesteps. The minimum-time
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formulation performs comparably to the guiding reward formulation on Reacher-Easy (Fig. 6a) but
surpasses it on Reacher-Hard (Fig. 6d). While a distinct hierarchy exists in terms of optimality of
minimum-time policies, the same is not true for policies trained with guiding rewards.

We perform a similar evaluation on other formulations. While the contact reward policy performs
on par or slightly better than the guiding reward policy, it still lags behind the minimum-time
policy (Fig. 6b and 6e). In the minimum-time task, both the guiding reward and contact reward
formulations perform poorly (Fig. 6c and 6f). Notably, the agents trained by the guiding reward
and contact reward formulations struggle to achieve near-zero velocity at the goal state, which is
necessary for completing episodes in the minimum-time formulation.
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Figure 6: Evaluating the performance of all formulations across the different specifications of
Reacher-Easy (Fig. 6a, 6b, 6c) and Reacher-Hard (Fig. 6d, 6e, 6f). Each solid learning is an
average of 30 independent runs. The shaded regions represent a 95% confidence interval.

5 Does Choice of Time Limit Impact Success in Minimum-Time Tasks?

While specifying tasks in the minimum-time formulation is straightforward, achieving successful
learning can be challenging with complex real-world problems. One factor that impacts the difficulty
of a minimum-time task is the exploration strategy. An implicit way of controlling exploration in
RL is to invoke a environment reset after a certain time limit. Many benchmark tasks in RL, such
as OpenAI Gym (Brockman et al. 2016) and DeepMind Control Suite (Tassa et al. 2018), including
existing minimum-time tasks, such as Mountain Car (Sutton and Barto 2018), treat time limits as
an intrinsic property of their task formulations. They often use fixed time limits to separate episodes
and improve exploration efficiency. Intuitively, a large time limit increases the chances of reaching
the target since the agent has more time to explore the environment. However, a large time limit
can hurt exploration if the agent gets stuck in uninformative states due to a sub-optimal policy.

To investigate the effect of the time limit on the frequency of reaching the goal state, we recorded the
number of target hits, that is, times the agent reaches the goal state using an initial gaussian policy
N (0, 1) within 20K timesteps. We plot the number of target hits versus the choice of time limits
for a minimum-time variant of Ball-in-Cup (Tassa et al. 2018) and Reacher in Fig. 7, revealing that
time limits indeed affect an agent’s exploration substantially.

We used the Non-Visual and Visual Ball-in-Cup, Non-Visual Reacher-Easy, and Non-Visual Reacher-
Hard tasks to test whether the number of target hits affects training performance. The learning
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Figure 7: A histogram plot of the choice of time limits versus the number of target hits, that is, the
number of times the agent reaches the goal state using an initial policy within 20K timesteps.
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Figure 8: Learning performance of SAC on three non-visual and one visual task in simulation for
multiple choices of timeout. Each solid curve is averaged over 30 independent runs. The shaded
regions represent a 95% confidence interval.

curves of each task across multiple time limits shown in Fig. 8 establish a clear relationship between
the learning performance and the number of target hits. See Appendix A.2 for training details.

Timeout is a solution parameter While timeouts can indeed help exploration in RL, depending
on the specific context and implementation, it is oft-ignored as a parameter in task specification. Our
results confirm that the choice of the time limit can substantially affect overall learning performance,
as there is a direct correlation between the frequency of reaching the goal state and the final learning
performance. We suggest that time limits should be treated as a tunable solution parameter that a
learning system can tweak rather than a fixed parameter inherent to the problem. Since our definition
of an episode is independent of the choice of the time limit in the minimum-time formulation, we
can safely modify the time limit of a task without altering the problem.

6 Learning Vision-Based Minimum-Time Tasks on Real Robots

As demonstrated in simulation, we aim to show that the initial policy’s performance can help predict
if a minimum-time task can be learned swiftly and consistently with real robots as well. We employ
a carefully tuned setup to showcase learning using the minimum-time formulation on four held-out
robot tasks. After analyzing our simulation results, we consider that achieving an average of 10
target hits per 20K steps is sufficient for successful learning. With the hyper-parameters we have
selected, including a mini-batch size of 256 and a replay buffer capacity of 100K, we estimate that
approximately one out of every 8 mini-batch updates would involve a transition sample featuring
the goal state. The replay buffer would contain at least 50+ diverse target hits.

Using this heuristic, we aim to choose a time limit for the robot task such that the number of target
hits exceeds 10 within 20K timesteps using the initial policy. Typically, an action cycle time of
10 − 125Hz is commonly utilized with robot control. In this scenario, collecting 20K samples would
take utmost 35 minutes, which is feasible for real-world experimentation. Once an appropriate time
limit is chosen, we proceed with training the task using an asynchronous implementation of the SAC
algorithm and the hyper-parameters specified in Appendix A.1 Note that as per the minimum-time
formulation, a reward of −1 is assigned at every step for all robot tasks until the episode ends.

Create-Reacher We modified the guiding reward task introduced by Wang et al. (2023) into a
minimum-time task, as illustrated in Fig. 1a. To facilitate image-based tasks and onboard inference,
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we equipped a Depstech 4K camera and a Jetson Nano 4GB computer. The objective of this task is
to swiftly reach one of the green sticky notes. Each episode terminates when the green sticky note
occupies at least 20% of the camera image.

UR5-VisualReacher This task is a minimum-time adaptation of the guiding reward task proposed
by Yuan and Mahmood (2022) . The objective is to move the robot’s fingertip to the target (red
blob) on the screen as fast as possible (Fig. 1b). The episode terminates once the target occupies
more than 1.5% pixels of the current image. The target remains unchanged until the arm reaches
it. Upon termination, we reset the arm to a predefined posture and generate new random targets.

Vector-ChargerDetector We propose a novel vision-based goal-reaching task involving a low-cost
mobile robot called Anki Vector (Fig. 1c). The agent sends actions in the form of velocity commands
to the wheels of the robot every 100ms over WiFi. The episode terminates when the charger symbol
is centred and occupies roughly 25% of the image. During a reset, Vector first moves backwards and
reorients itself in a random direction.

Franka-VisualReacher We also introduce another novel task involving a 7-DOF robot arm, Franka
Emika Panda. The task is to move the wrist-mounted camera close to a randomly placed bean bag
on the table (see Fig. 1d). Every episode, we place the arm and the bean bag in random positions.
The agent controls the arm by sending velocity commands for each joint at 25Hz. The episode
ends when the bean bag covers more than 12% of the image captured by the camera. We use an
adaptation of the code from Karimi et al. (2023) to set up this task.

Task Time
Limit

Average
Target

Hits

Training
(Steps)

Control
Frequency

(Hz)

Initial Hits
Estimation

Time (mins)

Robot
Experience

Time (hours)

Franka
VisualReacher

75 (3s)
150 (6s)
750 (30s)

12.6 ± 1.0
13.0 ± 2.08
7.8 ± 0.87

60k 25 13.3 1.11̄

Create
Reacher 333 (15s) 18.8 ± 3.92 100k 22.22̄ 15 1.25

UR5
VisualReacher 150 (6s) 14.4 ± 2.5 100k 25 13.3 1.11̄

Vector
ChargerDetector 300 (30s) 11 ± 1.1 160k 10 33.33̄ 4.44̄

Table 2: Robot experiment setup. The average target hits are calculated over five independent runs
using the initial Gaussian policy N (0, 1) spanning 20K timesteps for each task. Note that robot
experience time does not include time required to reset the environment, charging the batteries, etc.

Figure 9: Learning performance of SAC on four vision-based policy learning tasks with robots. Each
thin learning curve here represents an independent run. The bold learning curves of the same color
are the average of all independent runs.

While seemingly simple, these tasks pose significant complexity for model-free learning algorithms
aiming to learn vision-based policies from scratch within a reasonable timeframe. The initial random
policy performs poorly, warranting its exclusion from Fig. 9. Real robot task data collection is
slow and costly, leading us to test only three time limits for Franka-VisualReacher and select one
heuristically for other tasks (Table 2). Five runs were conducted for each task. Utilizing the ReLoD
system (Wang et al. 2023) is essential for effective real-time learning. Franka-VisualReacher and
Vector-ChargerDetector achieve sufficient target hits, while Create-Reacher and UR5-VisualReacher
surpass this threshold. We anticipate SAC agents can effectively learn policies for all tasks, which is
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supported by the successful learning curves depicted in Fig. 9. This validates our observation that
the initial policy’s performance is indicative of successful learning on minimum-time tasks.

Using a curriculum to train a robust policy Using a hand-crafted curriculum in RL involves
designing a structured sequence of tasks to accelerate an agent’s learning. Beginning with simpler
tasks and gradually introducing more challenging ones accelerates skill development and knowledge
transfer. It’s possible to seamlessly integrate a curriculum with minimum-time tasks, where the
acceptable threshold for reaching a goal state can be progressively reduced over time. We present a
single demonstration featuring the UR5-VisualReacher and Franka-VisualReacher tasks, which were
trained with a curriculum over 200K timesteps, and we showcase their performance in our video2

(a) Steps to goal plot for
UR5-VisualReacher

(b) Steps to goal plot for
Franka-VisualReacher

(c) Steps on goal plot for
UR5-VisualReacher

(d) Steps on goal plot for
Franka-VisualReacher

Figure 10: Comparison of the guiding reward and minimum-time formulations of the reaching task
using the number of steps it requires to reach the goal (10a, 10b) and the number of steps it stays
on target upon reaching it (10c, 10d). In bar charts 10a & 10b, a lower value signifies better
performance. In 10c & 10d, a higher value signifies better performance.

Evaluation of final learned behaviors on the robot arms We evaluate UR5-VisualReacher
and Franka-VisualReacher policies under minimum-time and guiding reward formulations, akin to
Section 4, using steps to goal and steps on goal metrics. The guiding reward task has been previously
used in Yuan and Mahmood (2022) and Grooten et al. (2024) and is detailed in Appendix A.3. We
conduct 2500 episodes lasting 500 timesteps each (1.25M steps total) for UR5-VisualReacher and
1000 episodes lasting 1000 timesteps each (1M steps total) for Franka-VisualReacher. Analysis
of Figure 10 shows that minimum-time policies are marginally faster and maintain target contact
longer compared to guiding reward policies, consistent with simulation results (Fig. 5), highlighting
the effectiveness of the minimum-time formulation.

7 Conclusions

Our research advocates for re-evaluating the use of constant negative rewards in real robot learning
as a cost-effective approach to reduce the need for extensive reward engineering and achieve superior
final performance. We showed that the minimum-time approach not only simplifies task specification
but can also surprisingly lead to better policies, even when assessed using metrics designed for the
guiding reward approach, as demonstrated through empirical evidence in simulation and real robots.
Through an empirical investigation of the performance of SAC on multiple complex vision-based
simulated and real robotic control tasks in the minimum-time formulation, we identified that an
agent could achieve successful learning performance if it can reach the goal often enough using its
initial policy. Contrary to popular belief, we showed that it is possible to have robust, and reliable
learning from scratch on complex vision-based robotic control tasks within a reasonable timeframe
using only constant negative rewards. We established that the time limit should be a tunable solution
parameter instead of a problem parameter in the minimum-time formulation. In total, we conducted
multiple independent runs in our experiments, which took nearly 200 hours of usage on real robots.
Our model-free reinforcement learning system achieved real-time learning of pixel-based control of
several different kinds of physical robots from scratch.

2https://drive.google.com/file/d/1O8D3oCWq5xf2hi1JOlMBbs6W1ClrvUFb/view?usp=sharing
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A Appendix

A.1 Choice of Hyper-parameters

Hyper-parameter Values
Replay buffer 100K

Actor step size 3e-4
Critic step size 3e-4

Entropy coefficient step size 3e-4
Batch size 256

Discount factor (γ) 0.99
Update every k steps 2

Num. update epochs every kth step 1
Actor MLP hidden sizes [512 512]
Critic MLP hidden sizes [512 512]

Warm-up time steps 1000
Adam optimizer betas [0.9, 0.999]

Initial temperature 0.1
Neural network activation ReLU

Table 3

In most configurations, effective learning is achieved without tuning the hyper-parameters, which
indicates the reliability of the algorithm, our learning architecture, and our task setup. Note that
for experiments in Sec. 5, the warm-up time steps is set to 20000.

A.2 Neural Network Architecture

Figure 11: Our CNN architecture combines vi-
sion and proprioception information. The yellow
blocks represent convolutional layers. The teal
block represents proprioception vector. The ma-
genta blocks represent fully connected layers. The
red block represents the previous action.

Our convolutional neural network (CNN) archi-
tecture comprises four convolutional layers, fol-
lowed by a combination of a Spatial Softmax
layer and proprioception information. The con-
volutional layers have 32 output channels and
3x3 kernels, with stride of two for the first three
layers and one for the last layer. After these con-
volutional layers, tuse spatial-softmax (Levine
et al. 2016) to convert the encoding vector into
soft coordinates to track the target more pre-
cisely. Additionally, proprioception information
is concatenated with the spatial softmax fea-
tures. The exact number of parameters depends
on the input data size and task-specific require-
ments. The two MLP layers have 512 hidden
units each. All the layers except the final output
layer use ReLU activation. We use a squashed
Gaussian policy, which means that samples are
obtained according to:

aθ(s, ε) = tanh(µθ(s) + σθ(s) ⊙ ε), ε ∼ N (0, I)
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We also apply random cropping to augment images in mini-batches to learn more robust representa-
tions given our limited amount of observations (Laskin et al. 2020). Note that we train the encoder
only using the critic loss. The actor does not propagate any gradients to the shared encoder.

A.3 Guiding Reward Specification for the UR5 and Franka Reaching Tasks

The reward function is defined as follows (Yuan and Mahmood 2022):

rt = c

hw
Mt ⊙ W

Here, c represents a scaling coefficient, while h and w denote the height and width of the image in
pixels, respectively. Mt is a binary mask of shape h × w, identifying whether each pixel currently
displays the color red. Additionally, W refers to a weighting matrix of shape h × w, characterized
by values decreasing from 1 at its center to 0 towards the edges. These quantities are combined
element-wise through the Hadamard product ⊙.

The reward function encourages the robot to maneuver its camera closer to the target and ensure
the target remains centered within the frame. For consistency across experiments, we set c = 800
and bound the rewards between 0 and 4.

Each episode spans 150 timesteps, with each timestep lasting 40 ms, totaling 6 seconds. The agent
sends an action every timestep, which the SenseAct system repeats five times every 8 ms.
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Abstract

In many real-world settings, agents must learn from an offline dataset gathered
by some prior behavior policy. Such a setting naturally leads to distribution shift
between the behavior policy and the target policy being trained—requiring policy
conservatism to avoid instability and overestimation bias. Autoregressive world
models offer a different solution to this by generating synthetic, on-policy experience.
However, in practice, model rollouts must be severely truncated to avoid compounding
error. As an alternative, we propose policy-guided diffusion. Our method uses
diffusion models to generate multi-step trajectories under the behavior distribution,
applying guidance from the target policy to move synthetic experience further on-
policy. We show that policy-guided diffusion models a regularized form of the target
distribution that balances action likelihood under both the target and behavior
policies, leading to plausible trajectories with high target policy probability, while
retaining a lower dynamics error than an offline world model baseline. Using synthetic
experience from policy-guided diffusion as a drop-in substitute for real data, we
demonstrate significant improvements in performance across a range of standard
offline reinforcement learning algorithms and environments. Our approach provides
an effective alternative to autoregressive offline world models, opening the door to
the controllable generation of synthetic training data.

1 Introduction

A key obstacle to the real-world adoption of reinforcement learning (RL, Sutton & Barto, 2018) is its
notorious sample inefficiency, preventing agents from being trained on environments with expensive
or slow online data collection. A closely related challenge arises in environments where exploration,
required by standard RL methods, is inherently dangerous, limiting their applicability. Yet many
such settings come with an abundance of pre-collected or offline experience, gathered under one or
more behavior policies (Yu et al., 2020). These settings enable the application of offline RL (Levine
et al., 2020), where a policy is optimized from an offline dataset without access to the environment.
However, the distribution shift between the target policy (i.e., the policy being optimized) and the
collected data poses many challenges (Kumar et al., 2020; Kostrikov et al., 2021; Fujimoto et al.,
2019).

In particular, distribution shift between the target and behavior policies leads to an out-of-sample
issue: since the goal of offline RL is to exceed the performance of the behavior policy, the distribution
of state-action pairs sampled by the target policy necessarily differs from that of the behavior policy,
and its samples are therefore underrepresented (or unavailable) in the offline dataset. However,
the maximizing nature of RL classically leads to overestimation bias when generalizing to rarely
seen state-action pairs, resulting in an overly optimistic target policy. As a solution, most previous
model-free work has proposed severe regularization of the target policy—such as penalizing value

∗Correspondence to jackson@robots.ox.ac.uk.
†Equal supervision.
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Figure 1: Offline reinforcement learning with policy-guided diffusion. Offline data from a behavior
policy is first used to train a trajectory diffusion model. Synthetic experience is then generated with
diffusion, guided by the target policy in order to move trajectories further on-policy. An agent is
then trained for multiple steps on the synthetic dataset, before it is regenerated.

estimates in uncertain states (Kumar et al., 2020; An et al., 2021) or regularizing it towards the
behavior policy (Fujimoto & Gu, 2021)—sacrificing target policy performance for stability.

In this paper, we focus on an alternative class of methods: generating synthetic experience to both
augment the offline dataset and lessen the out-of-sample issue. Prior methods in this area use a
model-based approach (Yu et al., 2020; Kidambi et al., 2020; Ball et al., 2021, see Section 3.1), in
which a single-step world model is learned from the offline dataset, which the target policy interacts
with to generate synthetic on-policy training experience. While this allows the target policy to
sample synthetic trajectories under its own action distribution, compounding model error usually
forces these methods to severely truncate model rollouts to a handful of interactions. Thus, there are
two options which trade off coverage and bias. The first is to roll out from the initial state, which is
unbiased but lacks coverage. The second is to roll out from states randomly sampled from the data
set, which increases coverage but introduces bias. Neither option fully addresses the difference in
observed states between the behavior and target policy when deployed, nor the out-of-sample issue
mentioned above.

Instead, we propose policy-guided diffusion (PGD, Figure 1), which avoids compounding error by
modeling entire trajectories (Section 3.2) rather than single-step transitions. To achieve this, we
train a diffusion model on the offline dataset, from which we can sample synthetic trajectories
under the behavior policy. However, while this addresses data sparsity, these trajectories are still
off-distribution from our target policy. Therefore, inspired by classifier-guided diffusion (Dhariwal &
Nichol, 2021), we apply guidance from the target policy to shift the sampling distribution towards
that of the target policy. At each diffusion step, our guidance term directly increases the likelihood
of sampled synthetic actions under the target policy, while the diffusion model updates the entire
trajectory towards those in the dataset. This yields a regularized target distribution that we name
the behavior-regularized target distribution, ensuring actions do not diverge too far from the behavior
policy, limiting generalization error. As a result, PGD does not suffer from compounding error, while
also generating synthetic trajectories that are more representative of the target policy. We illustrate
this point in Figure 2.

Our approach results in consistent improvements in offline RL performance for agents trained on
policy-guided synthetic data, compared to those trained on unguided synthetic or real data. We
evaluate using the standard TD3+BC (Fujimoto & Gu, 2021) and IQL (Kostrikov et al., 2021)
algorithms across a variety of D4RL (Fu et al., 2020) datasets. Notably, we see a statistically significant
11.2% improvement in performance for the TD3+BC algorithm aggregated across MuJoCo (Todorov
et al., 2012) locomotion tasks compared to training on the real data, with no algorithmic changes. Our
results also extend to even larger improvements for the challenging Maze2d navigation environments.
Furthermore, we analyze synthetic trajectories generated by PGD and show that PGD achieves lower
dynamics error than PETS (Chua et al., 2018)—a prior offline model-based method—while matching
the target policy likelihood of PETS. Together, our experiments illustrate the potential of PGD as
an effective drop-in replacement for real data—across agents, environments, and behavior policies.
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2 Background

2.1 Offline Reinforcement Learning

Formulation We adopt the standard reinforcement learning formulation, in which an agent acts
in a Markov Decision Process (MDP, Sutton & Barto, 2018). An MDP is defined as a tuple
M = ⟨S,A, p0, T, R, H⟩, where s ∈ S and a ∈ A are the state and action spaces, p0(s0) is a
probability distribution over the initial state, T (st+1|st, at) is a conditional probability distribution
defining the transition dynamics, R : S ×A −→ R is the reward function, γ is the discount factor, and
H is the horizon.

In RL, we learn a policy π(a|s) that defines a conditional probability distribution over actions for
each state, inducing a distribution over trajectories τ := (s0, a1, r1, s1, . . . , sH) given by

pπ,M (τ ) = p0(s0)
H−1∏

t=0
π(at|st) · T (st+1|st, at), (1)

omitting the reward function throughout our work for conciseness. Our goal is to learn a policy
that maximizes the expected return, defined as Epπ,M

[V (τ )] where V (τ ) :=
∑H

t=0 rt is the return of
a trajectory. The offline RL setting (Levine et al., 2020) extends this, preventing the agent from
interacting with the environment and instead presenting it with a dataset of trajectories τ ∈ Doff
gathered by some unknown behavior policy πoff, with which to optimize a target policy πtarget.

Out-of-Sample Generalization The core challenge of offline RL emerges from the distribution
shift between the behavior distribution pπoff,M (τ ) and the target distribution pπtarget,M (τ ), which are
otherwise denoted poff(τ ) and ptarget(τ ) for conciseness. Optimization of πtarget on Doff can lead
to catastrophic value overestimation at unobserved actions, a problem termed the out-of-sample
issue (Kostrikov et al., 2021). As such, model-free offline algorithms typically regularize the policy
towards the behavior distribution, either explicitly (Fujimoto & Gu, 2021; Kumar et al., 2020) or
implicitly (Kostrikov et al., 2021).

Alternatively, prior work proposes learning a single-step world model M from Doff (Yu et al., 2020;
Kidambi et al., 2020; Lu et al., 2022). By rolling out the target policy using M, we generate
trajectories τ ∼ ptarget(τ ), with the aim of avoiding distribution shift. However, in practice, this
technique only pushes the generalization issue into the world model. In particular, RL policies are
prone to exploiting errors in the world model, which can compound over the course of an episode.
When combined with typical maximizing operations used in off-policy RL, this results in value
overestimation bias (Sims et al., 2024).

2.2 Diffusion Models

Definition To generate synthetic data, we consider diffusion models (Sohl-Dickstein et al., 2015;
Ho et al., 2020), a class of generative model that allows one to sample from a distribution p(x) by
iteratively reversing a forward noising process. Karras et al. (2022) present an ODE formulation of
diffusion which, given a noise schedule σ(i) indexed by i, mutates data according to

dx = −σ̇(i)σ(i)∇x log p (x; σ(i)) di, (2)

where σ̇ = dσ
di and ∇x log p (x; σ(i)) is the score function (Hyvärinen & Dayan, 2005), which points

towards areas of high data density. Intuitively, infinitesimal forward or backward steps of this ODE
respectively nudge a sample away from or towards the data. To generate a sample, we start with pure
noise at the highest noise level σmax, and iteratively denoise in discrete timesteps under Equation 2.

Classifier Guidance Our method is designed to augment the data-generating process towards
on-policy trajectories from the target distribution ptarget(τ ), rather than the behavior distribution
poff(τ ). To achieve this, we take inspiration from classifier guidance (Dhariwal & Nichol, 2021),
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Figure 2: Trajectories from an illustrative 2D environment, in which the start location is indicated
by • and the goals for the behavior and target policies are indicated by × and × respectively. Left:
Rollouts from the target policy in the real environment. Right: Offline datasets gathered by the
behavior policy suffer from distribution shift and limited sample size. Truncated world models (Yu
et al., 2020; Kidambi et al., 2020) previously used in offline model-based reinforcement learning offer
a partial solution to this problem but suffer from bias due to short rollouts. Meanwhile, unguided
diffusion (Lu et al., 2023) can increase the sample size, but maintains the original distribution shift.
In contrast, policy-guided diffusion samples from a regularized target distribution, generating entire
trajectories with low transition error but higher likelihood under the target distribution.

which leverages a differentiable classifier to augment the score function of a pre-trained diffusion
model towards a class-conditional distribution p(x|y). Concretely, this adds a classifier gradient to
the score function, giving

∇x log pλ (x|y; σ(i)) = ∇x log p (x; σ(i)) + λ∇x log pθ (y|x; σ(i)) , (3)

where ∇x log pθ (y|x; σ(i)) is the gradient of the classifier and λ is the guidance weight.

3 On-Policy Sampling from Offline Data

Generating synthetic agent experience is a promising approach to solving out-of-sample generalization
in offline RL. By generating experience that is unseen in the dataset, the policy may be directly
optimized on OOD samples, thereby moving the generalization problem from the policy to the
generative model. Some prior work has suggested learning a model from the offline dataset (Lu
et al., 2023), thereby sampling synthetic experience from the behavior distribution. Although this
improves sample coverage, the approach retains many of the original challenges of offline RL. As
with the behavior policy, the synthetic trajectories may be suboptimal, meaning that we still require
conservative off-policy RL techniques to train the agent.

Instead, we seek to extend this approach by making our generative model sample from the target
distribution. This reduces the need for conservatism and generates synthetic trajectories with
increasing performance as the agent improves over training. Practically, the effectiveness of this
approach depends on how we parameterize each of the terms of the trajectory distribution (Equation 1).
In this section, we consider two parameterizations: autoregressive and direct.

3.1 Autoregressive Generation — Model T , Sample p(s0)

The autoregressive—or model-based—approach to generating on-policy data is to use the offline
dataset to train a one-step transition model T (st+1|st, at; θ). To generate unbiased sample trajectories
from the target distribution, we first sample an initial state (i.e., one that starts an episode) from the
offline dataset s0 ∼ Doff. Next, we roll out our agent in the learned model by iteratively sampling
actions from the target policy and approximating environment transitions with the learned dynamics
model. However, compounding error from the transition model usually requires agent rollouts to be
much shorter than the environment horizon—such that the agent takes k ≪ H steps.‡ Consequently,

‡Typically k ≤ 5 (Janner et al., 2019; Yu et al., 2020).
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any states more than k steps away from any initial state cannot be generated in this manner, limiting
the applicability of this approach.

As an approximation, autoregressive methods typically sample initial states from any timestep
st ∼ Doff in the offline dataset. Given a truncated rollout length k, this may be seen as approximating
the sub-trajectory distribution—i.e., the trajectory from time t to t + k—given by

ptarget(τt:t+k; θ) = ptarget(st) · ptarget(τt:t+k|st; θ), (4)

by instead modeling

F(τt:t+k; θ) = poff(st) · ptarget(τt:t+k|st; θ). (5)

Here, we denote the stationary state distributions of the target and behavior policies at time t by
ptarget(st) and poff(st) respectively, and define the conditional sub-trajectory distribution as

ptarget(τt:t+k|st; θ) :=
k−1∏

j=0
πtarget(at+j |st+j) · T (st+j+1|st+j , at+j ; θ). (6)

When generating trajectories from this distribution, the difference between ptarget(st) and poff(st)
biases the start of rollouts towards states visited by the behavior policy. Furthermore, we still require
k to be small to avoid compounding error. In combination, sampling from the offline dataset “anchors”
synthetic rollouts to states in the offline dataset, while truncated rollouts prevent synthetic trajectories
from moving far from this anchor. Therefore, the practical application of autoregressive generation
leads to a strong bias towards the behavior distribution and fails to address the out-of-sample
problem.

3.2 Direct Generation — Model poff (τ )

As an alternative to autoregressive generation, we can parameterize the target distribution by directly
modeling the behavior distribution, as follows:

ptarget(τ ) = p(s0)
H−1∏

t=0
πtarget(at|st) · T (st+1|st, at)

= p(s0)
H−1∏

t=0

πtarget(at|st)
πoff(at|st)

· πoff(at|st) · T (st+1|st, at)

= poff(τ )
H−1∏

t=0
wat,st

≈ poff(τ ; θ)
H−1∏

t=0
wat,st

= ptarget(τ ; θ) (7)

where wa,s := πtarget(a|s)
πoff(a|s) denotes the importance sampling weight for (a, s) (Precup, 2000). This

directly parameterizes the behavior distribution poff(τ ; θ)—which may be learned by modeling entire
trajectories on the offline dataset—and adjusts their likelihoods by the relative probabilities of actions
wat,st

under the target and behavior policies. By jointly modeling the initial state distribution,
transition function, and behavior policy, such a parameterization is not required to enforce the Markov
property. As a result, it can directly generate entire trajectories, thereby avoiding the compounding
model error suffered by autoregressive methods when iteratively generating transitions.

However, computing wat,st
requires access to the behavior policy πoff(a|s), which is not assumed in

offline RL. Prior work has explored modeling the behavior policy from the offline dataset and using
this to compute importance sampling corrections. However, products of many importance weights
can lead to problems with high variance (Precup et al., 2000; Levine et al., 2020).
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4 Policy-Guided Diffusion

In this work, we propose a method following the direct generation approach outlined in Section 3.2,
named policy-guided diffusion (PGD, Algorithm 1). Following the success of diffusion models at
generating trajectories (Janner et al., 2022; Lu et al., 2023), we first train a trajectory-level diffusion
model on the offline dataset to model the behavior distribution. Then, inspired by classifier-guided
diffusion (Section 2.2), we guide the diffusion process using the target policy to move closer to the
target distribution. Specifically, during the denoising process, we compute the gradient of the action
distribution for each action under the target policy, using it to augment the diffusion process towards
high-probability actions. In doing so, we approximate a regularized target distribution that equally
weights action likelihoods under the behavior and target policies.

In this section, we derive PGD as an approximation of the behavior-regularized target distribution
(Section 4.1), then describe practical details for controlling and stabilizing policy guidance (Section 4.2).
We provide a summary of PGD against alternative sources of training data in Table 1.

Algorithm 1 Trajectory sampling via policy-guided diffusion — based on Karras et al. (2022).
1: Parameters: Noise schedule σn, guidance schedule λn, noise factor γn, noise level Snoise,

number of diffusion steps N
2: Required: Denoiser model Dθ, target policy πϕ

3: sample τ0 ∼ N (0, σ2
0I) ▷ Sample random noise trajectory

4: for n = 0 to N − 1 do
5: sample ϵn ∼ N (0, S2

noiseI) ▷ Temporarily increase noise level
6: σ̂n ← σn + γnσn

7: τ̂n ← τn +
√

σ̂2
n − σ2

nϵn

8: τ̄n ← Dθ(τ̂n; σ̂n) ▷ Estimate denoised trajectory
9: dn ← (τ̂n − τ̄n) /σ̂n ▷ Evaluate ∂τ

∂σ at σ̂n

10: gn ← ∇τ̄actions
n

πϕ(τ̄ actions
n |τ̄ states

n ) ▷ Compute denoised action gradient
11: τ̂ actions

n ← τ̂ actions
n + λn(gn/∥gn∥2) ▷ Apply policy guidance to noised actions

12: τn+1 ← τ̂n + (σn+1 − σ̂n)dn ▷ Apply Euler step
13: if σn+1 ̸= 0 then
14: d′

n ← (τn+1 −Dθ(τn+1; σn+1)) /σn+1 ▷ Apply 2nd order correction
15: τ̂n+1 ← τ̂n + (σn+1 − σ̂n)

( 1
2 dn + 1

2 d′
n

)

16: end if
17: end for
18: return τN

4.1 Behavior-Regularized Target Distribution

Policy Guidance Derivation To sample a trajectory via diffusion, we require a noise-conditioned
score function ∇τ̂ log p(τ̂ ; σ) for a noised trajectory τ̂ := (ŝ0, â1, r̂1, ŝ1, . . . , ŝH) under a distribution
p(τ ) at a noise level σ. Given an offline dataset Doff, it is straightforward to learn this function
under the behavior distribution, ∇τ̂ log poff(τ̂ ; σ), by training a denoiser model to reconstruct noised
trajectories from Doff. However, there is no apparent method to directly model the noise-conditioned
score function ∇τ̂ log ptarget(τ̂ ; σ) for the target distribution (see Appendix B for further discussion),
meaning we require an approximation.

To achieve this, we consider the score function of a noise-free trajectory τ under the target distribution,
based on the formulation from Equation 7,

∇τ log ptarget(τ ) = ∇τ log poff(τ ) +
H−1∑

t=0
(∇τ log πtarget (at|st)−∇τ log πoff (at|st)) . (8)
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In the limit of noise σ → 0, the noise-conditioned score function ∇τ̂ log ptarget(τ̂ ; σ) clearly approaches
∇τ log ptarget(τ ). Therefore, we may approximate this function by

∇τ̂ log ptarget(τ̂ ; σ) ≈ ∇τ̂ log poff(τ̂ ; σ) +
H−1∑

t=0
(∇τ̂ log πtarget (ât|ŝt)−∇τ̂ log πoff (ât|ŝt)) , (9)

for σ ≈ 0. Whilst iteratively denoising under this function (Section 2.2) does not model ptarget(τ )
exactly, the score function approaches ∇τ̂ log ptarget(τ̂ ; σ) towards the end of the denoising process,
which we believe provides an effective approximation.

Excluding Behavior Policy Guidance As discussed, we may directly model the first term of
Equation 9 by training a denoiser model. Furthermore, we may directly compute target policy guidance
∇τ̂ log πtarget (ât|ŝt)—the second term of this approximation—as we assume access to a (differentiable)
target policy in the offline RL setting. However, we generally do not have access to the behavior policy,
preventing us from computing ∇τ̂ log πoff (ât|ŝt). Due to this, we exclude behavior policy guidance
from our approximation, resulting in the score function ∇τ̂ log poff(τ̂ ; σ)+

∑H−1
t=0 ∇τ̂ log πtarget (ât|ŝt).

As σ → 0, this approaches the score function for a proxy distribution of the form

F(τ ; πtarget) ∝ poff(τ )
H−1∏

t=0
πtarget(at|st)

= poff(τ ) · qtarget(τ ) = ptarget(τ ) · qoff(τ ), (10)

where qtarget(τ ) :=
∏H−1

t=0 πtarget(at|st) denotes the product of action probabilities under the target
policy and qoff(τ ) denotes the same quantity under the behavior policy. Therefore, we hypothesize
that excluding behavior policy guidance is an effective form of regularization, as it biases trajectories
towards the support of the offline data, thereby limiting model error and the out-of-sample problem.
We refer to F(τ ; πtarget) as the behavior-regularized target distribution due to it balancing action
likelihoods under the behavior and target policies, and provide further discussion in Appendix C.
Finally, as a promising avenue for future work, we note that the behavior policy may be modeled by
applying behavior cloning to Doff, allowing for the inclusion of behavior policy guidance in the offline
RL setting.

Excluding State Guidance Target policy guidance ∇τ̂ log πtarget (ât|ŝt) has non-zero gradients for
the state and action at timestep t. In practice, the action component ∇ât

log πtarget (ât|ŝt) typically
has an efficient, closed-form solution, with πtarget (ât|ŝt) commonly being Gaussian for continuous
action spaces. In contrast, for neural network policies, the state component ∇ŝt log πtarget (ât|ŝt)
requires backpropagating gradients through the policy network, which is both expensive to compute
and can lead to high variance on noisy, out-of-distribution states. Due to this, we apply policy
guidance to only the noised action, yielding our policy-guided score function

sPGD(τ̂ ; σ) = ∇τ̂ log poff(τ̂ ; σ)︸ ︷︷ ︸
Behavior score function

+∇â log qtarget(τ̂ )︸ ︷︷ ︸
Target policy guidance

, (11)

where (abusing notation) ∇â denotes the gradient ∇τ̂ of τ̂ , with non-action components set to 0.

4.2 Improving Policy Guidance

Controlling Guidance Strength A standard technique from classifier-guided diffusion is the
use of guidance coefficients (Dhariwal & Nichol, 2021). These augment the guided score function
by introducing a controllable coefficient on the guidance term. Applied to the PGD score function
(Equation 11), this has the form

sPGD(τ̂ ; σ, λ) = ∇τ̂ log poff(τ̂ ; σ) + λ∇â log qtarget(τ̂ ), (12)
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Figure 3: Left: Trajectory probability distribution for an example behavior distribution poff(τ ) and
target policy likelihood qtarget(τ ). Right: Corresponding PGD sampling distribution (Equation 13)
computed over a range of policy-guidance coefficients λ. By increasing λ, we transform from the
sampling distribution towards the regions of high target policy likelihood, making PGD an effective
mechanism for controlling the level of regularization towards the behavior distribution.

where λ denotes the guidance coefficient. As σ → 0, this transforms the sampling distribution to

F(τ |πtarget; λ) ∝ poff(τ ) · qtarget(τ )λ. (13)

Intuitively, λ interpolates the actions in the sampling distribution between the behavior and target
distributions. By tuning λ, we can therefore control the strength of guidance towards the target
policy, avoiding high dynamics error when the target policy is far from the behavior policy. We
visualize this effect in Figure 3 and analyze its impact on target policy likelihood in Figure 5.

Following Ma et al. (2023), we also apply a cosine guidance schedule to the guidance coefficient,

λn = λ · (σn + βσN · sin(π · n/N)), (14)

where β is the cosine weight, which is set to 0.3 in all experiments. By decreasing the strength of
guidance in later steps, we find that this schedule stabilizes guidance and reduces dynamics error.

Stabilizing Guided Diffusion When under distribution shift, RL policies are known to suffer
from poor generalization to unseen states (Kirk et al., 2023). This makes policy guidance challenging,
since the policy must operate on noised states, and compute action gradients from noised actions.
Similar issues have been studied in classifier-guided diffusion (Ma et al., 2023), where the classifier
gradient can be unstable when exposed to out-of-distribution inputs. Bansal et al. (2023) alleviate
this issue by applying guidance to the denoised sample estimated by the denoiser model, rather than
the original noised sample, in addition to normalizing the guidance gradient to a unit vector. By
applying these techniques to policy guidance, we lessen the need for the target policy to generalize to
noisy states, which we find decreases dynamics error.

Table 1: Overview of training experience sources in offline RL—for each, we consider the sampling
distribution, expected error in transition dynamics, likelihood of actions under the target policy,
and state space coverage beyond the behavior distribution. Policy-guided diffusion provides an
effective trade-off between each error, likelihood, and coverage.

Data source Distribution Error (↓) Likelihood (↑) Coverage (↑)

Offline dataset poff(τ ) — Low Low

Episodic world model ptarget(τ ) High — High
Truncated world model Equation 5 Low — Low

Unguided diffusion poff(τ ) Low Low High
Policy-guided diffusion Equation 10 Low High High
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5 Results

Through our experiments, we first demonstrate that agents trained with synthetic experience
from PGD outperform those trained on unguided synthetic data or directly on the offline dataset
(Section 5.2). We show that this effect is consistent across agents (TD3+BC and IQL), environments
(HalfCheetah, Walker2d, Hopper, and Maze), behavior policies (random, mixed, and medium), and
modes of data generation (continuous and periodic). Following this, we demonstrate that tuning
the guidance coefficient enables PGD to sample trajectories with high action likelihood across a
range of target policies. Finally, we verify that PGD retains low dynamics error despite sampling
high-likelihood actions from the policy (Section 5.3).

5.1 Experimental Setup

We evaluate PGD on the MuJoCo and Maze2d continuous control datasets from D4RL (Fu et al.,
2020; Todorov et al., 2012). For MuJoCo, we consider the HalfCheetah, Walker2d, and Hopper
environments with random (randomly initialized behavior policy), medium (suboptimal behavior
policy), and medium-replay (or “mixed”, the replay buffer from medium policy training) datasets.
For Maze2d we consider the original (sparse reward) instances of the umaze, medium and large
layouts. We train 4 trajectory diffusion models on each dataset, for which we detail hyperparameters
in Appendix A. In Section 5.3, we conduct analysis of PGD against MOPO-style PETS (Chua et al.,
2018) models, an autoregressive world model composed of an ensemble of probabilistic models, for
which we use model weights from OfflineRL-Kit (Sun, 2023).

To demonstrate synthetic experience from PGD as a drop-in substitute for the real dataset, we transfer
the original hyperparameters for IQL (Kostrikov et al., 2021) and TD3+BC (Fujimoto & Gu, 2021)—
as tuned on the real datasets—without any further tuning. Policy guidance requires a stochastic
target policy, in order to compute the gradient of the action distribution. Since TD3+BC trains a
deterministic policy, we perform guidance by modeling the action distribution as a unit Gaussian
centered on the deterministic action. We implement all agents and diffusion models from scratch
in Jax (Bradbury et al., 2018), which may be found at https://github.com/EmptyJackson/policy-
guided-diffusion.

5.2 Offline Reinforcement Learning

For each D4RL dataset, we train two popular model-free offline algorithms, TD3+BC (Fujimoto &
Gu, 2021) and IQL (Kostrikov et al., 2021) on synthetic experience generated by trajectory diffusion
models with and without policy guidance, as well as on the real dataset. We first consider periodic
generation of synthetic data, in which the synthetic dataset is regenerated after extended periods of
agent training, such that the agent is near convergence on the synthetic dataset at the point it is
regenerated with the current policy. Each epoch, we generate a dataset of 214 synthetic trajectories
of length 16. Following the notation of Algorithm 2, we set the number of epochs to Nepochs = 4
with Npolicy = 250,000 train steps per epoch, meaning the agent is trained to close to convergence
before the dataset is regenerated. This can be viewed as solving a sequence of offline RL tasks with
synthetic datasets, in which the behavior policy is the target policy from the previous generation.

Using periodic generation, performance improves significantly across benchmarks for both IQL and
TD3+BC (Table 2). In MuJoCo, the most consistent improvement is on mixed datasets, with 4 out
of 6 experiments achieving significant performance improvement. This is to be expected, as these
datasets contain experience from a mixture of behavior policy levels. In this case, the diffusion model
is likely to be able to represent a wide variety of policies, and on-policy guidance would naturally
produce higher return trajectories as the target policy improves.

In order to demonstrate the flexibility of PGD, we also evaluate PGD in a continuous generation
setting, using a data generation rate closer to that of traditional model-based methods. For this,
we set Nepochs = 100 and Npolicy = 10,000, then lower the sample size to match the overall number
of synthetic trajectories generated by periodic generation across training. Due to the decrease in
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Table 2: Final return of IQL and TD3+BC agents trained on real, unguided (λ = 0) synthetic
and policy-guided (λ = 1) synthetic data—mean and standard error over 4 seeds (diffusion models
and agents) is presented, with shaded values denoting significant improvement (p < 0.05) over all
unshaded values.

IQL TD3+BC
Dataset Unguided Guided Dataset Unguided Guided

R
an

do
m HalfCheetah 9.1± 2.2 2.6± 0.1 6.5± 1.7 11.2± 0.8 11.0± 0.4 21.1± 0.9

Walker2d 4.3± 0.5 2.7± 0.7 5.3± 0.3 0.5± 0.3 1.1± 1.2 −0.3± 0.1
Hopper 7.4± 0.4 5.2± 0.9 4.9± 1.0 7.4± 0.6 4.2± 1.4 5.5± 2.1

M
ix

ed HalfCheetah 44.2± 0.2 43.6± 0.2 43.6± 0.2 44.7± 0.1 43.1± 0.2 46.1± 0.3
Walker2d 81.3± 2.0 85.2± 0.3 84.9± 1.4 82.7± 1.3 70.7± 10.1 84.0± 1.0
Hopper 82.9± 3.5 97.4± 2.7 100.5± 0.5 58.6± 11.2 52.1± 1.8 91.9± 4.3

M
ed

iu
m HalfCheetah 48.4± 0.1 45.4± 0.1 45.1± 0.1 48.6± 0.1 45.3± 0.2 47.6± 0.3

Walker2d 81.7± 1.4 82.1± 0.9 77.8± 3.6 84.8± 0.1 85.2± 0.2 86.3± 0.3
Hopper 63.6± 0.8 59.7± 2.0 62.8± 1.2 62.4± 0.9 57.4± 0.4 63.1± 0.6

Total 46.9± 0.4 47.0± 0.4 47.9± 0.3 44.5± 1.1 41.1± 1.1 49.5± 0.9

M
az

e2
d UMaze 42.6± 0.4 42.9± 1.8 43.8± 3.5 50.0± 2.4 33.8± 3.0 76.2± 17.4

Medium 38.5± 1.9 33.4± 3.2 60.0± 13.9 32.1± 6.8 24.0± 4.0 89.6± 19.9
Large 50.9± 5.8 23.4± 8.0 45.3± 14.8 137.2± 20.2 93.3± 31.0 131.1± 37.5

Total 44.0± 2.2 33.2± 1.8 49.7± 9.5 73.1± 6.7 50.4± 11.1 99.0± 14.5

sample size, we maintain each generated dataset across epochs in a replay buffer, with each dataset
being removed after 10 epochs.

We see similar improvements in performance against real and unguided synthetic data under this
approach, with PGD outperforming real data on 2 out of 3 environments and datasets (Figure 4).
Periodic generation outperforms continuous generation across environments and behavior policies,
which we attribute to training stability, especially when performing guidance early in training.
Regardless, both approaches consistently outperform training on real and unguided synthetic data,
demonstrating the potential of PGD as a drop-in extension to replay and model-based RL methods.

5.3 Synthetic Trajectory Analysis

We now analyze the quality of trajectories produced by PGD against those from unguided diffusion
and autoregressive world model (PETS) rollouts. In principle, we seek to evaluate the divergence
of these sampling distributions from the true target distribution. However, this is not tractable to
compute directly, so we instead investigate two proxy objectives:

1. Trajectory Likelihood: mean log-likelihood of actions under the target policy; and

2. Dynamics Error: mean squared error between states in the synthetic trajectory and real
environment, when rolled out with the same initial state and action sequence.

In our experiments, we consider trajectory diffusion and MOPO-style PETS (Chua et al., 2018)
models trained on representative datasets from the D4RL (Fu et al., 2020) benchmark that were
featured in the previous section. Specifically, we consider the models trained on halfcheetah-medium,
before sampling trajectories with IQL target policies trained on the halfcheetah-random, -medium,
and -expert. This enables us to test the robustness of these models to target policies far from the
behavior policy, both in performance and policy entropy.
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Figure 4: Aggregate MuJoCo performance after training on unguided or policy-guided synthetic data
under continuous and periodic dataset generation, as well as on the real dataset. For each setting,
mean return over TD3+BC and IQL agents is marked, with standard error over 4 seeds (diffusion
models and agents) highlighted.

Policy Guidance Increases Trajectory Likelihood In Figure 5, we present the trajectory
likelihood of synthetic trajectories over varying degrees of guidance. Unsurprisingly, unguided
diffusion generates low probability trajectories for all target policies, due to it directly modeling
the behavior distribution. However, as we increase the guidance coefficient λ, trajectory likelihood
increases monotonically under each target policy. Furthermore, this effect is robust across target
policies, giving the ability to sample high-probability trajectories with OOD target policies. The
value of λ required to achieve the same action likelihood as direct action sampling (PETS) varies
with the target policy. Since this threshold increases with target policy performance, we hypothesize
that it increases with target policy entropy. Based on this, a promising avenue for future work is
automatically tuning λ for hyperparameter-free guidance.
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Medium policy
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Figure 5: Action probability of synthetic trajectories generated by diffusion and PETS models trained
on halfcheetah-medium. Target policies are trained on halfcheetah-random, halfcheetah-medium,
and halfcheetah-expert datasets, demonstrating robustness to OOD actions. Standard error over 4
diffusion model seeds is shaded (but negligible), with mean computed over 2048 synthetic trajectories.

Policy Guided Diffusion Achieves Lower Error Than Autoregressive Models In Figure 6,
we present the dynamics error of synthetic trajectories over 16 rollout steps. For a fair comparison,
we fix the guidance coefficient of PGD to λ = 1.0, since this was sufficient to match the trajectory
likelihood of PETS (Figure 5). Over all target policies, PGD achieves significantly lower error than
PETS. Furthermore, PGD has similar levels of error across target policies, while PETS suffers from
significantly higher error on OOD (random and expert) target policies. This highlights the robustness
of PGD to target policy, a critical feature for generating high-likelihood data throughout training.
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Figure 6: Dynamics mean squared error of synthetic trajectories generated by diffusion and PETS
models trained on halfcheetah-medium. Standard error over 4 diffusion model seeds and 3 PETS
seeds (via OfflineRL-Kit) is shaded, with each generating 2048 synthetic trajectories for analysis.

6 Related Work

Offline RL methods can be broadly categorized as model-based or model-free. Model-based methods
in offline RL (Yu et al., 2020; Kidambi et al., 2020; Rigter et al., 2022; Lu et al., 2022) are designed
to augment the offline buffer with additional on-policy samples in order to mitigate distribution
shift. This is typically done by rolling out a policy in a learned world model (Janner et al., 2019)
and applying a suitable pessimism term in order to account for dynamics model errors. While these
methods share the same overall motivation as our paper, the empirical realization is quite different.
In particular, forward dynamics models are liable to compounding errors over long horizons, resulting
in model exploitation, whereas our trajectories are generated in a single step.

Model-free methods in offline RL typically tackle the out-of-sample issue by applying conservatism to
the value function or by constraining the policy to remain close to the data. For example, CQL (Kumar
et al., 2020) and EDAC (An et al., 2021) both aim to minimize the values of out-of-distribution
actions. Meanwhile, BCQ (Fujimoto et al., 2019) ensures that actions used in value targets are
in-distribution with the behavioral policy using constrained optimization. We take the opposite
approach in this paper: by enabling our diffusion model to generate on-policy samples without
diverging from the behavior distribution, we reduce the need for conservatism.

Finally, a range of prior work has applied diffusion to RL, which we detail in Appendix E.

7 Conclusion

We presented policy-guided diffusion, a method for controllable generation of synthetic trajectories
in offline RL. We provided a theoretical analysis of existing approaches to synthetic experience
generation, identifying the advantages of direct trajectory generation compared to autoregressive
methods. Motivated by this, we proposed PGD under the direct approach, deriving the regularized
target distribution modeled by policy guidance.

Evaluating against PETS deep ensembles, a state-of-the-art autoregressive approach, we found that
PGD can generate synthetic experience at the same target policy likelihood with significantly lower
dynamics error. Furthermore, we found consistent improvements in downstream agent performance
over a range of environments and behavior policies when trained on policy-guided synthetic data,
against real and unguided synthetic experience.

By addressing the out-of-sample issue through synthetic data, we hope that this work enables the
development of less conservative algorithms for offline RL. There are a range of promising avenues
for future work, including automatically tuning the guidance coefficient for hyperparameter-free
guidance, leveraging on-policy RL techniques with policy-guided data, and extending this approach
to large-scale video generation models.
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Appendix
A Hyperparameters

We open-source our implementation at https://github.com/EmptyJackson/policy-guided-diffusion.

A.1 Diffusion Model

For the diffusion model, we used a U-Net architecture (Ronneberger et al., 2015) with hyperparameters
outlined in Table 3. We transformed the trajectory by stacking the observation, action, reward, and
done flags for each transition, before performing 1D convolution across the sequence of transitions.

Table 3: U-Net hyperparameters

Hyperparameter Value
Trajectory length 16

Kernel size 3
Features 1024

U-Net blocks 3
Batch size 16

Dataset epochs 250
Optimizer Adam

Learning rate 2× 10−3

LR schedule Cosine decay

A.2 Diffusion Sampling

We use EDM (Karras et al., 2022) for diffusion sampling, retaining many of the default hyperparame-
ters from Lu et al. (2023) (Table 4). We tuned the number of diffusion timesteps, finding diminishing
improvement in dynamics error beyond 256 timesteps.

Table 4: EDM hyperparameters

Hyperparameter Value
Diffusion timesteps 256

Schurn 80
Snoise 1.003
Stmax 50
Stmin 0.05
σmax 80
σmin 0.002
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B Noised Target Distribution

To model the target distribution with diffusion, we require the noise-conditioned score function
∇τ̂ log ptarget(τ̂ ; σ) for the target distribution. However, since we do not have access to samples from
ptarget(τ̂ ; σ), one might wish to apply a factorization of the target distribution, such as

ptarget(τ ) = poff(τ )
H−1∏

t=0

πtarget(a|s)
πoff(a|s) , (15)

before modeling its terms separately. However, by applying independent Gaussian noise to each of
the elements in τ̂ , we lose conditional independence between contiguous states and actions—i.e.,
ptarget(ât|τ̂ \ât; σ) ̸= ptarget(ât|ŝt; σ)—preventing us from applying an equivalent factorization. Due
to this, we must approximate ∇τ̂ log ptarget(τ̂ ; σ) directly, as we propose in Section 4.1.

C Behavior-Regularized Target Distribution

Intuitively, the behavior-regularized target distribution transforms the target distribution by increasing
the likelihood of actions under the behavior policy. As is typical in offline RL (Kumar et al., 2020;
Fujimoto & Gu, 2021; Fujimoto et al., 2019), regularizing the policy towards the behavior distribution
is required in order to avoid out-of-sample states and consequently minimize value overestimation.
Rather than regularizing the policy, PGD shifts this regularization to the data generation process,
which helps our guided samples remain in-distribution with respect to the diffusion model, and thus
less susceptible to model error.

Moreover, we note that this type of regularization is not immediately available for prior autoregressive
world models, and thus they typically penalize reward by dynamics error (Yu et al., 2020; Kidambi
et al., 2020; Lu et al., 2022) in an ad-hoc fashion in order to avoid model exploitation. In contrast,
PGD presents a natural mechanism for behavioral regularization during data generation, making
offline policy optimization without regularization a promising path for future work.

D Agent Training with Policy-Guided Diffusion

In Algorithm 2, we present pseudocode for training an agent with synthetic experience generated by
PGD. PGD is agnostic to the underlying offline RL algorithm used to train the target policy, making
it a drop-in extension to any model-free method.

Algorithm 2 Agent training via policy-guided diffusion.
1: Parameters: Number of epochs Nepochs, steps per epoch Npolicy
2: Required: Diffusion trajectory sampler F(τ |π; θ, λ)
3: Initialize policy πϕ

4: for epoch = 0 to Nepochs do
5: Generate synthetic dataset Depoch ∼ F(τ |πϕ; θ, λ)
6: for step = 0 to Npolicy do
7: Sample mini-batch {τ} ∼ Depoch
8: Update policy πϕ on mini-batch {τ}
9: end for

10: end for
11: return πϕ
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E Diffusion in Reinforcement Learning

Diffusion models are a flexible method for data augmentation in reinforcement learning. SynthER (Lu
et al., 2023) uses unguided diffusion models to upsample offline or online RL datasets, which are
then used by model-free off-policy algorithms. While this improves performance, SynthER uses
unguided diffusion to model the behavior distribution, resulting in the same issue of distributional
shift. Similarly, MTDiff (He et al., 2023) considers unguided data generation in multitask settings.

Diffusion models have also been used to train world models. Zhang et al. (2023) train a world model
for sensor observations by first tokenizing using VQ-VAE and then predicting future observations via
discrete diffusion. Alonso et al. (2023) also train a world model using diffusion and demonstrate it can
more accurately predict future observations. However, neither of these approaches model the whole
trajectory, thereby suffering from compounding error, nor do they apply policy guidance. Parallel
to this work, Rigter et al. (2023) use guidance from a policy to augment a diffusion world model
for online RL. By contrast, we focus on the offline RL setting, provide a theoretical derivation and
motivation for the trajectory distribution modeled by policy guidance, and demonstrate improvements
in downstream policy performance.

Diffusion models are also used elsewhere in reinforcement learning. For example, Diffuser (Janner
et al., 2022) and Decision Diffuser (Ajay et al., 2023) use trajectory diffusion models for planning and
to bias planned trajectories towards high return. By contrast, we use on-policy guidance and train
on the generated data. Diffusion models have also been used as an expressive policy class (Wang
et al., 2023) for Q-learning, showing improvement over MLPs.
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Abstract

Previous work in interactive reinforcement learning considers human behavior di-
rectly in agent policy learning, but this requires estimating the distribution of hu-
man behavior over many samples to prevent bias. Our work shows that model-
based systems can avoid this problem by using small amounts of human data to
guide world-model learning rather than agent-policy learning. We show that this
approach learns faster and produces useful policies more reliably than prior state-
of-the-art. We evaluate our approach with expert human demonstrations in two
environments: PinPad5, a fully observable environment that prioritizes task com-
position, and MemoryMaze, a partially observable environment that prioritizes ex-
ploration and memory. We show an order of magnitude speed-up in learning and
reliability with only nine minutes of expert human demonstration data.

1 Introduction

Goals for agents in reinforcement learning (RL) can often easily be described by specific world state
conditions, but it can take a prohibitively long time for an agent to discover a task’s goal state, even
with exploration rewards. In this context, using guidance from a human teacher can substantially
speed learning. One commonly used method of incorporating human guidance is imitation learning.
Standard approaches to imitation learning shape an agent’s behavior either directly through its
policy or by modeling a human’s dense reward function. These approaches may include directly
incorporating demonstrations (Ross et al., 2011; Kelly et al., 2019; Spencer et al., 2020); learning to
distinguish expert-actions from policy-actions (Ho & Ermon, 2016; Rafailov et al., 2021); training
policies using human demonstrations as labels (Bain & Sammut, 1995; Torabi et al., 2018); learning
reward functions from scalar feedback (Knox & Stone, 2009; Warnell et al., 2018) or preferences
(Wirth et al., 2016; Bai et al., 2022); or learning to explore(Villasevil et al., 2023). These methods
speed up learning, but typically create models from human demonstrations with limited state-action
coverage, causing them to fall short when applied to real-world distributions. Estimating a real-world
state-action or reward distribution in an unbiased way requires more data than a single person can
reasonably be expected to provide. The goal of our work is to address this limitation by enabling
a single human to guide an agent to learn tasks on human-relevant timescales (e.g. from periodic
demonstrations within one work-week).

We build on recent works in model-based reinforcement learning (MBRL), which use a world model
to train an agent’s policy (Moerland et al., 2023). MBRL increases sample efficiency to enable
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long-horizon task learning with few human demonstrations. In this approach, the world model itself
can be taught about a task’s sparse reward without directly shaping an agent’s policy or reward
function. World models can learn from trajectories produced by any policy, so they can be guided
early in training by human demonstration data without significant modification. Intuitively, by never
explicitly considering the human state-visitation density or action-selection likelihood we prevent poor
modeling of human behavior. Furthermore, this approach avoids problems of distribution shift in
two ways. First, directly controlling the agent using its own observations and affordances avoids
shifts between the human and agent observation and action spaces. Second, avoiding updating the
agent’s policy or reward function directly from human demonstrations prevents problems caused
by insufficient coverage of the state-action space, which otherwise could result in a brittle agent
policy (Ross et al., 2011; Rajeswaran et al., 2017). Instead, the agent learns on-policy from the
world model without ever having to consider the human’s behavior distribution.

In this paper, we propose teaching the world model in MBRL as an effective form of Learning from
Demonstration (LfD). We demonstrate the effectiveness of this approach in two simulated environ-
ments with sparse reward: PinPad5, a long-horizon fully-observable image observation task requiring
a precisely composed series of states, and MemoryMaze, a partially observable image observation
task focused on memory and exploration. We build on DreamerV3 (Hafner et al., 2023), which
trains an actor-critic on-policy purely from the model’s imagined unrolls. Human demonstrations
inform the world model’s learning, which in turn guides the agent’s learning. Dreamer is particu-
larly well-suited to incorporate human demonstrations because of its state-of-the-art performance
on RL tasks, allowing us to more easily isolate the impact of human demonstrations. We show that
this approach substantially improves the speed and consistency of learning. With nine to eighteen
minutes of human intervention, we attain 90% of max reward four to six times faster and more
consistently than Dreamer or any baseline.

Overall, a focus on training world models rather than agent policies or reward functions from human
demonstrations opens promising new directions for research in human-in-the-loop learning. In this
paper, we show that this is effective in environments with sparse, positive rewards, but this approach
may also be helpful in understanding harmful or preferred states. In this way, the learning agent is
able to extract the most important information from human demonstrations while remaining robust
to noise and errors in those demonstrations.

2 Background

2.1 Learning from Demonstration and Interactive Imitation Learning

Interactive Imitation Learning (IIL) uses a human or pre-trained oracle to guide agent behavior
within the learning environment by offering corrections through provided feedback (Knox & Stone,
2009; Warnell et al., 2018), comparisons (Wirth et al., 2016; Bai et al., 2022), or demonstration (Ross
et al., 2011; Kelly et al., 2019; Spencer et al., 2020). IIL operates over a distribution induced by the
learner, rather than expert, which can improve sample efficiency by offering a natural and intuitive
teaching approach for non-experts, and reducing distributional mismatch / covariate shift(Celemin
et al., 2022).

Learning from Demonstration (LfD) is a form of Interactive Imitation Learning (IIL) that incor-
porates information from human demonstrations to speedup learning or customize agent behavior.
The resulting demonstrations can be treated as a dataset for supervised learning to teach an agent
a mapping from states to actions, as in Behavior Cloning (BC), or the basis for learning a reward
function, as in Inverse Reinforcement Learning (IRL). LfD is helpful when the intended behavior is
difficult to design for with either control code or a designed reward function (Ravichandar et al.,
2020). However, these methods have significant weaknesses. As a BC agent acts, its mistakes com-
pound quadratically with the time-horizon (Ross et al., 2011) due to distributional shift, and IRL
is an under-specified problem and may have difficulty generalizing from few demonstrations (Finn
et al., 2016; Arora & Doshi, 2021). These difficulties arise in part from estimating human behavior
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(a) PinPad5 (b) MemoryMaze 9x9
Figure 1: Training environments. (a) PinPad5: The agent must hit a specific 5-pad sequence in
order to attain sparse reward. The agent’s history accrues in the bottom left of the image (this
agent has stepped on three pads). The pad sequence is the same for every trial (b) MemoryMaze
9x9: a 3D randomized maze environment where an agent receives reward for stepping on the correct
hemisphere. The border of the observation indicates the target hemisphere color. Episodes last 1000
steps in both environments.

distributions. We avoid the problems of policy or reward shaping by providing demonstrations that
train the world model, rather than an agent.

2.2 Learning from World Models

World models learn a representation of the environment’s transition function T : S × a → S′, R, c
that maps the current state S and an action a ∈ A to the next state S′, the environmental reward
R, and (optionally) the likelihood that the episode will terminate c. World models allow RL agents
to generate synthetic rollouts to learn from a much larger more diverse set of experiences than might
be feasible in the real environment, increasing sample efficiency (Moerland et al., 2023). In addition,
MBRL can aid exploration by using representation loss as a proxy for state-transition familiarity,
and explainability by providing visualizable examples of future behavior. Model-based systems have
become more common as high fidelity world modelling has improved (Ha & Schmidhuber, 2018;
Kaiser et al., 2019; Hafner et al., 2019; Rafailov et al., 2021; Wu et al., 2023).

We base our system off of the Dreamer line of work (Hafner et al., 2019; 2022; 2023). Dreamer
uses a Recurrent State Space Machine (RSSM) which encodes observations x, and joins them with
deterministic recurrent state h to predict a stochastic z from past actions and embeddings. Dreamer
learns to remember salient features over multiple time-steps, but outputs Markovian states which
facilitate learning from reward signals. Dreamer trains an actor-critic agent that learns purely from
imagined world model trajectories, which are generated from previously observed states. We insert
human-interaction periods into the training-evaluation loop and let a human teleoperate an agent
towards a sparse reward. See appendix A for more detail on Dreamer’s world model and training.

2.3 LfD with Few Demonstrations

Recent years have seen progress in learning from small amounts of human demonstration data. These
methods demonstrate how effective small amounts of human demonstration can be on forming useful
embedded representations for model-free learning (Zhan et al., 2021), jointly training a world model
and policy quickly (Hansen et al., 2022a), and training adversarial discriminators from world model
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Algorithm 1 WMHD-Dreamer
Require: W, πhuman, πdream, πrandom, D

1: nhuman ← 0
2: D ← s, πrandom(s), s′, r for L steps
3: D ← s, πhuman(s), s′, r for L steps
4: for i = 1 . . . 100 do
5: train W, πdream on D
6: end for
7: while learning do
8: for j = 1 . . . L do
9: D ← s, πdream(s), s′, r

10: train W, πdream on D
11: end for
12: if nhuman < nexperiment_samples then
13: D ← s, πhuman(s), s′, r for L steps
14: nhuman ← nhuman + L
15: end if
16: end while

unrolls (Rafailov et al., 2021). These methods are effectively used for continuous control tasks, but
we push this research further by demonstrating its effectiveness on compositional tasks. Humans
generally know the steps involved in accomplishing a task, but often struggle with directly controlling
low-level agent behavior (Akgun et al., 2012).

3 Methodology

Our approach, World Model training from Human Demonstrations (WMHD), is based on DreamerV3
Hafner et al. (2023), which is composed of a world model consisting of an RSSM plus decoder heads
for expected reward, episode termination, and image observation, and an actor-critic agent. The
world model is trained on images from the environment, discrete actions and observed reward, while
the agent is trained on forward predicted world model unrolls starting from real world states sampled
from the replay buffer. See appendix A for more detail. We will distinguish our approach from pure
Dreamer as WMHD-Dreamer in this text.

In baseline Dreamer training, a random policy generates trajectories, the system pretrains on that
random data, and then the world model and agent are trained jointly to solve the task. WMHD-
Dreamer speeds up learning by adding human demonstrations periodically early in learning using
direct control / teleoperation. First, the expert human teleoperates the agent for one episode, then
the system pretrains for 100 steps on a uniformly sampled mix of trajectories from human data
and data produced by a random policy. The system then oscillates between dreamer agent control
with training steps, and human control without training steps. Once the target number of human
demonstrations have been collected (nexperiment_samples), the agent proceeds with training without
human intervention.

Algorithm 1 shows the training process with world model W , actor πdreamer, random policy πrandom,
human πhuman, and dataset D, for episodes of length L. nexperiment_samples was set to 1000, 3000,
or 6000, in order to evaluate the effect of varying amounts of data on performance (see figure 3).

The algorithm was validated using a PyTorch implementation of DreamerV3 based on NM512
(2024)’s implementation, modified to allow for human demonstrations to be collected periodically
within the training loop.
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Figure 2: Episodic reward in the PinPad5 environment for 3k and 6k human actions demonstrated
in the early stages of training vs. no human demonstrations. The shaded vertical region indicates
when human demonstrations occurred. Lines indicate the mean across all trials with one standard
deviation shaded (capped at 0 and max-reward). PPO, RS-PPO, and BC baselines never achieved
any reward, and so have been omitted. Demonstrations were taken for each of n trials.

4 Simulation Study

We demonstrate the benefit of incorporating human data into world model training in two simulated
environments. The first is a long-horizon task, PinPad5, where a pixel agent has to step on five
colored pads in the correct sequence. The agent starts in a random location and gets credit for
pressing a pad when they move onto any square of that pad, unless it was the last pad visited (a
pad cannot be activated twice in a row). The pad-visitation history is tracked on the bottom left
of the image observation (figure 1a), making PinPad5 a fully observable environment. PinPad5
takes discrete actions and returns 64x64 image observations, and has a relatively simple transition
functions that is easy to control, but requires long-horizon planning and precise execution to find
the sparse environment reward. PinPad5 is a compositional rather than a control task, because
the task’s challenge comes from visiting a long sequence of correctly ordered states rather than
maintaining continuous control of an agent.

We also evaluate our method in MemoryMaze 9x9 (Pasukonis et al., 2022), a 3D randomized maze
environment where an agent receives reward for stepping on the correct colored hemisphere. The
target hemisphere color is indicated by the border of the 64x64 image observation, and is randomly
selected once the previous target hemisphere is reached. This environment uses discrete-actions
and presents image observations from a first-person perspective, making it a partially observable
environment. It is designed to test long-term memory and exploration. In this environment, we
compare our approach to Dreamer and PPO baselines.

All human demonstrations are collected from human experts (authors) using a wired Xbox controller.
The expert is shown the environment’s 64x64 image state and uses the joystick to input a direction
that maps to a discrete environmental action. This process repeats for one thousand s, a, s′, r
transitions and takes between two and three minutes. The Dreamer agent then acts one thousand
environment steps (125 updates) and hands control back to the human. This process continues until
the target number of human transitions is collected. Each sample (seed) was trained for at least
four hundred thousand steps corresponding to fifty thousand updates on either an Intel i7-12700
CPU with a GeForce RTX 3060 GPU or an Intel i5-10600K CPU with a GeForce RTX 3080ti GPU
where Dreamer ran at approximately ninety-two updates per minute in PinPad5 and approximately
fifty-five updates per minute in MemoryMaze9x9. Hyperparameters were kept constant across all
experiments and can be found in appendix B. WMHD-Dreamer was trained with between nine and
eighteen minutes of human demonstration, corresponding to three thousand to six thousand actions.
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Algorithm Steps to 50/90 %Max R Trials 50/90 %Max R Avg/StDev R
PinPad5
WMHD-Dreamer 6.0e4/1.1e5 100%/73% 162.74 / 66.06
Dreamer 4.0e5/(n/a) 30%/0% 15.78 / 50.63
PPO, RS-PPO, BC n/a 0% 0 / n/a
MemoryMaze
WMHD-Dreamer 4.8e4 / 6.1e4 100% 5.86 / 4.58
Dreamer 2.0e5 / 2.7e5 100% 2.53 / 2.89
PPO n/a 0% 0.15 / 0.12
RS-PPO n/a 0% 0.14 / 0.12
BC n/a 0% 0 / n/a

Table 1: Results over 400k Environment Steps. The first column shows the average number of
steps an algorithm took to achieve either 50% or 90% of the maximum episodic reward. The
second column shows what percent of trials (seeds) achieved 50% or 90% of maximum reward
within 400k environment steps. The third column shows the average and standard deviation of the
environmental reward for all steps and trials. For MemoryMaze, we use the maximum reward any
baseline attained, which is roughly 25% of the task’s reported mean maximum score occurring after
100 million environment steps (Pasukonis et al., 2022).

We select our training window to overlap with an eight-hour workday in order to demonstrate
learning at human timescales. Eight hours corresponds to 350k environment steps in PinPad5 and
225k environment steps in MemoryMaze on the consumer GPUs listed above. After testing with the
Dreamer baseline, this window was extended to 400k steps to include the point at which dreamer
starts to learn.

4.1 Baselines

We trained three baselines for PinPad5: PPO (Schulman et al., 2017b), PPO with a shaped reward
(RS-PPO), and BC with the same demonstrations that were used to train WMHD-Dreamer. PPO
with shaped reward received +0.2 for a correct pad in PinPad5 and a reward based on distance
from the target hemisphere in MemoryMaze. For BC baselines, we trained with cross-entropy loss
using a supervised learning model (see appendix 4) from 6000 s, a human demonstrations to predict
the correct action for a given state and then evaluated the model’s performance on the task. For
hyperparameter choices, see appendix B.

In PinPad5, none of these agents achieved the sparse reward over the training horizon of 400000
steps and so are omitted from figures 2, 3. This is consistent with prior results: (Hafner et al., 2023)
trained PPO for 30 million environment interactions without finding sparse reward in PinPad5.

5 Results

WMHD-Dreamer learned significantly faster and more consistently than Dreamer or any baseline.
The results are strongest for PinPad5 (figure 2). In this environment a relatively small amount
of human guidance leads to attaining 50% max environmental reward in 6.62 times fewer steps on
average than pure Dreamer (60463 vs. 400350), and attains 90% max reward in 109519 on average
while no baseline reaches 90% max reward. All ten WMHD-Dreamer trials achieve 50% of max
reward, while only three of ten plain Dreamer trials do. In addition, eight of eleven WMHD-Dreamer
trials attained 90% of the max reward, while plain Dreamer never reached 90% max reward within
the training window. Our PPO and BC baselines never reached the sparse reward. MemoryMaze
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Figure 3: Episodic reward in the PinPad5 environment for differing amounts of human demonstration
vs. no human demonstrations. Lines indicate the mean across all trials with one standard deviation
shaded (capped at 0 and max-reward). Demonstrations were taken for each of n trials.

Figure 4: Episodic reward in the MemoryMaze9x9 environment for 3k and 6k human actions demon-
strated in the early stages of training vs. no human demonstrations. The shaded vertical region
starting at 0 steps indicates when human demonstrations occurred. Lines indicate the mean across
all trials with one standard deviation shaded (capped at 0). Demonstrations were taken for each of
n trials.

performed similarly (figure 4) attaining 50% of demonstrator’s max reward1 in 4.17 times fewer steps
on average (48887 vs. 203759), and attaining 90% demonstrator’s max reward in 4.00 times fewer
steps on average (67405 vs. 269395). In this environment, all dreamer-based trials achieved 90% of
demonstrator’s max reward within the training window, while our PPO and BC baselines did not.

Figure 3 separates out PinPad5 trials by the amount of human demonstration data. We show results
for between three and eighteen minutes, corresponding to between 1k and 6k human actions. Any
human demonstration improves performance rapidly above pure Dreamer, but 3k and 6k demon-
strations show much tighter variance and consistent performance than 1k demonstrations. Models
with 6k demonstrations had an average reward of 169.83 and standard deviation of 57.38, 3k had an
average reward of 172.05 and standard deviation of 50.60, and 1k had an average reward of 140.47
and standard deviation of 76.11.

1We use the maximum reward attained by any baseline, which was reached by WMHD-Dreamer and is roughly
25% of the task’s reported mean maximum score occurring after 100 million environment steps (Pasukonis et al.,
2022).
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6 Discussion

In this paper, we show that providing human demonstrations early in world model training results in
significant speed-up and reliability improvements for two sparse reward tasks. In PinPad5, Dreamer
starts learning around 400k steps which corresponds to nine hours on consumer hardware, while
WMHD-Dreamer begins to learn at around 60k steps which is less than two hours of training. By
introducing nine to eighteen minutes of human interaction, seven hours of training time are saved.
Similarly, in MemoryMaze WMHD-Dreamer makes significant learning progress in the first 75k
environment steps (less than three hours), while pure Dreamer needs 400k steps (sixteen hours) to
approach the same levels of performance.

MemoryMaze performance exhibits more variance within the training window than PinPad5. This is
partially due to the more random nature of the environment (e.g. some maze configurations provide
easy access to all the hemispheres). In addition, MemoryMaze is an exploration and memory task
where reward is attainable with less long-term precision than is required for PinPad5, so the reduced
performance is in line with our expectation that the world model will benefit more from human in
strongly compositional tasks. MemoryMaze still sees a 400% speedup within the training window
because the human demonstrations contain important information for attaining sparse reward, e.g.
that the border of the observation is the same color as the target hemisphere.

There are several possible explanations for WMHD-Dreamer’s strong results. First, in sparse reward
tasks, human demonstrations produce trajectories that are more spread out across the observation
space than the world model would otherwise experience until much later in training. Each state on
these trajectories becomes the initial state of an imagined trajectory for the actor-critic’s on-policy
learning. As a result, most training on sampled human demonstration is done along trajectories
that lead to sparse rewards (see A.2 for a graphical depiction). This biases the world model repre-
sentations towards accurately representing promising sub-trajectories, and forces dense exploration
along, fruitful trajectories.

Training a world model in this way is also resilient to imperfect human demonstrations. Other
policy shaping methods incur a temporal penalty for pushing an agent’s policy towards useless
or counterproductive human behavior, but our effect on the agent’s policy is indirect, and occurs
through the world model. Any useful information present in the trajectories can be incorporated
into the world model, and this is especially potent because the alternative to human data is data
produced by a mostly untrained or random policy. As long as the demonstrator is able to drive the
agent to its goal, it should benefit the world model’s understanding of the task.

6.1 Limitations and Future Work

This work examined the effect of human demonstrations on one world model. It is possible that
the Dreamer architecture is particularly well suited to absorb information from a limited number of
human demonstrations, and we can not claim this effect would persist if a different world model was
used. The generalizability of this approach should be tested with other performant world models,
like those used in TD-MPC (Hansen et al., 2022b) and VMAIL (Rafailov et al., 2021). In addition
we did not test our system with continuous real-time control tasks, a common domain for MBRL,
due to constraints on human response times. Follow up work could use assistive control to address
these domains.

Also, this work does not examine how performance could be further improved through the use of
interactive imitation learning. This paper claims WMHD-Dreamer is successful because it does not
attempt to estimate behavior distributions, but it does not investigate whether policy shaping would
further improve WMHD-Dreamer’s performance. Future work should investigate the effect of other
IIL techniques, like preference learning or scalar feedback, on MBRL systems.

Our primary insight is that training a state-of-the-art world model rather than directly shaping a
policy results in a substantial speed-up. This insight may have benefits for IIL more generally and
could be used incorporate human-demonstrations that understand harmful, or preferred states as
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well, offering a novel way to ensure safe or customized learned behaviors. In addition, a human
observing a system in operation may notice behavioral weaknesses and take over to guide the agent
through difficult, dangerous, or just sparsely explored sections of the state-space.

7 Conclusion

We demonstrate that a small number of human demonstrations can be leveraged by state-of-the-
art world-model based reinforcement learning systems to dramatically decrease learning time and
improve learning consistency. Our approach avoids the pitfalls of policy shaping by using human
demonstrations to influence the world model rather than the acting agent. We show this effect in
a sparse reward compositional task where we see six times faster, more consistent learning, and in
a continuous space, discrete action memory and exploration task where we see more modest, but
still significant learning improvements. This insight should be leveraged with modern interactive
imitation learning methods to expand the effect of human-in-the-loop learning.
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A Dreamer World Model

The world model learns embedded representations of the input through auto-encoding and recur-
rence. It is built from a PyTorch port (NM512, 2024) of Hafner et al. (2023) Recurrent State-Space
Model (RSSM), which maps inputs obst to stochastic output zt through a deterministic sequential
model with hidden state ht (Hafner et al., 2019; 2023). A Gated Recurrent Network (GRU) pre-
dicts the next deterministic state from the previous deterministic state, and an MLP combination
of the previous action and the previous stochastic state 5. The GRU’s prior is then MLP combined
with the encoded current observation to obtain the deterministic posterior state of the world. The
model learns a stable, long-term embedded world state in h, but can handle the stochastic nature
of complex unobservable environments by updating from the stochastic state. Agents can train on
both the deterministic and stochastic states to actualize in the real-world.

The world model can be represented by the following equations. Where ht is the deterministic
recurrent state, zt is the embedded stochastic state, xt is the encoded observation, ẑt is the predicted
stochastic state, r̂t is the predicted reward, ĉt is the predicted likelihood of the episode continuing,
and x̂t is the decoded image.

ht = fϕ(ht−1, zt−1, at−1)

zt ∼ qϕ(zt|ht, xt)

ẑt ∼ pϕ(ẑt|ht)

r̂t ∼ pϕ(r̂t|ht, zt)

ĉt ∼ pϕ(ĉt|ht, zt)

x̂t ∼ pϕ(x̂t|ht, zt)

A.1 RSSM structure

Figure 5 shows the one-step update for the RSSM. See Hafner et al. (2023) for more details.
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Figure 5: One-step RSSM with image observation encoder and reward, likelihood of continuation,
and observation decoders.

A.2 Imagined Future Trajectory Training

Dreamer trains actor-critic agents on imagined trajectory unrolls that start from each real state-
action pair it observes. A single actor-critic is trained on extrinsic (usually environmental) reward as
well as an entropy regularizing term to encourage exploration. Figure 6 shows an example training
batch from an expert demonstration. Expert states SE

t form the basis of imagined unrolls where π
learns on-policy. Expert actions aE

t are never considered in actor-critic training.

B Hyperparameters

Table 2 shows the hyperparameters used to train WMHD-Dreamer and Dreamer.

Table 3 shows the Proximal Policy Optimization Schulman et al. (2017a) hyperparameters used to
train the baseline approach.

Table 4 shows the Behavior Cloning hyperparameters used to train the baseline approach. The
behavior cloning model was trained using 6000 human demonstrations, and the model achieved a
test accuracy of 65%. The train-validation-test split was 80-10-10.
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Hyperparameter Value
World Learning Rate 1e-4
Actor Learning Rate 3e-4
Critic Learning Rate 3e-4
Train Ratio 128
GRU Recurrent Units 1024
CNN Multiplier 32
Dense Hidden Units 512
MLP Layers 4
Human Interaction Period (env steps) 1000

Table 2: Dreamer hyper-parameters

Hyperparameter Value
Actor Learning Rate 3e-4
Action Std Decay Rate 0.05
Min Action Std 0.1
Critic Learning Rate 1e-3
Gamma 0.99
Epsilon Clip 0.2

Table 3: PPO hyper-parameters

Hyperparameter Value
discount factor 0.995
learning rate 1× 10−3

optimizer Adam
batch size 256
action distribution categorical with 4 bins
model architecture 2 Conv layers followed by 2 linear layers

Table 4: Behavior Cloning Model hyper-parameters
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Figure 6: One-step RSSM with image observation encoder and reward, likelihood of continuation,
and observation decoders.
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Abstract

Reinforcement Learning from Human Feedback (RLHF) has emerged as a popular
paradigm for capturing human intent to alleviate the challenges of hand-crafting
the reward values. Despite the increasing interest in RLHF, most works learn
black box reward functions that while expressive are difficult to interpret and often
require running the whole costly process of RL before we can even decipher if these
frameworks are actually aligned with human preferences. We propose and evaluate
a novel approach for learning expressive and interpretable reward functions from
preferences using Differentiable Decision Trees (DDTs). Our experiments across
several domains, including CartPole, Visual Gridworld environments and Atari
games, provide evidence that the tree structure of our learned reward function is
useful in determining the extent to which the reward function is aligned with human
preferences. We also provide experimental evidence that not only shows that reward
DDTs can often achieve competitive RL performance when compared with larger
capacity deep neural network reward functions but also demonstrates the diagnostic
utility of our framework in checking alignment of learned reward functions. We
also observe that the choice between soft and hard (argmax) output of reward
DDT reveals a tension between wanting highly shaped rewards to ensure good RL
performance, while also wanting simpler, more interpretable rewards. Videos and
code, are available at: https://sites.google.com/view/ddt-rlhf

1 Introduction

Figure 1: We propose an end-to-end differen-
tiable approach for training reward functions
using differentiable decision trees via trajec-
tory preference labels to enable interpretabil-
ity and identification of misalignment of the
learned reward function.

The reward function is central to reinforcement learn-
ing (RL) algorithms (Sutton and Barto, 2018); how-
ever, it is difficult to manually specify a good reward
function for many tasks (Ng et al., 1999; Krakovna
et al., 2020), motivating learning reward functions
from human input (Jeon et al., 2020). We focus on the
problem of learning interpretable reward functions.

Most modern reward learning methods use deep neu-
ral networks (Finn et al., 2016; Christiano et al.,
2017; Ibarz et al., 2018; Hejna and Sadigh, 2022; Tien
et al., 2023). However, despite the growing interest in
explaining black box models trained via deep learn-
ing (Gilpin et al., 2018; Zhang and Zhu, 2018; Heuillet
et al., 2021; Räukur et al., 2022), deep neural networks remain extremely difficult to interpret. In the
context of reward learning, it is especially critical that we can interpret the learned objective—if we
cannot understand the objective that a robot or AI system has learned, then it is difficult to know if
the AI system’s behavior will be aligned with human preferences and intent (Russell et al., 2015;
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Leike et al., 2018; Brown et al., 2021). This is particularly significant in tasks where human safety is
on the line, for example in healthcare, autonomous navigation, and assistive robots.

Thus, we are faced with a problem: we want highly accurate and expressive reward models, but we
also want to be able to interpret the learned reward function. In particular, we seek to integrate
structural and interpretability constraints into the reinforcement learning from human feedback
(RLHF) pipeline to improve diagnostic capabilities for misalignment issues. A natural step towards
both of these goals is to combine the expressiveness of neural networks with an architecture choice
that is easier for a human to interpret, such as a decision tree. To tackle the the aforementioned
problems, we propose a novel reward learning approach that uses an end-to-end differentiable decision
tree model for learning interpretable reward functions from pairwise preferences. We evaluate our
approach on three different domains: CartPole (Brockman et al., 2016), a novel set of Visual MNIST
Gridworld environments, and two Atari games from the Arcade Learning Environment (Bellemare
et al., 2013). We investigate the ability to learn expressive and interpretable reward functions from
both low- and high-dimensional state inputs.

Learning a reward model as a differentiable decision tree has the advantage that the tree structure
explicitly breaks the reward prediction for a state into a finite number of routing decisions within
the tree. This provides the potential to understand how the reward predictions are being made.
Leveraging the tree structure, we can provide global explanations across both low- and medium-
dimensional environments such as CartPole and visual MNIST gridworlds. For high-dimensional
visual state spaces, such as Atari, we propose a novel form of hybrid explanation that seeks to provide
global explanations by leveraging aggregations of individual input states.

Our paper makes the following contributions: (1) We introduce a reward learning framework (Fig 1)
that employs differentiable decision trees (DDTs) to learn human intent using trajectory preference
labels without necessitating any hand-crafting of the input feature space. To the best of our knowledge,
our framework is the first interpretable tree-based method for reward learning that can be applied
in visual domains. (2) We propose hybrid explanations for internal nodes that approximate global
explanations by leveraging aggregations of individual input states. (3) We study the ability of DDTs
to learn interpretable rewards on visual-control tasks and find that Reward DDTs can often learn
interpretable reward functions. We also provide evidence that reward DDTs can be used to identify
reward misalignment. (4) We find that the policies obtained by optimizing our reward DDTs via RL
often perform comparably to policies trained with black-box neural network reward functions.

2 Related Work

Preference Learning Reinforcement learning from human feedback (RLHF), is a common ap-
proach for learning reward functions and corresponding RL policies (Wirth et al., 2016). It has been
shown that preference learning allows generalizing to various domains, even when sub-optimal demon-
strations are provided without any explicit preferences and can achieve better-than-demonstrator
performance (Brown et al., 2019). Preference learning is also applicable across multiple forms of
human input: prior work has shown that demonstrations (Brown et al., 2020), e-stops (Ghosal
et al., 2023a), rankings (Ouyang et al., 2022), and corrections (Mehta and Losey, 2022), can all be
represented in terms of pairwise preferences. Thus, our approach is also applicable in these other
settings. Prior work on RLHF typically either assumes access to a set of hand-designed reward
features (Sadigh et al., 2017; Biyik et al., 2020; Mehta and Losey, 2022; Ghosal et al., 2023a) or
uses deep convolutional or fully connected networks for reward learning (Christiano et al., 2017;
Brown et al., 2019; Lee et al., 2021a; Hejna and Sadigh, 2022; Ouyang et al., 2022; Liu et al., 2023;
Karimi et al., 2024). By contrast, we study the extent to which we can learn expressive, but also
interpretable reward functions via differentiable decision trees (Frosst and Hinton, 2017).

Explaining and Interpreting Reward Functions In the past few years, various attempts
have been made to understand learned reward functions. Prior work compares learned reward
functions to a ground truth reward using pseudometrics (Gleave et al., 2021), saliency maps and
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counterfactuals (Brown et al., 2019; Michaud et al., 2020; Mahmud et al., 2023; Tien et al., 2023).
Other work leverages human teaching strategies (Lee et al., 2021b; Booth et al., 2022) or uses human-
centric evaluation methods for reward explanation (Sanneman and Shah, 2022). Prior work has also
looked at using expert-driven reward design techniques to incorporate structural and interpretability
constraints (Jiang et al., 2021; Devidze et al., 2021; Icarte et al., 2022). We seek to investigate to
what extent differentiable decision trees enable interpretable reward functions.

Differentiable Decision Trees Differential decision trees (DDTs) seek to combine the flexibility of
neural networks with the logical and interpretable structure of decision trees (Quinlan, 1986; Jordan,
1994). DDTs have been previously applied to supervised learning tasks (Frosst and Hinton, 2017;
Tanno et al., 2019; Hazimeh et al., 2020) and unsupervised tasks (Zantedeschi et al., 2021). Recent
work has also investigated using DDTs for reinforcement learning tasks (Silva et al., 2020; Coppens
et al., 2019; Tambwekar et al., 2023; Ding et al., 2021; Pace et al., 2022), but focuses on policy learning
using DDTs. Compared to prior work, the primary objective of our work is to learn interpretable
reward functions using DDTs. While policy explanations are important, they only show what triggers
an agent to take a certain action, rather than explaining the underlying reason why the policy has
learned to take take an action. By understanding agent’s reward function, we gain insight into the
agent’s value alignment (Leike et al., 2018; Fisac et al., 2020; Brown et al., 2021). Importantly,
understanding an agent’s reward function can enable an understanding of how that agent would act
across different embodiments and dynamics Fu et al. (2018); Zakka et al. (2022), unlike policies which
are tied to the specifics of the MDP transition dynamics and action space. Furthermore, prior work
using DDTs for policy learning only considers low-dimensional, non-visual inputs (Silva et al., 2020;
Coppens et al., 2019). By contrast, we study DDTs applied to high-dimensional image observations.

Decision Trees for Reward Learning There has been very little prior work on using decision
trees for reward learning. Bewley and Lecue (2022) recently pioneered the idea of a tree-based
reward function. However, their approach to learning a tree-based reward requires a complex,
non-differentiable, multi-stage optimization procedure. By contrast, our approach is end-to-end
differentiable and trainable using a simple cross entropy loss. Bewley and Lecue (2022) also only
consider low-dimensional inputs where internal nodes in tree have the form (s, a)d ≥ c for each
dimension d of the state-action space and threshold c. This approach divides state-action space into
axis aligned hyperrectangles, which often works for lower-dimensional spaces, but does not scale to
higher-dimensional state and action spaces. Follow-on work (Bewley et al., 2023) uses a differentiable
loss function but is not end-to-end differentiable as it requires reward tree to regrow at each update
and requires hand crafting input features per decision node in the tree, making it intractable to scale
to the types of visual inputs we consider. We seek to extend the state-of-the-art in interpretable
tree-based reward learning by learning reward function DDTs that are end-to-end differentiable, do
not require hand-crafted features, and scale easily to high dimensional pixel inputs.

3 Reward Learning using Differentiable Decision Trees

Classical decision trees are often interpretable and easy to tune (Kotsiantis, 2013; Molnar, 2020);
however, they require feature engineering which can result in lower performance and less generalization
compared with other machine learning approaches (Frosst and Hinton, 2017; Hazimeh et al., 2020).
In this section, we discuss our proposed approach for learning interpretable but expressive reward
functions via differentiable decision trees (DDTs).

While classical decision trees consist of internal nodes that deterministically route inputs, we want
our reward function tree to be easily trained using backpropagation. Thus, we need a differentiable
soft routing function that retains the expressiveness of a neural network by learning the routing
function for each non-leaf node. We define an internal node in the DDT as a sequence of one or more
parameterized functions applied, to the input to the DDT to determine probability of routing left
or right. To facilitate interpretability, each internal node depends directly on the input—this is a
common design choice in DDTs (Frosst and Hinton, 2017) and serves our purpose well by allowing us
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to easily trace each routing decision in the tree to the raw input features. Thus, the differentiable
decision tree learns a hierarchy of decision boundaries that determine the routing probabilities for
each input. We describe two variants of an internal node below:

3.1 Internal Nodes

Figure 2: Routing probability
of an internal node in a DDT.

Simple Internal Node Proposed by Frosst and Hinton (2017),
a simple internal routing node, i, has a linear layer with learnable
parameters wi and a bias term b upon which a sigmoid activation
function, σ, is applied to derive the routing probability given an input
x (Fig 2). Thus, the probability at node i of routing to the left
branch is defined as pi(x) = σ(β(x ·wi +b)). The inverse temperature
parameter, β, controls the degree of soft decisions.

Sophisticated Internal Node For higher-dimensional inputs we propose an alternative internal
node architecture, which consists of a single convolutional layer with Leaky ReLU as the non-linearity
followed by a fully connected linear layer, as before. The probability of going to the leftmost branch
at an internal node i is defined as pi(x) = σ((LeakyReLU(Conv2d(x))) · wi + b).

3.2 Leaf Nodes

Following prior work that uses DDTs for classification problems (Frosst and Hinton, 2017), we
parameterize each leaf node, l, with a learnable parameter vector ϕl, that defines a softmax distribution
over a discrete number of classes c. The probability distribution, Ql, over outputs at a leaf is defined
as Ql

i = exp(ϕl
i)/(

∑c
j=0 exp(ϕl

j)). We propose two ways to obtain rewards at the leaf nodes:

Multi-Class Reward Leaf (CRL) This formulation of leaf node performs multi-class classification
and assumes that the user specifies a set of c unique discrete reward values that the DDT can output
in the form of a vector R = (r1, r2, . . . , rc), where c denotes the number of classes for the DDT, and
each class index i is assigned reward value ri. Thus, the learnable parameters, ϕl, at multi-class
reward leaf l form the logit values of a classification problem over the possible reward values in R.

Min-Max Reward Interpolation Leaf (IL) As an alternative to the classification approach,
we also propose to model the reward of a DDT as regression problem, that only requires the user
to specify the minimum and maximum range of possible reward values as opposed to requiring
finite set of possible reward values as in CRL. Thus, c = 2 and the reward vector is of the form
R = (Rmin, Rmax), where Rmin and Rmax correspond to minimum and maximum desired reward
output, respectively. Given this parameterization, we interpret the reward output of a DDT leaf
node as a convex combination of Rmin and Rmax based on the learned parameters ϕl.

3.3 Training DDTs for Reward Learning using Human Preferences

As we want our reward DDT to be end-to-end differentiable when learning a reward function from
preference labels, we need to find a way to formulate soft reward prediction. Given a tree of depth
d ≥ 1, we have

∑d−1
k=0 2k internal nodes and 2d leaves. To formulate a differentiable objective, we

first denote the path probability, given an input x, from the root node to a leaf ℓ by P ℓ(x). The
soft reward prediction of the tree is given by the sum over all leaves, ℓ, of the path probability of
reaching each leaf, P ℓ(x), multiplied with the soft reward output at that leaf:

rθ(x) =
∑

ℓ

P ℓ(x)(Qℓ · R) .

To train our reward function DDT, we propose to leverage pairwise preference labels over trajectories.
Given preferences over trajectories of the form τi ≺ τj , where τ = (x1, x2, ...xT ), we can train our

1890



RLJ | RLC 2024

entire differentiable decision tree via the following cross entropy loss resulting from the Bradley Terry
model of preferences (Bradley and Terry, 1952; Christiano et al., 2017; Brown et al., 2019):

L(θ) = −
∑

τi≺τj

log

exp
∑

x∈τj

rθ(x)

exp
∑

x∈τi

rθ(x) + exp
∑

x∈τj

rθ(x)
.

3.4 Using a Trained Reward DDT for Reward Prediction

Given a trained reward DDT, we want to optimize the learned reward using RL. One option is to use
the soft reward (averaged across all leaf nodes weighted by routing probability); however, this loses
interpretability since we cannot trace the predicted reward to a small number of discrete decisions.
To enable interpretable reward predictions, we can alternatively output a single reward prediction by
first finding the leaf node with maximum routing probability for a given input x:

l∗ = arg max
ℓ∈L

P ℓ(x) ,

where L denotes set of all leaf nodes in the DDT. The test-time output of a reward DDT with a multi-
class reward leaf (CRL) nodes is given as rmax(x) = ri, for i = arg maxi Qℓ∗

i ; while for a reward DDT
with min-max interpolation leaf (IL) nodes the reward output is given as rmax(x) = Qℓ∗ ·(Rmin, Rmax).

3.5 Hybrid Explanations of Learned Reward DDT

Depending on the dimensionality of the state space in a given environment, our framework allows
us to create global explanations across all inputs in form of node activation heatmaps (discussed in
further detail later). As an alternative, we also investigate hybrid explanations that approximate
global explanations by leveraging aggregations of input states to visually understand the routing
probability of each internal node. Inspired by Bobu et al. (2022), we do this by visualizing a synthetic
trace at each internal node. The synthetic trace is a sequence of states sorted by the probability of
being routing left in decreasing order—the trace begins with the state that has maximum probability
of being routed left and ends with the state that has minimum probability of being routed left.

4 Experiments and Results

We designed our experiments to investigate the following questions: (1) Can we detect misalignment
in reward function by learning the reward function as a DDT? (2) How does modeling a reward
function as a DDT influence downstream RL performance? (3) How does the choice of leaf node
(multi-class reward leaf (CRL) or min-max reward interpolation leaf (IL)) affect performance? (4)
How does an increase in the environment complexity impact our design choices as well as our ability
to interpret the learned reward function? To explore and address these questions, we perform
evaluations on three different types of environments: CartPole, a novel set of MNIST Gridworld
environments, and Atari 2600 games (Bellemare et al., 2013).

We use CartPole to perform an initial assessment of our framework and provide an example of how
interpreting a learned reward DDT enables detection of a silent misalignment problem—the reward
function is misaligned but the policy still performs well. To evaluate our framework’s ability on
visual domains, we explore two MNIST Gridworld environments of increasing complexity, where the
gridworlds have image based observations. Finally we examine our framework on Atari where the true
score is masked and the agent must learn a reward function by interpreting high-dimensional pixel
observations derived from video frames. The Atari domains provide evidence in higher-dimensional
environments of the ability to detect reward misalignment.
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Figure 3: Identifying Misalignment in the CartPole Reward DDT. The heatmap for each
internal node depicts the learned routing probability. Leaf nodes are depicted as circular nodes with
their soft reward values. The tree learns that small magnitude pole angles are good and should be
routed to a +1 reward but there is no learned decision boundary that clearly captures the preference
that cart position stay within the range [−2.4, 2.4] showing that learned reward is misaligned due to
the bias in the training dataset—the cartpole usually falls over long before the cart runs off the track.

4.1 CartPole

The CartPole environment comprises a cart with a pole attached to it, sliding on a friction-less
track (Brockman et al., 2016). For this task, we wish to teach the agent to balance the pole on the
cart for as long as possible while cart moves to left and right along the track without letting pole fall
beyond ±12◦ from the upright position and without letting the cart move beyond ±2.4 units along
the track. We assume no access to the true reward and must learn this from trajectory preferences.
Setup To train a reward function DDT, we generate trajectories by running a random policy in the
environment for 200 steps for each trajectory. Following the advice of Freire et al. (2020), we remove
the standard terminal or done flag to avoid leaking information about the true reward. The terminal
flag normally is triggered in CartPole when either the pole falls or the cart goes off the track. Instead,
we make CartPole a fixed horizon task by always accumulating states in each trajectory for 200
timesteps—even if the pole falls over. We design a synthetic preference labeler that returns pairwise
preferences based on the true (but unobserved) reward of +1 only if the cart position x ∈ [−2.4, 2.4]
and the pole angle θ ∈ [−12◦, +12◦] and 0 otherwise. Pairwise preferences are assigned based on the
true reward for each trajectory.

Given pairwise preference labels over suboptimal trajectories, we train a reward DDT with 3 internal
nodes and 4 leaf nodes. We use multi-class reward leaf (CRL) nodes with 2 classes: R = (0.0, 1.0)
(for more details, refer to Appendix B). It is important to note that even though the ground truth
preferences are based on both cart position and pole angle, the pole usually falls past the desirable
range long before the cart leaves the desirable range. Thus, our dataset is biased and may lead to a
misaligned reward function. We evaluate RL performance of the learned reward DDT, by running
PPO on the learned reward function to obtain the final policy and then evaluate this learned policy
on the ground-truth reward function. We also compute the performance of a PPO policy trained on
the same dataset using a neural network reward function. To unveil the fact that our learned reward
functions (using both DDT and neural network) are biased, we run RL experiments in two settings:
(1) In-Distribution uses the default starting cart position in the range [−0.05, 0.05] as in our training
dataset and (2) Out-Of-Distribution where the starting cart position is in the range [2.35, 2.45] (the
boundary of the range of desired track positions).

Results The In-Distribution results in Table 1 show that RL performance of a simple reward DDT
is comparable to that of a neural network made up of fully-connected layers as well as to RL policy
learned under ground truth reward, irrespective of whether the policy is learned using soft rewards
or using the maximum probability path across the learned reward DDT. This primarily gives us
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DDT Baselines
CRL Soft CRL Argmax Neural Network Ground Truth

In-Distribution Mean (Std) 190.9 (28.1) 200.0 (0.0) 156.3 (59.0) 200.0 (0.0)
IQM 200.0 200.0 179.5 200.0

Out-Of-Distribution Mean (Std) 8.8 (3.7) 7.7 (2.1) 20.7 (39.2) 172.0 (45.6)
IQM 8.3 7.9 8.8 185.3

Table 1: Silent Misalignment in CartPole. CRL denotes Class Reward Leaf nodes. For In-
Distribution, DDTs with soft outputs and argmax rewards perform on par with a non-interpretable
fully connected 2-layer reward network baseline and with RL policy learned under ground truth
reward. For Out-Of-Distribution, the RL policy of learned reward models, both DDT and neural
network fails to learn to balance pole while moving along the track while RL policy under ground
truth reward learns to balance pole as it moves on track. The table shows Mean and Standard
deviation across 10 seeds averaged over 100 rollouts as well as the Interquartile Mean (IQM).

the evidence that our framework can achieve relatively competitive performance as that of a neural
network for state based observations,before we move on to image-based observations.

Fig 3 shows learned reward DDT. Because the input space to the reward function is 2-dimensional
(cart position and pole angle) we visualize the heatmap of routing probability at each internal node
(as a function of cart position and pole angle) along with leaf distributions. From DDT it is clear
that most of the routing decisions are made based on pole angle, rather than cart position. A nice
feature of the reward DDT is that we can easily visually interpret the learned reward just by looking
at the tree. From Fig 3 we see that while the tree learns that small magnitude pole angles are good
and should be routed to a +1 reward, there is no learned decision boundary that clearly captures the
preference that cart position stay within the range [−2.4, 2.4]. We call this a silent misalignment
problem. Similar to a silent bug in programming, it is not obvious by running RL that anything is
wrong with the learned reward function—it turns out that trying not to tip the pole is a decent
surrogate reward function that works well in the standard CartPole environment. Thus, the agent
has learned the right policy for the wrong reason, something that is only clear by interpreting the
learned reward. While this poses no serious issues in the standard CartPole environment, silent
alignment problems could lead to unwanted behavior under distribution shifts and detecting these
silent alignment problems is an open challenge in AI safety and alignment research (Ji et al., 2023).

Indeed, the Out-Of-Distribution results in Table 1 demonstrate this silent misalignment in the learned
reward functions, where the policies learned from the reward DDTs as well as neural network reward
learn to balance the pole, but fail to stay in the desired track range. In contrast, the RL policy under
ground truth reward learns to balance pole correctly while moving along the track, starting from any
state. Our DDT framework makes it easier to detect this misalignment in learned reward function
prior to running RL, but with non-interpretable black box neural network’s learned reward function
we had to incur cost of running RL before we could uncover the bias in the learned reward.

4.2 MNIST Gridworlds

Figure 4: MNIST Grid-
world with a pair of tra-
jectories where the blue
trajectory is preferred.

Next we evaluated our reward DDT framework on two novel MNIST
gridworld environments of increasing difficulty. In each environment the
agent can move in the 4 cardinal directions and each state is associated
with a 28 × 28 grey-scale image of the MNIST digit and the value of
the digit determines the true unobserved reward at that state (for more
details, refer to Appendix C) .

The true reward is unobserved and must be inferred from preferences over
pairwise preferences over trajectories. To interpret the learned reward
DDT, we construct a pixel-level activation heatmap for each internal node by starting with a blank
image and iteratively toggling on and off each pixel and computing the resulting difference in routing
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(a)
(b)

Figure 5: Interpreting the MNIST (0-3) Interpolated Leaf Reward DDT. Leaf nodes are
depicted as circular nodes with their learned reward values. (a) Visualization of activation maps
give insight into the learned routing of the DDT. (b) Visualization of synthetic traces along with
their respective routing probabilities.

Reward DDT Baselines
CRL Soft CRL Argmax IL Soft IL Argmax NNet Random

MNIST 0-3 71.7% 71.7% 98.9% 97.8% 99.5% 7.6%
MNIST 0-9 79.6% 79.6% 97.3% 92.9% 97.7% 7.9%

Table 2: RL Performance as the percentage of expected return obtained relative to the performance of
an optimal policy on the ground-truth reward. Results are averaged across 100 different MDPs. We
find evidence that reward DDTs with Interpolated Leaf nodes (IL) perform similar to neural network
reward functions, while using Class Reward Leaf nodes (CRL) results in much lower performance,
but still outperforms a random policy (Random). These results provides evidence that DDTs can
learn both interpretable reward functions without causing a large degradation in RL performance.

probabilities for each internal node. We compare the performance of a policy optimized using the
learned DDT reward function against the optimal policy under the true reward, a random policy,
and a policy learned by optimizing a black-box neural network reward function trained on the same
preference dataset. We also report accuracy of the learned reward models on validation set of pairwise
preferences over trajectories in Appendix C.

4.2.1 MNIST (0-3) Gridworld

Setup We begin by examining our framework for image based inputs on a simple 5x5 gridworld
where each state in the MDP corresponds to a MNIST digit 0, 1, 2, or 3 (see Fig 4 for an example
pairwise trajectory comparison). We trained reward DDTs of depth 2 with 3 simple internal nodes
and 4 leaf nodes either all of type CRL with R = (0, 1, 2, 3) and or all of type IL with Rmin = 0 and
Rmax = 3 using a learning rate of 0.001 and weight decay 0.005 and the Adam optimizer.

Results We visualized and compared the reward DDTs with CRL and IL leaf nodes and found
that in CRL formulation the leaf nodes fail to specialize and the argmax output of the leaf nodes is
either 0 or 3, despite investigating several regularization techniques (see Appendix E for details and
visualizations). This provides evidence that using IL leaf nodes is better when learning complicated
reward functions where we wish to output more than two possible rewards. Table 2 also provides
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empirical evidence supporting the user of IL nodes. IL nodes are also simpler, as they only require
specifying a range of desired reward output values, [Rmin, Rmax]. Thus, we focus on our analysis on
the interpretability of the IL reward DDT.

Interestingly, we see in Fig 5a that the activation heatmaps isolate pixel features that are maximally
discriminative and aid in understanding of what the reward DDT has learned. These heatmaps
show that DDT learns to route based on visual representations of each digit: Node B has learned to
discriminate between 1’s and 2’s by assigning a high routing probability left for vertical pixels in the
center (corresponding to the vertical stroke of the digit 1), while using upper and lower curves of digit
2 to route 2’s right (note the black shadow that looks like a 2). Node C discriminates between digits
0 and 3 based on the middle cusp of 3 and left curve of the 0. Finally, node A learns to route 1’s and
2’s left and 0’s and 3’s right based on the presence of central lower pixels—the highest activation
for node A is intersection of the 1 and 2 which falls between middle and lower cusps of 3 and inside
digit 0. Despite the lack of fine-grained feedback and no explicit reward labels, when using min-max
reward interpolation between Rmin = 0 and Rmax = 3, the DDT learns a close approximation to the
actual state rewards and the learned rules in DDT are visually interpretable.

We also interpret the same reward DDT using synthetic traces as shown in Fig 5b. As described in
Section 3.5, these traces approximate global explanation by leveraging aggregations of input states
for each internal node. Each trace is a sequence of states sorted by the probability of being routed
left in decreasing order. We find visual evidence that the DDT has learned to route digits with a
vertical stroke to Node B which then discriminates between 1 and 2s, while digits with a circular
curve form often get routed to Node C which then discriminates between digits 0, 2 and 3s.

Row 1 of Table 2 shows that RL performance of using a reward DDT trained with IL leaf nodes
exceeds the performance when using the classification-based CRL leaf nodes, both when running RL
using soft reward outputs and when using the output of the maximum probability path in the tree
(argmax). We also found that the learned reward DDT with CRL leaf nodes learns very high/low
routing probabilities at each internal node and thus yields nearly identical reward values in both
soft and argmax reward setting. Moreover, RL performance of IL reward DDT using soft reward is
only slightly lower than the performance of a deep neural network reward function. In Appendix E,
we compare the reward DDT in Fig 5a, that is learned from pairwise preferences, with a DDT
trained with explicit reward labels and a classification loss and find no significant degradation in
interpretability from using pairwise preferences.

4.2.2 MNIST (0-9) Gridworld

Setup To assess the scalability of our framework, we next explored a 10x10 gridworld with state
space comprising of MNIST digits 0 to 9. To further study the effects of leaf node type, we used
reward DDTs of depth 4 with simple internal nodes and trained them with one of two types of leaf
nodes: either CRL nodes with R = (0, 1, .., 9) or IL nodes with Rmin = 0 and Rmax = 9.

Results Row 2 of Table 2 shows the IL soft reward performance is very similar to the performance
of a black-box ConvNet learned reward. However, we find that performance of CRL softmax and
argmax is significantly degraded, but much better than a random policy. This provides further
evidence simply framing DDT learning as a classification problem is in sufficient for learning good
reward function and that the flexibility of interpolation leaf nodes (IL) to learn real valued reward
outputs helps with both interpretability and downstream RL performance.

This provides evidence that our framework maintains high performance for much longer horizon
and more difficult tasks when using interpolated leaf nodes (IL). Even though tree structures can
help with interpretability, the deeper the tree, the harder it is to understand what is going on. In
Figure 13 in the Appendix, we visualize the learned IL Reward DDT. While there are some noticeable
trends, it is also hard to interpret exactly how the DDT has learned to route nodes. Thus, while our
results provide evidence that high-performing policies can be learned via RLHF using reward DDTs,
the more complex the DDT, the more difficult it is to interpret.
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(a) DDT without activation penalty regularization (b) DDT with activation penalty regularization

Figure 6: Visualization of Breakout Reward DDTs. We plot the DDTs trained without (a) vs
with (b) a regularization penalty on the internal node routing probabilities. Dashed lines denote leaf
nodes that are never reachable.

(a) DDT without activation penalty regularization (b) DDT with activation penalty regularization

Figure 7: Visualization of Beam Rider Reward DDTs. We plot the DDTs trained without (a)
vs with (b) a regularization penalty on the internal node routing probabilities.

4.3 Atari

As a final test of the efficacy and scalability of learning interpretable rewards via DDTs, we trained
reward DDTs on the Beam Rider and Breakout Atari games (Bellemare et al., 2013). Learning
rewards for these games is challenging as the states are high-dimensional pixel inputs consisting of
stacks of four 84 × 84 video frames and many prior works have used Atari games to study reward
function learning (Christiano et al., 2017; Tucker et al., 2018; Ibarz et al., 2018; Brown et al., 2019).

Setup To train our reward DDT, we used the open-source offline preference datasets collected
by Brown et al. (2019)1. We then examine whether a reward DDT can match the RL performance
of T-REX, a deep convolutional neural network offline RLHF approach proposed by Brown et al.
(2019), while also being interpretable. Because of the complexity of the task, we use sophisticated
internal nodes and IL leaf nodes with Rmin = 0 and Rmax = 1 (see Appendix G for full details).

Because generated heatmaps for Atari, have been shown to have mixed results (Brown et al., 2019),
we opt to use traces for interpreting the learned reward DDTs. As before, the trace for an internal
node begins with the state that has maximum probability of being routed left and ends with the
state that has minimum probability of being routed left. For ease of visualization, we show the first
and last state in the trace and find that they still provide useful information about the internals of
the learned reward function.

1https://github.com/hiwonjoon/ICML2019-TREX
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DDT Baseline
¬penalty ¬penalty penalty penalty T-REX

Game ¬argmax argmax ¬argmax argmax

Breakout: Mean(Std) 20.2 (34.4) 50.0 (105.3) 83.5 (130.9) 51.5 (100.6) 58.3 (42.4)
Breakout: IQM 12.8 16.6 29.3 15.0 48.9
Beam Rider: Mean (Std) 237.2 (322.2) 189.4 (284.6) 39.9 (40.7) 107.6 (288.2) 323.1 (335.9)
Beam Rider: IQM 94.9 64.1 30.2 7.6 254.9

Table 3: Reinforcement learning using reward DDTs. We report mean, standard deviation
(Std) and inter-quartile mean (IQM) across 10 different seeds of RL evaluated for 100 epsiodes each.

For each learned reward, we optimized a policy by training an A2C (Mnih et al., 2016) agent using
Stable Baselines 3 for 10 million timesteps. As done in our previous experiments, when training
the RL agent, we utilize each learned reward DDT in two ways: we either obtain a soft reward
over all leaves from tree or we choose the path with maximum routing probability and the reward
in this case is obtained by argmaxing over the maximum probability path. We report mean and
standard deviation across 10 seeds evaluated for 100 episodes each as well as the inter-quartile mean
(IQM), which has been proposed as a better alternative when evaluating smaller numbers of seeds as
recommended by prior works (Patterson et al., 2023; Agarwal et al., 2021).

Results

While trying to create synthetic traces, we discovered that some of the leaf nodes were never reachable
(e.g., the right child of Node B and C in case of Breakout Fig 6a and the right child of Node C in case
of BeamRider Fig 7a). We re-trained the sophisticated reward DDT with the same hyperparameters,
but with an added penalty regularization to ensure that, on average across many inputs, each internal
node routes left and right equally often across both environments (see Appendix A for details).

We create a synthetic trace for the unregularized reward DDT for Breakout Fig 6a by visualizing
states that are routed with maximum and minimum probability to left and found evidence that
states that have more bricks missing are routed left to Node B while the states in Node A that
have few bricks missing have a lower routing probability and thus are routed right to Node C. Both
child nodes of the root node only use their respective left leaves and do not route any state to their
respective right leaves, thus a synthetic trace could not be visualized for either Node B or Node C.
Fig. 6b shows a similar trend, where the DDT learns to reward missing bricks. Interestingly, we did
not find any evidence that the reward DDT learned to recognize the event of the ball hitting a brick.
Instead of learning the causal ground truth reward that provides a reward each time a brick is hit,
the reward DDT exhibits causal confusion (Tien et al., 2023) by learning to reward missing bricks.
Similar to CartPole, we describe this as a “silent misalignment problem". The reward function has
learned to reward the wrong thing but this actually leads to behavior that appears aligned based on
RL performance in distribution.

We similarly visualize traces for each internal node in the sophisticated reward DDT trained for the
Beam Rider game without penalty (Fig 7a) and compare it against that of reward DDT trained
using penalty (Fig 7b). In Fig 7a we see that Node A routes states where agent hits an enemy ship
to the left and states where it misses enemy ships to right. Then Node B routes states where it
looks like it will hit an enemy ship to a reward of 1.0 but interestingly routes states where it has hit
an enemy ship to a reward of 0 (yellow flash indicates an enemy being destroyed). This allows us
to see a misalignment in the learned reward function. We investigated this further and found that
when the agent loses a life, this also triggers a flashing yellow screen. Thus, the agent appears to be
misinterpreting the yellow flash and associating it with losing a life, when it should be associated
with a good reward for destroying an enemy ship. We also created traces for reward DDT trained
with regularization penalty on routing probabilities for Breakout and BeamRider. We observe similar
trends of misalignment (Node B) of the learned regularized reward DDT for BeamRider (Fig 7b).
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In Table 3 we summarize learned policy performance under 4 different scenarios (without penalty
and without argmax (returning soft reward averaged over all leaf nodes), without penalty and with
argmax, with penalty and without argmax, with penalty and with argmax) for both Beam Rider
and Breakout along with T-REX performance on each of these games. Our results in terms of
performance are mixed. We find evidence that using the soft reward output (¬argmax) of a DDT
leads to the best RL performance. Interestingly, we observe that penalty regularization helps RL
performance in case of Breakout but leads to degradation in RL performance in case of Beam Rider.
However, in terms of IQM, the RL performance when optimizing the DDT rewards is not able to
match the performance of the end-to-end neural network baseline.

For Beam Rider, we examined the learned RL policies for both reward DDTs and TREX and found
that the misaligned reward did lead to misaligned behavior: agents across various seeds for both
DDT and TREX move to one end of a screen, learn to stay alive, but never fire at the enemy ship,
thus avoiding getting hit but also avoiding scoring points. Notably, in case of reward DDTs, both
with and without penalty, we could detect this misalignment before running RL using our synthetic
traces, but for TREX which use a dense black box neural network for learning reward, we could not
diagnose this misalignment in reward function prior to running RL.

5 Discussion and Future Work

Our work provides mixed results regarding the utility of reward DDTs. On one hand, we provide
evidence that reward DDTs are a viable alternative to end-to-end deep network rewards and can
sometimes perform on-par with their deep neural network reward counterparts; however, for complex
domains like Atari, the best performance comes at the cost of using DDT in a way that is not
interpretable: using a soft reward output that is a weighted sum of outputs of all leaf nodes. Ideally,
we could use reward DDTs with hard (argmax) reward outputs—the reward output during policy
optimization would come from a single leaf node, allowing us to trace the reward output to a
small number of binary routing decisions at the internal nodes. While optimizing this kind of hard
output (argmax) process works well for the simpler domains we studied (e.g., CartPole and MNIST
Gridworlds); it seems to hurt performance on more complex domains. We hypothesize this might be
a result of the reward function being too sparse. Thus, our results reveal a tension between wanting
highly shaped rewards to ensure good RL performance, while also wanting simple, non-shaped
rewards to afford interpretability. Future work should investigate this trade-off in more depth.

In terms of interpretability, we find that for low dimensional tasks such as Cartpole and MNIST
GridWorld environments, our framework is capable of providing global explanations that reveal inter-
esting insights into the learned reward. For higher dimensional tasks such as Atari, we approximate
global explanations by leveraging aggregations of local explanations by finding the input states that
maximally and minimally activate the routing probability of each internal node. However, we also
find that the deeper the DDT, the harder it becomes to interpret the learned reward. We also present
evidence that demonstrates the practicality of using reward DDTs as a kind of alignment debugger
tool to inspect learned reward functions for alignment with human intent. In particular, we provide
evidence that reward DDTs can reveal cases of silent misalignment. By running policy optimization,
we also find that baseline black-box neural network rewards are also misaligned. Importantly, the
interpretability of a reward DDT reveals the silent misalignment without needing to run RL.

Future work should investigate using our framework to understand and interpret existing pre-trained
neural network reward models that are known to lead to unintended consequences (Christiano et al.,
2017; Ibarz et al., 2018; Javed et al., 2021; Tien et al., 2023) by distilling these networks into reward
DDTs. Future work also includes investigating how to fix a known misaligned reward DDT by
fine-tuning leaf and internal nodes based on human feedback, perhaps by using human-in-the-loop
representation and feature learning (Bobu et al., 2022; 2023) or using methods for identifying
causal features using small amounts of human annotations (Ghosal et al., 2023b). Future work
shouldalso explore how to extend the ideas in this paper to transformer-based reward functions used
in LLMs (Ouyang et al., 2022) and investigate the effects of increasing tree depth on interpretability.
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A DDT Routing Penalty Regularization

We take inspiration from [19] for adding penalty regularization and we first explain how penalty is
defined at each internal node and then elaborate on calculating penalty for a single state over the
whole DDT.

The cross-entropy between desired routing probability distribution of an internal node such that
it’s children nodes are equally used and the actual routing probability distribution is referred to as
Penalty and is given by

αi =
∑

x P i(x)pi(x)∑
x P i(x)

where the probability of a current internal node is pi(x) and path probability from root node to an
internal node is P i(x).

Penalty over the whole DDT for a single state is defined as sum over all internal nodes for the given
input x

C = −λ
∑

i∈ Inner Nodes
0.5 log (αi) + 0.5 log (1 − αi)

where hyper-parameter λ controls the strength of penalty λ in reward DDT so that the penalty
strength is proportional to 2−d and decays exponentially with depth of tree. Finally the penalty
term for learning reward tree from pairwise preferences is calculated by taking the mean over all
penalties for all states in the pairwise demonstrations.

B Cartpole

The baseline neural network is comprised of 2 fully connected layers, each of dimension 16 to learn
the reward function. For reward models, both DDT and neural network, we use 2000 training and
200 validation pairwise preference demonstrations, each of length 20, with Adam optimizer and
lr = 0.001 and weight decay= 0.

For running RL on ground truth reward as well as under learned reward models, we use Stable
Baselines3 PPO with batchsize = 1024, lr = 0.001, gaelambda = 0.8, gamma = 0.98, nepochs =
20, nsteps = 2048 for 500000 total timesteps across 5 environments for both In-Distribution and
Out-Of-Distribution starting cart positions.

In case of In-Distribution starting cart positions, we found that out of 10 seeds that we report results
on ,3 seeds of RL policy learned under the neural network reward function seem to suffer from
catastrophic forgetting leading a high standard deviation , with Mean and IQM, marginally lower
than RL performance under ground truth reward function as well as performance of policices learned
under soft reward and maximum probability path of DDT.

C MNIST Gridworld Additional Details

In this environment,the action space a contains 4 main actions: go left, go right, move up, move
down. The transition function is stochastic and moves the agent in the direction chosen with an 80%
probability as long as the action does not take it off of the grid. Actions that would result in leaving
the grid result in a self transition.

And the neural network used to learn reward from pairwise human preferences consisted 2 convolutional
layers with kernel size 7 and 5 respectively and stride 1 with LeakyRelu as the non-linearities followed
by 2 fully connected layers.
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(a) Pairwise trajectory preference (b) Visualization of Learned Reward DDT

Figure 8: MNIST (0/1) Gridworld. (a) A pair of trajectories with the same starting state, where
the blue trajectory (which visits more 1’s) is preferred over the red trajectory. (b) Heatmap of
Learned Reward DDT : The dark pixels at center of heatmap form an approximate shape of digit 1
and are routed to right as the dark colors in heatmap mean that those pixels are turned off, while
lighter pixels represent shape of digit 0 and routed to left as those pixels are turned on. Leaf nodes
are depicted as circular nodes with their soft reward values.

In Table 4, we report the accuracy of learned reward DDTs with CRL and IL leaf nodes over pairwise
preferences generated using the held-out validation dataset, both when using soft reward outputs
and when using the output of the maximum probability path in the tree (argmax) for both type of
our DDT and compare it against that of a convolutional neural network. Our results show that our
IL DDTs can often achieve high accuracy despite not using any convolutional filters even on held out
data. Using soft reward with IL leaf nodes offers comparable accuracy to that of CNN while using
the reward from maximum probability path leads to a small decrease in accuracy, but still performs
better than a DDT with CRL leaf nodes in both soft and argmax settings.

Reward DDT Baselines
CRL Soft CRL Argmax IL Soft IL Argmax NNet

MNIST 0-3 77.57% 77.10% 97.75% 94.88% 99.21%
MNIST 0-9 72.71% 68.46% 90.83% 81.78% 92.40%

Table 4: Accuracy of the learned reward models on the 25000 pairwise preferences generated using
the held-out validation dataset. Since MNIST 0-3 Gridworld is of size 5x5, we use trajectory length
of 5 in the pairwise preferences while MNIST 0-9 Gridworld has size 10x10 , thus we use trajectory
length 10.

D Additional domain: MNIST (0/1) Gridworld

We also show here an even simpler version of MNIST gridworld where there are only two possible
digits. For training the reward DDT with simple internal nodes and CRL leaf nodes, we use a
learning rate of 0.001, weight decay of 0.05, and the Adam optimizer (Kingma and Ba, 2014).

Reward DDT Baselines
CRL Soft CRL Argmax IL Soft IL Argmax NNet Random

MNIST 0-1 92.37% 82.27% 99.98 100% 98.2% 7.38%

Table 5: RL Performance as the percentage of expected return obtained relative to the performance
of an optimal policy on the ground-truth reward.

Setup We begin by examining our framework for image based inputs on the simplest gridworld
environment. In this 5x5 gridworld each state in the MDP corresponds to a MNIST digit 0 or 1. To
test whether we can learn an interpretable reward function from pairs of preference demonstrations
over trajectories (see Fig 8a for an example), we modeled the reward as a DDT of depth 1 with one
simple internal node as the root node and 2 CRL leaf nodes with reward vector R = (0.0, 1.0). We
also compare the RL performance of the same reward DDT but with IL leaf nodes.
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Results The resulting heatmap in Fig 8b provides evidence that the reward DDT learns to branch
based on visually interpretable features that correspond to a hand-written 0 (routes to left leaf node)
and a hand-written 1 (routes to right leaf node). The RL performance using the Soft Reward from
CRL Leaf DDT on MNIST 0-1 environment is shown in Table 5 is comparable to a deep neural
network reward function trained on pairwise preferences. We observe that taking the maximum
probability path across the learned reward tree results in a small decrease in performance relative to
when we take soft reward from the learned DDT. The RL performance of IL Leaf DDT outperforms
that of both CRL DDT and a deep neural network, hence it provides evidence that our DDT
framework is capable of learning an interpretable and useful reward function.

E MNIST (0-3) Gridworld Additional Results and Analysis

In this section we provide detailed analysis about interpretability of different DDTs, beginning from
comparison between Reward DDT and Classification DDT, then comparing Reward DDTs constructed
using two different leaf node formulations, followed by comparison of different regularization on a
reward DDT.

Note that for both reward DDTs with different leaf nodes CRL and IL, we trained using a learning
rate of 0.001 and weight decay 0.005 and the Adam optimizer. And the neural network details are
same as defined above in Appendix D.

E.1 Min-Max Reward Interpolation Tree vs Classification tree

We train a DDT with explicit reward labels and a classification loss, as in, we re-produce the
classification DDT from [19] and compare it to reward tree learned using preferences(refer to Sec
4.2.2 of main paper).

For comparison of reward tree against the classification tree trained using ground truth labels, we plot
the heatmaps of internal nodes in both the trees and our results in Figure 9 give evidence that reward
tree can capture visual features without any loss in interpretability when compared to the one learnt
from simple ground truth labels, even though preferences used here are weaker supervision than
ground truth label since preferences used in our experiments are binary as compared to ground truth
labels which are 0,1,2,3 corresponding to each actual digit image. This is particularly important in
cases where explicit labels are either missing or are hard to be specified or require intensive user-input
efforts.

In Figure 9b Node A activates strongly for pixels in the middle of 1s and 2s, routing them left, while
and 0s and 3s are routed right. Node B routes left for vertical pixels in the center and sends 2’s
left and 1’s right (note the light shadow looks like a 2 while the darker shadow in the middle that
looks like a 1). Node C learns to distinguish between 0s and 3s, routing 3s left and 0s right. This is
comparable to the activation heatmaps of the node probability distribution at each of the internal
node described for reward tree(in Sec 4.2.2 of main paper).

E.2 Min-Max Reward Interpolation Leaf DDT vs Multi-Class Reward Leaf DDT

We train and compare two reward DDTs with simple internal node architecture but with different
leaf formulations using the same Bradley-Terry loss over preference demonstration in Figure 10 by
visualizing the activation heatmaps of routing probability distributions for the internal nodes and
the leaf distribution for each leaf node.

In Figure 10b, each internal node learns to capture almost the same visual feature while the leaf
nodes fail to specialize as the argmax output from first two leaf nodes is always a 0 and last two leaf
nodes always return a 3. Multi-class Leaf DDT fails to pick up on individual digit in the trajectory,
despite requiring the user to input discrete reward vector whereas in the Min-Max Interpolation
Leaf DDT each internal node captures different visual attributes and each of the leaf nodes in the
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(a) Reward Tree trained using preferences

(b) Classification Tree trained on ground truth label

Figure 9: Visualization of MNSIT (0-3) Reward vs Classification Tree

interpolated reward DDT is specialized, even though no discrete reward values were given as an
input.

This shows that Min-Max Reward Interpolation Leaf DDT is beneficial over Multi-Class Reward
Leaf DDT with respect to interpretability and also in terms of human-input efforts. for all states in
the pairwise demonstrations.

E.3 Min-Max Reward Interpolation DDTs with Simple Internal Nodes vs
Sophisticated Internal Node

We compare our 2 methods of constructing internal nodes for a reward DDTs.

Since Min-Max Reward Interpolation Leaf DDT outperforms Multi-Class Reward Leaf DDT, hence
we train two different Min-Max Reward Interpolation Leaf DDTs, first one with simple internal nodes

1907



RLJ | RLC 2024

(a) Min-Max Reward Interpolation Leaf
DDT (b) Multi-Class Leaf Reward DDT

Figure 10: Visualization of MNSIT (0-3) Reward Trees: Min-Max Reward Interpolation
Leaf vs Multi-Class Leaf

(a) Min-Max Reward Interpolation Leaf DDT
with Simple Internal Nodes

(b) Min-Max Reward Interpolation Leaf DDT with So-
phisticated Internal Nodes

Figure 11: Visualization of MNSIT (0-3) Reward Trees :Simple Internal Node vs Sophis-
ticated Internal Node

and second one with sophisticated internal nodes where a sophisticated internal node contains a
single convolutional layer with filter of size 3x3 and stride 1 with Leaky ReLU as the non-linearity
followed by the fully connected layer.

In Figure 11b Node A activates strongly for pixels in the middle of 1s and 3s, routing them left, while
and 0s and 3s are routed right. Node B routes left for vertical pixels in the center and sends 1’s left
and 3’s right (note the darker shadow in the middle that looks like a 3). Node C learns to distinguish
between 0s and 2s, routing 0s left and 2s right. This is comparable to the activation heatmaps of the
node probability distribution at each of the internal node described for reward tree(in Sec 4.2.2 of
main paper).

Our results depict that in a medium-complexity environment with visual inputs, both DDTs yield
relatively equal interpretability but with a higher-complexity environment with larger visual input
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size such as Atari, the reward DDT with sophisticated node should be used as convolution layer with
non-linearity are more powerful in terms of processing an input than a simple fully connected layer.

E.4 Multi-Class Reward Leaf DDT Regularization

Since the DDT with Multi-Class Reward Leaves failed to specialize, this lead us to add the penalty
term to the Bradley-Terry preference loss for training the Multi-Class Reward Leaf DDT.

(a) Multi-Class Leaf Reward DDT with penalty calculated over a batch of 50 pairwise preference
demonstrations where each demonstration has a single state

(b) Multi-Class Leaf Reward DDT with penalty calculated over a batch of 50 pairwise preference
demonstrations where each demonstration has a single state

Figure 12: Multi-Class Leaf Reward DDT with penalty calculated over different temporal window
lengths

For training the Reward DDT,we calculate penalty over batch of 50 pairwise demonstrations where
each demonstration contains a single 28x28 greyscale image.To check interpretability, we plot
the activation heatmaps of routing probability distributions for the internal nodes and the leaf
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Figure 13: Synthetic traces of MNIST 0-9 IL Reward DDT of depth 4.

distribution for each leaf node in Figure 12a and the resulting plots are hugely pixelated, causing a
loss in interpretability.

Following this, we increase the temporal window size for calculating penalty, as suggested in [19],
and thus we calculate penalty over a pair of 50 preference demonstration where each demonstration
is now 50 states long, as opposed to previous case where each demonstration contained a single state.
And we again visualize the heatmaps at internal nodes and leaf distributions for each leaf node in
Figure 12b. The heatmaps here are little better in contrast to Figure 12a but still have a huge loss
of interpretability as compared to Figure 10b.

F Synthetic trace for MNIST 0-9 Reward DDT

We create synthetic traces Fig 13 of learned DDT with IL leaf nodes across all digits in MNIST. From
the traces, we can observe that root node splits the digits based on whether they have more of vertical
formulation or circular formulation. The digits with more vertical edges (such as 1,2,3,4,5,8,7,9) are
routed to Node B while those with more curved edges (such as 0,2,3,5,6,8) are routed to Node C.
Note some digits such as 2,3,4,8 in the actual MNIST dataset can either be more lean with straight
form or can possess more rounded-curve form. The children node of Node B and C then differentiate
further between each of the digits routed, as in, children of Node B learn to pick on spread of vertical
edges while children of Node C distinguish between forms of curvature. These children’s children
then learns to pick and specialize in certain specific digits.

G Atari

The input to DDT here is a 5-dimensional tensor of size B × 2 × S × 84 × 84 × 4 where B represents
batch size of pairwise preference demonstrations while 2 is represents of number of demonstrations in
a pairwise preference and S represents number of states in a single trajectory. We used batch size
B = 25 and S = 25.The sophisticated internal node architecture here consists of a single convolution
layer with kernel of size 7 × 7 with a stride of 2 and LeakyRelu as the non-linearity followed by
the fully connected linear layer for producing the routing probability inside a tree.We used IL leaf
nodes with Rmin = 0 and Rmax = 1. Note that we choose these min and max values for simplicity;
though the actual numerical value of Rmin and Rmax can be chosen at the discretion of the user since
policies are invariant to positive scaling and affine. The baseline T-REX, that we compare to has an
architecture similar to Christiano et al. (2017) and consists of 4 convolutional layers of sizes 7x7,
5x5, 3x3 and 3x3 with strides 3,2,1 and 1 respectively, where each convolutional layer has 16 filters
and LeakyReLU as non-linearity, followed by a fully connected layer with 64 hidden units and a
single scalar output.
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Abstract

Imitation Learning from Observation (ILfO) is a setting in which a learner tries
to imitate the behavior of an expert, using only observational data and without
the direct guidance of demonstrated actions. In this paper, we re-examine optimal
transport for IL, in which a reward is generated based on the Wasserstein distance
between the state trajectories of the learner and expert. We show that existing
methods can be simplified to generate a reward function without requiring learned
models or adversarial learning. Unlike many other state-of-the-art methods, our
approach can be integrated with any RL algorithm and is amenable to ILfO. We
demonstrate the effectiveness of this simple approach on a variety of continuous
control tasks and find that it surpasses the state of the art in the IlfO setting,
achieving expert-level performance across a range of evaluation domains even when
observing only a single expert trajectory without actions.

1 Introduction

Imitation Learning (IL) is a widely used and effective tool for teaching robots complex behaviors. Al-
though Reinforcement Learning (RL) has demonstrated success in learning motor skills from scratch
in real-world systems (Haarnoja et al., 2018b; Kalashnikov et al., 2018), Imitation Learning (IL) re-
mains a proven and practical way to learn behaviors from demonstrations, without the need for a
hand-tuned and engineered reward signal required for RL. However, acquiring access to expert ac-
tions can be highly impractical. For example, robotic systems that are too challenging to teleoperate
smoothly or in applications where the action spaces of the demonstrator and the imitator do not
match, such as in Sim-to-Real problems (Desai et al., 2020).

Imitation Learning from Observation (ILfO) eliminates the need for demonstrated actions by learning
behaviors from sequences of expert states instead of requiring both expert states and actions. Similar
to how humans learn new skills from watching others, ILfO algorithms learn from observational data
alone. Consequently, this reduces the cost of data collection, making ILfO algorithms instrumental
for deploying IL in complex real-world systems.

Moving to the observation-only space, however, introduces new challenges. While IL algorithms
can learn by copying actions, ILfO algorithms require more exploration to succeed (Kidambi et al.,
2021), as they can only indirectly imitate the expert through observed outcomes. This emphasis on
exploration creates a further challenge in that the states visited by the learner are more likely to be
distant or non-overlapping with those of the expert. Distant states are problematic for imitation via
distribution matching (Ho & Ermon, 2016; Ghasemipour et al., 2020; Ni et al., 2020), as the widely
used KL divergence is ill-defined for non-overlapping distributions. While IL methods can circumvent
this problem by accelerating early learning with behavior cloning, ILfO methods must deal with
randomly initialized policies, which are unlikely to behave similarly to an expert demonstrator.

The field of optimal transport has garnered much attention in recent years, with theoretical and
computational developments allowing it to evaluate distances between distributions defined on high-
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dimensional metric spaces (Cuturi, 2013; Bonneel et al., 2015). The Wasserstein distance, in particu-
lar, can compare non-overlapping distributions and quantify the spatial shift between the supports of
the distributions. These properties make it a natural alternative to KL divergence-based objectives
used by existing methods. Moreover, the Wasserstein distance can be computed without requiring
separate models or learned components. This makes the Wasserstein distance more computationally
efficient and conceptually simpler than other methods that rely on incremental adversarial signals
learned via online interaction (Ho & Ermon, 2016; Kostrikov et al., 2019; Papagiannis & Li, 2020).

Prior work (Papagiannis & Li, 2020; Dadashi et al., 2020; Durugkar et al., 2021) based on the
Wasserstein distance for IL or ILfO relies on numerous techniques, such as adversarial or learned
components, or designed for sample-inefficient on-policy RL algorithms. Building on prior work (Pa-
pagiannis & Li, 2020), we introduce a simpler approach that does not require adversarial components
or on-policy learning. Our resulting approach, Observational Off-Policy Sinkhorn (OOPS), gener-
ates a reward function for any RL algorithm, which minimizes the Wasserstein distance between
expert and learner state trajectories. We benchmark OOPS against existing methods proposed to
optimize the Wasserstein distance (Papagiannis & Li, 2020; Dadashi et al., 2020), as well as current
state-of-the-art ILfO algorithms (Ghasemipour et al., 2020; Zhu et al., 2020) on a variety of con-
tinuous control tasks. OOPS outperforms state-of-the-art methods for ILfO, achieving near-expert
performance in every evaluated task with only a single trajectory without observing any actions. To
facilitate reproducibility, all of our code is open-sourced1.

2 Background

Setting. Our task is formulated by an episodic finite-horizon MDP (S, A, P, r, p0, T ), with state
space S, action space A, transition dynamics P : S × A × S → [0, 1], reward function r : S × A → R,
initial state distribution p0 : S → [0, 1], and T the horizon. While the overarching objective is
to maximize reward, in the Imitation Learning from Observation (ILfO) setting, the agent never
observes the true reward. Instead, ILfO algorithms must use sequences of states (trajectories τ),
generated by an unknown expert, to infer a reward signal or objective. We therefore only assume
access to a dataset DE of N state-only trajectories, DE = {τ0, τ1, ..., τN−1}.

Optimal Transport. Optimal Transport (OT) seeks to compute a matching between the source
and target measures while minimizing the transport cost (Villani, 2009). In our work, we aim to
minimize the distance between the distribution of trajectories defined by the learner and the expert.

Writing out trajectories in terms of their transitions τ = {(s0, s1), (s1, s2), ..., (sT −1, sT )}, and view-
ing each transition as a datapoint, forms a discrete measure α over the state transition space
S × S, with weights a and locations (si, si+1)E ∈ S × S for the expert: α =

∑T
i=0 aiσ(si,si+1)E

where σ(si,si+1) is the Dirac delta function at position (si, si+1). Similarly for the learner, with
weights b and locations (si, si+1)π for the learner, the trajectory rollout forms the measure
β =

∑T
i=0 biσ(si,si+1)π

(Peyré et al., 2019). In each trajectory, we consider each timestep as being
equally important, and as such restrict the weight vectors a and b to the uniform weight vectors:∑T

i=0 ai = 1, ai = 1
T ∀ 0 < i < T , and

∑T
i=0 bi = 1, bi = 1

T ∀ 0 < i < T .

While the Monge formulation of OT enforces a one-to-one matching between measures, the Kan-
torovich formulation relaxes the OT problem by allowing each source point to split mass: the mass
at any source point may be distributed across several locations (Villani, 2009; Peyré et al., 2019).
This provides the Wasserstein distance (or Kantorovich metric) over a distance metric d:

Wp(α, β) :=


min

P




T∑

i

T∑

j

d(αi, βj)pPi,j






1
p

, (1)

1Link removed for anonymization. Code in supplementary material.
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which uses a coupling matrix P ∈ Rn×m
+ , where Pi,j is the mass flowing from bin i to bin j:

P ∈ Rn×m such that
∑

j

Pi,j = a and
∑

i

Pi,j = b. (2)

The optimal coupling P between α and β gives us the minimal cost transport plan between the
measures defined by the trajectories τπ and τE .

Sinkhorn distance. The Sinkhorn distance WSk is an entropy regularized version of the Wasserstein
distance (Cuturi, 2013), for W1, with p = 1 this equals:

WSk(τπ, τE) := min
P̃

T∑

i=0

T∑

j=0
d(αi, βj)P̃i,j − λH(P̃ ), (3)

where the entropy term H(P̃ ) :=
∑T

i=0
∑T

j=0 P̃ij log P̃ij . For any given value of λ > 0, the op-
timal coupling matrix P̃ for WSk can be computed efficiently using the iterative Sinkhorn algo-
rithm (Sinkhorn, 1967). At the cost of convergence speed, as λ approaches 0, the Wasserstein
distance is recovered, while increasing its value blurs out the transport matrix and spreads the mass
between the two measures. This approximation is useful as it provides a computationally efficient
method for estimating the optimal coupling matrix for the Wasserstein distance P̃ ≈ P for small λ,
where WSk upper bounds W1.

3 Related Work

Imitation Learning. Learning from Demonstrations (LfD) approaches can be generally classified
into two types of approaches: IL methods, which learn directly from expert data, and Inverse
Reinforcement Learning (IRL) methods (Ziebart et al., 2008) which infer a reward function that
is optimized by RL. GAIL (Ho & Ermon, 2016) and related methods (Kostrikov et al., 2019; Fu
et al., 2017) leverage adversarial training. These methods optimize a distribution matching objective
between the state-action distribution of the learner and the expert, in terms of various probability
divergence metrics (Ho & Ermon, 2016; Ghasemipour et al., 2020; Kostrikov et al., 2018; Ni et al.,
2020). Each divergence objective leads to distinct imitative behavior (zero-forcing or mean-seeking
or both), which can be exploited in different scenarios (Ke et al., 2019). In contrast, our approach
minimizes a Wasserstein distance-based objective, better suited for our ILfO context.

Imitation Learning from Observations. Due to the challenging nature of ILfO, many methods
rely on learning a model, via an inverse dynamics model used to infer the missing actions of the
expert (Torabi et al., 2018a), use objectives based on the transition dynamics of the expert (Jaegle
et al., 2021; Chang et al., 2022), or simply model the entire MDP (Kidambi et al., 2021). Adver-
sarial methods have also been adapted from the IL context (Sun et al., 2019; Torabi et al., 2018b).
Another common theme is f -divergence minimization, (Ni et al., 2020) derive an approach based on
the analytical gradients of f -divergences and show that different variants (FKL, RKL, JS) can be
achieved through their framework. OPOLO (Zhu et al., 2020), leverages off-policy learning on top of
an inverse dynamics model and adversarial training. As opposed to existing methods, our approach
leverages the Wasserstein distance to compute a non-adversarial and model-free reward for ILfO.

Optimal Transport for Imitation Learning. Minimization of the Wasserstein distance for IL has
been previously considered in (Xiao et al., 2019; Zhang et al., 2020) through Wasserstein Generative
Adversarial Network (WGAN)-inspired approaches (Arjovsky et al., 2017). In an adversarial policy
learning set up similarly to GAIL (Ho & Ermon, 2016) and by restricting the discriminator to
be a 1-Lipschitz function, these approaches can minimize the W1 distance between the policy and
the reference trajectory data distribution. However these methods suffer from the drawbacks of
adversarial frameworks, which are hard to optimize and tune (Arjovsky & Bottou, 2017), and have
been shown to be poor estimators of W1 (Stanczuk et al., 2021).

More recent works (Papagiannis & Li, 2020; Dadashi et al., 2020; Haldar et al., 2023) use Wasser-
stein distance solvers, or related approximations, for IL. Our approach is closely based on Sinkhorn
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Imitation Learning (SIL) (Papagiannis & Li, 2020), which uses the Sinkhorn distance (Cuturi, 2013)
to compute an entropy regularized Wasserstein distance between the state-action occupancy of the
learner and expert. However, rather than use an upper bound defined by off-policy samples, they
use on-policy RL (Schulman et al., 2015) to optimize the cosine distance over the representation
space of an adversarial discriminator trained alongside the imitation agent. In our work, we found
that we can vastly improve sample efficiency by using an off-policy agent instead and can consider a
more straightforward objective without adversarial or learned representations, an aspect previously
thought required for good performance. Another related approach, PWIL (Dadashi et al., 2020),
uses a greedy formulation of the Wasserstein distance and matches the current state-action pair
(s, a) to its closest counterpart in the expert demonstration dataset at every rollout step. In our
experimental analysis (Figure 3), we show that our approximation via the Sinkhorn distance creates
a tighter upper bound of the true Wasserstein distance and is crucial for consistent performance.
Contrary to SIL and PWIL, we focus on ILfO, giving new results and insights into the capabilities
of OT in this context, and show that our approach matches or outperforms existing state-of-the-art
methods.

4 Wasserstein Imitation Learning from Observational Demonstrations

In this section, we introduce our approach for minimizing the Wasserstein distance between expert
trajectories and learner rollouts. To do so, we derive a reward function based on the distance between
state transitions in pairs of trajectories.

Deriving a reward from the Wasserstein distance. With the absence of a true reward signal,
the ILfO setting can be framed as a divergence-minimization problem, where the objective is to match
the trajectory distributions of the learner and the expert. In our case, we choose the Wasserstein
distance as a metric for this task. Unlike the widely used KL divergence, the Wasserstein distance is
defined for distributions with non-overlapping support, making it amenable to scenarios where the
behavior of the learner and the expert may be particularly distinct. We can define our ILfO task as
minimizing the Wasserstein distance W1 between trajectories τπ sampled from the learner policy π
and example trajectories τE provided by an expert E:

min
π

Eτπ,τE
[W1(τπ, τE)] = min

π
Eτπ,τE


min

P




T∑

i=0

T∑

j=0
d((si, si+1)π, (sj , sj+1)E)Pi,j




 . (4)

As the Wasserstein distance between a pair of trajectories can be defined as a sum over each of the
transitions in each trajectory, for a given coupling matrix P , we can define a reward function

r̃t(st, st+1|τπ, τE , P ) := −
T∑

j=0
d((st, st+1)π, (sj , sj+1)E)Pt,j , (5)

such that summing the reward r̃t over a learner trajectory τπ is equal to the Wasserstein distance

W1(τπ, τE) = min
P

(
−

T∑

i=0
r̃t(st, st+1|τπ, τE , P )

)
. (6)

This naturally suggests an objective that involves the sum of rewards r̃t over learner trajectories

J(π|E, P ) := Eπ,E

[
T∑

t=0
r̃t(st, st+1|τπ, τE , P )

]
, (7)

where our original objective (Equation (4)) can be recovered:

max
π

min
P

J(π|E, P ) = min
π

Eτπ,τE
[W1(τπ, τE)] . (8)
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As the optimal coupling matrix P can be approximated by the iterative Sinkhorn algo-
rithm (Sinkhorn, 1967), the maximization of the objective J with any RL algorithm, can be used as
a replacement to minimizing the Wasserstein distance.

Off-policy minimization of the Wasserstein distance. As the reward r̃t(st, st+1|τπn , τE , P ) is
defined as a function of a trajectory τπn gathered by the learner πn, any stale reward determined by
trajectories from a previous policy πn−m, m ≥ 1, will not correspond with the Wasserstein distance
of the current learner (as noted in Equation (6)). However, working with the assumption that a
policy πn is better than any previous policy with respect to J , (i.e. J(πn) ≥ J(πn−m) where m ≥ 1),
we remark that stale rewards provide an upper bound on the Wasserstein distance:

W1(τπn
, τE) = min

P

(
−

T∑

i=0
r̃t(st, st+1|τπn

, τE , P )
)

≤ min
P

(
−

T∑

i=0
r̃t(st, st+1|τπn−m

, τE , P )
)

. (9)

This means that previously collected off-policy trajectories can be used for learning in a principled
manner, at the cost of the tightness of the upper bound of the Wasserstein distance. In our experi-
mental results, we show that reusing prior data dramatically improves the sample efficiency of our
algorithm over approaches which rely exclusively on online data (Papagiannis & Li, 2020).

Our final approach, Observational Off-Policy Sinkhorn (OOPS) discovers a reward function in a
similar manner to existing approaches (Papagiannis & Li, 2020; Dadashi et al., 2020), but in state
transition space rather than state-action space. Unlike these prior approaches, OOPS avoids com-
plexities such as adversarial learning or heuristic-based design of the reward function with multiple
hyperparameters. OOPS is summarized in Algorithm 1.

Algorithm 1 OOPS
1: Input: Dataset of expert demonstrations DE .
2: for episodes n = 1, ..., N do
3: Collect a trajectory from the environment.
4: Compute the coupling matrix P using the Sinkhorn algorithm (Sinkhorn, 1967).
5: Compute the reward r̃ with DE and P (Equation (5)).
6: Train learner with a RL algorithm, and the collected trajectories and reward r̃.

5 Experiments

5.1 Results

We evaluate our algorithm on five MuJoCo locomotion benchmark environments from the OpenAI
Gym suite (Todorov et al., 2012; Brockman et al., 2016), and three robotics tasks (Coumans &
Bai, 2016; Tan et al., 2018) in the ILfO setting. For each environment, the dataset of expert
trajectories DE is generated via a pre-trained Soft Actor-Critic agent (Haarnoja et al., 2018a).
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Figure 1: Learning curves for 1 expert demonstrations across 5 random seeds. The shaded area represents
a standard deviation. OOPS+TD3 consistently matches or outperforms the baseline approaches.
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# Expert Algorithm Hopper Walker2d HalfCheetah Ant Humanoid
Traj. 3420 ± 36 4370 ± 124 11340 ± 95 5018 ± 140 5973 ± 17

1

f -IRL (FKL) 0.91 ± 0.03 0.42 ± 0.10 0.63 ± 0.13 0.47 ± 0.10 0.47 ± 0.32
OPOLO 0.73 ± 0.09 0.80 ± 0.14 0.88 ± 0.02 0.89 ± 0.04 0.04 ± 0.01
SIL – (s, s′) 0.17 ± 0.06 0.07 ± 0.02 -0.17 ± 0.09 -0.41 ± 0.07 0.07 ± 0.00
PWIL – (s) 0.91 ± 0.14 0.71 ± 0.30 0.01 ± 0.01 0.76 ± 0.05 0.14 ± 0.14
OOPS+DDPG (Ours) 0.90 ± 0.10 0.99 ± 0.03 1.05 ± 0.01 1.00 ± 0.02 0.16 ± 0.20
OOPS+TD3 (Ours) 0.98 ± 0.02 0.95 ± 0.09 1.05 ± 0.01 1.00 ± 0.03 0.74 ± 0.04

4

f -IRL (FKL) 0.92 ± 0.04 0.38 ± 0.12 0.69 ± 0.12 0.38 ± 0.07 0.51 ± 0.28
OPOLO 0.72 ± 0.15 0.91 ± 0.03 0.90 ± 0.02 1.02 ± 0.04 0.20 ± 0.12
SIL – (s, s′) 0.25 ± 0.07 0.09 ± 0.03 -0.22 ± 0.14 -0.61 ± 0.22 0.07 ± 0.01
PWIL – (s) 0.98 ± 0.02 0.88 ± 0.03 0.00 ± 0.02 0.78 ± 0.03 0.23 ± 0.28
OOPS+DDPG (Ours) 0.75 ± 0.34 0.96 ± 0.03 1.05 ± 0.01 0.99 ± 0.01 0.07 ± 0.01
OOPS+TD3 (Ours) 0.94 ± 0.07 0.97 ± 0.01 1.05 ± 0.01 0.99 ± 0.03 0.65 ± 0.15

10

f -IRL (FKL) 0.91 ± 0.05 0.39 ± 0.09 0.65 ± 0.10 0.39 ± 0.17 0.40 ± 0.22
OPOLO 0.66 ± 0.08 0.96 ± 0.04 0.95 ± 0.01 1.00 ± 0.03 0.16 ± 0.06
SIL – (s, s′) 0.17 ± 0.09 0.08 ± 0.03 -0.20 ± 0.09 -0.24 ± 0.11 0.07 ± 0.00
PWIL – (s) 0.98 ± 0.01 0.87 ± 0.08 0.01 ± 0.02 0.78 ± 0.04 0.23 ± 0.28
OOPS+DDPG (Ours) 0.93 ± 0.03 0.78 ± 0.39 1.03 ± 0.04 0.79 ± 0.38 0.21 ± 0.25
OOPS+TD3 (Ours) 0.97 ± 0.01 0.95 ± 0.03 1.05 ± 0.01 1.00 ± 0.02 0.64 ± 0.22

Table 1: Final performance of different ILfO algorithms at 1M timesteps, using 1, 4, 10 expert demonstra-
tions. Values for each task are normalized by the average return of the expert. ± captures the standard
deviation. The highest value and any within 0.05 are bolded. The average un-normalized return of the
expert is listed below each task. All results are averaged across 5 seeds and 10 evaluations.

We use OOPS to generate a reward function for two RL algorithms, TD3 (Fujimoto et al., 2018)
and DDPG (Lillicrap et al., 2015). Our baselines include state-of-the-art ILfO methods: f-IRL (Ni
et al., 2020) (its best-performing FKL variant in particular) and OPOLO (Zhu et al., 2020), as well
as IL methods which also consider the Wasserstein distance: Primal Wasserstein Imitation Learning
(PWIL) (Dadashi et al., 2020) and Sinkhorn Imitation Learning (SIL) (Papagiannis & Li, 2020). In
order to compare algorithms in the ILfO setting, we use the state-only version of PWIL, PWIL–
(s) (Dadashi et al., 2020), and modify SIL (Papagiannis & Li, 2020) by replacing the action a in all
pairs (s, a) with the corresponding next state s′ in the transition. All algorithms are given a budget
of 1M environment interactions (and 1M updates), are evaluated on 5 random seeds, and use the
original implementations provided by the authors.

Locomotion. We report the evaluation results of our approach compared against the four baseline
algorithms in Table 1, varying the number of expert demonstrations used for imitation. The learning
curves for the single demonstration setting are shown in Figure 1.

# Expert Traj. BipedalWalker Minitaur MinitaurDuck
318.90 ± 9.20 12.36 ± 0.75 10.68 ± 1.20

1
OPOLO 0.96 ± 0.01 0.76 ± 0.08 1.00 ± 0.04
PWIL – (s) 0.89 ± 0.01 0.53 ± 0.19 0.30 ± 0.14
OOPS+TD3 0.93 ± 0.01 1.01 ± 0.04 0.94 ± 0.18

4
OPOLO 0.96 ± 0.01 0.84 ± 0.09 1.01 ± 0.03
PWIL – (s) 0.90 ± 0.01 0.52 ± 0.15 0.21 ± 0.09
OOPS+TD3 0.92 ± 0.01 0.91 ± 0.09 1.02 ± 0.05

10
OPOLO 0.98 ± 0.00 0.98 ± 0.04 1.00 ± 0.02
PWIL – (s) 0.88 ± 0.01 0.58 ± 0.09 0.15 ± 0.16
OOPS+TD3 0.93 ± 0.01 1.03 ± 0.03 0.99 ± 0.09

Table 2: Final performance of ILfO algorithms when using 1, 4,
and 10 expert demonstrations. Values for each task are normal-
ized by the average return of the expert. ± captures the standard
deviation. The highest value and any within 0.05 are bolded.
The average un-normalized return of the expert is listed below
each task. Results are averaged across 5 seeds and 10 evaluations.

OOPS+TD3 consistently matches or
outperforms all baseline methods re-
gardless of task and number of ex-
pert demonstrations. OOPS+DDPG
roughly matches the performance of
the expert in every environment other
than Humanoid. The poor results
on Humanoid are unsurprising, as
previous results have demonstrated
that DDPG tends to fail at the Hu-
manoid task in the standard RL set-
ting (Haarnoja et al., 2018a). Regard-
less, since DDPG is known to under-
perform TD3 and SAC, matching the
performance of the SAC expert sug-
gests that the OOPS reward function
can produce a stronger learning signal
than the original task reward. This
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Figure 2: Calibration plot comparing the proxy reward with the original reward function of the benchmark
domains. Each point represents the average of the sum of each reward function, over 5 trajectories. Tra-
jectories are generated by adding noise N (0, ℓ2) to the expert policy. The calibration plots show a strong
correlation between the proxy reward and the true task reward.

result indicates that OOPS might not be dependent on the choice of the RL algorithm, assuming
the RL algorithm is capable of solving the desired task.

Additional environments. For the top three performing algorithms (OPOLO, PWIL–(s),
and OOPS+TD3), we benchmark on three additional robotic-centric tasks in Table 2. While
OOPS+TD3 and OPOLO achieve a similar high performance when using all 10 expert demon-
strations, OOPS+TD3 surpasses OPOLO when using fewer demonstrations.
5.2 Analysis and Ablations

To better understand the performance of our approach, in this section, we perform additional analysis
to test the quality and importance of various components. These results fill the gap in knowledge
left by previous work leveraging the Wasserstein distance in IL, examining hyperparameters such
as the regularization parameter in the Sinkhorn distance or the effect of using different distance
metrics, and provide direct comparison between the various approximations available to use when
comparing policy trajectories.

Accuracy of proxy reward. OOPS generates a proxy reward function that minimizes the Wasser-
stein distance between the learner’s trajectories and the demonstrated expert trajectories. We eval-
uate the correlation between this proxy reward and the true environment reward. To do so, we
collect a dataset of varied trajectory quality using the expert policy from the main results, with
added Gaussian noise N (0, ℓ2) with ℓ ∈ [0, 1.5]. Figure 2 shows the calibration plots between the
proxy reward and the original task reward, showing a strong correlation in every environment.

Next, we compare the quality of trajectories in terms of the Wasserstein distance rather than the
true environment reward. In Table 3, we compare the Wasserstein distance between the expert
trajectories and the final policy rollouts obtained at the end of training from each of the top-3
performing methods (OOPS, OPOLO, PWIL–(s)). The Wasserstein distance is measured in three
spaces: state-only (s), state-transition (s, s′), and state-action (s, a).

Environment Hopper Walker2d HalfCheetah Ant Humanoid
Space (s) (s, s’) (s, a) (s) (s, s’) (s, a) (s) (s, s’) (s, a) (s) (s, s’) (s, a) (s) (s, s’) (s, a)

OPOLO 5.91 8.40 6.33 3.02 4.32 3.47 1.60 2.39 1.91 4.64 7.24 5.05 80.75 114.53 81.90
PWIL – (s) 1.74 2.56 2.38 2.04 2.96 2.78 6.48 9.27 6.93 3.83 6.00 5.90 53.52 76.06 54.94
OOPS+TD3 1.66 2.38 2.06 2.28 3.27 3.02 1.63 2.41 2.01 3.83 5.90 5.17 25.64 37.03 27.63

Table 3: Final Wasserstein distance in state occupancy, state transition, and state-action space of the 10 final
trained agent rollouts to the expert trajectories for different ILfO algorithms, lower is better. We highlight in
blue the best performing agent in state-action space, considered ground truth in this experiment, and bold
the best performing agent according to each metric. Agents were trained using 10 expert demonstration
trajectories, for 1M timesteps. Distances are averaged over 10 reference expert trajectories.
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We find that OOPS obtains the lowest state-action Wasserstein distance to the expert trajectories in
four of the five studied environments, with Walker2d being the only disagreement with the previous
experiment, as even though OOPS+TD3 obtains a better task reward in Table 1, PWIL–(s) obtains
a lower state-action Wasserstein distance to the expert.

Finally, to further evaluate the quality of the Wasserstein distance used by PWIL, we take OOPS and
replace the Sinkhorn algorithm with the greedy formulation Wgreedy proposed by PWIL to compute
the Wasserstein distance in (s, s′) space. The results are reported in Table 4 (under Wgreedy), and
show a loss in performance.

Quality of estimated Wasserstein distance. In Figure 3, we compare the quality of different
approximations of the state transition Wasserstein distance: the Sinkhorn distance WSk with varying
λ, the network simplex solver Wsimplex introduced in (Bonneel et al., 2011), and Wgreedy proposed
for PWIL (Dadashi et al., 2020). Additional results can be found in the Appendix.

2.8 3.0 3.2 3.4 3.6 3.8

0.001 0.5 1.0

Sinkhorn hyperparameter λ

Wsimplex Wgreedy

Figure 3: Wasserstein distances between the 10 final rollout tra-
jectories of OOPS+TD3 and the expert on the Hopper environ-
ment, using different solvers for the coupling matrix P (Wgreedy
and Wsimplex) compared against the Sinkhorn distance WSk when
varying the parameter λ. Results are averaged over 10 expert
trajectories. The Sinkhorn distance, for low enough values of λ
computes a tighter upper bound to the Wasserstein distance esti-
mates than Wgreedy (Dadashi et al., 2020). Results for the other
environments can be found in the Appendix.

To compare each approach, we com-
pute the Wasserstein distance be-
tween trajectories generated by the
final policy of OOPS+TD3 and the
expert trajectories, using each of
the various approximations. Each
method results in different estimates
of the coupling matrix P ; they pro-
vide an upper bound on the true
Wasserstein distance, where lower es-
timates of the Wasserstein distance
are a tighter bound. We find that for
very low values of λ, WSk computes
lower cost couplings than Wsimplex,
and up to λ ≈ 0.4 obtains better ap-
proximations than Wgreedy.

Hopper Walker2d HalfCheetah Ant Humanoid

Occupancy (Default: (s, s′))

State only 0.10 -33.93 -0.57 0.30 -0.94

Wasserstein Distance Solver (Default: λ = 0.05)

Wgreedy -14.99 -7.75 -45.46 -0.79 -19.21
Wsimplex -10.91 -6.09 -1.03 -2.40 -33.99
λ = 0.005 -3.12 -2.65 -0.35 -1.48 -2.34
λ = 0.1 -1.72 -3.87 -1.39 -3.88 -9.18
λ = 0.5 -58.64 -25.20 -15.09 -10.95 -24.44

Distance Metric (Default: W1, d =
√

|| · ||2)

W2, d = || · ||2 -36.52 -21.83 -11.88 -16.10 -47.92
W1, d = || · ||2 -4.61 -1.42 -1.73 -1.95 -22.80
W1, d = cos 0.13 -10.04 -4.09 -2.84 -34.63

Adversarial Distance (Default: Unused)

SIL – (s, s′) -82.50 -91.61 -119.10 -124.88 -90.83
OOPSadv -21.09 -76.58 -101.84 -17.68 -97.87

Table 4: Results for different variations of OOPS in terms of
percent difference. All results use 10 expert trajectories and
are averaged across 5 seeds and 10 evaluations. State only
uses W1 over (s) rather than (s, s′). Wasserstein distance
solver modifies the solver used by OOPS to determine the
coupling matrix P . Adversarial distance refers to the use of
the adversarial distance function from SIL (Papagiannis & Li,
2020) and also includes the full SIL method for comparison.

Next, we compare these three approaches
for computing the Wasserstein distance
in terms of performance. The results are
shown in Table 4 (Wasserstein Distance
Solver). Unsurprisingly, large values of
λ, which approximate the Wasserstein
distance W1 poorly, results in lower per-
formance. For sufficiently small values of
λ, we find that OOPS+TD3 maintains
a consistent performance. This suggests
that λ can generally be ignored and left
to a default value.

Finally, we attempt different settings for
the Wasserstein distance. In Table 4 we
display the change in performance from
OOPS when using W1 or W2 when the
distance metric d is the Euclidean dis-
tance || · ||2, and W1 when d is the co-
sine distance. OOPS uses W1 with the
square root of the Euclidean distance,
which de-emphasizes large differences in
magnitude in a similar fashion to the co-
sine distance. We find that this choice
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of d provides significant benefits in high
dimensional domains (Humanoid) where
magnitudes matter but can vary significantly. We also compare with the learned adversarial distance
metric used by SIL (Papagiannis & Li, 2020) (denoted OOPSadv) and find that while this version
outperforms vanilla SIL, the adversarial component is harmful.

Transition vs. state occupancy. For OOPS, we define trajectories by their state-next-state
transitions (s, s′), rather than individual states s. Matching based on states can potentially admit
multiple minimums since trajectories with the same states out of order can still minimize the state
occupation distributional distance. Furthermore, if the reward function is based on state and action,
then it is clear that only matching state occupancy is insufficient. Since expert actions are unavailable
in the ILfO setting, we must rely on (s, s′). We posit that enforcing a local ordering of states provides
a higher fidelity signal for ILfO. We validate this empirically in our ablations (Table 4 - Occupancy).
While using state-only occupancy matches the performance of OOPS+TD3 in most environments,
there is a large drop in performance in Walker2d. This aligns with our intuition: matching by state
occupancy will often work but can be problematic in certain environments depending on the state
representation and transition dynamics.

6 Conclusion

In this paper, we introduce OOPS, an ILfO algorithm that produces a reward function that mini-
mizes the Wasserstein distance between the state transition trajectory of the expert and the imita-
tion agent. We validate our approach through extensive experiments and demonstrate that OOPS
surpasses the current state-of-the-art methods in the ILfO setting across benchmark and robotics do-
mains. Combined with off-policy RL, OOPS exhibits exceptional sample efficiency and low variance
in performance, key qualities for the practical deployment of IL algorithms on real systems.
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A Additional Results and Experiments

A.1 Comparing Solvers for the State Transition Wasserstein Distance

We show in Figure 4 the full set of results for the comparison of solvers used when computing the
Wasserstein distance. See Section 5.2 for the description and discussion of this experiment.

Hopper

2.8 3.0 3.2 3.4 3.6 3.8

Walker2d

2.8 3.0 3.2 3.4 3.6 3.8 4.0

HalfCheetah

2.2 2.4 2.6 2.8 3.0 3.2 3.4

Ant

6.0 6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6

Humanoid
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Estimated Wasserstein Distance

0.001 0.5 1.0

Sinkhorn hyperparameter λ
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Figure 4: Wasserstein distances between the 10 final rollout trajectories of OOPS+TD3 and the expert,
using different solvers for the coupling matrix P (Wgreedy and Wsimplex) compared against the Sinkhorn
distance WSk when varying the parameter λ. Results are averaged over 10 expert trajectories. The Sinkhorn
distance, for low enough values of λ computes a tighter upper bound to the Wasserstein distance estimates
than Wgreedy (Dadashi et al., 2020).

B Experimental Details

In Table 5, we list the hyperparameters used for TD3 (Fujimoto et al., 2018), our underlying off-
policy RL algorithm. On top of these hyperparameters, we use the PAL variant of TD3 for the
loss function of the critic (Fujimoto et al., 2020). In Table 6, we list the hyperparameters for the
computation of the Sinkhorn distance (Cuturi, 2013) used for OOPS across all experiments, except
experiments studying the effect of specific hyperparameters (distance metric and λ).

Parameter Value
τ 3e-3

Exploration noise 2e-1
Policy noise 1e-1

Actor network architecture (hidden) [256]
Critic network architecture (hidden) [1024]

Actor LR 3e-4
Critic LR 3e-4
Optimizer Adam

Actor non linearity ReLU
Critic non linearity ReLU

Table 5: TD3 hyperparameters
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Parameter Value
Maximum number of iterations 20000

λ 0.05
Distance metric

√
|| · ||2

Table 6: Sinkhorn distance computation hyperparameters
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Abstract

Unsupervised visual representation learning offers the opportunity to leverage large
corpora of unlabeled trajectories to form useful visual representations, which can
benefit the training of reinforcement learning (RL) algorithms. However, evalu-
ating the fitness of such representations requires training RL algorithms which is
computationally intensive and has high variance outcomes. Inspired by the vision
community, we study whether linear probing can be a proxy evaluation task for the
quality of unsupervised RL representation. Specifically, we probe for the observed
reward in a given state and the action of an expert in a given state, both of which
are generally applicable to many RL domains. Through rigorous experimentation,
we show that the probing tasks are strongly rank correlated with the downstream
RL performance on the Atari100k Benchmark, while having lower variance and
up to 600x lower computational cost. This provides a more efficient method for
exploring the space of pretraining algorithms and identifying promising pretraining
recipes without the need to run RL evaluations for every setting. Leveraging this
framework, we further improve existing self-supervised learning (SSL) recipes for RL,
highlighting the importance of the forward model, the size of the visual backbone,
and the precise formulation of the unsupervised objective.

1 Introduction

Learning visual representations is a critical step towards solving many kinds of tasks, from supervised
tasks such as image classification or object detection, to reinforcement learning. Ever since the
early successes of deep reinforcement learning (Mnih et al., 2015), neural networks have been widely
adopted to solve pixel-based reinforcement learning tasks such as arcade games (Bellemare et al.,
2013), physical continuous control (Todorov et al., 2012; Tassa et al., 2018), and complex video
games (Synnaeve et al., 2018; Oh et al., 2016). However, learning deep representations directly from
interactions is a challenging endeavor. This is primarily due to the nature of rewards, which, despite
being a critical source of supervision, tend to be noisy, sparse, and delayed.

With ongoing progress in unsupervised visual representation learning for vision tasks (Zbontar
et al., 2021; Chen et al., 2020a;b; Grill et al., 2020; Caron et al., 2020; 2021; Assran et al., 2023;
Oquab et al., 2023), there have been recent efforts to apply self-supervised techniques and ideas to
improve representation learning for reinforcement learning applications. Recently, some promising
approaches have been proposed in this direction, which suggest either supplementing the RL loss
with self-supervised objectives (Laskin et al., 2020; Schwarzer et al., 2021a; D’Oro et al., 2022;
Schwarzer et al., 2023), or first pre-training the representations on a corpus of trajectories (Schwarzer
et al., 2021b; Stooke et al., 2021). However, the diversity in the settings considered, as well as
the self-supervised methods used, make it difficult to identify the core principles of what makes a
self-supervised method successful for RL. Moreover, estimating the performance of RL algorithms is
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notoriously challenging (Henderson et al., 2018; Agarwal et al., 2021): it often requires repeating the
same experience with a different random seed, and the high CPU-to-GPU ratio of the computational
requirements of most online RL methods makes them inefficient to run on typical HPC clusters. This
tends to prevent systematic exploration of the many design choices that characterize SSL methods.

Inspired by the vision community, we investigate whether linear probing—training a linear prediction
head on top of frozen features—can serve as a proxy evaluation task for the quality of unsupervised
visual representation in RL. In particular, we focus on two probing tasks that we deem widely
applicable to RL: the first one consists of predicting the reward in a given state; the second one
consists of predicting the action that would be taken by a fixed policy in a given state, for example
that of an expert. We probe for reward as it is closely related to the value function (expected
cumulative reward) which assesses the quality of a policy; while expert actions are the desired output
of a good policy. We hypothesize that a representation which can be easily (i.e. linearly) transformed
into the reward and expert action is a good representation for RL training. Nonetheless, we stress
that these probing tasks are only used as a means of evaluation where very little supervised data is
required, making it suitable for situations where obtaining expert trajectories or reward labels is
expensive. Through thorough experimentation, we show that the performance of the SSL algorithms
in terms of their downstream RL outcomes rank correlates with the performance of both of these
probing tasks. This is particularly true for reward probing, for which we obtain a statistically
significant Spearman’s rank correlation coefficient of r > 0.9 (p<0.001), suggesting its utility as an
effective proxy for RL performance. Given the vastly reduced computational burden of such linear
evaluations, we argue that they enable much easier and straightforward experimentation of SSL
design choices, paving the way for a more systematic exploration of the design space.

Finally, we leverage this framework to make systematic assessments of some of the key attributes
of SSL methods. We focus on a class of SSL algorithms with latent dynamics modelling as it has
been the common choice behind a series of highly performant models in Atari100k (Schwarzer et al.,
2021a;b; Tomar et al., 2021; Schwarzer et al., 2023; Ni et al., 2024). First off, we explore the utility and
role of learning a forward model as part of the self-supervised objective. We investigate whether its
expressiveness matters and in particular show that equipping it with the ability to model uncertainty
through a random latent variable significantly improves the quality of the representations. Next, we
identify several knobs in the self-supervised objective, allowing us to carefully tune the parameters
in a principled way. Finally, we confirm the previous finding (Schwarzer et al., 2021b) that bigger
architectures tend to perform better, when adequately pre-trained.

Our contributions can be summarized as follows:

• Design an efficient protocol that estimates the quality of unsupervised visual representations for
RL by linearly probing for rewards and actions.

• Demonstrate significant rank correlation between probing tasks and downstream RL performance.

• Systematic exploration of design choices in existing SSL methods.

2 Related work

2.1 Representation learning

There has recently been a surge in interest and advances in the domain of self-supervised learning
in computer vision. Some state-of-art techniques include contrastive learning methods SimCLR,
MoCov2 (Chen et al., 2020a;b); clustering methods SwAV (Caron et al., 2020); distillation methods
BYOL, SimSiam, OBoW, DINOv2, I-JEPA (Grill et al., 2020; Chen and He, 2021; Gidaris et al.,
2020; Oquab et al., 2023; Assran et al., 2023); and information maximization methods Barlow Twins
and VICReg (Zbontar et al., 2021; Bardes et al., 2022).

Simultaneously, significant progress has been made in representation learning for reinforcement
learning. One line of work applies unsupervised losses as an auxiliary objective during RL training
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Figure 1: Left: Correlation between the SSL representations’ abilities to linearly predict the presence
of reward in a given state, versus RL performance using the same representations, measured as the
interquartile mean of the human-normalized score (HNS) over 9 Atari games. Each point denotes
a separate SSL pretraining method. A linear line of best fit is shown with 95 confidence interval.
We compute Spearman’s rank correlation coefficient (Spearman’s r) and determine its statistical
significance using permutation testing (with n = 50000). Right: When comparing two models, the
reward probing score can give low variance reliable estimates of RL performance, while direct RL
evaluation may require many seeds to reach meaningful differences in mean performance.

to improve data efficiency (Laskin et al., 2020; Zhu et al., 2020; Schwarzer et al., 2021a; Yu et al.,
2022; Banino et al., 2022). Another line of work pretrains on offline data prior to online RL or
imitation learning (Aytar et al., 2018; Pari et al., 2021; Stooke et al., 2021; Nair et al., 2022; Seo
et al., 2022; Ma et al., 2022; Ghosh et al., 2023). In particular, SGI (Schwarzer et al., 2021b) is
most similar to our setup in that it pretrains both an encoder and forward model on demonstrations
while the encoder is recycled during RL for improved data efficiency; this model category involving
latent dynamics has been applied in various state-of-the-art models within the Atari100k benchmark
(Tomar et al., 2021; Schwarzer et al., 2023; Ni et al., 2024).

While different in spirit, many model based methods also train an encoder and a dynamic model
from a corpus of trajectories, either by explicit pixel reconstruction (Kaiser et al., 2020; Hafner et al.,
2021; Micheli et al., 2022; Robine et al., 2023) or in embedding space (Ye et al., 2021; Schrittwieser
et al., 2020; Hansen et al., 2022; Ye et al., 2023). Self-supervised representations have also been used
for exploration (Burda et al., 2019a; Sekar et al., 2020; Yarats et al., 2021a; Du et al., 2021).

2.2 Representation probing in reinforcement learning

Some prior works (Racah and Pal, 2019; Guo et al., 2018; Anand et al., 2019) evaluate the quality of
their pretrained representations by probing for ground truth state variables such as agent/object
locations and game scores. Das et al. (2020) propose to probe representations with natural lan-
guage question-answering. While these methods are efficient, they tend to be domain-specific and
require meticulous crafting for each environment. Morever, these approaches have not consistently
demosntrated a correlation between the outcomes of probing and downstream RL performance, which
complicates the use of these results to reliably inform model design.

On the other hand, the authors of ATC (Stooke et al., 2021) propose to evaluate representations by
finetuning for RL tasks using the pretrained encoder with weights frozen. Similarly, Laskin et al.
(2021) propose a unified benchmark for SSL methods in continuous control but still require full RL
training. A part of our work aims to bridge these two approaches by making explicit the correlation
between linear probing and RL performances, as well as designing probing tasks that are invariant
across environments.
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In recent developments, Garrido et al. (2022) introduced the use of effective feature ranking to
predict downstream performance in image encoders trained via self-supervised learning (SSL). This
methodology was further applied to reinforcement learning (RL) by Lee et al. (2023). Notably, Lee
et al. (2023) compared this feature rank approach with the methods we outlined in an earlier version
of our work (Zhang et al., 2022). They concluded that although neither method perfectly correlates
with downstream RL performance, our approach - focusing on reward and action probing - provides
a more accurate prediction of RL outcomes.

3 A framework for developing unsupervised representations for RL

In this section, we detail our proposed framework for training and evaluating unsupervised represen-
tations for reinforcement learning.

3.1 Unsupervised pre-training

The network is first pre-trained on a large corpus of trajectories. Formally, we define a trajectory
Ti of length Ti as a sequence of tuples Ti = {(ot, at) | t ∈ [1, Ti]}, where ot is the observation of the
state at time t in the environment and at was the action taken in this state. This setting is closely
related to Batch RL (Lange et al., 2012), with the crucial difference that the reward is not being
observed. In particular, it should be possible to use the learned representations to maximize any
reward (Touati and Ollivier, 2021). The training corpus corresponds to a set of such trajectories:
Dunsup {T1, . . . , Tn}. We note that the policy used to generate this data is left unspecified in this
formulation, and is bound to be environment-specific. Since unsupervised methods usually necessitate
a lot of data, this pre-training corpus is required to be substantial. In some domains, it might be
straightforward to collect a large number of random trajectories to constitute Dunsup. In some other
cases, like self-driving, where generating random trajectories is undesirable, expert trajectories from
humans can be used instead.

The goal of the pre-training step is to learn the parameters θ of an encoder Encθ which maps
any observation o of the state s (for example raw pixels) to a representation e = Encθ(o). This
representation must be amenable for the downstream control task, for example learning a policy.

3.2 Evaluation

In general, the evaluation of RL algorithms is tricky due to the high variance in performance
(Henderson et al., 2018). This requires evaluating many random seeds, which creates a computational
burden. We side-step this issue by formulating an evaluation protocol which is light-weight and
purely supervised. Specifically, we identify two proxy supervised tasks that are broadly applicable
and relevant for control. We further show in the experiment section that they are sound, in the
sense that models’ performance on the proxy tasks strongly correlates with their performance in the
downstream control task of interest. Similar to the evaluation protocol typically used for computer
vision models, we rely on linear probing, meaning that we train only a linear layer on top of the
representations, which are kept frozen.

Reward Probing Our first task consists in predicting the reward observed in a given state. For
this task, we require a corpus of trajectories Drew = {T ′

1, . . . , T ′
m} for which the observed rewards

are known, i.e. T ′
i = {(ot, at, rt) | t ∈ [1, Ti]}

In the most general setting, it can be formulated as a regression problem, where the goal is to
minimize the following loss:

L(ψ)reward-reg = 1
|Drew|

∑

T ′
i∈Drew

1
|T ′

i|
∑

(ot,at,rt∈T ′
i)

∥lψ(Encθ(ot))− rt∥2

Here, the only learnt parameters ψ are those of the linear prediction layer lψ.
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In practice, in many environments where rewards are sparse, the presence or absence of a reward
is more important than its magnitude. To simplify the problem in those cases, we can cast it as a
binary prediction problem instead (this could be extended to ternary classification if the sign of the
reward is of interest):

L(ψ)reward-classif = 1
|Drew|

∑

T ′
i∈Drew

1
|T ′

i|
∑

(ot,at,rt∈T ′
i)

BinaryCE(1R>0(rt), lψ(Encθ(ot)))

Reward prediction is closely related to value prediction, a central objective in RL that is essential
for value-based control and the critic in actor-critic methods. The ability to predict instantaneous
reward, akin to predicting value with a very small discount factor, can be viewed as a lower bound on
the learned representation’s ability to encode the value function, and has been demonstrably helpful
for control, particularly in sparse reward tasks (Jaderberg et al., 2017). Thus, we hypothesize reward
prediction accuracy to be a good probing proxy task for our setting as well.

Action prediction Our second task consists in predicting the action taken by an expert in a given
state. For this task, we require a corpus of trajectories Dexp = {T1, . . . , Tn} generated by an expert
policy. We stress that this dataset may be much smaller than the pretraining corpus since we only
require to fit and evaluate a linear model. The corresponding objective is as follows:

L(ψ)action-classif = 1
|Dexp|

∑

Ti∈Dexp

1
|Ti|

∑

(ot,at∈T ′
i)

CrossEntropy(at, lψ(Encθ(ot)))

This task is closely related to imitation learning, however, we are not concerned with the performance
of the policy that we learn as a by-product.

4 Self Predictive Representation Learning for RL

In our work, we focus on evaluating and improving a particular class of unsupervised pretraining
algorithms that involves using a transition model to predict its own representations in the future
(Schwarzer et al., 2021b; Guo et al., 2018; Gelada et al., 2019). This pretraining modality is especially
well suited for RL, since the transition model can be conditioned on agent actions, and can be
repurposed for model-based RL after pretraining. Our framework is depicted in Fig.2. In this section,
we present the main design choices, and we investigate their performance in Section 5.

4.1 Transition models

Our baseline transition model is a 2D convolutional network applied directly to the spatial output of
the convolutional encoder (Schwarzer et al., 2021b; Schrittwieser et al., 2020). The network consists
of two 64-channel convolutional layers with 3x3 filters. The action is represented as a 2D one-hot
vector and appended to the input to the first convolutional layer.

We believe a well-established sequence modeling architecture such as GRU can serve as a superior
transition model. Its gating mechanisms should be better at retaining information from both the imme-
diate and distant past, especially helpful for learning dynamics in a partially observable environment.

Encoder : ê0 = e0 = Encθ(o0)
RecurrentModel : êt = fϕ(êt−1, at−1)

In addition to the deterministic GRU model above, we also experiment with a GRU variant where
we introduce stochastic states to allow our model to generalize better to stochastic environments,
such as Atari with sticky actions (Machado et al., 2018). Our model is based on the RSSM from
DreamerV2 (Hafner et al., 2021), with the main difference being that while pixel reconstruction

1928



RLJ | RLC 2024

O
nline

Encoder

ot

Predictor

Predictorat at+1
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Figure 2: Model diagram. The observations consist of a stack of 4 frames, to which we apply data
augmentation before passing them to a convolutional encoder. The predictor is a recurrent model
outputting future state embeddings given the action. We supervise with an inverse modeling loss
(cross entropy loss on the predicted transition action) and an SSL loss (distance between embeddings)

is used as the SSL objective in the original work, we minimize the distance between predictions
and targets purely in the latent space. Following DreamerV2, we optimize the latent variables using
straight-through gradients (Bengio et al., 2013), and minimize the distance between posterior (z)
and prior (ẑ) distributions using KL loss.

Encoder : et = Encθ(ot)
RecurrentModel : ht = fϕ(ht−1, zt−1, at−1)
PosteriorModel : zt ∼ pϕ(zt|ht, et)
PriorPredictor : ẑt ∼ jϕ(ẑt|ht)
LatentMerger : êt = gϕ(ht, zt)

4.2 Prediction objectives

The objective of self predictive representation learning is to minimize the distance between the
predicted and the target representations, while ensuring that they do not collapse to a trivial solution.
Our baseline prediction objective is BYOL (Grill et al., 2020), which is also used in SGI (Schwarzer
et al., 2021b). The predicted representation êt+k, and the encoded target representation ẽt+k are first
projected to lower dimensions to produce ŷt+k and ỹt+k. BYOL then maximizes the cosine similarity
between the predicted and target projections, using a linear function q to translate from ŷ to ỹ:

LBY OLθ (ŷt:t+k, ỹt:t+k) = −
K∑

k=1

q(ŷt+k) · ỹt+k
∥q(ŷt+k)∥2 · ∥ỹt+k∥2

In the case of BYOL, the target encoder and projection module are the exponentially moving average
of the online weights, and the gradients are blocked on the target branch.

As an alternative prediction objective, we experiment with Barlow Twins (Zbontar et al., 2021).
Similar to BYOL, Barlow Twins minimizes the distance of the latent representations between the
online and target branches; however, instead of using a predictor module and stop gradient on the
target branch, Barlow Twins avoids collapse by pushing the cross-correlation matrix between the
projection outputs on the two branches to be as close to the identity matrix as possible. To adapt
Barlow Twins, we calculate the cross correlation across batch and time dimensions:
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Figure 3: Decoding results, using a de-convolutional model to predict the pixel values from frozen
state representations. Both games exhibit stochastic behaviours. In Demon attack, both models fail
to capture the position of the enemies. In Gopher, the enemy (circled in red) is moving randomly,
but thanks to the latent variable, the GRU-latent model is able to predict a possible position, while
the deterministic model regresses to the mean.

LBT (ŷt:t+k, ỹt:t+k) =
∑

i

(1− Cii)2 + λ
∑

i,j ̸=i
C2
ij where Cij =

∑
b,t(ŷb,t,i) · (ỹb,t,j)√∑

b,t(ŷb,t,i)2 ·
√∑

b,t(ỹb,t,j)2

where λ is a positive constant trading off the importance of the invariance and covariance terms of
the loss, C is the cross-correlation matrix computed between the projection outputs of two branches
along the batch and time dimensions, b indexes batch samples, t indexes time, and i, j index the
vector dimension of the projection output.

By enabling gradients on both the prediction and target branches, the Barlow objective pushes
the predictions towards the representations, while regularizing the representations toward the
predictions. In practice, learning the transition model takes time and we want to avoid regularizing
the representations towards poorly trained predictions. To address this, we apply a higher learning
rate to the prediction branch. We call this technique Barlow Balancing (Algorithm 1).

Algorithm 1: PyTorch-style pseudocode for Barlow Balancing

BarlowLoss = µ ∗ LBT (ŷ, ỹ.detach()) + (1− µ) ∗ LBT (ŷ.detach(), ỹ)

4.3 Other SSL objectives

SGI’s authors (Schwarzer et al., 2021b) showed that in the absence of other SSL objectives, pretraining
with BYOL prediction objective alone results in representation collapse; the addition of inverse
dynamics modeling loss is necessary to prevent collapse, while the addition of goal-oriented RL loss
results in minor downstream RL performance improvement. In inverse dynamics modeling, the model
is trained using cross-entropy to model p(at|ŷt+k, ỹt+k+1), effectively predicting the transition action
between two adjacent states. For details regarding goal-oriented RL loss, please refer to Appendix.
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5 Results

5.1 Experimental details

We conduct experiments on the Arcade Learning Environment benchmark (Bellemare et al., 2013).
Given the multitude of pretraining setups we investigate, we limit our experiment to 9 Atari games1.

Pretraining We use the publicly-available DQN replay dataset (Agarwal et al., 2020), which contains
data from training a DQN agent for 50M steps with sticky action (Machado et al., 2018). We select
1.5 million frames from the 3.5 to 5 millionth steps of the replay dataset, which constitutes trajectories
of a weak, partially trained agent. We largely follow the recipe of SGI (Schwarzer et al., 2021b),
where we jointly optimize the self prediction, goal-conditioned RL, and inverse dynamics modeling
losses for 20 epochs; in some of our experiments we remove one or both of the last two objectives.
We use the same data-augmentations as SGI, namely the ones introduced by Yarats et al. (2021b).
All experiments are performed on single instances of MI50 AMD GPU, and the pretraining process
took 2 to 8 days depending on the model.

Reward probing We focus on the simplified binary classification task of whether a reward occurs
in a given state. We use 100k frames from the 1-1.1 millionth step of the replay dataset, with a 4:1
train/eval split. We train a logistic regression model on frozen features using the Cyanure (Mairal,
2019) library, with the MISO algorithm (Mairal, 2015) coupled with QNING acceleration (Lin et al.,
2019) for a maximum of 300 steps. We do not use any data augmentation. We report the mean
F1 averaged across all 9 games. On a MI50 AMD GPU, each probing run takes 10 minutes. From
preliminary studies we found the variance across linear probing runs to be sufficiently low (≤ 1e-2
F1). Thus we omit standard error bars for all probing F1 scores.

Action probing We use the last 100k (4:1 train/eval split) frames of the DQN replay dataset, which
correspond to a fully trained DQN agent. We train a linear layer on top of frozen, un-augmented
features for 12 epochs with softmax focal loss (Lin et al., 2017) using SGD optimizer with learning
rate 0.2, batch size 256, 1e-6 weight decay, stepwise scheduler with step size 10 and gamma 0.1. We
report the Multiclass F1 (weighted average of F1 scores of each class) averaged across all games.

RL evaluation We focus on the Atari 100k benchmark (Kaiser et al., 2020), where only 100k
interactive steps are allowed by the agent. This is roughly equivalent to two hours of human play,
providing an approximation for human level sample-efficiency. We follow Schwarzer et al. (2021b)
training protocol using the Rainbow algorithm (Hessel et al., 2018) with the following differences:
we freeze the pretrained encoder (thus only training the Q head), do not apply auxiliary SSL losses
while fine-tuning, and finally disable noisy layers and rely instead on ϵ-greedy exploration. This
changes are made to make the RL results reflect as closely as possible the performance induced by
the quality of the representations. On a MI50 AMD GPU, each run takes between 8 and 12 hours.
We evaluate each setup using 10 seeds.2

We evaluate the agent’s performance using human-normalized score (HNS), defined as (agentscore−
randomscore)/(humanscore − randomscore). We calculate this per game, per seed by averaging
scores over 100 evaluation trajectories at the end of training. For aggregate metrics across games and
seeds, we report the median and interquartile mean (IQM). For median, we first average the HNS
across seeds for each game, and report the median of the averaged HNS values. For IQM, we first
take the interquartile mean across seeds for each game, and report the average of these quantities.
While median is commonly reported for Atari100k, recent work has recommended IQM as a superior
aggregate metric for the RL setting due to its smaller uncertainty (Agarwal et al., 2021); we also
follow the cited work to report the 95% bootstrapped confidence intervals for these aggregate metrics.

1Amidar, Assault, Asterix, Boxing, Demon Attack, Frostbite, Gopher, Krull, Seaquest. See Appendix G for selection
strategy and per-game statistics.

2An RL run takes on average 10 GPU hours, a probing run takes 10 CPU minutes. We run 10 RL seeds due to
high variance, while probing runs have low variance and only require a single run. Thus probing is ∼ 600× faster.
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Unless specified otherwise, the experiments use the medium ResNet-M from Schwarzer et al. (2021b),
and the inverse dynamics loss as an auxiliary loss. In BYOL experiments, the target network is
an exponential moving average of the online network, while in Barlow Twins both networks are
identical, following the original papers. For additional details regarding model architectures and
hyperparameters used during pretraining and RL evaluation, please refer to Appendix.

5.2 Impact of transition models and prediction objectives
Table 1: F1 scores on probing tasks for different
transition models and prediction objectives.

Pred Obj Transition Reward Action
BYOL Conv-det 64.9 22.7

GRU-det 62.2 26.8
GRU-latent 63.4 23.2

Barlow0.7 Conv-det 52.7 24.9
GRU-latent 67.5 26.2

Table 2: F1 scores on probing tasks for different
Barlow variants.

Pred Obj Reward Action
Barlow0.5 65.0 26.3
Barlow0.7 67.5 26.2
Barlow1 65.0 24.7
Barlowrand 67.7 25.8

In table 1, we report the mean probing F1 scores for the convolutional, deterministic GRU, and latent
GRU transition models trained using either the BYOL or Barlow prediction objective. When using
the BYOL objective, the relative probing strengths for the different transition models are somewhat
ambiguous: while the convolutional model results in better reward probing F1, the GRU models are
superior in terms of expert action probing.

Interestingly, we observe that after replacing BYOL with Barlow, the probing scores for the latent
model improve, while those of the deterministic models deteriorate. Overall, the particular combina-
tion of pre-training using the GRU-latent transition model with the Barlow prediction objective results
in representations with the best overall probing qualities. Since the deterministic model’s predictions
are likely to regress to the mean, allowing gradients to flow through the target branch in the case of Bar-
low objective can regularize the representations towards poor predictions, and can explain their inferior
probing performance. Introducing latent variables can alleviate this issue through better predictions.

We stress that the transition models are not used during probing, only the encoder is. These
experiments show that having a more expressive forward model during the pre-training has a direct
impact on the quality of the representations learned by the encoder. In Fig.3, we qualitatively
investigate the impact of the latent variable on the information contained in the representations, by
training a decoder on frozen features.

In table 2, we show the results from experimenting with different variants of the Barlow objective.
We find that using a higher learning rate for the prediction branch (Barlow0.7, with 7:3 prediction to
target lr ratio) results in better probing outcome than using equal learning rates (Barlow0.5) or not
letting gradients flow in the target branch altogether (Barlow1, here the target encoder is a copy of

Table 3: Representation probing and RL results for representative setups. Mean binary F1 for reward,
mean multiclass F1 for next action. RL metrics are aggregated on 10 seeds of 9 games. The 95% CIs
are estimated using the percentile bootstrap with stratified sampling (Agarwal et al., 2021).

ResNet Transition Objectives Reward Action
L GRU-lat Barlowrand, inv 70.3 26.7
L GRU-lat Barlow0.7, inv 69.0 27.7
M GRU-lat Barlowrand, inv 67.7 25.8
M GRU-lat Barlow0.7, inv 67.4 26.2
M GRU-lat BYOL, goal, inv 63.4 23.2
M GRU-det BYOL, goal, inv 62.2 26.9
M Conv-det BYOL, goal, inv 64.9 22.7
M GRU-lat Barlow0.7 56.2 24.4
M Conv-det Barlow0.7, goal, inv 52.7 24.8

0.4 0.8

Median

0.5 1.0

Res-M, Conv-det, Barlow0.7 & goal & inv
Res-M, GRU-lat, Barlow0.7
Res-M, Conv-det, BYOL & goal & inv
Res-M, GRU-det, BYOL & goal & inv
Res-M, GRU-latent, BYOL & goal & inv
Res-M, GRU-latent, Barlow0.7 & inv
Res-M, GRU-latent, Barlowrand & inv
Res-L, GRU-latent, Barlow0.7 & inv
Res-L, GRU-latent, Barlowrand & inv

IQM

Human Normalized Score
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the online encoder). This suggests that while it is helpful to regularize the representations towards
the predictions, there is a potential for them being regularized towards poorly trained ones. This can
be addressed by applying a higher learning rate on the prediction branch.

We also demonstrate that using a frozen, random target network (Barlowrand) results in good features,
and in our experiments it gets the best reward probing performance. This contradicts findings from
the vision domain (Grill et al., 2020), but corroborates SSL results from other domains such as
speech (Chiu et al., 2022). Random networks have also been shown to exhibit useful inductive biases
for exploration (Burda et al., 2019b;a). An explanation is that random targets act as a regularization
that prevent partial collapse by enforcing a wide range of features to be encoded by the model.

5.3 Impact of auxiliary SSL objectives and encoders
Table 4: F1 scores on probing tasks for different
auxiliary objectives.

SSL Objs Reward Action
BYOL, inv, goal 63.4 23.2
BYOL, inv 57.3 22.6
BYOL 25.9 5.9
Barlow0.7, inv, goal 66.5 26.2
Barlow0.7, inv 67.5 26.2
Barlow0.7 56.2 24.4

Table 5: F1 scores on probing tasks for different
encoders.

Pred Obj Encoder Reward Action
Barlow0.7 Res-M 67.5 26.2

Res-L 69.0 27.7
Barlowrand Res-M 67.7 25.8

Res-L 70.3 26.7

SSL objective Although pretraining with multiple objectives can sometimes result in better
downstream performance, they also make it harder to tune for hyperparameters and debug, therefore
it is desirable to use the least number of objectives that can result in comparable performance.

In table 4, we show the effects of inverse dynamics modeling (inv) and goal-conditioned RL (goal)
objectives on probing performance. The BYOL model experiences partial collapse without the inverse
dynamics modeling loss, while the addition of goal loss improves the probing performance slightly.
This is in congruence with the relative RL performances reported by SGI (Schwarzer et al., 2021b)
for the same ablations.

The Barlow-only model performs significantly better than the BYOL-only model in terms of probing
scores, indicating that the Barlow objective is less prone to collapse in the predictive SSL setting.
Similar to the BYOL model, the Barlow model can also be improved with inverse dynamics modeling,
while the addition of goal loss has a slight negative impact.

Encoders SGI (Schwarzer et al., 2021b) showed that using bigger encoders during pretraining
results in improved downstream RL performance. We revisit this topic from the point of finding out
whether the pretrained representations from bigger networks also have better probing qualities. We
experiment with the medium (ResNet-M) and large (ResNet-L) residual networks from SGI. In table
5 we show that Barlow models pretrained using the larger ResNet have improved probing scores,
which is consistent with SGI’s findings.

5.4 Correlations Between Probing and RL Performances

To investigate the extent to which linear probing performance correlates with the actual downstream
RL performance, we perform RL evaluations for 7 representative setups, and report their probing
and aggregate RL metrics (with confidence intervals) in table 3. We find that the rank correlations
between reward probing F1 and the RL aggregate metrics are significant (r=0.933, p<0.001; Figure
1), while those for the expert action probing F1 are weaker, though still positive (r=0.66, p=0.019;
Figure 5 for RLIQM).3 In sum, our results suggest that while probing cannot completely replace RL

3We have not investigated how the quality of the policy that generated the expert actions affects the strength of
correlation for action probing. It is possible that probing for actions of a weaker policy will be less informative, as this
certainly holds true in the extreme case of a random policy.
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evaluation due to lack of perfect correspondence between rankings, their strong positive correlation
still makes them a useful proxy for designing pretraining setups that deliver significant downstream
RL performance improvements.

6 Conclusion

In an effort to to alleviate the need to rely on costly RL evaluations to assess the qualities of
unsupervised representations, we investigated whether linear probing tasks can serve as a useful
proxy in the context of RL. We found a significant rank correlation between the performances of the
probing tasks and downstream RL performances. Using this proxy to guide us, we have demonstrated
the impact of a number of key design choices in the pre-training methodology. While linear probing
cannot fully replace RL evaluation, we hope these promising results encourage the research community
to make greater use of them to systematically explore the design space and further improve the
quality of SSL representaitons for RL due to their simplicity and efficiency.
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A Models and Hyper-parameters

A.1 Encoders

We use ResNet-M and ResNet-L from SGI (Schwarzer et al., 2021b). The ResNet-M encoder consists
of inverted residual blocked with an expansion ratio of 2, with batch normalization applied after each
convolutional layer; it uses 3 groups with 32, 64, and 64 channels, and has 3 residual blocks per group;
it down-scales the input by a factor of 3 in the first group and 2 in the latter 2 groups. This yields a
representation of shape 64x7x7 when applied to 84x84-dimensional Atari frames. ResNet-L uses 3
groups with 48, 96, and 96 channels, and has 5 residual blocks per group; it uses a larger expansion
ratio of 4, producing a representation shape of 96x7x7 from an 84x84 frame. This enlargement
increases the number of parameters by approximately a factor of 5.

A.2 Transition Models

We experimented with three transition models: convolutional model, deterministic GRU, and latent
GRU. Our convolutional model is based on SGI (Schwarzer et al., 2021b). The input into the
convolutional transition model is the concatenation of the action represented as a 2D one-hot vector
and the representation et along the channel dimension. The network itself consists of two 64-channel
convolutional layers with 3x3 filters, separated by ReLU activation and batch normalization layers.

The deterministic GRU model has a hidden dimension of 600 and input dimension of 250. The input
at is prepared by passing the one-hot action vector through a 250 dimensional embedding layer. The
initial hidden state ê0 is generated by projecting the representation at timestep 0 through a 600
dimensional linear layer with ELU activation and dropout. Layer normalization is applied to the
hidden input at all timesteps.

The latent GRU model is based on Dreamerv2’s RSSM (Hafner et al., 2021), and consists of a
recurrent model, posterior model, prior predictor, and latent merger. The recurrent model has a
hidden dimension of 600 and input dimension of 600. The initial hidden state h0 and input z0 are
zero vectors. The flattened stochastic variables zt and one-hot action vector at are first concatenated
and then projected to 600 dimension through a linear layer with ELU activation, before being passed
into the recurrent model as input. Layer normalization is applied to the hidden input at all non-zero
timesteps.

The posterior model is a two-layer MLP with 600 dimensional bottleneck separated by ELU activation.
It takes the concatenation of representation et and recurrent hidden output ht as input, and outputs
a 1024 dimensional vector representing the 32 dimensional logits for 32 latent categorical variables.
zt is sampled from the posterior logits. The prior model is a two-layer MLP with 600 dimensional
bottleneck separated by ELU activation. Its output format is same as that of the posterior model. ẑt
is sampled from the prior logits. The latent merger is a linear layer that projects the concatenation
of ht and flattened zt to the same dimension of representation et.

A.3 SSL Projection Module

In the case of the deterministic GRU, ê is first projected to the same dimension of representation
through a linear layer. Henceforth we shall assume that ê underwent this step for GRUdet.

The predicted representation ê and target representation ẽ are projected to 1024 dimensional vectors
ŷ and ỹ through a linear layer. The BYOL objective involves processing ŷ with an additional linear
layer q with output dimension 1024. The Barlow objective involves applying batch normalization to
ŷ and ỹ prior to taking the covariance and variance losses.

The inverse dynamics model is a two-layer MLP with 256 dimensional bottleneck separated by ReLU
activation. It takes the concatenation of ŷt and ỹt+1 as input, and outputs logits with dimension
equivalent to number of actions.
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A.4 Image Reconstruction Model

We used a decoder architecture that mirrors the structure of the ResNet-M encoder. In decoding,
instead of transposed convolutions we used upsampling with the nearest value followed by a regular
convolution (Odena et al., 2016). We used mean squared error between the reconstructed pixels and
the target image as the training criterion. All the models were trained and evaluated on the same
data as reward and action probing. Models were trained for 30 epochs using Adam optimizer with
learning rate 0.001.

A.5 Hyperparameters
Table 6: Hyperparameters for pretraining and RL evaluation.

Parameter Setting
Pretrain & RL Gray-scaling True

Observation down-sampling 84x84
Frames stacked 4
Action repetitions 4
Sticky Action True
Reward clipping [-1, 1]
Terminal on loss of life True
Optimizer Adam
Optimizer: learning rate 0.0001
Optimizer: β1 0.9
Optimizer: β2 0.999
Optimizer: ϵ 0.00015
Minibatch Size 64
Max gradient norm 10

Pretrain Prediction Depth 10
Epochs 20
Goal loss weight 0 or 1
Inverse loss weight 0 or 1

RL Max frams per episode 108K
Update Distributional Q
Dueling True
Support of Q-distribution 51
Discount factor 0.99
Priority exponent 0.5
Priority correction 0.4 → 1
Exploration ϵ-greedy
Training steps 100K
Evaluation trajectories 100
Min replay size for sampling 2000
Replay period every 1 step
Updates per step 2
Multi-step return length 10
Q network: channels 32,64,64
Q network: filter size 8x8, 4x4, 3x3
Q network: stride 4,2,1
Q network: hidden units 256
Non-linearity ReLU
Target network: update period 1

Table 7: SSL specific hyperparameters.

Parameter Setting
BYOL loss weight 1

τ 0.99
Barlow loss weight 0.002

λ 0.0051

Table 8: GRU-latent specific hyperparameters.

Parameter Setting
kl loss weight 0.1
kl balance 0.95
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Table 9: Optimal RL learning rate for different setups. Identified by sweeping through 2.5e−5, 5e−5,
1e−4, 2e−4 and evaluated on games frostbite, assault, gopher, and demon attack.

Encoder Transition Objectives Learning Rate
ResNet-M Conv-det BYOL, goal, inv 2e−4
ResNet-M GRU-det BYOL, goal, inv 2e−4
ResNet-M GRU-latent BYOL, goal, inv 2e−4
ResNet-M GRU-latent Barlow0.7, inv 1e−4
ResNet-M GRU-latent Barlowrand, inv 5e−5
ResNet-L GRU-latent Barlow0.7, inv 5e−5
ResNet-L GRU-latent Barlowrand, inv 1e−4

A.6 Image Augmentation

We use the same image augmentations as used in SGI (Schwarzer et al., 2021b), which itself used the
augmentations in DrQ (Yarats et al., 2021b), in both pretraining and fine-tuning. We specifically
apply random crops (4 pixel padding and 84x84 crops) and image intensity jittering.

A.7 Goal-oriented RL loss

Goal-oriented RL loss is taken directly from SGI (Schwarzer et al., 2021b). This objective trains
a goal-conditional DQN, with rewards specified by proximity to sampled goals. First, a goal g is
sampled to be the state encoding either of the near future in the current trajectory (up to 50 steps in
the future), or, with probability of 20%, of the future state in another trajectory in the current batch.
Then, we add Gaussian noise to obtain the final goal g: g ← αn+ (1− α)g, where α ∼ Uniform(0.5),
and n is a vector sampled from isotropic Gaussian normalized to have length of 1. Then, in order to
obtain the reward of taking action at going from state st to st+1, we first encode the states with
the target encoder ẽt = Enctarget(ot), ẽt + 1 = Enctarget(ot+1). Then, we calculate the reward as:
R(ẽt, ẽt+1) = d(ẽt, g)− d(ẽt+1, g), where d(ẽt, g) = exp

(
2 ẽt·g

∥ẽt∥2·∥g∥2
− 2

)
. We use FiLM (Perez et al.,

2018) to condition the Q-function Q(ot, at, g) on g, and optimize the model using DQN (Mnih et al.,
2015).

B Forward Model Probing

While our principal goal is to demonstrate the correlation between representation probing and offline
RL performances, we also apply the reward probing technique to predictions in order to evaluate the
qualities of transition models under different pretraining setups.

Table 10: Mean reward probing F1 scores for pre-
training setups with different transition models.
Evaluated on 5th and 10th predictions.

Pred Obj Transition Pred 5 Pred 10
BYOL Conv-det 33.1 28.4

GRU-det 33.0 27.4
GRU-latent 33.4 28.9

Barlow0.7 Conv-det 32.0 27.6
GRU-det 30.1 25.0
GRU-latent 39.5 30.2

Table 11: Mean reward probing F1 scores for
pretraining setups with different prediction ob-
jectives. Evaluated on 5th and 10th predictions.

Pred Obj Pred 5 Pred 10
BYOL 33.4 28.9
Barlow0.5 40.2 30.2
Barlow0.7 39.5 30.2
Barlow1 37.4 29.7
Barlowrand 36.8 27.5

In table 10, we show the effects of using different transition models during pretraining on prediction
probing performance. All models are trained with ResNet-M encoder and inverse loss. Goal loss is
also applied to the BYOL models.

In the deterministic setting, the predictions of the GRU model are worse than those of the convolutional
model. The introduction of stochasticity appears to fix the underlying issue for predictions, resulting
in the latent GRU model having the best overall prediction probing performance.
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One possible explanation for Conv-det having better predictions than GRU-det is that the spatial
inductive bias in the convolutional kernels acts as a constraint and helps regularize the predictions
from regressing to the mean. However, this is more effectively solved by the introduction of latent
variables into GRU during training and inference.

In table 11, we show the effects of using different prediction objectives during pretraining on prediction
probing performance. All models are trained with ResNet-M encoder, GRU-latent transition model,
and inverse loss; goal loss is also applied to the BYOL model.

Comparing to the BYOL model, Barlow models generally have higher probing scores for predictions.
We also note that for Barlow models, regularizing the representations towards the predictions (by
setting Barlow Balance < 1) improves the qualities of predictions. This is likely because it makes the
prediction task easier, making it more likely to learn a capable transition model.

This reasoning can also explain why the Barlow model with frozen, random target network achieves
superior probing result for representation (table 2) but worse result for predictions compared to
the other Barlow versions. Predicting a random target representation is likely more difficult than
predicting a learned representation, and this may in turn encourage the model to rely more on
learning a powerful encoder and posterior model, and less on learning an accurate transition model.

C Full RL Results
Table 12: Full RL Results for representative pretraining setups. Setup names are represented
as {encoder}-{transition model}-{ssl losses}. M and L refer to ResNet M and ResNet L, CD is
convolutional model, GD is deterministic GRU, GL is latent GRU, By and Bt refer to Byol and
Barlow, G and I refer to goal and inverse losses.

Amidar Assault Asterix Boxing DemonAtt Frostbite Gopher Seaquest Krull
Random 5.8 222.4 210.0 0.1 152.1 65.2 257.6 68.4 1598.0
Human 1719.5 742.0 8503.3 12.1 1971.0 4334.7 2412.5 42054.7 2665.5
M-CD-ByGI 169.6 693.1 393.1 54.5 458.1 1058.9 1323.4 461.7 5541.4
M-CD-Bt0.7GI 206.1 545.6 500.0 21.5 357.7 518.5 880.5 482.4 4216.0
M-GD-ByGI 204.5 552.6 625.2 51.0 723.5 979.7 1299.2 597.1 5006.3
M-GL-ByGI 170.9 392.0 527.2 49.1 1842.9 541.9 1489.7 609.9 4753.9
M-GL-Bt0.7 97.9 846.0 442.5 53.9 311.5 461.5 731.0 622.1 4176.4
M-GL-Bt0.7I 189.9 861.8 426.4 63.2 1048.8 2020.1 857.6 579.0 5111.4
M-GL-BtrandI 161.8 954.6 569.1 59.6 4373.0 1067.4 1068.8 734.5 5422.6
L-GL-Bt0.7I 173.5 1072.1 540.0 72.6 1143.9 1633.4 1274.1 578.7 5383.4
L-GL-BtrandI 136.3 1273.7 506.5 64.0 4112.8 1163.7 1594.3 653.1 5453.6

D Statistical Hypothesis Testing of Rank Correlation

In Fig. 5, we show the correlations results for both the action and reward predictions. We estimate
Spearman’s rank correlation coefficient (Spearman’s r) between the linear probing performance and
the (interquartile) mean RL human-normalized score (HNS) over 9 Atari games. The reason for
using Spearman’s r instead of the Pearson correlation coefficient is because we are interested in
whether the relative ranking of the models on the linear probing tasks is indicative of the relative
ranking of the same models when RL is trained on top of it. As an example, this allows us to say if
model A out-ranks model B in the reward prediction task, an RL model trained on top of model
A’s representations will likely out-perform an RL model trained on top of model B’s representation.
However, it does not let us predict by how much model A will out-perform model B.

Let d denote the difference in ranking between the linear probing performance and the RL performance,
Spearman’s r (denoted as ρ below) is computed as,

ρ = 1− 6
∑n
i=1 d

2
i

n(n2 − 1) , (1)
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Figure 5: Correlation between the SSL representations’ abilities to linearly predict (Left) presence
of immediate reward and (Right) action, versus RL performance using the same representations,
measured as the interquartile mean of the human-normalized score (HNS) over 9 Atari games. Each
point denotes a separate SSL pretraining method. A linear line of best fit is shown with 95 confidence
interval. We compute Spearman’s rank correlation coefficient (Spearman’s r) and determine its
statistical significance using permutation testing (with n = 50000). Compared to Fig. 1, we added
one extra model which obtained poor probing results to demonstrate that the correlations holds for
a wide range of performance levels.

where di is the difference in ranking for the i-th model, and n is the total number of models we have.

We perform statistical hypothesis testing on ρ with null hypothesis ρ = 0 (no correlation between linear
probing performance and RL performance) and alternative hypothesis ρ > 0 (positive correlation).
The null distribution is constructed nonparametrically using permutation testing: we sample random
orderings of the observed linear probing performance and RL performance independently and compute
ρ. This is repeated 50,000 times to generate the null distribution (which is centered at ρ = 0 as we
do not expect randomly ordered values to be correlated). We then compare our observed ρ to this
distribution and perform one-tailed test for the proportion of samples larger than our observed ρ to
report our p-value.

D.1 Rank Correlation on a different dataset
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Figure 6: Reproduction of Fig.5, left, on a different probing dataset (expert trajectories instead of
random ones). The exact values of the F1 scores are different, but the Spearman’s r is the same,
showing that the correlation is insensitive to the probing dataset
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Figure 7: Illustrative examples of 95 confidence interval (CI) of the interquartile mean estimate
(IQM) of the human normalized score (HMS) for different models. The CI shrinks as a function of the
number of independent runs. CI is estimated using 10,000 bootstrapped samples with replacement.
Model names are given below each figure, note the figure colors matches the colors in Fig. ??. The
top figure is the same as Fig. 1 (Right). For all cases, the reward prediction F1 score gives us an
accurate low-variance estimate for how the two models rank relative to one another.

In Fig. 1, we explored the correlation between the RL performance and the reward probing task,
where the dataset used for the reward probing was a set of quasi-random trajectories from the DQN
dataset, coming from very beginning of the training run of the DQN agent used to collect the data.
It is natural to ask whether the correlation results we obtain are sensitive to the specific dataset
used. To put this question to the test, we re-run the same reward probing task, this time on the
"expert" dataset, i.e. the last trajectories of the DQN dataset, corresponding to a fully trained agent.
The results are shown in Fig.6. The Spearman’s correlation coefficient that we obtain is the exact
same as the one for the random trajectory dataset (even though the reward statistic are different, see
Table 14), showing that the correlation result is not sensitive to the probing dataset used.

D.2 Confidence Interval of RL performance as a Function of Independent Runs

We further show the confidence interval of the estimated mean RL performance as the number
of independent runs increase. From our total of 10 independent runs each game, we sample with
replacement k ≤ 10 runs (k being number of independent runs we “pretend” to have instead of the
full 10), independently for each game. We can compute the IQM over this sample to get an estimate
for the IQM as if we only have k independent runs. We repeat this process 10,000 times to construct
the 95 confidence interval of the empirical IQM for different k’s. Illustrative examples of how much
this confidence interval shrinks for different pairs of models is shown in Fig. 7.

We observe in Fig. 7 the mean RL performance estimates have CIs that eventually separate with many
independent runs. This is an unbiased but high variance and computationally intensive estimator
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of the true expected RL performance. On the other hand, the reward prediction F1 score is a
computationally cheap, low variance and accurate estimator of the relative model ranks in mean RL
performance. This further corroborates our previous results of positive correlation between reward
prediction F1 score and mean RL performance (Fig. 1).

E Comparison with Domain Specific Probing Benchmarks
Table 13: Comparison of the correlation of domain specific and domain agnostic (reward prediction)
probes with the RL performance.

Spearman’s r p
AtariARI 0.527 0.058
Reward (ours) 0.782 0.003

One of the key advantages of our probing method is that it is domain agnostic, unlike the previously
proposed AtariARI benchmark (Anand et al., 2019) which acquires probing labels through the RAM
state of the emulator, making their method impractical for image-based trajectories.

To better understand how our probing metrics compare with the domain specific ones in terms
of correlations with RL performances, we perform the AtariARI probing benchmarks using our
pretrained encoders on the 4 overlapping games (Boxing, Seaquest, Frostbite, DemonAttack) used
in both works. For AtariARI, we first calculate the average probe F1 scores across categories, then
average this quantity across the games. For reward probing, we apply our own protocol detailed in
section 5.1. For RL performance we use the IQM. We report the correlation between the probing
metrics and RL performances across different models.

Our results are summarized in Table 13. We find that the correlation between the average probing
F1s and RL performances is stronger for our reward probing method. In particular, our probing
method has a significant correlation with RL performances (p < 0.05), while the AtariARI probing
method does not.

F Probing during Training

Figure 8: Average reward probing F1s for two SSL setups during different training epochs. Epoch 0
constitutes an untrained model.

G Game Statistics

We selected a set of 9 representative Atari games due to limited compute. The 9 games were chosen
randomly from a subset of Atari games that had at least 1% of states with non-zero rewards. We
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Figure 9: Left: Spearman’s correlation coefficient between the RL performance on each individual
game and the reward probing F1, plotted as a function of the percentage of rewards observed in this
game. Right: p-values associated with each of the Spearman’s coefficients

further sanity check that the reward percentage does not play a role on the reward probe’s correlation
coefficient or p-value in Section G.2.

G.1 Reward Statistics in Probing Datasets
Table 14: Percentages of positive rewards in checkpoints 1 and 50 of the DQN replay dataset for 9
games. Checkpoint 1 is used for reward probing and checkpoint 50 is used for expert action probing.

Game Ckpt 1 % Ckpt 50 %
Amidar 2.7 5.2
Assault 3.6 6.8
Asterix 5.0 6.0
Boxing 3.5 9.3
DemonAttack 2.1 4.7
Frostbite 4.2 2.9
Gopher 2.8 8.5
Krull 13.2 41.7
Seaquest 1.5 7.5

In table 14, we report the percentage of states that have a non-zero reward in each of the 9 games,
for two different subsets of data:

• Checkpoint 1, which correspond to quasi-random trajectories from the beginning of the
training process of DQN. This is the data used for the reward probing in Fig 1.

• Checkpoint 50, which is the last checkpoint of the DQN replay dataset, and corresponds to
the fully trained DQN agent, that we assimilate to an expert agent. This data is used for
action probing, and for reward probing in Fig.6

All the games have a fairly small percentage of positive reward states, and we generally observe a
higher percentage of reward in checkpoint 50, which is expected since the agent is more capable by
then.

G.2 Impact of sparsity on the correlation

In Fig.9, we plot the Spearman’s correlation coefficient between the RL performance on each individual
game and the reward probing F1, as a function of the percentage of reward observed in each game
(see Table 14). We do not observe any particular pattern with respect to the sparsity, suggesting that
the probing task is not very sensitive to the sparsity level of each individual game. Note however
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that, as usual in the Atari benchmark, it is difficult to draw conclusion from any given individual
game, and the statistical significance of our results only emerge when considering the set of games
as a whole. Indeed, only 3 games achieve individual statistical significance at p < 0.01 (Boxing,
Seaquest and Assault), while the other do not obtain statistically significant correlations.

H Limitations

One limitation of the current work is that for the presented probing methods to work one needs
a subset of the data either with known rewards, where ideally rewards are not too sparse, or with
expert actions. If none of the two is available, our method cannot be used. For the reward probing
task, the usefulness of the method also depends on the hardness of the reward prediction itself. If
the prediction task is too easy, for example because there are rewards at every step, or because
the states with rewards are completely different than the ones without (such that even a randomly
initialized model would yield features allowing linear separation between the two types of states),
then the performance of all the models on this task are going to be extremely similar, with the only
differences coming from random noise. In such a case, the performance of the prediction task cannot
be used to accurately rank the quality of the features of each of the models. For future work we also
would like to extend the findings of this paper to more settings, for example different environments.
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Abstract

Generalization poses a significant challenge in Multi-agent Reinforcement Learn-
ing (MARL). The extent to which unseen co-players influence an agent depends
on the agent’s policy and the specific scenario. A quantitative examination of this
relationship sheds light on how to effectively train agents for diverse scenarios. In
this study, we present the Level of Influence (LoI), a metric quantifying the in-
teraction intensity among agents within a given scenario and environment. We
observe that, generally, a more diverse set of co-play agents during training en-
hances the generalization performance of the ego agent; however, this improvement
varies across distinct scenarios and environments. LoI proves effective in predict-
ing these improvement disparities within specific scenarios. Furthermore, we in-
troduce a LoI-guided resource allocation method tailored to train a set of policies
for diverse scenarios under a constrained budget. Our results demonstrate that
strategic resource allocation based on LoI can achieve higher performance than
uniform allocation under the same computation budget. The code is available at:
https://github.com/ThomasChen98/Level-of-Influence.

1 Introduction

Creating agents capable of effectively interacting with other agents, in particular humans, has been
a longstanding challenge (Bard et al., 2020; Dafoe et al., 2020). Agents trained with model-free
reinforcement learning (RL) have shown the potential to reach or surpass human-level performance
through self-play (SP) in both classical discrete board games (Silver et al., 2017; 2018; Zha et al.,
2021) and continuous domains such as Dota (Berner et al., 2019), Starcraft (Vinyals et al., 2019),
and racing (Fuchs et al., 2021). However, SP agents typically undergo training with replicas of
themselves, resulting in limited adaptability and robustness when interacting with previously unseen
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co-players exhibiting different behaviors (Lowe et al., 2020; Bullard et al., 2020; Strouse et al., 2021;
McKee et al., 2022).

One promising solution to improve the policy robustness is diversifying the co-player distribution. It
has been shown that computationally hard problems like chess and go could benefit from diversifying
agents during training (Zahavy et al., 2023). Prior studies introduced and validated methods for
more complex games, such as population-based training (Jaderberg et al., 2019; Carroll et al., 2019;
Jaderberg et al., 2017), league-based training (Vinyals et al., 2019), fictitious self-play (Heinrich et al.,
2015; Strouse et al., 2021), and diversification of agent hyperparameters (Hu et al., 2020; McKee
et al., 2020). However, it is important to note that a trade-off exists in most of these methods, where
enhancing generalization capabilities comes at the cost of increased training resources and time.

Nevertheless, an important question remains: is diversifying the co-player distribution during train-
ing always worthwhile? In practice, various real-world applications require a set of tailored RL
policies for diverse target scenarios (Lowe et al., 2017; Fuchs et al., 2021). Diversifying the co-player
distribution during training in all the target scenarios comes at a high training cost, with the re-
sulting benefits varying across scenarios. In particular, we argue that the benefits of introducing
diverse co-players depend on how intensive the agents interact in the specific scenario. For instance,
consider training autonomous driving agents. Enhanced generalization does not provide substan-
tial advantages on highways as it does in crowded intersections and roundabouts. On highways,
vehicles focus on lane keeping most of the time, involving fewer interactions. In contrast, in round-
abouts and intersections where agents’ trajectories are highly interdependent, the presence of diverse
surrounding agent behaviors has a much more significant impact on the ego agent policy.

Our key insight is that, by quantifying the interaction intensity, we can assess the necessity of diver-
sifying co-player policy distribution when training the ego agent policy as the effects of environmental
variation, and allocate the training resources strategically to maximize the overall advantage.

To this end, we introduce the Level of Influence (LoI), a metric quantifying the interaction intensity
among agents within a given scenario. We propose to quantify the interaction intensity by how much
the ego agent’s reward is affected by the variation of non-ego agents’ behavior. Formally, inspired
by (Jaques et al., 2019), we define LoI as the conditional mutual information (MI) between the ego
agent’s expected reward and the non-ego agent’s policy selection. We validate the effectiveness of
using LoI for cost-efficient generalization by training a set of policies with co-players of different
levels of diversity for groups of scenarios and environments. We find that the LoI metric is highly
correlated with the benefits of having diverse co-player policy distribution on the generalization of
the ego agent within given scenarios, i.e., a higher LoI value indicates that a larger improvement
can be anticipated in the ego agent’s performance when a more diverse set of co-play agents are
encountered during training. Consequently, we design a LoI-guided resource allocation method
to train a set of policies for diverse scenarios under a limited training budget. We compare the
overall performance between the LoI-guided and uniform allocation schemes, showcasing that the
LoI-guided scheme consistently yields higher average performance across a range of game settings.
We summarize the novel contributions of this paper as follows:

1. We propose a novel metric, Level of Influence (LoI), to quantify the interaction among agents
in general multi-agent reinforcement learning problems.

2. We demonstrate that the LoI metric is highly correlated with the benefits of having diverse
co-player distribution on the generalization of the ego agent within given scenarios.

3. We propose a LoI-guided resource allocation method and show that it can achieve a higher
average reward than uniform allocation under the same computation budget.

2 Related Work

Ad-hoc Teamwork. Ad-hoc teamwork (AHT) (Stone et al., 2010), also referred to as zero-shot
coordination (ZSC) (Hu et al., 2020), involves training agents to collaborate with co-players they
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have not encountered before. Early approaches primarily focused on game-theoretic analysis within
matrix games (Stone et al., 2009; Agmon & Stone, 2012). Recently, multi-agent reinforcement learn-
ing (MARL) has enabled ad-hoc teamwork in more intricate grid worlds and continuous domains.
Various works have explored hierarchical social intention (Kleiman-Weiner et al., 2016), social con-
ventions (Shih et al., 2021), shared planning (Ho et al., 2016), and theory of mind (Choudhury et al.,
2019) in this context. In MARL, an agent’s learning is influenced by both other co-players and the
environment (Littman, 1994). However, most of the previously mentioned works do not explicitly
evaluate the impacts of environmental variations. Carroll et al. (Carroll et al., 2019) introduce the
game Overcooked and explicitly showcase that the environment configurations affect the robustness
of the trained agents when teamed with unknown human players. Subsequent research includes
diverse layout generation (Fontaine et al., 2021; McKee et al., 2022) and scalable evaluation (Leibo
et al., 2021). Nonetheless, these works only provide qualitative analyses of different environments
and do not quantitatively measure such effects across scenarios.

Generalization in Multi-agent Reinforcement Learning. In the field of MARL, various at-
tempts have been made to enhance agents’ adaptability to new co-players. Jaderberg et al. (Jader-
berg et al., 2017; 2019) introduced population-based training (PBT) to jointly optimize the perfor-
mance of a population of models. Several variations of PBT include the league-based training that
masters the full game of StarCraft II (Vinyals et al., 2019), the fictitious co-play (FCP) that can reach
human-level performance (Heinrich et al., 2015; Strouse et al., 2021), and heterogeneous populations
training with Social Value Orientation (SVO) (McKee et al., 2020). However, high-performing agents
come at the cost of more expensive training cost. Considering the varying benefits of generalization
across diverse environments, we aim to evaluate if the extra training cost for enhanced generalization
is justified. This area is relatively under-explored in existing research.

Causal Influence. Our work shows a notable connection to Jaques et al. (Jaques et al., 2019),
where a causal influence reward is incorporated as an intrinsic motivation during the training of RL
agents. This reward incentivizes agents to maximize mutual information (MI) between their actions.
The goal of maximizing MI between actions is to encourage more coordinated behavior among the
agents. The causal influence is assessed using counterfactual reasoning (McAllister et al., 2022;
Foerster et al., 2018; Pearl, 2013) where an agent simulates alternate, counterfactual actions that it
could have taken at every time step. In contrast, we measure the mutual information between the
ego agent’s expected reward and the non-ego agent’s policy selection by simulating counterfactual
policies that the non-ego agent would have chosen within given scenarios.

3 Preliminaries

3.1 Multi-agent Markov Decision Process

An n-player partially observable Markov game M (Boutilier, 1996; McKee et al., 2022) is defined by
tupleM = ⟨S,O, {Ai}i∈α, T , {ri}i∈α⟩, where S is the finite set of states, O : S ×{1, . . . , n} 7→ Rd is
the observation function specifying each agent’s d-dimensional view on the state space followed by
their joint observation o⃗ = (o1, . . . , on). Let α be a finite set of agents, Ai is a finite set of discrete
actions available to agent i. The joint action is defined as a⃗ = (a1, . . . , an) ∈ A1 × · · · × An. The
stochastic transition function T : S × A1 × · · · × An 7→ ∆(S) determines the discrete probability
distribution over the next state given the current state and the joint action. Each agent i receives
its real-valued reward defined as ri : S ×A1 × · · · × An 7→ R.

We assume that each agent learns their policy in a decentralized manner (i.e., independently learns a
policy πi(ai|oi) based on its own observation oi by optimizing its own individual reward ri) without
direct communication. We use π⃗ = (π1, . . . , πn) to denote the joint policy. Agent i optimizes for a
policy that maximizes the long-term γ-discounted payoff (McKee et al., 2022) defined as

Vπi
(s0) = E

[ ∞∑

t=0
γtri(st, a⃗t)|⃗at ∼ π⃗t, st+1 ∼ T (st, a⃗t)

]
, (1)
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where γ denotes the discount factor discounting future rewards.

Algorithm 1 Level of Influence calculation
Input: # Alice policies a, # Bob policies b, # Alice checkpoints per policy m, # Bob checkpoints

per policy n, Alice sampling probability Pφ, Bob sampling probability Pϑ, # game per Alice-Bob
pair g

1: Train a Alice policies with SP and save checkpoints pool Φi

2: Train b Bob policies with SP and save checkpoints pool Θj

3: Initialize set of index I ← {}
4: for i=1:a do
5: Sample m Alice checkpoints ϕi,k ∼ Φi with Pφ

6: for k=1:m do
7: for j=1:b do
8: Sample n Bob checkpoints θj,l ∼ Θj with Pϑ

9: Initialize set of distribution P ← {}
10: for l=1:n do
11: PRi,k|ϑ=θj,l, φ=ϕi,k

← Distribution(ϕi,k, θj,l, g)
12: P ← P ∪ PRi,k|ϑ=θj,l, φ=ϕi,k

13: end for
14: PRi,k|φ=ϕi,k

←Marginal_Distribution(P, Pϑ) ▷ Equation 3
15: Ii,j,k ←Mutual_Information(PRi,k|φ=ϕi,k

, P) ▷ Equation 4d
16: I ← I ∪ Ii,j,k

17: end for
18: end for
19: end for
20: Ī ← Average(I)
Output: Ī
21: function Distribution(ϕ, θ, g)
22: Initialize set of reward R ← {}
23: for i=1:g do
24: Game between ϕ and θ to collect reward r
25: R ← R∪ r
26: end for
27: PR|ϑ=θ,φ=ϕ ← Histogram(R)
28: return PR|ϑ=θ,φ=ϕ

29: end function

3.2 Multi-agent Reinforcement Learning

Self-play. Self-play (SP) is an online evolutionary algorithm in which agents learn by playing against
duplicates of themselves. Policies trained via SP have succeeded in a variety of environments and
game settings (Silver et al., 2018; Vinyals et al., 2019; Berner et al., 2019; Zha et al., 2021). In
the SP training, all the agents are initialized with random policies, and we keep updating the ego
agent’s policy while fixing other agents’ policies. Throughout the training phase, the policies of
the ego agent are stored as checkpoints periodically. Subsequently, following each checkpoint save,
all non-ego agents adopt the recently saved checkpoint as their updated policies. (i.e., all non-ego
agents become the latest duplicates of the ego agent). One major drawback of SP is that the learning
agent can not generalize well to new partners deviating from its own policy distribution (Strouse
et al., 2021; Bullard et al., 2020; 2021; Lowe et al., 2020), as agents only learn how to collaborate
with themselves during training.

Population-play. Population-play (PP), on the other hand, keeps a population of agents training
in parallel (Jaderberg et al., 2017). The environment and its agents are initialized with p different
random seeds. A population of p policies is then trained from the p distinct initialization through
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interacting with each other. Specifically, instead of loading the recently saved checkpoints from
the ego agent’s own training history, the non-ego agents are randomly selected from the remaining
p−1 trained policies’ latest checkpoints. By mutating the non-ego agents across the population, the
trained PP agents acquire better generalization capabilities than SP (Jaderberg et al., 2017; Carroll
et al., 2019; Strouse et al., 2021; McKee et al., 2022).

Training Algorithm. In MARL, agents’ policies are parameterized by neural network models and
can be trained with various deep RL algorithms. In our case, we use Proximal Policy Optimization
(PPO) (Schulman et al., 2017) for model training.

4 Methodology

We aim to study the potential impact of the diversity of co-play agents during training on the
generalization performance as the effects of environmental variation. In MARL, the performance
of a policy is measured by its expected reward when pairing with different co-players, which is
determined by the reward design (i.e., payoff matrix). We refer to games that have distinct reward
designs as environments. Under the same reward design, one can create different variations of the
game by changing the map layout (e.g., size, shape, obstacle locations, etc.). We refer to the games
with distinct map layouts within the same environment as scenarios. We hypothesize that enhanced
generalization yields varied levels of performance improvements for the agent in different scenarios.
Intuitively, this is because agents in different scenarios have different interaction intensities, and the
generalization performance, as measured by the expected reward, depends greatly on the interaction
pattern and frequency. Therefore, we aim to find a metric that quantifies the interaction between
agents and examine it as an indicator of the potential generalization improvement by having a more
diverse set of co-player policies during training.

4.1 Level of Influence

In order to quantitatively describe the interaction intensity between each agent in a certain scenario
as its intrinsic property, we take inspiration from (Jaques et al., 2019) and define a new metric
named Level of Influence (LoI). For simplicity, consider a symmetric game with two agents named
Alice and Bob. Alice is the algorithm-controlled agent (i.e., ego agent), and Bob can be another
algorithm-controlled agent with an unknown policy or human player (i.e., non-ego agent). We would
like to quantify the expected impact of Bob’s behavior on Alice’s performance within this scenario.

Suppose Alice and Bob are algorithm-controlled agents with policy ϕ ∈ Φ and θ ∈ Θ, respectively,
where Φ is a policy class of size m and Θ is a policy class of size n. To account for the variations
in the agents’ behaviors, we assume Alice and Bob’s policies are sampled from two distributions
Pφ(ϕ) = P[φ = ϕ] and Pϑ(θ) = P[ϑ = θ] respectively. Let r ∈ R denote the total reward Alice
receives when paired with Bob. Under the two-agent game setting, Alice’s reward is affected by
both agents’ policy choices, and the conditional reward distribution of Alice given Alice’s policy
φ = ϕ and Bob’s policy ϑ = θ can be represented as

PR|ϑ,φ(r|θ, ϕ) = P[R = r|ϑ = θ, φ = ϕ]. (2)

We can then get Alice’s marginal reward distribution as

PR|φ(r|ϕ) =
∑

θ∈Θ
PR,ϑ|φ(r, θ|ϕ) =

∑

θ∈Θ
PR|ϑ,φ(r|θ, ϕ)Pϑ|φ(θ|ϕ). (3)

We propose to measure the intensity of interaction between the two agents with the discrepancy be-
tween the marginal reward distribution and the conditional reward distribution Of Alice. Intuitively,
we want the LoI to measure the degree to which Alice’s reward distribution changes induced by Bob’s
policy choice, given Alice’s own policy choice. Therefore, the LoI is defined as the conditional mutual
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information of Alice’s reward and Bob’s policy with respect to Alice’s policy:

I(R; ϑ|φ) = Eφ

[
DKL

(
PR,ϑ|φ∥PR|φPϑ|φ

)]
(4a)

=
∑

ϕ∈Φ
Pφ(ϕ)DKL

(
PR,ϑ|φ=ϕ∥PR|φ=ϕPϑ|φ=ϕ

)
(4b)

=
∑

ϕ∈Φ
Pφ(ϕ)Eϑ

[
DKL

(
PR|ϑ,φ=ϕ∥PR|φ=ϕ

)]
(4c)

=
∑

ϕ∈Φ
Pφ(ϕ)

∑

θ∈Θ
Pϑ(θ)DKL

(
PR|ϑ=θ,φ=ϕ∥PR|φ=ϕ

)
. (4d)

It is worth noting that when I(R; ϑ|φ) = 0, Alice’s total reward will not be affected by Bob’s policy
choice at all under the given scenario, thus there is little value for training Alice’s policy with diverse
opponent’s policy. The higher this value becomes, the more significant impact Bob’s policy will have
on Alice’s expected reward; consequently, encountering a more diverse Bob’s policy when training
Alice’s policy can help improve performance when paired with unseen partners and more training
budget is well justified.

4.2 Approximation

To calculate the LoI following Equation 4d, we need to model the policy distribution of each agent,
Pφ(ϕ) and Pϑ(θ), for a given scenario. Ideally, Pϑ(θ) should resemble the group of agents the trained
agent aims to interact with. However, at the training stage, we are not aware of who the trained
agent will interact with in the inference time. To this end, we propose to model Pφ(ϕ) and Pϑ(θ)
with trained SP policies. Training a convergent SP policy gives us a pool of checkpoints, including
the early-, middle-, and late-stage generations. They resemble a diverse group of agents with various
skill levels and collaborating patterns, so that we can define an informative LoI metric with a small
amount of computational resources. In practice, we train a + b SP policies with distinct random
seeds, choose a of them as Alice’s policies, and the rest b policies as Bob’s policies, randomly. We
choose m checkpoints from the late stage of each Alice policy as a group of Alice with slightly
different skills and choose n checkpoints from all stages of each Bob policy as samples of Bob’s
policy distribution. We summarize our LoI calculation in Algorithm 1.

5 Environments

We adopt DeepMind’s Melting Pot environment (Agapiou et al., 2022) for evaluation. Melting Pot
is a MARL environment with different substrates (i.e., physical environment) of zero-sum, shared-
reward, and general-sum games. We choose the two-agent substrate named “⋆ in the Matrix,” whose
mechanism is introduced in (Vezhnevets et al., 2019). In this game, two agents can move around
the map, collect K different resources, and fire “interaction beams.” Each agent has its inventory
ρ ∈ RK to track the number of resources picked up since the last re-spawn, i.e., ρi denotes the
number of the ith type of resources in its inventory. The agent’s inventory is only visible to itself.

An interaction occurs whenever one agent zaps the other agent with their interaction beam. The
interaction is then resolved by a matrix game with the payoff matrix A describing the reward
corresponding to the pure strategies of the matrix game available to each agent. Each kind of
resource maps one-to-one to each pure strategy. During the interaction, each agent executes a mixed
strategy depending on the resources they picked up before the interaction. In particular, an agent
with inventory ρ plays the mixed strategy with weights ν = (ν1, . . . , νK), where νi = ρi/(

∑K
j=1 ρj).

Intuitively, the more resources of a certain kind are picked up by an agent, the more likely this agent
executes the corresponding strategy of that kind of resource. Formally, during the interaction, a pure
strategy is sampled from each player’s mixed strategy distribution defined by ν. We represent the
sampled strategies of the row and column players as two one-hot vectors, denoted by rrow, rcol ∈ RK ,
respectively. Afterward, the rewards that the row and column players obtain from the interaction,
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Chicken Pure Prisoners Stag
Coordination Dilemma Hunt

(
3 2
5 0

) (
1 0
0 1

) (
3 0
5 1

) (
4 0
2 2

)

Table 1: Payoff matrices Arow of the two-player ⋆ in the Matrix game.

(a) Small (b) Medium (c) Large (d) Obstacle

Figure 1: We investigate the influence between agents under ⋆ in the Matrix game setting across
four distinct 2-player scenarios: (a) Small, (b) Medium, (c) Large, and (d) Obstacle. Brown hollow
stars denote the random spawn spots for both agents. Single-color blocks (cyan and red) denote the
fixed resource, and mixed-color blocks denote the random resource, which can be changed during
each initialization.

denoted by rrow and rcol respectively, are assigned via

rrow = ν⊤
rowArowνcol, rcol = ν⊤

rowAcolνcol. (5)

After the interaction, both agents will re-spawn after 5 steps. Each game lasts for 2000 steps.

By changing the underlying payoff matrix, we can change the game property of the substrate. We
define four different environments with various game properties, namely Chicken, Pure Coordination,
Prisoners Dilemma, and Stag Hunt (Agapiou et al., 2022) with payoff matrices defined in Table 1.
All four environments are symmetric with 2 types of resources (K = 2) and we have Arow = Acol

⊤.

For each environment, we create four different scenarios by changing the size of the map as well as
the layout of the resource and objects inside (see Figure 1). From Small to Obstacle, the map sizes
are 6× 6, 7× 8, 9× 13, and 9× 13, respectively. We anticipate that different map sizes may lead to
varying levels of interaction intensity among agents. The observation window of each agent is 5× 5
square centered at the agent itself, which means agents in Small is able to observe all the resource
at any spawn location.

6 Experiments Design

We design a series of experiments to validate the effectiveness of using LoI for cost-efficient general-
ization and demonstrate a useful application of LoI in guiding resource allocation for cost-efficient
policy training. In particular, we would like to examine the following hypotheses.

Hypothesis 1. LoI is strongly correlated with the benefits of having diverse co-player distribution on
the generalization of the ego agent within given scenarios (Section 6.1).

Hypothesis 2. Under the same computation budget, the set of ego agents trained with LoI-guided
resource allocation can achieve higher average performance than uniform allocation (Section 6.2).

6.1 Validating the Level of Influence

As outlined in Section 4.1, our objective is to utilize LoI to predict the benefits of having diverse
co-player distribution during training on the generalization. To validate this idea, we first evaluate
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the impact of different co-player diversities on generalization performance within different scenarios.
We then calculate the LoI of those scenarios, and find the correlation between the performance
improvement and the LoI conditioned on diversity.

Fixed-Bobs Evaluation. First, we evaluate how different levels of co-player diversity impact the
generalization performance within different scenarios. We train a set of policies with different levels
of co-player diversity that we want to compare across all environment-scenario combinations. We
then assess these trained policies against a set of predetermined agents for evaluation. Specifically,
we train one SP policy for 5M steps and save a new checkpoint every 200K steps. We select four
checkpoints at 1.4M, 2.6M, 3.8M, and 5M steps as a fixed group of policies for evaluation, which we
refer to as “Fixed-Bobs”.

Afterward, we train 5 instances of SP policies with different random seeds (SP), one set of PP
policies with 3 populations (PP3), and one set of PP policies with 5 populations (PP5). All policies
are trained for 10M steps. We choose the final checkpoint of each SP and each population of PP
(i.e., checkpoints at 10M steps) and pair them with the aforementioned Fixed-Bobs. Each game
lasts for 2000 steps and repeats 10 times. We evaluate each training method and report the average
reward for each policy by aggregating results across all 10 games, four Fixed-Bobs policies, and all
populations (or all seeds in the case of SP). To better compare the performance gap between training
methods across different scenarios, we normalize the previous results by dividing each element by
the corresponding reward value from SP of the same environment and scenario.

LoI Calculation. Second, we estimate the LoI value for each scenario and environment following
Algorithm 1. Specifically, we train 1 Alice policy (a = 1) and 5 Bob policies (b = 5) with different
random seeds. We choose 4 late-stage generations at 3.8M, 4.2M, 4.6M, and 5M steps from Alice’s
checkpoint pool (m = 4) and 9 all-stage generations at 0.2M, 0.6M, 1M, 1.4M, 1.8M, 2.6M, 3.4M,
4.2M, and 5M steps from Bob’s checkpoints pools (n = 9) of every policy. To compute the LoI, we
model the policy distribution of Alice and Bob as a uniform distribution defined over their sampled
checkpoints (i.e., Pφ = 1/4 and Pϑ = 1/9). We perform 6 games per Alice-Bob pair (g = 6).

Correlation between LoI and Performance Improvement. We then calculate the average
performance improvement between each training method for each environment and scenario. Sup-
pose the average rewards for SP, PP3, and PP5 are r1, r2, and r3, respectively, then we compute
the average performance improvement δ as

δ = r2 − r1
2 + r3 − r2

2 = r3 − r1
2 . (6)

Last, we find the correlation between the aforementioned LoI and average improvement in four
scenarios within each environment. We apply the Pearson correlation coefficient as the measurement
of linear correlation. Suppose the LoIs of four scenarios on the given environment are Ii and the
corresponding average improvements are δi. Let Ī and δ̄ denote the mean LoI and mean average
improvement over four scenarios, respectively. The correlation coefficient is then calculated as

γ =
∑4

i=1(Ii − Ī)(δi − δ̄)√∑4
i=1(Ii − Ī)2

√∑4
i=1(δi − δ̄)2

. (7)

6.2 Resource Allocation

We now show that we can utilize the proposed LoI for allocating training resource allocation under
a limited computation budget. We would like to train a set of policies for a given environment
(i.e., a given game mechanism and reward design), with each policy tailored to a distinct scenario
while keeping the total computational resource fixed. Without extra information, one may distribute
resources uniformly across all scenarios. If we have access to LoI, which correlates expected perfor-
mance improvement with the additional training expense, we can allocate the resource accordingly,
i.e., training policies with larger populations for scenarios with higher LoI and vice versa.
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Figure 2: Top row: Fixed-Bobs evaluation of agents trained by self-play (SP), population-play p = 3
(PP3), population-play p = 5 (PP5) across four scenarios: Small (S), Medium (M), Large (L), and
Obstacle (O). Each tile is the average over all populations for PP and seeds for SP (5 seeds for
SP), with 10 independent games between each Alice-Bob combination. Bottom row: Normalized
individual reward of ego agents calculated by dividing each row by its first element (SP). Result:
With a growing population, PP gains larger advantages over SP in general. However, the percentage
of increase varies across different scenarios under the same environment, and the overall trend of
improvement varies across different environments.

To demonstrate the proposed allocation strategy, we set a fixed training budget of 120M steps to
train four policies, each handling a specific scenario. In the uniform allocation scenario, we train a
3-population PP policy (PP3) for 10M steps per seed on each scenario, summing up to 120M steps
for all four scenarios. In the resource allocation approach, we calculate the LoI for each scenario (as
outlined in Section 6.1) and devise a heuristic method to allocate resources based on this metric.
By default, we allocate 30M steps for each scenario (equivalent to the cost of training PP3 for 10M
steps) and compute the mean LoI across the four scenarios. Scenarios with LoI greater than one
standard deviation from the mean receive 50M steps (cost of training PP5 for 10M), while those
with LoI less than one standard deviation get 10M steps (cost of training SP for 10M). Adjustments
are made for scenarios with LoI within one standard deviation to maintain the total budget of 120M
steps. For instance, if one scenario uses only 10M steps, the saved 20M steps are reallocated to the
scenario with the highest LoI among the remaining three (see Appendix D for further details). We
apply the Fixed-Bobs evaluation and compare the average normalized rewards (see Section 6.1) over
all four scenarios between uniform allocation and heuristic allocation.

7 Experimental Results

7.1 Validating the Level of Influence

Fixed-Bobs Evaluation. The full results of the Fixed-Bobs evaluation are shown in Figure 2. In
all the environments and scenarios, ego agents’ rewards demonstrate an upward trend as the training
population size increases. Notably, we can regard SP as a specialized PP with a population size of 1.
The absolute reward values differ significantly among diverse environments, strongly influenced by
the unique game properties of each environment and the specific payoff matrix (Figure 2, top row).
It suggests that our scenario design gives rise to an appropriate test bed to validate the effectiveness
of the proposed LoI metric. As the maximum achievable reward varies across different scenarios,
we normalize the individual reward of ego agents according to Section 6.1 to better compare the

1958



RLJ | RLC 2024

Chicken Pure Prisoners Stag
Coordination Dilemma Hunt

Small 1.291 (0.14) 1.117 (0.12) 1.377 (0.11) 1.397 (0.14)
Medium 1.364 (0.09) 1.071 (0.15) 1.385 (0.11) 1.431 (0.13)
Large 1.438 (0.09) 0.976 (0.09) 1.180 (0.09) 1.424 (0.07)

Obstacle 1.227 (0.17) 0.976 (0.18) 1.100 (0.12) 1.063 (0.11)

Table 2: LoI (and standard deviations, reported in parentheses) across four scenarios under four
environments. Values are calculated over one Alice set (m = 4) and five Bob sets (n = 9) of different
seeds, 10 independent games between each Alice-Bob combination. Result: LoI exhibits varying
trends across four specified scenarios in different environments.

Chicken Pure Prisoners Stag
Coordination Dilemma Hunt

Small 1.4130 1.7986 7.0535 5.1652
Medium 3.8312 1.0248 9.4688 8.0993
Large 4.9293 0.9117 3.7931 5.2341

Obstacle 0.0789 0.3020 3.2389 1.9517

Table 3: Average improvement on ego agents’ rewards between SP, PP3, and PP5 under each scenario
and environment. Result: The advantage of PP over SP varies across different scenarios, and the
correlations between scenario and reward increment vary across different environments.

generalization performance between training methods (Figure 2, bottom row). We observe that the
percentage improvement with increasing co-player diversity during training differs for each scenario
within a specific environment, and the overall improvement trend varies across diverse environments.

We perform the Analysis of Variance (ANOVA) (Edwards, 2005) on the results. The ANOVA method
examines whether there are significant differences in means among two or more groups. We report the
F -statistic and a corresponding p-value with a null hypothesis that there is no noteworthy difference
(See Appendix A Table 6). We confirm that changing the population size (i.e., diversity of co-play
agent’s policy distribution) has a statistically significant effect on the generalization performance
within different scenarios across all four environments. But most importantly, the significance of
such effects varies across different scenarios for a given environment.

LoI Calculation. We calculate the mean LoI and standard deviation for each scenario and en-
vironment, as detailed in Section 6.1. The comprehensive results are presented in Table 2, with
the maximum value in each environment highlighted in bold. It exhibits varying trends across four
scenarios in different environments.

Correlation between LoI and Average Improvement. Based on the ego agents’ rewards in
Figure 2, we calculate the average improvements following Section 6.1. The results are presented
in Table 3, with the highest value in each environment emphasized in bold. It is evident that the
trends in each environment align closely with the LoI outcomes depicted in Table 2, which naturally
sets the stage for the correlation analysis discussed in the subsequent section.

We calculate the correlation coefficient as in Section 6.1, and the results are shown in Table 4.
The correlation coefficient ranges from −1 to 1. An absolute value of 1 indicates a perfect linear
relationship between two groups, with all data points falling on a line. The results highlight a strong
positive correlation between the average improvement of PP over SP (increasing population size) and
LoI across all four environments. Consequently, we can utilize LoI as a reference to predict whether
implementing a more resource-intensive training method (e.g., PP with a large population size) will
yield a substantial improvement in generalization over a more cost-effective training method (e.g.,
SP or PP with a small population size) in a given scenario. Note that this correlation is valid within
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Chicken Pure Prisoners Stag
Coordination Dilemma Hunt

Statistic 0.98966 0.86309 0.93888 0.86631

Table 4: Pearson correlation coefficient between average improvement of PP over SP and LoI. Result:
It exhibits a strong correlation between the average improvement of PP over SP and LoI under all
four environments.

Chicken Pure Prisoners Stag
Coordination Dilemma Hunt

Small 30M 50M 30M 30M
Medium 30M 30M 50M 50M
Large 50M 30M 30M 30M

Obstacle 10M 10M 10M 10M

Table 5: Allocated training resource according to the heuristic method introduced in Section 6.2.
Each column adds up to 120M steps.

a specific environment. Comparing two scenarios across different environments is not meaningful in
this context, since the scale of the reward varies across environments.

7.2 Resource Allocation

We utilize the LoI values provided in Table 2 for the heuristic method described in Section 6.2.
The allocated training resources for each scenario are outlined in Table 5. Specifically, 10M, 30M,
and 50M training steps correspond to SP, PP3, and PP5, respectively. The total steps for each
environment sum up to 120M, adhering to the training budget cap. The comparison of Fixed-Bobs
evaluation between uniform allocation and LoI-guided heuristic allocation is depicted in Figure 3.
Notably, the heuristic allocation demonstrates a substantial improvement in the average performance
across all scenarios in the Chicken, Pure Coordination, and Stag Hunt environments.
We apply the two-sample one-tailed t-test (Student, 1908) for statistical analysis. It compares the
means of two independent groups and determines if one is significantly larger than the other. We
provide the t-statistic and a corresponding p-value with a null hypothesis that there is no noteworthy
difference (See Appendix A Table 7). We affirm that LoI-guided heuristic allocation exhibits a
significant advantage over uniform allocation in all scenarios except for the Prisoners Dilemma,
given the same resource budget cap. In conclusion, leveraging LoI enables us to strategically allocate
resources for training a range of policies designed to handle diverse scenarios, resulting in improved
overall performance within the same resource limit.

It’s important to highlight that the earlier discussed heuristic allocation is based on calculating LoI
using checkpoints from 1 Alice policy and 5 Bob policies, with 5M steps per policy. Consequently,
employing this heuristic resource allocation necessitates an additional 30M steps beyond the 120M
steps budget (25% of the total budget). In Appendix C.2, we show that, while augmenting the
number of Bobs used in LoI computation significantly reduces the estimation variance, the proposed
heuristic resource allocation scheme is less sensitive to the estimation noise. We can achieve com-
parable results as shown in Figure 3 with LoI values estimated using only 1 Alice policy and 1 Bob
policy, which requires only 10M extra training steps (8.33% of the total budget). Nevertheless, we
expect the estimation variance of LoI will matter when it comes to guiding resource allocation in
more complex environments or other applications that require a more accurate estimation of LoI.
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Figure 3: Fixed-Bobs evaluation comparison of the set of agents trained with uniformly allocated
resource and LoI-guided heuristic allocation. Error bars correspond to 95% confidence intervals cal-
culated over all populations across all four scenarios with 10 independent games between each Alice-
Bob combination. Result: The set of agents trained with LoI-guided resource allocation achieves
higher overall performance under the same total resource budget in all four different environments.

8 Discussion

In our study, we introduce the Level of Influence (LoI) metric, a measure that quantifies the interac-
tion intensity between agents across varied scenarios in MARL. Our proposed metric can effectively
predict the potential generalization improvement by having a more diverse set of co-player policy
distribution during training. Our results strongly support the strategic allocation of resources for
training a tailored set of policies across diverse scenarios guided by the LoI metric. This approach
consistently yields higher average performance compared to uniform allocation across different en-
vironments with distinct game properties within a limited computation budget.

Limitations and Future Work. Estimating LoI with self-play policies is susceptible to high
variance. LoI essentially gauges the extent to which the policy distribution of Bob influences Alice’s
performance. We need a diverse set of policies (i.e., diverse Bobs) to cover its potential distribution
as much as possible in computing the LoI, while neither self-play nor population-play can guarantee
such diversity to exist under limited training complexity. Thus, a delicate balance emerges between
the expense of LoI estimation and its accuracy. Although we demonstrate that a high variance in LoI
estimation does not necessarily hinder the effectiveness of the proposed resource allocation scheme,
there may exist other downstream applications of LoI that require LoI estimation with substantially
reduced variance. In future work, we are interested in exploring theoretical grounds and practical
algorithms to generate guaranteed diverse self-play policies with minimal computation cost (Rahman
et al., 2023), so that we can accurately compute LoI in a sample-efficient manner.

Moreover, while LoI serves as a valuable metric to quantify the level of interaction within a set of
scenarios in the same environment, directly comparing the numerical values of LoI across scenarios
from different environments is not meaningful. This is because the variation in reward design,
which underpins the conditional mutual information calculation, affects the interpretation of these
numerical values. In future work, we are interested in extending this idea in a broader context of
meta-learning, where cross-environment comparisons are essential. Subsequent work may include
generalizing the LoI into a comprehensive metric with predefined value ranges and thresholds across
more diverse environments.
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Abstract

As Reinforcement Learning is increasingly used in safety-critical systems, it is im-
portant to restrict RL agents to only take safe actions. Shielding is a promising
approach to this task; however, in multi-agent domains, shielding has previously
been restricted to environments where all agents observe the same information.
Most real-world tasks do not satisfy this strong assumption. We discuss the the-
oretical foundations of multi-agent shielding in environments with general partial
observability and develop a novel shielding method which is effective in such do-
mains. Through a series of experiments, we show that agents that use our shielding
method are able to safely and successfully solve a variety of RL tasks, including
tasks in which prior methods cannot be applied.

1 Introduction

Reinforcement learning is gaining popularity as a general method to solve a wide variety of tasks, such
as car racing (Wurman et al., 2022), datacenter cooling (Lazic et al., 2018), and robotic warehouse
operations (Knight, 2020). However, in all of these domains, a series of bad actions by the controller
can lead to catastrophic failure. Reinforcement learning requires extensive exploration in order to
learn a policy that can solve a given task (Sutton and Barto, 2018), and deep RL agents may still
behave unpredictably, even after convergence (Clark and Amodei, 2016). Therefore, the use of RL
without any modifications or external checks would be inappropriate for many potential applications.

In this paper, we focus on shielding, a technique which addresses this issue using ideas from Formal
Methods (Alshiekh et al., 2018; Bloem et al., 2015). While shielding is a promising approach, existing
methods for multi-agent shielding are limited by assumptions on observability—current shielding
methods assume that all controllable agents observe all safety-relevant information (ElSayed-Aly
et al., 2021; Carr et al., 2021), or at least the same safety-relevant information as all other agents
(Melcer et al., 2022); alternatively, they are restricted to specific domains (Althoff and Dolan, 2014),
or provide probabilistic guarantees by modeling the intentions of other agents in the environment
(Nakamura and Bansal, 2023). There does not yet exist, to our knowledge, a shielding method that
can protect against unsafe actions throughout the entire training and execution process in multi-
agent domains with general partial observability; i.e., environments in which each agent may receive
a different observation, the agents cannot communicate with each other, and there may not be any
single agent that observes all safety-relevant information, where. However, such general domains
are exactly the focus of multi-agent reinforcement learning (Gronauer and Diepold, 2022; Albrecht
et al., 2023), as real-world tasks often present arbitrary restrictions on observability.

We first discuss the challenge of multi-agent shielding in general partially observable domains, and
contribute an abstraction to express safety properties in such domains. We then present an algorithm
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for shielding in these domains: We begin by introducing a lightweight algorithm to synthesize a shield
for some instances of partially observable environments and describe certain conditions that cause
this algorithm to fail. Next, we describe an extension to this algorithm that can find a shield in many
of these harder instances, using a novel SAT encoding of the problem for efficiency. Finally, we use
a series of experiments to show that this family of methods correctly prevents safety violations in a
wider variety of environments than prior shielding methods. We also show that in many domains,
decentralized shields accomplish this feat without negatively affecting the task-specific performance
of the agent. We conclude by discussing several further research directions related to this work.
Overall, our method is a significant step toward making multi-agent reinforcement learning methods
safe in realistic partially observable settings.

2 Related Work

Several methods have extended shielding (Alshiekh et al., 2018; Bloem et al., 2015) to partially
observable single-agent domains. Mazzi et al. (2021) use expert human knowledge to avoid unsafe
selections within the POMCP algorithm (Silver and Veness, 2010). Carr et al. (2022); Junges et al.
(2021) both describe belief support-based methods for shielding in such environments; i.e., methods
that track the set of possible ground truth states. However, these methods assume a single observer,
and have no means for coordinating actions among multiple agents to collaboratively enforce safety.

Alternatively, shielding has been extended to multi-agent environments, both with communication
(ElSayed-Aly et al., 2021) and without communication (Melcer et al., 2022). However, these methods
don’t allow for general partial observability—all agents are assumed to observe the same safety-
relevant information. There have been early attempts to extend shielding into partially observable
multi-agent domains; for example, two-player one-sided POSGs (Carr et al., 2021). However, this
method relies on several strong assumptions; for example, one agent must be able to observe all
safety-relevant information.

Hsu et al. (2023) presents a survey of methods for safety-critical control, placing a variety of meth-
ods such as model-predictive shielding (Bastani, 2020) and control-barrier functions (Wieland and
Allgöwer, 2007) into a single unified framework. This survey includes methods for agents to stay
safe when interacting with humans or other agents, by modeling their behavior and expected actions
(Nakamura and Bansal, 2023). In contrast, our method creates a decentralized shield for the whole
system; we synthesize a specific protocol with the assumption that all agents follow it. The survey
also discusses methods for enforcing the safety of multi-agent systems in specific domains (Althoff
and Dolan, 2014); in contrast, our method is a general framework for any environment a model is
available for.

3 Preliminaries

For set A, we use 2A to denote the powerset of A. The Cartesian product of two sets A1, A2, denoted
as A1 × A2, is the set {(a1, a2)|a1 ∈ A1 ∧ a2 ∈ A2}.

3.1 Environments

A reinforcement learning environment may be complex: it may have an infinite state space, a
complex stochastic transition structure, and a reward function which is irrelevant for safe operation.
Therefore, shielding works utilize abstractions of the environment—typically finite-state transition
systems—taking as input a safety specification over this abstraction (Alshiekh et al., 2018; ElSayed-
Aly et al., 2021; Melcer et al., 2022).

We use a slightly different definition of an environment compared to prior works in order to better
separate the dynamics of the environment itself from how agents observe and interact with it:
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Definition 1 (Environment). An environment is a non-deterministic finite transition system E =
(Q, Q0,A, δ) where Q is a finite set of states, Q0 ⊆ Q is the set of initial states, A is a finite set of
actions, and δ : (Q × A) → 2Q is the transition function.

We note that δ(q, a) may be empty for some q ∈ Q, a ∈ A—there might be no successor state.

While we will generate a shield that operates over an environment as defined above, the field of
reinforcement learning typically focuses on more complex environments; i.e. those with an infinite
state space or a reward function. For example, it is common to utilize a Dec-POMDP (Goldman and
Zilberstein, 2004) as a very general formalization of the environment, and to develop reinforcement
learning algorithms that operate over any Dec-POMDP. This is not an exclusive decision—shielding
can operate in tandem with a reinforcement learning process in such environments, rather than
replace it. Appendix E gives a definition for Dec-POMDPs, and discusses considerations for creating
a useful abstraction for a given environment. Given a Dec-POMDP, the usual shielding workflow
would be to create an abstracted environment (as given in Definition 1), synthesize a shield over
this abstracted environment, and then train a set of reinforcement learning agents on the Dec-
POMDP, while simulating the abstracted environment in lockstep to avoid taking unsafe actions. All
environments in our evaluations are Dec-POMDPs for which we create an abstraction for shielding.

A run of environment E is a sequence of states and actions q0, a0, q1, a1, . . ., where q0 ∈ Q0, and for
all i, (1) qi ∈ Q, (2) ai ∈ A, and (3) qi+1 ∈ δ(qi, ai). This run visits states q0, q1, . . .. A state is
reachable if there exists some run that visits it; all initial states are reachable by definition.

Action a ∈ A is legal at state q ∈ Q if δ(q, a) ̸= ∅; q is a deadlock if no action is legal at q. An
environment with no reachable deadlock states is deadlock-free. We can model valid terminal states
in a deadlock-free environments by adding self-loop transitions in such states.

3.2 Centralized Shields

Definition 2 (Centralized Shield). Given environment E = (Q, Q0,A, δ), a centralized shield for E
is a function CS : Q → 2A.

For a given state q ∈ Q, CS(q) is the set of actions permissible by the shield at q.

The shielded environment CS(E) is the non-deterministic finite transition system (Q, Q0,A, δCS); i.e.,
E with a modified transition function δCS where for q ∈ Q, a ∈ A, δCS(q, a) = δ(q, a) if a ∈ CS(q),
and δCS(q, a) = ∅ otherwise (making actions prohibited by the shield illegal).

4 Problem Statement

4.1 Decentralized Environments

Existing abstractions for shielding are not expressive enough to describe how an environment is
observed and controlled by many agents, especially where agents may have differing observations.
We introduce the following structure to capture this information:
Definition 3 (Decentralization Setup). Given environment E = (Q, Q0,A, δ), a decentralization
setup for E is a tuple D = (k,A1, . . . ,Ak, Ω1, . . . , Ωk, obs1, . . . , obsk) where k ∈ N is a number of
agents; Ai is an individual action space for each agent i ∈ [1..k] such that A = A1 × . . . ×Ak; Ωi is a
set of possible observations for each agent i ∈ [1..k]; and obsi : Q → 2Ωi is a function for each agent
that defines the nonempty set of possible observations of agent i for a given state.

This formulation assumes that the set of possible observations for a given agent is independent of
other agents’ observations at a given state. This is not a limiting assumption: if agents’ observa-
tions are not independent, the underlying variables in the environment that affect these dependent
observations should be explicitly modeled as part of the state. Note that in a fully observable
environment, ∀i ∈ [1..k], Ωi = Q, and obsi(q) = {q}.
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Definition 4 (Decentralized Shield). Given environment E = (Q, Q0,A, δ) and decentralization
setup D = (k,A1, . . . ,Ak, Ω1, . . . , Ωk, obs1, . . . , obsk) for E, a decentralized shield over E and D is a
tuple DS = (DS1, . . . , DSk) such that DSi : Ωi → 2Ai for all i ∈ [1..k].

A decentralized shield can also be applied to an environment; DS(E) is the transition sys-
tem (Q, Q0,A, δDS)—this is E with the modified transition function δDS where for q ∈ Q, a =
(a1, . . . , ak) ∈ (A1 × . . . × Ak), δDS(q, a) = δ(q, a) when ∀i ∈ [1..k], ai ∈ ⋃

oi∈obsi(q) DSi(oi) and ∅
otherwise. In other words, the shielded environment allows joint action a when all individual shields
DSi allow its component individual actions ai for some possible observation of the current state.

4.2 Decentralized Shield Synthesis

Problem 1 (Decentralized Shield Synthesis). Given a deadlock-free environment E = (Q, Q0,A, δ),
a decentralization setup D = (k,A1, . . . ,Ak, Ω1, . . . , Ωk, obs1, . . . , obsk) for E, and a set of bad states
Qbad ⊆ Q, find, if there exists, a decentralized shield DS = (DS1, . . . , DSk) over E and D such that
(1) all states in Qbad are unreachable in DS(E), and (2) for every reachable state q of DS(E), for
every possible o1 ∈ obs1(q), . . . , ok ∈ obsk(q), it holds that DS1(o1) × . . . × DSk(ok) is a nonempty
subset of the legal actions of E at q; i.e., ∀a ∈ (DS1(o1) × . . . × DSk(ok)), δ(q, a) ̸= ∅.

Condition (1) ensures that the resulting system is safe, as it is impossible for a “bad” state to be
reached in any run. To understand condition (2), consider the alternative where Problem 1 simply
demanded that DS(E) were deadlock-free—this would imply that the set of joint actions allowed by
the decentralized shield may contain some illegal actions, as long as it contains at least one legal
action. This does not work well when the joint action is collectively chosen by many independent
agents. Rather, as written, condition (2) means that each agent i can independently choose an
individual action from DSi, and the joint action is guaranteed to be legal. We must still show that
a shield that satisfies these conditions results in a deadlock-free environment:
Theorem 1. Given a decentralized shield DS that satisfies Problem 1, DS(E) is deadlock-free.

A proof sketch of this theorem is given in Appendix J.1.

4.3 Example

Consider a driverless car scenario with many agents, and a complex reward function based on energy
efficiency and time to reach the destination. While RL may be able to optimize for this reward,
there is no appropriate penalty for a safety violation—it should be “infinitely” high to reflect that
a collision absolutely should not occur no matter the time savings, but this presents a practical
reward scaling problem for a RL agent, and the agent must still experience this reward to learn it.
We create a shield here to enforce a safety constraint, even at the start of training.

For shielding purposes, we create a simpler environment E that only tracks relative agent, pedes-
trian, and obstacle positions, ignoring non-safety-relevant information such as efficiency or passenger
temperature control. The abstracted environment E, and the set of unsafe states Qbad, must be
constructed such that if all states in Qbad are successfully avoided, the underlying environment is not
in an unsafe state (i.e., a collision). The decentralization setup describes how each car is observed
and controlled by individual agents, rather than a centralized controller.

5 Method

Shield synthesis is essentially a controller synthesis problem (Bloem et al., 2015; Ramadge and
Wonham, 1987; Pnueli and Rosner, 1989); decentralized shield synthesis is therefore essentially a
decentralized controller synthesis problem. Such problems are known to be generally undecidable
when agents receive different observations from the environment (Pnueli and Rosner, 1990; Thistle,
2005; Tripakis, 2004). Despite this undecidability, we present an algorithm that successfully syn-
thesizes a decentralized shield in many cases where previous methods, such as those presented in
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ElSayed-Aly et al. (2021) and Melcer et al. (2022), make input assumptions that are too prohibitive.
Our algorithm always terminates; however, as any terminating algorithm for an undecidable problem
must, it sometimes reports failure in cases where a shield may exist.

At a high level, we first synthesize a centralized shield, then decompose it into a decentralized shield.
Problem 2 (Centralized Shield Synthesis). Given a deadlock-free environment E = (Q, Q0,A, δ),
and a set of bad states Qbad ⊆ Q, find, if there exists, a centralized shield CS for E such that (1)
all states in Qbad are unreachable in CS(E), and (2) for every reachable state q of CS(E), CS(q) is
nonempty and contains only legal actions at q; i.e., ∀a ∈ CS(q), δ(q, a) ̸= ∅.

Existing methods solve the centralized shield synthesis problem though a simple fixpoint-finding
process (Bloem et al., 2015; ElSayed-Aly et al., 2021). The resulting centralized shields have the
property that they do not disallow any actions which do not absolutely need to be disallowed. The
cited methods define an environment slightly differently from each other, and from how we define an
environment; we detail the adaptation of these methods to our setting in Algorithm 2 (Appendix).
Problem 3 (Shield Decomposition). Given an environment E = (Q, Q0,A, δ), a centralized
shield CS for E that satisfies the conditions from Problem 2, and a decentralization setup D =
(k,A1, . . . ,Ak, Ω1, . . . , Ωk, obs1, . . . , obsk) for E, find a decentralized shield DS = (DS1, . . . , DSk) over
E and D such that for all reachable q ∈ Q, ∀o1 ∈ obs1(q), . . . , ∀ok ∈ obsk(q), DS1(o1) × . . . × DSk(ok)
is a non-empty subset of CS(q).

Theorem 2. A decentralized shield DS that satisfies the requirements of Problem 3 also satisfies the
requirements of Problem 1.

A proof sketch of this theorem is given in Appendix J.2.

5.1 A Naive Algorithm for Centralized Shield Decomposition

One potential solution to Problem 3 is as follows. Given a centralized shield CS for environment
E = (Q, Q0,A, δ) and decentralization setup D = (k,A1, . . . ,Ak, Ω1, . . . , Ωk, obs1, . . . , obsk), we first
find, for each state q ∈ Q, a sequence of sets of individual actions Aq

1 ⊆ A1, . . . , Aq
k ⊆ Ak, such

that (Aq
1 × . . . × Aq

k) ⊆ CS(q). We refer to such a sequence of sets as a state-decentralization for
state q. Such a state-decentralization always exists for any reachable state: as CS(q) is nonempty
by assumption, we can choose any element a = (a1, . . . , ak) ∈ CS(q), and set Aq

i = {ai} for all i.

Second, for each agent i, we define the function Ri : Ωi → 2Q where Ri(oi) = {q ∈ Q|oi ∈ obsi(q)};
i.e., the set of states where agent i may encounter observation oi. We construct a decentralized
shield DS = (DS1, . . . , DSk) where DSi(oi) =

⋂
r∈Ri(oi) Ar

i .

Finally, we check that DSi(oi) ̸= ∅ for every i ∈ [1..k] and oi ∈ Ωi. If this holds, the algorithm has
finished: for every state q and observation o1 ∈ obs1(q), . . . , ok ∈ obsk(q), (

⋂
r∈R1(o1) Ar

1) × . . . ×
(
⋂

r∈Rk(ok) Ar
k) is trivially a subset of Aq

1 × . . . × Aq
k, which itself is, by definition, a subset of CS(q).

Otherwise, the algorithm reports failure; the chosen state-decentralizations result in a deadlock. We
name this process the naive algorithm, detailed in Algorithms 3 and 4 (Appendix).

This algorithm may be improved by restricting its consideration to maximally permissive state-
decentralizations; i.e., sets of actions Aq

1 ⊆ Ai, . . . , Aq
k ⊆ Ak for which (Aq

1 × . . . × Aq
k) ⊆ CS(q),

but ∄i ∈ [1..k], ai ∈ Ai where ai /∈ Aq
i and (Aq

1 × . . . Aq
i ∪ {ai} . . . × Aq

k) ⊆ CS(q)—in other words,
state-decentralizations where no individual actions may be added while retaining safety. If there
exists any q such that Aq = (Aq

1, . . . , Aq
k), and shield decomposition succeeds, there exists a safe

maximally permissive state-decentralization A′q = (A′q
1, . . . , A′q

k) where shield decomposition would
succeed if we replace Aq with A′q—∀i ∈ [1..k], A′q

i ⊇ Aq
i . Algorithm 6 (Appendix) describes how to

compute the set of maximally permissive state-decentralizations MPDCS(q) for a given state q ∈ Q.
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Algorithm 1 Shielded Training Overview
1: Input
2: E = (Q, Q0,A, δ); // Environment
3: D = (k,A1, . . . ,Ak, Ω1, . . . , Ωk, obs1, . . . , obsk) // Decentralization Setup
4: Qbad : 2Q // A set of unsafe states
5: rp : R− // Penalty reward
6: M // RL environment with agents [1..k], actions A1, . . . ,Ak, observations Ω1, . . . , Ωk

7: πi : (Ωi × Ai)∗ × Ωi → Ai; // Initial policies for each i ∈ [1..k]
8: procedure TrainWithShield(E,D, Qbad, M, (π1, . . . , πk), rp)
9: CS := SynthCShield(E, Qbad) // Appendix, Algorithm 2

10: (DS1, . . . , DSk) := DecomposeCShield(E,D, CS) // Appendix, Algorithm 3
11: while πi not converged, in parallel for each i ∈ [1..k] do // Agents act independently
12: oi := Initial observation
13: hi := (oi)
14: while Episode not terminated do
15: ai := πi(h)
16: safe := DSi(oi) // oi may be abstracted before being passed to DSi

17: if ai ∈ safe then
18: ri, oi := Reward, observation after ai in M // Joint action is (a1, . . . , ak)
19: h′

i := hi + (ai, oi)
20: Train πi with (hi, ai, ri, h′

i)
21: else
22: a′

i := Arbitrary element of safe
23: ri, oi := Reward, obs after a′

i in M
24: h′

i := hi + (a′
i, oi)

25: Train πi with (hi, a′
i, ri, h′

i) or (hi, ai, ri + rp, hi + (ai, oi)) with probability 0.5
26: end if
27: h := h′

28: end while
29: end while
30: end procedure

5.1.1 Weaknesses of the Naive Algorithm

Despite the improvements from restricting the set of state-decentralizations, the naive algorithm
presented in Section 5.1 has a clear weakness: if the emptiness check fails, the algorithm has failed
to synthesize a decentralized shield.

For example, consider a simple environment with two agents; each agent has two actions, a0 and a1.
In state s0, both agents must select the same action; in s1, the agents must select opposite actions.
Agent 1 receives an observation that can distinguish between these cases, but agent 2 does not.

One possible set of maximally permissive state-decentralizations is that agent 1 must always select a0,
and then agent 2 must select a0 or a1 in s1 and s2, respectively. If this set of state-decentralizations
were chosen, the naive algorithm would fail—agent 2 is unable to distinguish between s0 and s1,
but there are no individual actions allowed in both states. There is an alternative set of state-
decentralizations, where agent 2 always selects a0, and then agent 1 must select a0 in state s0, or a1
in s1. With this set of state-decentralizations, shield decomposition succeeds.

However, the number of possible combinations of state-decentralizations grows exponentially with
the state space, rendering a brute-force approach intractable for any non-trivial environment.
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Figure 1: Illustration of the decomposition problem for an environment with a small observation ra-
dius. For each state, there are several possible state-decentralizations (d1

1, d1
2 ∈ MPDCS(q1)); one per

state must be chosen in advance (Aq1 = d1
1 or d1

2). Depending on the chosen state-decentralizations,
there may not be any safe actions available to the agent. Example further described in Appendix C.

5.2 A Comprehensive Constraint-Based Algorithm

To overcome the limitations of the naive algorithm discussed in Section 5.1.1, we introduce a method
to synthesize a decentralized shield by taking advantage of highly efficient SAT solvers.

5.2.1 SAT Solvers

SAT is a well-studied problem, defined as: given a set of boolean variables, and a boolean expression
over these variables, find an assignment to the boolean variables such that the expression’s value is
true, or disprove the existence of such an assignment. This is an NP-complete problem; however,
modern SAT solvers can efficiently solve very large instances of the SAT problem (Malik and Zhang,
2009). We use the Kissat solver (Biere et al., 2020) for all instances of SAT described in this paper.

5.2.2 Encoding Shield Decomposition in SAT

The core of the problem is to choose a specific state-decentralization in MPDCS(q) for every reachable
q ∈ Q (1). If a state-decentralization Aq = (Aq

1, . . . , Aq
k) ∈ MPDCS(q) is chosen, and for some agent

i ∈ [1..k] there exists action ai /∈ Aq
i , this means that agent i is not allowed to take action ai in

state q, so ai should not be a member of
⋃

oi∈obsi(q) DSi(oi), and thus ai should not be a member
of DSi(oi) for any oi ∈ obsi(q) (2). Finally, there must be an action available for every observation
(3). We encode these conditions as the following set of constraints:

∧

q∈Q

⊕

dq∈MP DCS(q)

Aq = dq (1)

∧

q∈Q,dq∈MP DCS(q),i∈[1..k],a∈(Ai\dq [i]),oi∈obsi(q)

Aq = dq =⇒ a /∈ DSi(oi) (2)

∧

i∈[1..k],oi∈Ωi

∨

a∈Ai

a ∈ DSi(oi) (3)

These constraints permit a natural SAT encoding, with one set of variables representing if Aq = dq

for each q ∈ Q, dq ∈ MPDCS(q), and another set of variables representing a ∈ DSi(oi) for each
i ∈ [1..k], oi ∈ Ωi, a ∈ Ai. By construction, if the solver can satisfy the constraints listed above, the
resulting decentralized shield satisfies the requirements of Problem 3. This procedure (referred to
as the SAT-based algorithm) is shown in Algorithms 3 and 5.

6 Experiments

We first replicate environments found in prior multi-agent shielding works (ElSayed-Aly et al., 2021;
Melcer et al., 2022). Gridworld-Collision (Grid-Col), introduced by Melo and Veloso (2009), is
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a 2-agent gridworld with four maps. In Particle-Momentum, agents move with inertia in an open
gridworld, observing either both relative positions and velocities (Particle-P-V), or only relative
positions (Particle-P).

In the above domains, all agents receive identical observations. By contrast, in Nearby-Obs, agents
are only able to observe other agents up to 2 Manhattan-distance units away; when the agents are
farther apart, they are only able to observe their own position. Otherwise, the environment dynamics
are similar to Grid-Col.

Finally, we create Flashlight. In this set of environments, agents can only observe squares which are
directly adjacent, and are forced to move at every step. Each agent is equipped with a flashlight; if
an agent’s light is turned on, agents can observe each other up to a 5-unit radius for one time step.
Afterwards, the flashlight must recharge for several steps, during which attempts to turn it on will
fail. Each agent is able to observe whether its own flashlight is on; if its light is on and the other
agent is not visible, this implies that the other agent is more than five units away. We instantiate
this environment in both 6x6 (Flashlight-6) and 10x10 (Flashlight-10) sizes, with a variety of
recharge times.

In all of our experiments, there exists an underlying Dec-POMDP that assigns rewards; this Dec-
POMDP may be arbitrarily complex. For example, in the Flashlight environments, part of the
state space of the Dec-POMDP tracks the current flashlight charge level, in order to determine
if an action to turn the light on will succeed. We also create an abstraction of each of these
environments for shielding purposes; at minimum, these abstractions ignore rewards, but they may
be a more simplified version of the environment. For example, the Flashlight abstractions do not
maintain charge level; rather, the action to turn the flashlight on will nondeterministically fail in the
abstraction. As this abstraction satisfies the properties in Appendix E, it is straightforward to use
this abstraction to enforce safety while running a conventional RL algorithm on the Dec-POMDP.

Extended descriptions of all environments are located in Appendix A.

6.1 Shield Decentralization

We first focus on the ability to synthesize a decentralized shield using a variety of methods. Overall,
while current methods are sufficient for shielding in fully observable and simple partially observable
domains, they fail in more complex environments, leaving only our method for guaranteeing safety.

As shown in Table 1, all methods are able to produce a decentralized shield for fully observable
domains. In order to decompose the centralized shield for Particle-P, we needed to modify our
implementation to account for history; an overview of this modification is given in Appendix D. In
Nearby-Obs, prior shielding methods are unable to calculate a decentralized shield, as the agents
may observe different information. In contrast, both of our algorithms succeed, without even needing
to account for history, as all states which can be confused with each other (agents are > 2 units
apart) permit the same safe actions (agents have no risk of colliding in one step, so all actions are
safe). However, Flashlight-6 and Flashlight-10 contain several states which can be confused with
each other, each with different sets of safe actions; our SAT-based methods are the only ones which
succeed here. An analysis of the runtime of the decentralization algorithm for each environment is
located in Appendix F.

6.2 RL Performance

While the primary purpose of shield synthesis is safety, we would like to ensure that the shields are
permissive as well. The goal of a permissive shield is to facilitate successful training of a reinforcement
learning agent; therefore, rather than creating a metric which measures properties of the shields in
isolation, we train RL agents using each shielding method in a variety of environments, and evaluate
agent performance. We show that agents shielded with our method perform about the same, or
potentially better compared to centralized-shielded or unshielded agents, while our method ensures
safe and decentralized execution in the widest variety of environments.
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Note that shielding is independent of the underlying RL algorithm; we believe that our method can
be applied to centralized training/decentralized execution methods (Oliehoek et al., 2008) such as
MADDPG (Lowe et al., 2017) or QMIX (Rashid et al., 2020) with minimal modification; specific
applications of shielding to state-of-the-art MARL methods are an area for future research.

6.2.1 Training Details

In order to best compare our methods to prior results, we replicate the same agent architecture
and hyperparameters for Grid-Col, Particle-P, and Particle-P-V as in Melcer et al. (2022). As an
overview, Grid-Col uses tabular individual Q-learning. Particle-P and Particle-P-V use Deep Double
Q-learning, without any recurrent layer (Van Hasselt et al., 2016). For Nearby-Obs, Flashlight-6,
and Flashlight-10, we add a recurrent layer. Further details are located in Appendix G.

For all shielded agents, we use post-posed shielding (Alshiekh et al., 2018). Specifically, if an
agent’s chosen action a is considered unsafe by the shield, an arbitrary safe action a′ is given to the
environment, yielding reward r. When training the agent, we randomly (p = 0.5) select whether to
use action a′ and reward r, as actually occurred in the environment, or action a and reward r + rp,
where rp = −10 is a penalty reward modifier, so that the agent will be biased to non-arbitrarily
choose a safe action in the future. For non-recurrent agents, we add both transitions to the replay
buffer. An overview of the shielded training method is given as Algorithm 1.

6.2.2 Results

As shown in Table 1, and in the full results in the Appendix (Tables 5, 6), all agents perform about
equally to each other in Grid-Col and Particle-P-V; however, only the shielded agents have zero
safety violations in all environments. We note that while the SAT-based method finds a decom-
position in a wider variety of environments than the naive method, if both methods succeed
in decomposition, there is no reason to expect the shield produced by one method to
perform better than the other, other than by random chance. This doesn’t necessarily apply
to shields which incorporate history, as the additional information available for such shields allows
for more permissive action selection.

In Particle-P, the shielded agents all achieve better RL performance than the unshielded agents, but
otherwise perform similarly to each other. It is initially surprising that decentralized agents would
perform so close to agents with a centralized shield, as centralization should intuitively lead to much
better performance. One possible explanation is that a decentralized shield consistently permits or
prohibits actions, depending solely on the agent’s own observation. In contrast, a centralized shield
will allow an individual action based on unobserved state information, or actions that other agents
take. Because the RL method itself is fully decentralized in both cases, the changes in allowed actions
due to centralized shielding may appear as nonstationarity in the environment, hurting performance
and balancing out any benefits of extra permissiveness.

In Nearby-Obs, the decentralized-shielded agents perform at least as well as, and potentially better
than, the unshielded agents, without incurring any safety violations; full results are listed in Table 7,
in the Appendix. Additionally, they hold up quite well against agents that use a centralized shield.

More interesting are the Flashlight-6 and Flashlight-10 domains, where agents have no chance of
safe navigation without the flashlight, but can locate the other agent by turning on the flashlight.
While it is possible to synthesize a restrictive shield in this domain that does not include history, the
results in Table 2 show that including history during shield synthesis often improves performance.
Without knowledge of the other agents’ position, any uncoordinated joint action has the potential
for a collision. With history, the agents can guarantee collision-free movement for a short length of
time after the flashlight turns off.

Full results and further discussion are located in the Appendix (Tables 8 and 9).

1973



RLJ | RLC 2024

Table 1: A summary of shield decomposition and RL execution results. Random starts are used for
all evaluations. ‘X’ denotes that shield decentralization fails, or violates input assumptions for a given
method. Otherwise, we report results for the minimum history length where shield decomposition
succeeds (one step for Particle-P, no history for others). Results show average discounted sum of
rewards. We report standard error over 50 seeds. Unshielded agents include average sum of safety
violations over 100 episodes in parentheses.

Domain Melcer et al. (2022) Naive SAT Centralized None (Violations)
Grid-Col 29.4 ± 2.0 29.5 ± 2.4 30.1 ± 2.2 31.1 ± 2.5 28.1 ± 1.9 (0.9)
Particle-P-V 51.3 ± 2.1 53.0 ± 2.4 50.0 ± 1.8 51.7 ± 2.0 48.7 ± 2.0 (0.1)
Particle-P 26.0 ± 3.2 28.8 ± 2.0 27.6 ± 3.1 29.7 ± 3.8 17.0 ± 3.5 (69.2)
Nearby-Obs X 61.1 ± 5.7 45.0 ± 7.3 61.8 ± 5.4 5.6 ± 8.8 (113.4)
Flashlight X X Table 2 Table 2 Table 2

Table 2: Average discounted sum of rewards and standard error in Flashlight-6 and Flashlight-10,
random starting locations, 10 seeds. Prior shielding methods (Melcer et al., 2022) and the naive
decomposition algorithm all fail to synthesize a shield.

Size Recharge SAT–No History SAT–1 Step History Centralized None (Violations)

6x6

3 65.4 ± 1.1 74.9 ± 0.3 84.7 ± 0.3 83.4 ± 0.2 (7.2)
4 53.1 ± 1.2 68.5 ± 0.4 83.7 ± 0.2 82.7 ± 0.7 (5.1)
5 -20.6 ± 14.0 56.0 ± 3.7 81.6 ± 0.9 83.5 ± 0.3 (5.2)
6 -23.8 ± 15.8 30.0 ± 12.7 76.9 ± 7.0 83.5 ± 0.3 (5.5)

10x10 2 -52.4 ± 0.3 57.2 ± 2.4 16.9 ± 14.3 43.2 ± 11.4 (6.9)
3 -109.6 ± 7.4 38.1 ± 3.6 14.5 ± 17.3 18.3 ± 20.3 (9.3)

7 Societal Impact

Shielding can be a powerful tool to prevent mistakes as the result of an incorrectly trained RL agent.
However, as with other shielding works, there is an inherent risk that the creator or user of an RL
system could be overconfident in a shielded RL agent—it is possible for an environment or safety
specification to be incorrectly specified, or for there to be a bug in the implementation of the shield
synthesis tool. Care must be taken when applying shielding to a given problem, and there should
be redundant systems in place for any safety-critical process.

8 Conclusion & Future Work

Communication-free multi-agent shielding was previously limited to domains in which all agents
received enough information to deduce the true environment state, or operated on environments
with significantly different assumptions on environment structure and agent interaction. In this
paper, we developed, to our knowledge, the first decentralized shield synthesis method that allows
agents to enforce a safety specification without communication in environments with general partial
observability—the first shielding method for the general Dec-POMDP case. These shields allow
agents to act safely and are often permissive enough to allow agents to successfully solve difficult
reinforcement learning problems under a shielding protocol.

While our approach can scale by using small abstractions for arbitrarily large MARL environments,
there is still work to be done to improve the scalability and performance of decentralized shielding
when the abstractions themselves grow larger. Symbolic approaches have led to several orders-of-
magnitude increases of supported input sizes for model checking (Clarke et al., 2018); the application
of these methods to shield synthesis and decentralization is a promising area for future work. Addi-
tionally, there are often many different possible shields which are all safe for a given environment,
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but some may be more conducive for learning a successful policy. It may be possible to develop
metrics for measuring the quality of a shield, or to use information observed during RL training to
iteratively improve a shield while maintaining safety.

The methods presented in this paper represent a significant step towards making reinforcement
learning safe in realistic partially observable settings.
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Figure 2: The four maps of Grid-Col and Nearby-Obs. One agent’s goal is the red square, the other
agent’s goal is green. When using the fixed-start environments, agents begin in the opposite agent’s
goal.

A Environment Descriptions

As mentioned in Section 6, Grid-Col is a commonly used domain (Melo and Veloso, 2009; ElSayed-
Aly et al., 2021; Melcer et al., 2022) consisting of two agents, each with five actions—up, left, down,
right, and no-op. There are four maps, shown in Figure 2. Agents receive a +100 reward and the
episode terminates when they both reach the goal, and a -30 penalty for colliding; collisions are
also disallowed by the shield’s safety specification. Otherwise, an agent receives a -10 reward when
hitting a wall, or a -1 reward for all other time steps. The episode also terminates after 500 time
steps without reaching the goal.

Particle-P and Particle-P-V are also pre-existing domains (Melcer et al., 2022) which we replicate for
comparison. In these domains, agents can be up to 10 units away from each other. If they stray any
further, or collide with each other, this is considered a safety violation by the shield; any unshielded
agents which attempt this receive a -30 reward. When agent 1 takes the action corresponding to,
for example, “right”, the relative x velocity increases; if agent 2 takes the same action, the relative
x velocity decreases. Relative velocity is capped at an absolute value of 2 for each axis. The relative
position then changes according to the velocity. The goal is for agent 1 to be 9 units below and to
the right of agent 2. In the fixed-start environment, agent 1 starts 9 units above, and 9 units to the
left of agent 2, with no momentum. In the randomized environment, the agents start at a random
relative position, but still with no momentum. Upon both agents reaching the goal, they receive a
+100 reward; otherwise, a -1 reward at each step.

The Nearby-Obs domain is identical to Grid-Col except for observability. Flashlight-6 and Flashlight-
10 are similar, except that the maps are 6x6 or 10x10 squares respectively, with only exterior walls.
We keep the no-op action available, but denote it as unsafe by the shield, and add a -30 penalty
if an agent attempts it anyways. Independently of the movement choice, the agents also choose
whether to attempt to turn on the flashlight; the agents must still choose to move in a cardinal
direction when attempting the flashlight, or face a safety violation for staying still. Each agent is
able to observe whether its own flashlight is on—if its light is on and the other agent is not visible,
this implies that the other agent is far away. There is no penalty for turning the light on, or for
attempting to do so while it is being recharged.
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B Shield Synthesis

B.1 CFOS Synthesis Algorithms

Algorithm 2 uses a standard fixpoint-finding procedure to obtain a centralized shield from an envi-
ronment and set of bad states. The algorithm will always terminate: QUnsafe cannot grow forever
as it will run out of states in Q to add, at which point the loop will end.

Algorithm 2 Synthesize a Centralized Shield
1: Input
2: E = (Q, Q0,A, δ) // Environment
3: Qbad : 2Q // A set of prohibited states
4: Output
5: CS : Q → 2A // Centralized Shield
6: procedure SynthesizeCShield(E, Qbad)
7: Initialize QUnsafe := Qbad // Bad states, plus any states which inevitably lead to them
8: repeat
9: CS(q) := {a ∈ A|∄q′ ∈ δ(q, a), q′ ∈ QUnsafe} for all q ∈ Q

10: QUnsafe := QUnsafe ∪ {q ∈ Q|CS(q) = ∅}
11: until QUnsafe is stable
12: if ∃q ∈ Q0, CS(q) = ∅ then
13: return fail
14: end if
15: return CS
16: end procedure
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B.2 Shield Decentralization Algorithms

Algorithm 3 describes the shared parts between the naive and SAT-based decentralization methods.
In practice, an implementer of the naive algorithm will simply calculate a single state-decentralization
arbitrarily for each state, rather than calculating all state-decentralizations and then choosing one
arbitrarily, but the two procedures produce identical results.

Algorithm 3 Decompose a Centralized Shield
1: Input
2: E = (Q, Q0,A, δ) // Environment
3: D = (k,A1, . . . ,Ak, Ω1, . . . , Ωk, obs1, . . . , obsk) // Decentralization Setup
4: CS : Q → 2A // Centralized Shield
5: Output
6: DS = (DS1, . . . , DSk) // Decentralized Shield
7: procedure DecomposeCShield(E,D, CS)
8: for q ∈ Q do
9: MPDCS(q) := CalcMPDs(CS(q))

10: end for
11: A := ChooseDecentralizations(E,D, MPDCS) // Several methods; see Algorithms 4, 5
12: for i ∈ [1..k] do
13: ∀oi ∈ Ωi, DSi(oi) = Ai

14: for q ∈ Q, oi ∈ obsi(q) do
15: DSi(oi) := DSi(oi) ∩ Aq

i

16: if DSi(oi) = ∅ then
17: return fail
18: end if
19: end for
20: end for
21: return (DS1, . . . , DSk)
22: end procedure

Algorithm 4 is the naive method for decomposition; this may lead to a set of state-decentralizations
that fail on Algorithm 3, Line 17.

Algorithm 4 Naively choose state-decentralization
1: Input
2: E = (Q, Q0,A, δ) // Environment
3: D = (k,A1, . . . ,Ak, Ω1, . . . , Ωk, obs1, . . . , obsk) // Decentralization Setup
4: MPDCS : Q → 2(2A1 ,...,2Ak ) // Maximally Permissive State-Decentralizations
5: Output
6: Aq = (Aq

1 ⊆ A1, . . . , Aq
k ⊆ Ak), ∀q ∈ Q // Chosen State-Decentralizations

7: procedure ChooseDecentralizationsNaive(E,D, MPDCS)
8: for q ∈ Q do
9: Aq = (Aq

1, . . . , Aq
k) := Choose an arbitrary member of MPDCS(q)

10: end for
11: return Aq, ∀q ∈ Q
12: end procedure
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In contrast, if Algorithm 5 (the SAT-based method) succeeds at finding a set of state-
decentralizations, shield decomposition will succeed when using this set.

Algorithm 5 Choose state-decentralizations using a SAT solver
1: Input
2: E = (Q, Q0,A, δ) // Environment
3: D = (k,A1, . . . ,Ak, Ω1, . . . , Ωk, obs1, . . . , obsk) // Decentralization Setup
4: MPDCS : Q → 2(2A1 ,...,2Ak ) // Maximally Permissive State-Decentralizations
5: Output
6: Aq = (Aq

1 ⊆ A1, . . . , Aq
k ⊆ Ak), ∀q ∈ Q // Chosen State-Decentralizations

7: procedure ChooseDecentralizationsSAT(E,D, MPDCS)
8: C := {} // A set of boolean constraints to be given to the SAT solver
9: ∀i ∈ [1..k], oi ∈ Ωi, ai ∈ Ai, ActionEnabledi,oi,ai

: B // Var representing ai ∈ ⋂
q∈Ri(oi) Aq

i

10: ∀q ∈ Q, dq ∈ MPDCS(q), DecompSelectedq,dq : B // Var representing Aq = dq

11: for i ∈ [1..k], oi ∈ Ωi do
12: C := C ∪ {∨ai∈Ai

ActionEnabledi,oi,ai
} // Some action is always available

13: end for
14: for q ∈ Q do
15: C := C ∪ {⊕dq∈MPDCS(q)DecompSelectedq,dq ) // At least one decomp is chosen
16: for dq ∈ MPDCS(q), i ∈ [1..k], ai ∈ (Ai \ dq

i ) do
17: // If decentralization dq is chosen for state q, the agents’ available actions will be safe
18: C := C ∪ {DecompSelectedq,dq → ¬ActionEnabledi,obsi(q),ai

}
19: end for
20: end for
21: Sol := SATSolver(C)
22: if Sol = UNSAT then
23: return fail
24: else
25: for q ∈ Q do
26: for dq ∈ MPDCS(q) do
27: if Sol(DecompSelectedq,dq ) = ⊤ then // True for one dq (line 15)
28: Aq := dq

29: end if
30: end for
31: end for
32: return Aq, ∀q ∈ Q
33: end if
34: end procedure
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For each environment state, the centralized shield specifies a safe set of joint actions; for exam-
ple, {(a1

1, a2
1), (a1

1, a2
2), (a1

2, a2
1)}. The goal of Algorithm 6 is to find all maximally-permissive state-

decentralizations. In this example, there are exactly two: ({a1
1, a1

2}, {a2
1}) and ({a1

1}, {a2
1, a2

2}). Both
state-decentralizations have the property that the Cartesian product of their components is a sub-
set of the safe set of joint actions, and no individual actions can be added while maintaining that
property.

The classic method to find a single maximally-permissive state-decentralization (Melcer et al., 2022)
starts with one known-safe joint action, and adds all individual actions that it can, while main-
taining the safety property. While this works well to find a single maximally permissive state-
decentralization, it cannot be used to obtain all state-decentralizations for a given state.

In contrast, the following algorithm starts with a state-decentralization that allows every joint action.
It iterates through unsafe joint actions. If a given state-decentralization d = (Aq

1, Aq
2, . . .) allows an

unsafe joint action (a1, a2, . . .), the algorithm splits d into several state-decentralizations {(A1 \
a1, A2, . . .), (A1, A2 \ a2, . . .), . . .}) which are each now safe.

Intuitively, if we let A∗ ⊆ (A \ Asafe) be the set of unsafe actions processed by the main loop
of the algorithm, the algorithm maintains the invariant that D contains all maximally-permissive
state-decentralizations over A \A∗. When a given unsafe action au is processed, for any maximally-
permissive state-decentralization d∗ for A\(A∗ ∪{au}), d∗ will either also be a maximally-permissive
state-decentralization for A \ A∗, or there will exist some d which is a maximally-permissive state-
decentralization for A \ A∗ such that d∗ contains exactly one fewer individual action than d. This
algorithm finds all possible candidate state-decentralizations d∗, and then removes all that are not
maximally-permissive through the subsumption check on line 20. This process iterates until A∗ =
(A \ Asafe), meaning that D contains all maximally-permissive state-decentralizations of Asafe.

The time complexity of this algorithm is difficult to analyze traditionally; while it would seem that
the size of D would grow exponentially as the algorithm proceeds, its size is significantly limited in
practice by the subsumption check on line 20. This algorithm consumes a negligible portion of the
overall runtime for shield decentralization.

Furthermore, the only input of this algorithm is the set of safe joint actions, plus information about
the overall environment—it is not dependent on environment state. Therefore, the output of this
algorithm for any one state can be reused among all states which share the same safe joint actions.
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Algorithm 6 Find all possible maximally-permissive state-decentralizations
1: Input
2: E = (Q, Q0,A, δ) // Environment
3: D = (k,A1, . . . ,Ak, Ω1, . . . , Ωk, obs1, . . . , obsk) // Decentralization Setup
4: Asafe ⊆ A // A set of safe joint actions
5: Output
6: D : 2(2A1 ,...,2Ak ) // A set of maximally-permissive state-decentralizations
7: procedure CalcMPDs(E,D,Asafe)
8: D := {{Ai|i ∈ [1..k]}}
9: for au = (au

1 , . . . , au
k) ∈ (A \ Asafe) do

10: for d = (d1, . . . , dk) ∈ D do
11: if au ∈ (d1 × . . . × dk) then
12: D := D \ d
13: for i ∈ [1..k] do // Create state-decentralizations that omit
14: if di \ {au

i } ≠ ∅ then // a specific unsafe action for each agent
15: D := D ∪ {(d1, . . . , di \ {au

i }, . . . , dk)}
16: end if
17: end for
18: end if
19: end for
20: Remove subsumed elements from D
21: end for
22: return D
23: end procedure

1984



RLJ | RLC 2024

C Extended Algorithmic Example

Consider the environment shown in Figure 1: a 2-agent 3x3 gridworld, where each agent’s observation
radius is limited to directly adjacent and diagonal squares.

The environment E = (Q, Q0,A, δ) is defined as follows: Q is all possible states; for this environment,
this is (Z3)4; i.e., a tuple of four numbers representing the x and y positions of the circle and triangle
from 0 to 2, inclusive. Q0 is the set of initial states; for example, the circle and triangle start at
the top-left and bottom-right respectively. A is the set of joint actions; i.e., all combinations of
movements between the circle and triangle. Finally, δ outputs the set of possible next states, given
the current state and an action. δ may have arbitrary dynamics; for example, when an agent
attempts to leave the boundary, the set of next possible states may include an artificial “sink” state
with a self-loop.

So far, the environment doesn’t have the concept of multiple agents; it is possible for one agent to
control both the circle and triangle, with full observability.

To specify the exact semantics of how agents interact with the environment, we create the decentral-
ization setup D = (2,A1,A2, Ω1, Ω2, obs1, obs2). The “2” specifies that there are two agents in the
environment. A1 and A2 are individual action spaces such that A = A1 × A2; in our example, A1 is
the component of the action which controls the circle, while A2 is the component which controls the
triangle. Ω1 and Ω2 are sets of possible individual observations, while obs1 and obs2 map the state
space onto this set—for example, all states in which the circle is in the top-left and the triangle is
far away are mapped to the same observation.

We assume that these two structures are given, along with the set of unsafe states Qbad. The first
step of the decentralized shield generation process is to produce a centralized shield. If there existed
any states for which no safe action existed, such states would be marked as unsafe themselves. In
this example, no such states exist; the centralized shield is thus very simple—a function that, given
a state, returns the set of joint actions which do not immediately lead to a safety violation. The
centralized shield would be more complex in environments for which there are states that aren’t
unsafe themselves, but will inevitably lead to a safety violation.

The next step is to calculate all sets of safe state-decentralizations for each state. This means a
set of actions for each agent such that, without communication, it is safe for both agents to choose
from this set. For example, when Agent 1 is in the top-left, and Agent 2 is in the top-right, it is
safe for Agent 1 to go right or down as long as Agent 2 always goes down. This is not the only
safe state-decentralization: it would also be safe for Agent 2 to go left or down, if Agent 1 were
to always go down. The important thing is that for this state, one safe state-decentralization is
chosen in advance of any training or execution. An enumeration of all safe state-decentralizations is
performed by Algorithm 6.

Finally, we must choose one of these state-decentralizations for each state. Note that because
multiple states map to the same observation, the safe actions allowed for a given observation is the
intersection of the sets of actions allowed for that agent for the chosen state-decentralization of all
states which may produce that observation. If in one state, the chosen state-decentralization only
allows Agent 1 to go right or down, while in another state, the chosen state-decentralization only
allows Agent 1 to go right, then if Agent 1 cannot tell apart these two states (due to them having the
same observation), it must always go right. In contrast, if the actions allowed do not overlap, then
Agent 1 is stuck with no possible safe action. Our challenge is thus to choose state-decentralizations
for which there is always a safe action available for each agent, among all states which produce the
same observation.

We encode this selection as a SAT problem. In Figure 3, the first two clauses that we add to the
SAT problem relate the chosen state-decentralizations to the actions which are allowed for a given
observation: the second clause states that when Agent 1 is in the top-left, and Agent 2 in the
top-right, then if the first state-decentralization is selected, Agent 1 is not allowed to move right.
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Figure 3: Example SAT constraints for the environment from Figure 1. When a specific state-
decentralization is selected, some actions are disabled for each agent. A state-decentralization must
be selected for each state. Finally, there must be an action which remains enabled for each observa-
tion. Corresponding constraints are also added for other states and observations, and for the blue
triangle agent.

The third and fourth clauses state that a state-decentralization must be selected for every state;
otherwise, the problem is trivially solvable by not selecting any state-decentralization, and allowing
every action. Finally, the fifth clause states that Agent 1 should never be stuck with no safe action
available when it observes that it is in the top-left, and does not know where Agent 2 is. This is
just a small sample of the constraints that would be added to the SAT problem; similar constraints
would be added for other states, observations, and agents. If SAT solver succeeds, it gives us a
listing of safe individual actions that may be taken after any observation; this is the decentralized
shield.
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D Incorporating Bounded History in Shield Synthesis

The methods described in this paper only search for shields that do not take history into account.
However, consider a domain where agents have momentum, but only observe positions, such as
Particle-P. In this domain, |Ri(oi)| is large: for a given position observation, there are many states,
with different velocities, which the agents are unable to distinguish between. Each state in |Ri(oi)|
may have a different set of safe actions. The inclusion of just one step of observation history1 can
disambiguate the states, as there is only one velocity for a given pair of position observations, making
it much more likely that a shield exists.

We accomplish this by augmenting the decentralization setup, as described in Algorithm 7. For
a given history length H, for each q ∈ Q, i ∈ [1..k], the modified observation functions obs′

i(q)
return the set of possible length-(H + 1) observation traces for agent i at state q: H steps of
historical observations, plus the current observation at q. We then simply provide this modified
decentralization setup to the previous algorithm to decompose a shield. Operationally, agents must
track the last H observations they encounter; they then provide this limited-horizon history to the
decentralized shield to compute the set of safe actions. Our algorithm also handles the beginning
of each episode, when agents have not yet encountered H + 1 observations—the possible initial
environment states must be taken into consideration for this.

Algorithm 7 Increasing history length
1: Input
2: E = (Q, Q0,A, δ) // Environment
3: D = (k,A1, . . . ,Ak, Ω1, . . . , Ωk, obs1, . . . , obsk) // Decentralization setup
4: H : N // Number of history steps in resulting decentralization setup
5: Output
6: D′ = (k,A1, . . . ,Ak, Ω′

1, . . . , Ω′
k, obs′

1, . . . , obs′
k)

7: procedure IterateHistory(E,D, H)
8: ∀i ∈ [1..k], q ∈ Q0, Inits0

i (q) := obsi(q) if q ∈ Q0 else ∅ // Possible obs when horizon < H
9: ∀i ∈ [1..k], q ∈ Q, Hist0

i (q) := obsi(q) // Possible observations when horizon ≥ H
10: for t ∈ [1..H] do
11: ∀i ∈ [1..k], q ∈ Q, Initst

i(q) := Histt
i(q) := ∅

12: for q ∈ Q, q′ ∈ ∪a∈Aδ(q, a) do
13: for i ∈ [1..k], o′

i ∈ obsi(q′) do // “Push” history to successor states
14: ∀hi ∈ Initst−1

i (q), Initst
i(q′) := Initst

i(q′) ∪ Concat(hi, o′
i)

15: ∀hi ∈ Histt−1
i (q), Histt

i(q′) := Histt
i(q′) ∪ Concat(hi, o′

i)
16: end for
17: end for
18: end for
19: for i ∈ [1..k] do
20: Ω′

i := Ωi + (Ωi × Ωi) + . . . + (Ωi)H+1 //
∑H

t=0(Ωi)t+1

21: ∀q ∈ Q, obs′
i(q) = (

⋃
t∈[0..(H−1)] Initst

i(q)) ∪ HistH
i (q)

22: end for
23: return (k,A1, . . . ,Ak, Ω′

1, . . . , Ω′
k, obs′

1, . . . , obs′
k)

24: end procedure

1It is possible to also use action history for further disambiguation, but this is often not necessary in practice.
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E Considerations for Creating an Environment Abstraction

For set X, we use ∆(X) to represent a distribution over X, and supp(∆(X)) to represent the support
of that distribution; i.e., values with non-zero probabilities. R represents the set of real numbers.

Consider a common specification of a decentralized environment, such as a Dec-POMDP (Goldman
and Zilberstein, 2004). Note that there are several closely-related versions of this specification; the
same principles apply to other variants.
Definition 5 (Dec-POMDP). A Dec-POMDP is a multi-agent environment defined as a tuple
M = (I = [1..k], S, S0, (A1, . . . , Ak), T, R, (O1, . . . , Ak), (O1, . . . , Ok), γ) where I is a set of agents; S
is a state space; S0 : ∆(S) is the distribution over initial states, Ai is an individual action space for
each agent i ∈ [1..k]; T : S × A1 × . . . × Ak → ∆(S) is a transition probability function, R : S → R
is a reward function, Oi is an individual observation space for each agent i ∈ [1..k], Oi : S → ∆(Oi)
is an individual observation space for each agent i ∈ [1..k], and γ is a discount factor.

There are several ways to relate an environment abstraction to a Dec-POMDP. As a simple starting
point, we say that environment E = (Q, Q0,A, δ) is a sound abstraction of Dec-POMDP M = (I =
[1..k], S, S0, (A1, . . . , Ak), T, R, (O1, . . . , Ak), (O1, . . . , Ok), γ) if A = (A1 × . . . × Ak) and there exists
some state abstraction function ς : S → Q such that ∀s ∈ S, a ∈ A, ∀s′ ∈ supp(T (s, a)), ∀ς(s′) ∈
δ(ς(s), a), and ∀s0 ∈ supp(S0), ς(s0) ∈ Q0.

The decentralization setup D = (k,A1, . . . ,Ak, Ω1, . . . , Ωk, obs1, . . . , obsk) is similarly abstracted.
We require that ∀i ∈ [1..k],Ai = Ai, and that there exists some observation abstraction function
ϱ : Oi → Ωi such that ∀s ∈ S, ∀oi ∈ Oi(s), ϱ(oi) ∈ obsi(ς(s)).

Finally, let SBad ⊂ S be a set of unsafe states. The corresponding set of unsafe states in E is
Qbad = {ς(s)|s ∈ SBad}. It can be seen that if one avoids all states in Qbad in E, then it is trivial to
also avoid states in SBad in M.

If S is small, it is possible to create an environment abstraction more or less automatically by
discarding reward information and exact transition probabilities: E = (Q, Q0,A, δ), with Q = S,
Q0 : supp(S0), A = A1 × . . . × Ak, and δ(q, a) = supp(T (q, a)). Similarly, if Oi are small for all
i ∈ [1..k], the decentralization setup D = (k,A1, . . . ,Ak, Ω1, . . . , Ωk, obs1, . . . , obsk) is straightforward
to create; for all i ∈ [1..k], Ai = Ai, Ωi = Oi, and ∀q ∈ Q, obsi(q) = supp(Oi(q)).

S may be large, or even infinite—in this case, abstraction is usually an art. The user must decide how
much information to discard, leaving enough useful information for the shielding method to work
with, without creating too many unique states and observations in the abstracted environment.

For example, consider a large Minecraft-like environment, with continuous positions and several
different types of objects. If collision prevention is the only safety objective, a practitioner may
discard most information about different objects in the environment, as this will usually only affect
reward, not safety. It is straightforward to discretize agent positions; the primary consideration
is that any given movement in a certain direction may not cause the agent to move into the next
discrete space. This can be handled by ensuring that δ reflects all possible discrete positions that
may be the result of a given transition.

To further reduce the state space, it is possible to use relative agent positions as the state space
for shield synthesis, rather than absolute positions. Relative agent positions greater than a modest
distance from each other do not need to be enumerated; the state space can just include one state
to represent that the agents are distant from each other. For example, we might include one state
to represent all cases in which agents are at least 10 units of distance from each other; this one state
would then include nondeterministic transitions to all states in which agents are 8 or 9 units from
each other.

Of course, it is possible to over-abstract an environment. If, for example, we create one abstracted
state to represent all states in which agents are 2 units or more from each other, our procedure may
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not be able to find a shield—it would be necessary to further refine the abstraction. Methods to
automatically perform abstraction creation and refinement are an area for future work.

While this formalism is a simple way to represent an abstraction of a Dec-POMDP, it is not the only
useful, or the only correct way. For example, many prior works rely on a trace equivalence property,
rather than a state and observation abstraction property (Alshiekh et al., 2018; ElSayed-Aly et al.,
2021). It is even possible that a state abstraction which isn’t strictly correct can still be useful; if the
goal is merely to reduce the number of safety violations, or to eliminate only a subclass of violations,
an approximate abstraction is acceptable, and our decentralization method will still work.
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F Algorithm Runtime

Our algorithms have real-world performance that is significantly different from their worst-
case performance, meaning that a traditional asymptotic complexity analysis is not reflec-
tive of the realistic algorithmic runtime. For example, the SAT-based algorithm produces∑k

i=1|Ωi|×|Ai|+
∑

q∈Q|MPDCS(q)| variables that are given to the solver. This would imply an ob-

scene worst-case runtime of O(2
∑k

i=1
|Ωi|×|Ai|+

∑
q∈Q

|MPDCS(q)|); the algorithm would never terminate
except for the most trivial of examples.

While the solver does consume a significant amount of time for more complex examples, there are a
number of factors that we believe lead to a generally low runtime, aside from the general advancement
in SAT solvers over the past several decades—for example, many of the clauses we add to the solver
contain only one or two variables; most SAT solving algorithms handle these cases very efficiently.
Similarly, a strict worst-case complexity analysis would add a factor of

∑k
i=1|Ωi| to many of the

algorithms’ runtimes. While this factor is technically possible if every state had O(|Ωi|) possible
observations for each i ∈ [1..k] on average, this is not usually the case for real-world environments
and decentralization setups.

We therefore focus on algorithm runtime, as presented in Table 3.

Table 3: Time required for the decentralization process itself, followed by total time taken in disk
access, serialization, and deserialization. All times are measured in seconds, and measured on a M1
Max Macbook Pro. “X” represents that shield decentralization completes, but results in failure, for
the selected environment and decentralization method. “-” indicates that a given shield decentral-
ization method was not attempted for this environment. Note that performance optimization was
done on a best-effort basis; these times are for shield decentralization, but these times are often
dwarfed by the runtime of currently existing centralized synthesis tools.

Domain Naive (0 History) Naive (1 History) SAT (0 History) SAT (1 History) SAT (2 History)

Grid-Col 0.3, 0.6 26.9, 2.1 0.8, 1.1 63.6, 2.0 -
Particle-P X 1.3, 0.1 X 2.4, 0.1 -
Particle-P-V 0.1, 0.1 1.6, 0.1 0.1, 0.1 2.9, 0.1 -
Nearby-Obs 0.3, 0.6 23.8, 0.7 0.6, 0.6 55.5, 0.7 -
Flashlight-6 X X <0.1, <0.1 3.0, 0.1 273, 2.2
Flashlight-10 X X 0.6, 0.4 52.9, 0.7 -

We can also compare the runtimes to the number of variables that are produced during the SAT-
based decentralization process. There are two families of variables, we track numbers of each of
these separately. The totals are listed in Table 4.

Table 4: Number of SAT variables produced by our method

Environment |Q| History a ∈ DSi(oi) Aq = dq Total
Length (

∑
i∈[1..k]|Ωi|×|Ai|) (

∑
q∈Q|MPDCS(q)|) Variables

Grid-Col 52670 0 526700 55384 582084
1 12128840 1284224 13413064

Particle-P-V 7824 0 78240 11180 89420
1 645360 93832 739192

Particle-P 7824 0 3600 11180 14780
1 81840 11796 93636

Flashlight (6x6) 2400
0 11250 3856 15106
1 388970 214020 602990
2 13628090 12213716 25841806

Flashlight (10x10) 39600 0 80800 46496 127296
1 2904920 2858920 5763840
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G Additional Training Details

We replicate the hyperparameters from Melcer et al. (2022) as closely as possible. In Grid-Col, we use
tabular individual Q-learning with γ = 0.9. We use ϵ-greedy action selection with ϵ annealed from
1 to 0 over 2.5 million time steps during training, and ϵ = 0 during evaluation. We use 50 random
seeds. Note that our methodology diverges from ElSayed-Aly et al. (2021); Melcer et al. (2022) by
using ϵ = 0 during evaluation (as opposed to ϵ = 0.05) to be fairer to unshielded agents—if a policy
had learned to avoid a specific action, it may have been forced to take it anyways during evaluation,
while shielded agents were still able to block such an action. Additionally, we use discounted rewards
as the evaluation metric, rather than undiscounted rewards.

For Particle-P and Particle-P-V, we use Deep Double Q-learning (Mnih et al., 2013; Van Hasselt
et al., 2016) with a simple network architecture. The agent’s network consists of a linear layer from
the input space (one-hot encoding of agent positions) to 128 features, a ReLU activation (Glorot
et al., 2011), then additional linear layers of size 128, 64, and 5 (the action space size), all with
ReLU activation except for the last layer. We set the replay buffer size to be 105, and optimize the
network using default parameters of the PyTorch Adam optimizer, with a batch size of 32 (Kingma
and Ba, 2014; Paszke et al., 2019). Otherwise, all hyperparameters are the same as in Grid-Col. We
use 50 seeds as well for these runs.

In Nearby-Obs, we modify the agents to use a DRQN architecture. The neural network is similar
to the network used for Particle, except that between the two linear layers of size 128, we insert
a GRU layer of size 128. We train with a sequence length of 4 and a batch size of 8; otherwise,
all hyperparameters are the same as with Particle-P and Particle-P-V; we did not perform any
architecture or hyperparameter search to arrive at these values. We evaluate each configuration
with 50 random seeds.

Flashlight-6 and Flashlight-10 use the same agent architecture and hyperparameters as Nearby-Obs,
but with 10 random seeds.

Note that we introduce seeded randomness during the shield decentralization process so that the
generated shields are diverse over different random seeds of the same experiment. The naive shield
generation method often fails when this randomness is introduced, even in cases where it succeeds
without randomness; if this occurs, we substitute a non-random shield generated with the naive
algorithm.
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H Reinforcement Learning Results

We include full results for all environments. Table 5 shows results from Grid-Col for each method.
Table 6 shows results from Particle-P using a history length of one, and Particle-P-V without history.
Table 7 shows results for Nearby-Obs for each method; note that the method in Melcer et al. (2022)
cannot produce a shield for this method due to its partial observability. Tables 8 and 9 show results
for Flashlight-6 and Flashlight-10, respectively. Note that our SAT-based decomposition is the only
decentralized method that succeeds in this environment.

Aside from the results described here, shielded agents avoid taking unsafe actions during training,
compared to the hundreds of thousands of safety violations that unshielded agents take during
training. While many of these violations during training are undoubtedly attributable to high
ϵ values during ϵ-greedy action selection, we note that shielding allows a RL practitioner to be
more flexible with their selection of training hyperparameters, without needing to worry about the
hyperparameters’ effect on safety violations.

Table 5: Results in Grid-Col; average discounted returns and standard error over 50 seeds, and
average total safety violations over 100 evaluation runs in parentheses (omitted for configurations
with no violations). History was not used.

Start Map Melcer et al. (2022) Naive SAT Centralized No Shield

Fixed

ISR 38.4 ± 0.6 38.9 ± 0.6 38.1 ± 0.6 38.4 ± 0.7 39.9 ± 0.9 (4.0)
MIT 2.2 ± 0.1 2.0 ± 0.1 1.8 ± 0.1 2.1 ± 0.2 1.8 ± 0.1

Pentagon 31.1 ± 0.5 30.7 ± 0.6 32.6 ± 0.5 31.9 ± 0.6 35.4 ± 0.7
SUNY 24.4 ± 0.4 23.4 ± 0.4 24.0 ± 0.4 22.6 ± 0.3 23.1 ± 0.4

Rand

ISR 29.4 ± 2.0 29.5 ± 2.4 30.1 ± 2.2 31.1 ± 2.5 28.1 ± 1.9 (0.9)
MIT 15.1 ± 1.6 19.7 ± 2.4 18.0 ± 2.2 19.1 ± 2.3 15.7 ± 1.8

Pentagon 32.4 ± 1.9 37.2 ± 2.2 34.1 ± 2.2 39.6 ± 2.8 31.8 ± 2.1 (0.3)
SUNY 11.9 ± 2.5 8.0 ± 1.9 14.8 ± 2.4 10.6 ± 2.4 11.6 ± 2.0
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Table 6: Results in Grid-Col; average discounted returns and standard error over 50 seeds, and
average total safety violations over 100 evaluation runs in parentheses (omitted for configurations
with no violations). Particle-P uses 1 step of history, Particle-P-V uses no history.

Environment Start Melcer et al. (2022) Naive SAT Centralized No Shield

Particle-P Fixed 33.6 ± 0.0 33.6 ± 0.0 33.6 ± 0.0 33.1 ± 0.5 33.6 ± 0.0
Rand 26.0 ± 3.2 28.8 ± 2.0 27.6 ± 3.1 29.7 ± 3.8 17.0 ± 3.5 (69.2)

Particle-P-V Fixed 33.6 ± 0.0 33.6 ± 0.0 33.6 ± 0.0 33.6 ± 0.0 33.6 ± 0.0
Rand 51.3 ± 2.1 53.0 ± 2.4 50.0 ± 1.8 51.7 ± 2.0 48.7 ± 2.0 (0.1)

Table 7: Results in Nearby-Obs, average discounted returns and standard error over 50 random
seeds, and average total safety violations over 100 runs in parentheses (omitted for configurations
with no violations). History was not used.

Start Type Map Naive SAT Centralized No Shield

Fixed

ISR 80.9 ± 0.2 78.6 ± 2.6 83.9 ± 0.0 81.2 ± 2.7
MIT -49.0 ± 0.0 -49.0 ± 0.0 -49.0 ± 0.0 -47.0 ± 2.0

Pentagon -2.4 ± 8.5 48.5 ± 7.4 35.2 ± 8.6 -46.5 ± 11.8 (1482.0)
SUNY 2.4 ± 8.6 -0.6 ± 8.5 2.5 ± 8.6 14.7 ± 8.7

Random

ISR 61.1 ± 5.7 45.0 ± 7.3 61.8 ± 5.4 5.6 ± 8.8 (113.4)
MIT -42.4 ± 3.7 -42.2 ± 3.9 -44.2 ± 3.4 -43.5 ± 6.6 (159.8)

Pentagon -31.3 ± 6.1 -25.1 ± 9.3 -6.0 ± 9.2 -42.0 ± 4.3 (56.9)
SUNY -49.0 ± 0.0 -49.0 ± 0.0 -49.0 ± 0.0 -49.0 ± 0.0 (146.4)

Table 8: Flashlight-6 results; average discounted returns and standard error over 10 random seeds
for varying recharge times (RT), and average sum of safety violations over 100 testing episodes in
parentheses (omitted for configurations with no violations).

Start RT SAT (0 History) SAT (1 History) SAT (2 History) Centralized No Shield

Fixed

3 65.7 ± 1.5 69.2 ± 1.5 71.1 ± 0.8 78.6 ± 0.0 78.6 ± 0.0
4 58.7 ± 1.5 66.5 ± 1.9 69.1 ± 1.7 78.1 ± 0.5 78.6 ± 0.0
5 -41.6 ± 60.5 52.0 ± 11.6 65.1 ± 2.5 78.6 ± 0.0 78.6 ± 0.0
6 -40.6 ± 41.9 16.4 ± 13.9 50.5 ± 12.3 78.6 ± 0.0 77.7 ± 0.9 (10.0)

Rand

3 65.4 ± 1.1 74.9 ± 0.3 74.4 ± 0.4 84.7 ± 0.3 83.4 ± 0.2 (7.2)
4 53.1 ± 1.2 68.5 ± 0.4 72.0 ± 0.5 83.7 ± 0.2 82.7 ± 0.7 (5.1)
5 -20.6 ± 14.0 56.0 ± 3.7 67.1 ± 0.7 81.6 ± 0.9 83.5 ± 0.3 (5.2)
6 -23.8 ± 15.8 30.0 ± 12.7 62.9 ± 1.7 76.9 ± 7.0 83.5 ± 0.3 (5.5)

Table 9: Flashlight-10 results; average reward and standard error over 10 random seeds for varying
recharge times (RT), and average sum of safety violations over 100 testing episodes in parentheses
(omitted for configurations with no violations).

Start Type RT SAT (0 History) SAT (1 History) Centralized No Shield

Fixed
2 -49.0 ± 0.0 45.7 ± 0.9 55.3 ± 0.0 54.4 ± 0.8 (10.0)
3 -49.0 ± 0.0 -34.9 ± 10.5 55.3 ± 0.0 54.4 ± 0.8 (10.0)
4 -49.8 ± 0.8 -52.5 ± 1.4 55.3 ± 0.0 55.3 ± 0.0

Random
2 -52.4 ± 0.3 57.2 ± 2.4 16.9 ± 14.3 43.2 ± 11.4 (6.9)
3 -109.6 ± 7.4 38.1 ± 3.6 14.5 ± 17.3 18.3 ± 20.3 (9.3)
4 -171.7 ± 12.8 -55.1 ± 0.3 38.9 ± 8.0 49.8 ± 11.2 (6.4)
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I Comparison of Shielding Methods

We include Table 10 to directly compare the domains of several shielding methods in terms of
observability, and the number and types of agents.

Method Obs Agents Brief Description
Alshiekh et al. (2018) Full Single First to apply Shielding to RL

Mazzi et al. (2021) Partial Single Enforces safety in context of POMCP algorithm
Carr et al. (2022) Partial Single Uses belief support to handle partial observability

Junges et al. (2021) Partial Single Another belief support method
ElSayed-Aly et al. (2021) Full Communicate Local centralized shields allow for scalability

Melcer et al. (2022) Full Cooperative Avoids communication by decentralizing safe action sets
Carr et al. (2021) Full Adversarial Models adversary as part of nondeterministic env

Ours Partial Cooperative Decentralizes both observations and actions

Table 10: Comparison of the shielding methods mentioned in Section 2; in particular, which domains
each method operates in. Note that “Full” observability specifically references observability of safety-
relevant, rather than reward-relevant, information. Unless specifically noted, cooperative methods
do not use communication. As all shielding methods operate on an abstraction of the environment,
information irrelevant for safety may be partially observable.

J Proof Sketches

J.1 Decentralized Shields that Satisfy Problem 1 are Deadlock-Free

Proof Sketch ∀i ∈ [1..k], q ∈ Q, obsi(q) ̸= ∅, and DSi(oi) is nonempty for every oi ∈ obsi(q) when q
is reachable, so it follows that

⋃
oi∈obsi(q) DSi(oi) is also nonempty. Because this is true for every

i, it holds that (
⋃

o1∈obs1(q) DS1(o1)) × . . . × (
⋃

ok∈obsk(q) DSk(ok)) is also nonempty. Because the
application of a decentralized shield to the environment preserves legality for these actions, there is
at least one legal action for every reachable state of DS(E), and it is thus deadlock-free.

J.2 Problems 2 and 3 solve Problem 1

Since for all reachable q, ∀o1 ∈ obs1(q), . . . , ∀ok ∈ obsk(q), DS1(o1) × . . . × DSk(ok) is a non-empty
subset of CS(q), and since CS(q) is a subset of the legal actions at q, it follows that DS1(o1) ×
. . . × DSk(ok) is also a subset of the legal actions at q. Additionally, (

⋃
o1∈obs1(q) DS1(o1)) × . . . ×

(
⋃

ok∈obsk(q) DSk(ok)) ⊆ CS(q); therefore, the legal actions at q for DS(E) are a subset of the legal
actions at q for CS(E). Thus, all states which are unreachable in CS(E), such as those in Qbad, are
also unreachable in DS(E).
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Abstract

We show that discounted methods for solving continuing reinforcement learning
problems can perform significantly better if they center their rewards by subtracting
out the rewards’ empirical average. The improvement is substantial at commonly
used discount factors and increases further as the discount factor approaches one.
In addition, we show that if a problem’s rewards are shifted by a constant, then
standard methods perform much worse, whereas methods with reward centering
are unaffected. Estimating the average reward is straightforward in the on-policy
setting; we propose a slightly more sophisticated method for the off-policy setting.
Reward centering is a general idea, so we expect almost every reinforcement-learning
algorithm to benefit by the addition of reward centering.

Reinforcement learning is a computational approach to learning from interaction, where the goal of a
learning agent is to obtain as much reward as possible (Sutton & Barto, 2018). In many problems of
interest, the stream of interaction between the agent and the environment is continuing and cannot be
naturally separated into disjoint subsequences or episodes. In continuing problems, agents experience
infinitely many rewards, hence a viable way of evaluating performance is to measure the average
reward obtained per step, or the rate of reward, with equal weight given to immediate and delayed
rewards. The discounted-reward formulation offers another way to interpret a sum of infinite rewards
by discounting delayed rewards in favor of immediate rewards. The two problem formulations are
typically studied separately, each having a set of solution methods or algorithms.

In this paper, we show that the simple idea of estimating and subtracting the average reward from
the observed rewards can lead to a significant improvement in performance (as in Figure 1) when
using common discounted methods such as actor–critic methods (Barto et al., 1983) or Q-learning
(Watkins & Dayan, 1992). The underlying theory dates back to 1962 with Blackwell’s seminal work
on dynamic programming in discrete Markov decision processes (MDPs). We are still realizing some
of its deeper implications, and we discuss the following two in particular:

Figure 1: Learning curves showing the difference in performance of Q-learning with and without
reward centering for different discount factors on the Access-Control Queuing problem (Sutton &
Barto, 1998). Plotted is the average per-step reward obtained by the agent across 50 runs w.r.t. the
number of time steps of interaction. The shaded region denotes one standard error. See Section 4.
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1. Mean-centering the rewards removes a state-independent constant (that scales inversely with
1 − γ, where γ denotes the discount factor) from the value estimates, enabling the value-
function approximator to focus on the relative differences between the states and actions. As
a result, values corresponding to discount factors arbitrarily close to one can be estimated
relatively easily (e.g., without any degradation in performance; see Figure 1).

2. Furthermore, mean-centering the rewards (unsurprisingly) makes standard methods robust
to any constant offset in the rewards. This can be useful in reinforcement learning applica-
tions in which the reward signal is unknown or changing.

We begin with what reward centering is and why it can be beneficial (Section 1). We then show how
reward centering can be done, starting with the simplest form (within the prediction problem), and
show that it can be highly effective when used with discounted-reward temporal difference algorithms
(Section 2). The off-policy setting requires more sophistication; for it we propose another way of
reward centering based on recent advances in the average-reward formulation for reinforcement
learning (Section 3). Next, we present a case study of using reward centering with Q-learning, in
which we (a) propose a convergence result based on recent work by Devraj and Meyn (2021) and
(b) showcase consistent trends across a series of control problems that require tabular, linear, and
non-linear function approximation (Section 4). Finally, we discuss the limitations of the proposed
methods and propose directions of future work (Section 5).

1 Theory of Reward Centering

We formalize the interaction between the agent and the environment by a finite MDP (S, A, R, p),
where S denotes the set of states, A denotes the set of actions, R denotes the set of rewards,
and p : S × R × S × A → [0, 1] denotes the transition dynamics. At time step t, the agent is
in state St ∈ S, takes action At ∈ A using a behavior policy b : A × S → [0, 1], observes the
next state St+1 ∈ S and reward Rt+1 ∈ R according to the transition dynamics p(s′, r | s, a) =
Pr(St+1 = s′, Rt+1 = r | St = s, At = a). We consider continuing problems, where the agent-
environment interaction goes on ad infinitum. The agent’s goal is to maximize the average reward
obtained over a long time (formally defined in (2)). We consider methods that try to achieve
this goal by estimating the expected discounted sum of rewards from each state for γ ∈ [0, 1):
vγ

π(s) .= E[
∑∞

t=0 γtRt+1 | St = s, At:∞ ∼ π], ∀s. Here, the discount factor is not part of the problem
but an algorithm parameter (see Naik et al. (2019) or Sutton & Barto’s (2018) Section 10.4 for an
extended discussion on objectives for continuing problems).

Reward centering is a simple idea: subtract the empirical average of the observed rewards from
the rewards. Doing so makes the modified rewards appear mean centered. The effect of mean-
centered rewards is well known in the bandit setting. For instance, Sutton and Barto (2018, Section
2.8) demonstrated that estimating and subtracting the average reward from the observed rewards
can significantly improve the rate of learning. Here we show that the benefits extend to the full
reinforcement learning problem and are magnified as the discount factor γ approaches one.

The reason underlying the benefits of reward centering is revealed by the Laurent-series decompo-
sition of the discounted value function. The discounted value function can be decomposed into two
parts, one of which is a constant that does not depend on states or actions and hence is not involved
in, say, action selection. Mathematically, for the tabular discounted value function vγ

π : S → R of a
policy π corresponding to a discount factor γ:

vγ
π(s) = r(π)

1 − γ
+ ṽπ(s) + eγ

π(s), ∀s, (1)

where r(π) is the state-independent average reward obtained by policy π and ṽπ(s) is the differential
value of state s, each defined for ergodic MDPs (for ease of exposition) as (e.g., Wan et al., 2021):

r(π) .= lim
n→∞

1
n

n∑

t=1
E

[
Rt | S0, A0:t−1 ∼ π

]
, ṽπ(s) .= E

[ ∞∑

k=1

(
Rt+k − r(π)

)
| St = s, At:∞ ∼ π

]
, (2)
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and eγ
π(s) denotes an error term that goes to zero as the discount factor goes to one (Blackwell,

1962: Theorem 4a; also see Puterman’s (1994) Corollary 8.2.4). This decomposition of the state
values also implies a similar decomposition for state–action values.

The Laurent-series decomposition explains how reward centering can help learning in bandit prob-
lems such as the one in Sutton & Barto’s (2018) Figure 2.5. There, the action-value estimates are
initialized to zero and the true values are centered around +4. The actions are selected based on
their relative values, but each action-value estimate must independently learn the same constant off-
set. Approximation errors in estimating the offset can easily mask the relative differences in actions,
especially if the offset is large.

In the full reinforcement learning problem, the state-independent offset can be quite large. For
example, consider the three-state Markov reward process shown Figure 2 (induced by some policy
π in some MDP). The reward is +3 on transition from state A to state B, and 0 otherwise. The
average reward is r(π) = 1. The discounted state values for three discount factors are shown in
the table. Note the magnitude of the standard discounted values and especially the jump when the
discount factor is increased. Now consider the discounted values with the constant offset subtracted
from each state, vγ

π(s) − r(π)/(1 − γ), which we call the centered discounted values. The centered
values are much smaller in magnitude and change only slightly when the discount factor is increased.
The differential values are also shown for reference. These trends hold in general: for any problem,
the magnitude of the discounted values increase dramatically as the discount factor approaches one
whereas the centered discounted values change little and approach the differential values.

State A B C

Standard
discounted values

γ = 0.8 6.15 3.93 4.92
γ = 0.9 11.07 8.97 9.96
γ = 0.99 101.01 98.99 99.99

Centered
discounted values

γ = 0.8 1.15 -1.07 -0.08
γ = 0.9 1.07 -1.03 -0.04
γ = 0.99 1.01 -1.01 -0.01

Differential values 1 -1 0

Figure 2: Comparison of the standard and the centered discounted values on a simple example.

Formally, the centered discounted values are the expected discounted sum of mean-centered rewards:

ṽγ
π(s) .= E

[ ∞∑

t=0
γt

(
Rt+1 − r(π)

)
| St = s, At:∞ ∼ π

]
, vγ

π(s) = r(π)
1 − γ

+

ṽγ
π(s)︷ ︸︸ ︷

ṽπ(s) + eγ
π(s), ∀s, (3)

where γ ∈ [0, 1]. When γ = 1, the centered discounted values are the same as the differential values,
that is, ṽγ

π(s) = ṽπ(s), ∀s. More generally, the centered discounted values are the differential values
plus the error terms from the Laurent-series decomposition, as shown on the right above.

Reward centering thus enables capturing all the information within the discounted value function via
two components: (1) the constant average reward and (2) the centered discounted value function.
Such a decomposition can be immensely valuable: (a) As γ → 1, the discounted values tend to
explode but the centered discounted values remain small and tractable. (b) If the problems’ rewards
are shifted by a constant c, then the magnitude of the discounted values increases by c/(1 − γ),
but the centered discounted values are unchanged because the average reward increases by c. These
effects are demonstrated in the following sections.

Reward centering also enables the design of algorithms in which the discount factor (an algorithm
parameter) can be changed within the lifetime of a learning agent. This is usually inefficient or
ineffective with standard discounted algorithms because their uncentered values can change massively
(Figure 2). In contrast, centered values may change little, and the changes become minuscule as the
discount factor approaches 1. We discuss this exciting direction in the final section.

To obtain these potential benefits, we need to estimate the average reward from data. In the next
section we show that even the simplest method can be quite effective.
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2 Simple Reward Centering

The simplest way to estimate the average reward is to maintain a running average of the rewards
observed so far. That is, if R̄t ∈ R denotes the estimate of the average reward after t time steps,
then R̄t =

∑t
k=1 Rk. More generally, the estimate can be updated with a step-size parameter βt:

R̄t+1
.= R̄t + βt(Rt+1 − R̄t). (4)

This update leads to an unbiased estimate of the average reward R̄t ≈ r(π), for the policy π
generating the data, if the step sizes follow standard conditions (Robbins & Monro, 1951).

Simple centering (4) can be used with almost any reinforcement learning algorithm. For example, it
can be combined with conventional temporal-difference (TD) learning (see Sutton, 1988a) to learn
a state-value function estimate Ṽ γ : S → R by updating, on transition from t to t + 1:

Ṽ γ
t+1(St)

.= Ṽ γ
t (St) + αt

[
(Rt+1 − R̄t) + γṼ γ

t (St+1) − Ṽ γ
t (St)

]
, (5)

with Ṽ γ
t+1(s) .= Ṽ γ

t (s), ∀s ̸= St, where αt > 0 is a step-size parameter.

We used four algorithmic variations of (5) differing only in the definition of R̄t in our first set of
experiments. One algorithm used R̄t = 0, ∀t, and thus involves no reward centering. The second
algorithm used the best possible estimate of the average reward: R̄t = r(π), ∀t; we call this oracle
centering. The third algorithm used simple reward centering as in (4). The fourth algorithm used a
more sophisticated kind of reward centering which we discuss in the next section.

The environment was an MDP with seven states in a row with two actions in each state. The right
action from the rightmost state leads to the middle state with a reward of +7 and the left action
from the leftmost state leads to the middle state with a reward of +1; all other transitions have
zero rewards. The target policy takes both actions in each state with equal probability, that is,
π(left|·) = π(right|·) = 0.5. The average reward corresponding to this policy is r(π) = 0.25.

Our first experiment applied the four algorithms to the seven-state MDP with two discount factors,
γ = 0.9 and 0.99. All algorithms were run with a range of values for the step-size parameters α. The
algorithms that learned to center were run with different values of η, where β = ηα (without loss
of generality). Each parameter setting for each algorithm was run for 50,000 time steps, and then
repeated for 50 runs. The full experimental details are in Appendix C. As a measure of performance
at time t, we used the root-mean-squared value error (RMSVE; see Sutton & Barto, 2018, Section
9.2) between Ṽ γ

t and ṽγ
π for the centered algorithms, and between Ṽ γ

t and vγ
π for the algorithm

without centering. There was no separate training and testing period.

Learning curves for this experiment and each value of γ are shown in the first column of Figure
3. For all algorithms, we show only curves for the α value that was best for TD-learning without
reward centering. For the centering methods, the curve shown is for the best choice of η from a
coarse search over a broad range. Each solid point represents the RMSVE averaged over the 50
independent runs; the shaded region shows one standard error.

First note that the learning curves start much lower when the rewards are centered by an oracle;
for the other algorithms, the first error is of the order r(π)/(1 − γ). TD-learning without centering
(blue) eventually reached the same error rate as the oracle-centered algorithm (orange), as expected.
Learning the average reward and subtracting it (green) indeed helps reduce the RMSVE much faster
compared to when there is no centering. However, the eventual error rate is slightly higher, which is
expected because the average-reward estimate is changing over time, leading to more variance in the
updates compared to the uncentered or oracle-centered version. Similar trends hold for the larger
discount factor (lower left), with the uncentered approach appearing much slower in comparison
(note the difference in axes’ scales). In both cases, we verified that the average-reward estimate
across the runs was around 0.25.

These experiments show that the simple reward-centering technique can be quite effective in the
on-policy setting, and the effect is more pronounced for larger discount factors.
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Figure 3: Learning curves demonstrating the performance of TD-learning with and without reward
centering on one on-policy problem and two off-policy problems.

Limitations in the Off-policy Setting: (4) leads to an unbiased estimate of the behavior pol-
icy’s average reward, which means that in the off-policy setting the average-reward estimate R̄ will
converge to r(b), not r(π). Adding an importance-sampling ratio to the update is not enough to
guarantee convergence to r(π) because importance sampling only corrects the mismatch in action
distributions, not the mismatch in the resulting state distributions.

Let us consider the effect of an inaccurate estimate of the average reward. First, note that the
centered discounted value function also satisfies a recursive Bellman equation:

ṽγ(s) =
∑

a

π(a|s)
∑

s′,r

p(s′, r | s, a)
[
r − r̄ + γṽγ(s′)

]
, or, ṽγ = rπ − r̄1 + γPπṽγ , (6)

where, ṽγ denotes a vector in R|S|, rπ is the vector of the expected one-step reward from each
state, r̄ is a scalar variable, 1 is a vector of all ones, and Pπ is the state-to-state transition matrix
induced by the policy π. It is easy to verify that the solution tuples (ṽγ , r̄) of (6) are of the form(
ṽγ

π + c1, r(π) − c(1 − γ)
)
, ∀c ∈ R, where ṽγ

π denotes the centered differential value function (3)
corresponding to policy π and discount factor γ. Equivalently, we can write the family of solutions
as

(
ṽγ

π + k
1−γ 1, r(π) − k

)
, ∀k ∈ R, which shows that if the average-reward estimate is off by k, then

the centered discounted values each have a constant offset of k/(1 − γ). This is undesirable. The
primary motivation of reward centering is to eliminate the potentially large offset from the estimates.
So we desire a way to estimate the target policy’s average reward while behaving according to a
different behavior policy.

However, note that an inaccurate estimation of the average reward is not a deal-breaker: standard
algorithms that do not center the rewards can be perceived as using a fixed inaccurate estimate of
the average reward (zero), yet they are guaranteed to converge to the true values of the target policy
in the tabular case. So the issue is less about convergence and more about the rate of learning.
Estimating the average reward accurately may yield better sample-complexity bounds when using
standard methods than simply estimating the uncentered values (e.g., the bounds for Q-learning
involve powers of 1/(1 − γ) (Qu & Wierman, 2020; Wainwright, 2019; Even-Dar et al., 2003)). We
also saw in Figure 3 that when the rewards are centered by an oracle, the rate of learning is much
higher compared to when there is no centering.

In summary, the effectiveness of reward centering increases with the accuracy of the average-reward
estimate. Thus, even the simple method of reward centering (4) can be highly effective when the
average reward of the behavior policy is close to that of the target policy. This may be true when the
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two policies are similar, like a greedy target policy and an ϵ-greedy behavior policy with a relatively
small value of ϵ. However, the benefits of reward centering in terms of rate of learning may reduce
and even disappear as the difference in the two policies increases. In the following section, we present
a subtly advanced approach to estimate the average reward more accurately in the off-policy setting.

3 Value-based Reward Centering

We drew inspiration from the average-reward formulation of reinforcement learning, where estimating
the average reward in the off-policy setting is a pertinent problem. In particular, Wan et al. (2021)
recently showed that using the temporal-difference (TD) error (instead of the conventional error in
(4)) leads to an unbiased estimate of the reward rate in the tabular off-policy setting. It turns out
that this idea from the average-reward formulation is quite effective even in the discounted-reward
formulation, which is the focus of this paper. We show that if the behavior policy takes all the
actions that the target policy does (the exact distribution over actions may differ arbitrarily), then
we get a good approximation of the average reward of the target policy using the TD error:

Ṽ γ
t+1(St)

.= Ṽ γ
t (St) + αt ρt δt, (7)

R̄t+1
.= R̄t + η αt ρt δt, (8)

where, δt
.= (Rt+1 − R̄t) + γṼ γ

t (St+1) − Ṽ γ
t (St) is the TD error and ρt

.= π(At|St)/b(At|St) is the
importance-sampling ratio. Since this centering approach involves values in addition to the reward,
we call it value-based centering. Unlike with simple centering, the convergence of the average-reward
estimate and the value estimates is now interdependent. We present a convergence result in the next
section for the control problem.

The first column of Figure 3 shows plots for value-based centering in the on-policy problem from
the previous section, where the target policy picks both actions with equal probability. Value-based
centering (red) appears as good as simple centering (green) in terms of the rate of learning and
asymptotic error. The other two columns show plots for two off-policy experiments with behavior
policies [b1(left|·), b1(right|·)] = [0.7, 0.3], [b2(left|·), b2(right|·)] = [0.3, 0.7]. The two different be-
havior policies are symmetric but resulted in different trends. Corresponding to b1, we saw that
value-based centering resulted in a lower RMSVE faster than simple centering for both values of
γ, and the final error rate was roughly the same. As expected, the simple approach estimated the
average reward incorrectly and hence the learned values were relatively larger than with value-based
centering (but not as large as when there was no centering). The results with b2 were more interest-
ing. The RMSVE reduced rapidly at first with simple centering, then rose sharply, and then reduced
again. This is because the average-reward estimate was initialized to zero and it converged to around
0.5 (because b2 skews the agent’s state distribution towards the more-rewarding right side). When
the estimate passed the true value of 0.25, the RMSVE was quite low, however, the estimate quickly
climbed to 0.5, resulting in the peak in RMSVE. Eventually the value estimates settled to values
corresponding to an average-reward estimate of around 0.5. In contrast, the average-reward estimate
was much closer to the true value when using value-based centering, resulting in a smoother learning
curve. The effects were amplified with the larger discount factor (bottom row).

Overall, we observed that reward centering can improve the rate of learning of discounted-reward
prediction algorithms such as TD-learning, especially for large discount factors. While the simple
way to center rewards is quite effective, value-based reward centering is better suited for general
off-policy problems. Next, we consider reward centering within the control setting.

4 Case Study: Q-learning with Reward Centering

In this section, we examine the effects of reward centering when used alongside the Q-learning
algorithm (Watkins & Dayan, 1992). In particular, we first present a convergence result based on
recent work by Devraj and Meyn (2021). Next, using various control problems, we empirically study
the effects of reward centering on tabular, linear, and non-linear variants of Q-learning.
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Theory: The prevalence of Q-learning can be largely attributed to it being an off-policy algorithm:
in the tabular case, it is guaranteed to converge to the value function of optimal policy while
collecting data from an arbitrary behavior policy—even a random policy. Given its off-policy nature,
we augment Q-learning with value-based reward centering. Since we use tabular, linear, and non-
linear versions of this algorithm, we present a general form of its updates. At each time step, given
an observation, the agent converts it into a feature vector xt ∈ Rd, selects an action At, observes
the reward signal Rt+1 and the next observation, which it converts into xt+1, and so on. In the
tabular case, xt is a one-hot vector of the size of the state space; in the linear case, xt may be
a tile-coding representation; in the non-linear case, xt is the output of the last non-linear layer of
an artificial neural network. In each case, the agent linearly combines the feature vector with an
action-specific weight vector wa ∈ Rd, ∀a to obtain the action-value estimate q̂. At time step t,
with the knowledge of transition (xt, At, Rt+1, xt+1), Q-learning with value-based reward centering
updates the average-reward estimate and the per-action weights:

wAt
t+1

.= wAt
t + αt δt ∇wt

q̂(xt, At), (9)
R̄t+1

.= R̄t + η αt δt, (10)
where, δt

.= Rt+1 − R̄t + γ max
a

(wa
t )⊤xt+1 − (wAt

t )⊤xt.

The full pseudocode for all algorithms is in Appendix A. We present the informal convergence-
theorem statement here; the full theorem statement, proof, and analysis are in Appendix B.

Theorem 1. If the Markov chain induced by the stationary behavior policy is irreducible and a per-
state–action step size is reduced appropriately, tabular Q-learning with value-based reward centering
(9–10) converges almost surely: Qt and R̄t converge to a particular solution (q̃γ , r̄) of the following
Bellman equations:

q̃γ(s, a) =
∑

s′,r

p(s′, r | s, a)
(
r − r̄ + γ max

a′
q̃γ(s′, a′)

)
. (11)

The convergence proof is a consequence of important recent work by Devraj and Meyn (2021), who
showed that subtracting a quantity from the rewards in Q-learning can result in a significantly
better sample-complexity bound. Depending on the quantity subtracted, there is a whole family
of Q-learning variants that converge almost surely in the tabular case to Q̃γ

∞ = qγ
∗ − k/(1 − γ)1,

where Q̃γ
∞ denotes the vector of asymptotic value estimates, qγ

∗ denotes the discounted action-value
function of the optimal policy π∗

γ corresponding to the discount factor γ, and k depends on qγ
∗ and

two algorithm parameters µ and κ. Recall that the standard (uncentered) discounted value function
qγ

∗ has a state–action-independent offset of r(π∗
γ)/(1 − γ). Relative Q-learning can remove k/(1 − γ)

of it. This is very promising. Devraj and Meyn left the choice of µ and κ as open questions. We show
that Q-learning with value-based centering can be seen as an instance of their algorithm family with
particular choices of µ and κ. We further show (in Appendix B) that these choices can significantly
reduce the state-independent offset. The equivalence enabled us to use their theoretical machinery
to show almost-sure convergence and inherit strong variance-reduction properties.

Experiments: We present results of Q-learning with and without centering on a set of control
problems with tabular, linear, and non-linear function approximation (see Appendix A for the pseu-
docode). The problems are primarily from CSuite (Zhao et al., 2022). The repository specifies each
problem in detail; we provide high-level descriptions here. We start the assessment in a tabular
problem and then proceed to problems that require function approximation.

The Access-Control Queuing problem (Sutton & Barto, 2018) is a continuing problem in which the
agent manages the access of incoming jobs to a set of servers. A job arrives at the front of the queue
with one of four priorities with equal probability, and the agent has to decide at each time step
whether to accept or reject the job based on the number of free servers left. If a job is accepted,
the agent gets a positive reward proportional to the job’s priority ({1, 2, 4, 8}); if rejected, the job
is removed from the queue and the agent gets zero reward. At each time step, occupied servers get
free with a certain probability, and the agent can observe the number of servers that are currently
free as well as the priority of the job at the front of the queue.
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Figure 1 shows the results of standard Q-learning (without centering) and Q-learning with value-
based centering. For Q-learning, the curves correspond to the step-size parameters that resulted in
the fastest learning over the training period (quantified by the area under the learning curve). For
Q-learning with centering, they correspond to the best step-size parameters for a fixed value of η
(shown in grey in the figure); this does not always mean the best (α, η) pair but that is okay since
the results were robust to the choice of η. Throughout this section we followed this same practice
of picking hyperparameters to plot learning curves.

The performance of Q-learning with centering did not degrade when the discount factor was close to
one, unlike when there was no centering. For each discount factor, the performance with centering
matched or exceeded that of the standard uncentered method. To verify if centering indeed helped
remove the potentially large state-independent term, we checked the magnitude of the learned values.

Table 1: Magnitude of learned val-
ues

γ
Without
centering

With
centering

0.5 4.78 0.17
0.8 12.95 0.17
0.9 26.57 0.12
0.99 267.91 0.42
0.999 1434.47 0.51

One way is to compute the magnitude across all state-action
pairs. However, this approach typically leads to a poor ap-
proximation of the magnitude of learned values because many
states (especially ones with low true values) may not occur fre-
quently in the agent’s ϵ-greedy interactions with the environ-
ment and hence their estimated values may stay close to their
initialization. Instead, we checked the values of states that ac-
tually occur in the agent’s stream of experience, in particular
the maximum action value (used to choose the argmax action)
of the last 10% states that occurred during training. Table 1
shows these values for the parameters corresponding to Figure
1’s learning curves. As γ increased, the magnitude of learned values increased sharply with standard
Q-learning but remained small with reward centering (as expected from the theory in Section 1).

These trends were quite general across the range of parameter values tested. Figure 4 shows the
performance sensitivity to the methods’ parameters. In particular, the x-axis denotes the step-size
parameter α and the y-axis denotes the average reward obtained during the entire training period
(which reflects the rate of learning). For both methods, the different curves correspond to different
discount factors. The three plots on the right correspond to different values of the centering step-
size parameter η. We saw the performance of Q-learning without centering deteriorated with large
discount factors for a broad range of the step-size parameter α. In contrast, with centering, the
performance did not degrade; in fact, it improved all the way till γ = 1 for a wide range of η values.
In addition, its performance was not sensitive to the choice of η.

We also observed the rate of learning of the standard Q-learning algorithm is significantly affected
by a constant shift in the problems’ rewards. Note that adding a constant to all the rewards does not
change the ordering of the policies according to the total-reward or the average-reward criterion in
continuing problems. Figure 5 shows the behaviors of Q-learning with and without centering when
applied to five problem variants with one of {−8, −4, 0, 4, 8} added to all the rewards. To compare
the resulting rate of rewards across the problems, the plots are shifted post-hoc (for instance, in the
problem variant where the rewards were shifted by 8, after training, the same number was subtracted
from all the rewards that the agent obtained). The behavior of Q-learning without centering was
substantially different on all the problem variants. Q-learning with centering, unsurprisingly, results

Figure 4: Parameter studies showing the sensitivity of the algorithms’ performance to their param-
eters on the Access-Control problem. The error bars indicate one standard error, which at times is
less than the width of the lines.
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Figure 5: Learning curves on slight variants of the Access-Control Queuing problem with all the
rewards shifted by a constant integer. The y-axis is shifted to compare learning curves for all the
variants on the same scale. More details in-text.

in similar behavior. We verified that the average-reward estimate indeed learns the average reward
for every variant quickly. These trends were also consistent across values of the step-size parameters
(the parameter studies are in Appendix C).

We observed similar trends on other continuing problems with linear and one with non-linear function
approximation. In PuckWorld, the agent has to take a puck-like object to randomly changing goal
positions in a square rink. At each time step, the agent observes six real numbers—the puck’s
position and velocity and the goal position in x and y directions—and gets a reward proportional
to the negative distance to the goal. In Pendulum, the agent has to control the torque at the base
of a one-link pendulum to take and maintain it in an upright position. At each time step, the
agent observes three real numbers—the sine and cosine of the pendulum’s angle w.r.t. the direction
of gravity, and the pendulum’s angular velocity—and gets a reward proportional to the negative
angular distance of the pendulum from the upright position. In Catch, the agent moves a crate in
the bottom row of a 2D pixel grid to catch falling fruits. For this problem, there are two kinds of
observation vectors available to an agent: a 3D real vector containing the x coordinate of the crate
and the (x, y) coordinates of the lowermost fruit; a 50D binary vector which is the flattened version
of the entire pixel grid. The agent gets a +1 reward on successfully catching a fruit, −1 on dropping
one, and 0 otherwise. All the problems are continuing; there are no resets.

(a) PuckWorld (b) Pendulum

(c) Catch

Figure 6: Learning curves with and without centering corresponding to different values of γ on
different problems. In the bottom row, the two plots on the right correspond to a variant of the
Catch problem where all the rewards shifted by −2.
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We used linear function approximation with tile-coded features for PuckWorld and the variant of
Catch in which the agent observes the 3D real-valued features. For Pendulum and the variant
of Catch with the 50D binary features, we used non-linear function approximation using artificial
neural networks (Mnih et al.’s (2015) DQN). The complete experimental details are in Appendix C.

The trends were similar to those observed with Access-Control Queuing. In PuckWorld and Pendu-
lum (top row of Figure 6), without centering, performance first improved as the discount factor γ
increased and then degraded. However, with centering, the performance did not degrade for large
values of γ. In Catch with linear function approximation (bottom row of Figure 6), the leftmost plot
shows that the performance without centering was good even for large discount factors. However, it
varied significantly when the problem rewards were shifted up or down by a constant; the third plot
from the left demonstrates this for a shift of −2. On the other hand, with centering, the performance
was good for all discount factors and unaffected by any shifts in the rewards.

These trends are further supplemented by the two plots on the left of Figure 7, which shows the
sensitivity of the algorithms to variants of the Catch problem with rewards shifted by a constant.
On the x-axis is the effective step size for the linear function approximators and on the y-axis is the
reward rate averaged over the entire training period. As before, the y-axis is adjusted to compare
the performance on all the problem variants at the same scale. We observed that the performance
without reward centering was problem-dependent, whereas with centering, the rate of learning was
roughly the same regardless of the problem variant. The two plots on the right of Figure 7 show
that the trends were similar with non-linear function approximation.

Figure 7: Parameter studies showing the sensitivity of the algorithms to their step-size parameter
and to variants of the Catch problem, using both linear and non-linear function approximation.

Through these experiments, we observed that reward centering can improve the performance of
tabular, linear, and non-linear variants of the Q-learning algorithm on various problems. The im-
provement in the rate of learning is larger for discount factors close to 1. Furthermore, there is an
improvement in the robustness of the algorithms to shifts in the problems’ rewards. The parameter
studies in this section indicate that the benefits of reward centering are quite robust to the choice of
its parameter η. Appendix C contains additional learning curves and parameter studies that further
reinforce the trends observed in this section.

5 Discussion, Limitations, and Future Work

Reward centering can improve the data efficiency and robustness of almost any algorithm for contin-
uing reinforcement learning. Here we have shown improvements for algorithms that learn state-value
functions and action-value functions, and for algorithms that are tabular or use linear or non-linear
function approximation.1 We expect reward centering would also improve the performance of al-
gorithms that learn no value function at all, such as REINFORCE (Williams, 1992) when applied
to continuing problems with eligibility traces, but this has yet to be shown. Many algorithms that
were designed for the average-reward criterion already include a form of reward centering, either
simple centering (e.g., Tsitsiklis & Van Roy, 1999) or value-based centering (Wan et al., 2021); it is

1As a further example, in preliminary experiments in Appendix C we found reward centering to increase the data
efficiency and robustness of Schulman et al.’s (2017) PPO algorithm on continuing versions of several of Todorov et
al.’s (2012) Mujoco problems.
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experience with these earlier un-discounted algorithms that led us to explore the utility of reward
centering for discounted algorithms. Also expected, but yet to be shown, are the benefits of reward
centering with other reinforcement-learning algorithms, including value-based algorithms such as
Sarsa (Rummery & Niranjan, 1994), and various offline, actor–critic, and model-based algorithms.

Reward centering is not directly applicable to episodic problems. In these problems the objective
is to maximize the sum of rewards only up until the end of an episode; the notion of long-term
average reward is undefined and the Laurent-series decomposition (with a state-independent term)
no longer holds. Moreover, if reward centering were naively applied to an episodic problem, then
it may alter the problem rather than facilitate finding the solution. This is because—unlike in
continuing problems—subtracting a constant from all the rewards may change an episodic problem.
For example, consider a gridworld where the reward is −1 on every step until episode termination
upon reaching a goal state. An optimal policy—one that maximizes the total reward per episode—is
one that reaches the goal state as soon as possible. However, if the rewards were centered, then
the modified rewards would all be zero, and all policies would be equally optimal. The problem
would be fundamentally altered by the algorithm that centers (or in general shifts) rewards! The
closest thing to reward centering in episodic problems may be the return baseline in policy-gradient
methods (e.g., see Sutton & Barto, 2018, Section 13.4), but that may vary from state to state, so
the analogy is not really that close.2

Reward centering may seem similar to, but is different from, a value-function unit with a bias weight
(a weight for an input that is always 1). First, the bias weight converges asymptotically to a value
that depends on all the other inputs to the value-function unit and that is not in general r(π)/(1−γ).
Second, because the learning of the bias weight interacts with learning all the other weights, we will
not obtain the same data efficiency advantages as with reward centering. Reward centering is more
akin to the specially learned bias weight in Sutton’s (1988b) NADALINE linear unit. We note that
reward centering is also different from but similar in style to methods for adapting the scale of the
rewards (e.g., van Hasselt et al., 2016; Pohlen et al., 2018; Schaul et al., 2021), and the two kinds of
methods can potentially be used together.

The effects of reward centering on the variance of value estimates is complex. On one hand, reward
centering can increase variance because the average-reward estimate changes over time. The simple
centering method is particularly susceptible to this in the off-policy setting (e.g., see Figure 3).
On the other hand, value-based centering in particular can reduce variance due to state-dependent
reward changes (cf. Sutton & Barto, 2018, Exercise 10.8). In all cases, optimization techniques could
be used to efficiently adapt the step-size parameter of the average-reward estimate (Degris et al.,
2024).

Perhaps the most exciting direction for extending reward centering is into new reinforcement learning
algorithms that adapt their discount-rate parameter over time. Without reward centering, this would
incur huge costs in learning time as the discounted values change by large amounts even for small
changes in γ ≈ 1. Most of these changes are due to the state-independent term r(π)/(1 − γ) which,
with reward centering, can be adapted instantly to the new value of γ using the existing estimate of
r(π). Concretely, consider the agent has estimated the average reward R̄ and the centered discounted
value function ṽγ to some level of accuracy. With just this information, the agent can form an
estimate of the standard discounted value function corresponding to another discount factor γ′ via
R̄/(1 − γ′) + ṽγ . This is an estimate, of course, but it can be improved quickly with a few samples
of experience. In contrast, with standard methods, it would take comparatively longer to raise the
estimates to the new mean value and adapt the relative values. Hence, with reward centering, we
can imagine efficient methods that adapt their discount factors over time: a low discount rate to
learn quickly amidst a lot of uncertainty—like in the beginning of training—and when the world
is more predictable, a higher discount rate to estimate the policy that maximizes the total reward
obtained by the agent.

2In continuing problems, reward centering has orthogonal benefits to the baseline or the advantage function in
policy-gradient methods. We discuss these and further connections to the literature in Appendix D.
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A Pseudocode

In this section we present the pseudocode for value-based reward-centering added to the tabular,
linear, and non-linear variants of Q-learning.

Algorithm 1: Tabular Q-learning with value-based reward centering
Input: The behavior policy b (e.g., ϵ-greedy)
Algorithm parameters: discount factor γ, step-size parameters α, η

1 Initialize Q(s, a) ∀s, a; R̄ arbitrarily (e.g., to zero)
2 Obtain initial S
3 for all time steps do
4 Take action A according to b, observe R, S′

5 δ = R − R̄ + γ maxa Q(S′, a) − Q(S, A)
6 Q(S, A) = Q(S, A) + α δ

7 R̄ = R̄ + η α δ
8 S = S′

9 end

Algorithm 2: Linear Q-learning with value-based reward centering
Input: The behavior policy b (e.g., ϵ-greedy)
Algorithm parameters: discount factor γ, step-size parameters α, η

1 Initialize wa ∈ Rd ∀a, R̄ arbitrarily (e.g., to zero)
2 Obtain initial observation x
3 for all time steps do
4 Take action A according to b, observe R, x′

5 δ = R − R̄ + γ maxa w⊤
a x′ − wAx

6 wA = wA + α δ x
7 R̄ = R̄ + η α δ
8 x = x′

9 end

Algorithm 3: (Non-linear) DQN with value-based reward centering
Input: The behavior policy b (e.g., ϵ-greedy)
Algorithm parameters: discount factor γ, step-size parameters α, η

1 Initialize value network, target network; initialize R̄ arbitrarily (e.g., to zero)
2 Obtain initial observation x
3 for all time steps do
4 Take action A according to b, observe R, x′

5 Store tuple (x, A, R, x′) in the experience buffer
6 if time to update estimates then
7 Sample a minibatch of transitions (x, A, R, x′)b

8 For every i-th transition: δi = Ri − R̄ + γ maxa q̂(x′
i, a) − q̂(xi, Ai)

9 Perform a semi-gradient update of the value-network parameters with the δ2 loss
10 R̄ = R̄ + η α mean(δ)
11 Update the target network occasionally
12 end
13 x = x′

14 end

We recommend two small but useful optimizations to these general pseudocodes in Appendix C.
The python code can be found at github.com/abhisheknaik96/continuing-rl-exps.
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B Theoretical Details

This section presents (a) the complete convergence result for Q-learning with value-based centering
using Devraj and Meyn’s (2021) analysis, and (b) quantifies the reduction in constant state–action-
independent offset in the value estimates.
Suppose the agent’s interaction with the MDP follows a stationary behavior policy b ∈ Π. Let
St, At denote the state-action pair occurring at time step t, followed by the reward Rt+1 and next
state St+1. Let νt(s, a) denote the number of times a state-action pair (s, a) has occurred up to and
including time step t. The update rules of Q-learning with value-based centering are:

Qt+1(St, At)
.= Qt(St, At) + ανt(St,At) δt, (12)

R̄t+1
.= R̄t + η ανt(St,At) δt, (13)

where, δt
.= Rt+1 − R̄t + γ max

a′
Qt(St+1, a′) − Qt(St, At), (14)

η > 0, and αn = c/(n + d) where c, d > 0 for all n ≥ 1.3

Theorem 1. (Formal) If the joint process {St, At} induced by the stationary behavior policy is an
irreducible Markov chain, that is, starting from every state-action pair, there is a non-zero probability
of transitioning to any other state-action pair in a finite number of steps, then (Qt, R̄t) in tabular
Q-learning with value-based centering (12–14) converges to a solution of (q̄γ , r̄) in (11).

Proof. We first show that Q-learning with value-based centering is a member of the large family of
Devraj and Meyn’s (2021) Relative Q-learning algorithms with particular choices of µ and κ. This
allows us to utilize their convergence results.
The general Relative Q-learning algorithm updates its tabular estimates Q̃γ : S × A → R at time
step t using (St, At, Rt+1, St+1) as (in our notation):

Q̃γ
t+1(St, At)

.= Q̃γ
t (St, At) + αt

[
Rt+1 − f(Q̃γ

t ) + γ max
a′

Q̃γ
t (St+1, a′) − Q̃γ

t (St, At)
]
, (15)

where, f(Q̃γ
t ) .= κ

∑
s,a µ(s, a)Q̃γ

t (s, a), κ > 0 is a scalar, and µ : S × A → [0, 1] is a probability mass
function.
Now note that updating both the average-reward and value estimates using the TD error (12 and
13) results in:

R̄t − R̄0 = η
( ∑

s,a

Qt(s, a) −
∑

s,a

Q0(s, a)
)

.

To simplify the analysis, we can assume R̄0 = 0 and Q0 = 0 without loss of generality. As a result,
R̄t = η

∑
s,a Q̃γ

t (s, a). We can then combine the updates (9–10) in the tabular case to:

Q̃γ
t+1(St, At)

.= Q̃γ
t (St, At) + αt

(
Rt+1 − η

∑

s,a

Q̃γ
t (s, a) + max

a′
Q̃γ

t (St+1, a′) − Q̃γ
t (St, At)

)
. (16)

Comparing (15) and (16), we can see that Q-learning with value-based reward centering is an instance
of Relative Q-learning with:

µ(s, a) = 1
|S||A| ∀s, a, and κ = η|S||A|.

3Devraj and Meyn (2021) considered the step-size sequence 1/n in their algorithm but it can be easily verified that
αn = c/(n + d) also satisfies the step-size condition required by Borkar and Meyn’s (2000) seminal result (that was
used by Devraj & Meyn (2021) to show the convergence of their algorithm).
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Devraj and Meyn’s (2021) convergence result then applies. That is,

Q̃γ
t → Q̃γ

∞
.= qγ

∗ − κ

1 − γ + κ
µ⊤qγ

∗ 1

= qγ
∗ − η

1 − γ + η|S||A|
∑

s,a

qγ
∗ (s, a)1. (17)

Hence,

R̄t → R̄∞
.= η

∑

s,a

qγ
∗ (s, a) − η2|S||A|

1 − γ + η|S||A|
∑

s,a

qγ
∗ (s, a)

= η(1 − γ)
1 − γ + η|S||A|

∑

s,a

qγ
∗ (s, a). (18)

We will now verify that (Q̃γ
∞, R̄∞) satisfy the Bellman equations (11). Recall that the solutions

of the Bellman equation are of the form
(
q̃γ

∗ + k
1−γ 1, r(π∗

γ) − k
)
. Since q̃γ

∗ = qγ
∗ − r(π∗

γ )
1−γ , we can

re-write the solution class in terms of the discounted value function:
(
qγ

∗ + (k−r(π∗
γ ))

1−γ 1, r(π∗
γ) − k

)
,

or
(
qγ

∗ − d
1−γ 1, d

)
. For d = η(1−γ)

1−γ+η|S||A|
∑

s,a qγ
∗ (s, a), we can see that (Q̃γ

∞, R̄∞) is a solution tuple
of the Bellman equations.

We can now characterize how close R̄∞ is to r(π∗
γ). In general the expression for R̄∞ (18) is cryptic.

However, a special case can shed some light. We know that the average of the discounted value
function for a policy w.r.t. that policy’s steady-state distribution is:

∑
s,a dπ(s, a)qγ

π(s, a) = r(π)
1−γ .

Now suppose the steady-state distribution over state–action pairs is constant—1/(|S||A|), ∀s, a. For
that policy, 1

|S||A|
∑

s,a qγ
π(s, a) = r(π)

1−γ . Substituting this in (18), we get:

R̄∞ = η|S||A|
1 − γ + η|S||A|r(π∗

γ). (19)

We can see that R̄∞ approaches the true reward rate from below when η|S||A| >> 1 − γ, which can
be true in many problems of interest that have large state (and action) spaces. That being said,
note that this insight comes from a special case. More generally, the convergence point of R̄∞ (and
hence Q̃γ

∞) is hard to interpret, which is a shortcoming we wish to resolve in future work. However,
(19) can serve as a rule of thumb.
We end this section with a property of the centered discounted values.

Lemma 1. The centered discounted values ṽγ
π are on average zero when weighted by the on-policy

distribution dπ induced by the policy π:

d⊤
π ṽγ

π = 0. (20)

Proof. The proof is trivial after using the property that d⊤
π vγ

π = r(π)/(1 − γ) (see Sutton & Barto’s
(2018) Section 10.4 or Singh et al.’s (1994) Section 5.3). Since ṽγ

π = vγ
π − r(π)/(1 − γ)1 (from (3)),

d⊤
π ṽγ

π = 0.
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C Experimental Details

Prediction ‘TD-learning with rewards centered by an oracle’ refers to a version of TD-learning with
centering in which the average-reward estimate is fixed to the (somehow) known average reward of the
target policy. In other words, the true average reward is known from the beginning and is subtracted
from the observed rewards at each time step. This algorithm is a good baseline because its rate
of learning is likely the theoretical best among all TD-based prediction algorithms (in stationary
problems where the average reward of the fixed target policy does not change with time).
Each algorithm was run on the random-walk problem for 50,000 steps and repeated 50 times each.
The step size α was decayed by 0.99999 at each step. The values estimates for all variants and the
average-reward estimate for TD-with-centering were initialized to zero.
We tested α ∈ {0.01, 0.02, 0.04, 0.08, 0.16, 0.32} and picked the one which resulted in the lowest av-
erage RMSVE across the training period for standard uncentered approach (α = 0.04 for γ = 0.9
and α = 0.08 for γ = 0.99). Corresponding to these step sizes, we tested the centering approaches’
parameter η within a coarse range of {1/640, 1/160, 1/40, 1/10} and picked one based on the afore-
mentioned criteria. As mentioned earlier, this does not result in the best choice of α, η for the
centering approaches, which is okay; we made sure the baselines are tuned appropriately.
Control Table 2 contains a list of all the hyperparameters tested that are common across all the
domains: γ, α, η. Note that setting η = 0 and initializing the average-reward estimate to zero, Q-
learning with reward centering behaves exactly like standard Q-learning. For each set of parameters,
the algorithms were run for N steps and repeated R times. The (N, R) tuples for each problem were:
Access-Control Queuing: (80k, 50); PuckWorld: (300k, 20), Pendulum: (100k, 15); Catch (linear):
(20k, 50); Catch (non-linear): (80k, 15). For generating variants of the problems, we shifted the
rewards by a range of numbers roughly proportional to the scale of rewards in the original problem:
Access-Control Queuing and PuckWorld: {-8, -4, 0, 4, 8}; Pendulum: {-12, -6, 0, 6, 12}; Catch: {-4,
-2, 0, 2, 4}.
The agent’s behavior policy was always ϵ-greedy with fixed ϵ = 0.1. For all the experiments, the
average-reward estimate was initialized to zero. The value-estimation weights were initialized to zero
in the tabular and linear experiments; the weights were initialized to small values around zero in the
non-linear experiments (the default initialization in PyTorch (Paszke et al., 2019)). For the linear
experiments we used 16 tiles of size 4 × 4 × 4 for Catch and 32 tiles of size 4 × 4 × 4 × 4 × 4 × 4 for
PuckWorld. These numbers and sizes were not specifically optimized for any problem or algorithm.
We set commonly used values for the various parameters of the deep RL (non-linear) experiments:
the batch size was 64, the value-network and reward-rate parameters were updated every 32 steps,

Table 2: List of hyperparameters tested for each domain

γ α η

Access-Control Queuing
(tabular)

[0.5, 0.8, 0.9,
0.99, 0.999, 1]

[1/128, 1/64, 1/32,
1/16, 1/8, 1/4, 1/2, 1]

[0, 1/256, 1/64,
1/16, 1/4, 1]

PuckWorld
(linear)

[0.5, 0.8, 0.9,
0.99, 0.999, 1]

[0.01, 0.1, 0.3, 0.5,
0.7, 0.9, 1.0, 1.1]

[0, 1/256, 1/64,
1/16, 1/4, 1]

Catch
(linear)

[0.5, 0.8, 0.9,
0.99, 0.999, 1]

[1/128, 1/64, 1/32,
1/16, 1/8, 1/4, 1/2, 1]

[0, 1/256, 1/64,
1/16, 1/4, 1]

Catch
(non-linear)

[0.5, 0.8, 0.9,
0.99, 0.999, 1]

[1/512, 1/256, 1/128,
1/64, 1/32, 1/16, 1/8]

[0, 1, 2,
4, 8, 16]

Pendulum
(non-linear)

[0.5, 0.8, 0.9,
0.99, 0.999, 1]

[1/512, 1/256, 1/128,
1/64, 1/32, 1/16, 1/8]

[0, 1, 2,
4, 8, 16]
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the target network was updated every 128 steps, the experience buffer size was 10,000. Apart for
the main step-size parameter, the default parameters (set by PyTorch) were used for the Adam
optimizer (Kingma & Ba, 2014).
Centering in the non-linear setting (that is, with DQN) in its current form requires a large value
of η compared to the the tabular or linear versions. The reason is how a minibatch is used in the
implementation of this deep RL algorithm. In line 10 of Algorithm 3, the mean of the TD errors of
the minibatch of transitions is taken. The mean can make the overall gradient for the reward-rate
update very small, so a large value of η can be used.
In our implementations we added two simple optimizations:

1. Make the average-reward estimate completely independent of its initialization: this can be
done using the unbiased constant step-size trick (see Sutton & Barto’s (2018) Exercise 2.7).

2. Propagate the changes to the average-reward estimate faster: this can be done by first
computing the TD error, then updating the reward-rate estimate, then recomputing the TD
error with the new reward-rate estimate, and finally updating the value estimate(s).

These optimizations did not affect the overall trends in the results but provided a small yet noticeable
improvement for a tiny computational cost, hence we recommend using them.
For the experiments involving a shift in the problem rewards, the rewards obtained on each problem
variant are not directly comparable. For intuition, imagine the first four rewards in the original
problem be 2,0,3,1. In a variant of the problem with 5 added to all the rewards, the first four
rewards may now appear to be 7,5,8,4. An agent solving the latter problem might trivially appear
better than one solving the former problem even though its fourth reward was relatively lower. To
compare them meaningfully, from the rewards obtained by an agent, we can subtract the constant
that was added in the first place to all the problem’s rewards. That is, we can shift the rewards back
to make fair comparisons across problem variants. This is what we did when presenting the results
of the shifting experiments; this is explicitly denoted by the word “shifted” in the y-axis label.
Figures 8–14 supplement the main trends shown in the main text: the effectiveness of centering
increases as the discount factor approaches 1; with reward centering, the algorithms are more robust
to any constant shifts in the rewards; the performance of reward centering is quite robust to the
choice of the parameter η.

Figure 8: Parameter studies showing the sensitivity of the two algorithms’ performance on variants
of the Access-Control Queuing domain. The error bars indicate one standard error, which at times is
less than the width of the lines. Far left: Without centering, the performance of Q-learning differed
significantly on the different variants over a broad range of the step-size parameter α. Center to
right: With centering, the performance was about the same across the problem variants, and was
quite robust to the choice of its parameter η. All the curves correspond to γ = 0.9; the trends were
consistent across other discount factors.

We also report preliminary results of PPO (Schulman et al., 2017) with and without centering.
We chose to test these on the classic Mujoco problems (Todorov et al., 2012). Mujoco domains
are typically implemented as episodic problems; we converted them to continuing problems by (a)
setting the episode-truncation parameter to a very large number, and (b) if applicable, resetting the
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Figure 9: Learning curves for Q-learning with and without centering on variants of the PuckWorld
problem when γ = 0.99. The performance without centering was different on each variant while
that with centering was roughly the same. Reward centering also resulted in much faster learning.
These trends were consistent across values of γ.

Figure 10: Parameter studies showing the sensitivity of the algorithms’ performance to their pa-
rameters on the PuckWorld domain. Far left: Without centering, Q-learning’s performance was
relatively poor for a large range of α. Center to right: For each discount factor, the performance of
Q-learning with centering was better across a broad range of α.

Figure 11: Parameter studies showing the sensitivity of the algorithms’ performance to variants of
the PuckWorld domain. The error bars indicate one standard error, which at times is less than the
width of the lines. Far left: Without centering, the performance of Q-learning differed significantly
on the different variants over a broad range of the step-size parameter α. Center to right: With
centering, the performance was about the same across the problem variants, and was quite robust
to the choice of its parameter η. All the curves correspond to γ = 0.99; the trends were consistent
across other discount factors.
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Figure 12: Learning curves for Q-learning with and without centering on variants of the Pendulum
problem when γ = 0.8. The performance without centering was different on each variant while that
with centering was roughly the same. Reward centering also resulted in much faster learning. These
trends were consistent across values of γ.

Figure 13: Parameter studies showing the sensitivity of the algorithms’ performance to their pa-
rameters on the Pendulum domain. γ = 0.5 was too small to solve this problem. Far left: The
performance of DQN suffered for discount factors larger than 0.9. Center to right: For each discount
factor, the performance of DQN with centering was better across a broad range of α. Additionally,
the performance was not too sensitive to the parameter η.

Figure 14: Parameter studies showing the sensitivity of the algorithms’ performance with γ = 0.8 to
variants of the Pendulum problem. Far left: Without centering, the performance of DQN differed
significantly on the different variants. Center to right: With centering, the performance of DQN
was about the same across the problem variants across a large range of the step size α, and was also
quite robust to the choice of η.
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Figure 15: Learning curves for PPO with and without centering on continuing versions of six Mujoco
domains. The solid lines and the shaded region denote the mean and one standard error over 10
independent runs.

domain to a starting state with a large negative reward if the agent enters an unrecoverable state.
We used value-based centering (10), where δt corresponds to the advantage estimates computed by
standard PPO.
Figure 15 shows the learning curves for PPO with and without centering. The y-axis shows the
average reward obtained the agent over the last 1000 time steps. As with all the other experiments in
this paper, the evaluation is online—there are no separate training or testing periods. A careful study
will take more time due to the large number of hyperparameters; in our preliminary experiments with
10 runs each, we found that centering results in a slight improvement on all the problems, with the
most pronounced improvements on the Humanoid problem. The step sizes corresponding to average-
reward estimate for the different domains are: Hopper: 1E-4, HalfCheetah: 1E-3, Walker2D: 2E-5,
Swimmer: 5E-5, Humanoid: 1E-2, Ant: 1E-4.

D Connections to Related Approaches

Concurrently with Devraj and Meyn (2021), Schneckenreither (2020) realized the Laurent series
decomposition suggests that an explicit estimate of the average reward can completely remove the
offset. So they proposed an algorithm which to estimate and subtract the average reward, with
two important differences: (a) the average-reward estimate is updated only after non-exploratory
actions, and (b) the algorithm has two discount factors to aim for the strongest optimality cri-
terion—Blackwell optimality. Schneckenreither did not provide any convergence result for their
algorithm. However, they analyzed that if the algorithm converged to the desired fixed point, then
the resulting policy would be (Blackwell-)optimal. Wan et al. (2021) pointed out the average-reward
estimate can be updated at every time step, including ones with exploratory actions, and showed
almost-sure convergence of their algorithms. Combining those insights with Devraj and Meyn’s, we
show the convergence of Q-learning with value-based reward centering.
Reward centering and the advantage function have orthogonal benefits. The advantage function
benefits the actor by reducing the variance of the updates in the policy space (Sutton & Barto,
2018; Schulman et al., 2016). On the other hand, reward centering benefits the critic’s or baseline’s
estimation by eliminating the need to estimate the large state-independent constant offset. Both
the quantities involved in the advantage function—aγ

π(s, a) = qγ
π(s, a) − vγ

π(s) ∀s, a—have the large
state-independent offset r(π)/(1 − γ). The net effect of the offset is zero when they are subtracted.
But the key point is that both the state- and action-value estimates include the large offset. Reward
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centering removes the need to estimate the large offset for both the state- and action-value function,
which simplifies the critic-estimation problem. The actor update is left unchanged with reward
centering because the advantage function itself remains unchanged: ãγ

π(s, a) = q̃γ
π(s, a) − ṽγ

π(s),
because q̃γ

π(s, a) = qγ
π(s, a)−r(π)/(1−γ) and ṽγ

π(s) = vγ
π(s)−r(π)/(1−γ). Hence, we expect reward

centering to benefit all the algorithms that estimate values, which include all actor-critic methods
that involve advantage estimation.
Dividing all the rewards with a (potentially changing) scalar number is typically referred to as
reward scaling (see, e.g., Engstrom et al., 2020). Just like reward centering, reward scaling does
not change the ordering of policies in a continuing problem. Scaling reduces the spread of the re-
wards, centering brings them close to zero, both of which can be favorable to complex function
approximators such as artificial neural networks that are used for value estimation starting from
a close-to-zero initialization. The popular stable_baselines3 repository scales (and clips4) the re-
wards by a running estimate of the variance of the discounted returns (github.com/DLR-RM/stable-
baselines3/blob/master/stable_baselines3/common/vec_env/vec_normalize.py#L256). Mean-
centering the rewards as well would be beneficial for continuing domains. Note that the mechanism
of computing the mean and variance is more complicated in the off-policy setting than the on-policy
setting. Our TD-error-based technique is likely part of the final solution for the off-policy set-
ting. Simply maintaining a running estimate of the variance (as in the stable_baselines’ approach)
introduces a bias. As mentioned earlier, Schaul et al.’s (2021) technique is a good starting point.
Reward centering can be seen as reward shaping (Ng et al., 1999) with a constant state-independent
potential function: Φ(s) = r(π)/(1 − γ) ∀s. Their Theorem 1 then reiterates that reward centering
does not change the optimal policy of the problem. A possible drawback of reward shaping is that
fully specifying the potential-based shaping function can be tricky, especially for problems with large
state spaces. In the case of reward centering this is relatively easy: the potential function is constant
across the entire state space, and we know how to learn the average reward reliably from data.
Finally, we note that the idea of shifting rewards has been explored in episodic problems. Sun et
al.’s (2022) experiments show that subtracting a suitable constant from all the rewards can help
in some episodic problems. However, we do not expect shifting or centering to help in general in
episodic problems: shifting all the rewards by a constant does not change a continuing problem, but
can change episodic problems (e.g., the gridworld example from the final section of the main text).

4Reward clipping in general changes the problem. Blinding the agent from large rewards can impose a performance
ceiling or make some games impossible to solve (Schaul et al.’s (2021) Section 4.3 discusses this in the context of Atari
problems).
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Abstract

Reinforcement learning (RL) holds promise for the next generation of autonomous
vehicles, but it lacks formal robustness guarantees against adversarial attacks in
the observation space for safety-critical tasks. In particular, for obstacle avoid-
ance tasks, attacks on the observation space can significantly alter vehicle behavior,
as demonstrated in this paper. Traditional approaches to enhance the robustness
of RL-based control policies, such as training under adversarial conditions or em-
ploying worst-case scenario planning, are limited by their policy’s parameterization
and cannot address the challenges posed by topological obstructions in the pres-
ence of noise. We introduce a new hybrid RL algorithm featuring hysteresis-based
switching to guarantee robustness against these attacks for vehicles operating in en-
vironments with multiple obstacles. This hysteresis-based RL algorithm for coping
with multiple obstacles, referred to as MultiHyRL, addresses the 2D bird’s-eye view
obstacle avoidance problem, featuring a complex observation space that combines
local (images) and global (vectors) observations. Numerical results highlight its
robustness to adversarial attacks in various challenging obstacle avoidance settings
where Proximal Policy Optimization (PPO), a traditional RL method, fails.

1 Introduction

To develop the next generation of autonomous vehicles that can robustly and safely navigate the
physical world, reinforcement learning (RL) has shown a lot of promise (Everett et al., 2018; Cimurs
et al., 2020; Choi et al., 2021; Feng et al., 2021; Kästner et al., 2021). In Everett et al. (2018); Cimurs
et al. (2020); Choi et al. (2021), methodologies for obstacle avoidance are developed that leverage RL
and are effective in environments with dynamic obstacles, such as pedestrians. In Feng et al. (2021);
Kästner et al. (2021), methodologies are developed for applying RL in challenging environments, such
as narrow corridors or highly dynamic environments. One of the main challenges of applying RL
safely for safety-critical tasks, such as obstacle avoidance, is the lack of formal robustness guarantees
against adversarial attacks.

Adversarial attacks can occur in various forms. Simply stated, attacks can target the state space,
such as a change in dynamics like a propeller chipping of a quadrotor, or the observation space,
such as a perturbation on the camera image. In this paper, the focus is on robustness against
adversarial attacks on the observation space. Specifically, we consider adversarial attacks on vehicle
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Figure 1: Overview of the bird’s-eye view obstacle avoidance setting. The orange arrow depicts the
vehicle, the yellow square depicts the bird’s-eye view image, the gray circle depicts the obstacle, and
the cross depicts the target. The blue and green arrows represent trajectories from the RL policy
when the vehicle is above or below the red dashed decision boundary. The red arrow shows the
trajectory with small measurement noise. The purple arrow indicates the vehicle’s orientation ξ.
The black arrows represent the position and orientation errors ed and eθ with respect to the target.

problems operating in environments with obstacles. An obstacle introduces a topological obstruction
by dividing the navigable space, requiring vehicles to pass the obstacle clockwise or counterclockwise.
Employing a discontinuous control strategy allows the vehicle to be directed around the obstacle to
its target. However, (arbitrarily) small measurement noise can undermine the global attractiveness
of such a discontinuous controller, making the controller lack robustness against (arbitrarily) small
measurement noise, see Prieur et al. (2007); Mayhew et al. (2011). To illustrate these robustness
issues, consider the problem of steering a vehicle to move past an obstacle so as to reach a target.
After successfully training the control algorithm onboard the vehicle, a policy is found that navigates
the vehicle to bypass an obstacle and reach a target, rendering the target globally attractive. Figure 1
shows an overview of the found policy: the vehicle steers left when above the decision boundary,
illustrated by the red dashed line in Figure 1, and steers right below the decision boundary. However,
when the vehicle is near the decision boundary, issues may arise due to noisy observations. For
instance, suppose the vehicle is physically above the decision boundary, but the noisy observations
may report it to be below it. As a result, the vehicle wrongly turns right. Conversely, if the
vehicle is physically below the decision boundary but reported to be above, it would incorrectly
turn left. Repetition of this occurrence can cause the vehicle to get stuck in front of the obstacle
or drive straight into it, as shown in Figure 1 (see also Section 3.2). This scenario demonstrates
that (arbitrarily) small noise can compromise the policy in critical situations. The notion of critical
points in the observation space is relevant to other problems where chattering between policies
causes undesired behavior. This extends to various RL domains, such as hierarchical RL (Frans
et al., 2017; Nachum et al., 2018) and options-based methods (Bacon et al., 2016; Barreto et al.,
2021). For example, in a pick-and-place task, a robot might need to place an object into one of
two equally distant and suitable boxes. If the robot is positioned at exactly the same distance
between the two boxes, even an arbitrarily small amount of noise can cause indecisiveness, leading
to chattering between the options and resulting in inefficiencies and delays.

Various approaches have been proposed in the literature to improve the general robustness of RL-
based control policies against noisy observations or model parameter alterations. Examples are
training in the presence of adversarial attacks (Papernot et al., 2015; Mandlekar et al., 2017; Madry
et al., 2018; Tramèr et al., 2018), considering a worst-case scenario (Pinto et al., 2017; Lütjens
et al., 2020; Zhang et al., 2020; Everett et al., 2022; Liang et al., 2022), or by using control barrier
functions (Emam et al., 2021; Cheng et al., 2023). Notably, a few studies address adversarial attacks
targeting the observation space (Lütjens et al., 2020; Zhang et al., 2020; Everett et al., 2022).
However, these methods focus on worst-case adversary scenarios for (memoryless) policies with
traditional continuous or discrete action spaces. While these methods enhance the general robustness
against noisy observations or model parameter alterations, they cannot address the challenges posed
by topological obstructions. Specifically, because these methods utilize a continuous or (memoryless)
discrete policy parameterization, they fail to prevent the problematic chattering behavior as sketched
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in the autonomous vehicle example above and shown in more detail in Section 3. Contrary to these
works, our approach amalgamates ideas from hybrid control theory to overcome the limitations of
traditional policies. We introduce a new hybrid RL algorithm, referred to as MultiHyRL, that
overcomes these limitations by implementing hysteresis switching modeled by a hybrid system.
MultiHyRL, described in Section 4, provides a hybrid control policy that is robust against adversarial
attacks on the observation space near critical areas for environments with an arbitrary number of
randomly located obstacles. MultiHyRL identifies critical points, such as the decision boundary in
Figure 1, for a control policy obtained via a standard RL method1 and uses this policy to separate
the state space into overlapping sets, thereby effectively removing the topological obstruction from
the state space. Next, new control policies are trained for each overlapping set via a standard RL
method, and the policies are combined in a hybrid system that supervises the newly obtained policies
and implements hysteresis-based switching by introducing two logic variables. To emphasize the
effectiveness of our approach, we consider the bird’s-eye view obstacle avoidance problem, described
in Section 3, whose observation space is complex with the combination of local (images), shown on
the left in Figure 1, and global (vectors) observations, shown on the right in Figure 1. In Section 5,
we empirically show the robustness of the MultiHyRL agent compared to the normal agent for
various settings.2

2 Preliminaries

2.1 Notation

The following notation is used throughout the paper. The n-dimensional Euclidean space is denoted
by Rn. The real numbers are denoted by R. The nonnegative real numbers are denoted by R≥0,
i.e., R≥0 := [0,∞). The natural numbers including 0 are denoted by N, i.e., N := {0, 1, 2, ...}. The
natural numbers excluding 0 are denoted by N>0, i.e., N>0 := {1, 2, ...}. The closed unit ball, of
appropriate dimension and centered at the origin, in the Euclidean norm is denoted by B. The
Euclidean norm of the vector x is denoted by |x|. The distance from x to the set nonempty S
is denoted by |x|S , which is given by infy∈S |x − y|. The convex hull of the set S is denoted
by Conv(S). The interior of a set S is denoted by int S. The boundary of the set S is denoted
by ∂S. The domain of a map f is denoted by dom f . The unit circle is denoted by S1 and is defined
as S1 :=

{
x ∈ R2, |x| = 1

}
. The 4-quadrant inverse tangent is denoted by arctan2. The signum

function is denoted by sgn and is defined as sgn(χ) := −1 if χ < 0 and sgn(χ) := 1 if χ ≥ 0. The

identity matrix is denoted by I. The rotation matrix
[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
is denoted by Rot(θ).

2.2 Reinforcement learning framework

Markov decision processes (MDPs) are used as a formalism for Reinforcement Learning (RL) (Put-
erman, 1994). In an MDP, the learner/controller is referred to as the agent and interacts with an
environment. An episode is the system’s deployment in an environment from an initial condition and
subjected to inputs over a finite or infinite time horizon. The agent’s state z ∈ Z , where Z ⊂ Rn is
a set of states, evolves according to its dynamics

ż = f(z, u), (1)

where f : Z × U → Z and u ∈ U is the control input, where U ⊂ Rm is a set of actions. During an
episode, the environment yields rewards based on the reward function R : Z × U → R to connect
specific state-action pairs to reward values. The goal of RL is to find a policy π : Z → U that

1Proximal Policy Optimization (PPO) (Schulman et al., 2017) is used as the ‘normal’ RL algorithm for the control
policies derived in this paper. Nevertheless, the approach can be applied to other RL methods as well. The details
on the used PPO implementation are given in Appendix A.1.

2All the simulation files are available at www.github.com/HybridSystemsLab/MultiHyRL.
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maximizes the return functional

G(τ) :=
∫ T

t=0
γtR(z(t), u(t)) dt, (2)

where τ = (z, u) ∈ Z × U is a solution pair to (1), defined for each t ∈ [0, T ], where T ∈ R>0 is the
horizon length, under the policy π ∈ Π, where Π is the set of possible policies, and γ ∈ [0, 1) is the
discount factor that weighs the importance of future rewards.

2.3 Hybrid Systems

A hybrid system H = (C,F,D,G) is defined as

H :
{
ẋ = F (x) x ∈ C
x+ = G(x) x ∈ D (3)

where x ∈ Rn denotes the state variable, x+ the state variable after a jump, F : C → Rn
is a function referred to as the flow map, C ⊂ Rn is the set of points referred to as the flow
set, G : D → Rn the jump map, and D ⊂ Rn is the jump set. When the state is in the flow set,
the state is allowed to evolve continuously and is described by the differential equation defined by the
flow map. When the state is in the jump set, the state is allowed to be updated using the difference
equation defined by the jump map. In this way, with some abuse of notation, the solution to (3) is
given by a function (t, j) 7→ x(t, j) defined on a hybrid time domain, which properly collects values
of the ordinary time variable t ∈ R≥0 and of the discrete jump variable j ∈ N. The hybrid system H
allows for the combination of continuous-time behavior (flow) with discrete-time behavior (jumps).
For more details on hybrid dynamical systems, see Goebel et al. (2012); Sanfelice (2021).

3 Motivation

3.1 Vehicle Dynamics and Bird’s-Eye View Problem Formulation

We consider a vehicle evolving on the plane with the state z = (p, ξ) ∈ Z ⊂ R2 × S1 and dynamics
given by

ż = f(z, u) :=
[

uvξ
urRot

(
− 1

2π
)
ξ

]
, (4)

where p = (px, py) ∈ P denotes the planar position, with px ∈ Px and py ∈ Py being the coor-
dinates along the x- and y-axes, respectively. The orientation of the vehicle is ξ ∈ S1, as shown
in Figure 1. The control input u = (uv, ur) consists of uv ∈ [−1, 1] controlling the forward veloc-
ity and ur ∈ [−1, 1] controlling the orientation. In addition, the environment features N ∈ N>0
circular obstacles with a radius of rob ∈ R>0 centered at Pob = {pob,1, pob,2, . . . , pob,N} ⊂ P ,
where pob,i = (pob,i,x, pob,i,y) is the planar position of obstacle i ∈ {1, 2, . . . , N}. To detect collisions
of the vehicle with an obstacle, we define the collision set C as the set of planar positions p for which
the distance to the boundary of an obstacle is zero, that is, C := {p ∈ P : |p|Pob ≤ rob}.
The problem to solve consists of designing an RL-based controller for the vehicle in (4) to avoid
the obstacles and safely reach the set-point position p∗ = (p∗

x, p
∗
y) ∈ P asymptotically. The full

plant model of the system, shown in Figure 2, consists of the vehicle’s dynamics (4) and a function
that provides measurements, or equivalently, observations based on the perturbed state z′ := z+m,
where z′ = (p′, ξ′) ∈ Z and m ∈ R4 is measurement noise. The observations consist of the planar
position error ep(p′) = |p′|p∗ , the orientation error eθ(z′) = arctan2(p∗ − p′) − arctan2(ξ′) mapped
within −π to π, and a binary square image I ∈ {0, 1}nres×nres , where 0 corresponds to no obstacle, 1
corresponds to an obstacle, and nres ∈ N>0 is the resolution of the image. The image is taken
from above, providing a limited bird’s-eye view of the environment, as shown in Figures 1 and 2.
The image is centered on the vehicle’s perceived center of mass, which is located at p′.3 To ensure

3The image is based on the perturbed state z′. Robustness against image-level noise, such as blurriness and
rotations, is beyond the scope of this paper as the focus is on perturbations that cause chattering behavior.
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Figure 2: Overview of the closed-loop control architecture for the bird’s-eye view obstacle avoidance
problem.

consistency of the image with the perceived vehicle’s body frame as the vehicle turns, the image is
rotated with the angle of ξ′ as shown in the ‘Output to Observation’ block in Figure 2. Furthermore,
the image has an equal width and length of wbev×wbev, and a resolution of nres×nres array elements.

The obstacles have the following three properties:
(O1) the obstacles are static and have the same radius rob;4
(O2) the obstacles are disconnected from each other with a spacing between each obstacle greater
than

√
2wbev, such that only one obstacle is visible to the agent for any state z ∈ Z ;

(O3) the distance between an obstacle and the set-point position p∗ is greater than 1
2
√

2wbev, such
that no obstacles are visible to the agent when the agent is at the set-point position p = p∗.

The control architecture, shown in Figure 2, consists of a feature extractor and a standard Multi-
Layer Perceptron (MLP) to map the extracted features to a control policy. An MLP is trained
to extract the relevant features from the planar position error ep and the orientation error eθ.
Concurrently, a Convolutional Neural Network (CNN) is trained to extract the relevant features
about nearby obstacles from the bird’s-eye view image I .5 The details on the architectures of the
CNN and MLPs and their hyperparameters are given in Appendix A.2.

To motivate the agent to navigate around obstacles and reach the set point, a smooth reward function
is crafted with the following components three components:
(R1) a penalty for deviating from the set-point position p∗, encouraging the agent to reach the
set-point position via the shortest path: −c1ep ∈ R≤0, where c1 ∈ R>0 is a weight;
(R2) a penalty for deviating from the orientation corresponding to the shortest path to the position
set point p∗ : −c2 min(ep, c3)|eθ| ∈ R≤0, where c2, c3 ∈ R>0 are weights. This component is scaled
by min(ep, c3) such that c2 min(ep, c3)|eθ| → 0 as ep → 0 and c2 min(ep, c3)|eθ| → c2c3|eθ| as ep →
∞;6
(R3) a penalty for when the agent is in observable proximity to an obstacle for any orientation ξ ∈ S1

to encourage a safe distance between the agent and the obstacle: −c4B(|p|C), where c4 ∈ R>0 is a
weight. The function B, similar to the one defined in Sanfelice et al. (2006), serves as a barrier
function and is defined as B(χ) := (χ− 1

2wbev)2 ln wbev
2χ if χ ∈ [0, 1

2wbev] and B(χ) := 0 if χ > 1
2wbev.

The agent is in observable proximity to an obstacle for any orientation ξ ∈ S1 when the distance to
an obstacle is less than half the width of the image: |p|C ∈ [0, 1

2wbev]. Combining these components
yields the following reward function, which, in this case, depends on z only:

R(z) = −c1ep − c2|eθ|min(ep, c3)− c4B(|p|C) ∀z ∈ Z . (5)

4The method can be applied to moving obstacles and those with various radii, as demonstrated in Appendix C.
5The relevant features for the network in Figure 2 are unknown before training. During training, both the network

and feature extractor are trained concurrently, so the meaning of relevant features may change. After training, the
extracted features can be analyzed to interpret their meanings.

6This scaling is necessary as eθ is undefined for p = p∗. Furthermore, the min saturates the penalty for large values
of ep, such that the orientation penalty does not grow unproportionally large with respect to the other penalties.
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3.2 Lack of Robustness
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(b) With noise εp = 0.1.

Figure 3: Visualization of state trajectories (or
solutions) for various initial conditions in a four
obstacle scenario, with and without measurement
noise. The trajectories alternate colors for read-
ability. The gray circles denote obstacles, the ×’s
denote the initial conditions, the ◦’s denote the
terminal positions, and the red ⋆ denotes the set-
point position p∗.

To demonstrate the lack of robustness in RL-
based control policies, a policy for the system
described in Section 3.1 is found using the PPO
algorithm. Specifically, the control policy is
trained for a canonical setting with a single
obstacle at pob = (−2, 0) and a set point at
p∗ = (0, 0). The observations provided to the
agent enable the policy to generalize across var-
ious obstacle settings, as long as the obstacles
adhere to the properties outlined in Section 3.1.
Figure 3 shows the state trajectories for a four-
obstacle setting; details on the simulation imple-
mentation are provided in Appendix B.4. Fig-
ure 3a shows that the policy steers the vehicle
clockwise or counterclockwise for a small change
in the initial condition (denoted by ×). How-
ever, the policy fails to pass the obstacle when it approaches the obstacle in the center. This is a
limitation of the continuity of the policy parameterization, which causes it not to steer away from
the obstacle for some states. When an arbitrarily small amount of noise is applied to the perceived
position of the vehicle, the policy can mistakenly steer the vehicle clockwise when it should steer
counterclockwise and vice versa, inducing “chattering” behavior. Figure 3b demonstrates this chat-
tering behavior and the vehicle getting stuck in front of the obstacle due to measurement noise on
the measured vehicle position. Details on the simulation are given in Section 5.

In this paper, motivated by such fragility of RL-based algorithms, we develop an algorithm that
results in a closed-loop hybrid system whose behavior is robust against those disturbances in the
presence of multiple obstacles.

4 Multi Hysteresis-Based RL

A hysteresis-based RL algorithm to guarantee safety and robustness in environments with multiple
obstacles and measurement noise is proposed. The algorithm, which we call MultiHyRL, deals with
any number of obstacles by implementing a hysteresis switching mechanism that prevents chattering
behavior from occurring in the presence of measurement noise. In this section, the MultiHyRL
algorithm is discussed.

4.1 MultiHyRL Overview

In simple words, the MultiHyRL algorithm operates as follows:
(Step 1) Utilize the RL method of choice, such as PPO, to find an initial control policy;
(Step 2) Detect the critical points for the initial control policy; see (⋆) in Section 4.2. The critical
points are the areas in front of each obstacle for which solutions evolve in opposite directions for
a small change in the state. For example, the dashed red line in Figure 1 is a collection of critical
points;
(Step 3) Utilize these critical points to partition the state space into two overlapping sets; see Sec-
tion 4.3. The union between the overlapping sets covers the whole state space, and the intersection
covers the critical points and an area around the set point. By this construction, for each overlapping
set, only one path exists that connects the critical points to the set point for each obstacle;
(Step 4) Train a new policy for both of these overlapping sets using the chosen RL method. The
vehicle’s passage around each obstacle is constrained to a single side due to the design of the overlap-
ping sets. Thereby effectively eliminating the topological obstructions. For example, for the scenario
depicted in Figure 1, the vehicle is only permitted to navigate around the obstacle via either the
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blue trajectory or the green trajectory for each respective overlapping set;
(Step 5) Introduce a logic variable to dictate the active policy and a logic variable to indicate the
focused obstacle to be avoided. The logic variables change their values only when the system exits
the overlapping set corresponding to their current logic value index. This mechanism enables hys-
teresis switching between the newly acquired policies for each obstacle. With this approach, small
measurement noise does not lead to chattering behavior. Instead, the same policy continues to be
applied as the logic variables remain unchanged under small measurement noise.

The MultiHyRL algorithm can be applied to any number of obstacles that satisfy the properties
outlined in Section 3.1. However, Steps 1-4 are executed for the canonical obstacle setting as
discussed in Section 3.2, namely, a single obstacle positioned at pob = (−2, 0) and a positional set
point p∗ = (0, 0). By means of a transformation, the results for the canonical obstacle setting are
generalized to apply for any number of obstacles that satisfy the properties outlined in Section 3.1,
without the need for fine-tuning the policies found in Step 4 or tweaking the partitions found in
Step 3. In the following subsections, the MultiHyRL algorithm is applied to the canonical obstacle
setting, and in Section 4.3 the transformation is discussed that generalizes the results to any obstacle
setting that satisfies the properties outlined in Section 3.1.

4.2 Finding Critical Points

By leveraging a set of critical points, the state space can be partitioned into two sets for each
obstacle. This division is achieved by ensuring that trajectories originating near these critical points
evolve in divergent directions within each respective partition and do not leave the partition they
start in. A set of critical points M∗ ⊂ Z exists for a closed-loop system ż = f(z, π(z)) when the
following property holds:

(⋆) there exists δ > 0 such that for each state z ∈M∗ there exist initial states z0, z1 ∈ {z}+ δB
such that solutions ϕ0, ϕ1 to ż = f(z, π(z)) starting from z0, z1, respectively, satisfy

ϕ0(t) ∈ int M0 for all t ∈ dom ϕ0 \ {0} and ϕ1(t) ∈ int M1 for all t ∈ dom ϕ1 \ {0}, (6)

where M0 and M1 are partitions of the environment Z with properties M0 ∪M1 = Z
and M0 ∩M1 = M∗.

In the context of obstacle avoidance (topological obstructions), each obstacle has an associated set
of critical points. As discussed in Section 3.2, solutions evolve in divergent directions for a small
change in the vehicle’s state when facing an obstacle. For each obstacle, the state space can be
partitioned into two parts: solutions that steer past the obstacle clockwise (e.g., M0) and solutions
that steer past the obstacle counterclockwise (e.g., M1). Using (⋆), we can state that for each
obstacle ℓ ∈ {1, 2, . . . , N}, we can find a set of critical points M∗

ℓ and partition the state space Z
into M0,ℓ and M1,ℓ with properties M0,ℓ ∪M1,ℓ = Z and M0,ℓ ∩M1,ℓ = M∗. An algorithm is
designed that searches the state space for initial conditions for which (⋆) holds and thereby finds the
sets of critical points M∗

ℓ for each obstacle ℓ ∈ {1, 2, . . . , N}. A detailed description of the algorithm
is given in Appendix B.1. The algorithm is applied to the canonical setting described in Section 3.2
to find its set of critical points M∗.

4.3 Partitioning the State Space

In this section, the state space for the canonical setting described in Section 3.2 is partitioned into
two overlapping sets Mext

0 and Mext
1 . This partition ensures the vehicle can only pass an obstacle

on one side (clockwise or counterclockwise), thus removing the topological obstruction. To create
these overlapping sets, a Support Vector Machine (SVM) model is trained to classify if a position p
is in Mext

0 \Mext
1 , Mext

1 \Mext
0 , or in the overlap Mext

0 ∩Mext
1 . This classification identifies when

a switch needs to occur in the hysteresis switching mechanism, as discussed in Step 5 in Section 4.1.
This section discusses the creation of the data set for training the SVM model and the transformation
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Figure 4: Overview of five regions used for the creation of the SVM data set. The red areas
denote regions related to the conditions (S1), (S2), and (S3). The blue and green areas denote the
regions (S4) and (S5), respectively. The black line denotes the center line yc, the gray circle denotes
the obstacle, and the red ⋆ denotes the set-point position p∗.

that generalizes the results for the canonical setting to apply for any number of obstacles that satisfy
the properties outlined in Section 3.1.

To create a training data set for the SVM model, a rough estimate of the partitions Mext
0 \

Mext
1 , Mext

1 \Mext
0 , and Mext

0 ∩Mext
1 is made. The estimate of overlapping Mext

0 ∩Mext
1 consists

of three regions, namely, (S1), (S2), and (S3). The estimates of Mext
0 \Mext

1 and Mext
1 \Mext

0
consist of the regions (S4) and (S5), respectively. An overview of the regions is shown in Figure 4.
Region (S1) collects positions that are inside the smoothened set of critical points Mσ. The set of
critical points M∗ is smoothened by a factor of σ ∈ R>0 and defined as Mσ := Conv (M∗ + σB).
Region (S2) collects positions that are in the vicinity of the set-point position, namely, p ∈ p∗ +c5B,
where c5 ∈ R>0. Region (S3) collects positions that are in the vicinity of the center line yc : Px → Py
and are not inside the obstacle. A position p is not inside an obstacle if the distance to the obstacle is
greater than zero, namely, |p|C > 0. The center line is obtained by fitting a second-order polynomial
through the center pc of Mσ defined as pc = (px,c, py,c) := arg minpx,c∈Px maxpy,c∈Mσ |px,c − py,c| ,
the center of the obstacle pob, and the set-point position p∗. A position p = (px, py) is in the
vicinity of the center line yc if yc(px) − c6 ≤ py ≤ yc(px) + c6, where c6 < rob. Region (S4) col-
lects positions p = (px, py) that are not in the regions (S1-S3) and are above the center line, that
is, py > yc(px). Region (S5) collects positions p = (px, py) that are not in the regions (S1-S3) and
are below the center line, that is, py < yc(px). A training dataset is generated by labeling a grid of
positions according to the regions (S1-S5). An SVM model is trained using this dataset with a Gaus-
sian radial basis function to ensure that the boundaries between the sets Mext

0 \Mext
1 , Mext

1 \Mext
0 ,

and Mext
0 ∩Mext

1 are smooth. The sets Mext
0 and Mext

1 are then obtained by inferencing the trained
SVM model. Namely, a position is in Mext

i if the position is in Mext
i \Mext

h or Mext
0 ∩Mext

1
for i, h ∈ {0, 1} and i ̸= h.

To generalize the SVM model to find the sets Mext
0 and Mext

1 for any obstacle settings, a transfor-
mation is applied to the inputs of the SVM model. The details on the transformation are discussed in
Appendix B.2. Additionally, if more than one obstacle is present in the environment, the sets Mext

0
and Mext

1 are partitioned with a relaxed Voronoi partition into N Voronoi cells, one for each ob-
stacle. The relaxed partition allows for overlap between the cells to prevent Zeno behavior (infinite
jumps in finite time) for the resulting hybrid system.7 With this relaxed Voronoi partition, the pair
of sets Mext

0,ℓ and Mext
1,ℓ are obtained for each obstacle ℓ ∈ {1, 2, . . . , N}. Figure 5 shows an example

of the sets Mext
0,ℓ and Mext

1,ℓ for a four obstacle setting N = 4.

4.4 Training two new control policies

After finding the extended overlapping sets Mext
0 and Mext

1 for the canonical obstacle-setting de-
scribed in Section 3.2, two new policies are trained for the same obstacle setting. A policy, de-
noted π0, is trained on Mext

0 and another policy, denoted π1, is trained on Mext
1 .8 To train these

policies, a slight modification is made to the reward function. Specifically, for each i ∈ {0, 1}, the

7See Sanfelice (2021) for more information on Zeno behavior. The details and additional examples on the relaxed
Voronoi partition are given in Appendix B.3.

8The policy parameters from Step 1 in Section 4.1 can initialize policies π0 and π1 to speed up training.
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Figure 5: Visualization of the state space partition for four obstacles. For each obstacle ℓ ∈
{1, 2, 3, 4}, the blue & red and the green & red areas denote the sets Mext

0,ℓ and Mext
1,ℓ , respec-

tively. The red area denotes the intersection Mext
0,ℓ ∩Mext

1,ℓ . The black lines denote the Voronoi
vertices, the gray circles denote the obstacles, and the red circle denotes the set-point position p∗.
The points p1 and p2 are referenced in Section 4.5 to derive the hybrid control algorithm.

set Z \Mext
i is added to the collision set C. This penalizes the agent for leaving its respective

extended overlapping set, motivating it to stay inside. For the single obstacle-setting described in
Section 3.2, the policy π0 steers the vehicle clockwise past the obstacle for each z ∈Mext

0 , and the
policy π1 steers the vehicle counterclockwise past the obstacle for each z ∈Mext

1 . As discussed in
Section 3.2, the policies π0 and π1 generalize across various obstacle settings, as long as the obstacles
adhere to the properties outlined in Section 3.1.

4.5 Hybrid Control Algorithm for Supervising Policies

After obtaining the sets Mext
0,ℓ and Mext

1,ℓ for each obstacle ℓ ∈ {1, 2, . . . , N} and the control policies π0
and π1, a hybrid control algorithm is designed to supervise the policies. To do so, two logic variables
are introduced: q ∈ {0, 1} indicating the active policy and λ ∈ {1, 2, . . . , N} indicating the focused
obstacle to be avoided. To construct the hybrid closed-loop system H = (C,F,D,G), we define its
state as the collection of the vehicle’s state z, and the newly introduced logic variables q and λ,
namely, x := (z, q, λ) ∈ Z × {0, 1} × {1, 2, . . . , N}. Next, we define the flow map F that describes
the continuous evolution of the state z as



ż
q̇

λ̇


 = F (x) :=



f(z, πH(z, q))

0
0


 x ∈ C, (7)

where πH is the hybrid control policy that allows us to switch between π0 and π1 depending on the
value of the logic variable q. The hybrid control policy is given by

πH(z, q) :=
{
π0(z) if q = 0
π1(z) if q = 1

. (8)

In (7), it can be seen that the vehicle’s state flows according to its dynamics (4) under the hybrid
control policy (8), the logic variables q and λ do not change during flow, and that the system flows
whenever the state is inside the flow set C, which is defined below. As the logic variables do not
change during flow, the hybrid policy remains equal to π0 or π1 during flow, depending on the value
of q. To define the flow set, consider the four obstacle setting and the sets Mext

0,ℓ and Mext
1,ℓ for each

obstacle ℓ ∈ {1, 2, 3, 4} shown in Figure 5. Suppose the vehicle’s position is p1 = (px, py) = (−3, 5),
that is, the vehicle’s state z is in the overlapping extended set Mext

0,1 ; see Figure 5. From this vehicle
position, the vehicle has to pass obstacle 1 clockwise. So for the system to flow, the focused obstacle
has to be obstacle 1, that is, λ = 1, and the policy that steers the vehicle clockwise has to be
active, namely, policy π0 and thus q = 0. Moreover, for x to flow, the logic variables q and λ must
correspond to the indexes of the overlapping extended set Mext

q,λ the vehicle’s state is in. Therefore,
the flow set is given by

C :=
⋃

q∈{0,1}, λ∈{1,2,...,N}

(
Mext

q,λ × {q} × {λ}
)
. (9)
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Next, suppose again that the vehicle’s position is p1, that is, z ∈Mext
0,1 , the logic variable λ = 1, and

the logic variable q = 1. This time, the state x is not in the flow set (9) as q ̸= 0. Therefore, the
value of the logic variable q has to jump from q = 1 to q = 0 such that the state x after the jump is
in the flow set (9). To capture this jump for the logic value q, we define the hysteresis jump set as

Dhyst
h,q,λ :=

(
Mext

h,λ \Mext
q,λ

)
× {q} × {λ}, (10)

for h ∈ {0, 1} where h ̸= q and h is the value to reset q to. In (10), it can be seen that this jump
set captures the condition when the focused obstacle λ corresponds to the overlapping set Mext

q,λ,
but the value of q needs to be switched. The second type of jump can occur when the obstacle that
needs to be focused does not correspond to the value of the logic variable λ. For example, suppose
again that the vehicle’s position is p1, that is, z ∈ Mext

0,1 , the logic variable q = 0, and the logic
variable λ = 3. From this state, the hybrid system cannot flow as the state is not in the flow set (9).
Hence, we want to reset the value of λ from λ = 3 to λ = 1. Additionally, the new value for the
logic variable λ can be arbitrarily chosen as the sets Mext

0,ℓ and Mext
1,ℓ for ℓ ∈ {1, 2, . . . , N} overlap by

their construction. For example, suppose that the vehicle’s position is p2 = (px, py) = (1.5,−1.5),
that is, z ∈ ⋂

q∈{0,1}, λ∈{2,3,4}
Mext

q,λ, the logic variable q = 0, and the logic variable λ = 1. The logic variable λ

needs to be reset as the state is not in the flow set, but the logic variable can be updated to 2, 3,
or 4. When multiple options are available, the new value of λ is picked uniformly at random from
the available options, that is, λ+ ∈ {2, 3, 4}. An instantiation of λ+ would be 3. The jump map G
that captures these situations is given by



z+

q+

λ+


 ∈ G(x) :=




z{
q if x ∈Mext

q,λ′(x) × {q} × {λ′(x)}{
h ∈ {0, 1} \ {q} : x ∈ Dhyst

h,q,λ′(x)

}
else

λ′(x)


 x ∈ D,

(11)
where

λ′(x) =
{

Γ(x) if x ∈ D \Dfcs
λ

λ else
, Dfcs

l :=
(
Mext

0,l ∪Mext
1,l
)
× {0, 1} × {l}, (12)

where Dfcs
l is the set of points that correspond to the focused obstacle l ∈ {1, 2, . . . , N} and Γ is the

focused obstacle jump map for switching the logic parameter λ (in)deterministically and is given by

Γ(x) =



Λ ⊂ {1, 2, . . . , N} :

(⋂

l∈Λ
Dfcs
l

)
\


 ⋃

i̸∈Λ, i∈{1,2,...,N}
Dfcs
i





 . (13)

Lastly, the jump set D of for the hybrid system is given by

D :=
⋃

q∈{0,1}, λ∈{1,2,...,N}

(
Dhyst
q,λ ∪Dfcs

λ

)
= (Z × {q} × {λ}) \ C. (14)

It is important to note that the sets Mext
0,λ and Mext

1,λ overlap each other in front of each obstacle λ
with respect to the positional set point. Furthermore, the sets Mext

0,λ ∪Mext
1,λ and Mext

0,h ∪Mext
1,h also

overlap each other for each obstacle λ and h where λ ̸= h ∈ {1, 2, . . . , N}. Therefore, the hybrid
system cannot continuously switch between its values of q and λ in the presence of measurement
noise. Hence, the hybrid system cannot switch continuously between its policies π0 and π1 to pass
an obstacle in the presence of small measurement noise. The vehicle will pass the obstacle clockwise
if q = 0 and counterclockwise if q = 1, thereby implementing a hysteresis switching effect between the
two policies and granting robustness against the small measurement noise. The level of robustness is
related to the amount of overlap the sets Mext

0,λ and Mext
1,λ and the sets Mext

0,λ∪Mext
1,λ and Mext

0,h∪Mext
1,h

for λ ̸= h ∈ {1, 2, . . . , N} have. Specifically, if the overlap width is greater than ε ∈ R>0, the hybrid
system is robust against chattering behavior caused by measurement noise of ε on the vehicle’s
perceived position.
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5 Numerical Validation

In this Section, we apply the MultiHyRL algorithm as described in Section 4 to overcome the lack of
robustness of the normal agent. To demonstrate the robustness of the MultiHyRL agent, both the
normal agent and the MultiHyRL agent are simulated in various settings for many initial conditions
in the presence of the exact same measurement noise signal. The controllers use a sample-and-hold
approach for both the normal and MultiHyRL agents, modeled as a hybrid system; details are given
in Appendix B.4.

The normal and MultiHyRL agents are deployed in two environments with eight and ten static
obstacles that satisfy the properties outlined in Section 3.1. Four measurement noise settings are
considered for both agents: (a) no measurement noise, εp = εξ = 0, (b) only positional noise, εp =
0.2, εξ = 0, (c) only orientational noise, εp = 0, εξ = 0.3, and (d) both positional and orientational
noise, εp = 0.05, εξ = 0.1. The applied measurement noise signal m : S1 × R≥0 → R4 is given by

m(ξ, t) =




msgn(t)εp
−msgn(t)εp

(Rot(msgn(t)εξ)− I)ξ


 , msgn(t) = sgn

(
cos
(
πt

∆t

))
, (15)

where the function msgn changes its sign at every sampling time interval ∆t. For the MultiHyRL
agent, the logic variables q and λ are randomly initialized. Figure 6 shows the simulation results for
each setting. In the first and third rows of column (a) in Figure 6, it can be seen that the normal
agent gets stuck in front of an obstacle for a select few initial conditions. This can be attributed
to the continuous policy that is used for the normal agent. Specifically, by the property (⋆) in
Section 4.2, solutions get stuck at critical points located in front of the obstacles. Furthermore, the
first and third rows of columns (b), (c), and (d) show that the normal agent’s ability to reach the
positional set point worsens significantly due to measurement noise, causing chattering behavior and
resulting in many initial conditions getting stuck in front of obstacles.

Contrary to the normal agent, the MultiHyRL agent reaches the positional set point for all noise
settings and initial conditions, as shown in the second and fourth rows of Figure 6.9 This is due
to the hysteresis and obstacle focus mechanisms that prevent chattering in front of the obstacles.
The MultiHyRL agent’s solutions sometimes cross each other for similar initial positions due to
the random initialization of logic parameters q and λ. For example, if the initial position is in the
overlapping region between Mext

0,λ and Mext
1,λ for obstacle λ, the initial value of q can be 0 or 1,

steering the vehicle clockwise or counterclockwise, respectively. In column (a), the MultiHyRL
agent typically takes a slightly longer path to the positional set point than the normal agent due to
these mechanisms. However, the robustness benefits of the MultiHyRL agent outweigh this slight
performance loss in the noiseless setting.

Without any modifications, the MultiHyRL algorithm can be applied to obstacles of different sizes
and even dynamic obstacles.10 To further validate the MultiHyRL agent’s performance over the
normal agent, they can be deployed in a simplified game of Capture the Flag against each other.
Additional simulations are provided in Appendix C.

6 Conclusion

This paper presents a new hybrid RL algorithm, referred to as MultiHyRL, for vehicles operating in
environments with an arbitrary number of randomly located obstacles to overcome the challenges
posed by topological obstructions. MultiHyRL provides a hybrid control policy with hysteresis
switching that is robust against adversarial attacks on the observation space near critical areas for
such environments. MultiHyRL addresses the 2D bird’s-eye view obstacle avoidance problem fea-
turing a complex observation space that combines local (images) and global (vectors) observations.

9There exists another topological obstruction on the vehicle’s orientation ξ, which can be dealt with following the
procedure done on the unit circle problem in de Priester et al. (2022).

10For dynamic obstacles, we assume they do not move faster than the vehicle and satisfy the properties in Section 3.1.
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(a) εp = εξ = 0.
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(b) εp = 0.2 and εξ = 0.
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(c) εp = 0 and εξ = 0.3.
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(d) εp = 0.05 and εξ = 0.1.

Figure 6: Visualization of the state trajectories under different measurement noise settings for the
normal agent (rows 1 and 3) versus the MultiHyRL agent (rows 2 and 4) in two static obstacle
environments. The logic variables q and λ are randomly initialized for the MultiHyRL agent. The
trajectories alternate colors for readability. The gray circles denote obstacles, the ×’s denote the
initial conditions, the ◦’s denote the terminal positions, and the red ⋆ denotes the set-point posi-
tion p∗.

Numerical results highlight its robustness to adversarial attacks in various challenging obstacle avoid-
ance settings where PPO, a traditional RL method, fails. With some modifications, the MultiHyRL
algorithm can be extended to 3D tasks, as future work will demonstrate. While our primary focus is
on obstacle avoidance, the concept of critical points in the observation space applies to other prob-
lems where chattering between policies causes undesired behavior. This relevance extends to various
RL domains, such as hierarchical RL and options-based methods. The MultiHyRL algorithm can
be adapted to enhance the robustness of these methods as well.
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A Reinforcement Learning Implementation Details

A.1 Proximal Policy Optimization

This paper uses OpenAI’s Stable Baselines 3 implementation of the PPO algorithm (Raffin et al.,
2021) to learn an approximate value function v̂, parameterized by ϕ, and stochastic policy πs,
parameterized by θ. For a training episode, the simulation provides information at time points k ∈
{0, 1, . . . ,K} where K ∈ N is the time point corresponding to the maximum simulation horizon
time. The approximated value function v̂ is trained by minimizing the mean squared error between
the approximated value function v̂ and the returns Gk observed during training episodes, given by

Gk(ζ) =
K−1∑

ℓ=k
γℓ−kR(zℓ+1, uℓ), (16)

where ζ = {(u0, z1), (u1, z2), . . . , (uK−2, zK−1), (uK−1, zK)} is the discrete-time solution pair to (1).
The update of the approximate value function’s parameters ϕ is given by

ϕψ+1 = min
ϕ

1
|Dψ|K

∑

ζ∈Dψ

K−1∑

k=0
(v̂(zk;ϕ)−Gk)2

, (17)

where ψ ∈ N is the update step and Dψ is a set containing discrete-time solution pairs ζ obtained
during training episodes under the stochastic policy πsψ.11 The value function update in (17) is done
via gradient ascent with Adam (Kingma & Ba, 2014).

During training, a stochastic policy is used such that the agent can explore the environment, that
is, to observe the rewards obtained for a large variety of state-action pairs. A multivariate Gaussian
distribution is used to parameterize a stochastic policy and is given by

πs (u|z) = N
(
µ (z) ,Σ2 (z)

)
, (18)

11As the value function estimates the return under a specific policy π, the trajectories used for updates on the
approximate value function must be under the same policy. Therefore, the trajectories ζ obtained under different
policies πs ̸= πsψ are not used to update ϕψ .
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where µ : Z → U denotes the mean vector of the multivariate Gaussian distribution N and Σ2 :
Z → U × U the diagonal covariance matrix of the multivariate Gaussian distribution N . A neural
network parameterizes this distribution; we use a neural network to map the states z to a mean
vector µ and a state covariance matrix Σ2. A deterministic policy π : Z → U is then obtained by
evaluating the mean vector µ of the stochastic policy πs, that is, π = µ. The policy is parameterized
by a neural network with parameters θ. The update of the policy’s parameters θ is given by

θψ+1 = max
θ

1
|Dψ|K

∑

ζ∈Dψ

K−1∑

k=0
L(ζ, θψ, θ), (19)

where L is the objective function given by

L(ζ, θψ, θ) = min
(
πs(uk|zk; θ)
πsψ(uk|zk; θψ) Âψ,k(ζ), g(ϵ, Âψ,k(ζ))

)
, (20)

where the estimated advantage Âψ,k at update step ψ and time step k is obtained via the Generalized
Advantage Estimator (GAE) (Schulman et al., 2016) method and is given by

Âψ,k(ζ) =
K−1∑

l=k
(γλ)l−kδψ(zl, ul, zl+1), (21)

where δψ,k is the TD error at update step ψ and time step k given by

δψ(zl, ul, zl+1) = R(zl+1, ul) + v̂ψ(zl+1)− v̂ψ(zl), (22)

and λ ∈ (0, 1] is a factor for the trade-off between bias and variance for the GAE. If λ→ 0, the bias
for the GAE is minimal, but the variance is high for the GAE. If λ = 1, the variance is minimal for
the GAE, but the GAE is most biased. Furthermore,

g(ϵ, Âψ,k) =
{

(1 + ϵ)Âψ,k if Âψ,k ≥ 0
(1− ϵ)Âψ,k if Âψ,k < 0

, (23)

where ϵ ∈ R>0 is a hyperparameter that controls how far a new policy may deviate from the old
policy. The policy update in (19) is done via gradient ascent with Adam (Kingma & Ba, 2014).

A.2 Network Architectures and Hyperparameters

This section describes the network architectures used and the hyperparameters used for the PPO
algorithm. The architecture of the CNN is given by

CNN(I) = Flatten
(

MaxPool2D
[
ReLU(Conv2D(I ,ΨConv2D)),ΨMaxPool2D

])
, (24)

where I is the input image with equal width and length of wbev×wbev = 2×2 and a resolution of nres×
nres = 64 × 64 array elements, Flatten is a function that converts the 2D input into a 1D vector,
MaxPool2D is a 2D max pooling layer to reduce the spatial dimensions of the input feature map
with hyperparameters ΨMaxPool2D = {kernel size = 2}, ReLU is the rectified linear unit activation
function given by f(χ) = max(χ, 0) for an input χ, and Conv2D is the 2D convolution operation
for with hyperparameters ΨConv2D = {out channels = 2, kernel size = 6, stride = 2, padding = 0}.
The architecture of the feature extractor’s MLP is given by

MLPfeature(e) = ReLU(wfeaturee) + bfeature, (25)

where e = (ep, eθ) and wfeature and bfeature are the weights and biases of the feature extractor’s MLP
with 32 neurons. The architecture of the network’s MLP, that is, the actor and critic networks, is
given by

MLPnetwork(features) = wn,2ReLU(wn,1ReLU(wn,0features) + bn,0) + bn,1) + bn,2, (26)
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Parameter Value Parameter Value
Time steps 200 Sampling time in seconds 0.05
Total training steps 5000000 Entropy coefficient 0.001
Number of parallel environments 8 Learning rate 0.0001
Discount factor γ 0.99 GAE factor λ 0.95
Batch size 64 Clip range 0.2
Value function coefficient 0.5 Maximum value for gradient clipping 0.5

Table 1: Hyperparameters used for the PPO algorithm

where features= (CNN(I), MLPfeature(e)), and wn,i and bn,i are the weights and biases of the
network’s MLP with 32 neurons for each layer i ∈ {0, 1, 2}. The actor network (26) outputs two
variables, namely, the mean µ and the diagonal covariance matrix Σ that defines the stochastic
policy (18) for the input features. The critic network outputs one value for the input features: the
approximated value function.

The hyperparameters used for the PPO algorithm are shown in Table 1.

B MultiHyRL Implementation Details

B.1 Algorithms

This Section provides the pseudocode for the algorithm used in Section 4.2 to find the critical points
of a control policy π for the MultiHyRL algorithm. The goal of Algorithm 1 is to search the state
space for initial conditions for which (⋆) holds under a control policy π. For the first iteration
of the algorithm, the set of initial conditions (points) Z0 is a grid with a spacing between points
of δ ∈ R>0. Next, for each point zc ∈ Z0, we test nrp ∈ N>0 times if two points near zc evolve in
divergent directions. Specifically, the two nearby points z1 and z2 are computed using Algorithm 2.
Algorithm 2 computes a symmetric point pair (z1, z2) ∈ zc + δB by sampling a random vector of
the same dimensionality as zc from a uniform distribution, that is, ν ∼ U(−δ, δ), and the points are
defined as z1 = zc + ν and z2 = zc − ν.12 Next, the system is simulated under the control policy π
for a horizon time of T ∈ R>0 to obtain the solutions t 7→ ϕi(t) for i ∈ {1, 2}. To determine if the
solutions ϕ1 and ϕ2 evolve in divergent directions, the sum of the absolute differences between the
two trajectories d is computed at times t when the simulation provides information. Specifically, at
each sampling time interval t, we evaluate ϕ1 and ϕ2. Moreover, the difference at each time point t
is adjusted by subtracting the initial differences ϕ1(0) and ϕ2(0) to focus on the divergence from the
initial conditions and is normalized by the sampling time ∆t. Next, the value of d is compared to
the distance threshold value η ∈ R>0, which acts as a benchmark to identify significant divergences
between trajectories. If d > η, the point zc is potentially a critical point and is stored in a set Zc

0 that
is reset for each iteration of the main loop of Algorithm 1.13 After evaluating every point in Z0 and
populating the set Zc

0 , k-means clustering is applied on Zc
0 to “summarize” the points by ncp ∈ N>0

clusters in Zc
0 . This ensures that the total number of points evaluated in each iteration of the main

loop remains computationally manageable. The set Z0 is reset to an empty set and repopulated
with the newly found ncp clusters.14 Lastly, the value of δ is reduced by a factor β ∈ (0, 1) to
facilitate convergence to a set of critical points. If δ becomes smaller than the sampling time ∆t, the
sampling time is also scaled by β to ensure the system samples fast enough to dodge obstacles if it
starts close to them.15 After reducing the value of δ and repopulating the set Z0, the main loop of
the algorithm is run again until nit ∈ N>0 of the main loop have passed. By iterative refining δ, the

12The symmetry of the point pair (z1, z2) refers to the addition/subtraction of the random vector ν.
13Potentially here refers to the fact solutions can satisfy d > η for large values of δ while the point zc is not actually

a critical point. Therefore, the point zc is considered potentially a critical point. To verify whether the point zc is
indeed a critical point, the value of δ is decreased every iteration of the main loop of Algorithm 1.

14If the number of points in Z0 is less than ncp, the clustering step is skipped, and Z0 is not reset.
15If the sampling cannot be adjusted in this manner, the algorithm stops when δ < ∆t.
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Algorithm 1: Finding critical points
Data: Policy π ∈ Π to be evaluated, number of iterations nit ∈ N>0, number of random

symmetric point pairs per center point nrp ∈ N>0, initial set of points Z0 ⊂ Z ,
Euclidean distance δ ∈ R>0 between initial points zc ∈ Z0, simulation horizon
time T ∈ R>0, sampling time ∆t, distance threshold η ∈ R>0, reduction factor distance
points β ∈ (0, 1), maximum number of point clusters ncp ∈ N>0.

Result: ncp clusters centers of critical points.
1 for nit iterations do
2 Define the empty set Zc0.
3 for each point zc ∈ Z0 do
4 for nrp iterations do
5 Apply Algorithm 2 with zc and δ to find z1 and z2.
6 for z1 and z2 do
7 Simulate the system under policy π for a horizon time of T seconds to obtain to

obtain the solutions t 7→ ϕi(t) for i ∈ {1, 2}.
8 Compute the sum of the differences between the solutions ϕ1 and ϕ2 at t’s where the

simulation provides information:
∑T
t=0 |ϕ1(t)− ϕ1(0)− ϕ2(t) + ϕ2(0)|∆t = d.

9 if d > η then
10 if in the nitth iteration then
11 Store zc in Zc0.
12 else
13 Store zc, z1, and z2 in Zc0.
14 Apply k-means clustering on Zc

0 to find ncp cluster centers of critical points. Store cluster
centers as Z0.

15 Set δ ← βδ.
16 if δ < ∆t then
17 Set ∆t← ∆tβ

Algorithm 2: Generate a symmetric point pair
Data: Center point of the symmetric point pair zc, spread of the symmetric point pair δ.
Result: Two points z1, z2 ∈ zc + δB that are point symmetric w.r.t. zc.

1 Sample a random vector of the same dimensionality as zc from a uniform
distribution: ν ∼ U(−δ, δ).

2 Define the point symmetric points w.r.t. zc as z1 = zc + ν and z2 = zc − ν.

algorithm converges to a continuous set of critical points as the sampling time ∆t goes to zero and
the simulation horizon time T and the number of cluster centers of critical points goes to infinity.

Algorithm 1 assumes that the system can be initialized from any initial condition, which may be
challenging in some settings. For example, this can be problematic if the training is performed on
a real system. Algorithm 1 can be adapted to work for such systems by storing and utilizing the
state trajectories (solutions) obtained during training. Algorithm 1 still starts with a grid of points
Z0. However, instead of computing a symmetric point pair (z1, z2) from which we simulate the
system, we retrieve two solutions (or tails of solutions) that start from a δ neighborhood of zc and
evaluate the remainder of the algorithm in the same manner as before. For this adapted version
of Algorithm 1, the underlying assumptions are that the state trajectories obtained during training
sufficiently explore the areas of critical points and that the state is measurable to determine if a
solution (or tail of a solution) starts from a δ neighborhood of zc.
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B.2 Transforming the SVM’s Input

This Section describes the transformation used in Section 4.3. The transformation is performed
on the input of the canonical setting’s SVM model to obtain the extended overlapping sets for
different obstacles or set-point positions. The function htrans : P → P maps a position from the
desired obstacle and set point setting into the canonical setting. Let pcan

ob = (pcan
x,ob, p

can
y,ob) ∈ P

and p∗,can = (0, 0) denote the obstacle position and the positional set point for the canonical setting,
respectively. Furthermore, let pdes

ob = (pdes
x,ob, p

des
y,ob) ∈ P and p∗,des = (p∗,des

x , p∗,des
y ) ∈ P denote the

obstacle position and the positional set point for the desired setting, respectively. The function htrans

is given by
htrans(p) =

[
rtrans(p) cosϕtrans(p)
rtrans(p) sinϕtrans(p)

]
, (27)

where rtrans is the ray and ϕtrans is the angle of the transformed point in polar coordinates given by

rtrans(p) = radj(p)r
can
ob

radj
ob

, ϕtrans(p) = ϕadj(p)− ϕadj
ob + ϕcan

ob , (28)

where rcan
ob is the ray and ϕcan

ob is the angle of pob in polar coordinates, and radj and ϕadj are given
by

radj(p) =
√(

px − p∗,des
x

)2
−
(
py − p∗,des

y

)2
, ϕadj(p) = arctan2

(
py − p∗,des

y , px − p∗,des
x

)
, (29)

and radj
ob and ϕadj

ob are given by

radj
ob (p) =

√(
px − padj

x,ob

)2
−
(
py − padj

y,ob

)2
, ϕadj

ob (p) = arctan2
(
py − padj

y,ob, px − p
adj
x,ob

)
. (30)

B.3 Relaxed Voronoi Partition

This section discusses the creation of the relaxed Voronoi partition used in Section 4.3 to obtain
the extended overlapping sets. The Voronoi partitions are created with respect to the N obstacle
locations. In a conventional Voronoi partition, the cell i ∈ {1, 2, . . . , N} is the set of points for
which obstacle i is the closest in terms of Euclidean distance. As the cells are created based on
which obstacle is closest, only the boundary of cells can overlap. Without overlap of these cells, the
closed-loop hybrid system (7-14) in Section 4.5 can exhibit chattering or Zeno behavior around the
boundaries of each cell for an infinitely small amount of noise. For more details on this chattering
phenomenon and Zeno behavior, see Sanfelice (2021); de Priester et al. (2022). The conventional
Voronoi partitions are relaxed by expanding the cell boundaries based on the distance to the cell’s
obstacle and enforcing a minimum distance to other obstacles. The latter constraint ensures that
obstacles in other cells are not visible when the agent is trying to pass the current focused obstacle.
Figure B.3 shows the relaxed Voronoi partition in an additional setting to the setting shown in
Figure 5 in Section 4.3.

B.4 Sample-and-Hold Hybrid Systems

This section describes the hybrid systems used in Section 5 to model the normal and Mul-
tiHyRL agents as sample-and-hold control systems. The state for the normal agent is given
by x = (z, u, τ,m) ∈ Xnrm, where τ ∈ [0,∆t] is a timer and m ∈ R4 is the applied measure-
ment noise. For the normal agent, the hybrid system Hnrm = (Cnrm, Fnrm, Dnrm, Gnrm) is given
by 



ż
u̇
τ̇
ṁ


 = Fnrm(x) :=




f(z, u)
0
1
0


 x ∈ Cnrm, (31)

2035



RLJ | RLC 2024

6 4 2 0 2 4 6

px

6

4

2

0

2

4

6

p
y

1

2

3

4

5

6

7

8

p ∗

6 4 2 0 2 4 6

px

6

4

2

0

2

4

6

p
y

1

2

3

4

5

6

7

8

p ∗

6 4 2 0 2 4 6

px

6

4

2

0

2

4

6

p
y

1

2

3

4

5

6

7

8

p ∗

6 4 2 0 2 4 6

px

6

4

2

0

2

4

6

p
y

1

2

3

4

5

6

7

8

p ∗

6 4 2 0 2 4 6

px

6

4

2

0

2

4

6

p
y

1

2

3

4

5

6

7

8

p ∗

6 4 2 0 2 4 6

px

6

4

2

0

2

4

6

p
y

1

2

3

4

5

6

7

8

p ∗

6 4 2 0 2 4 6

px

6

4

2

0

2

4

6

p
y

1

2

3

4

5

6

7

8

p ∗

6 4 2 0 2 4 6

px

6

4

2

0

2

4

6

p
y

1

2

3

4

5

6

7

8

p ∗

Figure 7: Visualization of the relaxed Voronoi partition for eight obstacles. For each obstacle ℓ ∈
{1, 2, 3, 4, 5, 6, 7, 8}, the blue & red and the green & red areas denote the sets Mext

0,ℓ and Mext
1,ℓ ,

respectively. The red area denotes the intersection Mext
0,ℓ ∩Mext

1,ℓ . The black lines denote the Voronoi
vertices, the gray circles denote the obstacles, and the red circle denotes the set-point position p∗.




z+

u+

τ+

m+


 = Gnrm(x) :=




z
πnrm(z +m)

0
Gε


 x ∈ Dnrm, (32)

where πnrm is the policy corresponding to the normal agent, the flow set is given by

Cnrm := {x ∈ Xnrm : τ ≤ ∆t}, (33)

and the jump set by
Dnrm := {x ∈ Xnrm : τ ≥ ∆t}, (34)

and the noise jump map by

Gε =




[−εp, εp]
[−εp, εp]
[−εξ, εξ]
[−εξ, εξ]


 , (35)

where εp ∈ R≥0 is the magnitude of the measurement noise on the vehicle’s perceived position
and εξ ∈ R≥0 is the magnitude of the measurement noise on the vehicle’s perceived orientation. The
flow map (31) captures the evolution of the vehicle and the timer, and the jump map (32) captures
the controller being updated every ∆t seconds. Furthermore, the observation given to the controller
is perturbed by the measurement noise m. Lastly, the applied measurement noise jumps according
to (35). The system flows whenever the timer’s value is less or equal to the sampling time ∆t, as
shown in the flow set (33). The system jumps whenever the timer’s value is greater or equal to the
sampling time ∆t, as shown in the jump set (34).

The state for simulating the sample-and-hold MultiHyRL agent is given by x = (z, u, τ,m, q, λ) ∈
XHy, where q ∈ {0, 1} and λ ∈ {1, 2, . . . , N} are the logic parameters from the MultiHyRL algorithm.
For the MultiHyRL agent, the hybrid system HHy = (CHy, FHy, DHy, GHy) is given by




ż
u̇
τ̇
ṁ
q̇

λ̇




= FHy(x) :=




f(z, u)
0
1
0
0
0




x ∈ CHy, (36)
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z+

u+

τ+

m+

q+

λ+




= GHy(x) :=




z{
π0(z +m) if q = 0
π1(z +m) if q = 1

0
Gε{

0 if x+ ρ(m) ∈ Dhyst
0,λ

1 if x+ ρ(m) ∈ Dhyst
1,λ

Γ(x+ ρ(m)) if x+ ρ(m) ∈ D \Dfcs
λ




x ∈ DHy, (37)

where the MultiHyRL algorithm is used to find the control policies π0 and π1, the jump
sets Dhyst

0,λ , Dhyst
1,λ , and Dfcs

λ , and ρ(m) is the perturbation on the state defined as

ρ(m) =
[
m 0 0 0 0 0

]⊤
. (38)

The jump map Γ is given by (13). The flow set is given by

CHy := {x ∈ XHy : τ ≤ ∆t}, (39)

and the jump set by
DHy := {x ∈ XHy : τ ≥ ∆t}. (40)

Note that by implementing the MultiHyRL agent as a sample-and-hold controller, we can only
update our logic variables q and λ during timer jumps.

C Additional Simulations

This section provides the additional simulations mentioned in the main text. Three additional sets
of simulations are performed to highlight the effectiveness of the MultiHyRL algorithm: moving
obstacles, obstacles with various sizes, and a Capture the Flag between the normal and MultiHyRL
agents. As mentioned in the main text, the controllers are implemented with a sample-and-hold
approach; discussed in Appendix B.4.

C.1 Moving Obstacles

In this set of simulations, the obstacles are dynamic, have the same radius, have a spacing between
each obstacle greater than 1

2
√

2wbew, and their velocity is less than 1, such that the vehicle can outrun
an obstacle. Figure 8 shows still frames from the simulation in which the set-point position changes
from p∗ = (p∗

x, p
∗
y) = (3, 0.1) to p∗ = (3,−0.1) every ten seconds. The normal and MultiHyRL

agents are deployed in the same environment in the presence of the exact same measurement noise
signal, given by (15). The measurement noise signal consists of a positional measurement noise
of magnitude εp = 0.2 and no orientational measurement noise, namely, εξ = 0. Figure 8 shows
that both the normal and MultiHyRL agents are effective in environments with dynamic obstacles.
However, the MultiHyRL agent outperforms the normal agent as the normal agent crashes into some
obstacles in the presence of the positional measurement noise. In contrast, the MultiHyRL does not
crash into any obstacle in the presence of positional measurement noise, thanks to the MultiHyRL
agent’s robustness properties.

C.2 Varying Obstacle Size

In this set of simulations, the obstacles satisfy the properties listed in Section 3.1 except that the
radius of the obstacles varies. The same measurement noise and obstacle setting used in Section 5
are considered with varying obstacle radius. Figure 9 shows the result of these simulations. The
same discussion described in Section 5 applies here. In essence, the hysteresis and obstacle focus
mechanism of the MultiHyRL agent allows it to reach the set point for all the scenarios considered,
contrary to the normal agent, which gets stuck for several initial conditions.
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Figure 8: Still frames of the dynamic obstacle avoidance simulation in the presence of positional
measurement noise of magnitude εp = 0.2 for the normal and MultiHyRL agents. The logic vari-
ables q and λ are randomly initialized for the MultiHyRL Agent. The normal agent and its bird’s-eye
view image are represented by the red triangle with a semicircle and the red box, respectively. The
MultiHyRL agent and its bird’s-eye view image are represented by the blue triangle with a semicir-
cle and the blue box, respectively. For the MultiHyRL agent, the extended overlapping sets Mext

0,ℓ
and Mext

1,ℓ are drawn for the currently focused obstacle ℓ ∈ {1, 2, . . . , N}. The red ⋆ denotes the
set-point position p∗ for the current still frame.

C.3 Capture the Flag

In this set of simulations, the normal and MultiHyRL agents play a simplified game of Capture the
Flag against each other. However, in this game, measurement noise and obstacles are present. The
agents are given the same observations as discussed in Section 3.1, namely, the planar position error
with respect to a set-point position, the orientation error, and a bird’s-eye view image. The rules
of the game are as follows. Each player has a flag that is located at their base. At the start of the
game, each player starts in their base. Each player’s set-point position is set to the opposing player’s
flag. If player A grabs player B’s flag, player A’s set-point position is set to player A’s base, and
player B’s set-point position is set to player A’s position. If player B tags player A before player A
reaches its base, player A is reset to its base, and player B’s flag is returned. If player A reaches
its base untagged, player A scores a point, and player B’s flag is returned to player B’s base. If the
players collide and no one holds a flag, they are reset to their bases. Figure 10 shows still frames
from a game of Capture the Flag with measurement noise. The normal and MultiHyRL agents
undergo the exact same measurement noise signal, given by (15). The measurement noise signal
consists of a positional measurement noise of magnitude εp = 0.2 and no orientational measurement
noise, namely, εξ = 0. Figure 10 shows that the normal agent gets stuck numerous times in front
of an obstacle, which allows the MultiHyRL agent to score points easily. It can also be seen that
the MultiHyRL agent seems unaffected by the noise thanks to the MultiHyRL agent’s robustness
properties.
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(a) εp = εξ = 0.
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(b) εp = 0.2 and εξ = 0.
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(c) εp = 0 and εξ = 0.3.
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(d) εp = 0.05 and εξ = 0.1.

Figure 9: Visualization of the state trajectories under different measurement noise settings for the
normal agent (row 1) versus the MultiHyRL agent (row 2) in a static obstacle environment with
varying obstacle radii. The logic variables q and λ are randomly initialized for the MultiHyRL agent.
The trajectories alternate colors for readability. The gray circles denote obstacles, the ×’s denote
the initial conditions, the ◦’s denote the terminal positions, and the red ⋆ denotes the set-point
position p∗.
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Figure 10: Still frames of the Capture the Flag simulations in the presence of positional measurement
noise of magnitude εp = 0.2 for the normal and MultiHyRL agents. The logic variables q and λ are
randomly initialized for the MultiHyRL Agent. The normal agent, its current set-point position,
and its bird’s-eye view image are represented by the red triangle with a semicircle, the red dotted
line, and the red box, respectively. The MultiHyRL agent, its current set-point position, and its
bird’s-eye view image are represented by the blue triangle with a semicircle, the blue dotted line,
and the blue box, respectively. The flags are denoted by Γ.
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Abstract

Experience replay, the reuse of past data to improve sample efficiency, is ubiqui-
tous in reinforcement learning. Though a variety of smart sampling schemes have
been introduced to improve performance, uniform sampling by far remains the most
common approach. One exception is Prioritized Experience Replay (PER), where
sampling is done proportionally to TD errors, inspired by the success of prioritized
sweeping in dynamic programming. The original work on PER showed improve-
ments in Atari, but follow-up results were mixed. In this paper, we investigate
several variations on PER, to attempt to understand where and when PER may be
useful. Our findings in prediction tasks reveal that while PER can improve value
propagation in tabular settings, behavior is significantly different when combined
with neural networks. Certain mitigations—like delaying target network updates to
control generalization and using estimates of expected TD errors in PER to avoid
chasing stochasticity—can avoid large spikes in error with PER and neural networks
but generally do not outperform uniform replay. In control tasks, none of the pri-
oritized variants consistently outperform uniform replay. We present new insight
into the interaction between prioritization, bootstrapping, and neural networks and
propose several improvements for PER in tabular settings and noisy domains.

1 Introduction

Experience Replay (ER) is widely used in deep reinforcement learning (RL) and appears critical for
good performance. The core idea of ER is to record transitions (experiences) in a memory, called a
buffer, replay them by sub-sampling mini-batches to update the agent’s value function and policy.
ER allows great flexibility in agent design. ER can be used to learn from human demonstrations
(pre-filling the replay buffer with human data) allowing off-line pre-training and fine-tuning. ER
has been used to learn many value functions in parallel, as in Hindsight ER (Andrychowicz et al.,
2018), Universal Value Function Approximators (Schaul et al., 2015), and Auxiliary Task Learning
(Jaderberg et al., 2016; Wang et al., 2024). ER can be seen as a form of model-based RL where the
replay buffer acts as a non-parametric model of the world (Pan et al., 2018; Van Hasselt et al., 2019),
or ER can be used to directly improve model-based RL systems (Lu et al., 2024). In addition, ER can
be used to mitigate forgetting in continual learning systems (Anand & Precup, 2024). ER has proven
crucial for mitigating the sample efficiency challenges of online RL, as well as mitigating instability
due to off-policy updates and non-stationary bootstrap targets. The most popular alternative,
asynchronous training, requires multiple copies of the environment, which is not feasible in all
domains and typically makes use of a buffer anyway (e.g., Horgan et al. (2018)).

There are many different ways ER can be implemented. The most widely used variant, i.i.d or
uniform replay, samples experiences from the buffer with equal probability. As discussed in the
original paper (Lin, 1991), ER can be combined with lambda-returns and various sampling methods.
Experience can be sampled in reverse order it occurred, starting at terminal states. Transitions can
be sampled from a priority queue ordered by TD errors—the idea being transitions that caused
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large updates are more important and should be resampled. Samples can be drawn with or without
replacement—avoiding saturating the mini-batch with high priority transitions. The priorities can
be periodically updated. We could use importance sampling to re-weight the distribution in the
queue, and generally we could dynamically change the distribution during the course of learning.
Despite the multitude of possible variants (Igata et al., 2021; Sun et al., 2020; Kumar & Nagaraj,
2023; Lee et al., 2019; Hong et al., 2023; Kobayashi, 2024; Li et al., 2021; 2022) simple i.i.d replay
remains the most widely used approach.1

The exception to this is Prioritized Experience Replay (PER) (Schaul et al., 2016), where experience
is sampled from the buffer based on TD errors. Like prioritized sweeping that inspired it (Moore
& Atkeson, 1993), PER in principle should be more efficient than i.i.d sampling. Imagine, a sparse
reward task where non-zero reward is only observed at the end of long trajectories; sampling based
on TD errors should focus value updates near the terminal state efficiently propagating reward
information across the state space. This approach was shown to improve over i.i.d sampling in Atari
when combined with Double DQN (Schaul et al., 2016). The results in follow up studies, however,
were mixed and did not show a clear benefit for using PER generally (Fedus et al., 2020; Hessel
et al., 2018; Li et al., 2021; Ma et al., 2023; Horgan et al., 2018; Fu et al., 2022). Compared with i.i.d
sampling, PER introduces six hyper-parameters controlling importance sampling and how additional
experiences are mixed with the prioritized distribution.

In this paper, we explore several different variations of PER in carefully designed experiments in
the hopes of better understanding where and when PER is useful. Canonical PER (Schaul et al.,
2016) uses several additional components that make the impacts of prioritization harder to analyze.
We compare PER with several simplified variants using simple chain tasks where value propagation
and prioritization should be critical for performance. We find that only in tabular prediction, do all
prioritized variants outperform i.i.d replay. Combining basic prioritization with sampling without
replacement and updating the priorities in the buffer (things not done in public implementations),
further improves performance in the tabular case. Our results show that prioritization, bootstrap-
ping, and function approximation cause problematic over-generalization, possibly motivating the
design choices of PER which ultimately causes the method to function more like i.i.d sampling
under function approximation. Our results in chain domains with neural network function approx-
imation and across several classic control domains, perhaps unsurprisingly, shows no clear benefit
for any prioritized method.

We also introduce and investigate a natural extension to PER based on ideas from Gradient TD
methods (Sutton et al., 2009; Patterson et al., 2022). These methods stabilize off-policy TD updates
by learning an estimate of the expected TD error. This estimate can be used to compute priorities
and is less noisy than using instantaneous TD errors. This expected PER algorithm works well in
tabular prediction tasks and noisy counter-examples where PER fails, but is generally worse than
i.i.d sampling under function approximation and ties i.i.d in classic control problems—though it
appears more stable. Although somewhat of a negative result, expected PERs performance suggests
noise is not the explanation for i.i.d sampling’s superiority over PER and more research is needed
to find generally useful prioritization mechanisms.

2 Background, Problem Formulation, and Notation

In this paper, we investigate problems formulated as discrete-time, finite Markov Decision Processes
(MDP). On time step, t, the agent selects an action At ∈ A in part based on the current state, St ∈ S.
The MDP transitions to a new state St+1 and emits a reward signal Rt+1 ∈ R. The agent’s action
choices are determined by it’s policy At ∼ π(·|St), and the goal of learning is to adjust π to maximize
the future expected return Eπ[Gt|St = s, At = a] = Eπ[Rt+1 +γRt+2 +γ2Rt+3 + . . . |St = s, At = a],
where γ ∈ [0, 1]. The expectation is dependent on future actions determined by π and future states
and rewards according to the MDP.

1See Wittkuhn et al. (2021) for a nice review.
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We focus on action-value methods for learning π. In particular, Q-learning estimates the state-action
value function qπ(s, a) .= Eπ[Gt|St = s, At = a] ∀ s, a ∈ S ×A via temporal difference updates from
sample interactions: q̂(St, At) = q̂(St, At) + αδt, where δt

.= Rt+1 + γ maxa q̂(St+1, ·) − q̂(St, At)
is called the TD-error with learning-rate parameter α ∈ R+. Actions are selected according to an
ϵ-greedy policy: selecting At = arg max q̂(St, ·) 1 − ϵ percentage of the time and a random action
otherwise. In many tasks, it is not feasible to learn an action-value for every state. In these cases,
we use a non-linear parametric approximation of the value, q̂w(s, a) ≈ qπ(s, a), where w are the
parameters of a neural network (NN), which are adjusted via semi-gradient Q-learning rule.

Semi-gradient Q-learning when combined with NNs is often unstable, and so DQN is often preferred.
The DQN algorithm combines: target networks, ER, and an optimizer (Mnih et al., 2015). Target
Networks replace maxa q̂w(St+1, ·) in the TD-error with an older copy of the network. In this paper
we use the Adam optimizer (Kingma & Ba, 2015). Experience Replay is used to perform mini-batch
updates to q̂w from a finite, first-in-first-out buffer. Sampling from the buffer is uniform or i.i.d
meaning the value estimate on the current step is updated based experiences observed in the recent
past, not necessarily the most recent transition. The appendix contains the pseudo code for DQN
and its key hyperparameters.

In control tasks we learn q̂ and π, however, in prediction tasks π is given and fixed and we are
interested in learning the state-value function: v̂(s) ≈ vπ(s) .= Eπ[Gt|St = s]. This can be done
using the Temporal Difference learning algorithm (Sutton, 1988), the state-value analog of TD
update above, which has a semi-gradient variant for learning v̂w : S → R. See Sutton & Barto
(2018) for an extensive overview of all these topics.

3 Variants of Prioritized Replay

In this section, we define two variants of PER that we use to better understand the role of prioritiza-
tion. We use the name DM-PER for Schaul et al. (2016)’s prioritized replay algorithm and Uniform
to refer to classic i.i.d replay.

0 80k
Time Steps

0.0

0.05

Mean
Squared

Value
Error

Uniform
EPER
Naive PER
DM-PER

Figure 1: Prioritization can be problem-
atic in noisy prediction with NNs. Re-
sults averaged over 30 trials; shaded re-
gion are 95% bootstrap Confidence In-
tervals (CI).

We start by describing a simplified prioritized replay algo-
rithm, which we will call Naive PER. Starting from a uni-
form replay, the Naive PER algorithm modifies only the
sampling strategy from uniform to proportional to TD er-
ror. We record the TD-error as soon as a sample is added
to the buffer, then update that TD-error when a transi-
tion is sampled. We do not mix in uniform sampling, we
do not squash the priorities with an exponential hyperpa-
rameter, and we do not use importance weights. In this
way, the Naive PER algorithm closely resembles tabular
prioritized sweeping, except we sample probabilistic ac-
cording to the priorities rather than use a priority queue.
The full pseudocode for Naive PER can be found in the
appendix.

In order to study the effects of noise on the prioritization strategy, we introduce a new prioritization
variant expected PER (EPER). Instead of using the sample TD-error, δt, which can be noisy when
the reward or the transition dynamics are stochastic, EPER uses an estimate of the expected TD-
error E [δt | St = s]. This expectation averages out random effects from action selection, transition
dynamics, and the reward signal. In control, the expectation is conditioned on both state and action.

Learning this expectation can be formulated as a simple least-squares regression problem with sam-
ples δt as the target, yielding the following online update rule: θt+1 ← θt + α(δt − hθ(St))∇θhθ(St),
where hθ is a parametric approximation of δt with parameters θ. This secondary estimator forms
the basis of the gradient TD family of methods (Sutton et al., 2009; Patterson et al., 2022) making
it natural to combine with recent gradient TD algorithms such as EQRC (Patterson et al., 2022).
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In other words, if we use EQRC instead of DQN, we can use EPER to attain a less noisy signal for
computing priorities with no extra work because EQRC is estimating hθ anyway.

Figure 1 demonstrates the potential benefits of EPER over Naive PER. The task is to estimate the
state-value function of a random policy in a Markov chain with the only reward on the terminal
transition (described in more detail in the next section). The terminal reward is polluted by zero
mean non-symmetric noise. The hyperparameters of all methods are systematically tuned, and still
we see Naive PER is negatively impacted. The DM-PER algorithm is robust in this case, which is
not surprising given its use of importance sampling and mixing in i.i.d samples. EPER is not as
robust, but achieves this with a much simpler approach.

4 An Empirical Investigation of Prioritization in Replay

The idea of prioritized replay is based on the tabular notion of value propagation and the interplay
between neural network generalization and prioritized replay remains an open question. This section
explores the combined effect of prioritized replay and neural network generalization in RL agents.

4.1 Comparing Sample Efficiency in Prediction

In this section we ask several questions in a sparse reward task where rapid value propagation should
require careful sampling from the replay buffer. Does naive prioritization improve performance over
uniform replay? Do the additional tricks in DM-PER reduce the efficiency of value propagation
when they are not really required? Finally, does robustness to noisy TD errors, as in EPER, matter
in practice? We investigate these questions with tabular and neural network representations.

We consider both policy evaluation and control problems in a 50-state Markov chain environment
visualized in Figure 2. This is an episodic environment with γ = 0.99 chosen to present a difficult
value propagation problem. In every episode of interaction, the agent starts at the leftmost state
and at each step takes the left or right action which moves it the corresponding neighbour state.
The only reward in this environment is +1 when reaching the rightmost state at which point the
episode terminates.

Figure 2: The 50-state Markov chain environment.
In the policy evaluation experiments, the objective is to estimate the state value function of the
random policy. The data for the replay buffer is generated by running the random policy, making this
an on-policy prediction task. The performance measure is the Mean Squared Value Error (MSVE)
between estimated value function and true value function: MSVE(w) =

∑
s d(s)(vπ(s) − v̂w(s))2

where d(s) is the state visitation distribution under the uniform policy. In this experiment we
have two settings, one where the value function is tabular and one where it is approximated by a
two layer neural network with 32 hidden units in each layer and rectified linear unit (ReLU). We
systematically tested a broad set of learning rates, buffer size, and batch sizes—over 50 combinations
with 30 seeds each. The sensitivity to learning rate can be found in the Appendix. In Figure 3 we
shown a representative result with batch size 8, buffer size 8000, and learning rate 8−4 in the tabular
setting and 8−5 in the neural network setting. The remaining results are in the Appendix.

Figure 3 shows the learning curves of different replay methods for policy evaluation in the 50-state
Markov chain over time. All three prioritized replay variants perform similarly and they are more
sample efficient than uniform replay. The heatmaps show estimated values across states over time.
Comparing the heatmap of tabular uniform replay with tabular Naive PER shows an increase in
value propagation through the chain when using prioritization.

In the neural network setting, the error of Naive PER increases during early learning and then
drops to the level of other prioritized replay methods. The gap between other prioritized methods
(DM-PER and EPER) and uniform replay is smaller in the neural network setting compared with
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Figure 3: Prioritized methods can im-
prove sample efficiency in prediction
on the 50-state chain in tabular (left)
and NN prediction (right). With NN
function approximation Naive PER
exhibits an increase in MSVE during
early learning. The heatmaps show es-
timated values of the states, 1 to 50,
over time. Results are averaged over
30 seeds; shaded regions are 95% boot-
strap CI.

the tabular setting. Additionally, these two prioritized methods do not exhibit an increase in the
MSVE like Naive PER.

Perhaps Naive PER over-samples a few transitions which causes the network to spend a lot of its
capacity minimizing the error of those transitions at the cost of a worse prediction in other states.
It is possible that EPER can mitigate the over-sampling issue because the initial estimates are
randomized which helps avoid over-sampling certain transitions. DM-PER reduces the negative
effect of over-sampling by using importance sampling weights to reduce the magnitude of updates
with high priority transitions.

To better understand what is happening, we visualize the probability of updating a state over
time in Figure 4. We calculate this probability by summing over the probabilities of sampling a
transition starting from a given state at a given time based on transitions in the replay buffer. The
heatmap presents these probabilities, computed every 1000 states over one run. We use the same
hyperparameter settings as in Figure 3.

1

50

Tabular

Uniform Naive PER DM-PER EPER

0 80k
Time Steps

1

50

NN

0 80k
Time Steps

0 80k
Time Steps

0 80k
Time Steps

0

0.15

Figure 4: Probability of sampling a transition starting from each state (1 to 50) from the buffer at
each time point, in the 50-state Markov chain for one run.

The sampling probabilities under uniform replay reflect the state visitation of the random policy,
putting a higher probability mass on earlier states. The sampling distribution of tabular Naive
PER follows the intuition from prioritized sweeping by putting most of the probability mass on the
rewarding transition at the end of chain, then, increasing the probability of nearby states in a back-
ward fashion to help value propagation. Under neural network function approximation the pattern is
similar but more uniform. This is caused by the random initialization of network parameters which
generates non-zero TD errors across the state space. The sampling distribution of both DM-PER
and EPER are, on the other hand, more structured. Both feature non-terminal transitions with
high probability (bright spots) and striping. It is hard to speculate why this occurs, nevertheless,
these patterns provide evidence that combining prioritization with NNs can result distributions very
different from the tabular case.
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4.2 Overestimation due to Prioritization, Generalization, and Bootstrapping

In the previous section we saw that Naive PER exhibited a spike in early learning, but why? One
possible explanation is that Naive PER is oversampling the terminal transition which causes the NN
to inappropriately over-estimate nearby states, causing more oversampling, and so on, spreading
across all states. The heatmap in Figure 4 provides some evidence of this. One way to prevent
over-generalization is to employ target networks to reduce the effect of bootstrapping. Note that
the task is on-policy prediction, and we do not need a target network to stabilize learning. We use
the same setup as in figure 3 and only consider Naive PER with neural nets.

Figure 5: Target Networks can mitigate Naive PER’s poor performance in the 50-state Markov chain
prediction task with NNs. Red numbers above curves indicate Target Network update rate.

The results in Figure 5 show the performance of Naive PER with three different target network
update rates (1, 100, 500). An update rate of 1 is identical to not using target networks at all.
As we update the target network less frequently we see the spike in the learning curves is reduced.
Notice that heatmap for the value function with an update rate of 500 is very similar to Naive PER
in the tabular case (see Figure 3). We only see a minor performance improvement over uniform
replay in Figure 5, but this is expected because updating the target network infrequently is reducing
the update rule’s ability to propagate value backwards via bootstrapping.

4.3 Comparing Sample Efficiency in Control

In this section we turn our attention to a simple control task, again designed in such a way that
value propagation via smart sampling should be key. Here our main question is: do the insights
about the benefits of prioritization persist when the policy changes and exploration is required.

In the tabular setting, we use Q-learning (without target networks) and in neural network setting
we explore two setups: (1) DQN (with target refresh rate of 100) and (2) EQRC (as an alternative
method without target network). We report steps to goal as the performance metric for the 50-state
Markov chain problem. Buffer size is fixed to 10000, batch size 64, and we pick the best learning
rate for each method (see the Appendix for details). Each control agent is run for 100000 steps with
an ϵ-greedy policy with ϵ = 0.1.

EPER

Naive PER

DM-PER

Uniform

Figure 6: Prioritization
is not more sample ef-
ficient than uniform for
control in the 50-state
Markov chain environ-
ment. Results averaged
over 50 seeds; shaded
regions are 95% boot-
strap CI.
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The results in Figure 6 are somewhat unexpected. The dotted line depicts the performance of the
optimal policy. Even in the tabular case, Q-learning with uniform replay is a better than all the three
prioritized methods. DM-PER performs just as well as uniform replay, but this could be explained
by the fact that DM-PER’s sampling is closer to uniform compared with the other prioritization
schemes as shown previous in Figure 4. Naive PER eventually reaches the near optimal policy
and EPER performs poorly. Under neural network approximation, all tested algorithms have a
wide overlapping confidence regions, even with 50 seeds, making differences between methods non
conclusive. It seems good performance in prediction does not necessarily translate into improvement
in control, even in the same MDP.

4.4 Sampling Without Replacement & Updating Priorities

In this section we explore two simple but natural improvements to replay that could improve perfor-
mance. There are many possible refinements, and many have been explored in the literature already.
Here we select two that have not been deeply explored before, specifically (1) sampling transitions
with or without replacement, and (2) recomputing priorities of samples in the buffer.

When sampling a mini-batch from the replay buffer, one has the option to sample transitions with
or without replacement. This decision is important in PER because sampling with replacement can
cause a high priority transition to be repeatedly sampled into the same mini-batch. This certainly
happens on the first visit to the goal state in the 50 state chain. Uniform replay avoids this problem
by design. Most reference implementations of PER sample with replacement. We hypothesize
that duplicate transitions in the mini-batch reduces the sample efficiency of prioritized methods,
effectively nagating the benefit of mini-batches.

We compare Naive PER with and without replacement sampling and uniform replay in the 50-state
Markov chain prediction domain under tabular and neural net function approximation. We used a
two layer network with 32 hidden units and ReLU activation, a batch size of 8000 and experimented
with several mini-batch sizes (1, 8, 64, 256). With batch size 1, with and without replacement are
identical. We report a representative result with learning rate of 8−4 in the tabular setting and 8−5

in the neural network setting and report MSVE under the target policy over training time.
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Figure 7: Sampling without replacement improves the performance of Naive PER in the tabular
setting but not with neural nets. Results are averaged over 50 seeds and shaded regions are 95%
bootstrap CI.

Figure 7 shows that sampling without replacement provides a minor improvement on the performance
of Naive PER in tabular prediction, where Naive PER was already working well, but does not help
when combined with NN function approximation. In fact, we again see Naive PER’s characteristic
spike due to over-generalization and bootstrapping. This poor performance is somewhat mitigated
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by larger batch sizes, but still uniform replay is better. Note, as expected, the performance of
uniform replay suffers with smaller batch sizes.

Now we turn to the control setting to evaluate the impact of sampling without replacement. We
tested tabular Q-learning and neural network DQN settings. The DQN agent has a two layer network
with 32 hidden units and ReLU activation with target refresh rate 100. All agents have buffer size
10000 and a series of batch sizes similar to the previous experiment. The learning rate of each agent
is selected by sweeping over a range of step sizes and maximizing over average performance (sweep
details in the Appendix). Figure 8 summarizes the results.
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Figure 8: Sampling with and without replacement in control using Naive PER with tabular and NN
representations. Without replacement sampling only helps in the tabular setting. Results averaged
over 50 seeds; shaded regions are 95% bootstrap CI.

In tabular control we see a significant improvement in Naive PER when sampling without replace-
ment, whereas with function approximation the result is less clear. In tabular, the gap in performance
between with and without replacement steadily increases and eventually Naive PER becomes nearly
statistically better than uniform. With DQN (function approximation), larger batch sizes mostly
result in ties, though Naive PER without replacement is the only method to always reach optimal
on average.

Taken together, the results which use sampling without replacement suggest a minor benefit. It
always helps in the tabular case, at times outperforming uniform replay, and with function approx-
imation it mostly does not hurt performance.

Another factor that can potentially limit the benefit of prioritization is non-informative and outdated
priorities in the buffer. The priority of a transition is updated only when the transition is sampled.
This means that at any given time the priority of almost all items in the replay buffer are outdated
with respect to the current value function. We can update the priority of all transitions in the buffer
by recomputing their TD error using the current value function estimate periodically.

We tested this idea in prediction setting in the 50 state chain. We compared the performance of
Naive PER, EPER, and DM-PER recomputing the priorities every 10 and 1000 steps. Again we
looked at tabular and NN representations with a two layer neural net of size 32 with ReLU activation
for the latter. The buffer size is fixed to 8000, batch size to 8, and learning rate to 8−4 for tabular
and 8−5 for neural net agents. Figure 9 summarizes the results. In short, we see no benefit from
recomputing priorities in the function approximation settings and marginal benefit in the tabular
case with Naive PER. Interestingly, for DM-PER recomputing too often, every 1000 steps vs every
10 steps, hurts compared to the default—updating only when a transition is first added or resampled.
Note the over-generalization of Naive PER with neural nets is also not reduced more by up-to-date
priorities.
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Figure 9: Recomputing pri-
orities in chain prediction us-
ing Naive PER, EPER, and
DM-PER with tabular (top)
and NN (bottom) representa-
tions. Generally, recomputing
does not help. Results aver-
aged over 30 seeds; shaded re-
gions are 95% bootstrap CI.

As a final experiment in the chain problem, we investigate if combining sampling without replacement
and recomputing priorities every 10 steps, together, can improve the performance of Naive PER.
We conduct this experiment in the control chain problem and repeat the experiment for tabular
Q-learning and DQN with a two layer neural net with 32 hidden units and ReLU activation with
target refresh rate of 100. The buffer size is fixed to 10000 and batch size is 64, we select the learning
rate over a range of values that attained the best average performance. As we see in Figure 10, in
the tabular case, Naive PER with both modifications achieves the best performance, but barely
more than either modification in isolation. Unfortunately, as expected, there is no clear benefit in
the function approximation setting.
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Figure 10: Combining recom-
puting priorities and without
replacement sampling for tab-
ular (left) and NN (right) con-
trol in the chain. Results av-
eraged over 50 seeds; shaded
regions are 95% bootstrap CI.

4.5 Comparing Sample Efficiency in Classic Control Domains

Our previous experiments in the chain were designed to represent an idealized problem to highlight
the benefits of smarter replay, and in this section we consider slightly more complex, less ideal tasks.
In the chain, we only saw clear advantages for prioritization in prediction and also in control with
small batch sizes. The main question here is do these benefits persist or perhaps prioritization will
be worse supporting the common preference for uniform replay in deep RL.

We consider four episodic environments which are significantly more complex than the chain, but
are small enough that smaller NNs can be used and extensive experimentation is possible. The
first three environments, often refered to as classic control feature low dimensional continuous state
and discrete actions. MountainCar (Moore, 1990) and Acrobot (Sutton, 1995) are two control tasks
where the goal is to manipulate a physical system to get to a goal at the end of a long trajectory.
We also include Cartpole due to the unstable dynamics of the balanced position (Barto et al., 1983).
Finally we include the tabular Cliffworld (Sutton & Barto, 2018) because the reward for falling off
the cliff is a large negative value which causes rare but large spikes in the TD error, which might
showcase the benefit of EPER. The details about these environments can be found in the Appendix.
We set the discount factor γ = 0.99. The episodes in MountainCar, Acrobot, and Cartpole are cutoff
every 500 steps, but there is no episode cutoff in Cliffworld.

In this experiment we use DQN with a two layer network of size 64 with ReLU activation and
target refresh rate 128. Batch size and buffer size are fixed to 64 and 10000 respectively and the
learning rate is selected using a two stage approach to avoid maximization bias (Patterson et al.,
2023). First each agent is run for 30 seeds sweeping over many learning rate parameter settings,
then the hyperparameter which achieved the best average performance is run for 100 new seeds
(see details in the Appendix). We include Modified PER, which combines Naive PER with without-
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replacement sampling and recomputes the priorities every 10 steps. Figure 11 summarizes the results.
Unsurprisingly, prioritization does not improve the sample efficiency over uniform replay in any of
the four domains.
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Figure 11: Performance
of DQN replay agents
on classic control prob-
lems. No clear benefit
for prioritization. Re-
sults averaged over 100
seeds; shaded regions
are 95% bootstrap CI.

Looking closely at the learning curve for Cliffworld in Figure 11 we see a small blip in the performance
with uniform replay. Recall, we suspected that EPER might show benefit in this MDP due to outlier
rewards when the agent falls off the cliff. Average learning curves can hide the stucture of individual
runs, so we plotted all the runs individually for each method in Figure 12. Here we see DQN with
uniform replay periodically performs quite poorly, even late in learning. This is true to a less extent
for DM-PER, Naive PER, and Modified PER. Interestingly, Naive PER variants based on EPER
appear substantially more stable with less collapses in performance.
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Figure 12: Performance
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5 Conclusion

In this paper, we conducted a series of carefully designed experiments with prioritized replay under
tabular and neural network settings. We found that prioritization combined with non-linear general-
ization can overestimate values during early learning. It appears that a combination of bootstrapping
and neural network generalization is the reason behind this overestimation. Furthermore, we showed
in a simple chain domain, several variants of PER outperform i.i.d replay in the prediction setting
but have poor sample efficiency in control. Unsurprisingly, no variant of PER improves upon i.i.d
replay in classic control domains.

We introduced EPER as a simple modification prioritizing transitions according to a learned estimate
of the expected error inspired by gradient TD methods. We showed that EPER can be more robust
in noisy reward domains and perform more reliably than PER or i.i.d replay in Cliffworld. Finally,
we explored two design decisions in PER, recomputing outdated priorities and sampling batches
without replacement, discovering that these additions can improve PER in the tabular setting but
have little to no effect when using neural networks.
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A Algorithms

Here we present pseudo code for the DQN algorithm used in this paper. The behavior policy of
DQN, denoted as πw(St), is an ϵ-greedy policy over the current action values q(St, .). Algorithm 1
shows the uniform replay variant and algorithm 2 shows the pseudo code for Naive PER. In both
variants, size of the replay buffer is a hyperparameter.
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Algorithm 1 DQN with Uniform Replay
Input: mini-batch size b, learning-rate α, training time T , target refresh rate τ .
Initialize: q network parameters w, target network parameters wtarget = w, buffer B, ∆ = 0.
Observe S0 and choose A0 ∼ πw(S0)
for t = 1 to T do

Observe Rt, St, γt

Store transition (St−1, At−1, Rt, St, γt) in buffer B
for j = 1 to b do

Sample transition (Sj , Aj , Rj , Sj+1, γj+1) from buffer B with probability 1/|B|
Compute TD-error δj = Rj + γj maxa q(Sj+1, a, wtarget)− q(Sj , Aj , w)
Accumulate gradient ∆← ∆− δj∇wq(Sj , Aj , w)

end for
Update w← adam(w, ∆

b , α); Reset ∆ = 0
if t%τ = 0 then

Refresh target network wtarget ← w
end if
Choose action At ∼ πw(St)

end for

Algorithm 2 DQN with Naive PER
Input: mini-batch size b, learning-rate α, training time T , target refresh rate τ .
Initialize: q network parameters w, target network parameters wtarget = w, prioritized buffer
B, ∆ = 0.
Observe S0 and choose A0 ∼ πw(S0)
for t = 1 to T do

Observe Rt, St, γt

Store transition (St−1, At−1, Rt, St, γt) in buffer B with priority pt−1 = |δt−1| = |Rt +
γt maxa q(St, a, wtarget)− q(St−1, At−1, w)|
for j = 1 to b do

Sample transition (Sj , Aj , Rj , Sj+1, γj+1) from buffer B with probability pj∑
i

pi

Compute TD-error δj = Rj + γj maxa q(Sj+1, a, wtarget)− q(Sj , Aj , w)
Accumulate gradient ∆← ∆− δj∇wq(Sj , Aj , w)

end for
for j = 1 to b do

Update priority pj = |δj |
end for
Update w← adam(w, ∆

b , α); Reset ∆ = 0
if t%τ = 0 then

Refresh target network wtarget ← w
end if
Choose action At ∼ πw(St)

end for

B DM-PER Hyperparameters

In all the experiments with DM-PER, its additional hyperparameters are set to the values from
(Schaul et al., 2016) and are listed in table 1.

C Prediction Experiments in the Chain

In This section, we document the hyperparameter sweep details and additional results from the
Markov chain prediction experiment. Table 2 lists the hyperparameter selections for the prediction
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Priority exponent Importance sampling exponent i.i.d mix-in ratio
0.6 0.4→ 1.0 10−3

Table 1: Hyperparameters specific to DM-PER. Arrow indicates linear schedule over training time.

agents. The agents in figure 3 use buffer size 8000, batch size 8, and learning rate 8−4 for tabular
and 8−5 for neural network agents.

Tabular agents Neural network agents
Learning rate [8−6, 8−5, 8−4, 8−3, 8−2] [8−6, 8−5/4, 8−5, 8−4/4, 8−4, 8−3/4, 8−3]

Adam optimizer β1 0.9 0.9
Adam optimizer β2 0.999 0.999

Batch size [1, 8, 64] [1, 8, 64]
Buffer size [800, 8000, 80000] [800, 8000, 80000]

Network size - 2× 32 network with ReLU activation
Training time 80000 80000

Table 2: Hyperparameters of prediction agents in Markov chain
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Figure 13: Sensitivity to learning rate in prediction chain task. Results are averaged over 30 seeds
and shaded region is 95% bootstrap CI.

Figure 13 shows the sensitivity of replay methods to learning rate for batch size 8 and buffer size
8000 in the chain prediction problem. Prioritized replay is more sample efficient than uniform replay
in the tabular setting, especially with smaller step sizes. But when using neural networks, the early
increase in MSVE of Naive PER, reduces its average performance below other algorithms.

Now we show additional results for those meta-parameter choices in the chain prediction domain that
are omitted from the main text. Figures 14 and 15 show the learning curves for tabular and neural
network agents respectively. The learning rate is tuned by maximizing over average performance
across 30 seeds.

As part of our investigation into PER, we experimented with sampling mini-batches without replace-
ment (see figure 7). Here we present results for all PER variants, Naive PER, DM-PER, and EPER
in the aforementioned prediction experiment. The hyperparameters of this experiment are chosen
according to table 2 sweeping over a range of batch sizes [1, 8, 64, 256]. We chose the same learning
rate as in figure 3, namely, 8−4 for tabular agents and 8−5 for neural network agents. Figure 16
shows tabular agents and figure 17 shows the neural network agents MSVE over training time.
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Figure 14: Performance of tabular replay agents in the prediction chain task. Results are averaged
over 30 seeds; shaded region is 95% bootstrap CI.
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Figure 15: Performance of neural network replay agents in the prediction chain task. Results are
averaged over 30 seeds; shaded region is 95% bootstrap CI.

D Control Markov Chain Experiment Details

The hyperparameters used in control chain experiments are given in table 3. We chose the learning
rate for each agent by maximizing over average performance across a range of learning rates.

In the without replacement control experiment, we use a buffer size of 10000 and experiment with 4
different batch sizes [1, 8, 64, 256]. For each setting, the learning-rate is selected via maximizing over
a range of learning-rates. All other meta-parameters are based on table 3. Figure 18 shows results
for the tabular Q-learning setting, figure 19 shows the DQN results, and figure 20 shows the EQRC
results.

E Classic Control Experiment Details

E.1 Environment Description

In the last part of the paper, we experiment with classic control problems that are more difficult than
the chain. We experiment with MountainCar, Acrobot, Cartpole, and Cliffworld. In MountainCar,
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Figure 16: Sampling without replacement improves performance in the tabular prediction chain
problem for Naive PER and DM-PER. Results averaged over 50 seeds with 95% bootstrap CI.
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Figure 17: Sampling without replacement does not improve performance in the prediction chain
problem under neural network function approximation. Results averaged over 50 seeds with 95%
bootstrap CI.

the goal is to drive an under powered car up a hill in a simulated environment with simplified physics
by taking one of three actions, accelerate left, accelerate right, do not accelerate. The observations
are position and speed values of the car. The reward is -1 per step and episodes terminates when
the car crosses a threshold at the top of hill with reward 0.

Q-Learning agents (tabular) DQN and EQRC agents (neural network)
Learning rate [8−7, 8−6, 8−5, 8−4, 8−3, 8−2] [8−5, 8−4, 8−3, 8−2, 8−1]

Adam optimizer β1 0.9 0.9
Adam optimizer β2 0.999 0.999

Batch size 8 8
Buffer size 10000 10000

Network size - 2× 32 network with ReLU activation
Target refresh - 100 (only DQN)
Exploration ϵ 0.1 0.1
Training time 100000 100000

Table 3: Hyperparameters of control agents in Markov chain
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Figure 18: Sampling without replacement improves performance in the control chain task when
using tabular Q-learning. Results are averaged over 50 seeds; shaded region is 95% boostrap CI.
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Figure 19: Sampling without replacement does not improve performance in control chain task when
using DQN. Results are averaged over 50 seeds; shaded region is 95% boostrap CI.

In Acrobot the agent controls a system of two linear links connected by a movable joint. The goal
is to move the links, by applying torque to the joint, such that the bottom part of the link rises to
the level of its highest point upon which the episode terminates with reward 0. The reward of all
other transitions is -1 per step.

The goal of a Cartpole agent is to balance a pole on top of a moving cart by accelerating the cart
to either left or right. The reward is +1 per step if the pole is properly balanced. If the pole falls
more than 12 degrees the episodes is terminated and the pole is reset to its upright position. The
episode cutoff length is 500.

Cliffworld is a gridworld where agents start at a fixed state and pick any of cardinal directions and
move to corresponding neighbor state. The goal is to reach to the final state on the opposite side
of the starting state while avoiding a cliff near the optimal path. The reward is -1 per step except
when falling off the cliff that gives -100 reward upon which the agent is reset back to start (without
episode termination).

E.2 Hyperparameter selection

In the classic control experiments we use the hyperparameters from table 4 and tune the step size
using the two stage hyperparameter selection method (Patterson et al., 2023). For each agent we
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Figure 20: Sampling without replacement does not improve performance in the control chain task
when using EQRC. Results are averaged over 50 seeds; shaded region is 95% boostrap CI.

run all learning rates for 30 seeds, selecting the value with maximum average performance, then
running the tuned agent for 100 new seeds to avoid maximization bias.

DQN agents
Learning rate [4−8, 4−7, 4−6, 4−5, 4−4, 4−3, 4−2]

Adam optimizer β1 0.9
Adam optimizer β2 0.999

Batch size 64
Buffer size 10000

Network size 2× 64 dense network with ReLU activation
Target refresh 128
Exploration ϵ 0.1
Training time 100000

Table 4: Hyperparameters of classic control experiments
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Abstract

The research field of automated negotiation has a long history of designing agents
that can negotiate with other agents. Such negotiation strategies are traditionally
based on manual design and heuristics. More recently, reinforcement learning ap-
proaches have also been used to train agents to negotiate. However, negotiation
problems are diverse, causing observation and action dimensions to change, which
cannot be handled by default linear policy networks. Previous work on this topic
has circumvented this issue either by fixing the negotiation problem, causing policies
to be non-transferable between negotiation problems or by abstracting the obser-
vations and actions into fixed-size representations, causing loss of information and
expressiveness due to feature design. We developed an end-to-end reinforcement
learning method for diverse negotiation problems by representing observations and
actions as a graph and applying graph neural networks in the policy. With empirical
evaluations, we show that our method is effective and that we can learn to negotiate
with other agents on never-before-seen negotiation problems. Our result opens up
new opportunities for reinforcement learning in negotiation agents.

1 Introduction

In multi-agent systems, agents sometimes must coordinate actions to improve payoff or even obtain
payoff in the first place (e.g., surveying drone swarms or transporting goods using multiple robots).
In such scenarios, communication between agents can improve insight into other agents’ intentions
and behaviour, leading to better coordination between agents and thus improving payoff. When
agents have individual preferences besides a shared common goal, also known as mixed-motive or
general sum games, communication can become more complex, as this introduces an incentive to
deceive (Dafoe et al., 2020).

A special case of communication in mixed-motive multi-agent systems is negotiation, which allows
for finding and agreeing on mutually beneficial coordinated actions before performing them. Nego-
tiation plays a central role in many present and future real-world applications, such as traffic light
coordination, calendar scheduling, or balancing energy demand and production in local power grids,
but also in games, such as Diplomacy or Werewolves. Automated Negotiation is a long-standing
research field that has focussed on designing agents that can negotiate (Smith, 1980; Rosenschein,
1986; Sycara, 1988; Tawfik Jelassi & Foroughi, 1989; Klein & Lu, 1989; Robinson, 1990).
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Traditionally, many negotiating agents were manually designed algorithms based on heuristics, which
is still a commonly seen approach in recent editions of the Automated Negotiation Agents Compe-
tition (ANAC) (Aydoğan et al., 2023). However, manually designing such negotiation strategies is
time-consuming and results in highly specialised and fixed negotiation strategies that often do not
generalise well over a broad set of negotiation settings. In later work, optimisation methods were
used to optimise the parameters of negotiation strategies using evolutionary algorithms (Eymann,
2001; Dworman et al., 1996; Lau et al., 2006), or algorithm configuration techniques (Renting et al.,
2020). Such approaches allow negotiation strategies to be more easily adaptable to different negotia-
tion problems but still require partial manual design to obtain a parameterized negotiation strategy,
making them cumbersome and limiting their generalizability.

With the advent of Reinforcement Learning (RL) (Sutton & Barto, 2018), there have been attempts
at using RL-based methods for creating negotiation agents (Bakker et al., 2019). There is, however,
still an open challenge. In automated negotiation, it is common for agents to deal with various
negotiation problems that would cause differently sized observation and action vectors for default
linear layer-based RL policies. Up until now, this issue has been dealt with by either abstracting
the observations and actions into a fixed-length vector (see, e.g., Bakker et al. (2019)) or by fixing
the negotiation problem, such that the observation and action space remain identical (see, e.g., Higa
et al. (2023)). The first approach causes information loss due to feature design, and the latter renders
the obtained policy non-transferable to other negotiation problems.

We set out on the idea that a more general RL-based negotiation strategy capable of dealing with
various negotiation problems is achievable and that such a strategy can be learned using end-to-end
reinforcement learning without using state abstractions. Developing such an RL negotiation strategy
would open up new avenues for RL in automated negotiation as policies are easily extendable. End-
to-end methods are also able to learn complex relations between observations and actions, minimizing
the risk of information loss that is often imposed by (partially) manual design strategies.

To this extent, we designed a graph-based representation of a negotiation problem. We applied graph
neural networks in the RL policy to deal with the changing dimensions of both the observation and
action space. We show that our method shows similar performance to a recent end-to-end RL-based
method designed to deal only with a fixed negotiation problem. More importantly, we show that
our end-to-end method can successfully learn to negotiate with other agents and that the obtained
policy still performs on unseen, randomly generated negotiation problems.

2 Related Work

Bakker et al. (2019) applied RL to decide what utility to demand in the next offer. They abstracted
the state to utility values of the last few offers and time towards the deadline. Translating utility
to an offer, estimating opponent utility, and deciding when to accept were done without RL. Bagga
et al. (2022) also abstracted the state into a fixed representation with utility statistics of historical
offers. They used an RL policy to decide whether to accept and a separate policy that outputs offers
based on a non-RL opponent utility estimation model.

Sengupta et al. (2021) encoded the state into a fixed length of past utility values. The action is the
utility offer target, translated to an actual offer through an exhaustive search of the outcome space.
They trained a portfolio of policies and tried to select effective counterstrategies by classifying
the opponent type. Li et al. (2023) also build a portfolio of RL-based negotiation strategies by
incrementally training best responses based on the Nash bargaining solution. During evaluation,
their method searches for the best response in an effort to improve cooperativity. They only applied
their method to fixed negotiation problems.

Another line of research on negotiation agents includes natural language. An environment for this
was developed by Lewis et al. (2017). Kwon et al. (2021) used this environment and applied a
combination of RL, supervised learning, and expert annotations (based on a dataset) to iteratively
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train two agents through self-play. The negotiation problems considered are fixed, except for the
preferences.

Takahashi et al. (2022) and Higa et al. (2023) are closest to our work, as they also train an end-to-
end RL method for negotiation games. Their approach does not use state abstractions and linearly
maps the negotiation problem and actions in a policy. The policy obtained can only be used for a
fixed problem. They also trained and tested only against single opponents.

Graph Neural Networks (GNNs) (Kipf & Welling, 2016) have been used before to handle graph-
structured input in policy networks, for example, in molecular design (You et al., 2018). Wang et al.
(2018) and Yang et al. (2024) applied them to transfer learn over variable action spaces of various
multi-joint robots. However, they aimed to speed up learning on unseen tasks while we strive for
complete transferability without additional learning.

3 Methods

We formulate the negotiation game as a turn-based Partially Observable Stochastic Game (POSG),
a partially observable extension of a stochastic game (Shapley, 1953). We model the game as a tuple
M = ⟨I,S,Oi,Ai, T ,Ωi,Ri⟩, where I = {1, · · · , n} denotes the set of agents, S the set of states, Oi

the set of possible observations for agent i, and Ai the set of actions for agent i. For convenience, we
write A = Ai, as we consider a turn-based game where only single agents take actions. Furthermore,
T : S × A 7→ p(S) denotes the transition function, Ωi : S × A 7→ p(Oi) the observation function for
agent i, and Ri : S × A 7→ R the reward function for agent i.

The game starts in a particular state s. Then, at timestep t, an agent i selects an action at,i
independently of other agents. Based on this action, the state of the POSG changes according to
st+1 ∼ T (st+1|st, at). Subsequently, each agent receives its own observation ot,i ∼ Ωi(ot,i|st, at) and
associated reward rt,i ∼ Ri(rt,i|st, at).
Each agent i selects actions according to its own policy πi : Oi×Oi×· · · → p(A). At timestep t, agent
i samples an action at ∼ πi(at|ot,i, ot−1,i, · · · ). Note that we can vary the length of the historical
observations by which we condition the policy for each agent. The more history we include, the
more we can overcome partial observability.

Our goal is to find a policy πi for agent i that maximizes its cumulative expected return:

π⋆i ∈ arg max
πi

Eπ,T

[
H∑

k=0
Ri(st+k, at+k)

]
, (1)

where H denotes the horizon of the POSG (the number of rounds we select an action). Crucially,
the performance of a particular policy πi depends on the other agents’ policies.

3.1 Negotiation Game

A negotiation game consists of a set of agents and a problem to negotiate over. This work only
considers bilateral negotiation games with two agents. The negotiation problem, also known as a
negotiation domain, generally consists of a set of objectives (or issues) B = {1, · · · ,m} with an
associated set of values Vb to choose from. Value sets can be continuous, integer, or discrete, but
we focus solely on discrete value sets in this work, which is the most general type, as continuous
values can also be discretised. For each of the objectives b ∈ B, both agents must agree upon a value
vb ∈ Vb. The total outcome space is the Cartesian product of all the value sets Ω = V1 × · · · × Vm
with a single outcome being ω = ⟨v1, · · · , vm⟩.
Both agents have preferences over the outcome space expressed through a utility function u : Ω 7→
[0, 1] that is private information. Here, 1 is their best possible outcome, and 0 is their worst. This
paper only considers additive utility functions as shown in Equation 2. Here, weights are assigned
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to all values and objectives through weight functions w : B 7→ [0, 1] and wb : Vb 7→ [0, 1] such that∑
b∈B w(b) = 1, maxvb∈Vb wb(vb) = 1, and minvb∈Vb wb(vb) = 0.

u(ω) =
∑

b∈B
w(b) · wb(vb) (2)

3.1.1 Protocol

The negotiation follows the commonly used Alternating Offers Protocol (Rubinstein, 1982), where
agents take turns. During its turn, an agent can make a (counter) offer or accept the opponent’s
offer. A deadline is imposed to prevent the agents from negotiating indefinitely. Failure to reach
an agreement before the deadline results in 0 payoff. When an agreement is reached, both agents
obtain the payoff defined by their utility function.

3.2 PPO

We will use reinforcement learning to optimize the policy πi of our own agent i in the negotiation
problem. For simplicity, we will drop the subscript i and simply write π for the policy of our
own agent. We also simplify by writing o instead of ⟨ot,i, ot−1,i, · · · ⟩. To optimize this policy, we
use Proximal Policy Optimisation (PPO) (Schulman et al., 2017) due to its empirical success and
stability.

At each update iteration k, PPO optimises π relative to the last policy πk by maximising the PPO
clip objective:

πk+1 ∈ arg max
π

Eo,a∼πk

[
min

(
π(a|o)
πk(a|o)Aπk(o, a), clip

(
π(a|o)
πk(a|o) , 1 ± ϵ

)
Aπk(o, a)

)]
(3)

where ϵ denotes a clip parameter, and Aπ(a, o) denotes the advantage function of taking action a
in observation o (Sutton & Barto, 2018). The ratio gets clipped to ensure that the new policy does
not change too quickly from the policy at the previous step. Our PPO implementation is based on
the CleanRL repository (Huang et al., 2022).

3.3 Graph Neural Networks

We aim to learn to negotiate across randomly generated problems where the number of objectives
and values differ. This forces us to design a policy/value network where the shape and number
of parameters are independent of the number of objectives and values. Networks of linear layers,
often the default in RL, do not fit this criterion, as they require fixed input dimensions. We chose
to represent the input of the policy network as a graph and make use of Graph Neural Networks
(GNN) to deal with the changing size of the input space, more specifically, Graph Attention Networks
(GAT) (Veličković et al., 2018).

The input graph contains nodes that have node features. A layer of GNN encodes the features xu of
node u into a hidden representation hu based on the features of the set of neighbour nodes Nu and
on its own features. The specific case of GATs is defined in Equation 4. Here, neighbour features
are encoded by a linear layer ψ and then weighted summed through a learned attention coefficient
a(xu, xv). The weighted sum is concatenated with xu and passed through another linear layer ϕ to
obtain the embedding of the node hu.

hu = ϕ

(
xu,

∑

v∈Nu

a(xu, xv) · ψ(xv)
)

(4)
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3.4 Implementation

At each timestep, the agent receives observations that are the actions of the opponent in the ne-
gotiation game. Based on these observations, the agent must select an action. The action space
combines multiple discrete actions: the accept action and an action per objective to select one of
the values in that objective as an offer. If the policy outputs a positive accept, then the offer action
becomes irrelevant as the negotiation will be ended.

A negotiation problem has objectives B and a set of values to decide on per objective Vb. We
represent the structure of objectives and values as a graph and encode the history of observations
⟨ot,i, ot−1,i, · · · ⟩ of a negotiation game in this structure to a single observation o (see the left side of
Figure 1). Each objective and value is represented by a node, where value nodes are connected to
the objective node to which they belong. An additional head node is added that is connected to all
objective nodes. The node features of each node are:

• 5 features for each value node: the weight wb(vb) of the value, a binary value to indicate the
opponent’s last offer, a binary value to indicate the last offer of the agent itself, the fraction
of times this value was offered by the opponent, and the fraction of times this value was
offered by itself. Note that it might have been better to implement a recurrent network to
condition the policy on the full history of offers instead of summary statistics. However,
the added computational complexity would have rendered this work much more difficult.
Our approach enables efficient learning, but future work should explore the use of the raw
history of offers.

• 2 features for each objective node: the number of values in the value set of this objective
|Vb|, and the weight of this objective w(b).

• 2 features for the head node: the number of objectives |B|, and the progress towards the
deadline scaled between 0 and 1.

head node

objective nodes

value nodes

GNNs

value net
observation

accept netoffer net

action logits

Figure 1: Overview of our designed policy network based on GNNs. Observations are encoded in
a graph representation (left) and passed through GNNs. Action distribution logits and state-value
are obtained by passing the learned representation of the head node and value nodes through linear
layers.

As illustrated in Figure 1, we apply GAT layers to the observation graph to propagate information
through the graph and embed the node features (Equation 4). The size of the representation is a
hyperparameter. We then take the representation of the head node and pass it to a linear layer that
predicts the state value V . The head representation is also passed through a linear layer to obtain
the two accept action logits. Finally, we take the representation of every value node and apply a
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single linear layer to obtain the offer action logits. These logits are concatenated per action and used
to create the probability distribution over the action space. As we use the same linear layer for all
value nodes, the number of output logits is independent of the number of parameters in the policy,
thus satisfying our requirement. We also note that although the size of the outcome space suffers
heavily from the curse of dimensionality when the number of objectives increases, our approach does
not. Our code implementation can be found on GitHub1.

4 Emperical Evaluation

To train our agent, we need both negotiation problems and opponents to negotiate against. The ne-
gotiation problems will be randomly generated with an outcome space size |Ω| between 200 and 1000.
As opponents, we use baseline agents and agents developed for the 2022 edition of the Automated Ne-
gotiation Agents Competition (ANAC). The baseline agents are simple negotiation strategies often
used within automated negotiation to evaluate and analyse new agents. We provide a description of
the opponents in Table 1. All agents were originally developed for the GENIUS negotiation software
platform (Lin et al., 2014).

Name Type Description
BoulwareAgent Time-dependent Utility target decreases concave with time
ConcederAgent Time-dependent Utility target decreases convex with time
LinearAgent Time-dependent Utility target decreases linearly with time
RandomAgent Random Makes random offers, accepts any utility > 0.6

Table 1: Description of baseline negotiation agents used for benchmarking.

We set a negotiation deadline of 40 rounds. An opponent is randomly selected during the rollout
phase, and a negotiation problem is randomly generated. The policy is then used to negotiate until
the episode ends, either by finding an agreement or reaching the deadline. The episode is added to
the experience batch, which is repeated until the experience batch is full. We apply 4 layers of GATs
with a hidden representation size of 256. A complete overview of the hyperparameter settings can
be found in Appendix A.

4.1 Fixed Negotiation Problem

As a first experiment, we compare our method to a recent end-to-end RL method by Higa et al.
(2023) that can only be used on a fixed negotiation problem. Their method was originally only
trained and evaluated against single opponents. We chose to train the agent against the set of
baseline players instead, as we consider that a more realistic scenario. The baseline agents show
relatively similar behaviour, making this an acceptable increase in difficulty.

We generated a single negotiation problem and trained a reproduction of their and our own method
for 2 000 000 timesteps on 10 different seeds. The training curve is illustrated in Figure 2, where we
plot both the mean of the episodic return and the 99% confidence interval based on the results from
10 training sessions. Every obtained policy is evaluated in 1000 negotiation games against every
opponent on this fixed negotiation problem. We report the average obtained utility of the trained
policy and the opponent, including a confidence interval based on the 10 evaluation runs in Figure 3.

We can see in Figure 3 that our method performs similarly to the method proposed by Higa et al.
(2023). This result is mostly a sanity check that our method can successfully learn to negotiate in
a relatively simple setup despite being more complex and broadly usable.

1https://github.com/brenting/RL-negotiation/tree/RLC-2024
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Figure 2: Mean and 99% confidence interval of episodic return during training based on results from
10 random seeds. The results of the policy designed by Higa et al. (2023) and our policy are plotted.
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Figure 3: Evaluation results of the policy designed by Higa et al. (2023) and our GNN-based policy.
Results are obtained by evaluating each trained policy for 1000 negotiation games against the set of
baseline agents. Mean and 99% confidence interval are plotted based on 10 training iterations.

4.2 Random Negotiation Problems

We now evaluate the performance of our end-to-end method on randomly generated negotiation
problems. Negotiation problems will continuously change during both training and evaluation.
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Figure 4: Mean and 99% confidence interval of episodic return during training of our GNN policy
based on results from 10 different random seeds. The results from training against the baseline
agents and training against the competition agents are plotted.

4.2.1 Baseline Opponents

We first train and evaluate against the set of baseline agents as described in Table 1. We train our
method for 2 000 000 steps on 10 random seeds. The learning curve is plotted in Figure 4. Results
are again obtained by running 1000 negotiation sessions against the set of baseline opponents, but
this time, all negotiation problems are randomly generated and are never seen before. We note that
the observation and action space sizes are constantly changing. Results are plotted in Figure 5a.

As seen in Figure 5a, our method performs well against all baseline agents while negotiating on
various structured negotiation problems it has never seen before. It is promising that an end-to-end
learned GNN-based policy appears to generalise over such different problems.
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Figure 5: Evaluation results of our GNN-based policy on randomly generated negotiation problem
both against the set of baseline opponents (left) and against the full set of opponents (right). Results
are obtained by evaluating each trained policy for 1000 negotiation games against the set of agents.
Mean and 99% confidence interval are plotted based on 10 training iterations.

4.2.2 Competition Opponents

We now repeat the experiment from Section 4.2.1, but increase the set of agents we negotiate
against. More specifically, we add the agents of the 2022 edition of the Automated Negotiation
Agents Competition (ANAC)2. The learning curve and results are plotted in Figure 4 and Figure 5b,
respectively.

The results show much lower performance against all opponents, including those outperformed in
Section 4.2.1. Our current method of encoding the observations and design of the policy likely leads
to limited capabilities of learning opponent characteristics. Past work has shown that adapting to
opponents is important to improve performance (Ilany & Gal, 2016; Sengupta et al., 2021; Renting
et al., 2022), which is currently impossible. However, this goes beyond the core contribution of this
work, which is about handling different-sized negotiation problems in end-to-end RL methods. We
discuss potential solutions in Section 5.

5 Conclusion

We developed an end-to-end RL method for training negotiation agents capable of handling differ-
ently structured negotiation problems. We showed that our method performs as well as a recent
end-to-end method that is not transferrable beyond a single fixed negotiation problem. We see the
latter as a serious restriction since, in real-world applications, it would be extremely unlikely to
encounter the exact same negotiation problem more than once.

In our work presented here, for the first time, we have demonstrated how the difficulty of dealing
with changing negotiation problems in end-to-end RL methods can be overcome. Specifically, we
have shown how an agent can learn to negotiate on diverse negotiation problems in such a way that
performance generalises to never-before-seen negotiation problems. Our method is conceptually
simple compared to previous work on reinforcement learning in negotiation agents. Our agent
performs well against strong baseline negotiation strategies, but leaves room for improvement when
negotiating against a broad set of highly competitive agents.

Our approach is based on encoding the stream of observations received by our agent into a graph
whose node features are designed to capture historical statistics about the episode. This manual
feature design likely leads to information loss and goes against the end-to-end aim of our approach.
For example, the expressiveness of history is limited as the graph only encodes the last offer and
frequency of offers. This likely also causes limited adaptivity to a broad set of opponent strategies,
which in turn causes the low performance observed in Section 4.2.2.

2https://web.tuat.ac.jp/~katfuji/ANAC2022/
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We note that, due to the competition setup of ANAC, competitive agents often play a game of
chicken. Performing well against such strategies means that a policy must also learn this game
of chicken. This can be challenging for RL, due to exploration problems, as it must learn a long
sequence of relatively meaningless actions before having a chance to select a good action. We could
attempt to improve upon this, but it might be more beneficial to prioritize mitigating this game of
chicken behaviour, as it is inefficient and (arguably) undesirable.

The negotiation problems we generated have additive utility functions and a relatively small out-
come space, as is quite typical for benchmarks used in automated negotiation research. Real-world
negotiation problems, however, can have huge outcome spaces (de Jonge & Sierra, 2015). Our de-
signed policy can be applied to larger problems without increasing the trainable parameters, and
the effects on the performance of doing this should be investigated in future work.

Further promising avenues for future work include extending end-to-end policies with additional
components that, e.g., learn opponent representations based on the history of observations in the
current or previous encounter. Changing a negotiation strategy based on the opponent characteristics
has been shown previously to improve performance (Ilany & Gal, 2016; Sengupta et al., 2021; Renting
et al., 2022), but is likely difficult to learn through our current policy design. Furthermore, improving
our method to handle continuous objectives would eliminate the necessity of discretizing them.

Overall, we believe that in this work, we have taken a substantial step towards the effective use
of end-to-end RL for the challenging and important problem of training negotiation agents whose
performance generalises to new negotiation problems and opens numerous exciting avenues for future
research in this area.

Broader Impact Statement

It is often envisioned that negotiating agents will represent humans or other entities in a future where
AI is more integrated into society. Having access to more capable negotiation agents could increase
inequalities in such societies, especially if the development of such agents is a highly skilled endeavour.
Removing the human aspect in negotiation might also lead to more self-centred behaviour. We should
ensure that we design for fairness and cooperative behaviour in such systems.
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A PPO training hyperparameters

Parameter Value
total timesteps 2 · 106

batch size 6000
mini batch size 300
policy update epochs 30
entropy coefficient 0.001
discount factor γ 1
value function coefficient 1
GAE λ 0.95
# GAT layers 4
# GAT attention heads 4
hidden representation size 256
Adam learning rate 3 · 10−4

Learning rate annealing True
activation functions ReLU

Table 2: Hyperparameter settings
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Abstract

Long-horizon tasks, which have a large discount factor, pose a challenge for most
conventional reinforcement learning (RL) algorithms. Algorithms such as Value It-
eration and Temporal Difference (TD) learning have a slow convergence rate and be-
come inefficient in these tasks. When the transition distributions are given, PID VI
was recently introduced to accelerate the convergence of Value Iteration using ideas
from control theory. Inspired by this, we introduce PID TD Learning and PID
Q-Learning algorithms for the RL setting, in which only samples from the environ-
ment are available. We give a theoretical analysis of the convergence of PID TD
Learning and its acceleration compared to the conventional TD Learning. We also
introduce a method for adapting PID gains in the presence of noise and empirically
verify its effectiveness.

1 Introduction

The Value Iteration (VI) algorithm is one of the primary dynamic programming methods for solving
(discounted) Markov Decision Processes (MDP). It is the foundation of many Reinforcement Learn-
ing (RL) algorithms such as the Temporal Difference (TD) Learning (Sutton, 1988; Tsitsiklis and
Van Roy, 1997), Q-Learning (Watkins, 1989), Approximate/Fitted Value Iteration (Gordon, 1995;
Ernst et al., 2005; Munos and Szepesvári, 2008; Tosatto et al., 2017), and DQN (Mnih et al., 2015;
Van Hasselt et al., 2016), which can all be seen as sample-based variants of VI. A weakness of the
VI algorithm and the RL algorithms built on top of it is their slow convergence in problems with
discount factor γ close to 1, which corresponds to the long-horizon problems where the agent aims to
maximize its cumulative rewards far in the future. One can show that the error of the value function
calculated by VI at iteration k goes to zero with the slow rate of O(γk). The slow convergence rate
when γ ≈ 1 also appears in the error analysis of the downstream temporal difference (Szepesvári,
1997; Even-Dar and Mansour, 2003; Wainwright, 2019) and fitted value iteration algorithms (Munos
and Szepesvári, 2008; Farahmand et al., 2010; Chen and Jiang, 2019; Fan et al., 2019). If γ ≈ 1, these
algorithms become very slow and inefficient. This work introduces accelerated temporal difference
learning algorithms that can mitigate this issue.

Farahmand and Ghavamzadeh (2021) recently suggested that one may view the iterates of VI as
a dynamical system. This opens up the possibility of using tools from control theory to modify,
and perhaps accelerate, the VI’s dynamics. They specifically used the simple class of Proportional-
Integral-Derivative (PID) controllers to modify VI, resulting in a new procedure called the PID VI
algorithm. They showed that with a careful choice of the controller gains, PID VI can converge
significantly faster than the conventional VI. They also introduced a gain adaptation mechanism, a
meta-learning procedure, to automatically choose these gains.

PID VI, similar to VI, is a dynamic programming algorithm and requires access to the full tran-
sition dynamics of the environment. In the RL setting, however, the transition dynamics is not
directly accessible to the agent; the agent can only acquire samples from the transition dynamics by
interacting with the environment.

∗These authors contributed equally to this work.
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In this work, we show how the ideas of the PID VI algorithm can be used in the RL setting. Our
contributions are:

• Introduce PID TD Learning and PID Q-Learning algorithms (Section 3) for the RL setting
that show accelerated convergence compared to their conventional counterparts.

• Theoretically show the convergence and acceleration of the PID TD Learning (Section 4).

• A sample-based gain adaptation mechanism to automatically tune the controller gains, re-
ducing the hyperparameter-tuning required for the algorithms (Section 5).

The new algorithms are a step towards RL algorithms that can tackle long-horizon tasks more
efficiently.

2 Background

Given a set Ω, letM(Ω) be the set of probability distributions over Ω, and B(Ω) be the set of bounded
functions over Ω. We consider a discounted MDP (Bertsekas and Tsitsiklis, 1996; Szepesvári, 2010;
Sutton and Barto, 2018) defined as (X ,A,P,R, γ) where X is the finite set of n states, A is the
finite set of m actions, P : X × A → M(X ) is the transition kernel, R : X × A → M([0, 1]) is the
reward function, and γ ∈ [0, 1) is the discount factor.

A policy π is a function π : X →M(A) representing the distribution over the actions an agent would
take from each state. Given a policy π, the functions V π : X → R and Qπ : X × A → R are the
corresponding (state-)value and action-value functions defined as the expected discounted return
when following π starting at a certain state or state-action pair. We also let Pπ : X → M(X ) and
Rπ : X →M([0, 1]) be the associated transition and reward kernels of policy π, and rπ : X → [0, 1]
be the expected reward of following π at any state.

The Policy Evaluation (PE) problem is the problem of finding the value function V π corresponding
to a given policy π and the Control problem is the problem of finding the policy π∗ that maximizes
the corresponding value function Q∗(x, a) ≜ Qπ∗(x, a) = maxπ Qπ(x, a), for each state x and action
a. We shall use V whenever we talk about the PE problem and Q for the Control problem, for the
brevity of the presentation.

The Bellman operator, T π, and the Bellman optimality operator, T ⋆, are defined as follows:

(T πV )(x) ≜ rπ(x) + γ

∫
Pπ(dy | x)V (y), (∀x ∈ X ),

(T ⋆Q)(x, a) ≜ r(x, a) + γ

∫
P(dy | x, a) max

a′∈A
Q(y, a′) (∀x ∈ X , a ∈ A).

The Bellman residual operators are defined as BRπV ≜ T πV − V (for PE) and BR∗Q ≜ T ⋆Q −Q
(for Control). The value function V π is the unique function with BRπV π = 0 and Q∗ is the unique
function with BR∗Q∗ = 0.

The iteration Vk+1 ← T πVk converges to V π, and the iteration Qk+1 ← T ⋆Qk converges to Q∗. This
is known as the VI algorithm. The convergence is due to the γ-contraction of the Bellman operators
with respect to the supremum norm, and can be proven using the Banach fixed-point theorem. The
result also shows that the convergence rate of VI is O(γk). This can be extremely slow for long
horizon tasks with γ very close to 1.

2.1 PID Value Iteration

The PID VI algorithm (Farahmand and Ghavamzadeh, 2021) is designed to address the slow conver-
gence of VI. The key observation is that the VI algorithm can be interpreted as a feedback control
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system with the Bellman residual as the error signal. The conventional VI corresponds to a Propor-
tional controller, perhaps the simplest form of controller. The PID VI algorithm uses a more general
PID controller (Dorf and Bishop, 2008; Ogata, 2010) in the feedback loop instead.

A PID controller consists of three components (terms), which together determine the update of the
value function from Vk to Vk+1, or from Qk to Qk+1. The P component is a rescaling of the Bellman
residual itself, that is, BRπVk or BR∗Qk. The D component is the discrete derivative of the value
updates, that is, Vk − Vk−1 or Qk − Qk−1. The I component is a running average of the Bellman
residuals. The contribution of each of these terms to the value update is determined by controller
gains κp, κI , κd ∈ R.

To find the I component, we maintain a running average (hence, the name integration) of Bellman
residual error by zk : X → R for PE and zk : X ×A → R in the Control case,

zk+1 = βzk + αBRπVk (PE) , zk+1 = βzk + αBR∗Qk (Control), (1)

with α, β ∈ R and z1 initialized to a vector of all zeroes. PID VI updates the value function by

Vk+1 = Vk + κpBRπVk + κI(βzk + αBRπVk) + κd(Vk − Vk−1) (PE), (2)
Qk+1 = Qk + κpBR∗Qk + κI(βzk + αBR∗Qk) + κd(Qk −Qk−1) (Control).

This is a generalization of the conventional VI algorithm: VI corresponds to the choice of
(κp, κI , κd) = (1, 0, 0). PID VI has the same fixed point as the conventional VI, for both PE and
Control. The dynamics of the sequence (Vk), however, depends on the controller gains (κp, κI , κd)
and (α, β) of the integrator. For some choices of the gains, the dynamics converges to the fixed point,
the true value function, at an accelerated rate. We also note that the dynamics is not necessarily
stable, and for some gains, it might diverge.

The choice of the gains that (maximally) accelerates convergence depends on the MDP and the
policy being evaluated. One approach is to place assumptions on the structure of the MDP, and
analytically derive the gains that optimize the convergence rate. Farahmand and Ghavamzadeh
(2021) provide such a result for PE in the class of reversible Markov chains. Assuming structure on
the MDP is not desirable though, so the same work also proposes a gain adaptation algorithm that
automatically tunes the controller gains during the fixed point iteration.

The proposed gain adaptation algorithm performs gradient descent at each iteration in the direction
that minimizes the squared Bellman residual. For added efficiency, it is normalized by the previous
Bellman residual. Formally, we pick a meta-learning rate η ∈ R and for each gain κ· ∈ {κp, κI , κd},
after each iteration of PID VI, we perform

κ· ← κ· − η
2

∥BRπVk∥2
2

∂ 1
2 ∥BRπVk+1∥2

2
∂κ·

= κ· − η
1

∥BRπVk∥2
2
·
〈

BRπVk+1,
∂BRπVk+1

∂κ·

〉
. (3)

The Control case is described similarly by substituting BRπ with BR∗. The PID VI algorithm (1)–
(2) and its gain adaptation procedure (3) depend on the computation of the Bellman residual BRπV
or its gradient ∂BRπV/∂κ·, both of which require accessing the transition dynamics P. PID VI,
like VI, is a dynamic programming/planning algorithm after all. They are not directly applicable to
the RL setting, where the agent has access only to samples from the environment that are obtained
online. The goal of the next few sections is to develop RL variants of these algorithms.

3 PID TD Learning and PID Q-Learning

We introduce the PID TD Learning as well as the PID Q-Learning algorithms. These are stochastic
approximation versions of the PID VI algorithm and use samples in the form of (Xt, At, Rt, X ′

t) with
At ∼ π(·|Xt) (for PE), X ′

t ∼ P(·|Xt, At) and Rt ∼ R(·|Xt, At), instead of directly accessing P and
R. In a typical RL setting, they form a sequence with Xt+1 = X ′

t.
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To generalize the PID VI procedure to the sample-based setting, we first describe each iteration of
PID VI with an operator. This viewpoint allows translation of PID VI to a sample-based algorithm
through stochastic approximation. The same translation applied to the Bellman operator, which is
the update rule for VI, yields the conventional TD Learning and Q-Learning. PID VI for PE updates
three functions V, V ′, z : X → R at each iteration. Here, V stores the value function, V ′ stores the
previous value function, and z stores the running average of the Bellman errors. For the PID Q-
Learning, the domain of these functions would be X ×A, that is, we have Q, Q′, z : X ×A → R. We
shall use Ṽ : X ×{v, v’, z} → R and Q̃ : X ×A×{v, v’, z} → R as a compact representation of
these three functions. Here, {v, v’, z} is set of size 3 that indexes the three functions contained in
Ṽ . Note that since we focus on finite MDPs, these functions can be represented by finite-dimensional
vectors Ṽ ∈ R3n and Q̃ ∈ R3nm:

Ṽ =




V
z

V ′


 , Q̃ =




Q
z

Q′


 .

Also define Ṽ π ≜ [V π 0 V π]⊤ and Q̃∗ ≜ [Q∗ 0 Q∗]⊤. Define the space of all possible choices of gains
(κp, κI , κd, α, β) to be G ≜ R5. For a policy π and the controller gains g ∈ G, we denote the PID VI
operator on the space of B(X × {v, v’, z}) by Lπ

g defined as

Lπ
g Ṽ ≜ Ṽ 7→




V + κp · BRπV + κI(βz + α · BRπV ) + κd(V − V ′)
βz + α · BRπV

V


 .

The operator L∗
g on B(X ×A×{v, v’, z}) is defined analogously, replacing BRπ with BR∗. With

these notations, the PID VI algorithm can be written as

Ṽk+1 ← Lπ
g Ṽk (PE) , Q̃k+1 ← L∗

gQ̃k (Control).

Now we use stochastic approximation and this operator to derive our sample-based algorithms. At
each iteration, the agent receives a sample (Xt, At, Rt, X ′

t) from the environment. Focus on PE
and let Ṽt be the compact form of functions Vt, zt, V ′

t at iteration t. To perform the stochastic
approximation update on the value of Ṽt(Xt, f) for some f ∈ {v, v’, z}, we need an unbiased
estimator L̂t,f of (Lπ

g Ṽt)(Xt, f), which is a scalar random variable. Let Nt(x) and Nt(x, a) be the
number of times state x and state-action x, a are visited by time t. We consider the learning rate
schedule µ : Z→ R+ that maps the state count to the current learning rate. With the estimator L̂t,f,
and state-count dependent learning rate µ(Nt(Xt)), the update given by stochastic approximation
is of the form

Ṽt+1(Xt, f)← Ṽt(Xt, f) + µ(Nt(Xt))(L̂t,f − Ṽt(Xt, f)). (4)

Note that all values of Ṽt+1 that are not assigned an updated value will remain the same.

The only term in (Lπ
g Ṽt)(Xt, f) that requires estimation is (BRπVt)(Xt), which depends on the

transition distributions of the MDP that is not available. We can form an unbiased estimate B̂Rt

of (BRπVt)(Xt) = (T πV )(Xt)− V (Xt) or (BR∗Qt)(Xt, At) = (T ⋆Qt)(Xt, At)−Qt(Xt, At) by

B̂Rt =
{

Rt + γVt(X ′
t)− Vt(Xt) (PE),

Rt + γ maxa′∈A Qt(X ′
t, a′)−Qt(Xt, At) (Control).

(5)

A stochastic approximation procedure can then be used to update the values Vt(Xt), zt(Xt), V ′
t (Xt)

according to (4). The procedure would be

Vt+1(Xt)← Vt(Xt) + µ(Nt(Xt))
[
κpB̂Rt + κI(βzt(Xt) + αB̂Rt) + κd(Vt(Xt)− V ′

t (Xt))
]
,

zt+1(Xt)← zt(Xt) + µ(Nt(Xt))
[
βzt(Xt) + αB̂Rt − zt(Xt)

]
,

V ′
t+1(Xt)← V ′

t (Xt) + µ(Nt(Xt))
[
Vt(Xt)− V ′

t (Xt)
]
. (6)
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We call this procedure the PID TD learning algorithm. For Control, we similarly form estimates
L̂t,f of (L∗

gQt)(Xt, At, f) and obtain

Qt+1(Xt, At)← Qt(Xt, At) + µt

[
κpB̂Rt + κI(βzt(Xt, At) + αB̂Rt) + κd(Qt(Xt, At)−Q′

t(Xt, At))
]
,

zt+1(Xt, At)← zt(Xt, At) + µt

[
βzt(Xt, At) + αB̂Rt − zt(Xt, At)

]
,

Q′
t+1(Xt, At)← Q′

t(Xt, At) + µt

[
Qt(Xt, At)−Q′

t(Xt, At)
]
. (7)

where µt = µ(Nt(Xt, At)). This is the PID Q-Learning algorithm. It is worth mentioning that one
can use other forms of learning rates to achieve better practical results. For example, we can choose
constant or state-count independent learning rates, or use three different learning rates for the three
updates in (6) and (7). The formulation in this section is chosen for simplicity and the theoretical
analysis.

4 Theoretical Guarantees

In this section, we focus on the PE problem and present the theoretical analysis of PID TD Learning.
We show that with proper choices of controller gains that make PID VI convergent, PID TD Learning
is also convergent. Then, under synchronous update setting, we provide insights on the accelerated
convergence of PID TD Learning compared to the conventional TD Learning.

4.1 Convergence Guarantee

Farahmand and Ghavamzadeh (2021) show that PID VI converges under a wide range of gains for
a wide range of environments both analytically and experimentally. We show that this convergence
carries over to our sample-based PID TD Learning. We first need to define some notations to express
our result. Note that Lπ

g is an affine linear operator. Define Aπ
g to be its linear component and bπ

g

to be the constant component, so that Lπ
g Ṽ = Aπ

g Ṽ + bπ
g . In particular,

Aπ
g :=




(1− κp + κd − κIα)I + γ(κp + κIα)Pπ βκII −κdI
(−αI + γαPπ) βI 0

I 0 0


 .

The matrix Aπ
g plays a critical role in the behavior of PID VI as well as PID TD Learning. Farahmand

and Ghavamzadeh (2021) show that PID VI is convergent for PE if ρ(Aπ
g ) < 1 where ρ(M) for a

square matrix M is its spectral radius, the maximum of the magnitude of the eigenvalues. It turns
out the condition on the controller gains needed for the convergence of PID TD Learning is weaker
than the one for PID VI. We provide the following result.
Theorem 1 (Convergence of PID TD). Consider a set of controller gains g. Let {λi} be the
eigenvalues of Aπ

g . If Re{λi} < 1 for all i, under mild assumptions on learning rate schedule µ and
the sequence (Xt) (Assumptions 1, 2), the functions Vt in PID TD Learning (6) converge to the
value function V π of the policy π, almost surely.

The proof of Theorem 1 uses the ordinary differential equations (ODE) method for convergence of
stochastic approximation algorithms (Borkar and Meyn, 2000; Borkar, 2009). The method binds
the behavior of the stochastic approximation to a limiting ODE. In our case, the ODE is

u̇(t) = Lπ
g u(t)− u(t) = (Aπ

g − I)u(t) + bπ
g .

It is shown that if this ODE converges to the stationary point Ṽ π, PID TD Learning will also
converge. The condition for the convergence of this linear ODE is that the eigenvalues {λ′

i} of
Aπ

g − I should have negative real parts. Since λ′
i = λi − 1, we get the condition in Theorem 1. Note

that this condition is weaker than ρ(Aπ
g ) < 1 for PID VI (Farahmand and Ghavamzadeh, 2021),

which is equivalent to |λi| < 1. In other words, PID TD Learning may be convergent even if PID
VI with the same controller gains g is not.
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Obtaining similar results for PID Q-Learning is technically much more challenging. The reason
for this difficulty is the fact that, just like PID VI for Control, as the agent’s policy changes, the
dynamics of PID Q-Learning changes. Similar to Farahmand and Ghavamzadeh (2021), we leave
theoretical analysis of PID Q-Learning to future work and only focus on its empirical study.

4.2 Acceleration Result

In this section, we provide theoretical insights on how PID TD Learning can show a faster conver-
gence compared to the conventional TD Learning. Our analysis relies on the finite-sample analy-
sis of stochastic approximation methods. Since results for the asynchronous updates are limited,
we provide our acceleration results for synchronous updates. Specifically, we provide our analy-
sis for the case that at each iteration t, a dataset Dt = {(x, Ax,t, Rx,t, X ′

x,t)}x∈X is given, where
for each state x ∈ X it contains the random action Ax,t ∼ π(·|x), reward Rx,t ∼ R(x, Ax,t), and
X ′

x,t ∼ Pπ(·|x, Ax,t). Then, all values of V, V ′, and z are updated simultaneously in the same manner
as (6). Similarly, synchronous TD Learning applies the conventional update on all states using the
dataset. Based on the analysis by Chen et al. (2020), the following theorem provides bounds on the
error of both algorithms for the learning rate schedule µ(t) = ϵ/(t + T ). We focus on the choices of
ϵ, T that achieve the optimal asymptotic rate.
Theorem 2. Suppose synchronous TD Learning and synchronous PID TD Learning are run with
initial value function V0 and learning rate µ(t) = ϵ/(t + T ) to evaluate policy π. Let V TD

t and V PID
t

be the value functions obtained by the algorithms at iteration t, and {cTD
i , cPID

i } be constants only
dependent on the MDP and controller gains. Assume Pπ is diagonalizable. If ϵ > 2/(1 − γ) and
T ≥ cTD

1 ϵ/(1− γ), we have

E
[∥∥V TD

t − V π
∥∥2

∞

]
≤ cTD

2 ∥V0 − V π∥2
∞

(
T

t + T

)ϵ(1−γ)
+ ϵ(cTD

3 + cTD
4 ∥V π∥2

∞)
ϵ(1− γ)− 1

(
ϵ

t + T

)
.

Moreover, assume we initialize V ′ = V0 and z = 0 in PID TD Learning and Aπ
g is diagonalizable

with spectral radius ρ < 1. If ϵ > 2/(1− ρ) and T ≥ cPID
1 ϵ/(1− ρ), we have

E
[∥∥V PID

t − V π
∥∥2

∞

]
≤ cPID

2 ∥V0 − V π∥2
∞

(
T

t + T

)ϵ(1−ρ)
+ ϵ(cPID

3 + cPID
4 ∥V π∥2

∞)
ϵ(1− ρ)− 1

(
ϵ

t + T

)
.

The assumption on diagonalizability of Pπ and Aπ
g in Theorem 2 is for the sake of simplicity. In

Appendix B, we provide a similar but more general result without this assumption. The upper
bounds in Theorem 2 consist of two terms. The first term, which scales with the initial error
∥V0 − V π∥∞ can be interpreted as the optimization error. It is the amount that Vt still has to change
to reach V π. The second term can be considered as the statistical error, which is independent of
the initial error and exists even if we start from V0 = V π. Due to the conditions ϵ > 2/(1 − γ)
and ϵ > 2/(1 − ρ), the statistical error is asymptotically dominant with rate O(t−1) compared to
O(t−ϵ(1−γ)) or O(t−ϵ(1−γ)) of the optimization error. Note that a larger ϵ accelerates the rate of
optimization error, but together with larger T (due to the condition on T ) slows the convergence of
the statistical error to zero. For example, it takes T steps for the statistical error to become half of
its initial value. For simplicity of discussion, we consider ϵ and T fixed.

The difference between the two algorithms is in the rate that the optimization error goes to zero.
This term for TD Learning is O(t−ϵ(1−γ)) and for PID TD Learning is O(t−ϵ(1−ρ)). When κp = 1
and κI = κd = α = 0, we have ρ = γ, and these two rates match. With a better choice of gains, one
can have ρ < γ (Farahmand and Ghavamzadeh, 2021) and achieve a faster rate for the optimization
error. Even though this term is not asymptotically dominant, we show that its speed-up can be
significant in the early stages of training, especially when the policy’s behavior has low stochasticity.
To show this, we first need to introduce the following definition.
Definition 1. We say policy π in MDP (X ,A,P,R, γ) is d-deterministic for some d ∈ [0, 1] if for
all x ∈ X , we have Var[Rπ(x)] ≤ (1− d)/4 and maxx′ Pπ(x′|x) ≥ d.
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Due to our assumption that rewards are bounded within [0,1], any policy in any MDP is 0-
deterministic. The value of d depends on the stochasticity of both the MDP and the policy, with a
larger value corresponding to a more deterministic behavior. In the case where the policy and the
MDP are both deterministic, the policy becomes 1-deterministic. The following result shows how
the initial optimization error compares to the statistical error based on this measure.
Proposition 1. Assume the same conditions as in Theorem 2. Suppose policy π is d-deterministic
in the environment. Let ETD

opt (t) and ETD
stat(t) be the first and the second terms in the bound for

error of TD Learning at iteration t, respectively. Define EPID
opt (t) and EPID

stat (t) similarly. Define
c = max((κp + κIα)2, α2). We have

ETD
opt (0)

ETD
stat(0)

≥ ∥V0 − V π∥2
∞ (5γ2n(1− d) + 2)

en(1− d)
(

1 + 40γ2 ∥V π∥2
∞

) ,
EPID

opt (0)
EPID

stat (0)
≥ ∥V0 − V π∥2

∞ (15cγ2n(1− d) + 2)
3ecn(1− d)

(
1 + 40γ2 ∥V π∥2

∞

) .

Proposition 1 shows that when the initial error ∥V0 − V π∥∞ is large or the policy behaves almost
deterministically (d close to 1), the optimization error can make up the most of the error bound
in Theorem 2. In that case, the acceleration achieved by PID TD Learning in this term becomes
significant in the early stages. It should be noted that our arguments in this section are based on
the upper bounds on the errors of the algorithms as opposed to the errors themselves. This is a
common limitation for theoretical comparisons of algorithms. In Section 6, we further evaluate the
convergence of the algorithms empirically.

5 Gain Adaptation

The proper choice of controller gains is critical to both convergence and acceleration of our proposed
algorithms. While it is possible to treat the gains as hyperparameters and tune them like any other
hyperparameter, we address this by designing an automatic gain adaptation algorithm that tunes
them on the fly during the runtime of the algorithm.

The design of the gain adaptation algorithm for PID TD Learning and PID Q-Learning is based on
the same idea as gain adaptation in PID VI. Translating the update rule (3) to the sample-based
settings faces two main challenges. First, the derivative ∂BRπVk+1/∂κ· and normalization factor
∥BRπVk∥2

2 are not readily available without access to the transition dynamics P. Second, computing
the inner product in (3) requires iterating over all states x,

〈
BRπVk+1,

∂BRπVk+1
∂κ·

〉
=
∑

x

(BRπVk+1)(x) · ∂(BRπVk+1)(x)
∂κ·

,

requiring the values of ∂(BRπVk+1)(x)/∂κ· and (BRπVk+1)(x) for every x. We will see that using
a sample (Xt, At, Rt, X ′

t), these values can be estimated for x = Xt but not for other states. A
replay buffer could give us access to samples at more states or function approximation could directly
provide estimates at all states. However, as these techniques suffer from memory and stability issues,
a better solution is needed for this challenge.

To avoid the difficulty of the inner product term, we modify the update rule of the gains at iteration
t to minimize (BRπVt+1)(Xt)2 instead of ∥BRπVt+1∥2

2. This modification is similar to performing
stochastic gradient descent instead of gradient descent. Instead of defining the loss over the whole
state space, we consider the loss on a single sampled state. Consequently, the new term only depends
on the values at Xt. We get the following update:

κ· ← κ· − η
2

∥BRπVt∥2
2
· ∂ 1

2 (BRπVt+1)(Xt)2

∂κ·

= κ· − η
1

∥BRπVt∥2
2
· (BRπVt+1)(Xt) ·

∂(BRπVt+1)(Xt)
∂κ·

.
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The term (BRπVt+1)(Xt) above can be estimated in a similar manner to (5). Estimating the deriva-
tive ∂(BRπVt+1)(Xt)/∂κ· as well as (BRπVt+1)(Xt) in an unbiased way is another challenging prob-
lem. It is known that forming an unbiased estimate for both of these quantities with only one sample
at state Xt leads to double-sampling issues (Baird, 1995). As in prior work (Kearney et al., 2018),
we use the semi-gradient trick for this problem. Specifically, we treat the T πV term in BRπV as
constant and ignore its derivative. This yields the estimate

∂(BRπVt+1)(Xt)
∂κ·

= ∂

∂κ·

[
rπ(Xt) + γ

∑

x′

Pπ(x′|Xt)Vt+1(x′)− Vt+1(Xt)
]
≈ −∂Vt+1(Xt)

∂κ·
.

When calculating ∂Vt+1(Xt)
∂κ·

, we further ignore the effect of gains on Vt, setting ∂Vt

∂κ·
≈ 0, and also drop

the learning rate µ(Nt(Xt)) to absorb it into η. These derivatives can be calculated based on (6) and
are given in Appendix C. Finally, the normalization term is estimated by keeping an exponential
moving average with smoothing factor λ of the square of estimates of the Bellman Residual in the
past iterations. The detailed version of PID TD Learning and PID Q-Learning with gain adaptaion
is shown in Algorithms 1 and 2 in Appendix C.

6 Empirical Results
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Figure 1: Comparison of PID TD Learning with Conventional TD Learning in Chain Walk (left)
and Cliff Walk (right) with γ = 0.99. Each curve is averaged over 80 runs. Shaded areas show the
standard error.

We empirically compare PID TD Learning and PID Q-Learning with their conventional counterparts.
We conduct experiments in the 50-state Chain Walk environment with 2 actions (Farahmand and
Ghavamzadeh, 2021), the Cliff Walk environment with 6 × 6 states and 4 actions (Rakhsha et al.,
2022), and randomly generated Garnet MDPs with 50 states and 3 actions (Bhatnagar et al., 2009).
Detailed descriptions of these environments and the policies evaluated can be found in Appendix D.
For each sample (Xt, At, Rt, X ′

t), we choose Xt uniformly at random and At is chosen according to π
(for PE) or at random (for Control). We measure the error of value functions Vt and Qt for PE and
Control problems by their normalized error defined as ∥Vt − V π∥1 / ∥V π∥1 and ∥Qt −Q∗∥F / ∥Q∗∥F ,
respectively, where ∥Q∥F ≜ (

∑
x,a Q(x, a)2) 1

2 .

For all learning rates, we use state-count dependent schedules of the form µ(Nt(Xt)) =
min(ϵ, Nt(Xt)/M) for some choice of ϵ and M for all algorithms (including PID Q-Learning and
Q-Learning). To achieve the best results for all algorithms, we use separate learning rates for
V, V ′, z components of PID TD Learning and Q, Q′, z components of PID Q-Learning. The hyper-
parameters ϵ, M of all learning rate schedules are tuned by gridsearch over a range of values. The
details of hyperparameter tuning are provided in Appendix F.
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In Figure 1, we compare PID TD Learning with TD Learning when the gains are fixed and γ = 0.99.
In this case the acceleration depends on the choice of gains and the environment. We observe that
we can achieve a drastic acceleration in Cliff Walk, and a minor acceleration in Chain Walk. We
further investigate the speed-up achieved by PID TD Learning in Cliff Walk. In Figure 2, we observe
that with Gain Adaptation and γ = 0.999, we achieve a significant acceleration without the need
to tune the controller gains. Figure 2 also shows how Gain Adaptation has modified the gains from
their initial values.

To evaluate the acceleration in the Control problem, we compare PID Q-Learning with Gain Adap-
tation with Q-Learning. Figure 3 shows this comparison in Chain Walk with γ = 0.999, where PID
Q-Learning shows acceleration. Finally, to draw a more conclusive comparison, we compare our
algorithms with the conventional ones on 80 randomly generated Garnet MDPs with γ = 0.99 in
Figure 4. We see that our algorithms outperform TD Learning and Q-Learning in both PE and
Control problems.
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Figure 2: PID TD Learning with Gain Adaptation in Cliff Walk with γ = 0.999. (Left) Comparison
of value errors of PID TD Learning with TD Learning. Each curve is averaged over 80 runs. Shaded
area shows standard error. (Right) The change of gains done by Gain Adaptation through training.
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Figure 3: PID Q-Learning with Gain Adaptation in Chain Walk with γ = 0.999. (Left) Comparison
of value errors of PID Q-Learning with Q-Learning. Each curve is averaged over 80 runs. Shaded
area shows standard error. (Right) The change of gains done by Gain Adaptation through training.
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Figure 4: Comparison of PID Accelerated algorithms with the conventional ones for PE (Left) and
Control (Right) problems in randomly generated Garnet environments with γ = 0.99. Each curve
is an average of 80 MDPs, run for 80 times each. Shaded area shows standard error.

7 Related Work

There is a growing literature of applying acceleration techniques to RL. Similar to PID VI, which as
we showed leads to PID TD Learning and PID Q-Learning, many accelerated dynamic programming
methods have closely related RL algorithms. The idea of momentum has been used for faster
dynamic programming algorithms by Vieillard et al. (2020); Goyal and Grand-Clément (2023) and
in RL setting has led to Speedy Q-Learning (Ghavamzadeh et al., 2011) and Momentum Q-Learning
(Bowen et al., 2021). Zap Q-Learning (Devraj and Meyn, 2017) is another accelerated variant of Q-
Learning based on second-order optimization methods. Anderson acceleration (Anderson, 1965) has
been used for Anderson VI (Geist and Scherrer, 2018) and Anchoring acceleration (Halpern, 1967)
is used in Anchord VI (Lee and Ryu, 2023). Matrix splitting is used to derive Operator Splitting VI
(OSVI) (Rakhsha et al., 2022) and Deflated Dynamics VI (DDVI) (Lee et al., 2024), which are both
extended to the RL setting through stochastic approximation. Recently, Rakhsha et al. (2024) has
introduced the Model Correcting VI (MoCoVI) and Model Correcting Dyna (MoCoDyna) algorithms
that achieve acceleration through model correction.

Gain adaptation in general has a long history in RL and closely-related literature. Kesten (1958)
used an adaptive mechanism in the context of stochastic approximation in the 1950s. They describe
a method for choosing the learning rate of SA that is very similar to the P component of the
gain adaptation procedure we naturally derive. However, the algorithm is ad hoc in nature, and is
not compatible with function approximation in any natural way. First order methods of adapting
hyperparameters have been proposed, including IDBD (Sutton, 1992), the recent RL focused variant
TIDBD (Kearney et al., 2018), and SMD (Schraudolph, 1999) which all tune learning rates by finding
the gradient with respect to the history of errors. We refer to Sutton (2022) for a more in-depth
history and overview of such techniques. These approaches are limited to controlling only the learning
rate of the procedure and thus only attacking the error from sampling, not the bootstrapping error.

8 Conclusion

We showed how recent advances in accelerated planning and dynamic programming, specifically the
PID Value Iteration algorithm, can be used to design algorithms for the RL setting. The proposed
PID TD Learning and PID Q-Learning algorithms are accompanied by a gain adaptation mechanism,
which tunes their hyperparameters on the fly. We provided theoretical analysis as well as empirical
studies of these algorithms.
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One limitation of the current work is that the proposed algorithms are only developed for finite MDPs
where the value function, and all relevant quantities, can be represented exactly. For large MDPs,
for example with continuous state spaces, we need to use function approximation. Developing PID
TD Learning and PID Q-Learning with function approximation is therefore one important future
direction. Another limitation of this work is that the gain adaptation procedure, even though
empirically reliable, does not come with a convergence guarantee. Moreover, small changes in its
hyperparameters, such as its meta-learning rate η, can cause large changes in the trajectory the
value function takes during training. Another interesting research direction is then to develop a gain
adaptation procedure that is less sensitive to the choice of hyperparameters and has a convergence
guarantee. Finally, this work shows that the dynamics of RL can be significantly influenced by
the PID controller, one of the simplest controllers in the arsenal of control engineering. Developing
Planning and RL algorithms based on more sophisticated controllers is another promising research
direction.

Acknowledgements and Disclosure of Funding

We would like to thank the other members of the Adaptive Agents (Adage) Lab who provided
feedback on a draft of this paper, and the anonymous reviewers whose comments helped us improve
the clarity of the paper. AMF acknowledges the funding from the Canada CIFAR AI Chairs program,
as well as the support of the Natural Sciences and Engineering Research Council of Canada (NSERC)
through the Discovery Grant program (2021-03701). Resources used in preparing this research were
provided, in part, by the Province of Ontario, the Government of Canada through CIFAR, and
companies sponsoring the Vector Institute.

References
Donald G. Anderson. Iterative procedures for nonlinear integral equations. J. ACM, 12(4):547–560,

oct 1965. ISSN 0004-5411. doi: 10.1145/321296.321305. 10

Leemon Baird. Residual algorithms: Reinforcement learning with function approximation. In Ma-
chine Learning Proceedings 1995, pages 30–37. Morgan Kaufmann, 1995. ISBN 978-1-55860-377-6.
8

Amir Beck. First-Order Methods in Optimization. MOS-SIAM Series on Optimization. Society for
Industrial and Applied Mathematics, 2017. ISBN 9781611974997. 17

Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific, 1996.
ISBN 9781886529106. 2

Shalabh Bhatnagar, Richard S Sutton, Mohammad Ghavamzadeh, and Mark Lee. Natural actor-
critic algorithms. Automatica, 45(11):2471–2482, 2009. 8

Joseph K. Blitzstein and Jessica Hwang. Introduction to Probability. Chapman & Hall/CRC Texts
in Statistical Science. CRC Press/Taylor & Francis Group, 2014. ISBN 9781466575578. 15

Vivek S. Borkar. Stochastic Approximation: A Dynamical Systems Viewpoint. Texts and Readings
in Mathematics. Hindustan Book Agency, 2009. ISBN 9789386279385. 5

Vivek S. Borkar and Sean P. Meyn. The ODE method for convergence of stochastic approximation
and reinforcement learning. SIAM Journal on Control and Optimization, 38(2):447–469, 2000. 5,
15, 16

Weng Bowen, Xiong Huaqing, Zhao Lin, Liang Yingbin, and Zhang Wei. Finite-time theory for mo-
mentum q-learning. In Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial
Intelligence, volume 161 of Proceedings of Machine Learning Research. PMLR, 2021. 10

2081



RLJ | RLC 2024

Jinglin Chen and Nan Jiang. Information-theoretic considerations in batch reinforcement learning.
In Proceedings of the 36th International Conference on Machine Learning (ICML), 2019. 1

Zaiwei Chen, Siva Theja Maguluri, Sanjay Shakkottai, and Karthikeyan Shanmugam. Finite-
sample analysis of stochastic approximation using smooth convex envelopes. arXiv preprint
arXiv:2002.00874, 2020. 6, 18, 19

Adithya M. Devraj and Sean Meyn. Zap q-learning. Advances in Neural Information Processing
Systems, 30, 2017. 10

Richard C. Dorf and Robert H. Bishop. Modern Control Systems. Prentice Hall, 2008. ISBN
9780132270281. 3

Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement learning.
Journal of Machine Learning Research (JMLR), 6:503–556, 2005. 1

Eyal Even-Dar and Yishay Mansour. Learning rates for Q-learning. Journal of Machine Learning
Research (JMLR), 5:1–25, 2003. 1

Jianqing Fan, Zhaoran Wang, Yuchen Xie, and Zhuoran Yang. A theoretical analysis of deep q-
learning. arXiv:1901.00137v3, 2019. 1

Amir-massoud Farahmand and Mohammad Ghavamzadeh. PID accelerated value iteration algo-
rithm. In International Conference on Machine Learning. PMLR, 2021. 1, 2, 3, 5, 6, 8

Amir-massoud Farahmand, Csaba Szepesvári, and Rémi Munos. Error propagation for approximate
policy and value iteration. Advances in Neural Information Processing Systems, 23, 2010. 1

M. Geist and B. Scherrer. Anderson acceleration for reinforcement learning. European Workshop on
Reinforcement Learning, 2018. 10

Mohammad Ghavamzadeh, Hilbert Kappen, Mohammad Azar, and Rémi Munos. Speedy q-learning.
In Advances in Neural Information Processing Systems, volume 24. Curran Associates, Inc., 2011.
10

Geoffrey Gordon. Stable function approximation in dynamic programming. In International Con-
ference on Machine Learning (ICML), 1995. 1

Vineet Goyal and Julien Grand-Clément. A first-order approach to accelerated value iteration.
Operations Research, 71(2):517–535, 2023. 10

Benjamin Halpern. Fixed points of nonexpanding maps. Bulletin of the American Mathematical
Society, 73(6):957–961, 1967. 10

Alston S. Householder. The approximate solution of matrix problems. Journal of the ACM (JACM),
5(3):205–243, 1958. 16

Alex Kearney, Vivek Veeriah, Jaden B. Travnik, Richard S. Sutton, and Patrick M. Pilarski.
Tidbd: Adapting temporal-difference step-sizes through stochastic meta-descent. arXiv preprint
arXiv:1804.03334, 2018. 8, 10

Harry Kesten. Accelerated stochastic approximation. The Annals of Mathematical Statistics, pages
41–59, 1958. 10

Jongmin Lee and Ernest K. Ryu. Accelerating value iteration with anchoring. Neural Information
Processing Systems, 2023. 10

Jongmin Lee, Amin Rakhsha, Ernest K Ryu, and Amir-massoud Farahmand. Deflated dynamics
value iteration. arXiv preprint arXiv:2407.10454, 2024. 10

2082



RLJ | RLC 2024

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529–533, 2015. 1

Rémi Munos and Csaba Szepesvári. Finite-time bounds for fitted value iteration. Journal of Machine
Learning Research (JMLR), 9:815–857, 2008. 1

Katsuhiko Ogata. Modern Control Engineering. Prentice hall Upper Saddle River, NJ, fifth edition,
2010. 3

Amin Rakhsha, Andrew Wang, Mohammad Ghavamzadeh, and Amir-massoud Farahmand. Opera-
tor splitting value iteration. Advances in Neural Information Processing Systems, 35, 2022. 8, 10,
22

Amin Rakhsha, Mete Kemertas, Mohammad Ghavamzadeh, and Amir massoud Farahmand. Maxi-
mum entropy model correction in reinforcement learning. In The Twelfth International Conference
on Learning Representations, 2024. 10

Nicol N. Schraudolph. Local gain adaptation in stochastic gradient descent. In 1999 Ninth Inter-
national Conference on Artificial Neural Networks ICANN 99.(Conf. Publ. No. 470), volume 2,
pages 569–574. IET, 1999. 10

Richard S. Sutton. Learning to predict by the methods of temporal differences. Machine Learning,
3(1):9–44, 1988. 1

Richard S. Sutton. Adapting bias by gradient descent: an incremental version of delta-bar-delta. In
Proceedings of the Tenth National Conference on Artificial Intelligence, AAAI’92, page 171–176.
AAAI Press, 1992. ISBN 0262510634. 10

Richard S. Sutton. A history of meta-gradient: Gradient methods for meta-learning. arXiv preprint
arXiv:2202.09701, 2022. 10

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. MIT press,
2018. 2

Csaba Szepesvári. The asymptotic convergence-rate of Q-learning. In Advances in Neural Informa-
tion Processing Systems, 1997. 1

Csaba Szepesvári. Algorithms for Reinforcement Learning. Morgan Claypool Publishers, 2010. 2

Gerald Teschl. Ordinary differential equations and dynamical systems, volume 140. American Math-
ematical Soc., 2012. 16

Samuele Tosatto, Matteo Pirotta, Carlo D’Eramo, and Marcello Restelli. Boosted fitted Q-iteration.
In Proceedings of the 34th International Conference on Machine Learning (ICML), 2017. 1

John N. Tsitsiklis and Benjamin Van Roy. An analysis of temporal difference learning with function
approximation. IEEE Transactions on Automatic Control, 42:674–690, 1997. 1

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double Q-
learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 30, 2016. 1

Nino Vieillard, Bruno Scherrer, Olivier Pietquin, and Matthieu Geist. Momentum in reinforcement
learning. In International Conference on Artificial Intelligence and Statistics, pages 2529–2538.
PMLR, 2020. 10

Martin J. Wainwright. Stochastic approximation with cone-contractive operators: Sharp ℓ∞-bounds
for q-learning. arXiv preprint arXiv:1905.06265, 2019. 1

Christopher J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, King’s College, Univer-
sity of Cambride, 1989. 1

2083



RLJ | RLC 2024

A Proofs for Convergence Results (Section 4.1)

In this section, we present the proof of Theorem 1. We first present some notation, and then the
assumptions on the learning rate schedule µ and sequence of visited samples (Xt)t≥0. Let rπ ∈ Rn

be the vector of the expected immediate rewards of following the policy at each state.

Now we move on the assumptions for Theorem 1.
Assumption 1 (Properly Tapering Learning Rate Schedule). The learning rate schedule µ : Z→ R+

satisfies the following:

(i) We have 0 < µ(t) ≤ 1 for any t ≥ 0, and
∞∑

t=0
µ(t) =∞ ,

∞∑

t=0
µ(t)2 <∞.

(ii) For some T , we have µ(t + 1) < µ(t) for all t ≥ T .

(iii) For z ∈ (0, 1), supt µ([zt])/µ(t) <∞, where [·] is the integer part of a number.

(iv) For z ∈ (0, 1),

lim
t→∞




[zt]∑

i=0
µ(i)



/(

t∑

i=0
µ(i)

)
= 1.

Examples of learning rate schedules that satisfy Assumption 1 includes µ(t) = 1
t+1 . The next

assumption is on the balanced updates of states.
Assumption 2 (Balanced Updates of States). The sequence of visited states (Xt)t and learning
rate schedule µ is such that we have

(i) There exists deterministic ∆ > 0, such that for all x ∈ X

lim inf
t→∞

Nt(x)
t
≥ ∆ a.s.

(ii) If Tt(z) ≜ min{t′ > t :
∑t′

i=t+1 µ(i) > z}, for any z > 0 and states x1, x2 ∈ X , the following
limit exists

lim
t→∞

∑NTt(z)(x1)
i=Nt(x1) µ(i)

∑NTt(z)(x2)
i=Nt(x2) µ(i)

.

Intuitively, Assumption 2 asserts that all states are visited often enough and get balanced sum of
learning rates. Before presenting the proof for Theorem 1, we first prove the following auxiliary
lemma.
Lemma 1. Assume policy π in the environment is d-deterministic and x ∈ X is arbitrary. Let R and
X ′ be the random obtained reward and next state after following policy π from x in the environment.
Let W = R + γV (X ′)− (T πV )(x) for an arbitrary V : X → R. We have

E
[
W 2] ≤ 1− d

4 + 5γ2(1− d) ∥V ∥2
∞ .

Moreover, for some Ṽ , f, let L̂ be the estimator of (Lπ
g Ṽ )(x, f) derived in PID TD Learning’s update

(4) according to the sample (x, R, X ′). Assume W̃ = L̂− (Lπ
g Ṽ )(x, f) is its noise. We have

E
[
W̃ 2] ≤ max((κp + κIα)2, α2)

(
1− d

4 + 5γ2(1− d)
∥∥Ṽ
∥∥2

∞

)
.

2084



RLJ | RLC 2024

Proof. For the first part, we write

E[W 2] = E
[
( R + γV (X ′)− rπ(x)− γE[V (X ′)] )2]

= E
[
(R− rπ(X))2]+ γ2E

[
( V (X ′)− E[V (X ′)] )2]+ 2E[(R− rπ(x))(V (X ′)− E[V (X ′)])]

= Var[R] + γ2Var[V (X ′)]

≤ 1− d

4 + γ2Var[V (X ′)],

where the last inequality is by the definition of d-deterministic MDP. Now let p∗ = maxx′ Pπ(x′|x)
and x∗ = arg maxx′ Pπ(x′|x). Due to the law of total variance (Blitzstein and Hwang, 2014, Example
9.5.5), we have

Var[V (X ′)] = p∗Var[V (X ′)|X ′ = x∗] + (1− p∗)Var[V (X ′)|X ′ ̸= x∗]

+ p∗(1− p∗)
(
E[V (X ′)|X ′ = x∗]− E[V (X ′)|X ′ ̸= x∗]

)2

≤ (1− p∗) ∥V ∥2
∞ + 4p∗(1− p∗) ∥V ∥2

∞

≤ 5(1− d) ∥V ∥2
∞ .

Together, we obtain

E[W 2] ≤ 1− d

4 + 5(1− d) ∥V ∥2
∞ .

For the second part, we consider three cases. If f = v, we have

W̃ = (κp + κIα)W.

If f = z, we have
W̃ = αW.

If f = v′, we have
W̃ = 0.

Combining all cases, we get

W̃ 2 ≤ max((κp + κIα)2, α2)W 2,

which means

E
[
W̃ 2] ≤ max((κp + κIα)2, α2)

(
1− d

4 + 5γ2(1− d)
∥∥Ṽ
∥∥2

∞

)
.

Proof of Theorem 1

Proof. We show the claim by applying the result by Borkar and Meyn (2000, Theorem 2.5) to our
algorithm. We describe how PID TD Learning (6) is a special case of a convergent asynchronous
stochastic approximation in (Borkar and Meyn, 2000). PID TD Learning updates three entries of
Ṽt at each iteration. Therefore, our set of indices that are updated (noted by Y (n) in the original
paper) is Yt ≜ {(Xt, v), (Xt, z), (Xt, v’)}. The number of times the value for (x, f) ∈ X × {v, z, v’}
is updated (noted by ν(i, n) in the original paper) is Nt(x) and the communication delays are zero
in our case. With these choices, the asynchronous stochastic approximation of (Borkar and Meyn,
2000, Equation 2.8) becomes

Ṽt+1(Xt, f)← Ṽt(Xt, f) + µ(Nt(Xt))f [Ṽt, Dt](Xt, f) (∀f ∈ {v, z, v’}),
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and the other entries in Ṽt+1 remain the same as Ṽt. Here, Dt ∈ D for all t are independently
and identically distributed (i.i.d.), and f : R3n ×D → R3n can be an arbitrary function. To obtain
PID TD Learning in this form, we define D ≜ (X × [0, 1])n. For any t, we choose Dt to be a
dataset {(Rx,t, X ′

x,t)}x∈X where for each state x contains the random reward Rx,t ∼ Rπ(x) and
X ′

x,t ∼ Pπ(·|x). Then we define f such that for all x ∈ X ,

f [Ṽt, Dt](x, v) ≜ κpbx,t + κI(βzt(x) + αbx,t) + κd(Vt(x)− V ′
t (x)),

f [Ṽt, Dt](x, z) ≜ βzt(x) + αbx,t − zt(x),
f [Ṽt, Dt](x, v’) ≜ Vt(x)− V ′

t (x).

where bx,t = Rx,t + γVt(X ′
x,t)− Vt(x). This yields the exact same PID TD Learning updates.

The function h(Ṽ ) = E[f(Ṽ , D1)] in (Borkar and Meyn, 2000) is equal to Lπ
g Ṽ − Ṽ in our setting.

Note that h is Lipschitz since it is an affine linear operator. The function h∞(Ṽ ) exists and is equal
to (Aπ

g − I)Ṽ . Therefore, we require the origin point to be an asymptotically stable equilibrium of
the ODE

u̇(t) = h∞(u(t)) = (Aπ
g − I)u(t),

which is satisfied due to the assumption on the eigenvalues of Aπ
g and the fact that the solution of

the above ODE is exp [(Aπ
g − I)t]u0 (Teschl, 2012) for any starting point u0.

Furthermore, we note that the unique globally asymptotically stable equilibrium of ODE

u̇(t) = h(u(t)) = Lπ
g u(t)− u(t) = (Aπ

g − I)u(t) + bπ
g .

is −(Aπ
g − I)−1bπ

g which is equal to Ṽ π due to Ṽ π = Lπ
g Ṽ π = Aπ

g Ṽ π + bπ
g .

Finally, note that Lemma 1 established the required property of the noise. The remaining assump-
tions of Borkar and Meyn (2000) are satisfied due to Assumption 1 and 2.

B Proofs for Acceleration Results (Section 4.2)

Before presenting the proof of the Theorems, we introduce these definitions.
Definition 2. Let f : Rd be a convex, differentiable function. Then f is said to be L-smooth with
respect to (w.r.t.) norm ∥·∥ if and only if

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L

2 ∥y − x∥2 ∀x, y ∈ Rd.

Definition 3. For any non-singular matrix S ∈ Rd×d, we define the vector norm ∥v∥2,S ≜ ∥Sv∥2.
For any matrix A, we let ∥A∥2,S be the matrix norm of A induced by the vector norm ∥·∥2,S.

We also need the following lemmas.
Lemma 2. Let A ∈ Rd×d and δ ≥ 0. If A is not diagonalizable, further assume δ > 0. There exists
an invertible matrix S such that ∥A∥2,S ≤ ρ(A) + δ and for any v ∈ Rd, ∥v∥2,S ≤ ∥v∥∞.

Proof. The existence of S′ such that ∥A∥2,S′ ≤ ρ(A)+δ is a consequence of the proof of Theorem 4.4
in Householder (1958). Due to equivalence of norms in finite dimensions, there exists u > 0 such that
for any v ∈ Rd, ∥v∥2,S′ ≤ u ∥v∥∞. Define S = 1

u S′. Consequently, ∥v∥2,S ≤ ∥v∥∞ for any v. Now
from Theorem 2.10 in Householder (1958), we have ∥A∥2,S′ =

∥∥S′AS′−1∥∥
2 and ∥A∥2,S =

∥∥SAS−1∥∥
2

which means

∥A∥2,S =
∥∥SAS−1∥∥

2 =
∥∥S′AS′−1∥∥

2 = ∥A∥2,S′ ≤ ρ(A) + δ.
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Lemma 3. For any invertible matrix S, the function f : Rd → R defined as f(x) = 1
2 ∥x∥

2
2,S is

1-smooth w.r.t. ∥·∥2,S.

Proof. Let g(x) = 1
2 ∥x∥

2
2. By definition, f(x) = g(Sx). We write

f(x) + ⟨∇f(x), y − x⟩+ 1
2 ∥y − x∥2

2,S = g(Sx) +
〈
S⊤∇g(Sx), y − x

〉
+ 1

2 ∥Sy − Sx∥2
2

= g(Sx) + ⟨∇g(Sx), Sy − Sx⟩+ 1
2 ∥Sy − Sx∥2

2 .

By Beck (2017, Example 5.11), g is 1-smooth, that is for any u, v,

g(u) + ⟨∇g(u), v − u⟩+ 1
2 ∥v − u∥2

2 ≥ g(v).

Together, we conclude

f(x) + ⟨∇f(x), y − x⟩+ 1
2 ∥y − x∥2

2,S ≥ g(Sy) = f(y).

Lemma 4. Assume a dataset {(x, Rx, X ′
x)}x is given, where for each state x contains the random

reward Rx ∼ Rπ(x) and X ′
x ∼ Pπ(·|x), and π is d-deterministic in the environment. For an

arbitrary value function V , define W : X → R as

W (x) ≜ Rx + γV (X ′
x)− rπ(x)− γ(PπV )(x).

Moreover, for some Ṽ and x, f, let L̂(x, f) be the estimator of (Lπ
g Ṽ )(x, f) derived in PID TD

Learning’s update (4) according to the sample (x, Rx, X ′
x). Define

W̃ (x, f) = L̂(x, f)− (Lπ
g Ṽ )(x, f).

We have

E
[
∥W∥2

∞

]
≤ n

(
1− d

4 + 5γ2(1− d) ∥V ∥2
∞

)
,

E
[∥∥W̃

∥∥2
∞

]
≤ 3n max((κp + κIα)2, α2)

(
1− d

4 + 5γ2(1− d)
∥∥Ṽ
∥∥2

∞

)
.

Proof. According to Lemma 1, for any x, f,

E
[
W (x)2] ≤ 1− d

4 + 5γ2(1− d) ∥V ∥2
∞ ,

E
[
W̃ (x, f)2] ≤ max((κp + κIα)2, α2)

(
1− d

4 + 5γ2(1− d)
∥∥Ṽ
∥∥2

∞

)
.

The result follows from the fact that for any random vector Z = [Z1, . . . , Zk]⊤,

E
[
∥Z∥2

∞

]
≤ E

[∑

i

Z2
i

]
=
∑

i

E
[
Z2

i

]
.
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B.1 Proof of Theorem 2

We prove the more general result than Theorem 2 without any diagonalizablity assumptions. The-
orem 2 is the special case of the following when δTD = δPID = 0.
Theorem 3. Suppose synchronous TD Learning and PID TD Learning are run with initial value
function V0 and learning rate µ(t) = ϵ/(t + T ) to evaluate policy π. Let V TD

t , V PID
t be the value

functions obtained with each algorithm at iteration t. Assume δTD, δPID ≥ 0. If Pπ is not diag-
onalizable, we further assume δTD > 0, and if Aπ

g is not diagonalizable, we assume δPID > 0. If
ϵ > 2/(1− γ − δTD) and T ≥ cPID

1 ϵ/(1− γ − δTD), we have

E
[∥∥V TD

t − V π
∥∥2

∞

]
≤ cPID

2 ∥V0 − V π∥2
∞

(
T

t + T

)ϵ(1−γ−δTD)
+ ϵ(cPID

3 + cPID
4 ∥V π∥2

∞)
ϵ(1− γ − δTD)− 1 ·

(
ϵ

t + T

)
.

Here, {cPID
i } are constants dependent on the MDP and δTD. Moreover, assume we initialize V ′ =

V0, z ≡ 0 in PID TD Learning and Aπ
g has spectral radius ρ < 1. If ϵ > 2/(1 − ρ − δPID) and

T ≥ cPID
1 ϵ/(1− ρ− δPID), we have

E
[∥∥V PID

t − V π
∥∥2

∞

]
≤ cPID

2 ∥V0 − V π∥2
∞

(
T

t + T

)ϵ(1−ρ−δPID)
+ ϵ(cPID

3 + cPID
4 ∥V π∥2

∞)
ϵ(1− ρ− δPID)− 1 ·

(
ϵ

t + T

)
.

Here, {cPID
i } are constants dependent on the MDP, controller gains, and δPID.

Proof of Theorem 3 for TD Learning

Proof. Since Pπ is a stochastic matrix, we have ρ(Pπ) = 1. Based on Lemma 2, let S be the
non-singular matrix such that ∥γPπ∥2,S ≤ γ + δTD. For any two V1 and V2 we have

∥T πV1 − T πV2∥2,S = ∥γPπ(V1 − V2)∥2,S ≤ ∥γPπ∥2,S ∥V1 − V2∥2,S ≤ (γ + δTD) ∥V1 − V2∥2,S ,

which means T π is a (γ + δTD)-contraction w.r.t. ∥·∥2,S . Moreover, 1
2 ∥x∥

2
2,S is 1-smooth according

to Lemma 3. Consequently, we use ∥·∥2,S as the norms ∥·∥c and ∥·∥s in Chen et al. (2020).

Assume the policy is d-deterministic. Define the noise Wt : X → R at iteration t as

Wt(x) ≜ Rx,t + γVt(X ′
x,t)− rπ(x)− γ(PπVt)(x).

By Lemma 4, we can bound the conditional noise at each iteration as

E
[
∥Wt∥2

∞

∣∣∣V0, W0, . . . , Wt−1, Vt

]
≤ CTD + BTD ∥Vt∥2

∞ ,

where

CTD ≜ n(1− d)
4 , BTD ≜ 5γ2n(1− d).

There exists a constant lTD > 0 by the equivalence of norms and Lemma 2 such that for all x ∈ Rn:

lTD ∥x∥∞ ≤ ∥x∥2,S ≤ ∥x∥∞ . (8)

Based on these, define the constant

cTD
1 ≜ 8(BTD + 2)

lTD2 .

By Corollary 2.1.2 of Chen et al. (2020), choosing the norm ∥·∥e to be ∥·∥∞, µ = L = 1, the error
at iteration t is bounded as

E
[
∥Vt − V π∥2

2,S

]
≤ ∥V0 − V π∥2

2,S

(
T

t + T

)ϵ(1−γ−δTD)
+

16eϵ2
(

CTD + 2BTD ∥V π∥2
2,S

)

lTD2(ϵ(1− γ − δTD)− 1)
·
(

1
t + T

)
.
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By Equation (8), this immediately gives us a bound on the infinity norm.

E
[
∥Vt − V π∥2

∞

]
≤ 1

lTD2E
[
∥Vt − V π∥2

2,S

]

≤ 1
lTD2 ∥V0 − V π∥2

2,S

(
T

t + T

)ϵ(1−γ−δTD)
+

16eϵ2
(

CTD + 2BTD ∥V π∥2
2,S

)

lTD4(ϵ(1− γ − δTD)− 1)
·
(

1
t + T

)

≤ 1
lTD2 ∥V0 − V π∥2

∞

(
T

t + T

)ϵ(1−γ−δTD)
+

16eϵ2
(

CTD + 2BTD ∥V π∥2
∞

)

lTD4(ϵ(1− γ − δTD)− 1)
·
(

1
t + T

)
.

This gives the statement of theorem by defining

cTD
2 ≜ 1

lTD2 , cTD
3 ≜ 16eCTD

lTD4 , cTD
4 ≜ 32eBTD

lTD4 .

Proof of Theorem 3 for PID TD Learning

Proof. The proof follows the exact steps in the proof for TD Learning. Based on Lemma 2, let S be
the non-singular matrix such that

∥∥Aπ
g

∥∥
2,S
≤ ρ + δPID. For any two Ṽ1 and Ṽ2 we have

∥∥Lπ
g Ṽ1 − Lπ

g Ṽ2
∥∥

2,S
=
∥∥Aπ

g (Ṽ1 − Ṽ2)
∥∥

2,S
≤
∥∥Aπ

g

∥∥
2,S

∥∥Ṽ1 − Ṽ2
∥∥

2,S
≤ (ρ + δPID)

∥∥Ṽ1 − Ṽ2
∥∥

2,S
,

which means Lπ
g is a (ρ + δPID)-contraction w.r.t. ∥·∥2,S . Moreover, 1

2 ∥x∥
2
2,S is 1-smooth according

to Lemma 3. Consequently, we use ∥·∥2,S as the norms ∥·∥c and ∥·∥s in Chen et al. (2020).

Assume the policy is d-deterministic. Define the noise W̃t : X × {v, z, v’} → R at iteration t as

W̃t(x, v) ≜ (κp + κIα)(Rx,t + γVt(X ′
x,t)− rπ(x)− γ(PπVt)(x)),

W̃t(x, z) ≜ α(Rx,t + γVt(X ′
x,t)− rπ(x)− γ(PπVt)(x)),

W̃t(x, v’) ≜ 0.

By Lemma 4, we can bound the noise at each iteration as

E
[∥∥W̃t

∥∥2
∞

∣∣∣Ṽ0, W̃0, . . . , W̃t−1, Ṽt

]
≤ CPID + BPID ∥∥Ṽt

∥∥2
∞ ,

where

CPID ≜ 3n

4 max((κp + κIα)2, α2)(1− d), BPID ≜ 15γ2n ·max((κp + κIα)2, α2)(1− d).

There exists a constant l > 0 by the equivalence of norms and Lemma 2 such that for all x ∈ R3n:

lPID ∥x∥∞ ≤ ∥x∥2,S ≤ ∥x∥∞ . (9)

Based on these, define the constants

cPID
1 ≜ 8(BPID + 2)

lPID2 .

By Corollary 2.1.2 of Chen et al. (2020), choosing the norm ∥·∥e to be ∥·∥∞, the error at iteration t
is bounded as

E
[∥∥Ṽt − Ṽ π

∥∥2
2,S

]
≤
∥∥Ṽ0 − Ṽ π

∥∥2
2,S

(
T

t + T

)ϵ(1−ρ−δPID)
+

16eϵ2
(

CPID + 2BPID ∥∥Ṽ π
∥∥2

2,S

)

lPID2(ϵ(1− ρ− δPID)− 1)
·
(

1
t + T

)
.
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By Equation (9), this immediately gives us a bound on the infinity norm.

E
[∥∥Ṽt − Ṽ π

∥∥2
∞

]
≤ 1

lPID2E
[∥∥Ṽt − Ṽ π

∥∥2
2,S

]

≤ 1
lPID2

∥∥Ṽ0 − Ṽ π
∥∥2

2,S

(
T

t + T

)ϵ(1−ρ−δPID)
+

16eϵ2
(

CPID + 2BPID ∥∥Ṽ π
∥∥2

2,S

)

lPID4(ϵ(1− ρ− δPID)− 1)
·
(

1
t + T

)

≤ 1
lPID2

∥∥Ṽ0 − Ṽ π
∥∥2

∞

(
T

t + T

)ϵ(1−ρ−δPID)
+

16eϵ2
(

CPID + 2BPID ∥∥Ṽ π
∥∥2

∞

)

lPID4(ϵ(1− ρ− δPID)− 1)
·
(

1
t + T

)
.

Since
∥∥V PID

t − V π
∥∥

∞ ≤
∥∥Ṽt − Ṽ π

∥∥
∞,

∥∥Ṽ π
∥∥

∞ = ∥V π∥∞, and
∥∥Ṽ0 − Ṽ π

∥∥
∞ = ∥V0 − V π∥∞ we

finally get

E
[∥∥V PID

t − V π
∥∥2

∞

]
≤ 1

lPID2 ∥V0 − V π∥2
∞

(
T

t + T

)ϵ(1−ρ−δPID)
+

16eϵ2
(

CPID + 2BPID ∥V π∥2
∞

)

lPID4(ϵ(1− ρ− δPID)− 1)
·
(

1
t + T

)
.

This gives the statement of theorem by defining

cPID
2 ≜ 1

lPID2 , cPID
3 ≜ 16eCPID

lPID4 , cPID
4 ≜ 32eBPID

lPID4 .

B.2 Proof of Proposition 1

Proof.

ETD
opt (0)

ETD
stat(0)

= ∥V0 − V π∥2
∞

lTD2 · lTD4(ϵ(1− γ)− 1)T
16eϵ2

(
CTD + 2BTD ∥V π∥2

∞

)

Due to the theorem conditions T ≥ ϵcTD
1 /(1 − γ) and ϵ ≥ 2/(1 − γ), which means ϵ(1 − γ) − 1 ≥

ϵ(1− γ)/2. We continue

ETD
opt (0)

ETD
stat(0)

≥ ∥V0 − V π∥2
∞

lTD2 · lTD4
ϵ(1− γ) · ϵcTD

1

32eϵ2
(

CTD + 2BTD ∥V π∥2
∞

)
(1− γ)

= ∥V0 − V π∥2
∞ lTD2

cTD
1

32e
(

CTD + 2BTD ∥V π∥2
∞

)

= ∥V0 − V π∥2
∞ · 8(5γ2n(1− d) + 2)

32e
(

n(1− d)/4 + 10γ2n(1− d) ∥V π∥2
∞

)

= ∥V0 − V π∥2
∞ (5γ2n(1− d) + 2)

en(1− d)
(

1 + 40γ2 ∥V π∥2
∞

) .
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Similarly for PID TD Learning, define c = max((κp + κIα)2, α2):

EPID
opt (0)

EPID
stat (0)

= ∥V0 − V π∥2
∞

lPID2 · lPID4(ϵ(1− ρ)− 1)T
16eϵ2

(
CPID + 2BPID ∥V π∥2

∞

)

≥ ∥V0 − V π∥2
∞

lPID2 · lPID4
ϵ(1− ρ) · ϵcPID

1

32eϵ2
(

CPID + 2BPID ∥V π∥2
∞

)
(1− ρ)

= ∥V0 − V π∥2
∞ lPID2

cPID
1

32e
(

CPID + 2BPID ∥V π∥2
∞

)

= ∥V0 − V π∥2
∞ · 8(15γ2nc(1− d) + 2)

32e
(

3nc(1− d)/4 + 30γ2nc(1− d) ∥V π∥2
∞

)

= ∥V0 − V π∥2
∞ (15γ2nc(1− d) + 2)

3enc(1− d)
(

1 + 40γ2 ∥V π∥2
∞

) .

C Details of Gain Adaptation

Tables 1 and 2 show the semi-gradients used for gain adaptation for Policy Evaluation and Control
respectively. Algorithms 1 and 2 show the detailed description of the algorithm for Policy Evaluation
and Control respectively.

Table 1: Semi-gradients of the Bellman residual used in the gain adaptation updates for Policy
Evaluation. The learning rates are dropped to absorb them into η.

Estimated semi-gradient of (BRπVt+1)(Xt)2

κp (Rt + γVt+1(X ′
t)− Vt+1(Xt)) · (Rt + γVt(X ′

t)− Vt(Xt))
κI (Rt + γVt+1(X ′

t)− Vt+1(Xt)) · [βzt(Xt) + α(Rt + γVt(X ′
t)− Vt(Xt))]

κd (Rt + γVt+1(X ′
t)− Vt+1(Xt)) · (Vt(Xt)− V ′

t (Xt))

Table 2: Semi-gradients of the Bellman residual used in the gain adaptation updates for Control.
The learning rates are dropped to absorb them into η.

Estimated semi-gradient of (BR∗Qt+1)(Xt, At)2

κp (Rt + γ maxa∈A Qt+1(X ′
t, a)−Qt+1(Xt, At)) · (Rt + γQt(X ′

t, A′
t)−Qt(Xt, At))

κI (Rt + γ maxa∈A Qt+1(X ′
t, a)−Qt+1(Xt, At)) · [βzt(Xt, At) + α(Rt + γ maxa∈A Qt(X ′

t, a)−Qt(Xt, At))]
κd (Rt + γ maxa∈A Qt+1(X ′

t, a)−Qt+1(Xt, At)) · (Qt(Xt, At)−Q′
t(Xt, At))

D Description of the Environments

D.1 Chain Walk

The environment consists of 50 states that are connected in a circular chain. The agent has two
actions available, moving left or right. Upon taking an action, the agent succeeds with probability
0.7, stays in place with probability 0.1, and moves in the opposite direction with probability 0.2.
The agent receives a reward of 1 when entering state 10, a reward of -1 when entering state 40, and
a reward of 0 otherwise. The policy evaluated in the PE experiments is to always move left.
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Algorithm 1 PID TD Learning with Gain Adaptation
1: Initialize V1, V ′

1 , z1, previous_V1, running_BR1, and N1 to zero on all states.
2: Initialize the gains to κp = 1, κI = 0, κd = 0.
3: for t = 1, . . . , K do
4: Observe state Xt, take action At ∼ π(· | Xt), receive reward Rt, and observe next state X ′

t.
5: Set δ′ ← Rt + γ · previous_Vt(X ′

t)− previous_Vt(Xt).
6: Set δ ← Rt + γVt(X ′

t)− Vt(Xt).
7: Update the gains:

κp ← κp + η
δδ′

running_BRt(Xt) + ϵ

κI ← κI + η
δ(βzt(Xt) + αδ′)

running_BRt(Xt) + ϵ

κd ← κd + η
δ(Vt(Xt)− V ′

t (Xt))
running_BRt(Xt) + ϵ

.

8: Set update← Vt(Xt) + κpδ + κd(Vt(Xt)− V ′
t (Xt)) + κI(βzt(Xt) + αδ).

9: Set Nt+1(Xt)← Nt(Xt) + 1.
10: Update the running values on the new states asynchronously:

running_BRt+1(Xt)← (1− λ) · running_BRt(Xt) + λδ2

previous_Vt+1(Xt)← Vt(Xt)
Vt+1(Xt)← (1− µ(Nt(Xt)))Vt(Xt) + µ(Nt(Xt)) · update
V ′

t+1(Xt)← (1− µ(Nt(Xt)))V ′
t (Xt) + µ(Nt(Xt))Vt(Xt)

zt+1(Xt)← (1− µ(Nt(Xt)))zt(Xt) + µ(Nt(Xt))(βzt(Xt) + αδ).

11: end for

D.2 Cliff Walk

Figure 5: A visualization of Cliff Walk, taken from Rakhsha et al. (2022). The arrows depict the
optimal policy.

A 6 by 6 grid world is used, visualized in Figure 5. The agent starts on the top left. Its goal is to end
up on the top right. There are 12 cliff tiles, and the agent is stuck in them if it falls in. Moreover, the
agent is stuck in the goal state once entering it. Upon making a move in the goal state, it receives a
reward of 20. Making a move in a cliff receives a reward of -32, -16, or -8 depending on whether the
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Algorithm 2 PID Q-Learning with Gain Adaptation
1: Initialize Q1, Q′

1, z1, previous_Q1, running_BR1 to zero on all state-action pairs, and N1 to
zero on all states.

2: Initialize the gains to κp = 1, κI = 0, κd = 0.
3: for t = 1, . . . , K do
4: Let π be the policy derived from Qt.
5: Observe state Xt, take action At ∼ π(· | Xt, At), receive reward Rt, and observe next state

X ′
t. Let A′

t ← maxa Qt(X ′
t, a).

6: Set δ′ ← Rt + γ · previous_Qt(X ′
t, A′

t)− previous_Qt(Xt, At).
7: Set δ ← Rt + γQt(X ′

t, A′
t)−Qt(Xt, At).

8: Update the gains:

κp ← κp + η
δδ′

running_BRt(Xt, At) + ϵ

κI ← κI + η
δ(βzt(Xt, At) + αδ′)

running_BRt(Xt, At) + ϵ

κd ← κd + η
δ(Qt(Xt, At)−Q′

t(Xt, At))
running_BRt(Xt, At) + ϵ

.

9: Set update← Qt(Xt, At) + κpδ + κd(Qt(Xt, At)−Q′
t(Xt, At)) + κI(βzt(Xt, At) + αδ).

10: Set Nt(Xt)← Nt−1(Xt) + 1.
11: Update the running values on the new state-action pair asynchronously:

running_BRt+1(Xt, At)← (1− λ) · running_BRt(Xt, At) + λδ2

previous_Qt+1(Xt, At)← Qt(Xt, At)
Qt+1(Xt, At)← (1− µ(Nt(Xt)))Qt(Xt, At) + µ(Nt(Xt)) · update
Q′

t+1(Xt, At)← (1− µ(Nt(Xt)))Q′
t(Xt, At) + µ(Nt(Xt))Qt(Xt, At)

zt+1(Xt, At)← (1− µ(Nt(Xt)))zt(Xt, At) + µ(Nt(Xt))(βzt(Xt, At) + αδ).

12: end for

cliff is on the top, middle, or bottom respectively. Otherwise, it receives a reward of -1. The agent
has four possible actions corresponding to moving up, down, left, and right. If the agent attempts to
move off the grid, it simply stays in place. Otherwise, its action succeeds with probability 0.9, and
moves in one of the other three directions at random with uniform probability The policy evaluated
in the TD experiments is a random walk.

D.3 Garnet

The environment is randomly generated. They consist of 50 states, and 3 actions per state. To
build the environment, for each action and state, (x, a), we pick 5 other random states Xx,a. For 10
randomly chosen states x, we set r(x) from a uniform distribution between 0 and 1. We set r(x) is
zero on all other states. Then, when taking action a and from state x, we receive reward r(x) and
move to any state in Xx,a with equal probability. The policy evaluated in the TD experiments is a
random walk.

E Additional Experiments

Figure 6 shows the performance of gain adaptation on Chain Walk when γ = 0.99, and the corre-
sponding movement of the controller gains. Figure 7 shows the performance of gain adaptation on
Cliff Walk when γ = 0.99, and the corresponding movement of the controller gains.
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Figure 6: PID TD Learning with Gain Adaptation in Chain Walk with γ = 0.99. (Left) Comparison
of value errors of PID TD Learning with TD Learning. Each curve is averaged over 80 runs. Shaded
area shows standard error. (Right) The change of gains done by Gain Adaptation through training.
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Figure 7: Q-Learning with Gain Adaptation in Cliff Walk with γ = 0.99. (Left) Comparison of value
errors of PID Q-Learning with Q-Learning. Each curve is averaged over 80 runs. Shaded area shows
standard error. (Right) The change of gains done by Gain Adaptation through training.

F Details of Experimental Setup

We pick the hyperparameters such that a normalized error of 0.2 is achieved the fastest, and if this
error is not achieved, the final error is minimized. We fix α = 0.05, β = 0.95, and λ = 0.5 throughout
all the experiments.

For the Garnet (PE) experiments in Figure 4, we perform a grid search on η ∈
{0.1, 0.01, 0.001, 0.0001}, ϵ ∈ {0.1, 0.01}. Similarly, for the Garnet (Control) experiments, we use
ϵ = 0.1 and perform a grid search over η ∈ {10−5, 5× 10−5, 10−6}. The learning rates we perform a
grid search over in these tests is listed in Table 3. The grid search is separately performed for each
instance of the sampled Garnet. For TD Learning and Q-learning, the rates searched over are the
same as that of the P component in Table 3. On each randomly generated Garnet environment,
80 runs are performed and the average trajectory is found. The variation of this average trajectory
among all the 80 Garnet environments is shaded in Figure 4.

For the Cliff Walk policy evaluation experiments in Figure 2, we set η = 10−5 and ϵ = 0.1. For
the Chain Walk (Control) experiments in Figure 3, we set η = 4 × 10−8 and ϵ = 10−4. For the
Chain Walk (PE) experiments in Figure 6, we set η = 5 × 10−7 and ϵ = 10−1. For the Cliff Walk
(Control) experiments in Figure 7, we set η = 10−8 and ϵ = 10−1. For picking the learning rate
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for the I and D component, we also consider learning rates of the form min(0.25, Nt(Xt)/M) with
M ∈ {∞, 10, 100, 500, 1000, 10000}.

Learning Rates min(ϵ, Nt(Xt)/M) searched through
(formatted ϵ : corresponding set of M)

P Component

1: {10, 50, 100, 500, 1000, 10000}
0.75: {10, 50, 100, 500, 1000}
0.5: {10, 50, 100, 500, 1000}

0.25: {10, 50, 100}
0.1: {10, 50, 100}

0.01: {10000}
0.001: {10000}
0.0001: {10000}

I Component

1: {∞, 100}
0.5: {∞}
0.1: {∞}
0: {∞}

D Component

1: {∞, 100}
0.5: {∞}
0.25: {∞}
0.1: {∞}
0.01: {∞}

0: {∞}

Table 3: All the learning rates searched through in the Garnet experiments.
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Abstract

Goals fundamentally shape how we experience the world. For example, when we
are hungry, we tend to view objects in our environment according to whether or not
they are edible (or tasty). Alternatively, when we are cold, we view the very same
objects according to their ability to produce heat. Computational theories of learn-
ing in cognitive systems, such as reinforcement learning, use state-representations to
describe how agents determine behaviorally-relevant features of their environment.
However, these approaches typically assume ground-truth state representations that
are known to the agent, and reward functions that need to be learned. Here we
suggest an alternative approach in which state-representations are not assumed
veridical, or even pre-defined, but rather emerge from the agent’s goals through in-
teraction with its environment. We illustrate this novel perspective using a rodent
odor-guided choice task and discuss its potential role in developing a unified theory
of experience based learning in natural and artificial agents.

1 Introduction

Concepts are the building blocks of mental representations, providing scaffolding for generalizations
over individual objects or events. How do animals (including humans) form concepts and why do
they form the particular ones that they do? These questions have a long history in both Eastern and
Western philosophy (Hume, 1896; Wittgenstein, 1953; Rosch & Mervis, 1975; Siderits et al., 2011).
More recently, computational cognitive science has started addressing a related question, namely,
how do cognitive agents generate internal models of their environment, called “state-representations”,
generalizing over their experiences for efficient learning (Niv, 2019; Langdon et al., 2019; Song et al.,
2022)? Here, we suggest that state-representations can be understood as conceptual frameworks
formed by an agent in order to achieve particular goals (Dunne, 2004). Under this account, a
concept, such as “fire”, is formed because some set of interests, such as a desire for warmth, leads
agents to construe particular entities as similar to each other in virtue of their efficacy in obtaining
the goal of warming up. Utilizing this parallel between “concepts” and “states”, we propose that
state-representations should be understood in terms of the goals they subserve. To explore this
hypothesis, we develop a formal framework for describing goal-dependent state-representations and
illustrate its application by inferring animals’ goals from empirically observed behavior in a well-
studied odor-guided choice task.

2 Formal setting

2.1 Telic states as goal-equivalent experiences

We assume the setting of a perception-action cycle, i.e., streams of observation-action pairs repre-
senting the flow of information between agent and environment. We denote by O and A the set
of possible observations and actions, respectively. An experience sequence, or experience for short,
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is a finite sequence of observation-action pairs: h = o1, a1, o2, a2, ..., on, an. For every non-negative
integer, n ≥ 0, we denote by Hn ≡ (O × A)n the set of all experiences of length n. The collection of
all finite experiences is denoted by H = ∪∞

n=1Hn. In non-deterministic settings, it will be useful to
consider distributions over experiences rather than individual experiences themselves and we denote
the set of all probability distributions over finite experiences by ∆(H). Following Bowling et al.
(2022), we define a goal as a binary preference relation over experience distributions. For any pair
of experience distributions, A, B ∈ ∆(H), we write A ⪰g B to indicate that experience distribution
A is weakly preferred by the agent over B (i.e., that A is at least as desirable as B) with respect
to goal g. When A ⪰g B and B ⪰g A both hold, A and B are equally preferred with respect to
g, denoted as A ∼g B. We observe that ∼g is an equivalence relation, i.e., it satisfies the following
properties:

• Reflexivity: A ∼g A for all A ∈ ∆(H).

• Symmetry: A ∼g B implies B ∼g A for all A, B ∈ ∆(H).

• Transitivity: if A ∼g B and B ∼g C then A ∼g C for all A, B, C ∈ ∆(H).

Therefore, every goal induces a partition of ∆(H) into disjoint sets of equally desirable experience
distributions. For goal g, we define the goal-directed, or telic, state representation, Sg, as the
partition of experience distributions into equivalence classes it induces:

Sg = ∆(H)/ ∼g . (1)

In other words, each telic state represents a generalization over all equally desirable experience distri-
butions. This definition captures the intuition that agents need not distinguish between experiences
that are equivalent (in a statistical sense) with respect to their goal. Furthermore, since different
telic states are, by definition, non-equivalent with respect to ⪰g, the goal g also determines whether
a transition between any two telic states brings the agent in closer alignment to, or further away
from its goal.

2.2 Learning with telic states

How can telic state representations guide goal-directed behavior? To address this question, we start
by defining a policy, π, as a distribution over actions given the past experience sequence and current
observation:

π(ai|o1, a1, ..., oi). (2)

Analogously, we define an environment, e, as a distribution over observations given the past experi-
ence sequence:

e(oi|o1, a1, ..., ai−1). (3)

The distribution over experience sequences can be factored, using the chain rule, as follows:

Pπ(o1, a1, ..., on, an) = P (o1, a1, ..., on, an|e, π) =
n∏

i=1
e(oi|o1, a1, ..., ai−1)π(ai|o1, a1, ..., oi). (4)

Typically, the environment is assumed to be fixed, and hence not explicitly parameterized in Pπ(h)
above. Our definition of telic states as goal-induced equivalence classes can now be extended to
equivalence between policy-induced experience distributions as follows:

π1 ∼g π2 ⇐⇒ Pπ1 ∼g Pπ2 . (5)

The question we are interested in can now be stated as follows: how can an agent learn an efficient
policy for reaching a desired telic state? In other words, how can the agent’s policy be updated
to increase its likelihood of generating experiences that belong to a certain desirable telic state,
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Si ∈ Sg? To answer this question, we begin by writing down the empirical distribution of N
experience sequences generated by policy π:

P̂π(h) = |{k : hk = h}|
N

. (6)

We would like to estimate the probability that P̂π(h) belongs to telic state Si, and update π to
increase this probability. A fundamental result from large deviation theory, known as Sanov’s
theorem (Cover, 1999), shows that this probability decays exponentially with a rate of

R = min
P ∈Si

DKL(P ||Pπ). (7)

Since R determines the probability that experiences sampled from Pπ belong to telic state Si, we
refer to it as the telic distance from π to Si. Assuming now the agent’s policy can be expressed using
some parameterization θ, the following policy gradient method updates πθ in a way that minimizes
the telic distance, i.e., maximizes the likelihood of generating experiences belonging to telic state Si:

θt+1 = θt − η∇θDKL(P ⋆
i ||Pπθ

), (8)

where η > 0 is a learning rate parameter and,

P ⋆
i = arg min

P ∈Si

DKL(P ||Pπ), (9)

is called information projection of Pπ onto Si, i.e., the distribution in Si which is closest, in the
KL sense, to Pπ. Equation 8 thus describes a general policy gradient method for learning with telic
state representations.

2.3 Illustrative example: the two-armed bandit

To illustrate our proposed learning algorithm, we compute the goal-directed policy gradient for a
fully-tractable bandit learning problem and show that, in this simple case, minimizing telic distance
yields a commonly reported empirical choice strategy known as probability-matching. We consider
a two-armed bandit in which the set of actions is defined as of choosing a left (L) or right (R) lever
and the observations are winning (1) or losing (0):

A = {L, R}, O = {1, 0}. (10)

For simplicity we consider a past-independent policy, πθ, that is parameterized by the probability
of choosing action L:

πθ(L) = θ, πθ(R) = 1 − θ. (11)
The environment e is specified by the probabilities of winning when choosing L or R, denoted pL

and pR, respectively:

e(1|L) = pL, e(0|L) = 1 − pL; e(1|R) = pR, e(0|R) = 1 − pR. (12)

The likelihood that an experience sequence, h, will be generated by the policy induced distribution
Pπθ

can be expressed as:

Pπθ
(h) = θNh

L (1 − θ)Nh
Rp

Nh
L,1

L (1 − pL)Nh
L−Nh

L,1p
Nh

R,1
R (1 − pR)Nh

R−Nh
R,1 , (13)

where Nh
L, Nh

R are the number of times the agents selected the L and R actions, respectively, and
Nh

L,1, Nh
R,1 are the number of “win” observations following L and R choices, respectively. For sim-

plicity, we assume that the agents goal is to reach a specific number of wins, so that two policies are
equivalent if and only if the expected number of wins obtained by following both is equal:

πθ1 ∼g πθ2 ⇐⇒ EPπθ1 (h)

(
N∑

i

1hi=1

)
= EPπθ2

(h)

(
N∑

i

1hi=1

)
, (14)
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where N = Nh
L + Nh

R is the total number of action/observation pairs and 1hi=1 denotes an indicator
function which is one if the ith observation in h is 1 and zero otherwise. Thus, for every j = 1, ..., N ,
the telic state Sj is defined simply as the set of all experience distributions with an expected number
of wins equal to j:

Sj = {P (h) : s.t. Eh∼P

(
N∑

i

1hi=1

)
= j}. (15)

The telic distance (Eq.7) between a policy πθ and Sj is given by:

DKL(Sj ||Pπθ
) = min

P ∈Sj

DKL(P ||Pπθ
) =

∑

h

P ⋆
j (h) log

P ⋆
j (h)

Pπθ
(h) , (16)

where P ⋆
j (h) is the distribution in Sj closest to Pπ(h) in the KL sense, as defined in Eq. 9 above.

Using Eq. 13 we can compute the telic distance gradient:

∇θDKL(Si||Pπθ
) =

∑
h P ⋆

j (h)Nh
R

1 − θ
−
∑

h P ⋆
j (h)Nh

L

θ
, (17)

so that the optimal policy for reaching j wins, πθ∗
j
, is given by:

θ∗
j = Eh∼P ⋆

j
( Nh

L

Nh
L + Nh

R

). (18)

In words, the policy maximizing the likelihood of reaching telic state Sj , is one matching the expected
choice probability of P ⋆

j (h). Interestingly, a similar “probability-matching” strategy was found in
human iterated binary choice behavior (Erev & Barron, 2005).

2.4 Transition sensitive goals and the flow of experience

So far, we considered goals that are sensitive to individual action or observation counts within expe-
rience sequences. Indeed, the standard reinforcement learning framework can be viewed as special
cases of ours, under a goal of maximizing a (possibly discounted) sum of individual observations
deemed as rewarding by the agent or task-designer. Real cognitive agents however, typically pursue
more ecological goals, that reflect complex preferences over higher-order statistics of experience,
beyond the accumulation of local reward signals. For example, people engaged in activities such as
games, artistic creation, sports, meditation etc., often describe the goal of such pursuits as enter-
ing a state of “flow”(Csikszentmihalyi & Csikszentmihalyi, 1992), described in terms of matching
skill and challenge levels. While such activities may not typically be thought of as goal directed,
and thus do not readily lend themselves to standard reward-driven learning modelling frameworks,
they can be expressed in the current framework in terms of higher order experience correlations
structures. For example, consider an agent that prefers certain observations (or actions), but only
when they follow certain actions (or observations). This “second-order” preference structure can
be described by a class of goals in which experiences are ordered according to the weighted sum of
possible observation-action and action-observation transition counts:

gα,β(h) =
|O|∑

i=1

|A|∑

j=1
(Nh

ijαij + Mh
jiβji), (19)

where Nh
ij denotes the number of transitions between observation ot = i and action at+1 = j,

and Mh
ji the number of transitions between action at−1 = j and observation ot = i, in a given

experience sequence h = o1, a1, ..., on, an. Under this goal, experience sequences sharing the same
empirical transition frequencies will be deemed equivalent by the agent, with the αij and βji param-
eters determining the relative weight of different action-observation or observation-action transition,
respectively. As a concrete example, consider a setting where observations depend only on the im-
mediately preceding action and actions depend only on the immediately preceding observation. The
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environment can thus be expressed as e(oi|o1, a1, ..., oi−1, ai−1) = e(oi|ai−1), and the policy of the
agent as π(ai|o1, a1, ..., oi) = π(ai|oi). The experience distribution induced by the environment e
and the policy π can be factorized in this case as:

Pπ(h) = e(o1)π(a1|o1)
n∏

i=2
e(oi|ai−1)π(ai|oi). (20)

This distribution can be parameterized using the switching probabilities eji ≡ e(ot = i|at−1 = j),
with an initial observation distribution, ei = e(o1 = i), and πij ≡ π(at = j|ot = i) for i = 1, ..., |O|
and j = 1, ..., |A|. Using this notation, we can express the log-probability of experience h given
policy π (and environment e) as:

log Pπ(h) = log (e(o1)
|O|∏

i=1

|A|∏

j=1
π

Nh
ij

ij e
Mh

ji

ji ) = log e(o1) +
|O|∑

i=1

|A|∑

j=1
(Nh

ij log(πij) + Mh
ji log(eji)). (21)

Assuming sufficiently long sequences, Nh
ij ≈ n

2 πij and Mh
ji ≈ n

2 eji, the goal gα,β(h) can be approxi-
mated by:

gα,β(h) ≈ n

2

|O|∑

i=1

|A|∑

j=1
(πijαij + ejiβji) = −n

2 (H(π, πα) + H(e, eβ)) (22)

where H(p, q) = −Ep[log q] denotes the cross entropy of distribution q relative to p, and the distri-
butions πα and eβ are defined as:

πα(at = j|ot−1 = i) = exp(αij), (23)

and
eβ(ot = i|at−1 = j) = exp(βji), (24)

with the following normalization constraints on αij and βji:

|A|∑

j=1
exp(αkj) =

|O|∑

i=1
exp(βli) = 1, for k = 1, ..., |O| and l = 1, ..., |A|. (25)

Thus, for a fixed environment, a goal of maximizing a weighted sum of specific action-observation
and observation-action transitions, gα,β(h), corresponds to minimizing the cross entropy between
the true policy π, and a reference one πα, induced only by the observation-action transition weight
parameters, αij . Such a transition-sensitive goal therefore drives agents to optimize an intrinsically
emergent policy complexity cost (Amir et al., 2020; Lai & Gershman, 2024; Arumugam et al., 2024).
Extending this analysis to preferences over longer flows of experience, i.e., action-observation sub-
sequences, can provide a formal approach to learning in cognitive systems, driven by ecological goals
that are sensitive to intricate statistical features of experience, beyond accumulation of local events
designated as “rewarding” by an external task or agent designer.

2.5 Closing the loop: telic state conditioned policies

Above we have assumed that the policy depends on the full past experience but this assumption can
be relaxed. Within the current framework, we assume that the agent maintains an estimate of the
most likely telic state it is currently in and updates it at each time point. Concretely, given a goal g
and a past experience sequence at time t, ht = o1, a1, ..., ot, the agent can estimate its current telic
state, i.e., the equivalence class of the experience distribution most likely to have generated ht:

Ŝt(ht) = [arg max
P ∈∆(Ht)

P (ht)]∼g
. (26)

The policy can now be expressed in terms of the estimated telic state:

π(at|Ŝt(h)), (27)
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so that in choosing actions the agent generalizes over past experiences that are estimated to originate
from the same telic state. Since the borders between telic states are determined by the goal, the
same experience may be assigned to different telic states under different goals. This clustering of
past experience into estimated telic states is lossy: it ignores goal-irrelevant information, and is
not necessarily Markovian. Thus, while it may not be optimal in the Bayesian sense, it provides a
self contained account of how goals, i.e., preferences over experience distributions, generate intrinsic
(telic) state representation, which in turn provide a foundation for action selection and learning.

3 Results: goal inference in an odor-guided choice task

To illustrate the application of our proposed framework to behavioral data analysis, we infer the
preference profile, i.e., goal, of individual animals from their empirical choice behavior and use it to
explain reaction time in a well-studied perceptual decision making task (Roesch et al., 2006). Briefly,
rats were trained to sample an odor at a central odor port, before responding by nose-poking in one
of two fluid wells. The odor stimulus provided a cue for which of two wells would be associated with
delivery of a certain amount of sucrose liquid. Two of the odors signalled “forced choice” trials, one
indicating that the liquid will be available in the left well, and one indicating the right well. A third
odor—“free choice”—indicated liquid availability in either well. After liquid delivery, or choice of a
non-indicated well, the rat waited for a cue indicating the start of the next trial. Importantly, if a
“valid” well was chosen on any trial (i.e., the indicated well on forced-choice trials, or either well on
free-choice trials), the delay to and amount of liquid was determined by the side of the well, not the
odor. Unsignaled to the animal, in each block of the task, one well delivered either at a shorter delay
or a larger amount than the other well; amount and delay contingencies changed between blocks
during a session. We denote the set of possible observations and actions in the task as follows:

O = {Left Odor, Right Odor, Free Odor,
Long Delay, Short Delay, Small Amount, Big Amount},

A = {Right Poke, Left Poke, Wait for Cue}.

We define an experience for this task as a sequence of trials, each consisting of an observation-action
pair, for example:

h = LO, LP, LD, WC, FO, RP, SD, WC, ... (28)

where elements of O and A are denoted by their initials.

While goals are generally defined as preferences over experience distributions, here we shall consider
a simplified special case in which the goal is defined in terms of order over individual experiences.
This is indeed a special case, since any individual experience can be thought of as a delta function
distribution concentrated around itself. Specifically, we define a parameterized family of goals that
assign a score to an experience h based on the weighted sum, normalized by length, of the difference
between the number of big vs. small amount observations, short vs. long delay observations, and
right vs. left nose poke actions appearing in it:

gβ(h) = 1
Nh

(
β1(Nh

BA − Nh
SA) + β2(Nh

SD − Nh
LD) + β3(Nh

RP − Nh
LP )

)
, (29)

where Nh
BA, Nh

SA, Nh
SD and Nh

LD denote the number of of Big Amount, Small Amount, Short Delay
and Long Delay observations, respectively, and Nh

RP and Nh
LP denote the number of Right Poke

and Left Poke actions, respectively, in experience h. The normalization by the total experience
length, Nh, renders the goal score scale-invariant, allowing experiences of different lengths to be
compared in terms of their alignment with goal gβ (see Eq. 31 below). The parameters: β1, β2,
and β3, determine the relative weight of the corresponding difference between action or observation
counts in determining each animal’s goal. Thus, we assume that the preference profile, i.e., goal, of
each rat is characterized by its unique 3D parameter vector β = (β1, β2, β3). While our formalism
is general with respect to the form of the goal, this particular goal parameterisation allows us to
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monitor preference for earlier rewards, larger rewards, and side biases – known characteristics of
animal behavior in this task.

To illustrate our framework in the context of this task (Fig. 2), we define a telic state-trajectory as
a sequence of estimated telic states, {Ŝβ

t (h)}n
t=1, where Ŝβ

t (h) consists of all experiences of length t
that are gβ-equivalent to the first t trials of the experience h:

Ŝβ
t (h) = {h′ ∈ Ht : gβ(h′) = gβ(h1:t)}, (30)

where h1:t = o1, a1, ..., ot, at denotes sub-sequence consisting of the first t observations and actions
in h. We quantify the alignment of an empirical experience h with a goal gβ using the following
Goal Alignment Coefficient (GAC), defined simply as the gβ score of h:

GAC(h; gβ) = gβ(h). (31)

For a given experience, h, the GAC measures the average increase in the goal value (Eq. 29) per
trial in h. We used the GAC, to estimate the parameters β∗ that maximize the alignment between a
given empirical set of M experience sequences {hj}M

j=1 and the goal gβ∗ , subject to a regularization
constraint on β:

β∗ = arg max
β

M∑

j=1
GAC(hj ; gβ) s.t ∥β∥2 = 1, (32)

where we impose the regularization constraint ∥β∥2 =
∑3

i=1 β2
i = 1 on the weight parameters to fix

the scale of gβ . In other words, given the empirical experience sequences of an individual animal,
and a class of β-parameterized goals, we estimated the parameter values, β∗ such that the animal’s
behavior is maximally aligned with the goal gβ∗ . The β∗ values for all animals are plotted in Fig. 1
(orange histograms). As a baseline for comparison, we also plotted β∗ values for simulated animals
using the same odor observations and liquid-outcome contingencies as the empirical data but with
randomly selected left or right action choices (blue histograms). This analysis revealed that goals
fit to the empirical behavior had significantly larger weights on the difference between the number
of short vs. long delays and big vs. small liquid amounts compared to goals fitted to simulated
random behavior. Fig. 2 shows the telic state trajectories for empirical and simulated experience
sequences, and illustrates how this novel analysis may be used to explain features of behavioral
learning. We plotted the optimized goal scores, gβ∗(h), for the first 1000 trials of individual animals
using empirical and random choice simulated data (Fig. 2A, orange and blue lines respectively).
Optimized goal alignment coefficients were significantly higher for empirical compared to simulated
animals (Fig. 2B, orange and blue bars, respectively), demonstrating the sensitivity of the GAC as as
general-purpose measure of goal-directed behavior. Finally, (Fig. 2C) shows choice reaction time as
a function of telic state and trial number for an individual animal, whose state trajectory is marked
by the gradient-colored line in panel (A), with darker colors corresponding to earlier trials. Reaction
times were significantly correlated with telic state (top) despite not being consistently related to trial
number (bottom). Overall, this analysis illustrates the potential use of telic state-based analysis to
uncover new features of behavioral learning.

4 Discussion

The need for a formal theory of learning in cognitive systems that centers on agent’s goals has
recently been called into attention (Molinaro & Collins, 2023). The current work provides a step
in this direction, leveraging a novel definition of telic states as equivalence classes of experiences
distributions with respect to goals. While the notion of states as equivalence classes is not new
(Minsky, 1967), we suggest that goals, defined as preference relations over experience distributions
(Bowling et al., 2022), provide a natural foundation for state representation learning in cognitive
systems. Our approach is related to recent results in preference-based reinforcement learning (Wirth
et al., 2017; Carr et al., 2024) and goal directed state-abstraction (Li et al., 2006; Abel et al., 2019).
However, unlike previous accounts that assume a pre-defined “ground” state representation or reward
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Figure 1: Optimized weight parameters for liquid amount (left), delay duration (cen-
ter) and side choice (right) preferences. Optimized β values maximizing the goal-alignment
coefficient of empirical experience sequences (orange) are significantly larger than those of simulated
random actions yoked to the observation experience sequences of each animal (blue) for big vs. small
amount and short vs. long delay but not for right vs. left nose pokes. Solid lines show Gaussian
kernel density distribution estimates. Asterisks indicate significance levels (paired t-test, ∗p < 0.01;
∗∗p < 0.001).

Figure 2: Telic state trajectories and choice reaction times. (A) Telic state trajectories for
the first 1000 trials, defined as the optimized goal function score gβ∗(h) (ordinate) along consecutive
experience sub-sequences (abscissa). Each trajectory represents a sequence of trials experienced
by an individual rodent, with orange ones corresponding to empirical behavior and blue ones to
simulated behavior using the same observation sequences experiences by the real animals but with
randomly chosen actions. (B) The corresponding Goal Alignment Coefficient (GAC) histograms
show that real animals (orange bars) achieve significantly higher telic states than simulated ones
(blue bars) (paired t-test, p < 10−4) (B). (C) Reaction times as a function of telic state (top) and
trial number (bottom) for an individual rat, indicated by the gradient colored line in panel (A).
Each dot represents a single choice trial, with lighter colors indicating later serial trial positions. For
this animal, higher telic states were correlated with longer reaction times overall (top), despite the
lack of significant correlation between trial number and reaction time (bottom).

function (or both), we posit that state representations are inherently goal directed, obviating the
need to assume given states and reward functions. While reward functions can be extended to
experience-based learning settings (Lu et al., 2023), we suggest that replacing rewards by goals
has several advantages. Beyond its conceptual parsimony, a goal-based framework may be used to
bridge natural and artificial perspectives on state representation learning by using telic states to
describe both the evaluative and the descriptive aspects of learning models. Thus, whereas previous
goal-conditioned reinforcement learning frameworks typically treat goals as a special subset of states
(Kaelbling, 1993) or as a parameterization of the reward function within a given state space (Schaul
et al., 2015), our framework views goals and states as distinct yet coupled constructs. This coupling
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between goals and telic state representations suggests a “double dissosoacition” between experiences
and telic states: on the one hand, the same telic state can be obtained via two different, yet equally
desirable, experiences; while on the other hand, the same experience can result in different telic
states under different goals, as goals determine which aspects of experience are important in a
given context. Thus, unlike standard Bayesian or decision theoretic models that attempt to explain
behavioral response variability for identical stimuli as noise or suboptimality, our framework can
account for such variability as epistemic optimally under switching goals, e.g., engagement and
relaxation (Ashwood et al., 2022). From a neurocognitive perspective, our framework predicts that
state representations in the brain, such as those believed to be encoded by neuronal activity patterns
in the hippocampus (Crivelli-Decker et al., 2023) and prefrontal areas such as the orbitofrontal
cortex (Schuck et al., 2018), should be sensitive to agents’ goals and reflect their “position” within
a corresponding telic state space (De Martino & Cortese, 2023).

In a sense, our approach shifts the burden from explaining the origin of state representations to
explaining the origin sensory-motor ones, as it assumes given sets of possible actions and observations.
However, sensory-motor affordances can also be explained in terms of underlying goals, as evinced
by recent studies on motivated perception (Balcetis & Dunning, 2006; Leong et al., 2019) and
task-conditioned action representation (Fogassi et al., 2005; Aberbach-Goodman et al., 2022; Ahn
et al., 2022). Furthermore, as the biological nervous systems has arguably been evolutionary shaped
to detect and respond to goal relevant information (Lettvin et al., 1959), a hierarchy of goals,
operating at different timescales, may generate a hierarchy of state representations at multiple levels
of temporal abstraction (Sutton et al., 1999; Shah et al., 2021).

Finally, our framework can provide a formal setting for addressing the fundamental problem of
goal selection, namely, where do goals come from and how do agents choose between different goals
the first place? By coupling goals and state representations, the current framework suggests that
goals may be formed based on properties of the state representations they induce. For example,
all else being equal, agents may prefer state representations that are more “controllable”, i.e., ones
that make it easier to explore all regions within their space of telic states, and adjust their goals
accordingly (Amir et al., 2024; Klyubin et al., 2005). Ultimately, our framework provides a step
towards a formal account of how goals can structure experience in cognitive systems.
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Abstract

Existing posterior sampling algorithms for continuing reinforcement learning (RL)
rely on maintaining state-action visitation counts, making them unsuitable for com-
plex environments with high-dimensional state spaces. We develop the first exten-
sion of posterior sampling for RL (PSRL) that is suited for a continuing agent-
environment interface and integrates naturally into scalable agent designs. Our
approach, Continuing PSRL, determines when to resample a new model of the en-
vironment from the posterior distribution based on a simple randomization scheme.
We establish an Õ(τS

√
AT ) bound on the Bayesian regret in the tabular setting,

where S is the number of environment states, A is the number of actions, and
τ denotes the reward averaging time, which is a bound on the duration required
to accurately estimate the average reward of any policy. Our work is the first
to formalize and rigorously analyze this random resampling approach. Our simula-
tions demonstrate Continuing PSRL’s effectiveness in high-dimensional state spaces
where traditional algorithms fail.

1 Introduction

A reinforcement learning (RL) agent is faced with the task of interacting with an unknown envi-
ronment while trying to maximize the total reward accrued over time. A core challenge in RL is
how to balance the fundamental tradeoff: when taking exploratory actions, the agent accrues more
knowledge about the unknown environment, but exploiting the knowledge obtained so far may result
in higher immediate return.

A growing literature builds on Thompson sampling (Thompson, 1933; Russo et al., 2018) to develop
randomized approaches to exploration (Osband et al., 2013; 2016b;a). While these approaches have
proved to be effective, they have largely been limited to episodic environments. In particular, the
modus oparandi involves randomly sampling a new policy, which aims to maximize expected return
in a statistically plausible model of the environment, immediately before the start of each episode,
and following that policy throughout the episode. For example, bootstrapped DQN (Osband et al.,
2016a) maintains an ensemble that approximates the posterior distribution of the optimal action
value function Q∗ and, before each ℓth episode, samples a random element Q̂ℓ. Then, a greedy
policy with respect to Q̂ℓ is executed.

While learning in continuing environments is a fundamental problem in RL (Naik et al., 2019), work
on randomized approaches to exploration have largely focused on episodic environments, with few
exceptions specific to a tabula rasa context (Ouyang et al., 2017; Theocharous et al., 2018). We
develop for the first time a version of posterior sampling for reinforcement learning (PSRL) that
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is easily extended to work with function approximation in complex environments. Our proposed
method, Continuing PSRL, resamples a new policy at each time with a probability p. Here, p
is specified as a part of the agent design and represents how the agent chooses to partition its
experience into intervals that it interprets as trials. With this resampling rule, it is natural to
execute a policy that maximizes discounted return with a discount factor γ = 1 − p. Indeed, a
simple lemma shows that, with this choice of γ, the undiscounted return attained between consecutive
resampling times constitutes an unbiased estimate of the γ-discounted return of the policy used. This
simple resampling scheme easily integrates into randomized exploration algorithms with function
approximation. For example, bootstrapped DQN (Osband et al., 2016a) can be modified to address
continuing environments by resampling the action value function from the prevailing approximate
posterior distribution at each time with probability p. As with the original version of bootstrapped
DQN, each executed action is greedy with respect to the most recently sampled action value function.

Many theoretical works consider γ as part of the environment, e.g. they directly analyze γ-discounted
regret (Lattimore & Hutter, 2012; Wang et al., 2020). In contrast, we assess agent performance in
terms of undiscounted regret. Thus, while the discount factor γ plays a role in agent design, it does
not reflect what we view as the designer’s objective. This viewpoint aligns with empirical work that
regards the discount factor as a tunable hyperparameter (Mnih et al., 2015; François-Lavet et al.,
2015). Our analysis shows that, while resampling with a probability p = 1− γ and planning with a
γ-discounted objective does not lead to vanishing per-timestep regret, that can be accomplished by
increasing γ over time.

Prior works considered versions of PSRL that treat continuing environments (Ouyang et al., 2017;
Theocharous et al., 2018) by directly planning under the undiscounted regret. The algorithm pro-
posed in Ouyang et al. (2017) resamples an environment from the environment posterior each time
either of the two following criteria holds: 1) the time elapsed since the last resampling exceeds the
interval between the two most recent resamplings, and 2) the number of visits to any state-action
pair is doubled since the previous resampling. The latter criterion plays an essential role but is not
viable when operating in a complex environment, for example, addressing an intractably large state
space and approximating a distribution of action value functions using a neural network (Osband
et al., 2016a; Dwaracherla et al., 2020). In particular, it is not clear how to efficiently track visita-
tion counts, and even if that were possible, the counts could be irrelevant since it may even be rare
to visit any individual state more than once. In order to address large state spaces, Theocharous
et al. (2018) considers simply doubling the duration between each successive pair of resampling
times. Although the resulting algorithm circumvents maintaining visitation counts, their analysis
relies heavily on technical assumptions, without which the regret bound grows linearly with time.
Another work (Tang et al., 2024) that came after the first version of our paper considered using
a fixed resampling schedule that yields a prior-dependent regret bound, but their result exhibits a
loose dependence on problem parameters.

In this paper, we formalize our aforementioned resampling approach to randomized exploration –
both with fixed and decreasing reset probabilities – and provide a first rigorous analysis, which
establishes regret bounds similar to Ouyang et al. (2017) but with a resampling criterion much
simpler and more scalable than what is proposed in that paper. Interestingly, our analysis is also
simpler than that of Ouyang et al. (2017) because our resampling criterion is policy-independent.
Specifically, we show that for a choice of discount factor that suitably depends on the horizon T ,
our algorithm, continuing posterior sampling, satisfies an Õ(τS

√
AT ) regret bound, where S is the

number of environment states, A is the number of actions, and τ denotes the reward averaging time
(Dong et al., 2022), which is a bound on the duration required to accurately estimate the average
reward of any policy. This regret bound matches that established by Ouyang et al. (2017), though
their use of “span” replaced by the reward averaging time τ .
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2 Problem Formulation

We consider the problem of learning to optimize performance through a single stream of interactions
with an unknown environment E = (A,S, ρ), modeled as a Markov decision process (MDP). Here
A is a finite action space with cardinality A, S is a finite state space with cardinality S, and ρ is
a function that specifies a state transition probability ρ(s′ | s, a) given a current state s ∈ S and
action a ∈ A. Interactions up to time t make up a history Ht = (S0, A0, S1, A1, S2, . . . , At−1, St),
and the agent selects action At after observing St. The environment and all associated random
quantities we consider are defined within a common probability space (Ω,F ,P). In particular, the
environment E itself is random, and we use a distribution P(E ∈ ·) to capture the agent designer’s
prior belief over all possible environments. As the history evolves, what can be learned is represented
by the posterior distribution P(E ∈ ·|Ht). We additionally assume that A and S are deterministic
and known, but the observation probability function ρ is a random variable that the agent needs to
learn. For simplicity, we assume S0 is deterministic, but the same analysis can be easily extended
to consider a distribution over initial states.

An agent’s preferences can be represented by a reward function r : S × A 7→ [0, 1]. After selecting
action At in state St, the agent observes St+1 and receives a deterministic reward Rt+1 = r(St, At)
bounded in [0, 1]. We take r to be deterministic and known for simplicity, but our result easily
generalizes to randomized reward functions. The agent specifies its actions via policies. A stochastic
policy π can be represented by a probability mass function π(· | St) that an agent assigns to actions
in A given situational state St.

Regret. Before we formally define the learning objectives of the agent, we extend the agent state to
account for randomized policies. We consider the notion of an algorithmic state Zt introduced in Lu
et al. (2021), which captures the algorithmic randomness at time t. An algorithm is a deterministic
sequence {µt | t = 1, 2, . . . } of functions, each mapping the pair (Ht, Zt) to a policy. At each time
step t, the algorithm samples a random algorithmic state Zt and computes a policy πt = µt(Ht, Zt).
We also write πt ∼ µt(Ht) when the randomness introduced by Zt is clear in the context. The
algorithm then samples actions At ∼ πt(· | St) at times t. For a policy π, we denote the average
reward starting at state s as

λπ,E(s) = lim inf
T →∞

Eπ

[
1
T

T −1∑

t=0
Rt+1

∣∣∣∣∣E , S0 = s

]
, (1)

where the subscript of the expectation indicates that the reward sequence is realized by following
policy π, and the subscript E emphasizes the dependence of the average reward on the environment
E . We also denote the optimal average reward as

λ∗,E(s) = sup
π

λπ,E(s) ∀s ∈ S.

We consider weakly-communicating Markovian environments, the most general subclass of MDPs
for which finite time regret bounds are plausible. This assumption also appears in Ouyang et al.
(2017); Agrawal & Goyal (2013). We give a formal definition for MDPs with finite state spaces
below.
Definition 2.1. (weakly-communicating MDP) An MDP is weakly communicating if there
exists a set of states, where each state in that set is accessible from every other state in that set under
some deterministic stationary policy, along with a possibly empty set of states which is transient
under every policy.

We remark that the optimal average reward λ∗,E(·) is state-independent under weakly-
communicating MDPs. Thus, we override the notation λ∗,E to denote the optimal average reward
λ∗,E(s) for all states s ∈ S. For a policy π, we define its regret up to time T to be

Regret(T, π) :=
T −1∑

t=0
(λ∗,E −Rt+1) . (2)

2109



RLJ | RLC 2024

The regret itself is a random variable depending on the random environment E , the algorithm’s
internal random sampling, and random transitions. We will measure agent performance in terms of
regret and its expected value.

3 Continuing PSRL Algorithm

For episodic MDPs, the planning horizon is fixed ahead and known to the agent. The planning
objective is often naturally the cumulative reward over the finite number of timesteps until the
end of each episode. When the horizon is infinite, planning ahead becomes a challenge for the
agent. One way to address this challenge is to set an effective finite planning horizon for the agent
by maintaining a discount factor γ ∈ [0, 1). Essentially, γ dictates the frequency with which the
algorithm resamples an independent environment model used for planning. Given this discount
factor, we divide the original infinite-horizon learning problem into pseudo-episodes with random
lengths. Each pseudo-episode terminates when the algorithm resamples and computes a new policy.
Concretely, at the beginning of timestep t = 0, 1, . . . , the agent samples a binary indicator Xt. If
Xt = 0, the agent samples a new environment E based on the history Ht available at that time,
and marks t as the start of a new pseudo-episode. It then computes a new policy π to follow in this
pseudo-episode, and acts according to π. If Xt = 1, it continues the current pseudo-episode and
follows the most recently computed policy π. When Xt ∼ Bernoulli(γ), one may interpret γ as the
survival probability of a pseudo-episode at timestep t. We let Ek denote the set of timesteps in the
k-th pseudo-episode, tk denote the starting timestep of the k-th pseudo-episode, and sk,1 denote the
starting state of the k-th pseudo-episode.

Discounted value. At each timestep, the agent optimizes a discounted objective with the afore-
mentioned discount factor γ. For each environment E and policy π, the γ-discounted value function
V γ

π,E ∈ RS of π in E is defined as

V γ
π,E := E

[
H−1∑

h=0
P h

π rπ | E
]

= E

[ ∞∑

h=0
γhP h

π rπ | E
]

, (3)

where Pπss′ =
∑

a∈A π(a | s)ρ(s′ | s, a) and rπs =
∑

a∈A π(a | s)ras for all s, s′ ∈ S and a ∈ A, and
the expectation is over the random episode length H. Since a pseudo-episode terminates at time t
when the independently sampled Xt ∼ Bernoulli(γ) takes value 0, its length H follows a binomial
distribution with parameter γ. The second equality above is a direct consequence of this observation.
A policy π is said to be optimal for the environment E if V γ

π,E = supπ′ V γ
π′,E . For an optimal policy

π, we also write its value V γ
∗,E(s) ≡ V γ

π,E(s) as the optimal value. Furthermore, we denote an optimal
policy with respect to V γ

∗,E for each E as πE
γ , which will be useful in the analysis. When γ is clear

from the context, we omit the γ subscript to avoid cluttering. Note that V γ
π,E satisfies the Bellman

equation

V γ
π,E = rπ + γPπV γ

π,E . (4)

Reward averaging time. We consider the notion of reward averaging times τπ,E of policies
introduced in Dong et al. (2022) and derive regret bounds that depend on τπ,E .
Definition 3.1. (reward averaging time) The reward averaging time τπ,E of a policy π is the
smallest value τ ∈ [0,∞) such that

∣∣∣∣∣Eπ

[
T −1∑

t=0
Rt+1 | E , S0 = s

]
− T · λπ,E(s)

∣∣∣∣∣ ≤ τ,

for all T ≥ 0 and s ∈ S.

When π∗ is an optimal policy for E , τ∗,E := τπ∗,E is equivalent to the notion of span in Bartlett &
Tewari (2009). We define Ω∗ to be the set of all weakly communicating MDPs E and further make
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the following assumption on the prior distribution P(E ∈ ·). This assumption says that we focus on
weakly communicating MDPs with bounded reward averaging time.
Assumption 3.2. There exists τ < ∞ such that the prior distribution over possible environments
P(E ∈ ·) satisfies

P
(
E ∈ Ω∗, τ∗,E ≤ τ

)
= 1.

Below, we restate an important lemma, Lemma 2 in Dong et al. (2022), that relates λπ,E , τπ,E , and
V γ

π,E .
Lemma 3.3. For all π, s ∈ S and γ ∈ [0, 1),

∣∣∣∣V
γ

π,E(s)− λπ,E(s)
1− γ

∣∣∣∣ ≤ τπ,E .

We note again that for weakly communicating E ∈ Ω∗, the optimal average reward is state indepen-
dent, i.e., λ∗,E = λπ∗,E(s) for all s ∈ S. Thus, under Assumption 3.2, we have

∣∣∣V γ
∗,E(s)− V γ

∗,E(s′)
∣∣∣ ≤ 2τ∗,E ≤ 2τ (5)

almost surely for all s, s′ ∈ S.

Discounted regret. Although the regret we eventually hope to analyze is defined by equation 2,
we also consider a discounted version of the regret to aid our analysis. To analyze the performance
of our algorithm over T timesteps, we set K = arg max{k : tk ≤ T} to be the number of pseudo-
episodes until time T . In our subsequent analysis, we adopt the convention that tK+1 = T + 1. To
get a bound for general T , we can always fill in the rest of the timesteps to make a full pseudo-
episode and the asymptotic rate stays the same. Moreover, it is easy to see that for all γ ∈ [0, 1),
E[K] ≤ (1− γ)T + 1. Given a discount factor γ ∈ [0, 1), the γ-discounted regret up to time T is

Regretγ(K, π) :=
K∑

k=1
∆k, (6)

where ∆k = V γ
∗,E(sk,1)− V γ

πk,E(sk,1) is the regret over pseudo-episode k, with V γ
∗,E = V γ

π∗,E = V γ
πE ,E ,

πk ∼ µk(Htk
), At ∼ πk(· | St), St+1 ∼ ρ(·|St, At), and Rt = r(St, At, St+1) for t ∈ Ek.

Empirical estimates. Finally, we define the empirical transition probabilities used by the al-
gorithm. Let Nt(s, a) =

∑t
τ=1 1{(Sτ , Aτ ) = (s, a)} be the number of times action a has been

sampled in state s up to timestep t. For every pair (s, a) with Ntk
(s, a) > 0, the empirical transition

probabilities up to pseudo-episode k are

ρ̂k(s′ | s, a) =
k−1∑

ℓ=1

∑

t∈Ek

1{(St, At, St+1) = (s, a, s′)}
Ntk

(s, a) (7)

for all s′ ∈ S. If the pair (s, a) has never been sampled before pseudo-episode k, we let ρ̂k(s′ | s, a) = 1
for a random s′ ∈ S, and ρ̂k(s′′ | s, a) = 0 for s′′ ∈ S \ {s′}. The corresponding matrix notation P̂ k

are defined analogously.

3.1 The Algorithm

We present the Continuing Posterior Sampling for Reinforcement Learning algorithm in Algorithm 1,
which extends PSRL Osband et al. (2013) to the infinite horizon setting with γ-discounted planning.
The algorithm begins with a prior distribution over environments with actions A and state space S.
In addition, the algorithm takes an indicator X1 = 0 and assumes a discount factor γ. At the start
of each timestep t, if the indicator Xt = 0, Continuing PSRL samples an environment Et = (A,S, ρt)
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from the posterior distribution conditioned on the history Ht available at that time, and mark t
as the start of a new pseudo-episode. It then computes and follows the policy πt = πEt at time
t. Otherwise, if Xt = 1, it sticks to the policy πt = πt−1 at time t and adds step t to the current
pseudo-episode. Then Xt+1 is drawn from a Bernoulli distribution with parameter γ to be used in
the next timestep.

Algorithm 1 Continuing PSRL (Continuing Posterior Sampling for Reinforcement Learn-
ing)
input Prior distribution f , discount factor γ, total learning time T

1: initialize t = 1, k = 1, X1 = 0
2: for t ≤ T do
3: if Xt = 0 then
4: tk ← t
5: sample Ek ∼ f(· | Htk

)
6: compute πk = πEk

k ← k + 1
7: end if
8: sample and apply At ∼ πk(· | St)
9: observe Rt+1 and St+1

10: t← t + 1
11: sample Xt+1 ∼ Bernoulli (γ)
12: end for

Compared with the vanilla PSRL, Continuing PSRL simply adds an independent Bernoulli random
number generator to determine when to resample. Although Continuing PSRL is not designed to
be implemented in practice per se, we note that such resampling scheme brings both scalability
and generalizability. For example, when the environment has an extremely large state or action
space, e.g. Atari games Mnih et al. (2015), prior resampling methods relying on state-action visita-
tion statistics Ouyang et al. (2017) require a huge look-up table, while the resampling method in
Continuing PSRL can still be easily applied, with little computational overhead.

4 Main Results

We present our main results in this section. Theorem 4.1 establishes that PSRL with discounted
planning satisfies a polynomial Bayesian regret bound for infinite-horizon tabular MDP environ-
ments. The bounds for the expected regret of Continuing PSRL are of order Õ(τS

√
AT ), where

Õ omits logarithmic factors, matching the regret bound for TSDE in Ouyang et al. (2017), but
achieved by a simple and elegant algorithm without additional episode termination criteria.

Theorem 4.1. With γ = 1−
√

SA/T , the regret of Algorithm 1 satisfies

E [Regret(T, π)] = Õ
(

τS
√

AT
)

.

Note that our main theorem bounds the regret with respect to the optimal average reward, and
thus has no dependence on the discount factor γ, which, as we emphasized, is only a design factor
within the algorithm. For the purpose of the analysis, we utilize the γ-discounted regret defined in
equation 6 and prove the following intermediate bound for the discounted regret.

Theorem 4.2. Given T and K = arg max{k : tk ≤ T},

E
[
Regretγ(K, π)

]
≤ (4τ + 2)S

√
28AT log(2SAT ) + SA

1− γ
log

(
1

1− γ
log

(
2T

1− γ

))
+ 1

2 + 2
1− γ

.
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5 Analysis

As discussed in Osband et al. (2013), a key property of posterior sampling algorithms is that for
any function g measurable with respect to the sigma algebra generated by the history, E[g(E)|Ht] =
E[g(Et)|Ht] if Et is sampled from the posterior distribution at time t. Under our pseudo-episode
construction, we state a stopping-time version of this property similar to the one in Ouyang et al.
(2017).
Lemma 5.1. If f is the distribution of E, then for any σ(Htk

)-measurable function g, we have

E[g(E)|Htk
] = E[g(Ek)|Htk

], (8)

where the expectation is taken over f .

We include a proof in Appendix D.1 for completeness. We let V γ
πk,k = V γ

πk,Ek denote the value
function of πk, the policy employed by Continuing PSRL, under the sampled environment Ek, and
define

∆̃k = V γ
πk,k(sk,1)− V γ

πk,E(sk,1)

as the difference in performance of πk under Ek and the true environment E . The next lemma allows
us to evaluate regret in terms of ∆̃k, which we can analyze using the known sampled environment
and our observation from the true environment, whereas it is typically hard to directly analyze ∆k

since we do not know what the optimal policy π∗ = πE is.
Lemma 5.2.

E

[
K∑

k=1
∆k

]
= E

[
K∑

k=1
∆̃k

]
. (9)

Proof. The claim follows by applying Lemma 5.1 and a similar argument as that in Theorem 2 in
Osband et al. (2013).

We prove a value decomposition lemma that allows us to express the difference in values of πk in
the true environment E and sampled environment Ek in terms of a sum of Bellman errors over one
stochastic pseudo-episode.
Lemma 5.3 (Value decomposition). For any environment Ê and any policy π,

E
[
V γ

π,E(s0)− V γ

π,Ê(s0) | E , Ê
]

= E

[
η−1∑

t=0
γ

〈
Pπ(st)st

− P̂π(st)st
, V γ

π,Ê

〉
| E , Ê , π

]
,

where η is the random length of a pseudo-episode, and the expectation is over the distribution of η,
conditioned on the sampled state trajectory s0, s1, . . . drawn from following π in the environment E.

We defer the proof to Appendix D.3. At the start of each pseudo-episode k, we consider a confidence
set

Mk =
{

(A,O, ρ) :
∥∥∥Pas − P̂as

∥∥∥
1
≤

√
14S log(2SAKtk)
max{Ntk

(s, a), 1} ∀(s, a)
}

.

The following lemma bounds the probability that the true environment falls outside of the confidence
set Mk for all k ∈ [K].
Lemma 5.4. For k ∈ [K],

P (E /∈Mk) ≤ 1
K

.

The proof follows standard concentration arguments, which we defer to Appendix D.3. We let

m = 1
1− γ

log
(

2K

1− γ

)
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be a high probability upper bound for the length of each episode Ek, k = 1, . . . , K. Since ∆̃k ≤ 1
1−γ ,

we can decompose the regret as

K∑

k=1
∆̃k ≤

K∑

k=1
∆̃k1{E,Ek∈Mk} · 1{|Ek|≤m} + 1

1− γ

K∑

k=1

[
1{|Ek|>m} + 1{E /∈Mk} + 1{Ek /∈Mk}

]
.

SinceMk is σ(Htk
)-measurable, by Lemma 5.1, E[1{E /∈Mk} | Htk

] = E[1{Ek /∈Mk} | Htk
]. Therefore,

E

[
K∑

k=1
∆̃k

]
≤ E

[
K∑

k=1
∆̃k1{E,Ek∈Mk} · 1{|Ek|≤m}

]
+ 1

1− γ
E

[
K∑

k=1
1{|Ek|>m}

]
+ 2

1− γ
· E

[
K∑

k=1
1{E /∈Mk}

]
.

(10)

The third term can be bounded by 2
1−γ via Lemma 5.4. In what follows, we show how to bound the

second and the first term.

Second term. For the second term, since |Ek| follows a geometric distribution with parameter
1− γ, applying the inequality (1 + x

n )n ≤ ex by taking n = 1
1−γ ≥ 1, x = −1, we have

1
1− γ

E

[
K∑

k=1
1{|Ek|>m}

]
= 1

1− γ

K∑

k=1
γm = 1

1− γ

K∑

k=1
γ

1
1−γ log(2K/(1−γ)) ≤ 1

1− γ

K∑

k=1
2e− log( 2K

1−γ ) = 1
2 .

First term. It remains to bound the first term in equation 10. In Appendix A, we provide a
detailed proof for the bound

E

[
K∑

k=1
∆̃k1{E,Ek∈Mk} · 1{|Ek|≤m}

]
≤ 4τ · S

√
28AT log(2SAT ) + SA

1− γ
log

(
1

1− γ
log

(
2T

1− γ

))
.

Proof of Theorem 4.2. Combining the bound for each term in equation 10, we have

E

[
K∑

k=1
∆̃k

]
≤ 4τS

√
28AT log(2SAT ) + SA

1− γ
log

(
1

1− γ
log

(
2T

1− γ

))
+ 1

2 + 2
1− γ

.

The claim follows from Lemma 5.2.

5.1 Average Reward Regret

We have treated γ as constant so far, resulting in a regret bound in equation 6 that scales linearly with
1

1−γ , ignoring logarithmic factors. However, the Continuing PSRL algorithm does not constrain γ to
be a constant during the learning process, i.e. we are able to allow the discount factor to increase over
time, accounting for the growing horizon. Specifically, at each time step t, we can consider a discount
factor γt, and Continuing PSRL resamples a new environment with probability 1−γt. If resampling
happens, the agent switches to the optimal policy in the resampled environment maximizing the
γt-discounted cumulative reward. Otherwise, the agent keeps following the previous policy. If γt

increases with t, the agent is effectively planning over a longer horizon as interactions continue, and
as Theorem 4.2 justifies, the agent’s performance should always keep up with that of the optimal
policy in the environment, regardless of the planning horizon. We detail in Appendix B a modified
version of Continuing PSRL with a schedule of γt that attains the bound in Theorem 4.2.

Although Theorem 4.2 provides a sublinear upper bound for the discounted regret with a fixed
discount factor γ, we are ultimately interested in the performance shortfall with respect to the
optimal average-reward policy. To obtain a sublinear upper bound for the latter, we employ such
time-dependent discount factors discussed above, which allows us to show Theorem 4.1, a regret
bound for the Bayesian regret that does not depend on a discount factor, the proof of which is
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relegated to Appendix C. If we assume the knowledge of T , optimizing for γ, the best rate in terms
of T can be achieved by setting 1/(1 − γ) =

√
T

SA . If the total learning horizon T is unknown,
we can utilize a classical doubling trick argument that is common in the design of online learning
algorithms Zhang et al. (2020). The idea is to divide the learning horizon into time intervals of the
form [2k, 2k+1) and set 1/(1− γt) =

√
2k+1

SA for t ∈ [2k, 2k+1), k ∈ N.

6 Simulations

We conduct two sets of simulations to empirically validate our proposed method. The first is a
tabular RiverSwim environment introduced in (Osband et al., 2016a), and the second a RiverSwim
environment with continuous features as observations. We modify both environments so that there
is no episodic reset.

Figure 1: Riverswim - continuous and dotted arrows represent the MDP under the actions “right”
and “left”, respectively.

The tabular RiverSwim environment consists of six states arranged in a chain, as shown in Figure
1. The agent is placed at the far left state in the beginning. The agent receives a small reward of
0.005 for reaching the leftmost state, but the rightmost state contains a much larger reward of 1.
The optimal policy is thus to always try to swim right.

We compare the performance of Continuing PSRL to TSDE (Ouyang et al., 2017) and DS-PSRL
(Theocharous et al., 2018). Note that both baselines require planning with respect to the average
reward directly. All agents start with a prior of Dirichlet and normal-gamma distributions over the
transitions and rewards, respectively. We use pseudocount n = 1, α = 1/S, and µ = σ2 = 1 for a
diffuse uniform prior. Figure 2 (left) shows that Continuing PSRL is on par with TSDE despite the
latter optimizing directly for average reward, and outperforms DS-PSRL by a large margin.

Figure 2: Regret curves aggregated across 50 Monte Carlo runs for all algorithms.

The second set of simulations aims to provide a concrete illustration of how our resampling technique
can be extended and applied to complex scenarios. We consider a similar setup as RiverSwim, but
with observations as raw pixel features, obtained via a feature mapping ϕ(st) = 1{x ≤ st} in [0, 1]N .
To extend our algorithm design to the continuous state space and model-free setting, we enhance
the finite-horizon bootstrapped DQN with a similar resampling design as Continuing PSRL. The
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idea is to resample a new ensemble index to use in each pseudo-episode if Xt ∼ Bernoulli(γ) equals
zero. For this experiment, we choose a fixed γ = 0.99. The tabular baseline TSDE has to utilize
visitation counts, and thus cannot be adapted to a continuous state space. DS-PSRL requires an
oracle or subroutine that computes the optimal average reward, which is not readily available in
their paper. Instead, we run a comparison against a uniformly random agent and a vanilla DQN
agent with ϵ-greedy exploration, where we set ϵ = 0.1. As shown in Figure 2 (right), Bootstrapped
DQN with our random sampling schedule achieves sublinear regret, implying that the average regret
tends to zero as T grows. In contrast, the vanilla DQN agent incurs linear regret, possibly due to
its poor exploration ability.

7 Conclusion

We proposed a novel algorithm design extending PSRL to the setting where the environment does
not have a reset schedule, and the agent has to plan over a possibly infinite horizon. We establish
theoretically that our algorithm, Continuing PSRL, enjoys a regret upper bound that is close to the
theoretical optimality. Notably, Continuing PSRL only relies on a single Bernoulli random number
generator to resample the environment, as opposed to the complex episode-stopping schemes in
prior works. Such design principle can be readily applied to general environments with large state
spaces. Our simulations in both tabular and continuous RiverSwim environments demonstrate the
effectiveness of our method. Moreover, Continuing PSRL also highlights the role of discount factor
in agent design, as the discount factor is no longer considered as a part of the learning target, but
mainly acts as a tool for the agent to dynamically adjust its planning horizon. As such, this work
might provide an important step towards understanding discount factors, which have seen wide
popularity in practical RL applications.
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A Bounding the sum of confidence set widths

We are interested in bounding

E

[
K∑

k=1
∆̃k1{E,Ek∈Mk} · 1{|Ek|≤m}

]
.

Proof. For each k, we define the event

Bk :=
{

Ntk+1−1(s, a) + 1 ≤ 2Ntk
(s, a) for all (s, a) ∈ S ×A

}
.

Then Bc
k = {Ntk+1−1(s, a) ≥ 2Ntk

(s, a) for some (s, a) ∈ S ×A}.
Following a similar strategy as in Osband et al. (2013), we can write

E

[
K∑

k=1
∆̃k1{E,Ek∈Mk} · 1{|Ek|≤m}

]
≤ E

[
K∑

k=1
∆̃k1{E,Ek∈Mk} · 1Bk

]
+ E

[
K∑

k=1
∆̃k1{|Ek|≤m} · 1Bc

k

]

≤ E

[
K∑

k=1
E

[
∆̃k | E , Ek

]
1{E,Ek∈Mk} · 1Bk

]
+ E

[
K∑

k=1
∆̃k1{|Ek|≤m} · 1Bc

k

]
.

The event Ntk+1−1(s, a) ≥ 2Ntk
(s, a) can happen in at most log m episodes per state action pair

under the event {|Ek| ≤ m}. Thus, the second term can be bounded by

E

[
K∑

k=1
∆̃k1{|Ek|≤m} · 1Bc

k

]
≤ SA

1− γ
log m.

We define {(sk,i, ak,i)}|Ek|
i=1 to be the trajectory followed by πk in pseudo-episode k starting from

state sk,1 = stk
, the state at the beginning of pseudo-episode k. By equation 5, |mins∈S V γ

πk,Ek (s)−
maxs∈S V γ

πk,Ek (s)| ≤ 2τ for all s ∈ S. Thus, we can bound the first term

E

[
K∑

k=1
E

[
∆̃k | E , Ek

]
1{E,Ek∈Mk} · 1Bk

]

≤ E
K∑

k=1

|Ek|∑

i=1
E

[
γ

∣∣∣⟨Pπk(sk,i)sk,i
− P k

πk(sk,i)sk,i
, V γ

πk,Ek⟩
∣∣∣ | E , Ek

]
· 1{E,Ek∈Mk} · 1Bk

= E
K∑

k=1

|Ek|∑

i=1
E

[
γ

∣∣∣∣⟨Pπk(sk,i)sk,i
− P k

πk(sk,i)sk,i
, V γ

πk,Ek −min
s∈S

V γ
πk,Ek (s) · 1⟩

∣∣∣∣

+ γ

∣∣∣∣⟨Pπk(sk,i)sk,i
− P k

πk(sk,i)sk,i
, min

s∈S
V γ

πk,Ek (s) · 1⟩
∣∣∣∣ | E , Ek

]
· 1{E,Ek∈Mk} · 1Bk

= E
K∑

k=1

|Ek|∑

i=1
E

[
γ

∣∣∣∣⟨Pπk(sk,i)sk,i
− P k

πk(sk,i)sk,i
, V γ

πk,Ek −min
s∈S

V γ
πk,Ek (s) · 1⟩

∣∣∣∣ | E , Ek
]
· 1{E,Ek∈Mk} · 1Bk

≤ E
K∑

k=1

|Ek|∑

i=1
γ

∥∥∥Pπk(sk,i)sk,i
− P k

πk(sk,i)sk,i

∥∥∥
1

∥∥∥∥V γ
πk,Ek −min

s∈S
V γ

πk,Ek (s) · 1
∥∥∥∥

∞
· 1{E,Ek∈Mk} · 1Bk

≤ E
K∑

k=1

|Ek|∑

i=1
min{4τγβk(sk,i, ak,i), 1} · 1Bk

.

where the second equality follows since Pπk(sk,i)sk,i
and P k

πk(sk,i)sk,i
are probability distributions,

in the second-to-last inequality we apply Hölder’s inequality, and in the last inequality we apply
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Lemma 5.3. We proceed to bounding the first term. Recall that βk(s, a) =
√

14S log(2SAKtk)
max{Ntk

(s,a),1} , then

K∑

k=1

|Ek|∑

i=1
min{4τγβk(sk,i, ak,i), 1} · 1Bk

≤ 4τ

K∑

k=1

|Ek|∑

i=1
1Bk

√
14S log(2SAKtk)

max{1, Ntk
(sk,i, ak,i)}

.

Under the event Bk = {Ntk+1−1(s, a)+1 ≤ 2Ntk
(s, a) ∀(s, a) ∈ S×A}, for any t ∈ Ek, Nt(s, a)+1 ≤

Ntk+1−1(s, a) + 1 ≤ 2Ntk
(s, a). Therefore,

K∑

k=1

∑

t∈Ek

√
1Bk

Ntk
(st, at)

≤
K∑

k=1

∑

t∈Ek

√
2

Nt(st, at) + 1

=
√

2
T∑

t=1
(Nt(st, at) + 1)−1/2

≤
√

2
∑

s,a

NT +1(s,a)∑

j=1
j−1/2

≤
√

2
∑

s,a

∫ NT +1(s,a)

x=0
x−1/2dx

≤
√

2SA
∑

s,a

NT +1(s, a)

=
√

2SAT .

Since all rewards and transitions are absolutely constrained in [0, 1], our term of interest

K∑

k=1

|Ek|∑

i=1
min{4τγβk(sk,i, ak,i), 1} · 1Bk

≤ 4τ · S
√

28AT log(2SAT ).

B Continuing PSRL with γ-scheduling

Algorithm 2 Continuing PSRL with γ-scheduling
input Prior distribution f , discount factor schedule function Schedule, total learning time T

1: initialize t = 1, k = 1, X1 = 0
2: for t ≤ T do
3: if Xt = 0 then
4: tk ← t
5: sample Ek ∼ f(· | Htk

)
6: compute πk = πEk

k ← k + 1
7: end if
8: sample and apply At ∼ πk(· | St)
9: observe Rt+1 and St+1

10: t← t + 1
11: γt ← Schedule(t, T )
12: sample Xt+1 ∼ Bernoulli (γt)
13: end for
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C Proof of Theorem 4.1

Proof of Theorem 4.1. To better represent the dependence on K, set

R(K, π) := Regret(T, π),

where T is at the end of the K-th pseudo-episode. The expected regret can be written as

E [R(K, π)] = Eπ

[
K∑

k=1

∑

t∈Ek

(λ∗ −Rt)
]

= Eπ

[
K∑

k=1
|Ek|λ∗ −

K∑

k=1

∑

t∈Ek

Rt

]
.

Adding and subtracting the optimal discounted value,

E [R(K, π)] = E

[
K∑

k=1
(|Ek|λ∗ − V γ

∗,E(sk,1))
]

︸ ︷︷ ︸
(a)

+E

[
K∑

k=1

[
V γ

∗,E(sk,1)− V γ
πk,E(sk,1)

]]

︸ ︷︷ ︸
(b)

.

Since the length of each pseudo-episode is independent of the policy or the environment itself with
mean 1

1−γ , term (a) is the difference between the optimal average reward, weighted by the effective
horizon, and the optimal discounted reward. By Lemma 3.3,

(a) = E

[
K∑

k=1
( 1
1− γ

λ∗ − V γ
∗,E(sk,1))

]
= E

[
K∑

k=1

∣∣∣∣
1

1− γ
λ∗ − V γ

∗,E(sk,1)
∣∣∣∣

]
≤ τE[K].

The expectation (b) is the sum of differences between the optimal discounted value and the dis-
counted value of the deployed policy over K pseudo-episodes. From equation 6 we can see that (b)
is exactly E

[
Regretγ(K, π)

]
. By Theorem 4.2, we have that the regret can be bounded in terms of

γ as

E [R(K, π)] ≤ τE[K] + Õ

(
4τS
√

AT + SA

1− γ

)
≤ (1− γ)Tτ + τ + Õ

(
4τS
√

AT + SA

1− γ

)
.

If we assume the knowledge of T , optimizing for γ, the best rate in terms of T can be achieved by
setting 1/(1− γ) =

√
T

SA , and the final bound becomes

E[Regret(T, π)] = E [R(K, π)] ≤ τ
√

SAT + Õ
(

4τS
√

AT
)

= Õ
(

τS
√

AT
)

.

If the total learning horizon T is unknown, we can utilize a classical doubling trick argument that
is common in the design of online learning algorithms Zhang et al. (2020). The idea is to divide
the learning horizon into time intervals of the form [2k, 2k+1) and set 1/(1 − γt) =

√
2k+1

SA for
t ∈ [2k, 2k+1), k ∈ N.

D Supporting Lemmas

D.1 Proof of Lemma 5.1

Proof. By definition, tk is a stopping time, so it is σ(Htk
)-measurable. Since Ek is sampled from the

posterior distribution P(E ∈ ·|Htk
), Ek and P(E ∈ ·|Htk

) are also measurable with respect to σ(Htk
).

Conditioning on Htk
, the only randomness in g(Ek) is the random sampling in the algorithm. The

proof follows by integrating over P(E ∈ ·|Htk
).
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D.2 Proof of Lemma 5.3

Proof. Expanding the right hand side by the tower property, we get

E

[
η−1∑

t=0
γ

〈
Pπ(st)st

− P̂π(st)st
, V γ

π,Ê

〉
| E , Ê , π

]

=
∞∑

H=1
E

[
H−1∑

t=0
γ

〈
Pπ(st)st

− P̂π(st)st
, V γ

π,Ê

〉
| E , Ê , π, η = H

]
· P(η = H)

=
∞∑

H=1
E

[
H−1∑

t=0
γ

〈
Pπ(st)st

− P̂π(st)st
, V γ

π,Ê

〉
| E , Ê , π

]
· γH−1(1− γ)

= E

[ ∞∑

t=0

∞∑

h=t

γh(1− γ) · γ
〈

Pπ(st)st
− P̂π(st)st

, V γ

π,Ê

〉
| E , Ê , π

]

= E

[ ∞∑

t=0
γt+1

〈
Pπ(st)st

− P̂π(st)st
, V γ

π,Ê

〉
| E , Ê , π

]
.

Now we consider the left hand side. By Bellman equations,

V γ
π,E(s0)− V γ

π,Ê(s0) = rπs0 + γ⟨Pπ(s0)s0 , V γ
π,E⟩ − rπs0 − γ⟨P̂π(s0)s0 , V γ

π,Ê⟩

= γ⟨Pπ(s0)s0 − P̂π(s0)s0 , V γ

π,Ê⟩+ γ⟨Pπ(s0)s0 , V γ
π,E − V γ

π,Ê⟩

= γ⟨Pπ(s0)s0 − P̂π(s0)s0 , V γ

π,Ê⟩+ d0 + γ
(

V γ
π,E(s1)− V γ

π,Ê(s1)
)

,

where di := γ⟨Pπ(si)si
, V γ

π,E − V γ

π,Ê⟩ − γ
(

V γ
π,E(si+1)− V γ

π,Ê(si+1)
)

. Applying recursion, we have

V γ
π,E(s0)− V γ

π,Ê(s0) =
∞∑

t=0
γt+1⟨Pπ(st)st

− P̂π(st)st
, V γ

π,E⟩+
∞∑

t=1
dt.

In state si under policy π, the expected value of γ
(

V γ
π,E(si+1)− V γ

π,Ê(si+1)
)

is exactly
γ⟨Pπ(si)si

, V γ
π,E − V γ

π,Ê⟩, so conditioning on the true environment E and the sampled environment Ê ,
the expectation of

∑∞
t=0 dt is zero. Thus, the left hand side can be written as

E
[
V γ

π,E(s0)− V γ

π,Ê(s0) | E , Ê
]

= E

[ ∞∑

t=0
γt+1⟨Pπ(st)st

− P̂π(st)st
, V γ

π,Ê⟩ | E , Ê , π

]
,

and our claim is proved.

D.3 Proof of Lemma 5.4

Proof. By the L1-deviation bound for empirical distributions in Weissman et al. (2003), when
Ntk

(s, a) > 0,

P
(∥∥∥P̂as − Pas

∥∥∥
1
≥ βk(s, a)|Htk

)
≤ (2S − 2) exp

(
−Ntk

(s, a)β2
k(s, a)

2

)

≤ 2S exp (−7S log(2SAKtk)) ≤ 2S exp
(
− log

(
4 · 2SSAKt2

k

))
= 1

4SAKt2
k

,

where the second line is due to
∑

s′∈S P̂as(s′) =
∑

s′∈S Pas(s′) = 1, and the third line follows from
Hölder’s inequality. When Ntk

(s, a) = 0, the bounds trivially hold. Applying a union bound over
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all possible values of tk = 1, . . . ,∞, we get

P
(
∥P̂as − Pas∥1 ≥ βk(s, a)

)
≤

∞∑

t=1

1
4SAKt2 = π2

24SAK
≤ 1

2SAK
.

We may conclude the proof with a union bound over all (s, a).
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Abstract

In standard reinforcement learning settings, agents typically assume immediate feed-
back about the effects of their actions after taking them. However, in practice, this
assumption may not hold true due to physical constraints and can significantly im-
pact the performance of learning algorithms. In this paper, we address observation
delays in partially observable environments. We propose leveraging world models,
which have shown success in integrating past observations and learning dynamics,
to handle observation delays. By reducing delayed POMDPs to delayed MDPs with
world models, our methods can effectively handle partial observability, where exist-
ing approaches achieve sub-optimal performance or degrade quickly as observability
decreases. Experiments suggest that one of our methods can outperform a naive
model-based approach by up to 250%. Moreover, we evaluate our methods on vi-
sual delayed environments, for the first time showcasing delay-aware reinforcement
learning continuous control with visual observations.

1 Introduction

Reinforcement Learning (RL) has emerged as a powerful framework for training agents to make
sequential decisions in their environment. In traditional RL settings, agents assume immediate ob-
servational feedback from the environment about the effect of their actions. However, in many real-
world applications, observations are delayed due to physical or technological constraints on sensors
and communication, challenging this fundamental assumption. Delay can arise from various sources,
such as computational limitations (Dulac-Arnold et al., 2019), communication latency and intercon-
nection (Ge et al., 2013; Rostami & Kia, 2023), or physical constraints in robotic systems (Imaida
et al., 2004).

For example, drone navigation based on computation offloading might experience lag when the
network is congested (Almutairi et al., 2022), or robots equipped with shielding may encounter
delays in execution to ensure the safe behavior of the policy (Corsi et al., 2024). In scenarios where
timely decision-making is critical and agents cannot afford to wait for updated state observations,
RL algorithms must nonetheless find effective control policies subject to delay constraints. In this
paper, we focus on observation delays that prevent the agent from immediately perceiving world
state transitions, rather than execution delays that prevent the immediate application of the agent’s
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control action, although these types of delay are interconnected and can in some settings be effectively
addressed within a unified framework (Katsikopoulos & Engelbrecht, 2003). Specifically, at time t,
the agent receives observation ot−d and reward rt−d, where d is the time delay.

The body of work on RL with delay has explored several approaches within the Markov Deci-
sion Process (MDP) framework. Memoryless approaches build a policy based on the last observed
state (Schuitema et al., 2010). A second type of approach aims to reduce the problem into an un-
delayed MDP by extending the states with additional information, typically the actions taken since
the last available observation (Walsh et al., 2007; Derman et al., 2020). Finally, recent approaches
compute, from the extended state, perceptual features predictive of the hidden current state to in-
form action selection (Chen et al., 2021; Liotet et al., 2021; 2022; Wang et al., 2024). While there are
many existing works on delays in MDPs, surprisingly few study delays in Partially Observable MDPs
(POMDPs) where the delayed observations are non-Markov (Kim & Jeong, 1987; Varakantham &
Marecki, 2012), and these works do not provide a learning paradigm.

World models have recently shown significant success in integrating past observations and learning
the dynamics of the environment (Ha & Schmidhuber, 2018). These models, comprising a repre-
sentation of the environment’s state, a transition model depicting state evolution over time, and an
observation model linking states to observations, have proven effective in capturing intricate tempo-
ral dependencies and enhancing decision-making. One such family is Dreamer (Hafner et al., 2023),
a model-based RL framework that trains the agent through trajectories simulated by a learned world
model. Dreamer benefits from the sample efficiency inherent in model-based RL techniques and is
relatively insensitive to task-specific hyperparameter tuning.

In this paper, we propose leveraging world models to learn in the face of observation delays. We
employ world models to form the extended state in the latent space, demonstrating that this latent
extended state contains sufficient information for the current delayed state. This suggests two
different strategies for adapting world models to POMDPs with observation delay: either by directly
modifying the policy or by predicting the delayed latent state with imagination. While naively using
world models for delays can lead to significant performance degradation as the delay increases, our
methods exhibit greater resilience and one of them improves policy value upon the naive baseline
by approximately 250%. Despite their simple implementation, these modifications achieve better or
comparable performance to other approaches without the need for domain-specific hyperparameter
tuning. Moreover, we evaluate our methods not only on vector inputs, but on continuous control
tasks with visual inputs, a crucial aspect that was missing in the delayed RL community.

Contributions of this paper are summarized as follows:

• We propose three methods that use world models to address observation delays. As a case
study, we have adapted Dreamer-V3 to evaluate the effectiveness of our proposed strategies.

• We formalize observation delays in POMDPs and establish a link between delays in MDPs
and POMDPs.

• We conduct extensive experiments that, among other domains, benchmark for the first time
delayed RL in visual domains that are inherently partially observable.

2 Related Work

Several prior works have addressed delays in the MDP framework. One line of research employs
a memoryless approach, where an agent uses only the last available state as input. For instance,
Schuitema et al. (2010) proposed dSARSA, a memoryless extension of SARSA (Sutton & Barto,
2018) for delays in MDPs. Although this approach perceives the environment with partial informa-
tion, it was shown to work quite well in some domains.

Another approach is to reduce a delayed MDP, which is known to be a structured POMDP, to an
extended-state MDP by augmenting the recently observed state with the actions that have been
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(a) World-Model Learning

enc

(b) Actor-Critic Learning

enc

(c) Extended Actor

enc

(d) Latent State Imagination

Figure 1: Panels (a) and (b) depict the standard Dreamer learning process, while (c) and (d)
illustrate two strategies for adapting Dreamer for observation delays. (see section 4.2 and 4.3)

taken since then (Walsh et al., 2007; Derman et al., 2020; Bouteiller et al., 2020). For instance,
DCAC (Bouteiller et al., 2020) extends SAC (Haarnoja et al., 2018) to take the extended state and
achieves good sample efficiency through resampling techniques, but it suffers from an exponentially
growing input dimension as the delay increases.

Recent strategies focus on deriving useful features from the extended state for policy input.
Walsh et al. (2009) developed a deterministic dynamics model to predict the unobserved state.
Chen et al. (2021) employed a particle-based method to simulate potential current state outcomes.
Similarly, D-TRPO (Liotet et al., 2021) obtains a belief representation of the current state using a
normalizing flow, enhancing policy input with these features.

More recently, Liotet et al. (2022) applied imitation learning to train a delayed agent using an expert
policy from an undelayed environment, though this approach is constrained by the need for access to
the undelayed environment, limiting its practicality. Concurrently with our work, Wang et al. (2024)
introduces a method for delay-reconciled training that integrates a critic and an extended-state actor
and Valensi et al. (2024) uses EfficientZero (Ye et al., 2021) for inferring future states, similarly to
one of our methods.

3 Preliminaries

3.1 Delayed POMDPs

A Partially Observable Markov Decision Process (POMDP) consists of a tuple ⟨S,A, T ,Ω,O, γ⟩,
where S and A are the sets of states and actions, T (s′, r|s, a) is the joint probability distribution
of the next state and reward, Ω is the set of observations, O(o|s) is the conditional probability of
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observing o ∈ Ω in state s, and γ ∈ [0, 1) is the discount factor. At each timestep t, in state st the
agent receives an observation ot ∼ O(ot|st) and selects an action at, causing a transition and reward
with distribution T (st+1, rt|st, at). The goal is to maximize the expected return E[

∑
t≥0 γ

trt].

We define a Delayed Partially Observable Markov Decision Process (DPOMDP) as a tuple ⟨Po,D⟩,
where Po represents a POMDP and D is a distribution dictating the delay in receiving observations
from Po. Specifically, at time t, the agent receives observation ot−d and reward rt−d, where d ∼ D.
The objective is to maximize the expected return while operating in Po under these delays. For
simplicity, we assume in this work that D generates a constant non-negative integer delay d, though
our methods can be easily generalized to handle random delays as well.

In a similar fashion, delayed Markov Decision Processes (DMDPs) are defined in previous
works (Wang et al., 2024; Liotet et al., 2022) as a tuple ⟨M,D⟩, where M = ⟨S,A, T , γ⟩ is an MDP.
Like their undelayed counterparts, DMDPs can be considered a special case of DPOMDPs in which
the (delayed) observation gives full information about the state at that time. Any DMDP can be re-
duced to an extended MDP M̃ by defining the states as a concatenation of the last observed state and
the subsequent actions, which the agent needs to explicitly remember (Altman & Nain, 1992). In par-
ticular, M̃ = ⟨X ,A, T̃ , γ⟩, where X = S × Ad and for x =

(
s, a1, . . . , ad

)
, x′ =

(
s′, a′1, . . . , a′d) ∈ X ,

T̃ (x′, r|x, a) = T (s′, r|s, a1)1([a′1, . . . , a′d] = [a2, . . . , ad, a]). (1)

By definition, any DPOMDP is another POMDP with a specific structure. It can be formally con-
structed by defining the set of states in the new PODMP as the concatenation of the last d+1 states,
of which only the earliest one is observable, and defining the transition probabilities accordingly.
Thus, we can employ the POMDP framework to tackle the observation delays by constructing the
equivalent POMDP (Varakantham & Marecki, 2012). On the other hand, one can exploit the struc-
ture introduced by delay in the process. Specifically, delay in receiving observations is equivalent
to delay in inferring the latent states. As latent space enjoys the Markov property, we can then
work with the DMDP defined over latent states and induced by delay in observations. Proposition
3 in section 4.1 formalizes this intuition. Note, however, that there is a tradeoff between these two
choices: on the one hand, POMDPs are harder to learn than MDPs; on the other hand, in the
POMDP formulation, the world remembers the history for us, avoiding the curse of dimensionality
in explicit agent context.

3.2 World models

World models (Schmidhuber, 2015; Ha & Schmidhuber, 2018) simulate aspects of the environment
by learning an internal representation through an encoder and a dynamics model. The encoder com-
presses high-dimensional inputs, such as image observations, into a lower-dimensional embedding,
while the dynamics model forecasts future states from historical information. This streamlined state
representation then serves as input to an RL agent.

Dreamer (Hafner et al., 2020; 2021; 2023), a pioneering model-based RL (MBRL) approach uti-
lizing world models, surpasses many model-free RL algorithms in data efficiency and performance.
Dreamer’s training involves three alternating phases: 1) training the world model on past experi-
ences; 2) learning behaviors with actor–critic algorithm through imagined sequences; and 3) collect-
ing data in the environment.

Figure 1a depicts the world model comprising an encoder-decoder and a Recurrent State Space
Model (RSSM) (Hafner et al., 2019) to model dynamics. Alongside reconstructed observation ôt,
the model includes prediction heads for reward and episode continuation, omitted for clarity. The
model state mt = [ht, zt] comprises deterministic and stochastic components, respectively, given by

ht = fϕ(ht−1, zt−1, at−1) (2)
zt ∼ qϕ(zt|ot, ht). (3)
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Dreamer also learns a dynamic predictor for estimating imagined latent states as

z′
t ∼ pϕ(z′

t|ht). (4)

As (2) and (3) suggest, the latent states are constructed to have a Markov structure, regardless
of whether the observations themselves are Markov. In other words, Dreamer attempts to learn a
latent-state MDP that is as nearly as possible equivalent to the observed POMDP. If it succeeds,
this equivalence means that, for any policy π(a|m), the stochastic process {mt, at, rt}t≥0 induced
by the policy in the world model (Figure 1b) has the same joint distribution as the embedding of
real policy rollouts (Figure 1a). Figure 1b also illustrates Dreamer’s behavior learning using an
actor–critic method, policy and value heads on latent trajectories predicted by the world model.

3.3 Hardness of delayed control

s1 s2

s3

a1, 1 − δ

a1, δ

a2, 1

a2, δ

a2, 1 − δ

a1, 1

Figure 2

Before presenting our methods, we provide an example to show that
optimal values in DMDPs are generally incomparable for different
delays. Depending on the stochasticity of the environment and the
length of the delay, the optimal value function can be made arbitrary
worse compared to that of the undelayed environment.

Let V ∗ be the optimal value function of the MDP sketched in Figure 2
and similarly Ṽ ∗ be the optimal value function with constant obser-
vation delay of 1. Starting at state s1, the agent will receive a reward
of +1 for taking a1 in s1 and 0 otherwise. 0 ≤ δ ≤ 1

2 controls the
stochasticity of the environment. To maximize the expected return,
the agent should try to stay in s1 by taking a1 in s1 and a2 in s2.
When there is no delay, the agent can take the appropriate action and
avoid the absorbing state s3. However, with delay, the agent does not
observe the current state and for 0 < δ it eventually ends up in s3 for any policy. The ratio between
the optimal values of the delayed and undelayed case can be computed (see appendix A) as

Ṽ ∗(s1)
V ∗(s1) = (1 − γ)

(1 − γδ) (1 − γ(1 − δ)) .

When δ = 0 the ratio is 1, while the minimal ratio of 1−γ
(1−γ/2)2 is obtained for δ = 1

2 with the ratio
approaching 0 as γ → 1. These two extreme cases correspond to the scenarios with the least and
the most stochasticity in the transitions, respectively.

In general, depending on the underlying MDP, even introducing small observation delays could
downgrade the optimal policies much. By assuming smooth transition dynamics and rewards,
Liotet et al. (2022) bounded this gap as a function of smoothness parameters of the underlying
MDP.

4 Delayed Control via World Models

In this section, we begin with a seemingly simple yet crucial insight into the relationship between
converting POMDPs into MDPs via world models, and translating DPOMDPs into DMDPs. This
insight forms the basis for combining techniques initially developed for POMDPs and DMDPs to
tackle delays in partially observable environments. Next, we elaborate on the adaptations required
to incorporate delays and examine two distinct methodologies within this framework.

4.1 World models reduce DPOMDPs to DMDPs

A world model, denoted by M̂ , has two modes of operation: imagination, where it can operate as a
stateful simulator of the world with which the agent can interact (Figure 1b); and interaction, where
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it can ground its latent state mt in real observations by sequentially incorporating their embedding
into the state (Figure 1a). In some world models, imagination is implemented using the interaction
mode, by replacing the real embedded observations by their reconstruction from the latent state (Ha
& Schmidhuber, 2018). In Dreamer, the two modes are modeled separately through (3) and (4) and
kept equivalent in training by a dedicated loss term. In the following, we keep our discussion general
by not constraining the functional form of the world model, and only requiring the two modes to be
equivalent in the sense of the following definition.
Definition 1. A world model M̂ is congruent with a POMDP Po if, for any action sequence
a⃗ = {at}t≥0, the stochastic process {ot,mt, rt}t≥0 induced by rolling out a⃗ in Po and feeding its
observations into M̂ ’s interaction mode has the same joint distribution (marginalized over {ot}t≥0)
as the process {mt, rt}t≥0 induced by rolling out a⃗ in M̂ ’s imagination mode.

Definition 2. Given a world model M̂ , the operation of the d-step delayed world model M̂d is
defined as follows: in imagination step t, the delayed state mt−d (or dummy for t < d) is read from
M̂ , action at is taken in M̂ , and the delayed reward rt−d (or 0 for t < d) is returned; in interaction
step t ≥ d (following d dummy steps), the current observation õt = ot−d is fed into M̂ , the current
state m̃t is read, the action at is taken in the delayed environment but ãt = at−d in M̂ , and the
delayed environment reward r̃t = rt−d is returned.

Proposition 3. If a world model M̂ is congruent with a POMDP Po, then the d-step delayed world
model M̂d is congruent with the d-step delayed DPOMDP Pd

o .

Proof. For a given action sequence a⃗, let {õt, r̃t}t≥0 be the stochastic process induced by rolling out
a⃗ in Pd

o . In M̂d’s interaction mode, the first d dummy steps are skipped, and then the sequence
{õt, ãt}t≥d = {ot−d, at−d}t≥d is fed into M̂ . Because this is the same process as M̂ ’s interaction with
Po using a⃗, it has the same distribution over {m̃t, r̃t}t≥d as M̂ ’s imagination process. It remains to
be verified that prepending d dummy states and rewards to M̂ ’s imagination process yields M̂d’s
imagination process with the same action sequence, completing the proof.

Proposition 3 solves a critical issue with training world models in delayed environments: training
M̂d with a blackbox Pd

o treats the latter as a POMDP and fails to leverage its specific structure
as a DPOMDP (see Sec. 3.1). Instead, we can recover Po from Pd

o by shifting back the delays in
training time, train M̂ for Po, and then Definition 2 gives us the structure of M̂d in terms of M̂ .
Proposition 3 guarantees that this process indeed models Pd

o correctly.

4.2 Delay-aware training

The learning of the world model relies on data stored in an experience replay buffer, accumulated by
the agent throughout training. With delays, the storage of these data remains unaffected, as the data
collection mechanism can store a transition once the subsequent observation becomes available; thus,
the world model can be trained using undelayed data {(ot, at, rt)}t≥0. However, the distribution of
collected samples is influenced by the fact that actions are selected without observing the past d states
of the environment. This discrepancy leads to a divergence in the distribution of data trajectories
between delayed and undelayed environments. Nevertheless, as we will see in the experiment section,
the world model can still learn successfully.

In contrast to world model learning, the actor–critic component must take delays into account, as
the agent is required to select at based on the available information at time t, generated at time t−d.
To account for delayed observations, there are two primary design strategies: either to design the
policy as π(·|xt), conditioned on the extended state xt, or condition the policy on the latent state
m̂t predicted from xt. In both cases, the agent needs access to the action sequence (at−d, ..., at−1).
Thus, we augment the experience replay buffer to store subsequent actions. In the following two
sections, we will explore each of these design approaches.
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4.3 Delayed actor-critic

In actor–critic learning, the critic provides an estimate of the value function V to aid the learning of
the actor, while the actor aims to maximize the return guided by the critic’s value. Since the world
model is a DMDP and the extended state xt = (mt−d, at−d, . . . , at−1) is a state of its equivalent
extended MDP, it is sufficient to condition at on xt. The critic, in contrast, only provides feedback in
training time and can therefore wait to see the true state to provide a more accurate value estimate
to the actor. This idea has also been explored concurrently with this work (Wang et al., 2024). Thus,
to directly handle observation delays in the policy, we can use the extended state to design the policy
π(at|xt) along with the same critic as in the undelayed case V (mt). We refer to this method as an
Extended actor. In practice, the policy network can be implemented with any neural architecture,
such as a Multi-Layer Perceptrons (MLP), Recurrent Neural Networks (RNN), or Transformers.

Figure 1c illustrates the Extended actor diagram adapted for Dreamer. At time t, the agent retrieves
xt from the replay buffer and performs on-policy actor–critic learning in imagination by updating the
extended state with the next action. In particular, at ∼ πθ(at|xt) and xt+1 = (mt−d+1, {ai}ti=t−d+1)
where mt−d+1 is the imagined latent state in (4). Note that the critic predicts the value for the
current latent state Vψ(mt−d) while the actor outputs at based on xt. Thus, the imagination horizon
will be increased for d additional time steps since the critic provide feedback for actor’s action d
timesteps later. The estimates of the critic and the actions of the actor are then realigned to compute
the policy gradient loss function.

Another variant of the extended actor involves drawing actions from the policy π(at|mt−d) without
maintaining a memory to track previously performed actions, a concept referred to as the Mem-
oryless actor. While this design choice might appear to lack the ability to capture the necessary
information, the rationale behind it is that the policy π(at|mt−d) can theoretically represent the ex-
tended state’s previously performed actions within its network. This is because no new information
is introduced after time t− d, and therefore, no additional memory is needed to store those actions.

4.4 Latent state imagination

Another approach is to estimate the current latent state m̂t, without modifying the policy architec-
ture, and draw actions from π(at|m̂t). Specifically, we can use the world model’s forward dynamics
in (2) and (4) (Figure 1b) for d time steps, starting with mt−d, to sample a prediction m̂t. Then,
the agent uses m̂t as the current latent state of the environment both in training and inference time.
Figure 1d depicts this process, which we refer to as a Latent actor. After computing m̂t, the agent
performs training or policy execution the same way as in the undelayed case.

Note that estimation of the current state happens in the latent space, otherwise this approach will
lead to suboptimal decisions as the agent needs to form an approximate belief over the hidden state to
act optimally in the presence of delays. In other words, the agent should account for uncertainty over
the true state of the environment. This also implies that the latent state should have a deterministic
component to allow the agent to avoid losing information through sampling. Furthermore, Extended
and Latent actors do not assume that d is constant. The Latent actor can imagine for variable step
lengths and Extended can employ RNNs or pad the action sequence with a special action to manage
delay variability. In principle, Memoryless actors can also handle stochastic delays by conditioning
the policy on d, though this has uncertain practical effectiveness.

5 Experiments

5.1 Experimental setup

Tasks. To evaluate our proposed methods, we conducted experiments across a diverse set of en-
vironments. We have considered four continuous control tasks from MuJoCo (Todorov et al., 2012)
in Gymnasium (Gym) (Towers et al., 2023): HalfCheetah-v4, HumanoidStandup-v4, Reacher-v4,
and Swimmer-v4 for comparison with previous studies. Also, we extended our evaluation to six
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more environments from the DeepMind Control Suite (DMC) (Tunyasuvunakool et al., 2020), to
further examine our methods with both proprioceptive and visual observations. The distinction be-
tween these input types is critical; vector inputs provide a fully observable state of the environment,
but image-based observations introduce partial observability, necessitating approaches capable of
addressing delays within the POMDP framework.

Methods. We utilized Dreamer-V3 (Hafner et al., 2023) as our primary framework1 and compare
with prior studies, including D-TRPO (Liotet et al., 2021) and DC-AC (Bouteiller et al., 2020). We
also evaluated a Dreamer-V3 agent, similar to the Latent method, except trained in an undelayed
setting and tested under delayed conditions with latent imagination. This approach, referred to as
Agnostic, can be e considered a naive use of world models to address delays. Although our meth-
ods can handle both constant and random delays, we chose to focus on fixed delays for simplicity
and comparability with the baselines. While we experiment in both Gym and DMC, the baselines
were originally designed and tuned for Gym environments with vector inputs, and we found the
task of modifying them for image observations or tuning their hyperparameters for DMC nontriv-
ial (Cetin et al., 2022) and thus outside our scope. Also, for Gym environments, we trained Dreamer
variants with a budget of 500K interactions, while D-TRPO and DC-AC trained with 5M and 1M
environment interactions, respectively. For DMC tasks with visual inputs, we have increased the
number of interactions to 1M.

Architectures and hyperparameters. For D-TRPO, we adopted the hyperparameters and ar-
chitecture detailed in Liotet et al. (2022). Similarly, for DC-AC, we replicated the hyperparameters
and model from the original paper (Bouteiller et al., 2020). In our delayed variants of Dreamer-V3,
we maintained consistency by using the same set of hyperparameters and architecture as the original
implementation (Hafner et al., 2023). The only architectural adjustment was for the extended agent,
where we incorporated a Multi-Layer Perceptron (MLP) for the policy network to extend the latent
state with actions. Note that while we used the same set of hyperparameters provided in the original
Dreamer, we conjecture that the optimal horizon length should be smaller in both the Extended
and Latent methods, where the effective horizon is longer due to the action buffer (Figures 1c and
1d), because accumulation of one-step errors in imagination via forward dynamics could harm the
actor-critic learning part. Each experiment has been repeated with 5 random seeds.

Note that, in all experiments, the agent will perform random actions until the first observation
becomes available. While one could utilize better strategies for initial actions, using random actions
is common in all existing delayed RL methods.

5.2 Results

Figures 3a–3d depict the results obtained from the experiments conducted on the selected Gym envi-
ronments. The Dreamer variants demonstrate a significant performance improvement over D-TRPO
across all tasks. However, DC-AC exhibits comparable performance to our methods on HalfCheetah-
v4 and HumanoidStandup-v4, outperforms them on Reacher-v4, and underperforms on Swimmer-v4.
One reason why our methods are not performing well on Reacher-v4 could be underperformance of
the standard Dreamer, trained and tested on the undelayed environment itself. This is evident as
DC-AC achieves comparable or superior performance to the standard Dreamer on these environ-
ments with small delays. One potential explanation for this phenomenon could be the significant
portion of samples in actor–critic learning that fall outside the planning horizon. This is likely due
to our use of the same imagination horizon length H = 16 and an episode length of 50 for this task.

Figures 3e and 3f display the performance of our methods averaged over selected suites in DMC with
proprioceptive and image inputs, respectively. Remarkably, the Agnostic method performs very
well across all tasks without knowing about the delay in training time. Also, the Agnostic method
needs not know the delay distribution beforehand and can be deployed on any delayed environment.
However, as delay increases the performance drops more rapidly than for other methods. This is

1The code is available at https://github.com/indylab/DelayedDreamer.
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Figure 3: Normalized returns across different environments for varying delays. Bars and caps rep-
resent the mean and standard error of the mean over 5 trials, respectively. Panels (e) and (f) are
averaged over the selected suites in DMC, after normalizing the agent in the undelayed environment
to 1 and the random policy to 0.

because the distribution shift between the undelayed training and delayed evaluation increases for
larger delays. Similarly, the Latent method does not exhibit robustness against long delays, as we
are using a one-step prediction world model. The accumulation of one-step prediction errors over
longer delays causes the predicted latent state to diverge significantly from the true latent state. As
expected, Extended proves to be the most robust among our variants, as it utilizes next actions and
avoids the accumulation of errors present in Latent and Agnostic. Notably, Extended improves by
250% on average in DMC vision tasks compared to Agnostic.

Additionally, we include training curves and tables summarizing the final test performance for all
tasks in Appendix B.

5.3 Degree of observability

Figure 4 illustrates the resilience of the Extended method and the baselines faced with an increasing
level of partial observability in the HalfCheetah-v4 environment. Originally, the environment’s
observations encompass both the positional and the velocity information for the agent’s joints. To
simulate partial observability, we modified the environment to omit a ρ percentage of the velocity
components. The results demonstrate that both Extended and D-TRPO were capable of inferring
the missing velocity components from historical observations. Although D-TRPO is specifically
designed for delays in MDPs, in this particular scenario, it was able to compute the relative velocities
by utilizing a transformer used to process the extended state. In contrast, DC-AC deteriorated
significantly as environments became less observable.
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Figure 4: Return against the degree of observability in HalfCheeth-v4 for d = 5.

5.4 Takeaways

Although world models work as a good proxy of the true environment during training, we found
that applying world models naively at test time (Agnostic) is not the most effective strategy. Our
experiments revealed that for shorter delays, the Memoryless and Latent approaches work the best
while keeping the original architecture unchanged. However, as delays get longer they degrade the
performance due to the issues of a lack of action memory and the accumulation of one-step errors
issues, respectively. The Extended method, on the other hand, can maintain its performance at the
expense of adding architectural complexity to the undelayed model.

6 Conclusion

In this paper, we have proposed using world models for delayed observation within the POMDP
framework. To showcase our methods, we adapted Dreamer-V3 for delay in observations and pro-
posed two strategies, one using a delayed actor and the other latent state imagination. We discussed
another version of the delayed actor which operates without action memory and additionally intro-
duced a delay-agnostic strategy which needs not know the delay distribution beforehand. Evaluation
revealed that the best of our methods, Extended, is robust to partial observability of the environment
and can outperform the baselines overall, but can be sensitive to the tuning of hyperparameters.
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A MDP example

The optimal policy will select a1 in s1 and a2 in s2. Then, by Bellman optimal equation for the
state-value function we have

V ∗(s1) = 1 + γ(1 − δ)V ∗(s1) + γδV ∗(s2) (5)
V ∗(s2) = γ(1 − δ)V ∗(s1) + γδV ∗(s2), (6)

which yields V ∗(s1) = 1−γδ
1−γ . In the case of observation delay with d = 1, the optimal policy will

select a1 in every state since 1
2 ≤ δ and thus,

Ṽ ∗(x1) = (1 − δ)
(

1 + γṼ ∗(x1)
)
, (7)

where x1 is the extended state (s1, a1). For the current state of the environment in s1, we have
Ṽ ∗(s1) = 1 + γṼ ∗(x1). Therefore, Ṽ ∗(s1) = 1

1−γ(1−δ) .

B Experiment Details

In this section, we have included the training curves and the final results of our experiments across the
selected environments in Gym and DMC. In order to have a fair comparison between the methods,
we have used the same random seed for generating random actions at the beginning of the episode.
We refer to DMC tasks with proprioceptive and image observations as DMC proprio and vision,
respectively.

B.1 Gym results

Task Delay Extended Memoryless Latent Agnostic D-TRPO DC-AC

HalfCheetah-v4
(×103)

2 5.13 ± 0.28 4.65 ± 0.47 2.57 ± 0.61 3.37 ± 0.49 1.91 ± 0.18 7.82 ± 0.25
5 3.47 ± 0.48 3.53 ± 0.47 1.87 ± 0.20 1.28 ± 0.37 1.46 ± 0.01 3.48 ± 0.95
10 3.43 ± 0.39 2.70 ± 0.33 0.93 ± 0.25 0.42 ± 0.19 1.49 ± 0.08 2.35 ± 0.41
20 1.93 ± 0.47 2.49 ± 0.35 0.60 ± 0.16 0.15 ± 0.02 1.44 ± 0.37 0.65 ± 0.34

HumanoidStandup-v4
(×105)

2 1.51 ± 0.18 1.49 ± 0.06 1.36 ± 0.08 1.37 ± 0.15 1.11 ± 0.09 1.60 ± 0.23
5 1.57 ± 0.06 1.52 ± 0.10 1.63 ± 0.02 1.37 ± 0.23 0.64 ± 0.21 1.52 ± 0.03
10 1.35 ± 0.11 1.37 ± 0.11 1.48 ± 0.04 1.24 ± 0.15 0.87 ± 0.22 1.63 ± 0.07
20 1.14 ± 0.19 1.41 ± 0.04 1.19 ± 0.09 1.17 ± 0.08 0.88 ± 0.16 1.53 ± 0.02

Reacher-v4

2 −7.8 ± 0.7 −6.8 ± 0.4 −7.8 ± 0.6 −9.4 ± 0.1 −12.9 ± 1.1 −4.6 ± 0.0
5 −11.4 ± 0.6 −11.0 ± 0.2 −11.7 ± 0.7 −11.5 ± 0.4 −12.9 ± 0.8 −4.8 ± 0.1
10 −15.4 ± 0.2 −16.8 ± 0.8 −15.2 ± 0.9 −15.3 ± 0.3 −15.6 ± 0.9 −5.3 ± 0.1
20 −25.3 ± 0.7 −26.0 ± 0.3 −23.9 ± 0.3 −23.1 ± 0.2 −23.3 ± 0.4 −7.2 ± 0.2

Swimmer-v4

2 229.2 ± 46.8 251.2 ± 38.5 297.5 ± 12.0 305.9 ± 32.3 98.3 ± 7.1 42.1 ± 1.0
5 236.0 ± 33.6 261.5 ± 38.6 283.3 ± 13.1 306.3 ± 31.5 87.5 ± 5.7 41.5 ± 0.7
10 213.1 ± 39.2 255.0 ± 36.3 258.6 ± 54.6 302.3 ± 33.7 52.1 ± 4.4 38.6 ± 0.9
20 285.1 ± 12.4 200.2 ± 25.0 315.5 ± 9.7 297.8 ± 34.2 36.0 ± 1.4 37.2 ± 0.2

Table 1: Final test returns on tasks in Gym. Results are presented as the mean ± standard error of
the mean.
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B.2 DMC proprio results

Task Delay Extended Memoryless Latent Agnostic

Acrobot Swingup
2 223.0 ± 9.5 234.8 ± 26.0 224.4 ± 19.7 256.6 ± 22.9
5 208.5 ± 42.1 228.6 ± 32.6 257.9 ± 36.2 240.9 ± 13.1
10 120.7 ± 12.8 159.7 ± 15.2 193.2 ± 30.3 197.0 ± 17.0
20 78.7 ± 15.0 93.7 ± 15.6 144.0 ± 14.5 129.7 ± 11.3

Cartpole Balance
2 986.7 ± 4.2 993.2 ± 0.4 990.4 ± 1.0 992.4 ± 2.4
5 990.6 ± 1.1 986.5 ± 2.0 985.0 ± 3.9 990.0 ± 3.4
10 966.4 ± 4.9 948.0 ± 12.0 916.7 ± 48.7 980.4 ± 2.1
20 799.8 ± 32.5 664.8 ± 15.0 699.9 ± 40.0 511.9 ± 32.8

Cheetah Run
2 632.9 ± 25.3 666.3 ± 22.7 668.9 ± 30.0 596.1 ± 72.8
5 600.2 ± 24.8 648.3 ± 17.4 534.9 ± 54.7 373.2 ± 39.5
10 446.7 ± 20.1 496.1 ± 6.6 304.0 ± 60.3 173.6 ± 20.6
20 418.0 ± 16.9 337.3 ± 14.2 204.4 ± 11.7 119.7 ± 3.4

Finger Spin
2 504.0 ± 21.1 426.7 ± 18.4 253.4 ± 83.0 561.1 ± 93.5
5 303.6 ± 14.8 279.8 ± 17.8 310.0 ± 57.0 278.3 ± 31.1
10 307.0 ± 23.3 171.5 ± 12.4 153.7 ± 22.1 111.1 ± 7.5
20 183.9 ± 13.6 116.3 ± 4.6 118.4 ± 11.0 59.5 ± 8.1

Hopper Hop
2 206.6 ± 31.7 143.5 ± 15.9 164.4 ± 22.3 121.0 ± 11.9
5 99.3 ± 23.4 130.8 ± 37.4 54.1 ± 11.4 53.6 ± 6.2
10 112.9 ± 16.4 64.6 ± 15.4 33.9 ± 8.5 20.0 ± 4.7
20 31.8 ± 19.8 0.0 ± 0.0 7.7 ± 1.8 11.1 ± 3.6

Walker Walk
2 877.9 ± 17.2 916.1 ± 6.7 873.5 ± 29.8 732.5 ± 39.1
5 789.5 ± 50.2 622.9 ± 47.2 530.9 ± 22.2 389.5 ± 18.0
10 518.9 ± 16.9 461.8 ± 44.9 278.0 ± 13.8 230.6 ± 14.3
20 381.6 ± 19.3 339.5 ± 43.1 173.2 ± 7.7 170.3 ± 0.2

Table 2: Final test returns on tasks in DMC with proprioceptive inputs. Results are presented as
the mean ± standard error of the mean.

B.3 DMC vision results

Task Delay Extended Memoryless Latent Agnostic

Acrobot Swingup
2 300.8 ± 32.6 355.4 ± 38.8 374.9 ± 35.0 396.3 ± 67.3
5 301.1 ± 16.8 284.6 ± 26.5 336.3 ± 26.8 382.6 ± 28.5
10 278.7 ± 11.7 191.0 ± 18.2 328.0 ± 28.0 326.0 ± 49.3
20 139.4 ± 7.9 108.1 ± 21.3 212.9 ± 34.7 230.4 ± 16.5

Cartpole Balance
2 994.7 ± 1.3 996.0 ± 0.2 996.3 ± 0.1 996.3 ± 0.1
5 994.6 ± 0.1 992.6 ± 0.3 994.8 ± 0.5 995.2 ± 0.1
10 975.7 ± 5.6 953.8 ± 12.5 979.9 ± 5.3 926.0 ± 60.7
20 928.0 ± 11.6 681.3 ± 4.2 935.3 ± 8.4 570.8 ± 27.0

Cheetah Run
2 871.7 ± 11.3 839.8 ± 28.9 873.0 ± 4.1 799.1 ± 32.0
5 816.2 ± 20.9 812.1 ± 13.0 783.9 ± 44.3 533.1 ± 37.3
10 640.0 ± 32.9 610.9 ± 16.4 542.2 ± 24.8 251.2 ± 49.5
20 493.3 ± 21.8 395.5 ± 21.2 273.1 ± 24.6 118.8 ± 11.4

Finger Spin
2 521.6 ± 123.3 391.4 ± 25.2 576.7 ± 117.7 418.0 ± 211.1
5 374.9 ± 11.3 321.7 ± 19.3 316.7 ± 34.6 254.4 ± 128.8
10 291.7 ± 30.9 186.9 ± 7.7 53.0 ± 35.3 99.7 ± 50.1
20 172.2 ± 11.9 108.3 ± 3.4 33.8 ± 22.8 49.3 ± 24.2

Hopper Hop
2 304.6 ± 27.2 313.2 ± 27.4 325.2 ± 41.5 64.0 ± 64.0
5 232.5 ± 33.6 246.7 ± 32.3 114.8 ± 25.9 18.0 ± 17.8
10 136.7 ± 6.3 131.3 ± 13.4 33.3 ± 4.9 3.5 ± 3.5
20 103.0 ± 28.3 45.3 ± 18.1 4.4 ± 1.3 2.3 ± 2.3

Walker Walk
2 932.0 ± 9.6 895.6 ± 27.7 944.7 ± 8.1 916.0 ± 12.8
5 821.8 ± 60.8 819.2 ± 33.8 718.7 ± 30.1 524.4 ± 35.6
10 657.1 ± 56.2 499.7 ± 23.4 344.4 ± 18.0 219.4 ± 5.5
20 474.4 ± 39.2 399.0 ± 38.3 166.3 ± 3.1 147.3 ± 11.2

Table 3: Final test returns on tasks in DMC with visual inputs. Results are presented as the mean
± standard error of the mean.
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B.4 Gym training curves
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Figure 5: Training curves for the set of tasks in Gym. Dreamer variants trained with 500K inter-
actions of the environment, while D-TRPO and DC-AC used 5M and 1M interactions, respectively.
For D-TRPO and DC-AC, we have plotted the final training performance.
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B.5 DMC proprio training curves
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Figure 6: Training curves for the set of tasks in DMC with proprioceptive inputs with 500K inter-
actions.
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B.6 DMC vision training curves
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Figure 7: Training curves for the set of tasks in DMC with visual inputs with 1M interactions.
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Abstract

Current Reinforcement Learning (RL) is often limited by the large amount of data
needed to learn a successful policy. Offline RL aims to solve this issue by using
transitions collected by a different behavior policy. We address a novel Offline RL
problem setting in which, while collecting the dataset, the transition and reward
functions gradually change between episodes but stay constant within each episode.
We propose a method based on Contrastive Predictive Coding that identifies this
non-stationarity in the offline dataset, accounts for it when training a policy, and
predicts it during evaluation. We analyze our proposed method and show that it
performs well in simple continuous control tasks and challenging, high-dimensional
locomotion tasks. We show that our method often achieves the oracle performance
and performs better than baselines.

1 Introduction

A main challenge of Reinforcement Learning (RL) is the large amount of interactions required to learn
a proficient policy. One recently popular way to tackle this challenge is to use Offline Reinforcement
Learning (Levine et al., 2020). In Offline RL we aim to learn a policy from a given dataset of
previous transitions generated by a different behavior policy, without needing to interact with the
environment further. This avoids the cost and potential risks of online data collection, allowing us
to collect large datasets. Consider, for example, a policy being trained to improve the controller of
a deployed pick and place robot. Over shorter time frames, we would not expect wear and tear to
have a large effect on the robot: We can expect our environment to be stationary, i.e., the reward
and transition functions should be the same over the course of data collection. However, if we collect
the dataset over a longer time frame wear and tear does occur, leading to nonstationarity which
causes an important challenge to real world RL (Dulac-Arnold et al., 2021). With recent works such
as Kalashnikov et al. (2021) training on multiple robots over time-frames of up to 16 months, this
challenge is becoming increasingly relevant.

As episodes tend to be short compared to the lifespan of a robot, we can assume that the change
in transition and reward functions during each episode is small. We thus tackle this setting by
making the structural assumption of a slowly evolving non-stationarity, that remains fixed during
each episode and changes between them, allowing us to formulate the setting as multiple rollouts
of a Dynamic-Parameter MDP (DP-MDP) (Xie et al., 2021). A DP-MDP is a Hidden-Parameter
MDP (HiP-MDP) (Doshi-Velez & Konidaris, 2013) in which the hidden-parameter (HiP) depends on
the previous HiPs. One way to address our problem setting is to use Bayes-Adaptive RL methods,
such as BOReL (Dorfman et al., 2021) or ContraBAR (Choshen & Tamar, 2023). These methods
learn a policy that optimally identifies and exploits the HiP during the same episode. Another way
to approach our problem setting is to derive an offline variant of a lifelong-learning methods like
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Figure 1: We address an Offline RL setting in which the dataset is generated from multiple de-
ployments with evolving non-stationarity. We make the structural assumption of the reward and
transition functions depending on a hidden-parameter z that is constant during each episode but
evolves between episodes. Following this assumption, we develop a method based on Contrastive
Predictive Coding that infers the hidden parameter from the deployments in our dataset. We then
train a predictor and policy to use during evaluation with access to context trajectories.

Lifelong Actor Critic (LILAC) (Xie et al., 2021) which trains a Dynamic Variational Autoencoder
(VAE) (Chung et al.) to learn a model of the reward and transition functions. However, as we will
discuss in detail later, these methods contain techniques (reward relabeling, policy replaying, and
hard negative mining) that are not applicable in our setting and struggle in high-dimensional tasks
with changing transition functions.

We therefore propose a method that avoids the need for these additional techniques and performs
well in high-dimensional tasks by using Contrastive Predicitive Coding (CPC) (Oord et al., 2019).
We show that our method is able to learn a meaningful representation of the HiP, identify it in
the dataset, predict it during evaluation and use it to learn an effective policy. To summarize our
contributions, we 1) propose a new offline RL problem setting of learning from a dataset including
a structured nonstationarity, 2) address this setting by deriving a method based on CPC that infers
the non-stationarity in the dataset and predicts it during evaluation, 3) show that our method
outperforms baselines in both simple and high-dimensional continuous control tasks and publish our
code and datasets for the community to use.

2 Background

In this section, we will briefly describe the necessary background on RL, CPC and HiP-MDPs.

2.1 Reinforcement Learning

In RL, we are given an MDP M = (S,A,R, p, p0) with, in this work, continuous state space S,
continuous action space A, deterministic reward function R(s, a), transition probability density
p(s′|s, a) and initial state density p0(s) (Sutton & Barto, 2018). We then aim to learn a policy with
conditional probability density π(a|s) of choosing action a in state s, that maximizes the expected
return J = E

[∑H
t=0 rt

]
, where H is the duration of an episode. We refer to a rollout of this MDP

as trajectory τ = (s0, a0, r0, . . . , sH , aH , rH).One important quantity of interest is the value function
Q(s, a) = E[

∑
t γ

t−1rt|s0 = s, a0 = a]. A common way to estimate it is to use the recurrent formula
Q(s, a) = r(s, a) + γE[Q(s′, a′)], where s′, a′ are the subsequent state and action. In the continuous
control setting, Twin Delayed Deep Deterministic Policy Gradient (TD3) (Fujimoto et al., 2018) is
one popular method to learn the policy. As an actor-critic method it consists of a critic-network Qθ
that estimates the action-value function and a deterministic policy µϕ : S → A. Both are represented
as Multi Layer Preceptrons (MLPs) with parameters θ and ϕ respectively and the policy is updated
according to the deterministic policy gradient ∇ϕJ(ϕ) = E[∇ϕµϕ(s)∇aQθ(s, a)|a=µϕ(s)].
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In Offline RL, we train a policy from a dataset of transitions D = {(si, ai, ri, s′i)}ND
i=1 obtained by

executing a behavior policy β(a|s). The main challenge in Offline RL is the distribution shift between
the states visited and actions chosen by the behavior policy β and the learned policy π (Levine et al.,
2020). If the shift is large, estimates of the Q-value become inaccurate, leading to the policy choosing
actions that result in a poor performance. Therefore, methods such as TD3 do not perform well if
applied directly in Offline RL (Fujimoto & Gu, 2021), and instead most methods introduce some
way to constrain the learned policy π to remain close to the behavior policy β. TD3+BC (Fujimoto
& Gu, 2021) is a successful Offline RL method that achieves this by adding a behavior cloning (BC)
penalty E(s,a)∼D[(π(s) − a)2] to the policy loss, weighted by a hyperparameter λ > 0.

2.2 Contrastive Predictive Coding

CPC (Oord et al., 2019) uses contrastive learning to learn a representation ct for a sequence of
observations o1:t

1. Each observation o is first encoded by the same encoder genc, yielding encodings
xt = genc(ot). These encodings are then processed by an auto-regressive model gar, such as a
Gated-Recurrent Unit (GRU) (Cho et al., 2014), which gives us a representation of the sequence
ct = gar(x1:t). We then take the future observation o+

t+k from the same sequence as a positive
sample and sample a set of N− observations {o−,j

t+k}N−
j=1 from different sequences as negative samples.

A classifier fk(ct, xt+k) is then trained to classify which embeddings are from the positive sample
x+
t+k = genc(o+

t+k) or negative samples x−,j
t+k = genc(o−,j

t+k). The encoder genc, autoregressive model
gar and classifier f are trained jointly to optimize the InfoNCE loss:

LInfoNCE = −E

[
log

exp fk(ct, x+
t+k)

exp fk(ct, x+
t+k) +

∑N−

j=1 exp fk(ct, x−,j
t+k)

]
, (1)

which is minimized when the classifier is proportional to the density ratio of a sample being from the
conditional density p(ok+t|ct) instead of the proposal density p(ok+t), i.e., f(ot+k, ct) ∝ p(ok+t|ct)

p(ok+t) ,
thereby maximizing the mutual information I(ct; ot+k) (Oord et al., 2019).

2.3 Partially-Observable MDPs

In the classical MDP the reward function R and transition function P are stationary during training,
i.e., they do not change. While this assumption is easily satisfied in constructed examples, in
realistic settings external influences and unobservable factors can make it difficult or impossible to
choose a state formulation that permits a stationary transition and reward functions. Partially-
Observable MDPs (POMDPs) (Åström, 1965) extend the MDP formulation by assuming that while
the transition and reward functions seem non-stationary from the given observation s, they are
stationary given the unobserved state ŝ. The observation is given by an observation function h :
Ŝ → S. We can represent any kind of non-stationary transition- or reward-function as a POMDP,
however, the generality of the formulation makes efficient training difficult. HiP-MDPs introduced
by Doshi-Velez & Konidaris (2013) address this issue by constraining the true state ŝ to be the
combination of the observation received by the agent with a hidden parameter z, i.e. ŝ = (s, z).
While in general continuous sets of HiPs can be considered, following related works (Xie et al., 2021;
Dorfman et al., 2021) we focus on a discrete set of HiPs Z in our experiments and thus also in the
rest of this work. This HiP is sampled at the beginning of each episode from a distribution z ∼ P (z)
and remains constant throughout the episode. The transition function P (s′|s, a, z) then depends
on the hidden parameter z. DP-MDPs (Xie et al., 2021), visualized in Fig. 2 (left), generalize the
HiP-MDP by considering a structured evolution of HiPs:
Definition 2.1. Dynamic-Parameter MDP (Xie et al., 2021) A DP-MDP is a is an MDP with
the addition of a HiP space Z, transition probability Pz(zi|z0:i−1), and initial probability Pz0(z0).
The HiP is constant during each episode and follows Pz(zi|z0:i−1) between episodes. The transition
density p(s′|s, a, z) and reward function R(s, a, z) depend on the HiP.

1We sometimes use the notation xa:b := (xa, xa+1, . . . , xb) for brevity.

2142



RLJ | RLC 2024

2.4 Bayes-Adaptive RL

The HiP-MDP setting can be addressed by Bayes-Adaptive RL methods, which train a policy that
infers and exploits the HiP during an episode. Variational Bayes Adaptive Deep RL (VariBAD) (Zint-
graf et al., 2020) achieved this by training a VAE with a Gaussian encoder [µt,Σt] = qϕ(s1:t, a1:t, r1:t),
reward decoder pr,ϕ(rt′ |st′ , at′ , b̃t) and transition decoder pt,ϕ(s′

t′ |st′ , at′ , b̃t), for 1 ≤ t′ << t, where
b̃t ∼ N (µt,Σt). N (µ,Σ) is a multivariate Gaussian distribution with mean µ and diagonal covari-
ance matrix Σ. bt = (µ,Σ) is the belief over the current HiP, which the policy is then conditioned
on. Dorfman et al. (2021) investigated the application of VariBAD to offline datasets generated
by behavior policies β(a|s, z), conditioned on the task HiP z, and introduced Bayes Adaptive Of-
fline Reinforcement Learning (BOReL) with two new techniques that enable successful training:
Reward Relabeling which for each transition (s, a, r, s′) in the dataset creates additional transitions
(s, a,R(s, a, zi), s′) for all HiPs zi ∈ Z. Policy Replaying, which generates trajectories with HiP z us-
ing the behavior policy conditioned on each other HiP zi ̸= z. Choshen & Tamar (2023) introduced
Contrastive Bayes Adaptive Deep RL (ContraBAR) which instead of a VAE uses CPC to learn a
belief over the HiP. Specifically, it encodes transitions using an encoder zt = genc(st, at−1, rt) and
combines them using a Recurrent Neural Network (RNN) to a belief bt = gar(z1:t), which is trained
by discriminating the next transitions (s+

t+k, r
+
t+k) from the same episode against those from a dif-

ferent episode (s−
t+k, r

−
t+k). However, as they pointed out, it is possible to discriminate the future

transition not by learning a belief over the HiP but by learning a transition model p(st+k|st), leading
the training to fail. To prevent this they used hard negative mining, either by reward relabeling when
only the reward changes or by simulating transitions when the transition function changes, requiring
access to a simulator of the environment. As we will see in the next section, reward relabeling is not
applicable in our setting as we do not consider access to the reward function, policy replaying is not
applicable as our behavior policy is not conditioned on z and hard negative mining is not applicable
as we do not have access to a simulator of the environment.

2.5 Problem Formulation

Recall that our motivation is a setting in which data is collected from multiple deployments over an
extended time-frame. As episodes tend to be short compared to the lifespan of a deployment, it is
reasonable to assume stationarity during the duration of each episode, making the DP-MDP (Xie
et al., 2021) a natural fit. We further assume that the data is generated by a behavior policy β(a|s),
that does not have access to the HiP z, for example a robust controller that performs well but not
optimally on all HiPs. We aim to improve on this behavior policy by inferring and using the HiP z.

Problem Setting: We are given a dataset D = {dj}Nj=1 consisting of N deployments d =
(τ1, . . . , τi, . . . , τM ), each containing M trajectories τi. Each deployment d is a rollout of the same
DP-MDP M. The deployments are generated by, for each deployment, first sampling a HiP sequence
z0 ∼ Pz0(z), zi ∼ Pz(zi|z1:i−1) and then each trajectory τi is generated by sampling s0 ∼ p0(s) and
following behavior policy β(a|s), transition density p(s′|s, a, zi), and reward function R(s, a, zi). Dur-
ing evaluation we are given a context of Nc previous trajectories τi−Nc:i−1 generated by the behavior
policy β and our objective is to learn a policy conditioned on the context π(a|s, τi−Nc:i−1) that max-
imizes the return over the next episode, i.e., J = Eπ,Pz,P,P0,zi−Nc:i−1,τi−Nc:i−1

[∑H
t=0 R(st, at, zi)

]
.

3 Algorithm

We introduce our proposed method named Contrastive Predictive Non-Stationarity Adaptation
(COSPA). As the reward and transition functions depend on the HiP zi, we first must infer it
in the dataset, use it to train a policy and then predict it during evaluation. The offline setting
allows us to separate these steps and train an inference model and predictor model first.

Inferring the Hidden Parameter From the generative model of the DP-MDP, shown in Fig.
2, we know that the next episode τi with HiP zi only depends on the HiPs (zi−1, zi−2, . . . , z1) of

2143



RLJ | RLC 2024

Figure 2: Left: Graphical model of the DP-MDP. Right: Illustration of a deployment sampled
from the dataset and our approach to infer the hidden variable. We use Contrastive Predictive
Coding to learn a model that can discriminate future trajectories τi+k based on past trajectories
(τi, τi−1, . . . , τ1) by learning a representation of the past trajectories (z̃i, z̃i−1, . . . , z̃1).

previous episodes (τi−1, τi−2, . . . , τ1). One way of learning to infer an approximate HiP z̃ in this
setting is to derive an offline variant of LILAC (Xie et al., 2021). LILAC trains a Dynamic VAE with
an encoder z̃i = qϕ(τi), dynamic prior pψ(z̃i|z̃i−1, . . . , z̃1) and decoder pϕ(τi|z̃i). While training an
accurate decoder pϕ(τi|z̃i) is feasible in settings with varying reward functions or in low-dimensional
problems, it becomes challenging in high-dimensional settings with small variations in the transition
function, as we will see in the experiments in Section 4.1.

Instead of learning a generative model pϕ(τi|z̃i), it is often easier to learn a discriminative model.
This makes the application of contrastive learning and in particular CPC a natural choice for our
problem setting. As shown in Fig. 2 (right), we treat each trajectory τ as an observation of a
time-sequence, encode them separately using an encoder z̃i = genc(τi) and then summarize the
past encodings to a context ci using an autoregressive encoder ci = gar(z̃i, z̃i−1, . . . , z̃1). Finally, in
the InfoNCE loss, a classifier f(ct, τt+k) is used to distinguish a future trajectory τ+

i+k of the same
deployment from negative trajectory samples {τ−,j

i+k}N−
j=1 from different deployments. The InfoNCE

loss in (1) therefore becomes

Lrepr = −E

[
log

exp fk(τ+
i+k, ci)

exp fk(τ+
i+k, ci) +

∑N−

j=1 exp fk(τ−,j
i+k, ci)

]
. (2)

This structure is shown in Fig. 2 (right). As we learn to discriminate future trajectories τ+
i+k, instead

of future transitions (s+
t+k, r

+
t+k) as in ContraBAR, the model can not simply learn the transition

function p(st+k|st) but has to learn a representation of the HiP z to discriminate τi+k.

Following the same argument as Oord et al. (2019), we can show that minimizing this loss maximizes
the mutual information I(ci; τi+k), which we show in Appendix B for completeness. We could thus
directly use ci as an approximation of the hidden parameter zi+k. However, this would have the
disadvantage of requiring at least k episodes as context during evaluation, and prevent usage of the
first k episodes per deployment during training. We avoid this issue by using the output of the
encoder z̃i = genc(τi) as an approximation of the HiP, obtaining the augmented dataset D̂ with
ŝ = (s, z̃) to train the policy π, and train a separate prediction network to use during evaluation.

Predicting the Next Hidden State During evaluation we only have access to a context of Nc
previous trajectories and need to infer the next HiP τi+1 to condition our policy on. We therefore
train a predictor RNN fpred to predict the next HiP zi+1. To train it, we sample sequences of
inferred latents (z̃i−Nc , . . . , z̃i) from the dataset D̂ and minimize the mean squared error Lpred =
E(z̃i−Nc ,...,z̃i)∼D̂[(fpred(z̃i−Nc , . . . , z̃i−1) − z̃i)2]. As we will show in Section 4.1, we found that this
works well even with relatively simple network structure, consisting of two hidden layers and a GRU.
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1D-Goal 2D-Goal 2D-Wind Ant-Leg Ant-Weight Barkour-Weight

Figure 3: Illustrations of our evaluation environments. From left to right: 1D-Goal, 2D-Goal, 2D-
Wind, Ant-Leg, Ant-Weight, Barkour-Weight. In 1D-Goal and 2D-Goal the goal location and thus
the reward function depends on the HiP z. In the remaining tasks the transition function changes.

Reinforcement Learning Having inferred the HiP and relabeled our offline dataset as ŝ = (s, z̃),
we now need to train a policy π(a|ŝ). While in principle any Offline RL method may be used, we
need to consider how our problem setting differs from the popular D4RL benchmark (Fu et al., 2021),
which many popular methods are designed for. More so than in D4RL, our setting requires large
deviations from the behavior policy due to the difference in transition and reward functions. This
makes methods such as Advantage-Weighted Regression (Peng et al., 2019) or Implicit Q Learn-
ing (Kostrikov et al., 2021) that contain strong constraints to in-dataset actions disadvantageous.
TD3+BC (Fujimoto & Gu, 2021) uses a deterministic policy µϕ(s) and conservativity is achieved
by a BC term E(s,a)∼D

[
(µϕ(s) − a)2]

. In our setting we extend this to E(s,a,z̃)∼D̂
[
(µϕ(s, z̃) − a)2]

,
which can be estimated using samples from the augmented dataset D̂. We can adjust the strength
of this constraint by varying the hyperparameter λ, allowing more flexibility to learn the policy µϕ,
and thus use TD3+BC in our experiments.

4 Implementation and Experiments

We make several design choices in the implementation of our method to enable efficient training.
We implement genc as a two-layer MLP with ReLU activations, gar as a GRU (Cho et al., 2014)
and the classifier f as an MLP with two hidden-layers. One important consideration is how to
encode the trajectory τ with encoder genc. To enable efficient training, we use sampled transitions
(st, at, rt, st+1) as input. This works well in tasks with changing transition dynamics, such as changes
to the configuration of a robot, or dense reward functions. For sparse reward tasks recurrent encoders
can be considered, but we focus on the case with changing transition functions. When augmenting
the dataset, we average the output over each trajectory, i.e., each transition of trajectory τi is
augmented with the average embedding 1

H

∑H−1
t=1 genc(st, at, rt, st+1) of the trajectory. We further

use a low dimensionality (2, 4, 8) for z̃ and normalize it before using it in the policy training. The
prediction RNN fpred is implemented as a two-layer MLP followed by a GRU. For TD3+BC, we
use similar parameters to the ones proposed by the authors Fujimoto & Gu (2021), but decrease
the strength of the BC penalty to account for the larger difference between behavior policy and
optimal policy. Finally, we also add layer-normalization (Ba et al., 2016) after each hidden layer of
the critic, as suggested by Kumar et al. (2022). We implement our method using JAX and publish
our implementation.2 We use the same RL hyper-parameters per environment for all methods, but
optimize the hyper-parameters of our baseline representation methods by extensive grid-search per
task on the low-dimensional and Ant tasks. Additional details can be found in Appendix C.

4.1 Evaluation

To validate our approach, we compare its performance with multiple baselines: 1) Blind, where we
do not add any information to the states in the offline dataset, ŝ = (s). 2) Oracle, where we augment

2see https://github.com/JohannesAck/OfflineRLStructuredNonstationarity
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Figure 4: Comparison of the learned representations. The left side shows T-SNE visualizations,
the right side shows the mean test accuracy with 95% CIs across 20 trials of linear probes trained
to predict the ground-truth HiPs. Each dot is the embedding of a trajectory, the HiP of which is
represented by the color. For BOReL and VRNN the mean µ of the posterior is visualized.

the dataset with the ground-truth HiP ŝ = (s, z). Note that this value is not accessible in practice.
3) BOReL, a method that infers the HiP during the episode using a VAE (Dorfman et al., 2021). As
we are not able to use reward relabeling or policy replaying for the complete BOReL, we denote it
with BOReL–. 4) ContraBAR–, ContraBAR (Choshen & Tamar, 2023) addresses the same setting
as BOReL, but like us uses a CPC-based architecture. We are not able to use reward relabeling or
hard negative mining and therefore denote it ContraBAR–. 5) VRNN, we also evaluate a Dynamic
VAE based method, similar to the LILAC (Xie et al., 2021) which was proposed to address the
online DP-MDP setting. Our implementation deviates from LILAC by using a Variational RNN
(Chung et al.) as dynamic VAE, as we found it to perform well in preliminary experiments. We also
use TD3-BC to train the policy, while LILAC uses SAC.

To generate our dataset, we train a policy using TD3, or PPO for Barkour, in the same DP-MDP
without access to the HiP. As the HiP changes after each episode, this is similar to utilizing domain
randomization (Tobin et al., 2017), resulting in a robust policy that is not specialized to any HiP
but close to optimal on the "marginal" MDP, i.e., an MDP where the transition density and reward
functions are marginalized over z. We then collect the dataset by generating rollouts with the same
exploration noise as during training. Our evaluation tasks are based on related work (Xie et al.,
2021; Dorfman et al., 2021) and we begin with three low-dimensional tasks: In 1D-Goal the agent
starts in a random position and navigates to one of two goals, while in 2D-Goal the agent moves
to a goal location on a circle, the exact position of which depends on the HiP z. In 2D-Wind we
instead change the transition function, by adding a disturbance to the location depending on the
HiP z. As higher-dimensional tasks we consider two variations of the well known Ant (Schulman
et al., 2018) task, simulated using BRAX (Freeman et al., 2021). In Ant-Weight we vary the mass
of the body of the ant to simulate a varying load, in Ant-Leg we change the length of the legs of the
ant to simulate dyanmics change due to wear and tear. Finally, in Barkour-Weight we validate our
approach on a realistic simulation of a full robot. We utilize the simulation of the Barkour robot
provided by Caluwaerts et al. (2023), which they have shown to be successful in sim-to-real transfer.
We therefore consider it to be a good proxy for real world applications. Note that the observation
here includes the last three observations and actions, st = (ot−2, at−2, ot−1, at−1, ot), such that the
weight could be inferred without any additional input. We illustrate these tasks in Fig. 3.

We split our evaluation into three parts: 1) Does the model learn a useful representation of the HiP?
2) Can we accurately infer the next latent during evaluation? 3) Does this allow us to learn a better
policy from the offline dataset?

Learned Representation To evaluate our learned representation of the HiP, we follow common
practices from the representation learning community (Nozawa & Sato, 2022). We quantitatively
evaluate the learned representation using linear probes and qualitatively evaluate it using T-SNE
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Figure 5: T-SNE visualization of the inferred latents z̃ as crosses (×), and predicted latents z̄i =
fpred(z̃i−Nc , . . . , z̃i−1) as circles (◦).
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Figure 6: Results of our proposed method on the evaluation environments. Shown are the mean
evaluation rewards for 20 seeds per experiment, the shaded areas show 95% confidence intervals.

(Maaten & Hinton, 2008) to visualize the learned representation. As we show in Fig. 4, our method
learns a representation which captures the underlying structure well, clustering tasks by HiP. The
baselines perform reasonably well in the 2D-Goal task. On the more difficult Ant-Weight task, our
method performs significantly better. While we can see some structure in the representations learned
by the ContraBAR and BOReL baselines, they are not able to learn a useful representation.

Next Latent Prediction As we need to predict the latent z̃i from the given context during de-
ployment, we also evaluate the prediction. We visualize the similarity between predicted latent
z̄i = fpred(z̃i−Nc:i−1) and inferred latents z̃i = genc(τi) by embedding them in a shared T-SNE
visualization. The results are shown in Fig. 5, and we can see a good correspondence between
the inferred and predicted latents. The predicted latents are more concentrated than the inferred
latents, which can be explained by the denoising properties of the regression loss.

Offline RL Having shown that our method is able to identify a useful latent and predict it during
inference, we now evaluate the performance of policies trained with the augmented state ŝ = (s, z̃).
The results are shown in Fig. 6. Overall, our proposed method performs well, matching or exceeding

Blind Oracle VRNN- BOReL ContraBAR- COSPA (ours)
1D-Goal −50.95 ± 0.02 −20.79 ± 2.40 −21.86 ± 3.96 −36.41 ± 4.32 −42.43 ± 3.85 −18.59 ± 1.83
2D-Goal −52.34 ± 0.10 −31.48 ± 1.46 −56.20 ± 3.47 −52.09 ± 1.18 −68.77 ± 6.63 −36.39 ± 2.72
2D-Wind 18.88 ± 2.03 22.81 ± 2.01 13.03 ± 2.75 10.63 ± 2.17 12.04 ± 4.45 23.63 ± 2.38

Ant-Weight 2797 ± 87 2750 ± 98 3035 ± 211 2637 ± 188 2715 ± 79 3104 ± 100
Ant-Leg 1273 ± 142 1407 ± 92 1231 ± 98 862 ± 121 1201 ± 92 1493 ± 97

Barkour-Weight 17.19 ± 0.40 18.71 ± 0.05 15.34 ± 0.46 17.22 ± 0.50 14.90 ± 1.38 18.13 ± 0.14

Table 1: Evaluation reward at the end of the training. Mean and 95% CI across 20 trials. The best
performing method and overlapping CIs without access to privileged information are printed bold.
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Figure 7: Left: Performance on 2D-Goal when using a noisy ground-truth HiP, with a uniformly
random HiP being chosen with probability σ to achieve a desired P (z̃ = z). Right: Performance of
our method on 1D-Goal with varying randomness of the HiP transition. Both show means and 95%
CI across 10 trials.

the Oracle performance in most tasks. Interestingly, our proposed method and VRNN perform better
than the Oracle in the Ant-Weight task. One explanation for this is that the learned representation
is better able to represent similarity between different HiPs than the simple ground-truth weight
value. While the baselines perform well in the simple 1D-Goal task, they generally do not perform
well in the more difficult settings, sometimes performing worse than the blind baseline. As noted
above, in the Barkour-Weight task the state includes the previous two observations and actions, in
principle allowing even the blind baseline to perform optimally. However, we find that in practice
our method still performs significantly better with the inclusion of the inferred latent z̃.

ContraBAR and BOReL The relatively poor performance of the ContraBAR– and BOReL–
baselines in some of our experiments might be surprising, we therefore highlight some differences
between their settings and ours to explain the difference in performance. Compared to BOReL and
(offline) ContraBAR, one signficant difference is the nature of the datasets and environments. While
BOReL and offline ContraBAR were designed for datasets generated by task-specific policies for each
different HiP, our datasets are generated by a HiP-agnostic policy, making the task inference more
challenging. Further, the majority of the experiments by Dorfman et al. (2021) and Choshen &
Tamar (2023) focus on settings with varying reward functions, while our setting focuses on settings
with varying transition functions. Finally, as outlined above, the techniques of reward relabeling,
policy replaying and hard negative mining are not applicable in our setting and are shown to be
important in the ablations in Dorfman et al. (2021); Choshen & Tamar (2023).

4.2 Further Experiments

It is interesting that BOReL performs relatively poor in the 2D-Goal task, while achieving a relatively
high linear probe accuracy. To investigate this finding, we perfomed an experiment in which we
simulate a noisy Oracle that returns the correct HiP with probability P (z̃ = z) and else returns a
uniformly random different HiP. The results in Fig. 7 (left) show that even with a relatively high
accuracy P (z̃ = z) = 0.84 the noise can lead to significantly worse results. This is consistent with
results in Yang et al. (2022; 2024), showing the sensitivity of Offline RL to state noise.

We are also interested in the question of when our method should be prefered over Bayes Adaptive
approaches such as BOReL and ContraBAR. Intuitively, our method should perform better when
the next HiP can be accurately predicted, while Bayes Adaptive methods should be preferable if it
is less predictable, i.e. closer to a HiP-MDP than a DP-MDP. In Fig. 7 (right) we show the attained
reward when the HiP transition function P (zi|z1:i−1) is changed to a uniformly random HiP with
probability σ. The results align with our intuition of our method performing better than BOReL
when the HiP is predictable, but worse when it becomes less predictable.
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5 Conclusion

We investigated a novel problem setting in Offline Reinforcement Learning, in which the training data
is generated from multiple deployments with non-stationary transition and reward functions. The
problem is formulated as multiple rollouts of a Dynamic-Parameter MDP, a Hidden-Parameter MDP
(HiP-MDP) in which the HiP evolves across trajectories. We proposed a method using contrastive
learning that learns a representation of the HiP, predicts the HiP during evaluation and trains a
policy conditioned on it. We showed that our method is able to learn a useful representation of the
HiP, allowing us to train a policy that often performs better than baseline methods in experiments.

Acknowledgements

J.A. was supported by the Microsoft Research Asia D-CORE program. T.O. was partially supported
by JSPS KAKENHI Grant Number JP23K18476.

A Further Related Work

We will here discuss additional related work, first on Nonstationary RL, then Multi-Task Offline RL
and finally Contrastive Learning in RL.

Nonstationary RL The perhaps closest related work has been presented by Xie et al. (2021),
in which they propose the DP-MDP formulation which we use in our problem setting. Unlike
us, their work focuses on an online lifelong-RL setting with a single deployment for both training
and evaluation. They also proposed the method LILAC, an offline variation of which we use as a
baseline. Chen et al. (2022) address non-stationary environments with piece-wise stable context.
They address a setting where parts of each episode are stationary, but do not consider structure
between tasks. Wang et al. (2023) derive a robust method to test whether nonstationarity occurs in
a given offline RL dataset. Their work focuses on identifying whether such non-stationarity occurs,
while we focus on how we can learn a policy that adapts to it. Yin & Wang (2021) provide a
theoretical investigation of nonstationary Offline RL in a setting where the nonstationary occurs
during each episode but not between episodes, while in our setting it occurs between episodes and
not within each episode. Dulac-Arnold et al. (2021) also discusses non-stationarity introduced by
wear and tear and proposes environments to investigate these challenges in online RL. Chandak
et al. (2022) consider off-policy evaluation in a generalization of the DP-MDP in which the next
HiP depends on the previous HiPs and the actions taken within the previous episode. Off-policy
evaluation is an important step towards Offline RL, but it is not immediately clear how to extend
their method to the control setting or to complex environments which we address in our work.

Multi-Task Offline RL A related setting to ours is Multi-Task Offline RL. The main difference
is that in Multi-Task RL we are given the task identity during training and therefore do not have
to learn an inference model in an unsupervised setting. Li et al. (2020) and Li et al. (2022) propose
methods to address such a setting where the task ID is given during training and can therefore not be
applied to our setting. Liu et al. (2022) and Xue et al. (2023) address the Offline Transfer Learning
setting, in which a large amount of source domain data is available but limited target domain data
with different dynamics.

Contrastive Learning CPC (Oord et al., 2019) has been used in RL before, the original authors
themselves used it as an auxiliary loss in Atari tasks (Oord et al., 2019). ContraBAR (Choshen &
Tamar, 2023) proposed to use CPC to learn Bayes-Optimal policies in the Bayes adaptive RL setting
(Zintgraf et al., 2020). Aside from CPC, other contrastive learning approaches have been applied in
RL, for representation learning (Kipf et al., 2019; Srinivas et al., 2020; van der Pol et al., 2020), or
for domain inference networks in multi-task RL (Li et al., 2022; Lan et al., 2023).
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B Theoretical Analysis of CPC Inference

For completeness, we show our derivation which follows the original CPC paper closely (Oord et al.,
2019) and is related to those by Choshen & Tamar (2023), which studies CPC in a Bayes-Adaptive
MDP setting.

One difference to note between our setting and that considered in Choshen & Tamar (2023), is the
change of the hidden-parameter between episodes and therefore between inputs to the CPC model.
While in their setting the hidden-parameter is the same for all inputs (transitions), in our setting it
evolves between inputs (trajectories). We provide a full illustration of the data generation graphical
model and CPC model in Fig. 8:

Figure 8: Illustration of the data generation and our model.

To show that CPC maximizes the mutual information between ci and τi+k, we use the same deriva-
tion as 2.3 and A.1 of Oord et al. (2019):
Lemma B.1. Let the InfoNCE loss in equation 2 be jointly minimized by f, genc, gar, then for any
trajectory τ , with ci = gar(genc(τi−1, τi−2, . . . , τ1)), we have

f(τi+k, ci) ∝ P (τi+k|ci)
P (τi+k)

Proof. This follows from the InfoNCE loss (2) being the categorical cross-entropy of correctly clas-
sifying the positive sample in the given batch of samples B = (τ1

i+k, . . . , τ
N
i+k). Following Oord et al.

(2019), we can write the classification problem as learning a classifier P (d = o|B, ci) with [d = o]
being the indicator of the positive sample (omitting the subscript i+ k for all τ):

p(d = o|B, ci) =
p(τo|ci)

∏
l ̸=o p(τ l)∑N

j=1 p(τ j |ci)
∏
l ̸=j p(τ l)

=
p(τo|ci)
p(τo)∑N

j=1
p(τj |ci)
p(τj)

,

which we can see is proportional to P (τi+k|ci)
P (τi+k) . As such, the optimal value of the classification problem

learned by f(τi+k, ci) is proportional to it as well.
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Lemma B.2. Let the InfoNCE loss in equation 2 be jointly minimized by f, genc, gar, then for any
trajectory τ , with c = gar(genc(τi−1, τi−2, . . . , τ1), we have

Lrepr ≥ log(N − 1) − I(τi+k; ci)

Proof. Let Bneg be the negative samples in a batch B. By inserting the optimal value of f(τi+k, ci)
into the loss function (2), we get (omitting the subscript i+ k for all τ)

Lrepr = −E log




p(τ+|ci)
p(τ+)

p(τ+|ci)
p(τ+) +

∑
τ−∈Bneg

p(τ−|ci)
p(τ−)




= E log


1 + p(τ+)

p(τ+|ci)
∑

τ−∈Bneg

p(τ−|ci)
p(τ−)




≈ E log
[
1 + p(τ+)

p(τ+|ci)
(N − 1)Eτ−

p(τ−|ci)
p(τ−)

]

= E log
[
1 + p(τ+)

p(τ+|ct)
(N − 1)

]

≥ E log
[
p(τ+)
p(τ+|ct)

(N − 1)
]

= H(τ+|ci) −H(τ+) + log(N − 1)
= −I(τ+; ci) + log(N − 1) .

C Implementation Details

Our implementation is available on github, additional implementation details can be found there.
Note that we smooth the reward plots with a moving window of size 3 for clarity. Confidence
intervals and means are calculated across trials consisting of representation learning and offline RL
with a fixed dataset for all trials.

C.1 Environments

We use the same DP-MDPs and thus the same sets of HiPs in training and evaluation.

C.1.1 Low-Dimensional Tasks

In 1D-Goal, the state space is S = [−2, 2] and action space is A = [−0.1, 0.1]. The initial state
is uniformly sampled from S and the goal g is at g = z ∈ {−1, 1}, depending on the hidden
parameter z. The deterministic transition function is st+1 = st + at and the reward is the negative
absolute distance to the goal location rt = −|st − g|. The hidden parameter deterministically
switches each episode, i.e. P (zi+1 = −1|zi = 1) = P (zi+1 = 1|zi = −1) = 1, with each deployment
consisting of 10 episodes. For the experiment in Fig. 7 (right), we change the transition function to
P (zi+1 = 1|zi = −1) = P (zi+1 = −1|zi = 1) = 1 − σ/2.

Our 2D-tasks are a continuous environment with action space S = [−2, 2]2 and action space
A = [−0.1, 0.1]2. The transition function is deterministic and follows st+1 = st + at. The goal is to
navigate to a goal location. In 2D Goal, the agent starts at a uniformly random location and the re-
ward function is the negative Euclidean distance to the goal location rt = −|st−g|2. The goal location
g lies on the unit circle and is determined by the hidden-parameter z: g(z) = (sin(z), cos(z))⊺. The
hidden-parameter follows a triangle-wave with period 8 with z ∈ [0, 3

2π], i.e.z ∈ {0, 3
8π,

6
8π,

9
8π,

3
2π}

, and each deployment is 20 episodes long. This task is similar to "Semi-Circle" in Dorfman et al.
(2021).
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In 2D Wind, the agent always starts at the origin (0, 0)⊺ and the goal location is always g = (1, 0)⊺.
Here we use a sparse unit reward rt = 1 if the distance |st − g|2 < 0.2, else no reward is given
rt = 0. The dynamics are changed to include a disturbance, st+1 = st + at + 0.09(sin(z), cos(z))⊺,
where z follows a sawtooth-wave with period five on [0, 2π], i.e. z ∈ {(0, 2

5π,
4
5π,

6
5π,

8
5π}, and each

deployment is 20 episodes long. This task is based on "Wind" in Dorfman et al. (2021).

C.1.2 Ant

We modify the Ant environment provided in Brax (Freeman et al., 2021) to allow for multiple
different robot configurations. We keep the original reward function, which rewards the robot for
forward movement.

In Ant-Weight, we modify the mass of the base (the sphere) of the robot by multiplying it by the
current hidden-parameter z. For the HiP evolution we here use a sawtooth-wave with period 5 and
z ∈ [0.5, 2.5], i.e. z ∈ {0.5, 1.0, 1.5, 2.0, 2.5}, with each deployment lasting 20 episodes. We use the
default observation.

In Ant-Leg we multiply the length of each leg, both the "femur" and "tibia", by the hidden-
parameter z. We again use a sawtooth-wave with period 5 and z ∈ [0.75, 1.25], i.e. z ∈
{0.75, 0.875, 1.0, 1.125, 1.25}, with 20 episodes per deployment. We alter the observation by removing
the z-component of the position of the base, as it otherwise directly represents the hidden-parameter
in the first timestep.

C.1.3 Barkour

Unlike for the Ant experiment, for Barkour we now use Mujoco-MJX to simulate the robot and
modify the environment provided in the Mujoco-MJX Tutorial.3 The Barkour environment usually
trains the robot to track an input command linear velocity and angular velocity, which is sampled
uniformly during training. As this sampling adds a high amount of variance to reward function, we
change the reward-function by setting a constant desired forward velocity and removing the reward
for angular velocity tracking. We use this altered reward to finetune a pretrained Barkour policy and
then also to collect the dataset and evaluate the Offline RL policy. To simulate the robot having to
carry a varying load, we alter the weight of the chassis by multiplying it with the hidden-parameter,
following a sawtooth-wave with period 5 in z ∈ [1.0, 4.0], i.e. z ∈ {1.0, 1.75, 2.5, 3.25, 4.0}, for 15
episodes per deployment. This task is inspired by "minitaur-payload" in Xie et al. (2021).

D Method Details

We outline the main implementation details here, while additional details can be found in the
implementation on github. We use Adam (Kingma & Ba, 2015) in all experiments.

D.1 CPC Implementation

We implement genc as a two layer MLP with 128 units per layer and ReLU activations and gar as a
GRU with 16 units in the low-dimensional and 32 units in the high-dimensional tasks. The classifier
f is implemented as an MLP with two hidden layers with 128 units per layer and ReLU activations.
As the initial parameters performed well across tasks, we did not perform extensive grid-search as
for the baselines, and only searched over latent dimensionality {2, 4, 6, 8} per task.

The positive and negative samples are sampled as follows: To obtain positive and negative trajec-
tories we sample one positive deployment d+ = (τ+

1 , . . . , τ
+
M ), N− negative deployments {d−,j}N−

j=1,
with d−,j = (τ−,j

1 , . . . , τ−,j
M ) and deployment step i ∼ U([NCPC,M−k]). Then we obtain the context

3https://github.com/google-deepmind/mujoco/blob/721e2d5589d3fdafd440009374a31521214088b7/mjx/
tutorial.ipynb
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Hyperparameter Gridsearch Values BORel, VRNN
Hidden Units Decoder/Encoder {128, 256}

Decoder Hidden Layers {2, 3}
VAE β {10−4, 10−5, 10−6, 10−7, 0}

Latent Dimensionality {4, 8}

Table 2: Hyperparameters values used in Grid-Search for BOReL and VRNN

encoding ci = gar(genc(τi), . . . , genc(τi−NCPC)) and use it as input to f with positive sample τ+
i+k and

negative samples {τ−,j
i+k}Nj=1.

D.2 Bayesian RL Baseline Implementation

We implement our Bayesian RL baselines based on VariBAD (Zintgraf et al., 2020)/BOReL (Dorf-
man et al., 2021) and ContraBAR (Choshen & Tamar, 2023). We note that while they use two
episodes to measure the performance of the agent, we measure the reward over a single episode due
to hidden-parameter changing after each episode in our setting. We truncate the trajectory length
used for HiP inference to 10 in Ant-Leg and Barkour-Weight and 50 in Ant-Weight, to allow for
efficient training. We freeze the last inferred latent and use it for the remainder of the episode.

D.2.1 BOReL Implementation

We use a recurrent encoder consisting of two fully connected layers with RELU activations, followed
by a GRU, followed by a fully connected layer each to output µ and Σ. The reward and transitions
decoders each consist of two or three hidden layers with ReLU activations, where the latent is input
into the second layer. We only use either the reward or transition decoder depending on whether the
reward or transition function changes in an environment. We found RL training to perform better
when only conditioning on the mean µ without the covariance matrix Σ. We perform a grid-search
over representation hyperparameters as shown in the Table 2 on 1D-Goal, 2D-Goal, 2D-Wind, Ant-
Weight and Ant-Leg. Due to resource constraints we do not perform a full grid-search on barkour,
but did our best effort to choose well-performing hyperaprameters and evaluated different choices
for the latent-dimensionality.

D.2.2 ContraBAR Implementation

For ContraBAR we found the network structure of encoder and classifier to strongly impact the
achieved performance. For fairness of comparison we evaluated two different structures: Firstly, a
network structure as proposed by Choshen & Tamar (2023) with separate encoders for reward, state,
and action, a GRU with larger dimensionality d = 64 and a small, single-layer classifier f . Secondly,
we evaluated the same structure as used in our approach, with more powerful fully-connected en-
coders and classifiers, but smaller GRU dimensionality d = 4, 8. We found the latter structure to
perform better on the 2D tasks, while the former usually resulted in better representations in the
other tasks. As recommended by Choshen & Tamar (2023), we use the Action-GRU only in tasks
where the transition function changes, omitting it otherwise. We performed a gridsearch to optimize
the hyperparameters over the values shown in Table 3 on 1D-Goal, 2D-Goal, 2D-Wind, Ant-Weight
and Ant-Leg. Due to resource constraints we do not perform a full grid-search on Barkour, but did
our best effort to choose well-performing hyperaprameters and evaluated different choices for the
latent-dimensionality.

D.3 VRNN Implementation

We evaluated different approaches to creating an offline variant of LILAC with different network
architectures and training mechanisms, and report the most successful one we found. As it is different
in network structure and training method we refer to it simply as VRNN in our experiments. We base
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Hyperparameter Gridsearch Values ContraBAR
Hidden Units Decoder/Encoder {64, 128, 256}

Encoder Architecture {SplitEnc, MLPEnc}
Encoder Hidden Layers {1, 2}
Latent Dimensionality {2, 4, 8}

Table 3: Hyperparameters values used in Grid-Search for ContraBAR

our implementation on a VRNN (Chung et al.), a type of dynamic VAE with an LSTM prior. The
encoder is a two layer MLP with ReLU activations, the observation and latent feature extractors are
implemented as fully connected layers with ReLU activations and the learned prior is implemented
an LSTM followed by a fully connected layer with ReLU activations and two linear output layers for
µ,Σ. The decoders are MLPs with two or three layers and ReLU activations. We train the VRNN
by sampling two different transitions from each episode, where one transition is used in the encoder
and a different transition is used in the decoder, to prevent the encoder from simply learning the
state or reward functions. We had issues with innacurate predictions and thus, during evaluation, we
condition the policy on a sampled latent z̃ of an episode from our dataset with the same HiP z. This
method can therefore be considered a semi-oracle that uses oracle information during evaluation but
not during training. As in BOReL, we found RL training to perform better when only conditioning
on the mean µ without the covariance matrix Σ. Hyperparameters are optimized by gridsearch
over values shown in Table 2 on 1D-Goal, 2D-Goal, 2D-Wind, Ant-Weight and Ant-Leg. Due to
resource constraints we do not perform a full grid-search on Barkour, but did our best effort to choose
well-performing hyperaprameters and evaluated different choices for the latent-dimensionality.

D.4 Offline Reinforcement Learning Implementation

On each task, we use the same network structure and RL hyper-parameters for all methods. We do
deviate from the original parameters of TD3+BC (Fujimoto & Gu, 2021) as shown in Table 4.

Hyperparameter 1D-Goal 2D-Win 2D-Goal Ant-Weight, Ant-Leg Barkour
Critic Network [256, 256] [256, 256] [256, 256] [128, 128] [128, 128, 128]
Policy Network [256, 256] [256, 256] [256, 256] [128, 128] [128, 128, 128]

Layer Norm Yes Yes No Yes Yes
BC λ 2.5 6.5 6.5 6.5 6.5

Learning Rate 3 · 10−4 3 · 10−4 1 · 10−3 1 · 10−3 1 · 10−3

Batch Size 512 512 512 512 512

Table 4: TD3 BC Hyperparameters

E RLiable Visualization

To provide more informative evaluation metrics than the mean reward values reported in the main
text, we provide additional visualizations as suggested by Agarwal et al. (2022), using the RLiable
package.
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Abstract

Deep Reinforcement Learning (DRL) has become popular due to promising results
in chatbot, healthcare, and autonomous driving applications. However, few DRL
algorithms are rigorously evaluated in terms of their space or time efficiency, mak-
ing them difficult to develop and deploy in practice. In current literature, existing
performance comparisons mostly focus on inference accuracy, without considering
real-world limitations such as maximum runtime and memory. Furthermore, many
works do not make their code publicly accessible for others to use. This paper
addresses this gap by presenting the most comprehensive resource usage evaluation
and performance comparison of DRL algorithms known to date. This work focuses
on publicly-accessible discrete model-free DRL algorithms because of their practical-
ity in real-world problems where efficient implementations are necessary. Although
there are other state-of-the art algorithms, few were presently deployment-ready for
training on a large number of environments. In total, sixteen DRL algorithms were
trained in 23 different environments (468 seeds total), which collectively required
256 GB and 830 CPU days to run all experiments and 1.8 GB to store all models.
Overall, our results validate several known challenges in DRL, including exploration
and memory inefficiencies, the classic exploration-exploitation trade-off, and large
resource utilizations. To address these challenges, this paper suggests numerous op-
portunities for future work to help improve the capabilities of modern algorithms.
The findings of this paper are intended to aid researchers and practitioners in im-
proving and employing DRL algorithms in time-sensitive and resource-constrained
applications such as economics, cybersecurity, robotics, and the Internet of Things.

1 Introduction

Lately, Deep Reinforcement Learning (DRL) has become widespread due to the growing popularity of
deep neural networks, the rise of big data, and the overwhelming success in various applications (Li,
2017). For example, OpenAI (2023)’s GPT-4 is fine-tuned using DRL from human feedback to
answer questions, summarize information, and translate text (Christiano et al., 2017; Uc-Cetina
et al., 2023; Liu et al., 2023). In healthcare, DRL has been used to automatically diagnose medical
conditions and develop drugs and treatment regimes (Yu et al., 2021). In the autonomous driving
domain, DRL has been used to optimize navigation, estimate safety and risk, and predict intentions
of pedestrians and other vehicles (Kiran et al., 2021). DRL has also been used in other domains such
as finance, advertising, and games (Fischer, 2018; Zhao et al., 2019; Fürnkranz, 2001; Shao et al.,
2019). Overall, DRL plays a critical role in many areas in the public and private sectors.

However, few DRL algorithms have been rigorously evaluated, and hence understood, in terms
of their time and memory utilizations, which makes it difficult for others to understand which
algorithms, if any, can be practically deployed for a given use case. Although there exist some
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performance comparisons, many only report inference accuracy (e.g., return) without considering
practical limitations such as runtime and memory constraints, and do not publicly release their
code. To address these challenges, this paper presents a comprehensive resource usage evaluation
and performance comparison of several popular DRL algorithms.

This paper primarily concerns publicly-available discrete model-free DRL algorithms. Although
there are other state-of-the art algorithms, few are deployment-ready for training on a large number
of environments and, hence, would likely not be adopted in a real-world scenario. Discrete DRL
was chosen because of its popularity in real-life applications due to the reduced computational
complexity of finite actions spaces, versus the infinite action spaces in continuous DRL (Smart &
Kaelbling, 2000). Model-free DRL is used instead of model-based DRL because of the former’s ease
of implementation and tuning in environments without a ground-truth model, which is not available
in most practical applications (Sutton & Barto, 2018). Due to these reasons, publicly-inaccessible,
continuous, and model-based DRL algorithms are considered out of scope for this study. To our
knowledge, this paper presents the most exhaustive resource usage evaluation and performance
comparison of DRL algorithms to date, with the following contributions:

• Performance analysis of sixteen DRL algorithms in twenty-three different base environments
(468 environment seeds), considering rewards, runtimes, and memory usages

• Open challenges, recommendations for future work, and practical implications
• Re-implemented source code available to facilitate future benchmarking endeavors, collab-

oration, and development of new technologies1

The rest of this paper is organized as follows. Sec. 2 overviews the related works to motivate this
study. Sec. 3 describes the performance analysis methodologies. Sec. 4 presents the results and
discussion. Sec. 5 presents open challenges, recommendations, and practical implications. Finally,
the paper is concluded in Sec. 6 with the key takeaways and future works.

2 Related Works

Prior works related to this study are described in the following subsections. First, existing re-
views and comparisons of DRL algorithms are discussed to identify research gaps and highlight the
importance of the proposed work. The next subsection introduces bsuite, the RL environment
suite underpinning this study. Finally, an overview of the existing algorithms used in this paper’s
methodology is provided.

2.1 Existing Reviews and Comparisons

There are a variety of literature reviews and application surveys in DRL literature that are rich in
theory. Literature reviews such as Mousavi et al. (2018), Li (2017), Arulkumaran et al. (2017), Dayan
& Niv (2008), and Glorennec (2000) compare DRL algorithms using mathematical equations and
pseudocode. Application surveys such as Esteso et al. (2022), Noaeen et al. (2022), den Hengst et al.
(2020), and Tran-Dang et al. (2022) investigate the applications of different DRL algorithms across
various domains using keyword analyses and bibliometric studies. This paper seeks to complement
these theoretical works from a practical perspective by offering a resource usage evaluation and
performance comparison with experimental results.

Although there exist some performance comparisons in the DRL literature, most works focus only
on inference accuracy (e.g. reward) and rarely report runtimes or memory usages (Fujimoto et al.,
2019; Stone et al., 2021; Lin et al., 2021). Of the few works that have addressed time and space
efficiencies, Wang et al. (2019) focused on model-based DRL whereas Duan et al. (2016) focused on
continuous DRL, which are both considered impractical in many real-world scenarios, for reasons
discussed in Sec. 1. Moreover, very few existing works in DRL literature publicly release their
source code. This study seeks to build upon the existing works by offering a robust resource usage

1source code available at https://github.com/olivia-dizon-paradis/RLPerformanceAnalysis
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evaluation and performance comparison of DRL algorithms, and publicly release the source code for
others to incorporate into their frameworks.

2.2 Behavior Suite for Reinforcement Learning

This work uses DeepMind’s Behaviour Suite for RL (bsuite), i.e. the “MNIST of RL”, which
is a publicly-available suite of twenty-three different base environments (468 seeds total) (Osband
et al., 2019a). Although there are a variety of other environment suites, such as Brockman et al.
(2016)’s OpenAI Gym classic control environments, Todorov et al. (2012)’s Multi-Joint dynamics
with Contact (MuJoCo), Bellemare et al. (2013)’s and Machado et al. (2018)’s Atari 2600, Tassa
et al. (2018)’s DeepMind Control Suite, and Cobbe et al. (2020)’s Procgen, bsuite was found to be
the most comprehensive in testing core RL capabilities for fundamental research and generalization.
Among the twenty-three different base bsuite environments, 468 total unique environment seeds,
or variations, are defined. Each environment is categorized into seven different tags, or categories,
based on core challenges in DRL: ‘basic’, ‘noise’ , ‘scale’, ‘exploration’, ‘credit assignment’, ‘memory’,
and ‘generalization’ (Osband et al., 2020). A summary of all environments can be found in Table 1.

Table 1: Overview of the 23 different bsuite environments (Osband et al., 2020).

Environment Tagsa # Actions # Episodesb Observation Shapec id

bandit bas 11 10000 (1, 1) 20
bandit_noise noi 11 10000 (1, 1) 20
bandit_scale sca 11 10000 (1, 1) 20

cartpole bas, cre, gen 3 1000 (1, 6) 20
cartpole_noise gen, noi 3 1000 (1, 6) 20
cartpole_scale gen, sca 3 1000 (1, 6) 20

cartpole_swingup exp, gen 3 1000 (1, 8) 20
catch bas, cre 3 10000 (10, 5) 20

catch_noise cre, noi 3 10000 (10, 5) 20
catch_scale cre, sca 3 10000 (10, 5) 20
deep_sea exp 2 10000 {(2n, 2n)|5 ≤ n ≤ 25} 21

deep_sea_stochastic exp,noi 2 10000 {(2n, 2n)|5 ≤ n ≤ 25} 21
discounting_chain cre 5 1000 (1, 2) 20

memory_len mem 2 10000 (1, 3) 23
memory_size mem 2 10000 {(1, n)|3 ≤ n ≤ 42, logspaced} 17

mnist bas, gen 10 10000 (28, 28) 20
mnist_noise gen, noi 10 10000 (28, 28) 20
mnist_scale gen, sca 10 10000 (28, 28) 20

mountain_car bas, gen 3 1000 (1, 3) 20
mountain_car_noise gen, noi 3 1000 (1, 3) 20
mountain_car_scale gen, sca 3 1000 (1, 3) 20

umbrella_distract cre, noi 2 10000 {(1, n)|4 ≤ n ≤ 103, logspaced} 23
umbrella_length cre, noi 2 10000 (1, 23) 23

TOTAL 468
a Environment tags (i.e. categories), shortened to the first three letters
b Number of episodes an agent is trained on each seed
c Shape of the observation tensor describing the environment’s state. Note, for all sets in this column, n ∈ N
d Number of unique environment seeds (i.e. variations)

2.3 Existing Deep Reinforcement Learning Algorithms

Given the abundance of different DRL algorithms and variations, this paper focuses on several pop-
ular and representative algorithms for each of the main paradigms, especially those with publicly
available code. For example, traditional Q-learning methods, i.e. value-based methods that aim to
optimize the expected return based on a function of the expected immediate reward, include DQN,
Double DQN, and Dueling DQN (Mnih et al., 2013; Van Hasselt et al., 2016; Wang et al., 2016).
Distributional Q-learning algorithms, which build on traditional Q-learning models by incorporating
full distributions instead of scalar expectations for reward calculations, include Categorical Deep Q-
Network (C51) and Rainbow DQN (Bellemare et al., 2017; Hessel et al., 2018). Quantile methods,
which further build upon the distributional Q-Learning algorithms by modeling the reward distribu-
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tions as quantile functions rather than probability mass functions, include Implicit Quantile Network
(IQN) and Fully-parameterized Quantile Function (FQF) (Dabney et al., 2018; Yang et al., 2019).
Policy gradient algorithms, which are policy-based methods that explicitly build a mapping between
states and actions, include REINFORCE and Natural Policy Gradient (NPG) (Sutton et al., 1999;
Kakade, 2001). Actor-critic methods, which combine the value-based and policy-based approaches
by using both an “actor” to estimate a policy and a “critic” to estimate the value function, include
Synchronous Advantage Actor-Critic (A2C), Proximal Policy Optimization (PPO), and Discrete
Soft Actor-Critic (SAC) (Mnih et al., 2016; Schulman et al., 2017; Christodoulou, 2019). In ad-
dition, there are also several algorithms specifically designed to address certain challenges in RL,
such as Boot DQN (which aids exploration) and A2C RNN (which improves memory). Boot DQN
is a DQN variant adapted specifically for exploration problems by using bootstrapping methods to
approximate action-value distributions (Osband et al., 2016; 2019b; 2018). A2C RNN is an A2C
variant adapted specifically for memory (or exploitation) problems, through the use of a recurrent
network to approximate temporal relationships (Williams, 1992; Hochreiter & Schmidhuber, 1997).
There are a variety of different ways to classify different DRL algorithms, and many algorithms
combine different approaches so they may belong in multiple groups. Here, algorithms are grouped
based on their base code implementations for written clarity and ease of reading, particularly for the
next section. Although there are certainly other state-of-the art algorithms, very few have publicly
accessible code or are not yet deployment-ready for training on a massive number of environments
at this time.

3 Methodology

In this study, sixteen DRL algorithms were trained in 23 different base environments (468 seeds),
resulting in a total of 7,488 trained agents. Programs were run using Python 3.8.16 (2022), Osband
et al. (2020)’s bsuite v0.3.5, and Weng et al. (2022)’s Tianshou v0.5.0. Experiments were conducted
on NVIDIA GeForce 2080Ti nodes, each with a cyclic allocation of 16GB CPU and 11GB GPU for
processing. In total, it took 256 GB and 830 days CPU time (i.e., sixty-nine days on a twelve-node
parallel system) to run all experiments and 1.8 GB to store all models.

3.1 Reinforcement Learning Algorithms

Implementation details for the sixteen DRL algorithms used in this study are described in the
following subsections. Unless otherwise stated, this work primarily uses algorithm implementations
from Weng et al. (2022)’s Tianshou framework. Although there are a variety of other state-of-the-art
methods and libraries such as Hill et al. (2018)’s and Raffin et al. (2021)’s Stable Baselines, Kuhnle
et al. (2017)’s Tensorforce, Liang et al. (2018)’s RLlib, Pardo (2020b)’s Tonic, Hoffman et al. (2020)’s
Acme, Huang et al. (2022)’s CleanRL, and D’Eramo et al. (2021)’s MushroomRL, Tianshou was
found to offer the best balance between the number of supported algorithms, training time, and
memory consumption at the time of writing given the sheer number of environment seeds and the
limited available resources. Although most architectures and hyperparameters were kept faithful
to their original base implementations, some parameters among similar algorithms (e.g., discount
factor for DQN and double DQN) were set so agent training methodologies were more consistent.

3.1.1 Traditional Q-Learning

Deep Q Network (DQN), Double DQN, and Dueling DQN were implemented with a feedforward
multilayer perceptron (MLP) with two sixty-four-unit hidden layers and reLU activation functions.
The Dueling DQN’s action value (Q) and state value (V) heads each had an additional thirty-two-
unit hidden layer. For all Q-learning models, the discount factor was set to 0.99 and the number of
steps to look ahead was set to one.
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3.1.2 Distributional Q-Learning

Similar to the traditional Q-learning methods, Categorical Deep Q-Network (C51) and Rainbow
DQN were both implemented with the same MLP architecture, discount factor, and number of steps
to look ahead. For both distributional Q learning methods, the number of atoms (or “canonical
returns”) was set to the recommended value of fifty-one, with the values of the smallest and largest
atoms set to negative and positive ten, respectively.

3.1.3 Quantile

Implicit Quantile Network (IQN) was implemented using a thirty-two-unit hidden layer quantile Q-
Network with a double sixty-four-unit hidden layer preprocess MLP. Fully-parameterized Quantile
Function (FQF) was implemented using a quantile Q-Network similar to IQN, but with an addi-
tional fraction proposal network set to propose thirty-two fractions. For both quantile methods,
the discount factor, the number of steps to look ahead, and the number of cosines to use for cosine
embedding were set to 0.99, 1, and 64, respectively.

3.1.4 Policy Gradient

REINFORCE Policy Gradient was implemented with a similar MLP and discount factor as the
traditional Q-Learning methods. Natural Policy Gradient (NPG) was implemented with thirty-two-
unit hidden layer actor and critic modules, where each module consisted of a double sixty-four-unit
hidden layer preprocess MLP. For both policy gradient methods, a “categorical” distribution was
used for computing the actions.

3.1.5 Actor-Critic

Synchronous Advantage Actor-Critic (A2C), Proximal Policy Optimization (PPO), and Discrete Soft
Actor-Critic (SAC) were all implemented with a similar actor-critic architecture to NPG. In addition,
A2C’s and PPO’s discount factor, value loss weight, entropy loss weight, and action distribution were
set to 0.99, 0.5, 0.01, and “categorical”, respectively. Discrete SAC’s discount factor, τ parameter
for soft update of the target network, and entropy regularization coefficient were set to 0.99, 0.005,
and 0.2, respectively. Moreover, Discrete SAC was designed with an additional critic module, i.e.,
it had one actor and two critics in total.

3.1.6 bsuite Baselines

In addition, five bsuite baselines were re-implemented from Osband et al. (2020) for comparison:
four from baselines/tf (A2C, DQN, Boot DQN, and A2C RNN) and the randomly-acting agent
from baselines/random. A2C was implemented with a double sixty-four-unit hidden layer policy
value net. DQN was implemented with a double fifty-unit hidden layer MLP. Boot DQN was
implemented with a twenty-network ensemble architecture, with each network defined with a similar
architecture as the bsuite DQN baseline. A2C RNN was implemented with a double sixty-four-
unit hidden recurrent layers. As a simple, naive baseline for comparison, experiments were also run
using a randomly-acting agent, which randomly picked actions with equal probability. Although
bootstrapping and recurrency may be implemented for other algorithms, this paper focused on the
algorithms implemented in Osband et al. (2020) at the time of writing for baseline comparison.

Agents were trained using the protocol described in Osband et al. (2019a) and tensorflow baseline
scripts in bsuite (Osband et al., 2020), which defines the number of training episodes for each
environment seed. To ensure the same experiment runner code could be used for DRL algorithms
from different libraries, minor changes were made to variable and object names. Agents were trained
with an Adam optimizer and random seed of 42 for the random number generator. A summary of
the DRL algorithms used in this study can be found in Table 2.
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Table 2: Architecture summary of reinforcement learning models used in this study.

Type Model # Paramsa lrc bufferd General Architecturee

Traditional DQN 5k-164k 3e-4 1e4 MLP
Q-Learning Double DQN 5k-164k 3e-4 1e4 MLP

Dueling DQN 9k-168k 3e-4 1e4 MLP + (ActionValueHead + StateValueHead)
Distributional C51 11k-171k 3e-4 1e4 MLP + 51 Atoms

Q-Learning Rainbow 11k-171k 3e-4 1e4 MLP + 51 Atoms
Quantile IQN 5k-165k 3e-4 1e4 MLP + CosineEmbedding

FQF 5k-165k 3e-4 1e4 MLP + CosineEmbedding + FractionProposal
Policy Gradient REINFORCE 5k-164k 3e-4 1e4 MLP

NPG 19k-658k 3e-4 1e4 MLP + (Actor + Critic)
Actor-Critic A2C 19k-658k 3e-4 1e4 MLP + (Actor + Critic)

PPO 19k-658k 3e-4 1e4 MLP + (Actor + Critic)
SAC 24k-823k 3e-4 1e4 MLP + (Actor + 2 Critics)

bsuite Baselines A2C 5k-164k 3e-3 32 MLP + (Actor + Critic)
DQN 3k-128k 1e-3 1e4 MLP

Boot DQN 114k-5108kb 1e-3 1e4 20 MLPs
A2C RNN 38k-197k 3e-3 32 RNN + MLP + (Actor + Critic)

a Range of trainable parameters, i.e. size of the agent trained on the smallest/largest state-action space environment
b Boot DQN is an ensemble of multiple DQNs, with each individual DQN possessing 6k-255k trainable parameters
c Learning rate for the Adam optimizer
d Buffer size
e Although environments varied, the general internal architectures for each algorithm were kept consistent

3.2 Evaluation

To evaluate the resource usage and performance of the DRL agents, this study considers runtime,
memory usage, and inference accuracy. Runtime was measured in terms of the wall time needed to
train each agent, with the timer starting after agent/environment initialization, and ending before
model-saving, testing, and evaluation. Memory usage was measured in terms of the amount of space
needed to initialize, update, and save the different agent models. Inference accuracy was computed
using bsuite’s evaluation framework, by averaging their results across various episodes (Osband
et al., 2020). For ease of optimization, performances for most environments were computed as
functions of normalized regret scores, i.e. the difference between the payoff of an agent’s action and
the payoff of the optimal action. For one episode, the bsuite performance score, β, was computed
for most environments as 2:

100 ×
(

1 − 1
T

T∑

t=0

r∗
t − rt

r∗

)
, (1)

where T is the maximum number of timesteps per episode, r∗
t is the reward for taking the best

possible action at timestep t, and rt is the reward the agent actually received at timestep t. Here,
obtained reward is subtracted from and divided by the optimal payout, so scores are normalized to
allow comparison of performances among environments with different optimal payouts. This term is
then divided by T so scores are normalized to allow comparison of performances among environments
with different maximum timesteps. Finally, the term is subtracted from one and multiplied by one
hundred so results are scaled between zero and one hundred, with the latter defined as the optimal
value. To provide insight into each DRL agent’s overall performances, results are summarized in the
following section by environment tag.

4 Results and Discussion

The inference accuracy, runtime, and memory utilization for each algorithm are summarized by tag
in Tables 3, 4a and 4b, respectively. In these tables, “bas”, “noi”, “sca”, “exp”, “cre”, “mem”, and
“gen” are three-letter abbreviations for each of the seven tags, as listed in Sec. 2.2.

2Note: Although “most environments” were evaluated this way, a different scoring function needed to be used for
exploration environments (e.g. deep sea, deep sea stochastic, and cartpole swingup) to prevent penalizing agents
for exploring. See Osband et al. (2019a) for more details.
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4.1 Inference Accuracy

Quantitatively, the top performing agents in our experiments were as follows. For the ‘basic,’ ‘noise,’
‘scale,’ and ‘generalization’ environments, the top performers were bsuite DQN and then Boot
DQN, with the next-best algorithms trailing by about twenty to thirty points. For the ‘exploration’
and ‘memory’ environments, Boot DQN and A2C RNN performed best, respectively, while other
agents produced relatively insignificant scores. For the ‘credit_assignment’ environments, the top
performing agent was bsuite DQN, with Boot DQN, Double DQN, and tianshou DQN trailing
by about ten points. Overall, bsuite DQN outperformed in all environment categories except
‘exploration’ and ‘memory,’ where Boot DQN and A2C RNN performed best, respectively.

There are several potential explanations for the observed quantitative results. The bsuite imple-
mentations of DQN and Boot DQN, which both encouraged exploration, likely performed well overall
because many environments required some level of exploration to prevent from getting stuck in lo-
cally optimal, but globally suboptimal, solutions. Boot DQN likely outperformed in the exploration
environments because its use of the bootstrap method encouraged higher levels of exploration. For
the same reason, Boot DQN likely performed poorly in the memory environments because they did
not require (i.e. penalize) heavy exploration. A2C RNN likely performed the best in the mem-
ory environments because the recurrent RNN backbone facilitated its ability to approximate and
exploit temporal relationships. For the same reason, A2C RNN likely performed poorly in the explo-
ration environments because they did not require (i.e. penalize) heavy exploitation. The traditional
Q-learning algorithms also performed well overall, aside from the exploration and memory envi-
ronments, because the epsilon-greedy algorithm incorporated within their implementations likely
encouraged some degree of exploration. Discrete SAC achieved decent results similar to the tra-
ditional Q-learning methods and generally outperformed the other actor-critic methods (e.g., A2C
and PPO), likely due to Discrete SAC’s ability to more accurately estimate the impact of an agent’s
actions due to the addition of an extra critic module. The distributional Q-learning algorithms and
quantile algorithms underperformed, likely because there were not enough features and environment
interactions relative to the number of trainable parameters to properly model the value distributions.
The policy gradient algorithms generally underperformed, likely due to the relative lack of effective
exploration mechanisms in the implementations to prevent agents from getting stuck in locally opti-
mal solutions. The random agent, which was implemented as a naive baseline, performed the worst
as expected because it was not designed to learn anything. In general, the bsuite variants of DQN
and A2C performed better than the tianshou ones, likely due to implementation differences in the
weight update, action selection, or buffer interaction protocols in the implementation back-ends.
Overall, many of the observed results were consistent with theoretical expectations, with some of
the more complex models likely underperforming due to the limited number of interactions with the
environment relative to the number of trainable parameters. Quantitative results indicate future
opportunities for techniques to improve sample efficiency and tune hyperparameters.

Qualitatively, our experiments showed that the most difficult environment categories for the DRL
agents overall were ‘exploration’ and ‘memory’. Although Boot DQN performed relatively well in
the exploration environments, it performed poorly in the memory ones. The reverse is true for
A2C RNN. Of the algorithms tested in this study, none performed well in both exploration and
memory environments. Although the results of this study are snapshots of the capabilities of DRL
algorithms, they validate several known challenges in applying DRL in real-world scenarios. Many
application scenarios are significantly more complex than the toy environments within bsuite, as
they may involve both memory and exploration elements, require higher inference accuracy with
less variation, or limit the number of interactions from which an agent can learn. Overall, inference
accuracy results indicate that existing algorithms show promise for simple applications, but that
additional research may be required to adapt them for practical ones which are generally more
complex.

2168



RLJ | RLC 2024

Algorithm/Tag bas noi sca exp cre mem gen

DQN 51 26 31 0 47 2 28

Double DQN 49 25 33 3 48 2 28

Dueling DQN 44 22 24 0 40 2 23

C51 4 4 4 3 1 0 5

Rainbow 4 3 7 2 3 0 5

IQN 28 18 21 2 35 2 8

FQF 16 10 16 3 17 2 7

REINFORCE 20 12 19 2 8 2 7

NPG 8 4 6 0 7 2 6

A2C 30 15 17 6 12 2 6

PPO 28 14 17 3 11 2 6

Discrete SAC 50 26 17 0 43 2 18

Random (bsuite) 4 2 4 0 3 0 6

52 30 28 0 46 2 16

77 49 63 0 60 2 53

Boot DQN (bsuite) 73 44 55 33 49 2 47

A2C RNN (bsuite) 51 24 23 0 40 50 13

Algorithm/Tag bas noi sca exp cre mem gen

DQN 51 ± 25 26 ± 20 31 ± 18 0 ± 0 47 ± 25 2 ± 2 28 ± 19

Double DQN 49 ± 28 25 ± 18 33 ± 20 3 ± 4 48 ± 27 2 ± 2 28 ± 18

Dueling DQN 44 ± 36 22 ± 21 24 ± 19 0 ± 0 40 ± 30 2 ± 2 23 ± 24

C51 4 ± 4 4 ± 4 4 ± 4 3 ± 4 1 ± 2 0 ± 0 5 ± 4

Rainbow 4 ± 4 3 ± 3 7 ± 5 2 ± 2 3 ± 5 0 ± 0 5 ± 3

IQN 28 ± 35 18 ± 18 21 ± 19 2 ± 2 35 ± 31 2 ± 2 8 ± 8

FQF 16 ± 17 10 ± 8 16 ± 12 3 ± 4 17 ± 16 2 ± 2 7 ± 5

REINFORCE 20 ± 28 12 ± 15 19 ± 28 2 ± 2 8 ± 8 2 ± 2 7 ± 3

NPG 8 ± 3 4 ± 4 6 ± 3 0 ± 0 7 ± 8 2 ± 2 6 ± 3

A2C 30 ± 34 15 ± 24 17 ± 16 6 ± 4 12 ± 10 2 ± 2 6 ± 3

PPO 28 ± 35 14 ± 26 17 ± 16 3 ± 4 11 ± 9 2 ± 2 6 ± 3

Discrete SAC 50 ± 32 26 ± 24 17 ± 9 0 ± 0 43 ± 28 2 ± 2 18 ± 15

Random (bsuite) 4 ± 4 2 ± 3 4 ± 4 0 ± 0 3 ± 7 0 ± 0 6 ± 3

A2C (bsuite) 52 ± 37 30 ± 21 28 ± 26 0 ± 0 46 ± 22 2 ± 2 16 ± 15

DQN (bsuite) 77 ± 28 49 ± 31 63 ± 27 0 ± 0 60 ± 25 2 ± 2 53 ± 36

Boot DQN (bsuite) 73 ± 31 44 ± 26 55 ± 25 33 ± 16 49 ± 28 2 ± 2 47 ± 31

A2C RNN (bsuite) 51 ± 38 24 ± 22 23 ± 21 0 ± 0 40 ± 23 50 ± 15 13 ± 14

* The top 33% scores are highlighted in blue, while the bottom 33% are in red.

Table 3: Average inference accuracy (and standard deviation) for each DRL algorithm

Algorithm/Tag bas noi sca exp cre mem gen

DQN 12 116 14 549 18 19 22

Double DQN 12 113 14 545 18 19 21

Dueling DQN 11 118 15 558 20 23 23

C51 22 90 21 338 26 36 30

Rainbow 19 86 21 338 27 33 29

IQN 21 126 23 563 25 30 38

FQF 40 159 40 633 51 64 64

REINFORCE 16 106 17 487 16 15 24

NPG 103 367 102 1273 150 148 138

A2C 38 185 37 752 55 70 52

PPO 44 199 47 804 58 75 65

Discrete SAC 43 188 45 777 39 39 60

Random (bsuite) 9 9 10 14 4 3 15

A2C (bsuite) 40 37 38 79 21 24 67

DQN (bsuite) 90 107 78 285 98 86 157

Boot DQN (bsuite) 458 958 514 2902 598 620 772

A2C RNN (bsuite) 47 39 40 61 30 21 69

(a) Runtimes (in minutes)

Algorithm/Tag bas noi sca exp cre mem gen

DQN 64 82 64 199 28 22 81

Double DQN 64 82 64 199 28 22 81

Dueling DQN 82 101 82 217 46 40 99

C51 142 141 142 230 67 48 148

Rainbow 142 141 142 230 67 48 148

IQN 69 87 70 203 32 25 87

FQF 71 89 71 204 33 26 88

REINFORCE 64 82 64 199 28 22 81

NPG 74 93 75 208 37 31 92

A2C 74 93 75 208 37 31 92

PPO 74 93 75 208 37 31 92

Discrete SAC 210 264 210 611 97 79 262

Random (bsuite) 0 0 0 0 0 0 0

A2C (bsuite) 66 84 66 201 29 24 83

DQN (bsuite) 48 63 48 154 20 15 62

Boot DQN (bsuite) 1896 2478 1896 6119 764 583 2447

A2C RNN (bsuite) 198 217 198 333 162 156 216

(b) Memory utilization (in KB)
(a) The fastest 33% runtimes are shown in blue, while the slowest 33% runtimes are in red
(b) The smallest 33% memory usages are in blue, while the largest 33% memory usages are in red

Table 4: Average resource usages for each DRL algorithm
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4.2 Runtime and Memory Utilization

In addition to inference accuracy, it is important to discuss the resources utilized for the top-
performing algorithms, notably bsuite DQN, Boot DQN and A2C RNN. Quantitatively, the training
times and memory requirements to store all models were two days and 51 MB for DQN, twenty-three
days and 1022 MB for Boot DQN, and one day and 97 MB for A2C RNN. For many applications,
these training times are long, as even one day can significantly increase development and deployment
times.

Many of the possible reasons the top algorithms performed well in our experiments are likely to be the
same reasons that they had such high resource usages. For example, the bsuite variants of DQN were
slower than the tianshou ones despite using less memory, likely due to implementation differences
in the weight update, action selection, or buffer interaction protocols in the implementation back-
ends that added additional computations per step. Boot DQN’s ensemble structure significantly
increased the number of model parameters that needed to be processed and stored, and its use of
the bootstrapping algorithm to amalgamate ensemble results increased the agents’ training time at
every step. For A2C RNN, the increase in space and time complexity is likely due to the additional
parameters in the recurrent network and the time required to run recurrent operations. Relative to
the other algorithms, the traditional Q-learning agents had lower overall time and space complexities
due to their simple MLP structures, but had relatively high time and space complexities in the
exploration and noise environments because their model sizes scaled directly with the size of the
state-action spaces. Of the actor-critic algorithms, Discrete SAC’s extra critic allowed it to generally
outperformed A2C and PPO, but also increased its space complexity due to the extra parameters.
Consistent with expectation, the randomly acting agent ran fastest and consumed the least amount
of space, since it was implemented as a naive baseline that was not designed to learn anything.

Moreover, it is important to consider that a twelve-node system similar to the one we used, with each
node allocated 16GB CPU and 11GB GPU for processing, is often not available in practice. Many
modern commercial servers may only support four such nodes. On a four-node system with 64GB
CPU and 44GB GPU total, DQN, Boot DQN, and A2C RNN may take approximately seven, seventy,
and three days, respectively, to train. Training times increase significantly when considering robotics
or IoT devices, which may only support one 16GB CPU/11GB GPU node. On such a device, DQN,
Boot DQN, and A2C RNN may take around 27, 279, and 14 days to train. For most applications,
these training times are unacceptable, as the increased development and deployment times would
crucially impact time-to-market, revenue, and deliverable deadlines.

Resource usage results from our experiments validate that most algorithms generally struggled in
exploration and memory environments. The runtimes and memory usages for the top-performing
algorithms were high. This presents numerous challenges in practical DRL applications, especially
those in which exploration or memory are important aspects, computational resources may be lim-
ited, and decisions must be made quickly.

5 Open Challenges and Practical Implications

Based on this study’s results, one can validate several known challenges in DRL and envision several
opportunities for future work. In the following subsections, open challenges are discussed to facilitate
collaboration between practitioners and researchers and guide development of new DRL technologies.

5.1 Exploration Inefficiencies

In our experiments, most agents struggled with the exploration environments in general. The one
algorithm that showed promising exploration results, Boot DQN, had a very high runtime and
memory utilization. This exploration and resource trade-off limits the effectiveness and application
of DRL in practical applications where the most rewards are found in the unknown. Future work can
focus on characterizing and improving this trade-off, e.g. efficiently adapting rewards to encourage

2170



RLJ | RLC 2024

agents to explore and incorporating traditional path optimization algorithms. If addressed, efficient
exploration benefits practical applications where time is critical and decisions must be made quickly,
such as deep-sea salvaging and medical drug discovery.

5.2 Memory Inefficiencies

Most agents in this study also struggled with the memory environments; while the one algorithm
that showed promising results, A2C RNN, had a high memory utilization and moderately high
runtime. This trade-off between memory and resources limits the effectiveness and application of
DRL in practical applications where the past significantly affects the future, especially the far future.
Future work should focus on characterizing and improving this trade-off, e.g., data compression,
importance sampling and weighting, data selection, and attention. If successful, efficient memory
benefits applications where the amount of temporal data is particularly massive and resources may
be limited, such as economics and cyber-security.

5.3 Exploration-Exploitation Trade-off

It is also important to consider the two previous challenges together. In our experiments, no agent
performed well in both exploration and memory environments. This finding validates a classic, yet
persistent problem in DRL: the exploration-exploitation trade-off. To help address this problem,
future research in this area should focus on better quantifying the trade-off and perhaps looking to
other areas of machine learning to develop mitigation strategies (e.g., meta-learning, causal AI, itera-
tive theoretic learning). If successful, this research would benefit applications where both exploration
and memory are important, such as chatbots and automated driving.

5.4 Resource Usages

In this study, most well-performing algorithms are estimated to take around 64 GB and seven days
to train (based on the bsuite DQN resource projections on a four-node system in Sec. 4). Although
there are some applications where this resource utilization is acceptable, there are many where it is
not. Lengthy time and space complexities greatly decrease the ability of practitioners and researchers
to quickly develop and deploy their models. Future works in this field should focus on better
quantifying and evaluating the trade-off between performance, time, and space complexities for
both training and deployment, and perhaps looking into foundational computer science optimization
methodologies to help address it, e.g. algorithm and code optimization, approximate computing,
parallel computing, and federated learning paradigms. If resource usages are effectively reduced,
such technologies would greatly benefit many resource-constrained fields such as robotics or the
Internet of Things (IoT), where a large amount of sensor data must be processed very quickly and
the device may go offline, and businesses with quick time-to-markets, where high development and
deployment times can result in crushing losses in revenue and missed deliverable deadlines.

5.5 Extensions

There are also several opportunities to improve and extend this line of DRL performance compari-
son research to other areas not examined in this work. For example, algorithms here were trained
similarly across the entire suite of environments for consistency. Future works could focus on im-
proved hyperparameter tuning, such as tuning per environment (e.g. larger buffer sizes for memory
environments, higher exploration fractions for exploration environments, etc.). Moreover, although
the bsuite environment benchmark provides great insight into the core capabilities of reinforce-
ment learning algorithms, it would be beneficial for future work to focus on improving the scale and
rigor of more practical real-world challenges as well, such as Dulac-Arnold et al. (2021)’s promis-
ing Real-World DRL (RWRL) Challenge Framework which is currently in development. As novel
DRL algorithms, frameworks, and model variations are developed, future work should also focus
on comprehensively testing and evaluating these new works for their practical implications, such as
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in Henderson et al. (2017)’s and Pardo (2020a)’s works, which compare implementation variations.
Although this work focused on discrete model-free DRL, many other areas of reinforcement learning
would benefit from more comprehensive testing and evaluation, such as multi-agent RL, multi-task
RL, and meta-RL. Moreover, although the current work evaluates DRL algorithms across different
environment categories, these categories were determined by the creators of bsuite and were not
rigorously quantified. There is great value in future work that more rigorously quantifies the perfor-
mances of DRL algorithms, as well as the specific challenges within and difficulty levels of different
environments. If successful, such research would help engineers and scientists better identify the
reinforcement learning qualities of their specific application scenarios and, hence, select appropriate
learning algorithm(s) for their use case.

5.5.1 Explainability

Although understanding and improving the performance, time, and space efficiency of different
DRL agents is of great importance, it is often more important to understand why agents behave
the way they do. As highlighted in a report from the U.S.A National Security Commission on
Artificial Intelligence (AI), the development of ethically-designed, trustworthy AI systems, which are
robust, explainable, and fair, is essential for operational integrity and adoption (National Security
Commission on Artificial Intelligence, 2019). Explainability helps researchers and practitioners gain
human-understandable insights from well-performing models, and improve poorly-performing ones.
Future research in DRL should focus on developing more tools to make DRL agents more explainable,
ideally through the use of inherently interpretable components such as feature-driven correlation and
human-friendly prototypes (Kenny et al., 2023). Such inherently interpretable methods are required
to build trustworthy systems for applications such as national security, healthcare, and law, where
decisions have a substantial direct impact on human lives.

5.5.2 Imitation Learning and Inverse Reinforcement Learning

Although this paper focuses on scenarios where the reward is known, this is often unrealistic for many
practical applications. Future research is necessary to comprehensively test and evaluate algorithms
that operate in unknown reward situations, such as imitation learning or inverse reinforcement learn-
ing (IRL). Possible avenues for this research include: 1) comparisons between performance, time,
and space complexities across different types of environments, 2) imitation or behavior prediction
effectiveness across different types of DRL agents, and 3) observation imputation effectiveness across
different levels of noise and partial observability. If addressed, such extensions into imitation learning
and IRL would benefit applications such as cybersecurity, military, intelligence, reverse-engineering,
and inverse goal planning applications where scenarios are constantly changing as each actor seeks
an intelligence advantage over the others.

5.6 Inaccessible Code and Data

Perhaps the most important barrier that prevents the adoption of modern DRL techniques is the
general lack of shared code and data. As discussed in Sec. 2, many of the state-of-the-art DRL
methods remain mainly theoretical. Before anything else, more researchers and practitioners in this
field should commit to sharing code and data to mitigate duplication of work, e.g. public release
of repositories or supplemental information upon paper acceptance, proper documentation with
example scripts and set-up instructions, and publishing all findings including limitations. If more
resources were shared, it would facilitate development of new technologies and increase collaboration
among researchers and practitioners in industry and academia.

6 Conclusions and Future Work

The key takeaways from this paper are as follows. Deep Reinforcement Learning (DRL), an area of
trial-and-error deep learning, has shown promising performances in a variety of difficult applications
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within the public and private sectors. However, one of the main challenges in DRL research today is
the difficulty in understanding which DRL algorithms are practical for a given use case because many
algorithms are not thoroughly tested or evaluated in terms of runtime or memory usage. Therefore,
this paper presented the most comprehensive resource evaluation and performance comparison on
the practicality of DRL algorithms to date.

Empirical results found the top-performing algorithm overall was bsuite DQN for all but the
exploration-intensive and memory-intensive environments, where Boot DQN and A2C RNN per-
formed best, respectively. Overall, results indicated that many studied algorithms struggled the
most in exploration and memory environments. Moreover, the top performing algorithms had high
runtimes or memory utilizations. Such high resource usages are not practical for many real-life
applications, as the ensuing increase in development and deployment times can significantly affect
time-to-market, revenue, and deliverable deadlines in industry and academia. Although many chal-
lenges in practical DRL were validated, from exploration and memory inefficiencies to the classic
trade-off between exploration an exploitation, these challenges present numerous opportunities for
future work. Efficient resource usage and public availability of code and data can greatly increase the
reliability and transparency of DRL research, and hence the operational integrity and adoption of
modern DRL algorithms. In future work, the authors seek to extend this work and tackle challenges
presented in this paper. If successful, this work can help impact a variety of real-life applications,
such as self-driving cars, economics, and cybersecurity.
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Abstract

Offline reinforcement learning algorithms hold the promise of enabling data-driven
RL methods that do not require costly or dangerous real-world exploration and
benefit from large pre-collected datasets. This in turn can facilitate real-world
applications, as well as a more standardized approach to RL research. Furthermore,
offline RL methods can provide effective initializations for online finetuning to
overcome challenges with exploration. However, evaluating progress on offline RL
algorithms requires effective and challenging benchmarks that capture properties of
real-world tasks, provide a range of task difficulties, and cover a range of challenges
both in terms of the parameters of the domain (e.g., length of the horizon, sparsity
of rewards) and the parameters of the data (e.g., narrow demonstration data or
broad exploratory data). While considerable progress in offline RL in recent years
has been enabled by simpler benchmark tasks, the most widely used datasets
are increasingly saturating in performance and may fail to reflect properties of
realistic tasks. We propose a new benchmark for offline RL that focuses on realistic
simulations of robotic manipulation and locomotion environments, based on models
of real-world robotic systems, and comprising a variety of data sources, including
scripted data, play-style data collected by human teleoperators, and other data
sources. Our proposed benchmark covers state-based and image-based domains,
and supports both offline RL and online fine-tuning evaluation, with some of the
tasks specifically designed to require both pre-training and fine-tuning. We hope
that our proposed benchmark will facilitate further progress on both offline RL and
fine-tuning algorithms. Website with code, examples, tasks, and data is available at
https://sites.google.com/view/d5rl/

1 Introduction
Offline reinforcement learning algorithms hold the promise of enabling data-driven RL methods that do
not require costly or dangerous real-world exploration, and benefit from pre-collected datasets (Levine
et al., 2020; Gulcehre et al., 2020; Agarwal et al., 2020). The latter especially is of significant relevance
in the modern age of data-driven machine learning, where training on large datasets has repeatedly
been shown to be a critical ingredient for effective generalization (LeCun et al., 2015; Krizhevsky
et al., 2017) and even emergent capabilities (Wei et al., 2022). Furthermore, offline RL methods can
provide effective initializations for online finetuning, overcoming challenges with exploration and
providing an effective formula for fast online training suitable for the real world. However, while
supervised learning methods that operate on large pre-collected datasets can effectively evaluate
on test sets sampled from real-world data, offline RL algorithms that train on data must still be
validated through online interaction to measure their effectiveness, even if no online interaction is
required during training. Therefore, evaluating progress on offline RL methods requires effective and

∗Denotes equal contribution
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Figure 1: A visualization of the environments in our proposed benchmark. We provide datasets for training
locomotion policies for the A1 robot (left), learning manipulation in randomized vision-based kitchen-like environments
with a Franka robotic arm (middle), and learning multi-stage pick-and-place tasks with a WidowX low-cost robotic
manipulator (right). Each domain is accompanied by several datasets with different properties and evaluates a distinct
aspect of offline RL and offline training with online finetuning.

challenging benchmarks that can provide for accessible evaluation in simulation, while still providing
a degree of realism in terms of reflecting the properties of real-world systems, and covering a range of
challenges both in terms of the parameters of the domain (e.g., length of the horizon, sparsity of
rewards) and the parameters of the data (e.g., narrow demonstration data or broad exploratory data).
While considerable progress in offline RL in recent years has been enabled by simpler benchmark
tasks, the most widely used datasets are increasingly saturating in performance (Fu et al., 2020;
Gulcehre et al., 2020), might fail to reflect properties of realistic tasks, and might not cover some of
the most significant use cases, such as online finetuning from offline initialization. In this paper, we
propose a new benchmark for offline RL that focuses on realistic simulations of robotic manipulation
and locomotion environments, based on models of real-world robotic systems, and comprising a
variety of data sources, including scripted data, play-style data collected by human teleoperators,
and other data sources. Our proposed benchmark covers state-based and image-based domains,
and supports both offline RL evaluation and evaluation with online finetuning, with some of the
tasks specifically designed to require both pre-training and finetuning. We hope that our proposed
benchmark will facilitate further progress on both offline RL algorithms and algorithms designed for
online finetuning from offline initialization.

We present an overview of the environments in our benchmark in Figure 1, which include realistic
simulated models of real-world robotic platforms, such as the A1 quadruped and the Franka robotic
arm. Aside from providing a more challenging and up-to-date range of tasks and datasets compared
to prior work (Fu et al., 2020; Gulcehre et al., 2020), our tasks cover a range of factors that are either
rarely covered in prior benchmarks, or rarely appear in combination. The A1 tasks specifically evaluate
online finetuning: these tasks are designed such that offline initialization should provide for basic
but low-performance capability (e.g., not falling), while online finetuning is required for maximally
effective gaits. The visual Franka kitchen environments evaluate visual perception, environment
variability (accomplished via randomization), and ability to use “play-style” diverse data collected
by real humans via teleoperation. The visual WidowX pick-and-place environments evaluate the
ability to “stitch together” distinct phases of manipulation skills to accomplish multi-stage behaviors.
While prior datasets evaluate stitching (e.g., the AntMaze task in D4RL (Fu et al., 2020)), it is rarely
evaluated in combination with visual perception in widely accepted benchmarks.

We provide a comprehensive description of our proposed tasks and corresponding datasets, as well as
high-quality implementations of a number of widely used offline RL and online finetuning methods
that we evaluate on our benchmark. We show that current RL methods can and do perform well
on lower dimensional tasks such as locomotion, but do not reliably scale to realistic robot scenarios.
In our experiments all current RL algorithms do not reliably out-perform simple BC approaches
on realistic robot tasks that involve more complex motions, chaining together multiple objectives
(“stitching”) or realistic distribution shifts. In fact, they do not demonstrate any of these qualities,
i.e. effective dynamic programming or robustness. We believe this shows that current RL approaches
are not suitable to large-scale realistic robotic scenarios, where simple imitation learning with large
capacity models (such as the RT-* systems) is used. We have structured our tasks and datasets
to provide a testing bed for new algorithms for such potential applications, while still maintaining
simplicity, speed and accessibility (all our experiments take less than 12 hours on a single GPU) as
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compared to larger scale benchmarks. We hope that this will provide a solid foundation for future
progress on both offline reinforcement learning and online finetuning from offline initialization.

2 Related Work
Benchmarking in reinforcement learning been a persistent challenge, with effective benchmarks
needing to balance accessibility (i.e., tasks that are feasible to address this current methods and not
too onerous computationally) with the desired for broad coverage of task properties and a high degree
of realism and complexity (Duan et al., 2016; Brockman et al., 2016; Wu et al., 2017; Wang et al.,
2019; Hubbs et al., 2020; Yu et al., 2020). Striking this balance is arguably a greater challenge in RL
than in other fields. First, RL algorithms can be applied to a wide range of tasks with very different
properties, including varying time horizons, levels of reward sparsity, dimensionality, and other
ingredients (Osband et al., 2019). Second, RL algorithms can be computationally very demanding,
requiring long training runs that make it difficult to include large numbers of very complex tasks in
every evaluation (Henderson et al., 2018; Agarwal et al., 2021). Third, the capabilities of RL methods
have advanced significantly over the past decade, and benchmarks can quickly become saturated,
necessitating more complex tasks to be added (Dulac-Arnold et al., 2021). This makes designing a
good benchmark in RL a major challenge. Our work focuses specifically on benchmarking offline
RL methods, and aims to strike a balance between covering task complexity and a variety of task
ingredients with providing a convenient simulated evaluation protocol and a mixture of image-based
and state-based tasks.

In recent years, a number of benchmarks have been proposed for offline RL, though such benchmarks
typically have a number of shortcomings that have proven difficult to fully alleviate while balancing
the aforementioned challenges. Early work on deep offline RL focused either on customized evaluations
without proposing standard benchmarks (Vecerik et al., 2017; Hester et al., 2018; Kalashnikov et al.,
2018), or else proposed simple benchmark tasks that utilized replay buffers from successful RL
runs (Fujimoto et al., 2019; Kumar et al., 2019; Agarwal et al., 2020). The latter generally does
not evaluate the performance of offline RL methods effectively, as realistic data might be highly
sub-optimal and might require “stitching” together parts of different sub-optimal trajectories to
create ones that are more optimal – a property rarely captured by data collected by fully or partially
trained RL policies themselves (Fu et al., 2020; Levine et al., 2020). Several more recent offline RL
benchmarks have sought to include more realistic data distributions, more complex tasks (including
vision-based tasks), and other ingredients that are intended to more accurately represent realistic
offline RL problems (Gulcehre et al., 2020; Liu et al., 2022; Kurenkov & Kolesnikov, 2022; Kuo et al.,
2022; Qin et al., 2022; Lu et al., 2022). Some works have proposed protocols for benchmarking
offline pretraining with online finetuning (Kostrikov et al., 2021; Nair et al., 2020; Song et al., 2022;
Nakamoto et al., 2023), though this has not been rigorously systematized in prior work. Perhaps the
most widely used benchmark suite in offline RL today is D4RL (Fu et al., 2020). However, the D4RL
tasks are increasingly saturated in performance, and many of the tasks do not effectively reflect the
challenges of realistic offline RL tasks: the MuJoCo locomotion tasks in D4RL are still largely based
on RL replay buffers, and the more complex “maze” tasks, which do feature sub-optimal data and
require stitching or recombining parts of the sub-optimal trajectories, are limited in difficulty and
variety. Our benchmark aims to address these limitations in several ways. We focus specifically
on robotics-themed tasks – although RL can address a far greater range of problems, we believe
that this focus is reasonable for providing a balance between specificity (i.e., not so much breadth
that no single method can address all tasks) and coverage (i.e., still capturing different challenges
in RL). Within this theme, our tasks all reflect realistic simulated models of robotic systems based
on actual robot URDF specifications, in contrast to D4RL, which uses simple “fictional” rigid body
systems. Our tasks include both state-based and image-based tasks, both sparse and dense rewards,
and multi-stage tasks. Additionally, we propose tasks suitable for offline pre-training with online
finetuning, something that has not been rigorously formalized in current widely used benchmarks.

Offline RL algorithms themselves have made significant progress in recent years as well (Fujimoto
et al., 2019; Kumar et al., 2019; 2020; Agarwal et al., 2020; Kostrikov et al., 2021; Nair et al.,
2020; Song et al., 2022; Cheng et al., 2022; Nakamoto et al., 2023). A full survey of all recent
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research on offline RL is outside the scope of this paper, but we do make an attempt to benchmark
representative examples of some of the widely used algorithm classes, including pessimistic or
conservative algorithms (Kumar et al., 2020; Nakamoto et al., 2023), algorithms based on implicit
backups (Kostrikov et al., 2021), algorithms based on behavioral cloning regularization (Fujimoto
& Gu, 2021), algorithms that utilize diffusion models (Hansen-Estruch et al., 2023), and methods
designed specifically for efficient online training by leveraging offline data (Ball et al., 2023). We hope
that by proposing a new benchmark that addresses the limitations of prior datasets and environments
we will provide a more effective means for algorithms researchers to make further advances in the
future.

3 Preliminaries and Background

Reinforcement learning is formalized through the concept of Markov Decision Process (MDP)
M = (S, A, P, R, ρ, γ), where S is the state space, A is the action space, P (s′|s, a) is the transition
probability, R(s, a) is the reward function, ρ is the initial state distribution and γ is a discount factor.
The goal of reinforcement learning is to find a policy π(a|s) that maximizes the expected reward:

J(π) = Eρ,P,π

[ ∞∑

t=0
γtR(st, at)

]

In the standard RL setting the policy is given access to the MDP and can sample trajectories to
collect additional data. On-policy algorithms iterate between data collection and policy updates,
and discard the collected data after each update, which makes them sample inefficient. Off-policy
algorithms collect data in a replay buffer, which is then repeatedly used to update the policy.

Offline reinforcement learning also reuses previously collected data, but unlike off-policy algorithms it
does not have access to the MDP during training and only utilizes a static dataset. These algorithms
need to be able to handle distribution shift between their training datasets and deployment. Moreover
they need to be able to utilize a variety of data sources and qualities, such as prior training runs,
deployments, data from different agents or human-generated data.

Additionally, prior offline data can be leveraged with online RL, either by pre-training offline and
finetuning online (Nair et al., 2020; Kostrikov et al., 2021), or by training online but including the
prior data in a replay buffer (i.e., joint offline and online training) (Song et al., 2022; Ball et al.,
2023). The challenge in this setting is for the policy to effectively utilize the offline data to reach
high performance in a sample-efficient way.

Our proposed tasks and datasets can be used for both problems, pure offline RL and offline-to-online
fine-tuning, and we evaluate both settings in our experiments.

4 Challenges in Offline RL Evaluation
Our benchmark environments and datasets aim to cover a range of challenges that are likely to be
encountered by offline RL algorithms aiming to learn effective policies for real-world tasks. Some of
these challenges, like temporal compositionality (“stitching”), have been addressed via simpler and
less realistic environments in prior benchmarks (Fu et al., 2020). Other challenges, like the use of
visual observations, are present in prior tasks (Gulcehre et al., 2020), but in combination with less
realistic data distributions, such as data from the replay buffer of online RL runs. We discuss some of
these challenges below, and in Section 5 discuss how our tasks instantiated some of these challenges.

Diverse and realistic robot systems: We evaluate simulated environments based on the A1
legged robot, the WidowX low-cost manipulation platform, and the Franka Emika robot arm. All of
the robots are based on their actual URDFs (definitions of robot morphology), controlled in ways
that are analogous to their real-world counterparts (e.g., position control or end-effector control).

Realistic observation spaces: Previous offline RL benchmarks, such as Fu et al. (2020), mostly
focus on low-dimensional state observations, even for more complex robotic tasks. In real scenarios,
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ground-truth system states are not available; correspondingly, our tasks and datasets use high-
dimensional and multi-view RGB camera observations as well as robot proprioception. This creates
additional challenges, such as partial observations and state estimation, so the reinforcement learning
agent needs to learn robust representations in addition to behaviors.

Generalization to environment variability: One of the central challenges for real-world embodied
systems is dealing with variability in the environment, from simple variation in appearance to changes
in object pose. In real settings, even small changes in the environment can significantly affect agent
performance. There are a number of realistic environments and simulators specifically designed to
evaluate an agent’s robustness to visual conditions, such as Dosovitskiy et al. (2017) in autonomous
driving or Szot et al. (2021); Xia et al. (2019). However, these are very heavy-weight in terms of
software, datasets and compute requirements, which makes them hard for wide adoption and fast
algorithm iteration. To strike a balance between realistic challenges, simplicity, and accessibility, we
use comparatively more lightweight MuJoCo-based simulations, but with significantly more realistic
visuals and variability. To evaluate agent’s robustness and ability to generalize, some of our tasks
vary the objects the robot needs to manipulate and randomize their arrangement. In addition, on
the observation side we introduce a number of distractors by varying textures, object colors, lighting
conditions and camera angles.

Datasets: We aim to explicitly evaluate datasets used in realistic robot applications that present
challenges for current algorithms. Towards that goal we focus on narrow data distributions from
scripted planners as well as human-generated data. While some prior benchmarks also include
scripted and human-generated data (Fu et al., 2020), many of the previously studied tasks consist
of replay buffers from online RL runs (Gulcehre et al., 2020), which may not be reflective of the
data distributions on which we might want to train real-world systems. In the WidowX platform we
generate object manipulation data using (sub-optimal) scripted planners. In the Franka domain, we
collected 20 hours of new human teleoperation data, and also include tasks based on the datasets
from prior work (Gupta et al., 2019a; Fu et al., 2020), but rendered out with visual observations
rather than low-dimensional state. We include both expert-level demonstrations from an experienced
teleoperator, as well as play data from several teleoperators with different levels of experience. We
believe these data distributions are realistic and provide significant challenges to current algorithms,
since they are not multi-task, have significant multi-modality with various levels of quality, and are not
executed in any particular order, which introduces significant challenges for dynamic programming
algorithms.

Temporal compositionality and multi-stage tasks: One of the most appealing properties of
offline RL methods is the ability to combine parts of sub-optimal behaviors and compose them into
new behaviors that complete more complex tasks more effectively (Levine et al., 2020; Fu et al.,
2020). One of the ways that offline RL can do this is by exploiting temporal compositionality: if the
algorithm understands that it’s possible to reach C from B, and to reach B from A, then it should be
able to figure out how to reach C from A. This can enable solving multi-stage tasks (such as sorting
multiple objects) by composing shorter-horizon primitive behaviors. Our benchmarks are designed to
evaluate temporal compositionality both by composing task-agnostic or multi-task sub-optimal data
(e.g., “play” data) into longer and more optimal tasks, and by composing single-step behaviors to
solve multi-stage tasks, such as sorting objects.

Online training from offline data: In many cases, we might want to use offline RL not to acquire
a policy that we deploy in the real world in zero shot, but rather to provide an initialization for
online training for a skill that would be difficult (or dangerous) to acquire entirely from scratch. This
can be done either via offline pre-training and finetuning Nair et al. (2020); Kostrikov et al. (2021);
Nakamoto et al. (2023), or by using online RL algorithms that can incorporate offline data (Song
et al., 2022; Ball et al., 2023). Prior benchmarks rarely evaluate this setting, and prior works studying
this setting tend to use a non-standard combination of tasks adopted by the community.
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5 D5RL: Diverse Datasets for Data-Driven Deep Reinforcement Learning
In this section, we describe the individual tasks in our benchmark, and relate them to the challenges
outlined in the preceding section. Each of our tasks reflects a realistic simulated model of a robotic
system, using the URDF of the corresponding robot and a simulated environment to enable plausible
interactions. Although our goal is primarily to enable rapid algorithms development rather than to
provide a framework for robotics research, we believe that this added degree of realism increases the
chances that algorithmic developments made with our benchmark will translate into good real-world
performance. Beyond the below descriptions, additional details about the environments and datasets
are provided in Appendix A.

5.1 Legged Locomotion

Figure 2: Hiking task. The A1
robot at the start of the course in
front of a randomized terrain.

The goal of the legged locomotion tasks is to study the efficacy
of offline RL methods in handling low-level control problems with
complex dynamics. We set up these tasks on a simulated Unitree A1
robot platform and require learning policies from low-dimensional
proprioceptive observations and do not require visual perception.
Additionally, in our experiments, we also evaluate both the offline
training performance and performance after online fine-tuning for
these tasks. Concretely, we construct three offline datasets, each of
which aim to learn different types of locomotion skills as follows:

Interpolate Speed: The goal is to control the A1 at a particular speed level, within the range of speeds
that were observed in the training data. For this, we first collect a dataset by training an A1 to
track 3 speeds: 0.5, 0.8, and 1.0 m/s, containing experience from the agents’ initial exploration to
expert-level performance on those tasks, and the goal is to adapt to a speed value of 0.75 m/s, that
lies within the range of speeds observed in the dataset. To compute rewards for offline RL training,
we label each transition with how accurately it tracks the target speed of 0.75 m/s.

Extrapolate Speed: Using the same dataset as the Interpolate Speed task, this task instead tests the
ability of an algorithm to be able to acquire a policy that can run at a higher speed of 1.25 m/s.
This task presents a challenge for offline RL methods as the optimal policy that runs at the higher
speed lies outside the support of the offline dataset, which means that this task presents a significant
room for improvement with online fine-tuning.

Hiking: Finally, we construct a task that aims to test the efficacy of offline RL at learning policies
when interacting with the complex dynamics induced by navigating on a hiking course (shown in
Fig. 2). This task still utilizes a offline dataset that depicts navigation on a flat terrain, but is distinct
in that the policy is deployed on a hiking course, and not a flat terrain. Our hiking course presents
varied terrains consisting of randomly generated rolling bumps as well as inclines and declines for
evaluation and our goal is to navigate the policy to the center of the course without falling.

5.2 Franka Kitchen Manipulation Environment
The goal of this environment is to study offline RL and online fine-tuning from realistic but sub-
optimal human-generated data, evaluate settings with variability in the appearance and placement of
objects to measure generalization, and handle multiple visual observations. Near-optimal and sub-
optimal human-collected data, which can run the gamut from demonstrations to unstructured “play”,
represents a realistic source of training data for offline RL, which has been studied in several prior
works (Lynch et al., 2020; Gupta et al., 2019a; Mandlekar et al., 2021). Additionally, generalization
over object placement and appearance is very important in real-world settings, but is rarely evaluated
in RL benchmarks (Cobbe et al., 2019; 2020). Therefore, we hope that this task will cover a range of
challenges that are underrepresented in prior work. This environment consists of a Franka Emika
robot in a simulated kitchen setting, and data is collected via VR-based tele-operation by real
people. We introduce several environments that pose different challenges for current data-centric RL
algorithms.

5.2.1 Standard Franka Kitchen Environment
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Figure 4: Observations from the Randomized Kitchen environment consist of two 128 × 128 RGB images
from side-cameras, 128 × 128 RGB image from a wrist camera, and robot proprioception. The environment
includes several different types of kettles and microwaves, which require different grasps. Moreover, their
locations are randomized across the scene. Textures, lighting conditions, and camera angles are also varied
across episodes.

Figure 3: Observations for the Standard
Franka Kitchen tasks consist of two 64 × 64
RGB images from an a top-down and a wrist
camera, as well as robot proprioception.

For an easier starting point, we adapt the Franka Kitchen
environment which was introduced by Gupta et al. (2019a)
and was also part of the D4RL (Fu et al., 2020) benchmark.
The objective in this environment is to manipulate a set
of 4 pre-specified objects. We modify the task to utilize
multiple image observations rather than ground truth ob-
ject locations, thus providing an observation space that
more realistically reflects robotic manipulation scenarios.
The agent receives a sparse reward of +1 for every object
manipulated into the correct configuration.

Datasets: We use the same datasets as (Gupta et al., 2019b; Fu et al., 2020), which consists of
expert-level demonstrations for different combinations of four objects, executed in a fixed order.
In total there are 513 total trajectories of varying length split across 22 task combinations. Our
observation space consists of two 64 × 64 images from a side-view and wrist cameras Hsu et al. (2022)
as shown in Fig. 3, as well as robot proprioception.

Tasks: We consider two settings, similar to Fu et al. (2020):

1. Mixed: In this environment the agent needs to rearrange the microwave, kettle, light switch
and slide door objects, and there are several expert demonstrations in the offline dataset for that
combination of objects.

2. Partial: In this setting the agent needs to manipulate the microwave, kettle, bottom burner knob
and light switch objects, which are never encountered together in any of the trajectories in the
offline dataset. This requires the agent to learn combinatorial generalization capabilities. We
note that this is different from the dynamic programming or "stitching" problem, since there is no
sequence of states in the dataset that reach the optimal solution.

5.2.2 Randomized Franka Kitchen Environment
We include a version of the Franka Kitchen environment with randomized scene configurations to
further test generalization. This requires collecting an entirely separate dataset, since the object
positions varies on each episode. The environment was constructed by modifying the “Kitchenshift”
domain Xing et al. (2021). Both object types and their locations in the environment are randomized,
which requires the agent to learn robust and general grasping strategies. There are several types
of visual distractors, including randomized textures and lighting conditions. The observation space
consists of three 128 × 128 images: two side-view cameras and a wrist camera, as well as robot
proprioception. The exact camera positions are also continuously randomized. Observations from
different episodes are included in Fig. 4. This level of variability introduces a significant challenge in
terms of robustness and representation learning, reflecting challenges likely to be seen in the real
world.
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Datasets: To provide offline training data in this domain, we manually collected close to 20 hours
of human teleoperation data:

1. Demonstrations: We collected 500 expert-level demonstrations from an experienced teleoperator
for the microwave, kettle, light switch and slide cabinet task (the same as the “Mixed" dataset
from Section 5.2.1). This dataset is suitable for testing capabilities of representation learning
approaches and benchmarking imitation learning algorithms.

2. Play: We collect a datasets of 1000 episodes, which are not task-oriented from multiple operators
with different levels of skills. The episodes consist of undirected environment interactions and
involve manipulating between 2 to 6 objects in random order and placement. These episodes were
collected by several tele-operators with different levels of experience, which introduces significant
multi-modality in the data both in terms of behaviours and quality of executed grasps.

3. Sub-optimal Expert: We also include a sub-optimal expert dataset consisting of 500 episodes,
collected by inexperienced teleoperators, but we do not explicitly benchmark it in this work.

Tasks: On the Demonstrations dataset, the agent is evaluated on the task corresponding to that
demonstration. On the Play dataset, similar to Section 5.2.1, we consider two tasks:

1. Mixed: Similar to before in this task we need to manipulate the the microwave, kettle, light switch
and slide cabinet objects. However, in addition to the representation learning an d robustness
challenges that the randomized kitchen poses, the agent needs to learn from diverse data of
varying quality. Another challenge is that while there are several episodes which manipulate all
four objects, they do so in a different order, which creates a challenging problem for dynamic
programming with multi-modal solutions.

2. Partial: Similar to before, the agent needs to manipulate the microwave, kettle, bottom burner
knob and light switch objects, which are never solved in the same episode in the offline data.

5.3 Multi-Stage Manipulation with Scripted Data

Figure 5: Setup for the Multi-
Stage Manipulation with Scripted
Data tasks consist of a simulated
WidowX arm with 2 identical bins.
In the center of the scene are two
objects that are categorized as shoes
or toys which the agent has to sort
into their respective bins.

The goal of this task is to study composition of sub-optimal trajec-
tories to solve longer-horizon tasks, incorporate visual observations,
and handle data from weak scripted policies. These ingredients re-
flect problems that are often encountered in offline robotic RL, where
we might want to compose longer-horizon behaviors out of datasets
depicting individual primitive skills (Fang et al., 2022; Rosete-Beas
et al., 2023; Fang et al., 2023). To this end, we introduce a multi-
stage bin sorting task. The simulated robot is a 6-DOF WidowX
arm placed in front of two identical white bins with 2 objects to sort.
These two objects are from two different categories: shoes and toys,
and are taken from the Google Scanned Objects Dataset (Downs
et al., 2022), comprising 3D scans of real household objects.

Task: As seen in Figure in Figure 5, The objective is to sort each
object into its respective bins. One bin corresponds to shoes and the
other bin corresponds to toys. The reward function is the number
of objects correctly sorted into each bin, where a "+1" reward is given when any of the objects are
placed in their correct bins and a "+2" reward is given when both objects are sorted correctly. This
task must be done from 128 × 128 × 3 a combination of visual observations and the proprioceptive
state of the robot (joint positions). There are multiple variations in which objects are seen. In each
environment reset, one toy and one shoe will be randomly selected from a pool of 5 objects and
placed in the central region of the scene. Various sample image observations can be seen in Figure 6.

Datasets: There are 2 tasks corresponding to the environments wx-sorting-v0 and wx-sorting-
pickplacedata-v0. Below, we provide a description of each.
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Figure 6: Observations from the Multi-Stage Manipulation environments consist of a single 128 × 128 RGB
image from a side camera and robot proprioception. The environment includes several different types of
shoes and toys, which require different grasps. Moreover, their locations are randomized across the scene.
Textures, lighting conditions, and camera angles are also varied across episodes.

Environment Task Method
BC IQL CQL CalQL (Nakamoto et al., 2023) TD3 + BC RLPD (Ball et al., 2023) DDPM + BC IDQL

Standard Kitchen
Mixed 0.461 ± 0.124 0.457 ± 0.129 0.0 ± 0.0 0.0 ± 0.0 0.003 ± 0.003 0.0 ± 0.0 0.253 ± 0.082 0.020 ± 0.008
Partial 0.474 ± 0.063 0.427 ± 0.116 0.0 ± 0.0 0.0 ± 0.0 0.053 ± 0.075 0.0 ± 0.0 0.163 ± 0.054 0.087 ± 0.021

Randomized Kitchen
Demos 0.144 ± 0.010 0.174 ± 0.031 0.023 ± 0.032 0.023 ± 0.016 0.052 ± 0.033 0.025 ± 0.036 0.126 ± 0.016 0.033 ± 0.011
Mixed 0.057 ± 0.019 0.027 ± 0.0 0.005 ± 0.002 0.004 ± 0.001 0.057 ± 0.026 0.017 ± 0.024 0.105 ± 0.016 0.009 ± 0.004
Partial 0.072 ± 0.019 0.048 ± 0.015 0.003 ± 0.005 0.001 ± 0.001 0.023 ± 0.007 0.008 ± 0.012 0.044 ± 0.010 0.002 ± 0.001

Locomotion
a1-walk-v0 1.006 ± 0.015 0.962 ± 0.007 0.068 ± 0.112 −0.171 ± 0.033 0.549 ± 0.178 0.032 ± 0.007 - -
a1-run-v0 0.684 ± 0.026 0.932 ± 0.006 −0.067 ± 0.045 −0.206 ± 0.086 0.002 ± 0.021 0.002 ± 0.021 - -

a1-hiking-v0 0.956 ± 0.004 0.935 ± 0.003 0.0 ± 0.004 −0.013 ± 0.008 0.003 ± 0.001 0.003 ± 0.001 - -

WidowX
wx-sorting-v0 0.152 ± 0.032 0.021 ± 0.016 0.0 ± 0.0 0.0 ± 0.0 0.016 ± 0.022 - 0.041 0.173

wx-sorting-pickplacedata-v0 0.084 ± 0.048 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 - 0.081 0.25

Table 1: Evaluation of offline methods for each task and dataset.

1. Sorting: The first dataset comprises of data collected with a scripted policy that attempts sorting
both objects into their respective bins. The scripted policy with some likelihood places the object
in the correct bin if grasped and otherwise in the incorrect bin. In all, there are 2000 episodes
presented to the agent, which are mostly unsuccessful at solving the full task but consistently
solve the individual segments of the task in separate episodes.

2. Sorting with Pickplace Data: This dataset only comprises of transitions where the robot picks
any object and places it in its respective bin. The data is similar to the dataset above in that
there is a likelihood that the scripted agent places the object in the wrong bin. In all, there are
2000 episodes presented to the agent, solving the sorting task only partially.

6 Benchmark Results
For each of the datasets in each of the domains, we evaluated a collection of recently proposed offline
RL algorithms, as well as methods designed for online RL training with offline data (either via
pre-training or joint training). We selected a range of algorithms that are meant to be representative
of various different types of approaches. Although our evaluation algorithms do not cover every
recent method (as there are many of them), we evaluated 8 separate algorithms, and we hope that in
collaboration with the community, we can include many more evaluation numbers as part of the D5RL
open-source repository. We chose CQL (Kumar et al., 2020) as a standard representative example of a
pessimistic/conservative offline RL method, together with Cal-QL (Nakamoto et al., 2023), a variant
of CQL adapted for online finetuning. To evaluate implicit TD backups, we include IQL (Kostrikov
et al., 2021), as well as IDQL (Hansen-Estruch et al., 2023), a recent extension of IQL that utilizes
diffusion model policies. To evaluate BC-based regularization, we include TD3+BC (Fujimoto & Gu,
2021). We include RLPD (Ball et al., 2023) as a representative example of a joint training method
that runs online RL with prior data included in the buffer, and a behavioral cloning (BC) baseline as
a diagnostic of the average performance in the dataset.
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Environment Task Method
IQL CQL CalQL (Nakamoto et al., 2023) TD3 + BC RLPD (Ball et al., 2023) DDPM + BC IDQL

Standard Kitchen
Mixed 0.123 ± 0.102 0.0 ± 0.0 0.0 ± 0.0 0.067 ± 0.066 0.139 ± 0.075 0.200 ± 0.029 0.020 ± 0.008
Partial 0.290 ± 0.064 0.0 ± 0.0 0.0 ± 0.0 0.093 ± 0.059 0.221 ± 0.113 0.177 ± 0.022 0.087 ± 0.021

Randomized Kitchen
Demos 0.234 ± 0.017 0.0 ± 0.0 0.023 ± 0.016 0.052 ± 0.033 0.001 ± 0.001 0.166 ± 0.029 0.033 ± 0.011
Mixed 0.25 ± 0.0 0.0 ± 0.0 0.004 ± 0.001 0.057 ± 0.026 0.011 ± 0.009 0.133 ± 0.004 0.009 ± 0.004
Partial 0.021 ± 0.009 0.0 ± 0.0 0.001 ± 0.001 0.023 ± 0.007 0.0 ± 0.0 0.084 ± 0.009 0.002 ± 0.001

Locomotion
a1-walk-v0 0.935 ± 0.017 0.068 ± 0.112 0.750 ± 0.027 0.030 ± 0.003 1.016 ± 0.005 - -
a1-run-v0 0.936 ± 0.021 −0.067 ± 0.045 0.700 ± 0.066 0.110 ± 0.091 1.011 ± 0.007 - -

a1-hiking-v0 0.927 ± 0.014 0.0 ± 0.004 0.368 ± 0.107 0.938 ± 0.015 1.058 ± 0.020 - -

Table 2: Evaluation of offline-to-online methods for each task and dataset.

The results for all of the offline RL methods are included in Table 1, with results after online finetuning
included in Table 2. For completeness, we include RLPD in the offline results (using the same exact
algorithm but without online collection). The online results are obtained by finetuning the offline
value function and policy for each method, except for RLPD, where the online run is completely
separate from the offline one. Further details about the specific training setup, hyperparameters, and
number of update steps for each method are provided in Appendix B.

The results show that our proposed benchmark leaves considerable room for improvement for current
offline RL and online finetuning methods. A few particularly prominent challenges include handling
generalization and visual observations, and handling multi-stage tasks. When using image observations
for the Franka kitchen tasks, particularly the more complex randomized domain, we see that many
of the current RL methods struggle to exceed the performance of the simple behavioral cloning
policy, indicating significant difficulties in learning robust perception. When learning the multi-stage
WidowX tasks, we similarly see low performance, and in fact the naïve BC policy performs marginally
better, again suggesting difficulties with scaling current RL methods into these domains. We believe
that these results indicate that our benchmark provides significant room for improvement, and can
drive development of more effective and scalable methods.

7 Discussion
We introduced a new benchmark for offline RL and online training with offline data, which we call
D5RL. The aim of D5RL is to provide coverage of a variety of offline RL and online finetuning
challenges, including different data compositions (scripted, human play-style data, and other sources),
different input modalities (images and state), and tasks that require varying degrees of stitching,
online finetuning, and generalization over initial state variability. Although the D5RL tasks are
designed primarily for iterating on RL algorithms, all of the D5RL tasks are also designed to be
reasonably reflective of real-world robotic tasks, with each environment containing a simulation of a
real-world robot (an A1 quadruped, a Franka industrial arm, or a WidowX low-cost robotic arm)
based on the robot’s actual URDF, and tasks that reflect behaviors those robots might be expected
to carry out in the real world. We also conducted an investigation with a number of existing offline
RL and online finetuning methods to provide initial evaluation numbers with our benchmark, which
we hope the community will utilize to develop more effective algorithms.

While we believe our benchmark provides a significant improvement over existing offline RL benchmark
tasks, many of which are either saturated due to recent algorithm developments or do not cover as
many of the problem dimensions as D5RL, our benchmark does have several limitations. First, we
focus entirely on simulated robotics tasks. Such tasks are appealing because they cover complex
dynamics and visual perception, but many aspects that make RL difficult in other domains, such as
a high degree of stochasticity (e.g., in algorithmic trading) are absent in these domains. Benchmark
tasks that address such domains would be very valuable and complementary to ours. Second, while
our tasks reflect real-world robots, there is a limit to how realistic such simulated domains can
be. Of course real data would be a “gold standard” in realism, but evaluating policies trained on
real data would require either bridging the domain gap to simulation, or else using real physical
robots, both of which would require considerable engineering and slow down the iteration cycle for
algorithm developers. We therefore opted for a more conventional simulated evaluation to facilitate
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fast algorithms development, but we also believe that a real-world counterpart to D5RL would be
valuable for the community. In conclusion, we hope that D5RL will serve as a new benchmark task
for development of offline RL and online finetuning methods, and that future work can address
some of the remaining blind spots of this benchmark to provide even comprehensive evaluations and
facilitate more broadly applicable algorithms.
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A Environments

A.1 Legged Locomotion

We construct the locomotion tasks using MuJoCo Todorov et al. (2012) and DeepMind’s
dm_control Tunyasuvunakool et al. (2020) suite, using the model of Unitree’s A1 quadruped
from MuJoCo Menagerie Contributors (2022). The robot only receives as input proprioceptive and
goal information. In particular, the robot’s observations consist of its root’s local forward linear
velocity, orientation (roll and pitch), angular velocity (roll, pitch, and yaw), and its (12) joint angles
and velocities. We also append the previous action applied. For the hiking task, we include the
displacement vector between the robot to the next way point along the hiking path. The reward
function is a simple locomotion reward that encourages a particular velocity to be tracked, subject
to penalties on the body’s angular velocity. For exact details on the reward function, we refer to
Section IV.B of Smith et al. (2022). The robot’s actions are PD targets for the 12 joints.

A.2 Standard Franka Kitchen Manipulation Environment

For the Standard Franka Kitchen Manipulation environment, we make some slight modifications
to the Franka Kitchen environment from Gupta et al. (2019a) (RPL). The RPL Franka Kitchen
environment requires controlling a simulated 9-DOF Franka Emika Robot to manipulate a set of
four pre-defined objects into a desired configuration. At each timestep, a reward of 1.0 is given for
each object that is in the correct configuration, with the maximum reward possible at each timestep
being 4.0. The action space is joint-space control commands to the robot.

We modify the original camera angle of the RPL environment to be the camera angle used in the
LEXA benchmark (Mendonca et al., 2021). Additionally, we add a wrist camera. We render both
cameras at 128x128 resolutions. The observation space consists of two RGB images from the two
cameras concatenated together, plus robot proprioception.

We also utilize frame stacking in our experiments. This amounts to stacking the previous three
images along the channel dimension, allowing the agent to have a short history of observations from
which it can estimate movement and velocity, as done in (Mnih et al., 2013).

A.3 Randomized Franka Kitchen Manipulation Environment

The Randomized Franka Kitchen Environment modifies the “Kitchenshift” domain Xing et al. (2021),
which is itself a heavily modified version of the RPL Kitchen environment. The Randomized Kitchen
environment includes a large degree of domain randomization and visual diversity. At the start of
each episode, the initial positions of the objects are randomized, as well as textures and lighting
conditions. The specific types of objects are randomized too (eg: one type of kettle can be switched for
a differently shaped type of kettle). The underlying tasks and rewards are the same as in the Standard
Kitchen Environment. The action space is the same as in the Standard Kitchen environment.

We use three RGB cameras (two side cameras and one wrist camera), each rendered at a resolution
of 128x128 pixels. Robot proprioception is also included in the observation space. Similar to the
Standard Kitchen environment, we use a frame-stacking wrapper around the Randomized Kitchen
environment to maintain a history of 3 images.

A.4 Multi-Stage Manipulation with Scripted Data

The multi-stage bin sorting task is an environment constructed using the DeepMind’s dm_control, a
software stack utilized for physics-based Simulation and RL environments. The WidowX 250 was
specified with an XML file which includes information about the robot’s joints with respect to their
sizes and weight. A position-based controller was used for the robot, where a specified action was
indicated as a change in robot position. This controller was a PID-based controller. The objects and
containers were sourced from Google’s Scanned Object Dataset (Downs et al., 2022), which contains
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photo-realistic 3D object models. From here, we selected 2 identical bins as containers and a set of
objects that lie in two categories: toys and shoes. The objects were scaled to be graspable by the
robot and fit in the container and are placed in the scene in any orientation (random quaternion).
The background was a static tabletop where the robot, containers, and objects were all placed as
seen in Figure 5.
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B Datasets

We summarize the datasets, their construction and composition, for each of the tasks (organized by
environment).

B.1 Legged Locomotion

We trained 3 A1s with the goal of tracking 3 speeds: 0.5, 0.8, and 1.0 m/s using RL (with the
same inputs and reward function as described in Appendix A). We then consolidated their replay
buffers and relabeled them as if their goal was to track speeds of 0.75m/s and 1.25m/s for the
Interpolate Speed and Extrapolate Speed tasks, respectively. For the Hiking task, we trained a
direction-conditioned policy using RL, again with the same observation and action space.

B.2 Standard Franka Kitchen Manipulation Environment

For our experiments we re-render the original RPL datasets (Gupta et al., 2019a) with the two
cameras described in section A.2. We add in proprioception to the observations, which consists of the
9 joint angles of the robot arm. The dataset contains 563 trajectories, with 128, 569 total transitions.
The average undiscounted episode return is 261.12, and the average number of objects manipulated
per episode is 3.98.

B.3 Randomized Franka Kitchen Manipulation Environment

We collected three distinct datasets for the Randomized Kitchen environment using tele-operation:
Demonstrations, Play, and Sub-Optimal Expert. The differences between these datasets are described
in Section 5.2.2. The Demonstrations dataset contains 500 total trajectories, with 250, 500 total
transitions. The average undiscounted episode return is 1148.78, and the average number of objects
manipulated per episode is 4.0. The Play dataset contains 1, 000 total trajectories, with 501, 000 total
transitions. The average undiscounted episode return is 870.50, and the average number of objects
manipulated per episode is 3.62. The Sub-Optimal Expert dataset contains 500 total trajectories,
with 250, 500 total transitions. The average undiscounted episode return is 911.70, and the average
number of objects manipulated per episode is 3.55.

B.4 Multi-Stage Manipulation with Scripted Data

For the Multi-Stage Bin Sorting Task, we used hand-engineered scripted policies. These scripted
policies used information such as the position of the object as well as containers to solve their
respective tasks of interest. These scripted policies were given a time horizon of 500 to solve this
task. For the pick and place task, the scripted policies were constructed to randomly select one
of the two objects in the scene to grasp. 70% of the time, the policy moved the object toward the
correct bin. Other times, the object was directed to the incorrect bin (mimicking a scenario that the
object was misclassified and sorted into the incorrect bin). For the sorting task, the scripted policy
completed both stages of the task by picking and placing each object in succession. Our scripted
policies are inspired by the procedure used in COG (Singh et al., 2020).
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C Baselines

C.1 Architecture Design Choice

For tasks that require learning from visual observations, we utilize the Impala architecture for our
experiments. For the actor and critic, the network backbone we used the architecture is found in
Impala (Espeholt et al., 2018). For environments that relied on multiple camera viewpoints such
as the Franka Kitchen environments, image observations were frame-stacked and passed into the
network. The output of the neural network was flattened and passed through an MLP to construct
the actor and critic networks for each method. For environments with a proprioceptive state, this
observation was concatenated to the flattened output of the network, prior to being passed through
the MLP network.

C.2 Methods + Implementation Details
Hyperparameters IQL

τ 0.5, 0.7, 0.9, 0.95
actor architecture Impala

critic (Q/V) architecture Impala
actor learning rate 1e-4

critic (Q/V) learning rate 3e-4
batch size 64

Table 3: Hyperparameters for IQL.
We primarily utilize the default hyperpa-
rameters as prescribed in the paper and
sweep over the expectile τ .

Here we describe the prior methods we evaluate and describe
task-specific implementation details.

IQL (Kostrikov et al., 2021) For the implementation of
IQL, we modify the open source implementation of IQL found
in https://github.com/ikostrikov/jaxrl2. The hyperpa-
rameters utilized for both methods can be found in Table 3.
During training, we utilize the data augmentations of color
jitter and random crops as proposed in DrQ (Kostrikov et al.,
2020) which allows for better generalization.

CQL (Kumar et al., 2020) and CalQL (Nakamoto et al.,
2023) For the implementation, we modify the open source
implementation of CQL found in https://github.com/ikostrikov/jaxrl2 for CQL and CalQL.
The hyperparameters utilized for both methods can be found in Table 4. During training, we utilize
the data augmentations of color jitter and random crops as proposed in DrQ (Kostrikov et al.,
2020) which allows for better generalization. For CalQL, the lower bound was computed with the
Monte-Carlo returns calculated using the rewards of the collected demonstrations, following the
recipe in Nakamoto et al. (2023).

Hyperparameters CQL and CalQL
α (online + offline) 0.1, 1, 5, 10
actor architecture Impala
critic architecture Impala
actor learning rate 1e-4
critic learning rate 3e-4

batch size 64

Table 4: Hyperparameters for CQL
and CalQL. We primarily utilize the de-
fault hyperparameters as prescribed in the
paper and sweep over the constant α.

TD3 + BC (Fujimoto et al., 2019) TD3+BC is an offline
RL method that modifies an online RL method for the offline
regime by simply adding a BC term to encourage the policy to
resemble the behavior policy. For pixel-based experiments, we
use the open-source implementation found in https://github.
com/ikostrikov/jaxrl2. For state-based experiments, we
use the authors’ implementation at: https://github.com/
sfujim/TD3_BC.

RLPD (Ball et al., 2023) RLPD is a method for online RL
with access to offline data that has demonstrated state-of-the-
art results on tasks designed to evaluate fine-tuning from offline
RL pre-training; therefore, we include it as a main baseline
for the fine-tuning regime. For ‘fine-tuning’ evaluation, we
evaluate RLPD as designed, i.e., without pre-training. For offline evaluation, we adapt RLPD to
only sample from the offline data. We use the implementation by the authors open-sourced at:
https://github.com/ikostrikov/rlpd and use the default hyperparameters as prescribed in the
paper for all environments. For the Standard Kitchen and Randomized Kitchen environments, we
used an Impala network architecture for the policy and critic network encoders.

DDPM + BC For the implementation of DDPM+BC, we modify the implementation of the behavior
cloning policy from IDQL (Hansen-Estruch et al., 2023) from https://github.com/philippe-eecs/
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IDQL. This involves attaching the convolutional encoder used to the architecture proposed in IDQL
(LayerNorm + ResNet). During training, we use data augmentations as proposed in DrQ (Kostrikov
et al., 2020) which improve generalization.

Furthermore, instead of using the variance preserving schedule as used in IDQL, we use the cosine
schedule (Nichol & Dhariwal, 2021) and T = 20. All other hyperparameters for the diffusion process
and trunk architecture are the same as in IDQL. While we train for 2 gradient million steps, we
recommend training for longer as the diffusion objective takes longer to train.

IDQL (Hansen-Estruch et al., 2023) The IDQL implementation combines the IQL implementation
with the DDPM+BC implementation. After training the Q-function using Pixel IQL and the diffusion
behavior policy using DDPM+BC, we combine the two during inference and sample the diffusion
policy N times and select the action that receives the highest Q-value. We use N = 64 as from IDQL,
but we recommend tuning this hyperparameter as to avoid potential OOD samples.
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Abstract

Many failures in deep continual and reinforcement learning are associated with
increasing magnitudes of the weights, making them hard to change and potentially
causing overfitting. While many methods address these learning failures, they often
change the optimizer or the architecture, a complexity that hinders widespread
adoption in various systems. In this paper, we focus on learning failures that are
associated with increasing weight norm and we propose a simple technique that can
be easily added on top of existing learning systems: clipping neural network weights
to limit them to a specific range. We study the effectiveness of weight clipping
in a series of supervised and reinforcement learning experiments. Our empirical
results highlight the benefits of weight clipping for generalization, addressing loss of
plasticity and policy collapse, and facilitating learning with a large replay ratio. 1

1 Introduction

Figure 1: Weight clipping confines
the weights in restricted space
while L2 Init pulls the current
weight wt to the weight at initial-
ization w0 and L2 pulls the cur-
rent weight wt to the zero vector.

Deep learning and reinforcement learning methods face many
challenges when learning online or continually. These challenges
include loss of plasticity (Lyle et al. 2023, Dohare et al. 2023a),
failure to achieve further improvement (e.g., Sokar et al. 2023,
Lyle et al. 2023, 2021), gradual performance decreases (e.g., Do-
hare et al. 2023a, Abbas et al. 2023, Elsayed & Mahmood 2024),
and even loss of generalization (Ash & Adams 2019). One com-
mon feature among many instances of learning failures is their
association with increasing weight magnitudes. An unbounded
weight growth can make it increasingly harder for the learners
to adjust the weight further (Lyle et al. 2024), causing loss of
plasticity (Dohare et al. 2023a) or policy collapse (Dohare et al.
2023b). Moreover, large weight magnitudes can be harmful to
the optimization dynamics (see Lyle et al. 2023 and Wortsman
et al. 2023) and are often associated with overfitting (Zhang
et al. 2021), leading to performance decrease and potentially
explaining the learning difficulties.

While many methods exist to address these learning difficulties,
these methods are predominantly complex or require significant
changes to the learning systems. For example, several methods require a change of the optimization
method (Dohare et al. 2023a, Elsayed & Mahmood 2024, Sokar et al. 2023), use an auxiliary objec-
tive (Lan et al. 2023), change the architecture (e.g., Lyle et al. 2023, Nikishin et al. 2023, Lan &
Mahmood 2023), or even require a new reinforcement learning estimator that maintains exploration
(Garg et al. 2022). There are simpler techniques of weight regularization that directly promote small

1Code is available at https://github.com/mohmdelsayed/weight-clipping
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weight magnitudes, such as weight decay (L2 ) (Krogh & Hertz 1991, Ash & Adams 2019, Lyle et
al. 2024) and more recently, regularization toward initial weights (L2 Init) (Kumar et al. 2023a).
In Fig. 1, we illustrate the difference between L2 and L2 Init, showing that L2 results in biasing
the weights towards the zero weights while L2 Init results in biasing the weights towards the initial
weights. The issue of biasing toward a particular point is that it applies to all weights regardless
of their usefulness, resulting in overwriting and re-learning of previously useful weights, a primary
cause of catastrophic forgetting (McCloskey & Cohen 1989, French 1999, Elsayed & Mahmood 2024).
Lewandowski et al. (2024) proposed to use the empirical Wasserstein distance instead of L2 to alle-
viate the issue of L2 Init. However, the Wasserstein distance requires sorting the parameters, which
is computationally expensive. It is desirable to address the issue of increasing weight magnitude in
a computationally cheap manner without biasing the weight vector towards any point, allowing the
learner to continually build on previously useful weights and overcome continual learning difficulties.

We use a simple remedy that can reduce the norm of the weights by clipping any large weight
magnitude. This technique is distinct from gradient or update clipping (e.g., Brock et al. 2021,
Badia et al. 2020), which aims to clip large updates or gradients, not weights. Constraining the
weights prevents large weight magnitudes without biasing them toward a certain point, as depicted
in Fig. 1. In this paper, we study the role of weight clipping in 1) improving generalization, 2)
addressing loss of plasticity and policy collapse, and 3) facilitating learning with a large replay ratio.

2 Problem Formulation

In this section, we describe the two problem formulations we use in this paper and what metrics we
use to evaluate learners in each of them.

2.1 Streaming Supervised Learning

In streaming supervised learning, the data samples are presented to the learner as they come,
one sample at each time step. Each sample is processed once by the agent, then the learner is
evaluated based on some evaluation metric, and after that, the sample is discarded immediately
(Hayes et al. 2019). This setup mirrors animal learning (Hayes & Kanan 2022) and is important
for various applications such as on-device learning. The target function ft generating these data
samples is typically non-stationary, producing non-independently and identically distributed (non-
i.i.d.) samples such that yt = ft(xt). For simplicity, we assume that the target function is locally
stationary in time, not arbitrarily non-stationary, but instead changes frequently (e.g., due to task
change). The learner is expected to process the input xt ∈ Rd and produce a prediction ŷt ∈ Rn,
after which it is evaluated based on the metric E(yt, ŷt). The goal of the learner is to maximize the
average online metric (see Kumar et al. 2023b, Elsayed & Mahmood 2024) given by 1

T

∑T
t=1 E(yt, ŷt),

where T is the total number of time steps.

2.2 Reinforcement Learning

The sequential decision process of the agent and the interaction with the environment is modeled
as a Markov decision process (MDP). In this paper, we consider episodic interactions between the
agent and the environment in which its episodic MDP is denoted by the tuple (S,A,P,R, γ, d0,H),
where S is the set of states, A is the set of actions, R ⊂ R denotes the set of reward signals,
P : S ×A → ∆(S ×R) denotes the transition dynamics model in which ∆(X) is a distribution over
the set X, d0 is the starting state distribution, γ ∈ [0, 1] is the discount factor, and H is the set
of terminal states. The agent interacts with the environments using a policy π : S → ∆(A) that
outputs a distribution over actions conditioned on the state (Sutton & Barto 2018). Each episode of
interaction begins after the environment samples a state from the starting state distribution S0 ∼ d0.
At each time step t, the policy receives the state St and produces the action At ∼ π(.|St), and then
the environment samples a new state and reward signal using the transition dynamics as follows:
St+1, Rt+1 ∼ p(., .|St, At). The interaction continues until the agent ends up in one of the terminal

2199



RLJ | RLC 2024

states ST ∼ H, where T is the termination time step. The amount of the discounted sum of rewards
collected by the agent during the episode at time step t is known as the episodic return and is
given by Gt

.=
∑T

k=t+1 γk−t−1Rk. The goal of the agent is to maximize the expected return Eπ[Gt]
produced by following the policy π.

3 Method

In this section, we introduce weight clipping and show how it can be used with existing optimization
methods. We propose a clipping scheme that uses the boundaries given by a uniform distribution at
initialization (e.g., He et al. 2015). Consider a neural network f parameterized by the set of weights
W = {W1, W2, . . . , WL} and the set of biases {b1, b2, . . . , bL}. Specifically, given that the entries
of the weight matrix Wl,∀l and the bias vector bl,∀l are initialized from the uniform distribution
U [−sl, sl], sl ∈ R+,∀l, we propose clipping any value outside the range [−κsl, κsl], where κ ∈ R+ is
a hyper-parameter defining the size of the constraint weight space. Algorithm 1 shows how weight
clipping can be integrated into optimization methods.

Algorithm 1 Weight-constrained Stochastic Optimization
Given a stream of data D, a neural network f with weights {W1, ..., WL} and biases {b1, . . . , bL}
Set step size α and initialization bounds {sl}L

l=1 (e.g., sl = 1/
√

nl), where nl is fan_in
Set clipping parameter κ (e.g., κ = 2)
Initialize weights Wl,i,j ∼ U [−sl, sl],∀i, j, l

for S in D do
for l in {L, L− 1, ..., 1} do

Wl ←Wl − α∆Wl ▷ Weight Update (e.g., ∆Wl = ∇Wl
L(S) in SGD)

bl ← bl − α∆bl ▷ Bias Update (e.g., ∆bl = ∇bl
L(S) in SGD)

Wl ← Clip(Wl, min = −κsl, max = κsl)
bl ← Clip(bl, min = −κsl, max = κsl)

One natural question is whether we reduce the expressivity of the network by weight clipping.
Typically, the larger the neural network, the smaller the weight change is to reduce the loss (Ghorbani
et al. 2019, Geiger et al. 2020). For example, in over-parameterized networks, the weight change is
usually tiny to represent any function, which is referred to as lazy training (see Chizat et al. 2019).
Thus, we suspect weight clipping would not reduce much of the expressivity of over-parameterized
networks due to tiny weight changes and a relatively large clipping range. We leave studying the
effect of weight clipping on neural network expressivity to future work.

Next, we investigate the effect of weight clipping on smoothing the neural network. Liu et al.
(2022) showed that reducing the Lipschitz constant (e.g., via Lipschitz regularization) increases the
smoothness of the functions represented by neural networks and, hence, improves generalization
(Yoshida et al. 2017), stabilizes Wasserstein generative adversarial networks (Arjovsky et al. 2017),
and protects against adversarial attacks (Li et al. 2019). We start our analysis by showing that
weight clipping leads to bounding the Lipschitz constant. In Theorem 1, we show that weight
clipping bounds the Lipschitz constant (see proof in Appendix A). For simplicity, we consider fully
connected networks and 1-Lipschitz activation functions (e.g., ReLU, Leaky ReLU, Tanh), but the
results can be extended to other networks (see Gouk et al. 2021) and other activation functions.
Theorem 1. Smoothness of Clipped Networks. Consider a fully-connected neural network
fW : X → Y parametrized by the set of augmented weight matrices (include biases) WAug =
{W1, . . . , WL}. If the activation function σ used is 1-Lipschitz (e.g., ReLU), then the clipped net-
work fClipped

W is Lipschitz continuous. That is, ∃k ≥ 0 such that ∥fClipped
W (x1) − fClipped

W (x2)∥1 ≤
k∥x1 − x2∥1,∀x1, x2 ∈ X .

This result suggests that weight clipping adds an upper bound to the sharpness level of the network.
In contrast, while other regularization methods can also improve smoothness (e.g., Liu et al. 2022),

2200



RLJ | RLC 2024

they do not have any guarantees on the bounds of the Lipschitz constant, and, hence, they can
sometimes still reach sharp solutions.

Finally, we show that weight clipping makes the function change bounded. Update boundedness is
a desired property of reinforcement learning methods, especially for the on-policy ones such as PPO
(Schulman et al. 2017), to prevent the policy from changing too much from its old policy, achieving
more learning stability. In corollary 1, we show how weight clipping leads to update boundedness
using the fact that clipped networks are Lipschitz continuous (see proof in Appendix A).
Corollary 1. Update Boundedness of Clipped Networks. Consider a clipped fully-connected
neural network fClipped

W parameterized by the set of augmented weight matrices (include biases)
WAug = {W1, . . . , WL}. If the activation function σ used is 1-Lipschitz (e.g., ReLU), then any
function update ∥∆fClipped

W ∥1 is bounded.

4 Experiments

In this section, we study the effectiveness of weight clipping in 1) improving generalization, 2)
maintaining network plasticity, 3) mitigating policy collapse, and 4) facilitating learning with large
replay ratios. We start by considering the warm start setup (see Ash & Adams 2019) and show
that weight clipping can reduce loss of generalization. We then evaluate weight clipping using non-
stationary streaming learning problems introduced by Elsayed and Mahmood (2024). Specifically,
we use the Input-Permuted MNIST, Label-Permuted EMNIST, and Label-Permuted mini-ImageNet
problems. Finally, we evaluate the effectiveness of weight clipping in addressing policy collapse in
PPO (Schulman et al. 2017) and improving the performance of DQN (Mnih et al. 2015) and Rainbow
(Hessel et al. 2018) with a large replay ratio.

The performance is evaluated based on the test accuracy in the warm-starting problem, the average
online accuracy for the streaming learning problems, and the non-discounted episodic return for
the reinforcement learning problems. We perform a hyper-parameter search (see Appendix B) for
each method and use the best-performing configuration to plot in the following experiments. Our
criterion for the best-performing configuration is the one that maximizes the area under the accuracy
curve in supervised learning problems and the area under the non-discounted episodic return for the
reinforcement learning problems.

4.1 Weight Clipping for Improved Generalization
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Figure 2: Performance when training on
the data sequentially against when data
is aggregated. The shaded region repre-
sents the standard error.

Here, we study the role of weight clipping (WC) in im-
proving generalization. We use the warm starting setup
proposed by Ash and Adams (2019) with the CIFAR-10
dataset (Krizhevsky 2009). Two variations of SGD are
trained from scratch using ResNet18 (He et al. 2016), one
using 100% of the training and another in two stages: on
50% of the data, followed by the other 50%. In Fig. 2,
when SGD is trained in two stages, we observe that its
test accuracy is lower than if it was trained on the full
data in one stage, which gives the same loss of gener-
alization phenomenon demonstrated by Ash and Adams
(2019). We introduce weight clipping in two ways: 1) clip
once after the training on the first half of the data and 2)
clip every time step. We observe that weight clipping only
once removes the generalization gap and improves the test
accuracy significantly. On the other hand, weight clipping
every time step improves generalization in both stages of learning. These results show that large
weights can cause overfitting and reduction in performance, which is alleviated by weight clipping
that can improve generalization. The results are averaged over 10 independent runs.
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(a) I/P MNIST
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(b) L/P EMNIST
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(c) L/P mini-ImageNet

Figure 3: Performance of Adam and SGD with Weight Clipping on Input-permuted MNIST, Label-
Permuted EMNIST, and Label-Permuted mini-ImageNet. All curves are averaged over 20 indepen-
dent runs. The shaded area represents the standard error

4.2 Weight Clipping in Streaming Learning

Now, we study weight clipping in addressing loss of plasticity using the Input-permuted MNIST
problem. The input-permuted MNIST problem is a standard problem for studying loss of plasticity in
neural networks since the learned features become irrelevant to the next task after each permutation.
We permute the inputs every 5000 time step. A new task starts when a permutation is performed.
Next, we use the label-permuted EMNIST and label-permuted mini-ImageNet problems where loss
of plasticity is intertwined with catastrophic forgetting (Elsayed & Mahmood 2024). In both label-
permuted problems, we permuted the labels each 2500 time step.

We compare SGD and Adam (Kingma & Ba 2014) along with their variations with two regularization
methods, Shirnk & Perturb (S&P) and L2 Init, against weight clipping with SGD and Adam. In
previous works (Kumar et al. 2023a, Dohare et al. 2023a), L2-Init and S&P have been shown to
be effective in maintaining plasticity when combined with SGD but have not been studied when
combined with Adam. In addition, we compare against the Madam optimizer (Bernstein et al.
2020), which uses weight clipping to reduce its exponential weight growth but has not been studied
in non-stationary settings before. In the streaming classification problems, the learner is required to
maximize the online average accuracy using a stream of data, one sample at a time. Each learner is
presented with 1M samples and uses a multi-layer (300× 150) network with leaky-relu units.

Fig. 3a shows that almost all methods except for SGD and Adam maintain their performance
throughout, but by different degrees. We plot the average online accuracy against the number of
tasks, where each point in the figure represents the percentage of correct predictions within the task
since the sample online prediction is 1 for correct predictions and 0 for incorrect ones.

In Fig. 4, we characterize the solutions of each method using diagnostic statistics. Specifically, we
show the online loss, ℓ2-norm of weights, and ℓ2-norm of gradients. In addition, we show the average
online plasticity of each method using the sample plasticity metric (Elsayed & Mahmood 2024),
which is given by p(Z) = max

(
1− L(W†,Z)

max(L(W,Z),ϵ) , 0
)
∈ [0, 1], where Z is the sample, W† is the set

of weights after performing the update and ϵ is a small number for numerical stability. We observe
a gradual increase of the ℓ2 norm of the weights of SGD and Adam compared to other methods.

Next, we use the label-permuted problems to evaluate the role of weight clipping in not biasing the
weights towards some point. The label-permuted problems involve label permutation, which means
the learned representation by the learner does not need to change, and the learner can continually
improve upon them instead of overwriting and then re-learning. Fig. 3b and 3c show that while all
methods addressing loss of plasticity can maintain their performance, only weight clipping can keep
improving its performance, likely due to not biasing the weights toward a specific point. We defer
the diagnostic statistics on these two problems to Appendix C.

2202



RLJ | RLC 2024

0 50 100 150 200

Task Number

0.60

0.65

0.70

0.75

0.80

0.85

0.90

A
ve

ra
ge

O
nl

in
e

L
os

s

0 50 100 150 200

Task Number

0.1

0.2

0.3

0.4

0.5

A
ve

ra
ge

O
nl

in
e

P
la

st
ic

it
y

0 50 100 150 200

Task Number

10

20

30

40

50

60

` 2
N

or
m

of
W

ei
gh

ts

0 50 100 150 200

Task Number

10

12

14

16

18

` 2
N

or
m

of
G

ra
di

en
ts

Figure 4: Diagnostic Statistics of different methods in Input-permuted MNIST. We show the online
loss, the online plasticity, the ℓ2-norm of gradients, and the ℓ2-norm of weights.

4.3 Weight Clipping Against Policy Collapse

In this section, we study the role of weight clipping in mitigating policy collapse (Dohare et al.
2023b). Dohare et al. (2023b) demonstrated that the performance of PPO can collapse if trained for
longer periods of time. We use CleanRL’s implementation (Huang et al. 2022) with the default hyper-
parameters as suggested by Dohare et al. (2023b). The network used is multi-layered (64× 64) with
tanh activations. Fig. 5 illustrates the phenomenon of policy collapse where the performance of PPO
with Adam drops gradually with time in a number of MuJoCo (Todorov et al. 2012) environments.
Weight clipping is effective in mitigating policy collapse, allowing for continual improvement. Here,
we only show the performance in the MuJoCo environments with which policy collapse happens
and exclude other environments where PPO with Adam experiences no policy collapse. We further
investigate why policy collapse happens using the approximate KL given by (1 − r) − log r as our
diagnostic metric, where r is the ratio in PPO between the current policy and the old policy. Fig.
6 shows the approximate KL throughout learning using Adam against Adam+WC. We observe
that the approximate KL with Adam increases, indicating that the current policy deviates a lot
from the old policy, in contrast to Adam+WC, which maintains small values, stabilizing learning
in PPO. Next, we show additional diagnostic statistics in Fig. 7 to characterize the solutions found
by Adam and Adam+WC. Notably, we observe that weight clipping reduces the ℓ2 norm of the
weights and reduces the percentage of saturated units. We defer diagnostic statistics on the rest of
the environment in Appendix C.
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Figure 5: Policy Collapse in PPO. The performance of PPO with Adam drops when trained for longer
in contrast to Adam+WC, which can keep improving its performance. All curves are averaged over
30 independent runs. The shaded area represents the standard error.

4.4 Weight Clipping with Large Replay Ratios

The replay ratio (RR) is the number of gradient updates performed per environment step. An
increase of RR helps a learning agent extract as much information as possible from transitions,
resulting in a higher sample efficiency. However, in practice, when the RR is too high, the learning
agent would overfit to a small amount of data and lose the plasticity to learn new information due
to aggressive parameter updates, thus reducing the learning performance (Nikishin et al. 2022).

In this section, we show that by incorporating weight clipping, we can prevent the agent from
aggressive parameter updates and improve sample efficiency by a large amount under a high RR
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Figure 6: Approximate KL between the current and old policy. The values reach zero at the end
since learning rate annealing is used.
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Figure 7: Diagnostic Statistics for policy collapse. The ℓ2 norm of the weights and percentage of
saturated units are shown. A tanh unit is considered saturated if |x| ≥ 0.95, where x is its output.

setting. Specifically, we train DQN (Mnih et al. 2015) and Rainbow (Hessel et al. 2018) with
RR = 1 in several Atari (Bellemare et al. 2013) tasks, optimized by Adam or Adam+WC. All our
experiments are conducted using the Tianshou framework (Weng et al. 2022) and the default RR
is 0.1. Note that due to the high computation cost of using a high RR, we train both agents for
10M frames and summarize all results across over 5 random seeds, as shown in Figure 8. Overall,
without weight clipping, both DQN and Rainbow perform poorly and have low sample efficiency.
Once weight clipping is applied, we observe a great improvement in sample efficiency and learning
performance, demonstrating the effectiveness of our method.

To further investigate the influence of weight clipping in terms of optimization and generalization,
we visualize the gradient covariance matrices of training DQN in Space Invaders, optimized by
Adam and Adam+WC in Fig. 9. The heatmaps for all Atari tasks are included in Appendix C.3.
Specifically, the gradient covariance matrix is known to be strongly related to optimization and
generalization (Fort et al. 2019, Lyle et al. 2022; Lyle et al. 2023). Formally, we estimate it by
sampling k training points and compute it entrywise as

Ck[i, j] = ⟨∇θℓ(θ, xi),∇θℓ(θ, xj)⟩
∥∇θℓ(θ, xi)∥∥∇θℓ(θ, xj)∥ ,

where x1, · · · , xk are randomly sampled training points and ℓ is the loss function. In Fig. 9, we
observe that when weight clipping is applied, the gradient covariance matrix has smaller off-diagonal
values, indicating a smoother loss landscape and less interference.

5 Related Works

Biologically plausible NNs. Physical and biological systems usually have bounded outputs, as
components or elements within these systems often have inherent limits or constraints. For example,
in neurobiological processes, synaptic weights are assumed to have a maximum value (Michiels van
Kessenich et al. 2016). Weight clipping can be viewed as a biologically plausible mechanism that
improves plasticity in artificial neural networks.
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Figure 8: The performance of DQN and Rainbow trained with RR = 1 in Atari tasks, optimized by
Adam and Adam+WC. Solid lines correspond to the mean performance over 5 random seeds, and
the shaded areas correspond to 90% confidence interval.

Figure 9: The gradient covariance heatmap with
DQN in Space Invaders, optimized by Adam
and Adam+WC, respectively. Optimizing with
Adam+WC results in smaller off-diagonal values
in the heatmap compared to Adam.

Gradient Clipping. Gradient clipping has
been used to stabilize learning which avoids in-
stability by preventing large updates to the net-
work. Barczewski & Ramon (2023) showed that
weight clipping improves optimization perfor-
mance compared to gradient clipping, likely due
to the fact that weight clipping is not biased.
Nevertheless, gradient clipping is often an essen-
tial component of some reinforcement learning
algorithms to stabilize learning and control the
maximum size of the update (e.g., Badia et al.
2020, Hafner et al. 2023, Mnih et al. 2016).

Weight Clipping in the Literature. Weight
clipping has appeared in previous works to
achieve different desiderata. For example, Bern-
stein et al. (2020) introduced the Madam optimizer, which uses weight clipping to limit the expo-
nential growth of the weights when using a multiplicative weight update rule. Arjovsky et al. (2017)
used weight clipping to stabilize Wasserstein generative adversarial networks. Moreover, weight clip-
ping has been used in binary neural networks to help binarize the weights (Courbariaux et al. 2015,
Alizadeh et al. 2018).

Wasserstein Regularization. Wasserstein regularization (Lewandowski et al. 2024) aims to ad-
dress the loss of plasticity while allowing parameters to deviate from initialization. However, the
Wasserstein metric usually requires sorting of the parameters, which can be expensive. Weight Clip-
ping allows the weights to deviate instead of biasing towards a specific point, achieving a similar
goal as Wasserstein regularization but having substantially lower computational requirements.

6 Conclusion

In this paper, we introduced weight clipping as a simple mechanism that helps with learning under
non-stationarity. Weight clipping can be used besides existing methods without any major change
to the optimizer or the network used. Our results show that weight clipping can help mitigate loss
of plasticity in streaming learning, alleviate policy collapse, and improve performance when learning
with large replay ratios. Future work can perform adaptive weight clipping that does not require any
hyper-parameter tuning or develop Lipschitz regularization methods that guarantee smoothness.
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A Proofs

A.1 Proof of Theorem 1

Proof. Let us first rewrite our feed-forward neural network function for a given input x as follows:

fW = (ϕL ◦ σ . . . σ ◦ ϕ1)(x),

where ϕi defines the linear operation given by Wi and ◦ denotes the composition between two
functions. The composition of k1-Lipschitz and k2-Lipschitz function is k1k2-Lipschitz (see Gouk et
al. 2021). Thus, the Lipschitz constant of the network is given by

L(f) ≤
L∏

i=1
L(σi)L(ϕi) =

L∏

i=1
L(ϕi),

where L(ϕi) = supa̸=0
∥Wia∥p

∥a∥p
is the operator norm of Wi. Since L(f) depends on the operator norm

of weight matrices at each layer, it can change during learning, producing less smooth functions.

Next, we show the Lipschitz constant of the clipped network. For simplicity of the proof, we consider
p = 1. The Lipschitz constant of the clipped network L(fClipped) is bounded by:

L(fClipped) ≤
L∏

l=1
sup
a̸=0

∥Wla∥1
∥a∥1

=
L∏

l=1
max

j

(
ml∑

i=1
|Wl,i,j |

)
≤ κL

L∏

i=1
slml,

where Wl ∈ Rml×nl and |Wl,i,j | ≤ κsl,∀l, i, j.

A.2 Proof of Corollary 1

Proof. For simplicity, let us vectorize W and combine it with the input vector x in a single vector
θ ∈ P. Let us consider the two instances θ(1) and θ(2) corresponding to before and after making an
update with the same input, θ(2) = θ(1) + ∆θ(1). From Theorem 1, ∃k ≥ 0 such that the clipped
network fClipped

W is k-Lipschitz. Thus we can write the following:

∥fClipped(θ(2))− fClipped(θ(1))∥1 ≤ k∥θ(2) − θ(1)∥1,∀θ(1), θ(2) ∈ P.

Thus, the change in the function fClipped
W can be written as:

∥∆fClipped
W ∥1 ≤ k∥θ(2) − θ(1)∥1 = k

L∑

l=1

ml∑

i=1

nl∑

j=1
|W (2)

l,i,j −W
(1)
l,i,j | ≤ 2k

L∑

l=1
mlnlsl,

where W
(1)
l ∈ Rml×nl is the weight matrix at layer l before making the update and W

(2)
l ∈ Rml×nl

is the weight matrix at layer l after making the update.
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B Hyperparameter Search Space

In this section, we present the hyper-parameter search space in Table 1 and the best set of hyper-
parameter configurations of each method in Table 2.

Problem Space Method

step size α {0.1, 0.01, 0.001, 0.0001} All
Input-permuted

MNIST noise std. deviation σ {0.0, 0.1, 0.01, 0.001, 0.0001} S&P

Label-permuted weight decay factor λ {0.0, 0.1, 0.01, 0.001, 0.0001} S&P, L2 Init
EMNIST

clipping param κ {1, 2, 3, 4, 5} Madam, WC
Label-permuted
mini-ImageNet Number of Seeds N {20} All

step size α DQN {0.0001}, Rainbow {0.0000625} All

Atari clipping parameter κ {1, 5} Adam+WC
Environments

Number of Seeds N {5} All

step size α {0.0001} All
MuJoCo

Environemnts clipping param κ {1, 3, 5} Adam+WC

Number of Seeds N {30} All

step size α {0.001} All

Warm Starting clipping param κ {1, 2, 5, 10, 20} SGD+WC

Number of Seeds N {10} All

Table 1: Search Space for Streaming Learning Experiments.
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Problem Method Best Set

SGD α = 0.001
Adam α = 0.0001

SGD + L2 Init α = 0.001, λ = 0.01
Adam + L2 Init α = 0.0001, λ = 0.001

Input-permuted SGD + S&P α = 0.001, σ = 0.1, λ = 0.01
MNIST Adam + S&P α = 0.0001, σ = 0.1, λ = 0.001

SGD + WC α = 0.001, κ = 2.0
Adam + WC α = 0.0001, κ = 1.0

Madam α = 0.01, κ = 4,

SGD α = 0.01
Adam α = 0.0001

SGD + L2 Init α = 0.01, λ = 0.001
Adam + L2 Init α = 0.001, λ = 0.01

Label-permuted SGD + S&P α = 0.01, σ = 0.01, λ = 0.001
EMNIST Adam + S&P α = 0.001, σ = 0.001, λ = 0.01

SGD + WC α = 0.01, κ = 2.0
Adam + WC α = 0.0001, κ = 3.0

Madam α = 0.01, κ = 5,

SGD α = 0.01
Adam α = 0.0001

SGD + L2 Init α = 0.01, λ = 0.01
Adam + L2 Init α = 0.001, λ = 0.01

Label-permuted SGD + S&P α = 0.01, σ = 0.01, λ = 0.01
mini-ImageNet Adam + S&P α = 0.001, σ = 0.0, λ = 0.01

SGD + WC α = 0.01, κ = 1.0
Adam + WC α = 0.0001, κ = 3.0

Madam α = 0.01, κ = 5,

MuJoCo Adam α = 0.0003
Environments Adam+WC α = 0.0003 and κ = 3 for all except for Ant-v4 (κ = 5)

Atari Adam α = 0.0001 for DQN and 0.0000625 for Rainbow
Environments Adam+WC α = 0.0001 for DQN and 0.0000625 for Rainbow with κ = 1

SGD α = 0.001
Warm Starting SGD + WC α = 0.001, κ = 10

SGD + WC@300 α = 0.001, κ = 20

Table 2: Best hyperparameter set of each method in each problem.
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C Additional Experimental Results

C.1 Diagnostic statistics for Label-permuted EMNIST and mini-ImageNet
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(a) Label-pertmued EMNIST.
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(b) Label-pertmued mini-ImageNet.

Figure 10: Diagnostic Statistics of different methods in Label-permuted EMNIST and Label-
permuted mini-ImageNet. We show the online loss, the online plasticity, the ℓ2-norm of gradients,
and the ℓ2-norm of weights.

C.2 Diagnostic statistics of PPO
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(b) Walker2d-v4
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(c) Humanoid-v4
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(d) HumanoidStandup-v4

Figure 11: Diagnostic Statistics for policy collapse. The ℓ2 norm of the weights and percentage of
saturated units are shown. A tanh unit is considered saturated if |x| ≤ 0.95, where x is its output.
In all environments, we use κ = 3 except for Ant-v4, in which we found that κ = 5 performs better.
The larger value of κ used in Ant-v4 explains the smaller effect of weight clipping on the ℓ2 norm of
the weights and the percentage of saturated units compared to other environments, although it still
has a large effect on reducing the approximate KL (see Fig. 6).
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C.3 The Gradient Covariance Heatmaps of Training DQN and Rainbow in Atari
Games
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(a) DQN in Asterix with Adam

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0
2

4
6

8
10

12
14

16
18

20
22

24
26

28
30

Frame=4.8M

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Frame=8.8M

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(b) DQN in Asterix with Adam+WC
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(c) DQN in Beam Rider with Adam

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0
2

4
6

8
10

12
14

16
18

20
22

24
26

28
30

Frame=4.8M

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Frame=8.8M

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(d) DQN in Beam Rider with Adam+WC
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(e) DQN in Demon Attack with Adam
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(f) DQN in Demon Attack with Adam+WC
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(g) DQN in Ice Hockey with Adam
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(h) DQN in Ice Hockey with Adam+WC

Figure 12: The gradient covariance heatmaps of training DQN in Asterix, Beam Rider, Demon
Attack, and Ice Hockey, optimized by Adam and Adam+WC, respectively.
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(a) DQN in James Bond with Adam
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(b) DQN in James Bond with Adam+WC
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(c) DQN in Seaquest with Adam
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(d) DQN in Seaquest with Adam+WC
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(e) DQN in Space Invaders with Adam
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(f) DQN in Space Invaders with Adam+WC
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(g) DQN in Yars’ Revenge with Adam
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(h) DQN in Yars’ Revenge with Adam+WC

Figure 13: The gradient covariance heatmaps of training DQN in James Bond, Seaquest, Space
Invaders, and Yars’ Revenge, optimized by Adam and Adam+WC, respectively.
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(a) Rainbow in Asterix with Adam
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(b) Rainbow in Asterix with Adam+WC
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(c) Rainbow in Beam Rider with Adam

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0
2

4
6

8
10

12
14

16
18

20
22

24
26

28
30

Frame=4.8M

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Frame=8.8M

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(d) Rainbow in Beam Rider with Adam+WC
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(e) Rainbow in Demon Attack with Adam
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(f) Rainbow in Demon Attack with Adam+WC
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(g) Rainbow in Ice Hockey with Adam
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(h) Rainbow in Ice Hockey with Adam+WC

Figure 14: The gradient covariance heatmaps of training Rainbow in Asterix, Beam Rider, Demon
Attack, and Ice Hockey, optimized by Adam and Adam+WC, respectively.
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(a) Rainbow in James Bond with Adam
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(b) Rainbow in James Bond with Adam+WC
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(c) Rainbow in Seaquest with Adam
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(d) Rainbow in Seaquest with Adam+WC
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(e) Rainbow in Space Invaders with Adam
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(f) Rainbow in Space Invaders with Adam+WC
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(g) Rainbow in Yars’ Revenge with Adam
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(h) Rainbow in Yars’ Revenge with Adam+WC

Figure 15: The gradient covariance heatmaps of training Rainbow in James Bond, Seaquest, Space
Invaders, and Yars’ Revenge, optimized by Adam and Adam+WC, respectively.
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Abstract

In this paper, we investigate the problem of pure exploration in the context of multi-
armed bandits, with a specific focus on scenarios where arms are pulled in fixed-size
batches. Batching has been shown to enhance computational efficiency, but it can
potentially lead to a degradation compared to the original sequential algorithm’s
performance due to delayed feedback and reduced adaptability. We introduce a
simple batch version of the Sequential Halving (SH) algorithm (Karnin et al., 2013)
and provide theoretical evidence that batching does not degrade the performance
of the original algorithm under practical conditions. Furthermore, we empirically
validate our claim through experiments, demonstrating the robust nature of the SH
algorithm in fixed-size batch settings.

1 Introduction

In this study, we consider the pure exploration problem in the field of stochastic multi-armed ban-
dits, which aims to identify the best arm within a given budget (Audibert et al., 2010). Specifically,
we concentrate on the fixed-size batch pulls setting, where we pull a fixed number of arms simulta-
neously. Batch computation plays a crucial role in improving computational efficiency, especially in
large-scale bandit applications where reward computation can be expensive. For instance, consider
applying this to tree search algorithms like Monte Carlo tree search (Tolpin & Shimony, 2012).
The reward computation here typically involves the value network evaluation (Silver et al., 2016;
2017), which can be computationally expensive. By leveraging batch computation and hardware
accelerators (e.g., GPUs), we can significantly reduce the computational cost of the reward compu-
tation. However, while batch computation enhances computational efficiency, its performance (e.g.,
simple regret) may not match that of sequential computation with the same total budget, due to
delayed feedback reducing adaptability. Therefore, the objective of this study is to develop a pure
exploration algorithm that maintains its performance regardless of the batch size.

We focus on the Sequential Halving (SH) algorithm (Karnin et al., 2013), a popular and well-analyzed
pure exploration algorithm. Due to its simplicity, efficiency, and lack of task-dependent hyperpa-
rameters, SH finds practical applications in, but not limited to, hyperparameter tuning (Jamieson &
Talwalkar, 2016), recommendation systems (Aziz et al., 2022), and state-of-the-art AlphaZero (Silver
et al., 2018) and MuZero (Schrittwieser et al., 2020) family (Danihelka et al., 2022). In this study,
we aim to extend SH to a batched version that matches the original SH algorithm’s performance,
even with large batch sizes. To date, Jun et al. (2016) introduced a simple batched extension of
SH and reported that it performed well in their experiments. However, the theoretical properties of
batched SH have not yet been well-studied in the setting of fixed-size batch pulls.

We consider two simple and natural batched variants of SH (Sec. 3): Breadth-first Sequential Halv-
ing (BSH) and Advance-first Sequential Halving (ASH). We introduce BSH as an intermediate step
to understanding ASH, which is our main focus. Our main contribution is providing a theoretical
guarantee for ASH (Sec. 4), showing that it is algorithmically equivalent to SH as long as the batch
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Algorithm 1 SH: Sequential Halving (Karnin et al., 2013)
1: input number of arms: n, budget: T
2: initialize best arm candidates S0 := [n]
3: for round r = 0, . . . , dlog2 ne − 1 do
4: pull each arm a ∈ Sr for Jr =

⌊
T

|Sr|dlog2 ne

⌋
times

5: Sr+1 ← top-d|Sr|/2e arms in Sr w.r.t. the empirical rewards
6: return the only arm in Sdlog2 ne

budget is not extremely small — For example, in a 32-armed stochastic bandit problem, ASH can
match SH’s choice with 100K sequential pulls using just 20 batch pulls, each of size 5K. This means
that ASH can achieve the same performance as SH with significantly fewer pulls when the batch
size is reasonably large. Moreover, one can understand the theoretical properties of ASH using the
theoretical properties of SH, which have been well-studied (Karnin et al., 2013; Zhao et al., 2023).
In our experiments, we validate our claim by comparing the behavior of ASH and SH (Sec. 5.1) and
analyze the behavior of ASH with the extremely small batch budget as well (Sec. 5.2).

2 Preliminary

Pure Exploration Problem. Consider a pure exploration problem involving n arms and a budget
T . We define a reward matrix R ∈ [0, 1]n×T , where each element Ri,j ∈ [0, 1] represents the reward
of the j-th pull of arm i ∈ [n] := {1, . . . , n}, with j being counted independently for each arm. Each
element in the i-th row is an i.i.d. sample from an unknown reward distribution of i-th arm with
mean µi. Without loss of generality, we assume that 1 ≥ µ1 ≥ µ2 ≥ . . . ≥ µn ≥ 0. In the standard
sequential setting, a pure exploration algorithm sequentially observes T elements from R by pulling
arms one by one for T times. The algorithm then selects one arm as the best arm candidate. Note
that we only consider deterministic pure exploration algorithms in this study. Such an algorithm
can be characterized by a mapping π : [0, 1]n×T → [n] that takes R as input and outputs the
selected arm aT . The natural performance measure in pure exploration is the simple regret, defined
as ER[µ1−µaT

] (Bubeck et al., 2009), which compares the performance of the selected arm aT with
the best arm 1.

Sequential Halving (SH; Karnin et al. (2013)) is a sequential elimination algorithm designed for
the pure exploration problem. It begins by initializing the set of best arm candidates as S0 := [n]. In
each of the dlog2 ne rounds, the algorithm halves the set of candidates (i.e., |Sr+1| = d|Sr|/2e) until it
narrows down the candidates to a single arm in Sdlog2 ne. During each round r ∈ {0, . . . , dlog2 ne−1},
the arms in the active arm set Sr are pulled equally Jr :=

⌊
T

|Sr|dlog2 ne
⌋
times, and the total budget

consumed for round r is Tr := Jr × |Sr|. The SH algorithm is described in Algorithm 1. We denote
the mapping induced by the SH algorithm as πSH. It has been shown that the simple regret of SH
satisfies ER[µ1 − µaT

] ≤ Õ(
√
n/T ), where Õ(·) ignores the logarithmic factors of n (Zhao et al.,

2023). Note that the consumed budget
∑
r<dlog2 ne Tr might be less than T . In this study, we assume

that the remaining budget is consumed equally by the last two arms in the final round.

3 Batch Sequential Halving Algorithms

In this study, we consider the fixed-size batch pulls setting, where we simultaneously pull b arms
for B times, with b being the fixed batch size and B being the batch budget (Jun et al., 2016).
The standard sequential case corresponds to b = 1 and B = T . Our interest is to compare the
performance of the batch SH algorithms with a large batch size b and a small batch budget B to
that of the standard SH algorithm when pulling sequentially T times. Therefore, we compare the
performance of the batch SH algorithms under the assumption that T = b×B holds, so that the total
budget is the same in both the sequential and batch settings. In this section, we first reconstruct
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Algorithm 2 SH (Karnin et al., 2013) implementation with target pulls LB/LA

1: input number of arms: n, budget: T
2: initialize empirical mean µ̄a := 0 and arm pulls Na := 0 for all a ∈ [n]
3: for t = 0, . . . , T − 1 do
4: let At be {a ∈ [n] | Na = Lt} . Lt is either LB

t (1) or LA
t (2)

5: pull arm at := argmaxa∈At
µ̄a

6: update µ̄at and Nat ← Nat + 1
7: return argmaxa∈[n](Na, µ̄a)

Algorithm 3 Breadth-first target pulls LB

1: input number of arms: n, budget: T
2: initialize empty LB, K := n, J := 0
3: for r = 0, . . . dlog2 ne − 1 do
4: for B j = 0, . . . , Jr − 1 do
5: for I k = 0, . . . ,K − 1 do
6: append J + j to LB

7: K ← dK/2e and J ← J + Jr

8: return LB . (0,0,0,...)

Algorithm 4 Advance-first target pulls LA

1: input number of arms: n, budget: T
2: initialize empty LA, K := n, J := 0
3: for r = 0, . . . dlog2 ne − 1 do
4: for I k = 0, . . . ,K − 1 do
5: for B j = 0, . . . , Jr − 1 do
6: append J + j to LA

7: K ← dK/2e and J ← J + Jr

8: return LA . (0,1,2,...)

the SH algorithm so that it can be easily extended to the batched setting (Sec. 3.1). Then, we
consider Breadth-first Sequential Halving (BSH), one of the simplest batched extensions of SH, as
an intermediate step (Sec. 3.2). Finally, we introduce Advance-first Sequential Halving (ASH) as a
further extension (Sec. 3.3).

3.1 SH implementation with target pulls

Since BSH/ASH is a natural batched extension of SH, we first reconstruct the implementation of
the SH algorithm as Algorithm 2 so that it can be easily extended to BSH/ASH. Note that, in
this study, the operation argmaxx∈X (`x,mx) selects the element x ∈ X that maximizes `x first. If
multiple elements achieve this maximum, it then selects among these the one that maximizes mx.
At the t-th arm pull, SH selects the arm at that has the highest empirical reward µ̄a among the
candidates At:

at := argmaxa∈At
µ̄a,

where At := {a ∈ [n] | Na = Lt} are the candidates at the t-th arm pull, Na is the total number of
pulls of arm a, and Lt is the number of target pulls at t, defined as either breadth-first manner

LB
t :=

∑

r′<r(t)

Jr′

︸ ︷︷ ︸
pulls before r(t)

+
⌊
t−∑r′<r(t) Tr′

|Sr(t)|

⌋

︸ ︷︷ ︸
pulls in r(t)

, (1)

or advance-first manner

LA
t :=

∑

r′<r(t)

Jr′

︸ ︷︷ ︸
pulls before r(t)

+




t−

∑

r′<r(i)

Tr′


 mod Jr(t)




︸ ︷︷ ︸
pulls in r(t)

, (2)

where r(t) is the round of the t-th arm pull. This LB
t /LA

t represents the cumulative number of pulls
of the arm selected at the t-th pull before the t-th arm pull. We omitted the dependency on n and
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Algorithm 5 ASH: Advance-first Sequential Halving
1: input number of arms: n, batch size: b, batch budget: B
2: initialize counter t := 0, empirical mean µ̄a := 0, and arm pulls Na := 0 for all a ∈ [n]
3: for B times do
4: initialize empty batch B and virtual arm pulls Ma = 0 for all a ∈ [n]
5: for b times do
6: let At be {a ∈ [n] | Na +Ma = LA

t } . BSH uses LB
t instead

7: push at := argmaxa∈At
(Na, µ̄a) to B . BSH uses argmaxa∈At

µ̄a instead
8: update t← t+ 1 and Mat

←Mat
+ 1

9: batch pull arms in B
10: update µ̄a and Na ← Na +Ma for all a ∈ B
11: return argmaxa∈[n](Na, µ̄a)

A
rm

A
rm

BSH

ASH

The 3rd batch pull spans two rounds and
the arm promotion is determined based solely 
on the completion of 6 out of 8 pulls.

The 3rd batch pull selects the arm to be 
promoted from among those that have completed
the pulling (thanks to Algorithm 5, line 7).

1st round 2nd round 3rd round Example

Figure 1: Pictorial representation of breadth-first SH (BSH; Sec. 3.2) and advance-first SH (ASH;
Sec. 3.3) for an 8-armed bandit problem. Batch size b is 24 and batch budget B is 8. The same
color indicates the same batch pull — For example, in the first batch pull (blue), BSH pulls each of
the 8 arms 3 times, while ASH pulls 3 arms 8 times each. BSH selects arms so that the number of
pulls of each active arm becomes as equal as possible, while ASH selects arms so that once an arm
is selected, it is pulled until the budget for the arm in the round is exhausted. These pull sequences
are characterized by the target pulls LB and LA:
LB = (0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,...)
LA = (0,1,2,3,4,5,6,7,0,1,2,3,4,5,6,7,0,1,2,3,4,5,6,7,0,1,2,3,4,5,6,7,0,1,2,3,4,5,6,7,0,1,2,3,4,5,...)

T for simplicity. The definition of LB
t /LA

t is somewhat complicated, and it may be straightforward
to write down the algorithm that constructs LB := (LB

0 , . . . , L
B
T ) and LA := (LA

0 , . . . , L
A
T ) as shown

in Algorithm 3 and Algorithm 4, respectively. Note that the choice between LB and LA is arbitrary
and does not affect the behavior of SH — as long as the arm pull is sequential (not batched). Python
code for this SH implementation is available in App. A. Note that using target pulls to implement SH
is natural and not new. For example, Mctx1 (Babuschkin et al., 2020) has a similar implementation.

3.2 BSH: Breadth-first Sequential Halving

Now, we extend SH to BSH, in which we select arms so that the number of pulls of each arm becomes
as equal as possible using LB. Note that LB uses T = b× B as the scheduled total budget. When
pulling arms in a batch, we need to consider not only the number of pulls of the arms but also the
number of scheduled pulls in the current batch. Therefore, we introduce virtual arm pulls Ma, the
number of scheduled pulls of arm a in the current batch. For each batch pull, we sequentially select
b arms with the highest empirical rewards from the candidates {a ∈ [n] | Na +Ma = LB

t } and pull
them as a batch. The BSH algorithm is described in App. B. BSH is similar to a batched extension
of SH introduced in Jun et al. (2016) in the sense that it selects arms so that the number of pulls of
each arm becomes as equal as possible.

1https://github.com/google-deepmind/mctx
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3.3 ASH: Advance-first Sequential Halving

We further extend SH to ASH in a manner similar to BSH. The ASH algorithm is described in
Algorithm 5. Fig. 1 shows the pictorial representation of BSH and ASH. Python code for this ASH
implementation is available in App. A. The differences between BSH and ASH are that:

1. ASH selects arms in advance-first manner using LA instead of LB (line 6), and

2. ASH considers not only the empirical rewards µ̄a but also the number of actual pulls Na
when selecting arms in a batch (line 7).

The second difference ensures that, when the batch spans two rounds, the arm to be promoted is
selected from the arms that have completed pulling (e.g., see the 3rd batch pull in Fig. 1). Note that
this second modification is not useful for BSH. Let πASH : [0, 1]n×T → [n] be the mapping induced
by the ASH algorithm. In Sec. 4, we will show that ASH is algorithmically equivalent to SH with
the same total budget T = b×B — πASH is identical to πSH.

4 Algorithmic Equivalence of SH and ASH

This section presents a theoretical guarantee for the ASH algorithm.

Theorem 1 Given a stochastic bandit problem with n ≥ 2 arms, let b ≥ 2 be the batch size and B
be the batch budget satisfying B ≥ max{4, nb }dlog2 ne. Then, the ASH algorithm (Algorithm 5) is
algorithmically equivalent to the SH algorithm (Algorithm 2) with the same total budget T = b×B —
the mapping πASH is identical to πSH.

RHS

LHS

Figure 2: Inequality (3).

Proof sketch A key observation is that ASH and SH differ only
when a batch pull spans two rounds, like the 3rd batch pull in
Fig. 1. In this case, ASH may promote an incorrect arm to the next
round that would not have been promoted in SH. We can prove
that such incorrect promotion does not occur under the condition
B ≥ max{4, nb }dlog2 ne. This is done by demonstrating that the in-
equality (3) holds for any z < b, the number of pulls for the current
round r in the batch. Fig. 2 illustrates (3).

Proof. The condition B ≥ max{4, nb }dlog2 ne is divided into two separate conditions:

B ≥ n

b
dlog2 ne, (C1)

and

B ≥ 4dlog2 ne. (C2)

We focus on the scenario where a batch pull spans two rounds. In this case, let z < b be the number
of pulls that consume the budget for round r, and b − z be the number of pulls that consume the
budget for round r+1. The following proposition is demonstrated: ∀n ≥ 2,∀b ≥ 2, ∀r < dlog2 ne−1,
∀z < b, if (C1) and (C2) hold, then

|Sr+1| −
⌈
b− z
Jr+1

⌉
≥
⌈
z

Jr

⌉
. (3)

The left-hand side (LHS) of (3) represents the number of arms promoting to the subsequent round
post-batch pull, whereas the right-hand side (RHS) quantifies the arms pending completion of their
pulls at the batch pull juncture. This inequality, if satisfied, ensures that, even when a batch spans
two rounds, arms supposed to advance to the next round in SH are not left behind in ASH, i.e., no
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incorrect promotion occurs. Considering the scenario where z = b − 1 suffices, as it represents the
worst-case condition. Let x := |Sr| ≥ 3 for the given r < dlog2 ne − 1. Two cases are considered.
Case 1: when n ≤ 4b. Given that Jr =

⌊
b×B

xdlog2 ne
⌋
≥ b4b/xc as derived from (C2), it is sufficient to

show
⌈x

2

⌉
− 1 ≥

⌈
b− 1
b4b/xc

⌉
(4)

in x ∈ [3, 4b]. This assertion is directly supported by Lemma 1. Case 2: when 4b < n. Given
that Jr =

⌊
b×B

xdlog2 ne
⌋
≥ bn/xc as derived from (C1), it is sufficient to show

⌈
x
2
⌉
− 1 ≥

⌈n/4−1
bn/xc

⌉
in

x ∈ [3, n]. This conclusion follows by the same reasoning applied in Case 1. �

Lemma 1 For any integer b ≥ 2, the inequality
⌈
x
2
⌉
−1 ≥

⌈
b−1
b4b/xc

⌉
holds for all integers x ∈ [3, 4b].

3 128
0

60

Figure 3: Lemma 1.

The proof of Lemma 1 is in App. C. Here, we provide the visualization
of (4) in Fig. 3 to intuitively show that Lemma 1 holds. Each colored
line represents the RHS for different b ≤ 32. One can see that the LHS
is always greater than the RHS for any x ∈ [3, 4b].

Remark 1 The condition (C1) is common to both SH and ASH —
SH implicitly assumes T ≥ ndlog2 ne as the minimum condition to exe-
cute. This is because we need to pull each arm at least once in the first
round (i.e., J1 ≥ 1). With the same argument, the batch budget B must
satisfy (C1). On the other hand, (C2) is specific to ASH and is required to ensure the equivalence.
As we discuss in the Sec. 4.1, we argue that this additional (C2) is not practically problematic.

Remark 2 Note that the condition (C2) is tight; Theorem 1 does not hold even if B ≥ αdlog2 ne
for any positive value α < 4.

Proof. We aim to demonstrate the existence of a value x such that
⌈
x
2
⌉
− 1 −

⌈
b−1
bαb/xc

⌉
< 0 when

n ≤ αb. Consider the case when x = 4. In this scenario, the LHS of the inequality can be rewritten
as 1−

⌈
b−1
bαb/4c

⌉
≤ 1− b−1

bαb/4c ≤ 1− 4
α
b−1
b → 1− 4

α as b→∞. As α < 4, it follows that LHS < 0 for
sufficiently large values of b. �

Remark 3 When b is sufficiently large, the minimum B that satisfies both (C1) and (C2) is
4dlog2 ne. Theorem 1 implies that for arbitrarily large target budget T , ASH can achieve the same
performance as SH by increasing the batch size b without increasing the batch budget B from
4dlog2 ne — ASH guarantees its scalability in batch computation.

Remark 4 Theorem 1 allows us to understand the properties of ASH based on existing theoretical
research on SH, such as the simple regret bound (Zhao et al., 2023).

4.1 Discussion on the conditions

To show that SH and ASH are algorithmically equivalent, we used an additional condition (C2) of
O(logn). However, we argue that this condition is not practically problematic because the condi-
tion (C1), the minimum condition required to execute (unbatched) SH, is dominant (O(n logn)).
This condition (C1) is dominant over (C2) as shown in Fig. 4. We can see that the condition (C2)
only affects the algorithm when the batch size is sufficiently larger than the number of arms (b� n).
This is a reasonable result, meaning that we cannot guarantee the equivalent behavior to SH with an
extremely small batch budget, such as B = 1. On the other hand, if the user secures the minimum
budget B = 4dlog2 ne that depends only on the number of arms n and increases only logarithmically,
regardless of the batch size b, they can increase the batch size arbitrarily and achieve the same result
as when SH is executed sequentially with the same total budget, with high computational efficiency.
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0 512 1024
n

0

512

1024 b = 1024

0 512 1024
n

0

512

b = 641024

0 512 1024
n

0

512

1024

B

b = 4

.

Both (C1) and (C2) hold (i.e., ASH is equivalent to SH). Only (C2) holds (i.e., SH is not executable).
Neither (C1) nor (C2) holds.Only (C1) holds (i.e., SH is executable but ASH may not be equivalent to SH).

Figure 4: Visualization of conditions (C1) and (C2) for n ≤ 1024, B ≤ 1024, and b ∈ {4, 64, 1024}.

5 Empirical Validation

1 100Arm

0

1

min

max

= 0.5
= 1.0
= 2.0

Figure 5: Polynomial(α)

We conducted experiments to empirically demonstrate that ASH
maintains its performance for large batch size b, in comparison to
its sequential counterpart SH. To evaluate this, we utilized a polyno-
mial family parameterized by α as a representative batch problem
instance, where the reward gap ∆a := µ1 − µa follows a polyno-
mial distribution with parameter α: ∆a ∝ (a/n)α (Jamieson et al.,
2013; Zhao et al., 2023). This choice is motivated by the observation
that real-world applications exhibit polynomially distributed reward
gaps, as mentioned in Zhao et al. (2023). In our study, we considered three different values of α (0.5,
1.0, and 2.0) to capture various reward distributions (see Fig. 5). Additionally, we characterized
each bandit problem instance by specifying the minimum and maximum rewards, denoted as µmin
and µmax respectively. Hence, we denote a bandit problem instance as T (n, α, µmin, µmax).

We also implemented a simple batched extension of SH introduced by Jun et al. (2016) as a baseline
for comparison. We refer to this algorithm as Jun+16. The implementation of Jun+16 is described
in App. D. Jun et al. (2016) did not provide a theoretical guarantee for Jun+16, but it has shown
performance comparable to or better than their proposed algorithm in their experiments.

5.1 Large batch budget scenario: B ≥ 4dlog2 ne

First, we empirically confirm that, as we claimed in Sec. 4, ASH is indeed equivalent to SH under the
condition (C2). We generated 10K instances of bandit problems and applied ASH and SH to each
instance with 100 different seeds. We randomly sampled n from {2, . . . , 1024}, α from {0.5, 1.0, 2.0},
and µmin and µmax from {0.1, 0.2, . . . , 0.9}. For each instance T (n, α, µmin, µmax), we randomly
sampled the batch budget B ≤ 10dlog2 ne and the batch size b ≤ 5n so that the condition (C1)
and (C2) are satisfied. As a result, we confirmed that the selected arms of ASH and SH are identical
in all 10K instances and 100 seeds for each instance. We also conducted the same experiment for
BSH and Jun+16. We plotted the simple regret of BSH, ASH, and Jun+16 against SH in Fig. 6.
There are 10K instances, and each point represents the average simple regret of 100 seeds for each
instance. To compare the performance, we fitted a linear regression model to the simple regret
of BSH, ASH, and Jun+16 against SH as y = βx, where y is the simple regret of BSH, ASH, or
Jun+16, x is the simple regret of SH. The slope β is estimated by the least squares method. The
estimated slope β is 1.008 for BSH, 1.000 for ASH, and 0.971 for Jun+16, which indicates that the
simple regret of ASH, BSH, and Jun+16 is comparable to SH on average.

5.2 Small batch budget scenario: B < 4dlog2 ne

Next, we examined the performances of BSH, ASH, and Jun+16 against SH when the additional
condition (C2) is not satisfied, i.e., when the batch budget is extremely small B < 4dlog2 ne and
thus Theorem 1 does not hold. We conducted the same experiment as in Sec. 5.1 except the batch
budget B < 4dlog2 ne. We sampled B so that B is larger than the number of rounds. The results are
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Figure 6: Single regret comparison of BSH, ASH, and Jun+16 against SH when B ≥ 4dlog2 ne.

0.00 0.05 0.10
SH

0.00

0.05

0.10

BS
H

Simple regret

= 1.059

0.00 0.05 0.10
SH

0.00

0.05

0.10

AS
H

Simple regret

= 1.011

0.00 0.05 0.10
SH

0.00

0.05

0.10

Ju
n+

16

Simple regret

= 1.017

Figure 7: Single regret comparison of BSH, ASH, and Jun+16 against SH when B < 4dlog2 ne.

shown in Fig. 7. The slope β is estimated as 1.059 for BSH, 1.011 for ASH, and 1.017 for Jun+16.
All the estimated slopes are worse than when B ≥ 4dlog2 ne. However, the estimated slopes are still
close to 1, which indicates that while we do not have a theoretical guarantee, the performance of
BSH, ASH, and Jun+16 is comparable to SH on average.

6 Related Work

Sequential Halving. Among the algorithms for the pure exploration problem in multi-armed
bandits (Audibert et al., 2010), Sequential Halving (SH; Karnin et al. (2013)) is one of the most
popular algorithms. The theoretical properties of SH have been well studied (Karnin et al., 2013;
Zhao et al., 2023). Due to its simplicity, SH has been widely used for these (but is not limited to)
applications: In the context of tree-search algorithms, as the root node selection of Monte Carlo
tree search can be regarded as a pure exploration problem (Tolpin & Shimony, 2012), Danihelka
et al. (2022) incorporated SH into the root node selection and significantly reduced the number
of simulations to improve the performance during AlphaZero/MuZero training. From the min-
max search perspective, some studies recursively applied SH to the internal nodes of the search
tree (Cazenave, 2014; Pepels et al., 2014). SH is also used for hyperparameter optimization; Jamieson
& Talwalkar (2016) formalized the hyperparameter optimization problem in machine learning as a
non-stochastic multi-armed bandit problem, where the reward signal is not from stochastic stationary
distributions but from deterministic function changing over training steps. Li et al. (2018; 2020)
applied SH to hyperparameter optimization in asynchronous parallel settings, which is similar to our
batch setting. Their asynchronous approach may have incorrect promotions to the next rounds but
is more efficient than the synchronous approach. Aziz et al. (2022) applied SH to recommendation
systems, which identify appealing podcasts for users.

Batched bandit algorithms. Batched bandit algorithms have been studied in various con-
texts (Perchet et al., 2016; Gao et al., 2019; Esfandiari et al., 2021; Jin et al., 2021a;b; Kalkanli
& Ozgur, 2021; Karbasi et al., 2021; Provodin et al., 2022). Among the batched bandit studies for
the pure exploration problem (Agarwal et al., 2017; Grover et al., 2018; Jun et al., 2016), Jun et al.
(2016) is the most relevant to our work as they also consider the fixed-size batch pulls setting. To
the best of our knowledge, the first batched SH variant with a fixed batch size b was introduced
by Jun et al. (2016) as a baseline algorithm in their study (Jun+16). It is similar to BSH and it
pulls arms so that the number of pulls of the arms is as equal as possible (breadth-first manner).
They reported that Jun+16 experimentally performs comparably to or better than their proposed
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method but did not provide a theoretical guarantee for Jun+16. Our ASH is different from their
batch variant in that ASH pulls arms in an advance-first manner instead of a breadth-first manner.

7 Limitation and Future Work

Our batched variants of SH assume that the reward distributions of the arms are from i.i.d. distri-
butions. This property is essential to allow batch pulls. One limitation is that it may be difficult
to apply our algorithms to bandit problems where the reward distribution is non-stationary. For
example, Jamieson & Talwalkar (2016) applied SH to hyperparameter tuning, where rewards are
time-series losses during model training. We cannot apply our batched variants to this problem
because we cannot observe “future losses” in a batch.

Our batched variants of SH are suitable for tasks where arms can be evaluated efficiently in batches
rather than sequentially. For instance, when the evaluation of arms depends on the output of neural
networks, the process can be efficiently conducted in batches using accelerators like GPUs. An
example of this scenario is provided by Danihelka et al. (2022), where value networks are used in
Monte Carlo tree search. Applying our batched variants to such algorithms is a possible future
direction. Additionally, combining them with reinforcement learning environments that run on
GPU/TPU accelerators (Freeman et al., 2021; Lange, 2022; Koyamada et al., 2023; Gulino et al.,
2023; Nikulin et al., 2023; Bonnet et al., 2024; Rutherford et al., 2024; Matthews et al., 2024) for
efficient batch evaluation is also promising.

8 Conclusion

In this paper, we proposed ASH as a simple and natural extension of the SH algorithm. We the-
oretically showed that ASH is algorithmically equivalent to SH as long as the batch budget is not
excessively small. This allows ASH to inherit the well-studied theoretical properties of SH, including
the simple regret bound. Our experimental results confirmed this claim and demonstrated that ASH
and other batched variants of SH, like Jun+16, perform comparably to SH in terms of simple regret.
These findings suggest that we can utilize simple batched variants of SH for efficient evaluation
of arms with large batch sizes while avoiding performance degradation compared to the sequential
execution of SH. By providing a practical solution for efficient arm evaluation, our study opens up
new possibilities for applications that require large budgets. Overall, our work highlights the batch
robust nature of SH and its potential for large-scale bandit problems.

Broader Impact Statement

The findings in this work on the bandit problem are focused on theoretical results and do not involve
direct human or ethical implications. Therefore, concerns related to broader ethical, humanitarian,
and societal issues are not applicable to this research. However, if our approach is applied to large-
scale bandit problems, especially when batch evaluation involves large neural networks, there could
be an indirect impact on energy consumption due to the computational resources required.
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A Python code

For the sake of reproducibility and a better understanding, we provide Python code for the Se-
quential Halving (SH) algorithm using advance-first target pulls and the Advance-first Sequential
Halving (ASH) algorithm in Fig. 8.

from math import log2, ceil, floor
import numpy as np

def sh(bandit: BanditProblem, n: int, T: int) -> int:
    L = _get_target_pulls(n, T)                  # L: target pulls
    N = np.append(np.zeros(n, dtype=int), -1e9)  # N: pull counts

R = np.append(np.zeros(n, dtype=float), 0.) # R: avg rewards
    for t in range(T):
        a = np.argmax(np.where(N == L[t], R, -np.inf))
        r = bandit.pull(a)

R[a] = (R[a] * N[a] + r) / (N[a] + 1)
        N[a] += 1
    return int(np.argmax(np.where(N >= max(N), R, -np.inf)))

def ash(bandit: BanditProblem, n: int, B: int, b: int = 1) -> int:
    L = _get_target_pulls(n, b * B)              # L: target pulls
    N = np.append(np.zeros(n, dtype=int), -1e9)  # N: pull counts
    R = np.append(np.zeros(n, dtype=float), 0.)  # R: avg rewards

for i in range(B):
        batch = []
        M = np.zeros_like(N)                     # M: virtual pull counts
        for j in range(b):

t = i * b + j
            N_max = np.max(np.where(N + M == L[t], N, -np.inf))
            a = np.argmax(np.where((N + M == L[t]) & (N == N_max), R, -np.inf))
            batch.append(a)

M[a] += 1
        rewards = bandit.batch_pull(batch)
        for a, r in zip(batch, rewards):
            R[a] = (R[a] * N[a] + r) / (N[a] + 1)

N[a] += 1
    return int(np.argmax(np.where(N >= max(N), R, -np.inf)))

def _get_target_pulls(n: int, T: int) -> list[int]:  # advance-first
target_pulls = []

    num_rounds = ceil(log2(n))
    num_active_arms = n
    cum_pulls = 0

for r in range(num_rounds):
        J = floor(T / (num_active_arms * num_rounds))
        if r == num_rounds - 1:
            remaining_pulls = T - len(target_pulls)

J = remaining_pulls // 2
        for _ in range(num_active_arms):
            for i in range(J):
                target_pulls.append(cum_pulls + i)

cum_pulls += J
        num_active_arms = ceil(num_active_arms / 2)  # halving
    return target_pulls + [int(-1e9)] * (T - len(target_pulls))

Figure 8: Python implementation of the SH algorithm using advance-first target pulls (Algorithm 2)
and the ASH algorithm (Algorithm 5).
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B BSH algorithm

Algorithm 6 shows the detailed BSH algorithm (see Sec. 3.2).

Algorithm 6 BSH: Breadth-first Sequential Halving
1: input number of arms: n, batch size: b, batch budget: B
2: initialize counter t := 0, empirical mean µ̄a := 0, and arm pulls Na := 0 for all a ∈ [n]
3: for B times do
4: initialize empty batch B and virtual arm pulls Ma = 0 for all a ∈ [n]
5: for b times do
6: let At be {a ∈ [n] | Na +Ma = LB

t }
7: push at := argmaxa∈At

µ̄a to B
8: update t← t+ 1 and Mat

←Mat
+ 1

9: batch pull arms in B
10: update µ̄a and Na ← Na +Ma for all a ∈ B
11: return argmaxa∈[n](Na, µ̄a)

C Proof of Lemma 1

Lemma 1 For any integer b ≥ 2, the inequality
⌈x

2

⌉
− 1 ≥

⌈
b− 1
b4b/xc

⌉
(5)

holds for all integers x ∈ [3, 4b].

Proof. This proof demonstrates that for any integer b ≥ 2 and x ∈ [3, 4b], the inequality (5) is
satisfied. Given z ≥ c =⇒ z ≥ dce for any integer z and real number c, it suffices to demonstrate
that

⌈x
2

⌉
− 1 ≥ b− 1

b4b/xc ⇐⇒
⌈x

2

⌉
− 1− b− 1

b4b/xc ≥ 0.

Given that
⌊ 4b
x

⌋
> 0, it follows that

(⌈x
2

⌉
− 1
)⌊4b

x

⌋
− (b− 1) ≥ 0, (6)

for any integer b ≥ 2 and x ∈ [3, 4b]. Two cases are considered:

Case 1: x is even. Suppose x = 2y, with y ∈ [2, 2b]. We aim to show that

(y − 1)
⌊

2b
y

⌋
− (b− 1) ≥ 0. (7)

Two sub-cases are considered:

1. For y ∈ [b+ 1, 2b], as
⌊

2b
y

⌋
= 1, LHS = (y − 1)− (b− 1) ≥ 0.

2. For y ∈ [2, b], as bcc > c−1 for any real number c, we have LHS > (y − 1)
(

2b
y − 1

)
−(b−1) =

− (y−2)(y−b)
y . As y > 0 and −(y − 2)(y − b) ≥ 0 in y ∈ [2, b], we have LHS ≥ 0.

Consequently, it has been established that for even values of x, the inequality (7) is upheld.
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Case 2: x is odd. Suppose x = 2y + 1, with y ∈ [1, 2b− 1]. We aim to show that

y

⌊
4b

2y + 1

⌋
− (b− 1) ≥ 0. (8)

Two sub-cases are considered:

1. For y ∈ [b, 2b− 1], as
⌊

4b
2y+1

⌋
= 1, LHS = y − (b− 1) ≥ 0.

2. For y ∈ [1, b−1], as bcc > c−1 for any real number c, we have LHS > y
(

4b
2y+1 − 1

)
−(b−1) =

2by−b−2y2+y+1
2y+1 = −2y(y−(b+ 1

2 ))−(b−1)
2y+1 ≥ 0. As 2y+ 1 > 0 and −2y(y− (b+ 1

2 ))− (b− 1) ≥ 0
in y ∈ [1, b− 1], we have LHS ≥ 0.

Similarly, it has been demonstrated that for odd values of x, the inequality (8) is upheld.

Therefore, through the analysis of these two cases, it is proven that for any integer b ≥ 2 and
x ∈ [3, 4b], the inequality (6) is satisfied, thereby confirming the validity of (5). �

D Batch Sequential Halving introduced in Jun et al. (2016)

Algorithm 7 shows the detailed batched version of the Sequential Halving algorithm introduced in
Jun et al. (2016).

Algorithm 7 Batched Sequential Halving introduced in Jun et al. (2016)
1: input number of arms: n, batch budget: B, batch size: b
2: initialize best arm candidates S0 := [n]
3: for round r = 0, . . . , dlog2 ne − 1 do
4: for

⌊
B/dlog2 ne

⌋
times do

5: select batch actions B so that the number of pulls of each arm in Sr is as equal as possible
6: pull arms B in the batch
7: Sr+1 ← top-d|Sr|/2e arms in Sr w.r.t. the empirical rewards
8: return the only arm in Sdlog2 ne
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Abstract

We study a variant of causal contextual bandits where the context is chosen based
on an initial intervention chosen by the learner. At the beginning of each round, the
learner selects an initial action, depending on which a stochastic context is revealed
by the environment. Following this, the learner then selects a final action and re-
ceives a reward. Given T rounds of interactions with the environment, the objective
of the learner is to learn a policy (of selecting the initial and the final action) with
maximum expected reward. In this paper we study the specific situation where
every action corresponds to intervening on a node in some known causal graph. We
extend prior work from the deterministic context setting to obtain simple regret
minimization guarantees. This is achieved through an instance-dependent causal
parameter, λ, which characterizes our upper bound. Furthermore, we prove that
our simple regret is essentially tight for a large class of instances. A key feature of
our work is that we use convex optimization to address the bandit exploration prob-
lem. We also conduct experiments to validate our theoretical results, and release
our code at the project GitHub Repository.

1 Introduction

Recent years have seen an active interest in causal bandits from the research community (Lattimore
et al., 2016; Sen et al., 2017a;b; Lee & Bareinboim, 2018; Yabe et al., 2018; Lee & Bareinboim,
2019; Lu et al., 2020; Nair et al., 2021; Lu et al., 2021; 2022; Maiti et al., 2022; Varici et al., 2022;
Subramanian & Ravindran, 2022; Xiong & Chen, 2023). In this setting, one assumes an environment
comprising of causal variables that are random variables that influence each other as per a given
causal (directed, and acyclic) graph. Specifically, the edges in the causal DAG represent causal
relationships between variables in the environment. If one of these variables is designated as a
reward variable, then the goal of a learner then is to maximize their reward by intervening on
certain variables (i.e., by fixing the values of certain variables). The rest of the variables, that are
not intervened upon, take values as per their conditional distributions, given their parents in the
causal graph. In this work, as is common in literature, we assume that the variables take values in
{0, 1}. Of particular interest are causal settings wherein the learner is allowed to perform atomic
interventions. Here, at most one causal variable can be set to a particular value, while other variables
take values in accordance with their underlying distributions.

It is relevant to note that when a learner performs an intervention in a causal graph, they get to
observe the values of multiple other variables in the causal graph. Hence, the collective dependence of
the reward on the variables is observed through each intervention. That is, from such an observation,
the learner may be able to make inferences about the (expected) reward under other values for the
causal variables (Peters et al., 2017). In essence, with a single intervention, the learner is allowed
to intervene on a variable (in the causal graph), allowed to observe all other variables, and further,
is privy to the effects of such an intervention. Indeed, such an observation in a causal graph is
richer than a usual sample from a stochastic process. Hence, a standard goal in causal bandits
is to understand the power and limitations of interventions. This goal manifests in the form of
developing algorithms that identify intervention(s) that lead to high rewards, while using as few
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Figure 1: Flowchart illustrating the decision-making process of an advertiser posting ads on a
platform like Amazon, and the subsequent interaction with the platform.

observations/interventions as possible. We use the term intervention complexity (rather than sample
complexity) for our algorithm, to emphasize that interventions are richer than samples.

In the learning literature, there are several objectives that an algorithm designer might consider.
Cumulative regret, simple regret, and average regret have prominently been studied in literature
(Lattimore & Szepesvári, 2020; Slivkins et al., 2019). In this work we focus on minimizing simple
regret, wherein the algorithm is given a time budget, up to which it may explore, at which time it
has to output a near-optimal policy.

Addressing causal bandits, the notable work of Lattimore et al. (2016) obtains an intervention-
complexity bound for minimizing simple regret with a focus on atomic interventions and parallel
causal graphs. Maiti et al. (2022) extend this work to obtain intervention-complexity bounds for
simple regret in causal graphs with unobserved variables. The work by Lu et al. (2022) extends
this setting to causal Markov decision processes (MDPs), while addressing the cumulative regret
objective. Combinatorial causal bandits have been studied by Feng & Chen (2023) and Xiong &
Chen (2023).

Causal contextual bandits have been studied by Subramanian & Ravindran (2022) where the contexts
may be chosen by the learner (rather than be provided by the environment). Here we generalize
Subramanian & Ravindran (2022) to a setting where the context is provided by the environment,
adaptively, in response to an initial choice of the learner.

Motivating Example: Consider an advertiser looking to post ads on a web-page, say Amazon.
They may make requests for a certain type of user demographic to Amazon. Based on this initial
request, the platform may actually choose one particular user to show the ad to. At this time, certain
details about the user are revealed to the advertiser. For example, the platform may reveal some
of the user demographics, as well as certain details about their device. Based on these details, the
advertiser may choose one particular ad to show the user. In case the user clicks the ad, the advertiser
receives a reward. The goal of the learner is to find optimal choices for initial user preference, as
well as ad-content such that user clicks are maximized. We illustrate this example through Figure
1 where we indicate the choices available for template and content interventions.

1.1 Our Contributions

We develop an algorithm to identify near-optimal interventions in causal bandits with adaptive
context, and show that the simple regret of such an algorithm is indeed tight for several instances.
We highlight the main contributions of our work below.

1. We develop and analyze an algorithm for minimizing simple regret for causal bandits with
adaptive context in an intervention efficient manner. We provide an upper-bound on intervention
complexity in Theorem 1.
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2. Interestingly, the intervention complexity of our algorithm depends on an instance dependent
structural parameter—referred to as λ (see equation (3))— which may be much lower than nk, where
n is the number of interventions and k is the number of contexts.

3. Notably, our algorithm uses a convex program to identify optimal interventions. Unlike prior
work that uses optimization to design exploration (for example see Yabe et al. (2018)), we show (in
Appendix Section E) that the optimization problem we design is convex, and is thus computationally
efficient. Using convex optimization to design efficient exploration is in fact a distinguishing feature
of our work.

4. We provide lower bound guarantees showing that our regret guarantee is tight (up to a log factor)
for a large family of instances (see Section 4 and Appendix Section F).

5. We demonstrate using experiments (see Section 5) that our algorithm performs exceeding well
as compared to other baselines. We note that this is because λ ≪ nk for n causal variables and k
contexts.

In conclusion, we provide a novel convex-optimization based algorithm for Causal MDP exploration.
We analyze the algorithm to come up with an instance dependent parameter λ. Further, we prove
that our algorithm is sample efficient (see Theorems 1 and 2).

1.2 Additional Related Work

Description Reference
Simple regret for bandits with parallel causal graphs Lattimore et al. (2016)

Simple regret for atomic soft interventions Sen et al. (2017a)
Simple regret for non-atomic interventions in causal bandits Yabe et al. (2018)

Cumulative regret for general causal graphs Lu et al. (2020)
Simple regret in the presence of unobserved confounders Maiti et al. (2022)
Cumulative regret for unknown causal graph structure Lu et al. (2021)

Cumulative regret for causal contextual bandits with latent confounders Sen et al. (2017b)
Simple and cumulative regret for budgeted causal bandits Nair et al. (2021)

Cumulative regret for Linear SEMs Varici et al. (2022)
Cumulative regret for combinatorial causal bandits Feng & Chen (2023)

Cumulative regret for Causal MDPs Lu et al. (2022)
Best-intervention for combinatorial causal bandits Xiong & Chen (2023)

Additive Causal Bandits with Unknown Graph Malek et al. (2023)
Structural Causal Bandits with Unobserved Confounders Wei et al. (2024)

Confounded Budgeted Causal Bandits Jamshidi et al. (2024)
Cumulative Regret for Causal Bandits with Lipschitz SEMs Yan et al. (2024)

Simple regret for causal contextual bandits Subramanian & Ravindran (2022)
Simple regret for causal contextual bandits with adaptive context Our work

Table 1: Summary of prior work in causal bandits

Ever since the introduction of the causal bandit framework by Lattimore et al. (2016), we have seen
multiple works address causal bandits in various degrees of generality and using different modelling
assumptions. Sen et al. (2017a) addressed the issue of soft atomic interventions using an importance
sampling based approach. Soft interventions in the linear structural equation model (SEM) setting
was addressed recently by Varici et al. (2022). Yabe et al. (2018) proposed an optimization based
approach for non-atomic interventions. This work was extended by Xiong & Chen (2023) to provide
instance dependent regret bounds. They also provide guarantees for binary generalized linear models
(BGLMs). The question of unknown causal graph structure was addressed by Lu et al. (2021),
whereas Nair et al. (2021) study the case where interventions are more expensive than observations.

Maiti et al. (2022) addressed simple regret for graphs containing hidden confounding causal variables,
while cumulative regret in general causal graphs was addressed by Lu et al. (2020). A notable work
by Lu et al. (2022) formulates the framework for causal MDPs, and they provide cumulative regret
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Figure 2: The transition to a particular context (chosen context in the figure on the left) is decided
by the environment, whereas the interventions at the start state and an intermediate context (chosen
interventions in the figure on the right) are chosen by the learner.

guarantees in this setting. Causal contextual bandits were addressed by Subramanian & Ravindran
(2022); Sen et al. (2017b), and we extend these works to adaptive contexts.

We summarize the main works in this thread in Table 1 and provide a more detailed set of related
works in Appendix A.

2 Notations and Preliminaries
We model the causal contextual bandit with adaptive context as a contextual bandit problem with a
causal graph corresponding to each context. The actions at each context are given by interventions
on the causal graph. Additionally, we have a causal graph at the start state, and the context is
stochastically dependent on the intervention on the causal graph at the start state. For ease of
notation, we will call the start state of the learner as context 0. The agent starts at context 0,
chooses an intervention, then transitions to one of k contexts [k] = {1, . . . , k}, chooses another
intervention, and then receives a reward; see Figure 2(a).

Assumptions on the Causal Graph: Formally, let C be the set of contexts {0, 1, . . . , k}. Then, at
each context, there is a Causal Bayesian Network (CBN) represented by a causal graph; see Figure
2(b). In particular, at each context i ∈ C, the causal graph is composed of n variables {Xi

1, . . . , Xi
n}.

Each Xi
j takes values from {0, 1}, with an associated conditional probability (of being equal to 0 or

1), given the other variables in the causal graph. We make the following mild assumptions on the
causal graph at each context.

1. The distribution of any node Xi conditioned on it’s parents in the causal graph is a Bernoulli
random variable with a fixed parameter.

2. The causal graph at each context is semi-Markovian. This is equivalent to making the
following assumptions on the graph. No hidden variable in the graph has a parent. Further,
every hidden variable has at most two children, both observable.

3. We transform the causal graph for each context as follows: For every hidden variable with
two children, we introduce bidirected edges between them. If no path of bidirected edges
exists between an intervenable node and its child, the graph is identifiable – a necessary and
sufficient condition for estimating the graph’s associated distribution.(Tian & Pearl, 2002).
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Table 2: Summary of notations for our paper

Notation Explanation
Context 0 Start state

Context [k] Intermediate contexts {1, . . . , k}
Xi

j Causal Variables: Xi
j ∈ {0, 1} for all i ∈ [k], j ∈ [n]

do(·) An atomic intervention of the form do(), do(Xi
j = 0) or do(Xi

j = 1)
Ai Set of atomic interventions at context i

N N := |Ai| = 2n + 1 for all i ∈ [k]
Ri Reward on transition from context i

mi Causal observational threshold at context i ∈ {0, . . . , k}
M diagonal matrix of mi values

P ∈ RN×k Transition probabilities matrix:
[
P(a,i) = P{i | a}

]
a∈A0,i∈[k]

p+ Transition threshold p+ = min{P(a,i) | P(a,i) > 0}

π : C → A Policy, a map from contexts to interventions.
i.e. π(i) ∈ Ai for i ∈ {0} ∪ [k]

E [Ri | π(i)] Expectation of the reward at context i given intervention π(i)

Interventions: Furthermore, we are allowed atomic interventions, i.e., we can select at most one
variable and set it to either 0 or 1. We will use Ai to denote the set of atomic interventions available
at context i ∈ {0, . . . , k}; in particular, Ai = {do()}∪

{
do(Xi

j = 0), do(Xi
j = 1)

}
for j ∈ [n]. We note

that do() is an empty intervention that allows all the variables to take values from their underlying
conditional distributions. Also, do(Xi

j = 0) and do(Xi
j = 1) set the value of variable Xi

j to 0 and 1,
respectively, while leaving all the other variables to independently draw values from their respective
distributions. Note that for all i ∈ [k], we have |Ai| = 2n + 1. Write N := 2n + 1.

Reward: The environment provides the learner with a {0, 1} reward upon choosing an intervention
at context i ∈ [k], which we denote as Ri. Note that Ri is a stochastic function of variables
Xi

1, . . . , Xi
n. In particular, for all j ∈ [n] and each realization Xi

j = xj ∈ {0, 1}, the reward Ri is
distributed as P{Ri = 1 | Xi

1 = x1, . . . , Xi
n = xn}.

Given such conditional probabilities, we will write E[Ri | a] to denote the expected value of reward
Ri when intervention a ∈ Ai is performed at context i ∈ [k]. Here the expectation is over the parents
of the variable Ri in the causal graph, with the intervened variable set at the required value. Note
that these parents (of Ri) may in turn have conditional distributions given their parents. The leaf
nodes of the causal graph are considered to have unconditional Bernoulli distributions. For instance,
E[Ri | do(Xi

j = 1)] is the expected reward when variable Xi
j is set to 1, and all the other variables

independently draw values from their respective (conditional) distributions. Indeed, the goal of this
work is to develop an algorithm that maximizes the expected reward at context 0.

Causal Observational Threshold: We denote by mi, the causal observational threshold1 from
Maiti et al. (2022) at context i. This is computed as follows. Let q̂i

j = minParents(Xi
j
),x∈{0,1} P{Xi

j =
x | Parents(Xi

j)}. Further, let Si
τ = {q̂i

j : (q̂i
j)c < 1/τ} be sets parameterized by τ for every

τ ∈ [2, 2n], where c indicates the c-component size. Then mi = min{τ such that |Si
τ | ≤ τ}. The

existence of such a threshold at each context is guaranteed by the assumptions we made on the
CBNs. In addition, let M ∈ Nk×k denote the diagonal matrix of m1, . . . , mk.

Transitions at Context 0: At context 0, the transition to the intermediate contexts [k] stochas-
tically depends on the random variables {X0

1 , . . . , X0
n}. Here, P{i | a} denotes the probability

1Maiti et al. (2022) extend the causal observational threshold from Lattimore et al. (2016) to the general setting
of causal graphs with unobserved confounders
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of transitioning into context i ∈ [k] with atomic intervention a ∈ A0; recall that A0 includes
the do-nothing intervention. We will collectively denote these transition probabilities as matrix
P :=

[
P(a,i) = P{i | a}

]
a∈A0,i∈[k]. Furthermore, write the transition threshold p+ to denote the

minimum non-zero value in P . Note that matrix P ∈ R|A0|×k is fixed, but unknown.

Policy: A map π : {0, . . . , k} → A, between contexts and interventions (performed by the al-
gorithm), will be referred to as a policy. Specifically, π(i) ∈ Ai is the intervention at context
i ∈ {0, 1, . . . , k}. Note that, for any policy π, the expected reward, which we denote as µ(π), is equal
to
∑k

i=1 E [Ri | π(i)] · P{i | π(0)}. Maximizing expected reward, at each intermediate context
i ∈ [k], we obtain the overall optimal policy π∗ as follows. For i ∈ [k]:

π∗(i) = arg max
a∈Ai

E [Ri | a]

π∗(0) = arg max
b∈A0

(
k∑

i=1
E [Ri | π∗(i)] · P{i | b})

Our goal then is to find a policy π with (expected) reward as close to that of π∗ as possible.

Simple Regret: Conforming to the standard simple-regret framework, the algorithm is given a
time budget T , i.e., the learner can go through the following process T times — (a) start at context
0. (b) Choose an intervention a ∈ A0. (c) Transition to context i ∈ [k]. (d) Choose an intervention
a ∈ Ai. (e) Receive reward Ri. At the end of these T steps, the goal of the learner is to compute a
policy. Let the policy returned by the learner be π̂. Then the simple regret is defined as the expected
value: E[µ(π∗)− µ(π̂]. Our algorithm seeks to minimize such a simple regret.

3 Main Algorithm and its Analysis
We now provide the details relating to our main Algorithm, viz. ConvExplore.

Algorithm 1 ConvExplore: Convex Exploration Algorithm
1: Input: Total rounds T
2: Estimate the transition probabilities P̂ from the start state to the intermediate contexts for time T/3,

by performing interventions at context 0 in a round robin manner.
3: Estimate the causal observational threshold matrix M̂ for time T/3, by performing interventions at

context 0 as per frequency vector f̃ where f̃ ← arg max
fq. vector f

min
contexts [k]

P̂ ⊤f .

4: Estimate the reward matrix R̂ for time T/3, by performing interventions a at context 0 as per frequency

vector f̂∗ where f̂∗ ← arg min
fq. vector f

max
interventions I0

P̂ M̂1/2
(

P̂ ⊤f
)◦− 1

2 .

5: Estimate the optimal action at each intermediate context π̂(i) ∀i ∈ [k] based on R̂. Let the
estimate of optimal reward be R̂(π̂(i)).

6: Estimate the optimal action at the start context π̂(0), based on the transition probabilities P̂

and the optimal reward estimates R̂(π̂(i)).
7: return π̂ = {π̂(0), π̂(1), . . . , π̂(k)} .

aComputation of f̂∗ is efficient as we show that the problem is Convex.
bWe show detailed Algorithms for estimation of transition probabilities P (line 2), estimation of causal observational

threshold M (line 3), and estimation of rewards R (line 4) in Appendix B

The algorithm can be described by five main steps. In the first step, we estimate the transitions to
intermediate contexts. In the second step, we estimate the causal observational thresholds at these
contexts. In the third step, we estimate the rewards upon doing interventions at these contexts. With
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good reward estimates and transition probability estimates, the computation of a good policy at the
intermediate contexts (step 4) and at the start state (step 5) is straightforward. This Algorithm
relies on three subroutines which are detailed in Section B of the Appendix. The key aspect of this
algorithm is in designing the exploration of interventions (at the start state and at the intermediate
contexts) to be regret-optimal – i.e. trading off exploration time between different interventions such
that the policy eventually obtained has near-optimal reward.

Our algorithm (ConvExplore) uses subroutines to estimate the transition probabilities, the causal
parameters, and the rewards. From these, it outputs the best available interventions as its policy π̂.
Given time budget T , the algorithm uses the first T/3 rounds to estimate the transition probabilities
(i.e., the matrix P ) in Algorithm 2. The subsequent T/3 rounds are utilized in Algorithm 3 to
estimate causal parameters mis. Finally, the remaining budget is used in Algorithm 4 to estimate
the intervention-dependent reward Ris, for all intermediate contexts i ∈ [k].

To judiciously explore the interventions at context 0, ConvExplore computes frequency vectors
f ∈ R|A0|. In such vectors, the ath component fa ≥ 0 denotes the fraction of time that each
intervention a ∈ A0 is performed by the algorithm, i.e., given time budget T ′, the intervention
a will be performed faT ′ times. Note that, by definition,

∑
a fa = 1 and the frequency vectors

are computed by solving convex programs over the estimates. The algorithm and its subroutines
throughout consider empirical estimates, i.e., find the estimates by direct counting. Here, let P̂
denote the computed estimate of the matrix P and M̂ be the estimate of the diagonal matrix M .
We obtain a regret upper bound via an optimal frequency vector f̂∗ (see Step 4 in ConvExplore).

Recall that for any vector x (with non-negative components), the Hadamard exponentiation ◦ − 0.5
leads to the vector y = x◦−0.5 wherein yi = 1/

√
xi for each component i. We next define a key

parameter λ that specifies the regret bound in Theorem 1 (below). At a high-level, parameter λ
captures the “exploration efficacy” in the MDP, that takes into account the transition probabilities
P and the exploration requirements M at the intermediate layer. Identification of this parameter is
a relevant technical contribution of our work; see Section C.1 for a detailed derivation of λ.

λ := min
fq. vectorf

∥∥∥PM0.5 (P ⊤f
)◦−0.5

∥∥∥
2

∞

Furthermore, we will write f∗ to denote the optimal frequency vector in equation (3). Hence, with
vector ν := PM0.5(P ⊤f∗)◦−0.5, we have λ = maxa ν2

a. Note that Step 4 in ConvExplore addresses
an analogous optimization problem, albeit with the estimates P̂ and M̂ . Also, we show in Lemma 11
(see Section E in the supplementary material) that this optimization problem is convex and, hence,
Step 4 admits an efficient implementation.

To understand the behaviour of λ, we first note that whenever the mi values at the contexts i ∈ [k]
are low, the λ value is low. Specifically, the mi values can go as low as 2 (when the qi

js are all 1
2 ),

removing the dependence of λ on n. The upper-bound on λ is nk. We see this by first upper-bounding
each mi by n. Then, note that whenever maxa∈A P{i|a} ≥ 1/k, then ∃f such that P ⊤f = u where
u = { 1

k , . . . , 1
k}. Now we can compute that ||P · u◦−0.5||2∞ = k, and thereby λ < nk; See footnote2.

The following theorem that upper bounds the regret of ConvExplore is the main result of the cur-
rent work. The result requires the algorithm’s time budget to be at least T0 := Õ

(
N max(mi)/p3

+
)

Theorem 1. Given number of rounds T ≥ T0 and λ as in equation (3), ConvExplore achieves
regret

RegretT ∈ O
(√

max
{

λ

T
,

m0
Tp+

}
log (NT )

)

Observe that m0/Tp+ is independent of the number of contexts and interventions. Therefore λ
dominates when number of interventions at an intermediate context is large.

2λ is upperbounded by kn, but is typically significantly smaller (as m may be much smaller than n).
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4 Analysis of the Lower Bound

Since ConvExplore solves an optimization problem, it is a priori unclear that a better algorithm
may not provide a regret guarantee better than Theorem 1. In this section, we show that for a
large class of instances, it is indeed the case that the regret guarantee we provide is optimal. We
provide a lower bound on regret for a family of instances. For any number of contexts k, we show
that there exist transition matrices P and reward distributions (E[Ri | a]) such that regret achieved
by ConvExplore (Theorem 1) is tight, up to log factors.
Theorem 2. For any qi

j corresponding to causal variables at contexts i ∈ [k], there exists a transition
matrix P , and probabilities q0

j corresponding to causal variables {X0
j }j∈[n], and reward distributions,

such that the simple regret achieved by any algorithm is

RegretT ∈ Ω
(√

λ

T

)

We provide the details of the proof of Theorem 2 in Section F in the supplementary material.

5 Experiments
We first list a few baseline algorithms that we compare ConvExplore with. This is followed by a
complete description of our experimental setup. Finally, we present and discuss our main results.

Uniform Exploration: This algorithm uniformly explores the interventions in the instance. It
first performs all the atomic interventions a ∈ A0 at the start state 0 in a round robin manner.
On transitioning to any context i ∈ [k], it performs atomic interventions b ∈ Ai in a round robin
manner. UnifExplore achieves a regret upperbounded by Õ(

√
nk/T ), which is also the optimal

lower bound for non-causal algorithms. Hence it serves as a good comparison as it achieves an
optimal non-causal simple regret. We plot the comparison with this non-causal regret optimal
exploration in Figure 3. We plot the regret with respect to (A) the number of rounds of exploration
and (B) with the λ values of our instance. Notice that at extremely high λ values ConvExplore
does not perform well, as such an instance does not particularly benefit from the causal structure.
Even so, with further tuning of constants in our Algorithm, we should achieve a performance similar
to UnifExplore.
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Figure 3: We plot the Simple Regret under ConvExplore and UnifExplore. The figure on the
left (3a) plots expected simple regret vs time, for the setup n = 25, k = 25, λ = 50, ε = 0.3 and
m = 2 for all contexts. The figure on the right (3b) plots expected simple regret with λ. It was
performed with the parameters: T = 25000, k = 25, m0 = 2 and ε = 0.3.
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Figure 4: We plot various baselines for two metrics of interest (1) Probability of the algorithm
finding the best interventions and (2) Simple regret. These plots illustrate how these metrics vary
with the exploration budget.

Other Baselines: We now consider several other baselines for comparison, that have been used
in literature. Primary amongst these are: (1) UCB at the start state, as well as the intermediate
contexts (2) Thompson sampling at the start state, as well as the intermediate contexts (3) Round-
robin at the start state, and UCB at the intermediate contexts (4) Round-robin at the start state,
and Thomson sampling at the intermediate contexts and (5) UnifExplore which is round-robin
at both the start state and at the intermediate contexts.

Setup: We consider k = 25 intermediate contexts and a causal graphs with n = 25 variables (2n +
1 = 51 interventions) at each context. The rewards are distributed Bernoulli(0.5+ε) for intervention
X1

1 = 1 and Bernoulli(0.5) otherwise where ε = 0.3 in the experiments. We set mi = m ∀i ∈ [k]. As
in experiments in prior work, we set qi

j = 0 for j ≤ mi and 0.5 otherwise. Let k = n here. At state
0, on taking action a = do(), we transition uniformly to one of the intermediate contexts. On taking
action do(X0

i = 1), we transition with probability 2/k to context i and probability 1/k−1/(k(k−1))
to any of the other k − 1 contexts.

We perform two experiments in this setting. In the first one, we run ConvExplore and UnifEx-
plore for time horizon T ∈ {1000, . . . , 25000}. In the second experiment, we run ConvExplore
and UnifExplore for a fixed time horizon T = 25000 with λ varying in the set {50, 75, . . . , 625}.
To vary λ, we vary mi for the intermediate contexts in the set {2, 3, . . . , 25}. We average the regret
over 10000 runs for each setting. We use CVXPY (Diamond & Boyd (2016)) to solve the convex
program at Step 4 in ConvExplore. We release our code in entirety in our anonymized GitHub
project repository, for the community to use and improve.

Results of comparison with UnifExplore: In Figure 3a, we compare the expected simple
regret of ConvExplore vs. UnifExplore. Our plots indicate that ConvExplore outperforms
UnifExplore and its regret falls rapidly as T increases. In Figure 3b, we plot the expected simple
regret against λ for ConvExplore and UnifExplore that was obtained in Experiment 2, and
empirically validate their relationship that was proved in Theorem 1.
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Figure 5: We plot the variation of probability of finding the best intervention and simple regret with
the number of contexts. Notice the outperformance of ConvExplore vs. the other baselines.
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Figure 6: We plot the variation of probability of finding the best intervention and simple regret with
λ value. Notice that ConvExplore is the only algorithm that is causal-aware and hence varying
with λ.

Results of comparison withother baselines: We find that ConvExplore significantly out-
performs baselines other than UnifExplore. Specifically Thompson samplling and UCB are not
well tuned to the exploration problem, and hence perform poorly in both the metrics of (1) simple
regret as well as (2) probability of finding the best intervention. A mixture of round-robin at the
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start state with these alternatives at the intermediate context also perform poorly with respect to
ConvExplore for this particular exploration problem. In Figure 4 we plot the metrics with ex-
ploration budget. In Figure 5 we plot the metrics of interest with the number of contexts at the
intermediate stage. Finally, in Figure 6, we plot the simple regret as well as probability of finding
the best intervention with our parameter λ, while keeping the number of intermediate contexts the
same. The results of these experiments and full details can be found here.

6 Conclusions
We studied extensions of the causal contextual bandits framework to include adaptive context choice.
This is an important problem in practice and the solutions therein have immediate practical appli-
cations. The setting of stochastic transition to a context accounted for non-trivial extensions from
Subramanian & Ravindran (2022) who studied targeted interventions. We developed a Convex Ex-
ploration algorithm for minimizing simple regret under this setting. Furthermore, while Maiti et al.
(2022) studied the simple causal bandit setting with unobserved confounders, our work addresses
causal contextual bandits with adaptive contexts, under the same constraint of allowing unobserved
confounders (assuming identifiability). We identified an instance dependent parameter λ, and proved
that the regret of this algorithm is Õ(

√
1
T max{λ, m0

p+
}). The current work also established that,

for certain families of instances, this upper bound is essentially tight. Finally, we showed through
experiments that our algorithm performs better than uniform exploration in a range of settings. We
believe our method of converting the exploration in the causal contextual bandit setting is novel,
and may have implications outside the causal setting as well.

Possible generalizations of this work include extensions to non-binary reward settings. Another
natural extension would be to derive bounds for L-layered MDPs, extending from the adaptive
contextual bandit setting we consider. It would be interesting to see whether that problem reduces
to convex exploration as well. Finally, extending convex exploration methods from this paper to
other more general simple regret problems may also be a promising avenue for future research.
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A Related Work

In our work, we draw from prior literature from causality as well as from multi-armed bandits. We
will briefly cover these two in the following section.

A.1 Multi-armed bandits:

The stochastic Multi-Armed Bandit (MAB) setup is a standard model for studying the exploration-
exploitation trade-off in sequential decision making problems (Kuleshov & Precup, 2014; Bubeck
et al., 2012). Such trade-offs arise in several modern applications, such as ad placement, website
optimization, recommendation systems, and packet routing (Bouneffouf et al., 2020) and are thus a
central part of the theory relating to online learning (Slivkins et al., 2019; Lattimore & Szepesvári,
2020).

Traditional performance measures for MAB algorithms have focused on cumulative regret (Auer
et al., 2002; Agrawal & Goyal, 2012; Auer & Ortner, 2010), as well as best-arm identification under
the fixed confidence (Even-Dar et al., 2006) and fixed budget (Audibert et al., 2010) settings. In
some settings however, one may be interested in optimizing the exploration phase. Another variant
of regret that has been considered is the mini-max regret (Azar et al., 2017) which focuses on the
worst case over all possible environments. However, as a metric for pure exploration in MABs,
simple regret has been proposed as a natural performance criterion (Bubeck et al., 2009). In this
setting, we allow for some period of exploration, after which the learner has to choose an arm. The
simple regret is then evaluated as the difference between the average reward of the best arm and the
average reward of the learner’s recommendation. We focus on simple regret in this work.

Each of these performance metrics come with their own lower bounds (Orabona et al., 2012; Osband
& Van Roy, 2016; Bubeck et al., 2012), which are naturally the benchmarks for any algorithms
proposed. The lower bound on simple regret is known to be O(

√
n/T ) for a stochastic multi-armed

bandit problem with n arms. This bound is obtained from the lower bound for pure exploration
provided by Mannor & Tsitsiklis (2004).

Note that, a naive approach to the causal bandit problem which simply treats an intervention on
each of exponentially many combinations of the nodes as an arm, may thus incur an exponential
regret. We now review some of the literature from Causality, which helps in addressing the causal
aspects of the problem.

A.2 Causality:

There are three broad threads in causality related to our work. These are causal graph learning,
causal testing and causal bandits. We address relevant works in these areas below.

Learning Causal Graphs: Tian & Pearl (2002) laid the grounds for analysing functional functional
constraints among the distributions of observed variables in a causal Bayesian networks. Similarly,
Kang & Tian (2006) derive such functional constraints over interventional distributions. These two
seminal works lead to a great interest in the problem of learning causal graphs.

There have been several studies that provide algorithms to recover the causal graphs from the
conditional independence relations in observational data (Pearl & Verma, 1995; Spirtes et al., 2000;
Ali et al., 2005; Zhang, 2008). Subsequent work considered the setting when both observational
and interventional data are available (Eberhardt et al., 2005; Hauser & Bühlmann, 2014). Kocaoglu
et al. (2017a) extend the causal graph learning problem to a budgeted setting. Shanmugam et al.
(2015) uses interventions on sets of small size to learn the causal structure. Kocaoglu et al. (2017b)
provide an efficient randomized algorithm to learn a causal graph with confounding variables.

Testing over Bayesian networks: Given sample access to an unknown Bayesian Network
(Canonne et al., 2017), or Ising model (Daskalakis et al., 2019), one may wish to decide whether
an unknown model is equal to a known fixed model, and analyse the sample complexity of this
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hypothesis test. Acharya et al. (2018) address this question by introducing the concept of covering
interventions. These covering interventions allow us to understand the behaviour of multiple inter-
ventions (that are covered) simultaneously. We utilize the concept of covering interventions from
Acharya et al. (2018) towards our question of finding the optimal intervention in a causal bandit.
The area of reinforcement learning over causal bandits has also been studied in Zhang (2020).

Apart from these areas in causality, our primary problem of causal bandits have been addressed by
Lattimore et al. (2016); Maiti et al. (2022); Sen et al. (2017a); Lu et al. (2020); Nair et al. (2021);
Sen et al. (2017b); Lu et al. (2021; 2022); Varici et al. (2022); Xiong & Chen (2023). We detail these
in the main Related Works Section 1.2.

B Algorithms in Detail

In this section, we outline the three algorithms that are used as helpers in ConvExplore. The
first that we outline now, Algorithm 2, would be used to estimate the transition probabilities out of
context 0 on taking various actions.

Algorithm 2 Estimate Transition Probabilities
1: Input: Time budget T ′

2: For time t← {1, . . . , T ′
2 } do

3: Perform do() at context 0. Transition to i ∈ [k]
4: Count number of times context i ∈ [k] is observed
5: Update q̂0

j = P
{

X0
j = 1

}
end

6: Using q̂0
j s, estimate m0 and the set Amo . Estimate P̂(a,i) = P[i | a] ∀a ∈ Ac

m0 and i ∈ [k]
7: For intervention a ∈ Amo at context 0
8: For time t← {1, . . . T ′

2|Am0 |}
9: Perform a ∈ Amo and transition to some i ∈ [k]

10: Count number of times context i is observed
end

end
11: Estimate P̂(a,i) = P[i | a] for each a ∈ Am0 and contexts i ∈ [k]
12: return Estimated matrix P̂ =

[
P̂(a,i)

]
i∈[k],a∈A0

aIn the first half of time T ′/2, we perform do() at State 0.
bIf A0 := do() ∪ {X0

j = 0, X0
j = 1}j∈[n], we can find m0 ≤ |A0|/2 such that A0 = Am0 ∪ Ac

m0 where the
interventions in Ac

m0 are observed with probability more than 1/m0 and |Am0 | = m0.
cFor the interventions a ∈ Ac

m0 , we can estimate P̂(a,i) = P[i | a] ∀i ∈ [k] in the first half.
dIn the second half, we may intervene on the atomic interventions in Am0 for time T/(2m0) each.
eUsing observations of a ∈ Am0 , we estimate P̂(a,i) = P[i | a] ∀a ∈ Am0 and i ∈ [k].

Next we estimate the causal parameters at all contexts i ∈ [k] through Algorithm 3. Then we will
use Algorithm 4 to estimate the rewards on various interventions at the intermediate contexts.

For estimating the causal parameters, we use a variant of SRM-ALG from Maiti et al. (2022), which
estimates the causal observational threshold mi, under the setting of unobserved confounders and
identifiability. We note that even in the presence of general causal graphs with hidden variables,
SRM-ALG is able to efficiently estimate the rewards of all the arms simultaneously using the
observational arm pulls. As mentioned in Section 3 of Maiti et al. (2022), the challenge is to identify
the optimal number of arms with bad estimates during the initial phase of the algorithm, such
that these arms can be intervened upon at the later phase. The qi(x) parameter is the minimum
conditional probability of X = x, given different configurations of the parents of X. Once we have
these estimates, the remaining algorithm can proceed as per usual.

2248



RLJ | RLC 2024

Algorithm 3 Estimate Causal Parameters
1: Input: Frequency vector f̃ and time budget T ′

2: Update f(a)← 1
2

(
f̃(a) + 1

|A0|

)
∀a ∈ A0

3: For intervention a ∈ A0
4: For time t← {1, . . . T ′ · f(a)}
5: Perform a ∈ A0 and transition to some i ∈ [k].
6: At context i, perform do() and observe Xi

js
7: Update q̂i

j = minParents(Xi
j

),x∈{0,1} P
{

Xi
j = x | Parents(Xi

j)
}

end
end

8: Using q̂i
js, estimate m̂i values for each context i ∈ [k]

9: return M̂ , the diagonal matrix of the m̂i values

aWe choose actions a ∈ A0 such that we visit the contexts i ∈ [k] approximately equally, in expectation.
bOn each visit to a context i ∈ [k], we perform do(). From these we can estimate qj

i values, which may be used to
estimate mi values.

cBased on these do() interventions at each context i ∈ [k], we get estimates of mi and the intervention sets Ami

such that (I) |Ami | = mi and (II) interventions in Ami are observed with probability less than 1/mi.

Note that in Algorithm 4 there are two phases. In the first phase, we carry out estimates for
interventions that have high probability of being observed on the do() intervention. In the second
phase, we specifically perform interventions which have not been observed often enough. This is
similar to Algorithm 2 where we carry out the two phases of interventions at context 0.

Algorithm 4 Estimate Rewards
1: Input: Optimal frequency f∗, min-max frequency f̃ , and time budget T ′

2: Set f(a)← 1
3

(
f∗(a) + f̃(a) + 1

|A0|

)
∀a ∈ A0

3: For intervention a ∈ A0 at context 0
4: For time t← {1, . . . f(a) · T ′/2}
5: Perform a ∈ A0. Transition to some i ∈ [k]. Perform do() at context i ∈ [k].
6: Observe variables Xi

j ’s and rewards Ri.
end

end
7: Find the set Ami ∀i ∈ [k] using qi

j estimates.
8: Estimate mean reward R̂(b,i) = E [Ri | b] for each b ∈ Ac

mi

9: For intervention a ∈ A0 at context 0
10: For time t← {1, . . . f(a) · T ′/2}
11: Perform a ∈ A0 and transition to some i ∈ [k].
12: Iteratively perform b ∈ Ami . Observe Ri

end
end

13: Estimate mean reward R̂(b,i) = E [Ri | b] for each b ∈ Ami

14: return R̂ =
[
R̂(b,i)

]
i∈[k],b∈Ai

aWe perform the interventions in the ratio of f∗ which is the optimum given the mi values at the various contexts.
bIn the first half we estimate rewards for the interventions Ac

mi
in the first half, and the interventions in Ami in

the second half.
cNote that we round robin over the interventions b ∈ Ami across visits in the second half of the algorithm.
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C Proof of Theorem 1

In this section, we restate Theorem 1 and provide its proof, along with all the lemmas that are used
in the proof.
Theorem. Given number of rounds T ≥ T0 and λ as in equation (3), ConvExplore achieves
regret

RegretT ∈ O
(√

max
{

λ

T
,

m0
Tp+

}
log (NT )

)

C.1 Proof of Theorem 1
To prove the theorem, we analyze the algorithm’s execution as falling under either good event or bad
event, and tackle the regret under each.
Definition 1. We define five events, E1 to E5 (see Table 3), the intersection of which we call as
good event, E, i.e., good event E :=

⋂
i∈[5] Ei. Furthermore, we define the bad event F := Ec.

Table 3: Table enumerating Good Events

Event Condition Explanation

E1
k∑

i=1
|P̂(a,i) − P(a,i)| ≤ p+

3 ∀a ∈ A0

for every intervention a ∈ A0, the empirical
estimate of transition probability in each of

Algorithms 2, 3 and 4 is good, up to an
absolute factor of p+/3

E2 m̂0 ∈ [ 2
3 m0, 2m0] our estimate for causal parameter m0 for state

0 is relatively good in Algorithm 2.

E3 m̂i ∈ [ 2
3 mi, 2mi] ∀i ∈ [k]

our estimate for causal parameter mi for each
context i ∈ [k] is relatively good in Algorithm

3.

E4

∑
i∈[k]|P̂(a,i) − P(a,i)| ≤ ζ,

∀a ∈ A0

The error in estimated transition probability in
Algorithm 2 sums to less than ζ where

ζ :=
√

150m0
T p+

log
( 3T

k

)

E5

∣∣∣E [Ri | a]− R̂(a,i)

∣∣∣ ≤ η̂i ∀i ∈
[k], a ∈ Ai

The error in reward estimates in Algorithm 4 is
bounded3 by η̂i where

η̂i =
√

27m̂i

T (P̂ ⊤f̂∗)i

log (2T N)

Considering the estimates P̂ and M̂ , along with frequency vector2 f̂∗ (computed in Step 4), we
define random variable

λ̂ :=
∥∥∥∥P̂ M̂1/2

(
P̂ ⊤f̂∗

)◦− 1
2
∥∥∥∥

2

∞
.

Note that λ̂ is a surrogate for λ. We will show that under the good event, λ̂ is close to λ (Lemma
3).

Recall that RegretT := E[ε(π)] and here the expectation is with respect to the policy π computed
by the algorithm. We can further consider the expected sub-optimality of the algorithm and the
quality of the estimates (in particular, P̂ , M̂ and λ̂) under good event (E).

Based on the estimates returned at Step 4 of ConvExplore, either the good event holds, or we
have the bad event. We obtain the regret guarantee by first bounding sub-optimality of policies
computed under the good event, and then bound the probability of the bad event.

3Recall that f̂∗ denotes the optimal frequency vector computed in Step 4 of ConvExplore. Also, (P̂ ⊤f̂∗)i denotes
the ith component of the vector P ⊤f∗.
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Lemma 1. For the optimal policy π∗, under the good event (E), we have∑
i∈[k] P(π∗(0),i)E [Ri | π∗(i)]−∑ P̂(π∗(0),i)R̂(π∗(i),i) ≤ O

(√
max{λ̂, m0/p+}/T log (NT )

)

Proof. We add and subtract
∑

i∈[k] P(π∗(0),i)R̂(π∗(i),i) and reduce the expression on the left to:
∑

i∈[k] P(π∗(0),i)(E [Ri | π∗(i)]− R̂(π∗(i),i)) +
∑

i∈[k] R̂(π∗(i),i)(P(π∗(0),i) − P̂(π∗(0),i)).

We have: (a) R̂(π∗(i),i) ≤ 1 (as rewards are bounded) (b)
∑

i∈[k]|P̂(π∗(0),i) − P(π∗(0),i)| ≤ ζ (by
E4) and (c)

∣∣∣E [Ri | π∗(i)]− R̂(π∗(i),i)

∣∣∣ ≤ η̂i (by E5). The above expression is thus bounded
above by

∑
i∈[k] P(π∗(0),i)η̂i + ζ Furthermore, it follows from E1 (See Corollary 2 in Section D.1

in the supplementary material) that (component-wise) P ≤ 3
2 P̂ . Hence, the above-mentioned

expression is bounded above by 3
2
∑

i∈[k] P̂(π∗(0),i)η̂i + ζ. Note that the definition of λ̂ en-
sures

∑
i∈[k] P̂(π∗(0),i)η̂i = O(

√
λ̂/T log(NT )). Further, ζ = O(

√
m0/(Tp+) log(T/k)). Hence,∑

i∈[k] P(π∗(0),i)ηi + ζ = O(
√

max{λ̂, m0/p+}/T log (NT )), which establishes the lemma.

We now state another similar lemma for any policy π̂ computed under good event.
Lemma 2. Let π̂ be a policy computed by ConvExplore under the good event (E). Then,∑

i∈[k] P̂(π̂(0),i)R̂(π̂(i),i) −
∑

i∈[k] P(π̂(0),i)E [Ri | π̂(i)] ≤ O
(√

max{λ̂, m0/p+}/T log (NT )
)

Proof. We can add and subtract
∑

i∈[k] P(π̂(0),i)R̂(π̂(i),i) to the expression on the left to
get:

∑
i∈[k] R̂(π̂(i),i)(P̂(π̂(0),i) − P(π̂(0),i)) +

∑
i∈[k] P(π̂(0),i)(R̂(π̂(i),i) − E [Ri | π̂(i)]). Analogous to

Lemma 1, one can show that this expression is bounded above by ζ +
∑

i∈[k]
3
2 P̂(π̂(0),i)η̂i =

O(
√

max{λ̂, m0/p+}/T log (NT )).

We can also bound λ̂ to within a constant factor of λ.
Lemma 3. Under the good event E, we have λ̂ ≤ 8λ.

Proof. Event E1 ensures that 2
3 P ≤ P̂ ≤ 4

3 P (see Corollary 2 in Appendix section D.1). In addition,
note that event E3 gives us M̂ ≤ 2M . From these observations we obtain the desired bound:
λ̂ = P̂ M̂0.5(P̂ ⊤f̂∗)◦−0.5 ≤ P̂ M̂0.5(P̂ ⊤f∗)◦−0.5 ≤ 8PM0.5(P ⊤f∗)◦−0.5 = 8λ; here, the first inequality
follows from the fact that f̂∗ is the minimizer of the λ̂ expression, and for the second inequality, we
substitute the appropriate bounds of P̂ and M̂ .

Recall that:

π∗(i) = arg max
a∈Ai

E [Ri | a]

π∗(0) = arg max
b∈A0

(
k∑

i=1
E [Ri | π∗(i)] · P{i | b})

We will now define ε(π), denoting the sub-optimality of a policy π, as the difference between the
expected rewards of π∗ and π. i.e. ε(π) =

∑k
i=1 E [Ri | π∗(i)]·P{i | π∗(0)}−∑k

i=1 E [Ri | π(i)]·P{i |
π(0)}.
Corollary 1. For any π̂ computed by ConvExplore under good event E, ε(π̂) =
O
(√

max{λ, m0/p+}/T log (NT )
)

Proof. Since ConvExplore selects the optimal policy (maximizing rewards with respect to the
estimates),

∑
P̂(π∗(0),i)R̂(π∗(i),i) ≤

∑
P̂(π̂(0),i)R̂(π̂(i),i). Combining this with Lemmas 1 and 2, we
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get
∑

i∈[k] P(π∗(0),i)E [Ri | π∗(i)] −∑i∈[k] P(π̂(0),i)E [Ri | π̂(i)] = O(
√

max{λ̂, m0/p+}/T log (NT ))
under good event. The left-hand-side of this expression is equal to ε(π̂). Using Lemma 3, we get
that ε(π̂) = O

(√
max{λ, m0/p+}/T log (NT )

)
.

Corollary 1 shows that under the good event, the (true) expected reward of π∗ and π̂ are within
O
(√

max{λ, m0/p+}/T log (NT )
)

of each other. In Lemma 10 (see Section D.5 in the supplemen-
tary material) we will show 4 that P{⋃i∈[5] ¬Ei} = P {F} ≤ 5k/T whenever T ≥ T0

5.

The above-mentioned bounds together establish Theorem 1 (i.e., bound the regret of ConvEx-
plore): RegretT = E[ε(π)] = E[ε(π̂) | E]P {E} + E[ε(π′) | F ]P {F}. Since the rewards are
bounded between 0 and 1, we have ε(π′) ≤ 1, for all policies π′. But P{E} ≤ 1 giving us
RegretT ≤ E[ε(π) | E] + P{F}. Therefore, Corollary 1 along with Lemma 10, leads to guaran-
tee RegretT = O

(√
max{λ, m0/p+}/T log (NT )

)
+ 5k/T = O

(√
max{λ, m0/p+}/T log (NT )

)

D Bounding the Probability of the Bad Event

Recall that the good event corresponds to
⋂

i∈5 Ei (see Definition 1). Write F := ¬
(⋂

i∈5 Ei

)

and note that, for the regret analysis, we require an upper bound on P{F} = P
{
¬(
⋂

i∈5 Ei)
}

=
P
{⋃

i∈5 ¬Ei

}
. Towards this, in this section we address P{¬Ei}, for each of the events E1-E5, and

then apply the union bound.

D.1 Bound on ¬E1

The next lemma upper bounds the probability of ¬E1.
Lemma 4. In each of Algorithms 2, 3 and 4 and for all interventions a ∈ A0, we have P{¬E1} =

P
{

k∑
i=1
|P̂(a,i) − P(a,i)| > p+

3

}
< k

T whenever T ≥ max
{

1620N
p3

+
, 2025N

p2
+

log
( 9NT

k

)}
.

Proof. On performing any intervention a ∈ A0 at context 0, the intermediate context that we
visit follows a multinomial distribution. Hence, we can apply Devroye’s inequality (for multinomial
distributions) to obtain a concentration guarantee; we state the inequality next in our notation.
Lemma 5 (Restatement of Lemma 3 in Devroye (1983)). Let Ta be the number of times in-
tervention a ∈ A0 is performed in context 0. Then, for any η > 0 and any Ta ≥ 20s

η2 , we have

P
{

k∑
i=1
|P̂(a,i) − P(a,i)| > η

}
≤ 3 exp

(
−Taη2

25

)
. Here, s is the support of the distribution (i.e., the

number of contexts that can be reached from a with a nonzero probability).

Note that each intervention a ∈ A0 is performed at least Ta = T
9N times across Algorithms 2, 3 and

4. Setting η = p+
3 and Ta = T

9N above, we get that for each intervention a ∈ A0, in each subroutine,
P
{∑k

i=1|P(a,i) − P̂(a,i)| > p+
3

}
≤ 3 exp

(
− T p2

+
9N ·9·25

)
= 3 exp

(
− T p2

+
2025N

)
.

Note that to apply the inequality, we require T
9N ≥ 180s

p2
+

, i.e., T ≥ 1620sN
p2

+
. In the current context,

the support size s is at most 1
p+

; this follows from the fact that on performing any intervention
a ∈ A0, at most 1

p+
contexts can have P(a,i) ≥ p+. Hence, the requirement reduces to T ≥ 1620N

p3
+

.

4Recall that, by definition, F = Ec.
5T0 as defined in Lemma 10 in Section D.5 in the supplementary material.
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Next, we union bound the probability over the N interventions (at state 0) and the three subroutines,
to obtain that, for any intervention a ∈ A0 and in any subroutine, P

{∑k
i=1|P(a,i) − P̂(a,i)| > p+

3

}
≤

3N · 3 exp
(
− T p2

+
2025N

)
= 9N exp

(
− T p2

+
2025N

)
.

Note that 9N exp
(
− T p2

+
2025N

)
≤ k

T , for any T ≥ 2025N
p2

+
log
( 9NT

k

)
. Hence, for any T ≥

max
{

1620N
p3

+
, 2025N

p2
+

log
( 9NT

k

)}
, we have P[¬E1] ≤ 9N exp

(
− T p2

+
2025N

)
≤ k

T . This completes the
proof of the lemma.

We state below a corollary which provides a multiplicative bound on P̂ with respect to P , comple-
menting the additive form of E1.
Corollary 2. Under event E1, we have 2

3 P(a,i) ≤ P̂(a,i) ≤ 4
3 P(a,i), for all interventions a ∈ A0 and

contexts i ∈ [k].

Proof. Event E1 ensures that
k∑

i=1
|P̂(a,i) − P(a,i)| ≤ p+

3 , for each interventions a ∈ A0 and contexts

i ∈ [k]. This, in particular, implies that for each intervention a ∈ A0 and context i ∈ [k] the
following inequality holds: |P̂(a,i) − P(a,i)| ≤ p+

3 . Note that if P(a,i) = 0, then the algorithm will
never observe context i with intervention a, i.e., in such a case P̂(a,i) = P(a,i) = 0. For the nonzero
P(a,i)s, recall that (by definition), p+ = min{P(a,i) | P(a,i) > 0}. Therefore, for any nonzero P(a,i),
the above-mentioned inequality gives us |P̂(a,i) − P(a,i)| ≤ 1

3 P(a,i). Equivalently, P̂(a,i) ≤ 4
3 P(a,i) and

P̂(a,i) ≥ 2
3 P(a,i). Therefore, for all P(a,i)s the corollary holds.

D.2 Bound on Events ¬E2 and ¬E3

In this section, we bound the probabilities that our estimated m̂is are far away from the true causal
parameters mis.
Lemma 6. For any T ≥ 144m0 log

(
T N

k

)
, in Algorithm 2, P[¬E2] = P

{
m̂0 /∈ [ 2

3 m0, 2m0]
}
≤ k

T .

Proof. We allocate time T
3 to Algorithm 2. Lemma 8 of Lattimore et al. (2016) ensures that, for

any δ ∈ (0, 1) and T
3 ≥ 48m0 log( N

δ ), we have m̂0 ∈ [ 2
3 m0, 2m0], with probability at least (1 − δ).

Setting δ = k
T , we get the required probability bound.

Next, we address P{¬E3 | E1}.
Lemma 7. For any T ≥ 648 max(mi)N

p+
log (2NT ), in each of Algorithms 3 and 4, we have

P
{
∃i ∈ [k], m̂i /∈ [ 2

3 mi, 2mi]
∣∣ E1

}
≤ k

T .

Proof. Fix any reachable context i ∈ [k]. Corresponding to such a context, there exists an interven-
tion α ∈ A0 such that P(α,i) ≥ p+. Event E1 (Corollary 2) implies that P̂(α,i) ≥ 2

3 P(α,i) ≥ 2
3 p+.

Now, write Ti to denote the number of times context i ∈ [k] is visited by the Algorithms 3 and 4.
Recall that in the subroutines we estimate P̂(α,i) by counting the number of times context i was
reached and simultaneously intervention α observed. Furthermore, note that we allocate to every
intervention at least T

9N time (See Steps 2 in both the subroutines). In particular, intervention α

was necessarily observed T
9N times. Therefore, P̂(a,i) ≤ Ti

( T
9N ) . This inequality leads to a useful lower

bound: Ti ≥ T
9N P(a,i) ≥ T 2p+

27N .

We now restate Lemma 8 from Lattimore et al. (2016): Let Ti be the number of times context i ∈ [k]
is observed. Then, P

{
m̂i /∈ [ 2

3 mi, 2mi]
}
≤ 2N exp

(
− Ti

48mi

)
.
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Since Ti ≥ 2T p+
27N , this guarantee of Lattimore et al. (2016) corresponds to P

{
m̂i /∈ [ 2

3 mi, 2mi]
}
≤

2N exp
(
− T p+

648Nmi

)
≤ 2N exp

(
− T p+

648N max(mi)

)
.

Union bounding over all contexts i ∈ [k] and the two Algorithms 3
and 4, we obtain P

{
∃i ∈ [k] in Algorithms 3, 4 with m̂i /∈ [ 2

3 mi, 2mi]
}

≤
2Nk exp

(
− T p+

648N max(mi)

)
.Finally, substituting the value of T ≥

648 max(mi)N
p+

log (2NT ), gives us P
{
∃i ∈ [k] in Algorithms 3, 4 with m̂i /∈ [ 2

3 mi, 2mi]
}

≤
2Nk exp

(
− p+

648N max(mi) ·
[

648 max(mi)N
p+

log (2NT )
])

= k
T . This completes the proof.

D.3 Bound on E4:

The following lemma provides an upper bound for P{¬E4 | E2}.

Lemma 8. Let ζ :=
√

150m0
T p+

log
( 3T

k

)
. Then, P{¬E4 | E2} = P

{
∑

i∈[k]

∣∣∣P(a,i) − P̂(a,i)

∣∣∣ > ζ
∣∣E2

}
≤ k

T .

Proof. As in the proof of Lemma 4, we will use Devroye’s inequality. Write Ta to denote the number
of times intervention a ∈ A0 is observed (in state 0) in Algorithm 2. For any η ∈ (0, 1) and with

Ta ≥ 20s
η2 , Devroye’s inequality gives us P

{
k∑

i=1
|P̂(a,i) − P(a,i)| > η

}
≤ 3 exp

(
−Taη2

25

)
. Here, s is the

size of the support of the multinomial distribution.

We first show that Ta is sufficiently large, for each intervention a ∈ A0. Recall that we allocate time
T
3 to Algorithm 2. Furthermore, we observe each intervention in state 0, at least T

3m̂0
times, either

as part of the do-nothing intervention or explicitly in Step 9 of Algorithm 2. Now, event E2 ensures
that m̂0 ∈ [ 2

3 m0, 2m0]. Hence, each intervention a ∈ A0 is observed Ta ≥ T

3m̂0
≥ T

3·2m0
= T

6m0
times.

Substituting this inequality for Ta in the above-mentioned probability bound, we obtain

P
{

k∑
i=1
|P̂(a,i) − P(a,i)| > η

}
≤ 3 exp

(
− T η2

150m0

)
when T ≥ 120sm0

η2 . As observed in Lemma 4, the

support size s is at most 1
p+

. Therefore, the requirement on T reduces to T ≥ 120m0
η2p+

.

Setting η =
√

150m0
T p+

log
( 3T

k

)
gives us

P

{
k∑

i=1
|P̂(a,i) − P(a,i)| >

√
150m0
Tp+

log
(

3T

k

)}
≤ 3 exp


 −T

150m0

[√
150m0
Tp+

log
(

3T

k

)]2


≤ k

T
.

Therefore P
{

k∑
i=1
|P̂(a,i) − P(a,i)| > η

}
≤ k

T , and this probability bound requires T ≥ 120m0
η2p+

. That is,

η ≥
√

120m0
T p+

. This inequality is satisfied by our choice of η. Hence, the lemma stands proved.

D.4 Bound on ¬E5

The next lemma bounds P{¬E5 | E1, E3}.

Lemma 9. Let η̂i =
√

27m̂i

T (P̂ ⊤f̂∗)i

log (2TN). Then, P{¬E5 | E3, E1} ≤ k
T . In other words:

P
{
∃i ∈ [k] and a ∈ Ai such that

∣∣∣E [Ri | a]− R̂(a,i)

∣∣∣ > η̂i | E3, E1

}
≤ k

T
.
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Proof. For intermediate contexts i ∈ [k], we denote the realization of the causal parameters mi

and the transition probabilities P in Algorithm 4, as m̃i and P̃ , respectively. The estimates in the
previous subroutines are denoted by m̂i and P̂ .

Event E1 gives us P(a,i) ∈ [ 3
4 P̂(a,i),

3
2 P̂(a,i)]and P̃(a,i) ∈ [ 2

3 P(a,i),
4
3 P(a,i)]. Hence, the estimates across

the subroutines are close enough: P̃(a,i) ∈ [ 1
2 P̂(a,i), 2P̂(a,i)]. Similarly, event E3 gives us m̃i ∈

[ 1
3 m̂i, 3m̂i].

Write T̃i to denote the number of times context i ∈ [k] was visited in Algorithm 4. For all contexts
i ∈ [k], we first establish a useful lower bound on T̃i, under events E1 and E3. The relevant
observation here is that the estimate P̃(α,i) was computed in Algorithm 4 by counting the number
of times context i was visited with intervention α ∈ A0 (at state 0). By construction, in Algorithm
4 each intervention α ∈ A0 was performed at least f̂∗

α

3
T
3 times. Furthermore, given that P̃(α,i) was

computed via the visitation count, we get that context i is visited with intervention α ∈ A0 at
least P̃(α,i)

T f̂∗
α

9 times. Therefore, T̃i ≥
∑

α∈A0
P̃(α,i)

T f̂∗
α

9 = T
9 (P̃ ⊤f̂∗)i ≥ T

18 (P̂ ⊤f̂∗)i. Here, the last
inequality follows from the above-mentioned proximity between P̂ and P̃ .

Now, note that, at each context i ∈ [k], Algorithm 4 (by construction) observes every intervention
a ∈ Ai at least T̃i

m̃i

times. Write T̃(a,i) to denote the number of times intervention a ∈ Ai is observed
in this subroutine. Hence,

T̃(a,i) ≥
T̃i

m̃i
≥ 1

m̃i

T

18(P̂ ⊤f̂∗)i ≥
1

3m̂i

T

18(P̂ ⊤f̂∗)i

For each context i ∈ [k] and intervention a ∈ Ai, define the event ¬E5(a, i) as |E [Ri | a]−R̂(a,i)| > η̂i.

Hoeffding’s inequality gives us P {¬E5(a, i) | E1, E3} ≤ 2 exp
(
−2T̃(a,i)η̂

2
i

)
≤ 2 exp

(
−T

(P̂ ⊤f̂∗)iη̂2
i

27m̂i

)
.

The last inequality is obtained by substituting Equation D.4.

Recall that η̂i =
√

27m̂i

T (P̂ ⊤f̂∗)i

log (2TN). Hence, the previous inequality corresponds to

P {¬E5(a, i) | E1, E3} ≤ 2 exp
(
−T (P̂ ⊤f̂∗)i

27m̂i

·
[√

27m̂i

T (P̂ ⊤f̂∗)i

log (2TN)
]2)

= 1
T N .

Note that ¬E5 =
⋃

i∈[k]
⋃

a∈Ai
E5(a, i). Taking a union bound over all contexts i ∈ [k] and inter-

ventions a ∈ Ai, we obtain P{¬E5 | E1, E3} ≤ kN
T N = k

T . This completes the proof.

D.5 Bound on bad event (F):

Write T0 := O
(

N max(mi)
p3

+
log (2NT )

)
= Õ

(
N max(mi)

p3
+

)
.

Lemma 10. P{F} ≤ 5k
T for any T > T0.

Proof. We summarize the statements of Lemmas 4, 6, 7, 8 and 9 as follows. When
T ≥ T0 where T0 = max

{
1620N

p3
+

, 2025N
p2

+
log
( 9NT

k

)
, 144m0 log

(
T n
k

)
, 864 max(mi)N

p+
log (2nT )

}
=

O
(

N max(mi)
p3

+
log (2NT )

)
, we obtain P{F} = P

{[⋃
i∈[5] ¬Ei

]}
≤ P{¬E1} + P{¬E2} + P{¬E3 |

E1}+ P{¬E4 | E2}+ P{¬E5 | E3, E1} ≤ 5k
T .

E Nature of the Optimization Problem

Proposition E.1. Let f̃ = arg max
fq. vectorf

min
contexts [k]

P̂ ⊤f . Then, finding f̃ is an LP
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Proof. We rewrite the above max
fq. vectorf

min
i∈[k]

(·) as a simpler program:

max
f

z

subject to P̂ ⊤
1 f ≥ z

. . .

P̂ ⊤
N f ≥ z

f · 1 = 1
f ⪰ 0

Where N = |A0|. This is equivalent to the standard form of a linear program, and hence is an
LP.

Lemma 11. min
fq. vectorf

max
interventions A0

P̂ M̂
1
2

[
P̂ ⊤f

]◦− 1
2 is a convex optimization problem

Proof. First we write the min-max in terms of a single minimization. First let us use the shorthand
A := P̂ M̂

1
2 and {A1, . . . , AN} (where N := |A0|) denote the rows of the matrix

OPT : min
f

z

subject to A1 ·
[
P̂ ⊤f

]◦− 1
2 ≤ z

. . .

AN ·
[
P̂ ⊤f

]◦− 1
2 ≤ z

f · 1 = 1
f ⪰ 0

Proposition E.2. For any a ∈ R+, the function g(x) := ax− 1
2 is convex in x.

Proof. We observe that the second derivative is positive.

Proposition E.3. The constraint equations of OPT are convex in f

Proof. Consider the first constraint of the problem. We can simplify this to get
∑

i∈[k]
A1i√

P̂ (∗,i)⊤f
.

Note that the ith term in the summand (i.e, A1i√
P̂ (∗,i)⊤f

) is of the form f(x) = c(v⊤x)− 1
2 for some

c ∈ R+ and v ∈ RN
+ . Let x1, x2 ∈ RN be any two vectors, and scalar λ ∈ [0, 1]. We wish to show

that f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2).

We have f(λx1 + (1− λ)x2) = c(v⊤(λx1 + (1− λ)x2))− 1
2 = c(λv⊤x1 + (1− λ)v⊤x2)− 1

2

But ax− 1
2 is convex as per Proposition E.2. Therefore c(λv⊤x1 + (1− λ)v⊤x2)− 1

2 ≤ λc(v⊤x1)− 1
2 +

(1− λ)c(v⊤x2)− 1
2 = λf(x1) + (1− λ)f(x2), as required.

Since A1i√
P̂ (∗,i)⊤f

is convex, the sum
∑

i∈[k]
A1i√

P̂ (∗,i)⊤f
is convex as well. Similarly, all the other

constraints are also convex.

Since the constraints are convex in f and the objective is linear, OPT is convex.
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F Lower Bounds

This section establishes Theorem 2. We will identify a collection of instances for causal bandits with
intermediate feedback and show that, for any given algorithm A, there exists an instance in this
collection for which A’s regret is Ω

(√
λ
T

)
.

First we describe the collection of instances and then provide the proof.

For any integer k > 1, consider n = (k − 1) causal variables at each context i ∈ {0, 1, . . . , k}. The
transition matrix P is set to be deterministic. Specifically, for each i ∈ [n], we have P{i | do(X0

i =
1)} = 1. For all other interventions at context 0, we transition to context k with probability 1. Such
a transition matrix can be achieved by setting q0

i = 0 for all i ∈ [k− 1]. As before, the total number
of interventions N := 2n + 1 = 2k − 1.

Now consider a family of Nk + 1 instances6 {F0} ∪
{
F(a,i)

}
i∈[k],a∈Ai

. Here, F0 and each F(a,i)
is an instance of a causal bandit with intermediate feedback with the above-mentioned transition
probabilities. The instances differ in the rewards at the intermediate contexts. In particular, in
instance F0, we set the reward distributions such that E[Ri | a] = 1

2 for all contexts i ∈ [k] and
interventions a ∈ Ai. For each i ∈ [k] and a ∈ Ai, instance F(a,i) differs from F0 only at context i

and for intervention a. Specifically, by construction, we will have E[Ri | a] = 1
2 + β, for a parameter

β > 0. The expected rewards under all other interventions will be 1/2, the same as in F0.

Given any algorithm A, we will consider the execution of A over all the instances in the family. The
execution of algorithm A over each instance induces a trace, which may include the realized transition
probabilities P̂ , the realized variable probabilities q̂i

j for i ∈ [k] and j ∈ [n] and the corresponding
m̂is, and the realized rewards R̂. Each of such realizations (random variables) has a corresponding
distribution (over many possible runs of the algorithm). We call the measures corresponding to
these random variables under the instances F0 and F(a,i) as P0 and P(a,i), respectively.

F.1 Proof of Theorem 2

For any algorithm A and given time budget T , we first consider the A’s execution over in-
stance F0. As mentioned previously, P0 denotes the trace distribution induced by the algo-
rithm for F0. In particular, write ri to denote the expected number of times context i is visited,
ri := EP0 [state i is visited] /T .

Recall that mi := max{j | qi
(j) < 1

j } and Ami
:= {do(Xi

(j) = 1) | qi
(j) < 1

j }, where the Bernoulli
probabilities of the variables at context i are sorted to satisfy qi

(1) ≤ qi
(2) ≤ · · · ≤ qi

(n). Note that
these definitions do not depend on the algorithm at hand. The algorithm, however, may choose
to perform different interventions different number of times. Write N(a,i) to denote the expected
(under P0) number of times intervention a is performed by the algorithm at context i. Furthermore,
let random variable T(a,i) denote the number of times intervention a is observed at context i. Hence,
EP0 [T(a,i)] is the expected number of times intervention a is observed7.

Using the expected values for algorithm A and instance F0, we define a subset of Ami
as follows:

Ji :=
{

a ∈ Ami
: N(a,i) ≤ 2 T ri

mi

}
. The following proposition shows that the size of Ji is sufficiently

large.
Proposition F.1. The set Ji is non-empty. In particular,

mi/2 ≤ |Ji| ≤ mi.

6Note the change in notation. We used the term Fi,j instead of F(a,i) in the main paper. This has been amended
in a later version of the main paper.

7Note that a can be observed while performing the do-nothing intervention. Also, the expected value N(a,i)
accounts for the number of times a is explicitly performed and not just observed.
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Proof. The upper bound on the size of subset Ji follows directly from its definition: since Ji ⊆ Imi

we have |Ji| ≤ |Ami | = mi.

For the lower bound on the size of Ji, note that Tri is the expected number of times context i is
visited by the algorithm. Therefore,

∑

a∈Ami

N(a,i) ≤ Tri

Furthermore, by definition, for each intervention b ∈ Ami
\Ji we have N(b,i) ≥ 2T ri

mi
. Hence, assuming

|Ami
\ Ji| > mi

2 would contradict inequality (F.1). This observation implies that |Ami
\ Ji| ≤ mi

2
and, hence, |Ji| ≥ mi

2 . This completes the proof.

Recall that T(a,i) denotes the number of times intervention a is observed at context i. The following
proposition bounds E[T(a,i)] for each intervention a ∈ Ji.
Proposition F.2. For every intervention a ∈ Ji

EP0 [T(a,i)] ≤
3Tri

mi
.

Proof. Any intervention a ∈ Ji ⊆ Ami
may be observed either when it is explicitly performed by

the algorithm or as a random realization (under some other intervention, including do-nothing).
Since a ∈ Ami , the probability that a is observed as part of some other intervention is at most 1

mi
.

Therefore, the expected number of times that a is observed by the algorithm—without explicitly
performing it—is at most T ri

mi
; 7 recall that the expected number of times context i is visited is equal

to Tri.

For any intervention a ∈ Ji, by definition, the expected number of times a is performed N(a,i) ≤ 2T ri

mi
.

Therefore, the proposition follows:

E[T(a,i)] ≤
Tri

mi
+ N(a,i) ≤

3Tri

mi
.

We now state two known results for KL divergence.

Bretagnolle-Huber Inequality (Theorem 14.2 in Lattimore & Szepesvári (2020)) : Let
P and P ′ be any two measures on the same measurable space. Let E be any event in the sample
space with complement Ec. Then,

PP{E}+ PP′{Ec} ≥ 1
2 exp (−KL(P,P ′)) .

Bound on KL-Divergence with number of observations (Adaptation of Equation 17 in
Lemma B1 from Auer et al. (1995)): Let P0 and P(a,i) be any two measures with differing
expected rewards (for exactly the intervention a at context i) by an amount β. Then,

KL(P0,P(a,i)) ≤ 6β2 EP0 [T(a,i)]

Using this bound on KL divergence and Proposition F.2, we have, for all contexts i ∈ [k] and
interventions a ∈ Ji:

KL(P0,P(a,i)) ≤ 6β2 · 3Tri
mi

= 18Triβ
2

mi

7Here, we use the fact that the realization of a is independent of the visitation of context i.
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Substituting this in the Bretagnolle-Huber Inequality, we obtain, for any event E in the sample
space along with all contexts i ∈ [k] and all interventions a ∈ Ji:

PP(a,i){E}+ PP0{Ec} ≥ 1
2 exp

(
−18Triβ

2

mi

)

We now define events to lower bound the probability that Algorithm A returns a sub-optimal policy.
In particular, write π̂ to denote the policy returned by algorithm A. Note that π̂ is a random
variable.

For any ℓ ∈ [k] and any intervention b, write G1(b, ℓ) to denote the event that—under the returned
policy π̂—intervention b is not chosen at context ℓ, i.e., G1(b, ℓ) := {π̂(ℓ) ̸= b}. Also, let G2(ℓ) denote
the event that policy π̂ does not induce a transition to ℓ from context 0, i.e., G2(ℓ) := {π̂(0) ̸= ℓ}.
Furthermore, write G(b, ℓ) := G1(b, ℓ) ∪ G2(ℓ). Note that the complement Gc(b, ℓ) = Gc

1(b, ℓ) ∩
Gc

2(ℓ) = {π̂(ℓ) = b} ∩ {π̂(0) = ℓ}.
Considering measure P0, we note that for each context ℓ ∈ [k] there exists an intervention αℓ ∈ Jℓ

with the property that PP0 {Gc
1(αℓ, ℓ)} = PP0 {π̂(ℓ) = αℓ} ≤ 1

|Jℓ| . This follows from the fact that∑
a∈Jℓ

PP0 {π̂(ℓ) = a} ≤ 1. Therefore, for each context ℓ ∈ [k] there exists an intervention αℓ such
that PP0{Gc(αℓ, ℓ)} ≤ 1

|Jℓ| .

This bound and inequality F.1 imply that for all contexts ℓ ∈ [k] there exists an intervention αℓ that
satisfies

PP(αℓ,ℓ){G(αℓ, ℓ)} ≥ 1
2 exp

(
−18Trℓβ

2

mℓ

)
− 1
|Jℓ|

We will set

β = min





1
3 ,

√∑
ℓ∈[k] mℓ

18T





Therefore β takes value either

√∑
ℓ∈[k]

mℓ

18T or 1
3 . We will address these over two separate cases.

Case 1: β =

√∑
ℓ∈[k]

mℓ

18T .

We wish to substitute this β value in Equation F.1. Towards this, we will state a proposition.
Proposition F.3. There exists a context s ∈ [k] such that

√
ms

18Trs
≥

√∑
ℓ∈[k] mℓ

18T

Proof. First, we note the following claim considering all vectors ρ = {ρ1, . . . , ρk} in the probability
simplex ∆.
Claim F.1. For any given set of integers m1, m2, . . . , mk, we have

min
(ρ1,ρ2,...,ρk)∈∆

(
max
ℓ∈[k]

mℓ

ρℓ

)
≥
∑

ℓ∈[k]

mℓ

Proof. Assume, towards a contradiction, that for all ℓ ∈ [k], we have mℓ

ρℓ
<
∑

ℓ∈[k] mℓ. Then,
ρℓ > mℓ∑

ℓ∈[k]
mℓ

, for all ℓ ∈ [k]. Therefore,
∑

ℓ∈[k] ρℓ >
∑

ℓ∈[k]
mℓ∑

ℓ∈[k]
mℓ

= 1. However, this is a

contradiction as
∑

ℓ∈[k] ρℓ = 1.
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An immediate consequence of Claim F.1 is that

min
(r1,r2,...,rk)∈∆

(
max
ℓ∈[k]

√
mℓ

18Trℓ

)
≥

√∑
ℓ∈[k] mℓ

18T

.

Therefore, irrespective of how ris are chosen, there always exists a context s ∈ [k] such that
√

ms

18T rs
≥

√∑
ℓ∈[k]

mℓ

18T .

For such a context s ∈ [k] that satisfies Proposition F.3, we note that, ms

18T rs
≥ β2 or 18T rsβ2

ms
≤ 1.

Let us now restate Equation F.1 for such a context s. There exists a context s ∈ [k] and an
intervention αs that satisfies

PP(αs,s){G(αs, s)} ≥ 1
2 exp

(
−18Trsβ2

ms

)
− 1
|Js|

≥ 1
2e
− 1
|Js|

Note that the last inequality lower bounds the to probability of selecting a non-optimal policy when
the algorithm A is executed on instance Fαs,s. Furthermore, in instance Fαs,s, for any non-optimal
policy π̂ we have ε(π̂) =

( 1
2 + β

)
− 1

2 = β. Therefore, we can lower bound A’s regret over instance
Fαs,s as follows:

RegretT = E[ε(π̂)] = PP(αs,s){G(αs, s)} · E[Regret | G(αs, s)] +
PP(αs,s){Gc(αs, s)} · E[Regret | Gc(αs, s)]

≥
[

1
2e
− 1
|Js|

]
β + PP(αs,s){Gc(αs, s)} · 0

=
[

1
2e
− 1
|Js|

]
β

Note that we can construct the instances to ensure that mℓ ≥ 8, for all contexts ℓ, and, hence,(
1
2e − 1

|Ji|

)
= Ω(1) (see Proposition F.1). Therefore Equation F.1 gives us:

RegretT = Ω(β) = Ω



√∑

ℓ∈[k] mℓ

T




Case 2 We now consider the case when β = 1
3 . In such a case,

√∑
ℓ∈[k]

mℓ

18T > 1
3 .

We showed in Proposition F.3 that there exists a context s ∈ [k] such that
√

ms

18T rs
≥
√∑

ℓ∈[k]
mℓ

18T .

Combining the two statements, there exists a context s such that
√

ms

18T rs
≥ 1

3 . We now restate
Inequality F.1 for such a context s ∈ [k]:

PP(αs,s){G(αs, s)} ≥ 1
2 exp

(
−9β2)− 1

|Js|
= 1

2e
− 1
|Js|

Following the exact same procedure as in Case 1, we can derive that RegretT ≥
[

1
2e − 1

|Js|

]
β. We

saw in Case 1 that it is possible to construct instances such that
[

1
2e − 1

|Js|

]
= Ω(1). Therefore the

2260



RLJ | RLC 2024

following holds for Case 2 also:

RegretT = Ω(β) = Ω



√∑

ℓ∈[k] mℓ

T




Inequalities F.1 and F.1 imply that there exists a context s and an intervention αs such that, under
instance F(αs,s), algorithm A’s regret satisfies

RegretT = Ω



√∑

ℓ∈[k] mℓ

T




We complete the proof of Theorem 2 by showing that in the current context λ =
∑

ℓ∈[k] mℓ.
Proposition F.4. For the chosen transition matrix

λ := min
fq. vectorf

∥∥∥PM1/2 (P ⊤f
)◦− 1

2
∥∥∥

2

∞
=
∑

ℓ∈[k]

mℓ

Proof. Recall that all the instances, F0 and F(a,i)s, have the same (deterministic) transition matrix
P . Also, parameter λ is computed via Equation 3.

Consider any frequency vector f over the interventions {1, . . . , N}. From the chosen transition
matrix, we have the following:

P =




1 0 . . . 0
0 1 . . . 0

. . .
0 0 . . . 1

. . .
0 0 . . . 1




PM
1
2 =




√
m1 0 . . . 0
0 √

m2 . . . 0
. . .

0 0 . . .
√

mk

. . .
0 0 . . .

√
mk




P ⊤f =




f1
f2
. . .

fk−1
fk + . . . + fN




From here, we can compute the following:

PM1/2 (P ⊤f
)◦− 1

2 =
[√

m1
f1

, . . . ,

√
mk−1
fk−1

,

√
mk

fk + . . . + fN
, . . . ,

√
mk

fk + . . . + fN

]⊤

That is, for all ℓ ∈ [k− 1], the ℓth component of the vector PM1/2 (P ⊤f
)◦− 1

2 is equal to
√

mi

fi
. All

the remaining components are
√

mk

fk+...+fN
.

Write ρℓ := fℓ for all ℓ ∈ [k − 1] and ρk =
∑N

j=k fj . Since f is a frequency vector, (ρ1, . . . ρk) ∈ ∆.
In addition,

PM1/2 (P ⊤f
)◦− 1

2 =
[√

m1
ρ1

, . . . ,

√
mk−1
ρk−1

,

√
mk

ρk
, . . . ,

√
mk

ρk

]⊤

Therefore, by definition, λ = min(ρ1,...,ρk)∈∆

(
maxℓ∈[k]

mℓ

ρℓ

)
. Now, using a complementary form of

Claim F.1 we obtain λ =
∑

ℓ∈[k] mℓ. The proposition stands proved.
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Finally, substituting Proposition F.4 into Equation F.1, we obtain that there exists an instance
F(αs,s) for which algorithm A’s regret is lower bounded as follows

RegretT = Ω
(√

λ

T

)
.

This completes the proof of Theorem 2.

F.2 Proof of Inequality (F.1)

For completeness, we provide a proof of inequality (F.1).
Lemma 12. KL(P0,P(a,i)) ≤ 6β2

i EP0 [T(a,i)]

Proof of Inequality (F.1). This proof is based on lemma B1 in Auer et al. (1995). We define a couple
of notations for this proof. Let Rt−1 indicate the filtration (of rewards and other observations) up
to time t− 1. and Rt indicate the reward at time t for this proof.

KL(P0,P(a,i)) = KL
[
PP0(RT, RT−1, . . . , R1) ∥ PP(a,i)(RT, RT−1, . . . , R1)

]

We now state (without proof) a useful lemma for bounding the KL divergence between random
variables over a number of observations.

Chain Rule for entropy (Theorem 2.5.1 in Cover & Thomas (2006)): Let X1, . . . , XT be
random variables drawn according to P1, . . . , PT . Then

H(X1, X2, . . . , XT ) =
T∑

i=1
H(Xi | Xi−1, Xi−2, . . . , X1)

where H(·) is the entropy associated with the random variables.

Using the chain rule for entropy

KL(P0,P(a,i)) =
T∑

t=1
KL
[
PP0(Rt | Rt−1) ∥ PP(a,i)(Rt | Rt−1)

]

Let at be the intervention chosen by the Algorithm A at time t. Then:

=
T∑

t=1
PP0{at ̸= a | Rt−1}

(
1
2 ∥

1
2

)
+ PP0{at = a | Rt−1}KL

(
1
2 ∥

1
2 + βi

)

Since KL
( 1

2 ∥ 1
2
)

= 0, we get:

=
T∑

t=1
PP0{at = a | Rt−1}KL

(
1
2 ∥

1
2 + βi

)

= KL
(

1
2 ∥

1
2 + βi

) T∑

t=1
PP0{at = a | Rt−1}

= KL
(

1
2 ∥

1
2 + βi

)
EP0 [T(a,i)]

Claim F.2. KL
( 1

2 ∥ 1
2 + βi

)
= − 1

2 log2(1− 4β2
i ) ≤ 6β2

i
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Proof.

KL
(

1
2 ∥

1
2 + βi

)
= 1

2 log2

[ 1
2

1
2 + βi

]
+ (1− 1

2) log2

[ (1− 1
2 )

(1− 1
2 − βi)

]

= 1
2 log2

[
1

1 + 2βi

]
+ 1

2 log2

[
1

1− 2βi

]

= 1
2 log2

[
1

1− 4β2
i

]
= −1

2 log2
[
1− 4β2

i

]

= − 1
2 ln(2) ln

[
1− 4β2

i

]
≤ 4β2

i

2 ln(2) < 6β2
i

where the last inequality is obtained from the Taylor series expansion of the log.

It follows that: KL(P0,P1) ≤ 6β2
i EP0 [T(a,i)].
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Abstract

Several tasks in control, robotics, and planning can be specified through desired goal
configurations for entities in the environment. Learning goal-conditioned policies
is a natural paradigm to solve such tasks. However, learning and generalizing on
complex tasks can be challenging due to variations in number of entities or composi-
tions of goals. To address this challenge, we introduce the Entity-Factored Markov
Decision Process (EFMDP), a formal framework for modeling the entity-based com-
positional structure in control tasks. Geometrical properties of the EFMDP frame-
work provide theoretical motivation for policy architecture design, particularly Deep
Sets and popular relational mechanisms such as graphs and self attention. These
structured policy architectures are flexible and can be trained end-to-end with stan-
dard reinforcement and imitation learning algorithms. We study and compare the
learning and generalization properties of these architectures on a suite of simulated
robot manipulation tasks, finding that they achieve significantly higher success rates
with less data compared to standard multilayer perceptrons. Structured policies
also enable broader and more compositional generalization, producing policies that
extrapolate to different numbers of entities than seen in training, and stitch to-
gether (i.e. compose) learned skills in novel ways. Video results can be found at
https://sites.google.com/view/comp-gen-rl.

1 Introduction

T
ra
in

T
e
st

Figure 1. Agent is trained to re-arrange three
cubes (top-left), but tested zero-shot to re-
arrange more cubes (bottom-left). RL with
standard MLPs fails to even learn the 3-cube
task, while our policies learn and extrapolate.

Goal specification is a powerful abstraction for train-
ing and deploying AI agents (Kaelbling, 1993; Schaul
et al., 2015; Andrychowicz et al., 2017). For in-
stance, object reconfiguration (Batra et al., 2020)
tasks like loading plates in a dishwasher or arrang-
ing pieces on a chess board can be described through
spatial and semantic goals for various objects. In ad-
dition, the goal for a scene can be described through
compositions of goals for individual entities in it.
Through this work, we introduce a new framework
for modeling tasks with such entity-centric compo-
sitional structure. This is applicable to robot manip-
ulation, multi-agent systems, strategic game-playing,
among other domains. Subsequently, we study pol-
icy architectures that can utilize structural proper-
ties unique to our framework for goal-conditioned
reinforcement and imitation learning. Through ex-
periments in simulated robot manipulation tasks, we
find that our policy architectures exhibit significantly
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improved learning efficiency and generalization per-
formance compared to standard multi-layer perceptrons (MLPs), as previewed in Figure 1. More
importantly, our architectures are capable of learning near-optimal policies in complex table top
manipulation tasks where MLP baselines completely fail.

Consider the motivating task of arranging pieces on a chess board using a robot arm. A naive speci-
fication would provide goal locations for all 32 pieces simultaneously. However, we can immediately
recognize that the task is a composition of 32 sub-goals involving the rearrangement of individual
pieces. This understanding of compositional structure can allow us to focus on one object at a
time, dramatically reducing the size of effective state space and help combat the curse of dimen-
sionality that plagues RL (Sutton & Barto, 1998; Bertsekas & Tsitsiklis, 1996). Moreover, such
a compositional understanding would make an agent invariant to the number of objects, enabling
generalization to fewer or more objects. Most importantly, it can enable reusing shared skills like
pick-and-place, enhancing the learning efficiency. We finally note that a successful policy cannot
completely decouple the sub-tasks. For example, if a piece must be moved to a square currently
occupied by another piece, the piece in the destination square must be moved first.

The generic Markov Decision Process (MDP) framework as well as policy architectures based on
MLPs lack the aforementioned compositional properties. To overcome this limitation, we turn to the
general field of “geometric deep learning” (Bronstein et al., 2021) which is concerned with the study of
structures, symmetries, and invariances exhibited by function classes. We first introduce the Entity-
Factored MDP (EFMDP), a subclass of the generic MDP, as a formal model for decision making in
environments with multiple entities (e.g. objects). We then characterize the geometric properties of
EFDMP relative to the generic MDP. We subsequently show how set-based invariant architectures
like Deep Sets (Zaheer et al., 2017) and relational architectures like Self-Attention (Vaswani et al.,
2017) and Graph Convolution (Kipf & Welling, 2016) are well suited to leverage the geometric prop-
erties of the EFMDP. Through experiments, we demonstrate that policies and critics parameterized
by these architectures can be trained to solve complex tasks using standard RL and IL algorithms,
without assuming access to any options or action primitives.

Our Contributions. We present three main contributions in this work.

1. We develop the Entity-Factored MDP (EFMDP) framework, a formal model for decision
making in tasks comprising of multiple entities, and characterize its geometric properties.

2. We show how policies and critics parameterized by set-based invariance models (e.g. Deep
Sets) or relational models (e.g. Self-Attention and Graph Convolution) can leverage the
geometric properties of the EFMDP.

3. We empirically evaluate these structured architectures on a suite of simulated robot manip-
ulation tasks (see Figure 4), and find that they generalize more broadly while also learning
more efficiently. Compared to MLPs, the success rates of our policies are 50× on extrapo-
lation tests which vary the numbers of entities in the environment, and 10× on stitching
tests that require recombining learned skills in novel ways to solve new unseen tasks.

2 Problem Formulation and Architectures

We first formalize our problem setup by introducing the entity-factored MDP (EFMDP). This setting
is capable of modeling many applications including table-top manipulation, scene reconfiguration,
and muti-agent learning. Subsequently, we also introduce policy architectures that can enable effi-
cient learning and generalization by utilizing the EFMDP’s unique structural properties.

2.1 Problem Setup

We study a learning paradigm where the agent can interact with many entities in an environment.
The task for the agent is specified in the form of goals for some subset of entities (including the agent).
We formalize this learning setup with the Entity-Factored Markov Decision Process (EFMDP).
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Definition 1 (Entity-Factored MDP) An EFMDP with N entities is described through the tu-
ple: ME := ⟨U , E , g,A,P,R, γ⟩. Here U and E are the agent and entity state spaces, g is the
subgoal space and A is the agent’s action space. The overall state space S := U × EN has elements
s = (u, e1, · · · , eN ) and the overall goal space G := gN has elements g = (g1, . . . , gN ). The reward
and dynamics are described by:

R (s, g) := R
(
{r̃(ei, gi, u)}N

i=1
)

(1)
P(s′|s, a) := P

((
u′, {e′

i}N
i=1
)
|
(
u, {ei}N

i=1
)

, a
)

(2)

for s, s′ ∈ S, a ∈ A, and g ∈ G.

Subgoals

Agent

Entities

Figure 2. In an EFMDP, an
agent interacts with entities that
have corresponding subgoals. This
framework can model rearrange-
ment, strategic game playing, and
multi-agent systems. In this “push
and stack” example, the agent
must move the green cube to its
subgoal, indicated by the green
sphere, and then stack the yellow
cube on top of the green cube.

The EFMDP is a goal-conditioned MDP (Kaelbling, 1993;
Schaul et al., 2015) with additional structure. Each entity is
associated with a specific reward r̃i = r̃(ei, gi, u), which are
aggregated together to reward the agent. The aggregation can
follow various rules like requiring “all” entity subgoals to be
satisfied or “any” entity subgoal be satisfied. We also note
that the EFMDP does not force the entities to be exchange-
able or indistinguishable, since the entity state space may con-
tain identifying properties distinguishing each entity. The ul-
timate objective for the learning agent in is to learn a policy
π⋆ : S × G → A that maximizes the long term rewards, given
by:

π⋆ := arg max
π

{
J(π) := Eπ

[ ∞∑

t=0
γtR(st, g)

]}
. (3)

The EFMDP can model several applications including table-
top manipulation, scene reconfiguration, multi-agent learning,
and strategic game playing. At the same time, the EFMDP
contains more structure and symmetry compared to the stan-
dard MDP model, which can enable more efficient learning and
better generalization. The crucial symmetry exists in the re-
ward and dynamics, which treat entity-subgoal pairs as un-
ordered sets and are therefore invariant under permutations.

Property 1 (EFMDP Permutation Symmetry) For any
permutation σ ∈ SN (the group of all permutations of N
items), the reward satisfies R(σs, σg) = R(s, g) and the transition dynamics satisfy P(σs′|σs, a) =
P(s′|s, a) for any s, s′ ∈ S and a ∈ A, where:

σs := (u, eσ(1), · · · , eσ(N)) and σg := (gσ(1), · · · , gσ(N)) (4)

This property captures the general intuition that the ordering of entity-subgoal pairs is arbitrary
and not relevant to the actual environment. We also prove that any optimal policy and the optimal
value function are permutation invariant.

Proposition 1 (Policy and Value Invariance) In any EFMDP with N entities, any optimal
policy π⋆ : S × G → A and optimal action-value function Q⋆ : S ×A× G → R are both invariant to
permutations of the entity-subgoal pairs. That is, for any σ ∈ SN :

π⋆(σs, σg) = π⋆(s, g) and Q⋆(σs, a, σg) = Q⋆(s, a, g)

This is a direct consequence of the permutation symmetry in reward and dynamics; we provide a
proof in Appendix A. Note that Proposition 1 only talks about the optimal policy and value function,
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the permutation symmetry does not hold for every policy. In fact, the permutation symmetry
does not hold for most commonly used architectures like MLPs. In the next subsections, we use
Proposition 1 to guide architecture design in reinforcement and imitation learning on EFMDPs. We
show that certain “entity-centric” model classes achieve invariance for every policy and value in the
class, readily utilizing the structure and symettries afforded by the EFMDP.

2.2 Multilayer Perceptrons (MLPs)

Standard RL and IL approaches assume they are solving a generic MDP, and do not use any
additional structure. The generic approach is thus to parameterize the learned policy by an MLP,
which takes a fixed size input vector and applies alternating layers of affine transforms and point-
wise nonlinearities to produce a fixed size output vector. To implement π(s, g) with an MLP we
arrange the contents of (s, g) into a single long vector using concatenation:

vec(s, g) := Concatenate(u, e1, · · · , eN︸ ︷︷ ︸
=s

, g1, · · · , gN︸ ︷︷ ︸
=g

) (5)

Denoting the action of the MLP as a vector-to-vector function MLP(·), our policy is defined π(s, g) :=
MLP(vec(s, g)). Since MLPs expect input vectors of a fixed dimension, testing on tasks with more
entities requires zero padding the inputs during training to ensure consistent input dimensionality
across all tasks.

2.3 Deep Sets

The MLP policy represents a “black-box” approach to generic MDPs that fails to guarantee permu-
tation invariance (Prop. 1). As a result, MLPs might require significant amount of data to learn the
necessary permutation invariance. In contrast, the Deep Sets (Zaheer et al., 2017) (DS) architecture
can guarantee permutation invariance of subgoal-entity pairs by construction. Given a set of vectors
x = {x1, · · · , xN}, it constructs a model of the form:

DS(x) := ρ

(∑

i

ϕ(xi)
)

, (6)

where ρ and ϕ are themselves typically MLPs. DS(·) is invariant to ordering of {xi}, since
∑

i(·) is
agnostic to the ordering of elements. More surprisingly, Zaheer et al. (2017) showed that deep sets
can represent any permutation invariant function of x, given that ρ, ϕ are sufficiently expressive.
Karch et al. (2020) introduced Deep Sets for instruction following policies in a 2D environment,
though to our knowledge, Deep Sets remain underexplored in more complex environments.

We now present a simple but general approach for implementing invariant policies using Deep Sets
for any EFMDP. For this, we arrange the entity-subgoal pairs as a set {(e1, g1), · · · , (e, gN )}. We
also include the “global” or “shared” agent state u to every entity-subgoal pair. The Deep Set then
produces produces an action from this set:

π(s, g) := DS
(
{yi}N

i=1
)

, (7)
yi := Concatenate(u, ei︸︷︷︸

∈s

, gi︸︷︷︸
∈g

). (8)

Figure 3 (left) visualizes how the input is arranged and processed by by the Deep Sets policy.

2.4 Relational mechanisms: Graphs and Self Attention

Although Deep Sets can represent any invariant policy in theory, its design aggregates representations
for all the entities through a single summation and then requires the MLP ρ to handle any interactions
between them. For tasks involving complex entity-entity interactions, we might desire a stronger
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Figure 3. Visualizations of implementing an entity-based goal conditioned policy using either Deep Sets (left) or
Self Attention (right). The policy π : (s, g) 7→ a receives state s = (u, e1, · · · , eN ) containing agent state u and entity
states ei. The goal (g1, · · · , gN ) contains subgoals for each entity. Both policies arrange the input into N vectors
yi = (u, ei, gi), one per entity. The Deep Set policy processes each yi independently with MLP ϕ(·), aggregates
the outputs, and maps the result to an action using MLP ρ(·). The self attention encoder SA(·) produces output
z1, · · · , zN and uses self-attention to model interactions between the entities/subgoals. The zi are mapped to an
action by summation and an MLP ρ(·).

relational inductive bias. Recent relational RL (Džeroski et al., 2001) approaches often model
the state as a graph and use graph neural networks (GNNs) (Gori et al., 2005; Scarselli et al.,
2008) to implement policies or dynamics models. As GNNs are invariant to permutations of their
nodes (Bronstein et al., 2021), they can also satisfy our EFMDP invariance condition Prop. 1 if we
construct the policy input as a graph of entity-subgoal pairs.

We implement and evaluate two simple relational policy architectures based on (1) graph convolu-
tional networks (GCN) (Kipf & Welling, 2016) and (2) self attention (SA) (Vaswani et al., 2017).
Although originally developed for sequence processing applications, previous relational RL architec-
tures have already used self attention as a graph message-passing mechanism (Zambaldi et al., 2018;
Li et al., 2020). To use either GNN-style architecture as a policy in a general EFMDP, we consider
the input s as a complete graph where each node corresponds to an entity and the corresponding
node features are {y1, · · · , yN}, where vector yi is defined in Eq. 8. The GNN component consists
of either multiple GCN layers or multiple self attention layers and transforms the input graph into
an output graph with node features {z1, · · · , zN} that now capture relationships between the nodes.

Finally, the policy pools the zi’s together by summation and project the result to an action a ∈ A
using a small MLP ρ(·). Figure 3 (right) illustrates the self attention policy design. In addition
to satisfying permutation invariance, the relational policies use either graph convolution (GCN) or
self attention (SA) to produce intermediate representations zi that include interactions between the
inputs, which can be a stronger inductive bias on complex tasks.

3 Experiments and Evaluation

In this section, we aim to study the following questions through our experimental evaluation.

1. How efficiently do structured policies learn a given entity-centric task?
2. Can the structured policies extrapolate to more or fewer entities?

PushSwitch StackSwitch+Push
Figure 4. Illustrations of the robot manipulation environments we study. They consist of subtasks
such as pushing a cube to its (spherical) target, flipping a switch to a specified position, and stacking
one cube on top of another. The overall task can involve multiple entities and subtasks as well as
their combinations (pushing cubes and flipping switches).
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3. Can the structured policies solve tasks containing novel combinations of subtasks, by stitch-
ing together (i.e. composing) learned skills?

Extrapolation and stitching are particularly interesting as they require generalization to novel tasks
with no additional training. This is particularly useful when deploying agents in real world settings
with enormous task diversity. Press et al. (2021) showed that self attention can achieve interesting
sequence-length extrapolation behaviors in natural language processing tasks, which suggests that
these architecture classes may also display interesting generalization capabilities in control tasks.

Environment Description. We seek to answer our experimental questions in a suite of simulated
robotic manipulation environments, where the policy provides low level continuous actions to control
a Fetch robot and interact with any number of cubes and switches. There are three subtasks: to
push a cube to a desired location on the table, to flip a switch to a specified setting, or to stack one
cube on top of another. The higher level tasks can involve multiple cubes or switches and compose
many subtasks together, as shown in Figure 4. These environments fit naturally into the EFMDP
framework: the robot is the agent, the cubes and switches are entities, and the goal specifies desired
cube locations or switch settings.

We organize the environments into families to test learning and generalization. Environments in the
N-Push family require re-arranging N cubes by pushing each one to its corresponding subgoal. The
N-Switch family requires flipping each of N switches to its specified setting, and the N-Switch + N-
Push family involves re-arranging N cubes and flipping N switches. We test extrapolation by varying
N within a family at test time, which changes the number of entities: for example we train a policy
in 3-Switch and evaluate it in 6-Switch. As another example, we test stitching by training a single
policy on 2-Switch and 2-Push, then evaluate it on 2-Switch + 2-Push which requires combining the
switch and pushing skills together in a single trajectory. Note that entity-entity collisions are disabled
in non-stacking tasks for the main results, but Appendix D.2 repeats the N-Push experiments with
collisions enabled. Appendix B gives a full description of our environments.

Baselines and Comparisons. Our main comparisons are with: (a) a baseline MLP that models
the task as a regular MDP (Sec. 2.2), and (b) an “oracle” that manually coordinates solving one
subtask at a time. We construct subpolicies for the oracle by training one policy on each distinct
subtask (pushing, flipping switches, and stacking). The oracle chooses an initial entity and subgoal
arbitrarily, and uses the corresponding subpolicy until that subtask is solved. The oracle then
selects the appropriate subpolicy for the next entity-subgoal pair and continues until the entire
task is complete. The oracle is not guaranteed to achieve a 100% success rate since it does not
consider entity-entity interactions. An example failure mode is pushing one cube into position but
knocking another one off the table while doing so. Still, as the oracle represents a hand-crafted
hierarchical approach using an entity-based task decomposition, we will compare the RL and IL
agents’ performance against the oracle in the following experiments.

3.1 Efficiency of Learning

To evaluate the learning efficiency of different architectures, we consider the N-Switch, N-Push,
and N-Switch + N-Push environment families. We try N = 1, 2, 3 for the first two families and
N = 1, 2 for the latter, with larger N corresponding to more entities and more complex tasks within
a family. Evaluation criteria: An episode in the environment is considered successful only if all
the sub-goals in the environment are achieved.

We separately train policies on each environment in each family, using either RL or IL approaches.
For RL training we use DDPG (Lillicrap et al., 2015) with Hindsight Experience Replay (HER)
(Andrychowicz et al., 2017), where we use the same architecture (either MLP, Deep Set, or Self
Attention) to implement both the policy and critic. For IL we use behavior cloning to train policies
to fit a dataset of expert trajectories using mean-squared error loss. For each environment, we use a
trained RL agent to generate the corresponding expert trajectory datasets. See Appendix C for full
RL and IL training details. Additionally, Appendix D.3 contains further experimental comparisons
of RL learning efficiency when training with Proximal Policy Optimization (Schulman et al., 2017)
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Reinforcement learning Imitation learning

Figure 5. Training on environments of varying complexity using either reinforcement or imitation learning.
Each row corresponds to a single environment family (N-Push, N-Switch, and N-Switch + N-Push), where
environments with larger N contain more entities and are more complex. For RL (left), each plot is a training
curve of success rate vs the number of steps taken in the environment. RL with standard MLPs can solve
the simpler tasks such as 1-Push, but structured policies (Self Attention, Deep Set, and Graph Convolution)
are superior on the more complex environments. For IL (right), we show success rates of behavior cloning
against number of expert demonstrations in the dataset. The structured policies far outperform the MLP
even when given less data. Shaded regions indicate 95% CIs over 5 seeds.

instead of DDPG, which show that the following RL results are not broadly sensitive to the particular
choice of algorithm.

RL results. Figure 5 (left) shows RL training curves as a function of environment samples. In
the simpler 1-Switch and 1-Push environments, all methods learn to solve the task fairly quickly.
Once there is more than one entity, however, the structured policies learn faster than the MLP.
In harder environments like 3-Push or N-Switch + N-Push, the MLP fails to achieve a non-trivial
success rate. Both Deep Set and Self Attention match Oracle performance in all environments
except 2-Switch + 2-Push. Graph Convolution additionally struggles in 1-Switch + 1-Push, but
still outperforms MLP. Although they achieve similar asymptotic performance on most tasks, the
Deep Set policy tends to learns faster than the others, possibly because it is simpler and has fewer
parameters.

IL Results. The imitation learning results appear in Figure 5 (right), where the x-axis now indicates
the size of the training dataset used for behavior cloning. Similar to the RL setting, we see that
the structured policies learn far more efficiently than the MLP in all environments. For example, in
3-Push with 5000 demonstrations, the MLP’s success rate is still nearly zero while the Self Attention
policy has a nearly 100% success rate.

Conclusions. MLP policies struggle to learn complex tasks with many entities with both RL
and IL, likely due to the lack of entity-centric processing that the structured policies employ. The
Deep Set policy typically learns faster than the others in RL, and matches or outperforms Self
Attention in IL with 1000 trajectories. Although the asymptotic performance of the entity-centric
methods is typically similar, the relational methods are superior to Deep Set on 3-Push for both RL
and IL. 3-Push is one of the more difficult tasks, and relational policies may benefit from greater
relational expressivity through its self attention mechanisms. Overall, this experiment suggests that
architectures that utilize the structure and invariances in EFMDPs learn substantially faster than
black box architectures.
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Train Test

Figure 6. Extrapolation capabilities of RL-trained policies with different architectures. Each row depicts
an environment family with a varying number of entities. Policies are trained on a single environment from
each family before being tested on all the others, with no additional training. Bar charts show success rates
in each environment, with the hatched bars corresponding to training environments. The structured policies
(Self Attention, Deep Set, and Graph Convolution) extrapolate beyond the training environment to solve
tasks with more or fewer entities than seen in training, while MLP policies struggle on more complex testing
environments. Error bars are 95% CIs on 5 seeds.

3.2 Zero-Shot Extrapolation Capabilities

To test whether trained policies can extrapolate and solve test tasks containing more or fewer entities
than seen in training, we use the N-Switch, N-Push, and N-Switch + N-Push environment families.
For N-Push and N-Switch we train a policy with RL on N = 3 and test with N ∈ {1, . . . , 6}. For
N-Switch + N-Push we train a policy with RL on N = 2 and test on N ∈ {1, . . . , 3}. For testing,
we use the RL agent checkpoint with the highest success rate in its training environment.

Results and Observations Figure 6 shows the test performance of these policies on each envi-
ronment family as the number of entities N varies. The MLP only successfully learns the training
task in the N-Switch environments, and it generalizes decently to fewer than 3 switches, but fails
completely in environments with more than 3 switches.

In contrast, the structured policies generalize well and achieve zero-shot success rates comparable to
or exceeding the Oracle in most test environments. Notably, these policies well exceed oracle perfor-
mance on 6-Switch despite training in 3-Switch. Interestingly, Self Attention policies fare poorly on
single-entity test environments, perhaps because the self attention mechanism relies critically on in-
teractions between more than one entity during training. Despite its relative simplicity, the Deep Set
architecture extrapolates as well as or better than the relational architectures in most environments.
A crucial exception is in 3-Push with cube-cube collisions enabled (Appendix D.2). There, modeling
entity-entity interactions is especially crucial and a relational method like Self Attention is largely
superior. Overall, we find that geometric architectures can perform very effective extrapolation.

3.3 Zero-Shot Stitching to solve novel tasks

When evaluating policies for stitching behavior, we use test tasks that combine subtasks from training
in novel ways. In our first setting, we train a policy on 2-Push and 2-Switch, and then test this
policy on 2-Switch + 2-Push, which requires both pushing cubes and flipping switches. In our second
setting, we train a single policy on 2-Push and Stack, which requires stacking one cube on top of
another. The test environment is Push + Stack, which requires pushing one cube into position and
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Train Test

2–Push

2–Push Stack Push + Stack

2–Switch 2–Push + 2–Switch

Figure 7. Left: train/test setups that require solving test tasks by stitching together training skills, with no
additional data. Top: train on 2-Switch and 2-Push, test on 2-Switch+2-Push. Bottom: trained on 2-Push
and Stack, test on Push + Stack. Right: average success rates by architecture. Deep Set and Self Attention
policies are moderately successful at solving the test tasks, and are comparable to the Oracle in Push +
Stack. The MLP fails to achieve nontrivial success rates on both test environments. Error bars indicate 95%
CIs over 5 seeds.

then stacking the other block on top. This setting is especially difficult because it requires zero-shot
stitching of skills in a particular order (push, then stack). Figure 7 (left) shows the train-test task
relationships we use to test stitching.

Results and Observations Since this experiment requires training a single policy on multiple
training tasks, during each episode we choose one of the training tasks uniformly at random. Figure 7
(right) shows that the MLP policy fails to jointly learn the training tasks in the first setting, leading
to poor performance in 2-Switch + 2-Push. However, the MLP averages above a 35% success rate
on both training tasks in the second setting, but still only manages a 5% success rate on Push +
Stack. This suggests that even when MLP policies are capable of learning the training tasks, they
are unable to combine them to solve new ones.

The geometric architectures show substantially better (but not oracle-level) stitching capabilities
compared to the MLP. Graph Convolution struggles with the switch component of 2-Switch + 2-
Push, but still outperforms the MLP. It is particularly surprising that the two relational architectures
(Self Attention and Graph Convolution) achieve > 60% zero-shot success rate on Push + Stack, which
requires understanding that the push and stack subtasks must be executed in a specific order. Poor
performance in 2-Switch + 2-Push is again due to difficulties in training one policy on two different
tasks, suggesting that better joint training could further improve stitching performance.

4 Related Work

Compositionality and Hierarchy. Hierarchical approaches to solving long-horizon tasks explic-
itly maintain or learn subpolicies corresponding to useful skills, which can then be coordinated by a
high-level policy (Dayan & Hinton, 1993; Parr & Russell, 1998; Dietterich, 2000). Variations of this
approach include learning termination policies for each sub-policy or “option” (Bacon et al., 2017),
training the high level policy to propose subgoals for goal-conditioned low level skills (Nachum et al.,
2018), or even using natural language as the interface between high and low level policies (Jiang
et al., 2019). Our approach also enables learning of long-horizon and compositional tasks, but sim-
ply through architectural modifications to the policy in end-to-end learning, as opposed to explicitly
learning action representations or modifying the training process.

Entity-centric modeling. Recent works in relational RL (Džeroski et al., 2001) have investigated
graph neural networks (GNNs) (Gori et al., 2005; Scarselli et al., 2008) for handling complex multi-
entity tasks, where the relational or message passing mechanism may be implemented using self
attention (Zambaldi et al., 2018; Li et al., 2020) or a variety of other means (Bapst et al., 2019; Lin
et al., 2022). Though we directly focus on policy (and critic) architecture for model free learning,
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related approaches have studied entity structured networks for dynamics models (Carvalho et al.,
2021; Veerapaneni et al., 2020; Sanchez-Gonzalez et al., 2018). Further work has explored rela-
tional architectures for extracting entity-centric representations from high dimensional observations
before doing control (Wilson & Hermans, 2020; Driess et al., 2022). In particular, Zadaianchuk
et al. (2020) combine entity-centric representation learning with a goal conditioned RL approach
that also demonstrated extrapolation, though not stitching. In settings that can be modeled as
EFMDPs, our framework formally motivates using GNNs through the perspective of permutation
invariance (Bronstein et al., 2021). Tang & Ha (2021) study the permutation invariance of self
attention policies in particular, mainly in the context of robustness to input corruptions. But the
invariance properties of our EFMDP framework also suggest considering invariant architectures with-
out self attention or other relational mechanisms, in which case GNNs reduce to simpler architectures
like Deep Sets (Zaheer et al., 2017). These architectures remain relatively underexplored outside of
basic 2D environments (Karch et al., 2020). Our experiments evaluate both relational and Deep Set
approaches on a suite of complex entity-centric robot tasks.

Policy Architectures in RL. MLPs, LSTMs, and small CNNs remain the dominant architectures
in continuous control (Lillicrap et al., 2015; Schulman et al., 2017; Haarnoja et al., 2018). Sinha
et al. (2020) study deeper networks for continuous control with DenseNet-style (Huang et al., 2017)
connections. Recent work has also explored the use of self attention over the trajectory history
rather than between entities (Chen et al., 2021; Janner et al., 2021). Other approaches leverage
inductive biases about the real world, e.g. by embedding learnable dynamical systems into the
policy architecture (Bahl et al., 2020).

5 Conclusion

This work introduces the EFMDP framework for the learning paradigm where an agent can interact
with many entities in an environment. We explore how structural properties of EFMDPs induce a
permutation symmetry in the optimal policy and value functions, motivating policy architectures
that leverage symmetry: set-based invariant models (Deep Sets) and relational models (Self Atten-
tion and Graph Convolution). These policy architectures decompose goal-conditioned tasks into
their constituent entities and subgoals. These architectures are flexible, do not require any man-
ual task annotations or action primitives, and can be trained end-to-end with standard RL or IL
algorithms.

We compare these architecture types with each other and standard MLPs in a suite of complex
entity-centric tasks. We find that geometric architectures can: (a) learn substantially faster
than black-box architectures like the MLP; (b) perform zero-shot extrapolation to new environ-
ments with more of fewer entities than observed in training; and (c) perform zero-shot stitching
of learned behaviors to solve novel task combinations never seen in training. We find that the geo-
metric architectures perform relatively similarly across most tasks, which can be surprising given the
Deep Set’s relative simplicity. Since many existing entity-centric approaches focus on graph neural
networks or transformers, our results invite further investigation into simple invariant architectures
like Deep Sets.

Limitations and Future Work: EFMDPs require entity-specific subgoals, but some tasks may
instead be specified in terms of entity relations (“place this block on top of that block”). In such cases,
the relational subgoals must be first converted into an equivalent entity specific form. Additionally,
EFMDP’s invariance properties explain why structured policies perform well, but do not distinguish
between them (e.g., DS vs SA). We make this comparison empirically here, but future work could
provide a more principled framework for choosing the right architecture for a given entity-centric
task. We also hope to analyze the how the geometric properties of EFMDPs interact with object-
centric representation learning, a vibrant area of research (Burgess et al., 2019; Kipf et al., 2019;
Locatello et al., 2020; Nanbo et al., 2020) which is important to enabling compositional generalization
for policies that operate on high dimensional observations like images.
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A Permutation invariance

We recall Proposition 1:

Proposition 1 (Policy and Value Invariance) In any EFMDP with N entities, any optimal
policy π⋆ : S × G → A and optimal action-value function Q⋆ : S ×A× G → R are both invariant to
permutations of the entity-subgoal pairs. That is, for any σ ∈ SN :

π⋆(σs, σg) = π⋆(s, g) and Q⋆(σs, a, σg) = Q⋆(s, a, g)

We want to show that any optimal policy π⋆ : S × G → A and the optimal action-value function
Q⋆ : S ×A× G → R are both permutation invariant, that is for any σ ∈ SN :

π⋆(σs, σg) = π⋆(s, g) (9)
Q⋆(σs, a, σg) = Q⋆(s, a, g) (10)

Recall that in an EFMDP the reward and dynamics have permutation symmetry (Property 1):

R(s, a, g) = R(σs, a, σg)
P(s′|s, a) = P(σs′|σs, a)

where σs and σg are defined in Eq. 4. We assume for simplicity that the agent space U and entity
space E are discrete, so that the state space S = U × EN is also discrete.

We begin with Q⋆, which can be obtained by value iteration, where Q⋆
k denotes the k’th iterate.

We initialize Q⋆
0 ≡ 0, which is (trivially) permutation invariant. Permutation invariance is then

preserved during each step of value iteration Q⋆
k 7→ Q⋆

k+1:

Q⋆
k+1(σs, a, σg) = R(σs, a, σg) + γ max

a′

∑

s′∈S
P(s′|σs, a)Q⋆

k(s′, a′) (11)

= R(s, a, g) + γ max
a′

∑

s′∈S
P(σ−1s′|s, a)Q⋆

k(σ−1s′, a′) (12)

= R(s, a, g) + γ max
a′

∑

s′∈S
P(s′|s, a)Q⋆

k(s′, a′) (13)

= Q⋆
k+1(s, a, g) (14)

Hence Q⋆
k is permutation invariant for all k = 0, 1, · · · , with Q⋆

k −−−−→
k→∞

Q⋆. Line 12 follows from the
permutation invariance of the reward, transition probability, and the previous iterate Q⋆

k. Line 13
uses the fact that summing over σ−1s′ for all s′ ∈ S is the same as simply summing over all states
s′ ∈ S. This can be seen more explicitly by expanding a sum over arbitrary function f(·):

∑

s∈S
f(σ−1s) =

∑

u∈U

∑

e1∈E
· · ·

∑

eN ∈E
f(u, eσ−1(1), · · · , eσ−1(N)) =

∑

s∈S
f(s)

The permutation invariance of Q⋆ leads to the permutation invariance of π⋆:

π⋆(σs, σg) = arg max
a

Q⋆(σs, a, σg) = arg max
a

Q⋆(s, a, g) = π⋆(s, g)
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B Environments

Our environments are modified from OpenAI Gym’s Fetch environments (Brockman et al., 2016)
(MIT license), with our stacking environment in particular being modified from the Fetch stacking
environments of Lanier (2019). They have a 4D continuous action space with 3 values for end effector
displacement and 1 value for controlling the distance between the gripper fingers. The final action is
disabled when the neither the training or test tasks involve stacking, since gripping is not required
for block pushing or switch flipping. Input actions are scaled and bounded to be between [−1, 1].
We set the environment episode length based on the number of entities and subtasks involved. Each
switch added 20 timesteps, and each cube pushing or stacking task added 50 timesteps. For example,
2-Switch + 2-Push had a max episode length of 2× 50 + 2× 20 = 140 timesteps.

For non-stacking settings such as N-Push and N-Switch + N-Push, we disable cube-cube collision
physics to make training easier for all methods. Note that subgoals may still interfere with each
other since the gripper can interact with all cubes, so the agent may accidentally knock one cube
away when manipulating another one. We repeat the extrapolation experiments for N-Push with
collisions in Appendix D.2.

State and goals. The agent state describe the robot’s end effector position and velocity the gripper
finger’s positions and velocities. The entity state for cubes include the cube’s pose and velocity, and
for switches include the switch setting θ ∈ [−0.7, 0.7] and the position of the switch base on the
table. The switch entity state is padded with zeros to match the shape of the cube entity state, and
all entity states include an extra bit to distinguish cubes from switches. Subgoals specify a target
position for cubes and a target setting θ⋆ ∈ {−0.7, 0.7} for switches.

Reward. The dense reward is defined as the average distance between each entity and its desired
state as specified by the subgoal. For cubes, this is the L2 distance between current and desired
position. For switches, this is |θ−θ⋆|, where θ is the current angle of the switch and θ⋆ is the desired
setting. The sparse reward is 0 if all entities are within a threshold distance of their subgoals, and
−1 otherwise.

2278



RLJ | RLC 2024

C Training details

C.1 Reinforcement learning

We train RL agents using a publicly available (MIT license) implementation1 of DDPG (Lillicrap
et al., 2015) and Hindsight Experience Replay (HER) (Andrychowicz et al., 2017). Table 1 contains
the default hyperparameters shared across all experiments. Our modified implementation collects
experience from 16 environments in parallel into a single replay buffer, and trains the policy and
critic networks on a single GPU. We used an internal cluster to parallelize experimentation across
multiple random seeds and algorithms/hyperparameters. We collect 2 episodes for every 5 gradient
updates, and for HER we relabel the goals in 80% of sampled minibatches (the “relabel prob”).
The reward scale is simply a multipler of the collected reward used during DDPG training. For
exploration we use action noise η and random action probability ϵ; the output action is:

ã ∼
{

a +N (0, η), with prob 1− ϵ

Uniform(−1, 1), with prob ϵ

Table 2 shows environment specific RL hyperparameters. “Epochs” describes the total amount of
RL training done, with 1 epoch corresponding to 50 × parallel envs episodes. Sparse reward is
used for the simpler environments, and dense reward for the harder ones. For some environments
we decay the exploration parameters η, ϵ by a ratio computed per-epoch. Lin(.01, 100, 150) means
that η, ϵ are both decayed linearly from η0 and ϵ0 to .01× η0 and .01× ϵ0 between epochs 100 and
150. The constant exploration decay schedule maintains the initial η0, ϵ0 values throughout training.
The target network parameters are updated as θtarget ← (1 − τ)θ + τθtarget, where τ is the target
update speed.

We use the same RL hyperparameters regardless of architecture type except that the learning rate
is lower for Self Attention and the exploration decay schedule may vary. Where Table 1 lists “Fast”
and “Slow” decay schedules, we sweep over both options for each architecture and use the schedule
that works best. In each case, the Self Attention policy prefers the slower exploration schedule
and Deep Sets prefers the faster one, while the MLP typically fails to learn with either exploration
schedule on the more complex environments.

Architectures. The exact actor and critic architectures uses for each architecture family is shown in
Table 3. Linear(256) represents an affine layer with 256 output units. ReLU activations follow every
layer except the last. The final actor layer is followed by a Tanh nonlinearity, and the critic has no
activation function after the final layer. A represents the action space dimension, and Block(N, M, H)
represents a Transformer encoder block (Vaswani et al., 2017) with embedding size N , feedforward
dimension M , and H heads. We disable dropout within the Transformer blocks for RL training.

C.2 Imitation Learning

The IL dataset is generated using the best performing RL agent in that environment–we record
M ∈ {1000, 2000, 3000, 4000, 5000} demonstration trajectories. This creates a dataset of M × T
transitions D = {(si, ai)}M×T

i=1 for behavior cloning. However, in practice we filter the dataset
slightly by discarding the transitions corresponding to trajectories that are not successful.

We use the same policy architectures shown in Table 3 and optimize mean squared error loss over
the dataset:

arg min
π

J(π) := 1
|D|

∑

(s,a)∼D
||π(s)− a||2

We use the Adam (Kingma & Ba, 2014) optimizer with learning rate 0.001 (MLP, Deep Sets) or
0.0001 (Self Attention). Each policy is trained for 60, 000 gradient steps with a batch size of 128.

1https://github.com/TianhongDai/hindsight-experience-replay
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Table 1. General shared RL hyperparameters

Hyperparameter Value
Discount γ 0.98

Parallel envs 16
Replay buffer size 106

Relabel prob 0.8
Ratio of episodes : updates 2 : 5

Optimizer Adam
Learning rate MLP, Deep Set: 0.001

Self Attention: 0.0001
Reward Scale Sparse: 1; Dense: 5

Action noise η0 (initial) 0.2
Random action prob ϵ0 (initial) 0.3

Table 2. Environment specific RL hyperparameters

Environment Reward Epochs Exploration decay Target update speed τ

1-Push Sparse 50 Constant(1) 0.95
2-Push Dense 150 Lin(.01, 75, 125) 0.99
3-Push Dense 250 Fast: Lin(.01, 30, 80) 0.99

Slow: Lin(.01, 100, 175)
{1,2,3}-Switch Sparse {10, 50, 100} Constant(1) 0.95

1-Switch + 1-Push Dense 150 Lin(.01, 60, 100) 0.99
2-Switch + 2-Push Dense 250 Fast: Lin(.01, 75, 150) 0.99

Slow: Lin(.01, 100, 150)

Table 3. RL architectures

Family Actor Critic
MLP Linear(256)×3, Linear(A) Linear(256) ×3, Linear(1)

Deep Set ϕ: Linear(256) ×3 ϕ: Linear(256) ×2
ρ: Linear(A) ρ: Linear(256), Linear(1)

Self Attention SA: Linear(256), Block(256, 256, 4)×2 SA: Linear(256), Block(256, 256, 4)×2
ρ: Linear(A) ρ: Linear(1)

Graph Convolution Linear(256) ×3, GraphConv(256) ×2 Linear(256) ×3, GraphConv(256) ×2
ρ: Linear(A) ρ: Linear(1)

Table 4. Parameter count (3-Push)

# parameters Actor Critic
MLP 150,020 150,273

Deep Set 140,292 140,545
Self Attention 800,260 800,513

Graph Convolution 271,876 272,129
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C.3 Training and inference speed

Here we consider the computational complexity of using different architecture classes (MLPs, Deep
Sets, and Self Attention), as we scale the number of entities N . We consider the number of param-
eters, activation memory, and computation time (for a forward pass). For MLPs with fixed hidden
layer sizes, the number of parameters and computation time increase linearly with N while the
memory required for activations stays fixed (due to fixed hidden layer sizes). In Deep Sets and Self
Attention, the number of parameters does not depend on the number of entities N . The activation
memory and computation time grow linearly in Deep Sets, and quadratically for the pairwise inter-
actions of Self Attention. In practice, the number of entities N is modest in all our environments
(e.g., fewer than 10), but computational complexity may be relevant in more complex scenes with
lots of entities.

For a more holistic real-world comparison of execution and training speed, Figure 8 shows both
inference time and training time in the N-Push environments for N ∈ {1, 2, 3}. The inference
time is the number of milliseconds it takes an actor do a single forward pass (using a GPU) on
a single input observation. The Self Attention policy involves more complex computations and is
significantly slower than Deep Set and MLP policies. The RL training time is the actual number of
hours required to run the reinforcement learning algorithms of Figure 5, for each architecture. Not
surprisingly, we see that 3-Push takes significantly longer to train than 1-Push, since it is a harder
environment. For a fixed environment, however, all three architecture types are comparable in speed,
with the Self Attention version being slightly slower than the others. The surprising similarity in RL
training time (despite much slower inference time for the Self Attention policy) suggests that most
of the RL time is spent on environment simulation rather than policy or critic execution. Hence,
the difference between architectures presented in this paper has only a minor effect on reinforcement
learning speeds in practice.

Inference and training speed on N-Push

Figure 8. Left: the time (in milliseconds) it takes for each policy architecture to execute a single
forward pass on a single input observation from the N-Push environments, where N ∈ {1, 2, 3}. The
self attention policy is significantly slower, while the Deep Set and MLP policies are comparable.
Right: Real world reinforcement learning times (in hours) training each policy/critic architecture on
the N-Push environments. Although the Self Attention policy is slightly slower, all policies train at
comparable speeds in the same environment. This suggests that environment simulation, not policy
execution, is the dominant time consuming element.
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D Further comparisons

D.1 Deep set architecture size

Effect of Deep Set size on Extrapolation and Stitching

Figure 9. Comparison of N-Push extrapolation and Push + Stack stitching performance when using
small and large variants of the Deep Set policy architecture. The small version implements ρ with
a 1-layer linear map, while the large version implements ρ with a 2-layer MLP. For N-Push, the
larger network achieves greater success rates in the training environment (3 cubes) but is actually
worse when extrapolating to 5 or 6 cubes. On the other hand, the larger Deep Set displays superior
stitching capability and achieves a higher average success rate when generalizing to Push + Stack
from 2-Push and Stack.

Recall that our Deep Set policy architecture involves two MLPs ϕ and ρ, where ϕ produces inter-
mediate representations for each entity, those intermediate representations are summed, and then ρ
produces the final output (Eq. 6). In full generality, both ϕ and ρ may have two or more layers with
nonlinearities in between. While our ϕ is a 3-layer MLP, we use a linear ρ throughout the main
paper because we found that it often works comparably or better than using a larger 2-layer MLP
ρ. Here we repeat the N-Push extrapolation and Push + Stack stitching experiments from the main
paper using a 2-layer ρ, which we call “Deep Set (large).” The results from the main paper uses a
1-layer ρ which we refer to here as “Deep Set (small).”

Figure 9 shows the results. In N-Push, the larger Deep Set model achieves higher training success
rates in the 3-cube environment, but has worse extrapolation success rates for large numbers of cubes.
For example, the smaller Deep Set model is significantly better at solving 6-Push. Meanwhile,
the large and small Deep Sets achieve very similar results in the pushing and stacking training
environments. However, the larger Deep Set model achieves a higher success rate in the Push +
Stack environment, indicating superior stitching capability. This suggests that simpler Deep Set
architectures may be better for extrapolating to a large number of entities, but more complex
architectures may be superior for solving complex tasks with a fixed number of entities.

D.2 N-Push with cube-cube collisions

Figure 10. N-Push extrapolation with cube-cube collisions enabled. All methods observe some drop
in performance relative to Figure 6, where N-Push has cube-cube collisions disabled. Self Attention
tends to outperform Deep Sets when collisions enabled, likely because its relational inductive biases
are better suited to handling interactions between entities that arise from collisions.

As noted in Appendix B, we disable cube-cube collisions in the N-Push and N-Switch+N-Push
experiments of the main paper (of course, the stacking settings require cube-cube collisions to be
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enabled). Here we repeat the N-Push extrapolation experiments with cube-cube collisions enabled.
Figure 10 shows the results, which are qualitatively similar to when collisions are disabled. All
methods observe a decrease in success rates of about 15%, with the Self Attention method often
outperforming the Deep Set policy. This is likely because N-Push involves more interaction between
entities once cube-cube collisions are enabled, and Self Attention’s relational inductive biases are
better suited for modeling these interactions.

D.3 N-Push with PPO instead of DDPG

0 1 2 3
Step 1e6

20

10

R
et
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n

3-Switch PPO

Deep Set MLP

Figure 11. Return throughout RL train-
ing on 3-Push using Proximal Policy
Optimization (PPO) instead of DDPG.

Our RL learning efficiency experiments all use DDPG
with Hindsight Experience Replay, which raises the ques-
tion of whether the results (in particular, the inefficiency
of the MLP) are specific to a particular training algo-
rithm. To answer this, we repeated the 3-Push RL ex-
periment for the Deep Set and MLP architectures, but
trained with Proximal Policy Optimization (PPO (Schul-
man et al., 2017)) instead of DDPG. We use the Stable
Baselines 3 (Raffin et al., 2021) (MIT License) implemen-
tation of PPO with default hyperparameters, trained for
up to 1×106 environment steps. Figure 11 shows that the
general trend we observed while using DDPG still holds:
the invariant Deep Set policy learns the task far more ef-
ficiently than the MLP. In fact, as with DDPG the MLP
policy fails to learn 3-Push at all.
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Abstract

One-shot Imitation Learning (OSIL) aims to imbue AI agents with the ability to
learn a new task from a single demonstration. To supervise the learning, OSIL
typically requires a prohibitively large number of paired expert demonstrations –
i.e. trajectories corresponding to different variations of the same semantic task. To
overcome this limitation, we introduce the semi-supervised OSIL problem setting,
where the learning agent is presented with a large dataset of trajectories with no
task labels (i.e. an unpaired dataset), along with a small dataset of multiple demon-
strations per semantic task (i.e. a paired dataset). This presents a more realistic
and practical embodiment of few-shot learning and requires the agent to effectively
leverage weak supervision from a large dataset of trajectories. Subsequently, we
develop an algorithm specifically applicable to this semi-supervised OSIL setting.
Our approach first learns an embedding space where different tasks cluster uniquely.
We utilize this embedding space and the clustering it supports to self-generate pair-
ings between trajectories in the large unpaired dataset. Through empirical results
on simulated control tasks, we demonstrate that OSIL models trained on such self-
generated pairings are competitive with OSIL models trained with ground-truth
labels, presenting a major advancement in the label-efficiency of OSIL.

1 Introduction

Humans are capable of learning new tasks and behaviors by imitating others we observe. Fur-
thermore, we are remarkably data efficient, often requiring just a single demonstration. One-shot
imitation learning (OSIL) (Duan et al., 2017) aims to imbue AI agents with similar capabilities. It
takes a meta-learning (Schmidhuber, 1987; Naik & Mammone, 1992; Thrun & Pratt, 1998) approach
and considers several paired demonstrations – i.e. expert trajectories corresponding to different vari-
ations of the semantic task. OSIL learns to reconstruct one trajectory by conditioning on its paired
trajectory, implicitly capturing the task semantics. At test time, the resulting agent can directly
complete a new task by conditioning on a demonstration of the said task. However, this method often
requires prohibitively large amounts of paired trajectories such that the agent experiences enough
task variations in diverse environment instantiations to learn a generalizable policy. Collecting such
a dataset of demonstrations can be prohibitively expensive, requiring significant engineering effort
and/or human data annotation time. In order to improve the data efficiency of OSIL, and expand
its applicability, we introduce and study a semi-supervised paradigm for OSIL.

In recent years, we have seen an increase in our ability to collect unsupervised trajectory data in sev-
eral applications including robotics. This includes access to historical offline datasets (Levine et al.,
2020; Fu et al., 2020; Gulcehre et al., 2020), teleoperation and play data in virtual reality (Rajeswaran

2284



RLJ | RLC 2024

Paired demos

Trajectory 
encoder

GC-policy

(a) Supervised OSIL setting.

KNN Unpaired 
demos

Small 
paired demos

Trajectory 
Encoder

Trajectory 
Encoder 
(frozen)

Pseudo-paired 
demos

(b) Our semi-supervised OSIL approach.

Figure 1: (Left) Depiction of the supervised (classical) OSIL setting, where the encoder and policy are
trained using several trajectories (d) sharing the same task label (t). (Right) Our semi-supervised
OSIL setting instead requires only a large unlabelled dataset of trajectories, and a small paired
dataset. For our method, a teacher trajectory encoder is first trained using the labeled dataset.
This encoder is then used to construct a pseudo-paired trajectory set by retrieving the k nearest
neighbors of each trajectory. We can then train a student on this pseudo-labeled dataset, as in
supervised OSIL. Optionally, this relabelling and training procedure can be repeated iteratively.

et al., 2018; Lynch et al., 2019; Gupta et al., 2019), and reward-free exploration (Pathak et al., 2017;
Eysenbach et al., 2018; Liu & Abbeel, 2021). Our goal is to leverage these large, abundant, but
unlabelled datasets to create a more scalable pathway for OSIL. A direct and naive application of
OSIL would require humans to manually annotate these datasets with semantic task descriptions,
or manually pair together similar trajectories, which can be expensive and time consuming. We
draw inspiration from semi-supervised learning (van Engelen & Hoos, 2019) in computer vision and
natural language processing (NLP), which has emerged as a dominant paradigm to utilize a small
labeled dataset in conjunction with large quantities of unlabeled data to train high-quality models
(Yang & Yu, 2020; Xie et al., 2020; Chen et al., 2020; Devlin et al., 2018). Analogously, we aim
to bring the power of semi-supervised learning to OSIL by learning from both task-agnostic and
unlabelled trajectories as well as a small dataset of annotated (paired) trajectories.

Our algorithmic approach to semi-supervised OSIL is based on self-training (Triguero et al., 2013;
Yarowsky, 1995; Xie et al., 2020), a prominent approach to semi-supervised learning. In self-training,
a teacher network is first trained on a small labeled dataset, and then used to provide pseudo-
labels for a larger unlabeled dataset (Hailat & Chen, 2018). This process is repeated multiple
times to progressively learn higher quality labels for the entire dataset, ultimately training models
with competitive performance despite considerably reduced data annotation effort. To adapt this
self-training approach to semi-supervised OSIL, we start with training a teacher encoder-decoder
architecture in the standard supervised OSIL fashion, as illustrated in Figure 1 (a), with the available
paired dataset. We show that even when the teacher does not reach a high task success, the
embedding space is sufficiently structured to distinctly cluster different semantic tasks, enabling
the generation of pseduo-labelled pairings between nearest neighbors in the embedding space. By
bootstrapping on the pseudo-labels obtained from the trajectory clusters in embedding space, we
can train a student architecture that outperforms the teacher.

Our Contributions in this work are summarized below.

1. We introduce and formalize the semi-supervised OSIL setting.

2. We propose a novel label-efficient student-teacher trajectory relabeling approach for semi-
supervised OSIL that extends the ideas of self-training and distillation from CV and NLP.
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3. In a semantic goal navigation task, we find that our method enables an agent trained with
only 15% of labelled data to match a fully supervised agent. In a sequential goal navigation
task our method approaches fully supervised performance with only 5% of labelled data.

4. We ablate each component of our method, demonstrating their importance to the overall
algorithmic contribution.

After the anonymous review phase, we are committed to providing open source for the environments
and experiments to facilitate reproducibility and future extensions.

2 Related work

One-Shot Imitation Learning (OSIL) The OSIL framework was originally introduced by Duan
et al. (2017) to endow AI agents with the capability to learn from a single demonstration. OSIL relies
on access to “paired” demonstrations – i.e. expert trajectories that correspond to different variations
of the same semantic task. OSIL then learns by conditioning on one trajectory to reconstruct the
paired demonstration, enabling it to implicitly learn the notion of task semantics. Through this
view, OSIL has parallels to meta-learning or learning-to-learn (Ren et al., 2018; Finn et al., 2017a;
Vinyals et al., 2016; Chebotar et al., 2021; Rajeswaran et al., 2019) as studied broadly in (supervised)
machine learning and inverse RL (Das et al., 2020; Yu et al., 2019).

Since the original work of Duan et al. (2017), OSIL has seen several extensions including extensions
to visual observation spaces (Finn et al., 2017b), improving task-level generalization (Mandi et al.,
2021), and architectural innovations like transformers (Dasari & Gupta, 2020). Nevertheless, the
need for a large number of paired demonstrations has limited the broad applicability of OSIL.
Our work aims to improve this label efficiency of OSIL by also effectively utilizing a large number of
unlabelled (i.e. unpaired) demonstrations, which are often substantially easier to obtain, for example
through play data collection (Lynch et al., 2019).

Semi-Supervised Learning The field of semi-supervised learning (Zhu, 2005) studies methods
to simultaneously learn from large unlabelled datasets and small labelled datasets. Computer vision,
NLP, and speech recognition have been exploring ways to utilize large unlabelled datasets scraped
from the internet without expensive and time-intensive human annotations. This has resulted in
a wide array of approaches to semi-supervised learning (Zhu, 2005; van Engelen & Hoos, 2019).
One dominant paradigm involves pre-training visual representations using unlabelled datasets fol-
lowed by downstream supervised learning. The representations can be pre-trained with contrastive
learning (Hjelm et al., 2019; Chen et al., 2020), generative modeling (Goodfellow et al., 2014),
autoencoders (Vincent et al., 2008; He et al., 2021; Wu et al., 2023) and more. However, such rep-
resentations lack knowledge of downstream task, and thus might be harder to train, require human
priors like appropriate choice of augmentations, or demand very large quantities of unlabelled data.

An alternative and popular approach to semi-supervised learning is self-training (Triguero et al.,
2013; Yarowsky, 1995; Xie et al., 2020), where a supervised “teacher” model is first trained on a
small labelled dataset and used to generate pseudo-labels for the unsupervised dataset. Subsequently,
a student model is trained on both the supervised dataset and the pseudo-labelled dataset. We
refer readers to survey works (van Engelen & Hoos, 2019) on semi-supervised learning for more
discussion. Our algorithmic approach to semi-supervised OSIL is closer to self-training, and thus
has the advantage of being more task-directed in nature. We also perform contrastive representation
learning as an auxiliary task and find that it plays an important role, but is insufficient by itself.

Semi-Supervised Learning in RL and IL Improving label efficiency for policy learning,
through approaches similar to semi-supervised learning, has been studied in other contexts like
reward and goal labels. Prior works tackle the challenge of learning from data without reward/goal
labels by either explicitly learning a reward function through inverse RL (Abbeel & Ng, 2004; Ziebart
et al., 2008; Finn et al., 2016), adversarial imitation learning (Ho & Ermon, 2016; Fu et al., 2018a;
Rafailov et al., 2021), learning a reward/goal classifier (Fu et al., 2018b; Eysenbach et al., 2021),

2286



RLJ | RLC 2024

or by simply assuming a pseudo baseline reward (Yu et al., 2022). In contrast to such prior work,
we focus on improving the label efficiency of OSIL, where the need for a large number of paired
demonstrations has limited real-world applicability. To our knowledge, our work is the first to study
semi-supervised learning approaches to improve label efficiency for OSIL.

3 Problem Formulation

Following Duan et al. (2017), in supervised OSIL we denote a set of of tasks as T, each individual
task t ∈ T, and a distribution of demonstrations of task t as D(t). The supervised OSIL objective
is to train a policy which, conditioned on a demonstration d ∼ D(t), can accomplish a task t. This
amounts to learning a goal conditioned policy πθ(at|st, d), parameterized by θ, that takes an expert
demonstration and the current state of the environment as input and emits the proper actions at each
time-step t (we differentiate time t and task t, which is in bold). During training, we have access to
a large dataset of demonstrations dtrain ∼ D(ttrain

i ), for a set of training tasks ttrain
i ∈ Ttrain ⊂ T,

where ti is the ith task. We formulate the dataset D as follows

D = {(ti, {di
1, di

2, ...}) ∀ti ∈ Ttrain}, (1)

We further assume the existence of a binary valued function Rt(d) which indicates whether a given
demonstration or policy rollout d successfully accomplishes the task t, which we use for evaluating
our method. At test time, the policy is provided with one new test demonstration dtest ∼ D(t) that
can be either be a new demonstration of a seen task (i.e. t ∈ Ttrain) or a new demonstration of an
unseen task (i.e. t ∈ T \ Ttrain).

Semi-supervised OSIL builds on the supervised OSIL setting, which we formulate as follows. We
similarly assume access to a small labeled dataset of demonstrations Dlabeled where each demonstra-
tion has its associated task label. We additionally assume access to a large dataset of demonstrations
Dunlabeled which does not have the associated task label ti. These datasets are defined below:

Dlabeled = {(ti, {di
1, di

2, ...}) ∀ti} (2)
Dunlabeled = {d1, d2, ...} (3)

An effective semi-supervised method should be able to leverage both annotated and un-annotated
datasets effectively to maximize the performance of the OSIL agent at test time.

4 Method

At its core, OSIL can be simply construed as two modules that are jointly optimized together: (1)
an encoder network fϕ(d) which embeds demonstrated trajectories into a latent space z, and (2) a
policy decoder πθ(at|st, z) that is conditioned on the demonstration embedding and current state
of the environment to output actions. The prior state of the art work on OSIL (Duan et al., 2017;
Dasari & Gupta, 2020; Mandi et al., 2021) learn both the demonstration encoder module and the
policy decoder jointly by minimizing the predicted action errors on the imitated trajectory, possibly
with other auxiliary losses. This method works well when paired trajectories are abundant. In the
more realistic semi-supervised OSIL setting, the question becomes “How can we group sufficently
abundant demonstration pairs from the unlabeled data to train an OSIL agent?” To address this,
we propose an iterative student teacher method.

4.1 Student-Teacher Training

The core of our hypothesis is that discriminating or clustering trajectories that share the same
semantic task is easier (and thus more data efficient) compared to generative modeling of actions to
accomplish a task. To instantiate this in practice, we use a teacher-student self-training paradigm
(Xie et al., 2020) to effectively remove the need for large human-annotation on task labels. In our
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Figure 2: The architecture used in our algorithm. (a) shows the generic structure of a OSIL agent,
which consists of a generic demonstration encoder fϕ and the πθ(at|st, z) task latent conditioned
policy, which comprises of image encoder.. (b) shows one potential instantiation of the demonstration
encoder, which leverages a bi direction transformer to encode the trajectory. This is used for the
pinpad sequential navigation task, which requires reasoning over the entire trajectory.

setting, a "teacher" is the encoder fϕ that embeds trajectories into the latent space. Using a quality
teacher encoder, we can retrieve the k-nearest neighbors of each trajectory in the dataset using
a distance measure (e.g L2 distance) on the embedding space and use that as a labeled pair for
downstream training of a student OSIL policy.

To train the teacher encoder, we proceed with the standard OSIL training procedure on the smaller
labeled dataset, Dlabeled. The encoder and policy are trained end to end with an imitation loss on
the predicted action from the policy, πθ(at|st, z), where z = fϕ(dt). To encourage learning a more
structured latent space, we also employ a contrastive InfoNCE loss (van den Oord et al., 2019),
where a positive pair is taken from the labeled subset of data, and the rest of the goals in the batch
are treated as negative examples. This structured latent space is necessary for teacher relabelling.
In general, we also find that the contrastive loss helps with learning a better OSIL policy with higher
task success rate, which is consistent with the works of James et al. (2018); Mandi et al. (2021).

After training the teacher encoder to convergence, we then generate a set of pseudo labels for
the trajectories in the unlabeled dataset. This is done by embedding all of the demonstrations of
the dataset Dunlabeled with the teacher encoder fϕ. We then find the k nearest neighbors of each
demonstration in the embedding space, where k is a hyperparameter. Let kNNϕ(d, D) denote the k
nearest neighbors of d in the dataset D using the feature embeddings from a demonstration encoder
fϕ. If the nearest neighbors are demonstrations associated with the same semantic task, we can
supervise an effective student OSIL policy with this dataset of pseudo-pairs of trajectories, which
we formulate as:

Dpseudo_labeled = {(di, {kNNϕ(di, Dunlabeled)}) ∀di ∈ Dunlabeled} (4)

Finally, the student policy is trained using both Dpseudo_labeled and Dlabeled. During training we
continue to use the labeled dataset for the imitation and contrastive losses, but additionally sample
batches from the pseudo-labeled dataset, which is trained only with the imitation loss. We can
continue iterating this process by treating the encoder fϕ of the trained student as the teacher for
the subsequent round and improving the accuracy on the KNN retrievals from the unlabeled dataset
until we get diminishing returns from the process.
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Figure 3: Sample goals and corresponding demonstration visualizations for the two tasks.

4.2 Architecture

An overview of the architecture is shown in Figure 2a. We use the same architecture for teacher
and student with same number of parameters. In general, the demonstration encoder fϕ is flexible
and can take any form, but should be expressive enough to learn meaningful representations of the
demonstration trajectories. Following conditional policies (Jang et al., 2022), we utilize an MLP
policy which takes the demonstration embedding z through FiLM conditioning (Perez et al., 2018).
The focus of our work is on the procedure of making OSIL more data efficient. We therefore do
not consider more complex encoder decoder architectures, for which we refer to prior work. In this
work we also focus our experiments on visual imitation, for which we use a CNN encoder to obtain
frame-level visual representations of 64x64 images with a simple 5 layer CNN.

For many OSIL tasks, the final frame is enough to specify the desired intent, which we find true for
this environment. A commonly used strategy is to form a summary of the demonstration trajectory
by taking a few key frames (Duan et al., 2017; James et al., 2018). For these tasks (e.g. goal
reaching) we simply use the final frame image embedding as the representation of the task. Figure
2b on the other hand, illustrates a more general solution to embed the entire demonstrated trajectory.
In this model, we treat the embedding of each frame as a separate token and use a bi-directional
transformer to learn the task encoding. The transformer model has the capacity to learn which
frames are important to fully describe the task. Refer to Appendix A.1 for more hyperparameter
details.

5 Experiments

Through our experiments, we aim to study the effectiveness of the semi-supervised OSIL setting, as
well as the performance of our algorithm. Concretely, we study the following questions.

• How to train the demonstration encoder to effectively cluster trajectories?
• How to use the learned clusters to effectively improve agent performance?

5.1 Environment setup

Semantic Goal Navigation. We construct a custom pointmass-based reaching task using the
MuJoCo simulator (Todorov et al., 2012) with the DMControl suite (Tunyasuvunakool et al., 2020).
This task is inspired from the simulated reaching task first introduced in (Finn et al., 2017b). The
task is to navigate the pointmass to a goal of a given color and shape when also presented with a
distractor goal of a different color and shape. Concretely, there are 2 shapes and 5 possible colors
the shapes can take on, totalling 10 variations for each object, and 100 possible semantic scenes.
See Figure 3 for a visual illustration. Note that within each scene configuration, the locations of
the objects can be randomized. We collect 800 trajectories for each target goal object, resulting in
a total training dataset size of 8000 trajectories.

Sequential Goal Navigation. We use a modified version of the discrete pinpad world environ-
ment from Hafner et al. (2022). This task requires the agent to navigate and press two buttons out of
six in a specified order. The agent is only considered successful if it is able to correctly reach all the
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goals in the correct sequence. There are 6 possible goal pads for the agent to reach, totaling 30 tasks.
The agent’s action is one of five possible actions: up, down, left, right, or no-op. The observation
space is the raw pixels in the environment. See Figure 3 for a visual illustration. We randomize both
the color assignments of the pads and the agent starting location for each task variation. The agent
must pay attention to the entire trajectory to correctly determine the desired task. As such, we
parametrize the demonstration encoder for this environment as a small bi-directional transformer
that takes in a sequence of states and a class token to predict a latent z encoding of the trajectory.

Dataset Collection. We employ a scripted policy to collect demonstrations for each task vari-
ation. Specifically, we reset the initial state of the environment and agent randomly, then run the
scripted expert policy. During training we limit the number of demonstrations per each task that
the agent gets to see for supervision in order to create a semi-supervised scenario. However, we
use the entire collected dataset as a large pool of unlabeled expert trajectories during training. We
evaluate our method on two environments described above.

5.2 Metrics

Task Success. Our goal is to maximize task success rate using limited task labeled demonstrations.
For both environments, we report the success rate of the agent as the performance after 100 trials
in the environment, averaged over 3 seeds. We evaluate the agent on both new instantiations of the
training tasks and an unseen test task, which we report as "Train" and "Test" respectively. We use
different numbers of the total labeled trajectories to show how the number of labeled trajectories
effects final task performance. 5%

Trajectory Retrieval (TR) Score For each trajectory in dtest ∈ D, we retrieve the K nearest
neighbors by measuring the L2 distance in the embedding space of the teacher. Let dret

i be the ith

retrieved trajectory and t be the task label of dtest. For each trajectory, the retrieval accuracy is
defined as the percentage of time that Rt(dret

i ) = 1. We take an average of this measure across all
samples in the training set.

TRscore(D) = 1
|D|

∑

d∈D

1
k

k∑

j=1
Rt(dret

j ) (5)

5.3 Results

For each experiment, we train the OSIL policy using the learned goal embedding and behavior
cloning loss on the labeled subset of data. We report the task success rate and trajectory retrieval
scores for all experiments.

Semantic Goal Navigation First we consider the Semantic Goal Navigation pointmass task.
We consider 5 main settings:

1. An agent trained with only the imitation loss on the demonstrated actions.
2. An agent trained with an additional contrastive loss on the goal embeddings in addition to

to the imitation loss.
3. The same as (2.) but with an added self-supervised loss on the entire dataset (including

unlabeled data).
4. A student model trained by using the demonstration encoder (2.) as a teacher model.
5. A student model trained by using the demonstration encoder of (3.) as a teacher model.

The model trained with the method specified in (3.) acts as an alternative semi-supervised baseline
in the special case of using the final frame as the demonstration representation. In this setting,
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(a) Train success rates.
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(b) Test success rates.

Figure 4: Task success rates for the Semantic Goal Navigation Task.

Table 1: Trajectory Retrieval: Final Frame Semantic Goal Navigation

Retrieval % with k=
% Labeled Data Method 1 10 50 100 200

100%
Imitation 11.3 11. 10.7 10.6 10.5
+Contrastive 90.9 91 91.2 90.9 90.7
+Contrastive+Aug 93.5 92.5 91.7 91.3 90.8

30%
Imitation 11.8 11.8 11.5 11.4 11.3
+Contrastive 88.8 88.5 88.1 87.90 87.8
+Contrastive+Aug 93.7 92.9 91.9 91.4 90.8
+Contrastive+Relabel 91.1 90.6 90.3 89.9 89.6
+Contrastive+Aug+Relabel 93.7 92.5 91.2 90.7 90.3

15%
Imitation 11.6 11.2 11.0 10.9 10.8
+Contrastive 63.6 62.8 61.6 61. 60.
+Contrastive+Aug 91.6 90.6 90. 89.9 89.7
+Contrastive+Relabel 74.3 73.2 71.9 71.2 70.4
+Contrastive+Aug+Relabel 91.8 90.7 90.1 89.9 89.6

we use the supervised labels as in the supervised OSIL case, but further leverage the unlabeled
trajectories through adding an additional self supervised loss contrastive loss on augmentations of
the goal image (van den Oord et al., 2019). The augmentations we use are restricted to random flip
and random crop.

Figure 4 show the task performance across each experiment. As expected, train and validation
performance drops when the amount of labeled data decreases. Without relabelling, we see some
task performance gains from applying both the contrastive loss and self unsupervised losses. After
training a student model using the pseudo-labels from the representations learned by the teacher
encoder, we see a leap in performance, matching an agent that has access to 100% ground truth
labels, even when only using 15% of the labels.

Table 1 shows the trajectory retrieval scores across different values of k. Despite having much less
labeled data and decreased task performance, the retrieval scores consistently remain high. This
suggests that we are able to learn a meaningful representation for the task, allowing us to cluster
the trajectories. We find that the contrastive loss is necessary for learning representations that have
high retrieval. Interestingly, we find that relabeling gives much greater gains for task success while
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Figure 5: TSNE visualizations of the learned embeddings where the only 15% of the dataset is
labeled. (a) shows the embedding trained with imitation loss only. (b) adds the contrastive loss on
the labeled subset of data (c) additionally adds a self supervised loss with images augmentations.

Table 2: Task Success Results: PinPad

Task Success %
% Labeled Method Train Val

100% +Contrastive 92.3 ± 2.9 41.7 ± 15.1

10% +Contrastive 70.7 ± 4.5 18.3 ± 3.3
+Contrastive+Relabel 84 ± 4.6 36.3 ± 10.6

5% +Contrastive 49 ± 1.4 7.7 ± 1.6
+Contrastive+Relabel 82.3 ± 10 34.3 ± 22.6

augmentation gives more benefit for retrieval, which supports the hypothesis that relabeling gives
datapoints for the OSIL training and the contrastive loss (which typically relies on augmented views
of data points) helps representation learning, but in a way thats not directly optimizing for the task
objective. We show 2D visualizations of the learned embedding in Figure 5. We additionally explore
the effect of the the number of possible pairs k in Appendix A.2.

Sequential Goal Navigation Next we examine a task which requires the trajectory encoder
to learn a time-dependent encoding of the trajectory, rather than having the task fully specified
by the final frame. For this we employ the more general trajectory demonstration encoder shown
in Figure 2b. Similarly, we see in Table 2 that our teacher-student relabeling method allows the
agent to improve task performance and almost match the agent trained with a fully labeled dataset,
even in much lower labeled data regimes (5%). This suggests that the teacher encoder is able to
pay attention to the temporal nature of the demonstrations and generate effective pseudo-labels.
Similar to the semantic navigation task, the learned encoder maintains a high trajectory retrieval
score across different choices of k.

6 Conclusions

In this paper, we introduce the problem setting of semi-supervised OSIL, which we believe to be a
more realistic setting for developing OSIL methods that can scale to real world settings. In semi-
supervised OSIL we aim to maximize agent performance in settings where we have access to a large
set of task-agnostic expert demonstrations, but only a small task-labeled dataset. We introduce
a student teacher training method and show that training a teacher network based on the limited
labeled data and bootstrapping on the resulting task encoder can allow us to assign effective pseudo-
labels to the large unlabeled dataset. Using the pseudo-labeled dataset to train a student network
can result in out-performing its teacher, reaching task performance parity with a model trained on
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much more labeled data. We evaluate our methodology on simulated environments with varying
complexity and showed that this can be a promising direction towards semi-supervised OSIL.

Our work aims to provide agents the ability to quickly imitate a demonstration. The work does not
assume any particular type of demonstration. A malicious actor might be able to provide nefarious
demonstrations to AI agents and safeguards must be considered when deploying such imitation
learning systems in the real world. At a more immediate level, we do not anticipate any societal
risks due to this work.
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A Appendix

A.1 Hyperparameters

In both experiments the image observations are first encoded with a 5 layer CNN with ReLU ac-
tiviations. The CNN encoder is shared across embedding the current state and the demonstration
trajectory. The policy network is also the same, which consists of 3 FiLM blocks using GELU nonlin-
earities and using 128 hidden units per layer. For all experiments that use the contrastive objective
across paired trajectories, a weighting of 10 is used on the contrastive loss. For all experiments us-
ing pseudo-labeled trajectories, a weighting of 0.5 is used on the imitation loss with pseudo-labeled
trajectories.

Semantic Goal Navigation For this task we adopt the oracle trajectory encoder, which takes
the final frame of the trajectory (which fully specifies the task) and encodes it with CNN. The
images are 64x64. The policy is trained with a learning rate of 1e-3 with 4000 warm up steps.Frame
stacking of 2 is employed on the observations. For each experiment we train for 200k iterations.

For the self supervised augmentations, we employ random resizing, cropping, horizontal flip, and ver-
tical flip. An additional one layer projection is applied before applying the self supervised contrastive
loss, which we employ with a weight of 0.05.

Sequential Goal Navigation For this task, we make no assumptions on what frames are im-
portant and use a bidirectional transformer that attends over all states in the trajectory. The
transformer has 2 hidden layers and 2 attention heads, and the goal encoding is extracted with an
additional class token. Images are 16x16. We use a learning rate of 3e-4 and train for 60k iterations.

A.2 Effect of more pseudo label pair value k

Here we study how choosing different values of k and different iterations of relabeling effect final
performance. In the pseudo-labeling stage, we fix k controls the number of possible pairs each
unlabeled trajectory can use for training. In addition, we experiment with using the student model
as a teacher model for one additional iteration of training. We use the Semantic Goal reaching task,
with 15% of the full dataset size. The results are summarized in Table 3. Results are mixed overall,
and it seems the exact choice of k does not have a significant impact on results. In addition it seems
that repeating the pseudo labeling process for additional iterations does not have any significant
gains on performance. This could be due to the simplicity of the task, as well as the already high
trajectory retrieval scores across all k. We suspect that for more difficult tasks, these parameters
will have a more significant impact on final performance.

Table 3: Iterative Relabeling on Semantic Goal Navigation

Test Success rate % with k=
Iteration 10 50 100 200
1 82 ± 1.4 88.7 ± 6.9 83.3 ± 17.4 95.4 ± 1.2
2 88 ± 2.1 87.5 ± 4.5 78.5 ± 2.5 86.5 ± 0.5

2297



RLJ | RLC 2024

Cross-environment Hyperparameter Tuning for
Reinforcement Learning

Andrew Patterson, Samuel Neumann, Raksha Kumaraswamy, Martha White, Adam White
Department of Computing Science, University of Alberta
{ap3,sfneuman,kumarasw,whitem,amw8}@ualberta.ca

Abstract

This paper introduces a new empirical methodology, the Cross-environment Hyper-
parameter Tuning Benchmark, that compares RL algorithms across environments
using a single hyperparameter setting, encouraging algorithmic development which
is insensitive to hyperparameters. We demonstrate that this benchmark is robust
to statistical noise and obtains qualitatively similar results across repeated ap-
plications, even when using few samples. This robustness makes the benchmark
computationally cheap to apply, allowing statistically sound insights at low cost. We
demonstrate two example instantiations of the CHTB, on a set of six small control
environments (SC-CHTB) and on the entire DM Control suite of 28 environments
(DMC-CHTB). Finally, to illustrate the applicability of the CHTB to modern RL
algorithms on challenging environments, we conduct a novel empirical study of an
open question in the continuous control literature. We show, with high confidence,
that there is no meaningful difference in performance between Ornstein-Uhlenbeck
noise and uncorrelated Gaussian noise for exploration with the DDPG algorithm on
the DMC-CHTB.

1 Introduction
One of the major benefits of the Atari suite is the focus on more general reinforcement learning
agents. Numerous agents have been shown to exhibit learning across many games with a single
architecture and a single set of hyperparameters, and to a lesser extent, OpenAI Gym (Brockman
et al., 2016) and DM control suite (Tassa et al., 2018) are used in the same way. As the ambitions of
the community have grown, Atari and OpenAI Gym tasks have been combined into larger problem
suites, with subsets of environments chosen to test algorithms. In many ways we are back to where
we started with Cartpole, Mountain Car and the like: where environment-specific hyperparameter
tuning and problem subselection is prominent. Instead of proposing a new and bigger challenge suite,
we explore a modification to standard empirical methodology for comparing agents across a given
set of environments, complementing the existing empirical toolkit for investigating the scalability of
deep RL algorithms.

In order to make progress towards impactful applications of reinforcement learning and the broader
goals of AGI, we need benchmarks that clearly highlight the generality and reliability of learning
algorithms. Empirical work in Atari, Mujoco, and simulated 3D worlds typically use networks with
millions of parameters, dozens of GPUs, and up to billions of samples (Beattie et al., 2016; Espeholt
et al., 2018). Many results are demonstrative, meaning that the primary interest is not the reliability
and sensitivity, nor the resources required to achieve the result, rather that the result could be
achieved. It is infeasible to combine these large scale demonstrations with hyperparameter studies
and sound empirical methodology. More evidence is emerging that such state-of-the-art systems (1)
rely on environment-specific design choices that are sensitive to minor changes to hyperparameters
(Henderson et al., 2018; Engstrom et al., 2019), (2) are less data efficient and stable compared with
simple baselines (van Hasselt et al., 2019; Taïga et al., 2019), and (3) cannot solve simple toy tasks
without extensive re-engineering (Obando-Ceron and Castro, 2021; Patterson et al., 2021). It is
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abundantly clear that modern RL methods can be adapted to a broader spectrum of challenging
tasks—well beyond what was possible with linear methods and expert feature design. However, we
must now progress to the next phase of empirical deep RL research: focusing on generality and
reliability.

There is a growing movement to increase the standards of empirical work in RL. Long before the
advent of deep networks, researchers called out the environment overfitting that is rampant in RL
and proposed sampling from parameterized variants of classic control domains to emphasize general
methods (Whiteson et al., 2009). Noisy results, inconsistent evaluation practices, and divergent code
bases have fueled calls for more open-sourcing of agent architecture code, experiment checklists,
and using more than three samples in our experiments (Henderson et al., 2018; Pineau et al., 2020;
Patterson et al., 2023). Recent work has highlighted our poor usage of basic statistics, including
confidence intervals and hypothesis tests (Colas et al., 2018; Agarwal et al., 2021; Patterson et al.,
2023). Finally, and most related to our work, Jordan et al. (2020) proposed a methodology to better
characterize the performance of an algorithm across environments, evaluated with randomly sampled
hyperparameters. We build on this direction, but focus on a simpler and more computationally frugal
evaluation that examines the single best hyperparameter setting across environments, rather than a
randomly sampled one, and allows for a smaller number of runs per environment.

Table 1: Chance of incorrect claims
3 runs 10 30 100

Acrobot 47% 31% 22% 1%
Cartpole 7% 0% 0% 0%
CliffWorld 54% 19% 14% 0%
LunarLander 16% 7% 1% 0%
MountainCar 22% 9% 7% 0%
PuddleWorld 18% 16% 8% 0%

Experiments with many runs, hyperparameters, and en-
vironments can be computationally prohibitive, making
these computational constraints a primary culprit for mis-
leading or incorrect claims in RL experiments. Typical
strategies sacrifice one of these three axes to reduce costs,
either using too few samples to draw statistically sound
conclusions, providing an incomplete sensitivity analysis of
the hyperparameters, or using a limited number of testbed

environments to meaningfully evaluate the generality of the claims. Table 1 illustrates the effect of
using a limited number of seeds while tuning hyperparameters. We ran four algorithms 250 times
for every environment and hyperparameter setting in an extensive sweep to get a high confidence
approximation of the correct ordering between algorithms. We then used bootstrap sampling to
simulate 10k papers—each using far fewer random seeds—and counted the frequency that incorrect
algorithm orderings were reported. Even with 30 runs in these small domains, incorrect rankings
were not uncommon. Further details are described in Section 5.

It is surprising that 30 runs would be insufficient to reliably identify the correct ordering over four
distinct algorithms for some environments. This failure stems from a poor interaction between the
statistical properties of RL algorithm performance and the challenge of identifying the best performing
hyperparameter for an algorithm. This is further exacerbated by modern RL algorithms, which require
tuning an increasing number of hyperparameters and presenting increasingly complex hyperparameter-
performance landscapes. To combat this, several strategies have emerged in the literature including
far more efficient tuning strategies than the commonplace gridsearch (Eggensperger et al., 2019),
relying on default hyperparameter values (Schaul et al., 2016; Wang et al., 2016; Van Hasselt et al.,
2016; Agarwal et al., 2021), tuning hyperparameters on a subset of domains (Bellemare et al., 2013),
or eroding standards of sufficient statistical power for publication (Henderson et al., 2018; Colas
et al., 2018; Agarwal et al., 2021).

In this paper, we evaluate the utility of selecting hyperparameters across environments using a
methodology we call the Cross-environment Hyperparameter Tuning Benchmark (CHTB). The basic
idea is simple: we evaluate an algorithm across a set of environments using a single hyperparameter
configuration in a two-stage approach. Though conceptually simple, this methodology is not widely
used. We first address some nuances in the CHTB, namely how to standardize performance across
environments to allow for aggregation, how to allow for robust measures of performance, and finally
how to reduce computation to make it more feasible to use the CHTB. We evaluate the effectiveness of
the CHTB itself by examining the stability of the conclusions from the CHTB under different numbers
of runs. We then demonstrate that the CHTB can result in different conclusions about algorithms
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Figure 1: An example experiment comparing four algorithms across six different environments. Each
learning curve shows the mean and 95% confidence interval of 250 independent runs for each algorithm
and environment. Hyperparameters are selected using three runs of every algorithm, environment,
and hyperparameter setting. Top shows the learning curves when the best hyperparameters are
chosen for each environment individually. Bottom shows the learning curves when hyperparameters
are chosen according to the CHTB.
compared to the conventional per-environment tuning approach and the more recent approach of
using a subset of environments for tuning. Finally, we conclude with a larger demonstration of the
CHTB on the DM Control Suite.

2 Contrasting Across-Environment versus Per-Environment Tuning

In this section, we introduce the basic procedure for the CHTB and provide an experiment showing
how it can significantly change empirical outcomes compared to the conventional per-environment
tuning approach. We provide specific details for each step later and here focus on outlining the basic
idea and its utility.

The CHTB consists of the following four steps summarized in the inset figure below. We assume we
are given a set of environments and a set of hyperparameters for the algorithm we are evaluating.
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Step 1 (Preliminary Sweep) Run the al-
gorithm for all hyperparameters and all envi-
ronments, for ntune runs (i.e., ntune < 30) and
record the performance of every combination.
Step 2 (Normalization) Normalize the scores
across environments. We use CDF normaliza-
tion, which is described in Section 4.
Step 3 (Hyperparameter Selection) Select
the hyperparameter setting with the highest
score averaged across environments.

Step 4 (Re-evaluation) With the single best hyperparameter setting, use many more runs in each
environment (e.g. 100) to produce a more accurate estimate of performance.

The last step is more lightweight than it appears since only a single hyperparameter configuration is
used for all environments. By using a small ntune in the preliminary sweep, we save a significant
amount of computational resources and can devote more resources to the re-evaluation step. Detecting
differences between hyperparameter configurations for each individual environment can be challenging,
especially in the presence of noise. For conventional per-environment tuning to yield reliable and
statistical sound results requires a large ntune for every algorithm, hyperparameter, and environment.
The CHTB, by contrast, seeks to only detect differences in hyperparameter configurations across
environments, significantly reducing the necessary ntune.
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The benefit of combining normalized scores across environments is primarily statistical—averaging
across more values typically results in a lower variance estimator. However, it is well-established
that finding a single hyperparameter configuration that works well across problems is challenging
(Eggensperger et al., 2019). This is precisely the goal of the CHTB, to reduce the statistical hurdle
of comparing algorithmic advances and focus on the challenge of designing algorithms which are less
sensitive to their hyperparameters.

We illustrate this effect in Figure 1. The per-environment tuning approach highlights the ideal
behavior of an algorithm per environment, whereas the CHTB highlights the (in)sensitivity of an
algorithm across environments. Experimental details can be found in Section 5. The environments
are relatively simple (most coming from the classic control suite of OpenAI Gym (Brockman et al.,
2016)) but difficult enough for our purposes: no one algorithm could reach near optimal performance
in all environments.

In Figure 1, the CHTB does not rank the algorithms differently than with per-environment tuning,
but the CHTB does alert us to potential catastrophic failure of some algorithms. The neural
network DeepQ agent performs terribly in Cliffworld and Lunar Lander under the CHTB, but
appears reliable under the per-environment approach. What is going on? Forced to select only one
hyperparameter across environments, the best outcome is to sacrifice performance in Cliffworld and
Lunar Lander—achieving worse performance than a uniform random policy.

3 Performance Distributions
In this section, we describe the distribution and random variables underlying an RL experiment. This
formalism allows us to reason about the summary statistics we consider for the CHTB in the next
section. We also visualize these distributions to provide intuition on the properties of the summary
statistics of these distributions and the implications for the single performance numbers used in RL.

In an RL experiment, we seek to describe the performance distribution of an algorithm for each
hyperparameter setting θ ∈ Θ, denoted as P(G, E | θ) where G is a random variable indicating
the performance of an algorithm on a given environment, E ∈ E . Most commonly, we report
an estimate of the average performance conditioned on environment and hyperparameter setting,
g(E, θ) ≊ E[G | E, θ] using a sample average and some measure of uncertainty about how accurately
g(E, θ) approximates E[G | E, θ].

The environment can be seen as a random variable for many RL experiments. The most common
case is to specify a set of MDPs that the authors believe represent the important applications of their
new algorithm. If results are uniformly aggregated across these environments, then this corresponds
to assuming a uniform distribution over this set of environments. Other times, random subsets of
environments from environment suites are chosen; the performance estimate on this subset provides
an estimate of performance across the entire suite. The idea of evaluating algorithms over a random
sample of MDPs has been studied explicitly previously. For example, the parameters determining
the physics of classical control domains were randomized and sampled to avoid domain overfitting
(Whiteson et al., 2009), and randomly generated MDPs (Archibald et al., 1995) have been used to
evaluate new algorithmic ideas (Seijen and Sutton, 2014; Mahmood et al., 2014; White and White,
2016). If we subselect after running the algorithms, then we bias the distribution over environments
towards those with higher performance.

Figure 2 Let us look at an example of these performance distributions to gain
some intuition for estimating statistics like the expected performance.
Consider the action-value nonlinear control method DQN, using the Adam
optimizer (Mnih et al., 2013; Kingma and Ba, 2015), on Cartpole (Barto
et al., 1983). We fix the hyperparameter setting θ to the default values
from Raffin et al. (2019). For this fixed environment, all randomness
is due to sampling algorithm performance on this environment, namely
sampling G according to P(G | E, θ). The performance, G, is the average
episodic return over all episodes completed during 100k learning steps.
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This environment is considered solved for G > 300. We repeat this
procedure for 250 independent trials to estimate the distribution P(G | E, θ), shown in Figure 2, with
x-axis possible outcomes of G and y-axis the probability density. The vertical solid line denotes mean
performance, and the vertical dotted line denotes mean performance of a random policy.

Figure 2 is a typical example of the performance of an RL algorithm over multiple independent
trials. In this case, DQN is more likely to fail than to learn a policy which solves this relatively
simple environment. It is common practice to run an RL algorithm for some number of random
seeds—effectively drawing samples of performance from this distribution—then reporting the mean
over those samples (solid vertical line).

There are two implications from observing this bimodal performance distribution. First, using the
expected value of this distribution as the summary statistic does not aptly demonstrate that the poor
performance of DQN on Cartpole is due to occasional catastrophic failure—performing worse than or
equivalent to a random policy. Instead, mean performance might lead us to wrongly conclude that
DQN on Cartpole usually finds a sub-optimal, yet better than random, policy. An alternative might
be to consider percentile statistics or, if the goal is to evaluate mean performance, to avoid drawing
strong conclusions about individual runs.

If the goal is to report mean performance, then a second issue arises. Estimating the mean of these
non-normal performance distributions can be challenging. In Figure 2, approximately 70% of the
density is around a mode centered at 20 return, and the remaining 30% is around a mode centered
at 250 return. As a result, sample means constructed with only three runs are varied and skewed.

Further, to report the average performance of the best performing hyperparameter—that is
maxθ∈Θ E[G | θ, E]—we must first reliably estimate the conditional expected performance for each
hyperparameter. Computing this expectation can require a large number of samples to obtain a
reasonable estimate for each hyperparameter. This results in a tradeoff between measuring sensitivity
and reliability: between the breadth of hyperparameter settings that can be studied and the accuracy
to with which we can feasibly evaluate each hyperparameter.

The summary statistic used to select hyperparameters also interacts
with the form of the performance distribution. In the inset figure on the
left we show the performance distribution across four different choices
of stepsize parameter of DQN in Cartpole. If we are interested only in
the highest best case performance, then 2−10 is preferred. However, if
we are particularly concerned with reducing the chances of catastrophic
failure (i.e., highest worst case performance), then a stepsize 2−7 is
preferred. The most common case is to report results for the stepsize
with the highest average performance. In this case, a stepsize of 2−9

would be preferred.

These performance distributions can also look quite different for dif-
ferent environments, even with the same algorithm. For Cartpole
(above), the distribution is increasingly long-tailed with smaller step-
sizes. For Puddle World, shown in the inset figure on the right, the
distributions are always bimodal with one mode around -600 return
and a second mode around -200 return. With smaller stepsizes, the
density around the better performance mode increases, shifting the
mean of the distribution. Peak performance does not change; rather
the probability that DQN has a good run is higher with small stepsizes.
This analysis of performance distributions raises an important question:
do current RL algorithms have consistent hyperparameter settings which perform well across many
environments?
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4 The Cross-environment Hyperparameter Tuning Benchmark
In this section, we describe the Cross-environment Hyperparameter Tuning Benchmark (CHTB) in
detail. Although it seems natural to evaluate across environments, standard empirical practice in RL
is not done this way. Understanding across-environment sensitivity aligns nicely with the intent of
sensitivity analysis: elucidating how well an algorithm might perform on new environments without
extensive hyperparameter tuning. We argue that the CHTB 1) better aligns empirical practice with
the goals of applied RL, 2) is computationally feasible even in complex environments, 3) provides
novel insights on old ideas (even with small environments), and 4) reduces the chances of accidentally
publishing incorrect conclusions due to statistical noise.

The first step of the CHTB (preliminary sweep) is to draw a small number of samples ntune from
P(G | θ, E) for every hyperparameter setting and environment and get the summary estimate g(E, θ)
from those samples. Typically, we compute g(E, θ) as a sample average to estimate E[NE(G) | E, θ],
where NE : R → R is a normalization function that we describe below. Then we aggregate across
environments to estimate g(θ) ≈ E[E[NE(G) | E, θ]], where the outer expectation is with respect
to environments. Then we select a single hyperparameter setting with θCHTB = arg maxθ∈Θ g(θ).
Finally, we draw a large number of samples from P(G | θCHTB, E) for every environment and report
the same summary statistics g(E, θCHTB) and g(θCHTB) (re-evaluation).

Generally, we cannot expect each environment to produce normalized performance numbers, so to
compute the expectation across environments we must first normalize the performance measures. A
comprehensive discussion of normalization methods is given in Jordan et al. (2020). We use a lightly
modified version of the CDF normalization method from Jordan et al. (2020), NE(G) = CDF(G, E),
which is highly related to probabilistic performance profiles (Barreto et al., 2010).

To compute the CDF normalization, we first collect the performance g of each algorithm and
hyperparameter into a pool PE for each environment E. Then given some arbitrary score x from
environment E, the CDF normalization is

CDF(x, E) = 1
|PE |

∑

g∈PE

1(g < x)

where 1 is the indicator function. This mapping says: what percentage of performance values, across
all runs for all algorithms and all hyperparameter settings, is lower than my performance x on this
particular environment E? For example, if CDF(x, E) = 0.25, then this agent’s performance is
quite low in this environment, as only 25% of other agents’ performance was worse across agents
tested. This normalization accounts for the difficulty of the problem, and reflects relative performance
amongst agents tested. Note that this normalization uses an empirical CDF, rather than the true
CDF for the environment and set of hyperparameters and agents. This means there is a small
amount of bias when estimating E[E[NE(G) | E, θ]]. This bias dissipates with an increasing numbers
of samples and equally impacts all compared algorithms.

Selecting hyperparameters with the CHTB can require significantly fewer samples compared with
conventional per-environment tuning. Per-environment tuning requires a sufficiently accurate estimate
of the conditional expectation E[G | E, θ] for every θ ∈ Θ and for every E ∈ E , requiring a number
of runs proportional to |Θ||E|. The CHTB, on the other hand, requires only an accurate estimate
of E[NE(G) | θ] = E[E[NE(G) | E, θ]] which requires a number of runs proportional only to |E|. By
designing a process which selects hyperparameters first using a smaller number of runs, we can reserve
more computational resources for re-evaluation. Once we select the best hyperparameters, the cost
of collecting samples is independent of Θ, and so we can decouple the precision of our performance
estimate from the number of hyperparameter settings that we evaluate for each algorithm.

Finally, we can contrast this benchmark with a recent evaluation scheme that uses random hy-
perparameter selection (Jordan et al., 2020). In order to capture variation in performance due
to hyperparameter sensitivity, Jordan et al. (2020) treats hyperparameters as random variables
and samples according to an experimenter-designated distribution over hyperparameters, reporting
the mean and uncertainty with respect to this added variance, similar to the procedure used in
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Jaderberg et al. (2016). This evaluation methodology provides some insight into the difficulty of
tuning, though requires a sensible distribution over hyperparameters to be chosen. The CHTB, on
the other hand, asks: is there a hyperparameter setting for which this algorithm can perform well
across environments? It motivates instead identifying that single hyperparameter, and potentially
fixing it in the algorithm, or suggesting that the algorithm needs to be improved so that such a
hyperparameter could feasibly be found. Both of these strategies help identify algorithms that are
difficult to tune, but the CHTB is easier to use and computationally cheaper.

5 Evaluating the Cross-environment Hyperparameter Tuning Benchmark

In this section, we evaluate the CHTB by comparing four algorithms across several classic control
environments. Evaluating the reliability of an evaluation strategy is challenging as we need to
understand the probability that the CHTB leads to drawing incorrect conclusions—similar to
ensuring that a methodology for computing 95% confidence intervals do in fact capture the mean
value 95% of the time. To achieve this, we gather an extensive dataset of 250 samples for every
algorithm, hyperparameter, and environment. We treat this large dataset as the source-of-truth and
draw (with replacement) subsamples of this dataset to simulate a single application of the CHTB.
Each of these simulated applications of the CHTB can be thought of as a single paper using the
CHTB to compare multiple algorithms. We then estimate what proportion of those papers using the
CHTB identify the correct ordering of algorithms. Nominally, using 95% confidence intervals, we
would expect to identify the correct ordering 95% of the time.

For this simulation of the CHTB, we use a dense and exhaustive gridsearch over hyperparameters. By
using an exhaustive gridsearch, we can ensure that a high-performing hyperparameter configuration
is captured in the set of tested hyperparameters—though at high computational cost. Using a
gridsearch also greatly simplifies the statistical simulation strategy used to evaluate the CHTB over
many simulated papers, without changing conclusions about the CHTB itself. However, the CHTB
is agnostic to the hyperparameter configuration strategy and typically a gridsearch is not the most
computationally efficient approach.

For this evaluation, we require environments where hundreds of independent samples of performance
can be drawn across a large hyperparameter sweep in a computationally tractable way. We emphasize
that this is not a general requirement of the CHTB and is required only in this case of evaluating
the CHTB’s responsiveness to perturbations in the experimental process. Because these classic
control environments are cheap to run and provide meaningful insights in differentiating modern RL
algorithms (Obando-Ceron and Castro, 2021), we name this specific benchmark the Small Control
CHTB (SC-CHTB). In Section 6 we provide a realistic demonstration of the CHTB on a larger
dataset with a more complex algorithm.

Algorithms. For the following investigations, we compare two deep RL algorithms based on DQN
(Mnih et al., 2013) and two control algorithms based on linear function approximation using tile-coded
features (Sutton and Barto, 2018). The deep RL algorithms, DQN and DeepQ, differ only in their
loss: DQN uses a clipped loss and DeepQ uses a mean squared error. For the two tile-coding agents,
QLearning is off-policy and bootstraps using the greedy action, while ESARSA is on-policy and
bootstraps using an expectation over actions. Further details on the algorithms can be found in
Appendix C.

Environments. The SC-CHTB consists of a suite of classic control environments commonly used in
RL: Acrobot (Sutton, 1996), Cartpole (Barto et al., 1983; Brockman et al., 2016), Cliff World (Sutton
and Barto, 2018), Lunar Lander (Brockman et al., 2016), Mountain Car (Moore, 1990; Sutton, 1996),
and Puddle World (Sutton, 1996). We used a discount factor of γ = 0.99 and a maximum episode
length of 500 steps (except in Cliff World which had a maximum length of 50 steps). We ran all
algorithms for 200k learning steps on each environment except Lunar Lander, where we used 250k
learning steps to ensure all algorithms have reliably converged. Further details motivating this choice
of environments can be found in Appendix C.1.
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Figure 3: Applying the CHTB to 10k simulated experiments. Error bars show 95% bootstrap
confidence intervals. Although only three runs were used to select hyperparameters, conclusions
about algorithm ranking using the CHTB are perfectly consistent across all 10k experiments.

Hyperparameters. For all algorithms we swept eight stepsize values, α ∈ {2−12, 2−11, . . . , 2−5}
for the deep RL algorithms and α ∈ {2−9, 2−8, . . . , 2−2} for the tile-coded algorithms. The deep
RL algorithms used experience replay and target networks, so we swept over replay buffer sizes of
{2000, 4000} and target network refresh rates of {1, 8, 32} steps where a one step refresh indicates
target networks are not used. The algorithms with tile-coding learn online from the most recent
sample; we select number of tiles in each tiling in {2, 4, 8} and number of tilings in {8, 16, 32}. More
details on the other hyperparameters and design decisions are in Appendix C.

Variance over simulated experiments. We start by demonstrating the low variance of conclusions
over 10k simulated applications of the CHTB. We simulate applying the CHTB with three random
seeds for every algorithm, environment, and hyperparameter to first select hyperparameters, then
using 250 random seeds to evaluate the performance of each algorithm on each environment with the
selected hyperparameter configuration. We compare the outcomes of each application of the CHTB
to estimate the variance in conclusions in Figure 3.

Using the full dataset, the true ordering of algorithms from best to worst is ESARSA, QLearning,
DeepQ, and DQN. Every simulated application of the CHTB detected this ranking successfully.
Conclusions on individual environments are less consistent, though this is to be expected. The CHTB
sacrifices the ability to draw conclusions about the ordering of algorithms on individual domains
by setting ntune, the number of tuning seeds, to be very small. In reality, the use of small ntune to
draw conclusions on individual domains is common practice and Figure 3 well demonstrates how this
practice can be misleading.

We provide more insight into the difficulty of selecting a single hyperparameter across problems, in
Appendix B.1. We additionally show that the distribution of selected hyperparameters with the
CHTB is narrow and consistent over simulated experiments, unlike parameters chosen independently
for each environment. Because conclusions are often drawn by aggregating results over environments—
either formally as in the CHTB or informally by counting the number of environments where
an algorithm outperforms others—reporting results over a consistent and narrow distribution of
hyperparameters leads towards lower variance claims and greater reproducibility. We include results
selecting hyperparameters according to the worst-case performance across environments in Appendix
B.4; the results are highly similar, albeit slightly lower variance.

The cost of running a single experiment represented in Figure 3 is quite low. The deep RL algorithms
test 48 hyperparameter settings at a cost of 20 minutes per run, while the tile-coded algorithms test
72 settings at the cost of two minutes per run. Timings are with respect to an older 2.1Ghz Intel
Xeon processor. This comes out to a total of 1762 hours of CPU time to complete three runs for
hyperparameter selection and 250 runs for evaluation, cheaper than the experiment using 10 runs and
conventional per-environment tuning shown in Table 1 which cost approximately 2208 hours. The
CHTB successfully detected the correct ordering of algorithms in every trial, while the conventional
per-environment tuning experiment failed to detect the correct ordering with surprising frequency.
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Figure 4: The change in performance for each algorithm on every environment when using the
CHTB versus conventional per-environment tuning. A larger drop in performance indicates a larger
degree of environment overfitting when results are reported with per-environment tuning. Error bars
show 95% confidence intervals over 10k bootstrap samples.

The CHTB is a less optimistic measure of performance. A motivating factor for the CHTB
is providing a more challenging benchmark to test across-environment insensitivity to selection of
hyperparameters. Because algorithms are limited to selecting a single champion hyperparameter
setting—as opposed to selecting a new hyperparameter setting for every environment—we expect a
considerable drop in performance under the CHTB. We evaluate the extent of this performance drop
for our four algorithms by first computing near optimal parameters θ∗ ∈ Θ for each environment using
the full 250 random seeds to obtain high confidence estimates of average performance E[NE(G) | E, θ∗].
We then apply the CHTB to select hyperparameters for each algorithm using three random seeds for
10k simulated experiments. We report sample estimates of E[NE(G) | E, θ∗] − E[NE(G) | E, θCHTB].

In Figure 4 we can see there is substantial drop in reported performance when using the CHTB
versus per-environment tuning. The variance is high, indicating that for some runs, the performance
drop was substantial: almost 0.4 under our normalization between [0,1]. Algorithms with a large
drop in performance indicate more environment-specific overfitting under per-environment tuning.
Because we swept over many more hyperparameter settings for the tile-coding algorithms than for
the deep RL algorithms—72 settings versus 48 settings—it is unsurprising that per-environment
tuning led to far more environment overfitting in the tile-coding algorithms.

Tuning on a subset of environments. An empirical practice that is highly related to the CHTB
is using a subset of environments to select hyperparameters, then reporting the performance of
the selected hyperparameters across an entire suite of environments. We refer to this practice
as subset-CHTB. This practice is used in the Atari suite for example, where it was suggested to
use five of the 57 games for hyperparameter tuning (Bellemare et al., 2013). To investigate the
variance of conclusions using the subset-CHTB, we run 10k simulated experiments using two of our
six environments to select hyperparameters. For each of the simulated experiments, we randomly
select two environments to use for hyperparameter selection. To reduce the variance, we allow each
algorithm 100 runs of every hyperparameter setting on every environment to perform hyperparameter
selection, then evaluate the performance on the full 250 runs for the hyperparameter selected by
the subset-CHTB. More results, including with varying number of runs and environments used for
hyperparameter selection, can be found in Appendix B.

In Figure 5, we see that the ordering of algorithms is extremely high-variance—especially compared
to Figure 3 which uses all six environments to select hyperparameters and only three runs. This
result also illustrates large differences between individual environments, where the variance on Lunar
Lander—especially for DQN—suggests that hyperparameters selected for other environments are
likely to cause worse-than-random performance on Lunar Lander. At least among the four tested
algorithms, it is clear that hyperparameter sensitivity is too high to use environment subselection to
reduce the computational burden of hyperparameter tuning.

Bias of the CHTB. Both the CHTB and conventional per-environment tuning
use biased sample estimates due to the maximization over hyperparameters. The

2306



RLJ | RLC 2024

Figure 5: Performance of each algorithm over 10k bootstrap samples, where sample means are com-
puted with 100 runs. Each bootstrap sample randomly selects two environments for hyperparameter
tuning, then evaluates the chosen hyperparameter setting on all six environments with 250 runs.
Error bars show 95% bootstrap confidence intervals.

bias due to maximization over random samples is exaggerated both as the set
Θ grows and as the number of samples used to evaluate E[G | E, θ] shrinks.

Figure 6: Bias of the CHTB vs.
per-environment tuning.

We first estimate the true per-environment maximizing parame-
ters θ∗ and the true CHTB parameter θ∗

CHTB using 250 samples for
every hyperparameter setting and environment. We then resample
three samples per hyperparameter and environment to simulate
an experiment using three seeds to compute sample averages, we
select the maximizing parameter of these sample averages, θ̂, and
we report E[G | E, θ∗] −E[G | E, θ̂]. The corresponding procedure
is used for the CHTB.

In Figure 6, we report the bias of each procedure applied to
DQN and the small control domain suite. On the vertical axis we
report the bias and on the horizontal axis we show the number
of random seeds used to select hyperparameters. As both proce-
dures approach a sufficiently large number of samples to select
hyperparameters, the bias of these procedures approaches zero.
However when using few random seeds—for instance ten or fewer

as is common in the literature—the bias of the conventional method is several times larger than that
of the CHTB. As a result of this overestimation bias, it is common for results in the literature to
present highly optimistic results especially for algorithms with more hyperparameters.

6 A Demonstrative Example of Using the CHTB
We finish with a large-scale demonstration of our benchmark across the 28 environments of the
DMControl suite (Tassa et al., 2018), which we will call the DMC-CHTB. For this comparison,
we test an open hypothesis in the continuous control literature: does Ornstein-Uhlenbeck (OU)
noise (Uhlenbeck and Ornstein, 1930) improve exploration over naive uncorrelated Gaussian noise?
Autocorrelated noise for exploration was shown to be beneficial for robotics (Wawrzyński, 2015),
inspiring the use of an OU noise process for DDPG (Lillicrap et al., 2016), where a single set of
hyperparameters was used across 20 Mujoco environments using five seeds. Later work replaced OU
noise with Gaussian noise, noting no difference in performance (Fujimoto et al., 2018; Barth-Maron
et al., 2018), but without empirical support for the claim. To the best of our knowledge, no careful
empirical investigation of this hypothesis has yet been published.

To apply the DMC-CHTB, we first evaluate 36 hyperparameter settings with three runs per envi-
ronment, for a total of 84 runs to estimate E[NE(G) | θ] for each θ ∈ Θ. Then we use 30 runs to
evaluate the chosen θCHTB for a total of 840 runs to estimate E[NE(G) | θCHTB]. We report the
swept hyperparameters as well as the selected θCHTB in Appendix B.5. We use 1k bootstrap samples
to compute confidence intervals and report the overall findings in the table in Figure 7. We find that
OU noise does not outperform Gaussian noise on the DMC-CHTB. Considering even the extremes of
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Figure 7: Comparing DDPG using OU noise vs. Gaussian noise across the DMControl suite. The
inset table shows the mean performance with 95% confidence interval for the two versions of DDPG
used in these experiments. Visualized in the bar plot is the performance of DDPG with OU noise,
per environment in the suite, considering DDPG with Gaussian noise as a baseline.

the confidence intervals there is no meaningful difference in performance between these exploration
methods, suggesting further runs would be unlikely to change our conclusion. We visualize the
performance of OU noise on the complete suite, considering Gaussian noise experiments as a baseline
in Figure 7. This visualization summarizes whether, and to what degree, OU noise improves upon
Gaussian noise in each environment of the DMControl suite. In only 10 of the 28 environments, OU
noise improves upon Gaussian noise, with a large improvement only in the WalkerRun environment.
Additional results are included in Appendix B.5.

7 Conclusion
In this work, we introduced a new benchmark for evaluating RL algorithms across environments, but
perhaps more important are the insights we gained. Of the five algorithms we tested (including DQN
and DDPG), none exhibited good performance on our CHTB benchmark; aligning with the common
view that we do not yet have generally applicable RL algorithms. The CHTB benchmark produces
reliable conclusions with only three runs in the preliminary sweep while providing a new challenging
aspect to small computationally-cheap environments, allowing small university labs and tech giants
alike to conduct rigorous and meaningful comparisons. Finally, prior work has disagreed on the benefit
of using OU or Gaussian noise in DDPG on Mujoco-based environments. Perhaps some combination
of too few runs, using default hyperparameters, or problematic environment sub-selection yielded
conflicting results. Our results with CHTB suggest there is no significant performance difference
across a suite of 28 Mujoco environments, putting this debate to bed. The CHTB benchmark can
play a role uncovering falsehoods and resolving disputes.

The CHTB is a general procedure for evaluating performance across environments. We provide two
example instantiations of the CHTB, the SC-CHTB for discrete action control on small domains and
the DMC-CHTB for continuous control on large simulated environments, however the CHTB can also
be extended to use arbitrary environment sets to allow targeted evaluation across environments with
certain desireable properties. For example, the taxonomies of Atari games identified in Bellemare
et al. (2016), the off-policy evaluation environments used in Sutton et al. (2009), or the taxonomy
of exploration environments from Yasui et al. (2019) are each sets of environments that have been
previously identified and used across the literature. Applying the CHTB to any one of the environment
sets provides a new challenge, and in some small way can push us towards generally applicable RL
agents.
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A Ethical considerations
Because the Cross-environment Hyperparameter Tuning Benchmark is applied to experimenter-picked
domains, it inherits the biases and ethical considerations of the studied domains. However, the
primary goal of the CHTB is to reduce algorithm design decisions which lead to overfitting to specific
attributes of studied domains. An example could be the use of layer-normalization within neural
networks, which highly disproportionately favor pixel-based domains. If the CHTB utilized only
pixel-based domains, the results would still follow the bias of the experiment designer; however
if even a single non-pixel domain was included in the benchmark, the biased design decision to
use layer-normalization would negatively impact the outcome of this particular algorithm on this
benchmark. Previous empirical practices are more likely to permit this form of biased design due to
statistical noise or domain subselection.

A major motivation for this paper is to advocate that meaningful and sound experiments in RL are
achievable at an inclusive and low cost. Running a complete experiment with four algorithms on the
six small control environments used in Section 5 would cost approximately $40 USD at current AWS
EC2 prices and would complete in approximate two days. This experiment is complete, sound, and
provides a meaningful ranking of four comparison algorithms; even detecting performance differences
across minute algorithmic differences. However, the CHTB is not perfectly resilient to gaming with
extensive hyperparameter tuning. Consider the highly common scenario where we wish to advocate
for one algorithm over competitive baselines, then performing extensive tuning or multiple iterations
of tuning with the CHTB still gives advantage to labs with greater access to resources.

For the studies performed in Section 5, we required far more compute than would be typical of a
study utilizing the CHTB. To evaluate the effectiveness of the CHTB required sufficient data to
simulate repeated applications of CHTB on new data. Our results were obtained using a cloud CPU
cluster using approximately 2000 Intel Xeon cores running at 2.1Ghz simultaneously. We utilized
approximately 2.4 CPU years to collect the small control experiments data used for this study, with
all post-processing, analysis, and plotting done locally on a laptop. The large demonstration on the
DMC-CHTB required approximately 1.3 GPU years of compute.

B Additional Results
In this section, we provide additional results of experiments run in Section 5. For these results, we
use the same experimental setup as in Section 5, namely we form a dataset of 250 runs of every
hyperparameter setting, environment, and algorithm tuple. From this extensive dataset, we use
bootstrap resampling to simulate experimental trials using the CHTB. We start by investigating a
slice of the sample distributions from which we perform resampling, then we provide additional results
demonstrating the high variance of conclusions drawn from tuning on a subset of environments.

B.1 Distribution of selected hyperparameters.

Figure 8: Bars represent the distribution of se-
lected stepsizes using conventional per-environment
tuning (red) or when using the CHTB (black).
Lines show the sensitivity curves for each environ-
ment. Confidence regions around the sensitivity
curves are negligibly small and are not visible when
plotted.

We show that the distribution of selected hyperparameters with the CHTB is narrow and consistent
over simulated experiments, unlike parameters chosen independently for each environment. Because
conclusions are often drawn by aggregating results over environments—either formally as in the
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CHTB or informally by counting wins—reporting results over a consistent and narrow distribution of
hyperparameters leads towards lower variance claims and greater reproducibility.

Figure 8 demonstrates the wide range of stepsizes used to draw conclusions using repeated applications
of the conventional per-environment tuning approach and the relatively narrow range used by repeated
applications of the CHTB. DQN does not have a consistently good stepsize setting that solves every
environment, or even a majority of environments. Several sensitivity curves have fairly opposite
performance for a given stepsize, demonstrating the difficulty in picking a single stepsize with which
to evaluate DQN.

Previous works generally investigate sensitivity over hyperparameters on each environment individu-
ally. This within-environment investigation empirically shows the deviation in performance of an
algorithm if different settings of a hyperparameter were used, indicating the difficulty of selecting
hyperparameters for just that environment. Our goal is slightly different. We seek to measure the
difficulty of selecting hyperparameters across multiple environments. Consider DQN’s sensitivities in
Figure 8. By looking at Acrobot, Cartpole, and Mountain Car—a commonly used suite of classic
control environments—we might conclude that DQN is across-environment insensitive because it
is simultaneously within-environment insensitive for these environment. However, expanding our
investigation by including Puddle World we see again that DQN is within-environment insensitive,
but across-environment highly sensitive; Cartpole and Puddle World have very few overlapping good
stepsizes. Adding the Lunar Lander environment and it is clear that DQN is not within-environment
insensitive, and as such is highly unlikely to be across-environment insensitive as well.

B.2 Tuning on a subset

Figure 9: Outcome of the CHTB when using two randomly selected domains to tune hyperparameters,
then evaluating hyperparameters on all six domains. Each of the 10k simulated experiments use
three seeds to select hyperparameters, then 250 seeds to evaluate performance.

In Section 5, we investigate the impact of using a subset of environments to tune hyperparameters
while reporting results on the full set of environments. We demonstrated the high variance of
conclusions using two randomly selected domains for each simulated experiment and using 100
random seeds to pick hyperparameters. In Figure 9, we demonstrate even greater variance in
conclusions when using only three seeds to pick hyperparameters; using a consistent number of seeds
as the rest of our prior evaluation. In this setting, the correct ordering of algorithms is detected
in only approximately 40% of experiments, with distinguishing between QLearning and ESARSA
providing the largest source of error. Notice also that the variance in Lunar Lander for DQN is such
that the 95% confidence interval about the mean states that the true mean is 95% likely to lie in
the interval [0.05, 0.98] where the performance metric is bounded between 0 and 1. In other words,
evaluating the performance of DQN on Lunar Lander using this experimental design is effectively
useless.
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Figure 10: Outcome of the CHTB when using three randomly selected domains to tune hyperpa-
rameters. Each of the 10k simulated experiments use 100 seeds to select hyperparameters, then 250
seeds to evaluate performance.

We continue our investigation of using a subset of environments to select hyperparameters in Figures 10
and 11 where we use three of six environments and four of six environments respectively. In both
figures we use 100 random seeds to select hyperparameters, consistent with Figure 5 in Section 5.
In Figure 10, the variance in overall conclusions is notably smaller than when using two of six
environments to select hyperparameters. This experimental design allows distinguishing between
DQN and DeepQ reliably, but still fails to distinguishing the performance of QLearning and ESARSA.
The variance of DQN on Lunar Lander still provides a comically large confidence region.

Figure 11: Outcome of the CHTB when using four randomly selected domains to tune hyperpa-
rameters. Each of the 10k simulated experiments use 100 seeds to select hyperparameters, then 250
seeds to evaluate performance.

Figure 11 uses four of six environments with 100 random seeds for each hyperparameter setting
to select hyperparameters. The confidence region around DQN and DeepQ indicates a clear and
meaningful ordering in the performance of the deep RL algorithms across these environments. Still
QLearning and ESARSA remain indistinguishable. The variance on individual environments is
sensible, allowing some conclusions to be drawn with confidence especially when comparing DeepQ
and DQN. We point out that the computational savings of using four of six environments is entirely
negated by the number of random seeds required to select hyperparameters in this experimental design,
calling to question the utility of subselecting environments. This suggests that this experimental
design is likely not yet appropriate for use in RL due to high variance in conclusions—at least until
future algorithm development yields algorithms with significantly less across-environment sensitivity.
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B.3 Performance distributions

Figure 12 demonstrates that the shapes of the performance distributions are highly inconsistent
across environment and choice of stepsize parameter. It is clear that assuming normality of the
data is in general impossible, even for these simple algorithms and small domains. Experiments
that use only a small number of random seeds—especially when maximizing over repeated trials,
or cherry-picking over completed results—are highly unlikely to capture the bimodality and skew
present in many of these distributions. Consider, for instance, the Lunar Lander environment with
DQN. Using a small number of random seeds—for instance three—it is highly unlikely that the
long-tail of the distribution for stepsize α = 2−9 is accurately captured. Instead, the most likely
outcome is that the mean of the high-performing mode is reported, ignoring the instability of the
DQN algorithm.

Cartpole Acrobot CliffWorld

PuddleWorld Lunar Lander Mountain Car
Figure 12: Various slices of P(G | E, θ) for all E ∈ E and a subset of Θ for the DQN algorithm. Every
distribution is estimated with a Gaussian kernel density estimator and 250 samples. The supports
for the distributions are computed by finding the absolute min and max run for the visualized
hyperparameter settings. This means, for instance, that at least one run shown on Mountain Car
achieved a performance of approximately -200 return, but was such a low probability event it is not
visible in these plots.

B.4 Results when using worst-case performance across environments

The prior evaluations of the CHTB all estimated E[NE(G) | θCHTB] with hyperparameters se-
lected to maximize this expectation. However, we could instead select hyperparameters accord-
ing to other statistics, for instance those with best performance on the worst-case environment,
maxθ minE E[NE(G) | E, θ]. We demonstrate in Figure 13 the outcome of the CHTB when θCHTB is
selected according to maximizing performance on the worst-case environment. Note the nested opti-
mization means the environment chosen may be different per algorithm and even per hyperparameter
setting.
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Figure 13: Performance of each algorithm over 10k bootstrap samples, where sample means are
computed with 3 runs. Hyperparameters are selected for maximizing performance of the worst-case
environment. Error bars show 95% bootstrap confidence intervals.

In general, the variability of conclusions made over 10k simulated applications of the CHTB is
much smaller than when estimating the mean over environments, as shown in Figure 13. We still
see high variance in the Lunar Lander environment for the two DRL algorithms, suggesting still
high sensitivity to the chosen hyperparameters. Because the worst-case environment for DQN is
Cartpole for many choices of hyperparameter, likewise Mountain Car for DeepQ, it is likely that these
environments largely dictate the choice of hyperparameter without regard for performance on Lunar
Lander. Under this worst-case benchmark, algorithm development improving the performance of
DQN on Cartpole would be highly rewarded while development slightly improving its performance on
Acrobot would have no effect. This is unlike conventional benchmarks where minute improvements on
already well-solved problems are rewarded similarly to large improvements on challenging problems.

B.5 DMControl demonstration

Figure 14 shows the per-environment performance for DDPG using both OU noise and Gaussian noise
evaluated using 30 runs of the θCHTB setting. In most cases, the performance of each exploration
method was not statistically significantly different. Although there is a large difference in the
WalkerRun environment, we point out this may be due to the CHTB trading-off performance on
other environments in order to pick a single hyperparameter setting; without explicit per-environment
experimentation this remains unclear.

C Further Experimental Details
In this section we include all experimental details used in Section 5, descriptions of the environments
used are included in Appendix C.1, and details about the DMControl demonstration from Section 6
are included in Appendix C.2.

The tile-coded agents both learn directly from the most recent observations without the use of a
replay buffer. We use stochastic gradient descent to optimize the agents, with stepsizes scaled by the
number of active tiles in the representation—equal to the number of tilings used by the tile-coder
except in the special case of Lunar Lander. Like their deep RL counterparts, we use ϵ-greedy policies
to train the tile-coding agents with ϵ = 0.1 for all experiments.

C.1 Small control environments

In this section, we describe the environments used to evaluate the CHTB in Section 5. Our goal
in environment selection was to highlight differences between the demonstrative algorithms, while
simultaneously using small enough environments to feasibly collect an extensive dataset to justify
our experiment design. Because all of our demonstrative algorithms use ϵ-greedy action selection as
their sole form of exploration, we avoid environments where exploration is a particular challenge as
this would not help in distinguishing between algorithms.

For the Acrobot environment (Sutton, 1996), we use the implementation from Brockman et al.
(2016). Acrobot has a medium-sized observation dimension with six observable values, making
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feature representation challenging for tile-coding agents. Similarly, we include the Lunar Lander
environment (Brockman et al., 2016) as its observation dimension is too large for tile-coding to
successfully generate a useful representation. Lunar Lander additionally has a highly shaped reward
function, making the learning dynamics very different from all other included environments.

For the Cartpole (Barto et al., 1983) and Mountain Car (Moore, 1990) environments, we likewise
use the implementation from Brockman et al. (2016). Both environments have a small observation
dimension, making the feature representation amenable to tile-coding. Prior results have suggested a
stark difference in performance between DQN and DeepQ on these environments, suggesting their
utility in distinguishing between algorithms.

Lastly, CliffWorld (Sutton and Barto, 2018) and PuddleWorld (Sutton, 1996) are both two dimensional
gridworlds. The small observation dimension is easier for tile-coding agents to represent and presents a
challenge for neural network based agents. CliffWorld is commonly used to showcase large differences
between on-policy and off-policy algorithms (Sutton and Barto, 2018), making it a good choice for
differentiating between the three Q-learning based agents and ESARSA. Additionally, the sudden
large negative reward obtained from falling off the cliff could cause high variance updates for mean
squared based algorithms, suggesting a slight advantage for DQN. PuddleWorld uses a dense reward
function with shaping, making it similar to Lunar Lander.

C.2 Details about DM Control demonstration

The demonstration in Section 6 was generated using the Acme codebase of RL algorithms (Hoffman
et al., 2020). We reuse as much code from Acme as possible to maintain similarity in empirical setup
and computational cost with prior works coming from this lab, e.g Tassa et al. (2018); Lillicrap et al.
(2016); Barth-Maron et al. (2018). We use the default hyperparameters and network architectures for
all experiments and environments as in Acme, except for those which we swept. We used 3 random
seeds for each environment and hyperparameter setting to select hyperparameters according to the
CHTB, then we perform an additional 30 runs to evaluate θCHTB.

For the hyperparameter sweep, we evaluated stepsize α ∈ {10−4, 10−3, 10−2} for the critic and
η ∈ {100, 10−1, 10−2} where β = ηα and β is the stepsize for the actor network. We use the ADAM
optimizer with default parameters. We additionally swept over target network types, using either
Polyak averaging with moving average parameter βtn = 0.001 or a hard refresh every 100 steps.
Finally, we swept the standard deviation of the exploration noise σ ∈ {0.05, 0.1}—a slight deviation in
ranges tested by previous works as we noticed σ > 0.1 was rarely a good choice on most environments,
but σ < 0.1 was often required to obtain better than random performance on several environments
(e.g. Acrobot).

All experiments run for a maximum of 300k learning steps and use an infinite replay buffer. On every
environment interaction after the first 1000 steps, the DDPG agent made a mini-batch update using
a mini-batch size of 64. To maintain consistency with prior works, a soft-termination occurs after
1000 steps in an episode.

Finally, we include the hyperparameters selected by the DMC-CHTB. Both DDPG and DDPG-OU
selected the same hyperparameters when using the DMC-CHTB. Defaults taken from the Acme
codebase (Hoffman et al., 2020), as was the code implementation.
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{
" max_steps ": 300000 ,

" metaParameters ": {
" actor_stepsize_scale ": 1.0 ,
" critic_stepsize ": 1e-4,
" discount ": 0.99 ,
" target_update ": 0.001 ,

" buffer_size ": " infinite ",
" min_replay_size ": 1000 ,
" steps_per_update ": 1,
" batch ": 64,

" n_step ": 1,
" sigma ": 0.1 ,
" theta ": 0.15 ,
"mu ": 0.0 ,
" clipping ": false ,

" obs_weights ": [[400 , 400]] ,
" policy_weights ": [[300 , 200]] ,
" critic_weights ": [[400 , 300]] ,

}
}
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DDPG - Gaussian DDPG - OU

Figure 14: Per-environment performance differences for every environment in the DMControl suite.
Error bars show 95% confidence intervals using 1k bootstrap samples. Performance is averaged over
30 independent runs. 2319
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Abstract

A central challenge for autonomous vehicles is coordinating with humans. Therefore,
incorporating realistic human agents is essential for scalable training and evaluation of
autonomous driving systems in simulation. Simulation agents are typically developed
by imitating large-scale, high-quality datasets of human driving. However, pure
imitation learning agents empirically have high collision rates when executed in
a multi-agent closed-loop setting. To build agents that are realistic and effective
in closed-loop settings, we propose Human-Regularized PPO (HR-PPO), a multi-
agent algorithm where agents are trained through self-play with a small penalty for
deviating from a human reference policy. In contrast to prior work, our approach is
RL-first and only uses 30 minutes of imperfect human demonstrations. We evaluate
agents in a large set of multi-agent traffic scenes. Results show our HR-PPO agents
are highly effective in achieving goals, with a success rate of 93%, an off-road
rate of 3.5 %, and a collision rate of 3 %. At the same time, the agents drive in
a human-like manner, as measured by their similarity to existing human driving
logs. We also find that HR-PPO agents show considerable improvements on proxy
measures for coordination with human driving, particularly in highly interactive
scenarios. We open-source our code and trained agents at https://github.com/
Emerge-Lab/nocturne_lab and share demonstrations of agent behaviors at https:
//sites.google.com/view/driving-partners.

1 Introduction

Developing autonomous vehicles (AVs) that are compatible with human driving remains a challenging
task, especially given the low margin for error in the real world. Driving simulators offer a cost-
effective and safe means to develop and refine autonomous driving systems. The purpose of these
simulators is to prepare AVs for real-world deployment, where they must smoothly interact and
coordinate with a diverse set of human drivers. Therefore, a crucial aspect of both learning and
validation in these simulators involves realistic simulations: the traffic scenarios and other simulation
agents with which the controlled AV interacts. To identify where driving policies fall short, it is
important to ensure that the simulated traffic conditions and driver agents closely resemble those in
the real world Gulino et al. (2023); Muhammad et al. (2020).

Existing driving simulators typically provide a set of baseline agents to interact with, such as
low-dimensional car following models, rule-based agents, or recorded human driving logs (Treiber
et al., 2000; Gulino et al., 2023; Dosovitskiy et al., 2017). While these agents provide a form of
interactivity, they are limited in their abilities to create interesting and challenging coordination
scenarios, which requires driving agents that are reactive and sufficiently human-like. Having effective
simulation agents that drive and respond in human-like ways would facilitate the controlled generation
of human-AV interactions, which has the potential to unlock realistic training and evaluation in
simulation at scale. Additionally, it would reduce the need for continuous real-world large-scale data
collection.
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Building human-like driving policies is an ongoing challenge. Existing simulated agents are either (1)
quite far from human-like behavior (2) struggle with achieving closed-loop stability or (3) frequently
get stuck in deadlocks. A ubiquitous way to generate driving policies has been through imitation
learning, where a driving policy is learned by mimicking expert behavior using recorded actions from
human drivers (Pomerleau, 1988; Xu et al., 2023). Unfortunately, such policies still have high crash
rates when put in a multi-agent closed-loop setting where they have to respond to the actions of
other agents (Montali et al., 2024). Another approach that has been explored to achieve closed-loop
stability is multi-agent RL (Vinitsky et al., 2022). While in principle perfect closed-loop driving may
be achieved via self-play, there is no guarantee that the equilibrium the agents find will be at all
human-like. For example, self-play agents have no a priori reason to prefer driving on the left side
of the road vs. the right. Similarly, because every agent is aware that other agents are a copy of
themselves, they may feel comfortable driving much closer to each other than human comfort and
reaction times would allow.

As a step towards effective and realistic driving partners for simulation, we propose Human-
Regularized PPO (HR-PPO). HR-PPO is an on-policy algorithm that includes an additional
regularization term that nudges agents to stay close to human-like driving. Concretely, our contribu-
tions are:

• We show that adding a regularization term to PPO agents trained in self-play leads to agents
that are more compatible with proxies for human behavior in a variety of scenarios
in Nocturne, a benchmark for multi-agent driving.

• Our results also show that effectiveness (being able to navigate to a goal without colliding)
and realism (driving in a human-like way) can be achieved simultaneously: Our HR-
PPO agents achieve similar performance to PPO while experiencing substantial gains in
human-likeness.

• We also show the benefits of training in multi-agent settings: HR-PPO self-play agents
outperform agents trained directly on the test distribution of agents. This
suggests that multi-agent training may provide additional benefits over single-agent training
(log-replay).

2 Methods and background

2.1 Human-Regularized PPO

Let ot, at denote the observation and action at time step t and r(o, a) the instantaneous reward
for the agent that executes action a in state o. The history up to time T is defined as xt =
(o1, a1, . . . , aT −1, oT ) (e.g. data collected from a rollout). The basic form of a KL-regularized
expected reward objective is defined as:

Eπ

[
T∑

t=0
γtr(ot, at) − λ · DKL

(
τ(· | ot) ∥ π(· | ot)

)]

where π is the most recent stochastic policy, τ is a stochastic behavioral reference policy
obtained from a dataset D and λ denotes the regularization weight. The KL divergence is defined
as the expectation of the logarithmic differences between the pre-trained (fixed) human-policy and
RL policy action probability distributions. For a single observation o and discrete actions, the KL
Divergence between the action distributions is defined as:

DKL( τ(· | o) || π(· | o) ) =
∑

a∈A
τ(a) · log

(
τ(a)
π(a)

)

where our action space |A| = 651. We use the KL-divergence between τ and π as a regularization
term added to the standard Proximal Policy Optimization (PPO) objective (Schulman et al., 2017)
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to obtain Human-Regularized PPO:

LHR-PPO
t (θ) = (1 − λ) · LPPO

t (θ) + λ · DKL(τ∥π)

where λ is a hyperparameter that determines the importance of both objectives. For details on the
trained behavioral reference policy distributions, see Appendix C. For training and implementation
details, see Appendix D. We implement our code based atop Stable Baselines3 (Raffin et al.,
2021).

Expert demonstrations We obtain a dataset of observation-action pairs Dk =
{(oi

t, ai
t), . . . , (oN

T , aN
T )}N

i=1 for N vehicles and T = 80 time steps, for a set of K traffic scenar-
ios in the Waymo Open Motion Dataset (WOMD) (Ettinger et al., 2021). The human driver
(“expert”) actions (acceleration, steering) are inferred from the positions and velocity of the observed
positions using a dynamic bicycle model (Gulino et al., 2023). As the scenarios are recorded by
fusing sensors onboard an autonomous vehicle (AV), the inferred positions of the AV are of higher
quality compared to those of surrounding non-AV vehicles, which tend to have more noise. Therefore,
we only use the demonstrations from the AV vehicles. To illustrate the difference between AV and
non-AV demonstrations, Table 5 contrasts the performance under different conditions, and Figures
10, 11, and 12 show several randomly sampled trajectories in the dataset.

Imitation Learning We train a Behavioral Cloning (BC) policy on the shuffled dataset of
observation-action pairs to an open-loop accuracy of 97-99%. The dataset, D = {(oi, ai)}(T ·K)

i=1 is
obtained from K = 200 scenarios with T = 90 time steps, which is equal to just 30 minutes of
driving data. We obtain the behavioral reference policy τ using the negative log-likelihood objective
to the expert demonstrations:

τNLL = arg min
τ∈T

N∑

i=1
− log τ(ai | oi)

and implement the algorithm using the imitation package (Gleave et al., 2022). Table 1 compares
the performance of BC policies trained and evaluated on randomly assigned vehicles to only AV
vehicles. We also show the performance obtained with the discretized expert actions (top-row), which
is an upper bound on performance with this action space. Our BC policy trained on only the AV
demonstrations performs better when used to control either the AVs or the random (non-AV) vehicles
in the scenarios. Therefore, we select this policy as a regularizer in the multi-agent human-regularized
PPO setting.

Table 1: Imitation Learning (IL) performance.

Agent Action Space Generate data from Evaluate on Off-road Rate (%) Collision Rate (%) Goal Rate (%)
Expert-actions 21 × 31 AV only AV only 9.2 3.3 78.0
BC 21 × 31 AV only AV only 11.0 4.0 73.1
BC 21 × 31 AV only Random vehicle 16.0 10.4 51.0
BC 21 × 31 Random vehicle AV only 17.8 9.0 48.4
BC 21 × 31 Random vehicle Random vehicle 17.2 7.6 46.2

2.2 Environment details

2.2.1 Dataset and simulator

We use Nocturne (Vinitsky et al., 2022), a 2D multi-agent driving simulator that runs at 2000+ FPS
built on top of the Waymo Open Motion Dataset (WOMDB; (Ettinger et al., 2021)) for training and
evaluation. For the training dataset, we partition 10,200 randomly chosen traffic scenarios into 200
for training and 10,000 for testing. Each traffic scenario is 9 seconds, which is discretized at 10 hertz.
We use the first second as a warmup period that provides agents with context, so each episode has
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80 steps. Details on the dataset, such as the number of vehicles per scene and the interactivity of the
scenarios can be found in Appendix A.

2.2.2 Partially observable driving navigation tasks

At initialization, every vehicle in a scenario starts at a fixed position xi
0 = (xi

0, yi
0) and is assigned a

fixed goal position xi
g = (xi

g, yi
g). A vehicle obtains the sparse reward when its center is within a

tolerance region of its goal position: ∥xi
t − xg∥2 < δ before the end of the episode, which is at most

80 steps. The goal positions are fixed and set to the last point from every logged vehicle trajectory.
We set the tolerance region to δ = 2 meters. Vehicles are removed from the scene when they go
off-road or collide with another agent.

2.2.3 State space

A vehicle i has two main sources of information about the environment. The first is the ego state,
si ∈ R10, which includes the speed, the vehicle length, and width, its current speed, the distance
to the goal position, the angle to the goal position (target azimuth), the heading and speed at
goal position from the logged trajectory, the current acceleration and the current steering position.
Secondly, the vehicle has a partial view of the traffic scene which is constructed by parameterizing
the view distance, head angle, and cone radius of the driver vi ∈ R6720 and contains the road graph
information, vehicle objects and the positions and speeds of the other vehicles that are within its
field of view. Figure 1 shows an example scene in Nocturne with the obstructed vehicle view. We
denote the full observation for a vehicle i as oi = [si, vi]. The observations are all relative to every
agent’s own ego-centric frame. In this work the cone radius is always 180 degrees and the radius of
the cone is 80 meters.

Figure 1: LHS: A bird’s eye view of an example scenario in the training dataset from the perspective
of the green agent in the bottom center. RHS: Agents only have a partial view of the environment
and must plan under uncertainty.

2.2.4 Action space

At each time step, all agents simultaneously take actions. An action is a 2-dimensional tuple with
the vehicle’s acceleration and steering wheel angle. We create a joint action space by discretizing the
actions (acceleration, and steering) into a grid of 21 x 31 = 651 actions. The steering wheel angle
lower bound is set to -0.3 radians and the upper bound to 0.3 radians. The acceleration bounds are
-4 and 4 m/s2.

2.3 Reward function

In our agent-based simulation, we provide sparse rewards to agents when they reach their goal
position before the end of the 80-step episode. If an agent reaches its goal, it receives a reward of
+1. Otherwise, it receives a reward of 0. The goal-achieved condition is satisfied when the vehicle
is within a tolerance region of 2 meters from the target position. If a vehicle collides with another
vehicle, goes off the road, or achieves its goal, it is removed from the scene. The reward function
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is intentionally simplified, omitting common additions such as reducing the distance to the goal,
maintaining a safe distance from other vehicles, or following road rules. This is done so that all of
these components can emerge from imitation regularization, rather than being hardcoded in.

3 Experiments and results

3.1 Baselines and implementation details

We use self-play to train HR-PPO agents in scenarios where we control all the vehicles in the scene,
with a maximum of 43 controlled vehicles. Full implementation details, including the architecture,
hyperparameters, and compute used, are found in Appendix D. We compare HR-PPO agents with
four different baseline training methods:

• Multi-agent PPO: Self-play while controlling all vehicles in the scene, without regularization.
• Single-agent PPO: Sample a random agent at reset to control, step the rest of the agents in

log-replay.
• Single-agent HR-PPO: Add regularization but all but one random agent is in log-replay.
• Behavioral Cloning: The behavioral reference policy.

3.2 Evaluation metrics

We evaluate our driving agents based on two classes of metrics, as shown in Figure 2. We refer to the
first category as Effectiveness, which measures how well driving agents can achieve their goal safely,
without colliding or going off-road. The second category, Realism, assesses how closely the driving
behavior of the agents matches that of human drivers in the dataset. We use a variation of the Average
Displacement Error (ADE) to measure the deviation from the logged human trajectories. In contrast
to the trajectory prediction setting, our agents are goal-conditioned and thus they don’t have to do
inference over their own target goal positions. To distinguish this from the metric used in trajectory
prediction, we refer to the metric as the Goal Condtioned ADE (GC-ADE). Additionally, we
examine the absolute differences between the human expert actions and the policy-predicted steering
wheel angle and acceleration at each time step. Full details on the metrics are in Appendix E.

ADE Action differences

RealismEffectiveness

goal  
     

     
     

     
  

ach
iev

ed

off-road

steering          
+ accel

Figure 2: Overview of metrics used for evaluation. Left: Agents achieve their goal if they reach the
target (color-coded circles) without collisions before the episode ends (80 steps). In this example, the
goal rate is 1/3 (only the yellow car reaches its goal), the off-road rate is 1/3 (the green car hits a road
edge) and the collision rate is 0 (no vehicle crashes with another vehicle). Right: Realism metrics
concern how agents navigate to their goal positions, that is, the extent to which the policy-generated
trajectories (orange) resemble the logged human ones (green).

3.3 Aggregate performance

Table 2 shows our aggregate performance. We compare the performance of HR-PPO agents to
the baselines on the full train dataset, which consists of 200 traffic scenarios, and the test dataset,

2324



RLJ | RLC 2024

consisting of 10, 000 unseen traffic scenarios. Scenarios have between 1 and 58 vehicles, with an
average of 12. We consider two evaluation modes:

• Self-replay indicates the setting where we are using a trained policy to control all vehicles
in the scenario.

• Log-replay indicates that we sample a single, random, vehicle in the scene to control, and the
rest of the vehicles are stepped using the static human replay logs. To reduce randomness
in the performance, we sample each scenario in the dataset 15 times, given that an average
of 13 vehicles are included in each scenario. This is distinct from the definition of log-replay
in other works (Gulino et al., 2023) where only the AV vehicle (the vehicle used to collect
data) is controlled.

We highlight our main findings below.

Agents trained in self-play exhibit the highest performance across all modes: In closed-
loop self-play, the HR-PPO and PPO agents trained in multi-agent mode using self-play achieve
the highest performance overall: HR-PPO has a goal rate of 93.35 %, an off-road rate of 3.51%,
and a collision rate of 2.98 %. PPO has a similar goal rate and off-road rate, with a slightly higher
collision rate of 3.97 %. The standard errors across scenarios are small, typically between 0.5 and 1%.
Further, we observe that training in a multi-agent self-play setting is more effective than training in
single-agent settings across all test conditions. We find that self-play HR-PPO and PPO agents both
outperform their single-agent variants by 10-14%. Surprisingly, even in log-replay evaluation mode,
where the self-play agents encounter previously unseen human driving agents, the HR-PPO self-play
agents still achieve a 3% improvement over agents trained directly against the human driving logs.

Agent-generalization gap decreases using HR-PPO: Agents trained in self-play typically
overfit their training partner. To assess how well the agents can generalize to the unseen human
drivers, we compare the change in performance when we switch from self-play to log-replay .
Table 2 shows that HR-PPO agents have the highest log-replay performance overall and show an
improvement of 11% in goal rate and a 14% improvement in collision rate to PPO. Separately, we
notice that the train - test gap, which combines both agent generalization and scene generalization,
is negligible for BC and small for both PPO and HR-PPO, especially given that we train on 200 and
evaluate on 10,000 scenes. Overall the performance decreases by approximately 1-8%.

3.4 Driving in a human-like way

Human-like and effective driving agents. We aim to construct useful driving agents that can
navigate effectively and resemble human driving behavior. To test whether these two properties can
be achieved simultaneously, we contrast several existing realism metrics against the effectiveness of
agents (Details of the metrics in Section 3.2). Across all four human similarity metrics, we observe
that significantly more human-like behavior can be achieved for a minimal or even no trade-off in
performance. For instance, Figure 3 shows that HR-PPO with a regularization weight of λ = 0.06
has a Goal-Conditioned Average Displacement Error (GC-ADE) of 0.54, which is a 60% improvement
to PPO (GC-ADE is 1.32), for a decrease in goal rate of 1%, and increase in off-road rate of less
than 1%. We observe the same pattern when we compare the policy-predicted actions to the logged
human driving logs, as shown in Figures 4,20, and 19. These measures hold when evaluated in a
single-agent setting where we control only the AV vehicles (shown in Table 4) as well as the setting
where we control all vehicles in the scene (Table 3).

Natural correction for bad actions. Datasets of human driving may contain noise or undesirable
actions. For instance, in our dataset, the off-road rate of replaying the expert actions is quite high (>
12%). However, we observe that HR-PPO agents, which are trained with these imperfect behavioral
cloning actions, learn to ignore a large fraction of them and instead achieve an off-road rate between
2-4%. This finding suggests that it may not be necessary to have a near-perfect BC policy as the
regularizer as RL can compensate for some of the weaknesses of the regularization policy.
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Table 2: HR-PPO performance compared to baselines. We report the aggregate mean performance
and standard errors across scenarios. Log-replay indicates that the agent is evaluated in a single-agent
setting where all the other agents are replaying static human driving logs. Self-play indicates that all
agents in the environment are controlled. The performance means and deviations across seeds are
shown in Figure 22 and Table 8 in the Appendix.

Agent Train mode Dataset Eval mode Goal Rate (%) Off-road Rate (%) Collision Rate (%)

BC -
Test Log-replay 43.95 ± 0.57 19.05 ± 0.51 14.40 ± 0.41

Self-play 49.22 ± 0.12 15.45 ± 0.11 14.11 ± 0.09

Train Log-replay 51.65 ± 0.58 14.55 ± 0.44 12.00 ± 0.41
Self-play 50.23 ± 0.59 13.13 ± 0.40 13.97 ± 0.40

HR-PPO

Single-agent
Test Log-replay 72.65 ± 0.45 11.90 ± 0.34 11.35 ± 0.34

Self-play 76.50 ± 0.09 9.44 ± 0.07 10.32 ± 0.07

Train Log-replay 80.15 ± 0.38 8.75 ± 0.29 7.70 ± 0.25
Self-play 80.15 ± 0.32 6.18 ± 0.23 9.85 ± 0.22

Multi-agent
Test Log-replay 76.30 ± 0.45 9.25 ± 0.34 14.65 ± 0.34

Self-play 86.73 ± 0.09 6.66 ± 0.07 6.40 ± 0.07

Train Log-replay 83.75 ± 0.38 5.55 ± 0.29 10.10 ± 0.25
Self-play 93.35 ± 0.32 3.51 ± 0.23 2.98 ± 0.22

PPO

Single-agent
Test Log-replay 71.70 ± 0.44 10.25 ± 0.32 19.50 ± 0.36

Self-play 77.50 ± 0.09 9.99 ± 0.07 13.20 ± 0.08

Train Log-replay 81.10 ± 0.40 7.55 ± 0.27 12.55 ± 0.33
Self-play 83.44 ± 0.38 6.49 ± 0.23 10.61 ± 0.31

Multi-agent
Test Log-replay 67.40 ± 0.44 7.00 ± 0.32 27.30 ± 0.36

Self-play 85.70 ± 0.09 5.93 ± 0.07 8.94 ± 0.08

Train Log-replay 72.80 ± 0.40 4.30 ± 0.27 24.20 ± 0.33
Self-play 93.44 ± 0.38 3.13 ± 0.23 3.97 ± 0.31
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Figure 3: Goal-Conditioned Average Displacement Error (GC-ADE) to logged human driver positions
against effectiveness metrics conditioned on knowing the goal. Policies are evaluated on the training
dataset of 200 scenarios.

Table 3: Mean and standard error across the 200 scenarios in the training dataset, controlling all
vehicles in every scenario (Self-play). The reported HR-PPO performance is with λ = 0.06 (green
square in the Figures above).

GC-ADE Accel MAE Action Acc. (%) Speed MAE Steer MAE
Agent
BC 0.31 ± 0.01 1.71 ± 0.02 5.61 ± 0.02 0.84 ± 0.02 0.02 ± 0.00
HR-PPO 0.54 ± 0.01 2.09 ± 0.02 3.25 ± 0.01 1.82 ± 0.03 0.02 ± 0.00
PPO 1.32 ± 0.03 3.93 ± 0.02 0.20 ± 0.00 5.07 ± 0.08 0.08 ± 0.00
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Table 4: Mean performance and standard errors across the training dataset of 200 scenarios, controlling
only the AV vehicle in every scenario. This is distinct from the log-replay setting where a random
vehicle is set as controlled. The reported HR-PPO performance is with λ = 0.06.

Agent GC-ADE Accel MAE Action Acc. (%) Speed MAE Steer MAE Goal Rate (%) Off-Road Rate (%) Collision Rate (%)
BC 0.08 ± 0.01 0.41 ± 0.02 0.22 ± 0.01 0.09 ± 0.01 0.01 ± 0.00 69.50 ± 1.68 11.00 ± 2.21 6.00 ± 1.68
HR-PPO 0.56 ± 0.03 1.15 ± 0.06 0.10 ± 0.01 1.83 ± 0.08 0.01 ± 0.00 90.00 ± 2.12 1.50 ± 0.86 8.50 ± 1.97
PPO 1.22 ± 0.06 3.92 ± 0.05 0.00 ± 0.00 4.77 ± 0.19 0.09 ± 0.00 71.50 ± 3.19 2.00 ± 0.99 28.00 ± 3.17
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Figure 4: Steering MAE against effectiveness metrics.

3.5 Coordinating with human drivers

We explore the ability of HR-PPO agents to coordinate with human drivers in interactive scenarios.
Since we cannot directly interact with human drivers, we use the available driving logs as a proxy
instead. We compare the collision rates between self-play mode, where all agents are controlled by a
single policy, and log-replay mode, where a single random agent is controlled by our policy, and the
rest of the agents are controlled by human driving logs. By swapping out only the agents in identical
scenarios, we can isolate errors caused by the inability to anticipate other agents’ actions.

Figure 5 compares the effectiveness of BC, PPO, and HR-PPO agents in different evaluation modes.
PPO performs well when interacting with agents of the same kind but struggles when facing unseen
human driver replay agents. Overall, there’s a significant increase in collision rates, exceeding 20%,
when switching from self-play mode to log-replay mode. HR-PPO also experiences a rise in collision
rates, but to a lesser extent, with an increase of 7%. In log replay, HR-PPO outperforms the base
BC agent in terms of collision rates while also achieving a much higher goal rate.
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Figure 5: Overall performance gap between evaluating in self-play vs. log-replay settings across the
200 training scenarios.

The effectiveness of HR-PPO agents in coordinating is more visible when we examine the collision
rate as a function of the number of intersecting paths vehicles encounter (Details in Section E.3),
which is shown in Figure 6. Notably, the collision rate for PPO consistently increases as trajectories
become more interactive, with collisions occurring between 40-65% of vehicles when encountering one
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or more intersecting paths. In contrast, the collision rate for HR-PPO shows only a slight increase of
approximately 5-8% compared to its self-play collision rate, remaining relatively stable regardless
of scene interactivity. It is worth noting that this improvement is not quite evident based on the
aggregated performance metrics because more than 70% of all agent trajectories in the dataset do
not intersect with other vehicles. Altogether, our results suggest that HR-PPO agents are more
compatible with human driving behavior.
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Figure 6: Collision rate as a function of the number of intersecting paths (a proxy for interactivity)
of a vehicle trajectory on the training dataset.

What makes HR-PPO agents more compatible with the human logs? To find out, we conduct
a qualitative analysis. After analyzing the driving behavior of PPO and HR-PPO agents in 50
randomly sampled scenarios, we conclude that the lower collision rates can be attributed to two
main factors. First, the HR-PPO agent’s driving style aligns better with human logs, enabling
a higher level of anticipation of other agents’ actions. Secondly, HR-PPO agents maintain more
distance from other vehicles, which reduces the risk of collisions. A subset of videos are available at
https://sites.google.com/view/driving-partners

Regularization ensures that policies are more consistent with a reference distribution, in our case the
human driving logs. This is also evident when we plot the statistical divergence between policies
during training as shown in Figure 7. On the left side, we see that the PPO and HR-PPO learning
curves are similar, indicating that both agents learn to navigate effectively. On the right side, we
plot the KL divergence between the human and RL policies across training. In the case of PPO, the
divergence increases indefinitely, while for HR-PPO, the divergence remains small. Although both
policies seem to converge from the reward curves, the resulting driving behaviors are fundamentally
different.
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Figure 7: Comparison between a sampled PPO run (purple) and an HR-PPO run with a regularization
parameter λ = 0.06 (orange). Left: Episodic returns averaged over rollouts. Right: The KL-divergence
between the human reference policy τ(· | o) and the RL policy π(· | o) and the entropy of the human
reference policy evaluated over the distribution of states visited by π: H(τ(· | o)).
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3.6 HR-PPO failure cases

We analyzed 100 scenarios each from the train and test datasets in log-replay mode to understand
the type of errors HR-PPO agents make. We identify three types of failure modes and describe them
below. Example videos for each group are shared on our project page under “HR-PPO failure cases”.
Of the 200 sampled scenarios, 6% of the training dataset and 21% of the test dataset has a failure.
The failures are broken down as follows:

1. Sharp turns: About 25% of failures result from off-road events due to challenging turns or
target positions.

2. Coordination: Approximately 35% of failures are due to collisions resulting from the failure
to anticipate human driving log behavior.

3. Setting-related bugs/failures: Around 35% of failures are caused by unreachable target
positions or other noise/errors in the dataset.

This indicates that while there is room for improvement in coordination, the majority of failure cases
(approximately 60%) are due to dataset bugs or kinematically challenging goal positions or routes.
Due to the high collision rate of the BC policy (26-33% combined, of which 12-14% vehicle collisions
and 14-19% off-road events), it is difficult to see if it is actually experiencing coordination failures.
Therefore, studying the qualitative differences between coordination failures between HR-PPO and
BC is left for future work.

4 Related work

Driving agents in simulation. There are four major approaches used in existing traffic simulators
to model human drivers. One class of methods uses low-dimensional car following models to
describe the dynamics of vehicle movement through a small number of variables or parameters (Kreutz
& Eggert, 2021; Kesting et al., 2007; Treiber et al., 2000). Rule-based agents have a fixed set of
behaviors. Examples of rule-based agents in driving simulators include car-following agents (Gulino
et al., 2023; Caesar et al., 2021; Lopez et al., 2018; Casas et al., 2010) such as the IDM model
and behavior agents that can be parameterized to drive more cautiously or aggressively such as
CARLA’s TrafficManager (Dosovitskiy et al., 2017). While car-following and rule-based agents can
respond to other agents and thus provide interactivity, it can be challenging for them to capture
the full complexity of human driving behavior and these agents frequently experience non-physical
accelerations or come to a deadlock in complex interactions. Some simulators provide the recorded
human driving logs which can be replayed to allow for interactions (Lu et al., 2023; Vinitsky et al.,
2022; Gulino et al., 2023; , FAIR; Caesar et al., 2021). Although these static models produce realistic
trajectories, they cannot respond to changes in the environment, such as other drivers. Finally,
some driving simulators include learning-based agents using reinforcement learning (Li et al.,
2022), however, these agents likely do not resemble human behavior. Our Human-Regularized PPO
approach aims to produce simulation agents that meet all these criteria to allow for the controlled
generation of challenging real-life interactions in simulation.

Imitation Learning and Supervised Learning. A canonical approach for developing learning-
based driving policies for autonomous driving has been through Imitation Learning (IL) (Pomerleau,
1988; Bojarski et al., 2016; Xu et al., 2023) and other supervised methods such as trajectory
prediction (Philion et al., 2023) and language-conditioned traffic scene generation (Tan et al., 2023).
IL works by mimicking expert behavior using recorded actions from human drivers. There are two
broad classes of IL: open-loop and closed-loop. Open-loop methods, like Behavioral Cloning (BC),
learn a policy without taking into account real-time feedback. As such, one limitation of open-loop
IL methods is that they suffer from compounding errors once deployed in closed-loop systems (Ross
et al., 2011). Closed-loop IL (Ng et al., 2000; Ho & Ermon, 2016; Fu et al., 2017; Igl et al., 2022;
Baram et al., 2017; Suo et al., 2021) improves upon this by letting the system adjust its actions
through ongoing interaction with the environment during training. While these methods provide
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enhanced robustness, they have not yet achieved high closed-loop performance when all agents are
controlled. In addition, our approach does not rely on large, high-quality datasets of human driving
data.

Multi-Agent Reinforcement Learning. Reinforcement learning techniques have been effective in
developing capable agents without requiring human data (Silver et al., 2016; 2018; Vinyals et al., 2019)
in zero-sum and collaborative games. While this approach has worked in a range of games (Strouse
et al., 2021; Bard et al., 2020), many games have multiple equilibria such that agents trained in
self-play do not perform well when matched with human-partners (Bakhtin et al., 2021; Hu et al.,
2020). In the driving setting, this challenge can partly be ameliorated through the design of reward
functions that encode how people drive and behave in traffic interactions (Pan et al., 2017; Liang
et al., 2018). However, it is not entirely clear what reward function corresponds to human driving
and the inclusion of this type of reward shaping can create undesired behaviors (Knox et al., 2023).
An alternate approach tries to create human compatibility through the design of training procedures
that restrict the set of possible equilibria (Hu et al., 2020; 2021) by ruling out equilibria that humans
are unlikely to play.

Combined IL + (MA)RL. Recent work has shown that augmenting IL with penalties for
driving mistakes can create more reliable policies. This has been demonstrated in both closed-
loop (Zhang et al., 2023; Wu et al., 2023) and open-loop (Lu et al., 2023) settings. Outside of the
driving domain, augmenting goal-conditioned single-agent reinforcement learning has been found to
enhance performance in the Arcade Learning Environment (ALE) Hester et al. (2018) and improve
the likelihood of convergence to the equilibrium in certain multi-agent learning settings (Lerer &
Peysakhovich, 2019; Hu et al., 2022). In multi-agent settings, it has empirically been shown to yield
policies more compatible with existing social conventions of the human reference group (Jacob et al.,
2022; , FAIR; Bakhtin et al., 2022). Our approach extends these works to the driving setting where
it has not yet been investigated in prior work if this type of data-driven regularization is sufficient to
enable convergence to a human-compatible policy.

5 Conclusion and future work

We presented Human-Regularized PPO (HR-PPO), a multi-agent RL-first approach that yields
effective goal-reaching agents that are more aligned with human driving conventions. We show that
HR-PPO agents achieve a high goal rate and low collision rate in a variety of multi-agent traffic
scenarios and exhibit human-like driving behavior according to several proxy measures. They also
demonstrate significant advancements in coordinating with human drivers compared to BC policies
trained directly on human demonstrations or PPO without regularization.

Several interesting challenges remain for future work. Firstly, due to computational constraints, we
limit training to a dataset of 200 traffic scenarios. We expect that scaling our approach to more
scenarios will enhance the generalization capabilities of agents and close the observed generalization
gap between train and test scenes. We also note that reported performance was from policies that
were still learning, indicating that better performance can be achieved with a faster simulation setup
or training for more steps. Furthermore, we expect that by improving the quality of the behavioral
cloning policies, the performance of the HR-PPO agents can be significantly enhanced. Although
the agents ignore many of the bad actions output by the BC model, they still imitate some of the
suboptimal actions, which can be observed by the increase in off-road rate as regularization increases.
Additionally, it is still to be seen if the agent generalization gap can be closed simply by increasing
the capability of the BC policy using more complex imitation methods such as GAIL (Ho & Ermon,
2016) or better architectures such as Diffusion Policies (Chi et al., 2023).

There are also opportunities for improving the evaluation of human-like driving agents. The desired
measure of performance is compatibility with human drivers, which can only be truly assessed via
real-world driving. Our current proxy measure for this real-world performance, testing in log-replay,
is imperfect as these drivers are not reactive. This both limits our ability to coordinate with them
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and also does not illuminate potential failure modes that could occur under reactivity. Alternative
proxy measures that could be considered in future work include testing across multiple seeds (referred
to as cross-play in the zero-shot coordination literature), testing with a variety of reactive agents
such as the IDM agents included in Waymax (Gulino et al., 2023) and NuPlan (Caesar et al., 2021),
or driving alongside humans operating in virtual reality.

Finally, there remain unresolved theoretical questions about the soundness of this approach. In
contrast to other works applying this type of regularization in the game literature, we do not have
access to the ground truth reward function. As such, we are relying on imitation learning to implicitly
complete these portions of the reward. It is not clear if the KL loss used can compensate for these
missing terms. Additionally, it would be interesting to understand whether there are settings under
which the inclusion of data drawn from the equilibrium can guarantee approximate convergence to
the equilibrium.
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A Data distribution and scene information

Train dataset. The left side of Figure 8 displays the distribution of the number of vehicles in our
training dataset of 200 traffic scenarios. On average, a scenario has 12 vehicles, with a maximum
of 43. During training we control all vehicles in a scene up to a maximum of 50 controlled vehicles.
Therefore, we always control all vehicles in the scene. On the right-hand side, we plot the distribution
of intersecting paths, where we have a total of 3,489 vehicle trajectories. We observe that in most
cases, expert vehicle trajectories do not intersect, which means 73% of the expert vehicles can reach
their target position without crossing the path of another vehicle. Of the remaining 27% of vehicles
whose paths intersect, most intersect once (19%, which is 667 vehicles), and a small set has two (5%;
182 vehicles) or three or more (3%; 104 vehicles) intersections.

Figure 8: Train data distribution; 200 scenarios.

Test dataset. Our test dataset consists of 10,000 scenarios. Figure 9 shows the distribution of
vehicles and intersecting paths in the test set, which is similar to the train dataset.
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Figure 9: Test data distribution; 10,000 scenarios.

Test dataset | Vehicles per scene
count 71653.00
mean 12.63
std 9.46
min 1.00
25% 6.00
50% 10.00
75% 17.00
max 58.00
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B Expert demonstrations

Table 5 contrasts the performance of the expert agents under different conditions: Expert-teleport
indicates the performance of agents that are stepped using the recorded position logs, Expert-actions
the performance of agents stepped using the inferred expert actions.

Table 5: Expert performance and effect of discretization. Tested in 2,000 random traffic scenarios.
We control a single vehicle and step the remaining vehicles in the scene in log-replay mode.

Agent Action space Action dim Controlled vehicle Off-road Rate (%) Collision Rate (%) Goal Rate (%)
Expert-teleport - - AV only 0 0 100
Expert-actions Bicycle Continuous - AV only 5.1 1.1 85.7
Expert-actions Bicycle Continuous - Random 6 1.8 84
Expert-actions Bicycle Discrete 31 x 101 AV only 5.1 1.2 83.5
Expert-actions Bicycle Discrete 21 x 31 AV only 9.2 3.3 78.0
Expert-actions Bicycle Discrete 21 x 31 Random 12.2 4.3 67.9

Several randomly sampled trajectories from the dataset. The green circle represents the tolerance
region around the goal position.
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Figure 10: AV trajectories
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Figure 11: AV trajectories
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Figure 12: non-AV trajectories

C Learned human reference policy distributions

The KL divergences obtained during the training process of Human-Regularized PPO are influenced
by the form of the observation-conditioned pre-trained human-policy distributions: τ(a | ot). This
section examines these distributions in detail. We use the entropy, or average Shannon information
H (Shannon, 1948), to quantify the level of uncertainty in a distribution:

H(τ(a | ot)) = −
∑

a∈A
p(a) ln (p(a))

with A = {0, 1, 2, . . . , 651} being our chosen joint action space where every integer points to an
acceleration, steering pair. For instance, the integer 325 points to the acceleration value 0 and the
steering wheel angle of 0 radians, meaning that the vehicle is moving straight at a constant speed.

Table 6 presents the entropy and probability of the sampled actions for the human reference policy
trained solely on AV demonstrations and Figure 13 (Left) displays the boxenplots. As expected,
we observe that the entropy for the seen AV instances in the training dataset (H = 0.10 ± 0.27) is
notably lower than the entropy observed for unseen instances, namely the test set and/or non-AV
vehicles (H ≈ 0.26 ± 0.41). To put these values into perspective, note that the upper bound on the
entropy is given by the entropy of a perfectly uniform distribution with the size of our action space:

H = ln(n = 651) ≈ 6.48

As such, the imitation learning policy yields high-certainty distributions overall, particularly for the
AV vehicles. This is also evident when we look at a few example action distributions for AV vehicles
in Figure 14 and for non-AV vehicles in Figure 15.

Table 6: Entropy of the human reference policy τ trained on only the AV demonstrations. Estimates
are based on ∼ 20, 000 samples from 200 random traffic scenarios.

Dataset Vehicle type Entropy Avg. Prob. of sampled action
Train AV 0.10 ± 0.27 0.69 ± 0.45

Non-AV 0.26 ± 0.41 0.68 ± 0.42

Test AV 0.27 ± 0.41 0.66 ± 0.43
Non-AV 0.26 ± 0.41 0.68 ± 0.42
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Figure 13: Left: Entropy for action probability distributions, τ(a | ot); Right: The top 10 most
occurring action indices in the human policy predictions. Together they make up 78 % of all
predictions.
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Figure 14: Probability distributions from the human reference policy trained on AV data only.
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Figure 15: Probability distributions from the human reference policy trained on AV data only.

D Implementation details

D.1 PPO

Proximal Policy Optimization (PPO) (Schulman et al., 2017) optimizes the following surrogate
objective:

LPPO
t (θ) = Ê

[
LCLIP

t (θ) − c1LVF
t + c2S[πθ](ot)

]

where we use a value function coefficient of c1 = 0.5 and an entropy coefficient of c2 = 0.001 during
training. Here, LCLIP

t (θ) = Ê
[
min(rt(θ)Ât), clip(rt(θ), 1 − ε, 1 + ε)Ât

]
is a lower bound on the

clipped advantage, S denotes an entropy value to encourage exploration, and LVF = (v − v̂)2 is the
squared error between the target and predicted state-values.

D.2 Network architecture

The agent observations contain multi-modal data. To process different types of data efficiently, we
initially process them separately and then combine them using a late-fusion architecture (Nayakanti
et al., 2023). We first process every modality independently and then apply a max-pool operation to
flatten the embeddings. This ensures permutation invariance, meaning that the network is insensitive
to the rearrangement of objects, such as road vehicles or road graph points, in the input. Figure 16
depicts our network architecture.

D.3 Hyperparameters

See Table 7 for an overview of the hyperparameters used for PPO and HR-PPO. For HR-PPO, we
experimented with human regularization weights λ ∈ {0.001, 0.005, 0.02, 0.04, 0.05, 0.06, 0.08, 0.1, 0.2}
and use most of the default parameters from stable baselines. The overall best HR-PPO model was
trained with a regularization weight of 0.06. All other hyper-parameters are identical between the
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Figure 16: PPO and HR-PPO network architecture.

settings. For the single-agent training runs, we multiply the rollout length by five to increase the
batch size.

Table 7: Hyperparameters used for training in Nocturne scenarios.

Parameter PPO HR-PPO
γ 0.99 0.99
λGAE 0.95 0.95
PPO rollout length 4096 4096
PPO epochs 10 10
PPO mini-batch size 512 512
PPO clip range 0.2 0.2
Adam learning rate 3e-4 3e-4
Adam ϵ 1e-5 1e-5
normalize advantage yes yes
entropy bonus coefficient 0.001 0.001
value loss coefficient 0.5 0.5
human regularization coefficient λ 0.0 0.06
total timesteps 140 M 140 M
seed 42 42

D.4 Compute

We ran all experiments on a training dataset of 200 scenarios for 140 million steps. Every run took
approximately 5 days on a single GPU (A100 or NVIDIA Quadro RTX 8000).

E Evaluation metrics

E.1 Realism metrics

Goal-Conditioned Average Displacement Error (GC-ADE). Measures how far the trained
driving policy deviates from the logged human driving behavior conditioned on knowing the agent
goal. Let xH = ((x0, y0), . . . , (xH

T , yH
T )) be a vector with the logged step-wise (x,y) positions of a

human driver and xπ = ((x0, y0), . . . , (xπ
T , yπ

T )) trajectory resulting from the predicted policy actions
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in closed-loop. Since the end times T H, T π can be different, we define T = min(T H, T π) and compute
the GC-ADE as follows:

GC-ADE(xH, xπ) = T −1

√√√√
T∑

t=1
(xH

t − xπ
t )2

Mean Absolute Steering Error. Measures how much the trained driving policy steering wheel
action values deviate from the inferred human driving actions. Let aH = (s0, . . . , sH

T ) be a vector with
the logged steering wheel angles from a human driver and aπ = (s0, . . . , sT ) be the policy-predicted
acceleration values. Since the end times T H, T π can be different, we define T = min(T H, T π) and
compute the MAE as follows:

MAEsteer = 1
T

T∑

t=1
|sH

t − sπ
t |

Mean Absolute Acceleration Error. Measures how much the trained driving policy acceleration
action values deviate from the inferred human driving actions. Let aH = (a0, . . . , aH

T ) be a vector
with the logged acceleration values from a human driver and aπ = (a0, . . . , aT ) be the predicted
acceleration values. We define T = min(T H, T π) and compute the MAE as follows:

MAEaccel = 1
T

T∑

t=1
|aH

t − aπ
t |

Accuracy to discretized human driver actions. Measures the ratio of the policy-predicted
action tuples (acceleration, steering) that matches the discretized human driver action tuple. Note
that our action space is size 651.

E.2 Effectiveness metrics

• Off-Road Rate: Percentage of vehicles that hit a road edge or barrier.
• Collision Rate: Percentage of vehicles that collided with another agent.
• Goal-Rate: Percentage of total vehicles that achieved their goal position within an episode.

To calculate the aggregate percentages, we take the total number of agents that meet a given criteria
(such as colliding or achieving a goal) across all scenarios and divide it by the total number of
agents. For instance, if we have two scenarios with 3 and 2 agents respectively, and in scenario one, 2
agents met their goal and in scenario 2, one agent met their goal, then the goal rate is calculated as
3/5 = 0.6.

Since the outcomes are binary (either the agent meets the criteria or not), we can estimate the
variance by first aggregating the data across scenarios. The standard error for the goal rate is
calculated by first computing the scene-le goal ratio for each scenario and then taking the standard
deviation across them. For instance, using the example given above, the scene-level goal rates would
be 2/3 and 1/2. The standard error would be σ/

√
n = 0.083/1.414 = 0.0589 or 5.89 %.

E.3 Interactivity: Computing the intersecting paths for a vehicle

We use the number of intersecting paths as a proxy metric for the level of interactiveness in a
scene. To compute the number of intersecting paths for a vehicle i, we follow these steps: We pair
vehicle i with every other vehicle in a scenario. For every pair of vehicles (i, j), we step the both
in expert-replay mode. If the line segments touch and the time difference between them is less
than 5 seconds (50 steps), we increase the intersection count for vehicle i by one. To illustrate
various trajectories and scenarios with different numbers of intersecting paths, Figure 17 displays two
scenarios with low levels of interactivity (0-1 intersecting paths) and Figure 18 depicts two scenarios
with medium to high levels of interactivity.
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Figure 17: Example scenarios with a relatively low level of interactivity. We control the
red vehicle and the grey vehicles are stepped using the replayed human logs. Left: The red vehicle,
has no intersecting paths. This means that the vehicle can reach its target destination without
encountering another vehicle. Right: This vehicle has one intersecting path because its trace touches
the trace of the grey vehicle in front of it. Overall, this scenario is more interactive than the left
scenario because the controlled vehicle has to consider the moving vehicles around it.

Figure 18: Example scenarios with medium to high levels of interactivity. We control
the red vehicle and the grey vehicles are stepped using the replayed human logs. Left: The red,
controlled, vehicle here has three intersecting paths. Timely coordination between the red vehicle
and other vehicles is necessary to reach the goal. When using the log-replay setting, the controlled
vehicle must be able to work with the existing trajectories of uncontrolled vehicles that are replayed
using static human logs. Right: The red vehicle has five intersecting paths.
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F Additional Figures
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Figure 19: Accuracy to the human actions against effectiveness on 200 scenes in self-play.
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Figure 20: MAE between acceleration values of the logged human drivers and the HR-PPO-predicted
acceleration values against effectiveness on 200 scenes in self-play.
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Figure 21: Self-play vs. log-replay performance across the test dataset.
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Figure 22: Comparison between PPO and HR-PPO performance across 10 different seeds. Due to
computational constraints, we ran these experiments on 50 scenarios instead of the full train dataset
of 200 scenarios.

HR-PPO PPO
Goal Rate (%) count 10.00 10.00

mean 91.08 93.58
std 2.71 0.74
min 86.14 92.76
25% 89.36 93.08
50% 92.01 93.45
75% 93.00 93.97
max 93.92 94.92

Off Road (%) count 10.00 10.00
mean 5.12 3.48
std 1.57 0.79
min 3.10 2.40
25% 3.83 2.95
50% 5.10 3.30
75% 6.20 3.83
max 7.60 4.80

Collision Rate(%) count 10.00 10.00
mean 4.98 3.33
std 1.59 0.97
min 3.50 1.90
25% 3.88 2.82
50% 4.25 3.10
75% 6.00 4.25
max 7.90 4.50

Table 8: PPO and HR-PPO performance across 10 different seeds.
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Abstract

We study security threats to Markov games due to information asymmetry and
misinformation. We consider an attacker player who can spread misinformation
about its reward function to influence the robust victim player’s behavior. Given a
fixed fake reward function, we derive the victim’s policy under worst-case rationality
and present polynomial-time algorithms to compute the attacker’s optimal worst-
case policy based on linear programming and backward induction. Then, we provide
an efficient inception ("planting an idea in someone’s mind") attack algorithm to find
the optimal fake reward function within a restricted set of reward functions with
dominant strategies. Importantly, our methods exploit the universal assumption
of rationality to compute attacks efficiently. Thus, our work exposes a security
vulnerability arising from standard game assumptions under misinformation.

1 Introduction

As multi-agent systems become increasingly decentralized and privacy-focused, games with incom-
plete information become inevitable. In many scenarios, a player only has partial information about
the opponent’s rewards and rationality, gleaned from external sources like the internet. However,
misinformation spread by the opponent—possibly through fake news—can significantly impact the
player’s decision-making. For example, participants in first-price auctions may intentionally misrep-
resent their intended bids to manipulate other bids downward. To build robust multi-agent systems,
it is crucial to understand the impact of misinformation on games.

We focus on two-player Markov Games (MG). We suppose that the second player, the attacker,
knows both reward functions, (R1, R2). In contrast, the first player, the victim, only knows its reward
function, R1, and a misinformed attacker reward function, R†

2. A robust victim also constructs an
uncertainty set Πb

2(R†
2) of possible attacker policies. Nevertheless, the attacker can choose R†

2 to
manipulate the victim’s behavior. We call these fake rewards inception attacks. The attacker’s goal
is to design an inception attack that optimizes its worst-case utility.
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Although inception attacks can be devastating, computing optimal attacks is often challenging. Un-
like standard reward poisoning (Wu et al., 2023b), an inception attack can not modify both players’
rewards, which is necessary to illicit arbitrary victim behavior. Even if an oracle gave the attacker
optimal fake rewards, computing a worst-case optimal attacker policy is a constrained optimization
problem with nested maximins. Moreover, due to the information asymmetry, the attacker can-
not utilize standard algorithms for computing robust optimization equilibrium (ROE) (Aghassi &
Bertsimas, 2006) or Bayes-Nash equilibrium (BNE) (Harsanyi, 1967) to tackle this lower-level policy
optimization problem.

Our Contributions. Although the computational complexity of inception might seem to limit
its threat, we show that inception attacks can be efficiently computed by leveraging the universal
rationality assumptions in multi-agent reinforcement learning (MARL). Specifically, for any rational
or robust victim, we present an efficient algorithm for computing optimal dominant-policy inception
attacks. The key insight is a rational victim always best-responds to a perceived attacker dominant
strategy. Consequently, if the attacker focuses on fake reward functions admitting a dominant
strategy, its complex optimization can be solved efficiently via backward induction. Our work
exposes a security vulnerability arising from standard game assumptions under misinformation,
motivating the need for novel approaches to building robust multi-agent systems.

To develop our inception algorithm, we first characterize outcomes in MGs with misinformation
under worst-case rationality. Armed with these insights, we propose an efficient approach to compute
the corresponding worst-case optimal policy for a given inception attack. Our method involves
iteratively solving linear programs (LPs) based on worst-case Q functions. We derive these LPs by
dualizing the best-response polytope, which transforms the maximin problems into maximization
problems. Our approach accommodates any finitely generated victim uncertainty set, including
completely naive and secure victims.

1.1 Related Work.

Information Asymmetry. Incomplete information games were first studied through the frame-
work of Bayesian games (Harsanyi, 1967; 1968a;b) and with the solution concept being BNE. To
address the high sensitivity of BNE to the player’s beliefs (Rubinstein, 1989; Jehiel et al., 2006), the
work (Holmström & Myerson, 1983) introduced a more robust equilibrium concept called ex-post
equilibrium, which is a NE under all possible realizations of the uncertain parameters. Going be-
yond the need for belief distributions, (Aghassi & Bertsimas, 2006) introduced the notion of robust
games with the solution concept being ROE. However, both the BNE and ROE approaches require
non-trivial assumptions about the information structure, namely, an uncertainty parametrization or
distributional assumption on the opponent’s rewards. Thus, they do not apply to our setting where
the victim knows nothing concrete about the attacker’s true rewards.

Reward Poisoning Attacks. Most reward-poisoning attacks, for example, Ma et al. (2019);
Rakhsha et al. (2020; 2021); Rangi et al. (2022); Zhang & Parkes (2008); Zhang et al. (2009) in
the single-agent setting, and Wu et al. (2023d;c;a) in the multi-agent setting, focus on changing the
victim’s perceived rewards to induce negative behaviors rather than changing the victim’s perception
of the attacker’s rewards. Unlike reward poisoning, which may not be possible in situations where
the victim knows their preferences, inception attacks are more often possible since they fake the
preferences of the attacker, which is usually not public information. Our setting also differs from
past work by Gleave et al. (2019); Guo et al. (2021) on adversarial multi-agent reinforcement learning
where an attacker is one of the agents (or controls one of the agents): they studied the problem in
which an attacker modifies the action of an agent to influence the behavior of another agent (the
victim).

1.2 Notations

We defer formal definitions of standard concepts in game theory to Appendix A.
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Normal-form Games. Let A ∈ Rn×m and B ∈ Rn×m denote the reward matrices for the victim
and attacker, respectively. We represent a pure strategy by a one-hot vector, so ei ∈ Rn corresponds
to the victim’s strategy i and ej ∈ Rm the attacker’s strategy j. Let ∆(k) :=

{
s ∈ [0, 1]k |∑k

i=1 si =
1
}

denote the set of mixed strategies, where s ∈ ∆(k) corresponds to playing ei with probability si.

Markov Games. A finite-horizon Markov game (Shapley, 1953) is defined by a tuple G =
(S,A, R, P, H, µ) with state-space S, joint action space A = A1 ×A2 = [n]× [m] ([i] := {1, . . . , i}),
joint reward function R, transition function P , horizon H, and initial state distribution µ. We
denote by π = {π1,h(s) ∈ ∆(n) ×∆(m)}h,s a joint Markovian policy. Let Πi denote the set of all
Markovian policies for player i ∈ {1, 2} (victim and attacker). The value received by player i under π

is the expected total rewards over H steps: V π
i := Eπ

G

[∑H
h=1 π1,h(sh)⊤Ri,h(sh)π2,h(sh)

]
. Similarly

we define the stage value, V π
i,h(s), for each h ∈ [H] by summing rewards over steps h through H.

Throughout the paper, we assume that players know the transition function P.

2 Inception

Reward Uncertainty. We formalize misinformation threats through Markov games with reward
uncertainty. Suppose that the victim has learned an alleged R†

2 directly from the attacker or external
sources. A robust victim is aware that R†

2 may be inaccurate, so it constructs an uncertainty set
U(R†

2) that it believes contains the attacker’s true rewards. Furthermore, the victim believes the
attacker behaves as playing some policy π2 ∈ Πb

2(U(R†
2)), which depends on the belief rewards. To

simplify notation, we assume the victim’s belief about the attacker takes the form Πb
2(R†

2) ⊆ Π2,
with the understanding that the victim may be using robust reasoning inside the belief function.

Assumption 1 (Victim’s Belief). The victim knows some uncertain reward function R†
2 and believes

the attacker’s policy must lie in the set Πb
2(R†

2). Furthermore, this is common knowledge.

Example 1 (Naive Belief). If the victim believes it knows exactly which policy π†
2 the attacker will

play, then Πb
2(R†

2) = {π†
2}.

Example 2 (Secure Belief). If the victim believes it knows nothing about the attacker, it may
assume any attacker policy is possible, Πb

2(R†
2) = Π2.

Example 3 (Rational Belief). If the victim believes the standard assumption of common-knowledge
rationality, which is the case if it uses any standard MARL algorithm, then it assumes the attacker
is rational. Concretely, the victim might assume the attacker plays some solution to the perceived
game, Πb

2(R†
2) = {π2 ∈ Π2 | ∃π1 ∈ Π1, (π1, π2) ∈ Sol(R1, R†

2)}, where Sol is any standard solution
concept such as DSE, NE, and maximin equilibrium1. In this work, we focus on inception attacks
that only require the most basic form of rationality: rational agents never play strictly dominated
strategies (Wu et al., 2023b), which includes all the Sol options above.

2.1 Game Outcomes for Fixed R†
2

For any fixed R†
2, we can reason how both players will behave when the victim believes the attacker’s

policy is contained in the uncertainty set Πb
2(R†

2). To formally reason about the outcomes of such
games, we turn to the standard notion of worst-case rationality (Aghassi & Bertsimas, 2006).

Assumption 2. (Worst-Case Rationality) Both players seek to optimize their worst-case value
given their available information.

Victim Behavior. For the victim to be robust, it should optimize against the worst possible
policy the attacker could play. By Assumption 1, it need only consider attacker policies in Πb

2(R†
2).

1The assumption also holds for CCE, where Sol corresponds to the marginal policy of the CCE for each player.
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Observation 1 (Victim Behaviour). Under Assumption 1 and Assumption 2, the victim plays some
policy π∗

1 ∈ Π∗
1(R†

2) and achieves the optimal worst-case value V ∗
1 (R†

2) where,

Π∗
1(R†

2) := arg max
π1∈Π1

min
π2∈Πb

2(R†
2)

V π1,π2
1 and V ∗

1 (R†
2) := max

π1∈Π1
min

π2∈Πb
2(R†

2)
V π1,π2

1 . (VBR)

We observe that this behavior may be computationally intractable in general but is provably optimal
under worst-case rationality. Also, this behavior can be viewed as a constrained security strategy
that exploits the victim’s beliefs to achieve better outcomes. This behavior directly generalizes
security strategies, corresponding to the case when Πb

2(R†
2) = Π2.

Attacker Behavior. According to Assumption 1, the attacker knows Πb
2(R†

2). Thus, it can reason
that the victim optimizes its worst-case value. Given this information, it can follow the same
reasoning as the victim to predict how the victim behaves according to Observation 1. Specifically,
the attacker should choose a policy that optimizes its value for the worst possible π1 ∈ Π∗

1(R†
2).

Observation 2. Under Assumption 1 and Assumption 2, the attacker plays some π∗
2 ∈ Π∗

2(R†
2) and

achieves the optimal worst-case value V ∗
2 (R†

2) where,

Π∗
2(R†

2) := arg max
π2∈Π2

min
π1∈Π∗

1(R†
2)

V π1,π2
2 and V ∗

2 (R†
2) := max

π2∈Π2
min

π1∈Π∗
1(R†

2)
V π1,π2

2 . (ABR)

Importantly, the attacker exploits its information asymmetry to constrain the inner minimization.
This allows the attacker to achieve a higher value than it would from a standard security strategy.

Overall, we can see exactly how the Markov game with reward uncertainty will play out.
Proposition 1 (Game Outcomes). For any fixed R†

2, under Assumption 1 and Assumption 2,
(π∗

1 , π∗
2) is a solution to the game if and only if (π∗

1 , π∗
2) ∈ Π∗

1(R†
2)×Π∗

2(R†
2).

2.2 Inception Attacks

The attacker can induce the fake reward R†
2 that the victim learns, possibly by spreading misinfor-

mation. For any induced R†
2, the attacker can achieve up to V ∗

2 (R†
2) value in the worst-case according

to Observation 2. Thus, the attacker should choose an inception attack, R†
2, that maximizes V ∗

2 (R†
2).

Definition 1 (Inception). An optimal inception attack is any R†
2 that achieves V ∗

2 where,

V ∗
2 := max

R†
2

V ∗
2 (R†

2). (INC)

In general, (INC) is a complex, bi-level optimization problem. However, this does not mean the
victim is safe from such attacks. We show in Section 3 that damaging inception attacks can be
computed in polynomial time for many settings.
Example 4 (Inception Attack). Consider the simple normal-form game (R1, R2) and its correspond-
ing inception-attack-induced game (R1, R†

2) given in Figure 1. Also, suppose that the victim believes
the attacker plays its part of an NE for the faked game, i.e., Πb

2(R†
2) = {y | ∃x, (x, y) ∈ NE(R1, R†

2)}.

1. The original game in Figure 1a has a unique NE that is the pure strategy (D, L). Thus,
Πb

2(R2) = {L} and the victim plays its best-response D. This leads to the attacker always
achieving a value of 0.

2. The fake game in Figure 1b has a unique NE which is the pure strategy (U, R). Thus,
Πb

2(R†
2) = {R} and the victim plays its best-response U . This leads to the attacker always

achieving its highest possible value of 5 for the true game.

Therefore, the attacker can simply fake that it prefers action R while it actually prefers action L to
manipulate the victim into achieving its ideal value.
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L R
U 0, 5 1, 0
D 1, 0 0, 0
(a) True Game

L R
U 0, 5 1, 5+ϵ
D 1, 0 0, ϵ

(b) Inception Attack

Figure 1: Inception Example

3 Efficient Inception Algorithms

In this section, we show that for certain families of victims, the optimal inception attacks can be
computed efficiently. To start, we show for a fixed R†

2 how the attacker can efficiently compute
some best response policy in Π∗

2(R†
2), which is already a complex problem. Then, we move on to

computing optimal inception attacks for restricted classes of reward functions.

3.1 Efficiently Exploiting R†
2

Suppose that R†
2 is fixed. We observe that computing some π2 ∈ Π∗

2(R†
2) is a complicated optimiza-

tion problem with constraints and a nested maximin optimization. Specifically,

Π∗
2(R†

2) = arg max
π∗

2 ∈Π2

min
π∗

1 ∈Π∗
1

V
π∗

1 ,π∗
2

2

s.t. Π∗
1 = arg max

π1∈Π1

min
π2∈Πb

2(R†
2)

V π1,π2
1 .

(1)

The optimization (1) can be arbitrarily complicated due to the arbitrary belief set Πb
2(R†

2). To have
any hope of efficient solutions, we must restrict the belief set. Here, we consider any belief set that
is a per-stage mixture of some finite set of base policies.
Assumption 3 (Finite Generation). The victim’s belief set is Πb

2(R†
2) = ∆(Π), where Π :=

{π1
2 , . . . , πK

2 } ⊆ Π2 is a finite set of attacker policies and ∆(Π) is the simplex of per-stage mix-
ings of Π, i.e.,

∆(Π) :=
{

π ∈ Π2 | ∀(h, s), ∃p ∈ ∆(K) s.t. π1,h(s) =
K∑

k=1
pkπk

2,h(s)
}

. (2)

3.1.1 Normal-form Games

To see how Assumption Assumption 3 enables efficient computation, consider a normal-form game
(A, B) and Π = {y1, . . . , yK} ⊆ ∆(m).

Victim Best Response. It is well-known Dantzig (1951) that the victim can efficiently compute
a maximin solution for A, i.e., maxx∈∆(n) miny∈∆(m) x⊤Ay, by solving the LP in Figure 2a. The
inequalities z ≤ x⊤Aej for all j ensure that x is the best response to any of the attacker’s pure
strategies, which then implies it is the best response to any mixture in ∆(m). In particular, x must
be the best response to the worst possible mixed strategy in ∆(m).

The same reasoning applies if we replace each ej with yj . The inequalities z ≤ x⊤Ayj for all j then
guarantee that x is a best response to the set ∆({y1, . . . , yK}). Observe that we can equivalently
formulate these inequalities by replacing A in Figure 2a with A′ := [Ay1, . . . , AyK ] := AΠ⊤. Again,
this implies x is the best response to the worst possible mixed strategy in ∆({y1, . . . , yK}). Since
Π∗

1(R†
2) is the set of the victim’s worst-case best responses to Πb

2(R†
2) = ∆({y1, . . . , yK}), we can

compute some x ∈ Π∗
1(R†

2) by solving LP Figure 2a with the modified reward matrix A′.
Lemma 1. If (x∗, z∗) is a solution to LP 2a for input A′ := [Ay1, . . . , AyK ], then V ∗

1 (R†
2) = z∗ and

x∗ ∈ Π∗
1(R†

2). Furthermore, Π∗
1(R†

2) = {x ∈ ∆(n) | ∀j ∈ [K], x⊤A′ej ≥ z∗} is a non-empty polytope.
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max
x∈Rn,z∈R

z

s.t. z ≤ x⊤Aej , ∀j ∈ [m]
1⊤x = 1, x ≥ 0.

(a) Victim’s BR LP

max
y∈Rm,w∈RK ,α∈R

z∗1⊤w − α

s.t. α + e⊤
i By − e⊤

i A′w ≥ 0 ∀i ∈ [n]
1⊤y = 1, y ≥ 0 w ≥ 0.

(b) Attacker’s BR LP

Figure 2: Best-response LPs

Algorithm 1 Normal-Form Game Attacker Best Response
Require: Π, A, and B

1: A′ ← AΠT

2: (x∗, z∗)← Sol(LP 2a(A′))
3: (y∗, w∗, α∗)← Sol(LP 2b(z∗, A′, B))
4: return (y∗, z∗, z∗1⊤w∗ − α∗)

Attacker Best Response. Now that we have understood the victim’s best response Π∗
1(R†

2)
polytope, the attacker can exploit this structure to compute some y ∈ Π∗

2(R†
2). Recall the attacker’s

true reward matrix is B. For any fixed y, note that the attacker’s inner minimization in (1) can be
written as the following LP and its dual in Figure 3.

min
x∈Rn

≥0

x⊤By

s.t. z∗ − x⊤A′ej ≤ 0, ∀j ∈ [K],
1⊤x− 1 = 0.

(a) Primal

max
w∈RK

≥0,α∈R
z∗1⊤w − α

s.t. α + e⊤
i By − e⊤

i A′w ≥ 0, ∀i ∈ [n].

(b) Dual

Figure 3: Attacker’s Inner Minimization

Applying maxy∈∆(m) on top of (3b) yields the LP in Figure 2b, which computes a y ∈ Π∗
2(R†

2). We
give the full derivation in the Appendix.
Lemma 2. If (y∗, w∗, α∗) is a solution to LP 2b, then V ∗

2 (R†
2) = z∗1⊤w∗ − α∗ and y∗ ∈ Π∗

2(R†
2).

Furthermore, Π∗
2(R†

2) is a non-empty polytope.

Therefore, the attacker can compute a y ∈ Π∗
2(R†

2) by first computing a solution (x∗, z∗) to LP 2a
and then using z∗ to formulate and solve LP 2b. Importantly, the attacker can solve LP 2a due to the
information asymmetry: it knows the victim’s A. The computation is summarized in Algorithm 1.
Theorem 1. If K ≤ poly(m), then under Assumption 3 the attacker can compute some y ∈ Π∗

2(R†
2)

for a normal-form game in polynomial time by using Algorithm 1.

3.1.2 Markov Games

To extend our results to full Markov games, we solve our LPs on each stage game via backward
induction. To formalize this approach, we study the worst-case stage value and its corresponding
worst-case Q functions:

V ∗
1,h(s) := max

π1∈Π1
min

π2∈Πb
2(R†

2)
V π1,π2

1,h (s) and V ∗
2,h(s) := max

π2∈Π2
min

π1∈Π∗
1(R†

2)
V π1,π2

2,h (s), (3)

Q∗
i,h(s)[a1, a2] = Ri,h(s, a1, a2) +

∑

s′

Ph(s′ | s, a1, a2)V ∗
i,h+1(s′). (4)
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Algorithm 2 Markov Game Attacker Best Response
Require: Π and G

1: V ∗
i,H+1(s) = 0 for all s ∈ S.

2: for h = H down to 1 do
3: for s ∈ S do
4: Q∗

1,h(s), Q∗
2,h(s)← Equation (4)

5: π∗
2,h(s), V ∗

1,h(s), V ∗
2,h(s)← Algorithm 1(π1,h(s), Q∗

1,h(s), Q∗
2,h(s))

6: end for
7: end for
8: return π∗

2 := {π∗
2,h(s)}h,s

In particular, for each h ∈ [H], s ∈ S, the worst-case stage-value functions V ∗
i,h(s) can be computed

from the worst-case Q functions Q∗
i,h(s), using Algorithm 1 with (Q∗

1,h(s), Q∗
2,h(s)) as the norm-form

game reward matrix. We let π1,h(s) := {π1
2,h(s), . . . , πK

2,h(s)}.
Lemma 3. For all h, s, we have (∗, V ∗

1,h(s), V ∗
2,h(s)) = Algorithm 1(π1,h(s), Q∗

1,h(s), Q∗
2,h(s)).

Since the worst-case value is uniquely defined, we can use backward induction to compute a solution
for the whole Markov game in Algorithm 2.
Theorem 2. If K ≤ poly(m), then under Assumption 3 the attacker can compute some π2 ∈ Π∗

2(R†
2)

for a Markov game in polynomial time using Algorithm 2.
Remark 1 (Secure Victims). If the victim does not trust R†

2 as in Example 2 and simply ignores
the information by computing a maximin strategy, maxπ1∈Π1 minπ2∈Π2 V π1,π2

1 , the attacker can still
exploit its information asymmetry. In particular, it can compute its best response in polynomial
time using Algorithm 2 on Π = {πj

2}m
j=1 where πj

2,h(s) := ej . This leads to ∆(Π) = Π2.

3.2 Efficiently Optimizing R†
2

In the previous section, we saw how to compute best-response policies for a class of beliefs of the
victim. However, to compute an optimal inception attack, we require additional structure on how
the victim maps rewards to belief sets.
Assumption 4 (Common Rationality). If π†

2 is an ι-strictly dominant Markov-perfect strategy for
R†

2, then Πb
2(R†

2) = {π†
2}.

Remark 2. (Rationality) Note that Assumption 4 holds whenever the victim believes common knowl-
edge rationality as in Example 3. We again emphasize this assumption is made by all standard MARL
algorithms as rationality is the basis of these game-theoretic approaches.

Policy Reduction. Observe that if Πb
2(R†

2) = Πb
2(R††

2 ), then V ∗
2 (R†

2) = V ∗
2 (R††

2 ). Consequently,
whenever Πb

2(R†
2) = {π†

2}, we see that V ∗
2 (R†

2) is completely determined by π†
2 and not the specific

structure of R†
2. Thus, with a slight abuse of notation, we can view V ∗

2 as a function of π†
2 by

defining V ∗
2 (π†

2) := V ∗
2 (R†

2) where R†
2 is any reward functions satisfying Πb

2(R†
2) = {π†

2}. Overall, we
can reduce the problem of finding fake rewards to the problem of finding a fake policy.

If Πb
2(R†

2) = {π†
2}, then by definition Π∗

1(R†
2) = arg maxπ1∈Π1 V

π1,π†
2

1 =: BR(π†
2) is just the victim’s

traditional best response to π†
2. In addition, V ∗

2 (π†
2) = maxπ2∈Π2 minπ1∈BR(π†

2) V π1,π2
2 can be effi-

ciently computed using Algorithm 2. As only deterministic policies can be dominant, this simplifies
the attacker’s search to a finite set. Thus, the policy version of the problem is simpler to tackle. The
attacker can then do inverse reward engineering to find a reward function for which π†

2 is a dominant
strategy, which is possible even for robust victims Wu et al. (2023b).
Lemma 4 (Reward-Policy Reduction). Under Assumption 4,

max
R†

2∈D
V ∗

2 (R†
2) = max

π†
2∈ΠD

2

V ∗
2 (π†

2), (5)
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where D is the set reward functions with an ι-strictly dominant Markov-perfect strategy, and ΠD
2 is

the set of deterministic attacker policies. We let V̂2 := maxπ†
2∈ΠD

2
V ∗

2 (π†
2) denote the optimal value.

Lemma 4 states that if the misinformation-induced reward function R†
2 is restricted to the set

admitting strictly dominant strategies, one can solve the optimal inception attack problem by solving
the pure strategy optimization problem. We note this restricted set is infinite and captures many
interesting reward functions.
Remark 3 (Reward Design). We note the choice of R†

2,h(s, a) = ι (H−h+1)(H−h+2)
2 I[a2 = π†

2,h(s)]
suffices to ensure π†

2 is the dominant strategy in any stage game and can be computed in polynomial
time. If there are other constraints on the reward function, other reward poisoning frameworks can
be used black box to compute optimal attacks.

Algorithmic Approach. For the normal-form game (A, B), it is easy to see that for any
pure strategy j ∈ [m] that V ∗

2 (j) = maxy∈∆(m) minx∈BR(j) x⊤By can be computed using
Algorithm 1({j}, A, B) in polynomial time. The maximal pure strategy can then be found effi-
ciently by iterating over all j ∈ [m]: V̂2 = maxj V ∗

2 (j). Thus, we can solve the policy problem for a
normal-form game efficiently by repeatedly applying Algorithm 1.

This line of argument can be extended to Markov games by replacing (A, B) with the Q-function
matrices and using backward induction. Suppose the attacker has already constructed a partial
policy π†

2 for times h+1, . . . , H. At time h and state s, the attacker can tentatively define π†
2,h(s) = j.

For this choice, the attacker can reason about the victim’s best-response set and value V̂1,h(s, j),
which is also constructed via backward induction. The attacker can then just choose the optimal j
that leads to its highest worst-case stage value, V̂2,h(s, j). Formally, we define,

V̂2,h(s) = max
π†

2∈ΠD
2

min
π1∈BR(π†

2)
V π1,π2

2,h (s) and V̂1,h(s) = max
π1∈Π1

V
π1,π†

2
1,h (s), (6)

to be the value of the best inception policy for the attacker at the current stage and the victim’s best
response value to a fixed inception policy π†

2, respectively. We can similarly define the corresponding
Q̂ function through (4) by replacing V ∗ with V̂ . Then, for any fixed j ∈ [m], we define,

V̂2,h(s, j) = max
y∈∆(m)

min
x∈BR(j)

x⊤Q̂2,h(s)y and V̂1,h(s, j) = max
x∈∆(n)

x⊤Q̂1,h(s)ej , (7)

as the value when the attacker chooses π†
2,h(s) = j at step h, and applies the optimal inception

policy for times h + 1, . . . , H.

Lemma 5. For all h, s, j, we have (∗, V̂1,h(s, j), V̂2,h(s, j)) = Algorithm 1({j}, Q̂1,h(s), Q̂2,h(s)).
Furthermore, if j∗ ∈ arg maxj∈[m] V̂2,h(s, j), then V̂i,h(s) = V̂i,h(s, j∗) for each i ∈ {1, 2}.

In the same spirit as Algorithm 2, we can compute an optimal π†
2 using Algorithm 3.

Theorem 3. Under Assumption 4, Algorithm 3 computes a fake policy achieving value V̂2 in poly-
nomial time.
Remark 4 (Dominant Mixtures). The algorithm can be extended to allow a mixture of a set of
policies by changing {j} to a subset of actions. This captures reward matrices with several equally
dominant columns.

4 Conclusions

In this work, we studied misinformation attacks on two-player MGs. When the victim player only
knows a false attacker reward function, we showed how the game plays out under worst-case ratio-
nality. Then, we showed how the attacker can compute its worst-case optimal policy in polynomial
time. Using this method as a subroutine, the attacker can exploit the universal assumption of ratio-
nality in MARL to compute an optimal dominant-policy inception attack in polynomial time. Our
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Algorithm 3 Policy Inception
Require: Π and G

1: V̂i,H+1(s) = 0 for all s ∈ S.
2: for h = H down to 1 do
3: for s ∈ S do
4: Q̂1,h(s), Q̂2,h(s)← Equation (4)
5: for j ∈ [m] do
6: π∗

2,h(s), V̂1,h(s, j), V̂2,h(s, j)← Algorithm 1({j}, Q̂1,h(s), Q̂2,h(s))
7: end for
8: π†

2,h(s)← arg maxj∈[m] V̂2,h(s, j)
9: V̂i,h(s)← V̂i,h(s, π†

2,h(s)) for i ∈ [2]
10: end for
11: end for
12: return π†

2 := {π†
2,h(s)}h,s

work highlights that the standard rationality notions produce vulnerabilities when misinformation
is present. Thus, new approaches are needed to build multi-agent systems that are robust against
misinformation.

Broader Impact Statement

This paper presents work whose goal is to advance the field of MARL. Our work is largely theoretical,
so we do not see any immediate negative societal impacts.
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A Extended Preliminaries

Normal-form Games. In a (finite) normal-form game, two players compete simultaneously to
maximize their reward. Suppose the first player, the victim, has n pure strategies and the second
player, the attacker, has m pure strategies. Let A ∈ Rn×m and B ∈ Rn×m denote the reward
matrices for the victim and attacker, respectively. We may represent a pure strategy by a one-hot
vector, so ei ∈ Rn corresponds to the victim’s strategy i and ej ∈ Rm the attacker’s strategy j. Let
∆(k) :=

{
s ∈ [0, 1]k | ∑k

i=1 si = 1
}

denote the set of mixed strategies, where choosing s ∈ ∆(k)
corresponds to playing ei with probability si. For a pair of mixed strategies x ∈ ∆(n) and y ∈ ∆(m),
the expected rewards to the victim and attacker are x⊤Ay and x⊤By, respectively.

Nash Equilibrium. Solutions to games manifest as equilibrium concepts, among which the most
famous is the Nash Equilibrium (NE) (Nash, 1951). An NE of a bimatrix game is a pair of strategies
(x∗, y∗) ∈ ∆(n)×∆(m) satisfying,

x∗ ∈ arg max
x∈∆(n)

x⊤Ay∗ and y∗ ∈ arg max
y∈∆(m)

x∗⊤By.

In words, x∗ and y∗ are mutual best-responses to each other. We let NE(A, B) denote the set of all
NEs for the game (A, B).

Security Strategies. Another solution concept is a maximin strategy or security strategy, which
is a pair (x∗, y∗) given by,

x∗ ∈ arg max
x∈∆(n)

min
y∈∆(m)

x⊤Ay and y∗ ∈ arg max
y∈∆(m)

min
x∈∆(n)

x⊤By. (8)

In a zero-sum game (B = −A), the Minimax Theorem (von Neumann et al., 1944) implies (x∗, y∗)
is a NE if and only if it is a maximin strategy pair. Note that a game may have multiple NEs and
maximin strategies. However, in zero-sum games, each player receives the same expected reward in
every NE, which we denote by pNE

v and pNE
e respectively.

Markov Game Solutions. Equilibrium concepts can be defined for a Markov Game by viewing
it as a (very large) bimatrix game with reward matrices (V π1,π2

1 )π1,π2 and (V π1,π2
2 )π1,π2 . To avoid

this complexity blowup, many works focus on Markov Perfect Equilibrum (MPE), which requires the
stricter property that a policy pair is an equilibrium at every stage game, not just at stage h = 1.
Formally, (π∗

1 , π∗
2) is a MPE if, for all (h, s) ∈ [H]× S,

V
π∗

1 ,π∗
2

1,h (s) = max
π1∈Π1

V
π1,π∗

2
1,h (s) and V

π∗
1 ,π∗

2
2,h (s) = max

π2∈Π2
V

π∗
1 ,π2

2,h (s).

B Proofs for Section 2

All the proofs from section 2 are immediate from the arguments given in the main text.
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C Proofs for Section 3.1

As mentioned in the main text, the proof of Lemma 1 is immediate from standard bimatrix game
theory (Dantzig, 1951).

C.1 Proof of Lemma 1

The proof is immediate from the argument given in the main text.

C.2 Proof of Lemma 2

To construct the dual in Figure 3, we introduce a dual vector w ∈ RK
≥0 corresponding to the inequality

constraints and a dual variable v ∈ R corresponding to the equality constraint. We multiply these
dual variables by their respective constraints and add them to the objective to get the equivalent
optimization:

max
w≥0,v

min
x≥0

x⊤By + (z∗1⊤ − x⊤A′)w + (x⊤1− 1)v

By rearranging the objective to be in terms of x, we get:

max
w≥0,v

min
x≥0

x⊤(By −A′w + 1v) + z∗1⊤w − v

Moving the terms involving x into the constraints then gives the Dual:

max
w≥0,α

z∗1⊤w − α

s.t. α + e⊤
i By − e⊤

i A′w ≥ 0 ∀i ∈ [n],

Applying maxy∈∆(m) outside of the Dual, yields the attacker’s LP 2b:

max
y,w∈RK ,α∈R

z∗1⊤w − α

s.t. α + e⊤
i By − e⊤

i A′w ≥ 0 ∀i ∈ [n]
1⊤y = 1, y ≥ 0 w ≥ 0.

The fact that there exist optimal solutions, i.e., Π∗
2(R†

2) ̸= ∅, follows from LP 2b being feasible
and bounded. Specifically, it is easily seen that choosing y = e1, w = 0, and α = maxi∈[n] |e⊤

i Be1
gives a feasible solution to LP 2b. Boundedness follows from the fact that by LP duality, LP 2b
is value equivalent to the original problem maxy∈∆(m) minx∈Π∗

1(R†
2) x⊤By, which is bounded being

that (A, B) is a finite normal-form game. This completes the proof.

C.3 Proof of Theorem 1

The proof is immediate from Lemma 2.

C.4 Proof of Lemma 3

From Theorem 1 and the definition of Q∗, it suffices to show that V ∗ satisfies the following optimality
equations:

V ∗
1,h(s) = max

π1,h(s)∈∆(n)
min

π2,h(s)∈π1,h(s)
E

a∼π1,h(s)

[
R1,h(s, a) +

∑

s′

Ph(s′ | s, a)V ∗
1,h+1(s′)

]
, (9)

and,

V ∗
2,h(s) = max

π2,h(s)∈∆(m)
min

π1,h(s)∈Π∗
1,h

(s)
E

a∼π1,h(s)

[
R2,h(s, a) +

∑

s′

Ph(s′ | s, a)V ∗
2,h+1(s′)

]
, (10)
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where Π∗
1,h(s) is the set of maximizers to (9). This follows from similar arguments to the proof of

the NashVI algorithm Kearns et al. (2000) but with an added constraint set. For completeness, we
give a full proof.

Proof. We show (10). The proof of (9) follows even easier as the constraint set is fixed in advance,
independent of the attacker’s actions. We proceed by induction on h. For the base case, consider
the final time step h = H + 1. The claim is trivial as both values are 0. For the inductive step,
consider any time step h < H and fix any s ∈ S. Applying the bellman-consistency equations to the
definition of V ∗

2,h(s) yields:

V ∗
2,h(s) = max

π2∈Π2
min

π1∈Π∗
1(R†

2)
E

a∼π1,h(s)

[
R2,h(s, a) +

∑

s′

Ph(s′ | s, a)V π
2,h(s′)

]
.

Observe that the expression decomposes: the expectation only considers the policies at the current
state and time, (π1,h(s), π2,h(s)), and the summation only considers the policies at future time steps.
Consequently, we can break down the maxπ2∈Π2 into the separate optimizations: maxπ2,h(s)∈∆(m)
and maxπ2∈Π2,h+1(s′) for each s′ ∈ S, where Π2,h+1(s′) is the set of partial policies for the attacker
from time h + 1 onwards starting at state s′.

Similarly, we can break down the minπ1∈Π∗
1(R†

2) into the separate optimizations: minπ1,h(s)∈Π∗
1,h

(s)

and minπ1∈Π∗
1,h

(s′) for each s′ ∈ S. This yields the equivalent optimization:

max
π2,h(s)∈∆(m)

max
π2∈×s′ Π2,h+1(s′)

min
π1,h(s)∈Π̂∗

1,h
(s)

min
π∈×s′ Π∗

1,h
(s′)

E
π1,h(s),π2,h(s)

[. . .] .

Now, consider the summation term inside of the optimization:

E
π1,h(s),π2,h(s)

[∑

s′

Ph(s′ | s, a)V π
2,h+1(s′)

]
.

We can apply linearity of expectation to get the equivalent term:
∑

s′

E
π1,h(s),π2,h(s)

[
Ph(s′ | s, a)V π

2,h+1(s′)
]

.

Also, since V π
2,h+1(s′) depends only on the partial policies at future steps, V π

2,h+1(s′) is constant with
respect to (π1,h(s), π2,h(s)) so can be pulled out of the summation to get the equivalent term:

∑

s′

V π
2,h+1(s′) E

π1,h(s),π2,h(s)
[Ph(s′ | s, a)] .

Now, by the induction hypothesis, we know for any s′ at time h + 1,

V ∗
2,h+1(s′) = max

π2,h+1(s′)∈Π2,h+1(s′)
min

π1,h+1(s′)∈Π∗
1,h+1(s′)

E
π1,h+1(s′),π2,h+1(s′)

[
R2,h+1(s′, a) +

∑

s′

Ph+1(s′′ | s′, a)V ∗
2,h+2(s′′)

]
.

Since the term V ∗
2,h+2(s′′) is fixed and shared amongst all s′ at time h + 1, we see the only variation

in the stage value V ∗
2,h+1(s′) comes from the choice of (π1,h+1(s′), π2,h+1(s′)) (i.e. varying the future

partial policy cannot increase the objective value). These can be independently chosen for all s′ at
time h+1. Thus, the optimization problems maxπ2∈Π2,h+1(s′) minπ1∈Π∗

1,h+1(s′) V π
2,h+1(s′) = V ∗

2,h+1(s′)
are separable over s′. Thus, we can bring the maximin over partial policies into the summation to
get the term: ∑

s′

max
ν∈Π2,h+1(s′)

min
π∈Π∗

1,h+1(s′)
V π

2,h+1(s′) E
π1,h(s),π2,h(s)

[Ph(s′ | s, a)] .
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Since V ∗
2,h+1(s′) = maxπ2∈Π2,h+1(s′) minπ1∈Π∗

1,h+1(s′) V ∗
2,h+1(s′), the expression becomes:

∑

s′

V ∗
2,h+1(s′) E

π1,h(s),π2,h(s)
[Ph(s′ | s, a)] .

As V ∗
2,h+1(s′) is still constant with respect to (π1,h(s), π2,h(s)), we can reverse the previous steps of

pulling out this term and applying linearity of expectation to get the final expression:

V ∗
2,h(s) = max

π2,h(s)∈∆(m)
min

π1,h(s)∈Π̂∗
1,h

(s)
E

π1,h(s),π2,h(s)

[
R2,h(s, a) +

∑

s′

Ph(s′ | s, a)V ∗
2,h+1(s′)

]
.

C.5 Proof of Theorem 2

The proof is immediate from Lemma 3.

D Proofs for Section 3.2

D.1 Proof of Lemma 4

The proof is immediate from the argument given in the main text.

D.2 Proof of Lemma 5

The proof follows similarly to the proof of Lemma 3 and the arguments from the main text.

D.3 Proof of Theorem 3

The proof is immediate from Lemma 5.
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Abstract

Learning navigation capabilities in different environments has long been one of the
major challenges in decision-making. In this work, we focus on zero-shot navigation
ability using given abstract 2-D top-down maps. Like human navigation by reading
a paper map, the agent reads the map as an image when navigating in a novel
layout, after learning to navigate on a set of training maps. We propose a model-
based reinforcement learning approach for this multi-task learning problem, where
it jointly learns a hypermodel that takes top-down maps as input and predicts the
weights of the transition network. We use the DeepMind Lab environment and
customize layouts using generated maps. Our method can adapt better to novel
environments in zero-shot and is more robust to noise.

1 Introduction

If we provide a rough solution of a problem to a robot, can the robot learn to follow the solution
effectively? In this paper, we study this question within the context of maze navigation, where an
agent is situated within a maze whose layout has never been seen before, and the agent is expected to
navigate to a goal without first training on or even exploring this novel maze. This task may appear
impossible without further guidance, but we will provide the agent with additional information:
an abstract 2-D top-down map, treated as an image, that illustrates the rough layout of the 3-D
environment, as well as indicators of its start and goal locations (“abstract map” in Figure 1). This
is akin to a tourist attempting to find a landmark in a new city: without any further help, this
would be very challenging; but when equipped with a 2-D map of environment layout, the tourist
can easily plan a path to reach the goal without needing to explore or train excessively.

In our case, we are most concerned with zero-shot navigation in novel environments, where the agent
cannot perform further training or even exploration of the new environment; all that is needed to
accomplish the task is technically provided by the abstract 2-D map. This differs from the vast
set of approaches based on simultaneous localization and mapping (SLAM) typically used in robot
navigation (Thrun et al., 2005), where the agent can explore and build an accurate but specific
occupancy map of each environment prior to navigation. Recently, navigation approaches based
on deep reinforcement learning (RL) approaches have also emerged, although they often require
extensive training in the same environment (Mirowski et al., 2017; 2018). Some deep RL approaches
are even capable of navigating novel environments with new goals or layouts without further training;
however, these approaches typically learn the strategy of efficiently exploring the new environment
to understand the layout and find the goal, then exploiting that knowledge for the remainder of the
episode to repeatedly reach that goal quickly (Jaderberg et al., 2017). In contrast, since the solution
is essentially provided to the agent via the abstract 2-D map, we require a more stringent version
of zero-shot navigation, where it should not explore the new environment; instead, we expect the
agent to produce a near-optimal path in its first (and only) approach to the goal.
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Figure 1: We develop an agent that can perform zero-shot navigation on unseen maps T (in DeepMind
Lab, blue box), without needing to first explore the new 3-D environment. Instead, the agent is given
the top-down view as additional guidance: an abstract 2-D occupancy map, and a goal and start position
(bottom-left black dot and top-right gray dot). The map provides a rough solution solution, the path cannot
be directly followed due to the continuous nature of the agent’s environment, as well as unknown map scale,
inaccuracies in the map, and noisy localization.

The solution to navigation using the provided abstract map seems obvious: we should localize
ourselves on the abstract map (image), plan a path, and simply follow it. However, this approach
suffers from a key difficulty: determining the correspondence between 2-D image maps and 3-D
environments. It is not obvious how to execute the abstract plan in practice because the state and
action spaces are completely different, and may even be discrete in the abstract map but continuous
in the real environment.

Instead, in this paper we explore an alternative approach that avoids explicitly localizing and plan-
ning on the abstract map. The key idea is to plan in a learned model that only considers the abstract
map (and start/goal information) as contextual input, but does not directly plan on the map image
itself. Specifically, we propose learning a task-conditioned hypermodel that uses the abstract map
context to produce the environment-specific parameters (weights) of a latent-state transition dynam-
ics model. We then perform planning by using sampling-based forward search on this task-specific
dynamics model. Importantly, although the learned transition model operates in latent state space,
it uses the agent’s original action space, so that planned trajectories can be directly executed in
the environment, without needing to solve the aforementioned correspondence problem. The hyper-
model and the state encoder are learned in an end-to-end fashion, using loss functions that assess
whether the learned components were able to support effective planning.

We refer to our method as the Map-conditioned Multi-task Navigator (MMN). We start with
a model-based RL algorithm, MuZero (Schrittwieser et al., 2020), and introduce the above task-
conditioned hypermodel based on HyperNetworks (Ha et al., 2017). To tackle challenges in train-
ing, we additionally introduce an n-step generalization of Hindsight Experience Replay (HER)
(Andrychowicz et al., 2017) and an auxiliary hypermodel loss. Additionally, we introduce a model-
free RL baseline, named Map-conditioned Ape-X HER DQN (MAH). This method builds upon
DQN (Mnih et al., 2015; Horgan et al., 2018) and augments the input with the provided abstract
map, and uses standard single-step HER.

In experiments performed in DeepMind Lab (Beattie et al., 2016), a 3-D maze simulation environ-
ment shown in Figure 1, we show that both approaches achieve effective zero-shot navigation in
novel environment layouts, though the model-based MMN is significantly better at long-distance
navigation. Additionally, whereas a baseline approach using deterministic path planning and reac-
tive navigation quickly fails when the map is inaccurate or localization is noisy, our experiments
suggest that MMN is significantly more robust to such noise.

2 Related work

Navigation is widely studied in robotics, vision, RL, and beyond; to limit the scope, we focus on
zero-shot navigation in novel environments, which is most relevant to this work. This excludes
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traditional approaches based on SLAM (Thrun et al., 2005), since those methods need to explicitly
build a map before navigation, and the map can only be used for the corresponding environment and
cannot be transferred to other layouts. Learning-based methods (e.g., Mirowski et al. (2017; 2018))
also require extensive training data from the same environment; they demonstrate generalization
to new goals in the environment, but not transfer to new layouts. Jaderberg et al. (2017); Chen
et al. (2019); Gupta et al. (2020); Chaplot et al. (2020) demonstrate agents that learn strategies
to explore the new environment and potentially build maps of the environment during exploration;
in contrast, we are interested in agents that do not need to explore the new environment. Gupta
et al. (2020) learns to exploit semantic cues from its rich visual input, which is orthogonal to our
work since we use the state directly. Other domains such as first-person-shooting games also involve
agents navigating in novel environments (Lample & Chaplot, 2017; Dosovitskiy & Koltun, 2017;
Zhong et al., 2020), but since navigation is not the primary task in those domains, the agents may
not need to actually reach the specified goal (if any). Most closely related to our work is Brunner
et al. (2018), who also use 2-D occupancy maps as additional input and perform experiments in
DeepMind Lab. Their approach is specific to map-based navigation, whereas our methodology aims
to be less domain specific. Huang et al. (2021) also use HyperNetworks on robot manipulation tasks.

Our work is an instance of end-to-end model-based planning (Tamar et al., 2016; Oh et al., 2017;
Schrittwieser et al., 2020). It has also been referred to as implicit model-based planning since the
model is learned implicitly. It rolls out trajectories using a learnable transition model and jointly
trains the value and policy networks along with the transition network. This is different from decou-
pled model learning and planning, such as Dyna-style (Pong et al., 2018). One important distinction
in end-to-end planning is whether the gradients are passed through the planning computation. For
example, MuZero (Schrittwieser et al., 2020) uses sampling-based search method, Monte Carlo tree
search (MCTS), that is hard to differentiate though. Other sampling-based approaches include
(Hafner et al., 2019; Chua et al., 2018). Another thread of work includes Value Iteration Networks
and its variants (Tamar et al., 2016; Lee et al., 2018; Zhao et al., 2023b;a), which iteratively applies
Bellman operators and is easily differentiable. They have also been used in end-to-end navigation,
including CMP (Gupta et al., 2020) and DAN (Karkus et al., 2019). However, they are limited to
grid-like structure as the VIN backbone is 2-D convolution. Additionally, a body of work (Parisotto
& Salakhutdinov, 2018; Banino et al., 2018; Fortunato et al., 2019; Wayne et al., 2018; Ma et al.,
2020) studies learning structured latent models or representations useful for planning.

Our method is based on MuZero (Schrittwieser et al., 2020), which has only been used on single-
map/goal navigation because it learns purely from rewards. We augment the approach with task
conditioning (map and goal) to generalize to new layouts. Moro et al. (2022) also introduced goal-
relabeling for AlphaZero and applied it in 2-D navigation; however, AlphaZero requires a given
model, whereas MuZero jointly learns and plans with a model.

3 Problem statement

We consider a distribution of navigation tasks ρ(T ). Each task is different in two aspects: map layout
and goal location. (1) Abstract map. The layout of each navigation task is specified by an abstract
map. Specifically, an abstract map m ∈ RN×N is a 2-D occupancy grid, where cell with 1s (black)
indicate walls and 0s (white) indicate nagivable spaces. A cell does not correspond to the agent’s
world, so the agent needs to learn to localize itself on an abstract 2-D map (i.e., to know which part
of map it is currently at). We generate a set of maps and guarantee that any valid positions are
reachable, i.e., there is only one connected component in a map. (2) Goal position. Given a map, we
can then specify a pair of start and goal position. Both start and goal are represented as a “one-hot”
occupancy grid g ∈ R2×N×N provided to the agent. For simplicity, we use g to refer to both start
and goal, and we denote the provided map and start-goal positions c = (m, g) as the task context.

We formulate each navigation task as a goal-reaching Markov decision process (MDP), consisting
of a tuple ⟨S,A, P,RG , ρ0, γ⟩, where S is the state space, A is the action space, P is the transition
probability function P : S × A → ∆(S), ρ0 = ρ(s0) is the initial state distribution, and γ ∈ (0, 1]
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is the discount factor. In the learning, we assume transitions are deterministic. For each task, the
objective is to reach a subset of state space SG ⊂ S indicated by a reward function RG : S × A → R.
We denote a task as T = ⟨P,RG , ρ0⟩, since a map and goal specify the dynamics and reward function
of a MDP, respectively. In the episodic goal-reaching setting, the objective is typically not discounted
(γ = 1) and the reward is −1 for all non-goal states, i.e., RG(s, a) = −I[s ̸= g] for g ∈ SG .

We emphasize that although the abstract map’s occupancy grid corresponds to the environmental
layout, the correspondence between abstract “states” (grid cells) and agent states (pose and velocity)
is not known in advance, and likewise for actions (grid-cell transitions vs. forward/backward/rotate).
Furthermore, the learned correspondence may not be reliable due to inaccuracies in the abstract map
and localization error.

Figure 2: Applying the hypermodel hψ on map m1 and m2 outputs two sets of transition network weights
ϕ1 = hψ(m1, g1) and ϕ2 = hψ(m2, g2). Each transition network uses their weight ϕi to predict the next
state f(s, a;ϕi) = s′, illustrated at the bottom. Since the maps may share local patterns at some scales
(illustrated by the cropped 3 × 3 patches in light blue), they can be captured by the hypermodel hψ.

4 Learning to navigate using abstract maps

This section presents an approach that can effectively use abstract maps (in image form) by end-to-
end model-based planning based on MuZero (Schrittwieser et al., 2020). We expect the agent to be
able to efficiently train on multiple maps as well as generalize to new maps.

This poses several technical challenges. (i) A local change in map may introduce entirely different
environment structure, so we need the model and planner to adapt to the task context in a different
way than conditioning on state, and not directly condition on the entire task context. (ii) During
training, we can only rely on a very small proportion of training tasks (e.g., 20 of 13×13 maps). This
requires compositional generalization from existing map patches to novel combinations of patches.
(iii) The reward signal is sparse, but model learning is done jointly and purely relies on reward
signal. To this end, we first introduce the idea of using a hypermodel that learns to predict weights
of transition model, instead of state output directly, to tackle (i) and (ii). For challenge (iii), we
use the idea from Hindsight Experience Replay (HER) (Andrychowicz et al., 2017) to reuse failure
experience and also add an auxiliary loss of predicting transitions (described in Appendix A).

4.1 Task-conditioned hypermodel

Our goal is to create a transition model that accurately handles various map inputs, enabling plan-
ning in 3D environments with arbitrary layouts. In a single-task training schema, a straightforward
approach would be to learn a parameterized transition function fi(s, a) for each individual map.
However, we aim to leverage shared knowledge between navigation tasks, where maps often exhibit
common local patterns and require the ability to generalize to recombination of known patterns.
For instance, in Figure 2, moving right on the center of the box in the left map shares computation
with the right map. By enabling the agent to recognize these local computational patterns, it can
transfer to new tasks by compositional generalization.
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We propose to build a meta network hψ, or hypermodel, to learn the “computation” of the transition
model fψ simultaneously for all maps with abstract 2-D maps as input. The transition model for
task T (map-goal pair) is a function fi that maps current (latent) state and action to a next (latent)
state. We parameterize a transition function fi as a neural network with its parameter vector ϕi.
The set {fi} represents transition functions of all tasks belonging to a navigation schema (e.g., a
certain size of map), and these tasks have similar structure. This set of transition functions/networks
are characterized by the context variables c = (m, g), i.e., the abstract 2-D map and goal.1 This
implies that parameter vectors ϕi live in a low-dimensional manifold. Thus, we define a mapping
h : C → Φ that maps the context of a task to the parameter vector ϕi of its transition function fi,
predicting state s′ and reward r. We parameterize h also as a network with parameter ψ:2

hψ : c 7→ ϕ, fϕ : s, a 7→ s′, r.

This can be viewed as soft weight sharing between multiple tasks. It efficiently maps low-dimensional
structure in the MDP, specified by the map, to computation of the transition model. It may also
be viewed as a structured learned “dot-product” between task context cT and state and action
st, at to predict the next state. The idea of predicting the weights of a main network using another
meta-network is also known as HyperNetworks (Ha et al., 2017; von Oswald et al., 2020).

Figure 3: The planning/learning process. Yellow boxes indicate predictions; grey boxes come from actual
interactions. (Left) Inference: search with learned model. Applying MCTS with hypermodel to search for
policy and value, and act with a sampled action. (Right) Training: building learning targets. Computing
targets and backpropagating from loss. The dark blue line indicates n-step relabelling. We only illustrate
backpropagation for one reward node for simplicity. The solid red line shows the gradient flow from auxiliary
model loss to the meta-network’s weight ψ. The dashed red line is the gradient from task loss.

4.2 Planning using a learned hypermodel

Equipped with a map-conditioned model, we use it to search for actions according to the map layout
and goal location: (a1, ..., ak) = Plan({si}, c, fϕ). We follow MuZero Schrittwieser et al. (2020)
to use Monte-Carlo tree search (MCTS) to search with the learned hypermodel fϕ. The planner
needs to act based on different task inputs, which necessitates a task-dependent value function that
differs from the single-task setup in MuZero. Consequently, the planner Plan(si, c, fϕ) must strongly
correlate its computation with the map and goal input c = (m, g), which presents a challenge for
model-free reactive agents. As shown in Figure 3 (left), we begin by encoding the observed joint state
ot into a latent space st using the learned encoder eθ(ot). This serves as the root node of the search

1Concretely, a task context c ∈ R4×N×N has four components: downsampled global occupancy map, cropped local
occupancy map, and one-hot goal and start occupancy maps; N is downsampled size.

2We only predict weights of the transition model fϕ : S × A → S which operates on a latent state space. The
mapping from environment observations to latent states e : O → S is not predicted by a meta network. Since the
latent space is low-dimensional, it is feasible to predict weight matrices of a transition network for it.

2363



RLJ | RLC 2024

tree. To predict the next state given a latent state and a candidate action, we use the hypermodel fϕ.
For each state (blue circle nodes), we use another network gθ(st, c) to predict the policy πt and value
function vt (not shown). These networks guide the search, where the value network estimates the
future value and the policy network provides candidate actions for rollout in MCTS (blue circles), as
described in Schrittwieser et al. (2020). During training, they are trained to minimize the loss with
searched values and actions. Once a number of MCTS simulations are completed (yellow rounded
boxes), we backup the statistics to the root node and sample an action (green boxes) from the
searched action distribution (purple boxes). The trajectory and corresponding abstract map and
goal (cT , {st, at, rt, st+1}t) are saved to a centralized replay buffer for training.

At zero-shot evaluation time, given a new abstract map, we plan with the trained hypermodel:
(1) given a map and goal cT = (mT , gT ), at the beginning of the episode, compute the hypermodel
weights ϕ = h(c;ψ) by applying the meta-network on the task context cT , (2) start MCTS simu-
lations using the hypermodel f(s, a;ϕ) for latent state predictions, (3) get an action and transit to
next state, and go to step (2) and repeat. Moreover, if we assume access to a landmark oracle on
given maps, we can perform hierarchical navigation by generating a sequence of local subgoals
{(m, gi)}ni=1, and plan to sequentially achieve each landmark; see Section 5.3 for more details.

Figure 3 (right) shows our goal-relabeling scheme and loss functions; see Appendix A for details.

5 Experiments

In the experiments, we assess our method and analyze its performance on DeepMind Lab (Beattie
et al., 2016) maze navigation environment. We focus on zero-shot evaluation results.

5.1 Experimental setup

We perform experiments on DeepMind Lab (Beattie et al., 2016), an RL environment suite support-
ing customizing 2-D map layout. As shown in Figure 1, we generate a set of abstract 2-D maps,
and use them to generate 3-D environments in DeepMind Lab. Each cell on the abstract map cor-
responds to 100 units in the agent world. In each generated map, all valid positions are reachable,
i.e., there is only one connected component in the map. Given a sampled map, we then generate
a start-goal position within a given distance range. Throughout each task, the agent receives the
abstract map and start/goal location indicators, the joint state vector o ∈ R12 (consisting of position
R3, orientation R3, translational and rotational velocity R6), and reward signal r. The action space
is {forward, backward, strafe left, strafe right, look left, look right}, with an action repeat of 10.
This means that, at maximum forward velocity, the agent can traverse a 100 × 100 block in two
steps, but typically takes longer because the agent may slow down for rotations.

Training settings We train a set of agents on a variety of training settings, which have several
key options: (1) Map size. We mainly train on sets of 13 × 13, 15 × 15, 17 × 17, 19 × 19, 21 × 21
maps. One cell in the abstract map is equivalent to a 100 × 100 block in the agent’s world. (2) Goal
distance. During training, we generate local start-goal pairs with distance between 1 and 5 in the
abstract map. (3) Map availability. For each map size, we train all agents on the same set of 20
generated maps, with different randomly sampled start-goal pairs in each episode.

Evaluation settings We have several settings for evaluation: (1) Zero-shot transfer. We mainly
study this type of generalization, where the agent is presented with 20 unseen evaluation maps, and
has to navigate between randomly generated start-goal pairs of varying distances. (2) Goal distance
on abstract map. We consider both local navigation and hierarchical navigation. In the local case,
we evaluate on a range of distances ([1, 15]) on a set of maps, while in the hierarchical case, we
generate a set of landmarks with a fixed distance of 5 between them and provide these to agents
sequentially. (3) Perturbation. To understand how errors in the abstract map and in localization
affects performance, we evaluate agents with maps and poses perturbed by different strategies.
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Figure 4: (Left) Zero-shot evaluation performance on 13 × 13 maps. Local navigation with different
distances between start and goal, from 1 to 15. (Right) Performance of our method on larger maps.

Evaluation metrics We mainly report success rate and (approximate) SPL metric (Anderson
et al., 2018) with 95% confidence intervals (higher SPL is better). We report results from fully
trained agents to compare asymptotic performance; no training is performed on evaluation maps.

Methods We compare our model-based approach against two model-free baselines.

1. Map-conditioned Multi-task Navigator (MMN), model-based. Our map-conditioned planner
based on MuZero and improved with n-step HER and multi-task training.

2. Map-conditioned Ape-X HER DQN (MAH), model-free. Based on Ape-X DQN (Horgan et al.,
2018) and single-step HER (Andrychowicz et al., 2017), conditioned on map and goal.

3. Single-task Ape-X HER DQN (DQN†). Similar to above, but no task context c provided.
4. Random, a reference of the navigation performance.

5.2 Zero-shot local navigation in novel layouts

For zero-shot generalization of locally trained agents, we train all four agents on 20 of 13 × 13 maps
with randomly generated local start-goal pairs with distance [1, 5] in each episode. We train the
agents until convergence; MAH typically takes 3× more training episodes and steps. We evaluate
all agents on 20 unseen 13 × 13 maps and generate 5 start-goal pairs for each distance from 1 to 15
on each map. The results are shown in Figure 4 left. MMN and MAH generally outperforms the
other two baselines. MMN has better performance especially over longer distances, both in success
rate and successful-trajectory length (not shown), even though it was only trained on distances ≤ 5.
Since we compare fully trained agents, we found MMN performs asymptotically better than MAH.
Additionally, as shown in Figure 4 right, we also train and evaluate MMN on larger maps from
15 × 15 to 21 × 21. Observed with similar trend to 13 × 13 maps, when trained with start-goal
distance ≤ 5, the agent will find distant goals and larger maps more difficult.

5.3 Hierarchical navigation in novel layouts

We also performed a hierarchical navigation experiment, which requires an additional landmark
oracle to generate sequences of subgoals between long-distance start-goal pairs, and evaluate the
performance of hierarchical navigation. The agent is trained on 13 × 13 maps, and evaluate on 20
unseen 13 × 13 maps. On each map, we use the top-right corner as the global start position and
the bottom-left corner as the global goal position, then plan a shortest path in the abstract 2-D
map, and generate a sequence of subgoals with distance 5 between them; this typically results in 3
to 6 intermediate subgoals. The choice of distance 5 is motivated by our previous experiment, and
because the agent is trained on distances ≤ 5. Consecutive subgoal pairs are provided sequentially
to the agent as local start-goal pairs to navigate. The navigation is considered successful only if the
agent reaches the global goal by the end.
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Figure 5: Trajectories from hierarchical navigation in zero-shot on 13 × 13 maps. The top row is for MMN
and bottom row is for MAH. Since there is a fixed scaling factor from maps to environments, we can compute
the corresponding location on the abstract map and visualize trajectories, although this information is not
known to the agent. The top-right corner is the start, and the bottom-left is the goal. Darker cells indicate
provided subgoals from the landmark oracle. For the first 4 tasks (columns), MMN successfully reached the
goals, while MAH failed. Both methods failed in the last task (right-most column).

We evaluated MMN and MAH on the 20 evaluation maps. We provide the next subgoal when the
current one is reached or until timeout. As shown in Table 1, our model-based MMN outperforms the
model-free counterpart by a large margin. MMN can reach 16 out of 20 global goals, which include
all 9 successful cases of MAH. We visualize five trajectories of zero-shot hierarchical navigation in
Figure 5. The model-based MMN is more robust to the intermediate failed subgoals by navigating
to the new subgoal directly, where the model-free MAH gets stuck frequently.

Table 1: Hierarchical navigation performance for various distances between the landmarks, measured by
SPL and success rate (SR only shown for distance 5). Landmarks are provided subgoals between fixed
start-goal pairs on 20 maps. SPL performance is not monotonic because it reflects (lack of) optimality.

Landmark Distance 1 2 3 4 5 5 (SR)
MMN 0.61 0.59 0.68 0.45 0.63 0.80
MAH 0.24 0.42 0.45 0.41 0.28 0.45
DQN† 0.00 0.00 0.00 0.00 0.00 0.00

Random 0.00 0.00 0.00 0.00 0.00 0.00

In Appendix B, we provide further experiments studying the robustness of our method to various
perturbations, including situations where the abstract map contains inaccuracies and where the
agent is only provided a noisy version of its location. In general, our learning-based agent is robust
to these changes, though performance gradually degrades as the magnitude of perturbation increases.

6 Conclusion

In this work, we have presented an end-to-end model-based approach, MMN, for enabling agents to
navigate in environments with novel layouts. By using provided abstract 2-D maps and start/goal
information, MMN does not require further training or exploration (zero-shot). Compared to the
map-conditioned model-free counterpart MAH, both approaches performed well in zero-shot navi-
gation for short distances; for longer distances (with access to a landmark oracle), our model-based
approach MMN performed significantly better. In future work, we will explore learned subgoal
generators, handle visual observation input, and perform navigation in rich visual environments.
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A Further details on our approach

A.1 n-step goal relabelling: Denser reward

Jointly training a planner with learned model can suffer from lack of reward signal, especially
when the model training entirely relies on reward from multiple tasks, which is common in model-
based agents based on value gradients (Schrittwieser et al., 2020; Oh et al., 2017). Motivated by
this, we introduce a straightforward strategy to enhance the reward signal by implicitly defining a
learning curriculum, named n-step hindsight goal relabelling. This generalizes the single-step version
of Hindsight Experience Replay (HER) (Andrychowicz et al., 2017) to n-step return relabeling.

Motivation. As shown in Figure 3 (right), we sample a trajectory of experience
(cT , {st, at, rt, st+1}t) on a specific map and goal cT = (mT , gT ) from the replay buffer. Observe
that, if the agent does not reach the goal area SG (a 100 × 100 cell in the agent’s 3-D environment,
denoted by a 2-D position gT on the abstract 2-D map), it will only receive reward rt = −1 during
the entire episode until timeout. In large maps, this hinders the agent to learn effectively from the
current map mT . Even if the agent partially understands a map, it would rarely experiences a spe-
cific goal area on the map again.3 This is more frequent on larger maps in which possible navigable
space is larger.

Relabelling n-step returns. Motivated by single-step HER, we relabel failed goals to randomly
sampled future states (visited area) from the trajectory, and associating states with the relabelled
n-step return. Concretely, the task-conditioned bootstrapped n-step return is

GT
t
.= rt+1 + γrt+2 + · · · + γnvT

n ,
[
vT
n , π

T
n

]
= gθ(st, cT )

where vT
n is the state-value function bootstrapping n steps into the future from the search value and

conditional on task context cT . This task-conditioned value function is asymmetric since R12 = S ≠
Sg = R2.

Steps. To relabel the task-conditioned bootstrapped n-step return, there are three steps, demon-
strated by the blue lines from “N -step Relabel” box. (1) Goal (red boxes). Randomly select a
reached state st ∈ R12 from the trajectories, then take the 2-D position (x, y) ∈ R2 in agent world
and convert it to a 2-D goal support grid gTS . Then, relabel the goal in task context cTS = (mT , gTS ),
keeping the abstracted map and start position unchanged. (2) Reward (orange boxes). Recompute
the rewards along the n-step segment. In episodic case, we need to terminate the episode if the agent
can reach the relabelled goal area gTS , by marking "done" at the certain timestep or assigning zero
discount after that step γt = 0 to mask the remaining segment. (3) Value (purple circles). Finally,
we need to recompute the bootstrapping task-conditioned value vTS

n , πTS
n = gθ(st, cTS ).

Empirically, this strategy significantly increases the efficiency of our multi-task training by providing
smoothing gradients when sampling a mini-batch of n-step targets from successful or failed tasks. It
can also be applied to other multi-task agents based on n-step return.

A.2 Joint optimization: Multi-task value learning

Our training target has two components. The first component is based on the value gradient objective
in MuZero (Schrittwieser et al., 2020; Oh et al., 2017), using relabelled experiences from proposed
n-step HER. It is denoted by Lktask for step k = 1, . . . ,K. However, this loss is only suitable for
single-task RL.

Thus, we propose an auxiliary model prediction loss, denoted by Lkmodel in Figure 3 (right). The
motivation is to regularize that the hypermodel fϕ(s, a, hψ(cT )) should predict trajectory based on
the information of given abstract map and goal cT . The objective corresponds to maximizing the
mutual information between task context cT and predicted trajectories τ̂T from the hypermodel on

3In our extremely low data regime, the agent only has one start-goal pair on a small set of map. While on low
data regime, the agent can train on randomly sampled pairs on the maps. See the Setup for more details.
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sampled tasks T ∼ ρ(T ):
max
hψ

ET ∼ρ(T ) [I(cT ; τ̂T )] ,

where hψ(cT ) = ϕ is the meta network predicting the weight of transition network fϕ. Observe
that: I(τ ; c) = H(τ) − H(τ |c) ≥ H(τ) + Eτ,c [log q(τ |c)], we can equivalently optimize the RHS
maxh ET [log q(τ |c)] ⇐⇒ maxh E(s,a,s′) [log q(s′|s, a;h(c))] (subscripts omitted). This objective is
equivalent to minimizing the loss between predicted states and true states from environment, for all
transition tuples across all tasks. The final loss is given by the sum over multiple steps:

L(ψ, ϕ, θ) =
n∑

k=1
Lktask + Lkmodel,

where k = 1, ...,K, and K is the length of training segment.

B Further experiments and results

B.1 Robustness to map and localization errors

To further study the robustness of our method and the importance of each component, we consid-
ered breaking three components in closed-loop map-based navigation: Map – (1) → Path – (2) →
Environment – (3) → Map (repeat). In general, our learning-based agent is robust to these changes.
To illustrate the difficulty of the problem, we considered a hard-coded strategy (hand-crafted de-
terministic planner) based on perfect information of the environment (e.g., can plan on map) for
comparison correspondingly: (1) known perfect maps and intermediate landmarks, (2) scaling factor
(unavailable to MMN), and (3) world position on map. Since we assume that it has perfect local-
ization and landmarks, the key step is to reach a landmark given current location, which consists of
several procedures: (a) change the orientation to the target landmark, (b) move forward along the
direction, and (c) stop at the target cell as soon as possible.

Perturbing planning We try to break the implicit assumption of requiring perfect abstract map
information. We adopt the hierarchical setting, but generating subgoals on perturbed maps, where
some proportion of the map’s occupancy information is flipped. In Figure 6 (left), as the perturbation
level increases, MMN’s performance gradually decreases, but it still navigates successfully with
significant noise levels.

Figure 6: Violin plots show the SPL of MMN with different map flip ratio (left) and localization
noise level (right). The two figures clearly show the negative impact of imperfect information,
which also justify the importance of the guidance.

Perturbing action mapping We break the implicit requirement of known scaling between map
and environment. We provide the agent with randomly transformed maps with random perspective
transformation, where the ratio (in both x and y directions) is different. As shown in Table 2,
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perturbed MMN’s performance decreases gracefully compared to unperturbed one, which shows
that our agent rely little on this knowledge or any perfect relation.

Table 2: Success rate for perturbing action mapping, comparing with unperturbed MMN for refer-
ence.

Goal Distance 2 4 6 8 10
MMN (Perturbed) 0.80 0.85 0.71 0.40 0.36
MMN (Default) 0.91 0.90 0.71 0.58 0.43

Perturbing location We break the identifiability of agent position (a part of its joint state) by
applying random noise to given position. We aim to show that our agent does not rely on the position
to understand the map, since providing position in the agent world has no relation with localizing
on abstract maps and our learning-based method can adapt to the noise. In Figure 6 (right), even
though MMN is trained without noise, it tolerates some amount of noise and maintains relatively
high SPL even at 50 units of noise (corresponding to 0.5 cell width). In Figure 7, we visualize the
trajectories of MMN and the deterministic planner to qualitatively demonstrate MMN’s robustness
to noise.

Figure 7: (left pair) MMN visualized with perturbed locations; even though the provided state is
noisy, MMN successfully reaches the goal. (right pair) Deterministic planner is unable to reach
the goal when the provided state is noisy. (We only show the unperturbed locations in this case
for clarity in visualization.) MMN still reaches the goal with 50 units of noise (0.5 cell), while the
deterministic planner gets stuck at some subgoals or runs out of budget.
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Abstract

An agent’s ability to leverage past experience is critical for efficiently solving new
tasks. Prior work has focused on using value function estimates to obtain zero-
shot approximations for solutions to a new task. In soft Q-learning, we show how
any value function estimate can also be used to derive double-sided bounds on the
optimal value function. The derived bounds lead to new approaches for boosting
training performance which we validate experimentally. Notably, we find that the
proposed framework suggests an alternative method for updating the Q-function,
leading to boosted performance.

1 Introduction

In recent years, reinforcement learning (RL) has seen impressive success at the price of ever-increasing
sample budgets. The current paradigm of RL consists of training agents from scratch with new
hyperparameters or in new domains, without significant reuse of previously collected information.
The large datasets generated from such runs have been approached with techniques such as offline RL;
however, the approximate solutions obtained from previous runs are typically not reused. To address
this issue, approaches that directly leverage this learned prior knowledge to efficiently calculate
policies for new tasks are needed. While prior solutions may not be optimal for arbitrary new tasks,
they have been shown to serve as useful approximations that reduce training time in a variety of
settings: (Rusu et al., 2016; Tasse et al., 2021; Agarwal et al., 2022; Adamczyk et al., 2023b). In this
work, we present a new way in which information from previous solutions can be further leveraged
to address new tasks1.

Previous work has focused on addressing this challenge with approaches such as transfer learning,
curriculum learning, and compositionality. In this work, we will focus on value-based RL algorithms
where the agent learns the optimal action-value, or Q-function. In many instances, the agent has an
estimate of the value function even before training begins. For example, in the case of curriculum
learning, the agent has the Q-values for previously learned (progressively more challenging) tasks.
In the case of compositional (Haarnoja et al., 2018a) or hierarchical RL (Hafner et al., 2022), the
agent can combine knowledge by applying a function on the subtasks’ Q-values. When using an
exploratory skill-acquisition approach (Eysenbach et al., 2019) or constructing a task basis (Alver
& Precup, 2021), the agent obtains solutions for a diverse set of skills to use on downstream tasks.
Even in cases where an initial estimate is not explicitly provided, the agent indeed has access to an
estimate through the Q-values obtained in the ongoing learning phase (bootstrapping).

1Our code is publicly available at https://github.com/JacobHA/RLC-SoftQBounding.
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An underlying question in these scenarios is the following: How can the agent use these known
value function estimate(s) for solving a new target task? Does the estimate only serve as a zero-shot
approximation or is there additional useful information that can be extracted from such estimates?
In this work, we address this question by deriving bounds on the optimal Q-values
from an arbitrary prior estimate. We emphasize that the surprising nature of these bounds is
that information concerning the optimal value function can be derived from arbitrarily suboptimal
estimates.

To derive such bounds, we leverage exact results on the Q-function from recent work by Cao et al.
(2021) and Adamczyk et al. (2023a). In the latter, the authors show (in their Theorem 1) that
there exists a method of “closing the gap” between any estimate (therein denoted Q∗(s, a)) and any
target (denoted Q̃∗(s, a)) task in entropy-regularized RL. Here, we show that since this gap between
the target and estimated value functions, Q̃∗(s, a)−Q∗(s, a) = K∗(s, a), is itself an optimal value
function, it can be bounded. As a consequence, instead of providing only a zero-shot approximation
(“warmstart” or “jumpstart”) for training the target task, we show that the estimates available to
the agent also provide a double-sided bound on the desired optimal Q-values. From Theorem 1 of
Cao et al. (2021), it can be shown that an optimal solution is not required for deriving such bounds,
and in fact any function over the state-action space can be used to derive double-sided bounds,
including for instance the bootstrapped estimate of Q(s, a). Since it is the most general, we focus
on this case in the present work.

A schematic illustration of our approach is provided in Figure 1. Starting with samples of a value
function (red points), we derive double-sided bounds (dashed blue lines) on the optimal value func-
tion (solid black line). We find that applying these bounds during training significantly boosts the
agent’s training performance in the tabular setting. We provide further theoretical analysis in contin-
uous state-action spaces, relevant for the function approximator (FA) setting in deep reinforcement
learning, for which we present initial experiments in Section 5.

Main contributions
The main contributions of our work are as follows:

1. A framework for bounding optimal value functions given any estimate of the value function.

2. A novel soft Q-learning algorithm and demonstration of its advantages.

3. Extension of theoretical results to continuous state-action spaces.

2 Preliminaries

For the theoretical analysis, we begin with finite, discrete state and action spaces, and we subse-
quently extend our analysis to continuous spaces. In this setting, the RL problem is modeled as a
Markov Decision Process (MDP) represented by the tuple ⟨S,A, p, r, γ⟩ where S is the state space; A
is the action space; p : S×A → S is the transition function (dynamics); r : S×A → R is a (bounded)
reward function; and γ ∈ [0, 1) is the discount factor. We focus on the generalization of entropy-
regularized RL (Ziebart, 2010), which augments the un-regularized RL objective by including an
entropic regularization term which penalizes control over a pre-specified reference policy:

π∗ = arg max
π

E

[ ∞∑

t=0
γt

(
rt −

1
β

log
(

π(at|st)
π0(at|st)

))]

where π0(a|s) is a fixed prior policy. This additional control cost discourages the agent from choosing
policies that deviate too much from the prior policy. Importantly, entropy-regularized MDPs lead
to stochastic optimal policies that are provably robust to perturbations of rewards and dynamics
(Eysenbach & Levine, 2022); making for a more suitable approach to real-world problems.
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Figure 1: Schematic illustration of the main contribution of this work. Given any approximation
(red curve) to the optimal value function of interest (black curve), we derive double-sided bounds
(blue curves) that lead to clipping approaches during training. Based solely on the current ap-
proximation for Q(s, a) (red curve), we derive double-sided bounds on the unknown optimal value
function Q∗(s, a) (black curve). In the right panel, we show the different clipping methods, which
are described further in the “Experimental Validation” section. In “Hard Clipping”, the target is
replaced with the exceeded bound; in “Soft Clipping”, an additional loss term is appended to the
Bellman loss, proportional to the magnitude of the bound violation.

The solution to the RL problem is defined by its optimal action-value function (Q∗(s, a)) from which
one can derive the aforementioned optimal policy π∗(a|s) through a Boltzmann distribution with
temperature β−1. The optimal value function can be obtained by iterating the following recursive
Bellman equation (Ziebart, 2010; Haarnoja et al., 2018b):

Q∗(s, a) = r(s, a) + γ

β
E

s′∼p
log E

a′∼π0
eβQ∗(s′,a′). (1)

The regularization parameter β is used to control the degree of stochasticity in the optimal policy.
In the entropy-regularized setting, Q∗ is referred to as the optimal “soft” action-value function. For
brevity, we refer to Q∗ simply as the value function when context is clear.

3 Prior Work

The use of value function bounds has been investigated in various domains of RL: offline and online
settings, compositionality, and imitation learning. In this section, we briefly outline some of the most
relevant work from this domain. We contrast the existing literature with regard to the following
features: i) the MDP’s structural assumptions, ii) the requirement for additional samples to derive
bounds, iii) use of double or single-sided bounds.

In (Nemecek & Parr, 2021), the authors have derived double-sided bounds on the state value function
V (s) when the task’s reward function can be written as the positive conical combination of subtask
rewards. This method requires additional samples for first learning the successor features (SFs)
before then deriving the double-sided bounds for a downstream task. The aforementioned work was
subsequently extended by Kim et al. (2022), where, in the same SF setting, they present double-
sided bounds on Q-values for linear combinations of subtask reward functions. They introduced a
notion of “soft clipping” but it was not demonstrated in practice. We later adapt this idea of soft
clipping to our setting, with details in Section 5. Both Nemecek & Parr (2021) and Kim et al. (2022)
consider the un-regularized RL problem formulation (β →∞).

The two previous methods focus on the standard (un-regularized) reinforcement learning setting.
However, the double-sided bounds presented by Haarnoja et al. (2018a)’s Lemma 1 are derived for

2375



RLJ | RLC 2024

the MaxEnt setting, for the case of convex reward combinations. It is worth noting that the lower
bound in this case must be learned (their C function). Extending these results to other more general
classes of functional composition, Adamczyk et al. (2023b) provides double-sided bounds for both
entropy-regularized and un-regularized RL. However, one side of the bounds in all cases must be
learned as well.

In a different context focused on the stability of value-based RL, Lee et al. (2021) proposes to
(approximately) bound Bellman updates through a weighted ensemble, which improves the stability
of training and sample efficiency in entropy-regularized RL. However, the method by Lee et al.
(2021) cannot leverage known solutions for new tasks, instead using a parallel ensemble of learners
for variance estimation, exploiting the UCB framework (Auer et al., 2002) for exploration bonuses.

Other examples of deep RL utilizing bounds include (He et al., 2017), which utilize bounds based
on n-step returns, resulting in faster reward accumulation in the Atari suite. However, their bounds
were not tested in stochastic environments but were shown to hold in expectation. Further, their
upper bound depends on Q∗, the unknown optimal value function, making it intractable without
first solving the task in question. Later, the work of Hoppe & Toussaint (2020) modeled Q-functions
through graphical models, using this structure to derive various bounds used in a constrained-DDPG
algorithm. In this algorithm, a “hard clipping” mechanism is used, wherein the updates to the Q-
values were clipped based on their bounds. We will consider a similar hard clipping approach,
discussed in Section 5, but we derive bounds without imposing a graphical model of the dynamics.
In principle, our bounds can interface easily with such prior work, by straightforwardly combining
methods to obtain the tightest bounds possible.

In contrast to the aforementioned work, we propose a novel method for calculating double-sided
bounds, not limited to a particular type of composition of prior solution(s) and valid for an arbitrary
input function. Our method for deriving double-sided bounds is zero-shot — it does not require
additional samples beyond those collected by the learning agent. Furthermore, our results are
applicable to stochastic environments and both discrete or continuous domains.

4 Results

Our main result provides double-sided bounds on the optimal Q-function. We emphasize that any
(bounded) function Q : S × A → R can be used to generate such bounds. We suggestively use the
notation “Q(s, a)” for this otherwise arbitrary function to emphasize that it may be derived from a
previous task’s solution, an estimate, or other ansatz (e.g. composition or hierarchical function) of
Q-values.

Theorem 1. Consider an entropy-regularized MDP ⟨S,A, p, r, γ, β, π0⟩ with optimal value
function Q∗(s, a). Let any bounded function Q(s, a) be given. Denote the corresponding
state-value function as V (s) .= 1/β logEa∼π0 exp βQ(s, a). Then, Q∗(s, a) is bounded by:

r(s, a) + γ

(
E

s′∼p
V (s′) + inf ∆

1− γ

)
≤ Q∗(s, a) ≤ r(s, a) + γ

(
E

s′∼p
V (s′) + sup ∆

1− γ

)
(2)

where
∆(s, a) .= r(s, a) + γ E

s′∼p
V (s′)−Q(s, a).

In Equation 2, the inf and sup are taken over the (potentially continuous) state-action space S ×A.
The proof of Theorem 1 can be found in Appendix B. Intuitively, this result can be understood as
a double-sided bound on the optimal Q-function, calculated through a single iterate of the Bellman
operator (B) on any input function (denoted Q):

∣∣Q∗(s, a)−BQ(s, a)
∣∣ ≤ O

(
H
√
L
)

, (3)
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where H = (1− γ)−1 denotes the effective time horizon and L denotes the Bellman loss incurred by
the input function Q. During training, the Bellman loss (ideally) reduces to zero: L = ||∆||2 → 0,
implying that inf ∆→ 0 and sup ∆→ 0, hence the bounds in Theorem 1 are tight upon convergence
of the soft action-value function.

As an alternative, in practice, one can replace the inf and sup in the previous results by a min and
max, respectively, over some finite dataset (e.g. the current batch of replay data). Although not
exact, this substitution becomes increasingly accurate for large datasets (batch sizes), as formalized
by our Theorem 2 (Informal). We employ this substitution in the function approximator experiments
shown in Section 5.

After calculating (or estimating) the lower and upper bounds in Theorem 1, we propose to clip the
Q-function with these bounds at each training step. We conclude this section by showing that the
Bellman operator with clipping converges to the optimal Q-function:

Proposition 1. Let B(·) denote the Bellman operator, and let the functions
L(s, a), U(s, a) be lower and upper bounds on the optimal action-value function respectively:
L(s, a) ≤ Q∗(s, a) ≤ U(s, a) for all s ∈ S and a ∈ A. The clipped Bellman operator,
BCQ(s, a) := max (min (BQ(s, a), U(s, a)) , L(s, a)) converges to the optimal action-value
function Q∗(s, a) = B∞Q(s, a) = B∞

C Q(s, a) for any bounded initial function Q(s, a).

This result shows that updates with and without clipping are guaranteed to converge to the same
fixed point, Q∗(s, a) (proof in Appendix B). We experimentally demonstrate this statement in Fig-
ure 2.

4.1 Extension to Continuous Spaces

The bounds presented in the previous section, though exact, are often intractable due to the required
global extremization over continuous state-action spaces. We therefore loosen the previous bounds
by relaxing the required extremization with a simpler optimization over a given batch of replay
data. To this end, we apply the results on Pure Random Search from (Malherbe & Vayatis, 2017),
bounding the error of estimated extrema of Lipschitz-continuous functions in bounded continuous
spaces. We next give a brief discussion on the required steps in the proof, and a full discussion and
derivation of Theorem 2 are given in Appendix C. We will assume that the extrema of the MDP’s
reward function r(s, a) can be estimated with high accuracy (since in principle, the entire replay
buffer can be used). Instead, we will focus on the larger errors in ∆, which change over the course
of training (since we use the most recently learned Q-values to generate bounds) and hence has a
much smaller dataset available, e.g. the sampled replay batch, for estimation.

Two issues must be addressed before we can apply the concentration results from (Malherbe &
Vayatis, 2017) to Theorem 1: (1) Their concentration analysis requires a Lipschitz constant for
the function in question (∆) which is not readily available; and (2) the exact value of ∆ cannot
be given in general, since the dependence on V (s) requires computing an expectation value over
states and actions. We surmount these two issues by first providing a calculation for the Lipschitz
constant of ∆, based on the Lipschitz constant for a general soft Q-function. The derivation and
discussion of this Lipschitz constant is given in Appendix C.2 due to space constraints. Secondly,
in the case of stochastic transitions with continuous state-action spaces, we cannot calculate the
state-value function term directly. Instead, we apply a concentration inequality to this expectation
term, allowing us to bound its error with high probability. A similar error propagation must be
considered from the sampling the prior policy in the continuous action setting (to approximate the
action expectation in Equation 1). Hence, with sufficient smoothness and sampling hypotheses, we
extend Theorem 1 to the sample-based case relevant for the FA setting:
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Figure 2: Here we show specific results on a representative environment, and further examples are
given in the Appendix. At each step, the agent receives a small penalty if it has not reached the
goal (orange diamond). The discount factor γ = 0.98 and inverse temperature parameter β = 5
are fixed throughout these experiments. From left to right: (1) The optimal policy is shown at the
inset. The greedy policy is evaluated during training for the various methods presented. “Baseline
Bounds” refers to clipping during training with

[
rmin
1−γ , rmax

1−γ

]
. (2,3) The mean and range of Q-values

and the proposed bounds (Equation 2). Clipping during training constrains the Q-values to a tight
range much faster than without clipping. Each method is averaged over 30 random initializations.

Theorem 2 (Informal). Consider an MDP with a bounded continuous state and action
space, S × A ⊂ Rd, with stochastic dynamics. Suppose an LQ-Lipschitz function Q(s, a)
is given to generate double-sided bounds on the optimal value function, denoted Q∗(s, a).
Let ε > 0, δ > 0 be given and define the horizon H = (1 − γ)−1, and sample budgets:
|B| ≥ O

(
ε−d log δ−1) , nS ≥ O

(
H2ε−2 log δ−1) , nA ≥ O

(
e2β(H−ε) log δ−1) .

Suppose nS samples are used to estimate the expectation over next-states and nA samples are
used to estimate the expectation over next-actions in the soft state-value function. Denoting
V̂ , ∆̂ as the quantities estimated from samples, the following bounds

Q∗(s, a) ≤ r(s, a) + γ

(
1

nS

nS∑

i=1
V̂ (s′

i) +
max(s,a)∈B ∆̂(s, a) + ε

1− γ

)
(4)

Q∗(s, a) ≥ r(s, a) + γ

(
1

nS

nS∑

i=1
V̂ (s′

i) +
min(s,a)∈B ∆̂(s, a)− ε

1− γ

)
(5)

hold with probability at least 1− δ.

This result shows that our bounds remain valid in the continuous state-action setting with stochastic
dynamics, given sufficiently many samples (large batch sizes). We provide results for other scenarios
(discrete or continuous states, deterministic or stochastic transition dynamics), as well as the formal
result and relevant definitions in Appendix C.

5 Experimental Validation

In our experiments, we study the utility of clipping based on our theoretical results. For simplicity,
we first highlight the results in discrete environments with tabular soft Q-learning. Without any
external estimates for the Q-function, we use the estimate given by the previous step’s Q-values.
Note that this method of obtaining an estimate from the previous training step is the most general
case, applicable to any value-based algorithm. If available, further information based on other
solutions or task structure can additionally be used. Secondly, we study the extension of our theory
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to the case of continuous states, using the same method for deriving bounds, where we compare
clipping methods on the classic control benchmark.

We observe that the use of bounds for clipping the Q-function during training leads to a different
training dynamics than the standard TD update. Intuitively, clipping restricts the Q-function away
from invalid regions while the Bellman updates pull the Q-function toward the correct values. The
state-action dependency of our bounds also seems to be a key feature, based on comparison to using
the looser but constant “Baseline” bounds: Q∗(s, a) ∈

[
Rmin
1−γ , Rmax

1−γ

]
(cf. Figures 2 and 3).

5.1 Tabular Experiments

Figure 3: Speed of learning (measured
as area under evaluation reward curve)
with Q-value clipping during TD up-
dates. Each point is the result of aver-
aging over 30 randomly generated 7× 7
mazes with stochastic transitions. Fur-
ther details of the experiment are given
in Appendix A.1.

In the tabular case, since we have access to the Q-table,
we can simply clip the updated Q-table according to the
derived bounds. When the model (reward and transition
table) is given, we maintain the lower and upper bounds
throughout training, tightening them whenever a better
bound becomes available. In Figure 2 we show the results
of training in a simple maze environment. In the main
plots of Figure 2, we depict a comparison of the evalua-
tion rewards and the mean Q-value over all (s, a) pairs.
In experiments across different sized environments, and
with various levels of stochasticity, we universally find the
increase in convergence speed shown.

To verify the robustness of clipping benefits, we sweep
over the learning rate and maze topology, and measure
the speed of convergence: plotted in Figure 3. The met-
ric used is a normalized area under the evaluation reward
curve. Since randomly generated mazes are used, we nor-
malize against the performance of a uniform policy and
the greedy optimal policy (given by the exact solution).
Thus an algorithm which quickly obtains (and maintains)
the optimal reward will have a larger success metric (more
details in Appendix A.1). In this experiment, we use
stochastic transition dynamics. We begin by giving the
agent the model (in this case, simply a table of rewards
and stochastic transition probabilities), which is required for an exact calculation of the bounds in
Theorem 1. This setting of a “Given Model” is shown with red circles in Figure 3, which outperforms
the other methods, for all learning rates. Then, we consider the case of a learned model, shown with
green stars in Figure 3. This case represents a stepping stone from exact tabular updates (red line)
to the function approximator case since there is noise in the calculation of ∆(s, a) based on sampling
errors introduced by the learned model.

We have found that there are initializations for which our bounds are not violated and thus the Q-
function is not (initially) clipped by our bounds. For instance, we find that for Q-values initialized
far from zero, the bounds are loose and not violated, hence small learning rates will yield nearly
static training dynamics which do not converge. This observation, coupled with the finding that
updating via clipping (when the bounds are violated) consistently performs better (red line with
circle markers in Fig. 3) leads us to the following: To take advantage of the boosting given by
clipping in the low learning rate regime, we propose to use the standard temporal difference (TD)
update only if the Q-function has not changed between two iterations (i.e. no clipping occurs),
and otherwise clip the Q-values appropriately without any TD update. This should be distinguished
from a simpler “always clip” approach, shown in Algorithm 1. This change ensures convergence of
a tabular SQL algorithm while maximizing the utility of clipping. Pseudocode for the algorithm is
given in Algorithm 2 in Appendix A.1. The performance difference between Algorithms 1 and 2 is
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Figure 4: We test the proposed clipping methods (labeled None, Hard, and Soft; described be-
low) across the classic control suite. We fine-tuned each environment’s hyperparameters (details
in Appendix A.1). The average evaluation reward plotted is the reward achieved by following the
stochastic optimal policy, averaged over 5 episodes. Each method in a given environment is averaged
over 30 random initializations, with the 95% bootstrapped confidence interval shaded. To ensure
the performance stems from our bounds alone, we have not included the simpler Rmin,max/(1 − γ)
bounds which are likely to improve the performance further.

shown in Figure 6 in Appendix A. Two versions (one with the model given and one with a learned
model) of our proposed algorithm are shown in Figure 3.

5.2 Function Approximator Experiments

To test our bounds in the deep RL setting, we turn to environments with continuous state spaces,
adopting a DQN-style implementation of discrete-action soft Q-learning with an entropy-regularized
TD update, using an online and target network. Although we have derived bounds for this case, we
cannot simply clip the entire Q-function as we did in the tabular setting. The proposed algorithm
(with clipping only if the Q-function remains fixed) cannot be directly translated to the FA setting.
Thus, we will propose two different methods of clipping suitable for function approximators.

Since the soft Q-learning (SQL) algorithm employs a target network we use both the target and
online networks to derive bounds on the optimal Q-values (cf. Appendix A for the implementation
details and hyperparameters used for training). Since the bounds must hold when either the target
or online net is used as an estimate, we can always take the tighter bound (s, a)-wise between the
two. In general, given many sources of Q-function estimates (such as in ensemble methods), one can
use them collectively to obtain the tightest bound possible.

The derived bounds can be implemented using different approaches for clipping of the value function
during training. We highlight the different methods used below, inspired by the methods used by
He et al. (2017); Kim et al. (2022); Adamczyk et al. (2023b):
(0) No Clipping: The standard training scheme for SQL is implemented.
(1) Hard Clipping: At each backup calculation we enforce the following bounds on the new Q-
value:

Q(s, a)←− Q̂clip(s, a) .= min
{

max
{

r(s, a) + γ

β
log E

a′∼π0
exp βQ(s′, a′), L(s, a)

}
, U(s, a)

}
(6)

and L and U denote the lower and upper bounds derived in Theorem 1. In the tabular setting,
L and U can be calculated exactly. However, for function approximator experiments with sampling,
we replace the inf and sup with a min and max over the current batch as justified in Section 4.
(2) Soft Clipping: An additional term, the “clipping loss”, is added to the function approximator’s
loss function. The clipping loss is defined as

Lclip = 1
|B|
∑∣∣∣Q(s, a)− Q̂clip(s, a)

∣∣∣ , (7)
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with a summation over the current batch, where |B| is the batch size. This gives a total loss of
L = LBellman+ηLclip. The hyperparameter η weights the relative importance of the bound violations
against the Bellman error, whose value we fix to unity for simplicity. On an environment-wise basis,
we fine-tune the hyperparameters on the baseline method (values in Appendix A.2) and use those
same values for all clip methods. Figure 4 indicates that clipping can lead to improvements in the
speed of training; however, additional modifications are needed to further validate the benefits of
clipping in the FA setting. In Figure 4, we observe that replacing the ℓ1-loss shown in Equation 7
with the Huber or ℓ2 loss can yield better performance depending on the environment. However,
this effect can likely be mitigated by fine-tuning the weight parameter, η.

6 Discussion

In this work, we have given a theoretical foundation for deriving double-sided bounds in reinforce-
ment learning, showcasing their experimental validity. Our investigation in tabular domains has
demonstrated that application of these bounds significantly boosts training speed. Coupling our
bounds with proof techniques in e.g. (Tang, 2020) may allow for a proof of a faster convergence
rate. Beyond the theoretical contributions, our work calls for exploration in several new research
directions. While our derived bounds hold in general, there is potential for further refinement given
specific classes of value function estimates and transition dynamics or reward function structures,
as discussed in Section 3. There is also the potential in transfer learning to leverage bound violation
minimization at a state-action level to construct refined initializations from a diverse set of policies.

Integrating our results with other state-of-the-art methods in value-based learning seems a promising
direction for future study. Several specific examples include: exploiting ensembles and extending to
continuous actor-critic methods, adopting a dynamic schedule for the soft clipping weight parameter,
akin to that in (Haarnoja et al., 2018b), and interfacing with model-based approaches such as
DYNA (Sutton, 1990), where our tabular results suggest that a more significant performance boost
may be achieved. We believe that integrating these methods is an important step to ensuring
utility in more complex environments. Finally, we note an intriguing suggestion arising from our
experiments, which can be loosely summarized as “clipping is all you need”. Further translating the
benefits of clipping from tabular to deep RL presents an exciting opportunity for future research.
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Figure 5: Examples of the random maps generated for the tabular experiments.

A Experiments

In tabular soft Q-learning, we calculate the Bellman residual, mixing it into the current estimate
of Q(s, a) at every step taken by the agent. At each update step, we calculate the bounds given
by Theorem 1, which are exact in the case that the model is given (red circles in Figure 3). Since
these bounds are exact, we can repeatedly take the tightest possible bounds at every step, leading
to the consistent fast convergence. When the model is learned through sampling (updating the
deterministic reward table and using count-based estimates for the stochastic transition dynamics),
the bounds are inexact, so we only use the current step’s estimate without iteratively tightening them,
which we found to lead to collapse to incorrect values. The clipping performed follows Equation 6
in the main text.

For the tabular experiments, we first generated 30 random mazes for each method to solve 10 times.
In each generated 7 × 7 maze, walls are randomly generated at a site with probability 20%, and a
goal is randomly placed at a site without a wall. We show four examples of such mazes in Figure 5.
Depth-first search is used to ensure the generated maze has a valid solution (i.e., the rewarding state
can be visited by the agent). Each step costs the agent −1, and the goal state incurs a cost of −0.25.
The environment is stochastic, such that the probability of moving in the “intended” direction is
75%, and the probability of moving perpendicular to the intended direction is 12.5%. The agent
then transitions to the grid state one unit in that direction, as common in MiniGrid or FrozenLake
environments. Although we have sparse rewards for the simplicity of environment generation, we
find our results to hold across various dense reward settings, with varying levels of stochasticity.

As mentioned in the main text, the ability for bounds to be applied (and training efficiency overall)
is sensitive to the scale of the initialized Q-function. We found that a random uniform initialization
of the Q-values in the range (−1, 1) performs best for the baseline, and thus we maintain this
initialization across all experiments.

Since each maze potentially has a different evaluation reward scale, we normalize the evaluation
score so they may be averaged across mazes, akin to e.g. Mnih et al. (2015):

Normalized Evaluation Reward = ⟨R⟩optimal − ⟨R⟩agent
⟨R⟩agent − ⟨R⟩uniform

, (8)

where ⟨R⟩optimal, ⟨R⟩agent, ⟨R⟩uniform denote the average reward (over 3 episodes) obtained by an
agent executing an optimal, training, or uniform random policy, respectively. Finally, we integrate
the area under this “Normalized Evaluation Reward” vs. Environment Steps curve, to obtain a met-
ric for the speed of convergence, plotted in Figure 3: “Average Integrated Evaluation Reward (AUC)”.

To explore the utility of clipping in function approximator (FA) systems, we use a soft Q-learning
(SQL) algorithm Haarnoja et al. (2017), while applying and monitoring clipping given by the bounds
in Theorem 1. In particular, we continuously bootstrap by using the previous estimate of the Q-
function to generate the bounds, and we clip the target network’s output value accordingly. More
specifically, we extract bounds from both the target network and Q-network at each step, and take the
tighter of the two bounds. For continuous spaces, we use the estimate sup r(s, a) ≈ maxi∈D r(s, a),
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where the max is taken over the current batch (and similarly for inf r(s, a)). We consider the two
clipping methods described in the Experiments section of the main text. We have also experimented
with different loss functions, as the optimal choice seems to be environment-dependent.

A.1 Implementation Details

For many environments of interest, the transition dynamics are reducible (they have absorbing states
returning a termination signal (“done” in Gym Brockman et al. (2016), “terminated” in the newer
Gymnasium package Towers et al. (2023)). A common method to assign a Q-value to such states is
given by (see e.g. Mnih et al. (2015)):

Q(s, a) =
{

r(s, a) if terminated
r(s, a) + γV (s′) else

(9)

This value assignment means that states near absorbing states will have values ∼ O(1) rather than
theO( 1

1−γ ) given by the bounds presented. In passing, we note that one way to circumvent this would
be to alter the convention by assigning a value of r(s, a)/(1−γ) at termination, since for irreducible
dynamics, this would correspond to accumulating the terminal state’s reward ad infinitum.

To conform to the convention shown above, we modify our bounds to allow for the termination
signal to properly affect the bounds. Focusing on deterministic dynamics for simplicity, the bounds
are modified from:

Q∗(s, a) ≤ r(s, a) + γ

(
V̂ (s′) +

max(s,a)∈B ∆̂(s, a)
1− γ

)

Q∗(s, a) ≥ r(s, a) + γ

(
V̂ (s′) +

min(s,a)∈B ∆̂(s, a)
1− γ

)

to the following:

Q∗(s, a) ≤ r(s, a) + γ

(
V̂ (s′) +

max(s,a)∈B ∆̂(s, a)
1− γ

)
[1− done(s′)]

Q∗(s, a) ≥ r(s, a) + γ

(
V̂ (s′) +

min(s,a)∈B ∆̂(s, a)
1− γ

)
[1− done(s′)]

which can be justified by referring to the value definition used (Equation 9).
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Next we provide the algorithm used for clipping in our experiments. We highlight in blue the
changes from a standard soft Q-learning approach without clipping, e.g. a discrete-action analogue
of Haarnoja et al. (2017).

Algorithm 1 Soft Q-learning with Constant Clipping (Tabular)
1: Initialize Q-values: Q(s, a) ∼ Unif(−1, 1), max sample budget.
2: Initialize L(s, a) = −∞, U(s, a) = +∞.
3: Set learning rate α, discount factor γ, and inverse temperature β.
4: while total environment steps < max sample budget do
5: Reset environment
6: while not end of episode do
7: Choose action a ∼ π(·|s) ∝ exp βQ(s, a)
8: Take action a: observe reward r, next state s′, and termination signal
9: Compute state value function: V (s′) = β−1 logEa′∼π0 exp βQ(s′, a′)

10: Compute the TD error: δ = r + γ · (1− terminated) · V (s′)−Q(s, a)
11: Update Q-table: Q′(s, a) = Q(s, a) + αδ
12: Calculate new bounds {L′(s, a), U′(s, a)} using Q′ in Theorem 1.
13: Tighten lower bounds: L′(s, a) = max {L′(s, a), L(s, a)}
14: Tighten upper bounds: U′(s, a) = min {U′(s, a), U(s, a)}
15: Clip the Q-values: Q′(s, a) = clamp (Q′(s, a), min = L′(s, a), max = U′(s, a))
16: Update state: s← s′

17: Update Q: Q← Q′

18: end while
19: end while

Algorithm 2 Soft Q-learning with Conditional TD-updates (Tabular)
1: Initialize Q-values: Q(s, a) ∼ Unif(−1, 1), max sample budget.
2: Initialize L(s, a) = −∞, U(s, a) = +∞.
3: Set learning rate α, discount factor γ, and inverse temperature β.
4: while total environment steps < max sample budget do
5: Reset environment
6: while not end of episode do
7: Choose action a ∼ π(·|s) ∝ exp βQ(s, a)
8: Take action a: observe reward r, next state s′, and termination signal
9: Compute state value function: V (s′) = β−1 logEa′∼π0 exp βQ(s′, a′)

10: Calculate new bounds {L′(s, a), U′(s, a)} using Q′ in Equation 2.
11: Tighten lower bounds: L′(s, a) = max {L′(s, a), L(s, a)}
12: Tighten upper bounds: U′(s, a) = min {U′(s, a), U(s, a)}
13: Clip the Q-values: Q′(s, a) = clamp (Q(s, a), min = L′(s, a), max = U′(s, a))
14: if Q′ == Q then
15: // No clipping has been applied, resort to TD-update:
16: Compute the TD error: δ = r + γ · (1− terminated) · V (s′)−Q(s, a)
17: Update Q-table: Q′(s, a)← Q′(s, a) + αδ
18: end if
19: Update state: s← s′

20: Update Q: Q← Q′

21: end while
22: end while

In Figure 6, we compare Alg. 1 and Alg. 2. Importantly, we find it is imperative to not always
update the Q-function with TD updates. Rather, we find that by using TD updates only when the
Q-values are not changed by clipping, the performance significantly improves in the high learning
rate regime.
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Figure 6: In the 7 × 7 mazes, we compare the “always clip” (Algorithm 1) and “TD only if no
clipping” (Algorithm 2) algorithms as discussed in Section 5. The points labeled “TD only if No
Clip” represent the same algorithm shown in the main text’s Figure 3, titled “Clipping: Given
Model”.

Figure 7: We perform the same experiments as demonstrated in Figure 3, on larger 30× 30 mazes,
with the same qualitative results.
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A.2 Hyperparameters

For the FA classic control experiments, we parameterize the Q-function by an MLP with a standard
fixed depth (two hidden layers) and fine-tuned width. We keep the discount factor γ = 0.99 fixed
across tasks, and use a single online and target function. We tune the learning rate, β, target update
frequency, training frequency, number of gradient steps per training step, and batch size. The ranges
for each hyperparameter, swept uniformly at random, are given below:

Table 1: Hyperparameters and Ranges

Hyperparameter Range Sampling Distribution
Learning Rate (10−4, 10−1) Log Uniform
Inverse Temperature, β (10−2, 101) Log Uniform
Target Update Frequency {1, 10, 100, 1000} Uniform
Training Frequency (1, 100) Log Uniform
Gradient Steps per Training Step (1, 100) Log Uniform
Batch Size

{
24, 25, 26, 27, 28, 29, 210} Uniform

Hidden Dimension
{

24, 25, 26, 27, 28, 29} Uniform
We sweep each hyperparameter at random in the ranges shown, and select the best hyperparameter
set, sorted by the largest area under the evaluation reward curve (averaged over 3 independent runs).
The best hyperparameters for each environment are shown in the next table.

Table 2: fine-tuned Hyperparameters for No Clipping (Baseline) Soft Q-Learning

Environment CartPole-v1 Acrobot-v1 MountainCar-v0
Learning Rate 0.016 0.0005 0.007
Inverse Temperature, β 0.019 4.5 5.3
Target Update Frequency 1 10 10
Training Frequency 2 2 58
Gradient Steps per Training Step 16 20 5
Batch Size 512 64 128
Learning Starts 0 0 10,000
Hidden Dimension 64 64 512
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B Proofs of Exact Results

In this section and the next we provide proofs of the theoretical results in the main text. Each proof
is prefaced with a restatement of the theorem for convenience.

We begin with a helpful lemma which bounds the optimal action-value function Q∗(s, a) for any
task. We note that these bounds hold for both un-regularized RL and entropy-regularized RL.

Lemma A. For a task with reward function r(s, a), discount factor γ, the (soft) optimal
action-value function Q∗(s, a) satisfies:

Q∗(s, a) ≥ r(s, a) + γ
infs,a r(s, a)

1− γ
(10)

Q∗(s, a) ≤ r(s, a) + γ
sups,a r(s, a)

1− γ
(11)

Proof. We will prove the upper bound here, with the lower bound’s proof following similarly. The
proof follows from induction on steps (n) of the recursive Bellman backup equation:

Q(n+1)(s, a) = r(s, a) + γ

β
E

s′∼p(·|s,a)
log E

a′∼π0(·|s′)
exp

(
βQ(n)(s′, a′)

)
. (12)

We first use induction to prove

Q(n)(s, a) ≤ r(s, a) + γ
1− γn

1− γ
sup
s,a

r(s, a).

Then, since limn→∞ Q(n)(s, a) = Q∗(s, a) and γ ∈ [0, 1) the desired result (Equation 11) will follow
from this limit.

We set Q(0)(s, a) = r(s, a). The base case (n = 1) trivially holds:

Q(1)(s, a) = r(s, a) + γ

β
E

s′∼p(·|s,a)
log E

a′∼π0(·|s′)
exp

(
βQ(0)(s′, a′)

)

= r(s, a) + γ

β
E

s′∼p(·|s,a)
log E

a′∼π0(·|s′)
exp (βr(s′, a′))

≤ r(s, a) + γ

β
sup
s,a

(βr(s, a))

= r(s, a) + γ
1− γ1

1− γ
sup
s,a

r(s, a).

We proceed in proving the upper bound based on induction as described above. For notational
convenience we denote R

.= sup r(s, a). The inductive hypothesis is:

Q(n)(s, a) ≤ r(s, a) + γ
1− γn

1− γ
R. (13)

To prove that the inequality holds for step (n + 1), we use the Bellman backup equation:

Q(n+1)(s, a) = r(s, a) + γ

β
E

s′∼p(·|s,a)
log E

a′∼π0(·|s′)
exp

(
βQ(n)(s′, a′)

)

Q(n+1)(s, a) ≤ r(s, a) + γ

β
E

s′∼p(·|s,a)
log E

a′∼π0(·|s′)
exp

(
β

[
r(s′, a′) + γ

1− γn

1− γ
R

])

≤ r(s, a) + γ

(
R + γ

1− γn

1− γ
R

)
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At this point if the transition dynamics were known then one could improve this bound by including
the next term, Es′∼p(·|s,a) maxa′ r(s′, a′). Instead we do not assume access to the next term, bounding
this term by R. Then we have:

Q(n+1)(s, a) ≤ r(s, a) + γ

(
R + γ

1− γn

1− γ
R

)

= r(s, a) + γ
1− γn+1

1− γ
R,

which completes the proof of the inductive step. As stated above, this completes the proof of
the upper bound by taking the limit n → ∞. The lower bound follows similarly by swapping all
inequalities and taking inf instead of sup.

We now proceed with the proof of our first result, Theorem 1. We do so by applying Lemma A to
the K∗ function of Adamczyk et al. (2023a)’s Theorem 1.

Theorem 1. Consider an entropy-regularized MDP ⟨S,A, p, r, γ, β, π0⟩ with optimal value
function Q∗(s, a). Let any bounded function Q(s, a) be given. Denote the corresponding
state-value function as V (s) .= 1/β logEa∼π0 exp βQ(s, a). Then, Q∗(s, a) is bounded by:

r(s, a) + γ

(
E

s′∼p
V (s′) + inf ∆

1− γ

)
≤ Q∗(s, a) ≤ r(s, a) + γ

(
E

s′∼p
V (s′) + sup ∆

1− γ

)
(14)

where
∆(s, a) .= r(s, a) + γ E

s′∼p
V (s′)−Q(s, a).

Proof. As a point of notation, r̃(s, a) in Adamczyk et al. (2023a) is the same as our r(s, a). Their
r(s, a) is now replaced by the reward function corresponding to an “optimal” value function of
Q(s, a). As discussed, Q(s, a) need not be an optimal value function corresponding to any known
or desired task (reward function). However, because of Theorem 1 in Cao et al. (2021), we see that
choosing a reward function of Q(s, a) − γ Es′ V (s′) ensures that Q(s, a) is indeed an optimal value
function, allowing us to apply Theorem 1 of Adamczyk et al. (2023a):

Q∗(s, a) = Q(s, a) + K∗(s, a) (15)

where K∗ is the optimal soft action value function corresponding to a task with reward function
∆(s, a) .= r(s, a) + γ Es′∼p(·|s,a) V (s′)−Q(s, a). By applying Lemma A to the value function K∗, we
arrive at the stated result in Equation 14:

Q∗(s, a) = Q(s, a) + K∗(s, a)

≤ Q(s, a) + ∆(s, a) + γ
sup ∆
1− γ

= Q(s, a) + r(s, a) + γ E
s′∼p(·|s,a)

V (s′)−Q(s, a) + γ
sup ∆
1− γ

= r(s, a) + γ

(
E

s′∼p(·|s,a)
V (s′) + sup ∆

1− γ

)
.

The same proof holds for the lower bound.

2390



RLJ | RLC 2024

We now turn to the proof of the convergence result presented in the main text:

Proposition 1. Let B(·) denote the Bellman operator, and let the functions
L(s, a), U(s, a) be lower and upper bounds on the optimal action-value function respectively:
L(s, a) ≤ Q∗(s, a) ≤ U(s, a) for all s ∈ S and a ∈ A. The clipped Bellman operator,
BCQ(s, a) := max (min (BQ(s, a), U(s, a)) , L(s, a)) converges to the optimal action-value
function Q∗(s, a) = B∞Q(s, a) = B∞

C Q(s, a) for any bounded initial function Q(s, a).

Proof. We first show convergence of the operator BC , then show that it converges to the same fixed
point as that of B. For convergence, it suffices to show that BC is a contraction mapping, that is:
|BCQ(s, a)−Q∗(s, a)| ≤ γ |Q(s, a) − Q∗(s, a)|.
There are three cases for the magnitude of BQ(s, a) relative to the upper and lower bounds:

1. BQ(s, a) ∈ (L(s, a), U(s, a))

2. BQ(s, a) ∈ (−∞, L(s, a))

3. BQ(s, a) ∈ (U(s, a),∞)

In the first case, clipping does not occur and hence BCQ(s, a) = BQ(s, a), which con-
tracts with rate γ. In the second case, we can write BQ(s, a) = L(s, a) − χ(s, a) where
χ(s, a) := BQ(s, a)− L(s, a) > 0 is referred to as the “bound violation”. Then,

|BCQ(s, a)−Q∗(s, a)| = |Q∗(s, a)−BCQ(s, a)|
= |Q∗(s, a)− L(s, a)|
≤ |Q∗(s, a)− L(s, a) + χ(s, a)|
= |Q∗(s, a)− (L(s, a)− χ(s, a))|
= |Q∗(s, a)−BQ(s, a)|
≤ γ|Q(s, a)−Q∗(s, a)|.

A similar proof holds for the third case.

By the Banach fixed point theorem, it follows that repeated application of BC converges to a fixed
point. It is clear that the fixed point for B is also a fixed point for BC , and since it is unique, we
have B∞

C Q(s, a) = B∞Q(s, a) = Q∗(s, a).

C Error Analysis for Continuous Spaces

In this section, we turn to those results specific to the bounds in continuous spaces and their error
analysis, based on Lipschitz continuity and finite sampling errors.

C.1 Reward functions

In theoretical analyses of RL algorithms it is typical to assume a bounded reward function:
r(s, a) ∈ (Rmin, Rmax) for all s ∈ S, a ∈ A. However, the values of these bounds may not be
known to the agent (or even RL practitioner) in the general model-free case. Thus, one must resort
to sampling the reward and estimate the values of Rmin and Rmax. In fact, due to Corollary 1 from
Malherbe & Vayatis (2017) one can obtain global empirical bounds on r(s, a) with high probability.
In the following, we restate Corollary 1 for convenience. Notice that the resulting bounds depend
only on a dataset (replay buffer or batch) B, the dimensionality of the continuous state-action space
|S × A|, a desired probability 1 − δ, and confidence interval ε. Given these input parameters, the
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global extrema of the reward function (or any Lipschitz function) can be bounded with high confi-
dence, within the convex hull of points sampled (i.e. the replay buffer). For bounds on the reward
function, one obtains the following:

Corollary 1. Consider an MDP with bounded continuous state-action space S × A ⊂ Rd,
and deterministic dynamics. Let ε > 0, δ > 0, and |B| ≥

(
Lrdiam(S×A)

ε

)d

log 1/δ,
be given, where diam represents the diameter of a bounded space. Suppose |B| samples are
drawn uniformly from state-action space, (s, a) ∼ Unif (S ×A), and denote the convex hull
of these points as c

.= Conv(B). Then, the following bounds on the reward function’s extrema

inf
c

r(s, a) ≥ min
(s,a)∈B

r(s, a)− ε,

sup
c

r(s, a) ≤ max
(s,a)∈B

r(s, a) + ε,

hold with probability at least 1− δ.

Proof. The only difference from the result in Malherbe & Vayatis (2017) is that we have written the
result in terms of the number of samples, which is found by solving for |B|:

ε ≤ Lr · diam(c) ·
(

log(1/δ)
|B|

) 1
d

(16)

|B| ≥
(

Lrdiam(c)
ε

)d

log 1/δ. (17)

Note that these bounds only hold within the convex hull of the sampled points.

C.2 Lipschitz Continuity

Due to the hypotheses of Corollary 1, the function of interest must be Lipschitz continuous. In the
present case, this function (the one being maximized or minimized) is ∆, as seen in Theorem 1.
Therefore we must derive the Lipschitz constant for the function ∆. To carry out this calculation,
we suppose that a Lipschitz MDP and Lipschitz input function, denoted Q(s, a), are given.

Lemma B. Consider an MDP with (Lr, Lp)-Lipschitz rewards and dynamics, Lκ-Lipschitz
continuous log π0(·|s) (with respect to s) and LQ-Lipschitz continuous function Q(s, a). The
function ∆ in Equation 1 generated for this MDP with Q is Lipschitz-continuous with constant

L∆ = Lr + LQ + γLp(LQ + β−1Lκ).

In the case of a uniform prior policy π0 this simplifies to

L∆ = Lr + (1 + γLp)LQ. (18)

Proof. The sum of Lipschitz functions is itself Lipschitz continuous, with the Lipschitz constant
being the sum of all terms’ Lipschitz constants (through the triangle inequality). We begin with
the calculation of the Lipschitz constant for the soft state-value function, V . First, we note that
the operation of LogSumExp is Lipschitz continuous with Lipschitz constant 1 (cf. “mellowmax”
with an additive constant in Asadi & Littman (2017)). Since this operation (over action space) is
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composed with the LQ-Lipschitz input Q-function and Lκ-Lipschitz prior log π0 we have for V (s′),

β−1 log E
a′∼π0(·|s′)

exp βQ(s′, a′) = β−1 log
∑

a

exp β
(
Q(s′, a′) + β−1 log π0(a′|s′)

)
. (19)

Written this way, we can see the operation in question is a composition and sum of Lipschitz
functions, leading to a Lipschitz constant of LV = 1 · (LQ + β−1Lκ). Note that in the case of a
uniform prior policy Lκ = 0, and the Lipschitz constant for the state value function reduces to LQ.

Now calculating the Lipschitz constant of ∆, the contribution from Es′∼p V (s′) is:
∣∣∣∣ E
s′∼p(·|s,a)

V (s′)− E
s′∼p(·|ŝ,â)

V (s′)
∣∣∣∣ =

∣∣∣∣
∫

S
(p(·|s, a)− p(·|ŝ, â)) V (s′)ds′

∣∣∣∣ (20)

≤ LpLV (|s− ŝ|+ |a− â|) . (21)

In the second line we have used the same argument as in the proof of Lemma 2 of Rachelson
& Lagoudakis (2010). Now, using the full definition of ∆ we may finally compute its Lipschitz
constant as:

|∆(s, a)−∆(ŝ, â)| =
∣∣∣∣r(s, a) + γ E

s′∼p(·|s,a)
V (s′)−Q(s, a)−

(
r(ŝ, â) + γ E

s′∼p(·|ŝ,â)
V (s′)−Q(ŝ, â)

)∣∣∣∣

≤ (Lr + LQ) (|s− ŝ|+ |a− â|) + γ

∣∣∣∣ E
s′∼p(·|s,a)

V (s′)− E
s′∼p(·|ŝ,â)

V (s′)
∣∣∣∣

≤ (Lr + LQ) (|s− ŝ|+ |a− â|) + γLpLV (|s− ŝ|+ |a− â|)
=
(
Lr + LQ + γLp(LQ + β−1Lκ)

)
(|s− ŝ|+ |a− â|) .

The second line follows from the triangle inequality and Lipschitz continuity of the reward function
and input function Q. This allows us to read off the final Lipschitz constant as:

L∆ = Lr + LQ + γLp(LQ + β−1Lκ). (22)

Note that in the simpler case of the MaxEnt uniform prior policy (Lκ = 0) the Lipschitz constant
of ∆ simplifies to L∆ = Lr + (1 + γLp)LQ.

C.3 Extension of Exact Bounds

In this section, we extend our results from the tabular case (Theorem 1) to scenarios where sampling
is required (i.e. in the presence of continuous state-action spaces and stochastic dynamics).

We will proceed by introducing and proving three progressively more involved results, covering
the following situations: (1) Sampling error arises from estimating the extrema of ∆, which can
be calculated exactly, but for which we do not have access to global extrema. (2) An additional
sampling error arises due to stochastic transition dynamics. (3) Additional sampling error arises due
to continuous action spaces, for which the state-value function integral cannot be calculated exactly.

In each case, we provide the number of samples required for a given (ε, δ)-concentration inequality.
In (1) we denote the number of samples for estimating the extrema of ∆ with |B| samples (as in
practice we sample using the current batch of replay data), and in (2) we introduce nS , the number
of samples for the next-state transitions, and in (3) we introduce nA, the number of samples for
next-actions drawn from the prior policy.

Note that for partially discrete spaces (e.g. continuous state, discrete action), we assume that
optimization over the discrete variable is feasible. As in Corollary 1, all proceeding bounds involving
extremization over ∆ only hold within the convex hull of the sampled points.
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Theorem 1. Consider an MDP with bounded continuous state space, discrete actions,
and determinstic dynamics. Let ε1 > 0, δ1 > 0, L∆ given in Lemma B, and
|B| ≥

(
L∆diam(c)

ε1

)|S|
log 1/δ1, be given. Suppose |B| samples are drawn uniformly from

state-space, s ∼ Unif (S). Then, the following bounds on the Q-values

Q∗(s, a) ≤ r(s, a) + γ

(
E

s′∼p
V (s′) +

max(s,a)∈B ∆(s, a) + ε1

1− γ

)
(23)

Q∗(s, a) ≥ r(s, a) + γ

(
E

s′∼p
V (s′) +

min(s,a)∈B ∆(s, a)− ε1

1− γ

)
(24)

(25)

hold with probability at least 1− δ1, where ∆ is given by Equation 1.

Proof. The bounds follow directly from applying Corollary 1 to the bounds given in Theorem 1.

For the case of stochastic dynamics, we must construct an estimate of V and ∆ which can be
calculated with the given information (samples of the next state, rather than an exact integral):

E
s′∼p(·|s,a)

V (s′) =
∫

S
p(·|s, a)V (s′)ds′ → 1

nS

nS∑

i=1
V (s′

i) (26)

∆(s, a)→ ∆̂(s, a) = r(s, a) + γ
1

nS

nS∑

i=1
V (s′

i)−Q(s, a) (27)

where nS denotes the number of next-state samples from the transition dynamics. Based on these
definitions, we introduce two small lemmas, bounding the error in replacing the true functions with
their corresponding estimates:

Lemma C. Let δ > 0 and ε > 0 be given. Then with at least n ≥
(

Rmax−Rmin
ε(1−γ)

)2
log 2

δ

samples on the next state, the error in replacing Es′ V (s′) with 1
n

∑n
i=1 V (s′

i) is bounded with
probability 1− δ, leading to the following bounds:

E
s′∼p

V (s′) ≤ 1
n

n∑

i=1
V (s′

i) + ε (28)

E
s′∼p

V (s′) ≥ 1
n

n∑

i=1
V (s′

i)− ε. (29)

Proof. Applying Hoeffding’s inequality on the relevant term gives

P

(∣∣∣∣∣ E
s′∼p

V (s′)− 1
n

n∑

i=1
V (s′

i)
∣∣∣∣∣ < ε

)
≥ 1− 2 exp

(
−2ε2

b2 n

)

where as usual b = (Rmax −Rmin) (1 − γ)−1 is the gap between a lower and upper bound on the
concentrating quantity of interest, V . Note that here and in the following we assume exact global
bounds on the reward function, r(s, a) though in principal a corresponding error term based on finite
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samples can be included. Defining δ = 2 exp
(
− 2ε2

b2 n
)

, we have with probability at least 1− δ:
∣∣∣∣∣ E
s′∼p

V (s′)− 1
n

n∑

i=1
V (s′

i)
∣∣∣∣∣ < ε, (30)

where solving for n yields a requirement of n = 1
2

(
Rmax−Rmin

ε(1−γ)

)2
log 2

δ samples. Expanding the
absolute values leads to the two bounds shown, which is a more useful form for the subsequent
results.

We next provide a similar lemma for the error in replacing ∆ with ∆̂:

Lemma D. Let ε > 0 and δ > 0 be given. Then given n ≥ 1
2

(
Rmax−Rmin

ε(1−γ)

)2
log 2

δ samples to
estimate the value of the next state, the error in replacing ∆(s, a) with ∆̂(s, a) in Equation 27
is upper bounded. That is, for all s ∈ S, a ∈ A:

∣∣∣∆(s, a)− ∆̂(s, a)
∣∣∣ ≤ γε (31)

with probability 1− δ.

Proof. From the definitions, we can immediately calculate the following error bound

∣∣∣∆(s, a)− ∆̂(s, a)
∣∣∣ =

∣∣∣∣∣r(s, a) + γ E
s′∼p

V (s′)−Q(s, a)−
(

r(s, a) + γ
1
n

n∑

i=1
V (s′

i)−Q(s, a)
)∣∣∣∣∣

= γ

∣∣∣∣∣ E
s′∼p

V (s′)− 1
n

n∑

i=1
V (s′

i)
∣∣∣∣∣

≤ γε.

where the last line holds with probability 1− δ. The last line follows from Lemma C when using at
least n = 1

2

(
Rmax−Rmin

ε(1−γ)

)2
log 2

δ samples.

Now we combine all the previous results to arrive at the following extension of our main results to
the case of sampling in stochastic environments with continuous state space:

Theorem 2. Consider an MDP with bounded continuous state space, discrete actions and
stochastic dynamics. Let ε1, ε2 > 0, δ1, δ2 > 0, and |B| ≥

(
L∆diam(c)

ε1

)|S|
log 1/δ1,

nS ≥ 1
2

(
Rmax−Rmin

ε2(1−γ)

)2
log 2

δ2
, be given. Suppose |B| samples are drawn uniformly from

state-space, s ∼ Unif (S). Then, for V, ∆̂ given in Equation 26, 27, the following bounds on
the Q-values

Q∗(s, a) ≤ r(s, a) + γ

(
1

nS

nS∑

i=1
V (s′

i) +
max(s,a)∈B ∆̂(s, a) + ε1 + ε2

1− γ

)
(32)

Q∗(s, a) ≥ r(s, a) + γ

(
1

nS

nS∑

i=1
V (s′

i) +
min(s,a)∈B ∆̂(s, a)− ε1 − ε2

1− γ

)
(33)

hold with probability at least 1− δ1 − 2δ2.

2395



RLJ | RLC 2024

Proof. For stochastic dynamics there remains an error in using samples to estimate the expectation
over next states in V (s′).

Now, for simplicity, we will assume that the same number of samples nS are used to estimate V (s′)
appearing explicitly in the bound and implicitly in the definition of ∆. In principle, these can be
different values, but we propose (as done experimentally) to use the same batch of replay data for
both calculations.

Then by Lemma C, let ε2 > 0, δ2 > 0 and nS ≥ 1
2

(
Rmax−Rmin

ε2(1−γ)

)2
log 2

δ2
next-state samples be given.

Then with probability at least 1− δ2:

∆(s, a) ≤ ∆̂(s, a) + γε2 (34)

max
(s,a)∈B

∆(s, a) ≤ max
(s,a)∈B

(
∆̂(s, a) + γε2

)
(35)

≤ max
(s,a)∈B

∆̂(s, a) + γε2. (36)

Combining the bound above with Lemma B allows one to replace all instances of V and ∆ with
their approximations in the upper bound of Theorem 1:

Q∗(s, a) ≤ r(s, a) + γ

(
E

s′∼p
V (s′) +

max(s,a)∈B ∆(s, a) + ε1

1− γ

)

≤ r(s, a) + γ

(
1

nS

nS∑

i=1
V (s′) + ε2 +

max(s,a)∈B ∆(s, a) + ε1

1− γ

)

≤ r(s, a) + γ

(
1

nS

nS∑

i=1
V (s′) + ε2 +

max(s,a)∈B ∆̂(s, a) + γε2 + ε1

1− γ

)

= r(s, a) + γ

(
1

nS

nS∑

i=1
V (s′) +

max(s,a)∈B ∆̂(s, a) + ε1 + ε2

1− γ

)
,

which holds with probability at least (1− δ1)(1− δ2)2 ≥ 1− δ1 − 2δ2 (we ignore the terms beyond
first order which are negligible in the limit of small δi). One factor of 1− δ1 arises from Theorem 1
and two factors of 1 − δ2 correspond to the use of Lemma B and Lemma C separately, as they act
on independent next-state samples: Lemma B operates on the next-state samples dictated by the
fixed (s, a)-value of interest on the left-hand side of the bound, whereas Lemma C operates on the
next states in the batch B. As discussed previously, we have assumed for simplicity the same values
of (ε2, δ2) in their corresponding concentration bounds.

A similar proof holds for the lower bound.

Lastly, we will consider the case of continuous actions in a soft Q-learning style algorithm where one
samples actions from the prior policy π0 to estimate the following integral

V (s) = β−1 log
∫

A
eβQ(s,a)π0(a|s)da, (37)

specifically with nA samples from the prior policy,

V̂ (s) .= β−1 log
nA∑

i=1
eβQ(s,ai). (38)
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Theorem 3. Consider an MDP with a bounded continuous state and action space,
S × A ⊂ Rd, with stochastic dynamics. Suppose an LQ-Lipschitz function Q(s, a) is
given to generate double-sided bounds on the optimal value function, denoted Q∗(s, a). Let
εi > 0, δi > 0 be given and define the horizon H = (1− γ)−1, and sample budgets

|B| ≥
(

L∆diam (S ×A)
ε1

)d

log 1
δ1

, (39)

nS ≥
1
2

(
H(Rmax −Rmin)

ε2

)2
log 2

δ2
, (40)

nA ≥
1
2

(
eβH(Rmax−Rmin) − 1

eβε3 − 1

)2

log 2
δ3

. (41)

Suppose |B| samples are drawn uniformly from the state-action space, s ∼ Unif (S) and
a ∼ Unif (A) to estimate the extrema of ∆̂. Suppose nS samples are used to estimate
the expectation over next-states and nA samples are used to estimate the soft state-value
function Denoting V̂ , ∆̂ as the quantities estimated from samples, the following bounds on
the Q-values

Q∗(s, a) ≤ r(s, a) + γ

(
1

nS

nS∑

i=1
V̂ (s′) +

max(s,a)∈B ∆̂(s, a) + ε1 + ε2 + ε3

1− γ

)
(42)

Q∗(s, a) ≥ r(s, a) + γ

(
1

nS

nS∑

i=1
V̂ (s′) +

min(s,a)∈B ∆̂(s, a)− ε1 − ε2 − ε3

1− γ

)
(43)

hold with probability at least 1− δ1 − 2δ2 − 2δ3.

As before, we first provide a bound on the error in replacing V with V̂ before combining it with the
previous result.

Lemma E. Let the definitions in Equations 37, 38 and some ε > 0, δ > 0 be given. Then,
for

n ≥ 1
2

(
eβ(Rmax−Rmin)/(1−γ) − 1

eβε − 1

)2

log 2
δ

(44)

action samples from the prior policy a ∼ π0(a|s), the error in replacing the state value
function with its estimate is bounded:

1
n

n∑

i=1
eβQ(s,ai) − ε < V (s) <

1
n

n∑

i=1
eβQ(s,ai) + ε (45)

with probability 1− δ.

Proof. We will focus on the proof of the upper bound. The lower bound follows from a similar proof.
From Hoeffding’s inequality, with probability 1− δ,

∣∣∣∣∣e
βV (s) − 1

n

n∑

i=1
eβQ(s,ai)

∣∣∣∣∣ <
(

eβRmax/(1−γ) − eβRmin/(1−γ)
)√ 1

2n
log 2

δ

.= ε̃

eβV (s) ≤ eβV̂ (s) + ε̃.
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By taking the log on both sides

V (s) ≤ 1
β

log(eβV̂ (s) + ε̃)

= V̂ (s) + β−1 log(1 + ε̃e−βV̂ (s))

≤ V̂ (s) + β−1 log
(

1 + ε̃e−βRmin/(1−γ)
)

.= V̂ (s) + ε+

(with probability 1− δ), where ε+ satisfies

eβε+ − 1
e−βRmin/(1−γ) = ε̃ =

(
eβRmax/(1−γ) − eβRmin/(1−γ)

)√ 1
2n+

log 2
δ

. (46)

or in other words,

n+ = 1
2 log 2

δ

(
eβ(Rmax−Rmin)/(1−γ) − 1

eβε+ − 1

)2

. (47)

For clarity we also provide the corresponding lower bound here:

eβV (s) ≥ eβV̂ (s) − ε̃

V (s) ≥ 1
β

log
(

eβV̂ (s) − ε̃
)

= V̂ (s) + β−1 log(1− ε̃e−βV̂ (s))
≥ V̂ (s) + β−1 log(1− ε̃e−βRmax/(1−γ))
.= V̂ (s)− ε−

where again we solve for n−:

n− = 1
2 log 2

δ

(
1− e−β(Rmax−Rmin)/(1−γ)

1− e−βε−

)2

. (48)

Letting ε+ = ε−
.= ε for simplicity and solving for the value of n in Hoeffding’s inequality such that

both the upper and lower bounds on V are satisfied gives:

n ≥ max {n+, n−} (49)

= 1
2 log 2

δ
max

{(
eβ(Rmax−Rmin)/(1−γ) − 1

eβε − 1

)2

,

(
1− e−β(Rmax−Rmin)/(1−γ)

1− e−βε

)2}
. (50)

For small ε < (Rmax −Rmin)/(1− γ), the first term dominates, thus

n ≥ 1
2 log 2

δ

(
eβ(Rmax−Rmin)/(1−γ) − 1

eβε − 1

)2

(51)

samples suffice to satisfy both the lower and upper bounds |V − V̂ | < ε with probability at least
1− δ. In passing, we note that in the low β regime, βε≪ 1 and β(Rmax − Rmin)/(1− γ)≪ 1, the
required samples simplifies to the “usual” (Hoeffding) form, quadratic in H/ε:

n(β ≪ 1) ≥ 1
2

(
H(Rmax −Rmin)

ε

)2
log 2

δ
. (52)
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Now, to prove Theorem 3, we apply the same techniques as before:

Proof. Applying Lemma E to the expectation over actions in V̂ and ∆̂ in Theorem 2 gives, similar
to the previous proof, two terms of ε3:

Q∗(s, a) ≤ r(s, a) + γ

(
1

nS

nS∑

i=1
V (s′) +

max(s,a)∈B ∆̂(s, a) + ε1 + ε2

1− γ

)
(53)

≤ r(s, a) + γ

(
1

nS

nS∑

i=1
V̂ (s′) + ε3 +

max(s,a)∈B ∆̂(s, a) + ε1 + ε2 + γε3

1− γ

)
(54)

= r(s, a) + γ

(
1

nS

nS∑

i=1
V̂ (s′) +

max(s,a)∈B ∆̂(s, a) + ε1 + ε2 + ε3

1− γ

)
. (55)

Similar to the proof of Theorem 2, we introduced two instances of this action sampling (one for
V (s′) and one for the extrema of ∆̂(s, a)). This requires an additional two factors of 1 − δ3 in the
confidence: (1− δ1)(1− δ2)2(1− δ3)2 ≥ 1− δ1 − 2δ2 − 2δ3.

We note that one can also instead combine Theorem 1 with Lemma E to arrive at double-sided
bounds for the case of deterministic transitions with continuous actions.

2399



RLJ | RLC 2024

Bandits with Multimodal Structure

Hassan Saber
hassan.saber@inria.fr
Univ. Lille, Inria, CNRS, Centrale Lille,
UMR 9189-CRIStAL, F-59000 Lille, France

Odalric-Ambrym Maillard
odalric.maillard@inria.fr
Univ. Lille, Inria, CNRS, Centrale Lille,
UMR 9189-CRIStAL, F-59000 Lille, France

Abstract

We consider a multi-armed bandit problem specified by a set of one-dimensional
exponential family distributions endowed with a multimodal structure. The
multimodal structure naturally extends the unimodal structure and appears to
be underlying in quite interesting ways popular structures such as linear or Lip-
schitz bandits. We introduce IMED-MB, an algorithm that optimally exploits the
multimodal structure, by adapting to this setting the popular Indexed Minimum
Empirical Divergence (IMED) algorithm. We provide instance-dependent regret
analysis of this strategy. Numerical experiments show that IMED-MB performs
well in practice when assuming unimodal, polynomial or Lipschitz mean function.

1 Introduction

We consider a variant of the stochastic multi-armed bandit problem when reward distributions
are single-parameter exponential families parameterized by their mean, and the mean, seen as a
function of the arms, is assumed multimodal with a bounded number of modes. Multimodality
being a qualitative rather than quantitative structural assumption (it involves comparison of
arms), its study is of special interest to practitioners, complementing more quantitative assump-
tions such as Linearity or Lipschitz continuity that are more brittle or hard to check in practice.
Multimodality is also appealing from a theoretical standpoint, as such structure presents non
trivial challenges. Furthermore, multimodality naturally generalizes the unimodal structure and
provides an appealing implicit view on the Lipschitz structure assumption (for which explicit
knowledge of the Lipschitz constant is not always available in practice), that both received in-
creasing attention in the recent years. This paper introduces, up to our knowledge, the first
theoretical study of stochastic multi-armed bandits with multimodal mean structure, providing
a novel algorithm together with both problem-dependent regret lower and upper bounds.

Structured bandits Following the now folklore terminology, by structure we mean that ob-
taining information about an arm may inform about another arm. This is mainly modeled by
assuming the means satisfy very specific properties: for instance the means form a bell curve
(unimodal bandits), the means are linearly dependent on a fixed number d of parameters (linear
bandits, with d the dimension), the means are continuous and the gap between two consecutive
arms is under control (Lipschitz bandits). The study of specific structured configuration sets
has received increasing attention over the last few years, motivated by the growing popularity
of bandits in a number of industrial and societal application domains. For instance, unimodal
structure naturally appears in contexts such as single-peak preference economics, voting theory
or wireless communications, and has been first considered in Yu and Mannor (2011) from a ban-
dit perspective, then in Combes and Proutiere (2014); Trinh et al. (2020); Saber et al. (2021)
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providing an explicit lower bound and corresponding algorithms. The linear bandit problem is
also one typical illustration (Abbasi-Yadkori et al. (2011); Srinivas et al. (2010); Durand et al.
(2017); Kveton et al. (2020)), see Lattimore and Szepesvari (2017) for a study of the lower bound
(and Degenne et al. (2020a) for the related pure-exploration setup). Lipschitz bandits were
studied in Magureanu et al. (2014); Wang et al. (2020); Lu et al. (2019). Bandits with groups
of similar arms are studied in Pesquerel et al. (2021). On the theoretical side, these specific
properties shape the means thus facilitating the location of the best arm, which translates into
smaller regret achievable by optimal algorithms.

Multimodal structure In bandit problems where the goal is mainly to focus on the best arm,
it is natural to consider a challenging setting with many local maximal means, which provides
a natural motivation for the multimodal structure (formally introduced in Section 2). Multi-
modal structure has been considered in several places in the literature: Multimodal optimization
problems (MMOPs) deal with optimatisation tasks that involve finding most of the locally (even-
tually globally) optimal solutions and possible approaches are approaches based on multi-armed
bandits like in Agrawal et al. (2021). In dynamic pricing, when customers’ sensitivity to prices
varies heterogeneously over different price ranges, multimodality in the reward function is often
observed, which is a common situation in practice, as mentionned in Wang et al. (2021) where
an algorithm achieving optimal worst-case regret is proposed under multimodal reward function
assumption. However, it appears that no instance-dependent bound has been suggested or ex-
ploited so far in the literature. Besides, the multimodal structure is underlying several structures
of interest (see Section 2 for details), like the linear structure or the Lipschitz structure (defined
below for completeness), that are more constraining and yield possibly computationally expen-
sive strategies to be exploited optimally. Hence considering a multimodal structure can be seen
as a relaxation of such problems, intermediate between considering no structure and a challeng-
ing one, and hence be appealing to the practitioner. We believe this provides a complementary
perspective and motivation on exploiting multimodality in stochastic multi-armed bandits.

Structure adaptive strategies In Graves and Lai (1997) a generic algorithm was proposed
to solve any structured bandit problems, with however prohibitive computational complexity.
In Combes et al. (2017), the generic OSSB (Optimal Structured Stochastic Bandit) strategy is
introduced, stepping the path towards generic structure-adaptation. Although asymptotically
optimal, the algorithm comes with high computational cost. Inspired by combinatorial structures,
a relaxation of the generic constrained optimization problem was proposed in Cuvelier et al.
(2021), however at the price of trading-off regret optimality for computational efficiency. In
Degenne et al. (2020b), the authors explore an adaptation of KLUCB algorithm to structured set
of configurations. In Van Parys and Golrezaeiand (2020), the authors propose an approach based
on convex duality. In Dong and Ma (2023), the authors develop a generic approach for both
bandits and Markov Decision Processes. In all cases, the complexity of the lower bounds limit the
practical efficiency of structure exploiting algorithms to small number of arms (say |A| ⩽ 500).

In this article, we follow the rich literature focusing on regret minimization strategies targeting
instance-dependent optimality in stochastic bandits. Another body or work focuses on proving
asymptotic Bayesian optimality or also asymptotic minimax optimality in the worst-case setting
rather than instance-dependent performance bounds, targeting order optimal rather than exact
optimal regret bounds. This is the case for example in Kleinberg et al. (2008),Bubeck et al.
(2008) and Foster et al. (2023) respectively introducing ZOOMING, HOO and E2D. In particular the
provided bounds on the regret are not instance-dependent and instance-dependent optimality
is not established for these algorithms. Such a worst-case setting is out of the scope of this paper.
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Outline and contribution After providing the formal setup (Section 2, 3), we derive in
Section 4 a regret lower bound for multi-armed bandits endowed with multimodal structure
(Corollary 1). We show in particular that, due to the quantitative nature of the structure, the
lower bound has an explicit form. This straightforwardly yields an algorithm exploiting this
structure, IMED-MB, introduced in Section 5.1. We show in Theorem 2 that IMED-MB optimally
exploits the structure when given the appropriate number of modes. The proof is non trivial and
resort to a careful study of boundary crossing probabilities adapted to the small sample regime
(Theorem 1), that is of independent interest. In Section 6, we report numerical experiments
confirming the practical efficiency of IMED-MB even when the number of arms become large and
illustrate the theoretical ratios between asymptotic optimal regrets depending on whether the
Lipschitz structure or the multimodal one is considered.

2 Setup and notations
Stochastic multi-armed bandits A bandit instance is specified by a set of unknown prob-
ability distributions ν =(νa)a∈A, called a configuration, with means (µa(ν))a∈A. When there is
no possible confusion, the means are simply denoted (µa)a∈A. At each time t ⩾ 1, the learner
chooses an arm at ∈A, based only on the past. The learner then receives and observes a reward
Xt ∈ [b ; B], with b, B ∈ R, conditionally independent, sampled according to νat . The goal of
the learner is to maximize the sum of rewards received over time (up to some unknown horizon
T ), or equivalently minimize the regret with respect to the algorithm constantly receiving the
highest mean reward

R(ν, T ) = Eν

[
T∑

t=1
µ⋆ − Xt

]
where µ⋆ = max

a∈A
µa .

Considering an horizon T ⩾1, thanks to the tower rule we can rewrite the regret as follows:

R(ν, T ) =
∑

a∈A
∆a Eν [Na(T )] , with ∆a = µ⋆ − µa, (1)

where Na(t)=
∑t

s=1 I{as = a} is the number of pulls of arm a at time t. This problem received
increased attention in the middle of the 20th century, and the seminal paper Lai and Robbins
(1985) established the first lower bound on the cumulative regret, showing that designing an
algorithm that is optimal uniformly over a given set of configurations comes with a price : A
lower bound on the regret can be explicited for consistent algorithms (Definition 1). The study
of the lower performance bounds in multi-armed bandits successfully led to the development of
asymptotically optimal algorithms for specific configuration sets, such as KLUCB algorithm Lai
(1987); Cappé et al. (2013); Maillard (2018) for exponential families, or alternatively DMED and
IMED algorithms from Honda and Takemura (2011; 2015). Other main approaches to optimally
solve the stochastic bandit problem are Bayesian algorithm Thompson (1933) and algorithms
based on re-sampling methods, such as SSMC from Chan (2020) or RB-SDA introduced in Baudry
et al. (2020). Following e.g. Degenne et al. (2020b), we make the following simple parametric
assumption on the reward distributions.
Assumption 1 (One-dimensional exponential family distributions). For all ν ∈ D, ν ⊂ P :=
{p(µ), µ∈ I}, where p(µ) is a regular canonical exponential-family distribution probability with
parameter η(µ) and density f(·, µ) with respect to some positive measure λ on R and mean
µ∈ I⊂R. f(·, µ) has the following shape:

f(·, µ) : x 7→ h(x) exp(η(µ) T (x) − A(µ)) ,

where h∈RR
+, T ∈RR and A(µ)=log

∫
h(x) exp(η(µ) T (x)) λ(dx) are such that |A(µ)|<∞.
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Remark 1. Assumption 1 allows us to benefit from the pleasant monotonic properties of the
Kullback-Leibler divergence for 1-dimensional exponential family distributions. Indeed, the lower
bound on the regret (Section 4) shows that the Kullback-Leibler divergence plays a central role.

Multimodal setting We assume there exists an undirected graph G = (A, E) whose vertices
are arms A, and whose edges E modelize a proximity between the arms. G is assumed to be
known to the learner. We denote by Va ={a′ ̸=a : (a, a′)∈E} the neighbours of arm a∈A in graph
G=(A, E) and by A+

ν ={a∈A : ∀a′ ∈ Va, µ′
a <µa} the set of arms with locally maximal means.

When there is no possible confusion A+
ν is simply denoted A+. Intuitively, this graph-theoretic

definition enables to capture not only multimodal functions on R, for which A is totally ordered
and E contains arms and their successor, but also on Rd. We assume that ν ⊂P :={p(µ), µ∈ I},
where p(µ) is an exponential-family distribution probability with density f(·, µ) with respect to
some positive measure λ on R and mean µ ∈ I ⊂ R. P is assumed to be known to the learner
(Assumption 1). Thus, for all a ∈ A we have νa = p(µa). We denote by M+ = |A+

ν |,the size of
subset A+

ν . Importantly, we assume M+ is unknown to the learner. For ν ⊂ P, we denote by
A⋆(ν) = arg max

a∈A
µa the set of optimal arms of ν. When there is no possible confusion A⋆(ν) is

simply denoted A⋆. We assume there exists a⋆ ∈ A such that A⋆ = {a⋆} (Assumption 2). In
particular, we have

{a⋆} = A⋆ ⊂ A+ . (2)

Finally, we denote by D(P,G) or DM+ (or simply D when there is no confusion) the structured

set of such multimodal-bandit distributions, and then D⩽M+ =
M+⋃

M=1
DM .

Assumption 2 (Unique maximums). We assume there exists a1, . . . , aM+ ∈ A such that A+ =
{a1, . . . , aM+} and B >µa1 >. . .>µaM+ > min

a/∈A+
µa >b. In particular, a1 =a⋆ and A⋆ ={a⋆}.

3 Multimodal and other structures
In this short section, we highlight some links between the multimodal structure and other well-
studied structures. We show especially that several classical structures induce a multimodal
structure with a natural control on M+. Hence in such cases, exploiting multimodality can yield
a reduced regret, intermediate between that of the unstructured and fully structured case.

Unimodal Structure The unimodal structure imposes by construction that M+ = 1, then
A+ = A⋆ = {a⋆}. Hence the multimodal structure generalizes the unimodal structure from
Combes and Proutiere (2014). Let us remind that the graph-theoretic definition enables to
capture not only unimodality in dimension 1 (say A = {1, . . . , ℓ} and Va⋆ = {a⋆ − 1, a⋆ + 1}),
but in higher dimension d as well, say A = {1, . . . , ℓd}, and Va⋆ = {a⋆ − ℓk, a⋆ + ℓk}k=0,...,d−1,
which represents a discrete hypercube of width ℓ, with E = {(a, a′) : |a − a′|∈ {1, ℓ, . . . , ℓd−1}}.

Discretized linear Structure For A ⩾ 1, let A = J0, A−1K index the discretisation of the

space X =
{

xa = a/A , a ∈ A
}

⊂ [0, 1], and E = {(a, a′) : |a−a′| = 1, a, a′ ∈ A}. Let us

consider the linear function space FΘ =
{

fθ : x ∈ X 7→ θTφ(x) , θ ∈ Θ
}

with parameter

space Θ = B(0, 1) ⊂ Rd of known dimension d and feature function φ : X → Rd. The linear
structure further assumes that there exists a parameter θ ∈ Θ such that for all arm a ∈ A, the
mean of νa is µa = fθ(xa). Now, considering e.g. the trigonometric polynomial feature function
∀x ∈ X , φ(x) = (1, cos(2πx), sin(2πx), . . . , cos(2πpx), sin(2πpx)), where d = 2p+1, it can be
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shown that ν belongs to a multinomial structured set DM+ , with M+ ⩽ p + 1 modes. Hence,
the multimodal structure can be used to approximate a trigonometric polynomial structure.

Lipschitz Structure The multimodal structure can also be used to approximate a Lipschitz
structure when A = J0, A−1K, A > 1, and µ : a ∈ A 7→ µa is k-Lipschitz, where k is usually
assumed to be known. In the following, we focus on the case when Lipschitz constant k is
unknown and characterize the multimodality properties of an arbitrary Lipschitz configuration.
We refer to Bubeck et al. (2011) for a study in the worse case scenario of Lipschitz bandits
without the Lipschitz constant. For all a, a′ ∈ A, |µa−µa′ | ⩽ k |a−a′|. In other words, there
exists (Ua)a∈A ⊂ [−1, 1] such that for all a⩾1, µa = µ0+k

a∑
i=1

Ui. To give an illustrative example,

let’s assume that (Ua)a∈A are sampled from independent uniform distributions on [−1, 1]. Then,
µ can be seen as uniformly sampled in the set of k-Lipschitz functions on A with first term equal
to µ0. Considering neighbourhoods of the form Va = {a − 1 ; a + 1} ∩ A, the averaged number
of arms with locally maximal means for uniformly sampled k-Lipschitz means is

E
[ ∣∣A+

ν

∣∣
]

= 2 × 0.5 + 0.25 × (|A| − 2) = 0.5 + 0.25 |A| . (3)

Indeed, the probability of arm 0 and arm A − 1 being local maximums is P (A − 1 ∈ A+
ν ) =

P (0 ∈ A+
ν ) = P (µ0 ⩾ µ1) = P (U1 ⩽ 0) = 0.5, and for an arm a ∈ A such that 0 < a < A − 1,

this probability is P (a ∈ A+
ν ) = P (µa ⩾ µa−1 ∩ µa ⩾ µa+1) = P (Ua ⩾ 0 ∩ Ua+1 ⩽ 0) = 0.25.

Equation (3) then suggests the choice M = ⌈0.5 + 0.25 |A|⌉ as an estimation of M+ for uniformly
sampled k-Lipschitz means. We note that M does not depend on Lipschitz constant k but only
on the number of arms.

4 Regret lower bound
In this section, we now introduce the instance-dependent lower bound on the regret of an algo-
rithm. In order to obtain non trivial lower bound on the regret we consider algorithms that are
consistent, in the classical sense (Hannan consistency), see e.g. Lai (1987):
Definition 1 (Consistent algorithm). An algorithm is consistent on the set D⩽M+ of multimodal
bandit configurations with at most M+ local maximums if for all configuration ν ∈D⩽M+ , for all

sub-optimal arm a /∈A⋆ :=arg max
a∈A

µa, for all α>0, lim
T →0

Eν

[
Na(T )

T α

]
= 0 .

In particular, for α=1, the number of pulls of a sub-optimal arm by a consistent algorithm is at
most sub-linear in T , and actually polylogarithmic in T , considering α → 0.

We define for an arm a ∈ A its sub-optimality gap ∆a = µ⋆ −µa and denote by Va its neigh-
bourhood. We derive from the notion of consistency an asymptotic lower bound on the re-
gret for multi-armed bandits endowed with a multimodal structure. Hereafter, we denote by
KL(µ|µ′) =

∫

R
log(f(x, µ)/f(x, µ′))f(x, µ)λ(dx) the Kullback-Leibler divergence between proba-

bility distribution ν =p(µ) and ν′ =p(µ′), for µ, µ′ ∈ I. The first key result is the following.
Proposition 1 (Lower bounds on the numbers of pulls). Let us consider a consistent algorithm
on D⩽M+ and a configuration ν ∈DM+ . Then it must be that for all arm a ∈ A+

ν ∪ VA+
ν

,

lim inf
T →∞

Eν [Na(T )]
log(T ) ⩾ 1

KL(µa|µ⋆) .

Now for a configuration ν ∈D⩽M+−1, it must be that for all arm a ̸=a⋆,

lim inf
T →∞

Eν [Na(T )]
log(T ) ⩾ 1

KL(µa|µ⋆) .
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Corollary 1 (Lower bound on the regret). Let us consider a consistent algorithm on D⩽M+ .
Let ν ∈ D⩽M+ . Then it must be that

lim inf
T →∞

R(ν, T )
log(T ) ⩾





C(µ) :=
∑

a+∈A+

∑
a∈{a+}∪Va+

µa ̸=µ⋆

∆a

KL(µa|µ⋆) . if ν ∈DM+ ,

C0(µ) :=
∑

a̸=a⋆

∆a

KL(µa|µ⋆) if ν ∈D⩽M+−1 .

The proof of Proposition 1 is provided in Appendix B. It is obtained by classical arguments for
structured bandits, resorting to a change of measure argument and appropriate identification of
a confusing bandit configuration in the multimodal structure. We refer the reader to Combes
et al. (2017) for generic lower bounds on the regret that are explicited for several structures other
than the multimodal one.

From this lower bound on the regret, an algorithm is considered (asymptotically) optimal on

DM+ , if for all configuration ν ∈DM+ with means µ, lim sup
T →∞

R(ν, T )
log(T ) ⩽ C(µ).

Remark 2 (Explicit complexities). We note that the quantity C(µ) and C0(µ) are fully ex-
plicit functions of µ (it does not require solving any optimization problem) for single-parameter
exponential families. This useful property may not longer hold in general for arbitrary struc-
tures. Further, for Bernoulli distributions, a possible setting is to assume λ = δ0 + δ1 (with
δ0, δ1 Dirac measures), I = (0, 1) and for µ ∈ (0, 1), f(·, µ) =: x ∈ {0, 1} 7→ µx(1 − µ)1−x. Then
for all µ, µ′ ∈ (0, 1), KL(µ|µ′) = µ log(µ/µ′) + (1 − µ) log((1−µ)/(1−µ′)). For Gaussian dis-
tributions (variance σ2 = 1), we assume λ to be the Lebesgue measure, I = R, and for µ ∈ R,
f(·, µ) =: x ∈ R 7→ (

√
2π)−1e−(x−µ)2/2. Then for all µ, µ′ ∈ R, KL(µ|µ′) = (µ′ − µ)2/2. For

Exponential distributions, we assume λ to be the Lebesgue measure, I =]0 ; +∞[, and for µ > 0,
f(·, µ)=: x>0 7→ e−x/µ/µ. Then for all µ, µ′ >0, KL(µ|µ′)=log(µ′/µ)+µ/µ′−1.
Remark 3 (Tight lower bound). Corollary 1 does not ensure that the stated lower bound on the
regret is tight. This is a consequence of Theorem 2 which ensures that there exists an algorithm
(IMED-MB) able to reach this lower bound. It is noticeable that C(µ) does not involve all the
sub-optimal arms but only the ones in ∪a+∈A+{a+} ∪ Va+ . This indicates that sub-optimal arms
outside of this set are sampled o(log(T )) times, which contrasts with the unstructured stochastic
multi-armed bandits.

5 Optimal algorithm for multimodal bandits
We start this section by introducing some convenient notations and discussing what can be
suitable for an optimal algorithm before introducing and defining the IMED-MB strategy.

Notations The empirical mean of the rewards from the arm a is denoted by µ̂a(t) =∑t
s=1 I{as=a}Xs/Na(t) if Na(t)>0, 0 otherwise. We also denote by µ̂⋆(t)=max

a∈A
µ̂a(t) and Â⋆(t)=

arg max
a∈A

µ̂a(t) respectively the current best mean and the current set of optimal arms. We denote

by â⋆
t an arm arbitrarily chosen in Â⋆(t). We denote by Â+(t) :={a∈A : ∀a′ ∈ Va, µ̂a′(t)⩽ µ̂a(t)}

the set of arms with locally maximal empirical means. For all subset of arms A′ ⊂A, we denote
by VA′ :=∪a∈A′Va the set of neighbours of arms in A′. We recall that M+ = |A+| is not assumed
to be known by the learner. In practice, the learner considers a positive integer M ⩾ 1 playing
the role of M+. We will see the situation differs when M ⩾ M+ and M ⩽ M+.
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5.1 The IMED-MB algorithm
Let us consider a non-decreasing function Φ: n∈N 7→ Φ(n)∈ [0, ∞]. When Φ(0) = ∞, we simply
write Φ ≡ ∞. For all arms a, a′ ∈A at time step t⩾1, in order to test the inequality µa < µ̂a′(t),
we first introduce the dynamic quantity

IΦ
a,a′(t) =

{
Na(t) (KL(µ̂a(t)|µ̂a′(t))∧Φ(Na(t))) + log(Na(t)) , if µ̂a(t) < µ̂a′(t)
log(Na(t)) , otherwise,

(4)

where KL(µ̂a(t)|µ̂a′(t))∧Φ(Na(t)) = min {KL(µ̂a(t)|µ̂a′(t)) ; Φ(Na(t))}, and with the convention
0×∞=0 and log(0)=−∞. We note that this quantity potentially increases when we pull arm a.
In our understanding, the greater this quantity, the more plausible the inequality µa < µ̂a′(t) is.
This understanding is mainly base on Theorem 1 and the well-known monotonic properties of
the Kullback-Leibler divergence when assuming one-dimensional exponential family distributions.
The term Φ(Na(t)) is introduced to control the term KL(µ̂a(t)|µ̂a′(t)) when current mean µ̂a(t)
is much smaller that µa (which may occur when Na(t) is small). Furthermore, for a current
optimal arm â⋆ ∈Â(t), we simply have IΦ

â⋆,a′(t) = log
(
N

â⋆(t)
)

and IΦ
a,̂a⋆

(t) = IΦ
a (t), with

IΦ
a (t) = Na(t) min{KL(µ̂a(t)|µ̂⋆(t)) , Φ(Na(t))} + log(Na(t)) . (5)

Note that (I∞
a (t)) are the IMED index from Honda and Takemura (2015). Thus, we abusively

refer to
(
IΦ

a (t)
)

as IMED indexes and simply denote I∞
a,a′(t), I∞

a (t) as Ia,a′(t), Ia(t). We have in
particular,

IΦ
a,a′(t) ⩽ Ia,a′(t) , IΦ

a (t) ⩽ Ia(t) .

We remind Indexed Minimum Empirical Divergence (IMED) is a bandit algorithm that has been
proven optimal for both the unstructured case (Honda and Takemura (2015)) and the unimodal
structure (Saber et al. (2021)).

No structure exploitation Following IMED algorithm (for unstructured bandits), one would
naturally pull, at time step t, arm at+1 = at, the arm with minimal IMED index

at ∈ arg min{IΦ
a (t) : a ∈ A} (arbitrarily chosen). (6)

The shape of IMED indexes ensures that log(Nat
(t))⩽IΦ

at
(t)⩽IΦ

â⋆
(t)=log

(
N

â⋆(t)
)
, which implies

Nat
(t) ⩽ N

â⋆(t), ∀â⋆ ∈ Â⋆(t) . (7)
Given Proposition 2, by pulling arm at at each time step t, IMED ensures that the current optimal
arms in Â⋆(t) are generally well estimated. Thus, IMED can be interpreted as firstly, properly
estimating the mean of current optimal arm â⋆

t (in other words, making sure that µ̂⋆(t) = µ̂
â⋆

t
(t)

gets closer to µ
â⋆

t
), secondly, efficiently testing the inequalities µa < µ̂⋆(t). Interestingly, a simi-

lar approach could be used to test µa < µ̂
â+(t) by using IΦ

a,̂a+(t) quantities for â+ ∈Â+(t), a∈V
â+ .

Structure exploitation If the multimodal structure is not considered, arm at with minimal
IMED index may be seen as the current most informative arm. However, regarding the lower
bound on the regret for multimodal structure (Corollary 1), the current most informative arm
should rather be

at ∈ arg min{IΦ
a (t) : a ∈ Â+(t) ∪ VÂ+(t)} (arbitrarily chosen) , (8)

where Â+(t) is the set of arms with locally maximal empirical means, truncated at the M largest
locally maximal empirical means (In particular |Â+(t)|⩽ M). For convenience, we introduce

ÂM (t) = Â+(t) ∪ VÂ+(t) . (9)
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Structure exploitation plus second-order exploration In order to minimize the unwanted
effects from a bad identification of locally optimal arms (when Â+(t) ̸=A+), we allow a second-
order exploration outside of ÂM (t). This motivates the introduction of the following structured
indexes for arm a∈A,

IM
a (t) =





IΦ
a (t) , if a ∈ ÂM (t)

Ψ
(
IΦ

a (t)
)

, otherwise,
(10)

where Ψ is an increasing function such that x ⩽ Ψ(x) for x ∈ R, and the associated arm with
minimum index,

aM
t ∈ arg min{IM

a (t) : a ∈ A} . (11)

In particular, aM
t = at if IM

aM
t

(t) = IΦ
at

(t), aM
t = at otherwise1.

Algorithm 1 IMED-MB
1: Input graph G, positive integer M , functions Φ, Ψ
2: Pull arbitrarily a1 ∈ A
3: for t = 1 . . . T − 1 do
4: ▷ ▷ ▷ NO STRUCTURE EXPLOITATION5: if

∣∣∣Â+(t)
∣∣∣<M then

6: Pull at+1 = at (Eq. (6))
7: ▷ ▷ ▷ STRUCTURE EXPLOITATION8: else
9: Pull at+1 = aM

t (Eq. (11))
10: end if
11: end for

The IMED-MB algorithm We finally define IMED-MB as follows: if
∣∣∣Â+(t)

∣∣∣ = M , it exploits
the multimodal structure while allowing second-order exploration outside ÂM (t), that is, pulling
arm aM

t with minimum structured index. Otherwise,
∣∣∣Â+(t)

∣∣∣< M and IMED-MB simply pulls
arm at with minimal IMED index. IMED-MB algorithm is summarized in Algorithm 1.

5.2 Well-designed concentration of measurement
In order to provide a regret analysis, one challenge is to ensure that IMED-MB does not confused
a sub-optimal but locally optimal arm with the best arm during exploitation phases. Intuitively,
such challenge does not appear when M+ = 1 because the structure is then unimodal and the
best arm is the unique arm with both globally and locally maximal mean. We solve this challenge
by proposing a regret analysis in two distinct stages. We first provide (in Appendix C.3) upper
bounds on the numbers of pulls of sub-optimal arms that are not locally optimal. Then, we
benefit from the following inequalities, IΦ

a (t) ⩽ Na(t) Φ(Na(t)) + log(Na(t)) for a ∈ A, to upper
bound (in Appendix C.4) the numbers of pulls of locally optimal arms.

Furthermore, this proof process in two stages requires refined concentration of the empirical
means to ensure IMED-MB is asymptotically optimal. Interestingly enough, the introduction of
function Φ also guaranties stronger control of the ε-deviation from below of empirical mean µ̂a(t)
when Na(t), the number of pulls arm a ∈ A, is relatively small. This is explained by additional
term exp(−mn KL(µa−ε|µa)) in the right side of the concentration inequality of Theorem 1

1Indeed, if aM
t /∈ ÂM (t) then for a /∈ ÂM (t), Ψ

(
IΦ

aM
t

(t)
)
⩽Ψ
(

IΦ
a (t)

)
and IΦ

aM
t

(t)⩽ IΦ
a (t), while for a ∈ ÂM (t),

IΦ
aM

t

(t)⩽Ψ
(

IΦ
aM

t

)
⩽IΦ

a (t). This implies that arg min
a∈A

IM
a (t) ∩ arg min

a∈A
IΦ

a (t) ̸= ∅ when arg min
a∈A

IM
a (t) ∩ ÂM (t) = ∅.
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below, where mn = 1 ∧ log(n) − log log(n)
Φ(log(n)) crucially depends on Φ: Without function Φ, which

is equivalent to Φ ≡ ∞, one would get mn = 1 hence no refined concentration. Now by classic
time-uniform concentration (Proposition 2 in Appendix), the ε-deviation from below of empirical
mean µ̂a(t) is under control when the number of pulls of arm a is greater than fa,ε(n) :=
(log(n) + 2 log log(n)) /KL(µa − ε|µa), for n ⩾ 3. More precisely,

Pν

(
∃t ⩾ 1, {Na(t) ⩾ fa,ε(n)} ∩ {µ̂a(t) < µa − ε}

)
⩽ 1

n log2(n)
,

where
∑

n⩾3

1
n log2(n) <∞. This is the reason why Theorem 1 focuses on the regime Na(t)⩽fa,ε(n)

that corresponds to the case when estimation of means is little accurate.
Theorem 1 (Boundary crossing probabilities). Let Φ be non-negative non-decreasing function
such that Φ(log(n)) ⩾ 1 for n ⩾ 18. For all arm a∈A, ε>0, n⩾18 such that n ⩾ e Mn, we have

Pν

(
∃t ⩾ 1, {µ̂a(t)<µa−ε} ∩ {1 ⩽ Na(t) ⩽ Mn}∩

{Na(t)(KL(µ̂a(t)|µa−ε)∧Φ(Na(t)))+log(Na(t))⩾ log(n)}

)

⩽ I{mn⩽Mn}e (1 + log(Mn/mn) log(n/Mn)) Mn n−1 exp(−mn KL(µa−ε|µa)) ,

where mn = 1 ∧ log(n) − log log(n)
Φ(log(n)) and Mn = fa,ε(n) := log(n) + 2 log log(n)

KL(µa−ε|µa) .

A proof of Theorem 1 is provided in Appendix F.
Remark 4. Stronger control of the deviations of the empirical means are generally obtain by
considering, for ξ > 0, log(·) + ξ log log(·) exploration terms in the indexes instead of more
intuitive log(·) exploration terms (the latter being known for providing better performance in
practice), where ξ can be large to provide theoretical guaranties for structured bandit algorithms
(for instance in Magureanu et al. (2014), ξ is set equal to 3 |A| + 1). Thus, Theorem 1 provides
an interesting alternative to (at least theoretically) speed up the concentration of empirical means
without additional log log(·) exploration terms.

5.3 Asymptotic optimality of IMED-MB algorithm
We precise the conditions of asymptotic optimality under IMED-MB algorithm in Theorem 2. We
show that the lower bound on the regret from Corollary 1 is reached under IMED-MB algorithm,
which proves both this lower bound is tight and IMED-MB is asymptotically optimal.
Theorem 2 (Asymptotic optimality). Let us consider a configuration ν ∈DM+ such that |A+

ν |=
M+ with means µ. Let us consider functions Φ and Ψ such that 1 ⩽ Φ(log(n)) ⩽ log log(n), for
n ⩾ 18, and Ψ(x) ⩾ max {x ; exp(xα)}, for x ⩾ 0 and some fixed constant α > 1. Then, for any
M ⩾1 (even if M ̸= M+), under IMED-MB algorithm,
⋆ if M ⩾ M+,

∀a ̸= a⋆, lim sup
T →∞

Eν [Na(T )]
log(T ) ⩽ 1

KL(µa|µ⋆) ,

⋆ if M ⩽ M+,

∀a /∈ A+
ν ∪ VA+

ν
, lim sup

T →∞

Eν [Na(T )]
log(T ) ⩽ 0 , ∀a ∈ VA+

ν
, lim sup

T →∞

Eν [Na(T )]
log(T ) ⩽ 1

KL(µa|µ⋆) .

In particular, under IMED-MB algorithm,
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lim sup
T →∞

R(ν, T )
log(T ) ⩽





C(µ) =
∑

a+∈A+

∑
a∈{a+}∪Va+

µa ̸=µ⋆

∆a

KL(µa|µ⋆) if M =M+,

C0(µ) =
∑

a̸=a⋆

∆a

KL(µa|µ⋆) if M >M+ .

A proof of Theorem 2 is provided in Appendix D, and a more precise finite time analysis is
provided in Appendix C.

Handling of structure misidentifications When parameter M is not equal to the number of
local maximums M+, that is the proxy for the number of local maximums is imperfect, Theorem 2
shows that, when M > M+, IMED-MB is never worse than the unstructured setting (and it is
optimal when M = M+), while when the number of local maximums is under estimated, that is
M < M+, the main risk is then to confuse a sub-optimal but locally optimal arm in A+

ν − {a⋆}
with the best arm. We conjecture that second order exploration is crucial to avoid as best as
possible such misidentifications by potentially revealing unexpected local maximums. A precise
quantification of this phenomenon would be the subject of future work.

6 Numerical experiments

For all the experiments, we assume that for all arm a ∈ A, νa is a Gaussian distribution with
unknown mean µa ∈ R and known variance σ2 = 0.25. We assume A = J0 ; 499K and Va =
{a − 1 ; a + 1} ∩ A, for a ∈ A. All the regret curves are obtained from 10 runs. The deciles are
represented with dotted lines. The horizon time is T = 105. At each run, each algorithm starts
by pulling each arm once. IMED-MB is systematically compared to KLUCB. IMED-MB(M = . . . )
is IMED-MB algorithm with Ψ ≡ ∞ while IMED-MB(M = . . . , exp) is IMED-MB algorithm with
Ψ ≡ exp(·). We note that Ψ ≡ ∞ and Ψ ≡ exp(·) are the two extreme functions for which
IMED-MB algorithm is proven asymptotically optimal (Theorem 2). For these two choices of Ψ,
IMED-MB seems to perform similarly in practice when the algorithm starts by pulling each arm
once. For all the experiments, we set Φ ≡ 0 ∨ log(·). We illustrate the performance of IMED-MB
for the unimodal, the polynomial and the Lipschitz structures. We refer to Section 3 where the
links with the multimodal structure are established.

Unimodal structure In Figure 1-(a), we compare IMED-MB algorithm to OSUB from Combes
and Proutiere (2014), an optimal algorithm for unimodal bandits. One observes that IMED-MB
shares similar practical performance with OSUB.

Polynomial structure In Figure 1-(b), we randomly generate a configuration µ with poly-
nomial structure (left) such that |A+

ν | = 3, that is, dimension d = 2 × (|A+
ν | − 1) + 1 = 5, and

compare (right) IMED-MB algorithm to LinUCB, the popular algorithm for linear bandits.
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Figure 1: a) (Top) Unimodal structure, b) (Middle top) Polynomial structure, c) (Middle bottom)
Lipschitz structure not knowing k nor M+, d) (Bottom) Lipschitz structure knowing both k and
M+. Plot of cumulative regrets averaged over 10 runs, with mean and deciles.
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Lipschitz structure We assume that k = 0.01. We sample (Ua)a∈A from independent uniform
distributions on [−1 ; 1], then set µ0 = 0.1 × U0 and, for a⩾1, µa = µa−1 + k × Ua. In Figure 2,
we represent with box-plots the number of local maximums for 1000 random configurations (left)
and the corresponding ratios between asymptotic optimal regrets depending on the structure that
is considered (right). We show in particular that, for such configurations, the ratio between the
asymptotic optimal multimodal and Lipschitz regrets is, in average, approximately equal to 1.8.
This is intuitive, since multimodal structure is less constraining than Lipschitz structure. These
asymptotic optimal regrets are computed assuming both perfect knowledge of A+

ν and Lipschitz
constant k. In Figure 1-(c), we illustrate the practical performance of IMED-MB for a particular
random configuration. Its parameter M is set equal to ⌈0.5 + 0.25 |A|⌉ = 126. In Figure 1-(d), we
compare IMED-MB algorithm to CKL-UCB for smaller number of arms and smaller horizon (to limit
calculation times). CKL-UCB is a bandit algorithm specific to the Lipschitz structure introduced
in Magureanu et al. (2014). In this experiment (Figure 1-(d)), IMED-MB perfectly knows the
numbers of local maximums and CKL-UCB perfectly knows the Lipschitz constant k.

Figure 2: Number of local maximums for 1000 random Lipschitz configurations (left) with Lip-
schitz constant k = 0.01 and the corresponding ratios between asymptotic optimal regrets de-
pending on the structure that is considered (right).

Conclusion We have considered the multimodal structure for stochastic multi-armed bandits
and introduced IMED-MB algorithm, an adaptation of the IMED algorithm for the considered struc-
ture. We naturally discuss several situations depending on the knowledge on M+, the number
of modes of the means. When M+ is assumed to be known to the learner, IMED-MB is proven
to be asymptotically optimal according to the lower bound on the regret (Theorem 2). When
M+ is unknown, IMED-MB still seems to perform well in practice even only partial guaranties
are provided in this case : IMED-MB algorithm may confuse a local maximum with the best arm
when M < M+ and interpolates with the unstructured setup when M > M+. Our experi-
ments show that an appropriate estimation M of M+ can yield significantly better performance
in finite time e.g. for the Lipschitz structure (Figure 1-(c)). The quantitative analysis of the
phenomenon is the subject of future work. Finally, we point out that IMED-MB is a relatively
simple algorithm, easy to implement2 for common distributions (Remark 2), whose analysis in
finite time is mainly based on simple algorithm-based empirical bounds (Appendix C.1) and a
carefully-designed concentration tool (Theorem 1) of independent interest.
Acknowledgements This work has been supported by the French Ministry of Higher Edu-
cation and Research, the Hauts-de-France region, Inria, the MEL, the I-Site ULNE regarding
project RPILOTE-19-004-APPRENF, the Inria A.Ex. SR4SG project, and the Inria-Kyoto Uni-
versity Associate Team “RELIANT”.

2All the code is made available here.
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A Table of notation

T is the horizon time

A is the set of arms

Va is the neighbourhood of arm a

ν is a configuration (νa)a∈A of one-dimensional exponential family distributions

D is the set of configurations ν, known to the learner

µa is the mean of distribution νa, unknown to the learner

A+ is the of arms with locally maximal means, unknown to the learner

M+ is the number of maximums, possibly unknown to the learner

DM is the set of configurations ν with M maximums

D⩽M is the set of configurations ν with at most M maximums

a⋆ is the best arm, that is, the arm with maximal mean

µ⋆ is the mean of distribution νa⋆

∆a is the gap between the means of arm a and the best arm

εµ is a minimal gap defined in Equation (32)

kµ is a minimal KL-gap defined in Equation (33)

KL(µ|µ′) is the Kullback-Leibler divergence between configurations ν, ν′ with means µ, µ′.

at is the arm pulled at time step t

Xt is the reward at time step t sampled from νat

b is a lower bound on the rewards (Xt)

B is an upper bound on the rewards (Xt)

Na(t) is the number of pulls of arm a at time step t

µ̂a(t) is the empirical mean of arm a at time step t

µ̂⋆(t) is the maximal empirical mean at time step t

Â⋆(t) is the set of arms with maximal empirical mean at time step t

â⋆
t is an arm in Â⋆(t) with maximal empirical mean at time step t

Â+(t) is the set of arms with locally maximal empirical means at time step t, truncated at the
M largest locally maximal empirical means (|Â+(t)|⩽ M)

ÂM (t) is the set of arms in Â+(t) or in their neighbourhoods VÂ+(t)

x ∧ y is the minimum between x and y.
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x ∨ y is the maximum between x and y.

Φ is a non-decreasing non-negative function such that IΦ
a,a′(t)⩽Na(t)Φ(Na(t))+log(Na(t))

Ψ is a non-decreasing non-negative function such that x ⩽ Ψ(x)

φ is the function : n ⩾ 0 7→ min
{

n ; n
kµ ∧ Φ(n)

KL(b|µ⋆ + εµ) ∧ Φ(n)

}
, where for all µ′ ∈ (b ; B),

KL(b|µ′)= lim
µ→b

KL(µ|µ′)

F is the function : n ⩾ 0 7→ enΦ(n)+log(n)

IΦ
a,a′(t) is a dynamic quantity introduced in order to tests the inequality µa < µ̂a′(t)

IΦ
a (t) is equal to IΦ

a,̂a⋆
t

(t) and tests the inequality µa < µ̂⋆(t)

I∞
a (t) denotes IΦ

a (t) when Φ ≡ ∞ and is equal to IMED index Ia(t)

Ia(t) is the IMED index of arm a at time step t

at is an arm with minimal index IΦ
at

(t) on A

at is an arm with minimal index IΦ
at

(t) on ÂM (t)

aM
t is an arm with minimal structured index IM

aM
t

(t) on A
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B Proof of Proposition 1

Proof. Let us consider a sub-optimal arm a ̸= a⋆. If ν ∈ DM+ , we further assume that a ∈ A+ ∪
VA+ . The proof consists in used Lemma 1 below from Garivier et al. (2016) with configuration
ν and the most confusing configuration ν(a)(ε) for ε>0, with means µ(a)(ε), where

∀a′ ∈ A, µ
(a)
a′ (ε) =

{
µa′ if a′ ̸= a

µ⋆ + ε if a′ = a .
(12)

Note that the set of optimal arms for the most confusing configuration ν(a) reduces to the single-

ton A⋆
(
ν(a))= {a} and that the most confusing configuration ν(a)(ε) still belongs to

M+⋃
M=1

DM ,

that is µ(a)(ε) also has at most M+ local maximums. An illustration with an example is provided
in Figure 3.

Figure 3: Illustration of confusing configurations for arms 2, 8 ∈ A+ ∪ VA+ when M+ = 3,
A+ = {2 ; 7 14}, A = J0 ; 17K, and Va = {a − 1 ; a + 1} ∩ A, for a ∈ A.

Let us consider the random variable ZT =Na(T )/T ∈ [0, 1]. Then Lemma 1 below implies
∑

a′∈A
Eν [Na′(T )] KL(µa′ |µ(a)

a′ (ε)) ⩾ kl(Eν [ZT ]|Eν(a)(ε)[ZT ]) . (13)

Since for all a′ ̸=a we have the equality of means µa′ =µ
(a)
a′ (ε) and since µ

(a)
a (ε)=µ⋆+ε, previous

Equation (13) rewrites

Eν [Na(T )] KL(µa|µ⋆+ε) ⩾ kl(Eν [ZT ]|Eν(a)(ε)[ZT ]) . (14)
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From there, what remains of the proof is classic. For instance, the reader can refer to the proof
of Theorem 1 in Garivier et al. (2016).

Since we consider a consistent algorithm on DM and
{

ν ∈DM

a /∈A⋆(ν)
, the averaged number of pulls

of arm a for configuration ν is sub-linear and

lim
T →∞

Eν [ZT ] = lim
T →0

Eν [Na(T )]/T = 0 . (15)

Since we consider a consistent algorithm on DM and
{

ν(a) ∈DM

{a}=A⋆(ν(a)(ε))
, the averaged number

of pulls of arm a for configuration ν(a) is linear and

lim
T →∞

Eν(a)(ε)[ZT ] = lim
T →0

Eν(a)(ε)[Na(T )]/T = 1 . (16)

By combining Equation (15) and (16), we have in particular when T tends to ∞ that

kl(Eν [ZT ]|Eν(a)(ε)[ZT ]) ∼
T →∞

log
(

1
1 − Eν(a)(ε)[ZT ]

)
. (17)

Note that the right term of the last equation can be rewritten as follows,

log
(

1
1 − Eν(a)(ε)[ZT ]

)
= log


 T∑

a′ /∈A⋆(ν(a)(ε))
Eν(a)(ε))[Na′(T )]


 = log

(
T

O(T α)

)
, ∀α > 0 .

(18)
In particular, by combining previous Equation (18) and Equation (17) we get the following
asymptotic result,

lim
T →∞

kl(Eν [ZT ]|Eν(a)(ε)[ZT ])
log(T ) = 1 . (19)

We prove Proposition 1 by combining this last Equation (19) with Equation (14).

Lemma 1 (Fundamental inequality). Let us consider a consistent algorithm on D. Then
for all configurations ν, ν′ ∈ D with means µ, µ′ ∈ IA, for all horizon T ⩾ 1, for random
variable ZT with values in [0, 1],

∑

a∈A
Eν [Na(T )] KL(µa|µ′

a) ⩾ kl(Eν [ZT ]|Eν′ [ZT ]) ,

where kl(p|q)=p log( p
q )+(1−p) log( 1−p

1−q ) for p, q ∈ [0, 1].
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C Finite time analysis

At a high level, the key interesting step of the proof is to realize that the considered algorithm
implies empirical lower and empirical upper bounds on the numbers of pulls (Section C.1). Then,
based on concentration tools (Theorem 1 and Proposition 2), the algorithm-based empirical lower
bounds ensure the reliability of the estimators of interest (Section C.2). Then, combining the
reliability of these estimators with the obtained algorithm-based empirical upper bounds, we
firstly obtain (Section C.3) upper bounds on the average numbers of pulls for locally sub-optimal
arms outside of A+, the set of local maximums. Then, we use these upper bounds and benefit
from the fact that the structure is well-estimated during exploration phases when parameter
M ⩾ M+ to secondly obtain (Section C.4) upper bounds on the numbers of pulls of arms in A+.
For clarity, several intermediate lemmas are presented with variants : no structure exploitation
when

∣∣∣Â+(t)
∣∣∣ < M , no second-order exploration when

∣∣∣Â+(t)
∣∣∣ = M and at+1 /∈ ÂM (t), second-

order exploration when
∣∣∣Â+(t)

∣∣∣ = M and at+1 ∈ ÂM (t). This respects the structure of IMED-MB
algorithm and simplifies its analysis at the price of appearing redundant.

C.1 Algorithm-based empirical bounds

IMED-MB algorithm implies inequalities between the indexes that can be rewritten as inequalities
on the numbers of pulls. While lower bounds involving log(t) may be expected in view of the
asymptotic regret bounds, we show lower bounds on the numbers of pulls involving instead
log
(
Nat+1(t)

)
, the logarithm of the number of pulls of the current chosen arm. We also provide

upper bounds on Nat+1(t) involving log(t).
Lemma 2 (Empirical lower bounds - no structure exploitation). Under IMED-MB, at each
step time t⩾1 such that

∣∣∣Â+(t)
∣∣∣<M (that is, when there is no structure exploitation), for

all a∈A−{â⋆
t },

log
(
Nat+1(t)

)
⩽ Na(t) KL(µ̂a(t)|µ̂⋆(t))∧Φ(Na(t)) + log(Na(t)) , (20)

Nat+1(t) ⩽ N
â⋆

t
(t) , (21)

and,

min
{

Nat+1(t) ; Nat+1(t)
KL
(
µ̂at+1(t)|µ̂⋆(t)) ∧ Φ

(
Nat+1(t)

)

KL(b |µ̂⋆(t)) ∧ Φ
(
Nat+1(t)

)
}

⩽ Na(t) , (22)

where for all µ′ ∈(b ; B), KL(b|µ′)= lim
µ→b

KL(µ|µ′).

Proof. For a∈A−{â⋆
t }, by definition, we have Ia(t)=Na(t)KL(µ̂a(t)|µ̂⋆(t))+log(Na(t)), hence

log(Na(t)) ⩽ IΦ
a (t) ⩽ Ia(t) .

This implies, since arm at with minimum index is pulled when
∣∣∣Â+(t)

∣∣∣<M ,

log
(
Nat+1(t)

)
⩽ IΦ

at+1(t) = min
a′∈A

IΦ
a′(t) ⩽ IΦ

a (t) = Na(t) KL(µ̂a(t)|µ̂⋆(t)) ∧ Φ(Na(t)) + log(Na(t)) ,

which proves Equation (20). Similarly, we have

log
(
Nat+1(t)

)
⩽ IΦ

at+1(t) = min
a′∈A

IΦ
a′(t) ⩽ IΦ

â⋆
t

(t) = log
(

N
â⋆

t
(t)
)

,
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which implies in particular,
log
(
Nat+1(t)

)
⩽ log

(
N

â⋆
t
(t)
)

.

By taking the log−1(·), we prove Equation (21).

Furthermore, since arm at with minimum index is pulled when
∣∣∣Â+(t)

∣∣∣<M ,

Nat+1(t) KL
(
µ̂at+1(t)|µ̂⋆(t)) ∧ Φ

(
Nat+1(t)

)
+ log

(
Nat+1(t)

)

= IΦ
at+1(t)

⩽ IΦ
a (t)

⩽ Na(t) KL(µ̂a(t)|µ̂⋆(t)) ∧ Φ(Na(t)) + log(Na(t)) .

Since Φ(·) and log(·) are non-decreasing function either Nat+1(t) ⩽ Na(t), or KL
(
µ̂at+1(t)|µ̂⋆(t)) ⩽

KL(µ̂a(t)|µ̂⋆(t)) ⩽ KL(b |µ̂⋆(t)) (that is, µ̂⋆(t) ⩾ µ̂at+1(t) ⩾ µ̂a(t) ⩾ b) and

Nat+1(t) KL
(
µ̂at+1(t)|µ̂⋆(t)) ∧ Φ

(
Nat+1(t)

)
⩽ Na(t) KL(µ̂a(t)|µ̂⋆(t)) ∧ Φ(Na(t)) ,

which implies

Nat+1(t)
KL
(
µ̂at+1(t)|µ̂⋆(t)) ∧ Φ

(
Nat+1(t)

)

KL(b |µ̂⋆(t)) ∧ Φ
(
Nat+1(t)

) ⩽ Nat+1(t)
KL
(
µ̂at+1(t)|µ̂⋆(t)) ∧ Φ

(
Nat+1(t)

)

KL(µ̂a(t)|µ̂⋆(t)) ∧ Φ(Na(t)) ⩽ Na(t) .

Lemma 3 (Empirical lower bounds - no second-order exploration). Under IMED-MB, at each
step time t ⩾ 1 such that

∣∣∣Â+(t)
∣∣∣ = M (that is, when there is structure exploitation) and

at+1 ∈ÂM (t) (that is, there is no second-order exploration), for all a∈ÂM (t)−{â⋆
t },

log
(
Nat+1(t)

)
⩽ Na(t) KL(µ̂a(t)|µ̂⋆(t)) + log(Na(t)) , (23)

Nat+1(t) ⩽ N
â⋆

t
(t) , (24)

and,

min
{

Nat+1(t) ; Nat+1(t)
KL
(
µ̂at+1(t)|µ̂⋆(t)) ∧ Φ

(
Nat+1(t)

)

KL(b |µ̂⋆(t)) ∧ Φ
(
Nat+1(t)

)
}

⩽ Na(t) , (25)

where for all µ′ ∈(b ; B), KL(b|µ′)= lim
µ→b

KL(µ|µ′).

Proof. A proof is obtained from the proof of Lemma 2 by replacing A by ÂM (t) and at by
aM

t = at (that is, the arm with minimum index on A by the arm with minimum index on
ÂM (t)).

Lemma 4 (Empirical lower bounds - second-order exploration). Under IMED-MB, at each
step time t ⩾ 1 such that

∣∣∣Â+(t)
∣∣∣ = M (that is, when there is structure exploitation) and

at+1 /∈ÂM (t) (that is, there is second-order exploration), for all a∈A−{â⋆
t },

log
(
Nat+1(t)

)
⩽ Na(t) KL(µ̂a(t)|µ̂⋆(t)) + log(Na(t)) , (26)
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Nat+1(t) ⩽ N
â⋆

t
(t) , (27)

and,

min
{

Nat+1(t) ; Nat+1(t)
KL
(
µ̂at+1(t)|µ̂⋆(t)) ∧ Φ

(
Nat+1(t)

)

KL(b |µ̂⋆(t)) ∧ Φ
(
Nat+1(t)

)
}

⩽ Na(t) , (28)

where for all µ′ ∈(b ; B), KL(b|µ′)= lim
µ→b

KL(µ|µ′).

Proof. A proof is obtained directly from the proof of Lemma 2 by noting that aM
t = at. In

particular, for all a ∈ A, IΦ
aM

t
(t) ⩽ IΦ

a (t).

Lemma 5 (Empirical upper bounds - no structure exploitation). Under IMED-MB at each
step time t⩾1 such that

∣∣∣Â+(t)
∣∣∣<M (that is, when there is no structure exploitation),

Nat+1(t) KL
(
µ̂at+1(t)|µ̂⋆(t))∧Φ

(
Nat+1(t)

)
⩽ log(t) . (29)

Proof. From the definitions of the indexes, we have

IΦ
at+1(t) ⩽ IΦ

â⋆
t

(t) ⩽ I
â⋆

t
(t) .

It remains, to conclude, to note that

Nat+1(t) min
{

KL
(
µ̂at+1(t)|µ̂⋆(t)) ; Φ

(
Nat+1(t)

)}
⩽ IΦ

at+1(t) ,

and
I

â⋆
t
(t) = log(N

â⋆
t
(t)) ⩽ log(t) .

Lemma 6 (Empirical upper bounds - no second-order exploration). Under IMED-MB at each
step time t ⩾ 1 such that

∣∣∣Â+(t)
∣∣∣ = M (that is, when there is structure exploitation) and

at+1 ∈ÂM (t) (that is, there is no second-order exploration),

Nat+1(t) KL
(
µ̂at+1(t)|µ̂⋆(t))∧Φ

(
Nat+1(t)

)
⩽ log(t) . (30)

Proof. The same proof as that of Lemma 5 holds.

Lemma 7 (Empirical upper bounds - second-order exploration). Under IMED-MB at each
step time t ⩾ 1 such that

∣∣∣Â+(t)
∣∣∣ = M (that is, when there is structure exploitation) and

at+1 /∈ÂM (t) (that is, there is second-order exploration),

Nat+1(t) KL
(
µ̂at+1(t)|µ̂⋆(t))∧Φ

(
Nat+1(t)

)
⩽ Ψ−1(log(t)) . (31)

Proof. From the definitions of the indexes, we have

Ψ
(

IΦ
at+1(t)

)
⩽ IΦ

â⋆
t

(t) ⩽ I
â⋆

t
(t) .
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It remains, to conclude, to note that

Nat+1(t) min
{

KL
(
µ̂at+1(t)|µ̂⋆(t)) ; Φ

(
Nat+1(t)

)}
⩽ IΦ

at+1(t) ,

and
I

â⋆
t
(t) = log(N

â⋆
t
(t)) ⩽ log(t) .

C.2 Well-estimated means and structure

Before going further in the analysis, we inform the reader that sets Ea(ε), E−
a (f, ε), K−

a (ε) for
a ∈ A, f a function, ε > 0, used in this subsection are introduced and studied in Section E. We
further introduce the following notations before presenting the conditions of reliability of our
estimators.

εµ = 1
3

(
min
a̸=a⋆

µ⋆−µa

)
∧
(

min
a+∈A+

max
a∈Va+

µa+ −µa

)
∧ (B − µ⋆) ∧

(
min
a∈A

µa − b

)
(32)

kµ = 1 ∧ min
a ̸=a⋆

KL(µa − εµ|µ⋆ + εµ) ∧ min
a+∈A+

a∈Va+

KL(µa − εµ|µa+εµ) (33)

φ : x ⩾ 0 7→ min
{

x ; x
kµ ∧ Φ(x)

KL(b |µ⋆ + εµ) ∧ Φ(x)

}
(34)

Lemma 8 (Well-estimated means). Under IMED-MB, for all 0 < ε < εµ, at each time step
t /∈Eat+1(ε) ∪ E

â⋆
t
(ε),

∣∣µ̂at+1(t) − µat+1

∣∣ < ε , (35)
∣∣∣µ̂â⋆

t
(t) − µ

â⋆
t

∣∣∣ < ε . (36)

Proof. These inequalities are derived from the definition of Ea(ε) = Ea(f, ε) for a ∈ A and identity
function f : x 7→ x detailed in Equations (81)-(82)-(83) and the following empirical lower bound
from Lemmas 2-3-4,

Nat+1(t) ⩽ N
â⋆

t
(t) .

Lemma 9 (Local maximum). Under IMED-MB, for all 0 < ε < εµ, at each time step t /∈
Eat+1(ε) ∪ E

â⋆
t
(ε)

⋃
a∈V̂

a⋆
t

K−
a (Φ, εµ),

â⋆
t ∈ A+ . (37)

Proof. By contradiction: we assume â⋆
t /∈ A+.

Since t /∈ Eat+1(ε) ∪ E
â⋆

t
(ε), Lemma 8 implies the means of the current optimal arm is well

estimated, in particular
µ̂⋆(t) ⩽ µ

â⋆
t

+ ε . (38)
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Since â⋆
t /∈ A+ and ε < εν , there exist an arm a ∈ arg max

a′∈V̂
a⋆

t

µ′
a such that

µ̂a(t) ⩽ µ̂⋆(t) ⩽ µ
â⋆

t
+ ε < µa − εν . (39)

Furthermore, the empirical lower bounds on the numbers of pulls from Lemmas 2-3-4 imply

log
(
Nat+1(t)

)
⩽ Na(t) KL(µ̂a(t)|µ̂⋆(t))∧Φ(Na(t)) + log(Na(t)) . (40)

Noting that : µ⩾ µ̂a(t) 7→ KL(µ̂a(t)|µ) is an increasing function, by combining previous Equa-
tions (39)-(40) we obtain

log
(
Nat+1(t)

)
⩽ Na(t) KL(µ̂a(t)|µa−εµ)∧Φ(Na(t)) + log(Na(t)) . (41)

Then, Equation (41) contradicts the assumption that t /∈ ⋃
a∈V̂

a⋆
t

K−
a (Φ, εµ), which ends the proof.

K−
a (Φ, εµ) is defined in Equation (84).

Lemma 10 (Global maximum - no structure exploitation). Under IMED-MB, for all 0<ε<

εµ, at each time step t /∈Eat+1(ε) ∪ E
â⋆

t
(ε) ∪ K−

a⋆(Φ, εµ) such that
∣∣∣Â+(t)

∣∣∣<M (that is, when
there is no structure exploitation),

â⋆
t = a⋆ . (42)

Proof. By contradiction: we assume â⋆
t ̸= a⋆.

Since t /∈ Eat+1(ε) ∪ E
â⋆

t
(ε), Lemma 8 implies the means of the current optimal arm is well

estimated, in particular
µ̂⋆(t) ⩽ µ

â⋆
t

+ ε . (43)

Since â⋆
t ̸= a⋆ and ε < εν ,

µ̂a(t) ⩽ µ̂⋆(t) ⩽ µ
â⋆

t
+ ε < µa⋆ − εν . (44)

Furthermore, the empirical lower bounds on the numbers of pulls from Lemmas 2-3-4 imply

log
(
Nat+1(t)

)
⩽ Na⋆(t) KL(µ̂a(t)|µ̂⋆(t))∧Φ(Na(t)) + log(Na⋆(t)) . (45)

Noting that : µ ⩾ µ̂a⋆(t) 7→ KL(µ̂a⋆(t)|µ) is an increasing function, by combining previous
Equations (44)-(45) we obtain

log
(
Nat+1(t)

)
⩽ Na⋆(t) KL(µ̂a⋆(t)|µa−εµ)∧Φ(Na(t)) + log(Na⋆(t)) . (46)

Then, Equation (46) contradicts the assumption that t /∈ K−
a⋆(Φ, εµ), which ends the proof.

K−
a⋆(Φ, εµ) is defined in Equation (84).

Lemma 11 (Global maximum - second-order exploration). Under IMED-MB, for all 0<ε<

εµ, at each time step t /∈Eat+1(ε) ∪ E
â⋆

t
(ε) ∪ K−

a⋆(Φ, εµ) such that
∣∣∣Â+(t)

∣∣∣=M (that is, when
there is structure exploitation) and at+1 /∈ÂM (t) (that is, there is second-order exploration),

â⋆
t = a⋆ . (47)
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Proof. The same proof as that of Lemma 10 holds.

Lemma 12 (Well-estimated means - no structure exploitation). Under IMED-MB, for all
0<ε<εµ, at each time step t /∈ ⋃

a∈A
Ea(ε)∪Ea(φ, ε)∪K−

a (Φ, εµ) such that
∣∣∣Â+(t)

∣∣∣<M (that

is, when there is no structure exploitation) and at+1 ̸= â⋆
t , for all a∈A,

|µ̂a(t) − µa| < ε . (48)

Proof. From Lemma 8 and since t /∈ Eat+1(ε) ∪ E
â⋆

t ,at+1
, the means of the current pulled arm and

the current optimal arm are well-estimated,

µat+1 − εµ < µ̂at+1(t) < µat+1 + εµ , (49)

µ
â⋆

t
− εµ < µ̂

â⋆
t
(t) < µ

â⋆
t

+ εµ . (50)

From Lemma 10 and since t /∈ Eat+1(ε) ∪ E
â⋆

t
(ε) ∪ K−

a⋆(Φ, εµ), the current best arm is the best
arm, that is, â⋆

t = a⋆. Since at+1 ̸= â⋆
t , this implies

µat+1 − εµ < µ̂at+1(t) < µat+1 + εµ < µ
â⋆

t
− εµ < µ̂

â⋆
t
(t) < µ

â⋆
t

+ εµ . (51)

By combining previous Equation (51) and the monotonic properties of KL(·|·), we get

kµ∧Φ
(
Nat+1(t)

)
⩽ KL

(
µ̂at+1(t)

∣∣∣µ̂â⋆
t
(t)
)

∧Φ
(
Nat+1(t)

)
= KL

(
µ̂at+1(t)|µ̂⋆(t))∧Φ

(
Nat+1(t)

)
, (52)

where kµ is defined in Equation (33). From Lemmas 2- 3-4, we have the following empirical lower
bound on Na(t),

min
{

Nat+1(t) ; Nat+1(t)
KL
(
µ̂at+1(t)|µ̂⋆(t)) ∧ Φ

(
Nat+1(t)

)

KL(b |µ̂⋆(t)) ∧ Φ
(
Nat+1(t)

)
}

⩽ Na(t) . (53)

We note that KL(b|·) is a non-decreasing function on [b ; B[. Then, Equation (51) also implies

KL(b|µ̂⋆(t)) ⩽ KL(b|µ⋆ + εµ) . (54)

By combining previous Equations (52)-(53)-(54), we have

φ
(
Nat+1(t)

)
= min

{
Nat+1(t) ; Nat+1(t)

kµ ∧ Φ
(
Nat+1(t)

)

KL(b |µ⋆ + εµ) ∧ Φ
(
Nat+1(t)

)
}

⩽ Na(t) . (55)

Since t /∈ Ea(φ, ε) defined in Equations (81)-(82)-(83), previous Equation (55) implies

|µ̂a(t) − µa| < ε ,

which ends the proof.

Lemma 13 (Well-estimated means - no second-order exploration). Under IMED-MB, for all
0 < ε < εµ, at each time step t /∈ ⋃

a∈A
Ea(ε) ∪ Ea(φ, ε) ∪ K−

a (Φ, εµ) such that
∣∣∣Â+(t)

∣∣∣= M

(that is, when there is structure exploitation), at+1 ∈ÂM (t) (that is, there no is second-order
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exploration), and at+1 ̸= â⋆
t , for all a∈ÂM (t),

|µ̂a(t) − µa| < ε . (56)

Proof. From Lemma 8 and since t /∈ Eat+1(ε) ∪ E
â⋆

t ,at+1
, the means of the current pulled arm and

the current optimal arm are well-estimated,

µat+1 − εµ < µ̂at+1(t) < µat+1 + εµ , (57)

µ
â⋆

t
− εµ < µ̂

â⋆
t
(t) < µ

â⋆
t

+ εµ . (58)

From Lemma 9 and since t /∈ Eat+1(ε) ∪ E
â⋆

t
(ε)

⋃
a∈V̂

a⋆
t

K−
a (Φ, εµ), the current best arm is a locally

optimal arm, that is, â⋆
t ∈ A+. Since at+1 ∈ V

â⋆
t
, this implies

µat+1 − εµ < µ̂at+1(t) < µat+1 + εµ < µ
â⋆

t
− εµ < µ̂

â⋆
t
(t) < µ

â⋆
t

+ εµ . (59)

By combining previous Equation (59) and the monotonic properties of KL(·|·), we get

kµ∧Φ
(
Nat+1(t)

)
⩽ KL

(
µ̂at+1(t)

∣∣∣µ̂â⋆
t
(t)
)

∧Φ
(
Nat+1(t)

)
= KL

(
µ̂at+1(t)|µ̂⋆(t))∧Φ

(
Nat+1(t)

)
, (60)

where kµ is defined in Equation (33). From Lemmas 2-3-4, we have the following empirical lower
bound on Na(t),

min
{

Nat+1(t) ; Nat+1(t)
KL
(
µ̂at+1(t)|µ̂⋆(t)) ∧ Φ

(
Nat+1(t)

)

KL(b |µ̂⋆(t)) ∧ Φ
(
Nat+1(t)

)
}

⩽ Na(t) . (61)

We note that KL(b|·) is a non-decreasing function on [b ; B[. Then, Equation (59) also implies

KL(b|µ̂⋆(t)) ⩽ KL(b|µ⋆ + εµ) . (62)

By combining previous Equations (60)-(61)-(62), we have

φ
(
Nat+1(t)

)
= min

{
Nat+1(t) ; Nat+1(t)

kµ ∧ Φ
(
Nat+1(t)

)

KL(b |µ⋆ + εµ) ∧ Φ
(
Nat+1(t)

)
}

⩽ Na(t) . (63)

Since t /∈ Ea(φ, ε) defined in Equations (81)-(82)-(83), previous Equation (63) implies

|µ̂a(t) − µa| < ε ,

which ends the proof.

Lemma 14 (Well-estimated means - second-order exploration). Under IMED-MB, for all
0 < ε < εµ, at each time step t /∈ ⋃

a∈A
Ea(ε) ∪ Ea(φ, ε) ∪ K−

a (Φ, εµ) such that
∣∣∣Â+(t)

∣∣∣= M

(that is, when there is structure exploitation), at+1 /∈ ÂM (t) (that is, there is second-order
exploration), and at+1 ̸= â⋆

t , for all a∈A,

|µ̂a(t) − µa| < ε . (64)

Proof. The same proof as that of Lemma 12 holds.
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Lemma 15 (Structure estimation - exploration). Under IMED-MB, for all 0<ε<εµ, at each
time step t /∈ ⋃

a∈A
Ea(ε) ∪ Ea(φ, ε) ∪ K−

a (Φ, εµ) such that at+1 ̸= â⋆
t ,

â⋆
t = a⋆ ,

Â+(t) = A+(M) ,

where A+(M) =
{

a1, . . . , amin(M,M+)
}

⊂ A+. We refer to Assumption 2 for the definition
of a1, . . . , aM+ .

Proof. It is a direct consequence of Lemmas 12-13-14.

Lemma 16 (Structure estimation - exploitation). Under IMED-MB, for all 0 < ε < εµ, at
each time step t /∈ ⋃

a∈A
Ea(ε) ∪ Ea(φ, ε) ∪ K−

a (Φ, εµ) such that at+1 = â⋆
t ̸= a⋆,

at+1 = â⋆
t ∈ A+ ,

∣∣∣Â+(t)
∣∣∣ = M ,

a⋆ /∈ ÂM (t) ,

Â+(t) − A+(M) ̸= ∅ ,

where A+(M) =
{

a1, . . . , amin(M,M+)
}

⊂ A+. We refer to Assumption 2 for the definition
of a1, . . . , aM+ .

Proof. Since t /∈ Eat+1(ε)∪E
â⋆

t
(ε)

⋃
a∈V̂

a⋆
t

K−
a (Φ, εµ), from Lemma 9 we directly have that â⋆

t ∈ A+.

Since t /∈ Eat+1(ε) ∪ E
â⋆

t
(ε) ∪ K−

a⋆(Φ, εµ) and â⋆
t ̸= a⋆, from Lemma 10 we directly have that∣∣∣Â+(t)

∣∣∣ = M . Furthermore, since t /∈ Eat+1(ε) ∪ E
â⋆

t ,at+1
, Lemma 8 implies µ̂

â⋆
t
(t) is well-

estimated, which implies

µ̂a⋆(t) ⩽ µ̂⋆(t) = µ̂
â⋆

t
(t) < µ

â⋆
t

+ ε < µa⋆ − εν . (65)

Since : µ⩾ µ̂a⋆(t) 7→ KL(µ̂a⋆(t)|µ) is increasing function, previous Equation (65) implies

IΦ
a⋆(t) = Na⋆(t) KL(µ̂a⋆(t)|µ̂⋆(t))∧Φ(Na⋆(t)) + log(Na⋆(t))

⩽ Na⋆(t) KL(µ̂a⋆(t)|µa⋆ −εµ)∧Φ(Na⋆(t)) + log(Na⋆(t)) .
(66)

Since t /∈ K−
a⋆(Φ, εµ) defined in Equation (84), previous Equation (66) implies

IΦ
a⋆(t) < log

(
Nat+1

)
⩽ arg min

a∈ÂM (t)
IΦ

a (t) , (67)

which naturally implies a⋆ /∈ ÂM (t). This implies that a⋆ /∈ Â+(t) and Â+(t) − A+(M) ̸= ∅,
since

∣∣∣Â+(t)
∣∣∣ = M and |A+(M) − {a⋆}| ⩽ M − 1.
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C.3 Upper bounds on the numbers of pulls of locally sub-optimal arms

In this subsection, we mainly combine the results from Lemmas 15-16 of the previous section
and empirical upper bounds of section C.1 in order to obtain randomized upper bounds on the
numbers of pulls of arms outside of A+. We first introduce following subsets of time steps

U(ε) =
⋃

a∈A
Ea(ε) ∪ Ea(φ, ε) ∪ K−

a (Φ, εµ) ,

Ua(ε) = {t ∈ U(ε) : at+1 = a} , ∀a ∈ A .

(68)

From the definition of φ in Equation (34), we have φ(x) ⩽ x for x ⩾ 0. Then, U(ε) can be
simplify as follows

U(ε) =
⋃

a∈A
Ea(φ, ε) ∪ K−

a (Φ, εµ) .

The next lemma borrows elements of proof from Combes and Proutiere (2014) in the way of
providing upper bounds on the numbers of pulls involving the sizes of these (bad events) sets
(Ua), see Equation (69).

Lemma 17. Under IMED-MB, for all 0<ε<εµ, for all arm a /∈ A+, for all time step t ⩾ 1,
⋆ if |A+|<M ,

Na(t) ⩽
(

Φ−1(KL(µa + ε|µ⋆ − ε)) ∧ log(t)
Φ(log(t))

)
∨ log(t)

KL(µa + ε|µ⋆ − ε) + |Ua(ε)| + 1 ,

Eν [Na(t)] ⩽
(

Φ−1(KL(µa + ε|µ⋆ − ε)) ∧ log(t)
Φ(log(t))

)
∨ log(t)

KL(µa + ε|µ⋆ − ε) + E[|Ua(ε)|] + 1 ,

⋆ if |A+|⩾M and a∈VA+(M),

Na(t) ⩽
(

Φ−1(KL(µa + ε|µ⋆ − ε)) ∧ log(t)
Φ(log(t))

)
∨ log(t)

KL(µa + ε|µ⋆ − ε) + |Ua(ε)| + 1 ,

Eν [Na(t)] ⩽
(

Φ−1(KL(µa + ε|µ⋆ − ε)) ∧ log(t)
Φ(log(t))

)
∨ log(t)

KL(µa + ε|µ⋆ − ε) + E[|Ua(ε)|] + 1 ,

⋆ otherwise, |A+|⩾M and a /∈A+ ∪ VA+(M) and

Na(t) ⩽
(

Φ−1(KL(µa + ε|µ⋆ − ε)) ∧ Ψ−1(log(t))
Φ(Ψ−1 (log(t)))

)
∨ Ψ−1(log(t))

KL(µa + ε|µ⋆ − ε) + |Ua(ε)| + 1 ,

Eν [Na(t)]⩽
(

Φ−1(KL(µa + ε|µ⋆ − ε))∧ Ψ−1(log(t))
Φ(Ψ−1 (log(t)))

)
∨ Ψ−1(log(t))

KL(µa + ε|µ⋆ − ε)+E[|Ua(ε)|]+1 ,

where Φ−1 : y ⩾ 0 7→ max {x⩾0 : Φ(x) ⩽ y} (with the convention max ∅ = 0) and
A+(M) =

{
a1, . . . , amin(M,M+)

}
(see Assumption 2).
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Furthermore, when 1 ⩽ Φ(log(n)) ⩽ log log(n) for n ⩾ 18, an upper bound on E[|U(ε)|] is

E[|U(ε)|] ⩽


1 + 18 ∨ e

min
a∈A

KL(µa − ε|µa)


|A| +

∑

a∈A
2 +

∑

n⩾1
e−φ(n)KL(µa−ε|µa) + 1

n log2(n)

+
∑

a∈A

e1+KL(µa−ε|µa)

KL(µa−ε|µa)
∑

n⩾18

(
1+log2(n)

)
(log(n)+2 log log(n))

n1+KL(µa−ε|µa)/log log(n) ,

where φ and U(ε) =
⋃

a∈A
Ua(ε) are respectively defined in Equation (34) and Equation (68).

In particular, E[|U(ε)|] < ∞, which implies Ua(ε) < ∞ almost surely.

Proof. We note that for an arm a ∈ A, its number of pulls up to time step t ⩾ 1 can be broken
down as follows,

Na(t) = Na(τa) + Na(t) − Na(τa) ,

where τa = max {s ⩽ t − 1 : as+1 = a, t /∈ Ua(ε)} and Na(t) − Na(τa) ⩽ |Ua(ε)| + 1 . This
implies

Na(t) ⩽ Na(τa) + |Ua(ε)| + 1 , (69)

and the upper bounds on the numbers of pulls are a direct consequence of Lemma 19.

We now prove the upper bound on E[|U(ε)|] as a consequence of Lemma 24. Indeed, we just note
that

U(ε) ⊂ I
(

e−1 min
a∈A

KL(µa − ε|µa)
) ⋃

a∈A
Ea(φ, ε) ∪ Ea(fa,ε, ε)

⋃

a∈A
K−

a (Φ, ε) − Ea(fa,ε, ε) − Ia(ε) ,

where I(K) for K > 0 is defined in Equation 85 while fa,ε(·) and Ia(ε) are defined in Lemma 24.
This implies

|U(ε)|⩽
∣∣∣∣I
(

e−1 min
a∈A

KL(µa−ε|µa)
)∣∣∣∣+

∑

a∈A
|Ea(φ, ε)|+|Ea(fa,ε, ε)|+

∣∣K−
a (Φ, ε)−Ea(fa,ε, ε)−Ia(ε)

∣∣ .

(70)
The upper bound on E[|U(ε)|] is then proved by taking the expectation on both sides of previous
Equation (70) and applying Lemma 24.

Lemma 18. We assume 1 ⩽ Φ(log(n)) ⩽ log log(n) for n ⩾ 18 and Ψ−1(log(t)) =
o

t→∞
(log(t)). Then, under IMED-MB, for all arm a /∈ A+,

⋆ if |A+|<M ,

a.s. lim sup
T →∞

Na(T )
log(T ) ⩽ 1

KL(µa|µ⋆) ,

which implies

lim sup
T →∞

Eν [Na(T )]
log(T ) ⩽ Eν

[
lim sup

T →∞

Na(T )
log(T )

]
⩽ 1

KL(µa|µ⋆) ,
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⋆ if |A+|⩾M and a∈VA+(M),

a.s. lim sup
T →∞

Na(T )
log(T ) ⩽ 1

KL(µa|µ⋆) ,

which implies

lim sup
T →∞

Eν [Na(T )]
log(T ) ⩽ Eν

[
lim sup

T →∞

Na(T )
log(T )

]
⩽ 1

KL(µa|µ⋆) ,

⋆ otherwise, |A+|⩾M and a /∈A+ ∪ VA+(M) and

a.s. lim sup
T →∞

Na(T )
log(T ) ⩽ 0 ,

which implies
lim sup

T →∞

Eν [Na(T )]
log(T ) ⩽ Eν

[
lim sup

T →∞

Na(T )
log(T )

]
⩽ 0 ,

where A+(M) =
{

a1, . . . , amin(M,M+)
}

(see Assumption 2).

Proof. It is a direct consequence of Lemma 17.

Lemma 19. Under IMED-MB, for all 0 < ε < εµ, at each time step t /∈ U(ε) such that
at+1 = a /∈ A+,
⋆ if |A+|<M ,

Na(t) ⩽
(

Φ−1(KL(µa + ε|µ⋆ − ε)) ∧ log(t)
Φ(log(t))

)
∨ log(t)

KL(µa + ε|µ⋆ − ε) ,

⋆ if |A+|⩾M and a∈VA+(M),

Na(t) ⩽
(

Φ−1(KL(µa + ε|µ⋆ − ε)) ∧ log(t)
Φ(log(t))

)
∨ log(t)

KL(µa + ε|µ⋆ − ε) ,

⋆ otherwise, |A+|⩾M and a /∈A+ ∪ VA+(M) and

Na(t) ⩽
(

Φ−1(KL(µa + ε|µ⋆ − ε)) ∧ Ψ−1(log(t))
Φ(Ψ−1 (log(t)))

)
∨ Ψ−1(log(t))

KL(µa + ε|µ⋆ − ε) ,

where Φ−1 : y⩾0 7→ max {x⩾0 : Φ(x) ⩽ y} (with the convention max ∅ = 0) and A+(M) ={
a1, . . . , amin(M,M+)

}
(see Assumption 2).
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Proof. Since t /∈ U(ε) defined in Equation (68), t /∈Eat+1(ε)∪E
â⋆

t
(ε)

⋃
a∈V̂

a⋆
t

K−
a (Φ, εµ) and Lemma 9

implies â⋆
t ∈ A+. Since at+1 = a /∈ A+, this implies in particular at+1 ̸= â⋆

t . Then, since
t /∈ U(ε) =

⋃
a∈A

Ea(ε) ∪ Ea(φ, ε) ∪ K−
a (Φ, εµ) and at+1 ̸= â⋆

t , Lemma 15 implies

â⋆
t = a⋆, Â+(t) = A+(M) .

Before going any further, we note that since t /∈ U(ε) and at+1 = a, â⋆
t = a⋆, t /∈ Eat+1(ε) ∪ E

â⋆
t
(ε)

and Lemma 8 implies
µ̂a(t) < µa+ε < µ⋆−ε < µ̂⋆(t) . (71)

⋆ Case 1: |A+| < M

Then according to IMED-MB algorithm,
∣∣∣Â+(t)

∣∣∣ = |A+| < M , a = at+1 ∈ A and the empirical
upper bound from Lemma 5 is satisfied,

Na(t) KL(µ̂a(t)|µ̂⋆(t))∧Φ(Na(t)) ⩽ log(t) . (72)

From Equation (71) and the monotonic properties of KL(·|·), we have KL(µa+ε|µ⋆−ε) ⩽
KL(µ̂a|µ̂⋆(t)). Then previous Equation (72) implies

Na(t) KL(µa+ε|µ⋆−ε)∧Φ(Na(t)) ⩽ Na(t) KL(µ̂a(t)|µ̂⋆(t))∧Φ(Na(t)) ⩽ log(t) .

This implies

Na(t) ⩽
(

Φ−1(KL(µa + ε|µ⋆ − ε)) ∧ log(t)
Φ(log(t))

)
∨ log(t)

KL(µa + ε|µ⋆ − ε) .

⋆ Case 2: |A+| ⩾ M and a ∈ VA+(M)
Then according to IMED-MB algorithm,

∣∣∣Â+(t)
∣∣∣ = |A+(M)| = M , a = at+1 ∈ VA+(M) = VÂ+(t) ⊂

ÂM (t) and the empirical upper bound from Lemma 6 is satisfied,

Na(t) KL(µ̂a(t)|µ̂⋆(t))∧Φ(Na(t)) ⩽ log(t) . (73)

From Equation (71) and the monotonic properties of KL(·|·), we have KL(µa+ε|µ⋆−ε) ⩽
KL(µ̂a|µ̂⋆(t)). Then previous Equation (73) implies

Na(t) KL(µa+ε|µ⋆−ε)∧Φ(Na(t)) ⩽ Na(t) KL(µ̂a(t)|µ̂⋆(t))∧Φ(Na(t)) ⩽ log(t) .

This implies

Na(t) ⩽
(

Φ−1(KL(µa + ε|µ⋆ − ε)) ∧ log(t)
Φ(log(t))

)
∨ log(t)

KL(µa + ε|µ⋆ − ε) .

⋆ Case 3: |A+| ⩾ M and a /∈ A+ ∪ VA+(M) (since it is assumed that a /∈ A+)
Then according to IMED-MB algorithm,

∣∣∣Â+(t)
∣∣∣ = |A+(M)| = M , a = at+1 /∈ A+(M)∪VA+(M) =

ÂM (t) and the empirical upper bound from Lemma 7 is satisfied,

Na(t) KL(µ̂a(t)|µ̂⋆(t))∧Φ(Na(t)) ⩽ Ψ−1 (log(t)) . (74)
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From Equation (71) and the monotonic properties of KL(·|·), we have KL(µa+ε|µ⋆−ε) ⩽
KL(µ̂a|µ̂⋆(t)). Then previous Equation (74) implies

Na(t) KL(µa+ε|µ⋆−ε)∧Φ(Na(t)) ⩽ Na(t) KL(µ̂a(t)|µ̂⋆(t))∧Φ(Na(t)) ⩽ Ψ−1 (log(t)) .

This implies

Na(t) ⩽
(

Φ−1(KL(µa + ε|µ⋆ − ε)) ∧ Ψ−1 (log(t))
Φ(Ψ−1 (log(t)))

)
∨ Ψ−1 (log(t))

KL(µa + ε|µ⋆ − ε) .

C.4 Upper bounds on the numbers of pulls of arms in A+ when M ⩾ |A+|

Interestingly enough, in order to obtain upper bounds on the numbers of pulls of arms in A+, we
use the proven upper bounds on arms outside of A+. This is key point of our proof technique.

Lemma 20. We assume M ⩾ |A+|. Then, under IMED-MB, for all 0 < ε < εµ, for all arm
a ∈ A+ − {a⋆}, for all time step t ⩾ 1,

Na(t)⩽ max
a′ /∈A+∪VA+

F

((
Φ−1(KL(µa+ε|µ⋆−ε))∧ Ψ−1(log(t))

Φ(Ψ−1(log(t)))

)
∨ Ψ−1(log(t))

KL(µa + ε|µ⋆ − ε) +|Ua(ε)|+1
)

+
(

Φ−1(KL(µa + ε|µ⋆ − ε)) ∧ log(t)
Φ(log(t))

)
∨ log(t)

KL(µa + ε|µ⋆ − ε) + |Ua(ε)| + 1 ,

where where F : x > 0 7→ exΦ(x)+log(x), Φ−1 : y ⩾ 0 7→ max {x⩾0 : Φ(x) ⩽ y} (with the
convention max ∅ = 0).

Furthermore, when 1 ⩽ Φ(log(n)) ⩽ log log(n) for n ⩾ 18, an upper bound on E[|U(ε)|] is

E[|U(ε)|] ⩽


1 + 18 ∨ e

min
a∈A

KL(µa − ε|µa)


|A| +

∑

a∈A
2 +

∑

n⩾1
e−φ(n)KL(µa−ε|µa) + 1

n log2(n)

+
∑

a∈A

e1+KL(µa−ε|µa)

KL(µa−ε|µa)
∑

n⩾18

(
1+log2(n)

)
(log(n)+2 log log(n))

n1+KL(µa−ε|µa)/log log(n) ,

where φ and U(ε) =
⋃

a∈A
Ua(ε) are respectively defined in Equation (34) and Equation (68).

In particular, E[|U(ε)|] < ∞, which implies Ua(ε) < ∞ almost surely.

Proof. We note that for an arm a ∈ A, its number of pulls up to time step t ⩾ 1 can be broken
down as follows,

Na(t) = Na

(
max

{
τexploitation

a ; τexploration
a

})
+ Na(t) − Na

(
max

{
τexploitation

a ; τexploration
a

})
,
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where
τexploitation

a = max {s ⩽ t − 1 : as+1 = a, as+1 = â⋆
t , t /∈ Ua(ε)} ,

τexploration
a = max {s ⩽ t − 1 : as+1 = a, as+1 ̸= â⋆

t , t /∈ Ua(ε)} ,

Na(t) − Na

(
max

{
τexploitation

a ; τexploration
a

})
⩽ |Ua(ε)| + 1.

This implies
Na(t) ⩽ Na

(
τexploitation

a

)
+ Na

(
τexploration

a

)
+ |Ua(ε)| + 1 ,

and the upper bounds on the numbers of pulls are a direct consequence of Lemma 22 and
Lemma 23.

We refer to Lemma 17 for a proof of the upper bound on E[|U(ε)|].

Lemma 21. We assume M ⩾ |A+|, 1 ⩽ Φ(log(n)) ⩽ log log(n) for n ⩾ 18, Ψ−1(log(t)) =
o

t→∞
(log(t)), and for all U > 0,

max
a′ /∈A+∪VA+

F

((
Φ−1(KL(µa+ε|µ⋆−ε))∧ Ψ−1(log(t))

Φ(Ψ−1(log(t)))

)
∨ Ψ−1(log(t))

KL(µa + ε|µ⋆ − ε) + U

)
= o

t→∞
(log(t))

Then, under IMED-MB, for all arm a ∈ A+ − {a⋆},

a.s. lim sup
T →∞

Na(T )
log(T ) ⩽ 1

KL(µa|µ⋆) ,

which implies

lim sup
T →∞

Eν [Na(T )]
log(T ) ⩽ Eν

[
lim sup

T →∞

Na(T )
log(T )

]
⩽ 1

KL(µa|µ⋆) ,

where where F : x > 0 7→ exΦ(x)+log(x), Φ−1 : y ⩾ 0 7→ max {x⩾0 : Φ(x) ⩽ y} (with the
convention max ∅ = 0).

Proof. It is a direct consequence of Lemma 20.

Lemma 22. We assume M ⩾ |A+|. Then, under IMED-MB, for all 0<ε<εµ, at each time
step t /∈ U(ε) such that at+1 = a ∈ A+ − {a⋆} and at+1 ̸= â⋆

t , it must be that

Na(t) ⩽
(

Φ−1(KL(µa + ε|µ⋆ − ε)) ∧ log(t)
Φ(log(t))

)
∨ log(t)

KL(µa + ε|µ⋆ − ε) .

Proof. Since t /∈ U(ε) =
⋃

a∈A
Ea(ε) ∪ Ea(φ, ε) ∪ K−

a (Φ, εµ) and at+1 ̸= â⋆
t , Lemma 15 implies

â⋆
t = a⋆, Â+(t) = A+(M) .

Before going any further, we note that since t /∈ U(ε) and at+1 = a, â⋆
t = a⋆, then t /∈ Eat+1(ε) ∪

E
â⋆

t
(ε) and Lemma 8 implies

µ̂a(t) < µa+ε < µ⋆−ε < µ̂⋆(t) . (75)
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⋆ Case 1: M = |A+|
Since

∣∣∣Â+(t)
∣∣∣ = |A+(M)| = |A+| = M and according to IMED-MB algorithm, at+1 = a ∈ A+ ⊂

ÂM (t) and the empirical upper bound from Lemma 6 is satisfied,

Na(t) KL(µ̂a(t)|µ̂⋆(t))∧Φ(Na(t)) ⩽ log(t) . (76)

From Equation (75) and the monotonic properties of KL(·|·), we have KL(µa+ε|µ⋆−ε) ⩽
KL(µ̂a|µ̂⋆(t)). Then previous Equation (76) implies

Na(t) KL(µa+ε|µ⋆−ε)∧Φ(Na(t)) ⩽ Na(t) KL(µ̂a(t)|µ̂⋆(t))∧Φ(Na(t)) ⩽ log(t) .

This implies

Na(t) ⩽
(

Φ−1(KL(µa + ε|µ⋆ − ε)) ∧ log(t)
Φ(log(t))

)
∨ log(t)

KL(µa + ε|µ⋆ − ε) .

⋆ Case 2: M > |A+|
Since

∣∣∣Â+(t)
∣∣∣ = |A+(M)| < M and according to IMED-MB algorithm, at+1 = at and the empirical

upper bound from Lemma 5 is satisfied,

Na(t) KL(µ̂a(t)|µ̂⋆(t))∧Φ(Na(t)) ⩽ log(t) . (77)

From Equation (75) and the monotonic properties of KL(·|·), we have KL(µa+ε|µ⋆−ε) ⩽
KL(µ̂a|µ̂⋆(t)). Then previous Equation (77) implies

Na(t) KL(µa+ε|µ⋆−ε)∧Φ(Na(t)) ⩽ Na(t) KL(µ̂a(t)|µ̂⋆(t))∧Φ(Na(t)) ⩽ log(t) .

This implies

Na(t) ⩽
(

Φ−1(KL(µa + ε|µ⋆ − ε)) ∧ log(t)
Φ(log(t))

)
∨ log(t)

KL(µa + ε|µ⋆ − ε) .

Lemma 23. We assume M ⩾ |A+|. Then, under IMED-MB, for all 0<ε<εµ, at each time
step t /∈ U(ε) such that at+1 = a ∈ A+ − {a⋆} and at+1 = â⋆

t ,

Na(t)⩽ max
a′ /∈A+∪VA+

F

((
Φ−1(KL(µa+ε|µ⋆−ε))∧ Ψ−1(log(t))

Φ(Ψ−1(log(t)))

)
∨ Ψ−1(log(t))

KL(µa + ε|µ⋆ − ε) +|Ua(ε)|+1
)

where F : x > 0 7→ exΦ(x)+log(x) and Φ−1 : y ⩾ 0 7→ max {x⩾0 : Φ(x) ⩽ y} (with the
convention max ∅ = 0).

Proof. Since t /∈ U(ε) =
⋃

a∈A
Ea(ε) ∪ Ea(φ, ε) ∪ K−

a (Φ, εµ) and at+1 = â⋆
t , Lemma 16 implies

∣∣∣Â+(t)
∣∣∣ = M, Â+(t) − A+(M) = Â+(t) − A+ ̸= ∅ .
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Since Â+(t)−A+ ̸= ∅ is equivalent to Â+(t)∪VÂ+(t)−A+∪VA+ ̸= ∅ and Â+(t)∪VÂ+(t) = ÂM (t),

then there exists an arm a′ ∈ ÂM (t) − A+ ∪ VA+ . Since
∣∣∣Â+(t)

∣∣∣ = M , at+1 = â⋆
t = a and

according to IMED-MB algorithm,

log(Na(t)) = log
(

N
â⋆

t
(t)
)

= IΦ
â⋆

t

(t) = IΦ
at+1(t) = min

a′′∈ÂM (t)
IΦ

a′′(t) ⩽ IΦ
a′(t) . (78)

Furthermore, we have from the definition of the indexes

IΦ
a′(t) ⩽ Na′(t)Φ(Na′(t)) + log(Na′(t)) , (79)

where a′ /∈ A+ ∪ A. Then, previous Equations (78)-(79) imply

Na(t) ⩽ max
a′ /∈A+∪VA+

F (Na′(t)) , (80)

where F : x>0 7→ exΦ(x)+log(x). Then, we use the upper bounds from Lemma 17 and obtain

Na(t)⩽ max
a′ /∈A+∪VA+

F

((
Φ−1(KL(µa+ε|µ⋆−ε))∧ Ψ−1(log(t))

Φ(Ψ−1(log(t)))

)
∨ Ψ−1(log(t))

KL(µa + ε|µ⋆ − ε) +|Ua(ε)|+1
)

.

D Proofs of Theorem 2

Let us consider functions Φ and Ψ such that 1 ⩽ Φ(log(n)) ⩽ log log(n), for n ⩾ 18, and Ψ(x) ⩾
max {x ; exp(xα)}, for x ⩾ 0 and some fixed constant α > 1. Then, Ψ−1(log(t)) = o

t→∞
(log(t)),

for all U > 0,

max
a′ /∈A+∪VA+

F

((
Φ−1(KL(µa+ε|µ⋆−ε))∧ Ψ−1(log(t))

Φ(Ψ−1(log(t)))

)
∨ Ψ−1(log(t))

KL(µa + ε|µ⋆ − ε) + U

)
= o

t→∞
(log(t)) ,

where F : x⩾0 7→ exΦ(x)+log(x), and Theorem 2 is proven by combining Lemma 18 and Lemma 21.

E Non-reliable current means

In this section, we define and study relevant subsets of time steps for which the current mean
of a specific arm is not reliable. Note that the definitions and the stated properties of these
subsets of time steps are independent from the considered algorithms.

For all arm a ∈ A and for all accuracy ε > 0, let E+
a (f, ε) be the set of times where the current

mean of arm a ε-deviates from above while arm a has more pulls than any function f of the
current pulled arm,

E+
a (f, ε) :=

{
t ∈ J1, T −1K : Na(t) ⩾ f

(
Nat+1(t)

)
, µ̂a(t) ⩾ µa + ε

}
. (81)

We similarly define

E−
a (f, ε) :=

{
t ∈ J1, T −1K : Na(t) ⩾ f

(
Nat+1(t)

)
, µ̂a(t) ⩽ µa − ε

}
. (82)
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We also define
Ea(f, ε) = E+

a (f, ε) ∪ E−
a (f, ε) . (83)

When function f is equal to idendity function, we respectively write E+
a (ε), E−

a (ε), and Ea(ε)
instead of E+

a (f, ε), E−
a (f, ε), and Ea(f, ε).

Definition 2 (KL-log deviation). Let Φ be a positive non-decreasing function. For ε > 0, arm
a∈A shows (Φ, ε−)-KL-log deviation at time step t⩾1 if the following conditions are satisfied

(1) µ̂a(t) ⩽ µa − ε

(2) Na(t) KL(µ̂a(t)|µa−ε)∧Φ(Na(t)) + log(Na(t)) ⩾ log
(
Nat+1(t)

)
.

For all arm a∈A and for all accuracy ε > 0, let K−
a (Φ, ε) be the set of times where arm a shows

(Φ, ε−)-KL-log deviation, that is

K−
a (Φ, ε) :=

{
t ∈ J1, T −1K :

(1) µ̂a(t) ⩽ µa − ε

(2) Na(t) KL(µ̂a(t)|µa−ε)∧Φ(Na(t)) + log(Na(t)) ⩾ log
(
Nat+1(t)

)
}

.

(84)
Let us consider for K > 0,

I(K) =
{

t ⩾ 1 : Nat+1(t) ⩽ 17 ∨ log
(
Nat+1(t)

)
+ 2 log log

(
Nat+1(t)

)

K

}
, (85)

the subset of time steps for which the number of pulls of current pulled arm is relatively small.
Then, it can be shown that

I(K) ⊂
{

t ⩾ 1 : Nat+1(t) ⩽ 18 ∨ 1
K

}
.

We can now resort to concentration arguments in order to control the size of these sets, which
yields the following upper bounds.

Lemma 24 (Bounded subsets of times). Let f be a non-negative increasing function and Φ
be a non-negative non-decreasing function such that 1 ⩽ Φ(log(n)) ⩽ log log(n) for n ⩾ 18.
For ε>0, for a∈A, for K >0,

Eν [|I(K)|] ⩽
(
1 + 18 ∨ K−1) |A| ,

Eν

[∣∣E+
a (f, ε)

∣∣] , Eν

[∣∣E−
a (f, ε)

∣∣] ⩽ 1 +
∑

n⩾1
exp(−f(n)KL(µa−ε|µa)) ,

Eν

[∣∣E+
a (ε)

∣∣] , Eν

[∣∣E−
a (ε)

∣∣] ⩽ 1
1 − e−KL(µa−ε|µa) ,

Eν

[∣∣K−
a (Φ, ε)−E−

a (fa,ε, ε)−Ia(ε)
∣∣]⩽ e1+KL(µa−ε|µa)

KL(µa−ε|µa)
∑

n⩾18

(
1+log2(n)

)
(log(n)+2 log log(n))

n1+KL(µa−ε|µa)/log log(n) <∞ ,

where fa,ε(n) = log(n)+2 log log(n)
KL(µa−ε|µa)

for n ⩾ e and Ia(ε) = I
(
e−1KL(µa−ε|µa)

)
.

Proof. We start by proving the upper bound on Eν [|E−
a (f, ε)|]. The proof of the upper bound

on Eν [|E+
a (f, ε)|] is similar.
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For a ∈ A and n ⩾ 0, we define τa(n) = inf {t ⩾ 0 : Na(t) = n} as the first time step arm a is
pulled n times, with the conventions Na(0) = 0, µ̂a(0) = 0. Then we write

|E−
a (f, ε)| ⩽

∑

t⩾0
I{f(Nat+1 (t))⩽Na(t), µ̂a(t)⩽µa−ε}

⩽
∑

n⩾0

∑

t⩾0
I{Nat+1 (t)=n, f(n)⩽Na(t), µ̂a(t)⩽µa−ε}

=
∑

n⩾0

∑

t⩾0
I{t+1=τat+1 (n+1), f(n)⩽Na(t), µ̂a(t)⩽µa−ε} (since Nat+1(t+1)=Nat+1(t)+1)

=
∑

n⩾0

∑

t⩾0
I{t=τat+1 (n+1)−1, f(n)⩽Na(t), µ̂a(t)⩽µa−ε}.

We note that for n ⩾ 0, since only one arm is pulled at each time step, the τa(n + 1), for a ∈ A,
are all different. Furthermore, if f(n) > 0, Na(t) ⩾ f(n) implies Na(t) ⩾ 1 and t ⩾ 1. The last
upper bound on |E−

a (f, ε)| then implies
∣∣E−

a (f, ε)
∣∣ ⩽ 1 +

∑

n⩾1
I{∃t⩾1, f(n)⩽Na(t), µ̂a(t)⩽µa−ε} (86)

Taking the expectation of Equation (86), it comes

Eν

[∣∣E−
a (f, ε)

∣∣] ⩽ 1 +
∑

n⩾1
Pν




⋃

t⩾1
Na(t)⩾f(n)

µ̂a(t) ⩽ µa − ε


 . (87)

From Proposition 2, previous Equation (87) implies

Eν

[∣∣E−
a (f, ε)

∣∣] ⩽ 1 +
∑

n⩾1
exp(−f(n) KL(µa−ε|µa)) . (88)

We now show the upper bound on Eν [|K−
a (Φ, ε) − E−

a (fa,ε, ε) − Ia(ε)|].

Let t ∈ K−
a (Φ, ε)−E−

a (fa,ε, ε)−Ia(ε). There exists an unique n ⩾ 0 such that t+1 = τat+1(n+1).
In particular, Nat+1(t) = n.
Since t /∈ Ia(ε), we have Nat+1(t) ⩾ 18 and Nat+1(t) ⩾ efa,ε

(
Nat+1(t)

)
, that is, n ⩾ 18 and

n ⩾ e Mn, with Mn = fa,ε(n).
Since t ∈ K−

a (Φ, ε) − E−
a (fa,ε, ε) then µ̂a(t) ⩽ µa − ε, Na(t) KL(µ̂a(t)|µa−ε) ∧ Φ(Na(t)) +

log(Na(t)) ⩾ log
(
Nat+1(t)

)
and Na(t) ⩽ fa,ε

(
Nat+1(t)

)
, that is, µ̂a(t) ⩽ µa − ε,

Na(t) KL(µ̂a(t)|µa−ε)∧Φ(Na(t)) + log(Na(t)) ⩾ log(n) and Na(t) ⩽ Mn = fa,ε(n).

Thus, the following inequality holds
|K−

a (Φ, ε) − E−
a (fa,ε, ε) − Ia(ε)|

⩽
∑

n⩾0

∑

t⩾0
I{n⩾18, n⩾efa(n)}I



t = τat+1 (n + 1) − 1,

µ̂a(t) ⩽ µa − ε,
Na(t) ⩽ Mn,

Na(t) KL
(

µ̂a(t)|µa − ε) ∧ Φ (Na(t)) + log(Na(t)) ⩾ log(n)





,
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which implies

|K−
a (Φ, ε) − E−

a (fa,ε, ε) − Ia(ε)|

⩽
∑

n⩾18
I{n⩾18, n⩾efa(n)}I{ ∃t ⩾ 1, µ̂a(t) ⩽ µa − ε, 1 ⩽ Na(t) ⩽ Mn,

Na(t) KL
(

µ̂a(t)|µa − ε) ∧ Φ (Na(t)) + log(Na(t)) ⩾ log(n).

} (89)

Taking the expectation of Equation (89), it comes

Eν [|K−
a (Φ, ε)−E−

a (fa,ε, ε) − Ia(ε)|]

⩽
∑

n⩾18
n⩾e fa(n)

Pν




⋃

t⩾1
µ̂a(t)⩽µa−ε

1⩽Na(t)⩽Mn

Na(t) KL(µ̂a(t)|µa − ε) ∧ Φ (Na(t)) + log(Na(t)) ⩾ log(n)




.
(90)

From Theorem 1, previous Equation (90) implies

Eν [|K−
a (Φ, ε)−E−

a (fa,ε, ε) − Ia(ε)|]

⩽
∑

n⩾18
n⩾e fa(n)
mn⩽Mn

e (1 + log(Mn/mn) log(n/Mn)) Mn n−1 exp(−mn KL(µa−ε|µa)) ,

where mn = log(n) − log log(n)
Φ(log(n)) and Mn = fa,ε(n) := log(n) + 2 log log(n)

KL(µa−ε|µa) . Since it is assumed

that Φ(x) ⩽ log(x) for x ⩾ 1, then mn ⩾ log(n)/log log(n) − 1 and

Eν [|K−
a (Φ, ε)−E−

a (fa,ε, ε) − Ia(ε)|]

⩽ e1+KL(µa−ε|µa)

KL(µa − ε|µa)
∑

n⩾18

(
1 + log2(n)

)
(log(n) + 2 log log(n))

n
n−KL(µa−ε|µa)/log log(n) ,

where log5(n) n−KL(µa−ε|µa)/log log(n) = exp
(

5 log log(n) − log(n)
log log(n)KL(µa − ε|µa)

)
= o

n→∞
(1).

F Concentration of measurement - Proof of Theorem 1

Proof. Let us consider t ⩾ 1 such that µ̂a(t) < µa − ε and

Na(t) KL(µ̂a|µa−ε)∧Φ(Na(t)) + log(Na(t)) ⩾ log(n) . (91)

This equation declines in broken down into two. Firstly, this implies

Na(t) Φ(Na(t)) + log(Na(t)) ⩾ log(n) , (92)

which implies in particular

Na(t) ⩾ mn := 1 ∧ log(n) − log log(n)
Φ(log(n)) , (93)
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where mn > 0 since it is assumed that n ⩾ 18 > ee and Φ(log(n)) ⩾ 1. Secondly, Equation (91)
implies

Na(t) KL(µ̂a|µa−ε) + log(Na(t)) ⩾ log(n) . (94)

We note that the Kullback divergence coincides with the Bregman divergence in dimension 1
and apply the generalized Pythagorean theorem with convex compact set K = [µ̂a(t) ; µa − ε]

KL(µ̂a(t)|µa) ⩾ KL(µ̂a(t)|µ̃) + KL(µ̃|µa) , (95)

where µ̂a(t) ∈ K and µ̃ ∈ arg minµ∈K KL(µ|µa). Since KL(·|µa) is a decreasing function on K,
then µ̃ = µa − ε and

KL(µ̂a(t)|µa) ⩾ KL(µ̂a(t)|µa−ε) + KL(µa−ε|µa) . (96)

Then, by combining previous Equation (96) and Equation (94), it comes

KL(µ̂a(t)|µa) − KL(µa−ε|µa) ⩾ log(n/Na(t))
Na(t) , (97)

that is,

KL(µ̂a(t)|µa) ⩾ log(n/Na(t))
Na(t) + KL(µa−ε|µa) . (98)

We now resort to peeling by considering the slices Jmnbk ; mnbk+1K for k ∈ J0 ; knK, kn =
⌊log(Mn/mn)/log(b)⌋, b > 1, and apply Proposition 2. In particular, previous Equation (98)
now implies

I{mnbk⩽Na(t)⩽mnbk+1}KL(µ̂a(t)|µa) ⩾ I{mnbk⩽Na(t)⩽mnbk+1}

[
log(n/Mn)

mnbk+1 + KL(µa−ε|µa) ,

]

that is,

I{mnbk⩽Na(t)⩽mnbk+1}KL(µ̂a(t)|µa) ⩾ I{mnbk⩽Na(t)⩽mnbk+1}KL(µ(k)|µa) (99)

where µ̂a(t) ⩽ µ(k) and KL(µ(k)|µa) = log(n/Mn)
mnbk+1 + KL(µa−ε|µa). Proposition 2 now implies

Pν




⋃
t⩾1

µ̂a(t)<µa−ε

mnbk⩽Na(t)⩽mnbk+1

KL(µ̂a(t)|µa) ⩾ log(n/Na(t))
Na(t) + KL(µa−ε|µa)




⩽ I{mn⩽Mn} exp
(

−mnbk

[
log(n/Mn)

mnbk+1 + KL(µa−ε|µa)
])

= I{mn⩽Mn}e− log(n/Mn)/b exp(−mn KL(µa−ε|µa)) .
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Thus we have shown that, for all b > 1,

Pν




⋃
t⩾1

µ̂a(t)<µa−ε
1⩽Na(t)⩽Mn

Na(t) KL(µ̂a(t)|µa−ε)∧Φ(Na(t))+log(Na(t))⩾ log(n)




⩽ Pν




⋃
t⩾1

µ̂a(t)<µa−ε
mn⩽Na(t)⩽Mn

KL(µ̂a(t)|µa) ⩾ log(n/Na(t))
Na(t) + KL(µa−ε|µa)




⩽ I{mn⩽Mn}(1 + kn)e− log(n/Mn)/b exp(−mn KL(µa−ε|µa)) .

⩽ I{mn⩽Mn}(1 + log(Mn/mn)/log(b))e− log(n/Mn)/b exp(−mn KL(µa−ε|µa)) .

We now set b = bn := log(n/Mn)
log(n/Mn) − 1 . Then, since it is assumed that n ⩾ e Mn, we have b > 1.

Furthermore, 1/log(bn) < log(n/Mn), and

I{mn⩽Mn}(1+log(Mn/mn)/log(b))e− log(n)/b

log(b) ⩽ I{mn⩽Mn}e (1 + log(Mn/mn) log(n/Mn)) Mn n−1 .

Thus we have shown that,

Pν




⋃
t⩾1

µ̂a(t)<µa−ε
1⩽Na(t)⩽Mn

Na(t) KL(µ̂a(t)|µa−ε)∧Φ(Na(t))+log(Na(t))⩾ log(n)




⩽ I{mn⩽Mn}e (1 + log(Mn/mn) log(n/Mn)) Mn n−1 exp(−mn KL(µa−ε|µa)) .

Proposition 2 (Time-uniform concentration). For all arm a∈A, for x<µa, m⩾1, we have

Pν




⋃

t⩾1
Na(t)⩾m

µ̂a(t) < x


 ⩽ exp(−m KL(x|µa)) .
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Abstract

In model-based reinforcement learning, simulated experiences from the learned
model are often treated as equivalent to experience from the real environment.
However, when the model is inaccurate, it can catastrophically interfere with policy
learning. Alternatively, the agent might learn about the model’s accuracy and se-
lectively use it only when it can provide reliable predictions. We empirically explore
model uncertainty measures for selective planning and show that best results require
distribution insensitive inference to estimate the uncertainty over model-based up-
dates. To that end, we propose and evaluate bounding-box inference, which operates
on bounding-boxes around sets of possible states and other quantities. We find that
bounding-box inference can reliably support effective selective planning.

1 Introduction

A model-based reinforcement learning (MBRL) agent learns a predictive model of its environment,
and uses it to inform its decision-making process. Recent successful applications of MBRL ap-
proaches such as MuZero (Schrittwieser et al., 2020) and Dreamer (Okada & Taniguchi, 2021; 2022;
Wu et al., 2023) illustrate the promise of model-based learning as a path toward more capable and
more sample-efficient agents. That said, the promise is not yet fully realized. MBRL approaches
still tend to be brittle and highly sensitive to model errors.

Acknowledging this, some recent approaches have modified the objectives of model learning to better
align with the needs of planning, for instance by focusing on multi-step accuracy (e.g. Oh et al.,
2015; Talvitie, 2017) or on accurate rewards and/or state-action values (e.g. Grimm et al., 2020).
Ultimately, however, these approaches still rely heavily on the model’s accuracy, even if the definition
of “accurate” is somewhat altered. We must confront the fact that a practical, resource-limited agent
cannot always be relied upon to make sufficiently accurate predictions to support planning.

We focus on selective planning, where the agent estimates the model’s input-conditional accuracy
and selectively uses the model when it is accurate. In this paper we empirically explore poten-
tial uncertainty measures for selective planning and, based on the findings, introduce bounding-box
inference, a novel method for measuring uncertainty over model-based updates to the value function.

2 Problem Setting and Background

In this section we formalize the problem-setting and algorithms that we explore in our experiments.
We consider Markov decision processes (MDP). The environment’s initial state s0 is drawn from a

∗Currently at Tufts University
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distribution µ. At each step t, the environment is in a state st. The agent selects an action at which
causes the environment to transition to a new state st+1 sampled from the distribution given by
the transition function: p(s′, s, a) = Pr(St+1 = s′ | St = s, At = a). The environment also emits a
reward rt+1 given by the reward function, r(st, at). Both p and r are unknown to the agent.

A policy π specifies a way to behave in the MDP. Let π(a | s) be the probability that π chooses
action a in state s. Given a policy π, the state-action value of an action a at state s, qπ(s, a) is the
expected discounted sum of rewards obtained by taking action a in state s and executing π forever
after: qπ(st, at) = E

[∑∞
i=1 γi−1Rt+i | St = st, At = at

]
, where 0 ≤ γ ≤ 1 is the discount factor and

the expectation is over randomness from both the transition and policy distributions. The agent’s
goal is to find a policy that maximizes the state value vπ(s) = E[qπ(s, A)] in all states s, though we
assume that the agent’s limitations may prevent it from learning such an optimal policy.

In MBRL we typically seek to learn a model (p̂, r̂) that approximates the environment. Alternatively,
it is also common to learn a deterministic model, most commonly an expectation model that, for a
given state and action, provides an estimate of the expected next state and reward. For a determin-
istic model, we will slightly overload notation and let p̂(st, at) = st+1 be the model’s predicted next
state. In this paper we assume that the agent is unable to learn a perfectly accurate model.

2.1 Sources of Model Error

Multiple factors can cause inaccurate predictions, which can subsequently cause planning failure.

Aleatoric uncertainty refers to uncertainty over outcomes due to stochasticity in the environment.
In the presence of aleatoric uncertainty, even perfectly accurate expectation models may cause
planning failure unless the value function is linear in the state features (Wan et al., 2019). So, for
some applications, models that represent probability distributions may be necessary.

Epistemic uncertainty refers to uncertainty over the model parameters themselves, due to limited
training. It is common to account for epistemic uncertainty by taking a Bayesian perspective. For
instance PILCO (Deisenroth & Rasmussen, 2011) uses a Gaussian process model which supports
Bayesian inference about the distribution over future rewards considering both aleatoric and epis-
temic uncertainty. Deep PILCO (Gal et al., 2016) adapts PILCO to use neural networks, using
dropout and Monte Carlo methods for approximate inference. Other methods train model ensem-
bles to account for the variety of reasonable predictions based on the training data (e.g. Osband
et al., 2018). Epistemic uncertainty is reduced by training on additional data; with a sufficiently
large training set a single “best” set of model parameters typically emerges.

Model inadequacy refers to the potential inaccuracy of the “best” set of model parameters, which
may be a result of structural assumptions encoded in the model (e.g. PILCO imposed conditional
independence over predicted state variables, given the current state) or resource limitations (e.g. a
neural network may have too few nodes to represent the underlying function). In this case, even
with deterministic dynamics, even with sufficient training to eliminate epistemic uncertainty, the
best fitting model may generate inaccurate predictions that cause planning failure.

Model inadequacy can only be reduced by increasing the expressiveness of the model, which may not
always be a practical option. In this paper we focus on mitigating the impact of model inadequacy
by selectively using the model in regions of the state space where it can make accurate predictions.

2.2 Model-Based Value Expansion

In model-based value expansion (MVE) (Feinberg et al., 2018), the agent gathers data in the envi-
ronment using a behavior policy πb (which may be fixed or changing) while estimating the optimal
state-action values. At time t, the agent observes state st, selects action at using πb, and observes
the next state st+1 and reward rt+1. MVE uses the model to calculate multi-step temporal difference
errors (Sutton, 1988), or TD errors. We define the greedy policy πg to be the policy that, at every
state s, takes the action arg maxa q̂(s, a) with probability one. Starting from st+1, MVE uses πg and
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the learned model (p̂, r̂) to extend the agent’s experience into the future, sampling the sequence:

st, at, rt+1, st+1, at+1, r̂t+2, ŝt+2, at+2, r̂t+3, ŝt+3, . . . , r̂t+h, ŝt+h,

where each r̂ and ŝ is generated by the model and all actions from time t + 1 on are generated by
πg. This simulated sequence can then be used to calculate the h-step TD target:

ρ̂h(st, at, rt+1, st+1) = rt+1 +
h∑

i=2
γi−1r̂t+i + γh max

a
q̂(ŝt+h, a).

The MVE algorithm calculates TD targets at multiple planning horizons up to some maximum
horizon h and moves the current state-action value estimate for st, at toward the average of the
targets, which we can more generally consider a weighted average:

q̂(st, at) += α

(
1

∑h
i=1 wi

(
w1ρ1(st, at, rt+1, st+1) +

h∑

i=2
wiρ̂i(st, at, rt+1, st+1)

)
− q̂(st, at)

)
.

where α is a stepsize metaparameter. When h = 1, this update is equivalent to Q-learning.

2.3 Selective Model-Based Value Expansion

The MVE algorithm is particularly amenable to selective planning by adjusting the weights according
to the reliability of each TD target. For example, the STEVE algorithm (Buckman et al., 2018)
learns an ensemble of models and value functions and bases the MVE weights on the variance of the
ensemble of TD targets. If the models disagree, the estimated target should not be trusted.

Abbas et al. (2020) argue that ensemble variance primarily measures epistemic uncertainty and show
that, with sufficient training, an ensemble of models may agree on the “best” model, which may
still be inaccurate. They argue that model inadequacy may be detected using methods for learning
stochastic models in the face of aleatoric uncertainty; model error will be interpreted by the training
process as noise and manifest as higher variance in the model’s predictions. They train a single
model with a Gaussian approximation of the transition distribution and base the weights on the
predicted variance, showing that this does indeed mitigate the impact of model inadequacy.

In this paper we follow Abbas et al. (2020) in using the spread of the model’s predictions to detect
model inadequacy but follow Buckman et al. (2018) in measuring uncertainty over TD targets
rather than states. We will calculate an uncertainty ui for each TD target ρ̂i, with u1 = 0. Then
MVE weights will be determined by a softmin distribution: wi = e

−ui
τ /

∑
j e

−uj
τ , where τ is the

temperature. When τ → ∞, the update approaches MVE, which equally weights all targets. If
ui > 0 for i > 1, then as τ → 0 the update approaches Q-learning.

3 Experiments with Hand-Coded Models

In this section we introduce a simple illustrative problem designed to distill some issues related to
planning with an inadequate model and experiment with idealized hand-coded models. In Section
4 we experiment with learned models and in Section 5 we consider a less contrived problem1.

3.1 The Go-Right Problem

The Go-Right problem is illustrated in Figure 1 (left). At a high level, the agent begins at the far
left of a hallway and must take 10 steps to the other end to receive a prize. Moving right generally
gives -1 reward (moving left gives 0 reward). The discount factor γ = 0.9.

The agent also observes a status indicator light, which switches between 3 possible intensities in a
deterministic but 2nd-order Markov pattern. If the agent enters the prize location at the same time

1Source code for all experiments can be found at https://github.com/LACE-Lab/bounding-box
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Figure 1: Left: an illustration of the Go-Right domain. Right: Results of unselective MVE planning
in Go-Right. The curves are smoothed so that each point is the average of the previous 100 episode
scores. The shaded regions represent the (smoothed) standard error at each point.

that the status indicator reaches full intensity, the agent wins the prize. Specifically, until the agent
leaves the prize location, moving right gives the agent 3 reward, rather than -1.

The two prize indicator lights tell the agent whether it has won the prize. They are both off when
the agent is not in the prize location and both on when the agent has won the prize. When the
agent is in the prize location but has not won the prize, the lights flash in a Markov pattern.

The agent observes continuous variables representing its position and the intensities of the indicator
lights. At initialization, each variable is given a random offset, which remains until the problem
is reset. As such, though the underlying dynamics are discrete, the data received by the agent is
continuous-valued. A more detailed description of the dynamics can be found in Appendix A.

3.2 Experimental Setup

We approximate an infinite horizon by exposing the agent to Go-Right for 500 steps at a time before
truncating the interaction and resetting. The agent does not receive a termination signal, and does
not perceive the reset as a transition. We use a uniform-random behavior policy to collect training
data. After each 500-step interaction, we evaluate the agent’s greedy policy (also for 500 steps).

The q̂ function is a lookup table over the (non-Markov) underlying discrete dynamics. Unless
otherwise specified, we used h = 5. For each agent we performed a joint sweep over α and τ (for
details, see Appendix B). We then ran 50 independent trials with the selected metaparameter values.

3.3 Unselective Planning Results

We begin by studying MVE planning using idealized hand-coded models that represent reasonable
model limitations. The following discussion refers to results shown in Figure 1 (right), which shows
the discounted sum of rewards obtained by the learned greedy policy, averaged over 50 trials.

First note that, despite the partially observable environment, Q-learning is able to learn a good policy
that goes right and then repeatedly enters the prize location until the agent wins the prize. The agent
labeled “Perfect” performs unselective MVE using a perfectly accurate model that accounts for the
2nd-order Markov dynamics. We see that planning can significantly improve learning performance
and that access to the full state allows the agent to minimize the number of costly right actions.

3.3.1 Expectation Models

The agents labeled “Expect” perform unselective MVE using a hand-coded, Markov expectation
model that gives the exact least squares estimate of the next state. Being Markov, the model cannot
accurately predict the deterministic next state. Specifically, when the agent enters the prize location,
the model predicts prize indicator values of 1

3 , which is not a value ever observed in the environment.
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Figure 2: Selective planning with hand-coded models in Go-Right (left) and Go-Right-10 (right).

As it cannot be informed by data, the value of q̂ given this impossible state is arbitrary, depending
on the biases of the function approximator. Our lookup table considers intensities below 0.5 to be
“off” so the model effectively never predicts that the agent will receive the prize.

When h = 5, this issue causes the agent to never learn to go right. One common strategy for
mitigating model error is to shorten planning rollouts (e.g. Jiang et al., 2015; Janner et al., 2019)
and h = 2 planning does perform slightly better. However, h = 2 planning still causes policy learning
to fail, despite using only a single simulated step from the model.

3.3.2 Sampling Models

The agents labeled “Sample” use a stochastic Markov model of the environment. Given a state
and action, the model provides independent samples of the exact maximum-likelihood distribution
over each variable of the next state. Note that Go-Right satisfies the independence assumption;
in a deterministic system all variables are independent. However, the model is inaccurate so the
maximum-likelihood distributions are not deterministic. When the agent enters the prize location,
the model assigns a probability of 1

3 to each prize indicator light turning on and therefore only
probability 1

9 to both lights turning on and the agent winning the prize.

Because the sampling model assigns a low probability to the agent receiving the prize, these agents
do not learn good policies. As above, we see only slightly better performance when h = 2.

3.4 One-Step Predicted Variance

We now turn to Figure 2 (left), which shows results of selective planning. The agent labeled
“1SPV” uses the uncertainty measure proposed by Abbas et al. (2020), which we call one-step
predicted variance (1SPV). We use the same hand-coded expectation model as in Section 3.3.1,
but the model also outputs the exact maximum-likelihood, input-conditional variance σ̂2

d(st, at)
for each dimension d of the next state st+1 as well as the reward σ̂2

r(st, at). Following Ab-
bas et al. (2020), the uncertainty associated with the TD target at horizon i > 1 is then
ui =

∑i−1
j=0

(∑
d σ̂2

d(st+j , at+j) + σ̂2
r(st+j , at+j)

)2. Summing the variances over the state dimen-
sions corresponds to a conditional independence assumption over the variables of the next state.
As far as we are aware, summing the variances over rollout steps has no theoretical basis, but it
heuristically encodes the intuition that early uncertainty should make later steps uncertain as well.

In Go-Right there is a persistent source of state uncertainty; the status indicator has high predicted
variance at every step. However, in most states the status indicator is largely irrelevant to q-values,
so the 1SPV measure is too conservative. With the best performing temperature, the performance of
the learned policy is essentially identical to that of Q-learning. This is preferable to the catastrophic
failure of unselective planning in Section 3.3.1, but the model is underutilized.

2Abbas et al. (2020) assumed that the reward function was known so did not include the reward term.
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3.5 Monte-Carlo Target Variance

The primary issues with 1SPV that we have identified are that state uncertainty is not always a
good proxy for TD target uncertainty and that the method for computing multi-step uncertainty is
not theoretically motivated. We can address both of these via principled inference of the model’s
uncertainty over TD targets rather than individual transitions.

As in Deep PILCO (Gal et al., 2016), the agents marked “MCTV” in Figure 2 (left) use the Monte
Carlo method as a general-purpose inference method to approximate the model’s uncertainty over
multistep TD targets. They use the same sampling model as in Section 3.3.2, but for each planning
step they sample k independent rollouts (each beginning with the same initial transition from the
environment). This produces k TD targets at each horizon i: ρ̂1

i , ρ̂2
i , . . . , ρ̂k

i . The MVE update at
horizon i uses the average of the sampled TD targets: ρ̂i = 1

k

∑k
j=1 ρ̂j

i . The uncertainty ui associated
with the TD target ρ̂i is the sample variance of the TD targets: ui = 1

k−1
∑k

j=1(ρ̂j
i − ρ̂i)2.

We show results with k = 10 and k = 40. We observe that selective planning that infers the impact
of the model’s uncertainty on TD target uncertainty may allow the model to be used effectively,
despite persistent state error. The higher sample size predictably performs better.

3.5.1 Limitations of Target Variance

Though intuitive, predicted TD target variance is not inherently the ideal signal for selective plan-
ning. Remember that there is no stochasticity in Go-Right. The model’s predicted target variance
is a symptom of underfitting and not an estimate of any underlying probabilistic quantity. The vari-
ance estimate depends upon the model’s structural biases and the observed frequency of transitions,
which in turn depends upon the model’s representation of the state and the behavior policy.

As an illustration of this issue, we run the same experiment but in a version of Go-Right that has 10
prize indicators instead of 2, which we call Go-Right-10. Though nothing about the underlying task
has changed, the sampling model will now assign probability 1

310 = 1
59 049 to the agent receiving the

prize when it enters the prize location. Not only does this cause the model to further devalue going
right, it also dramatically reduces the model’s variance over TD targets that involve this transition.

The results are shown in Figure 2 (right). Both MCTV agents now perform worse than Q-learning.
We expect that performance would improve with more accurate inference, for instance via more
Monte Carlo samples, but note that we can further alter this problem to reduce the model’s target
variance arbitrarily while the model inadequacy remains the same. As such, even if exact inference
were available, the magnitude of the predicted target variance would not be a reliable indicator of
model inadequacy. Any non-zero TD target variance could signal catastrophic planning failures.

3.6 Monte Carlo Target Range

In order to reduce sensitivity to the model’s learned probability distribution we explore an alternative
measure of the spread of TD targets: the range, i.e. the difference between the maximum and
minimum possible TD targets3. If the range is small, then all possible model-generated TD targets
are similar. If the range is large, then the model is unsure about the TD target.

The agents labeled “MCTR” in Figure 2 use the same Monte Carlo procedure as in Section 3.5
but instead of calculating the variance of the TD targets, the uncertainty for horizon i is ui =
maxj ρ̂j

i −minj ρ̂j
i . In Go-Right we see that at both k = 40 and k = 10 the MCTR agents outperform

the MCTV agents. In Go-Right-10, MCTR with k = 40 outperforms MCTV, suggesting that target
range is more robust to the change in probability distribution. That said, it still performs worse
than Q-learning because in some rollouts at least one of the extreme values is not sampled. As such,
even the MCTR agent is somewhat sensitive to the model’s predicted probability distribution.

3If the model’s distribution over TD targets is not bounded, one could instead consider measuring a quantile
slightly below 1 in place of the max and a quantile slightly above 0 in place of the min.
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For completeness, we also include a one-step prediction range (1SPR) agent, which is the same as
1SPV except it sums the range of each state variable rather than the variance. Unsurprisingly, it
performs essentially the same as the 1SPV agent.

3.7 Bounding-Box Inference

To further reduce sensitivity to the predicted distribution, we introduce a light-weight alternative
inference method that infers ranges over TD targets from bounds over one-step predictions. We hand-
coded a Markov model that operates on a bounding-box over states. Let s be a vector of minimum
values for each dimension, s contain maximum values, and s be the corresponding bounding-box.
The model also operates on a set of actions, which, for notational consistency, we represent with a.

The hand-coded model takes an input bounding-box and outputs the exact bounds for each dimen-
sion of the next states and reward: p(st, at) = st+1 and r(st, at) = rt+1. We also modify q̂ to operate
on bounding-boxes: let q(st, at) = sups∈s

t
,a∈a

t
q̂(s, a) and q(st, at) = infs∈st,a∈at

q̂(s, a)

We now describe how to select a set of greedy actions for a bounding-box of states. We infer an
upper bound on the value of behaving greedily: v(st) = maxa q(st, a), as this is the maximum
possible value that can be obtained by taking one of the included actions in one of the included
states. Similarly, the lower bound v(st) = maxa q(st, a), because in all included states there is an
action that obtains at least this much value. For a bounding-box st we let the greedy action set
at = {a | q(st, a) ≥ v(st)}, the actions whose value bounds overlap with the greedy value bounds;
these are actions that could potentially be selected greedily within the given state bounding-box.

Given these components, selective MVE at time t can now perform a bounding-box rollout, starting
with st+1 = st+1 = st+1, which is generated by the environment. This produces the sequence

st, at, rt+1, st+1, at+1, rt+2, st+2, at+2, rt+3, st+3, . . . , rt+h, st+h.

We can use these quantities to infer bounds over the TD target at horizon i:

ρi(st, at, rt+1, st+1) = rt+1 +
i∑

i=2
γi−1rt+i + γt+iv(st+i),

and the symmetric calculation for ρ
i
. We let the uncertainty at horizon i be the range ui = ρi − ρ

i
.

Note that the inferred bounds may be loose. For instance, we apply the relaxing assumption that
all state variables and the reward can independently achieve their extreme values. In the real
environment, these variables may have relationships that prevent this. That said, the inferred target
range does represent a conservative upper bound for the true target range. Overly conservative
uncertainty estimates may, at worst, unnecessarily limit model usage. When the model is confidently
incorrect, it may interfere with policy learning. Thus, we err on the side of conservative bounds.

The agent labeled “BBI” in Figure 2 uses the expectation model described in Section 3.3.1 to generate
TD targets and uses a BBI rollout to generate uncertainties. In Go-Right it performs similarly to
the MCTR agent, indicating that the inferred target ranges are roughly as informative as the Monte
Carlo estimates. In Go-Right-10 we see, as expected, that BBI is unaffected by the change in the
model’s probability distributions. To ensure that the BBI agent is not simply overestimating the
value of going right, we also ran the same experiments with a lower discount factor γ = 0.85, for
which the optimal policy is to always go left. The results in Appendix C show that all of the agents
correctly learn a policy that never goes right. Overall, we observe that measures of spread that are
less sensitive to the model’s predicted distribution may be more robust for selective planning.

4 Bounding-Box Inference in Learned Models

In this section we describe simple procedures for performing bounding-box inference with founda-
tional model classes. For simplicity, we limit our discussion to models with a single dimensional
output; the ideas here can be straightforwardly extended to models with multi-dimensional output.
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We also perform experiments similar to the above, but we learn models along with the policy. In
all cases, the model was tasked with predicting the change in the state, rather than the value of
the next state. Furthermore, to avoid any concerns about learning interference, we learn a separate
predictive model for each state dimension and the reward. For each experiment we performed a
parameter sweep over α and τ as before. We did not formally sweep the metaparameters of the
model-learning algorithms; we do not aim to learn the best possible model, but rather to make the
most of the model that is learned. We provide details about model-learning in Appendix D.

4.1 Types of Bounding-Box Queries

We distinguish between two related but distinct bounding-box queries that require slightly different
treatment. An output bound query asks for bounds over the function’s output, reflecting only uncer-
tainty arising from the uncertain input. For example, in the BBI procedure we used output bound
queries on q̂, computing bounds on the estimated values of the possible states and actions.

In contrast, an outcome bound query asks for bounds over the possible real outcomes from the
environment, incorporating the model’s uncertainty. In the BBI procedure we used outcome bound
queries for the state and reward predictions. The predicted bounding-box reflects both the set of
possible inputs and the model’s uncertainty over, e.g., the next value of the status indicator.

4.2 Linear Models

A linear model approximates the outcome as a linear combination of features of the input. Let
features ϕ1, ϕ2, . . . , ϕn be functions of the input such that ϕi(x) ∈ R. A linear model has a set of
weights θ1, θ2, . . . , θn ∈ R and the model’s prediction f̂(x) =

∑n
i=1 θiϕi(x).

4.2.1 Output Bound Queries

For each feature ϕi, let ϕi(x) = supx∈x ϕi(x) and ϕ
i
(x) = infx∈x ϕi(x). To compute bounds on the

output, we imagine that all features can independently reach their extreme values. Then it is straight-
forward to upper bound the output of f̂ : f(x) =

∑n
i=1 max(θi, 0)ϕi(x)+

∑n
i=1 min(θi, 0)ϕ

i
(x). That

is, we calculate the output assuming that features with positive weight have their maximum values
and those with negative weight have their minimum values. We can calculate f(x) symmetrically.

It may be possible to obtain tighter bounds with some structural knowledge. For instance, if the
features ϕi, ϕi+1, . . . , ϕj are known to constitute a one-hot encoding, where one feature takes the value
1 and the others take the value 0, then their maximum contribution to the output is maxl∈{i,...,j} θl.

4.2.2 Outcome Bound Queries

To account for uncertainty over the true outcome, we must maintain additional statistics that mea-
sure the spread of observed outcomes. For example, we could maintain the maximum and minimum
residuals ever observed, z and z. Then, given an input bound x, we could estimate an upper bound
on the outcome as f(x) + z. Alternatively, we could estimate input-conditional estimates of spread,
for instance by binning the input space and maintaining the extreme residuals in each bin.

4.3 Regression Trees

A regression tree (Breiman et al., 1984) defines a piece-wise function as a tree. For simplicity, we
assume a binary tree with constant leaf models; each leaf node l predicts the average observed
outcome. Each internal node n is associated with a binary feature ϕn. The prediction of node n is
recursively either the prediction of the left or right child, depending on the value of ϕn(x), formally
f̂n(x) = (1 − ϕn(x))f̂n.left(x) + ϕn(x)f̂n.right(x). The overall prediction f̂(x) = f̂root(x).

We assume that each leaf model can support output bound and outcome bound queries (certainly
true of constant models). We can leverage the recursive structure of the tree to compute either type
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Regression Trees: Go-Right
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Figure 3: Selective planning with decision tree models in Go-Right (left) and Go-Right-10 (right).

of bound query for the tree as a whole. Given an input bound x, at node n either ϕ
n
(x) = ϕn(x),

in which case we can recur to the appropriate child as above, or ϕ
n
(x) ̸= ϕn(x), in which case

the predicted bounds must account for the predictions of both children. In the latter case, we let
fn(x) = max(fn.left(x), fn.right(x)) and symmetrically f

n
(x) = min(f

n.left
(x), f

n.right
(x)).

4.3.1 Experiments

We learned models using the fast incremental regression tree (FIRT) algorithm (Ikonomovska et al.,
2011), which maintains statistics in each leaf and splits the leaf by adding a feature when confident
that doing so would reduce the predicted variance of the outcome. Leafs used constant models,
predicting the sample mean ŷ of observed outcomes. As outcome bounds, leaves stored the maximum
and minimum observed outcome. For sampling, leaves stored the sample variance σ̂2 and sampled
from N (ŷ, σ̂2). As is typical, features were thresholds over input dimensions. In each leaf, the
candidate thresholds for splitting were the observed values of each input dimension.

Figure 3 (left) shows results in Go-Right. The agent marked “Sufficient” performs unselective MVE
with a learned model that has access to the full 2nd-order Markov state, and is therefore in principle
capable of learning a perfectly accurate model. This agent eventually performs similarly to the
perfect model agent. All selective planning methods outperform Q-learning, with MCTV performing
slightly better than BBI and MCTR. BBI and MCTR perform nearly identically, suggesting that
BBI produces ranges similar to the Monte Carlo estimates.

Figure 3 (right) shows results in Go-Right-10. Even the more expressive “Sufficient” model fails
catastrophically, as do both Monte Carlo methods. The BBI agent still outperforms Q-learning.

4.4 Feed-Forward Neural Networks

A feed-forward neural network has multiple layers of units. A unit uij in layer i has a linear model
ĝij and a monotonic activation function cij . Given input x, the output of uij is f̂ij(x) = cij(ĝij(x)).
The input to the network is given as input to units in the first layer. Each subsequent layer is given
the output of the previous layer as input. The output of the final layer is the output of the network.

We can iteratively perform output bound queries on the linear models in each row. Because cij is
monotonic, given an input bound x, we can let f ij(x) = cij(gij(x)) and f

ij
(x) = cij(g

ij
(x)).

For outcome bound queries, we could maintain the extreme residuals as proposed for linear mod-
els. Alternatively, we can approximate the input-conditional maximum and minimum values with
quantile regression via the pinball loss Koenker & Bassett Jr (1978), which can be used to train the
network to predict a high and low quantile. If the network outputs quantiles χ0.95 and χ0.05, then,
given an input range x, we can approximate f(x) ≈ χ0.95(x)) and f(x) ≈ χ0.05(x)), the maximum
possible value of the high quantile and the minimum possible value of the low quantile, respectively.
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Figure 4: Selective planning with neural network models in Go-Right (left) and Go-Right-10 (right).

4.4.1 Experiments

We trained 2-layer feed-forward neural networks using the ADAM optimizer (Kingma & Ba, 2015).
The first layer had 64 units with ReLU activation (Hahnloser et al., 2000). The output layer used
linear activation. For unselective planning, the model predicted the expected outcome. For BBI,
the network additionally predicted χ0.05 and χ0.95. For sampling we trained an implicit quantile
network (IQN) (Dabney et al., 2018), which uses quantile regression to learn arbitrary distributions.

Figure 4 shows results in Go-Right and Go-Right-10. In both cases the “Sufficient” model agent
under-performs. BBI reliably outperforms Q-learning, but, in Go-Right-10, performs notably worse
than in prior experiments. This suggests that the BBI uncertainties from the neural network may be
more conservative than those from the hand-coded or regression tree models, resulting in less model
usage. In Appendix E we offer further discussion and empirical support of this hypothesis. BBI for
neural networks may be prone to overly conservative planning since potentially loose bounds from
one layer are given as input to the next layer, compounding any overestimates of uncertainty.

Monte Carlo methods perform better than predicted in Go-Right-10. In Appendix E, however we
argue that the results are consistent with our hypothesis that Monte Carlo inference is sensitive to
the predicted distribution. In short, the particular errors in the neural network model create more
variance in TD targets than in prior experiments, which is easily detected by Monte Carlo sampling.

Overall, from these results we observe that, given sufficient samples (relative to the model’s predicted
variance), Monte Carlo inference can provide more precise uncertainty estimates than BBI, which
may suffer from overestimation of uncertainty.

5 Experiments in Acrobot

As a less contrived testbed, we consider the classic Acrobot control problem (Spong & Vidyasagar,
1989; DeJong & Spong, 1994), which Abbas et al. (2020) also explored. The agent controls the
torque on one joint of a robot arm while the second is free swinging. The agent tries to swing the
tip of the arm up to the level of the upper joint, receiving -1 reward until it does so. The discount
factor γ = 1. We also introduce a variant called Distractrobot that has a distractor dimension
sampled uniformly every step from [−4π, 4π], the range of the upper joint’s angular velocity.

5.1 Experimental Setup

In these experiments the agent will behave greedily, so planning will impact the agent’s behavior
(and therefore its own training data). This significantly complicates the interactions between the
model and value learning. We truncate episodes after 500 episodes, if not terminated.

The state-action value function q̂ is linear over a tile coding feature set described by Sutton (1995),
which we detail in Appendix F. In a tile coding each tiling is a one-hot encoding, a fact that we
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Figure 5: Planning with decision tree models in Acrobot (left) and Distractrobot (right). As
above, curves are smoothed over 100 episodes and the shaded region represents standard error.

exploit in output range queries on q̂. We performed joint sweeps over both α and τ (details in
Appendix B) and ran 50 independent trials of each method with the selected metaparameter values.

To aid legibility of the results, we plot the difference between the average total reward of each method
and that of the Q-learning agent. Positive values mean an agent is outperforming Q-learning. We
provide more traditional learning curves in Appendix G.

5.2 Results

Figure 5 shows results in Acrobot and Distractrobot using regression trees learned using the FIRT
algorithm. In order to limit the models’ accuracy, we set a maximum of 100 leaves per tree. Both
unselective planning agents (“Expect” and “Sample”) perform notably worse than Q-learning; their
curves largely fall below the limits of these plots. All of the selective planning methods successfully
mitigate the impact of the model’s inaccuracies. In Acrobot, the 1SPV agent is the clear outlier;
it outperforms all of the other agents, though it is unclear why. When additional state uncertainty
is added in Distractrobot, it performs more modestly. In Acrobot, the other agents perform
comparably to Q-learning. In Distractrobot, selective planning methods outperform Q-learning,
especially early in training, with MCTV slightly outperforming the rest early on.

Figure 6 shows results using 2-layer feed-forward neural networks. The models have limited capacity
with only 8 units in the first layer. As before, both unselective agents under-perform. The MCTV
agent learns quickly in Acrobot, but the MCTR agent under-performs; perhaps the extreme values
have low probability in the IQN model. The remaining selective planning methods perform compa-
rably to Q-learning. In Distractrobot, the selective planning methods all learn more quickly than
Q-learning, but the range-based methods perform notably better than the variance-based methods.

On the whole, the results are unsurprisingly not as clear as in Go-Right. In 3 out of the 4 ex-
periments, inference-based and/or range-based methods learn quickest, which is consistent with our
hypotheses. Also, once again BBI consistently avoids planning failure and, for the most part, enables
planning benefits comparable to Monte Carlo inference.

6 Summary of Conclusions

Using hand-coded models, we observed that uncertainty over the model’s one-step predictions (1SPV
and 1SPR) can become overly conservative when state uncertainty does not lead to TD target
uncertainty. We conclude that, for best selective planning results, the model should support inference
of uncertainty over learning updates (e.g. TD targets).

We also observed, in both hand-coded and learned models, that Monte Carlo inference (MCTV
and MCTR) can be effective, but it is sensitive to the model’s predicted probability distribution,
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Figure 6: Planning with neural network models in Acrobot (left) and Distractrobot (right).

which may be influenced by the model’s structural assumptions and even the behavior policy. With
insufficient samples relative to that distribution, underestimated uncertainty may allow model error
to interfere with learning. Furthermore, we argued that even exact target variance may not be
a reliable inadequacy measure, as an arbitrarily small target variance can still indicate significant
model inadequacy. We conclude that, for robust selective planning results, distribution insensitive
uncertainty measures (such as the range) are preferable.

Finally, guided by these insights, we introduced bounding-box inference to obtain distribution-
insensitive bounds over the TD targets. BBI’s main drawback is overestimation of uncertainty (and
thus lower model usage). As such, it can be outperformed by methods that provide more accurate
inference (such as MCTV and MCTR with sufficient samples). That said, BBI was also consistently
robust to irrelevant state error, which significantly impacted one-step uncertainty methods, and
low-variance predicted distributions, which significantly impacted Monte Carlo methods.

Overall, we conclude that models that support distribution-insensitive uncertainty inference may be
particularly desirable for selective planning, and that BBI is a promising step in that direction.

7 Future Directions

Selective MVE with bounding-box inference is an encouraging step toward MBRL agents that are
less brittle in the face of model inaccuracy. Here we briefly describe some particularly important
avenues for building upon this approach.

MVE is particularly amenable to selective planning but there are other important forms of planning.
For instance, it is common to perform one-step value/policy updates along a model rollout. How
should we perform updates on the values of simulated states, which may themselves be uncertain?

Bounding-box inference is appealing in its simplicity but the inferred bounds may be loose. Are
there more complex representations of uncertainty that could support efficient, sound inference that
accounts for some relationships between state variables and thus provides tighter bounds?

We rely on learned outcome bound estimates, but these may be based on insufficient data or poor
generalization. We have focused on model inadequacy, but it will be important to integrate methods
for detecting and mitigating epistemic uncertainty in the model and the uncertainty estimates.

TD target error is closely related to the quality of planning updates, but it is still a proxy measure.
Some target error can be benign (for instance, causing a somewhat bigger update in the correct
direction). How can we even more directly distinguish between helpful and harmful updates?
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A Go-Right Details

The agent’s underlying position in the hallway is represented as an integer in {0, 1, . . . , 10}. The
agent observes its position with a uniformly randomly selected offset in [−0.25, 0.25]. The offset is
sampled every time Go-Right is reset, and otherwise remains constant. The agent has two actions,
left and right, which decrease and increase its position, respectively. Taking the left action in
position 0 or the right action in position 10 results in no change in position.

The status indicator light has 3 discrete underlying values representing it’s intensity: {0, 5, 10}. The
agent observes the light’s intensity with an offset in [−1.25, 1.25]. The light’s intensity at each step
follows a 2nd-order Markov pattern with the following transition table:

t − 1 t t + 1
0 0 5
0 5 0
0 10 5
5 0 10
5 5 10
5 10 10
10 0 0
10 5 5
10 10 0
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This pattern ensures that all intensities appear at equal frequencies and furthermore that each
intensity is followed by each other intensity with equal frequency.

The prize indicator lights have 2 discrete underlying values representing their intensities: {0, 1}.
The agent observes each light’s intensity with independently sampled offsets in [−0.25, 0.25]. When
the agent is not in position 10, all prize indicators have intensity 0. If the agent is in position 9 at
time t − 1 and at time t in position 10 with the status indicator at intensity 10, all prize indicators
transition to intensity 1 and remain at that value as long as the agent remains in position 10. When
the agent enters position 10 with the status indicator at intensity 0 or 5, the prize indicators follow
a pattern while the agent remains in position 10: all at intensity 0, only the left-most at intensity 1,
only the next left-most at intensity 1, and so on until the right-most is at intensity 1 and then they
all return to intensity 0 to repeat the pattern. This pattern ensures that the prize indicator lights
are not fully identical in their behavior and must thus all be modeled. By default Go-Right has 2
prize indicators, but Go-Right-10 has 10 prize indicators.

Taking the left action results in 0 reward. When the agent is in position 10 with all prize indicators
at intensity 1, taking the right action results in 3 reward. In all other circumstances, taking the
right action incurs -1 reward. This ensures that going right is optimal but that the agent will
initially learn to go left instead.

B Parameter Sweep Details

In Go-Right and Go-Right-10 we performed a grid search over α ∈ {1×10−2, 5×10−2, 1×10−1, 2×
10−1} and τ ∈ {1 × 10−3, 1 × 10−2, 1 × 10−1, 1, 1 × 101}
In Acrobot and Distractrobot we performed a grid search over α ∈ {5×10−2, 1×10−1, 2×10−1, 5×
10−1} and τ ∈ {1 × 10−2, 1 × 10−1, 1, 1 × 101, 1 × 102}
For each configuration we ran 10 independent trials and calculated the final performance as the
average discounted return of the last 100 episodes. For Q-learning, we selected the value of α that
resulted in the highest final performance. For all other methods we compared the final performance
of each configuration to Q-learning’s (with the best α value). If no configuration obtained a higher
final performance than Q-learning, we selected the configuration with the highest final performance.
Otherwise, for each configuration with a final higher performance higher than Q-learning’s, we
calculated the difference between the score at each point and Q-learning’s score at each point as a
measure of the improvement from planning. We chose the configuration with the highest sum of
these differences. The selected parameters are listed in Appendix H.

The results were generated by running 50 independent trials with each agent using the metaparam-
eter values selected by this procedure.

C Go-Right with γ = 0.85

It is possible to succeed in Go-Right by simply overestimating the value of going right rather
than by correctly estimating the state-action values. We evaluated whether the selective planning
methods, and BBI in particular, might be erroneously optimistic by applying them to Go-Right and
Go-Right-10 with the discount factor γ = 0.85. With the lower discount factor, the potential prize
at the end of the hallway is not worth the cost to reach it. The optimal policy is to go left forever,
collecting 0 reward.

The following figures show planning performance with hand-coded, regression tree, and neural net-
work models. In all cases, the selective planning methods learn to exclusively go left resulting in a
discounted return of 0. In the case of neural networks, we do see that unselective planning with the
sufficient model occasionally overestimates the value of going right and obtains negative discounted
returns, but the selective planning methods, including BBI, avoid this misstep.
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Hand-Coded: Go-Right (γ = 0.85)
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Figure 7: Hand-coded models in Go-Right and Go-Right-10 with reduced discount factor.
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Regression Trees: Go-Right (γ = 0.85)
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Figure 8: Regression tree models in Go-Right and Go-Right-10 with reduced discount factor.
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Neural Networks: Go-Right (γ = 0.85)
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Figure 9: Neural network models in Go-Right and Go-Right-10 with reduced discount factor.

D Model-Learning Details

We did not formally sweep metaparameters for the model-learning algorithms. Reasonably effective
metaparameter values were selected informally during agent development.

The FIRT algorithm has two main metaparameters. First, there is a confidence level that must
be reached in order to perform a split. We set this value to 0.95 (meaning a 0.95 chance that the
best feature is, in fact, better than the second-best). Second, there is a threshold for the Hoeffding
bound, below which best 2 features are considered tied and a split can be made. We set this value
to 0.05. We incorporated every observed transition into the leaf statistics, but we only considered
splitting the tree every 100 frames.
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Every 4 steps we performed a training step on each neural network with a batch of 4 uniformly
randomly selected transitions from a buffer containing all past transitions. We set the ADAM
stepsize parameter to 1 × 10−3. For the BBI networks that predict the expected outcome as well as
two quantiles, we weighed the three loss functions equally.

E Additional Discussion of Go-Right-10 with Neural Networks

In Figure 4 we observed that in Go-Right-10, MCTV and MCTR planning with neural network mod-
els did not fail as they did with hand-coded and regression tree models. Furthermore, we observed
that the performance of BBI planning notably declined, unlike with hand-coded and regression tree
models. In this section we aim to explain this observation in more detail.

We hypothesize that BBI with the neural network produces more conservative uncertainty estimates
than with the hand-coded or regression tree models. To evaluate this, we consider the uncertainty
error, the difference between the uncertainty estimate given by an inference procedure on a learned
model ulearned

i and the uncertainty estimate given using BBI with a hand-coded model uhBBI
i :

ϵunc = ulearned
i − uhBBI

i . For instance, if ϵunc > 0, then the estimated uncertainty from the learned
model is larger than the ideal BBI estimate. In each episode, we calculated the median uncertainty
error over all planning steps and all rollout steps within a planning step. The below figure shows
the median uncertainty error averaged over all trials for MCTV, MCTR, and BBI in both regression
tree and neural network models.
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Figure 10: Median uncertainty error (averaged over all trials) in regression trees and neural networks.

We see that BBI in the neural network models frequently overestimates uncertainty, but not in the
regression tree models. We suspect that this is because our BBI procedure for neural networks is
additive (in that we assume that all inputs achieve their extreme values in the linear calculation
in each unit) and iterative (in that the potentially loose bounds from each unit are given as input
to the next layer of units). Both of these can compound the effects of loose bounds. The higher
uncertainty estimates given by the neural network models may explain the reduced benefit from BBI
planning observed in Go-Right-10.

We also observe that MCTV and MCTR planning in regression tree models frequently underesti-
mate uncertainty (MCTV seemingly more so than MCTR). This intuitively coincides with the poor
planning performance of these methods; this overconfidence may cause the planning process to use
the model when it should not be trusted.

In the neural network models, the Monte Carlo methods seem to underestimate uncertainty to a
lesser degree and perform well. Examining model rollouts provides a possible explanation for this.
The neural network model generally fails to learn that the prize indicators may turn on when the
agent enters the prize location (this is a relatively rare occurrence in the training set). This flaw
makes the model highly misleading, which is borne out by the poor performance of the sufficient
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neural network model in this problem. However, as a side effect of this large error, samples from
the IQN model produce high target variance, which is easily detected by the Monte Carlo method.

Specifically, when the agent enters the prize location, with roughly 1/3 chance the status indicator
has full intensity, but the prize indicators are off. This state is extremely rare in the training data,
and thus has q-values close to initialization (i.e. close to 0). On the other hand, with 2/3 chance,
the status indicator does not have full intensity and the prize indicators are off; these are common
states with relatively high q-values (since the agent can simply move left and then move right to try
for the prize again). As such, there is high variance over TD targets that include the agent entering
the prize location, which would otherwise be the main source of misleading updates

In contrast, the hand-coded and regression tree models both predict that the prize indicators will
turn on with probability roughly 1/3 when the agent enters the prize location. Thus, with high
probability they predict that some, but not all, of the prize indicators will turn on. These are mostly
impossible states that tend to all have q-values close to initialization, resulting in low variance in
the TD targets, which is more difficult to detect via Monte Carlo sampling.

So, though these results were counter to our predictions based on the hand-coded model experiments,
they are still consistent with our overall hypotheses. Predicted variance and sampling-based methods
are sensitive to the model’s predicted probability distribution; in this case the distribution happened
to be amenable to these methods. BBI is insensitive to the model’s predicted distribution but can
generate loose bounds, erring on the side of conservative selective planning.

F Tile Coding Details

For Acrobot we followed Sutton (1995). We had 12 tilings over all 4 dimensions, 3 tilings for
each subset of 3 dimensions, 2 tilings for each subset of 2 dimensions, and 3 tilings for individual
dimension. This gives a total of 60 tilings. The first and third dimensions were divided into 6 cells,
the second and fourth into 7 cells.

For Distractrobot we extended the feature set to include the extra distractor dimension. We
had 20 tilings over all 5 dimensions, 4 tilings over each subset of 4 dimensions, 2 tilings over each
subset of 3 dimensions, 2 tilings over each subset of 2 dimensions, and 4 tilings over each individual
dimension. This gives a total of 140 tilings. The first four dimensions were divided as above. The
fifth dimension was divided into 7 cells.

G Acrobot Learning Curves

Here we present more traditional learning curves for Acrobot and Distractrobot (i.e. not centered
on Q-learning’s performance).
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Figure 11: Planning with neural network models in Acrobot (left) and Distractrobot (right).
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Figure 12: Planning with neural network models in Acrobot (left) and Distractrobot (right).

H Selected Metaparameters

Here we list the selected metaparameters for each agent in each problem. See Appendix D for details
about how these values were selected.

Table 1: Hand-coded, Go-Right (γ = 0.9).

Agent α τ
Q-learning 5 × 10−1 n/a
Perfect 1 × 10−1 n/a
Expect (h = 2) 1 × 10−1 n/a
Expect (h = 5) 2 × 10−1 n/a
Sample (h = 2) 2 × 10−1 n/a
Sample (h = 5) 2 × 10−1 n/a
1SPV 5 × 10−2 1 × 10−1

1SPR 5 × 10−2 1
MCTV (k = 10) 1 × 10−1 1 × 10−3

MCTV (k = 40) 1 × 10−1 1 × 10−1

MCTR (k = 10) 1 × 10−1 1 × 10−2

MCTR (k = 40) 1 × 10−1 1 × 10−1

BBI 1 × 10−1 1

Table 2: Regression tree, Go-Right (γ = 0.9).

Agent α τ
Sufficient 1 × 10−1 n/a
MCTV (k = 40) 1 × 10−1 1 × 10−2

MCTR (k = 40) 1 × 10−1 1 × 10−1

BBI 1 × 10−1 1 × 10−1

Table 3: Neural net, Go-Right (γ = 0.9).

Agent α τ
Sufficient 1 × 10−1 n/a
MCTV (k = 40) 1 × 10−1 1 × 10−3

MCTR (k = 40) 1 × 10−1 1 × 10−2

BBI 1 × 10−1 1 × 10−1

Table 4: Hand-coded, Go-Right-10 (γ = 0.9).

Agent α τ
Q-learning 5 × 10−2 n/a
Perfect 1 × 10−1 n/a
Expect (h = 2) 2 × 10−1 n/a
Expect (h = 5) 2 × 10−1 n/a
Sample (h = 2) 2 × 10−1 n/a
Sample (h = 5) 2 × 10−1 n/a
1SPV 5 × 10−2 1 × 10−3

1SPR 5 × 10−2 1
MCTV (k = 10) 2 × 10−1 1 × 101

MCTV (k = 40) 5 × 10−1 1 × 10−3

MCTR (k = 10) 2 × 10−1 1 × 101

MCTR (k = 40) 5 × 10−1 1 × 10−1

BBI 1 × 10−1 1 × 10−1

Table 5: Regression tree, Go-Right-10 (γ = 0.9).

Agent α τ
Sufficient 5 × 10−1 n/a
MCTV (k = 40) 2 × 10−1 1 × 10−1

MCTR (k = 40) 2 × 10−1 1
BBI 1 × 10−1 1 × 10−1

Table 6: Neural net, Go-Right-10 (γ = 0.9).

Agent α τ
Sufficient 1 × 10−1 n/a
MCTV (k = 40) 1 × 10−1 1 × 10−3

MCTR (k = 40) 1 × 10−1 1 × 10−2

BBI 5 × 10−2 1

2458



RLJ | RLC 2024

Table 7: Hand-coded, Go-Right (γ = 0.85).

Agent α τ
Q-learning 2 × 10−1 n/a
Perfect 2 × 10−1 n/a
Expect (h = 2) 2 × 10−1 n/a
Expect (h = 5) 2 × 10−1 n/a
Sample (h = 2) 2 × 10−1 n/a
Sample (h = 5) 2 × 10−1 n/a
1SPV 2 × 10−1 1 × 101

1SPR 2 × 10−1 1 × 101

MCTV (k = 10) 2 × 10−1 1 × 101

MCTV (k = 40) 2 × 10−1 1 × 101

MCTR (k = 10) 2 × 10−1 1 × 101

MCTR (k = 40) 2 × 10−1 1 × 101

BBI 2 × 10−1 1 × 101

Table 8: Regression tree, Go-Right (γ = 0.85).

Agent α τ
Sufficient 2 × 10−1 n/a
MCTV (k = 40) 2 × 10−1 1 × 101

MCTR (k = 40) 2 × 10−1 1 × 101

BBI 2 × 10−1 1 × 101

Table 9: Neural net, Go-Right (γ = 0.85).

Agent α τ
Sufficient 1 × 10−1 n/a
MCTV (k = 40) 5 × 10−2 1 × 101

MCTR (k = 40) 2 × 10−1 1 × 10−2

BBI 2 × 10−1 1

Table 10: Hand-coded, Go-Right-10 (γ = 0.85).

Agent α τ
Q-learning 2 × 10−1 n/a
Perfect 2 × 10−1 n/a
Expect (h = 2) 2 × 10−1 n/a
Expect (h = 5) 2 × 10−1 n/a
Sample (h = 2) 2 × 10−1 n/a
Sample (h = 5) 2 × 10−1 n/a
1SPV 2 × 10−1 1 × 101

1SPR 2 × 10−1 1 × 101

MCTV (k = 10) 2 × 10−1 1 × 101

MCTV (k = 40) 2 × 10−1 1 × 101

MCTR (k = 10) 2 × 10−1 1 × 101

MCTR (k = 40) 2 × 10−1 1 × 101

BBI 2 × 10−1 1 × 101

Table 11: Regression tree, Go-Right-10 (γ =
0.85).

Agent α τ
Sufficient 2 × 10−1 n/a
MCTV (k = 40) 2 × 10−1 1 × 101

MCTR (k = 40) 2 × 10−1 1 × 101

BBI 2 × 10−1 1 × 101

Table 12: Neural net, Go-Right-10 (γ = 0.85).

Agent α τ
Sufficient 1 × 10−2 n/a
MCTV (k = 40) 2 × 10−1 1 × 101

MCTR (k = 40) 2 × 10−1 1 × 101

BBI 5 × 10−2 1

Table 13: Regression tree, Acrobot.

Agent α τ
Q-learning 2 × 10−1 n/a
Perfect 5 × 10−1 n/a
Expect 5 × 10−2 n/a
Sample 5 × 10−2 n/a
1SPV 5 × 10−1 1
1SPR 2 × 10−1 1 × 10−2

MCTV (k = 40) 2 × 10−1 1 × 10−1

MCTR (k = 40) 1 × 10−1 1 × 10−2

BBI 2 × 10−1 1 × 101

Table 14: Neural net, Acrobot.

Agent α τ
Expect 5 × 10−2 n/a
Sample 2 × 10−1 n/a
1SPV 2 × 10−1 1 × 10−2

1SPR 2 × 10−1 1 × 10−2

MCTV (k = 40) 2 × 10−1 1 × 10−1

MCTR (k = 40) 1 × 10−1 1
BBI 2 × 10−1 1 × 101

2459



RLJ | RLC 2024

Table 15: Regression tree, Distractrobot.

Agent α τ
Q-learning 1 × 10−1 n/a
Perfect 2 × 10−1 n/a
Expect 5 × 10−2 n/a
Sample 5 × 10−2 n/a
1SPV 2 × 10−1 1 × 10−1

1SPR 2 × 10−1 1 × 101

MCTV (k = 40) 2 × 10−1 1
MCTR (k = 40) 2 × 10−1 1 × 10−1

BBI 2 × 10−1 1 × 10−1

Table 16: Neural net, Distractrobot.

Agent α τ
Expect 5 × 10−2 n/a
Sample 5 × 10−2 n/a
1SPV 2 × 10−1 1 × 10−2

1SPR 5 × 10−1 1
MCTV (k = 40) 2 × 10−1 1 × 10−2

MCTR (k = 40) 5 × 10−2 1
BBI 2 × 10−1 1 × 101
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Abstract

We study a sequential decision problem where the learner faces a sequence of K-
armed bandit tasks. The task boundaries might be known (the bandit meta-learning
setting), or unknown (the non-stationary bandit setting). For a given integer M ≤
K, the learner aims to compete with the best subset of arms of size M . We design an
algorithm based on a reduction to bandit submodular maximization and show that
for T time steps comprised of N tasks, in the regime of large N and small number
of optimal arms M , its regret in both settings is smaller than the simple baseline
of Õ(

√
KNT ) that can be obtained by using standard algorithms designed for non-

stationary bandit problems. For the bandit meta-learning problem with fixed task
length τ , we show that the regret of the algorithm is bounded as Õ(NM

√
Mτ +

(M4KN2)1/3τ). Under some additional assumptions on the identifiability of the
optimal arms in each task, we show a bandit meta-learning algorithm with an
improved Õ(N

√
Mτ + (NMK1/2)1/2τ3/4) regret, where the order of the leading

term (the first term) is optimal up to logarithmic factors, and the algorithm does
not need the knowledge of M, N , and T in advance.

1 Introduction

Recommendation platforms interact with customers and must discover which items in their large
catalog give maximum satisfaction to each user. These interactions are often sequential and each
can be modeled as a multi-armed bandit problem. When a recommendation platform targets a new
sub-population (e.g., demographic) of customers, its administrators may naturally assume that only
a small subset of their large catalog of items would be attractive to this new group of users. Under
this assumption, it would be beneficial for the platform to identify this subset as soon as possible,
and then narrow down its exploration within the subset instead of over the entire catalog. This
problem can be naturally modeled as meta-learning, where each task is an instance of a multi-armed
bandit problem and the similarity between the tasks is in the existence of a subset of arms (items)
such that at least one of them has a high expected reward, or is even optimal, in every single task
(for the customers in the sub-population). In this paper, we study this meta-learning problem and
its extensions to the non-stationary setting (e.g., when the users’ affinity changes within a session).

Formally, we consider the problem where a learner faces N instances of a K-armed bandit task
sequentially. For simplicity, we assume that the tasks are of equal length and each task lasts for τ
rounds (for some positive integer τ), and therefore the total duration of the game is T = Nτ . At the
beginning of task n ∈ [N ],1 an adversary chooses the mean reward vector of the arms, rn ∈ [0, 1]K .

1For any integer K, we let [K] = {1, . . . , K}, and for any (multi-)set S, denote by |S| the number of distinct
elements in S.
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Then, the learner interacts with the bandit task specified by this mean reward vector for τ time
steps: at time t ∈ [T ] belonging to task n ∈ [N ],2 if the learner takes an action3 a ∈ [K], it
receives a reward signal rn(a)+ηn,t(a), where for all n and t, the ηn,t(a) are independent zero-mean,
[−1/2, 1/2]-valued noise variables, so that the expected reward is rn(a). We denote by a∗

n the optimal
arm in task n, and by Hn,t the history of the actions taken and rewards observed by the learner
up to, but not including, time step t in task n. At time step t, the learner computes a distribution
πn,t over the actions as a function of Hn,t and some other parameters of the problem, samples an
action An,t from πn,t, and plays it. Later, we will relax these assumptions and discuss extensions
to the cases where reward functions can change within a task, tasks have different lengths, and task
boundaries might be unknown.

We are interested in minimizing the worst-case T -step dynamic regret of the learner relative to the
set of optimal arms, defined as

Rml
T = sup

(rn)N
n=1

E

[
N∑

n=1

τ∑

t=1
rn(a∗

n)− rn(An,t)
]

, (1)

where the expectation is taken over the learner’s random actions that may depend on the realization
of the noise in the observed rewards, as well as any potential internal randomization of the learner.

We mainly consider problems where the set of optimal arms is small, which, in our recommendation
example, corresponds to the case where only a small subset of the large catalog of items is attractive
to users. More formally, we assume (for now) that

|{a∗
n}N

n=1| ≤M (2)

for some M < K. We call such problems sparse bandit meta-learning problems. We are interested
in designing algorithms that can exploit such sparsity structure.

A near-optimal solution under an identifiability assumption. In Section 2, we consider
the sparse bandit meta-learning problem under some identifiability assumption for the optimal arms
of each task, namely, that in each task the gap between the rewards of the optimal and second best
arms is large enough. We propose two algorithms (both defined in Algorithm 1) with near-optimal
performance guarantees. Our algorithms do not need N, T, M as input.

The algorithms are hierarchical: First, a top level algorithm is used to learn the best subset of
arms of cardinality at most M ,4 which determines the set of arms to be used in the next bandit
task. This algorithm is either in an exploration or exploitation mode. In exploration mode, a best-
arm-identification (BAI) algorithm is run in the next bandit task, which, given the identifiability
assumption, finds the best arm in the task (out of all K arms), while in exploitation mode, using the
information about which arms were found to be the best in previous tasks, it selects an M -subset of
arms and runs a base bandit algorithm in the next task (the difference between our two algorithms is
how they perform this step). In the example of a recommendation platform serving many customers,
this means that the recommender system selects a small collection of items for each user and tries
to find the best item, or sequence of items, in the catalog for that user.

Denoting the minimax regret of the base algorithm in a k-armed bandit task of length τ by Bτ,k

(without additional assumptions, typical “good” bandit algorithms achieve Bτ,k = Õ(
√

τk)), an
ideal algorithm for the sparse bandit meta-learning problem, which knows the set of optimal arms
and runs the base algorithm with this arm set on every task, can achieve an O(NBτ,M ) dynamic
regret, improving the potentially much larger O(NBτ,K) regret achievable without Equation (2).
A naive reduction to bandit submodular maximization would yield only an Õ(NBτ,M + N2/3)
regret bound. In comparison, our first, computationally efficient algorithm G-BASS achieves an
O(NBτ,M(1+log N))+ Õ(N1/2) regret, paying a small log N factor for computational efficiency in the

2Note that n = ⌊(t− 1)/τ⌋+ 1.
3We use the terms “arm" and “action" interchangeably.
4Throughout we will call a subset of size at most M an M-subset.
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leading term. Importantly, G-BASS does not need a priori knowledge of M . To remove the extra
log N factor, we propose another method, E-BASS, which achieves the desired O(NBτ,M ) + Õ(N1/2)
regret, at the cost of an increased computational complexity, potentially exponential in M . Although
G-BASS is similar to the greedy solution in offline submodular maximization, the proof technique
we use for it is quite different, exploiting the special structure of the problem and resulting in an
improved regret guarantee.

A general solution by a reduction to bandit subset selection. We also present a solution
that is applicable even without an identifiability assumption. However, this solution requires N, T, M
as input. Nevertheless, the results improve existing solutions in this setting as shown in Table 1.

Our general solution is in fact applicable even in an agnostic setting, as we explain next. In our
solution, the learner competes with a sequence of arms (an)N

n=1 that has at most M ≤ K distinct
elements |{an}N

n=1| ≤M . In this formulation, M is the learner’s choice and indicates its prior belief
about the number of good arms (in terms of having high expected reward) in the sequence of N
bandit tasks (with the reward sequence (rn)N

n=1) that it is supposed to solve. We call a reward
sequence (rn)N

n=1 realizable if there exists a set of arms of size at most M that contains an optimal
arm (an arm with reward maxa∈[K] rn(a)) for every task n ∈ [N ]. If this cannot be guaranteed, we
refer to the setting as agnostic. In our motivating example of recommender systems, the realizable
case is when there exists a set of at most M items that contains the most desirable item for every
single customer (which may not be unique). This is obviously a strong assumption and may not
hold in many cases. Instead, a more realistic setting is when there exists a subset of items of size at
most M that contains a good (but not necessarily the best) item for most of the customers. This is
an example of the agnostic case.

In fact, we obtain stronger results and derive regret bounds for the more general adversarial setting
where the reward vector can change within each task. In this setting, we define the regret as

RT = sup
(rn,t)N,τ

n=1,t=1,

(an)N
n=1 : |{an}N

n=1|≤M

E

[
N∑

n=1

τ∑

t=1
rn,t(an)− rn,t(An,t)

]
, (3)

where the learner competes with the best M -subset of arms across a sequence of N “adversarial"
bandit tasks. Note that in the stochastic meta-learning setting, under assumption (2), this definition
simplifies to that of Rml

T given in (1) (with the expectation also corresponding to the noise in the
reward function). Therefore, throughout we will use RT to denote the regret.

To solve this more general problem, we take the same approach as before, and use a bi-level algorithm
with a subset-selection method on top. However, since now we do not assume that the best arms
can be identified in any task (and we do not even assume that the set of best arms is of cardinality
at most M), we cannot apply the explicit exploration step with a BAI algorithm as before. Instead,
for every task, the subset-selection algorithm selects an M -subset of arms and runs a base bandit
algorithm with this set as its action space for τ steps, which returns the total reward obtained to
the top algorithm as feedback. In Section 3.2, we present our resulting algorithm, called OS-BASS
(Algorithm 2) and show that its regret scales as Õ((M4KN2)1/3τ + MN

√
Mτ). The OS-BASS

algorithm is based on the aforementioned reduction to the bandit subset-selection problem, uses
a bandit submodular optimization method, and needs to know the number of change points N in
advance. Without any restriction on the set of optimal arms, the optimal rate for the non-stationary
bandit problem is Õ(

√
KNT ) (Auer et al., 2019b; Chen et al., 2019; Wei and Luo, 2021).5 This bound

can also be written as Õ(N
√

Kτ). For small N (large τ), this baseline rate cannot be improved.
Therefore, we are mainly interested in the regime of large number of tasks and small number of
optimal arms for which our regret bound is better than that for the baseline in the realizable case.

Sparse non-stationary setting. We also study the more general non-stationary setting where
the task boundaries are unknown (Russac et al., 2019; Auer et al., 2019a; Hong et al., 2020b; Wei

5This rate can be achieved by algorithms such as AdSwitch (Auer et al., 2019b) without any prior knowledge of T
or N .
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Table 1: A comparison of our results with existing results in literature. The order of regret bounds
is given up to logarithmic factors (meta/non-st. refer to the meta-learning/non-stationary bandit
settings, adv./stoch. refer to the adversarial/stochastic rewards, respectively).

Algorithm Setting Tasks Comparator
Prior
knowl-
edge

Regret bounds

Independent EXP3
for each task meta adv. n/a none

√
KNT = N

√
Kτ

EXP3.S (Auer et al.,
1995) non-st. adv. n/a N

√
KNT = N

√
Kτ

Zheng et al. (2019) non-st. adv. agnostic M, N
(sN)1/3(MT )2/3 +
M
√

sT log K + MK3

Balcan et al. (2022) meta adv. agnostic none NBτ,M + N1− 1
6 log K

G-BASS (under
identifiability as-
sumptions)

meta stoch. realizable none NBτ,M +
√

MKBτ,KNτ +
o(
√

N)

OS-BASS meta adv. agnostic M, N, T
(M4KN2 log K)1/3τ +
MN
√

Mτ

OS-BASS non-st. stoch. agnostic M, N, T
(MKN2 log K)1/3T/N +
M
√

MTN

and Luo, 2021; Suk and Kpotufe, 2022; Abbasi-Yadkori et al., 2023). A single user interacting
with a recommender system is an example of the non-stationary setting (as the system does not
necessarily know when the user’s mood/affinity changes), while a recommendation platform serving
many customers is an example of the meta-learning setting (we observe when the current session
ends and a new customer arrives). More formally, in the non-stationary setting, the learner knows
the number of tasks N and the horizon T before the game begins, but the start and duration of the
tasks, {τn}N

n=1, are unknown.

Related work. Our solution is based on online subset selection, with many connections to the
online learning and bandit literature. We discuss the most relevant works here; other related papers
are discussed in Appendix G. Table 1 shows a comparison between our results and existing results
in literature.

The sparse non-stationary bandit problem is the bandit variant of experts problem with small set
of optimal arms whose study goes back to Bousquet and Warmuth (2002). The only result in the
bandit setting that we are aware of is the work of Zheng et al. (2019), who show an algorithm
for competing against a small set of optimal arms in an adversarial setting with sparse reward
vectors. The solution of Zheng et al. (2019) has similarities with our approach, as both solutions
are reduction-based and employ a meta-learner that plays with base algorithms. Similarly to our
approach, the meta-learner of Zheng et al. (2019) needs to satisfy a static regret guarantee, while the
base algorithm needs to satisfy a dynamic regret guarantee. The algorithm of Zheng et al. (2019)
also requires the number of change points N and subset size M as input and its dynamic regret is
Õ((sN)1/3(MT )2/3 + M

√
sT log K + MK3 log T ) , where s = maxn ∥rn∥0 is the number of non-zero

elements in reward vectors. Notice that without this sparsity condition, the above dynamic regret
is worse than the Õ(

√
KNT ) regret of EXP3.S of Auer et al. (1995), a variant of the well-known

EXP3 algorithm (given also by Auer et al., 1995) which is designed for the non-stationary adversarial
multi-armed bandit setting, to compete with a sequence of arms with a given maximum number of
switches (i.e., minimizing the regret in (3) for M = K). When s is a small constant, the above
bound improves upon the regret of EXP3.S when M4/3(T/N)1/3 < K < (TN/M2)1/5.

Balcan et al. (2022) studies bandit meta-learning problems with adversarial bandit tasks. They intro-
duce a meta-learning algorithm that tunes the initialization and step-size of the online mirror decent
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base algorithm. Balcan et al. (2022) show that their algorithm achieves minβ∈(0,1] Õ(N
√

HβKβτ/β+
N1−β/6) total regret, where Hβ is a notion of entropy. When a subset of size M contains the op-
timal arms of most tasks, then by the choice of β = 1/ log(K) the regret bound simplifies to
Õ(N

√
Mτ + N1−1/(6 log K)). Compared to our results in the most general setting (cf. Section 3),

their convergence rate of Õ(1/N1/(6 log K)) is much slower than our convergence rate of Õ(1/N1/3).
However, their task-averaged regret is O(

√
Mτ), whereas it is O(M

√
Mτ) in our case. Finally, the

regret bound of Balcan et al. (2022) adaptively holds for the best value of M , while M is an input to
our algorithm. However, under the identifiability condition, our algorithm G-BASS has a better re-
gret guarantee (matching the task-averaged regret while significantly improving on the other term),
and it also automatically adapts to the problem parameters.

Meta-, multi-task, and transfer learning (Baxter, 2000; Caruana, 1997; Thrun, 1996) are related
machine learning problems concerned with learning some shared information across tasks. In that
sense, our work is connected to other theoretical studies (Franceschi et al., 2018; Denevi et al.,
2018b;a; 2019; Kong et al., 2020; Khodak et al., 2019; Tripuraneni et al., 2021) though indeed we
focus on the bandit learning setting. Various other ways of modelling structure have been proposed
and studied in bandit meta-learning. A special case of our problem was studied by Azar et al.
(2013) where K-armed bandit problems are sampled from a prior over a finite set of tasks. Park
et al. (2021) consider a continual learning setting where the bandit environment changes under a
Lipschitz condition. Kveton et al. (2020) observe that the hyperparameters of bandit algorithms can
be learned by gradient descent across tasks. Learning regularization for bandit algorithms (Kveton
et al., 2021; Cella et al., 2020) are also proposed, building on the biased regularization ideas from
Baxter (2000). Interestingly, these contextual problems are also connected to latent and clustering
of bandit models (Maillard and Mannor, 2014; Gentile et al., 2014; Hong et al., 2020a;b).

2 Sparse meta-learning under an identifiability condition

In this section, we study our sparse meta-learning setting in the realizable case under an identifiability
assumption (Assumption 2.1) that the learner has access to an exploration method that reveals
optimal actions. We further assume that the tasks are of equal length τ .
Assumption 2.1 (Efficient Identification). There exists a set of M arms that has a non-empty
intersection with the set of optimal arms in each task. Also, the learner has access to a best-arm-
identification (BAI) procedure that for some δ ∈ [0, 1], with probability at least 1 − δ/N , identifies
the set of optimal arms if executed in a task (for at most τ steps).

The assumption requires the BAI procedure to return only optimal arms. This choice is for simplicity
and could easily be relaxed to allow it to return all arms with sub-optimality gap smaller than
Θ(
√

M log(N/δ)/τ).

Assumption 2.1 is a special case of the priced feedback model in Streeter and Golovin (2007). If
for any task n with optimal arms S∗

n ⊂ [K], we have rn(a∗
n) − maxa̸∈S∗

n
rn(a) ≥ ∆, ∀a∗

n ∈ S∗
n

(note that rn(a∗
n) is the same for all a∗

n ∈ S∗
n) for some ∆ = Θ(

√
K log(N/δ)/τ), a properly tuned

phased elimination (PE) procedure (Auer and Ortner, 2010) returns the set of optimal arms with
probability at least 1 − δ/N . The cumulative worst-case regret of PE in a task with K arms is
B′

τ,K = Θ(Bτ,K) (Auer and Ortner, 2010), see (Lattimore and Szepesvári, 2020, Exercise 6.8) for
details. With a slight abuse of notation, in this section, we use Bτ,K to denote max{Bτ,K , B′

τ,K}.
We disentangle exploration (Exr) and exploitation (Ext) at a meta-level. In Exr mode, the learner
executes a BAI on all arms and (by Assumption 2.1) with high probability observes the set of optimal
actions S∗

n. The price of this information is a large regret denoted by Cinfo, which for a properly
tuned PE, we know Cinfo = Bτ,K > B′

τ,M . So, since we aim for RT ≤ Õ(NBτ,M )+o(N), we should
keep the number of Exr calls small. In Ext mode, the learner executes a base bandit algorithm on a
chosen subset Sn constructed using the previously identified optimal actions In =

⋃
j<n:Ej=Exr{S∗

j }.

If Sn ∩ S∗
n ̸= ∅, the regret of Base is bounded by Chit = Bτ,sn , where sn = |Sn|. Otherwise, since

the performance gap between the optimal arms and the arms in Sn can be arbitrary, the regret in
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Algorithm 1 BASS: BAndit Subset Selection (for the meta-learning setting)

1: Options: Greedy G-BASS (G), Elimination-based E-BASS (E)
2: Input: Base (an efficient K-armed bandit algorithm), BAI (a best arm identification algorithm),

Exr probabilities pn, (E) subset size M
3: Initialize: Let (G) I0 = ∅; (E) X0 be the set of all M -subsets of [K].
4: for n = 1, . . . , N do
5: Set En = Exr w.p. pn, otherwise set En = Ext
6: if En = Exr or n = 1 then
7: Run BAI on all arms of task n and observe the best arms S∗

n

8: (G) Set In = In−1 ∪ {S∗
n}

9: (E) Set Xn = {S ∈ Xn−1 : S ∩ S∗
n ̸= ∅}, i.e., elements of Xn−1 with non-empty overlap with

S∗
n

10: else
11: (G) Find Sn by Greedy s.t. ∀S ∈ In, Sn ∩ S ̸= ∅
12: (E) Sample Sn uniformly at random from Xn

13: Run the Base algorithm on Sn

14: end if
15: end for

task n can be as large as Cmiss = τ . Note that to keep Chit small, the subset Sn should be as small
as possible. Ideally, Sn should be a subset of size M that has non-empty overlap with all members
of In. However, the problem of finding such Sn is the so-called hitting set problem, which is known
to be NP-Complete (Feige et al., 2004).

A simple greedy algorithm can be used to obtain an approximate solution efficiently (see, e.g, Streeter
and Golovin, 2007): The greedy algorithm builds a subset incrementally and in each stage, adds the
action that is optimal for the largest number of remaining tasks. It has polynomial computation
complexity and finds a subset of size at most M(1 + log N) that contains an optimal action for each
task. We say an action a ∈ [K] covers task j if a ∈ S∗

j . The greedy method, denoted by Greedy,
starts with an empty set and at each stage, it adds the action that covers the largest number of
uncovered tasks in In, until all tasks are covered.

We also propose E-BASS, that is based on an elimination procedure: the learner maintains an active
set of possible M -subsets compatible with the Exr history, and eliminates all subsets that are
inconsistent with In. In the Ext mode, a subset is selected uniformly at random from the set of
active subsets. As we will show, this algorithm improves the regret by a factor of log N , but is
not computationally efficient as it needs to sample from an exponentially large collection of active
subsets.

The analysis of the greedy solution, G-BASS, depends on the cost-to-go function of the following game
between the learner and the environment. At segment n, the learner may choose En ∈ {Exr, Ext}
with probability pn = P (En = Exr) and cost Cinfo. The environment may choose a best arm a∗

n

that the learner already knows about which costs Chit (i.e., a∗
n ∈ Sn ) or choose an optimal arm

set S∗
n so that S∗

n ∩ Sn = ∅, with cost Cmiss. Let qn = P (S∗
n ∩ Sn = ∅). The regret of G-BASS is

bounded by the cost of the learner in this simple game, if we assume δ = 0 in Assumption 2.1. The
learner is a (randomized) function of I, hence we can write the minimax cost-to-go function as

VN (I) = 0, (4)
Vn(I) = min

p
max

q

{
pCinfo + q(1− p)Cmiss

+ (1− q)(1− p)Chit + (1− pq)Vn+1(I) + pqVn+1(I ∪ {S∗
n})
}

, for n < N.

For the last equality note that when the environment reveals a new action (happens with probability
q) and the learner explores (with probability p), its current knowledge set I is incremented. The
optimal cost-to-go function Vn in (4) corresponds to the case of δ = 0 in Assumption 2.1, and V0(∅)
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gives the minimax regret for the family of algorithms with the limited choice described. Therefore,
when the BAI algorithm is successful, we have RT ≤ V0(∅), almost surely. For δ > 0, using a union
bound, we can show RT ≤ V0(∅)+ δNτ . Setting δ = 1/(Nτ) ensures that δNτ is negligible. Finally,
if the BAI algorithm only returns a set of approximately optimal arms satisfying rn(a) ≥ rn(a∗

n)−∆
for all arms a selected, the meta-regret can be bounded trivially as RT ≤ V0(∅) + (δ + ∆)Nτ .

Case 1 (a unique optimal arm): Before going to the general case, we first consider the case
where there is a unique and identifiable optimal arm in each task.
Assumption 2.2 (Unique Identification). Assumption 2.1 holds, and each task has a unique best
arm.
Theorem 2.3. Under the Unique Identification assumption,

V0(∅) ≤ NBτ,M + M
√

2(Cinfo −Chit)(Cmiss −Chit)N.

Therefore, under Assumption 2.2, the regret of G-BASS with pn = Θ(1/
√

N − n) satisfies RT ≤
NBτ,M + M

√
Bτ,KNτ + δNτ .

We prove Theorem 2.3 in Appendix B.1 by solving the min-max problem in (4) for Vn. Interestingly,
the exploration probability pn increases as Θ(1/

√
N − n). This might seem counter-intuitive at first

as typically the exploration rate decreases in most online learning algorithms. The intuition is that
as n gets closer to N , if sn < M , the adversary has less remaining budget left to make the learner
suffer a big cost. Therefore, the adversary increases its probability of choosing a new optimal arm,
and thus, the learner needs to explore more.

Case 2 (general case): We now consider the general case with potentially multiple optimal arms
in each task.
Theorem 2.4. Let M ′ = M(1 + log N) and Assumption 2.1 holds. Then, the regret of G-BASS with
exploration probability pn =

√
|Sn|Kτ
nBτ,K

is bounded as

RT ≤ NBτ,M ′ + MBτ,K +
√

M ′KBτ,KNτ + δNτ .

The proof is similar in spirit to that of Theorem 2.3 and is deferred to Appendix B.3. This regret
guarantee holds in the realizable setting, but G-BASS does not need M as input. The next theorem
(proof in Appendix E.1) shows that the regret of E-BASS is bounded as NBτ,M + o(N), which is
smaller than that for G-BASS by a factor of log N . However, E-BASS is not computationally efficient
and also requires M as input.
Theorem 2.5. Let Assumption 2.1 holds. Then, the regret of the E-BASS algorithm with exploration
probability pn =

(
τ
K

)1/4
√

log K
N is bounded as RT ≤ NBτ,M + O(τ3/4K1/4√NM log K).

Remark 2.6 (connections to partial monitoring games). The setting of this section can be viewed
more generally as a partial monitoring game. Partial monitoring is a general framework in online
learning that disentangles rewards and observations (information). In our bandit meta-learning
problem, different actions of the meta-learner (Exr and Ext) provide different levels of information
and have different costs. Thus, the problem can be reduced to a partial monitoring game on X , the
set of M -subsets of [K]. More details are in Appendix E.

3 Sparse meta-learning without identifiability assumptions

As explained in introduction, our general approach to solve the problems studied in this paper is to
reduce them to the bandit subset-selection problem. This approach is applicable even if each task is
an adversarial bandit problem and we are in an agnostic setting. However, to keep the presentation
simple, we will consider stochastic bandit tasks in a realizable setting.

2467



RLJ | RLC 2024

3.1 Reduction to subset selection and bandit submodular maximization

In task n, the learner selects a subset of arms Sn ∈ S = {S : S ∈ 2[K], |S| ≤M}, runs a base bandit
algorithm on that subset for τ steps, and receives the pseudo-reward6

τ∑

t=1
rn(An,t) = τ max

a∈Sn

rn(a)−
τ∑

t=1

(
max
a∈Sn

rn(a)− rn(An,t)
)

:= fn(Sn)− τεn,

where An,t is the learner’s action in time step t of task n, fn(S) := τ max
a∈S

rn(a) being the max-reward
function for the set of arms S and reward function rn, and finally εn is the average “noise” per time
step observed by the learner. It is easy to see that fn is a submodular function. See Appendix A
for definitions.

We require the base algorithm to have a guarantee for the regret, measured relative to the optimal
action for every time step,

τE[εn] = sup
rn

E

[
τ∑

t=1
max
a∈Sn

rn(a)−rn(An,t)
]
≤ Bτ,M . (5)

We can bound the regret of any method that solves the sparse bandit meta-learning problem using
the above reduction to subset selection as follows (proof in Appendix C):
Lemma 3.1. The regret of any policy running a base algorithm that satisfies (5) in each task n ∈ [N ]
on a selected subset of arms Sn ∈ S can be bounded as

RT ≤ sup
f1,...,fN ∈F

max
S∈S

E
[ N∑

n=1
fn(S)− fn(Sn) + Bτ,M

]
.

This way we reduce our sparse bandit meta-learning problem to minimizing a notion of regret
where in each task n ∈ [N ], the learner selects a subset Sn ∈ S and observes (pseudo)-reward
fn(Sn) − τεn. Since fn is submodular, this reduction allows us to leverage the literature on online
submodular maximization to obtain a bound on RT .

Bandit submodular maximization. Streeter and Golovin (2007) studied the online submodular
maximization problem in four different settings: (i) the full-information setting where the function
fn is fully observed at the end of each segment n; (ii) a partially transparent model where the value
of fn is revealed for some subsets; (iii) the priced feedback model where the learner can observe fn

by paying a price; and (iv) the bandit setting where only fn(Sn) is observed. They proved O(
√

N)
and O(N2/3) regret bounds for the first two and the last two settings, respectively. Radlinski et al.
(2008) proposed an algorithm similar to the one in Streeter and Golovin (2007) for a particular
ranking problem in the partially transparent feedback setting, and also obtained an O(

√
N) regret

bound. The priced feedback setting (iii) is similar to problems where the best arms can be identified
in every task, which we study in Section 2.

3.2 A general solution based on submodular maximization

In this section, we present an algorithm, called OS-BASS (Online Submodular BAndit Subset Selec-
tion), for our sparse meta-learning problem. The approach is in fact more general, and as we will
show in the next section, it can be applied in the sparse non-stationary setting as well. OS-BASS,
whose pseudo-code is shown in Algorithm 2, is based on the reduction to subset selection described
in Section 3.1 and the OGo algorithm (for bandit submodular maximization) by Streeter and Golovin
(2007). It requires the knowledge of the number of tasks N and time horizon T . Note that while N
and T are environment parameters, M and the expert algorithms are selected by the learner.

OS-BASS also takes a Base algorithm as input. We choose Base to be an algorithm designed to solve
multi-armed bandit problems such as the well-known UCB (Auer et al., 2002) when the tasks are
stochastic bandits, or EXP3 (Auer et al., 1995) when the tasks are adversarial bandits.

6We refer to it as pseudo-reward since it uses the mean rewards and not the actual random rewards.
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Algorithm 2 OS-BASS: Online Submodular BAndit Subset Selection (applicable to the sparse non-
stationary/meta-learning settings and agnostic/realizable cases)

1: Input: number of tasks N , time horizon T , subset size M , expert algorithms E1, · · · , EM̃

2: Set segment length to τ = T/N
3: for n ∈ [N ] do
4: for i ∈ [M̃ ] do
5: Select an arm ai using Ei

6: end for
7: Define subset Sn = {a1, . . . , aM̃}
8: Set En = Exr w.p. γn, otherwise set En = Ext
9: if En = Ext then

10: Run Base on subset Sn for τ steps
11: else
12: Select an index i ∈ [M̃ ] uniformly at random
13: Select a new arm a′

i ∈ [K] uniformly at random
14: Define subset Sn:i ← {a1, . . . , ai−1, a′

i}
15: Run Base on subset Sn:i for τ steps
16: Give average reward over the segment as a reward to Ei for arm a′

i, and give zero reward
for all other arms and experts

17: end if
18: end for

OS-BASS applies M̃ = ⌈M log N⌉ expert algorithms (i.e., regret minimization algorithms in the full
information setting), denoted by E1, . . . , EM̃ , to the K arms, where the role of Ei is to learn the
i’th “best” arm. In each task n ∈ [N ], each expert Ei, ∀i ∈ [M̃ ], selects an arm ai ∈ [K]. The
requirement for an expert algorithm is that it should achieve an O(

√
v log(K)) regret over v time

steps relative to the best action selected in hindsight. This can be achieved by all standard expert
algorithms, such as exponential weights (Cesa-Bianchi and Lugosi, 2006). Then, with probability
1− γn, OS-BASS exploits (Ext) the set of M̃ arms selected by the experts, i.e., a Base algorithm is
executed on this set for τ steps. With probability γn, OS-BASS explores (Exr), i.e., first a random
index i ∈ [M̃ ] and an arm a′

i ∈ [K] are chosen uniformly at random, and then the Base algorithm
is executed on the set Sn:i consisting of i arms, the i − 1 arms selected by {E1, . . . , Ei−1} plus a′

i,
for τ steps. In Exr, the exploring expert, Ei, is updated with a reward equal to the average reward
of Base in the τ -step task for arm a′

i (approximately fn(Sn:i)/τ up to error εn/τ), and zero for
all other arms. All other experts are updated with reward zero for all the arms (this is simply to
construct an unbiased estimate and to use importance sampling). This way, E1, . . . , Ei jointly learn
the identity of the best set of size i w.r.t. (approximate) reward

∑N
n=1 fn,7 and thus, approximate a

greedy solution for finding the top M arms. Note that OS-BASS provides no reward for the experts
during Ext. It is reasonable to expect that such reward can improve the empirical performance of
the algorithm, but it is not going to improve its theoretical guarantees. OS-BASS could be viewed as
a simulation of the offline greedy procedure that incrementally constructs its solution (Streeter and
Golovin, 2007). When an index i is chosen, the algorithm is learning the i’th choice of the offline
greedy procedure, and thus, it only plays a subset of the arms of size i.
Theorem 3.2. In the sparse meta-learning setting with N bandit tasks of equal length τ = T/N , the

regret of OS-BASS with EXP3 as Base and γn =
(

M̃K log K
n

)1/3
is RT = Õ

(
(M̃4KN2 log K)1/3τ +

M̃N
√

M̃τ
)
.

The proof is in Appendix D.3. In the regime of large number of tasks N and small number of
optimal arms M , our bound improves upon the Õ(N

√
Kτ) bound of the trivial solution of running

an independent UCB (or EXP3) algorithm in each task.

7Note that the “real" reward of expert Ei for an action a is fn(Sn:i−1 ∪ {a})− fn(Sn:i−1).
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Note that the value of γn in Theorem 3.2 uses count n instead of the total number of tasks N .
However, the value of N still appears in M̃ , and thus, the algorithm still requires knowledge of N ,
although a knowledge of an upper bound on log N would be sufficient.
Remark 3.3. The above result is also applicable in the adversarial setting where the rewards can
change in every time step, and regret is measured with respect to the best arm in each task.
Remark 3.4 (tasks with variable lengths). Consider problems with non-equal task lengths where the
learner only gets to know the length of each task when it begins. To handle this situation, we construct
an exponential grid for the task lengths with b := log(maxn τn) ≤ log T buckets, where each bucket
i ∈ [b] is defined as [τ i := 2i−1, τ i := 2i]. We then run a copy of OS-BASS on the tasks falling in each
bucket as they arrive. Let N (i) denote the number of tasks that fall in bucket i. Then by Theorem 3.2,
the total regret satisfies RT ≤

∑b
i=1 Õ

(
M̃4/3(N (i))2/3K1/3τ i + N (i)M̃3/2√τ i

)
. Similarly, this regret

is better than the simple baseline
∑N

n=1
√

Kτn =
∑b

i=1 Ni

√
Kτ i when M = o(K1/3/T 1/5).

4 The sparse non-stationary setting

In this section, we show that a similar reduction to subset selection can also be used in the more
general non-stationary setting. However, instead of learning the subset containing the best arms
task by task (whose boundaries are unknown in the non-stationary setting), we conveniently divide
the time horizon T into N segments of equal length τ = T/N and learn the optimal arms segment
by segment. This approach clearly requires the knowledge of the number of tasks N in advance.
Note that the segments and tasks would coincide in the meta-learning setting when all tasks have
equal length.

Consider the n’th segment, i.e., [(n − 1)τ + 1, nτ). Without loss of generality, we assume that a
new task starts at the beginning of each segment. To satisfy this assumption we break the tasks
that run over the end of their segment, which will result in at most N − 1 extra new tasks (we will
have at most 2N − 1 tasks). If we denote by Nn, the number of tasks in segment n, we may write∑N

n=1 Nn ≤ 2N − 1. Finally, we denote by τn,u and rn,u, the length and mean reward of the u’th
task in segment n.

We require the base algorithm to have a guarantee for the dynamic regret, measured relative to the
sequence of optimal actions selected for every time step, defined as

sup
(rn)j

n=i

E

[
j∑

n=i

τn∑

t=1
max
a∈[K]

rn(a)−rn(An,t)
]
≤ BL,j−i,K , (6)

for any i and j such that 1 ≤ i ≤ j ≤ N , and with L =
∑j

n=i τn. In (6), we naturally extend
the upper-bound notation to indicate the number of task changes in the segment of length L, and
typically have BL,j−i,K = Õ(

√
L(j − i + 1)K). AdSwitch (Auer et al., 2019b) is an example of such

a base algorithm that does not need to know the task boundaries and lengths (see Section 4.1).

In segment n, the learner selects a subset of arms Sn ∈ S = {S : S ∈ 2[K], |S| ≤ M}, runs a base
bandit algorithm on that subset for τ steps, and receives the pseudo-reward8

Nn∑

u=1

τn,u∑

t=1
rn,u(An,u,t) =

Nn∑

u=1

(
τn,u max

a∈Sn

rn,u(a)−
τn,u∑

t=1

(
max
a∈Sn

rn,u(a)− rn,u(An,u,t)
))

:= fn(Sn)− τεn,

where An,u,t is the learner’s action in time step t of task u of segment n, fn(S) :=
∑Nn

u=1 τn,ufn,u(S)
with fn,u(S) := max

a∈S
rn,u(a) being the max-reward function for the set of arms S and reward

function rn,u, and finally εn is the average “noise” per time step observed by the learner. We prove
in Appendix A that fn ∈ F , the family of submodular functions, since it is an affine combination of

8We refer to it as pseudo-reward since it uses the mean rewards and not the actual random rewards.
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finitely many submodular functions. Moreover, since we assume that the base algorithm satisfies (6),
we have τE[εn] ≤ Bτ,Nn,M .

We can bound the regret of any method that solves the sparse non-stationary bandit problem using
the above reduction to subset selection as follows (proof in Appendix C):
Lemma 4.1. The regret of any policy running a base algorithm that satisfies (6) in each segment
n ∈ [N ] on a selected subset of arms Sn ∈ S can be bounded as

RT ≤ sup
f1,...,fN ∈F

max
S∈S

E
[ N∑

n=1
fn(S)− fn(Sn) + Bτ,Nn,M

]
.

This way we reduce our sparse non-stationary bandit problem to a bandit subset-selection problem,
where the decision space is the set of M -subsets of [K] and the reward in each segment n (of the
top algorithm) is the maximum cumulative reward in this segment over the chosen subset. For
example, when τ ≪ N , i.e., there are relatively many tasks, an o(N)-regret for the bandit subset-
selection problem translates to an O(N

√
Mτ) + o(N) regret bound for our sparse non-stationary

bandit problem. Note that the leading term in the regret is O(N
√

Mτ), which is an upper-bound
on the regret of a bandit strategy that runs the base algorithm on the best subset in each segment,
and is in fact the best possible (minimax) regret rate achievable given an optimal M -subset. The
subset-selection problem is a bandit submodular maximization problem, for which OGo, an online
greedy approximation algorithm by Streeter and Golovin (2007), achieves regret O(N2/3).9

4.1 OS-BASS in the non-stationary setting

In this section, we consider the implementation of OS-BASS in the non-stationary setting (task change
points are unknown and tasks can be of different lengths). As discussed earlier, our approach is to
divide the time horizon into segments of equal length, and to test a different M -subset in each
segment by running a Base bandit algorithm on that subset. To choose Base, we should note
that in the non-stationary bandit problem, every segment may contain multiple tasks. Thus, we
need an algorithm that is able to solve non-stationary bandit problems without knowing the change
points. We use AdSwitch (Auer et al., 2019b) as the Base algorithm in OS-BASS. This choice sets
Bτ,Nn,M̃ =

√
M̃Nnτ , ∀n ∈ [N ], in Lemma 3.1. In the following theorem, we prove a regret bound

(proof in Appendix D.3) for OS-BASS in the non-stationary setting and with the choice of AdSwitch
as the Base.
Theorem 4.2. The regret of OS-BASS in the sparse non-stationary setting with AdSwitch as Base

and exploration probability γn =
(

M̃K log K
N

)1/3
is

RT = Õ
(

(M̃4KN2 log K)1/3τ + M̃N
√

M̃τ
)

. (7)

Looking at the regret bound in (7), we notice that for small N (large τ), the baseline rate Õ(N
√

Kτ)
(the rate for standard non-stationary bandit algorithms, e.g., AdSwitch) cannot be improved. Thus,
we are mainly interested in the regime of large number of switches N and small number of opti-
mal arms M . If N ≥

(
T 3(K log K)2/M̃

)1/5 and M ≤ (K log K)1/3, then the regret in (7) is of
Õ(M̃N

√
M̃τ), which improves upon the baseline rate Õ(N

√
Kτ). However, in the case of small N ,

the baseline rate can be better than our bound, and thus, the learner does not need to identify the
best M arms and should simply play a standard non-stationary bandit algorithm. At the extreme
case N = O(1), i.e., only a few changes in the environment, the regret bound Õ(N

√
Kτ) cannot be

improved. On the other hand, when N is large compared to T , it is easy to establish a O(N
√

Mτ)
lower bound, and thus, our Õ(MN

√
Mτ) bound is optimal up to a factor of M . Closing this gap

remains an open question. We can improve the bound in certain regimes by further tuning the
parameters, which we discuss in more details in Appendix D.3.

9The superscript o in OGo stands for the “opaque" feedback model in Streeter and Golovin (2007).

2471



RLJ | RLC 2024

5 Experiments

In this section, we study the performance of our algorithms on synthetic environments. The exper-
iments include: 1) G-BASS 10 from Section 2, 2) Algorithm 2, OS-BASS, 3) MOSS which is agnostic
MOSS (Audibert and Bubeck, 2009) running independently on the tasks without any knowledge
of the optimal M -subset, 4) Opt-MOSS, an oracle MOSS that plays only the arms in the optimal
M -subset, and its performance constitutes an empirical lower bound on the achievable regret, and
5) OGo, which is OS-BASS with optimized γ. Error bars are ±1 standard deviation computed over 5
independent runs.

We study the impact of four variables on the regret: number of tasks N , length of each task τ ,
number of arms in each task K, and the optimal subset size M . To do so, we fix a default setting
of (N, τ, K, M) and for each experiment we let one of these parameters vary. The problems are
generated by an oblivious adversary (see Appendix F for further details).

Figure 1 demonstrates the impact of M and N . Further experiments in Appendix F illustrate the
effect of all four variables including τ and K. Under Assumption 2.1 (left two plots), G-BASS outper-
forms all methods with a regret close to that of the oracle Opt-MOSS. It also outperforms OS-BASS by
using its effective BAI module. Without this assumption, OS-BASS outperforms the other algorithms,
while G-BASS naturally has high variance.

Figure 1: Default setting: (N, τ, K, M) = (500, 4500, 30, 10). In the right two plots τ = 450. Left to
right: Regret as a function of N and M under Assumption 2.1. Regret as a function of N and M
without Assumption 2.1.

6 Discussion and future work

We study a problem of N tasks of K-armed bandits arriving sequentially in the sparse meta-
learning and non-stationary bandits settings. We design an algorithm based on a reduction to
bandit submodular optimization, and prove that its regret with respect to the best M -subset is
Õ(NM

√
Mτ +(M4KN2 log K)1/3τ), where τ = T/N . Under additional identifiability assumptions,

we develop a meta-learning algorithm with an improved, essentially optimal regret.

In our most general solution, we assume the number of tasks N is known, and M is given as input
to the algorithm. Designing an algorithm with a regret bound that holds for unknown N and
simultaneuously for all M is left for further work.
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A Submodular functions

In this section, we verify that f(S) .= f(r, S) = maxa∈S r(a) is a submodular function. It is obviously
monotone. We have

f(S1 ∪ S2 ∪ {a})− f(S1 ∪ S2) ≤ f(S1 ∪ {a})− f(S1)

This is because (1) if r(a) ≤ f(S1) then the inequality holds as f(S1 ∪ {a}) = f(S1) and f(S1 ∪
S2 ∪ {a}) = f(S1 ∪ S2). (2) if r(a) > f(S1) then (2.i) if r(a) > f(S1 ∪ S2) the inequality holds as
r(a)−f(S1∪S2) ≤ r(a)−f(S1) ⇐⇒ f(S1∪S2) ≥ f(S1), which holds by monotonicity of f , (2.ii) if
r(a) ≤ f(S1∪S2) then f(S1∪S2∪{a}) = f(S1∪S2) and the inequality simplifies to 0 ≤ r(a)−f(S1)
which holds as we assumed r(a) > f(S1) in (2).

B Proofs for Section 2

B.1 Proof of Theorem 2.3

The proof relies on solving the min-max problem in (4). First, we consider the case that the best-
arm-identification can be performed with probability 1 (i.e., δ = 0 in the efficient identification
assumption). From symmetry, it is easy to see that Vn(In) only depends on the size of In, and not
the actual arms in In. Therefore, to simplify notation and emphasize the dependence on the number
of discovered optimal arms, we use below Vn(|In|) := Vn(In). Let nM = argminn{|In| = M} be the
first round when all optimal arms have been discovered. Then from any n > nM , the adversary no
longer can reveal new arms (q = 0), and the learner should no longer explore (p = 0), and so

∀n ≥ nM , Vn(M) = (N − n)Chit.

Denoting s = |In|, the min-max optimization objective in (4) can be written as

L(q, p) = Chit + p(Cinfo −Chit) + Vn+1(s)+
q(1− p)(Cmiss −Chit)− p

[
q1(Vn+1(s)

−Vn+1(s + 1)) + . . .

+qM−s(Vn+1(s)− Vn+1(M))
]

,

where qi denotes the probability that the environment reveals i optimal arms in the round, and
q =

∑M−s
i=1 qi. Given that Vn+1(s) − Vn+1(s + 1) < · · · < Vn+1(s) − Vn+1(M), the maximizing q

is such that qi = 0 for i > 1 and q = q1. Using this, the saddle point can be obtained by solving
∂L(q, p)/∂q = 0 and ∂L(q, p)/∂p = 0:

p = pn = Cmiss −Chit

Cmiss −Chit + Vn+1(s)− Vn+1(s + 1)

qn = Cinfo −Chit

Cmiss −Chit + Vn+1(s)− Vn+1(s + 1) . (8)

Plugging these values in (4), we get

Vn(s) = Vn+1(s) + Chit + (Cinfo −Chit)(Cmiss −Chit)
Cmiss −Chit + Vn+1(s)− Vn+1(s + 1) .

Given N and M , the policy of the learner and the adversary can be computed by solving the above
recursive equation. Given that for any s < M , Vn(s + 1) ≥ Vn+1(s + 1) + Chit,

Vn(s)− Vn(s + 1) ≤ Vn+1(s)− Vn+1(s + 1) + (Cinfo −Chit)(Cmiss −Chit)
Cmiss −Chit + Vn+1(s)− Vn+1(s + 1) .
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Let Gn(s) = Vn(s)− Vn(s + 1) ≥ 0 be the cost difference in state s relative to state s + 1. We have

Gn(s) ≤ Gn+1(s) + (Cinfo −Chit)(Cmiss −Chit)
Cmiss −Chit + Gn+1(s) , (9)

and indeed by a telescopic argument,

RT −NBτ,M = V0(0)− V0(M) =
M−1∑

s=0
(V0(s)− V0(s + 1)) =

M−1∑

s=0
G0(s) .

The proof is completed by bounding G0(s) by backward induction on n ≤ N :

GN−n(s) ≤
√

2(Cinfo −Chit)(Cmiss −Chit)n .

The proof of this inequality relies on standard algebraic manipulations that can be found in Ap-
pendix B.2. When the BAI routine returns the best arm with probability at least 1 − δ/N , with a
simple union bound argument, the probability that In ever contains wrong elements is bounded by
δ and the above derivations again hold.

B.2 Complement to the proof of Theorem 2.3

We are left to prove that

Gn(s) ≤ Gn+1(s) + (Cinfo −Chit)(Cmiss −Chit)
Cmiss −Chit + Gn+1(s) , (10)

given in (9) implies that for any n ≤ N ,

Gn(s) ≤
√

2(Cinfo −Chit)(Cmiss −Chit)(N − n) . (11)

We proceed by (backward) induction. First, by definition, GN (s) = VN (s) − VN (s + 1) = 0 for all
s, thus (11) holds for n = N . Next, assume that (11) holds for {N, N − 1, . . . , n + 1}, and we show
that it also holds for n.

Consider positive constants b ≥ a and consider the function h(z) = z + ab
b+z defined on [0, c] for some

c > 0. Then h′(z) = 1− ab/(b + z)2 ≥ 0. Therefore, h is maximized at z = c. Since the right-hand
side of (10) is of the form h(Gn+1(s)) with a = Cinfo −Chit and b = Cmiss −Chit, which indeed
satisfy b ≥ a. By this argument, the induction assumption, and 0 ≤ Gn+1(s) ≤

√
ab(N − n− 1) by

the induction hypothesis, we obtain that
Gn(s) ≤

√
2(Cinfo −Chit)(Cmiss −Chit)(N − n− 1)

+ (Cinfo −Chit)(Cmiss −Chit)
Cmiss −Chit +

√
2(Cinfo −Chit)(Cmiss −Chit)(N − n− 1)

=
√

2ab(N − n− 1) + ab

b +
√

2ab(N − n− 1)
(12)

It remains to show that the right-hand side above is bounded from above by
√

2ab(N − n). This
follows since

√
2ab(N − n)−

√
2ab(N − n− 1) =

√
2ab√

N − n +
√

N − n− 1

= ab√
ab(N − n)/2 +

√
ab(N − n− 1)/2

≥ ab

b +
√

2ab(N − n− 1)
where the last inequality holds because

b +
√

2ab(N − n− 1) ≥
[√

ab +
√

ab(N − n− 1)/2
]

+
√

ab(N − n− 1)/2
≥
√

ab(N − n)/2 +
√

ab(N − n− 1)/2

(where we used that 1 +
√

z ≥
√

z + 1 for z ≥ 0). Thus, Gn(s) ≤
√

2ab(N − n), proving the
induction hypothesis (11) for n.

2477



RLJ | RLC 2024

B.3 Proof of Theorem 2.4

The proof relies on the analysis of the optimization problem defined as in Eq. (4) with pn = p̂n,|Sn| =√
|Sn|Kτ/(nBτ,K) (no minimization over the exploration probability of the learner in task n). As in

the proof of Theorem 2.3, we assume that the best arm identification is successful, and the extension
to δ ̸= 0 can be done the same way. After some algebraic manipulation, similarly to the proof of
Theorem 2.3, the optimization objective can be written as

L(q) = Vn+1(Sn) + Bτ,|Sn| + p̂n,|Sn|(Bτ,K −Bτ,|Sn|)
+ q

{
(1− p̂n,|Sn|)(τ −Bτ,|Sn|)− p̂n,|Sn|(Vn+1(Sn)− Vn+1(S′

n))
}

where S′
n is the new greedy subset selected by the learner in time step n + 1 if S∗

n ∩ Sn = ∅ and
the learner chooses to explore at time n (we use the notation S′

n instead of Sn+1 to emphasize that
this corresponds to the aforementioned choices of the learner and the adversary). Given that L is
linear in q, the optimal adversary choice is either q = 0 or q = 1 (similarly as in Theorem 2.3, it is
suboptimal for the adversary to reveal multiple optimal arms). We have

q =
{

0 if (1− p̂n,|Sn|)(τ −Bτ,|Sn|)− p̂n,|Sn|(Vn+1(Sn)− Vn+1(S′
n)) ≤ 0 ,

1 otherwise

When q = 0, Vn(Sn) = Vn+1(Sn) + Bτ,|Sn| + p̂n,|Sn|(Bτ,K −Bτ,|Sn|), and given that |Sn| ≤M ′, the
total contribution of these rounds to the regret is bounded by

NBτ,M ′ +
√

τM ′KN

Bτ,K
Bτ,K .

Next, consider the rounds where q = 1. Among these rounds, consider rounds where the adversary
chooses a particular arm a ∈ S∗ and the learner chooses to explore (Exr). This arm is not added to
the future Ext subset of the learner if instead another arm is used to cover this round. This means
that after at most K such rounds, the learner adds a to the Ext subset. Since the learner’s regret
in the exploration rounds is Bτ,K , in these rounds the cumulative regret is bounded by MKBτ,K .
Since the random choices made by the learner and the adversary are independent in the same round,
we discover the first arm in at most K/p̂N,1 tasks in expectation, the second in at most K/p̂N,2 tasks
in expectation, and so on. Thus, since the size of our cover is at most M ′, we get

K
M ′∑

s=1

1
p̂N,s

=
√

KNBτ,K

τ

M ′∑

s=1

1√
s
≤ 2
√

M ′KNBτ,K

τ
.

The adversary reveals all positions after 2
√

M ′KNBτ,K

τ such tasks in expectation where the adver-
sary’s choice is q = 1. If in these tasks the learner chooses to exploit, it can suffer a regret τ , leading
to a total expected regret of at most 2

√
M ′KNBτ,Kτ . Thus, the total regret of rounds with q = 1

is bounded by

2
√

M ′KNBτ,Kτ + MKBτ,K .

Therefore,

RT = V0(∅) ≤ NBτ,M ′ + MKBτ,K + 3
√

M ′KτBτ,KN .

2478



RLJ | RLC 2024

C Proof of Lemmas 3.1 and 4.1

We have that

RT = sup
(rn)N

n=1, (an)N
n=1 : |{an}N

n=1|≤M

E

[
N∑

n=1

τn∑

t=1
(rn(an)− rn(An,t))

]

= sup
r1,...,rN

∈[0,1]K

max
S∈S

E

[
N∑

n=1

Nn∑

u=1

τn,u∑

t=1
(max

a∈S
(rn,u(a)− rn,u(An,u,t))

]
(S is defined in Section 3.1)

= sup
r1,...,rN

∈[0,1]K

max
S∈S

E

[
N∑

n=1

Nn∑

u=1

(
τn,u∑

t=1
(max

a∈S
rn,u(a)− max

a∈Sn

rn,u(a)) +
τn,u∑

t=1
(max
a∈Sn

rn,u(a)− rn,u(An,u,t))
)]

≤ sup
(fn,u∈F)n∈[N],u∈[Nn]

max
S∈S

E

[
N∑

n=1

(
Nn∑

u=1
τn,u(fn,u(S)− fn,u(Sn)) + τεn

)]

= sup
f1,··· ,fN ∈F

max
S∈S

E

[
N∑

n=1
(fn(S)− fn(Sn) + Bτ,Nn,M )

]
.

D Proofs for Section 3.2

First, we present the relevant results from Streeter and Golovin (2007) with appropriate modifica-
tions. We start with the regret analysis of the OG algorithm, which is designed to solve the online
submodular maximization in the full feedback model.

D.1 The OG algorithm

For a submodular function g, consider an ordered set of actions S̄ = ⟨ā1, ā2, · · · ⟩ that satisfies the
following greedy condition for any j:

g(S̄i ∪ āi)− g(S̄i) ≥ max
a∈[K]

{g(S̄i ∪ a)− g(S̄i)} − αi, (13)

where αi are some positive error terms. Let S̄0 = ∅, S̄i = ⟨ā1, ā2, · · · , āi−1⟩, and for a sequence of
actions S ⊂ [K], let S⟨M⟩ be the set of actions in S truncated at the M ’th action. The following
result shows near-optimality of S̄ as constructed above. Recall that M̃ = ⌈M log N⌉.
Theorem D.1 (Based on Streeter and Golovin (2007), Theorem 6). Consider the greedy solution
in Equation (13). Then

g(S̄⟨M̃⟩) >

(
1− 1

N

)
max
S∈S

g(S⟨M⟩)−
M̃∑

j=1
αi .

Proof. Let C∗ = maxS∈S g(S⟨M⟩) and for any j let ∆j = C∗ − g(S̄j). Then, by Fact D.2 below, we
have C∗ ≤ g(S̄j) + M(sj + αj). Therefore, ∆j ≤ M(sj + αj) = M(∆j −∆j+1 + αj) which means
∆j+1 ≤ ∆j(1− 1

M ) + αj . Unrolling this M̃ times (and noting 1− 1
N < 1) gives

∆M̃+1 ≤ ∆1

(
1− 1

M

)M̃

+
M̃∑

j=1
αj

< ∆1
1
N +

M̃∑

j=1
αj ≤ C∗ 1

N +
M̃∑

j=1
αj .

This concludes the proof since C∗ − g(S̄M̃+1) = ∆M̃+1 and g(S̄M̃+1) = g(S̄⟨M̃⟩).
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Algorithm 3 OG algorithm
1: Input: Subset size M , Expert algorithms E1, · · · , EM̃ ;
2: for n ∈ [N ] do
3: Let Sn,0 = ∅
4: for j ∈ {1, · · · , M̃} do
5: Let action an

j ∈ [K] be the choice of expert Ej

6: Let Sn,j ← Sn,j−1 ∪ {an
j }

7: end for
8: Play subset Sn and observe function gn.
9: for j ∈ {1, · · · , M̃} and any a ∈ [K] do

10: Let xn
j,a ← gn(Sn,j−1 ∪ {a})− gn(Sn,j−1)

11: Expert Ej receives payoff vector (xn
j,a)a∈[K]

12: end for
13: end for

Fact D.2 (Streeter and Golovin (2007), Fact 1). For any subset of arms S, and any positive integer
j, and any t > 0, we have g(S⟨t⟩) ≤ g(S̄j) + t(sj + αj) where sj = g(S̄j+1)− g(S̄j).

Proof. The proof is akin to Fact 1 of Streeter and Golovin (2007) and it goes g(S⟨t⟩) ≤ g(S̄j∪S⟨t⟩) ≤
g(S̄j)+t(sj +αj). The first inequality holds because g is a monotone function. The second inequality
is by definition of sj and Condition 1, (Streeter and Golovin, 2007, Lemma 1) – for any submodular
function g, and any S1, S ∈ S, g(S1∪S)−g(S1)

|S| ≤ maxa∈A g(S1∪{a})−g(S1) and we replace S1 ← S̄j ,
S ← S⟨t⟩, so |S| = t.

Consider a sequence of submodular functions g1, · · · , gN for a fixed N ∈ N. Define the coverage
regret of a submodular maximization policy by

Rcoverage(N) :=
(

1− 1
N

)
max
S∈S

N∑

n=1
gn(S⟨M⟩)−

N∑

n=1
gn(Sn) .

Algorithm 3 is the OG algorithm of Streeter and Golovin (2007) for the full feedback model modified
for our setting with M̃ experts. In this algorithm, N is the number of rounds (analogous to seg-
ments/tasks). The algorithm uses a set of experts and each expert is a randomized weighted majority
(RWM) algorithm (Littlestone and Warmuth, 1994). See Chapter 4.2 of Cesa-Bianchi and Lugosi
(2006) for more information. The following lemma connects the coverage regret of the OG algorithm
and the regret of the experts.
Lemma D.3 (Lemma 3 of Streeter and Golovin (2007)). Let Gj(N) be the cumulative regret of
expert Ej in OG algorithm, and let G(N) =

∑M̃
j=1 Gj(N). Then, Rcoverage(N) ≤ G(N).

Proof. As we will show, the OG algorithm is an approximate version of the offline greedy subset
selection, defined by Equation (13), for function g = 1

N

∑N
n=1 gn. First, let’s view the sequence of

actions selected by Ej as a single “batch-action” ãj , and extend the domain of each gn to include
the batch-actions by defining gn(S ∪{ãj}) = gn(S ∪{an

j }) for all S ∈ S. Thus, the online algorithm
produces a single set S̃ = {ã1, ã2, · · · , ãM̃}. By definition we have

Gj(N)
N

= max
a∈[K]

(
g(S̃⟨j−1⟩ ∪ {a})− g(S̃⟨j−1⟩)

)
−
(
g(S̃⟨j−1⟩ ∪ {ãj})− g(S̃⟨j−1⟩)

)
,

where S̃⟨j⟩ is S̃ truncated at j’th action. Thus the OG algorithm simulates the greedy schedule (13)
for function g, where the j’th decision is made with additive error αj = Gj(N)

N . By Theorem D.1
and the fact that function g is submodular, we get that Rcoverage(N) ≤∑M̃

j=1 Gj(N) = G(N).
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Algorithm 4 OGo algorithm
1: Input: Subset size M , Expert algorithms E1, · · · , EM̃ , Probabilities of exploration {γn}N

n=1;
2: for n ∈ [N ] do
3: Observe gn

4: For i ∈ [M̃ ], let ai be the choice of Ei

5: Set Sn = {a1, · · · , aM̃}
6: With prob. γn, En = Exr, otherwise En = Ext
7: if En = Ext then
8: All experts receive the zero vector as the payoff vector
9: else

10: Choose i ∈ [M̃ ] uniformly at random
11: Choose a new action a′

i uniformly at random
12: Replace i’th element of Sn with a′

i: Sn:i ← {a1, · · · , ai−1, a′
i}

13: Expert Ei receives a payoff vector that is zero everywhere except at position a′
i that has the

value of gn(Sn:i)
14: All other experts receive the zero vector as the payoff vector
15: end if
16: end for

By Lemma 4 of Streeter and Golovin (2007), E[G(N)] = O(
√

M̃N log(K)).

D.2 The OGo algorithm

Algorithm 4 is based on the OGo algorithm of Streeter and Golovin (2007) for the bandit (opaque)
feedback model. This algorithm is very similar to OS-BASS algorithm so we omit the description. The
difference is that in the OS-BASS algorithm, the meta-learner observes the value of the submodular
function up to a noise term εn = (1/τ)Bτ,Nn,M̃ . So we extend the analysis of Streeter and Golovin
(2007) to the case that the observation of the submodular function is corrupted by a noise term.

Lemma D.4. Consider an expert prediction problem with K actions, and let xn
a be the payoff for

action a ∈ [K] in round n. Let E be a an expert algorithm that gets payoff vector (xn
a)a∈[K] in

round n, let en be its action in round n, and let R(N) be its worst-case expected regret over N

rounds: R(N) = maxa

∑N
n=1(xn

a − xn
en

). Let E ′ and Ẽ be the same algorithm but with payoff vectors
(x̂n

a)a∈[K] and (x̃n
a)a∈[K] instead of (xn

a)a∈[K]. These feedbacks are such that E[x̂n
a ] = γnxn

a + δn for
some constant γn ∈ [0, 1] and δn, and

E[x̃n
a ] ∈ [E[x̂n

a − γnε′
n],E[x̂n

a ]]

for some ε′
n ≥ 0. Let un be the action of algorithm Ẽ in round n. Then the worst-case expected

regret of Ẽ is bounded as

max
a

N∑

n=1
(xn

a − xn
un

) ≤ 1
minn γn

R(N) +
N∑

n=1
E[ε′

n] .

Proof. By the regret guarantee of the expert algorithm,

R(N) ≥ max
a∈[K]

N∑

n=1
(x̃n

a − x̃n
un

) .
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Thus, for any a,

R(N) ≥ E

[
N∑

n=1
x̃n

a − x̃n
un
|x̃
]

≥
N∑

n=1
E[x̂n

a − γnε′
n − x̂n

un
]

=
N∑

n=1
E[γnxn

a + δn − γnε′
n − γnxn

un
− δn]

=
N∑

n=1
γnE[xn

a − ε′
n − xn

un
]

≥ min
n

γn

N∑

n=1
E[xn

a − ε′
n − xn

un
] .

Therefore,
1

minn γn
R(N) +

N∑

n=1
E[ε′

n] ≥
N∑

n=1
E[xn

a − xn
un

] ,

and the result follows as the above inequality holds for all a.

The next lemma bounds the coverage regret of the OGo algorithm.

Lemma D.5 (Coverage Regret). Let γn =
(

M̃K log K
N

)1/3
for all n. Assume the jth expert Ẽj in

the OGo algorithm gets a payoff vector (x̃n
a)a∈[K] in round n such that the following holds:

γ′ (gn(Sn:j−1 ∪ {a})− ε′
n) ≤ E[x̃n

a ] ≤ γgn(Sn:j−1 ∪ {a}) .

where γ =
(

M̃K log K
N

)1/3
and γ′ = γ

M̃K
. Then for the sequence of subsets (Sn)N

n=1 chosen by the
OGo algorithm,

Rcoverage(N) ≤ (M̃4N2K log k)1/3 + M̃

N∑

n=1
E[ε′

n] .

Proof. We start with another expert E ′ that gets payoff vector x̂n such that E[x̂n
a ] = γ′gn(Sn−1:j ∪

{a}) for any action a. Then we can write

E[x̂n
a ] = γ′xn

a + δn

for xn
a = (gn(Sn−1:j ∪ {a})− gn(Sn−1:j)) and δn = γ′gn(Sn−1:j), where γ′ = γ

M̃K
. Let NExr be the

number of exploration rounds. Let G′
j(N) be the total regret of expert E ′

j . By Lemma D.4 and the
regret guarantee of the expert algorithm, the total regret of expert E ′

j is bounded as

E[G′
j(N)] ≤ 1

γ′E

√√√√
(

max
a

N∑

n=1
x̂n

a

)
log K

≤ 1
γ′E

√
NExr log K

≤
√

N

γ′ log K ,

where we used Jensen’s inequality and E[NExr] = γ′N in the last step. Let G̃j(N) be regret of expert
Ẽj . We observe that E[x̃n

a ] ∈ [E[x̂n
a−γ′ε′

n],E[x̂n
a ]]. Given that the OGo algorithm takes random actions
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in the exploration rounds, it incurs an extra γ′N regret, and therefore together with Lemma D.4,
we have E[G̃j(N)] ≤ E[G′

j(N)] +
∑N

n=1 E[ε′
n] + γN . By summing over j ∈ [M̃ ],

E




M̃∑

j=1
G̃j(N)


 ≤ M̃

√
N

γ′ log K + M̃
N∑

n=1
E[ε′

n] + γM̃N .

By Lemma D.3 we get

E[Rcoverage(N)] ≤ M̃

√
N

γ′ log K + M̃
N∑

n=1
E[ε′

n] + γM̃N

= M̃

√
N

γ
M̃K log K + M̃

N∑

n=1
E[ε′

n] + γM̃N .

Finally, choosing γ =
(

M̃K log K
N

)1/3
11 yields

M̃

√
N

γ
M̃K log K+γM̃N = (M̃4N2K log k)1/3 .

Therefore

E[Rcoverage(N)] ≤ (M̃4N2K log k)1/3+M̃

N∑

n=1
E[ε′

n] .

D.3 The OS-BASS algorithm for non-stationary bandits

Now we are ready to bound the regret of the OS-BASS algorithm (shown in Algorithm 2).

Theorem 4.2. The regret of OS-BASS in the sparse non-stationary setting with AdSwitch as Base

and exploration probability γn =
(

M̃K log K
N

)1/3
is

RT = Õ
(

(M̃4KN2 log K)1/3τ + M̃N
√

M̃τ
)

. (7)

Proof. Fix a sequence of N tasks with unknown and potentially variable task lengths {τn}n∈[N ].
Let πOS be the policy used by Algorithm 2. By the decomposition in Lemma 3.1 the regret of

11To be more precise, γ = (3/2)
(

M̃K log K
N

)1/3
.
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Algorithm 2 when updated every τ steps (with N = T/τ updates) satisfies the following,

R(πOS, T, N, M̃) = sup
fn∈F

max
S∈S

E
N∑

n=1

(
fn(S)− fn(Sn)) + Bτ,Nn,M̃

≤ sup
fn∈F

max
S∈S

E
[ N∑

n=1

1
N fn(S)

+
N∑

n=1
(1− 1

N )fn(S)−
N∑

n=1
fn(Sn) + Bτ,Nn,M̃

]

≤ Nτ

N
+ τE[Rcoverage] +

N∑

n=1

√
M̃τNn

≤ τ + τE[Rcoverage] +

√√√√NM̃τ

N∑

n=1
Nn (14)

≤ τ + τE[Rcoverage] +
√

NM̃τ2T/τ , (15)

where in Equation (14) we use the Cauchy-Schwarz inequality. For Equation (15) we used∑N
n=1 Nn ≤ 2N = 2T/τ and the inequality in the discussion at the beginning of Section 3.1.

Let εn = Bτ,Nn,M̃ /τ . By Lemma D.5 we can set γ =
(

M̃K log K
N

)1/3
and bound E[Rcoverage] to get

R(πOS, T, N, M̃) ≤ τ + τ

(
(M̃4N2K log k)1/3 + M̃

N∑

n=1
εn

)
+
√

2NM̃T

≤ τ + τ(M̃4N2K log k)1/3 + M̃
√

2NM̃T

= T/N + TN−1/3(M̃4K log K)1/3 + M̃
√

2M̃NT .

Here, the second inequality follows from Cauchy-Schwarz inequality and the same argument as above
for bounding

∑N
n=1 Nn, and the last step is just because τ = T/N .

If N ≥ N1
.=
(

T 3(K log K)2

M̃

)1/5
and M ≤ (K log K)1/3 (large number of changes and small number

of optimal arms), then our regret upper bound is Õ(M̃3/2√NT ), and the regret of OS-BASS improves
upon the Õ(

√
KTN) bound of standard non-stationary bandit algorithms (such as AdSwitch).

If N ≤ N1 and M ≤ (K log K)1/3, and we can obtain an improved bound by using a larger number
of segments. Note that we could replace N with an arbitrary number of segments, N ′, in the

analysis above. By choosing N ′ =
(

T 3(K log K)2

M̃

)1/5
and M ≤ (K log K)1/3 segments, each of size

τ ′ = T/N ′, the bound improves to Õ(M̃7/5(K log K)1/5T 4/5).

If N ≤ N2
.= M̃14/5(T/K)3/5(log K)2/5 (even small number of changes), then

√
KNT ≤

M̃7/5(K log K)1/5T 4/5. In this case, the simple baseline of Õ(
√

KTN) is smaller than our bound,
and the learner should simply play a standard non-stationary bandit algorithm. Notice that N2 ≤ N1
as long as M ≤ K1/3.

E Partial monitoring and bandit meta-learning

Partial monitoring is a general framework in online learning that disentangles rewards and observa-
tions (information). It is a game where the learner has Z actions and the adversary has D actions,
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Algorithm 5 The partial monitoring algorithm
1: Exploration probability p ∈ (0, 1), learning rate η > 0, base costs Cinfo, Chit, Cmiss
2: for n = 1, 2, . . . , N do
3: With probability p, let En = Exr and otherwise En = Ext
4: if En = Exr then
5: Observe the best arms S∗

n of this round and for all i ∈ Ext experts, observe cost Ci,S∗
n

and
let Ĉn(i) = (Ci,S∗

n
−Chit)/p

6: Update exponential weights Qn,i ∝ exp(−η
∑n

τ=1 Ĉn(i)) Suffer cost Cinfo
7: else
8: Sample Sn ∼ Qn−1
9: Suffer (but do not observe) cost Chit if S∗

n ∩ Sn ̸= ∅ and suffer cost Cmiss otherwise
10: end if
11: end for

and it is characterized by two Z ×D matrices (not observed): matrix C maps the learner’s action
to its cost given the adversary’s choice, and matrix X maps the learner’s action to its observation
given the adversary’s choice. In all generality, we consider bandit meta-learning problems with Z +1
learner actions: an Exr action that provides information for a cost Cinfo, and Z other actions that
do not provide information but have a hidden cost Chit or Cmiss depending on whether the chosen
action had low or high cost respectively.

As defined in the introduction, a bandit subset-selection problem is realizable when there is a subset
of size M that contains an optimal arm in all rounds. Otherwise, the problem is called agnostic.

In our bandit subset-selection problem, Z =
(

K
M

)
≤ KM and the adversary can have up to 2K choices

depending on the realizable or agnostic nature of the problem. We have D = M if the problem is
realizable and if the adversary is constrained to picking a unique optimal arm in each round. For
example, let M = 2 and K = 4. There are Z + 1 =

(4
2
)

+ 1 = 7 learner actions and only D = 2
possible choices for the adversary




Exr
{1, 2} = x∗

{1, 3}
{1, 4}
{2, 3}
{2, 4}
{3, 4}




→ C =




Cinfo Cinfo
Chit Chit
Chit Cmiss
Chit Cmiss
Cmiss Chit
Cmiss Chit
Cmiss Cmiss




, X =




1 2
⊥ ⊥
...

...
⊥ ⊥


 .

The symbol ⊥ is used to denote no observations. We use Ci,y to denote the cost of action i ∈
{Exr, x1, . . . , xZ} when adversary chooses a ∈ [D]. Thanks to this reduction, we can leverage the
partial monitoring literature to obtain an algorithm and the corresponding bounds for our problem
as well. We detail this process below. Note that using the vocabulary of online learning, the learner’s
actions are referred to as "experts".

Next, we describe an algorithm based on the Exponentially Weighted Average (EWA) forecaster. The
learner estimates the cost matrix by importance sampling when action Exr is chosen. When Ext
is chosen, the learner samples an expert according to EWA weights that depend on the estimated
cost matrix. The pseudo-code of the method is shown in Algorithm 5.

To analyze the algorithm, we consider the realizable and agnostic cases. In the realizable case, there
a subset of size M that contains an optimal arm in all rounds. In this case, the exponential weights
distribution reduces to a uniform distribution over the subsets that satisfy this condition.
Theorem E.1. Consider the partial monitoring algorithm shown in Algorithm 5. In the agnostic
case, with the choice of p = O

((
C2

miss log Z

C2
infoN

)1/3
)

and η = O

((
log2 Z

CinfoC2
missN2

)1/3
)

, the regret of
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the algorithm is bounded as O((CinfoC2
missN2 log Z)1/3). In the realizable case, with the choice of

p =
√

Cmiss log Z
CinfoN and η = 1, the regret of the algorithm is bounded as O(

√
CinfoCmissN log Z).

Proof. Let function fn : [Z + 1]× [D]→ RZ+1 be defined by

fn(k, Xk,y)i = 1{k = Exr}(Ci,y −Chit) .

Therefore,
∑Z+1

k=1 fn(k, Xk,y)i = Ci,y − Chit. With probability p, let En = Exr and otherwise
En = Ext. Let Cn(i) = Ci,Yn

. Define cost estimator

Ĉn,i = fn(En, XEn,Yn
)i

p
= 1{En = Exr}(Cn(i)−Chit)

p
.

Let Qn be the weights of the EWA forecaster defined using the above costs. For any i, we have
E(Ĉn(i)) = Cn(i)−Chit. Let En be the learner’s decision in round n, that is either Exr or a subset
chosen by EWA, in which case it is denoted by xn. We have

E(Cn(En)) = pCinfo + (1− p)E(Cn(Sn)) .

Let S∗ be the optimal subset. By the regret bound of EWA (Cesa-Bianchi and Lugosi, 2006),

N∑

n=1
Ĉn(Sn)−

N∑

n=1
Ĉn(S∗) ≤ log Z

η
+ η

2

N∑

n=1
∥Ĉn∥2

∞ .

Thus,
N∑

n=1
E(Cn(En))−

N∑

n=1
E(Cn(S∗)) ≤ Cinfo

N∑

n=1
p + log Z

η
+ η

2

N∑

n=1
E(∥Ĉn∥2

∞)

≤ Cinfo

N∑

n=1
p + log Z

η
+ ηC2

miss
2

N∑

n=1

1
p

.

With the choice of p = O((Cmiss/Cinfo)2/3(log1/3 Z)/N1/3) and η =
O((log2/3 Z)/(C2/3

missC1/3
infoN2/3)), the regret of the partial monitoring game is bounded as

O(C2/3
missC1/3

infoN2/3 log1/3 Z). The regret scales logarithmically with the number of experts, and is
independent of the number of adversary choices.

Next, we show a fast O(
√

N) rate when the optimal expert always has small cost. More specifically,
we assume that Cn(S∗) = Chit for the optimal expert S∗. The fast rate holds independently of the
relative values of Chit, Cinfo, and Cmiss. The algorithm can also be implemented efficiently.

Let ℓ̂n = pĈn/Cmiss, which is guaranteed to be in [0, 1]. Notice that
∑N

n=1 ℓ̂n(S∗) = 0 as Cn(S∗) =
Chit by assumption. In this case, the regret of EWA is known to be logarithmic:

N∑

n=1
ℓ̂n(Sn)−

N∑

n=1
ℓ̂n(S∗) = O(log Z) .

Thus,
N∑

n=1
E(Cn(En))−

N∑

n=1
E(Cn(S∗)) ≤ Cinfo

N∑

n=1
p + Cmiss log Z

p
.

Therefore, with the choice of p =
√

Cmiss log Z
CinfoN ,

N∑

n=1
E(Cn(En))−

N∑

n=1
E(Cn(S∗)) ≤ O(

√
CinfoCmissN log Z) .
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The meta-regret scales logarithmically with the number of experts, and is independent of the number
of adversary choices. Given that the optimal expert is known to have small loss in all rounds,
the learner can eliminate all other experts. Therefore, the EWA strategy reduces to a uniform
distribution over the surviving experts.

E.1 Proof of Theorem 2.5

E-BASS is constructed as a special case of the EWA algorithm above, where the sampling distribution
at each Ext round is simply the uniform distribution over the surviving experts. The proof of
Theorem 2.5 is therefore a direct consequence of the more general analysis done for the EWA
forecaster in Theorem E.1 above.

Proof. The BAI algorithm might return a number of extra arms in addition to the optimal arm.
However, since with high probability the optimal arm is always in the surviving set, the cost estimate
for the optimal subset is always zero, and costs of all other subsets are under-estimated. Therefore,
if Sn is the expert (subset) selected in task n and S∗ is the optimal subset, by fast rates of the
previous section,

N∑

n=1
E(Cn(Sn))−

N∑

n=1
E(Cn(S∗)) ≤ O(

√
CinfoCmissN log Z) .

Given that with high probability the optimal arm is always in the surviving set and therefore
Cn(S∗) = Chit,

RT =
N∑

n=1
E

(
τrn(a∗

n)−
τ∑

t=1
rn(An,t)

)
≤

N∑

n=1
E(Cn(Sn)) ≤ NChit + O(

√
CinfoCmissN log Z)

= N
√

Mτ + O(
√

CinfoCmissN log Z)
= N
√

Mτ + O(τ3/4K1/4√NM log(K) ,

where the first inequality holds by the fact that E(Cn(Sn)) is an upper bound on the regret for task
n.

F Further experimental details and results

This section consists of further experimental details and results. We use the code in the follow-
ing repository: https://anonymous.4open.science/r/meta-bandit-760E/README.md. We used
a server machine with the following configuration: OS: Ubuntu 18.04 bionic, Kernel: x86_64 Linux
4.15.0-176-generic, CPU: Intel Core i9-10900K @ 20x 5.3GHz, GPU: GeForce RTX 2080 Ti, RAM:
128825 MiB, DISK: 500 GB SSD.

F.1 Setup

In each experiment, the adversary first samples the size M set of optimal arms, S∗ := ∪nS∗
n,

uniformly at random (without replacement) from [K]. The mean reward of task n, rn ∈ R = [0, 1]K ,
is then generated according to the experiment setup as described in the following.

The optimal arm: We categorize the experiments into three settings based on how the optimal
arm is generated: i) non-oblivious adversarial, ii) oblivious adversarial, and iii) stochastic.

i) In the adversarial setting with a non-oblivious adversary, the adversary peeks into the learner’s set
of discovered arms, Sn, at the end of each task. With probability qn (see Equation (8)), the adversary
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chooses a new optimal arm uniformly at random from [K]\Sn. Otherwise, the next optimal arm is
chosen uniformly at random from Sn.

ii) The oblivious adversary is applicable against any learner even if the learner does not maintain a
set of discovered arms. Here the adversary simulates an imaginary G-BASS algorithm with a minimax
optimal pn (see Equation (8)). Then it samples new optimal arms and generates the reward sequence
with respect to this imaginary learner. This is the same as the non-oblivious adversary except here
the adversary plays against an imaginary learner.

iii) In the stochastic setting, for each task n, the environment samples the optimal arm uniformly
at random from the optimal set, i.e., a∗

n ∼ Uniform(S∗).

Note that in the non-oblivious setting, the rewards are generated at the start of each task, according
to the learner’s discovered arms. In the other settings, however, rewards of all the tasks could be
generated at the very beginning, independently of the learner.

The sub-optimal arms (min gap): Based on the discussion after Assumption 2.1, the minimum
gap for the assumption to hold is

rn(a∗)−max
a ̸=a∗

rn(a) ≥ ∆ ,

where ∆ = Θ(
√

K log(N/δ)/τ). After generating the optimal arm, depending on the setting, the
rewards of other arms are generated in two ways: 1) with a minimum gap condition uniformly
at random in [0, rn(a∗

n) − ∆) and 2) without a minimum gap condition uniformly at random in
[0, rn(a∗

n)]. In the second case, the mean reward is generated such that the gap condition is violated
by at least 1 sub-optimal arm.

Task length and PE: As we know, task length plays an important role in regard to PE perfor-
mance. In the case where Assumption 2.1 holds, we set the phase length based on ∆ and make sure
τ is longer than the length of the first phase of PE. For more details, see the analysis of PE (Auer
and Ortner, 2010) in exercise 6.8 (elimination algorithm) of Lattimore and Szepesvári (2020).

Assumption 2.1: We have two types of experiments considering Assumption 2.1: i) In the exper-
iments where Assumption 2.1 is supposed to hold, we make sure the task length is longer than the
first phase of PE and the minimum gap condition holds (case 1 in the discussion on the min gap).
ii) In the tasks where Assumption 2.1 is supposed to be violated, we use case 2 in the discussion on
the min gap above with a small τ so that PE fails.

F.2 Further experiments

Next, we report the experimental results under different conditions. Error bars are ±1 standard
deviation, computed over 5 independent runs.

Figure 2 shows the result when Assumption 2.1 holds, where G-BASS almost matches the Opt-MOSS,
outperforming the other algorithms. Figure 4 shows the results when Assumption 2.1 does not hold.
In this case, we observe that OS-BASS outperforms the other algorithms and is close to Opt-MOSS.
Here G-BASS is less effective and sometimes has large variance due to the failure of PE.

Figure 5 demonstrates the performance of E-BASS when Assumption 2.1 holds. We can see that
E-BASS outperforms all other baselines. For large M , G-BASS seems to be more effective than the
others. Figure 6 compares E-BASS to the other algorithms when Assumption 2.1 does not hold.
OS-BASS is competitive with E-BASS and outperforms it for larger M . Comparing Figure 5 and
Figure 6, we can see that G-BASS and E-BASS perform better if Assumption 2.1 holds.

Figures 7 and 8 show the experimental results with a non-oblivious adversary. We observe similar
trends as in the previous experiments.
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Figure 2: Oblivious adversarial setting with Assumption 2.1. Default setting: (N, τ, K, M) =
(500, 4500, 30, 10). G-BASS is near-optimal on all tasks. Left to Right: Regret as a function of
N , τ , K, and M .

Figure 3: Oblivious adversarial setting where assumption 2.1 is almost satisfied (only the minimum
gap condition violated, large task length). Default setting: (N , τ , K, M) = (1000, 1600, 40, 10).
Left to Right: Regret as a function of N , τ , K, M .

Figure 4: Oblivious adversarial setting without assumption 2.1 (no minimum gap and small task
length). Default setting: (N, τ, K, M) = (500, 450, 30, 10). OS-BASS is near-optimal on all tasks and
outperforms OGo. Left to Right: Regret as a function of N , τ , K, M .

Figure 5: E-BASS’s performance in the oblivious adversarial setting with Assumption 2.1. Default
setting: (N , τ , K, M) = (400, 2000, 11, 2). E-BASS outperforms other algorithms. Left to Right:
Regret as a function of N , τ , K, M .

The results for the stochastic setting are shown in Figures 9 and 10. In Figure 9 it seems that
G-BASS performs the best while MOSS is closer to the oracle Opt-MOSS. However, in Figure 10 OS-BASS
outperforms G-BASS and the other algorithms and gets closer to the oracle baseline. We can see in
the stochastic setting the variance is higher than the adversarial setting.

In all the experiments, OS-BASS outperforms OGo which confirms the choice of γ and τ in our analysis
for OS-BASS.
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Figure 6: E-BASS’s performance in the oblivious adversarial setting without assumption 2.1 (no
minimum gap and small task length). Default setting: (N , τ , K, M) = (400, 100, 11, 2). E-BASS
and OS-BASS win all the settings, while MOSS is competitive. Left to Right: Regret as a function of
N , τ , K, M .

Figure 7: The non-oblivious adversarial setting, where Assumption 2.1 holds. Default setting:
(N, τ, K, M) = (500, 4500, 30, 10). G-BASS is near-optimal on all tasks. Left to Right: Regret as a
function of N , τ , K, M .

Figure 8: Non-oblivious adversarial setting without assumption 2.1 (no minimum gap and small
task length). Default setting: (N, τ, K, M) = (500, 450, 30, 10). OS-BASS mostly outperforms the
other method. G-BASS has a high variance as PE fails in this experiment. Left to Right: Regret as
a function of N , τ , K, M .

Figure 9: Stochastic setting, where Assumption 2.1 holds. Default setting: (N, τ, K, M) =
(500, 4500, 30, 10). G-BASS and MOSS have the best performance in all the experiments. Left to
Right: Regret as a function of N , τ , K, M .

G Other Related Work

Slate bandits. The reduction in Section 3.1 is an instance of slate bandit problems with a
non-separable cost function (Dimakopoulou et al., 2019; Rhuggenaath et al., 2020; Kale et al.,
2010). Rhuggenaath et al. (2020) study the problem in the stochastic setting, where the reward
parameter is fixed throughout the game. Merlis and Mannor (2019) study a problem that includes
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Figure 10: Stochastic setting without assumption 2.1 (no minimum gap and small task length).
Default setting: (N, τ, K, M) = (500, 450, 30, 10). OS-BASS has the best performance in all experi-
ments. Left to Right: Regret as a function of N , τ , K, M .

the probabilistic maximum coverage as a special case. They obtain problem-dependent logarithmic
and problem-independent O(

√
N) regret bounds. However, the feedback structure in this work is

richer than our setting. Applied to our problem, they assume that in each segment, for each item
and task pair, a random variable is observed whose expected value is the probability that the item
is the optimal arm in that task.

Bandits with very large action spaces. As K grows very large, our bandit meta-learning
problem is akin to infinitely many armed bandits (Berry et al., 1997; Wang et al., 2008; Bonald
and Proutiere, 2013; Carpentier and Valko, 2015; Chan and Hu, 2020) and countable-armed ban-
dits (Kalvit and Zeevi, 2020) though these settings do not have a meta-learning aspect.

H Code

The code is available at https://github.com/duongnhatthang/meta-bandit
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Abstract

This paper addresses the problem of synthesizing policies for Markov Decision Pro-
cesses (MDPs) with hard ω-regular constraints, which include and are more general
than safety, reachability, liveness, and fairness. The objective is to derive a pol-
icy that not only makes the MDP adhere to the given ω-regular constraint T with
certainty but also maximizes the expected reward. We first show that there are
no optimal policies for the general constrained MDP (CMDP) problem with ω-
regular constraints, which contrasts with simpler problem of CMDPs with safety
requirements. Next we show that, despite its complexity, the optimal policy can
be approximated within any desired level of accuracy in polynomial time. This
approximation ensures both the fulfillment of the ω-regular constraint with prob-
ability 1 and the attainment of a ϵ-optimal reward for any given ϵ > 0. The
proof identifies specific classes of policies capable of achieving these objectives and
may be of independent interest. Furthermore, we introduce an approach to tackle
the CMDP problem by transforming it into a classical MDP reward optimization
problem, thereby enabling the application of conventional reinforcement learning.
We show that proximal policy optimization is an effective approach to identifying
near-optimal policies that satisfy ω-regular constraints. This result is demonstrated
across multiple environments and constraint types.

1 Introduction

Rewards shape an agent’s behavior, but finding the right reward is generally a hard problem. For
an agent modeled as a Markov Decision Process (MDP), at each step the agent takes an action
and collects a reward, and as its goal is maximizing the accumulated reward, the choice of the
reward defines its optimal behavior. For real world agents facing different costs, objectives, levels
of information, and constraints, the right reward may not be obvious. For example, for a fleet of
autonomous wingmen, a natural reward signal will be the distance to the leading aircraft so that they
are encouraged to keep-up, but at the same time the wingmen should maintain safe separation with
each other and the leader, and there may be other factors like minimizing fuel usage. In practice, the
different components are combined into a single reward with coefficients, and the exact coefficients
are selected via computationally intensive hyper-parameter tuning.

Adding constraints to the agent’s behavior can alleviate some of the above challenges. Now the
agents behavior is defined by maximizing the accumulated reward, while meeting all the specified

Approved for public release: distribution is unlimited. AFRL-2024-3403, 06/26/2024.2492
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constraints. For the real world examples, it is often straightforward to enumerate the hard constraints
like maintaining separation and reaching targets. Introducing constraints lead to the Constrained
MDP (CMDP) framework which adds a penalty function c(s, a) for each state s and action a, a
constraint C(st) = F (c(st, at), . . . , c(sN , aN )), and a threshold C(st) ≤ α (see the book by (Altman,
2021) for a review). Typically, the function F computes the total, expected, or the discounted
penalty over a time horizon, and the constrained optimization problem aims to assure that this
never crosses the threshold. With these types of constraints, however, it is still difficult to compute
the right threshold that guarantees that really an unsafe state will never be visited, or that desired
target states will always be visited.

The motivation for using MDPs for safety-critical systems has therefore led to recent works on
CMDPs with hard constraints and reinforcement learning algorithms for solving them (Yu et al.,
2022). Previous works focus on hard safety constraints and incorporate ideas like recoverable
sets (Miller et al., 2024), control barrier functions (CBF) (Ames et al., 2019), and safety indices
(SI) to solve the constrained optimization problem.

This work studies the problem of CMDPs with hard ω-regular constraints. ω-regular constraints
include safety, reachability, liveness, and fairness properties, and all properties expressible in tem-
poral logics like LTL. Formally, the problem we consider is the following. Given an MDP M , an
ω-regular property T , a reward function r and discount factor γ, the goal is to synthesize a policy
that, among those that satisfy T with probability 1, is the one that maximizes the expected reward
as per (r, γ). We show that, in general, there are no optimal policies for this problem. It is worth
contrasting this observation against the following results: (a) optimal positional policies exist to
maximize discounted rewards (Puterman, 1994), (b) optimal finite memory, pure policies exist to
maximize the probability of satisfying an ω-regular property (Baier & Katoen, 2008), and (c) op-
timal positional policies exist that satisfy a hard invariance constraint and optimize a discounted
reward (Miller et al., 2024).

Our first result shows that the CMDP problem with hard ω-regular constraints can nonetheless be
approximated in polynomial time. That is, given any ϵ > 0, in polynomial time we can synthesize
a strategy that satisfies a given ω-regular property T with probability 1 and earns reward that is
within ϵ of the optimal. The proof of this result relies on showing that both the classes of pure,
finite memory policies and stationary policies, contain a policy that can satisfy the hard constraint
and earn reward that is close to optimal. The existence of special policies may be of independent
interest in finding other algorithmic solutions.

Next, we show that the problem of identifying a policy that has close to optimal reward while meeting
a hard ω-regular constraint, can be reduced to the classical problem of optimizing discounted rewards
(without hard constraints) on a slightly modified MDP. Thus, classical algorithms like reinforcement
learning that solve MDP optimization can be brought to bear to solve the new problem. Our
reduction once again exploits the observation that pure, finite memory policies can achieve close to
optimal rewards while meeting the hard, logic constraint.

We evaluate the effectiveness of a number of reinforcement learning approaches in finding close
to optimal policies that satisfy hard ω-regular constraints. We demonstrate the applicability of
this approach across a number of discrete control examples wherein the policy consists of a choice
between different aircraft controllers, and the continuous control example of optimal orbit transfer
of a satellite. The diversity of these examples shows the broad applicability of our reward-shaping
approach.

Related Work (Tessler et al., 2019) introduce Reward Constrained Policy Optimization (RCPO)
which incorporates constraints as a penalty signal into the reward function and show that this
algorithm converges almost surely to a constraint satisfying policy, under mild assumptions.

The CRL formulation does not capture the fact that hard constraints, like safety, are about worst-
case behavior and not so much about cumulative or discounted costs. This has been addressed in
Reachability constrained RL (RCRL) (Yu et al., 2022), which modifies CRL to impose the safety
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constraints over the entire time horizon, without discounting. It finds a policy π, that maximizes
a cost that combines the usual reward with a penalty for violating safety, with the constraint that
for all recoverable states π never violates safety. Furthermore, (Yu et al., 2022) uses the a version
of Lagrange multiplier method to solve RCRL, which is a standard for CRL.

Traditionally, policies maximizing the probability of satisfying ω-regular properties have been iden-
tified using techniques like linear programming, value iteration, and policy iteration that require
knowledge of the entire state space (Baier & Katoen, 2008). More recently, there has been interest
in using RL to solve this problem (Sadigh et al., 2014; Hahn et al., 2019; Alur et al., 2021; 2023). By
carefully engineering a reward function, these algorithms use RL to synthesize policies that satisfy
ω-regular properties with a probability that is close to maximum. Unlike this paper, these results
do not consider an additional reward that must be maximized along with satisfying a property.

Theoretical results on synthesizing policies that maximize two reward functions with the same dis-
count factor are presented in (Chatterjee et al., 2006). The problem of maximizing the probability
of satisfying multiple ω-regular properties is considered in (Etessami et al., 2008). Both these papers
show that policies that approximate the Pareto curve for multi-objective problems can be synthesized
in polynomial time by reducing the problem to multi-objective linear programming. In comparison,
results in this paper handle the case where one objective that is discounted (i.e., reward) and the
other is not (i.e., probability of satisfying the property). This subtle change introduces challenges
that we overcome.

The results presented in (Voloshin et al., 2022) are closest in spirit to this paper. The problem they
try to solve is following: given a finite state MDP M , an LTL formula φ, and a cost function, find
among the policies that satisfy φ with highest probability, the one the optimizes the cost. The cost
function in (Voloshin et al., 2022) is a hybrid cost function that combines average cost and transient
cost. In contrast, we consider discounted rewards in this paper. Since we require our policy to
satisfy the hard constraint with probability 1, modulo the difference in the cost functions considered
in the two papers, (Voloshin et al., 2022) look at a more general problem. Taking π∗ to denote
the policy that optimizes cost among those that maximize the probability of satisfying φ, (Voloshin
et al., 2022) present a PAC learning algorithm that constructs (with high probability) a policy that
satisfies φ with probability that is close to the probability with which π∗ satisfies φ and has cost that
is close to the cost that π∗ has. Thus, their algorithm does not solve the problem we consider here
because, even if there are policies that satisfy the hard constraint with probability 1, the algorithm
in (Voloshin et al., 2022) will not necessarily find it. Further, the algorithm in (Voloshin et al., 2022)
relies on very strong assumptions about the MDP, unlike the RL-based algorithm presented here.

2 Discounted Reward Markov Decision Processes

Notation. The set of all probability distributions over a finite set S will be denoted by D(S).
For an element s ∈ S, the dirac distribution δs is the probability distribution where δs(s) = 1 and
δs(s′) = 0 for all s′ ̸= s. The support of a distribution µ is the set supp(µ) = {s ∈ S | µ(s) > 0}. A
(finite or infinite) sequence/string/word w over a set S is a sequence of the form w = s0s1 · · · sn−1 · · ·
where si ∈ S is the ith element of the sequence which we denote by w(i). The length of such a word
w, denoted |w|, is the length of the sequence; thus, |w| ∈ N or it maybe infinite. The set of finite of
words over S is denoted as S∗ and the set of infinite words as Sω. For non-empty sets A and B, we
sometimes consider sequences that alternate between A and B. Thus (AB)ω is the set of all infinite
sequences where the elements in the even positions are in A, and the elements in the odd positions
are in B. Similarly, (AB)∗A are finite sequences with even elements in A, odd elements in B, and
the last element in A, while (AB)∗ are finite sequences with even elements in A, odd elements in B
and last element in B (unless the sequence is empty).

Markov Decision Process (MDP). A Markov Decision Process (MDP) is a tuple M =
(Q,A,∆, q0) where Q is a finite set of states, A is a finite set of actions, q0 ∈ Q is the start/initial
state, and the (partial) function ∆ : Q × A ↪→ D(Q) is the transition function. The set of actions
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enabled in q ∈ Q is A(q) = {a ∈ A | ∆(q, a) is defined}. We assume (without loss of generality) that
A(q) ̸= ∅ for every state q ∈ Q. A run ofM is an alternating sequence of states and actions ρ ∈ (QA)ω
such that ρ(0) = q0 and for every i, ρ(2i+ 1) ∈ A(ρ(2i)) and ρ(2i+ 2) ∈ supp(∆(ρ(2i), ρ(2i+ 1))).
The set of all runs of M will be denoted as Runs(M). A finite run is η ∈ (QA)∗Q such that there is
a run ρ ∈ Runs(M) with η as a prefix; the set of all finite runs of M will be denoted as Runsf (M).

Markov Chain. A Markov Chain is an MDP M = (Q,A,∆, q0) such that |A| = 1. A Markov
chain defines a probability measure on Runs(M) as follows. For any finite run η, the cylinder set
Cη is {ρ ∈ Runs(M) | η is a prefix of ρ}. The set of measurable sets over Runs(M) is taken to be the
σ-field generated by the collection of all cylinder sets Cη for any η ∈ Runsf (M). The probability of
Cη is given by µM (Cη) =

∏
i: 2i+2≤|η| ∆(η(2i), a)(η(2i+ 2)) where a is the unique action of M . The

probability over the σ-field is the unique measure that extends the above function on cylinder sets;
we denote that by µM as well. Many natural subsets of runs are measurable, including those defined
by temporal logics like LTL. Given a subset S ⊆ Q, the following collections of runs are measurable.

Safety □S = {ρ ∈ Runs(M) | ∀i. ρ(2i) ∈ S}, i.e., runs where every state is in S

Reachability ♢S = {ρ ∈ Runs(M) | ∃i. ρ(2i) ∈ S}, i.e., runs where some state is in S.

Fairness □♢S = {ρ ∈ Runs(M) | ∀i.∃j > i. ρ(2j) ∈ S}, i.e., runs where infinitely many states are
in S.

As we will describe later, every ω-regular property can be recast as a fairness property for an
appropriate Markov Chain, and it is a generalization of both safety and reachability. Finally, given
a random variable X on Runs(M), we use EM [X] to denote the expectation of X with respect to
the distribution µM .

Policies. Let M = (Q,A,∆, q0) be an MDP. A policy resolves the non-deterministic choices in an
MDP. Formally, a policy (for M) is a function σ : Runsf (M) → D(A) such that for any finite run
η, supp(σ(η)) ⊆ A(η(|η|)). Thus, a policy maps a finite run to a distribution on next actions whose
support is restricted to those that are enabled at the last state of η. An MDP M together with a
policy σ, induces a Markov chain Mσ = (Runsf (M), {a},∆σ, q0) where a ̸∈ A is the unique action
of Mσ and

∆σ(η, a)(ηbq) = σ(η)(b)∆(η(|η|), b)(q).
Informally the states of Mσ are finite runs of M , and the probability of transitioning from a run η
to a run ηbq is given by the probability that σ chooses b at η times the probability of transitioning
to state q from the last state of η on action b. The Markov chain Mσ has countably many states. 1

A policy σ is said to be deterministic if |supp(σ(η))| = 1 for every finite run η, i.e., σ chooses a
single action with probability 1 from every finite run. If a policy is not deterministic, we will say it
is randomized. A policy σ is stationary if the choice of action only depends on the last state, i.e.,
for every η1, η2 ∈ Runsf (M), if η1(|η1|) = η2(|η2|) then σ(η1) = σ(η2). The last type of policies
we consider are finite memory policies, where the decision on the next action is made based on a
finite amount of information stored about the run. To define it formally, let us consider a Myhill-
Nerode type congruence, where we will say for η1, η2 ∈ Runsf (M), η1 ≡σ η2 if for every κ ∈ (AQ)∗,
σ(η1κ) = σ(η2κ). Now a policy σ is finite memory if the equivalence ≡σ has finitely many equivalence
classes. We conclude by observing that if the policy is stationary or finite memory, the Markov chain
Mσ is equivalent (w.r.t. to bisimulation) to a finite state Markov chain. It is useful to explicitly
define this “equivalent finite state” Markov chain when σ is a stationary policy on M ; we will abuse
notation and also call this Mσ. Formally, when σ is stationary, for a MDP M = (Q,A,∆, q0),
Mσ = (Q, {a},∆σ, q0) where a ̸∈ A is the unique action of the Markov chain and

∆σ(q, a)(p) =
∑

b∈A
σ(q)(b)∆(q, b)(p).

1While the Markov chains in this paper will almost always have finitely many states (and finitely many actions),
there will be rare occasions when we consider ones with countably many states (but finitely many actions).

Approved for public release: distribution is unlimited. AFRL-2024-3403, 06/26/2024. 2495



RLJ | RLC 2024

Measures of Sets. Given a measureable set T ⊆ Runs(M) of an MDP M , one classical problem
is to find a policy σ that maximizes the probability of the set T . For the properties considered in
this paper, it is well known that deterministic, stationary policies are sufficient to maximize the
probability of these properties. Moreover, the deterministic and stationary policy that maximizes
the probability, works no matter what we take to be the initial state.
Proposition 2.1 (Lemma 10.102 and Exercise 10.23 of (Baier & Katoen, 2008)). Let M =
(Q,A,∆, q0) be an MDP and S ⊆ Q, a subset of states. Let T ⊆ Runs(M) be one of □S, ♢S
or □♢S. For q ∈ Q, let Mq = (Q,A,∆, q) be the MDP M with initial state q. There is a determin-
istic and stationary policy σ∗ such that for any q ∈ Q µMσ∗

q
(T ) = supσ µMσ

q
(T ).

Discounted Rewards. Rewards model features that we would like policies to satisfy. A reward
structure for an MDP M = (Q,A,∆, q0) is a pair (r, γ), where r : (Q × A) → R is the reward
function and γ ∈ (0, 1) (open interval between 0 and 1) is the discount factor. A reward structure
(r, γ) defines a random variable X(r,γ) on the runs of M that assigns a reward to every run as follows.

X(r,γ)(ρ) =
∑

i∈N
γir(ρ(2i), ρ(2i+ 1)).

The discount factor ensures that the above infinite sum converges. One is usually interested in finding
a policy for an MDP that maximizes the expected value of the random variable defined by the reward
structure. A classical observation about discounted rewards is that for a finite state MDP, there is
a deterministic and stationary policy that maximizes expected reward. Like in Proposition 2.1, the
same positional policy works for all initial states.
Proposition 2.2 (Theorem 6.2.7 of (Puterman, 1994)). Let M = (Q,A,∆, q0) be an MDP and (r, γ)
a reward structure. For q ∈ Q, let Mq = (Q,A,∆, q) be the MDP M with initial state q. There is a
deterministic and stationary policy σ∗ such that for any q ∈ Q EMσ∗

q
[X(r,γ)] = supσ EMσ

q
[X(r,γ)].

Next, it is known that the reward achieved by any policy σ can also be achieved by a stationary (not
necessarily deterministic) policy. Notice that this is a very different statement than Proposition 2.2.
Theorem 2.3 (Theorem 5.5.3 of (Puterman, 1994)). For any MDP M , policy σ, and discount
factor γ ∈ (0, 1), there is a stationary (not necessarily deterministic) policy σ∗ such that for any
reward function r,

EMσ∗ [X(r,γ)] = EMσ [X(r,γ)].

Optimizing Rewards with Hard Constraints. The problem we consider in this paper is to
optimize rewards while meeting hard constraints. Given an MDP M , a rewards structure (r, γ),
and a measureable set of runs T ⊆ Runs(M), the goal is to find a policy σ such that it satisfies
T with probability 1 while maximizing the expected reward. We define the problem as finding the
maximum reward (while satisfying T ) instead of computing an optimal policy, since, as we shall see,
the “optimal” policies may not exist.
Constrained MDP Optimization Problem. Given an MDP M , a reward structure (r, γ), and a mea-
surable set of runs T ⊆ Runs(M) compute supσ:µMσ (T )=1 EMσ [X(r,γ)].

A recent result (Miller et al., 2024) shows that when T = □S for some subset of states S, optimal
policies exist and they can be deterministic and stationary. Furthermore, there is an effective
algorithm to find this optimal policy through reward shaping.
Theorem 2.4 (Miller et al. (2024)). Let M be an MDP and S a subset of states such that there is
a policy σ′ such that µMσ′ (□S) = 1. Then for any reward structure (r, γ), there is reward function
r′ such that

sup
σ

EMσ [X(r′,γ)] = sup
σ:µMσ (□S)=1

EMσ [X(r,γ)].

Additionally there is a deterministic and stationary policy σ∗ such that µMσ∗ (□S) = 1 and

EMσ∗ [X(r′,γ)] = EMσ∗ [X(r,γ)] = sup
σ:µMσ (□S)=1

EMσ [X(r,γ)].
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Theorem 2.4 provides an algorithm to solve the Constrained MDP Optimization Problem for safety
properties — construct the new reward structure (r′, γ), and search for the optimal positional policy
by ignoring the hard safety constraint using any one of the many algorithms for this problem like
linear programming or reinforcement learning.

Unfortunately, Theorem 2.4 doesn’t extend to the other properties we consider in this paper, namely
reachability or fairness. Not only can we not guarantee the existence of an optimal positional policy,
there may in fact be no optimal policy. This can be seen through Example A.1 in the Appendix.

3 Polynomial Time Approximation Algorithm

Constrained MDP Optimization Problem may not have optimal solutions when the hard constraint is
reachability or fairness (Example A.1). The best one can do in such a scenario is to find policies that
are arbitrarily close to optimal, i.e., given ϵ > 0, find a policy that satisfies the hard constraint and
gets expected reward that is within ϵ of the optimal possible reward. The main result of this section
establishes that this problem is in polynomial time. This result applies not only to reachability
and fairness but (unsurprisingly) to all ω-regular hard constraints. Our proof of this result relies
on obtaining something analogous to Propositions 2.1 and 2.2, that “special” policies suffice to
approximate the optimal reward while meeting the hard constraint. Of course, as Example A.1
shows, these special policies cannot be both deterministic and stationary. Instead we show that
the next best thing possible holds: we show that both the classes of stationary (but not necessarily
deterministic) and deterministic, finite memory policies are sufficient.

Our first result shows that deterministic, finite memory policies can approximate the optimal reward
while meeting a hard constraint.
Theorem 3.1. Let M = (Q,A,∆, q0) be an MDP, S ⊆ Q a subset of states, and (r, γ) a reward
structure. Suppose there is a policy σ′ such that µMσ′ (□♢S) = 1. For any ϵ > 0, there is a
deterministic, finite memory policy σ∗ such that µMσ∗ (□♢S) = 1 and

EMσ∗ [X(r,γ)] ≥
(

sup
σ:µMσ (□♢S)=1

EMσ [X(r,γ)]
)

− ϵ.

Proof Sketch. Taking Mq = (Q,A,∆, q) to be the MDP M with initial state q, define Q1 = {q ∈
Q | supσ µMσ

q
(□♢S) = 1}. From Proposition 2.1, we can conclude that these are the states from

which □♢S can be satisfied with probability 1. Let M1 be the MDP restricted to states in Q1,
i.e., M1 = (Q1, A,∆1, q0) where ∆1(q, a) is defined and equal to ∆(q, a) if ∆(q, a) is defined and
supp(∆(q, a)) ⊆ Q1. Let σr be the deterministic and stationary policy that maximizes the reward
due to (r, γ) in M1 as guaranteed by Proposition 2.2, i.e., EMσr

1
[X(r,γ)] = supσ EMσ

1
[X(r,γ)]. Next,

let σg be the deterministic and stationary policy that satisfies □♢S with probability 1 in M1 as
guaranteed by Proposition 2.1. That is, taking M1,q = (Q1, A,∆1, q) to be the MDP M1 with initial
state q, µMσg

1,q
(T ) = 1 for all q ∈ Q1. For k ∈ N, let σk be the policy that follows σr for the first

k-steps, and from the k + 1st step onwards follows σg. σk is deterministic (since both σr and σg
are) and is finite memory since it only needs to count to k to decide which of σr and σg to follow.
Observe that σk stays within Q1, and µMσk (□♢S) = 1 as σg ensures that □♢S is satisfied with
probability 1 from any state in Q1. Finally, one can show that by choosing a sufficiently large k,
σk approximates the optimal reward to within ϵ. Details for why this holds can be found in the full
proof that is in Appendix B.2.

Next, we can show that stationary policies are also rich enough to solve the Constrained MDP
Optimization Problem approximately.
Theorem 3.2. Let M = (Q,A,∆, q0) be an MDP, S ⊆ Q a subset of states, and (r, γ) a reward
structure. Suppose there is a policy σ′ such that µMσ′ (□♢S) = 1. For any ϵ > 0, there is a stationary
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policy σ∗ such that µMσ∗ (□♢S) = 1 and

EMσ∗ [X(r,γ)] ≥
(

sup
σ:µMσ (□♢S)=1

EMσ [X(r,γ)]
)

− ϵ.

Proof Sketch. Let σf be the pure, finite memory policy that approximates the optimal reward as
guaranteed by Theorem 3.1. The desired stationary policy that proves this theorem is the stationary
policy σ∗ corresponding to σf guaranteed by Theorem 2.3. The challenge in completing this proof
is to argue that σ∗ satisfies □♢S with probability 1. Details are in Appendix B.2.

Theorems 3.1 and 3.2 allow us to prove that we can solve the Constrained MDP Optimization
Problem approximately in polynomial time.
Theorem 3.3. Given an MDP M , a property T = □♢S where S is a subset of states, a reward
structure (r, γ), and ϵ > 0 there is a polynomial time algorithm that either outputs “no policy” if
there is no policy σ such that µMσ (T ) = 1 or outputs a policy σ∗ such that µMσ∗ (T ) = 1 and

EMσ∗ [X(r,γ)] ≥
(

sup
σ:µMσ (T )=1

EMσ [X(r,γ)]
)

− ϵ.

Proof is postponed to Appendix B.3.

ω-regular Properties. ω-regular properties are properties of infinite executions that can be rec-
ognized by finite state machines — infinite sequence analogues of the classical regular languages.
They are very general and include not only the properties we consider in this paper (namely, safety,
reachability, and fairness) but also those expressed using temporal logics like LTL. Our observations
on solving the Constrained MDP Optimization Problem for fairness constraints, allow us to conclude
that the same results hold when the hard constraint is an ω-regular constraint. The solution lies
in reducing the ω-regular case to the case of fairness. ω-regular properties are typically described
using finite automata with infinitary acceptance conditions like Büchi, Rabin, parity, etc. (Baier &
Katoen, 2008). To determine the probability of satisfying an ω-regular property T in an MDP M ,
the idea is to take the cross product of an automaton representation of T with M , and compute
the measure of paths that visit certain states infinitely often in the product MDP, i.e., checking
the type of fairness constraint we consider in this paper. For this approach to work, the automata
representing T must be limit deterministic Büchi (Courcoubetis & Yannakakis, 1995). An algorithm
to convert an automaton for a language into a limit deterministic Büchi automaton for the same
language can be found in (Courcoubetis & Yannakakis, 1995). Efficient translations of temporal
logics to limit deterministic automata can be found in (Kini & Viswanathan, 2017a;b).

4 Reward Shaping

The results in Section 3 show that the Constrained MDP Optimization Problem can be approximated
in polynomial time. The algorithm presented in Theorem 3.3 relies on having a full description of
the MDP. In this section, we will present an alternate approach for solving the Constrained MDP
Optimization Problem. We will show that given an instance of Constrained MDP Optimization
Problem, namely, an MDP M , reward structure (r, γ), a ω-regular property T , and ϵ > 0, we
can find another reward function r′ such that finding a policy that optimizes (r′, γ), identifies
a policy that approximately solves the Constrained MDP Optimization Problem instance. The
reduction of approximating Constrained MDP Optimization Problem to classical MDP optimization
not only provides another argument for why the problem is in polynomial, but additionally suggests
bringing to bear other approaches that do not suffer from the challenges of the algorithm outlined in
Theorem 3.3. For example, classical reinforcement learning can be used to solve Constrained MDP
Optimization Problem.
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Let us fix an MDP M = (Q,A,∆, q0), and a reward structure (r, γ). For a fairness property
□♢S, S ⊆ Q, our reduction will rely on assessing a penalty if the policy does not reach certain
target states within a certain number of steps. Thus, we need to work with MDP M where in
addition, we count the number of steps that have been taken. Second, in our modified MDP
after a certain number of steps, whenever we reach a state in S, we will transition to our target
set of states with some small probability, and with the remaining probability continue as before.
These intuitions are captured in the following definition of a new MDP derived from M . For
o < m ∈ N, ξ ∈ (0, 1), and S ⊆ Q, the m-unfolding of M for property □♢S with cut-off o is the
MDP M [m, o, ξ,□♢S] = (Q1, A,∆1, (q0, 0)) where Q1 = Q×{i ∈ N | i ≤ m+2} and ∆1 is defined to
capture the following intuition. M [m, o, ξ,□♢S] has m+2 copies of the states of M . The number of
steps are counted by advancing from a state in one level to a state in the next level. Step counting
stops once the MDP reaches level m + 1 or m + 2. Starting from level o, each time a state in S is
visited, with probability ξ it moves to level m + 2 regardless of what the current level is, and with
probability 1 − ξ, moves to the next level. Formally this is defined as follows. First, ∆1((q, i), a) is
defined iff ∆(q, a) is defined, and when defined it is

∆1((q, i), a)(p, j) =





∆(q, a)(p) if j = i+ 1 ≤ o or i = j = m+ 2
∆(q, a)(p) if q ̸∈ S and either o < j = i+ 1 ≤ m+ 1 or i = j = m+ 1
ξ∆(q, a)(p) if q ∈ S, o ≤ i ≤ m+ 1 and j = m+ 2
(1 − ξ)∆(q, a)(p) if q ∈ S and either o < j = i+ 1 ≤ m+ 1 or i = j = m+ 1
0 otherwise

The MDPs M and M [m, o, ξ,□♢S] are equivalent in the formal sense of bisimulation. They also
have the same set of policies, though they have different state spaces; we will abuse notation and
use the same name for a policy for M and the equivalent one for M [m, o, ξ,□♢S]. We identify a
special class of policies for M [m, o, ξ,□♢S] that we will focus on. A policy σ is k-memory policy for
M [m, o, ξ,□♢S] (for k < o) if it is positional and for every i, j ≥ k + 1, σ(q, i) = σ(q, j). In other
words, the positional strategy σ does not distinguish between two copies of state q in M [m, o, ξ,□♢S]
when the counter value is ≥ k + 1.
Theorem 4.1. Let M = (Q,A,∆, q0) be an MDP, (r, γ) a reward structure for M , and S ⊆ Q a
subset of states. For ϵ > 0, let vϵ = supσ:µMσ (□♢S)=1 EMσ [X(r,γ)] − ϵ 2. For any ϵ > 0, there are
k < o < m ∈ N, ξ ∈ R, threshold τ ∈ R, and reward function r′ on M [m, o, ξ,□♢S] such that the
following property holds. Let σ∗ be a k-memory policy that is optimal with respect to (r′, γ) among
k-memory policies. That is, EM [m,o,ξ,□♢S]σ∗ [X(r′,γ)] = supσ:k-memory EM [m,o,ξ,□♢S]σ [X(r′,γ)] 3.
Then EMσ∗ [X(r,γ)] ≥ vϵ. Further, there is a policy σ such that µMσ (□♢S) = 1 if and only if
EM [m,o,ξ,□♢S]σ∗ [X(r′,γ)] ≥ τ .

Thus Theorem 4.1 says that finding an optimal k-memory policy for M [m, o, ξ,□♢S] (with ap-
propriate parameters) and reward structure (r′, γ), determines if there is a policy σ such that
µMσ (□♢S) = 1 and ϵ-approximately solves the Constrained MDP Optimization Problem. The
proof of Theorem 4.1 is in Appendix B.4.

5 Experimental Evaluation

In this section, we aim to answer the following research questions through experiments:

• Can our algorithm optimize rewards while meeting hard ω-regular constraints (specifica-
tions) via reinforcement learning?

• Which reinforcement learning methods are most effective at reaching optimal policies for
hard ω-regular specifications?

2As always, supa∈A f(a) is taken to be −∞ if A = ∅.
3It is easy to see that such a policy σ∗ exists since the supremum is really a maximum as the number of k-memory

policies is finite.
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• Does our algorithm perform better than other methods with respect to optimizing reward
and minimizing constraint violations?

Benchmarks. To answer these questions, we tested our approach in four benchmarking scenarios.
The first three scenarios extend the work of (Miller et al., 2024), adding ω-regular constraints to
runtime assurance tasks. The fourth benchmark is an optimal orbit transfer task for satellites.
Each benchmark is described by an agent model, an environment, a reward structure, and a target
ω-regular constraint.

Aircraft Scenarios. In the first three scenarios (Figure 1), the agent is an aircraft (or in the Fleet
scenario, a group of two aircrafts) moving in 3D-space with Dubins dynamics. The agent tracks a
leader aircraft through the use of two controllers, S and U. The action space for the agent is discrete,
consisting of the selection of which controller (or combination of controllers in the Fleet example) to
use at a given time step. For the Dubins scenario, the observation space has nine values 4 consisting
of the displacement and velocity difference between the agent and the leader, as well as a counter
of the time elapsed in the scenario. For the Dubins+O scenario, the observation space is expanded
to 27 variables to additionally encode the displacement to and spacial extent of the obstacles. In
the Fleet scenario, the observation space is an extension of the Dubins observation space to include
the displacement and velocity difference between all three aircraft. While it is atypical to include
the episode time in the observation space because this causes the model to lose invariance to time
translation, note that the ω-regular constraints being imposed are time dependent (e.g., reaching a
certain location within a certain time limit). Therefore, it is critical that the models not be time
invariant so that the constraints can be met. This can also be seen as a way of allowing the learning
of the k parameter from Theorem 3.1. The initial reward structure rU aims to encourage the use of
the experimental controller U and provides a reward of 1 during time steps that U is used, and zero
otherwise:

riU (q, ai) =
{

1 if ai = U
0 otherwise.

As these scenarios extend previous scenarios that ensured safety via reward shaping, we refer to
rU shaped for safety as rs, while rω refers to rU shaped for both safety and ω-regular constraint
satisfaction. Both rs and rω depend on the shaped reward value r′: r′ = −rmax

(1−γ)(γT ) , where γ is the
discount factor, rmax is the maximum possible reward for one time step, and T is the maximum
episode length. Then, if the safety constraint is violated or if the ω-regular constraint is not met at
time T , a reward of r′ is applied.

In the Dubins example, the safety constraint is that the agent must always be more than 100 units
from the leader, and the reachability constraint is that the agent reaches a target region relative to
the leader. In the Dubins+O example, the agent must reach a target region relative to the leader after
navigating past two obstacles while maintaining safe separation with the obstacles and the leader.
Finally, in the Fleet scenario, the two aircraft must both reach a target region infinitely often while
maintaining separation with each other and the leader (See Fig. 1 for diagrams of these scenarios).
This is challenging because if both aircrafts attempt to enter the target region, the safety constraint
will be violated, and so a successful policy must balance the concerns of fair reaching and safety.
In order to enforce such a hard constraint in a fixed-length episode, we implement the following
scheme. We track whether each aircraft has entered the target region. Once both aircraft have
entered the region (this need not happen simultaneously), the episode transitions to a success state
with probability p. With probability 1−p, the episode continues with each aircraft’s flags for entering
the reach region reset. In this way, the agents are incentivized to fairly enter the reach region as
often as possible to maximize the chance of transitioning to a success state during the episode. All
these examples are constructed to put the ω-regular constraint in tension with the reward structure;
simply maximizing rU leads the property to not be fulfilled (See baseline results in Table 1).

4While it may appear that this only requires seven values, all vectors are encoded as a magnitude and a unit vector,
and so use four values instead of the necessary three.
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Optimal Orbit Transfer. The final satellite example is based on autonomous spaceship opera-
tions (Jewison & Erwin, 2016; Johnson et al., 2012). In this scenario, the agent is a satellite with
two-dimensional Clohessy–Wiltshire dynamics

ẍ = 3n2x+ 2nẏ + ux

ÿ = −2nẋ+ uy,

where n is the orbital rate. This agent has a continuous action space that determines the amount
of thrust u to apply on a given time step. The ω-regular constraint is that the satellite must transit
to within a distance δ of a target orbit.

We measure this distance in the space of natural motion trajectory (NMT) parameters (Ichimura
& Ichikawa, 2008). For example, if the satellite is on an orbit characterized by the NMT parameters
as, ds, cs and the goal orbit has parameters ag, dg, and cg, then the satellite has achieved the
constraint if

∥∥[as − ag, ds − dg, cs − cg
]∥∥ < δ. For scenarios with an obstacle satellite, the agent

satellite is required to maintain a distance greater than five units from the obstacle at all times.
The base reward rt consists of a penalty equal to the amount of thrust used on a given time step:
rt(q, ai) = −ai. The final reward structure rω is created in the same fashion as in the aircraft
scenarios, combining the base reward rt with the penalties for not achieving the constraint, or for
violating safety, if applicable.

Figure 1: Left. A typical Dubins episode. The agent (orange) tracks a point behind the leader (black) and must
utilise S to avoid colliding with the leader and to slow down sufficiently to enter the target region (dark red). Middle.
A typical Dubins+O episode. The agent must switch between S and U to avoid collision with the obstacles (bright
red) and to enter the target region between the points that the two controllers track. Right. A typical Fleet episode.
Both agents must fairly share access to the target region (red) but not simultaneously. This characteristic behavior
can be observed in the recent half of their trajectories as the aircraft enter and exit the region in a coordinated fashion.
Light red circles show previous locations of the target to emphasize this behavior.

This problem has a known theoretical optimum (Ichimura & Ichikawa, 2008), and so our results can
be compared to this value to judge the degree to which our approach is able to achieve optimally.
Their result also demonstrates that the optimum can be reached with thrusts only along one axis,
and so for simplicity our agent is limited to thrusts along the y-axis. Because of the continuous action
space, it is necessary to apply a slightly more complex reward shaping to ensure the agent reaches
the desired orbit. Specifically, the shaped reward rω for failing to fulfill the ω-regular property is
scaled according to the distance to the desired orbit:

rω =
{

0 if d < δ

r′ d
δ otherwise,

where d is the distance to the orbit calculated as described earlier, and r′ is the reward shaping
value used in the aircraft examples. This modification helps to move the agent towards fulfillment of
the ω-regular constraint, because unlike in the discrete case, it is extremely unlikely that the agent
fulfills the constraint through random exploration.

Learning Algorithms. We evaluate the benchmarks with four reinforcement learning algorithms.

Approved for public release: distribution is unlimited. AFRL-2024-3403, 06/26/2024. 2501



RLJ | RLC 2024

• Baseline: Proximal policy optimization (PPO) (Schulman et al., 2017) without ω-regular
reward shaping, using rs. This provides a point of comparison in the absence of constraints
and demonstrates the degree to which the constraint-aware techniques (below) modify the
agents behavior.

• PPO-shaped: PPO applied to the shaped reward structure rω.

• SAC-shaped: Soft actor-critic (Haarnoja et al., 2018) applied to rω. This strategy helps us
investigate the effectiveness of an offline algorithm at this task.

• CPO: Constrained policy optimization (CPO) (Achiam et al., 2017), another approach to
ensuring hard constraints are not violated by policies.

Notably, CPO attempts to minimize constraint violations during training, while our approach only
attempts to reach a final policy that satisfies constraints with no restrictions on training behavior.
For CPO, the ω-regular properties are encoded in the algorithm’s cost function, and the rewards are
unshaped. For these examples, the cost function cω is given by

cω =
{

1 if constraint is violated
0 otherwise.

The algorithms were applied to the benchmark scenarios on an M1 MacBook Pro. The
PPO, PPO-shaped, and SAC-shaped examples were trained using Ray’s rllib. The
CPO benchmark was trained using a publicly available PyTorch implementation of
CPO (Sikchi, 2021) with slight modifications to allow for GPU acceleration and discrete
action spaces. The hyperparameters used for training can be found in the appendix.

Figure 2: Typical training runs for the air-
craft scenarios. Here, the reward rU is nor-
malized to the episode length, so a reward
of 1 indicates that U was used at every time
step, and a reward of 0 indicates that S was
used at every time step. The results are aver-
aged over 100 randomly-sampled initial con-
ditions with bars representing one standard
deviation of sampling error.

Results and observations from Aircraft benchmarks.
Fig. 2 displays typical training runs for the four algorithms
across the first three scenarios. The policies were trained
for approximately eight million environment interactions,
except for CPO, which was trained for about 2 million in-
teractions. This is due to the additional computation time
costs of the more complex algorithm. Despite this reduced
training time, the CPO policy reached a steady-state in two
of the three experiments, and its reward was no longer in-
creasing in the third.

On the simplest Dubins task, PPO-shaped, SAC-shaped,
and CPO all reached policies that met the hard ω-regular
constraints. On the Dubins+O task, PPO-shaped and SAC-
shaped attained policies that satisfied constraints, while
CPO did not. For the Fleet scenario, only PPO-shaped
achieved a policy that consistently satisfied the constraint.
Interestingly, the CPO policy converged to a strategy of
sending both aircraft into the target region, allowing it to

succeed a fraction of the time, and violate the safety constraint otherwise. The SAC-shaped pol-
icy was the opposite, never sending the aircraft towards the target, and thus never satisfying the
reachability constraint. The SAC-shaped policy converged very early in training, possibly indicating
insufficient exploration. Table 1 contains a summary of the best policies for each algorithm across
the three scenarios. The baseline policy was selected by choosing the policy with the highest reward,
while the other policies were selected by choosing the policy with the highest success rate. We define
the success rate (S%) to be the percentage of episodes that the ω-regular constraint was satisfied
without violating safety. The reward percent (R%) is defined as the ratio of the final reward to
the number of time steps in an episode, because the maximum possible reward on any time step
is one. If there were multiple policies with the same highest success rate, then the policy with the
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highest reward among them was selected. These results indicate that PPO-shaped is the most robust
method among those tested for obtaining policies for satisfying ω-regular constraints as it was the
only approach that was able to meet the desired requirements across all experiments. In addition,
it achieved rewards comparable to or better than other algorithms when those algorithms generated
constraint-satisfying policies.

Dubins Dubins+O Fleet
R% S% R% S% R% S%

Base 78.4±3.8 2.0 94.3±0.7 20.0 99.2±0.3 0
PPO 53.1±1.2 100 89.2±0.4 100 59.4±3.0 100
SAC 48.7±0.3 100 92.8±0.9 100 100±0 0
CPO 40.5±3.4 100 24.3±11 0 22.6±6.6 12

Table 1: A summary of the results from the best policies achieved by each algorithm on the aircraft benchmarks. For
the baseline, the policy with the highest reward (U%) was selected. For the other policies, the policy that succeeded
at the task most often (S%) was selected. If there were multiple policies with the same S% value, then the policy
with the highest U% value among those was selected.

Results and observations from Satellite benchmarks. We trained policies for opti-
mal orbital transfer in two scenarios: one in which the agent is the only object in the
environment, and one in which there is an obstacle satellite between the agent’s start-
ing location and the goal orbit. In these examples, the agent must transfer between the
NMT(10, 5, 0) to the NMT(50, 10, 0). In the scenario with an obstacle satellite, it has an or-
bit NMT(25, 0, 0). Fig. 3 displays typical training runs using PPO-shaped for both scenar-

Figure 3: Typical orbit transfer training runs for scenarios with and without an obstacle satellite. These training
runs have significant variance, with both the thrust reward and orbit error changing significantly on some updates.

ios. Despite the challenge of the problem, as evidenced by the number of policies that did not
satisfy the ω-regular constraint, in both scenarios a policy was reached that completed the de-
sired orbit transfer successfully with energy usages comparable to theoretically optimal values.

Figure 4: A typical or-
bit transfer episode with
an obstacle (blue). The
agent (red) slightly over-
shoots the desired orbit
(black) before correcting
back towards it, increasing
energy usage.

Fig. 4 displays the trajectory of the best policy attained for the version of
the scenario with an obstacle. Compared to the theoretically optimal trans-
fer, this policy used 37% more energy in the orbit transfer. In contrast, the
best policy trained without an interfering obstacle used 57% more energy
than the optimal transfer. This indicates that the presence obstacles does
not impact our method’s ability to find efficient transfer strategies, and
that this approach to calculating transfers is viable when the complexity
of safety constrains makes direct computation of an optimal trajectory in-
feasible. However, the fact that the simpler scenario did not converge to
policy with thrust usage equal to or better than the scenario with an obsta-
cle indicates that there is significant variance in the training process. These
training runs display a high degree of variability, with both the thrust and
distance error varying significantly between some policy checkpoints. This
is due to the finely-tuned nature of the orbit transfer problem; if the thrust
do not precisely balance, then the satellite can enter a drifting orbit, mov-
ing far from the goal and requiring large energy expenditures to return to
the goal orbit.

This variance could also be due to the large mismatch in scale between the two reward compo-
nents. While this mismatch is also present in the aircraft examples, the magnitude of difference is
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larger in this example because d
δ can be large even when only small thrusts are used, leading the

reward optimization to be dominated by fulfillment of the ω-regular property, with low sensitivity
to optimization of the thrust usage. This is may also be the reason that neither policy achieves the
theoretic optimum.
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Figure 5: No optimal policy to optimize rewards for hard reachability constraints.

A No optimal policy

Example A.1. MDP M = ({q0, qr, qg}, {U, S},∆, q0) is shown in Figure 5. From the initial state q0,
U goes to qr with probability 1, while S goes to qg with probability 1. Both actions U, S go to q0 with
probability 1 from qr. Finally, from qg all actions (U, S) stay in qg with probability 1. Let T = □♢{qg}
(which in this case is the same as ♢{qg}) and r(q, a) = 1 if q = qr and r(q, a) = 0 if q ̸= qr. Consider
the policy σk that chooses U for the first 2k − 1 steps, then chooses S from then on. Observe that
µMσk (T ) = 1 and so σk satisfies the hard constraint. Moreover, EMσk [X(r,γ)] = γ(1−γ2k)

1−γ2 .

Next, the policy σ∗ that chooses U at every step achieves a reward of γ
1−γ2 and this is the maximum

possible reward one can get since it gets a reward of 1 in every odd step. However the policy σ∗ does
not satisfy the hard constraint since µMσ∗ (T ) = 0.

Given the observations about σk and σ∗, we can say that for any k

γ(1 − γ2k)
1 − γ2 ≤ sup

σ:µMσ (T )=1
EM [X(r,γ)] ≤ γ

1 − γ2 .

Thus, supσ:µM (T )=1 EM [X(r,γ)] = γ
1−γ2 . However, there is no policy σ such that µMσ (T ) = 1 and

EM [X(r,γ)] = γ
1−γ2 . This is because no reward is received after reaching qg. Thus, there is no optimal

policy amongst those that satisfy T with probability 1. However, we can get arbitrarily close to the
optimal reward using policy σk by increasing k.

Notice that σk is a finite memory, pure policy. How well do deterministic, stationary policies do in
this example? Any deterministic, stationary policy is forced to choose between U and S from q0.
The only way to ensure visiting qg is to choose S. Any such policy gets a reward of 0. Thus, for any
deterministic, stationary policy σp with µMσp (T ) = 1, we have EMσp [X(r,γ)] = 0

B Proofs of results from Sections 3 and 4

Before presenting the proofs, we start with some preliminaries that are needed in our proofs.

B.1 Preliminaries

We begin with a proof sketch for Theorem 2.3.

Proof Sketch of Theorem 2.3. Let σ be an arbitrary policy of M . Consider the following reward
functions rq and r(q,a) for each state q and action a defined as follows.

rq(p, b) =
{

1 if p = q

0 otherwise

r(q,a)(p, b) =
{

1 if p = q and b = a

0 otherwise
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Define the following stationary policy σ∗ where

σ∗(q)(a) =
EMσ [X(r(q,a),γ)]
EMσ [X(rq,γ)]

. 5

One can prove that for any reward function r, EMσ∗ [X(r,γ)] = EMσ [X(r,γ)].

Next, we recall some classical observations about the structure of MDPs.

End Components. Let us fix an MDP M = (Q,A,∆, q0). A sub-MDP of M is a pair (E,α) such
that E ⊆ Q and α : E → 2A such that (a) for all q ∈ E, ∅ ≠ α(q) ⊆ A(q), i.e., α(q) is a non-empty
subset of the actions enabled at q, (b) for every q ∈ E and a ∈ α(q), supp(∆(q, a)) ⊆ E. The
underlying graph of a sub-MDP (E,α), G(E,α), has vertex set E ∪ {(q, a) ∈ E × A | a ∈ α(q)} and
edges (q, (q, a)) (q ∈ E and a ∈ α(q)) and ((q, a), p) where p ∈ supp(∆(q, a)). A sub-MDP (E,α)
of M is an end component if the underlying graph G(E,α) is strongly connected. Finally, an end
component (E,α) is maximal if (E,α) is “maximal” with respect to subset inclusion, i.e., for any
other end component (E′, α′), if E ⊆ E′ and α(q) ⊆ α′(q) for every q ∈ E, then E = E′ and α = α′.
Maximal end components are disjoint i.e., if (E1, α1) and (E2, α2) are maximal end components
then E1 ∩ E2 = ∅.

For finite MDPs with respect to any policy, runs almost surely reach one of the end components.
Proposition B.1 (Theorem 10.120 of (Baier & Katoen, 2008)). Let M be an MDP and σ be a
policy for M . Let T = ♢(∪(E,α): end componentE). Then µMσ (T ) = 1.

The probability of satisfying a fairness property is related to the probability of reaching certain end
components. Before proving this, we need a technical definition. For a stationary policy σ, an end
component (E,α) is consistent with σ if for every q ∈ E, α(q) = supp(σ(q)). For consistent end
components, we can drop α as it is completely determined by E and σ.
Proposition B.2 (Theorems 10.25 and 10.122 of (Baier & Katoen, 2008)). Let M be an MDP, S
a set of states, and σ a policy for M . Let

V□♢S =
⋃

(E,α):M end comp.
and S∩E ̸=∅

E,

be the states that belong to end components in M that contain some state in S. Then, µMσ (□♢S) ≤
µMσ (♢V□♢S).

If σ is a stationary policy, then µMσ (T ) = µMσ (♢C□♢S) where

C□♢S =
⋃

(E,α):σ cons. end comp.
and S∩E ̸=∅

E.

B.2 Sufficiency of Special Policies

In this Section, we present the proofs showing that deterministic, finite memory policies and sta-
tionary policies can approximate the optimal reward while meeting a hard constraint.

Proof of Theorem 3.1. We can assume without loss of generality that r(q, a) ≥ 0 for all q ∈ Q and
a ∈ A; if r(q, a) < 0 for some q ∈ Q and A, then we can consider the reward function r1, where
r1(q, a) = r(q, a) − minq′∈Q,a′∈A r(q′, a′) and a policy that optimizes r1 also optimizes r.

Let us fix T = □♢S. Let Q1 be the subset of Q consisting of states from which the property T can be
satisfied with probability 1. Taking Mq = (Q,A,∆, q) to be the MDP M with initial state q, define

5If EMσ [X(rq,γ)] = 0 then q can be removed as q is not reachable. Thus, we can, without loss of generality, assume
that EMσ [X(rq,γ)] ̸= 0.
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Q1 = {q ∈ Q | supσ µMσ
q

(T ) = 1}. Given the assumption that there is a policy σ′ of M that satisfies
T with probability 1, we can conclude that q0 ∈ Q1 ̸= ∅. Let M1 be the MDP restricted to states
in Q1, i.e., M1 = (Q1, A,∆1, q0) where ∆1(q, a) is defined and equal to ∆(q, a) if ∆(q, a) is defined
and supp(∆(q, a)) ⊆ Q1. Let σr be the deterministic, stationary policy that maximizes the reward
due to (r, γ) in M1 as guaranteed by Proposition 2.2, i.e., EMσr

1
[X(r,γ)] = supσ EMσ

1
[X(r,γ)]. Next,

let σg be the deterministic, stationary policy that satisfies T with probability 1 in M1 as guaranteed
by Proposition 2.1. That is, taking M1,q = (Q1, A,∆1, q) to be the MDP M1 with initial state q,
µMσg

1,q
(T ) = 1 for all q ∈ Q1.

Our first observation is that the reward earned by policy σr upper bounds the reward earned by any
policy σ′ of M that satisfies the constraint T . Let σ′ be an arbitrary policy such that µMσ′ (T ) = 1.
Now one can show executions with respect to σ′ almost surely stay within Q1. In other words,
µMσ′ (♢(Q \ Q1)) = 0. This observation follows from Propositions B.1 and B.2 as µMσ′ (T ) ≤
µMσ′ (♢VT ) ≤ 1 − µMσ′ (♢(Q \ Q1)). Thus, σ′ is a policy in M1. Since σr maximizes the reward in
M1, we have EMσ′ [X(r,γ)] ≤ EMσr [X(r,γ)]. Therefore,

sup
σ:µMσ (T )=1

EMσ [X(r,γ)] ≤ EMσr [X(r,γ)].

For k ∈ N, let σk be the policy that follows σr for the first k-steps, and from the k + 1st step
onwards follows σg. σk is deterministic (since both σr and σg are) and is finite memory since it only
needs to count to k to decide which of σr and σg to follow. Observe that σk stays within Q1, and
µMσk (T ) = 1 as σg ensures that T is satisfied with probability 1 from any state in Q1. We will now
show that the reward earned by policy σk approaches the reward earned by σr as k increases. Let
us fix an ordering of the states in Q. Let P be the stochastic matrix corresponding to σr, i.e., the
(i, j)th entry of P is ∆(qi, σr(qi))(qj), where qi and qj are the ith and jth states, respectively. Let
δq0 be the column vector representing the Dirac distribution on q0 and r be the column vector where
the ith entry is r(qi, σr(qi)) (i.e., the reward earned from qi when the action is picked according to
σr). Finally let rmax = maxq∈Q, a∈A r(q, a). Then, since r(q, a) ≥ 0 for all q ∈ Q and a ∈ A,

EMσk [X(r,γ)] ≥ EMσr [X(r,γ)] −


 ∑

i≥k+1
γiδTq0P

ir




≥ EMσr [X(r,γ)] −


 ∑

i≥k+1
γirmax




≥ EMσr [X(r,γ)] − rmaxγk+1

1 − γ
.

Taking k such that ϵ < rmaxγ
k+1

1−γ , we have

EMσk [X(r,γ)] ≥ EMσr [X(r,γ)] − ϵ ≥
(

sup
σ:µMσ (T )=1

EMσ [X(r,γ)]
)

− ϵ.

Thus σk is the deterministic, finite memory policy that establishes the theorem.

Next, we have the proof of Theorem 3.2.

Proof of Theorem 3.2. Let σf be the deterministic, finite memory policy that approximates the
optimal reward as guaranteed by Theorem 3.1. From the proof of Theorem 3.1, σf = σk for some k
(depending on ϵ) where σk uses a deterministic, stationary policy for the first k steps, and switches
to another deterministic, stationary policy from then on. We will exploit this structure in completing
the proof of this theorem. Let us fix T = □♢S.
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For the proof, it will be useful to consider an MDP that is closely related toM . The k-unfolding ofM ,
denoted Mk, is M equipped with a counter that counts the first k+ 1 transitions and stops counting
once the counter reaches k+1. Formally, Mk = (Qk, A,∆k, (q0, 0)), where Qk = Q×{i ∈ N|i ≤ k+1}
and ∆k of Mk is defined as follows. ∆k((q, i), a) is defined iff ∆(q, a) is defined, and when defined it
is

∆k((q, i), a)(p, j) =





∆(q, a)(p) if j = i+ 1 ≤ k + 1
or i = j = k + 1

0 otherwise
Given the definition of ∆k, one can conclude that if (E,α) is an end component in Mk then E ⊆
Q× {k + 1}.

Policies over M and Mk are the same. Let π : Qk → Q be the projection function defined as
π(q, i) = q. Define Sk = π−1(S) = {(q, i) ∈ Qk | q ∈ S}. For any policy σ, observe that the
probability of satisfying □♢S in M is the same as the probability of satisfying □♢Sk in Mk. As a
consequence, we will abuse notation and use T to refer to □♢S over M and □♢Sk over Mk. Now
the finite memory, deterministic policy σf = σk is a deterministic, stationary policy on Mk with the
property that µMσk

k
(T ) = µMσk (T ) = 1 and

EMσk [X(r,γ)] ≥
(

sup
σ:µMσ (T )=1

EMσ [X(r,γ)]
)

− ϵ.

Let σ∗ be the stationary policy corresponding to σk as guaranteed by Theorem 2.3. For σ∗, we know
that

EMσ∗ [X(r,γ)] = EMσk [X(r,γ)] ≥
(

sup
σ:µMσ (T )=1

EMσ [X(r,γ)]
)

− ϵ.

and for any B ⊆ Q, µMσ∗ (♢B) > 0 iff µMσk (♢B) > 0. Thus the reward under policy σ∗ is close to
optimal. In order to complete the proof we need to show that µMσ∗ (T ) = 1.

Suppose (for contradiction), µMσ∗ (T ) < 1. Since µMσ∗ (T ) < 1, from Propositions B.1 and B.2, we
can conclude that there is an end component (E,α) consistent with σ∗, such that E ∩ S = ∅ and
µMσ∗ (♢E) > 0. Therefore, µMσk (♢E) = µMσk

k
(♢π−1(E)) > 0. From the proof of Theorem 2.3

which sketches the construction of σ∗, the fact that σk is a combination of deterministic, stationary
policies, and the fact that (E,α) is consistent with σ∗, we can conclude that a ∈ α(q) for any q ∈ E
iff for some i, σk(q, i)(a) = 1, i.e., a is chosen from q at some step in σk. This together with the
fact that (E,α) is an end component of M means that once a run in Mσk reaches E, it never leaves
E. Thus, any end component (E′, α′) consistent with σk in Mk and contained in π−1(E), is disjoint
from S. Let

CE =
⋃

(E′,α′): end comp. cons. with σ∗
in Mk and E′⊆π−1(E)

E′.

Based on the observations above, we can conclude that µMσk
k

(♢CE) > 0. Together with Proposi-
tion B.2, this means that µMσk (T ) = µMσk

k
(T ) ≤ 1 − µMσk

k
(♢CE) < 1. This gives us the desired

contradiction. Hence, µMσ∗ (T ) = 1, which establishes the theorem.

B.3 Approximating Constrained MDP Optimization Problem in Polynomial Time

We present the polynomial time algorithm to approximately solve Constrained MDP Optimization
Problem.

Proof of Theorem 3.3. We will show that both the deterministic, finite memory strategy guaranteed
by Theorem 3.1 and the stationary policy promised by Theorem 3.2, can be constructed in polynomial
time, if they exist.
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The algorithm will first construct the MDP M1 over states Q1 consisting of all states of M from which
there is a policy such that T can be satisfied with probability. M1 can be constructed in polynomial
time using for example the algorithm outlined in the proof of Theorem 10.127 in (Baier & Katoen,
2008). If Q1 does not contain the initial state, then the algorithm answers “no policy” as required.
If the initial state belongs to Q1, then the policies σr and σg as in the proof of Theorem 3.1 can be
computed in polynomial time using standard algorithms like linear programming. The desired finite
memory policy runs σr for some number of steps and then σg; the number of steps k is approximately
log ϵ+log γ − 1− log rmax (see proof of Theorem 3.1) where rmax is the maximum reward one can get
in any step. This completes the description of polynomial time algorithm to output a finite memory,
deterministic policy.

A stationary policy to the solve the problem can be computed by first computing a deterministic,
finite memory policy, and then outputting the stationary policy corresponding to it as given by
Theorem 2.3. This again can be done in polynomial time.

B.4 Reward Shaping

In this section, we prove our reward shaping result. Before doing so, we introduce some notation.
There is a natural projection mapping π : Q1 → Q from the states of M [m, o, ξ,□♢S] to the states
of M which is defined as π(q, i) = q. Its inverse is defined usual: for a subset B ⊆ Q, we define
π−1(B) = {(q, i) ∈ Qk | q ∈ B}.

Proof of Theorem 4.1. As argued in the proof of Theorem 3.1, we will assume without loss of gen-
erality that r(q, a) ≥ 0 for all q ∈ Q and a ∈ A. Let us fix ϵ. Let n = |Q| be the number of states in
M . Recall that from the proof of Theorem 3.1, there is a finite memory, deterministic policy built
from two deterministic, stationary policies, where the first policy is used for the first k-steps and
the second policy is used from the k + 1st step onwards, which ϵ/2-approximates the Constrained
MDP Optimization Problem. Let k be this value given by the proof of Theorem 3.1 for ϵ/2. Let us
take o = k + n and m = k + ℓn for some ℓ > 1 to be set later. We will also fix the exact value of
ξ later in the proof. Let ρ be the least non-zero probability of path of length n in M ; thus, if one
from state q1 to q2 in M within n steps, then the probability of this path is at least ρ. Similarly, let
η be the least non-zero probability path of length k in M . Next, let rmax = max(q,a)∈Q×A r(q, a) be
the maximum reward in any step under r.

Let us now define the new reward function r′ as follows.

r′((q, i), a) =
{
r(q, a) if i ̸= m

−p if i = m

Here p ∈ R>0 should be thought of as a “penalty” and will be set later in this proof. Intuitively, r′

assigns the same reward as r except for the m+ 1st transition which is assigned p if level m+ 2 is
not reached by then. On the other hand, if level m+ 2 is reached before the m+ 1st transition, you
get the same reward as r.

We have now specified all the pieces and we will establish some properties that will build towards
proving the theorem. From now on we will restrict our attention to k-memory policies. We will call
a k-memory policy σ fair if µM [m,o,ξ,□♢S]σ (□♢π−1(S)) = µMσ (□♢S) = 1; otherwise, we will call it
unfair. Let us define Lm+2 = {(q,m+ 2) | q ∈ Q} to be the states in level m+ 2 in M [m, o, ξ,□♢S].

Unfair policies have a low probability of reaching Lm+2 within m steps. Let σ be an
unfair k-memory policy. Since µM [m,o,ξ,□♢S]σ (□♢π−1(S)) < 1, from Propositions B.1 and B.2, we
can conclude that there is an end component (E,α) of M [m, o, ξ,□♢S] consistent with σ, such
that E ∩ π−1(S) = ∅ and µM [m,o,ξ,□♢S]σ (♢E) > 0. Since E is an end component, once a run
reaches E, it never leaves E. Further, based on the definition of M [m, o, ξ,□♢S], there are no
transitions from E to Lm+2. Finally, since σ is a k-memory strategy, if µM [m,o,ξ,□♢S]σ (♢E) > 0, E
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is reached with non-zero probability within k+n steps. Based on our assumptions, this means that
µM [m,o,ξ,□♢S]σ (♢E) > ηρ > 0. Consequently, µM [m,o,ξ,□♢S]σ (♢Lm+2) < 1 − ηρ.

Fair policies have a high probability of reaching Lm+2 within m steps. Let σ be a fair k-
memory policy. Since σ is k-memory, the policy chooses the same action from every copy of any state
q ∈ Q after k steps. Further, since µM [m,o,ξ,□♢S]σ (□♢π−1(S)) = 1, from Propositions B.1 and B.2,
we can conclude that from every state (q, i) for i > k reached, there is a non-zero probability
of reaching a state in π−1(S) within n-steps. Thus, after k-steps, in every trajectory we have a
probability of at least ρξ of reaching a state in Lm+2 within n steps. Therefore, after m = k + ℓn-
steps, the probability of not reaching Lm+2 is at most (1 − ρξ)ℓ. Hence, the probability of reach
Lm+2 within m + 1 steps in the Markov chain M [m, o, ξ,□♢S]σ is ≥ 1 − (1 − ρξ)ℓ, which can be
made as high as we want by increasing ℓ.

Before proving our next set of observations, it is worth noting that r′ is the same as r, except for the
penalty it assesses from states in level m. Thus the reward earned by a policy σ in M with respect
to (r, γ) in a trajectory is the same as that earned by σ in M [m, o, ξ,□♢S] with respect to (r′, γ)
except on those trajectories that end up in a state in level m after m-steps.

Unfair policies earn low reward with respect to (r′, γ). Let σ be an unfair k-memory policy.
We know that µM [m,o,ξ,□♢S]σ (♢Lm+2) < 1 − ηρ and so the probability of not being in a state in
Lm+2 after m-steps is at least ηρ. As observed, these are the trajectories that get a penalty on the
m+1st step under r′. Given that the maximum reward possible with respect to (r, γ) is rmax/(1−γ),
we get that

EM [m,o,ξ,□♢S]σ [X(r′,γ)] <
rmax
1 − γ

− γmp(ηρ).

This can be made as small as we want by setting p to be large number.

Reward earned by fair policies is similar in (r, γ) and (r′, γ). Let σ be a fair policy. As
observed earlier, the probability of not reaching Lm+2 within m-steps is at most (1−ρξ)ℓ, and again
these are the only trajectories that earn a different reward under r′. Thus, we can say that

EM [m,o,ξ,□♢S]σ [X(r′,γ)] ≥ EMσ [X(r,γ)] − γmp(1 − ρξ)ℓ

which can be made as small as we want by increasing ℓ, no matter what we set p and ξ to be. Since
we assumed that r(q, a) ≥ 0 for all (q, a) ∈ Q × A, we know that EMσ [X(r,γ)] ≥ 0. Thus, taking
threshold τ = −γmp(1 −ρξ)ℓ, we can see that EM [m,o,ξ,□♢S]σ [X(r′,γ)] ≥ τ , which establishes the last
part of the theorem.

Based on all these observations, to satisfy the theorem, we can set the values of ξ, p, ℓ so that the
following inequalities hold.

τ = −γmp(1 − ρξ)ℓ > rmax
1 − γ

− γmp(ηρ)

−τ = γmp(1 − ρξ)ℓ < ϵ/2

Let us now complete the proof of the theorem using our observations and the values of the parameters.
Let σ∗ be the optimal k-memory policy for M [m, o, ξ,□♢S] with respect to (r′, γ). Observe that if
there is no policy σ such that µMσ (□♢S) = 1, then vϵ = −∞ and the claim about EMσ∗ [X(r,γ)] ≥ vϵ
holds trivially.

Let us consider the case when there is a policy σ such that µMσ (□♢S) = 1. We know that by
Theorem 3.1 and our choice of k, there is a k-memory policy σf such that µMσf (□♢S) = 1 and
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EMσf [X(r,γ)] ≥ vϵ + ϵ/2. Based on our choice of τ and our previous observations, we have

EMσ∗ [X(r,γ)] ≥ EM [m,o,ξ,□♢S]σ∗ [X(r′,γ)]
≥ EM [m,o,ξ,□♢S]σf [X(r′,γ)]
≥ EMσf [X(r,γ)] + τ

≥ (vϵ + ϵ/2) + τ

≥ (vϵ + ϵ/2) − (ϵ/2) = vϵ.

This completes the proof of the theorem.

C Details on experiments

C.1 Dubin’s RTA scenarios

Model All of the aircarfts follow the dynamical model given by



ẋ
ẏ
ż

θ̇

ψ̇
v̇




=




v cos(θ) cos(ψ)
v sin(θ) cos(ψ)

v sin(ψ)
ω
Ψ
a




where for the state: (x, y, z) is the position, θ is the heading angle, ψ is the pitch angle, and v is
the velocity; and for the input: ω is the change in heading rate, Ψ is the change in pitch rate, and
a is the acceleration. The lead aircraft follows a set circular path where a = 0, Ψ = 0, and ω is
constant. The follower aircraft attempt to follow at some position relative to the leader using a
tracking controller given by 


ω
Ψ
a


 =




ωref
K1(ψref − ψ)
K2(vref − v)


 (1)

where K1,K2 > 0 and ωref, ψref, and vref are the reference change in heading rate, reference pitch
angle, and reference velocity respectively. The untrusted controller U follows the tracking controller
in (1) exactly, and the safety controller S follows the tracking controller but sets a = 0. The positions
U tracks is closer to the leader, and the position that S tracks is further from the leader.

Dubins In the Dubins example, the lead aircraft follows a circular path with an angular velocity
between 0.6 and 0.7 rad/s, and a velocity between 450 and 550. The reach region is 400 units behind
the lead and 100 units to its left. The follower starts 250 units behind the leader, and has the same
velocity as the leader.

Dubins+O In the Dubins+Oexample, the lead aircraft follows a circular path with an angular
velocity of 0.2 rad/s and a velocity of 500. The follower starts 500 units to the left of the leader,
and has an initial velocity of 400, to match the angular velocity of the leader. The obstacles are
cubes with side length 100. The first cube is offset 250 units radially inward from the leader’s path
so that it’s center coincides with the tracking point of the follower’s untrusted controller. It appears
at an angle along the path between 2 and 4.71 radians. The second obstacle has a radial offset of
500 to correspond with the follower’s safety controller tracking point, and appears at an angle along
the path of 0.78 radians.

Fleet In the Fleet example, the leader follows a circular path with angular velocity between 0.3
and 0.4 rad/s with a velocity between 450 and 650. The followers begin on the tracking point of
their safety controllers, so the first follower starts 250 units behind and 200 units to the left of the
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leader, while the second follower starts 250 units behind and 200 units to the right of the leader.
They share a untrusted controller tracking point 250 units behind the leader. The reach region they
must enter infinitely often is centered on this point with a radius of 100.

C.2 Optimal orbit transfer

Model The satellite follows the 2-dimensional Clohessy Whiltshire dynamics given by



ẋ
ẏ
ẍ
ÿ


 =




0 0 1 0
0 0 0 1

3n2 0 0 2n
0 0 −2n 0







x
y
ẋ
ẏ


+




0 0
0 0
1 0
0 1



[
ux
uy

]

where n is the orbital rate. A zero-input trajectory of the satellite is called a natural motion
trajectory (NMT). The explicit solution to a NMT is given by

x(t) = 4x0 + 2 ẏ0
n

− (3x0 + 2 ẏ0
n

) cos(n(t− t0)) + ẋ0
n

sin(n(t− t0))

y(t) = y0 − 2 ẋ0
n

+ 2 ẋ0
n

cos(n(t− t0)) + (6x0 + 4 ẏ0
n

) sin(n(t− t0)) + (3nx0 + 2ẏ0)(t− t0)

ẋ(t) = ẋ0 cos(n(t− t0)) + (3nx0 + 2ẏ0) sin(n(t− t0))
ẏ(t) = (6nx0 + 4ẏ0) cos(n(t− t0)) − 2ẋ0 sin(n(t− t0)) − (6nx0 + 3ẏ0)

where x0, y0, ẋ0, and ẏ0 are the initial conditions. The explicit solutions can be rewritten in terms
of the NMT parameters a, d, c, and α where

a = [(3x0 + 2 ẏ0
n

)2 + ( ẋ0
n

)2] 1
2

d = y0 − 2 ẏ0
n

c = 2x0 + ẏ0
n

cos(α) = −1
a

(3x0 + 2 ẏ0
n

) and sin(α) = − ẋ0
na

such that

x(t) = 2c+ a cos(n(t− t0) + α)
y(t) = d− 3nc(t− t0) − 2a sin(n(t− t0) + α)

ẋ(t) = −an sin(n(t− t0) + α)
ẏ(t) = −3nc− 2an cos(n(t− t0) + α).

The NMT is periodic with period T = 2π
n with ellipse with eccentricity

√
3

2 centered at (0, d) when
c = 0. The parameter a represents the size of the ellipse and α indicates the initial position on the
ellipse.

Orbit transfer scenario In the orbit transfer scenarios, spacecraft begin in the NMT (10, 5, 0)
and must transfer to the orbit (50, 10, 0). In scenarios with an obstacle, the obstacle’s NMT is (25,
0, 0). A collision occurs if the spacecraft is within 5 units of the obstacle.

D Reinforcement Learning Hyperparameters
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Hyperparameters
Shared
γ 0.995
λ 0.995
Layers (RTA) 2
Layers (Satellite) 4
Hidden units (RTA) 512
Hidden units (Satellite) 1024
Learning rate 5.00E-05
Optimizer Adam
β1 0.9
β2 0.999
Max Episode Length (RTA) 400
Max Episode Length (Satellite) 80
Activation function Tanh
PPO
Batch size 200000
Batch mode complete episodes
Max SGD iterations 20
ϵ 0.3
Value function clipping 10
SAC
Entropy learning rate 1.00E-05
Critic learning rate 0.005
Actor learning rate 0.005
Target update frequency 1024
Steps before learning 1500
τ 1
Batch mode truncate episodes
CPO
Cost limit 1
Batch size 40000
Max SGD iterations 80
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